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Figure 2.13: Subaru Telescope images of the young star κ Andromedae, as
obtained on November 12, 2016. The planetary-mass companion is hardly
visible in the conventional image (left), but is clearly detected when using the
optical vortex coronagraph technique (right) [68].

method reduces the star’s glare significantly, which renders the companion

object detectable [68].

2.7 Conclusion

In this chapter, I have presented an introduction to OAM with a brief

history and mathematical derivation. Also, an overview of a variety of meth-

ods used to generate twisted light was given, including spiral phase plates,

cylindrical mode converters, and computer-generated holograms. In addition,

some methods used to detect and distinguish different OAM states were dis-

cussed briefly. Finally, a discussion of possible applications for light with OAM

was presented. In the following chapters, I will discuss in detail the way that

twisted light interacts with matter and how such light could act differently in
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this interaction. First, we explore the fundamentals of light-matter interaction

in the next chapter.
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Chapter 3

Light-Matter Interaction

In the previous chapter we provided an overview of twisted waves and how

they differ from plane waves. In other words, we have covered the light part;

now it is appropriate to cover the matter part. In this chapter, we discuss

the optical properties of semiconductor quantum dot nanostructures and the

fundamentals of light-matter interaction.

3.1 Atomic Structure

The study of matter and what it is made up of has been attracting scien-

tists’ attention for centuries. In fact, the idea that matter consists of indivisible

units (atoms) appeared in many ancient cultures during the fifth century [70].

However, one of the earliest fundamental models to describe the atom was

proposed by Niels Bohr in 1913 [71]. In this model, a small nucleus (with a

positive charge) is surrounded by electrons (negatively charged) that revolve

around the nucleus in circular orbits in a manner similar to that of planets
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orbiting the sun [72]. Although the Bohr model is significant (it explains the

Rydberg formula for the hydrogen atomic spectrum), it is no longer considered

a valid model because it fails to explain the Zeeman effect and cannot predict

the spectra of larger atoms [73].

Since the Bohr model, observations (of black body radiation and the pho-

toelectric effect, for example) have shown how light waves could behave like

particles. The de Broglie hypothesis, which states that particles could also

behave like waves, introduced the idea that electrons behave with wave and

particle properties at the same time (i.e., wave-particle duality). Because of

this concept, the classical mechanical model was replaced by the theory of

quantum mechanics [74].

Rather than placing the electron in a certain orbit around the nucleus, the

quantum mechanical approach describes an area in space around the nucleus

of an atom, known as the atomic orbital, and expresses the electron’s behavior

by the wavefunction, ψ. This function allows us to determine the probability

(rather than certainty) of finding electrons at certain energy levels within an

atom. Each electron in an atom can be defined by four quantum numbers (n,

l, m, and ms).

The principal quantum number, n, defines the energy of the electron and

the orbital size. It can have positive integer values, and orbitals with the same

value of n are in the same “shell.” The angular momentum quantum number,

l, describes the orbital shape with a specific principal quantum number (this is

not the azimuthal quantum number, `, discussed in Chapter 2). l can be any

positive integer number ranging from 0 to n− 1, and it divides the shells into

“subshells.” The magnetic quantum number, m, describes the orientation of a
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specific orbital in space. Each subshell has 2l + 1 orbitals, and the orbitals in

a given subshell have the same energy, n, but different orientations in space,

m. Finally, the spin quantum number, ms, defines the spinning direction of

the electron. It can be +1
2

or −1
2
. Each subshell may be occupied by two

electrons, one of them with a spin of +1
2

and the other with a spin of −1
2

[75].

Although Bohr proposed a model for the hydrogen atom that explained

the spectrum for a simple hydrogen-like atom, to study the details of the

structure we need to solve the time-independent Schrödinger equation [76]:

Ĥ|ψ〉 = E|ψ〉 (3.1.1)

where E is a constant and equivalent to the total energy of the system, and

Ĥ is the Hamiltonian operator that defines the total energy of the system.

This Hamiltonian is given by T + V , where T is the kinetic energy equal to

p2/2me and V is the potential energy defined by the Coulomb potential given

by: −Ze2/4πε0r, where p is the momentum, me is the mass of the electron, Z

is the charge of the nucleus (Z=1 for hydrogen), e is the charge of the electron,

and ε0 is the vacuum permittivity. By using p = −i~∇, the Hamiltonian can

be written as:

Ĥ = − ~2

2me

∇2 − Ze2

4πε0r
(3.1.2)

Using the reduced mass me → µ, where µ = memp
me+mp

and mp is the hydrogen

nucleus mass (a proton mass), applying the Hamiltonian to the Schrödinger

equation 3.1.1 gives us:

∇2ψ(~r) +
2µ

~2

(
E +

Ze2

4πε0r

)
ψ(~r) = 0 (3.1.3)
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which can be solved in spherical coordinates by writing the Laplacian in spher-

ical coordinates as [77]:

∇2 → 1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
(3.1.4)

The wavefunction for hydrogen can be found by solving equation 3.1.3 where

the radial variable and angular variable are separable, and the solution is given

by:

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (3.1.5)

where Rnl(r) is the radial wavefunction and Ylm(θ, φ) is the spherical harmon-

ics, and they are given by [72]:

Rnl(r) =

√
(n− l − 1)!

2n(n+ 1)!3

(
2Z

na0

)3/2

e
− Zr
na0

(
2Zr

na0

)l
L2l+1
n+l

(
2Zr

na0

)
(3.1.6)

Ylm(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (3.1.7)

where L2l+1
n+l is the Laguerre polynomial, a0 is the Bohr radius equal to 4πε0~2/mee

2,

and Pm
l (cos θ) is the associated Legendre polynomial. Figure 3.1 illustrates

spherical polar plots for the first few spherical harmonics.

3.2 Atomic Transition

Typically, an atom exists in a stable configuration that corresponds to

the lowest energy level. When each electron is in the lowest possible energy

state, the whole atom will be in ground state. An atomic transition can take
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Figure 3.1: Visual representations for spherical harmonics with angular
momentum quantum number l = 0, 1, 2, and 3 and magnetic quantum number
m from −l to +l [78].
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place if some sort of energy pumps into the atom and changes its configuration

from ground state to excited state. For example, a photon can interact with an

electron bound to an atom and excite it to a higher-energy state. However, the

atom can only absorb photons of certain energies because the atom can only

have certain energies, and this process appears discontinuous as the electron

jumps from one energy level to another (therefore it is called a quantum jump).

In other words, only if the photon has an energy that equals the difference

between the two energy states (E1 for the ground state and E2 for the excited

state), a photon of angular frequency, ω, is absorbed when the atom jumps

between two quantized energy states, E1 and E2, that satisfy:

E2 − E1 = ~ω (3.2.1)

If an electron occupies a level higher than its ground-state level, the atom

is temporarily excited. The atom in the excited state is unstable, and it

eventually returns back to the ground state and a photon is emitted in the

process. Figure 3.2 illustrates the atomic transitions induced by absorbing a

photon.

Generally, the transition rate (or the probability of transition per unit

time) between two states (i for the initial state, f for the final state) is pro-

portional to the strength of the coupling between the initial and final states.

This coupling is known as the matrix element for the transition. This tran-

sition rate can be calculated using Fermi’s golden rule [79, 80], which is given

by:

Wi→f =
2π

~
|Mif |2g(E) (3.2.2)
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Figure 3.2: Optically induced atomic transition. (a) Photon with energy of ~ω
is interacting with the atom. (b) The electron absorbs the photon and reaches
a higher energy level because the photon has the same energy needed to reach
the excited state. (c) Photon with energy of ~ω is emitted when the electron
relaxes to ground level.
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where Mif is the matrix element and g(E) is the density of states. The density

of states defines the actual occupancy of electrons in the initial state or the

available in the final state. Moreover, the matrix element can be written as

an integral where the interaction that causes the transition is expressed as a

perturbation caused by the light, H, which operates on the wavefunction of

the initial state as follows:

Mif = 〈f |H|i〉 =

∫
ψ∗f (r)H(r)ψi(r)d

3r (3.2.3)

where ψi(r) is the wavefunction of the initial state and ψf (r) is the wavefunc-

tion of the final state [71].

A semiclassical picture of light-atom interaction is appropriate to use here.

In this approach, the atoms are described quantum-mechanically while the

light is treated classically. In an electric dipole transition, the perturbation,

H, to the atom is produced by the interaction between the light electric field,

E0, and the atom electric dipole, P , which gives:

H = −P.E0 (3.2.4)

where P is defined as:

P =
∑
i

qiri (3.2.5)

where qi is the charge at position ri with respect to the origin centered at the

nucleus. In the case of a single-electron atom, P is given by:

P = −er (3.2.6)
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where e is the charge of the electron and r is the radial position of the electron

with respect to the proton. Therefore, H can be written as:

H = e(xEx + yEy + zEz) (3.2.7)

where Ex, Ey, and Ez are the components of the field amplitude along the x, y,

and z axis, respectively. However, since atoms are small compared to the light

wavelength, the amplitude of the electric field does not change significantly

over atomic dimensions. Therefore, Ex, Ey, and Ez can be considered constants,

and µif can be defined as the electric dipole moment of the transition given

by:

µif = −e
(
〈f |x|i〉x̂+ 〈f |y|i〉ŷ + 〈f |z|i〉ẑ

)
(3.2.8)

The integrals in equation 3.2.3 can be written as:

Mif = −µif .E0 (3.2.9)

This electric-dipole matrix element can be calculated not just for hydrogen

atom but also for any atoms with known wavefunctions. If the calculated

matrix element is zero (or extremely small), then the electric-dipole transition

rate is zero; in other words, the transition is forbidden and it does not satisfy

the selection rules. The same is true if the calculated matrix element has a

finite value, in which case the transition is allowed.
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3.3 Selection Rules

In light-matter interaction, the photon transfers not only its energy to the

atom, but also its angular momentum. Therefore, the selection rules governing

transitions between electronic energy levels are based on conservation of both

energy and angular momentum. The angular momentum considered in the

selection rules is the one associated with circularly polarized light (with SAM).

Each photon can have SAM of +~ for left-handed or −~ for right-handed

circularly polarized light. However, the linear momentum of photons is usually

neglected in their interaction with matter [81]. This can be understood using

simple analysis by comparing between the photon linear momentum and the

electron’s. Using the relationship ω = ck, and defining the photon energy as:

E = ~ω, allows us to express the energy as: E = c~k. Then we can calculate

the photon momentum, pλ, using the relationship: E = cpλ, which gives us the

photon linear momentum in terms of the wave number: pλ = ~k. Recalling

that the wave number is related to the wavelength as: k = 2π/λ, the photon

momentum can be given by pλ = h/λ, which is in the order of 10−28 Kg m/s.

On the other hand, the electron momentum can be calculated using the lattice

constant a (for example, for GaAs a = 5.65Å), which is related to the wave

number by: k = π/a. Therefore, we can calculate the electron momentum

using the relation: pe = ~π/a, and the resultant momentum is in the order

of 10−24 Kg m/s, which indicate that the light field changes only very little

within the crystal and therefore can be neglected.

The selection rules for electric-dipole transitions of a single electron in a

hydrogen-like atom are shown in Table 3.1. Assuming that the initial-state
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wavefunction is defined with the quantum numbers n, l, m, and ms, and that

the final-state wavefunction is defined with the quantum numbers: n′, l′, m′,

and m′s, the selection rules obtained are:

• Since the electric-dipole operator is proportional to r (an odd function)

and Legendre polynomials have definite parity (either odd or even), the

parity must change.

• Since the spherical harmonic functions have parity (−1)l, l must differ

from l′ by ±1, and when it does not change (i.e. ∆l = 0), the transition

is forbidden.

• Since circularly polarized photons carry angular momenta of +~ or −~

along the z-axis, m must differ from m′ by ±1 (i.e. one unit of ~)

to conserve angular momentum; for linearly polarized light along the

z-axis, the photons carry no z-component of momentum and therefore

the quantum number, m, does not change: in this case m = m′ (i.e.

∆m = 0).

• Since the photon does not interact with the electron spin, the spin quan-

tum numbers should not change in the transition, and ms = m′s (i.e.

∆ms = 0).

The OAM of light has a history predating Allen et al. While most atomic

transitions are dipolar, there are some higher-order transitions (for example,

quadrupole transitions) where the emitted photon carries angular momentum

of multiple units of ~ [82]. Chapter 4 will discus in detail the theory of optical

transitions induced by light that carries OAM and the possibility of activating

transitions with an angular momentum change larger than one unit of ~. How-
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Quantum number Selection rule Polarization
l ∆l = ±1
m ∆m = +1 Circular: left-handed (+)

∆m = −1 Circular: right-handed (−)
∆m = 0 Linear ‖ z

s ∆ms = 0

Table 3.1: Electric-dipole selection rules. The direction of the applied elec-
tromagnetic field is defined by the z-axis. The circular polarization sign is for
absorption, and it is reversed for emission.

ever, we will first discuss the electronic structure and the optical properties of

the nanostructures that we use to study this theory.

3.4 Semiconductor Quantum Dots

Quantum dots (QDs) are semiconductor nanoparticles usually made up of

group IV atoms (such as C, Si and Ge) or a combination of groups II to VI (e.g.

CdSe, CdTe and ZnS), III to V (e.g. GaP, GaAs and InN), or IV to VI (e.g.

PbSe, PbS and SnTe). Their size is typically on the order of several nanometers

in diameter. On such a scale, the electrons and holes are confined in all three

spatial dimensions and known as zero-dimensional nanostructures, or artificial

atoms [83]. The electronic structure and optical properties of QDs can be

modified by varying the size of the particle (which can be controlled during

fabrication), which can help to exploit valuable properties, particularly the

size-dependent band gap. This gives rise to numerous interesting opportunities

for device applications, such as solar cells [84–86], transistors [87–89], and

optoelectronic devices [90–92].

39


