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Abstract

We theoretically and experimentally investigate the transfer of orbital

angular momentum from light to an ensemble of semiconductor-based nanos-

tructures composed of lead sulfide quantum dots. Using an ensemble of quan-

tum dots offers a higher cross-section and more absorption of twisted light

fields compared to experimentally challenging single-nanostructure measure-

ments. However, each quantum dot (except for on-center) sees a displaced light

beam parallel to its own axis of symmetry. The transition matrix elements for

the light-matter interaction are calculated by expressing the displaced light

beam in terms of the appropriate light field centered on the nanoparticles.

The resulting transition rate induced by light’s orbital angular momentum

depends on the nanostructure size, the displacement between the beam cen-

ter and nanostructure axis, and the ratio of the nanostructure size to the

beam waist. In addition, while the strength of the transitions induced by

twisted light is much weaker than those induced by plane waves for the center

case, they are almost identical when conceding illuminating an ensemble of

nanostructures. Although we attempted to measure this transfer of orbital

angular momentum, due to experimental limitations the transfer remained

undetectable.
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Chapter 1

Introduction

For centuries, light has inspired scientists not just to understand its fun-

damental nature, but also to explore its potential uses. From long-wavelength

infrared electromagnetic waves to high-energy γ-rays, light has been used as

an instrument for probing material and solid-state physics ranging from the

atomic scale to astrophysics. Light-matter interaction has been an essential

tool for understanding phenomena and testing theories, and its applications

have rapidly progressed in most areas of science such as biology, chemistry,

and medicine.

When electromagnetic waves meet matter, many processes can be observed,

including absorption, scattering, and emission (as photons at certain wave-

lengths or as electrons at specific energies). When considering optically induced

transitions between electronic states within an atom, selection rules can be

used. These selection rules are based on conservation of energy, linear momen-

tum, and angular momentum of the electron and the photon, and they may

differ depending upon the system used to observe the transition. For example,
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for circularly polarized light that carries spin angular momentum, the exci-

tation of atomic transitions must exhibit change in angular momentum equal

to zero or one unit of ~ (where ~ is the reduced Planck constant or Planck’s

constant divided by 2π).

Selection rules have been derived assuming that light can be described

by three properties: energy, linear momentum, and polarization (spin angular

momentum). But Allen et al realized that light possesses another degree of

freedom associated with its spatial profile [1]. This new degree of freedom,

known as the orbital angular momentum (OAM) of light (also referred to as

twisted light), has given rise to new selection rules. Consequently, this adds

new possibilities for atomic transition excitations and a plethora of applica-

tions.

1.1 Outline of Thesis

In this thesis I will discuss my contributions to the field of light-matter

interaction using light that carries OAM and how twisted light may activate

forbidden optical transitions in nanostructures. Chapter 2 is an introduction

to OAM with a brief history, mathematical derivation, overview of methods

used to generate and measure OAM, and examples of possible twisted light

applications. Chapter 3 discusses in detail the fundamentals of light-matter

interaction, the concept of selection rules, and the electronic and the optical

properties of the nanostructures (semiconductor quantum dots) that have been

studied in this research. Then, in Chapter 4 we will explain how twisted

light with OAM affects the selection rules in such interactions. Chapter 5

2



describes the experimental setup used to study the OAM-dependent absorption

spectrum in nanostructures and the experimental results. Lastly, Chapter 6

summarizes my work in the context of the field of light-matter interaction and

offers suggestions for continuation of this work in the future.
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Chapter 2

Light Angular Momentum

It is well known that light carries both energy, ~ω, and linear momentum,

~k, in the direction of propagation (where ω is the angular frequency and k is

the wave number) [2]. Photons may also carry frequency-independent angular

momentum in two different forms.

The most well-understood form of photonic angular momentum is associ-

ated with the direction that the electric and magnetic field rotate around the

beam axis during propagation [3]. In other words, the tip of the electric field

vector, at a given point in space, traces out a circle as time progresses. For

such a beam, this rotation or spinning is known as spin angular momentum

(SAM), and it is related to the optical polarization of the beam. Each photon

can carry SAM of ±~ [4], aligned parallel (counter-clockwise rotation, positive)

or antiparallel (clockwise rotation, negative) to the direction of propagation,

or a superposition of the two when having linear polarization [5]. Figure 2.1

shows the difference between linearly polarized light and light carrying SAM

when it is right-handed and left-handed circularly polarized.
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Figure 2.1: (a) Diagram of the electric field vectors for linearly polarized light
propagating along the z-axis shows that the electric field is confined to a plane
along the propagation direction. (b) The electric field vectors of right-handed
circularly polarized light appears to be rotating clockwise (SAM of −~). (c)
The electric field vectors of left-handed circularly polarized light appears to
be rotating anticlockwise (SAM of +~) [6].
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Figure 2.2: Representation of beam helical structures carrying OAM of (a)
` = 0 (b) ` = 1 (c) ` = 2, and (d) ` = 3 [7].

The second form of photonic angular momentum is associated with the

helicity of the phase structure, which gives rise to the OAM of light. In other

words, a light beam with helical phase fronts and an azimuthal component

of the local wave vector carries OAM [7]. Figure 2.2 shows some example for

beams with helical phase fronts. This type of twisted light beam has a phase

singularity that gives rise to a dark spot in the center with no intensity, giving

these beams their unique donut shape [8].
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2.1 History of Orbital Angular Momentum

Maxwell was the first to propose that light is an electromagnetic wave,

and he used a set of equations, now known as Maxwell’s equations, to describe

it in terms of coupled and changing electric and magnetic fields [9]. From these

equations, it was clear that light, or electromagnetic waves in general, carries

both energy and linear momentum. Years later, Poynting suggested that light

also has angular momentum, which has a spin part associated with polariza-

tion [10]. In 1936, Beth made the first experimental observation of light’s

angular momentum [11]. In his experiment, circularly polarized light passed

through a suspended half-wave plate. The beam polarization changed to the

opposite polarization, and the half-wave birefringent plate underwent torque

in transforming the angular momentum [12]. Decades later, in 1992, Allen et

al discovered that photons in optical vortices can carry OAM independent of

the beam polarization [1]. This discovery led many scientists and researchers

to investigate the properties of optical OAM, leading to many applications

ranging from micromachine construction to astronomical imaging [13].

2.2 Paraxial Approximation and the Wave

Equation

The Helmholtz equation represents a time-independent form of the wave

equation, ∇2A + k2A = 0, where ∇2 is the Laplacian and A is the wave

amplitude [14]. In the paraxial approximation, which is a small-angle approx-

imation, propagating light can be treated as a ray rather than spherical wave.
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In this approximation, the angle between the wave vector and the z-axis is

small, so the amplitude can be written as [15]:

A(~r) = u(~r)eikz (2.2.1)

and Helmholtz’s equation will be:

(
∂2

∂x2
+

∂2

∂y2
)u(~r)eikz +

∂2

∂z2
u(~r)eikz + k2u(~r)eikz = 0 (2.2.2)

Applying the product role to the second term; ∂2

∂z2
u(~r)eikz = ∂2

∂z2
u(~r)eikz +

2ik ∂
∂z
u(~r)eikz − k2u(~r)eikz, yielding:

( ∂2
∂x2

+
∂2

∂y2

)
u(~r)eikz +

∂2

∂z2
u(~r)eikz + 2ik

∂

∂z
u(~r)eikz = 0 (2.2.3)

where x, y, and z are the the Cartesian coordinate, and r is the radial coor-

dinates (and is related to the Cartesian coordinate by r =
√
x2 + y2). In the

paraxial regime, u is a slowly varying function of z , so the second spatial

derivative in the propagation direction ( ∂2

∂z2
u) is neglected in comparison with

the term k ∂
∂z
u. In this paraxial case, equation 2.2.3 reduces to:

( ∂2
∂x2

+
∂2

∂y2

)
u(~r)eikz + 2ik

∂

∂z
u(~r)eikz = 0 (2.2.4)

Which can be written as:

∇2
⊥A(~r) + 2ik

∂

∂z
A(~r) = 0 (2.2.5)
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In general, the polarization and the field amplitude, u, are coupled by Maxwell’s

equations. However, in a paraxial beam, they are separated and can be con-

trolled separately, and the electric field of the propagated light is given by:

~E(~r, t) = ~e(~r, t)u(~r)eikz−ωt (2.2.6)

where t is time and ~e(~r, t) is polarization [16]. The possibility that the SAM

(polarization) and OAM contributions to the total angular momentum can

be separated for paraxial light beams has attracted researchers’ attention in

the past decade because it suggests a variety of applications for twisted light

[17,18].

2.3 Orbital Angular Momentum Modes

A simple Gaussian beam is a solution to the paraxial wave equation [19].

For a beam propagating in the z direction, the time-independent part of the

electric field for a Gaussian beam is given by:

E(r, z) = E0

(
ω0

ω(z)

)
exp

[
− ik r2

2R(z)

]
exp

[
− r2

ω2(z)

]
exp

[
− iψ(z)

]
(2.3.1)

where E0 is the electric field amplitude at the origin, R(z) is the radius of

curvature of the beam’s wavefronts at z (given by R(z) = z

[
1 +

(
πω2

0

λz

)2]
,

where ω0 is the waist radius at the focus, λ is the wavelength), ω(z) is the

waist radius (given by ω(z) = ω0

√
1 + z2

z2R
, where zR is the Rayleigh range),

and ψ(z) is the Gaussian mode Gouy phase, which is an additional phase shift
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that occurs in the beam propagation, and it is given by [20]:

ψ(z) = tan−1
(
z

zR

)

Some higher-order modes satisfy the paraxial equation: Hermite-Gaussian,

Laguerre-Gaussian, Ince-Gaussian, and Bessel-Gauss beams. When consid-

ering rectangular symmetry, the solutions are Hermite-Gaussian modes, as

writing the paraxial Helmholtz equation in Cartesian coordinates allows the

separation in x and y [21]. When considering circular symmetry, the solutions

are Laguerre-Gaussian modes, where the paraxial wave equation is written in

cylindrical coordinates [22].

The complex mode of a Hermite-Gaussian is:

uHGm,n(x, y, z) = CHG
m,n

(
1

ω(z)

)
exp

[
− ikx

2 + y2

2R(z)

]
exp

[
− x2 + y2

ω2(z)

]

exp
[
− i(m+ n+ 1)ψ(z)

]
Hm

(
x
√

2

ω(z)

)
Hn

(
y
√

2

ω(z)

)
(2.3.2)

where the mode order (m,n) refers to the x and y directions, Hmand Hn are

Hermite polynomials, CHG
mn is the normalization constant (defined below), and

the term (m+n+ 1)ψ(z) is the Hermite-Gaussian mode Gouy phase. Hm and

CHG
mn are given by [23]:

Hm(q) = (−1)meu
2 dm

dum

(
e−q

2
)

CHG
mn =

√
2

πn!m!
2−N/2, where N = n+m
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Figure 2.3: Various Hermite-Gaussian and Laguerre-Gaussian modes; nor-
malized intensity structures (top row) and the corresponding phase profiles
(bottom row).

On the other hand, the mode of a Laguerre-Gaussian is given by [7, 8]:

uLG`p (r, φ, z) = CLG
`p

(
1

ω(z)

)
exp

[
− ik r2

2R(z)

]
exp

[
− r2

ω2(z)

][
r
√

2

ω(z)

]|`|

L|`|p

(
2r2

ω2(z)

)
exp[−i(2p+ |`|+ 1)ψ(z)] exp [−i`φ] (2.3.3)

where φ is the angular coordinate, ` is the azimuthal quantum number (also

known as the topological charge), p is the radial quantum number, (2p+ |`|+

1)ψ(z) is the Laguerre-Gaussian Gouy phase, Ln is the Laguerre polynomial,

and CLG
`p is normalization constant:

L|`|p (x) =
x−`ex

n!

dp

dxp

(
xp+`e−x

)

CLG
`p = (−1)p

√
2p!

π(|`|+ p)!

The fundamental Gaussian beam is the lowest-order mode in both of

Hermite-Gaussian and Laguerre-Gaussian. In other words, both uLG00 and

uHG00 are the same simple Gaussian mode. Figure 2.3 shows the intensity dis-
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Figure 2.4: String hyperboloid helps visualize twisted light, where each string
represents a photon traveling in a straight line.

tribution of several Hermite-Gaussian and Laguerre-Gaussian modes and the

corresponding phase profiles.

The energy flux of a light beam can be defined by the Poynting vector

(which is defined by the vector product of the electric field and the mag-

netic field), and it is always perpendicular to the phase front [24]. Laguerre-

Gaussian modes (and other modes of twisted beams) have a helical phase

term, ei`φ(where ` can be any integer, positive or negative). The wavefronts

for such beams have a Poynting vector that is twisting around the beam axis.

Allen et al were the first to identify that such beams carry an OAM of `~ per

photon [1].

12



An effective way to visualize a twisted beam is the string hyperboloid (see

Figure 2.4). Each string represents a photon traveling in a straight line (as it

should) but with skew. This geometry can be seen clearly in the work done by

Berry et al, which calculates Poynting trajectories for Laguerre-Gauss beams.

These trajectories are twisting around hyperboloidal surfaces and form a set

of straight skew rays lying on hyperboloidal surfaces [25].

2.4 Generating Light with OAM

Light with OAM can be can be created artificially through a variety of

methods. In the following sections, some of these methods are discussed briefly.

2.4.1 Spiral Phase Plate

The most direct way to generate a twisted beam is to pass a plane wave

through a glass plate with a helical surface (a spiral phase plate) [26], as

shown in Figure 2.5. The thickness of the plate increases with the azimuthal

position, such that the thickness varies circumferentially around the plate but

is uniform radially. The plate thickness (d) is related to the OAM value as:

d = λ`φ
2π

(n − 1), where φ is the azimuthal angle, n is the refractive index of

the plate, and ` is the topological charge of the plate [27]. The variations in

optical path length generate the characteristic twisted phasefront [28,29].

Spiral phase plates are efficient, but they are relatively expensive to make

and provide no control over the radial mode. Also, a given plate only works

for certain wavelengths, and they are restricted to a particular ` mode of the

OAM of light.
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Figure 2.5: Generating a helically phased beam from a Gaussian mode by a
spiral phase plate.

2.4.2 Cylindrical Mode Converters

A light beam with a helical wavefront can also be generated by converting

a diagonally aligned Hermite-Gaussian beam at 45◦ into a Laguerre-Gaussian

mode by using two cylindrical lenses [26], as shown in Figure 2.6. Diago-

nally aligned Hermite-Gaussian beams can be decomposed into vertical and

horizontal components of a Hermite-Gaussian mode (where Hermite-Gaussian

components are in phase). These Hermite-Gaussian components can combine

to form a Laguerre-Gaussian beam when rephased. Therefore, due to the

anisotropic focusing within the cylindrical lenses, they need to be placed at a

specific distance in order to introduce a Gouy phase shift between these sets

of Hermite-Gaussian modes. This is because each set of Hermite-Gaussian

modes goes through a different Gouy phase shift depending on the orientation

of the lens [30].
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Figure 2.6: Cylindrical mode converter transforms Hermite-Gaussian mode
(HG) into Laguerre-Gaussian mode (LG).

Although this method is very effective, every Laguerre-Gaussian mode

needs a specific Hermite-Gaussian mode as the input, which limits the range

of Laguerre-Gaussian modes that can be produced [31].

2.4.3 Computer-Generated Holograms

Probably the most convenient method of creating helical beams relies

on digital holograms. Holograms are physical structures that diffract light

into images. Numerically calculated holograms have been the most common

method of generating twisted light. These holographic films can be displayed

on a spatial light modulator (SLM). An SLM is a liquid-crystal device that

has individually addressable pixels that can be programmed by computer. The

design on the SLM can be modified by simply changing the image displayed

on the computer. Light with OAM can be generated by displaying a forked
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Figure 2.7: When illuminating a fork grating by a beam with a plane wavefront,
it produces diffracted beams with helical wavefronts.

diffraction grating on the SLM. A normal diffraction grating consists of parallel

lines, while a forked grating has a fork-like dislocation at the center. This

method is simply based on diffractive optics [32, 33], and by increasing the

difference between the number of lines above and under the dislocation, a

higher OAM state can be generated [34]. A diffraction grating can be generated

by numerically computing the intensity profile that results from interference

between a tilted plane wave and a twisted wave. Then, when a plane wavefront

beam shines on this grating, different beams are created, having, for example,

values of ` = -1, 0, 1 [35]. Figure 2.7 shows a forked grating illuminated

by a plane wave. By changing the displayed fork grating, a wide range of

twisted light beams with different OAM states can be generated easily in the

laboratory. In addition, unlike with a spiral wave plate, fork gratings are

not restricted to a particular wavelength—which makes the SLM one of the
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Figure 2.8: Fork diffraction gratings for ` = 1, 3,−3, and 15 and the correspond
generated donut modes.

most popular methods for producing twisted beams. We also can control the

amplitude on a fork grating by modulating grating intensity. Figure 2.8 shows

some examples of fork diffraction gratings displayed on SLM and the donut

modes generated when illuminating the SLM by a plane wave (the code used

to generate these fork diffraction gratings is shown in Appendix A).

2.5 Measuring OAM

Conventionally, measuring light refers to measuring its intensity. How-

ever, what makes light with OAM different from all other light beams is the

fact that the phase of the wavefront is changing around the beam. There-

fore, we need to find different methods to measure the value of OAM because

no electronics can measure the phase directly. Some of these techniques are

described in the following sections.
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2.5.1 Filtering

The previous section described methods for producing twisted beams, and

by the reversibility of optics, the same methods can be applied to measure the

OAM state. This can be done by using a filtering tool such as single-mode

fiber (SMF), which allows a specific mode to propagate through [36]. For

example, if a spiral phase plate converts a plane wave into a twisted wave with

topological charge ` = 1, by passing this helically phased beam backwards

through the same spiral phase plate, the helical phase will be decreased by

2π, and a beam with flat phase will be generated. Only photons with ` = 0

will couple onto the fiber and be detected. Therefore, by detecting this plane

wave, and from the spiral phase plate topological charge, one can determine

the photon’s original OAM state. However, any other beam with ` 6=1 passing

through the spiral phase plate will not be plane wave and will not be detected.

This filtering method was also used by Zeilinger’s group to measure the OAM

using a fork diffraction grating and SMF [37].

2.5.2 Interference

Another way to measure OAM is to interfere the beam with a reference

beam. If the reference is a Gaussian beam, then the interference pattern would

contain ` dark spokes [39, 40]. By adjusting the reference beam focus, the

spokes will move one way, straighten out, and then go in the opposite direction.

When the angle between the signal and reference beam is increased, these

spokes join the straight-line fringes, producing a forked diffraction pattern

where the number of forks determines the OAM value of the signal beam
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Figure 2.9: Interference between different Laguerre-Gaussian modes produces
radial fringes. By increasing the angle between the two beams, a forked diffrac-
tion pattern will be formed [38].
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[41]. Also, it is sometimes easier to interfere the signal beam (`) with its

own mirror image (−`) rather than with a plane wave. The phase difference

between these two beams is exp (i2`φ), so the dark spokes will be doubled in

the interference pattern [38]. However, in this technique the sign of the OAM

would be lost. Figure 2.9 shows interference of several Laguerre-Gaussian

modes with Gaussian beam LG(0,0) and with its own mirror.

This method is effective for qualitative assessment of the nearest inte-

gral value of the OAM. However, DErrico et al proposed a more quantitative

method that uses azimuthal Fourier analysis of the pattern of the interference,

which allows determination of the radial and azimuthal quantum number of a

twisted light beam [42].

2.5.3 Diffraction

The OAM value can also be measured by looking at diffraction patterns

through a triangular (or other shapes) aperture. When light with OAM passes

through the triangular aperture, it forms in the far field a diffraction pattern

that looks like a triangular lattice of bright spots. The number of these spots

is directly related to the value and the sign of the OAM state. For a beam

with OAM = `, the triangular lattice will have `+1 bright spots per side. Also,

for negative values of `, the whole diffraction pattern flips, as shown in Figure

2.10. For this technique the phase singularity must be at the center of the

triangular aperture, and the edges of the aperture must be illuminated by the

inner border of the beam. [43,44]
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Figure 2.10: The diffraction of a twisted beam by a triangular aperture pro-
duces a triangle lattice pattern that depends on the value of ` and its sign.
These diffraction patterns are for a beam with ` from 0 to 5, and for `= 7 and
-7. [44]

2.6 OAM Applications

The orthogonal angular momenta possibilities adds a new degree of free-

dom to optical technologies. This is an enabling tool that can lead to widespread

applications in numerous areas of science and technology, where its use facil-

itates exploring in both the micro and macro scales [45]. Some examples of

possible applications are explained briefly in the following sections.

2.6.1 Optical Tweezers

Optical tweezers are scientific tools that use a tightly focused laser beam

to physically hold and trap microscopic dielectric materials [46]. For a highly
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Figure 2.11: Left, a particle trapped by a focused Gaussian beam; right, a
focused OAM beam traps and rotates the particle about the optical axis.

focused Gaussian beam, the beam waist has a very strong electric field gradi-

ent that attracts the dielectric particle to the region where the electric field

is highest. The particle will also undergo a force due to transfer of liner

momentum from the scattering or refraction of photons. These scattering and

gradient forces result in the particle being trapped [47]. When adding OAM

to the trapping light, the angular momentum of photons can be transferred to

the trapped particles, under appropriate conditions. This transfer of angular

momentum causes rotation and the associated torque is proportional propor-

tional to the ` of the trapping laser [48–50]. Figure 2.11 shows a particle

trapped by a focused plane wave and a particle trapped by a twisted light

beam. These trapping and rotating properties have important applications in

micromanipulation and in studying a variety of biological systems [51,52].
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2.6.2 Communication

Light with OAM has exciting potential for applications in both quan-

tum and free-space communication. While the SAM of light offers only two

orthogonal states corresponding to the circular polarization, ±~, OAM offers

potentially unlimited values of ` states, which gives an infinite possibility of

OAM values [53]. This infinite set of OAM states offers potential for high-

bandwidth information encoding in optical communications. In 2004, infor-

mation encoded as OAM states of light was transferred in free space [54].

Later, Willner’s group demonstrated free-space propagation information trans-

fer speeds of 2.56 Tbit/s by multiplexing 16 OAM states, and they achieved a

spectral efficiency of 95.7 bit s−1 Hz−1 [55]. Willner’s group also demonstrated

information transfer in optical fiber and some other scenarios [56]. In fiber-

optic communications, they used four OAM modes at a single wavelength and

reached 400 Gbits/s data transmission; they also reached 1.6 Tbits/s using

two OAM modes over 10 wavelengths [57]. However, OAM modes are not

eigenmodes of commercial multimode optical fiber, and they would not be

propagated at all through single-mode fiber; therefore, custom fiber is required

to support OAM modes directly [58].

Moreover, atmospheric turbulence creates aberrations affecting the phase

structure, and consequently the OAM purity, when signals propagate through

space. Therefore, some researchers are studying the influence of atmospheric

turbulence on OAM communication in an effort to minimize these effects [59].
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2.6.3 Imaging

Light with OAM might also be used in imaging to explore various physical

and biological properties of matter [60], and it has potential not only at very

small scales, such as in nanostructures and cells, but also at very large scales,

such as in astronomy.

Light with a helical wavefront has been used for a superresolution imag-

ing technique known as stimulated emission depletion microscopy (STED), a

fluorescence microscopy method able to overcome the diffraction-limited res-

olution of confocal microscopes [61]. This technique was first described in

theory by Stephan Hell in 1994 [62]. Resolution enhancement involves using

pairs of synchronized laser pulses consisting of an excitation laser pulse and a

depletion laser pulse that carries OAM. The first laser pulse is used to excite

the fluorescence dye molecules and produces an ordinary diffraction-limited

focus. This pulse is followed by the depletion laser pulse, or STED laser,

which is red-shifted in frequency to the dye emission spectrum [63]. Due to

the donut shape of the STED beam, only the fluorescence from molecules at

the edge of the excitation focus is reduced by stimulated emission, and in the

center of the optical vortex the fluorescence remains unaffected and can be

collected on a photodetector [64]. Figure 2.12 compares STED and confocal

images of the same sample cell.

Twisted light has been used in imaging not only the micro regime, but

also at macro scales such as those of stars and planets. The optical vortex

coronagraph is a high-contrast imaging system that relies on light with OAM

and allows detection of faint objects near very bright objects. For example,
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Figure 2.12: A confocal image of a sample cell (left) and a higher-resolution
STED image of the same cell (right). [64].

using an optical vortex coronagraph in telescopes has allowed astronomers to

view the solar corona or detect exoplanets orbiting distant stars [65–67].

The basic operating principle of the optical vortex coronagraph when

imaging a bright star and a fainter companion object involves placing a spiral

phase plate at the telescope’s focal plane. The bright star is centered on

the telescope axis so that its light passes through the spiral phase plate and

generates an optical vortex that is focused to a donut shape instead of a circular

spot, while an off-axis, dimmer object would be focused to a single spot. A Lyot

mask is placed to block the ring of the brighter star and allow direct imaging

of the dimmer object [69]. Figure 2.13 shows an example of an image produced

by the Subaru Telescope using the optical vortex coronagraph technique for

a young star called κ Andromedae and a planetary-mass companion. The

left side of the figure shows that the companion is partially hidden by the

glare from the star. At right, imaging using the optical vortex coronagraph
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Figure 2.13: Subaru Telescope images of the young star κ Andromedae, as
obtained on November 12, 2016. The planetary-mass companion is hardly
visible in the conventional image (left), but is clearly detected when using the
optical vortex coronagraph technique (right) [68].

method reduces the star’s glare significantly, which renders the companion

object detectable [68].

2.7 Conclusion

In this chapter, I have presented an introduction to OAM with a brief

history and mathematical derivation. Also, an overview of a variety of meth-

ods used to generate twisted light was given, including spiral phase plates,

cylindrical mode converters, and computer-generated holograms. In addition,

some methods used to detect and distinguish different OAM states were dis-

cussed briefly. Finally, a discussion of possible applications for light with OAM

was presented. In the following chapters, I will discuss in detail the way that

twisted light interacts with matter and how such light could act differently in
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this interaction. First, we explore the fundamentals of light-matter interaction

in the next chapter.
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Chapter 3

Light-Matter Interaction

In the previous chapter we provided an overview of twisted waves and how

they differ from plane waves. In other words, we have covered the light part;

now it is appropriate to cover the matter part. In this chapter, we discuss

the optical properties of semiconductor quantum dot nanostructures and the

fundamentals of light-matter interaction.

3.1 Atomic Structure

The study of matter and what it is made up of has been attracting scien-

tists’ attention for centuries. In fact, the idea that matter consists of indivisible

units (atoms) appeared in many ancient cultures during the fifth century [70].

However, one of the earliest fundamental models to describe the atom was

proposed by Niels Bohr in 1913 [71]. In this model, a small nucleus (with a

positive charge) is surrounded by electrons (negatively charged) that revolve

around the nucleus in circular orbits in a manner similar to that of planets
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orbiting the sun [72]. Although the Bohr model is significant (it explains the

Rydberg formula for the hydrogen atomic spectrum), it is no longer considered

a valid model because it fails to explain the Zeeman effect and cannot predict

the spectra of larger atoms [73].

Since the Bohr model, observations (of black body radiation and the pho-

toelectric effect, for example) have shown how light waves could behave like

particles. The de Broglie hypothesis, which states that particles could also

behave like waves, introduced the idea that electrons behave with wave and

particle properties at the same time (i.e., wave-particle duality). Because of

this concept, the classical mechanical model was replaced by the theory of

quantum mechanics [74].

Rather than placing the electron in a certain orbit around the nucleus, the

quantum mechanical approach describes an area in space around the nucleus

of an atom, known as the atomic orbital, and expresses the electron’s behavior

by the wavefunction, ψ. This function allows us to determine the probability

(rather than certainty) of finding electrons at certain energy levels within an

atom. Each electron in an atom can be defined by four quantum numbers (n,

l, m, and ms).

The principal quantum number, n, defines the energy of the electron and

the orbital size. It can have positive integer values, and orbitals with the same

value of n are in the same “shell.” The angular momentum quantum number,

l, describes the orbital shape with a specific principal quantum number (this is

not the azimuthal quantum number, `, discussed in Chapter 2). l can be any

positive integer number ranging from 0 to n− 1, and it divides the shells into

“subshells.” The magnetic quantum number, m, describes the orientation of a
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specific orbital in space. Each subshell has 2l + 1 orbitals, and the orbitals in

a given subshell have the same energy, n, but different orientations in space,

m. Finally, the spin quantum number, ms, defines the spinning direction of

the electron. It can be +1
2

or −1
2
. Each subshell may be occupied by two

electrons, one of them with a spin of +1
2

and the other with a spin of −1
2

[75].

Although Bohr proposed a model for the hydrogen atom that explained

the spectrum for a simple hydrogen-like atom, to study the details of the

structure we need to solve the time-independent Schrödinger equation [76]:

Ĥ|ψ〉 = E|ψ〉 (3.1.1)

where E is a constant and equivalent to the total energy of the system, and

Ĥ is the Hamiltonian operator that defines the total energy of the system.

This Hamiltonian is given by T + V , where T is the kinetic energy equal to

p2/2me and V is the potential energy defined by the Coulomb potential given

by: −Ze2/4πε0r, where p is the momentum, me is the mass of the electron, Z

is the charge of the nucleus (Z=1 for hydrogen), e is the charge of the electron,

and ε0 is the vacuum permittivity. By using p = −i~∇, the Hamiltonian can

be written as:

Ĥ = − ~2

2me

∇2 − Ze2

4πε0r
(3.1.2)

Using the reduced mass me → µ, where µ = memp
me+mp

and mp is the hydrogen

nucleus mass (a proton mass), applying the Hamiltonian to the Schrödinger

equation 3.1.1 gives us:

∇2ψ(~r) +
2µ

~2

(
E +

Ze2

4πε0r

)
ψ(~r) = 0 (3.1.3)
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which can be solved in spherical coordinates by writing the Laplacian in spher-

ical coordinates as [77]:

∇2 → 1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
(3.1.4)

The wavefunction for hydrogen can be found by solving equation 3.1.3 where

the radial variable and angular variable are separable, and the solution is given

by:

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) (3.1.5)

where Rnl(r) is the radial wavefunction and Ylm(θ, φ) is the spherical harmon-

ics, and they are given by [72]:

Rnl(r) =

√
(n− l − 1)!

2n(n+ 1)!3

(
2Z

na0

)3/2

e
− Zr
na0

(
2Zr

na0

)l
L2l+1
n+l

(
2Zr

na0

)
(3.1.6)

Ylm(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimφ (3.1.7)

where L2l+1
n+l is the Laguerre polynomial, a0 is the Bohr radius equal to 4πε0~2/mee

2,

and Pm
l (cos θ) is the associated Legendre polynomial. Figure 3.1 illustrates

spherical polar plots for the first few spherical harmonics.

3.2 Atomic Transition

Typically, an atom exists in a stable configuration that corresponds to

the lowest energy level. When each electron is in the lowest possible energy

state, the whole atom will be in ground state. An atomic transition can take
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Figure 3.1: Visual representations for spherical harmonics with angular
momentum quantum number l = 0, 1, 2, and 3 and magnetic quantum number
m from −l to +l [78].
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place if some sort of energy pumps into the atom and changes its configuration

from ground state to excited state. For example, a photon can interact with an

electron bound to an atom and excite it to a higher-energy state. However, the

atom can only absorb photons of certain energies because the atom can only

have certain energies, and this process appears discontinuous as the electron

jumps from one energy level to another (therefore it is called a quantum jump).

In other words, only if the photon has an energy that equals the difference

between the two energy states (E1 for the ground state and E2 for the excited

state), a photon of angular frequency, ω, is absorbed when the atom jumps

between two quantized energy states, E1 and E2, that satisfy:

E2 − E1 = ~ω (3.2.1)

If an electron occupies a level higher than its ground-state level, the atom

is temporarily excited. The atom in the excited state is unstable, and it

eventually returns back to the ground state and a photon is emitted in the

process. Figure 3.2 illustrates the atomic transitions induced by absorbing a

photon.

Generally, the transition rate (or the probability of transition per unit

time) between two states (i for the initial state, f for the final state) is pro-

portional to the strength of the coupling between the initial and final states.

This coupling is known as the matrix element for the transition. This tran-

sition rate can be calculated using Fermi’s golden rule [79, 80], which is given

by:

Wi→f =
2π

~
|Mif |2g(E) (3.2.2)
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Figure 3.2: Optically induced atomic transition. (a) Photon with energy of ~ω
is interacting with the atom. (b) The electron absorbs the photon and reaches
a higher energy level because the photon has the same energy needed to reach
the excited state. (c) Photon with energy of ~ω is emitted when the electron
relaxes to ground level.
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where Mif is the matrix element and g(E) is the density of states. The density

of states defines the actual occupancy of electrons in the initial state or the

available in the final state. Moreover, the matrix element can be written as

an integral where the interaction that causes the transition is expressed as a

perturbation caused by the light, H, which operates on the wavefunction of

the initial state as follows:

Mif = 〈f |H|i〉 =

∫
ψ∗f (r)H(r)ψi(r)d

3r (3.2.3)

where ψi(r) is the wavefunction of the initial state and ψf (r) is the wavefunc-

tion of the final state [71].

A semiclassical picture of light-atom interaction is appropriate to use here.

In this approach, the atoms are described quantum-mechanically while the

light is treated classically. In an electric dipole transition, the perturbation,

H, to the atom is produced by the interaction between the light electric field,

E0, and the atom electric dipole, P , which gives:

H = −P.E0 (3.2.4)

where P is defined as:

P =
∑
i

qiri (3.2.5)

where qi is the charge at position ri with respect to the origin centered at the

nucleus. In the case of a single-electron atom, P is given by:

P = −er (3.2.6)
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where e is the charge of the electron and r is the radial position of the electron

with respect to the proton. Therefore, H can be written as:

H = e(xEx + yEy + zEz) (3.2.7)

where Ex, Ey, and Ez are the components of the field amplitude along the x, y,

and z axis, respectively. However, since atoms are small compared to the light

wavelength, the amplitude of the electric field does not change significantly

over atomic dimensions. Therefore, Ex, Ey, and Ez can be considered constants,

and µif can be defined as the electric dipole moment of the transition given

by:

µif = −e
(
〈f |x|i〉x̂+ 〈f |y|i〉ŷ + 〈f |z|i〉ẑ

)
(3.2.8)

The integrals in equation 3.2.3 can be written as:

Mif = −µif .E0 (3.2.9)

This electric-dipole matrix element can be calculated not just for hydrogen

atom but also for any atoms with known wavefunctions. If the calculated

matrix element is zero (or extremely small), then the electric-dipole transition

rate is zero; in other words, the transition is forbidden and it does not satisfy

the selection rules. The same is true if the calculated matrix element has a

finite value, in which case the transition is allowed.
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3.3 Selection Rules

In light-matter interaction, the photon transfers not only its energy to the

atom, but also its angular momentum. Therefore, the selection rules governing

transitions between electronic energy levels are based on conservation of both

energy and angular momentum. The angular momentum considered in the

selection rules is the one associated with circularly polarized light (with SAM).

Each photon can have SAM of +~ for left-handed or −~ for right-handed

circularly polarized light. However, the linear momentum of photons is usually

neglected in their interaction with matter [81]. This can be understood using

simple analysis by comparing between the photon linear momentum and the

electron’s. Using the relationship ω = ck, and defining the photon energy as:

E = ~ω, allows us to express the energy as: E = c~k. Then we can calculate

the photon momentum, pλ, using the relationship: E = cpλ, which gives us the

photon linear momentum in terms of the wave number: pλ = ~k. Recalling

that the wave number is related to the wavelength as: k = 2π/λ, the photon

momentum can be given by pλ = h/λ, which is in the order of 10−28 Kg m/s.

On the other hand, the electron momentum can be calculated using the lattice

constant a (for example, for GaAs a = 5.65Å), which is related to the wave

number by: k = π/a. Therefore, we can calculate the electron momentum

using the relation: pe = ~π/a, and the resultant momentum is in the order

of 10−24 Kg m/s, which indicate that the light field changes only very little

within the crystal and therefore can be neglected.

The selection rules for electric-dipole transitions of a single electron in a

hydrogen-like atom are shown in Table 3.1. Assuming that the initial-state
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wavefunction is defined with the quantum numbers n, l, m, and ms, and that

the final-state wavefunction is defined with the quantum numbers: n′, l′, m′,

and m′s, the selection rules obtained are:

• Since the electric-dipole operator is proportional to r (an odd function)

and Legendre polynomials have definite parity (either odd or even), the

parity must change.

• Since the spherical harmonic functions have parity (−1)l, l must differ

from l′ by ±1, and when it does not change (i.e. ∆l = 0), the transition

is forbidden.

• Since circularly polarized photons carry angular momenta of +~ or −~

along the z-axis, m must differ from m′ by ±1 (i.e. one unit of ~)

to conserve angular momentum; for linearly polarized light along the

z-axis, the photons carry no z-component of momentum and therefore

the quantum number, m, does not change: in this case m = m′ (i.e.

∆m = 0).

• Since the photon does not interact with the electron spin, the spin quan-

tum numbers should not change in the transition, and ms = m′s (i.e.

∆ms = 0).

The OAM of light has a history predating Allen et al. While most atomic

transitions are dipolar, there are some higher-order transitions (for example,

quadrupole transitions) where the emitted photon carries angular momentum

of multiple units of ~ [82]. Chapter 4 will discus in detail the theory of optical

transitions induced by light that carries OAM and the possibility of activating

transitions with an angular momentum change larger than one unit of ~. How-
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Quantum number Selection rule Polarization
l ∆l = ±1
m ∆m = +1 Circular: left-handed (+)

∆m = −1 Circular: right-handed (−)
∆m = 0 Linear ‖ z

s ∆ms = 0

Table 3.1: Electric-dipole selection rules. The direction of the applied elec-
tromagnetic field is defined by the z-axis. The circular polarization sign is for
absorption, and it is reversed for emission.

ever, we will first discuss the electronic structure and the optical properties of

the nanostructures that we use to study this theory.

3.4 Semiconductor Quantum Dots

Quantum dots (QDs) are semiconductor nanoparticles usually made up of

group IV atoms (such as C, Si and Ge) or a combination of groups II to VI (e.g.

CdSe, CdTe and ZnS), III to V (e.g. GaP, GaAs and InN), or IV to VI (e.g.

PbSe, PbS and SnTe). Their size is typically on the order of several nanometers

in diameter. On such a scale, the electrons and holes are confined in all three

spatial dimensions and known as zero-dimensional nanostructures, or artificial

atoms [83]. The electronic structure and optical properties of QDs can be

modified by varying the size of the particle (which can be controlled during

fabrication), which can help to exploit valuable properties, particularly the

size-dependent band gap. This gives rise to numerous interesting opportunities

for device applications, such as solar cells [84–86], transistors [87–89], and

optoelectronic devices [90–92].
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Figure 3.3: When an electron is excited from the valance band to the conduc-
tion band, leaving a hole in the valance band, a bound state of the pair (an
exciton) is created.

3.4.1 Electronic Structure

Semiconductors, as the term suggests, are materials with conductivity

in between that of a conductor and an insulator. The electronic structures

associated with such materials are organized in bands: the valence band is

a collection of the electron occupied individual orbitals, and the conduction

band is a collection of the unoccupied levels. Semiconductors also have a small

but non-zero band gap that defines the minimum energy required to excite an

electron from the valence band to the conduction band [93].

When an electron is excited to the conduction band by applying some

external energy (such as heat or photons), a hole with a positive charge is

generated at the valence band. The properties of the hole are similar to those

of an electron but with positive charge, and both are considered charge car-
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riers. Also, a bound state of an electron-hole pair (bound by Coloumb force

attraction) can be formed, known as an exciton (Figure 3.3). This bound state

can be treated as a hydrogen-like atom, so the interaction between them can

be described by a similar Hamiltonian [94]:

Ĥ = − ~2

2M
∇2
e −

~2

2µ
∇2
h −

e2

ε|re − rh|
(3.4.1)

where M is the total mass and µ is the reduced mass given by:

M = m∗e +m∗h

µ =
m∗em

∗
h

(m∗e +m∗h)

where m∗e and m∗h are the effective masses of the electron and hole, respectively.

The effective mass is the mass that a electron seems to have when responding

to forces, since the movement of particles in the solid state is different from

their motion in a vacuum. The effective mass approximation allows us to

treat electron motion through a solid as a particle with definite position and

momentum.

In excitons, the distance between the electron and the hole is known as

the Bohr radius of the exciton, and it is usually a few nanometers. It can

be calculated for a particular material system by solving the Hamiltonian in

a similar way as we do with a hydrogen atom, but it would differ from a

hydrogen atom because of the difference in the effective mass of the electron
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Group Compound Eg (eV) m∗e/m0 m∗h/m0 aex (nm) Reference

II-VI CdS 2.43 0.25 0.6 5.8 [96]
CdSe 2.87 0.12 0.9 5.3 [97]
CdTe 1.5 0.09 0.8 7.3 [98]

III-VI InP 1.35 0.073 0.45 15 [99]
InAs 0.354 0.023 0.57 34 [100]
InSb 0.17 0.012 0.44 65.6 [101]

IV-VI PbS 0.42 0.087 0.083 21 [102]
PbSe 0.28 0.047 0.041 55 [103]
PbTe 0.32 0.034 0.032 104 [104]

Table 3.2: Bulk band gap (Eg) at 300 K and material properties for various
semiconductors.

and hole, and it is given by:

aex = a0ε
m0

µ
(3.4.2)

where the Bohr radius of a hydrogen atom a0 = 053Å, and m0 is the free

electron mass [95]. Table 3.2 lists characteristic material properties and Bohr

radii for the excitons of some semiconductors.

If the size of a semiconductor becomes comparable to or smaller than

the exciton radius, then quantum confinement arises and the properties get

altered [44]. For example, table 3.4.1 shows the exciton radius for some mate-

rials, and materials with larger exciton radius are more likely to be in strong

confinement regime. Depending on the dimension of the confinement, there are

three kinds of confined nanostructure: quantum well (two dimensions or 2D),

quantum wire (1D), and quantum dot (0D). In the confined direction, carriers

cannot propagate freely whereas in other directions the carriers can have effec-

tively infinite extent [105]. For example, in a quantum well, the material size
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Figure 3.4: Reduction of the dimensionality of a semiconductor system from
bulk (3D) to quantum dot (0D) and the corresponding electronic density of
states for each system.

is restricted in one dimension and the charge carriers can extend in the other

two directions without limit. Similarly in a QD, the material size is reduced

in all directions, and the charge carriers cannot propagate freely in any direc-

tion. Because of these confinements, the electronic density of states changes

drastically between systems of different dimensionalities [106] (see Figure 3.4).

Exciton confinement in a QD can be seen as a particle in a box system

because the charge carriers cannot leave the particle of the semiconductor

because of a strong potential well. In a one-dimensional system, a box with

a length of L has zero potential energy inside the box while the wall has an

infinitely large potential energy. This infinitely large force prevents the particle

from escaping the box. By solving the Schrödinger equation for the system,
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we can find the eigenenergies as a function of the charge carrier effective mass

(m∗) and the box length (L):

En =
n2~2π2

2m∗L2
=

n2h2

8m∗L2
(3.4.3)

However, this one-dimensional system is not the best model to represent QDs

since the box is three-dimensional and spherical in shape. A more accurate

model is the one developed by Brus [107], where the nanostructure is a sphere

with radius R, the interior has a zero potential energy, and the potential energy

outside the nanostructure is infinite such that the surface of the nanostructure

defines the walls of the box. Using the exciton Hamiltonian 3.4.1 and solving

the Schrödinger equation numerically to get the eigenenergies of QDs, we have:

∆E = Egap +
h2

8R2
[
n2
e

m∗e
+
n2
h

m∗h
] (3.4.4)

where Egap is the energy of the band gap of the semiconductor, ne and nh

is the principal quantum numbers for the electron and the hole respectively

(where for the lowest energy level ne = nh = 1). From the previous equation,

we can see that the energy is inversely proportional to the QD size.

3.4.2 Optical Properties

Although excitons can be treated as hydrogen-like atoms, unlike atoms,

the excitons have a finite lifetime. After a certain time (usually on the order

of nanoseconds depends on the strength of the exciton binding energy) the

electron and hole recombine (exciton recombination) and emit a photon [108].

This procedure of photoexcitation, relaxation, recombination of the hole and
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electron, and emission of the photon is known as photoluminescence. The

photoluminescence spectrum can be obtained by measuring the number of

emitted photons as a function of energy. Moreover, the frequency range of

emitted light can be determined by the band gap in a QD [109]. Therefore,

the photon frequency is also inversely proportional to the QD size: as the

size of the QD decreases, the emitted photon frequency increases. Hence,

varying the QD size can cause emission of different colors even when the QDs

are made from the same material [110]. In other words, both absorption and

photoluminescence can be modified by varying the QD size during synthesis.

Figure 3.5 shows CdSe/ZnS QDs with different sizes excited at 350 nm and

the measured fluorescence emission spectra [111].

3.4.3 Colloidal PbS QD Synthesis

Lead sulfide (PbS) was one of the earliest materials to be used as a semi-

conductor [112]. Colloidal PbS QDs are inexpensive to make and easy to

maintain at room temperature. The samples used in this study were synthe-

sized by a method similar to that described by Hines and Scholes [113]. In a

typical fabrication, a mixture of lead oxide (PbO) and oleic acid (OA) dissolved

in octadecene (ODE) would be heated at 120◦C for two hours (decreasing the

amount of OA decreases the QD size). Then ODE and bis (trimethylsilyl)

sulfide (TMS) solution (TMS/ODE) is rapidly injected into the Pb precur-

sor mixture at 135◦C (increasing the injection temperature decreases the QD

size). The rapid injection of TMS/ODE solution into the Pb precursor mix-

ture changes the color of the mixture from clear to dark brown. The reaction

would be stopped after 20 to 30 seconds by removing the mixture from heat
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Figure 3.5: Size-dependent photoluminescence spectra of CdSe/ZnS QDs [111].
The width of the peaks indicates structural homogeneity; narrower the peak
indicates higher uniformity of dot size.
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Figure 3.6: Absorption spectra for several QD samples synthesized using the
same technique but with different reaction times. Inset shows a typical trans-
mission electron microscopy image of colloidal PbS nanocrystals [95].

and placing it in an ice-water bath; increasing the reaction time results in

larger QDs. Finally, the QDs are isolated by precipitating with distilled ace-

tone, centrifuging, and then dissolving the mixture in toluene. This process

is usually repeated 2 or 3 times, and after that the QDs can be dissolved in

a minimal amount of toluene. Figure 3.6 shows the absorption spectrum for

some QD samples made by Geoff Diederich (with different sizes) that were

synthesized by this method.
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3.5 Conclusion

In this chapter, we presented the fundamentals of light-matter interac-

tion, explaining atomic structure, the mechanism of optically induced atomic

transition, and selection rules governing transitions between electronic energy

states. We also discussed the electronic structure and optical properties of the

semiconductor QDs. Finally, we briefly explained how the colloidal PbS QDs

used in this study were synthesized. In the following chapter, we explore the

theory of electronic transitions induced by twisted light in semiconductor QDs

and the corresponding changes in the selection rules.
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Chapter 4

Twisted Light and Matter

To untangle the relative roles of orbital angular momentum and spin angu-

lar momentum, few experiments have already explored the angular momen-

tum exchange between light and matter [114, 115]. While twisted light has

been used in tools such as optical tweezers that can rotate microscopic objects

[48, 116], it has not been clear whether this additional angular momentum

could make any changes to the atomic state of bound electrons. This subject

has been debated over the past two decades [117–130], and first experiments

[131–133] have not observed transfer of OAM. Recent spectroscopic experi-

ments investigated the interaction of matter with twisted light and demon-

strated the transfer of OAM to the valence electron of a trapped ion [134],

although another atomic spectroscopy experiment showed that the light’s

OAM does not affect the electric dipole transition, which appears insensitive

to the OAM [135]. While a single trapped ion was used in the first experiment

to detect the transfer of OAM, an ensemble of atoms were used in the sec-

ond one. However, in the latter experiment, rubidium vapors were used, and
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Figure 4.1: (a) Axis of the twisted light beam and the quantum dots coincide.
(b) Quantum dot axis is displaced with respect to the twisted light beam
axis which can be expressed as superposition of centered beams with different
values of OAM.

to date no one has investigated the effect of a photon’s OAM on solid-state

material.

In this chapter, we briefly discuss the theory of optical electronic transition

induced by light that carries OAM in semiconductor QDs and the correspond-

ing selection rule. Then we review the extended theory of a more realistic case

of the interaction of a twisted beam with QDs when the symmetry axis of the

beam and the axis of the nanostructure do not coincide. This is important

because it represents true experimental situations in which each nanostructure

sees a light beam that is displaced by a different distance relative to itself [136].

Figure 4.1 compares cases in which the beam and the QD axes do and do not

coincide.
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It is well known that in semiconductor nanostructures, transitions between

different electronic states can be induced optically. This optical response has

been investigated extensively for its valuable applications in solar cells, quan-

tum computing, and other areas. While plane waves or Gaussian laser beams

have mostly been used to excite QDs, little work has been done investigat-

ing the interaction of twisted light with these nanostructures. Because the

transfer of spin angular momentum from photons to material is essential to

light-matter interaction [137,138], we investigate the effect of light OAM when

interacting with QDs.

4.1 Coincident Beam and QD Axes

First we derive the electronic transitions induced by light with OAM in

semiconductor QDs and the corresponding selection rule when the axes of

the light beam and nanostructures coincide. Twisted light carries an OAM

of ~` per photon, and the field has a phase of exp(i`θ). Such a beam can

be described, for example, as a Laguerre-Gaussian or Bessel beam. For the

Laguerre-Gaussian modes, the the time-independent part of the electric field

can be written as:

F (r) =

[
C
|`|
p

w0

(
r
√

2

w0

)|`|
e
− r2

w2
0L|`|p

(
2r2

w2
0

)]
e−i`θ = Jp,`(r)e

−i`θ (4.1.1)

where w0 is the beam waist, r is the radial position (r =
√
x2 + y2), L

|`|
p is the

Laguerre polynomial, and C
|`|
p is the normalization constant.
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Mathematically, a Bessel mode is one of the most convenient ways to

describe twisted light. However, Bessel mode cannot be generated as it is

unbounded and would require an infinite amount of energy. For this propagation-

invariant beam, also called a “nondiffracting” beam, paraxial approximation

is not needed (as it is for Laguerre-Gaussian), and it is a solution of the

Helmholtz equation in cylindrical coordinates given by [139,140]:

F`(r) = J`(k⊥r)e
i`θ (4.1.2)

where J`(krr) is an `th-order Bessel function of the first kind, and k⊥ is the

magnitude of the wave vector perpendicular to the direction of propagation

(which defines the waist of the beam, 1
k⊥
' wo). The wavelength, λ, and the

frequency, ω, are related to the wave vector parallel (kz) and perpendicular

(k⊥) components as [141]:

λ =
2π√
k2z + k2⊥

ω = c
√
k2z + k2⊥

For k⊥ = 0 the beam mode reduces to a plane wave propagating in the z

direction.

In the Coulomb gauge (also known as the transverse gauge), the vector

potential has both longitudinal and transverse components. However, under

typical experimental conditions, the transverse component is the dominant

one, i.e., kz � k⊥. Therefore, the vector potential for a Bessel beam traveling
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in the z direction would be [142]:

A`(r, t) = εσF`(r)ei(kzz−ωt) + c.c

A`(r, t) = A
(+)
` (r, t) + A

(−)
` (r, t) (4.1.3)

where εσ = (x̂+iσŷ)/
√

2 with σ = ±1 being the polarization vector for circular

polarization [119].

On the other hand, the electronic states in semiconductor nanostructures

can be defined by the product of an envelope function, Φ(r, θ)Z(z), a micro-

scopic cell-periodic function, ub(r), and a spin part, ζ:

ψb(r) = [Φ(r, θ)Z(z)]ub(r)ζ (4.1.4)

where b is the index for the band (for example, the conduction or valence

band). We also assume that the envelope function, Φ(r, θ)Z(z), is separable

into the vertical (z) and in-plane (r, θ) motions. We chose cylindrical coordi-

nate because the geometry of the incoming beam set an axis that makes the

structure sees a cylindrical symmetry (which makes sense to use cylindrical

bases). Also, for the first order approximation we can assume that there is no

z-dependence since this shows the essential OAM-interaction. The solution for

the corresponding electron was derived by Fock [143] and Darwin [144] and

later calculated in more detail by Dingle [145]. Thus the eigenfunction is given

by:

Φnm(r, θ) = Rnm(r, θ)eiθm (4.1.5)
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where:

Rnm(r, θ) =
(−1)n√

2πι

√
n!

(n+ |m|)!
e
−r2
4ι2 (

r√
2ι

)
|m|
L|m|n (

r2

2ι2
) (4.1.6)

and ι is a characteristic confinement length for electrons, n is the radial quan-

tum number (which defines the number of nodes in the radial wavefunction),

m is the angular momentum quantum number, and L
|m|
n (x) is the Laguerre

polynomial [146].

To determine the optical response, the transition matrix elements induced

by the light-matter Hamiltonian between single-particle states need to be cal-

culated from:

H` = − 1

2m∗e
(p− qA`(r, t))

2 (4.1.7)

where q = −e (the charge of the electron), and p is the momentum of the elec-

tron (p = −i~∇). However, we need to use the minimal-coupling interaction

for only the lowest order of the vector potential, which is given by:

H` = − q

m∗e
A`(r, t).p (4.1.8)

The physics of the interaction is obtained from the matrix element of H`,

which, for light absorption v → c, is given by:

〈cα′|H(+)
` |vα〉 = − q

m∗e
〈ψcα′|A`(r, t).p|ψvα〉 (4.1.9)

〈cα′|H(+)
` |vα〉 = i~

q

m∗e

∫
ψ∗cα′(r)A`(r, t).∇ψvα(r)d3r (4.1.10)

where α is a collective index that includes all quantum numbers used to sim-
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plify the notation. It also contains the angular quantum number, m, that

appears in equation 4.1.6 (eimθ). By substituting the value of ψ from equa-

tion 4.1.4 into the previous equation and using the relationship, ∇.(AB) =

(∇A).B + A(∇.B), we obtain:

〈cα′|H(+)
` |vα〉 = i~

q

m∗e

[∫
Φ∗cα(r)Z∗(z)u∗c(r)ζ∗

×A`(r, t).
[
∇Φvα(r)Z(z)uv(r)+Φvα(r)∇Z(z)uv(r)+Φvα(r)Z(z)∇uv(r)

]
ζd3r

]
(4.1.11)

Applying the dot product and arranging the equation gives:

〈cα′|H(+)
` |vα〉 = i~

q

m∗e

∫
u∗c(r)uv(r)A`(r, t).[Φ

∗
cα(r)∇Φvα(r)]|Z(z)|2ζ∗ζd3r

+i~
q

m∗e

∫
Φ∗cα(r)Φvα(r)u∗c(r)uv(r)A`(r, t).[Z

∗(z)∇Z(z)]ζ∗ζd3r

+i~
q

m∗e

∫
Φ∗cα(r)Φvα(r)A`(r, t).[u

∗
c(r)∇uv(r)]|Z(z)|2ζ∗ζd3r (4.1.12)

Because we are investigating optical transitions, we may focus our attention on

the interband transitions, where c 6= v. Also, as a result of the orthogonality of

the microscopic function in a cell (
∫
u∗c(r)uv(r)d3r = δc.v), only the final term

in the previous equation is not zero for interband transitions, which gives:

〈cα′|H(+)
` |vα〉 = i~

q

m∗e

∫
Φ∗cα(r)Φvα(r)A`(r, t).[u

∗
c(r)∇uv(r)]|Z(z)|2ζ∗ζd3r

(4.1.13)

In addition, in a unit cell (with a lattice constant, a), the envelope function

and the vector potential can be considered constant because they are varying
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slowly, and the microscopic function, u(r), is considered periodic over unit

cells. Therefore, we can separate the integral into an intracell integral and an

intercell sum [81], which gives:

〈cα′|H(+)
` |vα〉 =

−q
m∗e

[∫
u∗c(r)(−i~∇)uv(r)ζ∗ζd3r

]

.

[∑
i

Φ∗cα(ri)Φvα(ri)|Z(zi)|2A`(ri, t)

]
(4.1.14)

Taking the continuum limit transforms the sum over cells (
∑

) to an inter-

cell integral ( 1
a3

∫
). Also, by defining the matrix element, a3pcv =

∫ a3
0
u∗c(r)

(−i~∇)uv(r)d
3r, substituting the positive part of the vector potential, A

(+)
` (r, t),

(which corresponds to light absorption) from equation 4.1.3, and finally assum-

ing that the optical wavelength is much larger than the nanostructure diameter

(so that eikz ' 1), we get:

〈cα′|H(+)
` |vα〉 =

−q
m∗e

e−iωt(εσ.pcv)

∫
e−i`θeimθe−im

′θd3r

∫
ζ ′ζd3r

∫
J`(r)R

∗
cα′(r)Rvα(r)d3r

∫
|Z(z)|2d3r (4.1.15)

where d3r in cylindrical coordinate is given by dθdzrdr. Also, due to the

orthogonality of the spin function, ζ, the exponential function, and the vertical

part of the envelop function, Z(z), the integrals in the final equation can be

reduced to:

∫ ∞
0

ζ ′ζd3r = δζ ′, ζ
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∫ −π
π

e−i`θe−i(m
′−m)θdθ = 2πδl,(m′−m)∫ ∞

0

|Z(z)|2dz = 1

Then, the matrix element can be written as:

〈cα′|H(+)
` |vα〉 =

−2πq

m∗e
e−iωt(εσ.pcv)δl,(m′−m)δζ

′, ζ

∫ ∞
0

J`(r)R
∗
cα′(r)Rvα(r)rdr

(4.1.16)

The same can be done for emission (c → v) of light: by using A
(−)
` (r, t),

the matrix element of the light-matter interaction is given by [147]:

〈vα′|H(−)
` |cα〉 =

−2πq

m∗e
e−iωt(εσ

∗.pvc)δ`,(m−m′)δζ
′, ζ

∫ ∞
0

J`(r)R
∗
vα′(r)Rcα(r)rdr

(4.1.17)

The selection rule for the conservation of the z projection of the orbital angu-

lar momentum of the electron and the light appears in the past two equations,

where ` corresponds to the light OAM and m is the z component of the elec-

tron’s orbital angular momentum. The delta functions that appear in equa-

tions 4.1.16 and 4.1.17 indicates that, the only allowed transitions are when

m′ −m = ` for absorption, and m −m′ = ` for emission. In other words the

only allowed transitions are the one connecting the states m and m′ that differ

by `.

More simplification and analysis can be achieved by applying specific J`(r)

functions (using either Bessel mode or Laguerre-Gaussian mode) and the radial

functions, Rvα(r) and Rcα′(r).
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4.1.1 Analysis

To study twisted-light-induced optical transitions we first need to specify

the initial and final states for the transition. We use equation 4.1.6 for both

the valance and conduction bands (Rvnm(r) and Rcn′m′(r)) Furthermore, by

transforming coordinates to x = r2/(2ι2), the radial functions for valance and

conduction bands are given by:

Rnm(r) =
(−1)n√

2πι

√
n!

(n+ |m|)!
e−x/2L|m|n (x)x|m|/2 (4.1.18)

Rn′m′(r) =
(−1)n

′

√
2πι

√
n′!

(n′ + |m′|)!
e−x/2L

|m′|
n′ (x)x|m

′|/2 (4.1.19)

We also need to define the beam parameters, for example, ` for a Bessel beam

or p, ` for a Laguerre-Gaussian beam. We use the Laguerre-Gaussian mode

from equation 4.1.1, Jp,`(r), because the Laguerre polynomials that appear in

the radial function allow more simplification based on their orthogonality. By

defining w0 = 4ι2/β and transforming coordinates to x = r2/(2ι2), we get:

Jp,`(r) =
C
|`|
p

w0

(
βx
)|`|/2

e−xβ/2L|`|p
(
βx
)

(4.1.20)

Once we define the radial functions and choose the twisted beam mode, we

can then insert these expressions in equation 4.1.16, which gives:
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〈cα′|H(+)
` |vα〉 =

−q
m∗e

e−iωt(εσ.pcv)δ`,(m′−m)δζ
′, ζ

C
|`|
p

w0

(−1)n+n
′
β|`|/2

×

√
n!n′!

(n+ |m|)!(n′ +m′)!

∫ ∞
0

e−x(1+β/2)L|`|p (βx)L|m|n (x)L
|m′|
n′ (x)x(|m

′|+|m|+|`|)/2dx

(4.1.21)

When considering a QD in its ground state, all electrons will be in the

valence band, and an electron’s transition rate from the valence band to the

conduction band can be found by applying the electron radial wavefunction

in its initial state, R00(r), and final state, Rn′,m′(r), in equation 4.1.21, where

L`0(x) = 1:

〈cα′|H(+)
` |vα〉 =

−q
m∗e

e−iωt(εσ.pcv)δ`,m′δζ
′, ζ

C
|`|
p

w0

(−1)n
′
β|`|/2

√
n′!

(n′ + |m′|)!

×
∫ ∞
0

e−x(1+β/2)L|`|p (βx)L
|m′|
n′ (x)x(|m

′|+|`|)/2dx (4.1.22)

Due to the delta function δ`,m′ , m
′ must be equal to ` for allowed transitions,

which gives:

〈cα′|H(+)
` |vα〉 =

−q
m∗e

e−iωt(εσ.pcv)δ`,m′δζ
′, ζ

C
|`|
p

w0

(−1)n
′
β|`|/2

√
n′!

(n′ + |`|)!

×
∫ ∞
0

e−x(1+β/2)L|`|p (βx)L
|`|
n′(x)x|`|dx (4.1.23)

To simplify the notation, we define f(β) as:

f(β) = β|`|/2
∫ ∞
0

e−x(1+β/2)L|`|p (βx)L|`|n (x)x|`|dx
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yielding:

〈cα′|H(+)
` |vα〉 =

−q
m∗e

e−iωt(ε.pcv)δ`,m′δζ
′, ζ

C
|`|
p

w0

(−1)n
′

√
n′!

(n′ + |`|)!
f(β)

(4.1.24)

For minimum beam waist size (' 500 nm; depends on the wavelength)

and QDs of 10 to 200 nm, β is very small and in the range of 0.001 < β <

0.6 [147]. Therefore, we can neglect the higher order and need only to keep

the lowest order in β.

We also can rewrite L
|`|
p (βx) by using the relationship [148] assuming that

` ≥ 0:

Lab (cx) =
∞∑
i=0

 a+ b

b− i

 ci(1− c)b−iLai (x)

which for small c (i.e., β) can be written as:

Lab (cx) '

 a+ b

b

 (1− bc)La0(x) +

 a+ b

b− 1

 cLa1(x) (4.1.25)

which gives:

L`p(βx) =
(`+ p)!

p!`!
(1− pβ)L`0(x) +

(`+ p)!

(p− 1)!(`+ 1)!
βL`1(x) (4.1.26)

Substituting the value of L`p(βx) in f(β), the integral:
∫∞
0
x`e−xxL`0(x)L`n(x)dx

can be simplified by using the relationship, x = (1 + `)L`0(x) − L`1(x), and

since L`0(x) = 1, this makes: xL`0(x)L`n(x) = [(1 + `)L`0(x) − L`1(x)]L`n(x).

Therefore, f(β) can be reduced by using the previous relationship and the
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Laguerre polynomial orthogonality relationship, given by:

∫ ∞
0

e−xxaLab (x)Lac(x)dx =
(b+ a)!

b!
δbc

We get:

f(β) = β`/2
(`+ p)!

p!
δ0n′ + β

(`+ p)!

p!

(
p+

`+ 1

2

)
(δ1n′ − δ0n′)

For a plane wave, ` and p = 0, so in this case f(β) = δ0n′ + β/2δ1n′ −

β/2δ0n′ , which for small β, we use the first term only. The transitions induced

by twisted wave, H`,p, and plane wave, H0,0, can be found from:

〈cα′|H`,p|vα〉 =
−q
m∗e

e−iωt(ε.pcv)δ`,m′δζ
′, ζ

C`
p

w0

(−1)n
′

√
n′!

(n′ + `)!
β`/2

(`+ p)!

p!
δ0n′

(4.1.27)

〈cα′|H0,0|vα〉 =
−q
m∗e

e−iωt(ε.pcv)δ`,m′δζ
′, ζ

C0
0

w0

(−1)n
′
δ0n′ (4.1.28)

Therefore, when comparing the transitions induced by twisted waves and

plane waves, we get:

H`,p

H0,0

=
C`
p

C0
0

√
n′!

(n′ + `)!
β`/2

(`+ p)!

p!
(4.1.29)

Since β depends exponentially on `/2, we can see that for small QDs (i.e.,

small β), the higher the OAM of the light beam (i.e., ` value), the weaker

the transition becomes. Moreover, the strength of the transition induced by

twisted wave (with ` 6= 0) is weaker than the one induced by plane wave

(` = 0).
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4.2 Displaced Beam and QD Axes

When considering experimental situations, studying a twisted beam aligned

to a single QD is not realistic. Instead, illuminating an ensemble of nanostruc-

tures, where each particle sees a displaced light beam, is more often the case.

Therefore, we consider the case of the nanoparticle whose axis is displaced

with respect to the twisted light axis. We can then use the resultant selection

rules to predict the transition rate for an ensemble of QDs. This is crucial

because the OAM of a light beam depends on the choice of reference axis [17].

4.2.1 Displacement of the Light Beam

Although the displacement of a twisted beam does not change its OAM,

for an individual photon with respect to the initial axis, it does change the

OAM state of the photon associated with the reference axis [149]. In other

words, a single OAM state of an individual photon converts to a superposition

of several OAM modes in a displaced frame [150].

If the light carries an OAM of zero (a Gaussian beam), it can be seen as

a superposition of several OAM states in a displaced frame with some nonzero

OAM states. For example, when considering a Gaussian beam with amplitude

E0 and beam waist ω0, the spatial mode of electric field is given by:

Es(x, y) = E0 exp
−(x2 + y2)

ω2
0

(4.2.1)
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Figure 4.2: Displaced Gaussian beam with optical axis parallel to the z-axis.
[151]
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If the beam optical axis is originally parallel to the z-axis and displaced

by x0 and y0 (as shown in Figure 4.2), then the displaced Gaussian beam in

the coordinate frame can be written as:

Es(x, y) = E0 exp

(
− (x− x0)2 + (y − y0)2

ω2
0

)
(4.2.2)

where in polar coordinates, x0 and y0 can be written as x0 = D cos θD and

y0 = D sin θD. Also, transferring the Cartesian coordinates to the polar coor-

dinates can be obtained from x = r cos θ and y = r sin θ. In addition, using

the trigonometric relationships, cosα cos β = 1
2
[cos(α − β) + cos(α + β)] and

sinα sin β = 1
2
[cos(α − β) − cos(α + β)], we can simplify the electric field

distribution and write it as:

Es(r, θ) = E0 exp

(
− r2 +D2

ω2
0

)
exp

(
2rD cos (θ − θD)

ω2
0

)
(4.2.3)

By decomposing the second exponent, we obtain:

Es(r, θ) = E0 exp

(
− r2 +D2

ω2
0

) ∞∑
s=−∞

Js

(
2rD

ω2
0

)
exp [is(θ − θD)] (4.2.4)

where Js is a Bessel function of order s [152]. The final expression shows

that the displaced Gaussian beam is seen as a superposition of Bessel-Gauss

beams with the azimuthal phase dependence exp (isθ) [153], where each Bessel-

Gauss mode is an alternative to Laguerre-Gaussian mode, and they can be

interconverted [151].
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Figure 4.3: Quantum dot and twisted light relative positions. The quantum
dot is placed at O and the twisted light beam is displaced by D.

4.2.2 QDs and Off-Center Twisted Beams

We followed the calculation presented by Quinteiro et al [136], starting

considering a QD placed at the origin, and a twisted beam with its optical axis

parallel to the z-axis at distance D, as shown in Figure 4.3. Using a Bessel

beam allows additional simplification (explained below), so the Bessel mode

F`(y) at D is defined as:

F`(y) = J`(k⊥y)ei`θy (4.2.5)
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From Figure 4.3, the angle θy = θD + ψ + π. Recalling that eiπ = cos(π) +

i sin(π) = (−1), the term, ei`θy , can be written as:

F`(y) = J`(k⊥y)(−1)`ei`ψei`θD (4.2.6)

Using the properties of the Bessel function from [154], we can rewrite the term

J`(k⊥y)ei`ψ as:

J`(k⊥y)ei`ψ =
∞∑

s=−∞

J`+s(k⊥D)Js(k⊥r)e
isφ (4.2.7)

Substituting the value of J`(k⊥y)ei`ψ in F`(y) gives us:

F`(y) = (−1)`
∞∑

s=−∞

J`+s(k⊥D)Js(k⊥r)e
is(θD−θ)ei`θD

where φ = θD − θ. By using the relationship Ja = (−1)−aJ−a [154], we can

write F`(y) as:

F`(y) = (−1)`
∞∑

s=−∞

(−1)−sJ`−s(k⊥D)eiθD(`−s)Js(k⊥r)e
isθ

Defining Fs(r) = Js(k⊥r)e
isθ and F`−s(D) = J`−s(k⊥D)eiθD(`−s) allows us to

write F`(y) in terms of centered coordinates F (r) as:

F`(y) =
∞∑

s=−∞

(−1)`−sF`−s(D)Fs(r) (4.2.8)

which gives a superposition of twisted light beams, each having a different

OAM.
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In this case, the vector potential centered at distance D can be written

as:

A`(y, t) = εσF`(y)ei(kzz−ωt) + c.c.

A`(y, t) = εσ

∞∑
s=−∞

(−1)`−sF`−s(D)Fs(r)ei(kzz−ωt) + c.c. (4.2.9)

which can be simplified by defining A
(+)
s (r, t) = εσFs(r)ei(kzz−ωt) and A

(−)
s (r, t) =

ε∗σF
∗
s (r)e−i(kzz−ωt), which gives us:

A`(y, t) =
∞∑

s=−∞

(−1)`−sF`−s(D)A(+)
s (r, t) +

∞∑
s=−∞

(−1)`−sF ∗`−s(D)A(−)
s (r, t)

(4.2.10)

where the term F`−s(D) is the weight function for the summation. Figure 4.4

illustrates the weights squared |F`−s(D)|2 corresponding to the decomposed

twisted beam at D in terms of twisted light beams passing through the origin

O.

Once again the physics of the interaction can be determined from the

matrix elements for coupling with the Hamiltonian:

h` = − q

m∗e
A`(y, t).p

By substituting the vector potential calculated in 4.2.10, we get:

h` =
∞∑

s=−∞

(−1)`−sF`−s(D)
[
− q

m∗e
A(+)
s (r, t).p

]

+
∞∑

s=−∞

(−1)`−sF ∗`−s(D)
[
− q

m∗e
A(−)
s (r, t).p

]
(4.2.11)
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Figure 4.4: Weights corresponding to the decomposed twisted beam at D in
terms of twisted beams passing through the origin O [136].
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By using the calculated Hamiltonian for the coincident case (given in equation

4.1.8), we get:

h` =
∞∑

s=−∞

(−1)`−sF`−s(D)H(+)
s +

∞∑
s=−∞

(−1)`−sF ∗`−s(D)H(−)
s

h` = h
(+)
` + h

(−)
` (4.2.12)

The matrix elements of the Hamiltonian can be written as:

〈cα′|h(+)
` |vα〉 =

∞∑
s=−∞

(−1)`−sF`−s(D)〈cα′|H(+)
s |vα〉 (4.2.13)

〈vα′|h(−)` |cα〉 =
∞∑

s=−∞

(−1)`−sF ∗`−s(D)〈vα′|H(−)
s |cα〉 (4.2.14)

Applying the matrix elements calculated for the coincident case, equations

4.1.16 and 4.1.17, and the delta function, δs,(m′−m) and δs,(m−m′), in these

matrix elements solves the sums. This is because all sum elements vanish

except when s = m′ −m for absorption and s = m −m′ for emission, which

gives us:

〈cα′|h(+)
` |vα〉 = (−1)`−(m

′−m)F`−(m′−m)(D)〈cα′|H(+)
m′−m|vα〉 (4.2.15)

〈vα′|h(−)` |cα〉 = (−1)`−(m−m
′)F ∗`−(m−m′)(D)〈vα′|H(−)

(m−m′)|cα〉 (4.2.16)

Thus, the matrix element when the QDs and the twisted light do not coincide

for absorption (v → c) is given by:
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〈cα′|h(+)
` |vα〉 = −2πq

m∗e
e−iωt(εσ.pcv)F`−(m′−m)(D)(−1)`−(m

′−m)

×
∫ ∞
0

drrJm′−m(k⊥r)R
∗
cα′(r)Rvα(r) (4.2.17)

The same can be done for emission (c → v), and the matrix element is given

by [136]:

〈vα′|h(−)` |cα〉 = −2πq

m∗e
e−iωt(ε∗σ.pvc)F

∗
`−(m−m′)(D)(−1)`−(m−m

′)

×
∫ ∞
0

drrJm−m′(k⊥r)R
∗
vα′(r)Rcα(r) (4.2.18)

These matrix elements are function of D, which indicates that for different

displacement, different transition will be induced.

4.2.3 Analysis

To understand how twisted light interacts with a displaced QD, we need

to determine the transition rate, |〈vα′|h(+)
` |cα〉|2, which can be calculated using

Fermi’s golden rule. In order to calculate this numerically, we need to con-

sider specific radial wavefunction, and for simplification we can use the radial

wavefunction of a quantum ring. This should give us a good idea of OAM-

interaction effect since this is what we are primarily interested in. The radial

wavefunction for quantum ring is given by: R(r) =
√

2
r0d

sin[π
d
(r − r0 + d/2)]

where r0 is the radius and d is the width of the ring and R(r) = 0 outside

the ring. The quantum number indices in R(r) are unnecessary, therefore, the
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integral in the matrix element can be solved, and it is given by:

∫ ∞
0

drrJm′−m(k⊥r)R
∗
cα′(r)Rvα(r) =

∫ ∞
0

drrJm′−m(k⊥r)|R(r)|2 = Jm′−m(k⊥r0)

(4.2.19)

Applying that to the matrix element, 〈vα′|h(+)
` |cα〉, we get:

〈vα′|h(+)
` |cα〉 = −(−1)`−(m

′−m)2πq

m∗e
e−iωt(εσ.pcv)F`−(m′−m)(D)Jm′−m(k⊥r0)

(4.2.20)

Therefore, we can determine the transition rate from:

|〈vα′|h(+)
` |cα〉|

2 = κ[F`−(m′−m)(D)Jm′−m(k⊥r0)]
2 (4.2.21)

where κ = −(−1)`−(m
′−m) 2πq

m∗e
e−iωt(εσ.pcv). In other words, the transition rate

is proportional to:

Transition Rate ∝
[
J`−(m′−m)(k⊥D)Jm′−m(k⊥r0)

]2
(4.2.22)

This means that the probability of the transition is defined by the displacement

between the beam axis and the nanostructure axis (D), the difference between

the angular momentum quantum numbers (m′ −m), and the ratio of the QD

size to the beam waist (k−1⊥ ).

For example, for a twisted light beam with ` = 1 and zero displacement

(where the beam and the QD coincide, as shown in Figure 4.5a), the term

J`−(m′−m)(k⊥D) = 0 unless `− (m′−m) = 0 (since J0(0) = 1); in other words,

` = m′−m = 1. Therefore, the only allowed transition is that which connects

states varying by one unit of OAM. However, even when the other transitions
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Figure 4.5: Possible transitions between a valence band and a conduction band
in a QD induced by twisted light with OAM ` = 1. (a) The centered beam
induces only a transition between states with an angular momentum difference
of m − m = 1. (b) The off-center beam activates several transitions with
different strengths. (c) The transition with an angular momentum difference
of m − m = 1 becomes negligible for a certain distance between the beam
axis and the QD axis, D. Intensity gradient represents the strength of the
transition; darker arrows represent higher transition rates.
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Figure 4.6: Transition rate for a beam with OAM of ` = 1, and beam waist
of 1 µm for different displacements, D, between the QD and the beam. Some
transition are in different scales, so for visibility we multiply them by the
factor shown next to the curve. The transition from m = 0 to m′ = 0 is the
strongest, and for smaller beam waist the curves will have the same shape but
the scaling factor will be smaller and the strength of the transition rate will
get closer to the transition from m = 0 to m′ = 0. Dashed lines correspond to
the distances, D1 and D2, represented in Figure 4.5.

(with m′ −m 6= 1) are forbidden in the centered case, they start to show up

once the displacement increases (D 6= 0, e.g., D1 shown in Figure 4.5b). This

apparent violation of conservation of OAM can be justified by recalling that

the off-center beam can be expressed as superposition of centered beams with

different values of OAM.

Another implication worth noting is that at some displacements, (e.g., D2

shown in Figure 4.5c), some electronic transitions will not be allowed because

the distance from beam center is a zero of the Bessel function, while a proba-

bility for other transitions still exists.
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For example, let us consider a twisted light beam with OAM of ` = 1

and a beam waist of 1 µm; we can evaluate the transition rate for different

values of D using equation 4.2.22. As shown in Figure 4.6, some transition

are in different scales, so for visibility we multiply them by scaling factor to

show their trend. At zero displacement the only allowed transition is that

connecting valence to conduction states that vary by ± one unit of orbital

angular momentum. When the displacement increases, other transitions start

to appear. In addition, if the beam waist size gets smaller, then the curves

represented in the figure will look the same, but the scaling factor will get

smaller. This is due to the fact that for smaller beam waist, the slopes from

the electric field (or the electric field gradient) will be higher, which leads to

more absorption in the quadrupole transition.

Spatial distribution of QDs

Lastly, to quantitatively investigate the effect of the twisted light on the

absorption spectrum, let us assume that an ensemble of PbS QDs with a size

of 4 nm is illuminated with light with a beam waist of 1 µm and with an

OAM of ` = 0 and ` = 1, respectively. The absorption spectrum in Figure 4.7

shows a strong peak (at 1,000 nm) for electronic transitions from m = 0 to

m′ = 0 for ` = 0. On the other hand, for a light beam with an OAM of ` =

1, the absorption spectrum shows that for the same transition, (0 → 0), the

absorption intensity is almost identical to the one induced by a plane wave.

It also shows another peak (at 750 nm) for transitions from m = 0 to m′ =

1, 10−6 orders of magnitude smaller than transitions from m = 0 to m′ = 0.

This suggests that the effect of the OAM of the light is very weak.
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Figure 4.7: 4 nm QDs absorption spectrum when excited by plane wave of `
= 0 and a twisted beam with ` = 1. The transition from m = 0 to m′ = 1 is
10−6 orders of magnitude smaller than the transition from m = 0 to m′ = 0.
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In addition, since the strength of the transition induced by twisted light

depends on the ratio of QD size to the waist of the beam, the calculations

show that the transition strength can be increased by decreasing the beam

waist. For example, figure 4.8 shows the strength of the transitions induced

by twisted light with ` = 1 when illuminating an ensemble of QDs with a

size of 4 nm and a beam waist of 100 nm and 10 nm, respectively. For a

beam waist of 100 nm, the transition form m = 0 to m′ = 1 is 10−4 orders

of magnitude smaller than transitions from m = 0 to m′ = 0, and it becomes

comparable to those from m = 0 to m′ = 0 if the beam waist is on the order

of 10 nm. However, the spatial extent of focused OAM beam is governed by

diffraction, therefore, getting the beam waist down to 10 nm is not possible

for a free-space beam. One method to get the beam waist to be in order of 100

nm proposed by Heeres et al is using a plasmonic metallic nanoscale resonant

antenna. Illuminating the nanoscale antenna with twisted light allows a much

larger wave vectors to be obtained, which leads to overcome the restriction of

free-space propagating wave vectors (which is governed by diffraction limit of

kmax = 2π/λ) [155].

Moreover, when considering an ensemble with different QD sizes, the

resonance energies might overlap and obscure the OAM shifts. Therefore,

since this effect is very small for QDs with the same size, we should not expect

to see an OAM shift when relying on inhomogeneous QD ensembles. In fact,

the variation in QD size creates broadening in the resonance energies, which

might be even larger than the laser’s bandwidth, as shown in Figure 4.9.
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Figure 4.8: The effect of decreasing the beam waist on the strength of the
transitions induced by twisted light with ` = 1 when illuminating an ensemble
of QDs with a size of 4 nm when the beam waist, ω0, is (a) 100 nm and (b) 10
nm. For ω0 = 100 nm the transition from m = 0 to m′ = 1 is 10−4 orders of
magnitude smaller than the transition from m = 0 to m′ = 0, and for ω0 = 10
nm, the transition from m = 0 to m′ = 1 is 10−2 orders of magnitude smaller
than the transition from m = 0 to m′ = 0
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Figure 4.9: Inhomogeneous broadening due to variation in QD size causes an
overlap of energy levels larger than the laser bandwidth.
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4.3 Conclusion

In this chapter, the theory of optical transitions in semiconductor QDs

induced by light beams with OAM was presented. We also explored the calcu-

lation of the transition matrix element. These calculations show that for a QD

center on the excitation beam the beam parameters such as OAM quantum

number, and beam waist determine the electron’s excited state. They also

show that the transition induced by twisted light is much weaker than the

value of the transition using plane wave light.

We investigated the effect that twisted light has on the QD when the

symmetry axes of the twisted light and the QD do not coincide. Writing the off-

center beam as a superposition of beams with different OAM values centered at

the position of the nanostructure allows us to determine the possible transitions

in terms of the centered case given in [147]. The calculations also show that

the transition between states is a function of the distance between the beam

axis and the nanostructure, and the strength of the transition depends on the

ratio of QD size to the waist of the beam.

In the next chapter, we will examine this theory experimentally, by illu-

minating QDs with light that has controllable OAM and then measuring the

spectrum of the transmitted light. We then compare absorption spectra for

several OAM values and look for OAM dependence. The experimental details

are presented in the following chapter.
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Chapter 5

OAM Resolved Spectroscopy

5.1 Analyzing the Absorption Spectrum

In this experiment we attempt to measure OAM transfer from light to an

ensemble of semiconductor QDs. To achieve this, we illuminate QDs with light

that has controllable OAM and then measure the spectrum of the transmitted

light. We compare absorption spectra for several OAM values and look for

OAM dependence.

5.1.1 Experimental Setup

Light with helical wavefronts was generated by shining a Ti:sapphire

pulsed laser (center wavelength: ∼800 nm, bandwidth: 30 nm, pulse dura-

tion: ∼100 fs, polarization: linear S-polarized) on a spatial light modulator

(Cambridge Correlators SDE1024 SLM) that displayed a forked diffraction

grating. A 90:10 beam splitter put 90% of the light into the signal beam and

10% into a reference beam. The signal beam was focused onto the sample
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Figure 5.1: Experimental setup for measuring OAM coupling from light to a
QD ensemble.

with a long-working-distance microscope objective lens (34 mm, NA = 0.28).

Another objective lens (working distance = 30.5 mm and NA = 0.26) was used

to recollimate the beam after it passed through the QD sample. The beams

were detected by a spectrometer with a multimode optical fiber input. The

experimental setup is shown in Figure 5.1.

Spatial Chirp Correction

Femtosecond pulses have a large bandwidth, which could create a disper-

sion problem when generating twisted light. Because the techniques used to

generate monochromatic twisted light might not always be suitable, generat-

ing twisted light with broadband lasers has been receiving increased atten-

81



Figure 5.2: Illustration of the 4f setup. Ultrafast pulses propagate from left to
right and travel through the following optical elements: an SLM that displays
a diffraction grating, two lenses that have equal focal lengths of f , and a
second SLM that displays a fork grating. Inset: geometric detail for calculating
angular dispersion.
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tion [156–158]. We attempted to apply the 4f technique used in [159, 160] to

compensate for any spatial dispersion. For this technique, a fork diffraction

grating is used to generate a twisted beam, and a second grating is used to

correct the spatial chirp. Figure 5.2 illustrates the 4f setup that we built.

However, one disadvantage of using this setup is the low intensity of the resul-

tant beam. This is mainly because the beam is passing through two gratings,

and we only use the first order of the diffracted beams. Therefore, instead of

using a normal grating we used a blazed diffraction grating, which maximizes

grating efficiency in a desired diffraction order while minimizing the power in

the other orders (more detail about generating these different types of gratings

is given in Appendix A).

Because different wavelengths diffract differently, we calculated the diffrac-

tion angle, θ, for both maximum and minimum wavelengths in our laser band-

width using the diffraction relationship:

nλ = d sin(θ) (5.1.1)

where n = 1 for the first diffraction order, λ is the wavelength, and d is the

separation of grating lines. This separation distance can be found by dividing

the SLM width by the number of lines in the grating:

d =
total SLM width

number of lines in grating
=

1.3 cm

200
= 65000 nm

Using this distance, the maximum wavelength, λmax= 820 nm, and the mini-

mum wavelength λmin= 790 nm, we obtain from equation 5.1.1 the diffraction

angles: θmax = 0.723◦ and θmin = 0.696◦; thus ∆θ = 0.027◦. For f=30 cm and
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Figure 5.3: The measured spectra for the reference beam and signal beam for
OAM of ` = 0.

by using a simple geometric analysis, we can calculate the distance x which

defines the angular dispersion (see inset in Figure 5.2):

x = tan(∆θ)× f = 0.14mm

which was much smaller than the beam diameter used in this experiment (i.e.

7 mm) and can be ignored. Therefore, based on the previous calculation, as

well as by comparing the beam modes with and without the 4f setup, we

discovered that the spatial dispersion was not extreme and can be corrected

using simple imaging. In other words, we imaged the SLM onto the sample

with the first microscope objective, and then we imaged the sample onto the

detector with the second objective.

5.1.2 Method

First, spectra for beams with different OAM values (` = 0, 1, 3, 4, 5, 10,

and 15) were acquired for both reference and signal beams, i.e., the spectrum
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of the laser through air and through the QDs. Figure 5.3 shows an example

of two measured spectra for ` = 0 through air and through QDs. We then

calculated the differential absorption between the two cases:

Differential absorption =
Reference-Signal

Reference
(5.1.2)

The differential absorption for ` = 0 and the comparison with the QD

absolute absorption (which was obtained with the spectrophotometer) is shown

in Figure 5.4. In this case, we expect the calculated differential absorption and

the QD absorption to be the same (since ` = 0, which is essentially a plane

wave).

We observed that the beam coupling into the spectrometer was critical

and difficult to maintain as the mode of the twisted light was changed. We

explored several techniques for optimizing this coupling, as discussed in the

next section.

5.1.3 Coupling with the Spectrometer

First Detection Technique

First, we sent the transmitted beam to a note card and then measured the

scattered light from the card. The distance between the sample and the card

was calculated so that the light from the sample would be imaged onto the

card. This technique was the most uniform in beam-spectrometer coupling.

Even when we moved to higher twisted beam modes (e.g., ` = 15), the coupling

was the same. However, a problem with this method was the very low intensity
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Figure 5.4: (a) The differential absorption for ` = 0 obtained using Ti:sapphire
laser coupled into the spectrometer, and (b) comparison between the obtained
spectrum with the QD absolute absorption spectrum acquired with the spec-
trophotometer.
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Figure 5.5: Detection techniques used for optimizing the beam coupling onto
the spectrometer.

of the detected light. The signal-to-noise ratio was consequently very low, and

we could not see changes in the absorption spectra with changing the value of

the OAM.

Second Detection Technique

Our second method also measured the scattered light from a card, but

this time we used a lens with a short focal length (f= 2.5 cm) to focus more

of the scattered light onto the optical fiber. This method increased the sig-

nal significantly, and the signal-to-noise ratio was much higher. A problem

with this detection technique was that the coupling onto the spectrometer

becomes inefficient at higher OAM modes, and the latest results showed a
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Figure 5.6: PbS quantum dot absolute absorption spectrum acquired with
the spectrophotometer shows strong absorption at 800 nm (which is the peak
wavelength for the Ti:sapphire pulsed laser). The broad peak indicates the
sample inhomogeneity.

strong OAM dependence—not from changes in the absorption spectrum, but

from beam-mode-induced changes in the total amount of detected light. Figure

5.5 illustrates these detection methods.

We also tried different method to optimize the beam coupling into the

spectrometer. We tried to send the beam directly to the spectrometer without

attaching the optical fiber. We also tried to attach a lens directly into the

fiber. However, in both technique the coupling was not optimal, and changing

the beam mode was affecting the beam coupling significantly.
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5.1.4 QD Sample

A PbS QD (colloidal PbS in hexane) film was prepared by dip coating on

glass substrates. Figure 5.6 shows the absorption spectrum for the QD sample

used in this experiment.

The size of the QDs used in this experiment ranged from 2 nm to 5 nm.

Because the ratio of the QD radius to the beam waist is critical, we varied the

beam diameter coming into the objective and then calculated and measured

experimentally the beam waist at the focus.

Calculating the Beam Waist

It is well known that when focusing Gaussian beams, the bigger the beam

the tighter the focus—or the smaller the beam waist. For this experiment, a

small beam waist was desirable.

To calculate the beam waist at the sample (2ω0, where ω0 is the radius) we

needed to use: the laser peak wavelength λ= 800 nm, the objective focal length

at f= 20 mm, and the beam diameter (D) coming into the focusing objective.

Finally, we applied all these measurements to the following equations:

2ω0 =
4λ

π

f

D
(5.1.3)

For example, for a beam diameter of 7 mm (before the objective lens), the

beam waist at the focus was 2.91 µm, and for a beam diameter of 5 mm, the

beam waist was 4.07 µm.

However, we needed to consider in this configuration the objective lens

entrance pupil. For example, the focusing objective we used in this experi-
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ment had entrance pupil of 10 mm, but when changing the mode of the beam

to higher OAM values, the beam diameter could exceed that of the objec-

tive entrance. Therefore, we chose to work with smaller beam diameters to

increase the possible OAM values that would have diameters smaller than that

of the objective entrance. In particular, the diameter of the beam used in this

experiment (D) was 3 mm, thus, the beam waist, 2ω0, was 6.79 µm.

Measuring the Beam Waist

The QDs were mounted on a three-axis translation stage. X and Y trans-

lation stages helped us scan the sample to choose different spots for analysis.

The Z axis allowed us to move the sample closer to or farther from the first

objective to minimize the spot size on the sample. Scattered light from the

QDs was also imaged by a lens onto a CCD (not shown in Figure 5.1). By

adjusting the sample distance from the objective, we could minimize the beam

spot size such that the QD sample was always at the beam waist.

To measure the beam waist at the focus, we started with a Gaussian

beam (` = 0), and the beam diameter coming into the focusing objective was

3 mm. A note card was then placed at the sample position to maximize the

scattered light for better imaging. Then, we placed a lens with focal length of

f = 2.54 cm close to the note card at a distance d0 = 3.4 cm, and the CCD

was placed at distance, di. We first calculated di using the thin-lens equation

given by:

1

f
=

1

d0
+

1

di
(5.1.4)

By solving the previous equation for di, the image distance from the lens (where
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Figure 5.7: Image of the beam waist at the sample and the corresponding
Gaussian profile. Note: OD filter was placed to reduce the intensity to avoid
saturation.

the CCD should be placed) was di = 10 cm. Therefore, the magnification (M)

can be found by calculating di/do, which in this case results in M = 2.95.

The image of the beam spot at the focus was then processed by Mathe-

matica to calculate the image size from the number of pixels across the image.

By taking a cross section and plotting it, we get a Gaussian-like profile and

then calculate the full width at half maximum (FWHM) from that. In this

case, FWHM = 6.35 pixels, and the CCD pixel spacing was 3.2 µm. Therefore,

the size of the beam at the focus is:

ωo =
pixel spacing

M
FWHM (5.1.5)

We measured a beam waist ω0 = 6.89 µm, which agrees with our previous

calculation. Figure 5.7 shows the beam waist image and the corresponding

Gaussian profile used to calculate the number of pixels across the beam diam-

eter.
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Figure 5.8: Differential absorption for beams for ` = 0, 1, 4, and 15. No
OAM-dependence in the absorption spectra was noted with the first detection
technique.

5.1.5 Data

When using the first detection technique (no lens between card and spec-

trometer), the signal-to-noise ratio was low (in this case, S/N = 8). The

differential absorption for a few different OAM modes (` = 0, 1, 4, 15) with

the QDs are provided in Figure 5.8.

Using the second detecting technique (lens placed between card and spec-

trometer), we still did not see differences in the absorption spectra. We plotted

the differential absorption for different OAM modes (` = 1, 3, 4, 5, and 10) and

compared them to the case with no OAM (l = 0). The differential absorption

for different OAM values found with this technique are given in Figure 5.9.
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Figure 5.9: Differential absorption for beams for ` = 1, 3, 4, 5, and 10 using
the second detection technique. We observed an overall decrease in detected
light with increasing ` because of poorer coupling into the spectrometer.

Data Analysis

We tried various data analysis methods to see if there were any changes

in the spectrum that could be connected to having OAM in the light. We first

looked for any changes in both the standard deviation and the mean when

changing the ` value. We also attempted to fit the differential absorption to

a line with different tilt and look for horizontal changes with different OAMs,

but still did not see any OAM effect in the absorption spectra.
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Figure 5.10: Experimental setup for measuring total absorption.

5.2 Measuring Total Absorption

We also took a different approach to look for OAM dependence. Since

the width of the spectral feature is set by the QD dispersion and it is bigger

than the laser bandwidth, then what we are looking for is a change (increase

or decrease) in the total absorption. Therefore, by measuring and compar-

ing the absorption for different OAM values, we might determine the OAM

dependence.

To measure the total absorption, the beam was modulated sinusoidally

at 10 kHz by an Acousto-Optic Modulator (AOM), ISOMET 1205C-2 and

222A-2 driver. Both the signal and reference beams were measured with pho-

todiodes and then sent to a lock-in amplifier (SR810). A continuous OD filter

was placed on the signal beam path to balance the intensity in each path,
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Figure 5.11: An acoustic wave is generated in the crystal by applying a RF
drive signal. Consequently, the AOM diffracts part of the incident laser light
into a single output order.

enabling sensitive differential measurements. The setup for measuring the

total absorption is shown in figure 5.10.

AOM Alignment

The AOM device controls the laser beam intensity or modulation by using

the acousto-optic effect to diffract and shift the frequency of light [161]. A radio

frequency (RF) drive applies a signal to a lead molybdate (PbMoO4) crystal

which in turn generates an acoustic wave. This sound wave in the crystal

causes changes in the refractive index, which diffracts the incident light. The

AOM is designed to diffract a high proportion of the incident laser beam into

a single output order (see Figure 5.11). The performance is optimized by
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the orientation and precise positioning of the AOM. Since most AOM devices

operate in the Bragg regime, the incident angle performance is maximized

at particular incidence angle known as Bragg angle. Therefore, by mounting

the AOM on a rotation stage, we can control the output beam intensity by

changing the input beam incident angle. In addition, to increase modulation

rates, the beam needs to be focused at the AOM.

5.2.1 Calibration

Determining the total absorption for light with different OAMs can be

achieved by comparing the signal beam that passes through the QDs to its

reference beam. However, since the beam splitter reflects 90% of the laser

light, additional steps are needed to produce a meaningful comparison. First,

we started without the QD sample (so there is no absorption from the QDs)

and with a Gaussian beam ` = 0. In this configuration, we want the difference

between the two beams to be as close as possible to zero; to achieve this, we

placed an OD filter in the signal beam to reduce the amount of light collected

by the photodiode. The minimum amplitude for the difference between the

two beams was about 5 microvolts (with approximately 1-microvolt electronics

noise).

5.2.2 Data

We observed that increasing the OAM value increased the difference

between the signal and reference beams, and we believe this was due to the

signal beam being clipped by the objective at higher OAM values. To correct
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Figure 5.12: Amplitude of the difference between the signal beam and the
reference beam for different OAM values before and after adding the iris.
Before adding the iris, the beam was clipping on the objective and therefore
the difference between the two beam was incresing with increasing the ` value.
After adding the iris, the comparison between the two beams is more accurate.
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Figure 5.13: The average amplitude (of the difference between the signal and
reference beams) for different OAM values for three different spots in the
sample, and a comparison with the measured amplitude before inserting the
sample. The dotted line indicate that the OAM has no effect on the total
absorption when considering the the electronic noise error.

this, we placed an iris on the reference beam path to block some of the beam

at higher OAMs. We chose ` = 5 as our highest OAM value, and at that

value we adjusted the iris to minimize the difference between the two beams.

Figure 5.12 shows the difference between the two beams (without sample) for

different OAM values before and after adding the iris.

After minimizing the differences between the signal and reference beams

for a range of OAM values, we inserted the QD sample and repeated the steps

(because the sample absorbs some of the light, we needed to adjust the OD

filter). We started with a Gaussian beam and adjusted the continuous OD

filter until the amplitude of the difference was minimized. Then we measured

the amplitude for different OAM values at three different spots on the sample.

We calculated the average amplitude on these three spots and compare that to

the amplitude between the different between the signal beam and the reference

beam without the sample (see Figure 5.13).
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The observed amplitudes with and without the QD sample were varying

with changing the beam mode by 1 − 1.8 microvolts. In other words, the

amplitudes of the difference between the signal and reference beams for differ-

ent OAM were extremely close to each other, and they were almost identical

when considering the 1-microvolt noise. This suggests that the OAM of light

had no effect on total absorption.

5.3 Discussion

We predicted that the effect of the OAM of the light is very weak on

the absorption spectrum of a QD ensemble when considering homogeneous

QDs. Therefore, we would not expect to see an OAM shift when relying on

inhomogeneous QD ensembles. In other words, the lack of homogeneity in the

sample plays a significant role in measurement; the QD size ranged from 2 to 5

nm in diameter. In addition to the variation in the QD size, the distribution of

the QDs in our sample is very random, and this is important since the distance

between each QD and the center of the beam is a major contributor to the

transition rate. Therefore, even when fixing the distance between the QD and

the beam center, the QD size remains inhomogeneous.

Another limiting experimental factor may be related to the beam size at

the sample. The beam waist in this measurement was about 7 µm. Smaller

beam waists can be achieved by expanding the beam before the objective, but

this was limited by the objective entrance pupil. Because of the ratio of the

QD size to the beam waist, there is a possibility that each QD sees the beam

as a tilted plane wave, which is similar to having no OAM but at a tilted angle.
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5.4 Conclusion

We tried various methods to detect OAM transfer from the light to the

QDs. We first acquired absorption spectra for the QDs using beams with

different OAM values and analyzed the spectra by calculating the differential

absorption. We used two different techniques to acquire these spectra, and we

did not observe OAM dependence in the differential absorption spectra.

We also measured the total absorption for the QDs when illuminating

them with twisted light. However, we did not observe any significant changes

in the total absorption when we changed the OAM value.

We predicted that the OAM dependence would be very small when consid-

ering illuminating a homogeneous QD ensemble, and it would be very unlikely

to detect an OAM shift when relying on inhomogeneous QD ensembles. In

other words, the fact that we could not observe OAM dependence in the

absorption spectrum is consistent with our predictions.
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Chapter 6

Conclusion and Next Steps

In 1992 Allen et al realized that helically phased light beams carry orbital

angular momentum. Since then, researchers have continued to find ways to

use this new degree of freedom for a variety of applications. Consequently,

the way twisted light interacts with solid-state matter has become an area of

growing interest.

The primary goal of this research is to study light-matter interaction using

light that carries OAM. We theoretically investigate the transfer of OAM from

light to an ensemble of semiconductor-based QDs, calculating the transition

matrix elements for the light-matter interaction and determining the corre-

sponding selection rules. We started with determining the optical ransition

induced by twisted light and the QD when the light beam and nanostructures

axis coincide. Then we investigated a more realistic case of the interaction of

twisted beam with QDs when the symmetry axis of the beam and the axis

of the nanostructure do not coincide since in QDs ensemble each QD sees a

light beam that is displaced by a different distance relative to itself. These
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calculations show that for a displaced beam the transition between states is a

function of the distance between the center of the beam and the nanostructure,

and the rate of the transition depends on the QD size relative to that of the

beam waist.

We also examine the light-matter interaction experimentally using an

ensemble of colloidal PbS QDs via two different approaches. First, we mea-

sure the absorption spectrum by illuminating the QDs with light that has

controllable OAM and compare the absorption spectra for several OAM val-

ues. We also measure and compare the total absorption for several OAM

values to search for OAM dependence. Our measurements of the spectra and

total absorption does not reveal transfer of orbital angular momentum to the

nanostructure target.

We may not have been able to measure the transfer of OAM from the

twisted light beam to the nanostructures because of experimental limitations

including, inhomogeneous size of the QDs, and the ratio of the beam waist

to the QD size. We believe that the sample inhomogeneity plays a major

role in our null results because the optical transition depends on the size of

the nanostructure. In fact, due to the fact that the off-center beam can be

ssen as a superposition of beams with different value of OAM, our theoretical

calculation predicted that the transition from m = 0 to m′ = 1 was 10−6

order of magnitude smaller than the transition from m = 0 to m′ = 0. In

other words, we predicted that (for homogeneous QDs ensemble) to be able

to detected the transfer of OAM from the light to the QDs we would need to

measure the absorption to 10−6, therefore, we were not expecting to be able

to detect that transfer with inhomogeneous QDs ensemble.
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If OAM is involved in light-matter interaction, the nonvertical transitions

(e.g. m = 0 and m′ = 1) would be much weaker than the vertical ones (e.g.

m = 0 and m′ = 0) when considering illuminating QDs ensemble. Therefore,

optimizing the experiment to measure OAM transfer would require making

adjustments to both the sample and the laser beam to increase sensitivity.

For the sample, we need a more homogeneous QD target. While colloidal

PbS QDs are easy to synthesize, they have a range of sizes varying from 2 to

5 nm. Because absorption depends on QD diameter, a more consistent size

should improve the signal. By fixing the QD size, we could reduce the factors

affecting the transition strength as well as resolve other factors, such as the

distance between each QD and the beam center. One approach would be to

image the radial direction of the sample onto a detector to spatially resolve

the interaction. In this case, we would be looking at specific QDs that are at

a certain distance from the beam center.

In addition to using QDs with a more consistent size, the ratio of the

QD size to beam waist should also be adjusted. To increase the ratio of the

QD size to beam waist we would need to decreased the beam waist (since

incresing the QD size could affect the confinement). The waist of the beam

used in this measurement was about 7 µm, and a smaller beam waist would

certainly enhance the possibility of detecting OAM dependence. For example

for a beam waist of 100 nm the strength of the transition rate can be enhanced

by 102 order of magnitude for transition from m = 0 to m′ = 1.

Finally, in this experiment, the laser beam loses a significant amount of

power before detection. The spatial light modulator diffracts the beam into

several diffraction orders, and only one diffracted light beam is used while
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the other orders have to be blocked. In addition, the most efficient detection

technique used for optimizing the beam coupling onto the spectrometer was

measuring the scattered light from a note card, resulting in significant power

loss. As a result of these experimental aspects, the signal-to-noise ratio in

this experiment is very low. Increasing the power in the incident beam could

improve the ratio.

Although we did not observe OAM dependence experimentally, we believe

that the OAM should be involved in light-matter interaction and it might be

impossible to detect this transfer of OAM when considering an inhomogeneous

ensemble of nanoparticles. In the end, we can say that the orbital angular

momentum of light has taught us to think differently about light while we

await the new uses of twisted light yet to be discovered.
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[116] M. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri, K. Helmerson,

and W. D. Phillips, “Quantized rotation of atoms from photons with

orbital angular momentum,” Physical Review Letters, vol. 97, no. 17,

p. 170406, 2006.

[117] S. Van Enk and G. Nienhuis, “Commutation rules and eigenvalues of spin

and orbital angular momentum of radiation fields,” Journal of Modern

Optics, vol. 41, no. 5, pp. 963–977, 1994.

[118] M. Babiker, C. Bennett, D. Andrews, and L. D. Romero, “Orbital

angular momentum exchange in the interaction of twisted light with

molecules,” Physical Review Letters, vol. 89, no. 14, p. 143601, 2002.

119
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Appendix A

Building the Fork Grating

A fork diffraction grating can be generated by numerically calculating the

intensity profile that results from interference between a tilted plane wave and

a twisted wave. We attempted to build a normal fork grating and a blazed

fork grating. These gratings were displayed on the SLM, and by shining a

plane wave on these gratings, beams with different orders were created.

A.1 Normal Fork Grating

The first type of fork grating we used to create twisted light was a normal

fork grating, in which the incident beam gets diffracted into several different

orders. The 0 order is just the plane wave, and the first orders are the twisted

waves with OAMs of +` and −`, as shown in Figure A.1. As the order

increases, the light intensity decreases. Therefore, we usually use the first

diffracted order and block the other beams.

Mathematica code used to build this fork grating is:

w= w0 (1 + ( z ˆ2/zRˆ2) ) ;

w1= 100∗200ˆ−6;

w0set= 2ˆ−6;

\ [ Lambda ] 0 = 800ˆ−9;

Ixy2 = F u l l S i m p l i f y [ ComplexExpand [ ( . 5 Exp [ I ( kx
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Figure A.1: Diffraction at a normal grating. The incident light gets diffracted
into multiple diffraction orders in addition to the 0 order.
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+\[ Cap i ta lDe l ta ] \ [ Phi ] ) ] + . 5 Exp [ I l ArcTan [ y , x ] ] )

∗Conjugate [ . 5 Exp [ I ( kx +\[ Cap i ta lDe l ta ] \ [ Phi ] ) ]

+.5 Exp [ I l ArcTan [ y , x ] ] ] ] ] ;

Grating0 = Ixy2 / . {k −> 11∗2 \ [ Pi ] / \ [ Lambda ]0/8 ,

w0 −> w0set , zR −> \ [ Pi ] w0set ˆ2/\ [Lambda ] 0 ,

z −> 10ˆ−4 , p −> 0 , l −> 0 , r −> Norm[{ x , y } ] ,

\ [ Cap i ta lDe l ta ] \ [ Phi ] −> 0} ;

Grating1 = Ixy2 / . {k −> 11∗2 \ [ Pi ] / \ [ Lambda ]0/8 ,

w0 −> w0set , zR −> \ [ Pi ] w0set ˆ2/\ [Lambda ] 0 ,

z −> 10ˆ−4 , p −> 0 , l −> 1 , r −> Norm[{ x , y } ] ,

\ [ Cap i ta lDe l ta ] \ [ Phi ] −> 0} ;

CG = MatrixPlot [ Table [ Grating0 + Grating0 , {y , −w1/1000 ,

w1/1000 , w1/500000} , {x , −w1/1000 , w1/1000 ,

w1/500000} ] , ColorFunction −> ”GrayTones ” ,

Frame −>False , PlotRangePadding −> 0 ]

A.2 Blazed Fork Grating

A blazed fork grating, also known as an echelette grating, is a diffraction

grating with grooves that have a sawtooth profile. This grating is designed to

achieve maximum grating efficiency in a specific diffraction order. Therefore,

the optical power will be maximized in the desired diffraction order while

minimized in the other orders. Figure A.2 shows diffraction at a blazed grating,

and figure A.3 shows the generated fork grating and blazed fork grating for
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Figure A.2: Schematic of a blazed grating surface. The incident light is
diffracted into a specific diffraction order, which maximizes the optical power
in that order.

` = 1.

The code used to build a blazed fork grating is:

R[ x , y ] := Norm[{ x , y } ] ;

th [ x , y ] := Piecewi se [{{2\ [ Pi ]−ArcCos [ x/Norm[{ x , y } ] ] ,

y >= 0} , {ArcCos [ x/Norm[{ x , y } ] ] ,

y < 0}} s p i r a l [ x , y ] := l th [ x , y ] ;

sawtooth [ s ] := SawtoothWave [{−1 , 1} , s /(2 \ [ Pi ] ) ] ;

c o n t r a s t f u n c t i o n [ g ra t in , con t ra s t , np ix ] :=

Module [{ inmax , inmin } ,

inmax = Max[ g r a t i n ] ;

inmin = Min [ g r a t i n ] ;
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s c a l e d i n i t i a l =

( ( g r a t i n − inmin ) ( npix − 1 ) ) / ( inmax − inmin ) ;

s c a l e d c o n t r a s t = s c a l e d i n i t i a l c on t r a s t ;

s h i f t e d = s c a l e d c o n t r a s t − 127 ( con t ra s t − 1 ) ;

s h i f t e d = Clip [ s h i f t e d , {0 , npix −1} ] ; s h i f t e d ] ;

nx = 1080 ;

ny = 1920 ;

l = 1 ;

t i l t = −100;

c on t r a s t = 3 ;

ampfork := Monitor [ Table [ Re [Eˆ( I ( s p i r a l [ x , y ]

+ t i l t 2 \ [ Pi ] x / 2 ) ) ] ,

{x , −1, 1 , (1 − (−1))/(nx − 1)} ,

{y , −1, 1 , (1 − (−1))/(ny − 1 )} ] , N[ x ] ] ;

b l a z e f o r k := Monitor [ Table [

Re [ sawtooth [ s p i r a l [ x , y ] +t i l t 2 \ [ Pi ] y / 2 ] ] ,

{x , −1, 1 , (1 − (−1))/(nx − 1)} ,

{y , −1, 1 , (1 − (−1))/(ny − 1 )} ] , N[ x ] ] ;

MatrixPlot [N[ ampfork ] , ColorFunction −> ”GrayTones ” ,

Frame −> False , PlotRangePadding −> 0 ,

ImageSize −> 1 0 8 0 ] ;

b l a z e f o r k v a l u e s = N[ b l a z e f o r k ] ;

enhb laze fo rk = c o n t r a s t f u n c t i o n [ b l a z e f o rkva lu e s ,
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Figure A.3: The generated grating for ` = 1 for: (a) normal fork grating and
(b) blazed fork grating.

contras t , 2 5 6 ] ;

FG = MatrixPlot [ enhblaze fork , ColorFunction−> ”GrayTones ” ,

PlotRangePadding −> 0 , ImageSize −> 1920 ]
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Appendix B

Alignment Process for a Ti:Sapphire

Oscillator

This appendix describes the components and the alignment procedure of

the Ti:sapphire femtosecond laser used in this work.

B.1 Components

The laser cavity contains:

• A continuous-wave (cw) green laser with 4 to 4.5 W pump power and

wavelength of 514 nm

• Lasing medium of titanium-doped sapphire crystal

• A pair of fused silica prisms for dispersion compensation

• High-reflectively broadband mirrors (>0.99); silver-coated mirrors are

less effective because they might get distorted from the pump laser high

intensity

• Curved mirrors with antireflection coatings for the pump laser wave-

length on the planar side and a curvature of R = 10 cm on the concave

side

• Output coupler that transmits ∼12% of the pump power
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Figure B.1: Ti:sapphire laser parameters and the beam path in the cavity.

Figure B.1 shows the Ti:sapphire components and the beam path in the

cavity. In a single trip through the cavity, the beam bounces on the end mirror

and the output coupler once, then it bounces twice on the two curved mirrors

and the fold mirror, then it passes through the crystal and both prisms twice.

Within the cavity, the path lengths and the distances between the optics

are important for correct dispersion compensation and mode locking. The

distance between the output coupler and the second curved mirror is 62 cm,

the distance between the first and second curved mirror is 10.4 cm, the distance

between the first curved mirror and the first prism is 22 cm, the total distance

between the first and second prism is 62 cm, the distance between the second

prism and the end mirror is 5 cm, and the angle θ = 16◦.
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Figure B.2: Distances between the optics on the rail.

B.2 Alignment

The alignment process usually starts with aligning the optics to get the

oscillator to lase, then maximizing the output power, and finally mode-locking

the laser. The alignment process in detail is:

• Align the pump beam along the rail. The beam should be parallel to

the rail and also to the table. This can be done by removing all optics

and aligning using two mirrors and two pinholes. The height of the

beam can be adjusted to match the height of the crystal. Then, place

the lens so that the beam passes through the center of the lens. After

that, place the curved mirrors and the crystal. The beam should pass

through the crystal at the focus of the lens and through the centers of

the curved mirrors. The two curved mirrors should be symmetric about

the crystal, roughly 10.4 cm apart. The distances between the crystal

and both curved mirrors are shown in Figure B.3.
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• Adjust the central translational axis of the rail to an angle of 16 degrees

to the grid of table, and make sure that the reflection of the second

curved mirror to the output coupler is parallel to the grid.

• A bright reddish fluorescence propagating through the cavity allows

alignment for lasing. To reduce total dispersion, we adjust the prisms

so that the beams eventually propagate through the minimum amount

of glass. However, the alignment is easier when we have the maximum

amount of fluorescent light propagating through the cavity, so we start

by setting the prism translation stages at the middle of their scale. More-

over, to improve the visibility of the fluorescence, this can be done with

low room lights or even in the dark.

• Set the first prism at minimum deviation, where the minimum deviation

defines the angle at which the beam enters and exits the prism at the

Brewster angle, and so passes through the prism parallel to its base.

After that, we adjust the fold mirror so that the incidence angle is small

and then set the second prism at minimum deviation. Finally, reflect

the fluorescence spot with the end mirror.

• If the rail optics are close to their optimal positions, we should be able

to see a specific shape to the fluorescence at the first prism, as shown in

Figure B.3a. The diameter of the larger red spot is roughly the size of

the prism. This is the light reflected from the crystal, and we can adjust

its size by adjusting the crystal position. The smaller spot is the light

reflected from the output coupler. It may not be in focus at the first

prism, but this can be fixed by adjusting the translational position of
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Figure B.3: The fluorescence shape appearance at (a) first prism and (b)
second prism.

the second curved mirror reflecting to the output coupler. Once we see

this shape at the first prism, we should see a spatially dispersed shape

to the fluorescence at the second prism, as shown in Figure B.3b. If the

fluorescence does not appear as described, make small adjustments in

the translational positions of the second curved mirror and crystal.

• The reflected beam from the end mirror must be aligned to overlap with

that of the output coupler. The two beams can be seen easily with an

index card at the fold mirror. We can adjust the crystal and the second

curved mirror so that the two spots of fluorescence are focused at the fold

mirror. When the beams are aligned, and by making small adjustments

to the output coupler, end mirror, and the position of the second curved

mirror, lasing can be initiated. The oscillator will lase only when the

mirrors are aligned accurately, and the second curved mirror and crystal

are in approximately the correct positions. The distances between the

curved mirrors and the end mirrors are not very important for cw oper-
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ation, although they become more significant for mode-locking stability.

It is also useful to make sure that the fluorescence is passing through the

centers of the prisms. Later, when mode locking, the prism positions will

probably require some adjustment for optimal dispersion compensation.

• After the laser lases, we can increase the peak power by adjusting the

horizontal and vertical tilt of the output coupler and the end mirror.

Also, small tweaks to the curved mirror and the crystal translational

positions will greatly help to increase the power. At 4 to 4.5 W of

pump power, the laser will usually have an output power of about 200

to 300 mW.

• Another approach for increasing the cw power is to align the green and

red beams in the crystal so that there is efficient coupling between the

two beams. This can be done by looking at the scatter of both beams

on either of the curved mirrors. The green beam would appear slightly

to the left of the red beam, as seen in Figure B.4a. Alignment for the

highest power should associate with this configuration. However, if the

two beams are significantly separated, or if the green beam appears to

the right of the red, this might suggest that the red beam is being clipped

somewhere within the cavity.

• Now that the laser is lasing and the peak power is maximized, we can

start the process of mode-locking the laser. The distance between the

second curved mirror and the crystal is one of the critical components

for mode locking. In fact, the oscillator will lase for a range of values

for this distance, but mode locks for a specific distance between the
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Figure B.4: Shape of the green and red beams at either of the curved mirrors
for maximum coupling between the two beams.

second curved mirror and the crystal. When the oscillator is lasing, there

will be two regions where the laser is stable. Starting with the biggest

distance between the second curved mirror and the crystal at which the

cavity is still lasing and moving the second curved mirror closer to the

crystal, the laser will stop lasing at one point, start again as the mirror

is moved further, then stop lasing again. The most stable mode locking

will happen when the second curved mirror has been moved to the inside

of the outer stability region. In other words, mode locking will be most

stable just before the first stop of lasing as the second curved mirror

is moved closer to the crystal. When the laser is aligned in cw mode,

it should have highest power when the second curved mirror is farthest

from the crystal.

• Running at high output power, the laser may be favoring continuous

mode. Therefore, move the second curved mirror toward the crystal

until the output power is reduced. Then use only the output coupler
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and end mirror to increase the power as high as it will go. To mode-

lock the laser, give the translation stage of the first prism a quick push to

introduce a brief fluctuation in the intensity of the beam, since the cavity

is aligned to favor mode-locked operation. The power may be increased

by slight adjustments to the end mirror and the output coupler.

Not all these steps are required every time the laser is used. The daily routine

is usually to maximize the cw power by adjusting the output coupler and the

end mirror, followed by a quick push for the first prism. If the laser is not

mode locking or not lasing, go through alignment process starting from the

third step (we don’t need to do the first two because we almost never change

the optics position). Moreover, if the cw power is lower than usual, cleaning

the optics may be helpful.

B.2.1 Rail micrometers

The translational position for the optics are:

• Crystal: 4.96 mm

• First curved mirror: 0.253 inch

• Second curved mirror for max cw power: 7.13 mm

• Second curved mirror for mode-locked operation: 7.918 mm

• Lens: 0.4287 inch

• First prism: 2.12 mm

• Second prism: 0.318 inch
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