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Abstract 

Bayesian estimation methods have shown better performance than the traditional 

Marginal Maximum Likelihood (MML) estimation method for parameter estimation in 

relatively simple item response models. However, extant literature is lacking on the 

investigation of Bayesian parameter estimation approaches for a multidimensional two 

parameter partial credit (M2PPC) model, therefore this simulation study investigated the 

performance of two Bayesian Markov Chain Monte Carlo (MCMC) algorithms: Gibbs 

Sampler and Hamiltonian Monte Carlo-No-U-Turn-Sampler (HMC-NUTS) for M2PPC 

models’ parameter estimation. It compared the estimation accuracy and computing speed 

in different combinations of situations, including prior choices, test lengths, and the 

relationships between dimensions. 

The datasets were generated based on the distributions from existing literature, 

and the conditions were fully crossed. It ended up with 36 conditions: Bayesian MCMC 

algorithms (Gibbs sampler and HMC-NUTS), prior choices (Matched Prior, Vague Prior 

and Hierarchical Prior), test lengths (15 and 30), and the relationships between 

dimensions (low = .2, medium = .5, and high =  .8). Root Mean Squared Errors (RMSE) 

and Bias for each of the recovered parameter in all the conditions were calculated. Sets of 

four-way ANOVAs were conducted to check the contribution of the four factors--

Bayesian algorithm, prior choice, test length, and interdimensional correlation--to the 
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total variance in RMSE and Bias.  The computational speed was also recorded for each of 

the estimations.  

           The first finding is that when considering the computational speed and estimation 

accuracy, the results of parameter recovery of the M2PPC model show that Gibbs 

Sampler and HMC-NUTS performed similarly in all the simulated conditions. The 

second finding is concerning test length. The precision of item parameter estimates 

increased as the test length decreased, but the accuracy of person parameter estimates 

increased as the test length increased in all the simulated conditions for both Gibbs 

Sampler and HMC-NUTS. Test length had no consistent impact on Bias for either item 

parameter or person parameter estimates. The third finding is that different 

interdimensional correlations did not influence the recovery of item parameters but 

affected the precision of the estimation of person parameters. The accuracy of the person 

parameter recovery increased as the interdimensional correlation increased in all the 

different conditions for both Gibbs Sampler and HMC-NUTS. The results of analyses of 

variance (ANOVAs) supported the previous conclusions. This dissertation study 

concluded with limitations and recommendations for future work.  
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Chapter One：Introduction and Literature Review 

Chapter One provides an introduction to this study and a brief overview of the 

problem. After the introduction to the topic, the literature review begins with an overview 

of IRT models, and introduces multidimensional two parameter partial credit (M2PPC) 

models. I then present the most commonly used frequentist parameter estimation method, 

marginal maximum likelihood (MML), in IRT models. Subsequently, Bayesian inference 

for item response models’ parameter estimation is described. In this study, I focus 

primarily on Bayesian Markov Chain Monte Carlo (MCMC) techniques. The literature 

introduces two Bayesian estimation techniques--Gibbs Sampler and Hamiltonian Monte 

Carlo-No-U-Turn-Sampler (HMC-NUTS)--for IRT models. A summary of comparative 

studies of how Bayesian MCMC estimation techniques behave in IRT models concludes 

the literature review section.  

Then, the rationale for this study is stated. Finally, I present the research purposes 

and research questions that I address through this study. I include several limitations and 

definitions of the terms of my study. 

Introduction 

 M2PPC models apply to the investigation of the latent factors underlying 

psychological, educational, and medical tests and questionnaires composed of items with 

few response categories. M2PPC models can utilize all the information from each 
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response to better measure people to create psychometrically sound instruments. In 

general, IRT models have the features of establishing a probabilistic relationship between 

responses on a set of items and the latent traits/factors on the basis of a set of parameters 

(Tsutakawa & Lin, 1986). Therefore, the first and foremost issue associated with IRT 

models is appropriate parameter estimation, which lays the foundation for the further 

application of IRT models in different content areas.  

This simulation study investigates the performance of two Bayesian MCMC 

algorithms: Gibbs Sampler and HMC-NUTS for M2PPC models’ parameter estimation. 

It compares the estimation accuracy and computing speed in different combinations of 

situations, including prior distributions, test lengths, and the relationships between 

dimensions. 

Problem Statement 

The increase in computing power of computer hardware and the development of 

advanced psychometric software makes it possible to calibrate complex IRT models, such 

as M2PPC models. However, until recently researchers only compared the parameter 

estimation approaches for the multidimensional 2-PL dichotomous model (Martin-

Fernandez, M., & Revuelta, J., 2017), unidimensional 1-PL and 2-PL models (Natesan et 

al., 2016), and multi-unidimensional (two dimensions) 2-PL graded response models 

(Kuo & Sheng, 2016), and there are concerns and confusions in the limited literature 

about under which conditions or under which combination of conditions (including test 

lengths, interdimensional correlations, and prior choices), which parameter estimation 

method(s) is more appropriate. In addition, no study was identified that compared the two 
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Bayesian MCMC estimation methods-Gibbs Sampler and HMC-NUTS estimation for an 

M2PPC model, but the two MCMC estimation methods have shown better performance 

than MML for the relatively simple IRT models examined in existing psychometric 

research (Martin-Fernandez & Revuelta, 2017; Natesan et al., 2016). Finally, the lack of 

identified literature on the investigation of Bayesian parameter estimation approaches for 

M2PPC models serves to motivate an exploration of how the two Bayesian MCMC 

algorithms behave in M2PPC models. The present study addressed this gap in the 

literature. 

Literature Review 

IRT Models 

IRT begins with the proposition that a person’s response to a certain item is 

determined by an unobservable attribute of that person. That attribute is referred to as an 

“ability” or “trait.” Because abilities are not directly observed, they are called “latent 

traits” or “latent abilities.”  IRT models the relationship between persons’ performances 

on a test item and their levels of performance on an overall measure of the ability that 

item was designed to reflect. Several different statistical models with different parameters 

are used to represent both item and person characteristics. Some of the models are used to 

quantify the probability of correct answers as a function of unobserved person abilities 

and other parameters to explain the difficulty and the discriminatory power of the items 

in the test. Some also include a threshold parameter for the probability of the correct 

answer to account for the guessing effect in multiple choice items.  Suppose that each of 

N persons is given n items (questions). The response yij for the jth person and the ith item 
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is recorded as 1 or 0 according to whether the person answers the item correctly or 

incorrectly. Let pij denote the probability that the jth person can answer the ith item 

correctly. The model is the following 3-parameter logistic (PL) response function:  

                 pij=P (yij=1| θ, a, b, c)= ci+(1- ci)
𝑒

𝑎𝑖(𝜃𝑗−𝑏𝑖)

1+𝑒
𝑎𝑖(𝜃𝑗−𝑏𝑖)                                       (1)            

for i=1, 2, …, n, and j=1, 2, …, N, where θ = (𝜃1, … , 𝜃𝑁), with -∞ <  𝜃𝑗 < +∞, is a 

vector of ability variables for N persons; a = (𝑎1, … , 𝑎𝑛), with  𝑎𝑖 > 0 , is a vector of the 

item discrimination parameters for n items; b = (𝑏1, … , 𝑏𝑛), with  −∞ <  𝑏𝑖 < +∞, is a 

vector of the item difficulty parameters for n items, and c = (𝑐1, … , 𝑐𝑛), with  0 <  𝑐𝑖 < 1, 

is a vector of the item guessing parameters for n items. In particular, when 𝑐𝑖=0, model 

(1) reduces to a 2PL model.  

 There are three assumptions commonly made in IRT models. The first assumption 

is about the dimensional structure of test data. The models that assume a single ability are 

referred to as unidimensional models, such as model (1). However, in many situations, 

there is an a priori assumption that multiple abilities are involved in producing the 

responses (e.g., a math word problem may measure a composite skill of math and reading 

comprehension with varying emphases on the two skills). Such cases require 

multidimensional models, which is the focus of this study. The second assumption is 

local independence. This assumption states that a person’s response to one item does not 

affect his/her response to any other items in the test: only the person’s ability and the 

characteristics of the item can influence the response to that item. The last assumption is 

about the mathematical form of the item characteristic curve (ICC). The relationship 
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between a person's latent ability and the probability of the examinee correctly responding 

to a particular item is modeled by a mathematical function called the item characteristic 

function. It is the linear or nonlinear function for the regression of item score on the 

ability measured by the test (Hambleton, 1989). 

 As noted in the previous paragraph, it is often more realistic to hypothesize that a 

person's response to an item is due to his/her locations on multiple latent variables. Thus 

we have a multidimensional latent space. For instance, students’ learning self-efficacy 

involves cognitive and affective dimensions, and the responses to items on a measure of 

self-efficacy are a function of the person’s locations on these two dimensions. This 

example is different from the math word problem example, in which the person’s highly 

developed reading comprehension ability can compensate for the lower math proficiency. 

In contrast, the person’s location on the cognitive dimension of self-efficacy cannot 

compensate for the person’s location on the affective dimension, and such situations 

present noncompensatory multidimensional models. (Details can be found in Whitely, 

1980.) The math word problem example presents a case of a compensatory 

multidimensional model, which is the focus of this study. 

 Similarly to model (1), the multidimensional 3PL model is defined as: 

    pij=P (yij=1| θj, 𝒂𝒊, 𝒃𝒊, c)= ci+(1- ci)
exp {∑ [𝑎𝑖𝑘(𝜃𝑗𝑘−𝑏𝑖𝑘)]𝑚

𝑘=1 }

exp {∑ [𝑎𝑖𝑘(𝜃𝑗𝑘−𝑏𝑖𝑘)]𝑚
𝑘=1 }+1

                                  (2)            

for i=1, 2, …, n, and j=1, 2, …, N, where θj = (𝜃𝑗1, … , 𝜃𝑗𝑘 , … , 𝜃𝑗𝑚)  is a vector of m ability 

values, with -∞< 𝜃𝑗𝑘< +∞, for j=1,2,…, N, k=1,2,…, m; 𝒂𝒊 = (𝑎𝑖1, … , 𝑎𝑖𝑘, … , 𝑎𝑖𝑚)  is the 

vector of loadings of item i on the m abilities (item discriminations) with  𝑎𝑖𝑘 > 0 for 
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i=1,2,…, n, k=1,2,…, m ;  𝒃𝒊 = (𝑏𝑖1, … , 𝑏𝑖𝑘, … , 𝑏𝑖𝑚) is the item difficulty parameter 

vector along the m abilities dimensions with − ∞ < 𝑏𝑖𝑘 < +∞ for i=1,2,…, n, k=1,2,…, 

m; and c = (𝑐1, … , 𝑐𝑛)T is the vector of the item guessing parameters for n items with  0 <

 𝑐𝑖 < 1 for i=1,2,…, n.  

Note that when 𝑚=1, model (2) reduces to a unidimensional 3PL model (1). When 𝑐𝑖=0, 

model (2) reduces to a multidimensional 2PL model (1).  

                  pij=P (yij=1| θj, 𝒂𝒊, 𝒃𝒊)= 
exp {∑ [𝑎𝑖𝑘(𝜃𝑗𝑘−𝑏𝑖𝑘)]𝑚

𝑘=1 }

exp {∑ [𝑎𝑖𝑘(𝜃𝑗𝑘−𝑏𝑖𝑘)]}𝑚
𝑘=1 +1

                                            (3)  

 Letting 𝛾𝑖=− ∑  𝑎𝑖𝑘𝑏𝑖𝑘
𝑚
𝑘=1 , equation (3) becomes  

                pij=P (yij=1| θj, 𝒂𝒊, 𝛄𝒊)= 
exp (∑ 𝑎𝑖𝑘𝜃𝑗𝑘+𝛾𝑖

𝑚
𝑘=1 )

exp (∑ 𝑎𝑖𝑘𝜃𝑗𝑘+𝛾𝑖
𝑚
𝑘=1 )+1

                                                  (4) 

In practice, response types may not be limited to binary responses as in the 

previous models. For instance, rating scales where a person chooses a response from a set 

of choices are used to measure numerous educational, psychological, and medical 

outcomes. A "rating scale" model is one in which all items (or groups of items) share the 

same rating scale structure, such as Likert scales. For another example, partial scales, a 

partial credit model is one in which each item has a unique rating scale structure. Several 

models can score such data type, such as the graded response model, nominal response 

model, and generalized partial credit model, among which the M2PPC model (Muraki, 

1997) is one of the most often used polytomous IRT models and is the focus of this 

study:         
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 P (y=𝑥𝑖𝑞 | 𝜽, 𝒂𝒊, 𝜸𝒊)= 
exp [∑ (∑ 𝑎𝑖𝑘𝜃𝑘

𝑚
𝑘=1 +𝛾𝑖ℎ

𝑞
ℎ=0 )]

∑ {exp[∑ (∑ 𝑎𝑖𝑘𝜃𝑘
𝑚
𝑘=1 +𝛾𝑖ℎ

𝑡
ℎ=0 )]}

𝑝
𝑡=0

 , setting 𝑎𝑖𝑘𝜃𝑘 + 𝛾𝑖0 =0 as a notational 

convenience.                                           (5)          

Suppose that model (5) describes the probability that one person’s response is in item i’s 

q category, 𝑥𝑖𝑞. The vector θ = (𝜃1, … , 𝜃𝑘 , … , 𝜃𝑚) is the vector of the m ability parameters 

for that person, with -∞ <  𝜃𝑘 < +∞ for k=1,2,…, m; 𝒂𝒊 = (𝑎𝑖1, … , 𝑎𝑖𝑘, … , 𝑎𝑖𝑚) the 

vector of loadings (item discriminations) of item i on the m abilities, with 𝑎𝑖𝑘 > 0 for i=1, 

2, …, n, k=1,2,…, m ; 𝛄𝒊 = (𝛾𝑖0, … , 𝛾𝑖𝑞, … , 𝛾𝑖𝑝)   a vector of intercept parameters 

reflecting the interaction of the transition location parameters and discrimination 

parameters  (𝛾𝑖ℎ=− ∑  𝑎𝑖𝑘𝑏𝑖𝑘ℎ
𝑚
𝑘=1 ), with -∞ <  𝛾𝑖𝑞 < +∞ for i=1, 2, …, n and q=0, 1,…, 

p. In a proficiency measurement situation, 𝛾𝑖ℎ can be interpreted as related to an item’s 

difficulty though with an opposite sign. Following Muraki (1997), this defines that first 

boundary location as zero, thus there are p transition locations and p+1 categories.  

Frequentist Inference via Marginal Maximum Likelihood (MML) 

Accurate parameter estimation is a crucial problem in item response theory (IRT), 

and currently frequentist inference via MML, developed by Bock and Aitkin (1981), is 

the most widely used parameter estimation method in item response models (Martin-

Fernandez & Revuelta, 2017). MML has a two-step procedure. After obtaining the joint 

probability of the item response vector given the person parameters, MML treats persons 

as random effects and derives a marginal probability of observing the item response 

vector by integrating the person effect out of the joint likelihood to separate item 

parameters from person parameters, thereby the IRT characteristic of “sample free.” 
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Hence, in MML, item parameters can be obtained using an expectation-maximization 

(EM) algorithm, and person parameters can be iteratively estimated using the item 

parameters. Bock and Aitkin’s MML is limited to IRT models with lower dimensions, 

since it uses fixed Gauss-Hermite quadrature (Baker & Kim, 2004). As the number of 

dimensions increases, the number of quadrature points increases exponentially, which 

need to be accounted for by decreasing the number of quadrature points in each 

dimension. Schilling and Bock (2005) proposed using adaptive quadrature for better 

accuracy when a relatively small number of quadrature points are used for each 

dimension. This estimation method can be used with a moderate number of dimensions 

(e.g., 3-4 dimensions) in item response models.  

The MML estimator is a function of the data that has a distribution. This renders 

the estimator a random variable, and the realization of the random variable, the MML 

estimates, are obtained from a sample of data from the population. Standard errors of 

these estimates capture the uncertainty of these estimates, and are used to construct 

confidence intervals. The estimation routines heavily depend on asymptotic arguments to 

justify the calculation of parameter estimates, standard errors, and the sampling 

distribution of the parameter estimates. Moreover, these parameter values are treated as 

fixed or constant, which makes it inappropriate to examine their probabilities. The 

standard error is a measure of the variability of the value of the parameter estimator due 

to sampling data from the population. Likewise, the probabilistic interpretation of the 

confidence interval relies on the sampling distribution of the interval on repeated 

sampling of data, and applies to the process of interval estimator construction. These 
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notions refer to the variability of a parameter estimator, which is a distribution of 

parameter estimates in repeated sampling. In other words, the parameters are assumed to 

be constant over the repeated samples from the data. In MML, the probabilistic 

statements refer to the variability and likely values of the parameter estimator rather than 

the parameters themselves. I discuss MML here only to provide a background for 

Bayesian inference, and a more detailed description of MML can be found in Schilling 

and Bock (2005). 

Bayesian Markov Chain Monte Carlo (MCMC) 

 Advances in computational statistics in recent decades have made Bayesian 

estimation plausible for IRT models parameter estimation. Bayesian inference shares 

some features with frequentist inference. Both approaches treat the data as random and 

assign the data a distribution, which is conditional on model parameters--p(x|θ). The 

likelihood of the possible data is computed given the possible parameter values. Once the 

data are observed, the observed data are taken as a function of the model parameters. The 

function is the likelihood function of the data. Thus, the likelihood function plays as vital 

a role in Bayesian inference as it does in MML estimation. 

 However, Bayesian inference is different from frequentist inference in the 

following way. The frequentist approach treats parameters as fixed, but the Bayesian 

approach treats parameters as random. They are random in the sense that people have 

uncertain knowledge about them. Different distributions model people’s beliefs about 

them before and after analysis of relevant data. In a Bayesian approach, the model 

parameters 𝜃 are assigned prior distributions p(θ) which reflects the researcher’s beliefs, 
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or prior knowledge, about the parameters. Bayesian inference then synthesizes the prior 

distribution and the likelihood of the data via Bayes’ theorem to yield the posterior 

distribution of the parameters, p(θ|x): 

                                                         p(θ|x)=
𝑝(𝑥,𝜃)

𝑝(𝑥)
                                                          (6) 

       = 
𝑝(𝑥|𝜃)𝑝(𝜃)

𝑝(𝑥)
 

            ∝  𝑝(𝑥|𝜃)𝑝(𝜃)         

Note:  𝜃𝑠 in this section refer to model parameters of interest not the person parameter in 

IRT models.                           

Bayesian estimates are asymptotically distribution-free and depend less on the 

distribution of the data, which is one advantage of Bayesian inference over traditional 

estimation techniques (Ansari & Jedidi, 2000). Besides, Bayesian methods have a 

potential advantage over MML in small samples and when the examinee ability 

distribution is not normal. In a nutshell, the purpose of Bayesian inference is to maintain 

a full posterior probability distribution over a set of random variables. 

Bayesian simulation algorithms consist of drawing samples of parameters from 

the posterior distribution using MCMC algorithms, which avoid the complicated 

derivatives and are cost-efficient concerning computational time. After obtaining the 

posterior distribution, we can compute any statistics on it based on the simulated samples 

from that distribution. One MCMC algorithm with more extensive research in the 

Bayesian IRT literature is the Gibbs Sampler. The HMC-NUTS (Hoffman and Gelman, 

2014) was introduced recently to overcome some of the shortcomings of the previous 
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algorithms, such as speeding up convergence of MCMC chains (Hoffman and Gelman, 

2014), whose performance including model fit indices and computational speed has not 

been thoroughly investigated yet. These two algorithms are described below. 

Gibbs Sampler. Assume a multidimensional 2-PL dichotomous model. Let 

(𝜃, 𝑎, 𝑑) denote the collection of ability and item parameters. The Gibbs Sampler 

simulates data from the joint posterior distribution of (𝜃, 𝑎, 𝑑) by drawing from the full 

conditional distribution, the conditional distribution of one component of the model given 

the other components in the model (Gelman, 1984). With enough numbers of iterations, 

the distribution of the simulated data approximates the joint posterior distribution. The 

issue of convergence is discussed in the next section.  

To sample from the full conditional distribution, the adaptive rejection sampling 

algorithm is used if the distribution is log-concave (Gilks & Wild, 1992). Essentially it 

constructs an envelope function and a squeezing function, which form upper and lower 

bounds to the full conditional distribution function. It draws a value from the envelope 

function and accepts or rejects it as coming from the full conditional distribution 

depending on whether specific criteria are met. As the sampling proceeds, the envelope 

function and squeezing function converge to the full conditional distribution function.  

For i=1,2,…, n, j=1, 2, …, N and k=1,2,…, m, let Y denote the observed 

data; 𝜽𝑗𝑘~𝑖𝑖𝑑 𝑁(0,1) represent the ability of person j on the kth dimension; aik 

~𝑖𝑖𝑑 𝑁(0,1)𝐼 (aik >0) represent the discrimination parameter of item i on the kth 

dimension, and let 𝛄𝒊~𝑖𝑖𝑑 𝑁(0,1) represent item difficulty levels. The probability of the 
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data given (𝜃, 𝑎, γ) is: L(Y| 𝜃, 𝑎, γ)=∏ ∏ {𝑝
𝑖𝑗

𝑦𝑖𝑗(1 − 𝑝𝑖𝑗)1−𝑦𝑖𝑗}𝑁
𝑗=1

𝑚
𝑖=1 . (Here 𝑝𝑖𝑗 refers the 

same as it in equation (4).) 

Let 𝜋(𝜃), 𝜋(𝑎), 𝜋(γ), denote the prior distributions for 𝜃, 𝑎, and γ. According to 

equation (6), the joint posterior distribution of (𝜃, 𝑎, γ) given Y is:  

                            𝜋(𝜃, 𝑎, γ|𝑌) ∝ L(Y| 𝜃, 𝑎, γ) 𝜋(𝜃) 𝜋(𝑎)𝜋(γ) 

                                              ∝ L(Y| 𝜃, 𝑎, γ) exp (- 
1

 2
∑ ∑ 𝜃𝑗𝑘

2𝑚
𝑘=1

𝑁
𝑗=1 −

                                                                        
1

2
∑ ∑ 𝑎𝑖𝑘

2𝑚
𝑘=1

𝑛
𝑖=1   

                                                       −
1

2
∑ ∑ γ𝑖

2𝑚
𝑘=1

𝑛
𝑖=1 ) I (aik>0) 

The full conditional distributions are: 

𝜋(𝜃𝑗𝑘|𝜃𝑗𝑘′ , 𝑎, γ, 𝑘′ ≠ 𝑘) ∝ exp (−𝜃𝑗𝑘
2 /2) ∏ ∏{𝑝

𝑖𝑗

𝑦𝑖𝑗(1 − 𝑝𝑖𝑗)1−𝑦𝑖𝑗}

𝑁

𝑗=1

𝑚

𝑖=1

 

𝜋(𝑎𝑖𝑘|𝑎𝑖𝑘′ , 𝜃, γ𝑖, 𝑘′ ≠ 𝑘) ∝ exp (−𝑎𝑖𝑘
2 /2) ∏ ∏{𝑝

𝑖𝑗

𝑦𝑖𝑗(1 − 𝑝𝑖𝑗)1−𝑦𝑖𝑗}

𝑁

𝑗=1

𝑚

𝑖=1

 𝐼(𝑎𝑖𝑘 > 0) 

𝜋(γ𝑖|𝑎𝑖𝑘, 𝜃) ∝ exp (−γ𝑖
2/2) ∏ ∏{𝑝

𝑖𝑗

𝑦𝑖𝑗(1 − 𝑝𝑖𝑗)1−𝑦𝑖𝑗}

𝑁

𝑗=1

𝑚

𝑖=1

 

Note: For the individual parameters, many of the terms in ∏ ∏ {𝑝
𝑖𝑗

𝑦𝑖𝑗(1 −𝑁
𝑗=1

𝑚
𝑖=1

𝑝𝑖𝑗)1−𝑦𝑖𝑗} are       

constant relative to that parameter.  

 Considering arbitrary starting values 𝜃0, 𝑎0, γ0, an iteration of the Gibbs Sampler 

consists of drawing a sample sequentially from the following distributions: 



 

13 
 

𝜃11
1  from 𝜋(𝜃11|θ𝑗′𝑘′

0 , 𝑎0, γ0, 𝑗′ > 1, 𝑘′ > 1),…, 

𝑎11
1  from 𝜋(𝑎11|𝜃1, 𝑎𝑖′𝑘′

0 , γ0, 𝑖′ > 1, 𝑘′ > 1),…, 

and γ𝑛𝑚
1  from 𝜋(γ𝑛|𝜃1, 𝑎1, γ𝑖′

1 , 𝑖′ < 𝑛). 

Put simply, the Gibbs Sampler draws the new value for each parameter according to its 

distribution based on the values of all the other parameters in the model. During this 

process, new values for the parameters are used as soon as they are obtained. For 

instance, the new value of 𝜃1 is sampled conditioning on the old values of 𝑎0 and γ0; the 

new value of 𝑎1 is sampled conditioning on the new value of 𝜃1 and the old value of γ0; 

the new value of γ1 is sampled conditioning on the new values of 𝜃1 and 𝑎1. 

HMC-NUTS. Borrowing from Hamiltonian Dynamics in Physics, in which the 

energy of a system has potential and kinetic parts, for each of the ‘position’ variables 𝜃𝑗  

(referring to the general model parameters rather than person parameter in IRT models), 

HMC uses a ‘momentum’ variable 𝜑𝑗. In HMC, both 𝜃 and 𝜑 are updated together. The 

momentum variable 𝜑 is an auxiliary variable used to speed up exploration of the 

parameter space (Gelman, Carlin, Stern, & Rubin, 2014). This feature of HMC allows it 

to converge to high-dimensional target distributions much faster than simpler methods 

such as Gibbs Sampler (Hoffman & Gelman, 2014).  

The joint posterior distribution in HMC is defined as p(𝜃, 𝜑|Y) = p (𝜑) p (𝜃|𝑌), 

since p (𝜑) is independent from y. In addition, HMC also requires the gradient of the log-

posterior density: 
𝑑log𝑝 (𝜃|𝑌)

𝑑𝜃
. The variable 𝜑 is usually set to have a multivariate normal 

distribution, with mean of 0 and covariance equal to a prespecified “Mass Matrix”: M (so 
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called by analogy to the physical model of Hamiltonian Dynamics). The Mass Matrix is 

commonly taken to be a diagonal matrix. (Gelman, Carlin, Stern, & Rubin, 2014). 

According to Gelman et al. (2014), HMC proceeds with a series of iterations. 

There are four steps in one HMC iteration: 

Step 1: The iteration begins by randomly drawing 𝜑 from its posterior distribution, which 

is the same as its prior distribution, 𝜑 ~ N (0, M). 

Step 2：The main part of HMC is a simultaneous update of (𝜃, 𝜑) via mimicking of 

physical dynamics. This update includes L leapfrog steps, each scaled by a step size 

factor 𝜖. In each leapfrog step, both 𝜃 and 𝜑 are updated in relation to the other. The L 

leapfrog steps proceed as follows: 

Repeat the steps L times: 

a) Use the gradient of the log-posterior density of 𝜃 to make a half-step of 𝜑: 

                                                    𝜑  ← 𝜑 + 
1

2
 𝜖

𝑑log𝑝 (𝜃|𝑌)

𝑑𝜃
.  

b) Use the vector of 𝜑 to update the vector of 𝜃: 

𝜃 ←  𝜃+ 𝜖M-1 𝜑 

Here M is the covariance matrix of 𝜑. 

c) Again use the gradient of the log-posterior density of 𝜃 to make a half-step of 𝜑: 

𝜑  ← 𝜑 + 
1

2
 𝜖

𝑑log𝑝 (𝜃|𝑌)

𝑑𝜃
.  

Except in the first and last leapfrog steps, the half-step updates (c) from one 

leapfrog iteration and (a) from the following iteration can be combined to update 

𝜑 in a single step. In this view, the updating starts from a half-step of 𝜑,  then 
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performs L-1 full update steps of parameter vector 𝜃 and the momentum vector 𝜑, 

and concludes with a full update of 𝜃 and a half-step of 𝜑.  

Step 3: Label 𝜃𝑡−1, 𝜑𝑡−1as the value of the position and momentum parameter vectors at 

the start of the leapfrog process, and 𝜃∗, 𝜑∗ as the values after the F steps. In the accept-

reject step, we compute: r=
 𝑝 (𝜃∗ |𝑌)𝑝 (𝜑∗)

𝑝 (𝜃𝑡−1 |𝑌)𝑝 (𝜑𝑡−1)
. 

Step 4: Set  

    𝜃𝑡=  {
𝜃∗   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 min  (𝑟, 1)

𝜃𝑡−1                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Since we do not care about 𝜑, there is no need to track the updates of it.  

HMC can be tuned in three places: the probability distribution for the parameters 

𝜑, the scaling factor 𝜖, and the number of leapfrog steps per iteration L. For difficult 

HMC problems, Gelman et al. (2014) suggests the three tuning parameters would be set 

to vary as the algorithm moves through the posterior distribution, with the diagonal mass 

matrix M scaling to the local curvature of the log density, the step size getting smaller 

when the curvature is high, and the number of steps L being large that the algorithm 

circles around. Specifically, the No-U-Turn Sampler (NUTS) algorithm (Hoffman & 

Gelman 2014) is an adaptation of HMC, and it determines the number of the leapfrog 

steps L at each iteration. Essentially, the method extends the trajectory in each iteration 

until it turns around. This sends the trajectory as far as it can go in that iteration. (In fact, 

a more elaborate procedure is required to preserve the property that the sequence 

approached the target distribution.) The full HMC-NUTS also adaptively sets the mass 

matrix M, and the step size 𝜖 during a warmup phase. The HMC-NUTS algorithm is 
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complicated and requires more mathematical computations, and the details can be found 

in Hoffman and Gelman (2014). Fully implemented HMC-NUTS can be accessed via R 

software through the rstan package (Carpenter et al., 2017), which was used in this study. 

Summary of Comparative Studies of Estimation Methods in IRT 

 Test Length. Martin-Fernandez and Revuelta (2017) compared two recent 

estimation algorithms: Metropolis-Hasting Robbins-Monro (MHRM; Cai, 2010a, 2010b) 

and HMC-NUTS, with two habitual algorithms: Gibbs Sampler and MML for 

multidimensional 2-PL dichotomous item response models. In Martin-Fernandez and 

Revuelta’s (2017) simulation study, a test length of 15 was used for the unidimensional 

model, and a test length of 18 or 25 for the multidimensional model, with the sample size 

equal to 500 or 1000 for both unidimensional and multidimensional models.  The results 

showed that overall the four estimation methods performed similarly in recovering 

parameters with less than five latent factors, and HMC-NUTS and MHRM could be 

regarded as recent improvements over traditional methods: MML and Gibbs Sampler.  

For estimation accuracy, they found that, as expected, more accurate estimates could be 

obtained when sample size and test length for each dimension increased, and recovery of 

intercept parameters was more precise than slope parameters even in poorly defined 

factors (less than three items) for all the four methods, but the conclusions were not clear 

regarding which estimation approach performed the best for the recovery of slope 

parameters in the poorly defined dimension situation. For computing speed, they 

concluded that MHRM was by far the fastest estimation method, but HMC-NUTS 

converged faster than the other three in small sample conditions, without clarifying how 
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small the sample size is. Overall, the performance of these methods for parameter 

recovery in smaller samples and shorter test lengths remains unexplored.  

  Prior Choice. Natesan et al. (2016) studied the impact of vague, matched, and 

hierarchical priors using Gibbs Sampler and Variational Bayesian estimation methods in 

unidimensional 1-PL and 2-PL dichotomous models. Overall, hierarchical prior and 

matched priors performed better, and the vague priors produced large errors or 

convergence issues in parameter recovery using both algorithms, which are not 

recommended. The authors recommended hierarchical priors considering estimation 

accuracy and time effectiveness.  

 In multidimensional 2-PL dichotomous models, Martin-Fernandez and Revuelta 

(2017) also concluded that for low and high informative priors, the differences in 

recovery of model parameters were negligible using HMC-NUTS, the differences were 

small using Gibbs Sampler, and the differences were significant when using MML with 

small samples. The authors also mentioned that the differences would be more prominent 

in real applications since their study had 500 simulees, a sample size that was larger than 

most of the application studies. The literature only focused on the dichotomous models, 

and there remain concerns when generalizing their results to multidimensional and 

polytomous models.   

 Interdimensional Correlation. Kuo and Sheng (2016) compared several 

parameter estimation methods: two MML approaches (Bock-Aitkin expectation-

maximum algorithm, adaptive quadrature approach), four fully Bayesian algorithms 

(Gibbs sampling, Metropolis-Hastings, Hastings-within-Gibbs, blocked Metropolis), and 
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the MHRM algorithm for multi-unidimensional (two dimensions) 2-PL graded response 

IRT models via different statistical software packages. The authors concluded that when 

the correlation between the two dimensions was low (𝜌 = .20), these estimation methods 

provided similar results. However, if the two dimensions were moderately or highly 

correlated (𝜌 > .50), Hastings-within-Gibbs, one of the fully Bayesian algorithms, 

recovered the discrimination and the inter-dimension correlation parameters better. One 

of the limitations of this study was not including the relatively new and efficient 

parameter estimation method: HMC-NUTS in its Bayesian algorithm category. 

Furthermore, discussion of the number of dimensions was limited to two, and they 

limited the polytomous model to only three categories. Hence, further studies are needed 

to evaluate the estimation methods for polytomous models with more than three 

categories.  

Purpose of the Study 

The purpose of this study was to compare the performance of two Bayesian 

MCMC estimation approaches: Gibbs Sampler and HMC-NUTS in M2PPC models 

under different simulated conditions. The goal was to demonstrate how these estimation 

methods perform in M2PPC models in a set of realistic conditions including variations in 

test length, prior choice, and interdimensional correlation. Monte Carlo simulation was 

used to generate data. The accuracy of the parameter estimation was evaluated by Root 

Mean Squared Errors (RMSEs). In addition, four-way analyses of variance (ANOVAs) of 

the Root Mean Squared Errors (RMSEs) and Bias for each of the three parameter 

recovery parameters (𝜃, 𝑎, 𝛾) in the M2PPC model were conducted, and the effect sizes 
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ω2 were calculated to assess the effects of independent variables and interactions. 

Additionally, computational speed for the two algorithms was recorded for comparisons. 

Therefore, the specific research questions of this study are as follows: 

1. Which of the two estimation approaches (Gibbs Sampler and HMC-NUTS) yields 

the more accurate estimates in M2PPC model? 

2. Do test length, interdimensional correlation, and prior choice influence the 

accuracy of the two estimation approaches in M2PPC model? 

3. On balance, considering the computational speed and estimation accuracy, which 

of the two approaches performs better in parameter recovery for an M2PPC 

model? 

Researchers and practitioners can utilize the results of this study in making informed 

decisions on research design and scale construction when using M2PPC model in their 

data collection and analysis. 

Delimitations 

• This study only focuses on the 2PL IRT model. More parameters such as in 3PL 

models are not considered. 

• This study only focuses on two Bayesian MCMC estimation methods. Since the 

recent analytical MHRM (Cai, 2010a, 2010b) estimation approach has already 

shown better performance than traditional MML, future studies can incorporate 

MHRM into comparisons. 

• This study only examines simulated data. 
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• The simulation design manipulates several factors including sample size, test 

length, number of choice categories, the number of dimensions, interdimensional 

correlation, and prior choice, which limits the generalizability of the results of this 

simulation study as other factors are fixed.  

• All the latent traits in this study followe a normal distribution. It is possible that in 

behavioral and medical scales, the person ability parameter follows a skewed 

distribution. Therefore, the robustness of the parameter recovery with normal 

priors OR estimation with skewed priors needs to be investigated in future 

studies. 

Definition of Terms 

Item response theory (IRT)  

IRT is the theory used in educational and psychological measurement that 

investigates a mathematical relationship between persons’ abilities and item responses. 

Multidimensional IRT (MIRT) 

MIRT assumes multiple traits are measured by each item. For instance, in 

psychological settings, an item for screening depression may also measure patient anxiety 

levels.  

Partial Credit Model (PCM) and Generalized Partial Credit Model (GPCM) 

 PCM is a unidimensional model for the analysis of responses recorded in two or 

more ordered categories. GPCM was formulated by Muraki (1992) based on Masters’ 

(1982) partial credit model (PCM) by relaxing the assumption of uniform discriminating 

power of test items. 
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Multidimensional 2 Parameter Partial Credit Model (M2PPC) 

 M2PPC is a multidimensional version of GPCM model with slopes and intercepts 

to be estimated, which is the focus of this study. 

Monte Carlo (MC) Simulation 

MC simulation is used to describe a process for propagating uncertainties in 

model inputs into uncertainties in model outputs (results). It is a kind of simulation that 

quantitatively represents uncertainties. MC simulation methods are set up as experiment, 

in which data are generated to test hypotheses theoretically derived (Paxton, Curran, 

Bollen, Kirby, & Chen, 2001).  

Markov Chain Monte Carlo (MCMC)  

MCMC methods are a class of algorithms for generating samples from a 

probability distribution via constructing a Markov chain that has the desired distribution 

as its stationary distribution. MCMC methods are used in data modeling for Bayesian 

inference and numerical integration. 

Prior Probability Distribution  

In Bayesian statistical inference, a prior probability distribution, often called the 

prior, of an uncertain quantity is the probability distribution that expresses one's belief 

about this quantity before some evidence accumulated (Gelman et. al, 2014). 

Posterior Probability Distribution 

In Bayesian statistics, the posterior probability of an uncertain proposition is the 

conditional probability that is assigned after the relevant evidence is considered. 

Similarly, the posterior probability distribution is the probability distribution of an 
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unknown quantity, conditional on the evidence obtained from an experiment (Gelman et. 

al, 2014).  

Root Mean Square Error (RMSE) 

The RMSE is a measure of the accuracy of parameter estimates, which measures 

the average squared discrepancy between a set of estimated and true parameters, which 

can be conceived as the amount of variability around a point estimate. In this study, the 

log transformation of RMSE (logRMSE) was used to meet the normality assumption of 

Analysis of Variance (ANOVA).  

Bias 

Bias is another measure of the accuracy of parameter estimates. In this study, the 

log transformation of Bias (logBias) was used to meet the normality assumption of 

ANOVA.  

Computational Speed 

Computational speed is the time it takes an estimator to get the parameter 

estimates, which is recorded for estimator comparison. 

Jags 

Jags stands for just another Gibbs Sampler, which is a program for analysis of 

Bayesian models with MCMC simulation using Gibbs sampling. 

Stan 

 Stan is a computer program which implements Bayesian inference using HMC-

NUTS.  
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Chapter Two: Method 

Introduction 

Chapter Two includes a detailed description of the study’s methodology. First, I 

describe the Monte Carlo (MC) simulation design. Then, I explain the three phases of my 

analysis, which were data generation, parameter estimation, and parameter recovery 

evaluation. The data generation phase includes generation of response datasets of 

different test lengths, and interdimensional correlations, in the multidimensional two 

parameter partial credit (M2PPC) model. Scenarios were created to illustrate different 

conditions in the datasets. Datasets with different conditions were estimated using 

different priors with two Bayesian approaches: Gibbs Sampler and Hamiltonian Monte 

Carlo-No-U-Turn-Sampler (HMC-NUTS). Finally, performance of the two Bayesian 

estimation approaches under different conditions was evaluated using parameter recovery 

criteria.  

Monte Carlo Simulation  

This study involved a Monte Carlo (MC) simulation. MC simulation is an 

empirical method for generating datasets for evaluating the performance of statistical 

models. MC simulation methods are employed as experiments, where data are generated 

to test theoretically derived hypotheses (Paxton, Curran, Bollen, Kirby, & Chen, 2001). 

In MC simulation, each input parameter is defined by a source distribution, from which 
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random samples are drawn. MC simulation allows researchers to evaluate the finite 

sampling performance of estimators by creating manipulated conditions, where sampling 

distributions of parameter estimates are produced. Sampling distributions are theoretical, 

but MC methods can be used to create simulated data reflecting the characteristics of 

sampling distributions. In this study, I drew samples of parameters (𝜽, 𝒂, 𝛄) from specific 

distributions to simulate M2PPC model response data, see equation (5). Subsequently, 

three Bayesian estimation methods with different priors were used to compute estimates 

on simulated datasets to address my research questions.  

Analysis Procedures 

 The analysis in this study included three phases: (1) Data generation, (2) 

Parameter estimation, (3) Outcome analysis. There are multiple steps beneath each of the 

three phases, and the following is a detailed description of the steps. 

Phase I Data Generation  

 To compare the aforementioned two Bayesian methods in estimating the M2PPC 

model, three factors were controlled before simulating response data: test length (n), and 

interdimensional correlation (𝜌). The choice of n, and 𝜌 was based on previous research 

using similar models. When investigating multidimensional graded response models 

(GRMs), the simulation study in Fu, Tao, and Shi (2010) used N(sample size)=1000, 

n=20 and 𝜌=0.2, 0.4,…0.8 for polytomous items involving three categories. Sheng and 

Wikle (2008) adopted N(sample size)=1000, n=18, 𝜌=0.2, 0.5,…0.8 in their simulation 

studies with dichotomous multi-dimensional models. Working with nominal response 
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models, Wollack, Bolt, Cohen, and Lee (2002) found that the parameter recovery was 

improved by increasing the test length from 10 to 30 items in their simulation studies.  

 Manipulated Variables. In the current study, three variables were manipulated: 

(1) test length: n= 15 and 30; (2) sample size: N=500; (3) interdimensional correlation: 

𝜌= 0.2, 0.5, and 0.8. The two levels of test length were chosen to simulate different 

measuring instruments in psychological and behavioral settings, such as personality 

inventories. Based on the previous simulation studies (e.g., Fu et al., 2010; Sheng & 

Wike, 2008), and the complexity of the M2PPC model structure that can elongate 

MCMC estimation time for larger sample size unreasonably, N= 500 was chosen as the 

sample size, and three levels of interdimensional correlations were adopted to simulate 

low, medium, and high correlations between the three dimensions. The three factors were 

fully crossed, resulting in, 2 (n)* 3 (𝜌) =6 simulation conditions. 

 Based on the literature (e.g., Revilla, Saris, & Krosnick, 2014; Weijters, Cabooter, 

& Schillewaert, 2010) about the number of response categories, a 5-point scale is 

preferred for psychological and behavioral tests when the respondents are the general 

public. Therefore, a three-dimensional 2-parameter partial credit model with five 

response categories was used in this study. There are four steps for generating data: (1) 

generating person ability parameter values (𝜃𝑠), (2) generating intercept parameter values 

(𝛾s), (3) generating item discriminating parameter values (as), and (4) simulating the 

M2PPC model response data.  

 Persons. A person latent ability vector 𝜽 was generated from a multivariate 

normal distribution with a mean vector of 0s, and a covariance matrix with 1s along the 
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diagonal. The off-diagonal elements represented the correlations of any two of the 

marginal distributions, which were specified above (𝜌= 0.2, 0.5, and 0.8).  

Items. The intercept parameter vector 𝜸 was generated from a standard normal 

distribution. The item discriminating parameter vector a was generated from a lognormal 

distribution: 𝜇=0 and 𝜎2=0.25, with the expected value of 1.13 and a variance of 0.36. 

The person and item parameters were used in model (5) to simulate the response data in 

R software, mirt package (R. Philip Chalmers, 2012).  

Replications. To increase the generalizability of the results, each of the 

conditions needs to be replicated a number of times. However, there are inconsistencies 

in the literature about the number of replications: Jiang et al. (2016) employed 30 

replications when investigating the sample size requirements for estimation of a 

multidimensional graded response model; Natesan et al. (2016) chose to replicate 100 

times to examine the Bayesian prior choice unidimensional IRT model using MCMC; 

Kuo and Sheng (2016) used 10 replications for each of their conditions for comparison of 

estimation methods in a multi-unidimensional graded response model with sample size 

equals to 500 or 1000. In this study, following Kuo and Sheng, I generated 10 datasets for 

each of the conditions. Although according to Harwell, Stone, Hsu, and Kirisci (1996), a 

minimum of 25 replications should be carried out for typical IRT-based MCMC studies, 

this study carried out 10 replications due to the computational expense of the MCMC 

algorithms for test conditions such as N=500 and n=30. 

Phase II Parameter Estimation with Different Priors 
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In the Bayesian estimation framework, setting different priors allows for 

systematic incorporation of previous information into the current parameter estimation. 

Even though the influence of prior information on estimation decreases as the sample size 

increases, the selection of priors still impacts the estimation when the sample size is small 

(Levy & Mislevy, 2016). Therefore, the choice of priors is a crucial issue when using a 

Bayesian framework to estimate parameters in IRT models. However, the Bayesian IRT 

literature is inconsistent on the choice of priors. For example, Swaminathan and Gifford 

(1982) discouraged the employment of extremely optimistic priors such as the 

unit/standard normal distribution, or diffused priors with large variances, but Sheng and 

Headrick (2012) still used informative normal (i.e., 𝜇𝑎 = 𝜇𝛾 = 0, 𝜎𝑎
2 = 𝜎𝛾

2 = 1) or 

uniform priors for 𝑎𝑖 and 𝛾𝑖 . Moreover, these optimistic priors and diffused priors 

continue to be used in Bayesian frameworks for IRT models, such as Fox (2010). Until 

recently, there was no guidance on what kind of priors need to be chosen for different 

IRT models. Natesan et al. (2016) investigated the impact of vague, matched, and 

hierarchical priors in using two Bayesian estimation methods in unidimensional 1-PL and 

2-PL dichotomous models, and suggested future research needs to be done for more 

complicated IRT models. Building upon the literature, this study investigated the choice 

of vague, matched, and hierarchical priors in M2PPC models using two Bayesian 

estimation methods: Gibbs Sampler and HMC-NUTS.  

Matched Prior. Matched prior refers to the distribution that was used to generate 

response data, which is an unrealistic situation. However, this was used as the reference 

prior with which other prior results were compared. For each person, the ability 
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parameter was set to: 𝜃~ 𝑁 (𝟎, ∑), ∑ defined by var𝜃 = 1, cov (𝜃𝑘 , 𝜃𝑚)=𝜌 for low inter-

dimensional correlation 𝜌 =0.2, medium inter-dimension correlation 𝜌 =0.5, and high 

inter-dimension correlation 𝜌 =0.8; For each item, each response intercept parameter was 

set to: 𝛾 ~ 𝑁 (0,1); For each dimension, each item discrimination parameter was set to: 

𝑎 ~ 𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙 (0, 0.5) 

Standard Vague Prior. Vague prior refers to a large uncertainty about the prior 

distribution of the parameters. The uncertainty is reflected in the variance of the prior 

distribution. In the current study, the prior distribution for person ability parameters 𝜃 

was set to the same as it was in the matched prior. The prior distribution for the 

discrimination parameter for each dimension and each item was set to a ~ lognormal (0, 

8) and the intercept parameter prior for each item and each response was set to  γ ~N (0, 

103), and the large standard deviations: 8 and 103 represented the degree of uncertainty. 

Hierarchical Prior. Hierarchical prior refers to the parameters of the prior 

distribution are regarded as random variables and are given vague hyper-priors. For each 

person, the prior for the ability parameter was set to:  𝜃~ 𝑁 (𝒎𝜽 , ∑𝜃), 𝒎𝜽~ 𝑁 (0, 106), 

and ∑𝜃~Inv-Wishart(∑𝜃0,4); for each item and each response the prior for the intercept 

parameter was set to: γ ~N (𝑚𝛾, 𝑢𝛾
−1), 𝑚𝛾~ 𝑁 (0, 106), and 𝑢𝛾~gamma (1, 1); for each 

dimension and each item the prior for the discrimination parameter was set to: 𝑎 

~lognormal (𝑚𝑎, 𝑢𝑎
−1), 𝑚𝑎~ 𝑁 (0, 106), and 𝑢𝑎~gamma (1, 1). An informative inverse 

gamma (1,1) distribution was used for variance because Gelman & Rubin (1992) 

cautioned against the use of low values such as 0.001 for gamma priors leading to 

improper posteriors.  
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Gibbs sampler and HMC-NUTS were implemented for each simulated data set 

using rjags and rstan (Carpenter et al., 2017), respectively, where the burn-in stage was 

set to 5,000 iterations followed by three chains with 11,000 iterations. For both 

algorithms, the initial values for the discrimination parameters (as) for the 3 chains were 

set to follow the lognormal distribution, and those for the intercept parameters (γs) and 

person ability parameters (𝜃s) were set to follow standard normal distribution. The 

convergence of Markov chains was evaluated using the Gelman-Rubin R statistic 

(Gelman & Rubin, 1992). To get the Gelman-Rubin R statistic, several Markov chains 

are generated with spread initial points from the parameter space. Then, the Gelman-

Rubin R statistic can be calculated by comparing the variance within and between chains. 

Suppose 𝜉 is the parameter of interest. Further, suppose M Markov chains were 

generated, each with a length of H after initial draws are thrown away (e.g., 

H=burnin=5000). Denote 𝜉 𝑖𝑚as the simulated parameter in the ith generation of the mth 

chain. The between chain variance is defined as B =
𝐻

𝑀−1
∑ (ξ.𝑚

̅̅ ̅̅ − ξ..̅)
2𝑀

𝑚=1 , and the within 

chain variance is defined as W = 
1

𝑀
∑ 𝑆𝑔

2𝑀
𝑚=1 , where 𝑆𝑔

2=
1

𝐻−1
∑ (𝜉 𝑖𝑚

̅̅ ̅̅ ̅ − ξ.𝑚
̅̅ ̅̅ )2𝑁

𝑖=1 . An 

Gelman-Rubin R statistic is obtained as 𝑅̂=√
𝑣𝑎𝑟̂(ξ|𝐲)

𝑊
, where 𝑣𝑎𝑟̂(ξ|𝐲)=

𝐻−1

𝐻
W+

1

𝐻
B. Brooks 

and Gelman (1998) noted that 𝑅̂ < 1.20 provides evidence that the chain has converged to 

the posterior distribution. If the 𝑅̂ is larger than 1.20, it suggests that the Markov chains 

have not reached stationarity and more iterations are needed to improve convergence. 

Phase III Outcome Analysis: Parameter Recovery Evaluation Criteria 
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 Root Mean Squared Error. The root mean squared error (RMSE) measures the 

average squared discrepancy between a set of estimated and true parameters and can be 

regarded as the amount of variability around a point estimate. The vector of RMSE for 

the intercept parameter for a test length n was computed as:  

            RMSE (γ) =
∑ √

1

𝑛
∑ ||𝛄𝒊𝒓−𝛄𝒊𝒓̂||2𝑛

𝑖=1
𝑆
𝑟=1

𝑆
,   for i=1, 2, …, n  and r=1,2,…S                     (7) 

where 𝛄𝒊𝒓̂ and 𝛄𝒊𝒓 were the estimated and real values of the intercept parameter vector for 

replication S and item n. The vector of RMSE for the discrimination parameter for a test 

length n was computed as:  

         RMSE (𝑎) =
∑ √

1

𝑛
∑ ||𝒂𝒊𝒓−𝒂𝒊𝒓̂||2𝑛

𝑖=1
𝑆
𝑟=1

𝑆
, for i=1, 2, …, n and r=1,2,…S                          (8) 

where 𝒂𝒊𝒓̂ and 𝒂𝒊𝒓 were the estimated and real values of the discrimination parameter 

vector for replication S and item n. The vector of RMSE for the ability parameter for a 

given sample of N persons was calculated as:  

                 RMSE (θ) =
∑ √

1

𝑁
∑ ||𝜽𝒋𝒓−𝜽𝒋𝒓̂||2𝑁

𝑗=1
𝑆
𝑟=1

𝑆
,  for  j=1, 2, …, N and r=1,2,…S             (9) 

where 𝜽𝒋𝒓̂ and 𝜽𝒋𝒓 were the estimated and real values of the person ability parameter 

vector for replication S (S is the total number of replications, which equals 10 in this 

study) and person N. 

Finally, RMSEs are examined based on comparison rather than some absolute cutoffs. 

Therefore, the lower the RMSE value is, the more accurate the estimate is (Natesan et al. 

2016).  
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Bias. Also, the accuracy of parameter estimation was evaluated using average of 

Bias.  

The vector of average Bias of the intercept parameter for a test length n was computed as:  

      Bias (γ) =
∑ (

1

𝑛
∑ ||𝛄𝒊𝒓̂||−||𝛄𝒊𝒓||𝑛

𝑖=1 )𝑆
𝑟=1

𝑆
,  for i=1, 2, …, n  and r=1,2,…S                           (10)                                

where 𝛄𝒊𝒓̂ and 𝛄𝒊𝒓 were the estimated and real values of the intercept parameter vector for 

replication S and item n. The vector of average Bias of the discrimination parameter for a 

test length n was computed as:  

   Bias (𝑎) =
∑ (

1

𝑛
∑ ||𝒂𝒊𝒓||̂−||𝒂𝒊𝒓||𝑛

𝑖=1 )𝑆
𝑟=1

𝑆
,  for i=1, 2, …, n and r=1,2,…S                              (11)  

where 𝒂𝒊𝒓̂ and 𝒂𝒊𝒓 were the estimated and real values of the discrimination parameter 

vector for replication S and item n. The vector of average Bias of the ability parameter for 

a given sample of N persons was calculated as:  

                 Bias (𝜃) = 
∑ (

1

𝑁
∑ ||𝜽𝒋𝒓̂||−||𝜽𝒋𝒓||)𝑁

𝑗=1
𝑆
𝑟=1

𝑆
 , for  j=1, 2, …, N and r=1,2,…S             (12) 

where 𝜽𝒋𝒓̂ and 𝜽𝒋𝒓 were the estimated and real values of the person ability parameter 

vector for replication S and person N.  If Bias (𝜃) is close to zero, it suggests that the 

value of the estimated person ability parameter is close to the true person ability 

parameter. If Bias (𝜃)  is positive, it suggests that the person with higher ability is 

estimated with even higher ability. If Bias (𝜃)  is negative, it suggests that the person with 

higher ability is estimated with relative lower ability.  

  RMSE and Bias for each of the parameter in M2PPC model were calculated 

based on 10 replications for each of the fully crossed conditions (2 test lengths, 3 inter-
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dimension correlations, 3 priors, and 2 estimation methods), which results in 36 

conditions (See Table 1).  

Table 1  

Simulation Design  

Test 

Length 

Inter-

dimension 

Correlation 

Priors Estimation Methods 

15 0.2 Standard 

Vague 

Gibbs Sampler 

HMC-NUTS 

Matched Gibbs Sampler 

HMC-NUTS 

Hierarchical Gibbs Sampler 

HMC-NUTS 

0.5 Standard 

Vague 

Gibbs Sampler 

HMC-NUTS 

Matched Gibbs Sampler 

HMC-NUTS 

Hierarchical Gibbs Sampler 

HMC-NUTS 

0.8 Standard 

Vague 

Gibbs Sampler 

HMC-NUTS 
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Matched Gibbs Sampler 

HMC-NUTS 

Hierarchical Gibbs Sampler 

HMC-NUTS 

 

30 0.2 

 

Standard 

Vague 

Gibbs Sampler 

HMC-NUTS 

Matched Gibbs Sampler 

HMC-NUTS 

Hierarchical Gibbs Sampler 

HMC-NUTS 

0.5 

 

Standard 

Vague 

Gibbs Sampler 

HMC-NUTS 

Matched Gibbs Sampler 

HMC-NUTS 

Hierarchical Gibbs Sampler 

HMC-NUTS 

0.8 

 

Standard 

Vague 

Gibbs Sampler 

HMC-NUTS 

Matched Gibbs Sampler 

HMC-NUTS 
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Hierarchical Gibbs Sampler 

HMC-NUTS 

 

 

 Four-way Analysis of Variance. In order to examine which factor or interactions 

accounted for the most variance in the estimation accuracy of the parameters in M2PPC 

model with the respect to test length, interdimensional correlation, prior choice, 

estimation method, and all possible interactions, 20 four-way analyses of variances 

(ANOVAs) were conducted. The 20 four-way ANOVAs were carried out on the 20 

dependent variables: logRMSE of person ability estimates on three dimensions, intercept 

estimates for the four transitional points, and discrimination estimates on three 

dimensions, and logBias of person ability estimates on three dimensions, intercept 

estimates for the four transitional points, and discrimination estimates on three 

dimensions. For all the four-way ANOVAs, the same independent variables were used: 

test length (two levels), inter-dimension correlation (three levels), prior choice (three 

levels), estimation method (two levels), estimation method (two levels), and all possible 

interactions. Log transformation was used for the dependent variables in the sets of 

ANOVA analyses. Log transformation was conducted in order to meet one of the 

ANOVA assumptions-- normal distribution of the dependent variable.  

Effect sizes (𝜔2) for each recovered parameter were calculated to assess the 

effects of each independent variable and possible interactions, which was defined as: 
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𝜔2 =
𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡−(𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡)(𝑀𝑆𝑒𝑟𝑟𝑜𝑟)

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 + 𝑀𝑆𝑒𝑟𝑟𝑜𝑟
 

where 𝑆𝑆𝑒𝑓𝑓𝑒𝑐𝑡 is the sum of squares for a main effect or interaction,  𝑑𝑓𝑒𝑓𝑓𝑒𝑐𝑡 is 

the degrees of freedom for a main effect or interaction, 𝑀𝑆𝑒𝑟𝑟𝑜𝑟 is the mean squared 

error, and  𝑆𝑆𝑡𝑜𝑡𝑎𝑙 is the total sum of squares of the ANOVA model.  𝜔2 was evaluated 

according to Cohen (1988): large effect size is greater than 14%, medium effect size is 

greater than 6%, and small effect size is greater than 1% of the total variance. The reason 

the ANOVA summary table with p-values were not included in the result section of this 

study is because when the effect sizes are exactly zero or very small, even if the p-values 

are significant, the differences are often meaningless. Moreover, in this particular study, 

the major purpose is to examine the substantive effects of each of the independent 

variable on accunting for the variance of the dependent variables rather than the statistical 

significance.  

 Apart from the above evaluation criteria, computational time for each recovered 

parameter was also recorded for comparison. Figure 1 is a visual representation of the 

analysis procedure. 
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     Figure 1. Visual Representation of Analysis Procedure 
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Chapter Three: Results 

Introduction 

Chapter Three summarizes the results of parameter estimation in a 

multidimensional two parameter partial credit (M2PPC) model using different priors with 

different test lengths and interdimensional correlations conditions with Gibbs Sampler 

and Hamiltonian Monte Carlo-No-U-Turn-Sampler (HMC-NUTS). First, the 

convergence of the Markov chains is described respectively for Gibbs Sampler and 

HMC-NUTS. Second, the two indices: root mean squared error (RMSE) and Bias are 

summarized for item and person parameters for different conditions (described 

thoroughly in Chapter Two) in the M2PPC model. Also, I include the estimation speed 

for different conditions using Gibbs Sampler and HMC-NUTS. Last, 20 four-way 

ANOVAs [test length (2) x inter-dimension correlation (3) x prior choice (3) x estimation 

method (2)] were carried out on the 20 dependent variables: logRMSE for four intercepts 

for the four transitional points, three slopes for three dimensions and three person ability 

estimates for three dimensions; and logBias for four intercepts for the four transitional 

points, three slopes for three dimensions and three person ability estimates for three 

dimensions. The chapter concludes with a summary of the findings. 
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Convergence of Markov Chains 

The convergence of Markov chains was evaluated using the Gelman-Rubin R 

statistic (Gelman & Rubin, 1992), which was detailed in Chapter Two. Moreover, trace 

plots and Gelman-Rubin plots were generated to help visually check the convergence of 

the chains. For the M2PPC model estimation, the burn-in stage for Gibbs Sampler (or 

warm-up for HMC-NUTS) was set to 5,000 followed by three chains with 11,000 

iterations, which was tuned by the author. For each simulated dataset, there were 10 

estimated parameters: intercept estimates for the four transitional points, discrimination 

estimates on three dimensions, and person ability estimates on three dimensions. 𝑅̂s were 

all less than 1.20 for each of the 10 M2PPC model parameters for all the 36 conditions 

using both Gibbs Sampler and HMC-NUTS, which suggests that the Markov chains 

converged to the stationary posterior distribution for all the estimated parameters 

(Gelman & Rubin, 1992).  

Trace Plots 

 A trace plot displays a plot of iterations vs. sampled values for each estimated 

parameter in the chain, and it provides an important tool for assessing mixing of the 

chain. In the trace plots, we want to avoid situations where the chain stays in the same 

state for too long or for too many consecutive steps in one direction. In this case, trace 

plots were generated by randomly choosing one item and one case from each dataset 

falling into one of the 36 different conditions, as shown in Figure 2. The three colors in 

the each of the trace plots represent three Markov chains. With the illustrated item and 

person, the trace plots of intercept estimates for the four transitional points, 
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discrimination estimates on three dimensions, and person ability estimates on three 

dimensions using Gibbs Sampler and HMC-NUTS estimation methods do not 

demonstrate any orphaned chains for either item or person ability parameters, which 

suggests the chains mixed well and converged to a stationary distribution (see Figure 2). 

           γ(1)                                   γ(2)                            γ(3)                                γ(4) 

     

 

    

 

                  𝑎(1)                                          𝑎(2)                                              𝑎(3) 
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                   𝜃(1)                                           𝜃(2)                                              𝜃(3) 
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Figure 2. Trace Plots of the Intercept ( γ(1), γ(2), γ(3) and γ(4)), Slope Parameter (a(1), 

a(2), and a(3)), and Person Ability Parameter (θ(1), θ(2), and θ(3)) in the M2PPC Model 

Using Gibbs Sampler (upper panel) and HMC-NUTS (lower panel).  

 

Gelman-Rubin Plots 

 A Gelman-Rubin plot shows the evolution of Gelman-Rubin's shrink factor 

(Gelman-Rubin statistic: 𝑅̂) as the number of iterations increases. In the Gelman-Rubin 

plots, we want to observe the value of Gelman-Rubin's shrink factor approaching one as 

the number of iterations increases. In these plots, the chains initially are different, but 

after 6,000-8,000 iterations, they mix together around one in the sample space (the 

baseline in each plot), as shown in Figure 3. With the illustrated item and person, the 

Gelman-Rubin plots of intercept estimates for the four transitional points, discrimination 

estimates on three dimensions, and person ability estimates on three dimensions using 

Gibbs Sampler and HMC-NUTS estimation methods suggest the chains reached 

convergence (see Figure 3). 
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                γ(1)                            γ(2)                               γ(3)                                 γ(4) 

    

    

                      𝑎(1)                                        𝑎(2)                                              𝑎(3) 
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                 𝜃(1)                                               𝜃(2)                                           𝜃(3) 

   

   

Figure 3. Gelman-Rubin of the Intercept (γ(1), γ(2), γ(3) and γ(4)), Slope Parameter 

(a(1), a(2), and a(3)), and Person Ability Parameter (θ(1), θ(2), and θ(3)) in the M2PPC 

Model Using Gibbs Sampler (upper panel) and HMC-NUTS (lower panel).  
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Item Parameter Recovery 

The RMSE and Bias values were averaged across items for evaluation of the 

recovery of intercept estimates for the four transitional points (intercepts): γ(1), γ(2), 

γ(3), and γ(4) and discrimination estimates (slopes) on three dimensions: 𝑎(1), 𝑎(2), and 

𝑎(3) in the M2PPC model using Gibbs Sampler and HMC-NUTS, and are summarized in 

Tables 2 through 5.  

In terms of estimating γs, the visual representations of intercept RMSEs: γ(1), 

γ(2), γ(3), and γ(4)  are summarized in Figures 4 through 7. For estimating 𝑎, the visual 

representations of estimation of slope RMSEs: a(1), a(2), and a(3)  are summarized in 

Figures 8 through 10. By examination of the tables and figures, Gibbs Samplers and 

HMC-NUTs did not differ to any great degree in their RMSEs and Bias. Both algorithms 

recovered the γs and as with similar precision as the RMSEs and Bias are nearly 

identical.  

A consistent pattern of the RMSEs for both γs and as was found. (From Figure 4 

to Figure 10, the orange lines representing test length =15 items are all below the blue 

lines representing test length = 30 items.) RMSEs for both parameters decreased with a 

decrease in test length regardless of priors and interdimensional correlations, which 

means the accuracy of the recovery of γs and as increased as the test length decreased.  

Regarding the prior choice, Matched priors and Hierarchical priors recovered both 

γs and as better than the Vague priors, since overall the RMSEs and absolute values of 

Bias are relatively larger when using Vague priors than using Matched priors and 
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Hierarchical priors regardless of test length and interdimensional correlations. 

Furthermore, for test length=30, the Hierarchical priors recovered γ(1) better than 

Matched priors with lower RMSEs; the Matched priors recovered γ(2) better than 

Hierarchical priors with lower RMSEs; the recovery of γ(3) and γ(4) were almost the 

same (with similar RMSEs) using either Matched priors or the Hierarchical priors. 

However, for test length=30, the recovery of as showed a consistent pattern using 

different priors. Hierarchical priors always yielded smaller RMSEs than Matched priors 

for both algorithms in all three different interdimensional correlation conditions.  

In addition, both algorithms recovered the slope parameters (as) better than the 

intercept parameters (γs) in all the conditions taking both RMSEs and Bias values into 

consideration (see Tables 2 through 5).  There was no consistent trend for the influences 

of interdimensional correlation on both γs and as recovery considering the test length, 

two algorithms and the three prior choices. Moreover, there were inconsistencies in the 

direction of Bias for both γs and as. 
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Figure 4. Average RMSE for Recovering Intercept Parameter  γ(1) Using Vague, 

Matched and Hierarchical Prior When Test Length Equal to 30 and 15 and 

Interdimensional Correlation Equal to  .2,  .5 and  .8 in the M2PPC Model. 
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Figure 5. Average RMSE for Recovering Intercept Parameter γ(2) Using Vague, 

Matched and Hierarchical Prior When Test Length Equal to 30 and 15 and 

Interdimensional Correlation Equal to  .2,  .5 and  .8 in the M2PPC Model. 
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Figure 6. Average RMSE for Recovering Intercept Parameter γ(3) Using Vague, 

Matched and Hierarchical Prior When Test Length Equal to 30 and 15 and 

Interdimensional Correlation Equal to  .2,  .5 and  .8 in the M2PPC Model. 
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Figure 7. Average RMSE for Recovering Intercept Parameter γ(4) Using Vague, 

Matched and Hierarchical Prior When Test Length Equal to 30 and 15 and 

Interdimensional Correlation Equal to  .2,  .5 and  .8 in the M2PPC Model. 
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Figure 8. Average RMSE for Recovering Slope Parameter 𝑎(1) Using Vague, Matched 

and Hierarchical Prior When Test Length Equal to 30 and 15 and Interdimensional 

Correlation Equal to  .2,  .5 and  .8 in the M2PPC Model. 
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Figure 9. Average RMSE for Recovering Slope Parameter  𝐹 Using Vague, Matched and 

Hierarchical Prior When Test Length Equal to 30 and 15 and Interdimensional 

Correlation Equal to  .2,  .5 and  .8 in the M2PPC Model. 
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Figure 10. Average RMSE for Recovering Slope Parameter  𝑎(3) Using Vague, Matched 

and Hierarchical Prior When Test Length Equal to 30 and 15 and Interdimensional 

Correlation Equal to  .2,  .5 and  .8 in the M2PPC Model. 

 

Table 2  

RMSE and Bias of Intercept Estimates for the Four Transitional Points: 𝛾(1), 𝛾(2), 𝛾(3), 

and 𝛾(4) in the M2PPC Model When Test Length = 30 

 

Prior Inter-

dimension  

Correlation 

Parameters         Gibbs Sampler HMC-NUTS 

   RMSE          Bias  

RMSE 

         Bias 

Vague  .2 γ(1)  .361 - .021  .360 - .021 

γ(2)  .482 - .029  .481 -  .031 

γ(3)  .511 - .062  .511 - .062 

γ(4)  .433 - .033  .433 - .032 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ρ= .2 ρ= .5 ρ= .8

a(3) Hierarchical

TestLength=30 TestLength=15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ρ= .2 ρ= .5 ρ= .8

a(3) Hierarchical

TestLength=30 TestLength=15



 

57 
 

  .5 γ(1)  .226 - .026  .226 - .025 

γ(2)  .652 - .053  .652 - .055 

γ(3)  .240 - .030  .241 - .030 

γ(4)  .421 .004  .422             .004 

  .8 γ(1)  .518 .011  .518             .010 

γ(2)  .483 - .020  .483 - .021 

γ(3)  .355 - .044  .353 - .045 

γ(4) .490             .010 .490             .010 

Matched  .2 γ(1)  .214 - .002  .213 - .002 

γ(2)  .400 - .015  .400 - .014 

γ(3)  .233 - .017  .223 - .017 

γ(4)  .310 - .030  .327 - .031 

  .5 γ(1)  .515             .014  .502             .012 

γ(2)  .382             .004  .383             .004 

γ(3)  .417             .040  .405             .041 

γ(4)  .240 - .012  .241       -     .011 

  .8 γ(1)  .196 - .007  .192       -     .007 

γ(2)  .283 - .014  .289 - .013 

γ(3)  .311 - .027  .311 - .027 

γ(4)  .254 - .001  .254 - .001 

Hierarchical  .2 γ(1)  .327 - .003  .325 - .002 
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γ(2)  .218 - .001  .217 - .001 

γ(3)  .370 - .001  .371 - .002 

γ(4)  .266 - .071  .266 - .071 

  .5 γ(1)  .311 - .004  .312 - .004 

γ(2)  .450 - .001  .451 - .001 

γ(3)  .424 - .001  .424 - .002 

γ(4)  .307             .001  .312             .001 

  .8 γ(1)  .365 - .011  .357 - .011 

γ(2)  .412 - .001  .432 - .001 

γ(3)  .295 - .003  .280 - .002 

γ(4)  .172 - .014  .164 - .011 

 

Table 3  

RMSE and Bias of Slope Estimates on the Three Dimensions: 𝑎(1), 𝑎(2), and 𝑎(3) in the 

M2PPC Model When Test Length = 30 

 

Prior Inter-

dimension  

Correlation 

Parameters        Gibbs Sampler    HMC-NUTS 

   RMSE Bias  RMSE         Bias 

Vague  .2 𝑎(1)  .271 - .102  .271 - .101 

𝑎(2)  .391 - .033  .390 - .034 
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𝑎(3)  .297 - .023  .294 - .019 

  .5 𝑎(1)  .392 - .022  .395 - .030 

𝑎(2)  .581             .010  .582             .012 

𝑎(3)  .443 - .071  .444 - .064 

  .8 𝑎(1)  .620 - .010  .620 - .013 

𝑎(2)  .653           .079  .652           .076 

𝑎(3)  .711           .006  .710           .005 

Matched  .2 𝑎(1)  .299 - .006  .295 - .007 

𝑎(2)  .213 - .015  .224 - .013 

𝑎(3)  .165 - .026  .165 - .021 

  .5 𝑎(1)  .313             .009  .315             .012 

𝑎(2)  .528 - .074  .523 - .073 

𝑎(3)  .152            .044  .152            .042 

  .8 𝑎(1)  .510            .004  .507            .003 

𝑎(2)  .312 - .029  .316 - .031 

𝑎(3)  .268             .013  .266             .012 

Hierarchical  .2 𝑎(1)  .261 - .002  .261 - .001 

𝑎(2)  .385 - .001  .383 - .007 

𝑎(3)  .178 - .052  .179 - .056 

  .5 𝑎(1)  .193 - .032  .197 - .030 

𝑎(2)  .216 - .120  .219 - .121 
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𝑎(3)  .230            .041  .230            .038 

  .8 𝑎(1)  .113 - .103  .110 - .110 

𝑎(2)  .132 - .031  .132 - .025 

𝑎(3)  .251 - .194  .250 - .188 

 

Table 4  

RMSE and Bias of Intercept Estimates for the Four Transitional Points: 𝛾(1), 𝛾(2), 𝛾(3), 

and 𝛾(4) in the M2PPC Model When Test Length = 15 

 

Prior Inter-

dimension  

Correlation 

Parameters Gibbs Sampler HMC-NUTS 

   RMSE Bias RMSE Bias 

Vague  .2 γ(1)  .240 - .012  .240 -  .012 

γ(2)  .317 - .027  .311 -  .028 

γ(3)  .209 - .059  .210 -  .058 

γ(4)  .323 - .028  .335 -  .028 

  .5 γ(1)  .200 - .022  .118 -  .022 

γ(2)  .432 - .041  .430 - .044 

γ(3)  .189 - .027  .192 - .025 

γ(4)  .297 .003  .303             .003 

  .8 γ(1)  .452 .010  .455             .009 
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γ(2)  .317 - .019  .308 - .019 

γ(3)  .303 - .032  .308 - .033 

γ(4) .378             .008 .359             .007 

Matched  .2 γ(1)  .179 - .001  .213 - .001 

γ(2)  .346 - .012  .372 - .011 

γ(3)  .128 - .013  .114 - .011 

γ(4)  .247 - .029  .228 - .030 

  .5 γ(1)  .437             .004  .409             .022 

γ(2)  .301             .001  .300             .001 

γ(3)  .355             .021  .304             .017 

γ(4)  .197 - .009  .199       -     .009 

  .8 γ(1)  .131 - .004  .131       -     .003 

γ(2)  .199 - .010  .198 - .008 

γ(3)  .277 - .015  .264 - .019 

γ(4)  .190 - .001  .191 - .001 

Hierarchical  .2 γ(1)  .208 - .002  .201 - .001 

γ(2)  .214 - .001  .206 - .001 

γ(3)  .106 - .001  .112 - .001 

γ(4)  .121 - .042  .118 - .039 

  .5 γ(1)  .310 - .003  .304 - .002 

γ(2)  .208 - .001  .211 - .001 
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γ(3)  .179 - .001  .177 - .001 

γ(4)  .103             .001  .120             .001 

  .8 γ(1)  .109 - .004  .109 - .002 

γ(2)  .189 - .001  .189 - .001 

γ(3)  .176 - .002  .174 - .001 

γ(4)  .103 - .008  .101 - .009 

 

Table 5 

RMSE and Bias of Slope Estimates on the Three Dimensions: 𝑎(1), 𝑎(2), and 𝑎(3) in the 

M2PPC Model When Test Length = 15 

 

Prior Inter-

dimension  

Correlation 

Parameters Gibbs Sampler HMC-NUTS 

   RMSE Bias RMSE Bias 

Vague  .2 𝑎(1)  .204 - .100  .200 - .100 

𝑎(2)  .321 - .026  .319 - .027 

𝑎(3)  .282 - .017  .282 - .015 

  .5 𝑎(1)  .301 - .012  .300 - .011 

𝑎(2)  .473             .010  .470             .010 

𝑎(3)  .239 - .060  .233 - .052 

  .8 𝑎(1)  .468 - .008  .468 - .012 
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𝑎(2)  .589           .055  .587           .055 

𝑎(3)  .492           .003  .489           .005 

Matched  .2 𝑎(1)  .198 - .004  .198 - .005 

𝑎(2)  .175 - .011  .183 - .011 

𝑎(3)  .132 - .018  .130 - .014 

  .5 𝑎(1)  .276             .007  .243             .007 

𝑎(2)  .319 - .043  .317 - .044 

𝑎(3)  .145            .027  .145             .027 

  .8 𝑎(1)  .322            .003  .319            .002 

𝑎(2)  .199 - .017  .201 - .013 

𝑎(3)  .187             .011  .189             .010 

Hierarchical  .2 𝑎(1)  .177 - .001  .174 - .001 

𝑎(2)  .296 - .001  .287 - .001 

𝑎(3)  .163 - .021  .163 - .026 

  .5 𝑎(1)  .145 - .020  .147 - .019 

𝑎(2)  .199 - .080  .199 - .083 

𝑎(3)  .221            .024  .220            .024 

  .8 𝑎(1)  .108 - .006  .100 - .006 

𝑎(2)  .126 - .022  .130 - .020 

𝑎(3)  .194 - .093  .194 - .087 
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Person Parameter Recovery 

The RMSE and Bias values were averaged across all persons for evaluation of the 

recovery of person ability parameters on three related dimensions: 𝜃(1), 𝜃(2), and 𝜃(3) in 

the M2PPC model using Gibbs Sampler and HMC-NUTS, and are summarized in Tables 

6 and 7. The visual representations of person ability RMSEs: 𝜃(1), 𝜃(2), and 𝜃(3) are 

summarized in Figures 11 through 13.  

By inspection of Table 6 and Table 7, HMC-NUTS recovered the person 

parameters a little better than Gibbs Sampler with smaller RMSEs except for 𝜃(2) when 

interdimensional correlation= .8 and test length=30 with Vague prior.  

Similar to findings regarding test length in item parameter recovery, there was a 

consistent pattern of the RMSEs for 𝜃s. (From Figure 11 to Figure 13, the blue lines 

representing test length=30 are all below the orange lines representing test length=15.) A 

decrease in RMSEs was found with an increase in test length regardless of priors and 

interdimensional correlations, which means as the test length increases, the precision of 

person parameter recovery increases.   

In terms of prior choice, Matched priors and Hierarchical priors recovered 𝜃s 

better than Vague priors. Additionally, Hierarchical priors recovered 𝜃s better than 

Matched priors with lower RMSEs for both algorithms and test lengths in all the three 

different interdimensional correlation conditions.  

There was a trend for the influence of interdimensional correlation on 𝜃 recovery 

regardless of the test length, different algorithms and different prior choices. The 

precision of the person parameter recovery increased as the interdimensional correlation 
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increased in all the different conditions for both algorithms (See Figure 11 through Figure 

13).  

The Bias estimates for person ability parameters were all positive except for the 

ones when interdimensional correlation = .2 using Matched priors. The majority of the 

person parameters were overestimated, which means the person with higher ability was 

estimated with an even higher ability. The three person parameters were underestimated 

when the interdimensional correlation = .2 using Matched priors, which means the person 

with higher ability was estimated with relatively lower ability.  
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Figure 11. Average RMSE for Recovering Person Ability Parameter 𝜃(1) Using Vague, 

Matched and Hierarchical Prior When Test Length Equal to 30 and 15 and 

Interdimensional Correlation Equal to  .2,  .5 and  .8 in the M2PPC Model. 
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Figure 12. Average RMSE for recovering person ability parameter θ(2) using Vague, 

Matched and Hierarchical Prior when Test Length equal to 30 and 15 and 

interdimensional correlation equal to  .2,  .5 and  .8 in the M2PPC model 
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Figure 13. Average RMSE for recovering person ability parameter 𝜃(3) using Vague, 

Matched and Hierarchical Prior when Test Length equal to 30 and 15 and 

interdimensional correlation equal to  .2,  .5 and  .8 in the M2PPC model. 

 

Table 6  

RMSE and Bias of Person Ability Estimates on Three Dimensions: 𝜃(1), 𝜃(2), and 𝜃(3) in 

the M2PPC Model When Test Length = 30 
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Correlati

on 

   RMSE Bias RMSE Bias 

Vague  .2 𝜃(1) .521       .012 .520       .014 

𝜃(2) .668       .021 .644       .026 

𝜃(3) .508       .011 .500       .011 

  .5 𝜃(1) .541       .012 .541       .010 

𝜃(2) .533 .013 .530 .011 

𝜃(3) .488 .035 .482       .032 

  .8 𝜃(1) .389 .014 .333       .010 

𝜃(2) .500 .023 .521 .028 

𝜃(3) .385 .022 .345 .022 

Matched  .2 𝜃(1) .432        -.003 .430      -.002 

𝜃(2) .468        -.001 .466      -.010 

𝜃(3) .437        -.003 .432      -.009 

  .5 𝜃(1) .483 .001 .481 .001 

𝜃(2) .410        .002 .410       .001 

𝜃(3) .402 .007 .401 .003 

  .8 𝜃(1) .420 .003 .420 .003 

𝜃(2) .390        .006 .381       .007 

𝜃(3) .373 .001 .370 .003 

Hierarchia

l 

 .2 𝜃(1) .371        .001 .312       .002 

𝜃(2) .397        .001 .396       .001 

𝜃(3) .226       .001 .219     .001 

  .5 𝜃(1) .441       .002 .422     .001 

𝜃(2) .376       .006 .344     .006 

𝜃(3) .332 .004 .312     .005 
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  .8 𝜃(1) .372        .006 .345      .007 

𝜃(2) .288        .002 .213      .003 

𝜃(3) .294         .003 .245      .001 

 

Table 7 

RMSE and Bias of Person Ability Estimates on Three Dimensions: 𝜃(1), 𝜃(2), and 𝜃(3) in 

the M2PPC Model When Test Length = 15 

 

Prior Inter-

dimension  

Correlatio

n 

Parameter

s 

Gibbs Sampler HMC-NUTS 

   RMS

E 

    Bias RMSE Bias 

Vague  .2 𝜃(1)  .679     .023 .677      .022 

𝜃(2)  .682     .031 .681      .032 

𝜃(3)  .543     .020 .543      .022 

  .5 𝜃(1)  .600     .021 .599      .020 

𝜃(2)  .598     .020 .596       .021 

𝜃(3)  .529     .040 .529       .039 

  .8 𝜃(1)  .432     .020 .431       .018 

𝜃(2)  .512     .031 .511 .031 

𝜃(3)  .399     .030 .399 .030 

Matched  .2 𝜃(1)  .512    -.009 .511 -.009 

𝜃(2)  .498    -.008 .496 -.010 

𝜃(3)  .486    -.008 .485       -.006 

  .5 𝜃(1)  .554     .007 .551 .004 

𝜃(2)  .495         .010 .495        .010 



 

72 
 

𝜃(3)  .479    .014 .477 .010 

  .8 𝜃(1)  .500    .011 .497 .011 

𝜃(2)  .419        .012 .411        .012 

𝜃(3)  .433   .011 .433 .011 

Hierarchic

al 

 .2 𝜃(1)  .406        .009 .392        .009 

𝜃(2)  .412        .008 .412        .008 

𝜃(3)  .324        .008 .323        .010 

  .5 𝜃(1)  .444        .009 .441        .009 

𝜃(2)  .382        .014 .382        .013 

𝜃(3)  .379    .011 .375 .010 

  .8 𝜃(1)  .381        .013 .380        .013 

𝜃(2)  .312        .011 .312        .010 

𝜃(3)  .300        .010 .300        .007 

 

             In summary, Gibbs Sampler and HMC-NUTS recovered the item parameters 

similarly for all simulated conditions, but HMC-NUTS recovered the person parameter 

better than Gibbs Sampler with only one exception (which was 𝜃(2) when 

interdimensional correlation= .8 and test length=30 with Vague prior). As the test length 

increased the precision decreased, but for person parameters, the impact of test length 

was in the opposite direction--as the test length increased the precision increased. In 

addition, the higher the interdimensional correlation, the more precisely the person 

parameters were recovered in all simulated conditions. Matched priors and Hierarchical 

priors both recovered the item parameters more precisely than Vague priors, and the 

Hierarchical priors recovered the person parameter most precisely among the three priors. 

Both algorithms show positive Bias values for person parameter recovery except for one 
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condition (interdimensional correlation = .2 using Matched priors), which means most of 

the persons with higher ability were estimated to be even higher.  

Computational Speed of Gibbs Sampler and HMC-NUTS 

 Regarding the computational speed for implementing Gibbs Sampler and HMC-

NUTS respectively in rjags and rstan, two methods were utilized: a personal computer 

(PC) with a processor 2.7 GHz with Turbo Boost Intel Core i7 and memory 16 GB 1866 

MHz and a High Performance Computer (HPC) cluster from the University of Denver 

(http://portfolio.du.edu/du_hpc/page/47530) with 44 compute nodes and 456 available 

computational cores, which can be utilized for parallel computing for different chains .  

 Since the M2PPC model is a complicated model, the PC was only used for 

estimating one of the simulated datasets, where the condition was: Matched prior, test 

length=30, and interdimensional correlation= .2. Gibbs sampler via rjags took 359 

minutes to complete the three chains with 11,000 iterations, but HMC-NUTS via rstsan 

took 562 minutes to complete the same task.   

 When it came to utilizing the HPC, the computational speed varied for different 

conditions. Overall, the shorter the test length, the faster the computational speed. 

Matched priors and Hierarchical priors took similar computational times and both were 

faster than Vague priors in all the simulated conditions. For example, when the condition 

was the same in using the PC-Matched prior, test length=30, and interdimensional 

correlation= .2, Gibbs Sampler via rjags took 181 minutes to complete the three chains 

with 11,000 iterations, but HMC-NUTS via rstan took 309 minutes to complete the same 

task. Moreover, implementing HMC-NUTS via rstan code had some unclear mixing 
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issues in some of the conditions when using Vague priors, which needs further 

investigation and modification to make it more time efficient.  

Analysis of Variance (ANOVA) Results 

LogRMSE 

 Effect sizes (𝜔2) of logRMSE for the four factors, namely, test length, 

interdimensional correlations, priors, and two MCMC algorithms in estimating 

parameters of M2PPC model are summarized in Table 8 and Table 9.  

 For intercept parameter estimation, Table 8 shows that test length had the largest 

effect for all the γ(1), γ(2),  γ(3), and γ(4) estimates compared to the other factors, 

explaining about 19.4%, 20.5%, 12.7% and 16.6% respectively, of the total variance in 

logRMSE. The effect sizes for γ(1), γ(2), and γ(4) were large and the effect size for γ(3) 

was medium, according to Cohen (1988). Prior choice had the second to the largest effect 

on the estimation of γ(1), γ(2),  γ(3), and γ(4), accounting for 14.2%, 15.1%, 10.9% and 

13.2% of the total variance in logRMSE. The effect sizes for γ(1) and γ(2) were large, but 

the effect sizes for γ(3) and γ(4) were medium based on Cohen (1988). All the other main 

effects and interaction contributed less than or equal to 1% of the total variance in 

logRMSE.   

For slope parameter estimation, Table 8 shows that test length also had the largest 

effect for all the 𝑎(1), 𝑎(2),  and 𝑎(3) estimates compared to the other factors, explaining 

about 21.3%, 18.9%, and 15.9% respectively, of the total variance in logRMSE. The 

effect sizes for 𝑎(1), 𝑎(2),  and 𝑎(3)  were all large according to Cohen (1988). Prior 

choice had the second to the largest effect on the estimation of 𝑎(1), 𝑎(2),  and 𝑎(3), 
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accounting for 10.4%, 16.0%, and 17.4% of the total variance in logRMSE. The effect 

sizes for 𝑎(2) and 𝑎(3) were large, but the effect size for 𝑎(1) was medium based on 

Cohen (1988). All the other main effects and interaction contributed less than or equal to 

1% of the total variance in logRMSE.   

Table 8  

Effect Sizes (𝜔2) for Main Effects and Interactions on LogRMSE of Item Parameter 

Estimates in the M2PPC Model 

 

Source of Variation 𝛄(1) 𝛄(2) 𝛄(3) 𝛄(4) 𝒂(1) 𝒂(2) 𝒂(3) 

Test Length .194 .205 .127 .166 .213 .189 .159 

Correlation .001 .004 .000 .001 .001 .003 .000 

Prior .142 .151 .109 .132 .104 .160 .174 

Algorithm .000 .001 .000 .000 .000 .000 .000 

Test Length*Correlation .002 .001 .000 .003 .002 .006 .002 

Test Length*Prior .008 .010 .009 .010 .004 .011 .009 

Test Length*Algorithm .005 .004 .000 .001 .004 .005 .003 

Correlation*Prior .003 .000 .001 .003 .002 .001 .001 

Correlation*Algorithm .000 .000 .000 .000 .000 .000 .000 

Prior*Algorithm .004 .000 .000 .001 .007 .003 .001 

Test Length*Correlation*Prior .001 .000 .000 .000 .001 .000 .000 

Test Length*Correlation*Algorithm .000 .000 .000 .000 .000 .000 .000 

Test Length*Prior*Algorithm .001 .000 .000 .000 .000 .001 .001 

Correlation*Prior* Algorithm .000 .000 .000 .000 .000 .000 .000 
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Test 

Length*Correlation*Prior*Algorithm 

.000 .000 .000 .000 .000 .000 .000 

 

In terms of person parameter estimates, Table 9 shows that test length again 

explained the largest amount of variance in logRMSE, namely 26.1%, 27.4% and 34.1% 

for Ѳ(1), Ѳ(2) and Ѳ(3). Prior choice also contributed 14.9%, 15.1% and 14.3% of the 

total variance in logRMSE for Ѳ(1), Ѳ(2) and Ѳ(3). Tength and prior choice both had 

large effects on the estimation of person parameters. Furthermore, different from that in 

item parameter estimation, interdimensional correlation explaineda medium amount of 

variance in logRMSE, 11.2%, 10.8% and 11.7% respectively for Ѳ(1), Ѳ(2) and Ѳ(3). The 

two different MCMC algorithms accounted for small amounts of variance in logRMSE, 

4.3%, 3.7% and 4.0% for Ѳ(1), Ѳ(2) and Ѳ(3). Apart from these main effects, the 

interaction between interdimensional correlation and prior choice also explained small 

amounts of variance in the total variance of logRMSE, 1.4%, 1.5% and 1.1% for Ѳ(1), 

Ѳ(2) and Ѳ(3). All the other interactions had almost no effect on logRMSE.  

Table 9 

Effect Sizes (𝜔2) for Main Effects and Interactions on LogRMSE of Person Parameter 

Estimates in the M2PPC Model 

 

Source of Variation Ѳ(1) Ѳ(2) Ѳ(3) 

Test Length .261 .274 .341 

Correlation .112 .108 .117 

Prior .149 .151 .143 
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Algorithm .043 .037 .040 

Test Length*Correlation .009 .010 .004 

Test Length*Prior .002 .007 .008 

Test Length*Algorithm .004 .003 .009 

Correlation*Prior .014 .015 .011 

Correlation*Algorithm .001 .000 .001 

Prior*Algorithm .009 .008 .005 

Test Length*Correlation*Prior .002 .000 .001 

Test Length*Correlation*Algorithm .000 .000 .001 

Test Length*Prior*Algorithm .000 .000 .000 

Correlation*Prior* Algorithm .000 .000 .000 

Test Length*Correlation*Prior*Algorithm .000 .000 .000 

LogBias 

Effect sizes (𝜔2) of logBias for the four factors, namely, test length, 

interdimensional correlation, priors, and two MCMC algorithms in estimating parameters 

of M2PPC model are summarized in Table 10 and Table 11. 

For item parameter estimation, test length had small effects on logBias for γ(1), 

γ(2), and γ(4), accounting for 2.2%, 1.5% and 1.3% of the total variance, and small 

effects on logBias for 𝑎(1) and 𝑎(2), accounting for 2.1% and 3.3% of the total variance. 

Interdimensional correlation also had small effects on logBias for γ(2) and γ(3), 

accounting for 1.2% and 3.0% of the total variance, and small effects on logBias for 𝑎(1), 
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accounting for 1.4% of the total variance. Lastly, Prior Choice had small effects on 

logBias for γ(1), γ(2), and γ(3), accounting for 1.5%, 2.2% and 1.0% of the total 

variance, and small effects on logBias for 𝑎(1) and 𝑎(2), accounting for 1.2% and 1.8% 

of the total variance. All the other main effects and interactions contributed less than 1% 

of the total variance of logBias.  

Table 10  

Effect Sizes (𝜔2) for Main Effects and Interactions on LogBias of Item Parameter 

Estimates in the M2PPC Model 

 

Source of Variation γ(1) γ(2) γ(3) γ(4) 𝑎(1) 𝑎(2) 𝑎(3) 

Test Length .022 .015 .009 .013 .021 .033 .005 

Correlation .000 .012 .030 .006 .014 .000 .001 

Prior .015 .022 .010 .009 .012 .018 .004 

Algorithm .000 .001 .000 .000 .000 .000 .000 

Test Length*Correlation .001 .001 .000 .003 .002 .006 .000 

Test Length*Prior .001 .000 .000 .000 .001 .000 .001 

Test Length*Algorithm .000 .000 .000 .000 .000 .001 .000 

Correlation*Prior .000 .000 .000 .000 .000 .001 .001 

Correlation*Algorithm .000 .000 .000 .000 .000 .000 .000 

Prior*Algorithm .004 .000 .000 .001 .001 .000 .001 

Test Length*Correlation*Prior .000 .000 .000 .000 .000 .000 .000 

Test Length*Correlation*Algorithm .000 .000 .000 .000 .000 .000 .000 

Test Length*Prior*Algorithm .001 .000 .000 .000 .000 .000 .000 
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Correlation*Prior* Algorithm .000 .000 .000 .000 .000 .000 .000 

Test 

Length*Correlation*Prior*Algorithm 

.000 .000 .000 .000 .000 .000 .000 

 

Regarding person parameter estimation, interdimensional correlation had small 

effects on logBias for Ѳ(2) and Ѳ(3), accounting for 1.6% and 1.9% of the total variance. 

Prior choice had small effects on logBias for Ѳ(1), Ѳ(2), and Ѳ(3), accounting for 2.6%, 

1.1% and 1.0% of the total variance. All the other main effects and interactions 

contributed less than 1% of the total variance of logBias.  

Table 11 

Effect Sizes (𝜔2) for Main Effects and Interactions on LogBias of Person Parameter 

Estimates in the M2PPC Model 

 

Source of Variation Ѳ(1) Ѳ(2) Ѳ(3) 

TestLength .001 .006 .000 

Correlation .005 .016 .019 

Prior .026 .011 .010 

Algorithm .001 .001 .001 

TestLength*Correlation .000 .000 .000 

TestLength*Prior .000 .000 .000 

TestLength*Algorithm .000 .000 .000 

Correlation*Prior .001 .000 .000 
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Correlation*Algorithm .001 .000 .001 

Prior*Algorithm .000 .000 .000 

TestLength*Correlation*Prior .000 .000 .000 

TestLength*Correlation*Algorithm .000 .000 .000 

TestLength*Prior*Algorithm .001 .000 .000 

Correlation*Prior* Algorithm .000 .000 .000 

TestLength*Correlation*Prior*Algorithm .000 .000 .000 

 

             In summary, the ANOVA results supports the conclusions that can be drawn 

from Table 2 through Table 7. Test length plays an influential role in estimating both 

item and person parameter estimation in logRMSE, since it explains the majority of the 

total variance in logRMSE. Prior choice also affects both item and person parameter 

estimation in logRMSE based on the variance explained by the three different prior 

choices. In terms of person parameter recovery, the interdimensional correlation also 

contributes to the mount of varianceexplained in logRMSE, which is in line with the 

conclusion drawn previously, namely, the precision of the person parameter estimation 

increases as the interdimensional correlation increases. Regarding logBias, 

interdimensional correlation and prior choice both showed small effects on person 

parameter estimation in logBias, which is consistent with the conclusion that the Bias 

values of all the person parameter estimates are positive except for one situation with 

interdimensional correlation = .2 using Matched prior. However, test length, 
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interdimensional correlation, and prior choice all have small effects on item parameter 

estimation in logBias, which is not explcitly shown based on Tables 2 through 5.  
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Chapter Four: Findings and Discussion 

Introduction 

             This chapter includes four main sections. The first section summarizes the results 

of the application of Gibbs Sampler and Hamiltonian Monte Carlo-No-U-Turn Sampler 

(HMC-NUTS) for estimating parameters in the Multidimensional Two Parameter Partial 

Credit Model (M2PPC). Also, the answers to the three research questions are synthesized 

in this section. Implications are discussed for using the fully Bayesian estimation 

methods with different test lengths, prior choices, and interdimensional correlations. 

Then, the second section provides a discussion of how study results related to the existing 

literature. Finally, the limitations and directions for future studies are presented. 

The Findings of This Study 

             This simulation study compared Gibbs Sampler and HMC-NUTS bias and 

RMSE in the parameters for the M2PPC model via manipulating three factors: test 

length, prior choice, and interdimensional correlation. When considering the 

computational speed and estimation accuracy, the results of parameter recovery of the 

M2PPC model show that Gibbs Sampler and HMC-NUTS performed similarly in all the 

simulated conditions. Based on the conclusions from Chapter 3, for item parameter 

estimation, Gibbs Samplers and HMC-NUTs did differed only slightly in their RMSE 

and Bias; for person parameter recovery, HMC-NUTS performed a little better than 
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Gibbs Sampler with smaller RMSEs. However, considering the computational speed, the 

Gibbs Sampler recovered the M2PPC model parameters significantly faster than HMC-

NUTS. Moreover, HMC-NUTS implemented via rstan had some unclear chain mixing 

issues for some iterations. The significant differences in computing time for these two 

algorithms may be due to implementing them via two different packages (rjags and 

rstan). It would be more appropriate to compare them via the same computational 

package, which is difficult based on the current development of computer hardware. 

Practitioners might take the estimation precision and computational speed into 

consideration when choosing one of the two estimation methods.  

             Concerning test length, there was a consistent pattern for RMSEs that the 

accuracy of item parameter estimates increased as the test length decreased, but the 

accuracy of person parameter estimates increased as the test length increased in all the 

simulated conditions for both Gibbs Sampler and HMC-NUTS. As test length decreases, 

the number of items that need to be recovered drops when the sample size remains the 

same. So with shorter tests, each item parameter is recovered more accurately. As the test 

length increases, there is more information coming from the items collected to predict the 

person abilities; thus the accuracy of person ability estimates increases. Test length had 

no consistent impact on Bias for either item parameter or person parameter estimates. 

             Different interdimensional correlations did not influence the recovery of item 

parameters but affected the precision of the estimation of person parameters. The 

accuracy of the person parameter recovery increased as the interdimensional correlation 

increased in all the different conditions for both Gibbs Sampler and HMC-NUTS. 
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Increased interdimensional correlation indicates the person's latent traits are sharing more 

information with one another; therefore, when other features remain the same, the 

information collected by the same number of items will increase, which ultimately will 

improve the precision of person parameter estimates. For instance, if a scale with ten 

items measures depression and anxiety with sample size equal to 100, the accuracy of 

person parameter estimates will be more accurate than a scale with ten items measuring 

depression and sleeping problems with the same sample size, since the correlation 

between depression and anxiety is assumed to be higher than the correlation between 

depression and sleeping problems.  

             Gibbs Sampler and HMC-NUTS with standard Vague priors yielded the least 

accurate estimates for both item and person parameters. More specifically, Matched 

priors and Hierarchical priors recovered item parameters and person parameters similarly 

and both were better than Vague priors. Furthermore, Hierarchical priors recovered 

person parameters the best among the three different priors. Even though Matched priors 

results were very similar to Hierarchical priors for item parameter recovery, Matched 

priors is generally unavailable in real estimation applications since the actual distribution 

of parameters is unknown. Matched priors would be useful in situations where previous 

research can provide reliable evidence about the parameter distributions. Practitioners 

may want to use Hierarchical priors no matter which one of the two estimation methods 

is chosen as it is more time-efficient and as precise. Lastly, both Gibbs Sampler and 

HMC-NUTS recovered the slope parameters better, with smaller RMSEs, than the 

intercept parameters in all conditions.  
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             The results of analyses of variance (ANOVAs) supported the conclusions drawn 

previously. Test length and prior choice both accounted for a large amount of total 

variance in logRMSE for both item and person parameter recovery. Also, 

interdimensional correlation explained a medium amount of variance in logRMSE for 

person parameters. And, interdimensional correlation and prior choice accounted for a 

small amount of variance in logBias. 

Discussion 

             In general, this study examined the performance of two full Bayesian estimation 

methods: Gibbs Sampler and HMC-NUTS in estimating a M2PPC model under different 

conditions using simulated data. Only one finding of this study contradicts the existing 

literature. According to Martin-Fernandez and Revuelta (2017), HMC-NUTS converges 

faster than Gibbs Sampler with sample size equal to 500 and test length equal to 18 or 25 

items. However, in the present study, Gibbs Sampler converged more quickly than HMC-

NUTS with sample size equal to 500 and test length equal to 15 or 30 items. This 

contradiction may be due to the different levels of IRT model complications. Martin-

Fernandez and Revuelta (2017) used a dichotomous multidimensional IRT model, but the 

current study used a polytomous multidimensional IRT model.  

             Addressing the gap stated in Martin-Fernandez and Revuelta’s (2017) simulation 

study that more precise estimates could be obtained when sample size and test length for 

each dimension increased, without clearly talking about the item and person parameter 

respectively,  this study showed a consistent pattern for RMSEs in that the accuracy of 

item parameter estimates increased as the test length decreased, but the accuracy of 
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person parameter estimates increased as the test length increased in all the simulated 

conditions for both Gibbs Sampler and HMC-NUTS. 

             This study extends the findings from Natesan et al. (2016) that in unidimensional 

1-PL and 2-PL dichotomous models, the hierarchical priors and matched priors 

performed better than vague priors, and also the vague priors produced large errors or 

convergence issues in parameter recovery using Gibbs Sampler and Variational Bayesian 

estimation methods--which are not recommended. Similarly, the current study found that 

in estimating the multidimensional polytomous 2-PL model, the hierarchical priors and 

matched priors still performed better than vague priors.  

             The current study also advances conclusions regarding the influence of 

interdimensional correlation on IRT model parameter estimation. In a 2-PL graded 

response model, Kuo and Sheng (2016) found that when the interdimensional correlation 

(only including two dimensions) was low, the estimating methods (including Marginal 

Likelihood estimation methods and Fully Bayesian Estimation methods) provided similar 

results. The current simulation study demonstrates that as the interdimensional 

correlation increases, the accuracy of person parameter estimation will also increase 

when there are three correlated dimensions. The findings concerning the impact of 

interdimensional correlation on parameter estimation in a M2PPC model addresses a gap 

in the literature and also poses new research questions about higher dimensional IRT 

models. For instance, with higher dimensional IRT models, such as four and five related 

dimensions, is this trend still true? 
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Limitations 

             Through simulation studies, this dissertation demonstrates that researchers and 

practitioners would benefit from using Gibbs Sampler with Hierarchical priors to 

estimate the parameters in M2PPC model, which is accessible, fast, and accurate.  

             It is, however, noted that all the conclusions are based on simulated conditions, 

which cannot necessarily be generalized to other situations. The current study used one 

sample size (n = 500), two test lengths: 15 and 30 items, three interdimensional 

correlations:  .2, .5, and  .8, a five-point Likert scale, uncorrelated discrimination 

parameters (slope parameters) on the three dimensions, and an equal number of items for 

three related dimensions in the M2PPC model. And the results of this study were based 

on only ten replications for all the different simulated conditions. Considering the small 

number of replications, the RMSE and Bias values presented in Chapter 3 need further 

verification with more studies before generalizing the results to other similar conditions. 

             One of the limitations is using the inverse-Wishart distribution as the prior for 

estimating the person parameter covariance matrix. Some studies, such as Alvarez, 

Niemi, and Simpson (2014) showed that an inverse-Wishart distribution might not work 

well as the prior in some situations. Specifically the prior does not work well when the 

actual variance is small compared to the prior mean. In this situation the posterior 

variance for the person ability parameter estimates will be biased. Another concern when 

using inverse-Wishart as the prior is that it impacts the estimation accuracy of all the 

parameters’ variances by setting a single degree of freedom, so that the marginal 

distribution of the variances have densities near zero (Gelman, 2014). In this current 
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study, almost all the person abilities parameters were overestimated, which likely is a 

consequence of using the inverse-Wishart prior. Because of these reasons, the Stan 

manual (Stan Development Team, 2016) suggests LKJ Cholesky Covariance priors for 

the covariance matrix (For more information about LKJ prior, please refer to the Stan 

Mannual. LKJ priors are based on work by Daniel Lewandowski, Dorota Kurowicka, and 

Harry Joe, 2009.) However, LKJ priors cannot be implemented in Gibbs Sampler via 

rjags, which is the major disadvantage.   

             Another limitation of this study is the lack of discussion of effective sample size 

(ESS) of MCMC chains. Most of the MCMC chains are highly autocorrelated, which 

means that the successive steps are not independent but are strongly correlated with each 

other. ESS is a measure of chain length taking the autocorrelation of the chain into 

consideration. The decision about how large the ESS should be for a study is heuristic, 

and depends on which details of the posterior distribution are of concern. In this study, 

the univariate ESSs fell in a range from 600 to 2,400. Since this was a simulation study, 

the ESSs were not inspected. Careful examination of ESSs is needed when estimating the 

M2PPC model in applications with real data.  

  Directions for Future Studies

The recently developed Metropolis-Hasting Robbins-Monro (MHRM; Cai, 2010a, 

2010b) algorithm, which combines fully Bayesian estimation with a Robins-Monro 

technique to facilitate the maximum likelihood estimation, has shown advantages over 

traditional estimation methods, such as Gibbs Sampler, in estimating multidimensional 
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IRT models (Martin-Fernandez & Revuelta, 2017). Future studies may consider including 

this algorithm in comparison studies. 

Simulation studies are often performed in manipulated and so ideal situations. In 

the current study, the sample size was fixed to 500 for computational convenience. Future 

studies may include a smaller sample size to explore the performance of the two Bayesian 

algorithms in low sample size situations. Also, the test lengths in this study were fixed at 

15 and 30, and the estimations were conducted separately. It would be interesting to 

investigate: first splitting the 30-item test into two 15-item tests cases or three 10-item 

tests, then aggregrating the results, and finaly comparing the results with the 30-item test. 

By doing so, we could determine if the result of decreased item RMSE with shorter tests 

held, and so RMSE was lower with the aggregated result. Moreover, the current study 

only used three fixed dimensions, and future studies may incorporate more dimensions as 

the computational hardware continues to develop. In this specific case, the IRT M2PPC 

model was defined as known, and fit could be assumed to be almost perfect, which is not 

the case in real data applications. Future studies may use the two Bayesian estimation 

methods to fit M2PPC models and for further model comparison and selection in real 

data situations. There are a large number of prior choices that remain unexplored, such as 

scaled inverse-Wishart and LKJ priors, and they need to be explored for the person 

ability parameter estimates when using Hierarchical priors. Meanwhile, there are also 

numerous choices of simulated values for the IRT model parameters; future studies may 

use these two Bayesian estimation methods to fit IRT models with non-normal latent trait 

distributions, such as a gamma distributions. Lastly, for the model evaluation criteria, 



 

90 
 

other evaluation metrics can be incorporated in future studies as well, such as area under 

the curve (AUC).  
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Appendix A 

Rjags Script for Estimation in the M2PPC Model 

Matched Prior, Interdimensional Correlation = .8, Test length=30 

 # Assemble data into list for JAGS: 

InvSigmaSubjAbil<-solve(matrix(rep(.8,9),nrow=3)+diag(.2,3)) 

zero3<-rep(0,3) 

y = theData[,"Ans"]  

itemID =rep(1:30, 500)  

subjID = theData[,"Subj"]  

Nitem = length(unique(itemID))  

Nsubj = length(unique(subjID)) 

NAnsK = length(unique(y)) 

NDim = nrow(InvSigmaSubjAbil) 

Ntotal = nrow(theData)  

dataList = list( 

  y=y , itemID=itemID , subjID=subjID , Nitem=Nitem , Nsubj=Nsubj , 

NAnsK=NAnsK,NDim=NDim, 

  Ntotal=Ntotal, InvSigmaSubjAbil=InvSigmaSubjAbil,zero3=zero3) 

#Speicify different initial values for the chains 

initsList <-list() 

set.seed(123456) 

for (i in 1:3){ 
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initsAbil = matrix(rnorm(500*3),nrow=500) 

initsDisc = matrix(exp(rnorm(30*3)),nrow=30) 

initsDiff = matrix(rnorm(30*4),nrow=30) 

thisList=list(subjAbil=initsAbil,itemDiff=initsDiff,itemDisc=initsDisc,.RNG.name= 

"base::Super-Duper", 

                   .RNG.seed=123456+length(initsList)) 

initsList[[length(initsList)+1]] <- thisList 

} 

## Define the model (Matched Prior): 

modelString =" 

model{ 

for ( rowIdx in 1:Ntotal ) { 

  y[rowIdx] ~ dcat(pAns[rowIdx,1:NAnsK] ) 

}  

# pAns has the probabilities of the answer categories for eqn. 1.5  

for ( rowIdx in 1:Ntotal ) {  

  for (AnsKx in 1:NAnsK){ 

      pAns[rowIdx,AnsKx]<-pMat[rowIdx,AnsKx]/sum(pMat[rowIdx,1:NAnsK]) 

    } 

  } 

for ( rowIdx in 1:Ntotal ) {  

  pMat[rowIdx,1]<-1 
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  for (AnsKx in 2:NAnsK){ 

     pMat[rowIdx,AnsKx]<- pMat[rowIdx,AnsKx-1]* 

        exp(inprod(itemDisc[itemID[rowIdx],1:NDim],subjAbil[subjID[rowIdx],1:NDim])+  

                                 itemDiff[itemID[rowIdx],(AnsKx-1)]) 

    } 

} 

  for ( subjIdx in 1:Nsubj ) { 

    subjAbil[subjIdx,1:NDim] ~ dmnorm(zero3,InvSigmaSubjAbil) 

  } 

  for ( itemIdx in 1: Nitem ) { 

    for (AnsKx in 1:(NAnsK-1)){  

    itemDiff[itemIdx,AnsKx] ~ dnorm( 0 , 1 ) 

    } 

  } 

  for ( itemIdx in 1:Nitem ) {   

    for (NDimx in 1:NDim){ 

    itemDisc[itemIdx,NDimx] ~ dlnorm( 0, 1/0.25 ) 

    } 

  } 

} 

" 

writeLines( modelString , con="532_1M.txt" ) 
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# Run the chains: 

library(runjags) 

library(rjags) 

 

runJagsOutM <- run.jags( 

                        model="532_1M.txt" , 

                        monitor=c("subjAbil","itemDiff","itemDisc"), 

                        data=dataList , 

                        inits=initsList , 

                        n.chains=3 , 

                        adapt=1000 , 

                        burnin=5000 , 

                        sample=ceiling(15000/3) , 

                        thin=1, 

                        summarise=FALSE , 

                        plots=FALSE ) 

codaSamplesM = as.mcmc.list(runJagsOutM ) 

save(codaSamplesM , file="codaSamplesM.Rdata") 

#write the estimates to csv 

parameter_names <- varnames(codaSamplesM) 

saved_steps <- as.integer(row.names(codaSamplesM[[1]])) 
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outM <- data.frame("chain" = factor(rep(1 : length(codaSamplesM), each = 

length(saved_steps))), 

                  "step" = rep(saved_steps, length(codaSamplesM)) ) 

outM <- cbind(outM, as.data.frame(as.matrix(codaSamplesM))) 

write.csv(outM, "outM.csv") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

101 
 

Appendix B 

Rstan Script for Estimation in the M2PPC Model 

Hierarchical Prior, Interdimensional Correlation = .2, Test length=30 

#SigmaSubjAbil<- matrix(rep(.2,9),nrow=3)+diag(.8,3) 

zero3<-rep(0,3) 

y = theData[,"Ans"]  

itemID =rep(1:30, 500)  

subjID = theData[,"Subj"]  

Nitem = length(unique(itemID))  

Nsubj = length(unique(subjID)) 

NAnsK = length(unique(y)) 

NDim = 3 

Ntotal = nrow(theData)  

W = diag(3) 

 

dataList = list( 

  y=y , itemID=itemID , subjID=subjID , Nitem=Nitem , Nsubj=Nsubj , 

NAnsK=NAnsK,NDim=NDim, 

  Ntotal=Ntotal,zero3=zero3,W=W) 

modelString = " 

data { 

int<lower=1> Nsubj;                // number of students      
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int<lower=1> Nitem;                // number of questions     

int<lower=1> Ntotal;              // number of observations      

int<lower=1,upper=Nsubj> subjID[Ntotal];    // student for observation n   

int<lower=1,upper=Nitem> itemID[Ntotal];    // question for observation n   

int<lower=1,upper=5> NAnsK;           //number of answer categories 

int<lower=1,upper=5> y[Ntotal];     // category of observation n  y[N] 

int<lower=1,upper=3> NDim;                // number of latent dimensions   D 

vector[3] zero3; 

matrix[3,3] W; 

} 

parameters { 

matrix[Nitem,NAnsK-1] itemDiff;       //intercept parameters 

matrix<lower=0>[Nitem,NDim] itemDisc;       //slope parameters 

vector[NDim] subjAbil[Nsubj];      //person parameter matrix 

real muDiff; 

real <lower=0> sigmaDiff;     

real muDisc;   

real <lower=0> sigmaDisc; 

 

vector [NDim] muAbil;  

cov_matrix [NDim] SigmaSubjAbil; 

} 
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transformed parameters { 

matrix[Ntotal, NAnsK] pMat; 

vector[3] Disc_vector; 

matrix[Ntotal, NAnsK] pAns; 

for ( rowIdx in 1:Ntotal ) { 

  pMat[rowIdx,1]=1; 

} 

for ( rowIdx in 1:Ntotal ) { 

  for (AnsKx in 2:NAnsK){ 

    matrix[1,NDim] v1; 

    v1=block(itemDisc,itemID[rowIdx],1,1,NDim); 

    Disc_vector=to_vector(v1); 

    pMat[rowIdx,AnsKx]=pMat[rowIdx,AnsKx-

1]*exp(Disc_vector'*subjAbil[subjID[rowIdx]]+itemDiff[itemID[rowIdx],AnsKx-1]); 

  } 

} 

for ( rowIdx in 1:Ntotal ) {  

  for (AnsKx in 1:NAnsK){ 

    pAns[rowIdx,AnsKx]=pMat[rowIdx,AnsKx]/sum(block(pMat,rowIdx,1, 1, NAnsK)); 

  } 

} 

} 



 

104 
 

model { 

//the hyperpriors 

muDiff ~ normal (0,10^6);     

sigmaDiff ~ gamma(1,1); 

muDisc ~ normal (0,10^6);   

sigmaDisc ~ gamma(1,1); 

muAbil  ~ multi_normal (zero3,10^6*W); 

SigmaSubjAbil ~ inv_wishart(4.0, W[,]); 

// the priors  

to_vector(itemDiff) ~ normal(muDiff, sigmaDiff);  

to_vector(itemDisc) ~ lognormal(muDisc, sigmaDisc); 

subjAbil ~ multi_normal(muAbil,SigmaSubjAbil); 

// the likelihood 

for ( rowIdx in 1:Ntotal ) { 

  y[rowIdx] ~ categorical_logit(to_vector(block(pAns,rowIdx,1, 1, NAnsK)')); 

} 

} 

" 

writeLines( modelString , con="hirt.stan" ) 

library("rstan") 

#rstan_options(auto_write = TRUE) 

#options(mc.cores = parallel::detectCores()) 



 

105 
 

library("parallel") 

memory.limit(56000) 

hirt.model<- stan(file  = "hirt.stan", data = dataList ,chains = 0) 

Nchains <- 3 

Niter <- 15000/3 

initsList <-list() 

set.seed(123456) 

for (i in 1:3){ 

  initsAbil = matrix(rnorm(500*3),nrow=500) 

  initsDisc = matrix(exp(rnorm(30*3)),nrow=30) 

  initsDiff = matrix(rnorm(30*4),nrow=30)   

  thisList=list(subjAbil=initsAbil,itemDiff=initsDiff,itemDgisc=initsDisc,.RNG.name= 

"base::Super-Duper", 

                .RNG.seed=123456+length(initsList)) 

  initsList[[length(initsList)+1]] <- thisList 

} 

 

 

t_start <- proc.time()[3] 

fit<-stan(fit = hirt.model, data =dataList,pars=c("subjAbil", "itemDiff", "itemDisc"), 

         chains = Nchains, iter=Niter,thin=1,init=initsList) 

t_end <- proc.time()[3] 
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t_elapsed <- t_end - t_start 

(time <- t_elapsed / Nchains / (Niter/2)) 

NUTSH <- As.mcmc.list(fit) 

save(NUTSH , file="NUTSH.Rdata") 

outNUTSH <-  as.data.frame(as.matrix(fit)) 

write.csv(outNUTSH, "outNUTSH.csv") 

fit_summary <- summary(fit) 

fitNUTSH <- fit_summary$summary 

write.csv(fitNUTSH, "fitNUTSH) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

107 
 

Appendix C 

Rationale for NOT Needing IRB Review 

This study is to explore how two Bayesian estimation methods: Gibbs Sampler 

and Hamiltonian Monte Carlo-NO-U-TURN-SAMPLER perform in parameter 

estimation for a multidimensional partial credit item response model. A set of simulated 

datasets are created according to statistical simulation procedures, and the parameters are 

estimated by using the two Bayesian estimation methods. Finally, the Bias and Root 

Mean Square Errors are calculated to evaluate the performance of the two algorithms in 

different simulated conditions. 

The study involves no living individuals, no interventions, no interactions 

(through surveys, interviews, tests, and observations), no identifiable private information, 

no existing data, no collaboration with other institutions, no engagement of University of 

Denver. Therefore, it does not need IRB review.  
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