
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2019

Probabilistic Record Linkage with Elliptic Curve Operations Probabilistic Record Linkage with Elliptic Curve Operations

Shreya Dhiren Patel
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Recommended Citation Recommended Citation
Patel, Shreya Dhiren, "Probabilistic Record Linkage with Elliptic Curve Operations" (2019). Electronic
Theses and Dissertations. 1552.
https://digitalcommons.du.edu/etd/1552

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=digitalcommons.du.edu%2Fetd%2F1552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.du.edu%2Fetd%2F1552&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1552?utm_source=digitalcommons.du.edu%2Fetd%2F1552&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Probabilistic Record Linkage with Elliptic Curve Operations Probabilistic Record Linkage with Elliptic Curve Operations

Abstract Abstract
Federated query processing for an electronic health record infrastructure enables large epidemiology
studies using data integrated from geographically dispersed medical institutions. However, government
imposed privacy regulations prohibit disclosure of patient's health record outside the context of clinical
care, thereby making it difficult to determine which records correspond to the same entity in the process
of query aggregation.

Privacy-preserving record linkage is an actively pursued research area to facilitate the linkage of database
records under the constraints of regulations that do not allow the linkage agents to learn sensitive
identities of record owners. In earlier works, scalability has been shown to be possible using traditional
cryptographic transformations such as Pohlig-Hellman ciphers, precomputations, data parallelism, and
probabilistic key reuse approaches.

This work proposes further optimizations to improve the runtime of a linkage exercise by adopting elliptic
curve based transformations that are mostly additive and multiplicative, instead of exponentiations. The
elliptic curve operations are used to improve the precomputation time, eliminate memory intensive
comparisons of encrypted values and introduce data structures to detect negative comparisons. This
method of record linkage is able to link data sets of the order of a million rows within 15 minutes. The
approach has been gauged using synthetic and real world demographics data with parametric studies.
We have also assessed the residual privacy risk of the proposed approach.

Document Type Document Type
Thesis

Degree Name Degree Name
M.S.

Department Department
Computer Science

First Advisor First Advisor
Rinku Dewri, Ph.D.

Second Advisor Second Advisor
Matt Rutherford, Ph.D.

Third Advisor Third Advisor
Yun-Bo Yi, Ph.D.

Keywords Keywords
Elliptic curve cryptography, Federated query processing, Private record linkage

Subject Categories Subject Categories
Computer Sciences | Databases and Information Systems | Information Security

Publication Statement Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.

This thesis is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/1552

https://digitalcommons.du.edu/etd/1552

Probabilistic Record Linkage

with

Elliptic Curve Operations

A Thesis

Presented to

the Faculty of the

Daniel Felix Ritchie School of

Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Shreya Dhiren Patel

March 2019

Advisor: Rinku Dewri

c©Copyright by Shreya Dhiren Patel 2019

All Rights Reserved

Author: Shreya Dhiren Patel
Title: Probabilistic Record Linkage with Elliptic Curve Operations
Advisor: Rinku Dewri
Degree Date: March 2019

Abstract

Federated query processing for an electronic health record infrastructure enables large

epidemiology studies using data integrated from geographically dispersed medical institu-

tions. However, government imposed privacy regulations prohibit disclosure of patient’s

health record outside the context of clinical care, thereby making it difficult to determine

which records correspond to the same entity in the process of query aggregation.

Privacy-preserving record linkage is an actively pursued research area to facilitate the

linkage of database records under the constraints of regulations that do not allow the

linkage agents to learn sensitive identities of record owners. In earlier works, scalabil-

ity has been shown to be possible using traditional cryptographic transformations such as

Pohlig-Hellman ciphers, precomputations, data parallelism, and probabilistic key reuse ap-

proaches.

This work proposes further optimizations to improve the runtime of a linkage exercise

by adopting elliptic curve based transformations that are mostly additive and multiplicative,

instead of exponentiations. The elliptic curve operations are used to improve the precom-

putation time, eliminate memory intensive comparisons of encrypted values and introduce

data structures to detect negative comparisons. This method of record linkage is able to link

data sets of the order of a million rows within 15 minutes. The approach has been gauged

using synthetic and real world demographics data with parametric studies. We have also

assessed the residual privacy risk of the proposed approach.

ii

Acknowledgements

I would like to express my sincere gratitude towards my thesis advisor, Dr. Rinku Dewri,

for guiding me through every stage of my research work. His encou-ragement and guidance

always motivated me to stay passionately indulged in the research. I was honoured to work

with him and gain a profoundly enriched experience.

I am very thankful to Dr. Matt Rutherford and Dr. Yun-Bo Yi for being a part of my

Oral Defense Committee. Their valuable insights for my work helped me extensively in

ameliorating the work.

I am very grateful to be a part of University of Denver and I am extremely thankful to

the Department of Computer Science at University of Denver for providing me with the

resources and a friendly environment to successfully complete my research work.

I would like to heartily thank my parents, Dhiren and Dimple, and my sister, Pearl,

for their constant support, love and encouragement throughout my thesis. I am also very

thankful to my friends and colleagues who have been extremely supportive during my

thesis.

iii

Table of Contents

1 Introduction 1
1.1 Thesis Outline . 3

2 Related Work 4
2.1 Initial Work . 4
2.2 Using Hash Functions . 6
2.3 Using Bloom Filters . 9
2.4 Blocking Procedure . 10
2.5 Using Secure Multi-party Computation (SMC) 10
2.6 Using Commutative Encryption . 12

3 Background 14
3.1 Federated Query Processing . 14
3.2 Detecting Distributed Records . 16
3.3 Linkage Issues . 17
3.4 Similarity Scores . 17

3.4.1 Attribute Similarity (Dice’s Coefficient) 18
3.4.2 Record Similarity . 18

3.5 Matching Algorithm . 19
3.6 Cryptographic Protocols . 20

3.6.1 Pohlig-Hellman Exponentiation Cipher 21
3.6.2 Elliptic Curve Cryptography . 21

4 Private Record Linkage using Key Rings 26
4.1 Introduction . 26
4.2 Proposed Methodology . 26

4.2.1 Trivial Approach . 26
4.2.2 Linkage using Precomputations 28
4.2.3 Precomputing using a Key Ring 29
4.2.4 Data Set Encoding . 36
4.2.5 Linking Data Sets . 40

4.3 Implementation Details . 44

iv

4.3.1 File Structures . 45
4.3.2 Environment . 48

5 Results 50
5.1 Data Sets . 50
5.2 Precomputation . 51
5.3 Linkage Execution Time . 51

5.3.1 Hash Map Efficiency . 52
5.3.2 Different Number of Bigrams . 54
5.3.3 Pohlig-Hellman versus ECC Approach 55

5.4 Exposure Risk . 55
5.5 Linkage Accuracy . 56
5.6 Linkage with Blocking . 58

6 Conclusions and Future Work 59

Bibliography

v

List of Figures

2.1 Distributed architecture based on HMAC [10] 7
2.2 Garbled circuit protocol . 11

3.1 Distributed architecture of federated query processing [9] 15
3.2 Regional grid node [9] . 15
3.3 Determining common bigrams . 19
3.4 Flowchart for matching algorithm . 20
3.5 Elliptic curve with a =−2 and b = 2 . 22
3.6 Elliptic curve with three aligned points . 24

4.1 Private record linkage workflow . 27
4.2 Generation of precomputation files . 30
4.3 Frequency distribution of most common bigrams in English text 37
4.4 Before frequency smoothing . 38
4.5 After frequency smoothing . 38
4.6 Key usage in encoding bigrams . 39
4.7 Hash map generation and usage during record linkage 42
4.8 Component dependency for privacy preserving method 46
4.9 Keyperm file structure . 47
4.10 L0 - L1 file structure; Encoding type is 0 for L0 and 1 for L1; Message

identifier is ASCII representation of bigram in L0 and 0x0000 in L1 47
4.11 L2 file structure . 48
4.12 Encoded data file structure . 49

5.1 Precomputation time for different number of keys 52
5.2 Linkage time for different hash map size 53
5.3 Hash map efficiency in avoiding bigram comparisons and reducing execu-

tion time . 54
5.4 Linkage time for different number of bigrams per data value 55
5.5 Exposure risk associated with identifying half the bigrams in a field with

different key ring sizes . 56
5.6 Precision and recall of a quadratic record linkage procedure for varying

similarity thresholds in [0,1] (Equal weights are assigned to all fields) . . . 57

vi

List of Tables

3.1 Comparable estimated security strength of cryptographic algorithms based
on varying key sizes [14] . 22

4.1 Level-1 precomputation at site SA . 32
4.2 Level-1 precomputation at site SB . 32
4.3 Level-2 precomputation at site SA; LK = local key, EK = external key, PM

= permuted message . 34
4.4 Level-2 precomputation at site SB; LK = local key, EK = external key, PM

= permuted message . 34
4.5 Indices of sorted L2 messages from both sites 41
4.6 Linkage map built using the indexing triplets 42

5.1 Configurations of machines used to benchmark execution times 52
5.2 Linkage time in different machine configurations; Data sets have 25% over-

lap and 30% of the records in one data set has errors (s: seconds, m: min-
utes, h: hours) . 53

5.3 Execution time (in m: minutes) to link two data sets with 1,000,000 records
in each using blocking; Machine S3 is used 58

vii

Chapter 1

Introduction

The Electronic Health Record (EHR) infrastructure has made it easy to perform data

analysis over medical records and enable comprehensive epidemiology studies in the field

of medical research. Federated Query Processing systems provide a useful interface for

such medical research over geographically distributed health records. Federated query pro-

cessing requires standardization of the dispersed data, by removing the presence of dupli-

cate entities and thereby, linking data from different data sources to unique entities. The

process of linking the records present in different data sets but referring to a single en-

tity, where the records may or may not share common identifiers, is referred to as record

linkage.

However, patient’s medical records contain sensitive private information and holds con-

straints over sharing of the data with multiple entities. Many countries have strict laws

over the sharing of medical information of an individual, which restricts the data access

exclusively to the health-care provider (health professional) and the patient himself. For

example, the Health Insurance Portability and Account-ability Act (HIPAA) [1] prohibits

the disclosure of personally identifiable health information that can be used to contact,

identify or locate a unique individual. The identifiers protected by HIPAA includes name,

address, dates (date of birth, date of death (if applicable), admission date, discharge date),

telephone number, finger/voice print, vehicle number, etc. This challenges data analysis

over medical records, since different records belonging to the same entity may be present

1

at multiple locations and conventional record linkage techniques require the information

to be revealed to a third party. Hence, a privacy-preserving record linkage is substantially

important in the federated query processing over medical data sets. The idea of record

linkage was proposed way ahead of time but record linkage in a privacy-preserving setting

was explored as the need to maintain data privacy increased.

The problem statement that we address in this thesis is as follows: Consider two sites

or parties, site SA and site SB with respective databases, DA and DB. DA and DB contains

multiple sensitive records with one or more attributes. Sites SA and SB want to determine

what percentage of data overlap exists between the data sets DA and DB, without revealing

their confidential data to each other or to a third party. The third party, a Linkage Agent,

performs the process of record linkage using the encoded databases, received from SA and

SB.

The initial approaches for private record linkage used the one-way hash functions to en-

code the data before the process of record linkage. But encoding the data with one-way

hash functions was insufficient and unreliable due to the presence of data inconsistencies

like data entry errors and data duplication. Hence, optimizations were made which involved

switching from exact matching approaches to approximate matching approaches using n-

grams (substrings of length n). Due to the lack of privacy guarantees to the approximate

matching approach against dictionary attacks and frequency-based attacks, the technique

of using Bloom filters was explored but at the expense of linkage performance. Later, it

was proposed to use a commutative encryption method with modular exponentiation to

compute private set intersections. But with higher security, comes heavy computation and

communication complexity while handling big data. Such an approach made the commu-

tative encryption process highly expensive and infeasible with the available hardware back

then. In 2016, Dewri et al. proposed the Pohlig-Hellman approach which uses the Pohlig-

Hellman exponentiation cipher in a set intersection protocol, and obtained improvements

with precomputations and data parallelism, making the task of private record linkage feasi-

ble with the current hardware advancements under a commutative encryption scheme [9].

The work in this thesis proposes an Elliptic Curve (EC) based approach with various

upgrades that can be implemented against the Pohlig-Hellman approach and intends to

show a significant improvement in the record linkage time for big data along with detailed

analysis of the residual privacy risk of the approach. The primary contributions of the

2

EC-based approach are as follows: First, we optimize the precomputation procedure by re-

placing modular exponentiations of the Pohlig-Hellman approach with EC-based additive

and multiplicative one-way transformations. Second, we eliminate the need to communi-

cate huge precomputed tables (containing EC points of long memory bytes) of encrypted

data values and replace them with lookup tables based on indices. This avoids huge mem-

ory comparisons of the encrypted values. Third, we improve the linkage time by using hash

maps to avoid unnecessary comparisons in the matching process.

1.1 Thesis Outline
The overview of the thesis is as follows:

• Related Work: We discuss previous works in the field of record linkage and relevant

contributions on improving and securing the process of private record linkage in this

chapter.

• Background: This chapter covers description of the background to understand the

proposed framework in the thesis. It explains the architecture followed in the Feder-

ated Query Processing System and the matching algorithm underlying the system.

• Private Record Linkage using Key Rings: This chapter discusses the methods used in

the EC-based approach of record linkage along with the implementation details used

to generate the results in the thesis.

• Results: This chapter presents the results obtained by performing different parametric

experiments, accompanied with time based comparisons of previous work and the

current work.

• Conclusions and Future Work: This chapter summarizes the contributions of the

work in the thesis and briefly discusses the different directions that can be explored

for possible optimizations of the matching process.

3

Chapter 2

Related Work

2.1 Initial Work
Dunn initialized the idea of record linkage in the year 1946, metaphorizing it with “the

process of assembling the pages of the Book of Life into a volume” [3]. His paper empha-

sizes on how to perform a record linkage over the distributed records of individuals that can

help infer coordinated statistical information for the health and welfare organizations, using

the idea of linking data that was used by the Canadian system for distributing family all-

owances, proposed in the Family Allowances Act, Canada, 1944 [15]. Fellegi and Sunter

proposed a model for record linkage with statistical and probabilistic linkage rules [4].

These linkage rules are similar to mathematical decision rules (mapping of an observation

into an action). They suggested that due to the presence of errors and incompleteness in

the records of two databases, there will be cases where the database linking might wrongly

conclude two unmatched records to be identical and conversely, two matched records to

be non-identical, resulting in unreliable matchings. Hence it is important to consider the

error levels while devising an optimal linkage rule. A brief explanation of their method is

as follows.

Consider two databases DA and DB with some common attributes. Let record a ∈ DA

and record b ∈ DB. The set of ordered pairs of records is generated as follows.

DA×DB = {(a,b);a ∈ DA,b ∈ DB}

4

The process to link records involves comparing the record pairs and categorizing them into

a matched pair or an unmatched pair which can be defined as follows.

M = {(a,b);a = b,a ∈ DA,b ∈ DB}

U = {(a,b);a 6= b,a ∈ DA,b ∈ DB}

Each record pair can be linked to a status, positive link P, where P is the random variable

defined as:

(a,b) ∈M =⇒ P = 1

(a,b) ∈U =⇒ P = 0

The comparison of records is done with a comparison function γ(a,b) on each attribute.

The set of all possible observations of the function γ is defined as the comparison space τ .

The function γ(a,b) will decide whether a record pair (a,b) is a positive link ((a,b) ∈M),

(a,b) is a positive non-link ((a,b)∈U) or (a,b) is a possible link (when there is not enough

information to put it into either sets M or U). Thus, based on the observation of the function

γ(a,b), either of the three actions will be performed denoted by A1, A2 and A3 respectively.

Considering this categorization, a linkage rule L, based on conditional probabilities, will

be defined as a mapping from the comparison space τ onto a set of random decision func-

tions d(γ). The decision function d(γ) will be defined as:

d(γ) = {P(A1|γ),P(A2|γ),P(A3|γ)};γ ∈ τ

3

∑
i=1

P(Ai|γ) = 1

A linkage rule may have either of the following 2 types of errors:

• Unmatched comparison is concluded as a positive link:

µ = P(A1|P = 0)

5

• Matched comparison is concluded as a positive non-link:

λ = P(A2|P = 1)

A linkage rule on the comparison space τ with error levels µ and λ where the values

µ ∈ (0,1) and λ ∈ (0,1) is defined as:

L(µ,λ ,τ)

The optimal linkage rule will be the one that minimizes the probability of the possible link

action A3 for the error levels µ and λ .

Winkler elaborately discussed and performed surveys [16] over the different cases (rec-

ords being a match or non-match) arising in the process of performing record linkage using

Fellegi and Sunter’s approach. He also suggested suitable methods that could be applied in

those cases. But these approaches did not consider preserving data privacy.

2.2 Using Hash Functions
The proposal to perform record linkage in a privacy-preserving setting was initiated by

Dusserre et al. [5], Bouzelat et al. [27] and Grannis et al. [40], who suggested the use of

non-reversible one-way hash functions in enciphering the data. A basic protocol to perform

a record linkage using hash functions is as follows:

• Consider two sites SA and SB who want to perform a record linkage where a linkage

agent LA is the third party who computes the record linkage.

• SA and SB will decide upon a secure hash function to be used (example, SHA-Secure

Hash Algorithm).

• SA and SB compute the hash values of their data and send them to LA.

• LA compares the hash values received from both sites. If two hash values are same,

LA concludes that the source values coming from the two data sets is a match.

Schadow and Grannis gave a privacy-preserving framework in a distributed network us-

ing the HMAC (Hash-based Message Authentication Code) algorithm [17] for record link-

age. According to Schadow and Grannis, since the traditional approach to perform research

on medical databases involves aggregating all the data linked to a patient at a single site

6

and then running required queries over the accumulated data, such large collection of pa-

tient’s data puts the patient’s privacy in danger [10]. Hence, it is more desirable to perform

a private record linkage over the distributed databases. Considering this approach, they de-

signed a method based on a strong keyed-hash algorithm (HMAC) to perform bio-medical

research on de-identified clinical cases that are distributed across a large network.

Query Poser

Mediator

Data

Source

1

Data

Source

2

Data

Source

n

Distributed Data Sources with different

Levels of Trust

…

Returns resultsSends query

q1

HMAC-ids

HMAC-ids

HMAC-ids

q2 qn

Figure 2.1: Distributed architecture based on HMAC [10]

Figure 2.1 depicts the method proposed by Schadow and Grannis. The framework in-

cludes a Query Poser (sends and receives results from the mediator), a Mediator (acts as

a linkage agent) and data sources. The HMAC algorithm is used to encrypt the patient’s

identifiers and then deterministic linkage techniques are applied. The data entry errors

(like typographical errors), likely to be present in the databases, are not taken into consid-

eration in the design of this approach. Also, the framework is exposed to dictionary and

frequency-based attacks [8].

7

Churches and Christen elaborated on two different approaches to perform rec-ord match-

ing: exact matching and approximate matching [6]. The exact matching approach involves

comparing the strings as a whole (without breaking them into n-grams). The approximate

matching approach breaks a string into n-gram substrings and compares the substrings

while performing a record matching. Exact matching method of string comparison has the

drawback that even a single character difference would result in the algorithm concluding

that the two strings are a non-match since they will produce two completely different hash

values (in HMAC approach). Durham et al. also confirms that approximate matching ap-

proach in privacy-preserving setting is more reliable than the exact matching approach [19].

Churches and Christen present the n-gram similarity comparison technique for secret

strings or sequences, to overcome the problem of performing exact matching of confidential

data with data entry errors [6, 18]. They present the method where:

• The 2 parties willing to perform a record linkage mutually agree on a secret key, a

secure one-way hash function, a standard protocol to preprocess strings (for example,

convert all characters to lower case and, remove or replace punctuation and whites-

pace) and a standard method to perform encryptions using the secret key and the hash

function.

• The strings are broken into a set of n-grams. Precomputations are performed which

includes building the power set (2b− 1 subsets of the n-gram set, where b is the

number of n-grams of the string) of each set of n-grams. For example, the bigram set

β for the string “cats” would be β = {“ca”, “at”, “ts”} and the power set for β , P(β)

would comprise of

(“ca”), (“at”), (“ts”),

(“ca”, “at”), (“at”, “ts”), (“ca”, “ts”),

(“ca”, “at”, “ts”)

Each of the subsets are sorted and hash values are generated for them. After nec-

essary precomputations are performed on the set of n-grams, the sets are sent to a

trusted third party who performs the matching by calculating the bigram score as

follows.

bigram score =
|α ∩β |

0.5× (|α|+ |β |)

8

α = set of bigrams of an attribute value of a record in first party

β = set of bigrams of an attribute value of a record in second party

Two strings are considered to be a match if there exist a significant overlap between

them (bigram score is high). However, hash function based approaches fail to guarantee

protection against dictionary attacks and frequency attacks because of their deterministic

nature. Karakasidis and Verykios propose to use phonetic codes for comparisons to perform

a probabilistic data linkage [28]. Other probabilistic approaches include the creation of

linkage keys from specific indices of data values [41] and embedding data values in a

multi-dimensional space [42].

2.3 Using Bloom Filters
To avoid the threat of constructing the original strings from the set of n-grams, Schnell

et al. proposed the idea to use Bloom filters to calculate the similarity scores between the

set of n-grams of two strings [7, 19].

A Bloom filter is a binary data structure which is used to test the presence of an element

in a set. The bits in the Bloom filter are set according to the output of the hash functions

applied in encoding the n-grams of a string. Hence, to compare two strings, two respec-

tive Bloom filters are set and compared. Running a query on a Bloom filter either returns

a false positive (element may be present in the set) or a true negative (element is defi-

nitely not present in the set). In the process of record linkage, the two parties can compute

their respective Bloom filters and send them to the third party. The third party compares

the Bloom filters and generates appropriate results for the two parties. However, feasible

attacks to reverse the Bloom filter encodings have been shown to be possible [29–32].

The frequency attacks may be made less feasible by using more number of hash functions

[33]. Taking an account of the issues with using a single Bloom filter, Durham et al.

[21] and Schnell et al. [34] proposed to use a combination of multiple Bloom filters while

calculating the n-gram similarity scores between two strings. Since Bloom filters produce

false positives, using multiple bloom filters would lower the performance of record linkage

by trading off with the correctness of the method. Cryptanalysis attacks on composite

Bloom filters have also been demonstrated [35, 36]. Although Bloom filters seem to be the

fastest method for record linkage, much remains to be explored due to their exposure to

privacy risks.

9

2.4 Blocking Procedure
Homomorphic encryption is another approach for record linkage that is used in testing

the similarity distances of data values [43]. But the application of this approach to huge

data sets comes at a huge expense. In general, when data sets scale to the order of millions,

linkage time becomes a matter of concern. Hence, a blocking procedure is used to address

the issue [37, 43]. Under this procedure, huge data sets are divided into smaller disjoint

data subsets based on either an attribute value or partial information composed of multiple

attributes. Under the blocking procedure, creation of empty subsets may leak information

and jeopardize data privacy. Hence, privacy treatments are enforced to nullify the issue

[44, 45]. Homomorphic encryption has been utilized in optimizing private set intersection

protocols too [46].

2.5 Using Secure Multi-party Computation (SMC)
Different private set intersection (PSI) approaches have been proposed using the concept

of SMC with oblivious transfer. PSI protocols are relatable to private record linkage since

they compute the intersection of sets of two parties without revealing anything other than

the intersection.

SMC is a part of cryptography where two or more parties jointly desire to compute a

function of their inputs such that their inputs are not publicly disclosed. Thus, SMC can be

used to build almost any type of online cryptographic application which involves mutually

distrusted parties. Consider an example, the Millionaire’s problem [24], involving parties

with mutual distrust, described as follows.

2 millionaires, Alice and Bob want to find out who is richer among the both of them

without disclosing their wealth. The total valuation of their assets are a and b, respectively.

They want to devise a function that calculates the maximum of a and b.

F(a,b) = maximum(a,b)

Conventionally, they can choose a trusted third party, Tony (who is good at keeping

secrets) and each of them can reveal their wealth to Tony. Tony would compare the values

and declare who is richer. Unfortunately, this method would involve declaring private data

10

to a third party or an adversary, which is not wise. SMC helps in devising a function such

that the following criteria are satisfied:

• Communication happens only between two parties and the idea of a third party is

completely eliminated.

• No party knows about the input of the other party (their wealth remains hidden).

In order to devise protocols for SMC, Rabin introduced the concept of oblivious transfer

[25]. Oblivious transfer is a powerful cryptographic protocol to transfer one of the many

pieces of information from a sender to a receiver such that the sender has no knowledge of

what piece of information (if any) has been received.

Andrew Yao presented the first protocol for two-party secure computation in 1986, to

solve the Millionaire’s Problem [24]. Essentially, Yao’s protocol is a compiler that takes a

circuit as its input and transforms it into one which returns nothing but the final output. The

functionality is represented in the form of a garbled circuit. A garbled circuit is made of

encrypted/garbled logic gates. Garbled gates are similar to regular logic gates, except they

operate using encrypted sampled keys instead of bits. It can be described as an encrypted

circuit with a pair of keys for every wire such that for any gate, given one key on every

input wire :

• One can compute the key of the corresponding gate output.

• Nothing else is learnt.

Alice Bob

G(C)

keys for x

keys for y

f(x, y)
computes f(x, y)

using oblivious transfer

garbles C

input x input y

Figure 2.2: Garbled circuit protocol

The garbled circuit protocol is described as follows:

1. The function is described in the form of a boolean circuit. It is known to both parties.

11

2. Alice constructs a garbled circuit G(C) by encrypting (garbling) the given boolean

circuit C.

3. Alice sends G(C) to Bob.

4. Alice sends the keys associated with her input x, to Bob. Bob does not learn the

boolean value corresponding to the keys.

5. Alice and Bob run an oblivious transfer protocol so that only Bob learns the keys

corresponding to his input y.

6. Bob evaluates the circuit G(C) to retrieve f (x,y).

7. Bob sends the result f (x,y) back to Alice.

Pinkas et al. gave various optimizations to the existing protocol covering efficient ways

to implement the Yao’s garbled circuit protocol in different settings [23]. But PSI protocols

focus on performing few intersections of large sets but are not scalable while performing

huge number of intersections over smaller sets which becomes a bottleneck for the private

record linkage.

2.6 Using Commutative Encryption
Agrawal et al. first proposed the use of commutative encryption in record linkage [8].

They addressed the problem to perform database linking with minimal sharing using com-

mutative encryption over the data at respective sites. A general encryption scheme to en-

crypt a data value x using a key k and an encryption function f would be f (k, x). Let there

be two keys k1 and k2, then using two keys, the encryption can be described as follows.

f (k2, f (k1, x))

where x is first encrypted with key k1 and the encrypted value is again encrypted with key

k2. Under the commutative property of the encryption function, the following holds true.

f (k2, f (k1, x)) = f (k1, f (k2, x))

However, Malin and Airoldi [22] claimed that there exist scalability issues with Agra-

wal’s approach. Dewri et al. proposed a scalable and efficient approach to incorporate

commutative encryption scheme in record linkage of big data using precomputed tables [9].

12

We have used various aspects of their approach as the foundation of EC-based approach

proposed in this thesis.

13

Chapter 3

Background

3.1 Federated Query Processing
A federated query processing system is an information retrieval system which enables

concurrent search across multiple distributed data sources. It is used to integrate informa-

tion from heterogeneous data sources and present it in a standard or partially homogeneous

form. A user submits a query to the system and the system compiles results of the query

from geographically distributed databases and query engines, involved in the federation.

Figure 3.1 represents a distributed architecture for federated query processing, based

on the SAFTINet architecture that provides a scalable and sustainable system to support

federated query processing for electronic health records [2]. Authorized users can request

data from the partner grid nodes via a web-based query portal. The query portal transmits

the queries to a federated query portal (FQP). The FQP contacts each grid node selected by

the user and submits the user’s query to those grid nodes. Query results are then compiled

on FQP and presented to the user. The FQP and each grid node maintain their own list of

authorized groups and users, and interact via an intermediate authentication, authorization

and accounting (AAA) service. The main components of the architecture are as follows.

• Federated query portal: It is an electronic health record portal which combines geo-

graphically dispersed data across medical institutions.

• Authentication, Authorization and Accounting (AAA) service: AAA is a framework

to intelligently control access to computer resources, enforce policies, audit usage,

and provide necessary billing information for the services.

14

Query
Portal

FQP AAA

Regional

Grid

User Nodes

Figure 3.1: Distributed architecture of federated query processing [9]

– Authentication: provides a way to identify the user.

– Authorization: permits to do certain task(s).

– Accounting: measures the resources a user consumes during the access.

Figure 3.2 represents the structure of a regional grid node. Each of the regional grid

nodes has a structure similar to the federated query processing system. The regional grid

nodes consist of a linkage agent, rFQP (regional FQP), rAAA (regio-nal AAA) service and

multiple data sources.

AAA

Regional FQP

Regional AAA

Linking Agent

Data Sources

E
n

c
o

d
e
d

 l
in

k
a
g

e
 a

tt
r
ib

u
te

s

L
in

k
a
g

e
 i
d

e
n

ti
fi

e
r
s

Figure 3.2: Regional grid node [9]

• Data sources: Data sources are made up of a local query engine and a standardized

database. The local query engine fetches data from the corresponding database.

15

• rFQP: A regional FQP receives queries from the FQP of the main system and com-

piles/forwards the results evaluated from multiple regional data sources. All the

query specific results compiled by the rFQP are encrypted and availed only to the

authorized query user. No component of the system can view any unencrypted health

record.

• rAAA: A regional AAA handles the communication between the rFQP and data

sources.

• LA: Linkage agent helps the rFQP to resolve data conflicts like data duplication or

data inconsistency in the data fetched from the data source.

The LA defines the uniqueness of the data based on some linkage identifiers (first name,

last name, address, phone number, etc.). LA asks the data sources for results on these iden-

tifiers. The privacy preserving data source returns encrypted results and then LA resolves

the data overlap and inconsistency issues without viewing the data and working with the

available encrypted data. On query request, encrypted records are passed to the LA who

then provides required results to the rFQP and those results are presented to the user. Fed-

eral entities like the National Center for Health Statistics can play the role of a linkage

agent in the system.

3.2 Detecting Distributed Records
Record linkage is the procedure to find the records that refer to the same entity, from data

sets across distributed data sources with or without the presence of common identifiers in

the data sets. Conventionally, record linkage can be performed across multiple databases if

the entities of the data sets can be uniquely identified by a primary key identifier or combi-

nation of Personally Identifying Information (PII) like name, contact number, address, etc.

For instance, in the USA, the Social Security Number (SSN) acts as a national identifica-

tion number, which is issued by the Social Security Administration and used to keep track

of social security purposes (taxation, government benefits, etc.) of U.S citizens, permanent

residents and temporary residents in the United States. But there does not exist any medical

identifier and hence one has to use a set of PII to identify an entity uniquely, across multiple

databases.

16

3.3 Linkage Issues
Privacy regulations like HIPAA prohibits disclosing personal health information to unau-

thorized organizations and sets limitations to use a patient’s health data without authoriza-

tion. Because of this, clear text record linkage using multiple identifiers becomes infeasible.

This leads us to pursue private record linkage methods. Private record linkage attempts to

perform a record linkage between databases of two parties without the need to reveal clear

text PII to each other. Ideally, a person’s PII is identical at two different databases. In

practice, databases might carry data inconsistencies arising due to various aspects like data

entry errors, data duplication, difference in data encoding, etc. This motivates us to apply

a non-exact matching (approximate matching) in the process of private record linkage in-

stead of an exact matching. Unlike in exact matching, where full strings of data values are

compared with each other to check equality between records of two databases, non-exact

matching breaks down the strings into sets of n-grams and determines the string equalities

based on the extent of overlap between the two n-gram sets.

3.4 Similarity Scores
The underlying n-gram matching algorithm requires to compute similarity scores at at-

tribute and record level of the data sets. We use bigrams (n = 2) for the method and calcu-

late similarity scores by breaking down the strings in the data set into a set of bigrams. The

similarity scores are calculated as follows.

Let γ denote an ordered set of all possible bigrams constructed from the following 69

characters: A B. . . Z 0 1. . . 9 ˜ ‘ ! @ # $ % ˆ & * () - + = { } [] — \: ; “ ‘ <>

, . ? / and the blank space. There will be a total of 4761 possible bigrams in the set

γ . Consider two databases DA and DB sharing z attributes and owned by sites SA and

SB respectively. The objective is to perform a private record linkage between these two

databases. The process involves performing a privacy preserving join between the given

databases considering the z attributes shared by the databases and taking into account the

presence of data inconsistencies.

The process of linking the databases under non-exact matching, involves computing

record similarity scores between record pairs in the Cartesian product of the records in the

databases DA and DB. To compute record similarity, attribute similarity score is calculated

for corresponding attribute values of the record pair.

17

3.4.1 Attribute Similarity (Dice’s Coefficient)
Attribute similarity between records ra and rb in a given attribute i is calculated using

Dice’s coefficient [9] as follows:

SAttr(ra[i],rb[i]) =
2|α ∩β |
|α|+ |β |

where,

α = set of bigrams from ra[i]

β = set of bigrams from rb[i]

The attribute values are divided into bigram sets and the intersection score is calculated

by counting the number of common bigrams between the bigram sets. The process to do

so is elaborately explained in later sections.

3.4.2 Record Similarity
Record similarity is the similarity value measured between two records of the databases.

A weighted similarity across the attributes is considered here, since, not all the attributes or

identifiers share the same level of importance (discriminatory power) in record matching.

For instance, attributes like “day of birth” (up to 31 possible values) have a higher discrim-

inatory power than “gender information” (only two possible values). Hence, the “day of

birth” attribute will hold a higher weightage in contributing towards the record similarity

score than some trivial attribute like “gender information” which will have much lower

weightage. Record similarity score is calculated as follows.

Let ra and rb be two records from databases DA and DB respectively. The similarity score

S between the two records sharing z attributes is evaluated as:

S(ra,rb) =
z

∑
i=1

wiSAttr(ra[i],rb[i])

where,

wi = weight of attribute i (float value from [0,1])

rx[i] = string value in ith attribute of record x

SAttr = similarity score or measure between two strings (one from each record)

18

It can be seen in Figure 3.3 that a person John Doe can appear in multiple possible

ways in different databases due to data inconsistencies. Using the n-grams approach and

breaking down the strings into bigrams gives more reliable results than performing string

comparisons over whole strings. The number of common bigrams is 4 which is then used

to calculate attribute similarity and then, record similarity.

Figure 3.3: Determining common bigrams

3.5 Matching Algorithm
A standard matching algorithm performs a pairwise comparison of the records from

the two sites. With each record comparison, a similarity score is assigned and based on

the similarity score and pre-decided threshold values, record pairs are divided into three

categories:

• Matches: Record pairs with similarity score more than the upper threshold value

• Non-matches: Record pairs with similarity score less than the lower threshold value

• Undecidable: Record pairs with similarity score between the lower and upper thresh-

old values

Threshold values decide what percentage of overlap between a record pair in the record

matching is acceptable for a pair to be a match or non-match. Since pairwise comparison

of each record from one site is done with each record on another site, the algorithm is a

greedy matching algorithm. The matching algorithm is described in Figure 3.4 as follows:

1. Choose a record ra from DA.

2. For all records rb in DB, compute similarity score S(ra,rb) and update the current

maximum similarity score max(a) (score for maximum similarity for record in DA

19

Figure 3.4: Flowchart for matching algorithm

with record in DB) if a record pair with higher value of S is encountered. Ties are

resolved by picking the first record found with the maximum score.

3. Given an upper threshold Tupper, if max(a)≥ Tupper, then output (ra,rb) as a match.

4. Repeat step 1 to step 3 until DA is empty.

3.6 Cryptographic Protocols
The security strength of public-key cryptography is retained due to the intractability of

respective mathematical problems. It is infeasible to factor a large integer which is com-

posed of two or more prime numbers. This characteristic is exploited to enhance the secu-

rity of the public-key systems. RSA [11] is one of the most used public-key cryptosystem,

however has costly computations for encryption and decryption due to its large key size

20

and exponentiation functions involved. Security of subverting RSA is linked to the key

size (small is less secure) which typically ranges from 1024 bits to 2048 bits.

3.6.1 Pohlig-Hellman Exponentiation Cipher
Dewri et al. [9] uses the Pohlig-Hellman exponentiation cipher scheme [12] in the con-

text of the matching algorithm proposed for bigram messages to map each bigram to unique

values as follows.

Let H be a mapping such that each bigram bi ∈ γ is mapped to a unique value 1≤ gi ≤
p−1; gi is a primitive root of p, and p is a large prime number. For a key K, encoding EK

of bi will be computed as:

EK(bi) = (H(bi)
K)mod p

After computing transformations for the bigrams on both sites, the encoded sets from both

parties are sent to the linkage agent who then performs the linkage process.

But this method imposes limitations over huge data sets due to the usage of exponen-

tiation functions on each bigram. Performing such encodings on each bigram in a huge

data set and comparisons on those encrypted values makes the whole process very time

consuming and results into high computational costs. The linkage time would significantly

reduce if the modular exponentiations can be replaced by simpler mathematical operations

like addition and multiplication. Taking this idea into account, we switch from the Pohlig-

Hellman approach to the elliptic curve cryptography.

3.6.2 Elliptic Curve Cryptography
Elliptic Curve Cryptography (ECC) provides similar security strength as that of RSA

and at a smaller key size of about 256 bits to 360 bits, with additive and multiplicative

operations instead of exponentiations, and hence preferred in many applications [13]. Table

3.1 represents a comparison of the security strengths of different cryptographic algorithms.

Security strength of n bits means it would require 2n operations to break the algorithm

for a brute force approach. It can be observed in Table 3.1 that the elliptic-curve based

algorithms provide much higher security against their non-elliptic curve equivalents. For

example, for a security strength of 256 bits, the asymmetric key algorithms require to use a

key of 15360 bits which becomes infeasible due to the need of high computational power,

while elliptic curve algorithms require a feasible size of only 512 bit key.

21

Symmetric Key Algorithms Asymmetric Key Algorithms Elliptic Curve Algorithms
80 1024 160

112 2048 224
128 3072 256
192 7680 384
256 15360 512

Table 3.1: Comparable estimated security strength of cryptographic algorithms based on
varying key sizes [14]

ECC is public-key cryptography that uses an algebraic elliptic curve over finite fields. In

order to understand the idea of elliptic curve, following are some definitions.

Definition 3.6.1. Elliptic curve: An elliptic curve is an algebraic curve in the Euclidean

plane defined over four elements in some field with the following equation:

y2 = x3 +ax+b (3.1)

Figure 3.5 shows a sample elliptic curve over the Euclidean plane with the constant

values a =−2 and b = 2 in equation 3.1.

Figure 3.5: Elliptic curve with a =−2 and b = 2

22

For ECC, the elements x,y,a and b in equation 3.1 are restricted to a finite field. The

points on the curve in terms of (x,y) coordinate hold properties called Point Addition and

Point Multiplication. Some of the relevant concepts used in ECC are defined as follows.

Definition 3.6.2. Finite Field: A finite field is a set of f inite number of elements with

operations like addition, multiplication, subtraction and division defined on them and hold-

ing commutative, associative, identity, and distributive properties. For example, the set of

integers modulo p is a finite field, denoted by Z/p or Fp; p is a prime number.

Definition 3.6.3. Group: A group is a set of elements with a binary operation where two

elements can be combined to form a third element such that it satisfies the properties of

closure, associativity, identity and invertibility. If the group also holds the property of

commutativity, then it is called an Abelian group. For exam-ple, the set of integers Z
is an Abelian group but the set of natural numbers N is not, since it does not hold the

commutative property.

Definition 3.6.4. Elliptic curve over finite field: An elliptic curve E over a finite field Fp

of integers modulo a prime number p constitutes the set of points {0}∪{(x,y) ∈ Fp×Fp}
such that

y2 ≡ x3 +ax+b(mod p), (3.2)

where, a,b ∈ Fp and 4a2 + 27b2 6≡ 0(mod p). Point manipulations in E are defined using

the operations of Point Addition and Point Multiplication.

Definition 3.6.5. Generator: The generator G is a point (base point) such that the multiples

of G produces a subgroup of E , E (G). If G generates a subgroup with co-factor 1, then

every point in E can be represented as some multiple of G.

Definition 3.6.6. Point addition: It is the operation of adding two points on the elliptic

curve, which yields a third point on the curve. For example, for two points P and Q on

E , the line drawn passing through these points intersects E at a third point R, and the

three points are aligned irrespective of the order as shown in Figure 3.6. Algebraically, if

P = (xP, yP) and Q = (xQ, yQ) are two distinct points, then the line passing through these

two points has the slope

m =
yP− yQ

xP− xQ

23

The line with slope m intersects E at a point R = (xR,yR). The coordinates of R can be

calculated as:
xR = m2− xP− xQ

yR = yP +m(xR− xP)

Figure 3.6: Elliptic curve with three aligned points

Since we are considering a finite field Fp, the equation of the line in Fp will be: ax+by+

c ≡ 0 (mod p) and accordingly, the equations to calculate the slope m and coordinates of

point R will change as follows:

m =
yP−yQ
xP−xQ

mod p

xR = (m2− xP− xQ)mod p

yR = [yP +m(xR− xP)]mod p

If P and Q are not distinct points (P = Q), then the slope will be calculated as:

m =
3x2

P +a
2yP

mod p

Definition 3.6.7. Point multiplication: It is the operation of successively adding a point

to itself along an elliptic curve (performing a series of point addition operations). If x is

24

scalar, point multiplication is denoted as xP where P ∈ E , such that

xP = P+P+ ...+P︸ ︷︷ ︸
x times

ECC uses the idea of point multiplication to generate a one-way function since perform-

ing a point addition operation along the curve generates a third point, whose location does

not reveal any information to trace back to the points that were added in the point addition

operation. Elliptic curve based protocols take advantage of the computational intractability

of the discrete logarithm problem that exists in elliptic Curves. The Elliptic Curve Discrete

Log Problem (ECDLP) problem is defined as follows.

Definition 3.6.8. Elliptic Curve Discrete Log Problem: Suppose E is an elliptic curve over

a finite field Fp and there exist points P,Q∈ E (G). Given Q, as a multiple of P, the problem

is to find n ∈ Z such that Q = nP.

There is no existence of a conventional algorithm to solve this problem in polynomial

time yet. It is hypothesized that it is not feasible to find the discrete logarithm of a random

elliptic curve element with respect to a publicly known point.

25

Chapter 4

Private Record Linkage using Key Rings

4.1 Introduction
Chapter 3 discusses the Federated query processing architecture, cryptographic protocols

that will be used in data transformations and underlying aspects of the matching algorithm

for private record linkage. Figure 3.2 gives an abstract view of the communication be-

tween the regional grid node components. Figure 4.1 depicts the workflow of the data and

precomputed files between the two sites and the linkage agent in the regional grid node.

The sites that intend to perform the record linkage using the opposite site’s encrypted

data uses the publicly known bigram mapping H, which is in the form of a level-0 precom-

putation file, L0. Each site uses the mapping H to perform a level-1 precomputation and

generate L1 files. Both sites exchange the respective L1 files and perform a level-2 precom-

putation to generate L2 files. Both sites also generate multiple keys and permutations, and

use them during the precomputations, and to encode their data files. Each site sends their

encoded data files and L2 files to the linkage agent. The linkage agent performs the record

linkage and sends back the results (unique linkage identifiers pertaining to single entity) to

each site. Details of these steps are presented next.

4.2 Proposed Methodology
4.2.1 Trivial Approach

Section 3.4 describes how to calculate the similarity score between attribute values of

two records using Dice’s coefficient. It requires finding the number of common bigrams

26

Figure 4.1: Private record linkage workflow

between the bigram sets of the attribute values. It is easier to perform such a set intersec-

tion in unencrypted data where one can simply divide the attribute values into bigram sets

and compare the bigram strings to count the number of common bigrams. However, in a

privacy preserving setting, the data is in the encrypted form. String comparisons become

infeasible in such an environment. The following algorithm describes how to perform a set

intersection with encrypted databases.

Let ra and rb be the two records from sites SA and SB respectively. Let α and β be bigram

sets of the data value corresponding to an attribute in the records ra and rb respectively.

Assume that the sites SA and SB have decided on a mapping H, such that all bigrams are

represented by some point on an elliptic curve. Let EKSsite be the commutative encryption

27

function applied to the bigrams using key KSsite, site ∈ {A,B}. |α ∩β | can be calculated

using the following algorithm.

1. For every pair of bigrams (bi,b j) ∈ α×β ,

(a) The sites SA and SB pick secret keys (randomly generated) KSA and KSB re-

spectively, KSA,KSB ∈ Z.

(b) SA computes encrypted value eA = EKSA(H(bi)) and SB computes encrypted

value eB = EKSB(H(b j)) using the mapping H and keys picked in step a. The

sites then exchange the encoded values.

(c) Both sites apply their respective keys to the encoded values that came from

the opposite site. Thus, SA computes e
′
A = EKSA(eB) and SB computes e

′
B =

EKSB(eA). The sites again exchange the new encoded values.

(d) SA and SB conclude that bi and b j matches if e
′
A = e

′
B.

2. SA and SB calculate |α ∩β | as the number of matches found in step 1.

The correctness of the algorithm lies in the commutative properties of the transformation

function EKSsite . However, the need to perform cryptographic transformation for every

comparison, often repeatedly on the same input, makes this an infeasible approach.

4.2.2 Linkage using Precomputations
We use 69 characters as the alphabet which would generate a total of 4761 possible

bigrams. Since the number of bigrams are limited, it would be helpful to reduce the number

of keys and precompute the values instead of computing new encrypted values during the

process of linking.

To implement the described protocol efficiently, we restrict the domain of keys at each

site to a smaller set and precompute lookup tables for the values encrypted using elliptic

curve transformations. While performing the private set intersection over encoded records,

a site picks keys from its corresponding key ring and then refers to the precomputed tables

to encode the data instead of performing an encryption every single time. We use a commu-

tative encryption function based on elliptic curve transformations instead of a keyed hash

function.

28

4.2.3 Precomputing using a Key Ring
Figure 4.2 depicts the data exchanges between the sites at different levels of precompu-

tation. As opposed to the Pohlig-Hellman approach, we replace the computations based

on modular exponentiations with one-way transformations based on the infeasibility of the

ECDLP. The transformations in the form of point additions and scalar multiplications op-

timize the precomputation time significantly. A probabilistic approach to record linkage

with key rings begins with the independent selection of keys by the two sites. A key ring

is a fixed set of keys, each key corresponding to a point on the elliptic curve. As discussed

in Section 3.6.4, a point in E (G) can be represented as kG for some integer k. Each party

decides the key ring size (number of keys) and accordingly performs a uniform random

sampling to represent the keys in their respective key rings. Let KSA and KSB be the key

rings for sites SA and SB respectively. Both sites decide on w secret permutations of the

bigram set γ , one for each key, where γ is the set of all possible bigrams and w is the size of

the respective key ring of each site. Each of the w permutations have a different shuffling of

the bigram sequence. An element at index i in the set γ will be at index π(i) in the shuffling

of the sequence, where π denotes a generic permutation of the numbers 1,2,3, ..., |γ|.

Level-0 Precomputation

For all possible 4761 bigrams in the bigram set γ = {AA,AB,AC, ...}, the L0 file contains

the encoded values for these bigrams (mappings between bigrams and EC points). Linkage

agent generates a L0 file using the protocol described as follows.

For each bigram bi ∈ γ , a new EC point Pi is generated using key ki ∈ N (a positive

random number) and generator G. Hence,

Pi = ki×G (4.1)

Thus we have,

P1 = k1G for bigram b1

P2 = k2G for bigram b2

P3 = k3G for bigram b3

and so on. Thus the L0 file comprises of

L0[i] = 〈bi, Pi〉,

29

Linkage Agent

L0

L1A
L1B

L2A
L2B

generates

sent to

encrypts L0

Party B

Party A

Linkage Agent

Party A

Party B

sent to

sent to sent to

encrypts L0

encrypts L1Bencrypts L1A

Figure 4.2: Generation of precomputation files

where, bi ∈ γ and Pi ∼ E (G) where ∼ indicates uniform random sampling. The L0 file is

made publicly available. L0[i].b and L0[i].P refers to a tuple’s values.

Example: Consider there are three bigrams, “ab”, “bc”, “cd” which are transformed to

EC-points using H to 10, 20, 30, respectively. Thus, L0 will contain these three points. L0

is downloaded by both sites SA and SB.

Level-1 Precomputation

Site SA and site SB download the L0 file and use it to perform the level-1 precomputation

to generate L1 files. The level-1 precomputation is performed individually by each site.

Level-1 precomputation is computation of the one-way transformations of the shuffled L0

set, using the keys in the respective key rings (w keys) of each site. Let OWFK(m) denote

30

the one-way transformation function for message m using key K. OWFK(m) is based on

ECDLP and hence difficult to invert.

Let π1
A,π

2
A, ...,π

w
A , and π1

B,π
2
B, ...,π

w
B denote the permutations generated by the sites. Site

SA will compute L1A messages as

L1A = {OWFK j
A
(bπ(i))|i ∈ 1, ..., |γ|,K j

A ∈ KSA,π = π
j

A, j = 1, ..., |KSA|}

where,

OWFK j
A
(bπ(i)) = (K j

A×Pπ(i)); encoded value of permuted bigram bπ(i) using key K j
A ∈KSA.

Site SB will compute L1B messages:

L1B = {OWFK j
B
(bπ(i))|i ∈ 1, ..., |γ|,K j

B ∈ KSB,π = π
j

B, j = 1, ..., |KSB|}

where,

OWFK j
B
(bπ(i)) = (K j

B×Pπ(i)); encoded value of permuted bigram bπ(i) using key K j
B ∈KSB.

We will refer to a specific element in the sets L1A and L1B using a key index and a

permuted index of the bigram. For example, L1A comprises of:

L1A[p, π
p
A(L0[q].b)] = OWFK p

A
(L0[q].P)

where, p = 1, ..., |KSA| and q = 1, ..., |γ|. Similarly, L1B comprises of:

L1B[p′, π
p′
A (L0[q′].b)] = OWF

K p′
B
(L0[q′].P)

where, p′ = 1, ..., |KSB| and q′ = 1, ..., |γ|.

Example: Let SA have the key ring KSA = {3,5} and SB have the key ring KSB = {7,11}.
Now, each site will use the L0 file and their respective key rings to generate the L1 files

containing permuted messages as shown in Tables 4.1 and 4.2. The permutations used by

site SA for two keys in its key ring are:

π
1
A : 1→ 3, 2→ 2, 3→ 1

π
2
A : 1→ 2, 2→ 3, 3→ 1

31

where, π1
A : 1→ 3 denotes that the bigram at index 1 is permuted to third position when

first key is used. Similarly, the permutations used by site SB for two keys in its key ring are:

π
1
B : 1→ 2, 2→ 3, 3→ 1

π
2
B : 1→ 1, 2→ 3, 3→ 2

Key-Message indices Key Bigram OWF L1 message
(1, 1) 3 10 30 (1, 1) : 90
(1, 2) 3 20 60 (1, 2) : 60
(1, 3) 3 30 90 (1, 3) : 30
(2, 1) 5 10 50 (2, 1) : 150
(2, 2) 5 20 100 (2, 2) : 50
(2, 3) 5 30 150 (2, 3) : 100

Table 4.1: Level-1 precomputation at site SA

Key-Message indices Key Bigram OWF L1 message
(1, 1) 7 10 70 (1, 1) : 210
(1, 2) 7 20 140 (1, 2) : 70
(1, 3) 7 30 210 (1, 3) : 140
(2, 1) 11 10 110 (2, 1) : 110
(2, 2) 11 20 220 (2, 2) : 330
(2, 3) 11 30 330 (2, 3) : 220

Table 4.2: Level-1 precomputation at site SB

Level-2 Precomputation

The sites SA and SB exchange their corresponding level-1 precomputation files L1A and

L1B with each other. These files are then used for a level-2 precomputation at respective

sites. Since the sites have each other’s level-1 precomputation file, there lies a risk of

backtracking to the original bigrams from the permuted values in case a site has knowledge

of the permutation function that was used in level-1 precomputation by the opposite site.

In absence of this knowledge, it is not possible to do so. Also, LA should not have direct

access to raw L1 files. Hence, L1 files are encrypted and then exchanged by the two sites.

The level-2 precomputation is specific to a pair of sites. Hence, a site must perform

a level-2 precomputation for every other site with which it seeks to perform the record

32

linkage. Level-2 precomputation at a site is the encoding of values obtained from opposite

site’s level-1 precomputation, using each key from its own key ring (without applying the

permutations). Site SA will compute L2A messages:

L2A = {OWFK j
A
(lB)|lB ∈ L1B,K

j
A ∈ KSA}

Site SB will compute L2B messages:

L2B = {OWFK j
B
(lA)|lA ∈ L1A,K

j
B ∈ KSB}

A specific element in the sets L2A and L2B can be referred to, using a key index from site

SA, a key index from site SB and a permuted bigram index. For example, L2A comprises of:

L2A[p,q,r] = OWFK p
A
(L1B[q,r])

where, p = 1, ..., |KSA|, q = 1, ..., |KSB| and r = 1, ..., |γ|. Similarly, L2B comprises of:

L2B[q′, p′,r′] = OWF
Kq′

B
(L1A[p′,r′])

where, q′ = 1, ..., |KSB|, p′ = 1, ..., |KSA| and r′ = 1, ..., |γ|.

Example: The L2 files at both sites will be as shown in Tables 4.3 and 4.4.

33

(LK, EK, PM) indices Local key L1 message OWF L2 message
(1, 1, 1) 3 (1, 1) : 210 630 (1, 1, 1) : 630
(1, 1, 2) 3 (1, 2) : 70 210 (1, 1, 2) : 210
(1, 1, 3) 3 (1, 3) : 140 420 (1, 1, 3) : 420
(1, 2, 1) 3 (2, 1) : 110 330 (1, 2, 1) : 330
(1, 2, 2) 3 (2, 2) : 330 990 (1, 2, 2) : 990
(1, 2, 3) 3 (2, 3) : 220 660 (1, 2, 3) : 660
(2, 1, 1) 5 (1, 1) : 210 1050 (2, 1, 1) : 1050
(2, 1, 2) 5 (1, 2) : 70 350 (2, 1, 2) : 350
(2, 1, 3) 5 (1, 3) : 140 700 (2, 1, 3) : 700
(2, 2, 1) 5 (2, 1) : 110 550 (2, 2, 1) : 550
(2, 2, 2) 5 (2, 2) : 330 1650 (2, 2, 2) : 1650
(2, 2, 3) 5 (2, 3) : 220 1100 (2, 2, 3) : 1100

Table 4.3: Level-2 precomputation at site SA; LK = local key, EK = external key, PM =
permuted message

(LK, EK, PM) indices Local key L1 message OWF L2 message
(1, 1, 1) 7 (1, 1) : 90 630 (1, 1, 1) : 630
(1, 1, 2) 7 (1, 2) : 60 420 (1, 1, 2) : 420
(1, 1, 3) 7 (1, 3) : 30 210 (1, 1, 3) : 210
(1, 2, 1) 7 (2, 1) : 150 1050 (1, 2, 1) : 1050
(1, 2, 2) 7 (2, 2) : 50 350 (1, 2, 2) : 350
(1, 2, 3) 7 (2, 3) : 100 700 (1, 2, 3) : 700
(2, 1, 1) 11 (1, 1) : 90 990 (2, 1, 1) : 990
(2, 1, 2) 11 (1, 2) : 60 660 (2, 1, 2) : 660
(2, 1, 3) 11 (1, 3) : 30 330 (2, 1, 3) : 330
(2, 2, 1) 11 (2, 1) : 150 1650 (2, 2, 1) : 1650
(2, 2, 2) 11 (2, 2) : 50 550 (2, 2, 2) : 550
(2, 2, 3) 11 (2, 3) : 100 1100 (2, 2, 3) : 1100

Table 4.4: Level-2 precomputation at site SB; LK = local key, EK = external key, PM =
permuted message

Verifying Commutative Property

Note that in level-1 precomputation,

OWFK1(P) = (K1×P)

34

where K = local key and P = bigram message in the form of EC point. Also, in level-2

precomputation with two keys K1 (external key) and K2 (local key),

OWFK2(OWFK1(P)) = OWFK2(K1×P)

= K2× (K1×P)

= K1× (K2×P)

= OWFK1(K2×P)

= OWFK1(OWFK2(P))

Hence, the order of computations does not matter and the commutative property is retained

in the precomputation values of the bigrams. Due to the commutative properties of the

transformations,

L2A[p,q,r] = L2B[q′, p′,r′]

where,

p = p′

q = q′

r = π
q
B(bi)

r′ = π
p′
A (bi)

Example: Refer to Table 4.3. Consider L2A[p,q,r] = (1, 2, 3) : 660. Then, r = π
q
B(bi)

suggests that the L2 message 660 comes from L1 message of L1B where the original bigram

was permuted with second key. It can be verified from Tables 4.4 and 4.2 that 660 is the

encoded bigram value for the bigram “bc” represented as 20 in the L0 file. Also, it can be

observed in Table 4.4 that L2B[q′, p′,r′] = (2, 1, 2) : 660 is the equivalent representation of

the bigram message “bc”.

Hence, if one of the sites gets hold of a level-2 precomputation set of the other site, it

can cross-reference the values in that set with its own level-2 precomputation set values,

and reverse the permutations used in the level-1 precomputation set of the other site. For

example, site SA can figure out the L1B set values if it obtains L2B set. Hence, the sites do

35

not exchange the level-2 precomputation sets L2A and L2B, but instead, they are sent to the

linkage agent along with the encoded data files for the process of set intersection.

4.2.4 Data Set Encoding
The data at a site is encoded by the site before sending the data to the linkage agent. Data

encoding is performed using the publicly known mapping which comes from the linkage

agent in the form of level-0 precomputation, L0 file. A site picks a key k j ∈ KSsite, where

site is either A or B and KSsite is the respective key ring. The bigram b ∈ β is then encoded

to a tuple 〈 j,π j
site(b)〉 of the form 〈key index, permuted bigram index〉. Thus for each

bigram bi ∈ α , site SA chooses j ∈ {1, ..., |KSA|} and computes the encoded bigram value

〈 j,π j
A(bi)〉 for bigram sets of attributes in each record. Similarly, for each bigram bi ∈ α ,

site SB chooses j ∈ {1, ..., |KSB|} and computes the encoded bigram value 〈 j,π j
B(bi)〉 for

bigram sets of attributes in each record. Encoded values of the bigram set of each attribute

are shuffled and the encoded data sets from respective sites are sent to the linkage agent for

further computation.

Example: Let there be a string “abc” in a record ra of DA for site SA. Hence bigram

set α = {“ab”,“bc”}. Recall that KSA = {3,5}. Thus, choosing a key and its respective

permutation for the bigram would give the encoded set, for example, α
′
= {〈1, 3〉,〈2, 3〉}

which suggests that “ab” is permuted to third position using first key and “bc” is permuted

to third position using second key.

Frequency Smoothing

In the text of English language, certain bigrams appear with higher frequency than others.

Figure 4.3 gives an idea about the distribution of bigrams, generated using the Google

corpus for texts written in English. It can be seen that out of the 676 possible bigrams that

can be generated from the alphabet character set of English, most of them barely contribute

to the frequency of usage of bigrams. This gives rise to a potential privacy risk if the

bigrams are encoded using single key since the distribution pattern will still hold for the

encoded values which can be compared with the known distribution of the 676 bigrams.

Using multiple keys randomly to encode different bigrams is also not a reliable solution,

the same distribution will appear in each key. Frequency smoothing is a process used to

maintain similar frequencies for the encoded values which helps to hide the distribution

pattern of the encoded bigrams.

36

0

50000

100000

150000

TH MI YS DM XY RZ

Bigrams

F
re

q
u
e
n
c
y
 o

f
b
ig

ra
m

s

Figure 4.3: Frequency distribution of most common bigrams in English text

For the data encrypted without frequency smoothing, the frequency distribution holds

and leaks considerable amount of information. The linkage agent can learn the frequency of

different bigrams on a per key basis and trace back the private data. Frequency smoothing

will ensure the distribution of high frequency bigrams over larger number of keys and

lower frequency bigrams over smaller number of keys such that the encoded value of those

bigrams appear uniformly in the encoded data set. The process of frequency smoothing

is described as follows. Let fi(b) be the normalized frequency of a bigram b ∈ γ for field

index i. Let maxb∈γ fi(b) be the maximum frequency of a bigram in field i. Then, for a key

ring K, a site can choose keys for encoding such that a key is used for

δ =
maxb∈γ fi(b)
|K|

fraction of occurrence of a bigram. To achieve frequency smoothing for a bigram b, a key

index is chosen uniformly from [1, Ki] where Ki = d fi(b)
δ
e. It can be noted that δ will be

higher for higher frequency bigrams and hence they will be encoded with higher number

of keys unlike lower frequency bigrams. This process of smoothing fails to hide bigrams

whose frequency is less than δ but the focus here is to hide the distribution of higher

37

frequency bigrams. Figures 4.4 and 4.5 depict the effects of frequency smoothing over the

bigrams.

0

50000

100000

150000

AA EK KF OS UA

Bigram

F
re

q
u
e
n
c
y

Figure 4.4: Before frequency smoothing

0

2000

4000

6000

AA EK KF OS UA

Bigram after encoding

F
re

q
u
e
n
c
y

Figure 4.5: After frequency smoothing

Exposure Risk

Although the process of frequency smoothing hides the bigram distribution pattern, the

bigram frequency information may leak through the number of key indices used for a par-

ticular bigram. Figure 4.6 shows the keys used while encoding bigrams and verifies the

38

concern of information leak. We assume that the adversary is aware of the key ring size

and the field-wise bigram distribution of the client’s data set. The risk exposure is calcu-

lated on the basis of the probability of identifying a bigram from its encoded values and

thus, getting exposed to identifying a fraction of the bigrams.

0

250000

500000

750000

1000000

0 10 20 30 40 50

Key index

F
re

q
u
e
n
c
y

Figure 4.6: Key usage in encoding bigrams

Let f (b) be the frequency of the bigram b in some field. f (b) is known to the adversary.

The prior exposure of the bigram is measured as the reciprocal of the number of bigrams

occurring with the same frequency.

Prpre(bi) =


1

|{b j| f (b j)= f (bi)}| , f (bi) 6= 0

0 , f (bi) = 0
(4.2)

Hence, it is easy to identify the bigrams if all the bigrams occur with unique frequencies

even after encoding them. It is also obvious that using only one key index results in the

same exposure before and after applying frequency smoothing to the bigrams encoded with

that key. The rest of the bigrams will occur with frequency δ in each key. For a key index

u, let eiu denote the encoding pair for bigram bi. The uncertainty faced by the adversary

depends on how many other bigrams could be using key index u. Hence, we define the

39

posterior exposure of bigram bi when using key index u as

Pr(eiu→ bi) =


1

|{b j|K j≥Ki}| ,Ki > 1

Pr(bi) ,Ki = 1
. (4.3)

Since bi may be encoded using Ki possible key indices chosen uniformly at random, and

each key has a different permutation, correlating encodings of the same bigram across

different keys is not possible. Therefore, we compute the expected posterior exposure of bi

as

Prpost(bi) =
Ki

∑
j=1

Pr(ei j→ bi)

Ki
. (4.4)

Given a string in a field made of bigrams bi1,bi2, ...,bil arranged in decreasing order of their

exposure probability, we compute the exposure risk associated with identifying the m (≤ l)

highest exposed bigrams as

Exposurem(s) = ∏
j=1,...,m

Prpre/post(bi j). (4.5)

4.2.5 Linking Data Sets
Linkage map : Using Precomputed Tables

Both sites can send their respective L2 files to the Linkage Agent (LA) as followed

by the Pohlig-Hellman approach. But, comparison of the transformations in the L2 files,

which are EC points (long memory bytes) in the EC-based approach, becomes relatively

expensive than performing a lookup to check for bigram similarity. Hence, we perform an

optimization where the L2 files are sorted based on the EC points in the files. The OpenSSL

library provides a serialized byte representation of the EC points which is used to sort the

L2 files.

The probability for two L2 messages to represent the same EC point in a large elliptic

curve is negligible unless the two keys and the represented bigrams in the nested one-way

transformation function OWF are the same. Let L2A[p,q,r]i and L2B[q′, p′,r′]i denote the

ith message in the respective files after independently sorting them. It holds they are equal.

Also, p′ = p, q′ = q, and, the messages represent the same bigram. Thus, both the sites

send indexing triplets with sorted EC points to the LA. Let T be the file representing the

40

set of indexing triplets. Then,

TA[i] = (p,q,r)i and TB[i] = (q′, p′,r′)i

Example: Table 4.5 shows the sorted L2 indexing triplets received at the linkage agent’s

side. The processing of L2 files to T files at the sites avoids having to send huge L2 files to

L2A message L2B message
(1, 1, 2) (1, 1, 3)
(1, 2, 1) (2, 1, 3)
(2, 1, 2) (1, 2, 2)
(1, 1, 3) (1, 1, 2)
(2, 2, 1) (2, 2, 2)
(1, 1, 1) (1, 1, 1)
(1, 2, 3) (2, 1, 2)
(2, 1, 3) (1, 2, 3)
(1, 2, 2) (2, 1, 1)
(2, 1, 1) (1, 2, 1)
(2, 2, 3) (2, 2, 3)
(2, 2, 2) (2, 2, 1)

Table 4.5: Indices of sorted L2 messages from both sites

the LA.

Linking
Unlike the algorithm discussed in Section 4.2.1, the linkage agent can now use the en-

coded data files and indexing triplet files to determine the number of common bigrams for

corresponding attributes, and compute the intersection size of the bigram sets to be used in

the matching algorithm (Section 3.5). The modified approach is as follows:

1. As discussed in Section 4.2.4, each bigram set corresponding to an attribute’s value

is encoded before being sent to the linkage agent. For a given attribute, site SA has

set α
′

of encoded bigram tuples (pA,rA) and site SB has set β
′

of encoded bigram

tuples (pB,rB).

2. Let TA and TB be the indexing triplets received from the sites. The private record

linkage begins with building a lookup table (linkage map) T by merging TA and TB.

• For entries TA[i] = (p,q,r) and TB[i] = (q′, p′,r′) (TA[i] and TB[i] represent the

same bigram; p = p
′
and q = q

′
), an entry T [p,q,r] = r′ is inserted in T .

41

3. For each pair (< pA,rA >,< pB,rB >)∈α
′×β

′
, if T (pA, pB,rB) = rA, it is concluded

that a match exist since the pair represent the same bigram.

4. |α ′ ∩β
′| = number of matches found in step 5.

Example: Table 4.6 depicts the linkage map built by the linkage agent using the indexing

triplets received from the sites. Consider the case where T [p, q, r] = (1, 2, 3) in Table 4.6

and recall the respective permutations used by both sites. If SA uses key 1 and permuted

bigram index 2, and SB uses key 2 and permuted bigram index 3, then they both are referring

to bigram “bc”.

T [p,q,r] r
′

(1, 1, 2) 3
(1, 2, 1) 3
(2, 1, 2) 2
(1, 1, 3) 2
(2, 2, 1) 2
(1, 1, 1) 1
(1, 2, 3) 2
(2, 1, 3) 3
(1, 2, 2) 1
(2, 1, 1) 1
(2, 2, 3) 3
(2, 2, 2) 1

Table 4.6: Linkage map built using the indexing triplets

Hash Maps

... ...

... ...

A's all possible

bigram encodings

hash bitmap of all
equivalent

B's bigram encodings

hash map hash map hash map

... ...

... ...

A's bigram encodings
in a field

hash map hash map hash map

superset of

OR

hash map

composite

... ...

B's bigram encodings
in a field

is present?

not presentmay be present
no match

compare with all

Figure 4.7: Hash map generation and usage during record linkage

42

The process to find similarity between record pairs of the two sites involves a greedy

matching scheme and hence the algorithm is quadratic in nature. Considering the possible

data values and data inconsistencies in the data sets, it can be inferred that during the

encoded bigram set comparison for two attribute values, most of the bigrams will not result

into a match. Even if there is a case where the two strings are exactly the same (with

length l), the number of bigram matches would be at most (l− 1), whereas, the number

of comparisons made would be l2. Hence, comparing bigrams with a brute force approach

is undesirable. To reduce the computational cost here, we have used hash maps which are

described as follows.

Figure 4.7 depicts the usage of hash map in the linkage process. Let EB
α
′ and EB

β
′

represent all possible bigram encodings used by site SA and site SB respectively. Let there

be a hash function Hash that outputs integers from [1,h]. We create a bitmap H(p,r) of

size h for each (p,r)∈ EB
α
′ , such that bit t is set (= 1) if there exist any (q′,r′)∈ EB

β
′ with

Hash((q′,r′)) = t and T [p,q′,r′] = r. Thus, we create a bitmap for each bigram encoding

from site SA. For each bigram encoding from site SB that represent the same bigram as that

of site SA, a bit is set in the bitmaps. These bitmaps are referred to as Hash maps and are

created while building the linkage map.

Consider the case where a record rA from site SA and rB from site SB is being compared

for similarity. rA comprises of f number of α
′
bigram encoding sets (f = number of fields).

Thus, rA = {α ′1,α
′
2, ...,α

′
f }. We create a bitmap Hi corresponding to each α

′
i by merging

the hash maps of each bigram encodings in α
′
i (performing a bitwise-or operation). Thus,

Hi can be represented as a composite hash map as follows:

Hi = ∨(p,r)∈α
′
i

H(p,r)

Thus, for all possible bigram encodings in set β
′

of a field i in a rB, Hi represents a

composite hash map that can match some bigram encoding in α
′

in rA. While computing

|α ′ ∩β
′ | in the process of linking for a field i, each bigram encoding (q′,r′) from site SB is

being compared to an encoding from site SA only if Hi[Hash((q′,r′))] = 1 (bit t is set to 1

using SB’s bigram). If it is not 1, it can be concluded that no bigram in α (SA’s bigram set)

can match any bigram in β (SB’s bigram set). We can hence infer that the false negative rate

is zero. Due to existence of collisions in the hash function, Hi[Hash((q′,r′))] = 1 means

43

that there maybe a match. The true positive rate (if Hi[Hash((q′,r′))] = 1, then a match is

indeed present) can be increased by decreasing the number of collisions in the hash map,

henceforth, increasing the size of the hash map.

Hash Map Size

The hash map size (h bits) needs to be a balance between memory demand and proba-

bility of collisions. Large value of h will require more memory and small value of h will

generate more collisions and hence resulting in more comparisons. We create |KSA|× |β |
hash maps and in each hash map, at most |KSB| bits are set. Some of these will be combined

to form a composite hash map.

If q is the average number of bigrams in an attribute value, then q hash maps of h bits

will form a composite hash map of h bits which is queried at q locations. Collisions at any

other locations are not significant. It can be concluded that the size of the hash map should

be sufficient enough such that q hash maps can avoid at least q collisions. Assuming the

worst case where at most q(|KSB|− 1) locations may already have been set by encodings

that are not queried, the first of the q queried locations have no collision with probability
h−q(|KSB|−1)

h , the second with probability h−q(|KSB|−1)−1
h , and so on. Hence, the probability

that multiple encodings does not set each of the q queried locations is calculated as:

Pr(no collision≥ q)≥
q−1

∏
i=0

h−q(|KSB|−1)− i
h

. (4.6)

We set the hash map size h as a multiple of |KSB|, i.e h = x|KSB| for some positive

integer x, and determine the smallest x such that

q−1

∏
i=0

x|KSB|−q(|KSB|−1)− i
x|KSB|

≥ p (4.7)

for a desired true positive rate p. The value of x is found by increasing its value until the

constraint is satisfied.

4.3 Implementation Details
Figure 4.1 represents the schematics of the process of privacy-preserving record linkage.

This section gives an insight into the implementation details that is used to execute the

44

proposed framework. Figure 4.8 depicts different components and inputs-outputs involved

in the pre-computing part of the method. The four components involved are :

1. Data encoder: It takes in a raw data file, a data frequency file and a keyperm (keys

and permutations of bigrams) file. The raw data file is encoded by the data encoder

using the frequency and the keyperm file.

2. Frequency extractor: It takes in a raw data file and generates a frequency file.

3. L0 encoder: It maps all possible bigrams to points on elliptic curve and generates a

L0 file.

4. L1 encoder: It takes in a frequency file, a L0 file and a parameter N specifying the key

ring size. The process outputs a file with generated keys and permutations (keyperm

file), and a L1 file.

5. L2 encoder: It takes in a keyperm file and a L1 file to generate a L2 file.

4.3.1 File Structures
This section gives an idea about the format and structures of the various input and output

files described in the framework.

Raw Data File

The raw data file contains the records of respective sites in clear-text form (not en-

crypted). Before the process of record linkage, these data files are expected to be in a

standardized CSV format. The format of the file is as follows:

• First row contains the name of the attributes.

• Records (each row) are separated by the newline character.

• Data values of each field are separated by commas.

Frequency File

The frequency file is generated from the frequency extractor component of the frame-

work. It contains the frequency of each bigram corresponding to each attribute. The format

of the file is as follows:

• First row contains the string “bigram”, followed by name of the attributes, all sepa-

rated by commas.

45

Figure 4.8: Component dependency for privacy preserving method

• Each row contains a bigram, followed by the frequencies of the corresponding bigram

in each of the fields. Values are separated by commas.

Keyperm File

The keyperm file is generated by the L1 encoder. It consists of the permuted values of

the bigram messages for respective keys. Detailed structure of the Keyperm file is depicted

46

in Figure 4.9. Perm(x) in the keyperm file structure indicates permutation of xth bigram;

x ∈ [0,B).

N = Number of keys (4 bytes)

B = Number of bigrams (4 bytes)

KeyPerm 0 (variable size)

KeyPerm 1 (variable size)

KeyPerm N-1 (variable size)

...

S = Key size (4 bytes)

Key (S bytes)

Perm(0) (4 bytes)

...

Perm(B-1) (4 bytes)

Figure 4.9: Keyperm file structure

L Message Files

The L0, L1, L2 message files are precomputed using the ECC approach described in

Section 4.2.3 by the respective encoders. L0 file comprises of the numeric representation

of bigrams (bigrams mapped to elliptic curve points). L1 file comprises of the 〈 local

key index, encoded message index〉 tuples (built using L0 data). Recall that L1 files are

exchanged between the parties to generate L2 files. Hence the local key index in L1 file

acts as the external key index in L2 file. Detailed structure of the files are depicted in

Figures 4.10 and 4.11.

Figure 4.10: L0 - L1 file structure; Encoding type is 0 for L0 and 1 for L1; Message
identifier is ASCII representation of bigram in L0 and 0x0000 in L1

47

Figure 4.11: L2 file structure

Encoded Data File

The encoded data file is generated by the data encoder. It consists of the permuted

bigram messages appended with the respective key used to apply permutations in the

data encoder. Bigram encodings are represented in the form of a bit string of length

dlog2(key ring size)e+13 (213 > |β |) rounded to the nearest multiple of 4.

4.3.2 Environment
We used C++ to implement the discussed privacy-preserving record linkage algorithms.

It is assumed that the raw data sets at the respective sites are in a standardized form as

described in Section 4.3.1. The implementation is divided into three multi-threaded pro-

grams: Precomputing L1 and L2 files, Data set encoding and Linking. We use the curve

secp521r1 [26] from the OpenSSL library to perform the EC operations. All levels of pre-

computation and key generation functions use this curve. We use RAND bytes function

from the OpenSSL library to perform random number generation and the Knuth shuffle

algorithm [38] to generate permutations in the precomputation code.

The program for data set encoding reads the data files and generates encoded versions

with frequency smoothing. The linkage program uses the 128-bit Mur−murHash3 [37]

hash function for the computations related to the hash maps. The programs to precompute

48

Figure 4.12: Encoded data file structure

the L1/L2 files and data set encoding are client side and the linking code is server side.

The networking phase between the client and the server to transfer data has not been imple-

mented yet. All the programs have been compiled with the −O f ast and −march = native

flags in g++ version 5.4 using pthreads threading library.

49

Chapter 5

Results

The record linkage framework using the proposed elliptic curve cryptography protocol

has shown encouraging results and has improved the linkage time by a significant amount.

We perform various parametric experiments on synthetic and non-synthetic data sets to

correlate this claim.

5.1 Data Sets
To perform various experiments, we used subsets of data from the North Carolina Voters

Registration (NCVR) database. NCVR has more than 7 million records containing demo-

graphics data of individuals, example names, mailing address, phone number, gender, age,

etc. [20]. We create the data subsets by randomly sampling records with five attributes - first

name, last name, street address, city and zip code and using various sizes for the subsets.

We also synthesize the sampled data subsets with two parameters: %overlap (records that

overlap/match in two data sets) and %error (records undergoing synthetic error insertion).

To gauge the linkage execution time for parametric studies, we consider the subset with

25% overlap as the default and to demonstrate linkage accuracy, we use sampled subsets

with 25% and 5% data overlap. We simulate the data entry errors by introducing errors

like character insertion/deletion, missing attribute, character substitution, adjacent charac-

ter transposition and data entry in wrong field. The errors were introduced with varying

probabilities to simulate the three categories of data being either relatively clean (5% er-

ror), moderately clean (30% error) or dirty (50% error). For our experiments, we use the

50

moderately clean data sets as the default. The encoded data files of the data sets vary from

200KB to 230MB in size.

We also built a synthetic data generator and encoder which uses a given frequency distri-

bution of bigrams to generate synthetic data sets of a specified size (size based on number of

records, number of fields, average number of bigrams in each field). To generate synthetic

data, bigrams are randomly picked from the total possible bigrams of the given character

set based on the probabilities of their occurrence in the standard frequency distribution of

bigrams in English text. To uniformly pick bigrams for the given distribution, we used

the algorithm based on converting non-uniform probabilities of the bigram occurrences to

binary distributions [39].

5.2 Precomputation
Figure 5.1 depicts the execution time for computing level-1 (L1) and level-2 (L2) pre-

computation files for different key rings (1, 15, 25, 30, 50 keys) for 4761 bigrams (69×69)

in the L0 file. The size of L1 files vary from 0.6-33 MB, and between 10-46 MB for the

indexing triplets. It can be observed that precomputing L1 file takes significantly less time

for varying key ring sizes against precomputing L2 file which takes more time as the size

of key ring increases, since it has to perform the amount of work needed to generate L1 file

once for each key in the key ring. The graph shows a quadratic increase in the execution

time with increasing key ring size. Precomputation using modular exponentiations take

more than two hours for a key ring of size 50.

5.3 Linkage Execution Time
To measure the linkage execution time of NCVR data subsets of different size, we run

the linkage exercise on four standalone machines and four Amazon AWS EC2 compute

optimized instances. Table 5.1 describes the machine configurations differentiated on the

basis of processor type and speed, number of virtual CPUs, and memory.

Table 5.2 shows the linkage execution times for different machines with different sizes

of the NCVR data subsets. It can be observed that with a fair amount of virtual CPUs

(16 to 20), a quadratic linkage of 105× 105 record pairs is executed within 8 minutes.

With lesser number of virtual CPUs, the linkage is executed in about 15 minutes. Also,

multi-threading proves to be beneficial in bigger data sets only. It degrades the linkage

51

0

50

100

1 15 25 30 50

Number of Keys

T
im

e
(i
n
 s

e
c
o
n
d
s
)

variable

L2

L1

Figure 5.1: Precomputation time for different number of keys

Name Type CPU vCPUs Memory
S1 Apple Mac Pro Intel Xeon E5-1620v2 3.7GHz 8 16GB
S2 Dell Precision T5810 Intel Xeon E5-1620v4 3.5GHz 8 8GB
S3 Dell Precision T5820 Intel Xeon W-2155 3.3GHz 20 16GB
S4 Dell PowerEdge R731 Intel Xeon E5-2695v4 2.1GHz 36 128GB
C1 AWS EC2 c5.2xlarge Intel Xeon Platinum 8124M 3.0 GHz 8 16GB
C2 AWS EC2 c5.4xlarge 16 32GB
C3 AWS EC2 c5.9xlarge 36 72GB
C4 AWS EC2 c5.18xlarge 72 144GB

Table 5.1: Configurations of machines used to benchmark execution times

performance in smaller data sets. The EC based approach is feasible on data sets of the

order of millions of records, but with increasing size, additional treatment to the data might

be needed to make the linkage time acceptable.

We performed different parametric studies to measure the impacts on the linkage execu-

tion time, which are described in the further sections.

5.3.1 Hash Map Efficiency
Figure 5.2 depicts the linkage execution time for different hash map sizes. The p-value

(desired true positive rate) varies from 0.1-0.9. The tests are performed on a synthetic data

set with 100,000 records consisting of 10 fields, with 10 bigrams per data value, encoded

with 50 keys and executed with 8 threads. p-value is the true positive rate in a composite

52

Number of records in a data set
Machine 1000 5000 10000 50000 100000 500000 1000000

S1 0.39 s 3.71 s 12.95 s 5.11 m 19.91 m 7.33 h 28.37 h
S2 0.38 s 4.28 s 17.18 s 5.18 m 16.78 m 6.07 h 23.93 h
S3 0.30 s 3.82 s 6.73 s 1.51 m 5.86 m 2.11 h 7.9 h
S4 0.49 s 2.77 s 7.11 s 1.45 m 5.75 m 2.2 h 8.1 h
C1 0.32 s 3.34 s 10.84 s 3.72 m 14.49 m 5.0 h 19.75 h
C2 0.27 s 2.32 s 7.27 s 2.0 m 7.74 m 2.74 h 10.12 h
C3 0.27 s 1.68 s 4.95 s 1.07 m 3.76 m 1.32 h 4.86 h
C4 0.49 s 2.57 s 5.79 s 0.91 m 2.75 m 0.77 h 3.02 h

Table 5.2: Linkage time in different machine configurations; Data sets have 25% overlap
and 30% of the records in one data set has errors (s: seconds, m: minutes, h: hours)

hash map. It can be seen that smaller the p-value, higher the execution time since more col-

lisions occur in such a case, thereby resulting in more number of bigram comparisons. With

a higher p-value, lesser collisions occur in the hash maps and more number of comparisons

are avoided.

27.5

30.0

32.5

35.0

37.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p−value

T
im

e
 (

in
 m

in
u
te

s
)

Figure 5.2: Linkage time for different hash map size

We also collect the following statistics to study the improvement produced by using hash

maps in a linkage exercise.

• Number of bigram comparisons performed in absence of hash maps

• Number of bigram comparisons performed in presence of hash maps

• Number of times a query on a composite hash map returned a positive answer

53

• Number of times a positive query result actually finds a match

The results obtained tells us the percentage comparisons avoided by incorporating hash

maps in the process, and the observed true positive rate of the queries. It can be observed

in Figure 5.3 that using hash maps avoids approximately 70% to 90% comparisons. Also,

the observed true positive rate increases with an increase in hash map size. The time re-

duction varies from about 20% to 50%. Using larger hash maps gives better optimizations

but increases the memory requirements. A hash map with p-value 0.5 to 0.7 gives fairly

improved results, and requires under 1 GB of memory for 50 keys.

Parameter p

P
e
rc

e
n
ta

g
e

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0
2
0

4
0

6
0

8
0

1
0
0

comparisons avoided

true positive rate

time reduction

Figure 5.3: Hash map efficiency in avoiding bigram comparisons and reducing execution
time

5.3.2 Different Number of Bigrams
Figure 5.4 depicts the linkage execution time for varying average number of bigrams in

a field. The number of bigrams vary from 5-25. The tests are performed on a Synthetic

data set with 100,000 records consisting of 10 fields, p-value 0.7, encoded with 50 keys,

and executed with 8 threads. It can be observed that higher the number of bigrams, linkage

54

time increases considerably since number of comparisons to be made increases. Note that

bigrams more than 15 takes more than 100 minutes which slows down the process but in

demographics data, it is very unlikely that the average number of bigrams would be more

than 10.

40

80

120

160

5 10 15 20 25

Number of bigrams per data value

T
im

e
 (

in
 m

in
u
te

s
)

Figure 5.4: Linkage time for different number of bigrams per data value

5.3.3 Pohlig-Hellman versus ECC Approach
We compared the linkage execution time for the Pohlig-Hellman approach and the EC-

based approach. The linkage times for the two approaches on 100,000 records with 5 fields

of the NCVR data set with 25% overlap and 30% error in one data set were 165.6 minutes

and 16.78 minutes respectively. The Pohlig-Hellman approach uses 38 keys and the EC-

based approach uses 50 keys. Both experiments have were executed on machine S2.

With the proposed improvements in the EC-based approach (usage of hash maps, post-

processing of L2 files and replacement of modular exponentiations with EC-based trans-

formations), we saw an improvement of 10 folds in the linkage time.

5.4 Exposure Risk
Figure 5.5 depicts the exposure risk of different key ring sizes for the NCVR data subset.

Section 4.2.4 discusses how the exposure risk of the encoded bigrams is calculated as the

probability of identifying half the bigrams in a string. Without frequency smoothing or

55

Key ring size

E
x
p

o
s
u

re
 r

is
k

1 10 20 30 40 50 60 70 80 90 100

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

first name

last name

street address

city

zip code

Figure 5.5: Exposure risk associated with identifying half the bigrams in a field with dif-
ferent key ring sizes

using only one key index exposes half of the bigrams with a probability of 0.99. With

increasing size of the key ring, the exposure probability decreases. We chose the default

key ring size as 50, and with that, half of the bigrams in the first name have exposure

probability 0.0038, in last name - 0.02, street address - 0.0003, city - 0.064 and zip code -

0.064 (smaller bigram domain). Thus with 50 keys, the exposure probability is reasonably

small in all the fields. A key ring of size 95 brings down the exposure probability to less

than 1%.

5.5 Linkage Accuracy
Figure 5.6 depicts the precision-recall assessment for matching thresholds in the range 0

to 1. Precision and recall are used to gauge the linkage accuracy. Precision is the fraction

of correct matches in the total number of matched pairs. It assesses the correctness of the

linkage algorithm. Recall is the fraction of true match record pairs in the data that are

identified as matches by the algorithm. It assesses coverage. Both the precision and recall

rates can be maintained at 96% with low error rates by using a high threshold (0.9). But we

56

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Recall

P
re

c
is

io
n

5% overlap

25% overlap

(a) Low error (5% records)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Recall

P
re

c
is

io
n

5% overlap

25% overlap

(b) Moderate error (30% records)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Recall

P
re

c
is

io
n

5% overlap

25% overlap

(c) High error (50% records)

Figure 5.6: Precision and recall of a quadratic record linkage procedure for varying simi-
larity thresholds in [0,1] (Equal weights are assigned to all fields)

observed that the recall rates drop to approximately 83% for such a high threshold in case of

moderate date errors. We noted that it is difficult to maintain high precision and recall rates

with low data set overlap. The threshold must be lowered to maintain a balance between

precision and recall rates for data sets with high error rates. Thus, discriminatory power

of the attributes and the weight of the fields have high impact on the probabilistic record

linkage approach. For example, assigning high weightage to street address can maintain

high precision and recall rates of about 95% at lower threshold values like 0.7 and 0.8.

57

5.6 Linkage with Blocking
We discussed briefly about the blocking procedure in Chapter 2. In Table 5.2, we can see

that for huge number of records, the EC-based approach is less feasible. Hence, we propose

to incorporate the blocking procedure to improve those results. The process to divide a

large data set into smaller subsets with respect to a blocking value is called blocking of a

field. For instance, we can generate a subset of records with equal attribute values (same

zip codes). The linkage exercise is then performed on subsets from both the sites with

matching blocking values. We performed blocking of our data set containing 1,000,000

records with blocking on zip codes and name initials. Blocking on zip codes generated

860 subset pairs, each containing 1150 records on an average. Blocking on name initials

generated 725 subset pairs, each containing 1370 records on an average. We link each

subset pair independently and then combine the results to produce the final linkage result

over the larger data set. Table 5.3 shows the linkage time after incorporating the blocking

procedure in the linkage exercise.

Number of vCPUs
Blocking variable 8 4 1

Zip code 13.76 m 18.26 m 25.62 m
First and last initials 14.54 m 18.93 m 28.66 m

Table 5.3: Execution time (in m: minutes) to link two data sets with 1,000,000 records in
each using blocking; Machine S3 is used

58

Chapter 6

Conclusions and Future Work

The EC-based approach shows substantial improvement in the record linkage time aga-

inst the Pohlig-Hellman approach. Various optimizations contributed towards the opti-

mized performance of the linkage exercise. Removing the exponentiation operations from

data encoding and replacing them with EC-based addition and multiplication operations

showed considerable decrease in the precomputation time. Replacing the greedy matching

algorithm with the hash map based approach effectively reduced the number of look-ups

in the linkage map, which reduced the time to compare a record pair. The effective results

of the blocking procedure suggests that private record linkage over a distributed network is

feasible even for large data sets using current hardware.

In the experiments, we have assumed the data to be in a standardized format and the

matching algorithm makes comparisons with corresponding attributes/fields. The work can

be directed further to perform the linkage in non-standardized data sets. We consider two

sites along with a third-party, the linkage agent, to perform the record linkage. However,

the approach may be scalable to multiple sites and taken further to build a multi-site record

linkage protocol. To develop a complete and sustainable FQP system, network layer aspects

also need to be taken into consideration. We have emphasized on improving the linkage

time performance using the EC-based approach. But a complete tool chain involves other

components for a full fledged client-server web application. Client side application would

involve discovery of peers, stream-lined execution of precomputation workflow, database

schema integration and secure upload/download of files. Server side application would

require a scheduler to load balance the linkage tasks to enable real time federated query

59

processing systems. These aspects remain to be explored and built which may reveal mul-

tiple technical issues.

We compute the exposure risk based on static frequency analysis (frequencies are con-

sidered independently). It is possible to perform a dynamic frequency analysis using fre-

quency distribution of one or more known bigrams. A demographics dictionary can be

used for inference of bigrams from their encodings, similar to the frequency attacks using

a dictionary. Assessment based on such exposure risk is an attractive future direction.

60

Bibliography

[1] 104th Congress, United States. “Health Insurance Portability and Accountability Act

of 1996.” Public Law 104-191, 1996.

[2] L. M. Schilling et al. “Scalable Architecture for Federated Translational Inquiries

Network (SAFTINet) technology infrastructure for a distributed data network.”

eGEMs(Generating Evidence and Methods to improve patient outcomes), 1(1):1027,

2013.

[3] H. A. Dunn. “Record linkage.” American Journal of Public Health and the Nations

Health, 36(12):1412–1416, 1946.

[4] I. Fellegi and A. Sunter. “A theory for record linkage”. Journal of the American Sta-

tistical Society, 64:1183-1210, 1969.

[5] L. Dusserre, C. Quantin, and H. Bouzelat. “A one way public key cryptosystem for

the linkage of nominal files in epidemiological studies.” MedInfo, 8 (Pt 1):644–647,

1995.

[6] T. Churches and P. Christen. “Blind data linkage using n-grams similarity compar-

isons.” In Advances in Knowledge Discovery and Data Mining, pages 121–126, 2004.

[7] R. Schnell, T. Bachteler, and J. Reiher. “Privacy-preserving record linkage using

bloom filters.” BMC Medical Informatics and Decision Making, 9:41, 2009.

[8] R. Agrawal, A. Evfimievski, and R. Srikant. “Information sharing across private

databases.” ACM SIGMOD International Conference on Management of Data, pages

86–97, 2003.

[9] R. Dewri, T. Ong, R. Thurimella. “Linking Health Records for Federated Query Pro-

cessing”. Proceedings on Privacy Enhancing Technologies, (3):4-23, 2016

61

[10] G. Schadow, S. J. Grannis, C. J. McDonald. “Privacy preserving distributed queries

for a clinical re-search network.” IEEE International Conference on Data Mining

Workshop on Privacy, Security, and Data Mining, 2002.

[11] R. Rivest, A. Shamir, L. Adleman. “A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems” Communications of the ACM, 21 (2): 120–126, 1978.

[12] S. Pohlig and M. Hellman. “An Improved Algorithm for Computing Logarithms over

GF(p) and its Cryptographic Significance.” IEEE Transactions on Information The-

ory, (24): 106–110, 1978.

[13] U.S. National Security Agency. “Commercial National Security Algorithm Suite and

Quantum Computing FAQ.” 2016.

[14] OpenSSL. “Elliptic Curve Cryptography.” URL: https://wiki.openssl.org/

index.php/Elliptic_Curve_Cryptography.

[15] Canadian Parliament. “Family Allowances Act”, 1944.

[16] W. E. Winkler. “The state of record linkage and current research problems.” Technical

report, Statistical Research Division, U.S. Census Bureau of the Census, 1999.

[17] M. Bellare, R. Canetti, H. Krawczyk. “Keying Hash Functions for Message Authen-

tication.” 1996.

[18] T. Churches and P. Christen. “Some methods for blindfolded record linkage.” BMC

Medical Informatics and Decision Making, 4:9, 2004.

[19] E. Durham, Y. Xue, M. Kantarcioglu, and B. Malin. “Private medical record linkage

with approximate matching.” AMIA Annual Symposium Proceedings, pages 182–186,

2010.

[20] North Carolina State Board of Elections. URL: https://dl.ncsbe.gov/index.

html?prefix=Voter_Registration/.

[21] E. A. Durham, et al. “Composite bloom filters for secure record linkage.” IEEE Trans-

actions on Knowledge and Data Engineering, 26(12):2956–2968, 2013.

[22] B. Malin and E. Airoldi. “Confidentiality preserving audits of electronic medical

record access.” Studies in Health Technology and Informatics, 129(1):320–324, 2007.

[23] B. Pinkas, T. Schneider, and M. Zoner. “Faster private set intersection based on OT

extension.” 23rd USENIX Conference on Security Symposium, pages 797–812, 2014.

62

[24] A. Yao. “How to generate and exchange secrets”. Foundations of Computer Science,

27th Annual Symposium on IEEE, pages 162–167, 1986.

[25] Michael O. Rabin. “How to exchange secrets by oblivious transfer.” Technical Report

TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[26] Certicom. “SEC 2: Recommended elliptic curve domain parameters”. Technical re-

port, Certicom Research, 2000.

[27] H. Bouzelat, C. Quantin, and L. Dusserre. “Extraction and anonymity protocol of

medical file.” AMIA Annual Fall Symposium, pages 323–327, 1996.

[28] A. Karakasidis and V. S. Verykios. “Privacy preserving record linkage using phonetic

codes.” Balkan Conference in Informatics, pages 101–106, 2009.

[29] M. Kuzu, M. Kantarcioglu, E. Durham, and B. Malin. “A constraint satisfaction crypt-

analysis of bloom filters in private record linkage.” International Conference on Pri-

vacy Enhancing Technologies, pages 226–245, 2011.

[30] M. Kuzu, M. Kantarcioglu, E. Durham, C. Toth, and B. Malin. “A practical approach

to achieve private medical record linkage in light of public resources.” Journal of the

American Medical Informatics Association, 20(2):285–292, 2013.

[31] W. Mitchell, R. Dewri, R. Thurimella, and M. Rosckhe. “A graph traversal attack

on bloom filter based medical data aggregation.” International Journal of Big Data

Intelligence, 4(4):217–226, 2017.

[32] F. Niedermeyer, S. Steinmetzer, M. Kroll, and R. Schnell. “Cryptanalysis of basic

bloom filters used for privacy preserving record linkage.” Journal of Privacy and

Confidentiality, 6(2):59–79, 2014.

[33] D. Vatsalan, P. Christen, and V. S. Verykios. “An efficient two-party protocol for ap-

proximate matching in private record linkage.” In Proceedings of the 9th Australasian

Data Mining Conference, pages 125–136, 2011.

[34] R. Schnell, T. Bachteler, and J. Reiher. “A novel errortolerant anonymous linking

code.” Technical Report WPGRLC-2011-02, German Record Linkage Center, 2011.

[35] P. Christen, R. Schnell, D. Vatsalan, and T. Ranbaduge. “Efficient cryptanalysis of

bloom filters for privacy-preserving record linkage.” Proceedings of the Pacific-Asia

Conference on Knowledge Discovery and Data Mining, pages 628–640, 2017.

63

[36] M. Kroll and S. Steinmetzer. “Who is 1011011111...1110110010? Automated crypt-

analysis of bloom filter encryptions of databases with several personal identifiers.”

Proceedings of the International Joint Conference on Biomedical Engineering Sys-

tems and Technologies, pages 341–356, 2015.

[37] A. Appleby. “MurMurHash3 on Github.” URL: https://github.com/aappleby/

smhasher/blob/master/src/MurmurHash3.cpp, 2008.

[38] D. Knuth. “Knuth shuffle algorithm.” The Art of Computer Programming, Volume 2,

Seminumerical algorithms, pp. 139–140, 1969.

[39] M. Vose. “A linear algorithm for generating random numbers with a given distribu-

tion.” IEEE Transactions on Software Engineering, 17(9): 972-975, 1991.

[40] S. J. Grannis, J. M. Overhage, and C. McDonald. “Analysis of identifier perfor-

mance using a deterministic linkage algorithm.” AMIA Annual Symposium Proceed-

ings, pages 305–309, 2002.

[41] E. van Eycken et al. “Evaluation of the encryption procedure and record linkage in the

Belgian National Cancer Registry.” Archives of Public Health, 50(6):281–294, 2000.

[42] L. Bonomi, L. Xiong, R. Chen, and B. Fung. “Frequent grams based embedding for

privacy preserving record linkage.” Proceedings of the 21st ACM International Con-

ference on Information and Knowledge Management, pages 1597–1601, 2012.

[43] E. Ioannou, W. Nejdi, C. Niederee, and Y. Velegrakis. “On-the-fly entity-aware query

processing in the presence of linkage.” Proceedings of the VLDB Endowment, 3(1-

2):429–438, 2010.

[44] A. Inan, M. Kantarcioglu, E. Bertino, and M. Scannapieco. “A hybird approach to pri-

vate record linkage.” International Conference in Data Engineering, pages 496–505,

2008.

[45] A. Inan, M. Kantarcioglu, G. Ghinita, and E. Bertino. “Private record matching using

differential privacy.” International Conference on Extending Database Technology,

pages 123–134, 2010.

[46] H. Chen, K. Laine, and P. Rindal. “Fast private set intersection from homomorphic

encryption.” Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 1243–1255, 2017.

64

	Probabilistic Record Linkage with Elliptic Curve Operations
	Recommended Citation

	Probabilistic Record Linkage with Elliptic Curve Operations
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1562890959.pdf.NJeC6

