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Abstract
Unmanned Aerial Vehicles (UAVs) are here and they are here to stay. Unmanned

Aviation has expanded significantly in recent years and research and development in the

field of navigation and control have advanced beyond expectations. UAVs are currently

being used for defense programs around the world but the range of applications is expected

to grow in the near future, with civilian applications such as environmental and aerial

monitoring, aerial surveillance and homeland security being some representative examples.

Conventional and commercially available small-scale UAVs have limited utilization and

applicability to executing specific short-duration missions because of limitations in size,

payload, power supply and endurance. This fact has already marked the dawn of a new era

of more powerful and versatile UAVs (e.g. morphing aircraft), able to perform a variety

of missions. This dissertation presents a novel, comprehensive, step-by-step, nonlinear

controller design framework for new generation, non-conventional UAVs with time-varying

aerodynamic characteristics during flight. Controller design for such UAVs is a challenging

task mainly due to uncertain aerodynamic parameters in the UAV mathematical model.

This challenge is tackled by using and implementing µ-analysis and additive uncertainty

weighting functions. The technique described herein can be generalized and applied to the

class of non-conventional UAVs, seeking to address uncertainty challenges regarding the

aircraft’s aerodynamic coefficients.
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Chapter 1

Introduction

Almost twenty years after his loss against a cruel, heartless IBM supercomputer, former

world chess champion and perhaps the greatest player in history, Garry Kasparov, delivered

the message of not fearing intelligent machines [1]. The human versus machine controversy

has been under discussion for decades, with different perspectives and opinions supporting

both sides. One thing is certain though, humans triumph when machines triumph. With

or without humans’ consent, the future belongs to autonomous, intelligent and powerful

machines which are gradually taking over, surpassing their own creators.

Figure 1.1: Garry Kasparov’s TED talk ”Don’t Fear Intelligent Machines” [1].
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In this sense, research and development in the field of design, autonomous navigation

and control of unmanned aircraft has been rapidly growing over the last decade. The range

of applications is vastly expanding, with aerial photography, traffic monitoring and military

missions being some of the first to receive attention. As demand for Unmanned Aerial

Vehicles (UAVs) increases, so does the need for intelligent and robust control systems that

will guarantee a certain degree of autonomy.

UAVs are typically highly nonlinear underactuated systems; controller design presents

challenges that need to be addressed and tackled. Challenges relate, among others, to prob-

lematic nonlinearities, coupling between lateral and longitudinal motions and uncertainty

in aerodynamic parameters in the mathematical model (control and stability derivatives).

When dealing with non-conventional UAV designs, such inherent uncertainties either limit

or prohibit applicability of known controller design techniques. Viewed from this perspec-

tive, controller design for non-conventional UAVs (i.e., new generation UAVs) requires

consideration of unstructured parameters, model uncertainty and an advanced controller

design framework.

As mentioned in [2], modeling the aircraft aerodynamic coefficients raises the funda-

mental question of what the mathematical structure of the model should be. Although a

complicated model structure can be justified for accurate description of the aerodynamic

forces and moments, it is not always clear what the relationship between model complexity

and information in the measured data should be. If too many model parameters are sought

for a limited amount of data, reduced accuracy of estimated parameters is expected, or the

attempts to estimate all the parameters in the model might fail. Aircraft system identification

is a complex process and the final values for the estimated aerodynamic parameters are

usually within some certain error bounds. Therefore, even in the classical, conventional

UAV case, aerodynamic/model uncertainty should be taken into consideration for flight

control and navigation purposes.
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Regardless of the nature of the system to be controlled, a candidate controller cannot

be designed solely on the basis of nominal plant and performance requirements. The

true plant is (partially) unknown and it must belong to an admissible family of plants,

as Fig. 1.2 shows. Model uncertainty must be addressed and tackled. Robust controller

design ensures that closed-loop stability holds for any plant within this family, and that

performance specifications are met. In real-life problems, a nominal model is an intentional

approximation to reality. However, if model uncertainty is not accounted for and if the

nominal plant model is exclusively used, the nominal feedback design might not be stable

and only strict performance specifications will be met.

Figure 1.2: Nominal versus real plant control system diagram.

1.1 Research Motivation

This research is motivated by the challenge to design, model, build, control and test

a small-scale Unmanned Circulation Control Aerial Vehicle (UC2AV ), which is the first

of its kind with proven flight capability [6]. Circulation Control (CC) is an active flow

control technique that is proven to be an efficient method for lift augmentation resulting

in improved aerodynamic efficiency, runway reduction during takeoff/landing, smoother

landing, enhanced payload capabilities and delayed stall.
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For experimentation, validation and verification, a stock RMRC Anaconda has been

integrated with a CC system on-board (Fig. 1.3), which operates on demand according to

the ongoing mission. The UC2AV has been designed to perform missions with different

flight requirements and mission adaptation gives the ability to the end user to operate a

single UAV for multiple applications.

(a) CAD design of CC system (b) The UC2AV

Figure 1.3: CAD design of CC system and the UC2AV [6].

Operating the CC-system on demand results in direct changes of the aircraft control and

stability derivatives during flight. Preliminary research has shown a reduction in take-off

distance by 54% compared to the conventional UAV as depicted in Fig. 1.4.

Figure 1.4: Take-off performance behavior of the UC2AV compared to a conventional UAV
[6].
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1.2 Problem Statement

The overall controller design problem statement is summarized in Fig. 1.5. The objective

is to build a navigational and stability controller that will regulate the attitude angles and

the position of the platform, achieving trajectory tracking while taking into consideration

uncertain, on-demand alteration of the vehicle’s aerodynamic parameters. The variables to

be controlled are divided into lateral and longitudinal motion as the standard convention

dictates. However, the proposed controller design framework will not be based on the

motion decoupling assumption that is followed for conventional (commercial) fixed-wing

airplanes.

Figure 1.5: UAV control strategy.
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The feature of uncertain, time-varying aerodynamic characteristics on the aircraft equa-

tions of motion is what separates this study from existing ones in the field of autonomous

flight controller design. Therefore as a first step, this feature will be clearly explained and

justified. Based on this, a valid and realistic UAV model will be proposed and investigated,

leaving the actual controller design process as the final stage.

1.3 Method of Approach

The proposed solution to the stated UAV controller design problem is a hybrid control

architecture consisting of an inner/outer loop structure which can be seen in Fig. 1.6. The

inner loop will employ a dynamic inversion controller for partial linearization of the UAV

dynamics, whereas the outer loop will be a µ-synthesis controller to ensure robustness against

external disturbances and an on-demand alteration of the UAV aerodynamic parameters.

The effect of uncertainty in aerodynamic characteristics of the platform will be tackled by

the use of additive uncertainty weighting functions which will be used in the µ-synthesis and

analysis design process. Lastly, sensor noise will be considered and complementary filter

design will be incorporated in the controller framework for accurate estimation of the state

variables that will require measurement, with an ultimate goal of minimizing the tracking

error ep.
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Figure 1.6: UAV proposed controller design framework.

1.4 Contributions

Unlike existing work in the field of navigation and control of UAVs, this dissertation

is specific to controller design for non-conventional, new generation aircraft subject to

aerodynamic uncertainty, with time-varying aerodynamic parameters during flight. To the

best of the author’s knowledge, this is the first technical, comprehensive study, laying the

foundation for autonomous navigation of UAVs in the presence of aerodynamic uncertainty,

providing a basis for comparison for all the control design approaches and their related

applications. Although published material tackles important aspects of navigation and

control as well as UAV applications, there is no insight on controller design techniques

for UAVs with time-varying aerodynamic parameters and related challenges. The major

contributions of this dissertation are the following:
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• Establish and highlight the need for a new UAV controller design framework

• Derive a valid and realistic theoretical mathematical model for the aircraft’s aerody-

namic coefficients.

• Design a robust, nonlinear controller capable of handling time-varying aerodynamic

parameters during flight.

• Integrate the controller framework with sensor noise and sensor models utilizing

complementary filters.

• Validate the control scheme using MATLAB/Simulink and the X-Plane flight simula-

tor.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows: Chapter 2 presents a literature

review, investigating the controller design techniques found in the literature and evaluating

their distinctive advantages and setbacks. Chapter 3 gives necessary background related to

UAV equations of motion and highlights the source of the research problem, establishing

the relation between aerodynamic changes and the aircraft control and stability derivatives.

Chapter 3 also presents motivating existing or potential real-life applications where this

work may prove useful for researchers. Chapter 4 covers the controller design algorithm

with a step-by-step, detailed analysis and inspection. Validation results can be found in

Chapter 5, where the proposed controller design framework is employed for robust control

of the UC2AV . Finally, concluding remarks, challenges and future work are included in

Chapter 6.
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Chapter 2

Literature Review

This chapter provides a technical overview and the necessary background for existing

controller synthesis methods that have been applied for navigation and control of UAVs.

These include linear controllers (PID, LQR, LQG, etc.), backstepping, sliding mode, non-

linear model predictive, adaptive, dynamic inversion, fuzzy logic and neural networks,

gain scheduling, H∞ and µ-synthesis. The distinctive advantages and drawbacks for each

technique are investigated with respect to applicability to the family of new generation UAVs

with time-varying aerodynamic characteristics.

2.1 Published Surveys Review

Eleven surveys have been published to date, exploring research in the areas of autopilot

hardware and software, control techniques, motion planning, collision avoidance, traffic

surveillance, imagery collection, communication networks and vision-based navigation.

This section presents a summary of contributions of existing surveys.
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Published in 2004, “Control and Perception Techniques for Aerial Robotics” [18], is

mostly focused on perception techniques, reviewing methods that have been applied to aerial

robotics including different vehicle platforms and flight control hardware. It provides a brief

survey of control architectures and computer vision techniques. It covers a broad range of

UAVs, but little emphasis is placed on controller design methodologies.

Published in 2005, “A Survey of Unmanned Aerial Vehicles (UAV) for Traffic Surveillance”

[19], presents a survey of research activities in several universities around the world in the

area of application of UAVs in traffic surveillance. A summary of research projects, vehicle

platforms and research objectives is provided with respect to traffic sensing and management.

Published in 2009, “A Survey of Autonomous Control for UAV” [20], surveys the au-

tonomous control concept and Autonomous Control Level (ACL) metrics that can measure

autonomy of UAVs. The constraint conditions and realizations of the three basic levels

of UAV system autonomy (execution, coordination and organization) are studied compre-

hensively. The key hardware and software technologies for multi-tasking are modularized

depending on mission requirements.

Published in 2009, “A Survey of Collision Avoidance Approaches for Unmanned Aerial

Vehicles” [21], focuses on collision avoidance approaches deployed for unmanned aerial

vehicles. The collision avoidance concept is introduced together with proposing generic

functions carried by collision avoidance systems. The design factors of the sense and avoid

system are explained in detail and based on these, several typical approaches are categorized.

Published in 2010, “A Survey of Motion Planning Algorithms from the Perspective of

Autonomous UAV Guidance” [22], provides an overview of existing motion planning algo-

rithms while adding perspectives and practical examples from UAV guidance approaches. It

emphasizes practical methods and provides a general perspective on the particular problems

arising with UAVs.
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Published in 2010 in the IJCAS journal, “Autopilots for Small Unmanned Aerial Vehicles:

A Survey” [23], contains a survey of autopilot systems intended for use with small or micro

UAVs. Several typical commercial off-the-shelf autopilot packages are compared in detail

and some research autopilot systems are introduced. Concluding remarks are made with a

summary of the autopilot market and a discussion on the future directions.

Published in 2011, “A Survey of Unmanned Aerial Vehicle (UAV) Usage for Imagery

Collection in Disaster Research and Management” [24], provides a review of utilization of

UAVs for imagery collection for disaster monitoring and management. A review of papers

regarding data acquisition and assessment prior, during and after disaster events is presented.

Published in 2012, “Survey of Motion Planning Literature in the Presence of Uncertainty:

Considerations for UAV Guidance” [25], surveys motion planning algorithms that can be

applied on UAVs and that can deal with the primary sources of uncertainty arising in real

world missions. Emphasis is placed on uncertainties in vehicle dynamics and environment

knowledge, investigating optimal, model predictive and Lyapunov techniques for the first as

well as A∗ and D∗ planning techniques for the second.

Published in 2014, “A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advan-

ces and Future Development Trends” [26], provides a detailed overview of advances of

small-scale UAVs including platforms and scientific research areas. The evolution of the key

elements, including on-board processing units, navigation sensors, mission-oriented sensors,

communication modules, and ground control station is presented and analyzed. Finally, the

future of small-scale UAV research, civil and military applications are forecasted.

Published in 2016, “Survey of Important Issues in UAV Communication Networks” [27],

focuses on the issues of routing, seamless handover and energy efficiency in UAV networks.

A categorization of UAV networks and an examination of important characteristics like

topology, control, and client server behavior is carried out.

11



Requirements from the routing protocols unique to UAV networks and the need for

disruption tolerant networking are also discussed.

Published in 2018, “A survey on vision-based UAV navigation” [28], presents a compre-

hensive literature review of the vision-based methods for UAV navigation. Specifically, it

focuses on visual localization and mapping, obstacle avoidance and path planning, which

compose the essential parts of visual navigation. Furthermore, an insight into the prospect

of UAV navigation and the challenges to be faced is given.

There is no existing technical and detailed study, evaluating the control techniques for

navigation and control of the family of new generation aircraft. This study aims to establish

the foundational methodology to design controllers for complex, uncertain UAV systems

with a particular focus on the significant challenge of aerodynamic uncertainty.

2.2 Linear Control

PID controllers are a type of single-input/single-output (SISO) control structure. A great

advantage of PID controllers is that they can be easily implemented and they require low

computational effort on-board the UAV [23]. It is also relatively easy to build on top of

PIDs, in cascaded loops as in [29], meaning that they can be effectively combined with

other synthesis methods. On the other hand, as stated in [23], PID techniques are non-model

based and they lack robustness. Their non-model based characteristic can be considered as

an advantage, but in the case of a UAV with time-varying aerodynamic uncertainties, tuning

the PID gains can become a rather difficult task due to model uncertainty.

Linear Quadratic Gaussian (LQG) and Linear Quadratic Regulator (LQR) are optimal

feedback controllers based on minimizing predefined cost functions and can be used both

for SISO and MIMO (multi-input/multi-output) structures. LQG control can also operate in

the presence of white noise.
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These techniques can be used for multi-variable systems but due to their iterative nature,

the control input vector may be hard to determine [30]. Additionally, input constraints of

the system are not taken into consideration. An application of LQR for UAV flight control

can be seen in [31], presenting a 3D LQR based landing controller that accurately lands the

vehicle on a runway.

Every linear technique is based on the fact that the studied system model is linear. This

means that even if the actual system behaves in a nonlinear way, in order to apply linear

methods, one has to linearize the given model around some specific operating condition.

Linearization can be convenient but it has local validity, only in a certain neighborhood

around the specified condition. State of the art in linear controller design for fixed-wing

UAV tackles the challenges of PID auto-tuning [32] and model uncertainty and robustness

by using gain-scheduling [33]. Studies comparing PID, LQR, adaptive, neural, fuzzy and

backstepping designs can be found in [34, 35]. Adaptive neuro-fuzzy techniques are proven

to be more efficient, indicating that linear controllers cannot provide robust performance

guarantees in presence of large-scale aerodynamic uncertainties.

2.3 Backstepping

Backstepping has been widely used for UAV control due to its recursive nature; its

foundation lies in Lyapunov analysis [36]. One requirement for backstepping to be applied

is the system to be put in strict feedback form [37], see (2.1). Virtual control inputs are

generated in order to account for the deficit between the number of system states and the

number of actual control inputs. The design can benefit from useful nonlinearities by

appropriately choosing these virtual control inputs.
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ẋ = f(x) + g(x)ξ1

ξ̇1 = f1(x, ξ1, ξ2)

ξ̇2 = f2(x, ξ1, ξ2, ξ3)

...

ξ̇k−1 = fk−1(x, ξ1, ..., ξk)

ξ̇k = fk(x, ξ1, ..., ξk, u)

(2.1)

The general concept of backstepping can be seen in Fig. 2.1, for the simplest system

ż = f(z) + g(z)ξ, ξ̇ = u. The asymptotically stabilizing control law φ(z) is “backstepped”

through the integrator. The primary challenge for backstepping control designs is finding a

potential Lyapunov candidate function.

Putting the UAV equations of motion into a strict feedback form as in (2.1) requires a set

of a-priori assumptions related to the aircraft aerodynamics [38]. As far as new generation

UAVs are concerned, this is acceptable but not preferable. Furthermore, backstepping

is a robust technique but it is sensitive to aerodynamic parameter variation. Researchers

have employed more sophisticated control architectures such as adaptive, for trajectory

tracking [39] and disturbance rejection [40, 41], or incremental (sensor-based) backstepping

[42] to robustify the technique and make it more versatile. An interesting comparison of

backstepping, PID and fuzzy PID can be found in [43] for UAV path planning, concluding

that fuzzy PID provides superior performance.
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Figure 2.1: The backstepping concept.

2.4 Sliding Mode

Sliding mode is a nonlinear control method designed to constrain the system states to

a certain manifold or sliding surface. In its ideal setup, sliding mode requires the control

input to oscillate with very high frequency but this may not be achievable for every dynamic

system [44]. The trajectory of the system states does not always stay on the sliding surface

but instead, it may oscillate around the surface due to delays in control switching in what

is called chattering [45, 46]. Sliding mode generates discontinuous control laws, raising

questions about the existence and uniqueness of solutions and the validity of Lyapunov

analysis.
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The mathematical objective of sliding mode control is to transform a system of the form

ẋ = f(x) +B(x)(G(x)u+ δ(t, x, u)) into a system in a regular form as in (2.2) by utilizing

an appropriate change of variables.

η̇ = fα(η, ξ)

ξ̇ = fb(η, ξ) +G(x)u+ δ(t, x, u)

(2.2)

Parameter x is the state vector, u is the control input vector, f and B are sufficiently

smooth functions and G, δ are uncertain functions. The sliding manifold s = ξ − φ(η) = 0

is then designed so that when the motion is restricted to the manifold, the reduced-order

model η̇ = fα(φ(η)) has an asymptotically stable equilibrium point at the origin. This is

achievable for attitude control of a new generation UAV because sliding mode guarantees

robustness against aerodynamic/model uncertainty with a given upper bound.

Applications of adaptive sliding mode control for fixed-wing UAVs can be found in

[47, 48], where adaptation is employed to deal with the effect of chattering and optimize

robustness against model uncertainty. In [49], an adaptive PD controller is designed with the

adjustment mechanism following the gradient-based MIT rule. Recent advances in the field

of continuous sliding mode control of UAVs are established in [50, 51, 52, 53], proposing a

technique that eliminates the effect of chattering. Finally, a study comparing backstepping,

sliding mode and backstepping with sliding mode control can be found in [54], concluding

that backstepping with high order sliding mode achieves superior performance with a better

minimization of the chattering effect.
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2.5 Nonlinear Model Predictive

Nonlinear model predictive control is a technique that can predict the future behavior of

the system and allows for on-line implementation. It is based on the concept of repetitively

solving an optimization problem involving a finite time horizon and a dynamic mathematical

model [55]. The goal is to minimize a cost function of the form

J [u(t), x(t)] =

∫ T

0

l(x(t), u(t), t)dt+ S(x(T ), T ) (2.3)

where T is the time horizon, function l denotes the stage cost and function S represents the

terminal cost, subject to the physical constraints

umin ≤ u(t) ≤ umax , g(x(t), u(t), t) ≤ 0 (2.4)

with the dynamic mathematical model described by the ordinary differential equation

d
dt
x(t) = f(x(t), u(t), t). Solving this differential equation for a new generation UAV, either

analytically or numerically, is a challenging task. The UAV control and stability derivatives

(function f ) will be uncertain and time-varying, so the process will be computationally

intensive for on-board implementation. Nonlinear optimization of the cost function (2.3)

requires accurate sensor measurement of the state vector x(t), or alternatively, employment

of linear model predictive control approaches [56, 57].

However, the feature that prohibits applicability of nonlinear model predictive on a

new generation UAV is dependence on system knowledge. In principle, nonlinear model

predictive designs cannot handle large scale, time-varying uncertainties because system

knowledge is required for model prediction. A low-level kinematic model of the UAV

dynamics is utilized in [58] to design a high-level controller for path following.
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An adaptive nonlinear model predictive approach that varies the conventional fixed

horizon according to the path curvature profile is proposed in [59].

A large body of literature, including recent advances such as [60, 61, 62], utilizes a UAV

kinematic model to achieve trajectory tracking with a nonlinear model predictive design due

to its ability to explicitly handle the control input and system state constraints highlighted

in (2.4). Although this approach is generally applicable for a new generation UAV, the

controller will be non-model based, meaning that the time-varying control and stability

derivatives will not be taken into consideration. An advanced architecture that guarantees

stability properties in presence of time-varying uncertainties would be more suitable.

2.6 Adaptive

The design of a controller that can alter or modify the behavior and response of an

unknown plant to meet certain performance requirements can be a tedious and challenging

problem in many control applications. By definition, to adapt means to change (oneself)

so that one’s behavior will conform to new or changed circumstances. Adaptive control

seeks to address issues of parametric or environmental uncertainties based on the Lyapunov

concept of stability [63, 64].

Unknown parameter vectors are defined and estimated so that Lyapunov stability is guar-

anteed, following two main approaches, the indirect (Fig. 2.2) and the direct adaptive control

(Fig. 2.3). Adaptive control enables a wide operation range during flight as demonstrated in

[65, 66, 67, 68], where adaptive is used to robustify backstepping, neural and fuzzy designs

against model uncertainty and unmodeled dynamics.
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Figure 2.2: Indirect adaptive control [69].

Figure 2.3: Direct adaptive control [69].

Adaptive control strategies can be categorized according to whether the controller

parameters are tuned continuously in time or switched between discrete values at specified

instants. The first category refers to the classical, deterministic adaptive control and has some

inherent limitations due to dependence on an identified plant model. This issue becomes

severe if robustness and high performance is sought. In the second case, switching can be

performed among controllers of different structures, resulting in a design that is independent

of plant identification accuracy and other prior assumptions [70].
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A major setback for the applicability of traditional adaptive control for a new generation

UAV is limited flexibility of the unknown parameter vector for robust controller design

purposes.

Switching multi-model adaptive control provides a more robust alternative compared to

the classical adaptive control approach. The idea lies behind switching between stabilizing

and destabilizing controllers from a predefined set to achieve asymptotic stability. Switching

among candidate controllers is orchestrated by a high-level decision maker called a super-

visor. The supervisor updates controller parameters when a new estimate of the process

parameters becomes available, similarly to the adaptive control paradigm, but these events

occur at discrete instants of time [71, 72]. This results in a hybrid closed-loop system. The

general view of a switching adaptive control system, in which the control action is based on

the learned characteristics of the process (plant) is depicted in Fig. 2.4.

Figure 2.4: Adaptive control architecture consisting of a switching controller and a supervi-
sory controller block [71].

If the parametric uncertainty is described by a continuum, one has the choice of working

with a continuous or a discrete family of controllers. In this case, one needs to ensure

that every admissible process model is satisfactorily controlled by at least one of these

controllers.
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The switching algorithms that seem to be the most promising are those that evaluate the

potential performance of each candidate controller on-line and use this to direct their search.

Comprehensive examples of fuzzy adaptive control for switched systems can be found in

[73, 74, 75].

The mathematical foundation and the ground for the design of switched adaptive control

systems has been well established in numerous works over the last two decades. A recent

application for robotic manipulators can be seen in [76]. Nevertheless, real-life aerospace

applications of the switching adaptive control strategy are yet to be seen. The supervisory

control system framework requires thorough analysis and understanding, not to mention

the potential computational burden the control systems engineer might have to face for a

real-time application. One last limitation of this approach is the speed of switching between

candidate controllers, occurring based on observed system data. For instance, designing a

switched adaptive controller for a fighter aircraft, or a morphing aircraft with on-demand

configuration, might prove to be a significant challenge.

2.7 Dynamic Inversion

Dynamic inversion or feedback linearization is a method seeking to transform the

nonlinear system dynamics into an equivalent, fully or partially linear form through some

algebraic transformation. Given a system of the form ẋ = f(x) + g(x)u, if the control

law u = g−1(x)[−f(x) + ax] is applied for some constant a, the initial nonlinear system

can transform into a linear one. This simple idea summarizes the concept behind dynamic

inversion. Linear transformation can be achieved by somehow inverting the nonlinear UAV

dynamics and solving the puzzle of motion decoupling [77]. By applying dynamic inversion,

one controller is capable of handling the entire flight regime.
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Recent applications of dynamic inversion for unmanned aircraft systems can be found

in [78, 79, 80, 81], where observer-based dynamic inversion is used to account for input

constraints and inaccurate sensor measurements. Dynamic inversion can be used in cascaded

designs for performance tuning. For instance, dynamic inversion is robustified by the

use of gain scheduling in [82] after linearizing the system to handle the complex UAV

system dynamics. Additionally, dynamic inversion can efficiently serve as an inner-loop

control law for H∞ and µ-synthesis designs that will be analyzed in a subsequent section.

However, the control law u is implementable only if the system is precisely known, which

is a significant limitation for application on a new generation UAV. This would require

accurate measurement of the UAV attitude angles, linear velocities and angular rates, as well

as a precise feedback of the time-varying control and stability derivatives during flight.

2.8 Fuzzy Logic/Neural Networks

Fuzzy logic control is a model-free, knowledge based technique which tries to mimic

the way humans think and make decisions by creating a set of rules that are used by the

controller to analyze the input and to determine the appropriate output. The basic concept of

a fuzzy control system is depicted in Fig. 2.5 and the main steps for a fuzzy logic control

algorithm are given below.

1. Define the linguistic variables and terms (initialization)

2. Construct the membership functions (initialization)

3. Construct the rule base (initialization)

4. Convert crisp input data to fuzzy values using the membership functions (fuzzification)

5. Evaluate the rules in the rule base (inference)
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6. Combine the results of each rule (inference)

7. Convert the output data to non-fuzzy values (defuzzification)

Figure 2.5: Architecture of fuzzy logic control system.

Membership functions in fuzzy logic control systems are used in the fuzzification and

defuzzification process to convert non-fuzzy input values to linguistic terms and vice versa.

Fuzzy logic is a model-free, intuitive design that can be built up and trained for specific

applications. The fuzzy logic UAV controller follows a (if event A, then event B) framework

based on the rule base, meaning that it indirectly deals with aerodynamic uncertainties in the

UAV model [83, 84]. In the case of new generation aircraft however, where aerodynamic

uncertainties have time-varying structure, several simulation or flight tests will be needed

to train the system and the designed controller to achieve robust performance for every on-

demand change of the aerodynamic coefficients (event A). Consistency of rules and system

tuning parameters (inference, fuzzification and defuzzification) have to be investigated

because system stability and optimization can only occur experimentally.

Unlike fuzzy, neural networks are a learning based method that seeks to mimic the

human central nervous system by utilizing input-output data to program the neurons in a

network.
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A three-layer neural network structure to account for aerodynamic uncertainties in the

UAV model can be found in [85]. Recent genetic neuro-fuzzy applications on fixed-wing

aircraft are reported in [86, 87] to deal with lack of modeling and flight uncertainties. State

of the art in intelligent (fuzzy and neural networks) flight control systems for small aerial

vehicles is discussed in [88]. The challenges of computational demand, online learning and

uncertainty in data representation are highlighted for the still growing field of intelligent

aerial robotics.

2.9 Gain Scheduling

Gain scheduling is a switching strategy between a finite number of linear controllers

each corresponding to a linear model of the aircraft dynamics near a design trim condition.

The idea behind designing a gain scheduled controller for a nonlinear plant, illustrated in

Fig. 2.6 and taken from [89], can be described as a four step procedure as follows:

1. The first step is to compute a linear-parameter-varying (LPV) model for the aircraft.

The traditional approach in this area is based on Jacobian linearization of the non-

linear plant about a family of equilibrium points, also called operating points or set

points. This yields a parametrized family of linearized plants and forms the basis for

linearization scheduling. A detailed comparative study can be found in [90], where

LPV models for the Boeing 747-100/200 are derived and evaluated.

2. The second step is to use linear design methods to design linear controllers for the

linear parameter-varying plant model that arises. This design process results in a

family of linear controllers corresponding to the linear-parameter-dependent plant.

Traditionally, the designs are such that for each fixed value of the parameter, the linear

closed-loop system exhibits desirable performance.
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3. The third step includes the actual gain scheduling. A family of linear controllers is

implemented so that the controller coefficients (gains) are varied (scheduled) according

to the current value of the scheduling variables.

4. Performance assessment is the final step. Desired performance guarantees might be

part of the design process but typically, the local stability and performance properties

of the gain scheduled controller might be subject to analytical investigation, while the

nonlocal performance evaluation might require simulation studies.

Figure 2.6: Functionality of gain scheduling [91].

Gain scheduling employs powerful linear design tools on difficult nonlinear problems.

Gain scheduled controllers preserve well-understood linear intuition, in contrast to nonlinear

control approaches that involve coordinate transformations. Moreover, gain scheduling

enables the controlled system to respond rapidly to changing operating conditions. Last but

not least, the computational burden of linearization scheduling approaches is often much

less than other nonlinear design approaches. Applications of gain-scheduling for morphing

aircraft can be found in [92, 93] whereas a detailed gain-scheduled flight control design is

performed in [94].
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Limitations of gain scheduling for control of a new generation UAV include the large

number of flight conditions that need to be considered and also the need for the transition

between the models to be smooth. Stability can be assured only locally and in a slow-

variation setting and usually there are no performance guarantees. This presents a bottleneck

in the case of a UAV with rapidly changing aerodynamic parameters.

2.10 H∞ & µ-Synthesis

Linear H∞ is a type of multi-variable, robust, model-based control and its major advan-

tage over linear techniques is its robustness in presence of model uncertainties. Given a

linear, time-invariant system Σ as depicted in Fig. 2.7, with w being the exogenous input, z

being the corresponding output and u, y representing regular inputs and outputs, a control

law u = F1x+F2w is sought that will minimize the H∞ norm of the overall transfer matrix

over parametric uncertainties ΣK [95, 96].

Figure 2.7: H∞ control system [96].

Nonlinear H∞ is based on the same optimization concept and it is transformed into

a nonlinear technique through the use of a dynamic inversion inner-loop control law for

linearization of the dynamics [97, 98, 99]. The Hamilton-Jacobi partial differential inequality

(HJPDI) that can be found in [100, 101] is another alternative. In a nutshell, given a nonlinear

system ẋ = f(x) + g1(x)d+ g2(x)u, the HJPDI approach attempts to solve the differential

inequality shown in (2.5).
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for some positive C1 function E, output signal h1 and weighting function WE , and then

make use of the nonlinear bounded real lemma. The µ-synthesis method is an extension to

the H∞ design because it is a doubly-iterative optimization process with respect to:

1. the H∞ compensator K(s)

2. the D(s) scales

An optimal H∞ compensator K(s) is designed and the scales D(s) are optimized so

that the robust complex-µ test shown in (2.6) is satisfied, for the system’s overall transfer

matrix M [102].

µ(M) = µ(DMD−1) ≤ σmax(DMD−1) ≤ 1, ∀ω ∈ R (2.6)

The µ-synthesis framework allows model uncertainties and system perturbations to enter

the design in a multiplicative or additive fashion [103]. The authors have implemented a

novel, nominal plant with additive uncertainty (Fig. 2.8), where an uncertainty range such as

CL1 ≤ CL ≤ CL2 is utilized to compensate for time-varying, lift coefficient, aerodynamic

uncertainties of a new generation aircraft. The approach was based on research reported

in [104, 105], where a µ-synthesis controller is designed for a 4-wheel vehicle and then

extended for application on fixed-wing aircraft.
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Figure 2.8: Nominal plant with additive uncertainty [8].

Both H∞ and µ-synthesis can deal with nonlinear, multi-variable systems and can also

handle UAV time-varying aerodynamic uncertainties through an off-line definition of the

uncertainty interval. Performance specifications, disturbances in several locations in the

feedback loop and actuator models are also considered. The entire µ-synthesis controller

design can be simplified, validated and supported by existing MATLAB software such as

[102, 103]. A possible increase of the complexity is anticipated as the model dimension

increases and the controller will only be optimal with respect to a predefined cost function

and not to other common measures such as settling time.

2.11 Theoretical Comparison of Controller Designs

This section gives a comprehensive summary of the literature review performed in this

chapter, providing a basis for comparison for researchers that is divided into two concise

tables. Table 2.1 gives a general overview of the non-qualifying techniques, containing the

advantages and disadvantages for each method that is addressed and evaluated. Table 2.2

summarizes the promising and applicable control architectures for new generation UAVs,

highlighting potential challenges as well as the respective references used to justify our

claim.
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Table 2.1: Summary of non-qualifying control techniques.

Method Advantages Disadvantages References

Linear Control

Straightforward design,

low computational effort,

cascaded loops

Local validity,

robustness issues
[29] - [35]

Backstepping
Efficient for underactuated

systems

Strict feedback form,

sensitive to parameter variation
[36] - [43]

Sliding Mode

Sliding manifold,

robust against model

uncertainty

Discontinuous control law,

effect of chattering
[44] - [49], [54]

Nonlinear

Model Predictive

Can predict future behavior

of the system, can handle

system and input constraints

Dependent on the system

knowledge
[55] - [62]

Adaptive

Can handle unknown

parameters, wide operation

range available

Limited flexibility of the

unknown parameter vector
[63] - [69]

Dynamic Inversion

One control law needed,

no motion decoupling

required

Highly dependent on the

system knowledge
[77] - [82]
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Table 2.2: Summary of proposed controller design frameworks.

Method Advantages Challenges References

Continuous Sliding

Mode

Robust against model

uncertainty, minimization of

chattering

Smoothness of control inputs [50] - [53]

Switching

Adaptive Control

Learning-based supervisory

control algorithm, direct

performance evaluation of candidate

controllers, asymptotic stability

guaranteed

Potential computational

burden, no existing real-life

applications, speed of switching

[70] - [76]

Fuzzy Logic,

Neural Networks

Model free method,

intuitive design, can be

built up and trained

Intensive simulation or

flight tests needed to be trained
[83] - [88]

Gain Scheduling

Simplification of controller

design, rapid response

to changing parameters,

computationally efficient

Large number of flight

conditions need to be

considered, smooth transition

[89] - [94]

H∞ and µ-Synthesis

Robust in presence of

uncertainties, performance

specs and actuator models

are considered

Increase of complexity as

dimension increases, controller

is optimal with respect to a

predefined cost function

[95] - [105]
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Chapter 3

Technical Problem Statement

This chapter presents necessary background related to UAV motion during flight, ans-

wering the fundamental question of what is the source of aerodynamic uncertainty through

the aircraft equations of motion and the detailed breakdown of the aerodynamic coefficients.

The basic UAV reference frames are presented, the control surfaces are introduced and the

direct relation between the equations of motion and the aircraft aerodynamic coefficients

is established. Finally, potential and existing real-life applications of UAVs with inherent

uncertain aerodynamic parameters are demonstrated.

3.1 Basic Reference Frames

Frames (a) and (b) of Fig. 3.1 are usually referred to as NED frames (north, east and

down) and the difference between these two is that the origin of frame (b) is located to the

center of gravity (CoG) of the aircraft.
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(a) The inertial frame (b) The vehicle frame

(c) The vehicle-1 frame (d) The vehicle-2 frame

(e) The body frame (f) The stability frame

(g) The wind frame (h) Flight path/course angle

Figure 3.1: UAV reference frames [3].
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Frames (c), (d) and (e) are used to define the basic attitude angles of the UAV (also

known as Euler angles), pitch, roll and heading (yaw) angles. Angle of attack, sideslip,

flight path and course angle are defined respectively by frames (f), (g) and (h).

For the stability frame, is axis is pointing along the projection of the airspeed vector

onto the ib − kb plane of the body frame, js axis is the same as jb axis of the body frame

and ks is formed so that a right-handed coordinate system is designed. For the wind frame,

iw axis points along the direction of the airspeed vector.

Flight path angle γ is the angle between the horizontal plane and the ground velocity

vector Vg, while course angle χ is the angle between the projection of the ground velocity

onto the horizontal plane and true north.

3.2 Equations of Motion

The UAV main axes of motion (pitch, roll and yaw) are shown in Fig. 3.2, which also

defines the UAV body frame F b = (ib, jb, kb).

Figure 3.2: UAV axes of motion [3].

Table 3.1 gives the state variables for the UAV equations of motion. The NED positions

of the UAV (pn, pe, pd) are defined relative to the earth reference frame while the linear and

angular velocities are defined with respect to the body frame F b.
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Table 3.1: State variables for UAV equations of motion [3].

Variable Description

pn Inertial north position of the UAV

pe Inertial east position of the UAV

pd Inertial down position (negative of altitude)

u Velocity along ib

v Velocity along jb

w Velocity along kb

φ Roll angle of the UAV

θ Pitch angle of the UAV

ψ Heading (yaw) angle of the UAV

p Roll rate

q Pitch rate

r Yaw rate

For conventional T-tail aircraft configurations (Fig. 3.3), the control surfaces include

the aileron δα, used to control the roll angle, the elevator δe that affects the pitch angle, the

rudder δr which controls the yaw angle and the throttle δt, controlling the aircraft’s speed

Va. Other configurations include V-tail, flying wing, spoilers, flaps and canards and the

equations of motion may be defined accordingly. The control surfaces are used to maneuver

the UAV and modify the aerodynamic forces and moments.
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Figure 3.3: T-tail UAV configuration [3].

The complete set of the navigation, force, kinematic and moment equations that govern

the dynamic behavior of the UAV during flight, as found in [3] and [4], is given in (3.1).

Navigation equations

ṗn = (cos θ cosψ)u+ (sinφ sin θ cosψ − cosφ sinψ)v

+ (cosφ sin θ cosψ + sinφ sinψ)w

ṗe = (cos θ sinψ)u+ (sinφ sin θ sinψ + cosφ cosψ)v

+ (cosφ sin θ sinψ − sinφ cosψ)w

ṗd = u sin θ − v sinφ cos θ − w cosφ cos θ

Force equations

u̇ = rv − qw − g sin θ + Fib/m

v̇ = pw − ru+ g cos θ sinφ+ Fjb/m

ẇ = qu− pv + g cos θ cosφ+ Fkb/m

Kinematic equations

φ̇ = p+ q sinφ tan θ + r cosφ tan θ

θ̇ = q cosφ− r sinφ

ψ̇ = q sinφ sec θ + r cosφ sec θ

Moment equations

ṗ = Γ1pq − Γ2qr + Γ3l + Γ4n

q̇ = Γ5pr − Γ6(p2 − r2) + m/Jy

ṙ = Γ7pq − Γ1qr + Γ4l + Γ8n

(3.1)
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The parameters Γi that appear in (3.1) are functions of the aircraft’s moments and

products of inertia Jx, Jy, Jz and Jxz, analytically defined in (3.2). UAV is a nonlinear under-

actuated dynamic system, with its motion mathematically described by a set of 12 coupled,

first-order, ordinary differential equations. The standard convention for the dynamics of a

fixed-wing aircraft is an approximate decomposition into longitudinal and lateral motion.

While there is coupling between the two motions, for most airframes this dynamic effect is

sufficiently small and can be mitigated by control algorithms for disturbance rejection.

Γ = Jx Jz − J2
xz

Γ1 =
Jxz(Jx − Jy + Jz)

Γ

Γ2 =
Jz(Jz − Jy) + J2

xz

Γ

Γ3 =
Jz
Γ

Γ4 =
Jxz
Γ

Γ5 =
Jz − Jx
Jy

Γ6 =
Jxz
Jy

Γ7 =
(Jx − Jy)Jx + J2

xz

Γ

Γ8 =
Jx
Γ

(3.2)
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3.3 Aerodynamic Uncertainty in the UAV Model

The aerodynamic forces and moments and their respective coefficients (Table 3.2) have

a complex dependence on a large number of variables and this creates both modeling and

measurement problems. Therefore, it is advantageous to build up an aerodynamic coefficient

from a sum of components that provide physical insight and are convenient to handle

mathematically.

Table 3.2: UAV aerodynamic forces and moments.

Parameter Description

Fib Total force along ib axis

Fjb Total force along jb axis

Fkb Total force along kb axis

l Rolling moment

m Pitching moment

n Yawing moment

CL Lift coefficient

CD Drag coefficient

CY Sideforce coefficient

Cl Rolling moment coefficient

Cm Pitching moment coefficient

Cn Yawing moment coefficient

The actual nonlinear dependence of the forces and moments acting on the airframe on

the aerodynamic coefficients and the control surfaces is established in (3.3).
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Fib = Fib(CL, CD, δe)

Fjb = Fjb(CY , δα, δr)

Fkb = Fkb(CL, CD, δe)

l = l(Cl, δα, δr)

m = m(Cm, δe)

n = n(Cn, δα, δr)

(3.3)

In general, the aerodynamic coefficients appearing in (3.3) are nonlinear. Under certain

conditions they can be modeled with acceptable accuracy using linear approximations like

Taylor series expansion. Making use of this approach, the coefficients can be simplified for

better handling as in (3.4).

CL = CL(CL0 , CLα , CLq , CLδe )

CD = CD(CD0 , CDα , CDq , CDδe )

CY = CY (CY0 , CYβ , CYp , CYr , CYδα , CYδr )

Cl = Cl(Cl0 , Clβ , Clp , Clr , Clδα , Clδr )

Cm = Cm(Cm0 , Cmα , Cmq , Cmδe )

Cn = Cn(Cn0 , Cnβ , Cnp , Cnr , Cnδα , Cnδr )

(3.4)

where α is the angle of attack, β is the sideslip angle and the subscript 0 is the value of

the respective coefficient when the linearizing variables are set to 0. The terms inside the

parentheses on the right hand side of (3.4) are dimensionless quantities called control and

stability derivatives.
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The label derivative comes from the fact that the coefficients originated as partial

derivatives in the Taylor series approximation. Having established (3.3) and (3.4), the

connection between aerodynamic changes/uncertainty and the impact on the UAV model

is clear. Aerodynamic uncertainty is by default present in the UAV model for controller

design purposes due to the challenging task of accurate estimation of the control and stability

derivatives. In addition to that, any aerodynamic changes on the UAV can be reflected on

the aircraft control and stability derivatives.

3.4 UAVs with Uncertain Aerodynamic Parameters

Focusing on the UAV control and stability derivatives, this section presents potential or

existing real-life applications of new generation UAVs where this study may be immediately

helpful for researchers.

3.4.1 Morphing Aircraft

It is always fascinating when technology mimics nature. Motivated by the Greek word

“morpho”, which means to transform, morphing technology seeks to emulate the biological

structure of a bird [9]. This new class of UAVs will be able to control itself like a bird,

with wings that twist, fold and transform [10, 11]. Morphing research projects such as the

MFX-1 developed by NextGen Aeronautics [12] will revolutionize the costs of building and

operating aircraft.

The objective of morphing technologies is to develop high performance aircraft with

wings designed to change shape and performance substantially during flight to create

multiple-regime, aerodynamically-efficient, shape-changing aircraft. The morphing wing

change of shape can occur either in-plane (Fig. 3.4), or out-of-plane as shown in Fig. 3.5.
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Figure 3.4: In-plane shape morphing [13].

Figure 3.5: Out-of-plane shape morphing [13].

For a detailed definition of the airfoil characteristics the reader is referred to [14].

Morphing technologies will be used to improve aircraft performance, make them more

efficient and enable the vehicles to operate under a wide range of flight conditions.
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Morphing UAVs belong to the general class of active wing shaping UAVs which enable

complex trailing-edge shapes that could contribute to aerodynamic, structural, and control

advantages. An example can be seen in Fig. 3.6, which shows a UAV with segmented

control surfaces for improved aerodynamic efficiency. Changing shape during flight implies

an on-demand alteration of all the aircraft aerodynamic characteristics. Therefore, this study

will be a useful tool for those conducting research in the field of navigation and control of

morphing and active wing shaping UAVs.

Figure 3.6: Segmented left wing deflected to induce heading moment [15].

3.4.2 Delivery UAVs

Interest in small flying machines as means of delivering payloads has been continuously

increasing and the idea of turning UAVs into a commercialized delivery mechanism has

sparked a lot of debate. Some of the numerous applications include delivery of food products,

providing assistance in the agricultural and farming industry, supply chain applications,

package delivering and last but not least, the use of UAVs for medical purposes [16, 17].

Amazon, Google and UPS are some of the industry leaders that have initiated research on

new, UAV-assisted product-delivery methods.
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For a technical justification of the importance of this study when it comes to UAVs

as delivery mechanisms, the relation between the control and stability derivatives and the

vehicle’s mass must be identified. The traditional approach for aircraft system identification

is the derivation of a linear model based on motion decoupling [2]. For the UAV lateral and

longitudinal motion, a state-space model ẋ = Ax + Bu is derived through flight testing.

The elements of matrix A are functions of the aircraft’s control and stability derivatives and

trim flight conditions. An example can be seen in (3.5), which gives the actual mathematical

expression for the lateral state-space model coefficient Yr as a function of the aircraft’s mass

m.

Yr = −u∗ +
ρ V ∗α S b

4m
CYr (3.5)

Nomenclature and the complete tables of the lateral and longitudinal state-space model

coefficients can be found in [3]. As an example, the relation between lateral state-space

coefficients and the lateral control and stability derivatives is illustrated in Figure 3.7.

Assuming changing mass due to a delivery scenario means that the UAV control and stability

derivatives will have time-varying values during flight as (3.5) dictates. Hence, the controller

design methodology that will be applied on a delivery UAV, will inevitably be one of the

techniques investigated in this dissertation.
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Figure 3.7: Mathematical definiton of lateral state-space coefficients [3].
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Chapter 4

Controller Design

Flight control design for non-conventional UAVs with time-varying aerodynamic uncer-

tainties focuses particularly on how the uncertain parameters can be incorporated in the

aircraft mathematical model. Lift, drag, sideforce, rolling moment, pitching moment and

heading moment coefficients must be appropriately modeled so that uncertainty can be

tackled. Literature has already shown that the exact calculation of the aerodynamic charac-

teristics of a specific aircraft is a challenging task ([3] and [4]). This is why estimations and

computer software such as XFLR5, found in [98], are employed to derive approximations.

The solution considered to overcome this obstacle is µ-analysis of uncertain systems and

additive uncertainty weighting functions.

4.1 µ-Synthesis Preliminaries

Before presenting the complete process for the proposed UAV controller framework,

there is the need to demonstrate how uncertainty can be represented on a given system for

µ-synthesis to be applied.
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The basic idea in modeling an uncertain system is to separate what is known from what

is unknown in a feedback-like connection, and bound the possible values of the unknown

elements. As explained in [102], the theory for representing uncertainty in matrices and

systems is Linear Fractional Transformations (LFTs). Suppose a transfer matrix M is given,

relating input r and output v as in Fig. 4.1.

Figure 4.1: Transfer matrix M relating r and v [102].

If r and v are partitioned into a top and bottom part, that is if M is a 2 × 2 transfer

matrix, then the relationship can be drawn in more detail, explicitly showing the partitioned

matrix M as shown in Fig. 4.2.

Figure 4.2: Partitioned transfer matrix M [102].

Suppose now a matrix ∆ relates r2 to v2 as in Fig. 4.3.

Figure 4.3: Transfer matrix ∆ between r2 and v2 [102].

The LFT of M by ∆ interconnects these two elements as shown in Fig. 4.4.
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Figure 4.4: Interconnection of M and ∆ [102].

Eliminating r2 and v2 yields:

v1 = FL(M,∆)r1 = [M11 +M12∆(I −M22∆)−1M21]r1 (4.1)

The lower loop of Fig. 4.4 can be considered as the uncertainty block of the initial

system. The notation FL(M,∆) is used because the ∆ block is on the lower loop of Fig.

4.4. Inserting the ∆ block in the upper loop of the interconnection and using the upper loop

notation yields:

v2 = FU(M,∆)r2 = [M22 +M21∆(I −M11∆)−1M12]r2 (4.2)

This is the theory needed to represent and analyze model uncertainty. Model uncertainty

is divided into two categories: Parametric and Multiplicative. Parametric Uncertainty refers

to systems with uncertain parameters that have a nominal value and a range of possible

variation. For instance, consider the second order spring system:

mẍ+ cẋ+ kx = u (4.3)

with uncertain parameters m, c, k. 50% uncertainty in m, 30% in c and 40% in k is

considered. Let’s also denote the nominal values for m, c, k as m̄, c̄, k̄ respectively. This is

translated into:
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m = m̄(1 + 0.5δm), c = c̄(1 + 0.3δc), k = k̄(1 + 0.4δk) (4.4)

The usual block diagram that would represent a known system as described in (4.3) is

depicted in Fig. 4.5.

Figure 4.5: Block diagram of a known 2nd order spring system [102].

If uncertainties for m, c, k exist in the model, then by using the block diagrams seen in

Fig. 4.6, the block diagram of Fig.4.5 is converted into a new one including the uncertainties

as shown in Fig. 4.7.

Figure 4.6: Block diagrams representing uncertainties for m, c, k [102].
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Figure 4.7: Block diagram for a 2nd order uncertain spring system [102].

Although this type of uncertainty looks like it applies for a non-conventional UAV, it

will not be effective. Parametric uncertainty is mainly aiming to deal with uncertainties

stemming from a specific parameter itself. In other words, parametric uncertainty is usually

applicable when the uncertainty exists in the model in a linear like fashion and can be

distinguished from the known part or the measured variables. The UAV mathematical model

is too complicated and highly nonlinear to be handled this way. And for the design of

a robust nonlinear controller, we need something richer and more powerful to analyze it

i.e., multiplicative uncertainty. Multiplicative Uncertainty roughly allows one to specify

a frequency-dependent percentage uncertainty in the actual plant behavior. For this two

components are needed:

• A nominal model G(s)

• A multiplicative uncertainty weighting function Wu(s)

The precise definition of the multiplicative uncertainty weighting function is given by

inequality (4.5).

|G̃(jω)−G(jω)

G(jω)
| ≤ |Wu(s)| (4.5)
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where G̃(jω) denotes the overall uncertain transfer matrix. For a SISO uncertain plant,

where the aircraft uncertainty is modeled as a complex full-block multiplicative uncertainty

at the input of the rigid body aircraft nominal model, a block diagram as in Fig. 4.8 is

sought.

Figure 4.8: Block diagram for a SISO uncertain plant [102].

The perturbation block ∆G is supposed to satisfy the norm condition ‖∆G‖ ≤ 1. In

the block diagram of Fig. 4.8, a plant output disturbance d and a performance weighting

function Wp for certain performance tracking adjustments are also considered. The open

loop interconnection of Fig. 4.8 is the one is sought regarding control of a single state

variable for the UAV’s motion. The design can be extended to a 2 × 2 transfer matrix

(plant) as seen in Fig. 4.9, where G represents the uncertain plant model set as in Fig. 4.8.

Wdel functions denote actuator models and Wn functions are used to incorporate sensor

noise. The structure of a generalized block diagram for a n × n MIMO uncertain plant

is the same as Fig. 4.8 with appropriately adjusted dimensions for controller K, nominal

model G, uncertainty weighting function Wu, perturbation block ∆G, output disturbance d,

performance weighting function Wp and control input u. Actuator and sensor models can

also be introduced as in Fig. 4.9.
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Figure 4.9: Block diagram for a 2× 2 MIMO uncertain plant [102].

4.2 UAV Modeling and Uncertainty Range

Using Taylor series approximation as explained in [2], [3] and [4], Equation (4.6)

presents the proposed aerodynamic coefficient modeling to realize the flight dynamics of a

UAV with time-varying aerodynamic uncertainties.

CL = CL0(χ) + CLα(χ)α + CLq(χ)q + CLδe (χ)δe

CD = CD0(χ) +
(CL0(χ) + CLα(χ)α)2

πeAR

CY = CY0(χ) + CYβ(χ)β + CYp(χ)p+ CYr(χ)r

+ CYδα (χ)δα + CYδr (χ)δr

Cp = Cp0(χ) + Cpβ(χ)β + Cpp(χ)p+ Cpr(χ)r

+ Cpδα (χ)δα + Cpδr (χ)δr

(4.6)
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For a detailed definition of the parameters that appear in Equation (4.6) the reader is

referred to chapter 3 and [3]. Coefficients CL, CD, CY correspond to lift, drag and sideforce

respectively while coefficient Cp can be broken down to two components, one for the rolling

and one for the heading moment of the UAV. For instance:

Cp0 = Γ3Cl0 + Γ4Cn0 (4.7)

The first observation upon examining Equation (4.6) is the dependence of the control

and stability derivatives on an uncertain parameter χ, representing the respective uncer-

tain aerodynamic configuration occurring at a given time instant. Thus, the control and

stability derivatives can be represented as time-varying functions of χ. This slight mod-

ification provides an accurate theoretical modeling of the aerodynamic coefficients of a

non-conventional UAV. For the time-varying control and stability derivatives, the assumption

shown in Equation (4.8) is used.

CL01
≤ CL0(χ) ≤ CL02

(4.8)

This inequality is applied for every time-varying derivative in Equation (4.6). The

quantity on the left, in this case CL01
, is the value of CL0(χ) corresponding to the nominal

model of the system, while the quantity on the right is the value of CL0(χ) corresponding

to the extreme case, maximum value. This provides the operating interval and defines the

uncertainty range for the vehicle’s aerodynamic coefficients that will be used to define

the overall UAV uncertain model for control system design. The assumptions listed in

Equation (4.9) are also considered.
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Va ≤ Vamax

ρ ≤ ρmax

α ≤ αmax, γ ≤ γmax, β ≤ βmax

θ ≤ θmax, φ ≤ φmax

δe ≤ δemax , δα ≤ δαmax , δr ≤ δrmax

q ≤ qmax, p ≤ pmax, r ≤ rmax

FT ≤ FTmax

(4.9)

Maximum values regarding physical and control input constraints are considered for

airspeed Va, air density ρ, angle of attack α, flight path angle γ, sideslip angle β, pitch angle

θ, roll angle φ, elevator deflection δe, aileron deflection δα, rudder δr pitch rate q, roll rate p,

heading rate r and aircraft engine thrust FT .

The inequality in Equation (4.8) is the core of this dissertation. The lower and upper

bounds of Equation (4.8) can be derived through aircraft system identification and flight

testing for the respective lower and upper bound configurations. In the case of the UC2AV ,

this implies aircraft system identification for the CC-off and CC-on cases. The state-

space matrices A,B of ẋ = Ax + Bu are identified for both the longitudinal and lateral

motions. The dimensional control and stability derivatives can then be converted into the

non-dimensional ones (as Equation (4.8) dictates) through the longitudinal/lateral state-space

coefficient tables that can be found in [3].

Another alternative that the authors implement and suggest is based on the foundation of

adaptive control [69] for estimating the lower and upper bounds. A conceptual example of

this method is given in the following equations, applied for the UC2AV . The Dutch-Roll

reduced order mode of the UAV is given by Equations (4.10).
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 ˙̄β

˙̄r

 =

 Yu
Yr

V ∗α cosβ∗

NuV
∗
α cos β∗ Nr


 β̄

r̄

+

 Yδr
V ∗α cosβ∗

Nδr

 δ̄r (4.10)

where Yu, Yr, Yδr , Nu, Nr, Nδr are dimensional control and stability derivatives to be

estimated, star notation denotes aircraft trim conditions and bar notation represents deviation

from trim conditions. The UC2AV has an approximate airspeed trim value of 21 m/s and a

relatively small (≈ 0) sideslip angle is considered. An accurate model of the UC2AV has

been designed using the XPlane flight simulator plane maker and a UDP communication

between XPlane and Simulink has been established as described in [106]. The goal is to

isolate the first differential equation, put it into linear parametric form (LPM), and employ

an adaptive law that will estimate the unknown parameters through flight simulation. The

LPM in this case can be written as in Equation (4.11).

z = θφ ⇔ ˙̄β =

(
Yu Yr Yδr

)
β̄

r̄/21

δ̄r/21

 (4.11)

The rudder control input signal needs to be sufficiently rich, i.e., to have at least two

fundamental frequencies, for persistence of excitation of the regressor signal φ to hold [107].

Therefore, the UC2AV is excited by an automated rudder command generated by Simulink

that is given by Equation (4.12) in radians.

δr(t) = 0.3(sin 2πt+ sin 4πt) (4.12)

The sideslip and heading rate responses of the UC2AV can be seen in Figures 4.10

and 4.11 respectively. The control input is an automated signal and there is no human

interference during the sweeps.
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As a result, the aircraft loses stability after 10 seconds. The response signals are isolated

from 0 to 10 seconds and converted into an approximate linear chirp waveform, with a

particular emphasis on the amplitude and the frequency. For example, the sideslip response

in radians is approximated by the waveform β(t) = 0.17e−0.08t sin(−1.7πt) and the heading

rate by the waveform r(t) = 0.015e−0.08t sin(−1.7πt).

Figure 4.10: UC2AV sideslip response in XPlane.

Figure 4.11: UC2AV heading rate response in XPlane.
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The unknown parameters of Equation (4.11) are then estimated by the adaptive law
˙̂
θ = Γεφ, with the tracking error ε given by ε = z − θ̂Tφ and the diagonal positive definite

matrix Γ tuned accordingly. The derived estimates for Yu, Yr and Yδr are shown in Figures

4.12, 4.13 and 4.14 respectively.

Figure 4.12: Evolution of Yu over time.

Figure 4.13: Evolution of Yr over time.
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Figure 4.14: Evolution of Yδr over time.

Aircraft system identification through flight testing for the UC2AV [106] has shown

that Yu ≈ −288. In this example, an initial condition of -100 is given for Yu and the

system adapts to the true value of the unknown parameter (Fig. 4.12) via an appropriate

tuning of the elements of matrix Γ, proving that the methodology is reliable. The benefit

from this technique is twofold. It can be generalized and applied for estimation of the

longitudinal/lateral dimensional control and stability derivatives of the UAV and it can also

serve as an alternative for calculating the initial estimates for aircraft system identification

using CIFER [5].

The methodology outlined above can be followed for estimation of the lower bounds

(conventional UAV case) of Equation (4.8) with the only requirement being the existence

of a UAV model for XPlane flight simulation. Estimation of the upper bounds is more

challenging because it requires that the upper bound configuration (non-conventional UAV

case) can be simulated in XPlane. For example, for a morphing UAV this implies that

flight simulation can be performed with the configuration producing maximum lift, drag,

sideforce and rolling and heading moment. Nevertheless, aircraft system identification is a

challenging task and parameter derivation is not 100 % reliable.
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Therefore, the effect of pushing the lower and upper bounds to safe (smaller and larger

respectively) numerical values was investigated. The additive uncertainty weighting function

for airspeed control that was used in [8] is given in Equation (4.13).

WVα =
0.1s+ 0.32

s+ 1.5
(4.13)

This function was derived by considering the upper bound non-dimensional control

and stability derivatives to be CL02
= 0.55, CD02

= 0.05, CLq2 = 1.89, CLδe2
= 0.09.

Controller performance in an extreme case scenario where these values are assumed to be

10 times larger was investigated. The results without and with tuned performance weighting

function can be seen in Figs. 4.15 and 4.16, where it is clearly shown that the controller order

remains the same (= 3) while robust performance (peak-µ value< 1) can be guaranteed with

an appropriate modification of the performance weighting function utilized. The argument

used here is not a general, mathematically concrete and proven method but in a practical

application it can yield acceptable reference signal tracking as the simulation results chapter

demonstrates.

Figure 4.15: Airspeed controller without tuned performance.

Figure 4.16: Airspeed controller with tuned performance.
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The section that follows presents the complete inner-outer loop, dynamic inversion plus µ-

synthesis controller design methodology with the control objectives given by Equation (4.14).

The subscript ref represents reference instructions in the airspeed Vα, flight path angle γ

and roll angle φ respectively. Sideslip angle β is intended to be close to 0 for lateral stability.

Vα = Vαref

γ = γref

β = 0

φ = φref

(4.14)

4.3 Longitudinal Motion

The controller design process for the UAV longitudinal flight dynamics follows a cas-

caded structure, which is depicted in Fig. 4.17. First, a controller for Vα is designed using

the engine thrust FT as a control input and then the output is fed into the flight path angle

controller, which is regulated through δe. State variables q and α are assumed to be available

for measurement throughout the controller synthesis and Vαref and γref represent reference

instructions for Vα and γ respectively.
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Figure 4.17: Block diagram for longitudinal motion control.

4.3.1 Airspeed Controller

An inner-loop dynamic inversion controller is employed to partially linearize the airspeed

dynamics. After that, the plant is separated into unknown (uncertainty) and known parts

and D-K iteration takes place to control the overall uncertain system. The way the airspeed

controller operates can be seen in Fig. 4.18.

Figure 4.18: Airspeed controller design framework.
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The airspeed dynamics from [4] read:

V̇α =
1

m
(−Fdrag + FT cosα−mg sin γ) (4.15)

with the mathematical expression for the drag force given by:

Fdrag =
1

2
ρV 2

αSCD (4.16)

Using (4.6), (4.8) and (5.2) we alter the airspeed dynamics in the following way:

V̇α = − 1

2m
ρV 2

αS(CD01
+

(CL01
+ CLα1

α)2

πeAR
)

+
1

m
cosα · FT − g sin γ +

2∑
i=1

∆fi

(4.17)

where ∆fi , i = 1, 2 are additive uncertainties of the functions f1 = − 1
2m
ρV 2

αS(CD01
+

(CL01
+CLα1

α)2

πeAR
) and f2 = 1

m
cosα · FT respectively, generated by the added load and the

additional effect of aerodynamic uncertainty. First, the following dynamic inversion inner-

loop control law is applied:

FT =
m

cosα
(g sin γ + f1 + v1) (4.18)

with v1 being a pseudo control input. The airspeed dynamics reduce to:

V̇α = v1 +
2∑
i=1

∆fi (4.19)

Choosing v1 = kVα(Vαref − Vα) with kVα being a design tuning parameter, yields an

uncertain plant of the form:
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G̃(s) =
kVα

s+ kVα
+

L (
∑2

i=1 ∆fi)

s+ kVα
(4.20)

where L is the Laplace transform symbol. The airspeed’s nominal model is given by:

G(s) =
kVα
s+kVα

. The uncertain open-loop interconnection P for the airspeed dynamics is

depicted in Fig. 4.19.

Figure 4.19: Uncertain open-loop interconnection P for the airspeed dynamics [102].

where the perturbation block ∆ must satisfy the norm condition ‖∆‖ ≤ 1 and the additive

uncertainty weighting function Wu is determined by (4.21) and by making use of (4.8) and

(4.9).

|G̃(jω)−G(jω)| ≤ |Wu| (4.21)

Having derived the nominal model G(s), the additive uncertainty weighting function

Wu(s) and the open loop interconnection P for the UAV airspeed, the outer-loop µ-controller

design process can be initiated using the µ-Analysis and Synthesis Toolbox [102] by running

the D-K iteration graphic user interface (GUI) to derive the µ-synthesis control law. For

newer MatLab versions, the plots and the design process can be recreated using the Robust

Control Toolbox [103] for µ-synthesis design. Fig. 4.20 illustrates how the graphic user

interface looks and how it functions.
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Figure 4.20: µ-Analysis and Synthesis Toolbox interface [102].

In order to apply the general structured singular value theory to control system design,

the control problem needs to be recast into the linear fractional transformation (LFT) setting

as in Fig. 4.21.

Figure 4.21: Linear fractional transformation setting for µ-synthesis design [102].
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The µ-controller K is derived through D-K iteration, the process of which is represented

in (4.22).

min
K stabilizing

max
ω

min
Dω∈D∆

σ̄[DωFL(P,K)(jω)D−1
ω ] (4.22)

where σ̄ denotes the maximum singular value and D∆ is the set of matrices that satisfy

D∆ ·∆ = ∆ ·D∆.

4.3.2 Flight Path Angle Controller

The flight path angle controller follows an identical approach with the airspeed controller.

The flight path angle dynamics from [4] read:

γ̇ =
1

mVα
(Flift + FT sinα−mg cos γ) (4.23)

with the relation between the lift force Flift and the respective non-dimensional lift coeffi-

cient CL, as found in [3], given by:

Flift =
1

2
ρV 2

αSCL (4.24)

Using (4.6), (4.8) and (5.1) and defining the functions fi, i = 3, 4, ..., 8 as in (4.25)

63



f3 =
1

2mVα
ρV 2

αSCL01

f4 =
1

2mVα
ρV 2

αSCLα1
α

f5 =
1

2mVα
ρV 2

αSCLq1q

f6 =
1

mVα
FT sinα

f7 =
g cos γ

Vα

f8 =
1

2mVα
ρV 2

αSCLδe1

(4.25)

we can represent the flight path dynamics as in (4.26).

γ̇ =
6∑
i=3

fi − f7 + f8 · δe +
6∑
i=3

∆fi + ∆f8δe (4.26)

Applying the dynamic inversion law δe = 1
f8

(−
∑6

i=3 fi + f7 + v2) and choosing

v2 = kγ(γref − γ) transforms the flight path dynamics into a system appropriate for µ-

synthesis design. The µ-Analysis and Synthesis Toolbox is then used to derive the outer-loop

µ-synthesis flight path angle controller.

4.4 Lateral Motion

The same design is followed for sideslip angle control with the sideslip nonlinear

dynamics given by Equation (4.27) and taken from [3]. Rudder deflection control input δr is

used to regulate sideslip.

β̇ = pw − ru+ g cos θ sinφ+
ρV 2

αS

2m
CY (4.27)
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The roll controller has a fundamental difference in the order of the nominal plant and

the order of the designed controller. The roll UAV dynamics are mathematically described

by a first order, nonlinear differential equation that does not contain the aileron as control

input as shown in Equation (4.28).

φ̇ = p+ tan θ(q sinφ+ r cosφ) (4.28)

This is tackled mathematically by taking the derivative of the roll dynamics and taking

into account the roll rate p dynamics as shown in Equation (4.29) and the mathematical

expression of Cp in Equation (4.6).

ṗ = Γ1pq − Γ2qr +
1

2
ρV 2

αSbCp (4.29)

The aircraft aileron can be used as the control input to apply the inner-loop dynamic

inversion controller as before. Accurate control of the roll angle of the UAV is sought and

the roll dynamics nominal plant in this case will be a standard second order transfer function.

The choice of the type (underdamped, overdamped, etc.) of the roll nominal plant is not

straightforward as before, where it was defined by the dynamic-inversion design tracking

parameter (i.e., kVα). Choosing a natural frequency of ωφ = 1 rad/sec, the effect of the

damping coefficient ζ on the roll nominal plant D-K optimization was investigated and it is

depicted in Fig. 4.22.
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Figure 4.22: Damping coefficient versus peak µ-value for roll nominal plant.

The plot is a graphical representation of the damping coefficient versus the peak µ-value

achieved after the optimization process, with the critical line of y = 1 highlighted in blue.

The system’s peak µ-value drops in exponential fashion until it settles to the optimal value

of ζφ = 4.8 (overdamped). The red markers correspond to rejected and the green markers to

accepted numerical values based on the criterion of peak µ-value < 1.

4.5 SIL Environment and Sensor Models

X-Plane models of the RMRC Anaconda and UC2AV (Fig. 4.23) are created using

JavaFoil, Airfoil Maker, and Plane Maker (Fig. 4.24). JavaFoil is used to model the airfoil

aerodynamic properties and dimensions at the appropriate Reynold’s number. UC2AV

design details and airfoil properties can be found in [6]. Segmenting the RMRC Anaconda

wing and measuring the airfoil dimensions (maximum thickness location) revealed that the

RMRC Anaconda has a Clark YH airfoil (Fig. 4.25).
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The modeled airfoils are converted to X-Plane using X-Plane’s Airfoil Maker. Plane

Maker is used to model the weight and dimensions of the UAV parts (fuselage, wings,

landing gear, etc.), the location of center of gravity, motor specifications (horse power,

maximum rpm, etc.), and control surface dimensions (control surface width, maximum

deflection angles, location on wings, etc.).

Figure 4.23: The UC2AV model in X-Plane [106].

Figure 4.24: Workflow for creating UAV X-Plane models. The coefficients of lift CL, drag
CD, and moment Cm are modeled by X-Plane [106].

67



Figure 4.25: Top: segmented wing for airfoil property analysis. Bottom left: location of
maximum airfoil thickness. Bottom right: Clark YH airfoil [106].

Simulink code is written to communicate with X-Plane via the UDP protocol. The data

generated by X-Plane (control inputs and UAV response) is packeted and sent to Simulink.

The packeted data is in decimal code and single precision floating point format (Fig. 4.26).

Bytes 1-4 contain the Header, byte 5 is a software internal use byte, bytes 6-10 contain

the data label and bytes 11-41 contain the estimated aerodynamic variables. The Simulink

code unpacks and converts the data to decimal values (Fig. 4.27) [108]. The values are also

plotted in real-time to provide immediate feedback (Fig. 4.28).

It is important to note that Simulink’s simulation time is dependent on the complexity of

the code and the speed of computer. The time array produced by Simulink can be inaccurate

leading to incorrect data time stamping. To resolve the issue, tic and toc MATLAB functions

are used. Input signals are applied to the aircraft using the Interlink Elite Controller and

UAV response to the inputs is recorded using Simulink and MATLAB.

Figure 4.26: A UDP packet sent by X-Plane to Simulink [106].
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Figure 4.27: Simulink UDP receiver and data conversion [106].
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Figure 4.28: Real-time visualization of the recorded data [106].

The following section provides the basic steps, the framework and the necessary technical

preliminaries for Kalman, linear and nonlinear complementary filter design in Simulink.

The section is divided into three subsections. One for the noise models that are utilized and

one section for Kalman and complementary filter implementation respectively.

4.5.1 Noise Models

Throughout the design, pitch, roll and heading (yaw) readings that are received by

Simulink from X-Plane (Fig. 4.27) are corrupted by noise before being sent to the observer

framework as inputs. Noise is by default generated to reflect a 10% sensor inaccuracy based

on the estimated attitude angle. MATLAB functions wgn() and rand() are used to generate

white, Gaussian and uniform random noise respectively.
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A normalized preview of the noise models used in the design can be seen in Fig. 4.29

and Fig. 4.30.

Figure 4.29: White Gaussian noise model.

Figure 4.30: Uniform noise model.

4.5.2 Kalman Filter

The Kalman filter framework for pitch angle estimation in Simulink is summarized by

Fig. 4.31. This is essentially a Simulink subsystem (5 inputs, 1 output) designed on top

of the UDP receiver shown in Fig. 4.27. A discrete Kalman filter Simulink function is

used with 5 system states, 5 outputs and no control input. The actual subsystem inputs are

corrupted by an appropriate noise model and then fed to the Kalman filter input port as

model source.
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Matrix A for state-space model representation is derived from the UAV longitudinal and

lateral state-space models that can be found in [3]. For instance, the longitudinal state-space

model corresponding to Fig. 4.31 is highlighted in (4.30).

Figure 4.31: Kalman filter framework for pitch angle estimation.



u̇

ẇ

q̇

θ̇

ḣ


=



Xu Xw Xq −g cos θ∗ 0

Zu Zw Zq −g sin θ∗ 0

Mu Mw Mq 0 0

0 0 1 0 0

sin θ∗ − cos θ∗ 0 u∗ cos θ∗ + w∗ sin θ∗ 0





u

w

q

θ

h


(4.30)

Matrix C is chosen to be a 5× 5 identity matrix. Nomenclature and details about the

aerodynamic parameters appearing as matrix elements in (4.30) can be found in [3]. The

non-dimensional aerodynamic coefficients that are related to matrix A are calculated in [8].
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Roll and heading angle estimation via the Kalman method in this SIL environment

follows the same concept by utilizing the lateral state-space model of the UAV.

4.5.3 Complementary Filter

The linear complementary filter framework for pitch angle estimation in Simulink is

illustrated by Fig. 4.32, implementing a simple low-pass, high-pass filter structure. A

low-pass filter 1
τs+1

compensates for low frequencies for pitch rate measurement from a

gyro while a high-pass filter τs
τs+1

takes care of the high frequencies for pitch angle from

an accelerometer. The time constant τ that determines the cut-off frequency is derived

experimentally, after running a few tests and evaluating the filter performance. Roll and

heading angle estimation is performed by following the same design.

Figure 4.32: Linear complementary filter framework for pitch angle estimation.
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Figure 4.33: Nonlinear complementary filter structure [109].

However, the linear filter does not produce reliable estimates when the system under

consideration is nonlinear and the sensor has varying bias. The nonlinear complementary

filter is thus designed to take cues from the orientation error between complementary sensor

modules and improve the estimation. The block diagram for estimating attitude using

nonlinear complementary filters is shown above in Fig. 4.33. Implementation in Simulink

for pitch angle estimation is illustrated in Fig. 4.34. Proportional and integral constants Kp,

KI are again determined experimentally based on estimation efficiency.

Figure 4.34: Nonlinear complementary filter framework for pitch angle estimation.
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Table 4.1 shows the proportional, integral, time and cut-off frequency (fc) constants for

pitch, roll and heading nonlinear complementary filter design.

Table 4.1: Constants used for complementary filter design.

KP KI τ fc (Hz)

pitch 1.5 1.75 62.5 0.0024

roll 6.21 3.84 57 0.0031

heading 2.92 4.3 67.1 0.0015

4.6 Controller Implementation in Simulink

Details, block diagrams and an in-depth description of how the inner-outer loop dynamic

inversion plus µ-synthesis controller is implemented in Simulink are included in this section.

The controller design methodology for airspeed control is outlined step-by-step, with flight

path, sideslip and roll angle control following the same steps. The mu-Analysis and

Synthesis Toolbox produces the outer-loop µ-synthesis airspeed controller in the frequency

domain. The modeling functions shown in Fig. 4.35 are used to convert the controller

generated by the toolbox to easily accessible state-space representation that is used to

create the actual controller block in Simulink, illustrated in Fig. 4.36. Specifically, the

functions sys2pss and unpck are used for the state-space conversion process. The outer-

loop controller is basically a linear, time-invariant system with a transfer function that

corresponds to the controller methodology presented in section 4.3. It contains two inputs,

airspeed and airspeed reference instruction and one output, the newly generated airspeed

that will be fed into the dynamic inversion, inner-loop controller.
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Figure 4.35: Modeling functions for extracting state-space data [102].

Figure 4.36: Outer-loop mu-synthesis airspeed controller in Simulink.

The dynamic-inversion, inner-loop, airspeed controller implementation is illustrated in

Fig. 4.37. The blocks are implementing the math required to linearize the airspeed dynamics

as described in section 4.3. Putting the two controllers together, forms the proposed, general

and universally applicable control architecture that is highlighted in Fig. 4.38.
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Figure 4.37: Inner-loop dynamic inversion airspeed controller in Simulink.

Figure 4.38: Overview of the airspeed controller in Simulink.

Fig. 4.39 shows how sections 4.3, 4.4 and 4.5 are integrated together. In other words,

how wind models and atmospheric disturbance components are entering the UAV equations

of motion in Simulink. Parameters wns , wes , wds correspond to wind in NED directions,

subscript wg refers to parameters with respect to the wind frame and Rb
v is the rotation

matrix from the vehicle to the body frame. Filters Hu, Hv, Hw are Dryden transfer functions

for approximating turbulence models, with the exact mathematical definition given by Fig.

4.40. Parameters σu, σv, σw are the intensities of turbulence and Lu, Lv, Lw represent spatial

wavelengths.

77



Figure 4.39: Wind models and atmospheric disturbances in Simulink [3].

Figure 4.40: Dryden gust transfer functions [3].
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Pitch, roll and heading angle readings are corrupted with wind, passed through the

Kalman or complementary filter sensor model, blended with Dryden turbulence models

and then generating the appropriate linear velocities that are used for controller design in

sections 4.3 and 4.4. Fig. 4.41 contains all the numerical values for each gust model case

and focus is placed particularly on the medium altitude, moderate turbulence, for small-scale

fixed-wing UAVs.

Figure 4.41: Dryden transfer function parameters [3].

4.7 Controller Design Algorithm - Stability Analysis

This section provides an overview of the controller design algorithm with the general

steps shown in Table 4.2. Starting from the nonlinear system dynamics (Step 1), a nominal

(known) plus uncertain (unknown) part representation is derived based on the uncertainty

interval and the lower bounds for the aerodynamic coefficients (Step 2). The inner-loop,

dynamic inversion controller is then designed based on the expanded dynamics of Step 2

(Step 3), partially linearizing the system. With a reduced linear system form available, the

dynamics are modeled using an overall uncertain plant (G̃) and a nominal plant (G), with

the absolute value of the difference of these two yielding the additive uncertainty weighting

function for the respective aerodynamic uncertainty intervals (Steps 4, 5). The final step is

the design of the outer-loop µ-synthesis controller which is performed by a doubly iterative

procedure with respect to i) the H∞ controller K and ii) the left and right D-scales to

optimize the system’s (transfer matrix) maximum singular value σ̄ (Step 6).
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Table 4.2: Controller design algorithm

Steps Task Description

Step 1 Nonlinear dynamics: ẋ = f(x) + g(x)u

Step 2 Step 1 into nominal/uncertain part: ẋ = f̂(x) + ∆f(x) + [ĝ(x) + ∆g(x)]u

Step 3 Dynamic Inversion Controller to Step 2: u∗ = ĝ(x)−1[v − f̂(x)]

Step 4 Reduced system dynamics: ẋ = v + ∆f(x) + ∆g(x)u∗

Step 5 Additive uncertainty weighting functions: |G̃(jω)−G(jω)| ≤ |Wu|

Step 6 µ-synthesis optimization: min
K stabilizing

max
ω

min
Dω∈D∆

σ̄[DωFL(P,K)(jω)D−1
ω ]

Steps 1 through 6 are followed for nonlinear control of airspeed, flight path angle,

sideslip and roll angle. For stability analysis purposes, Steps 3, 4 and 6 require attention.

Specifically, the nonlinear dynamics are linearized and a pseudo control input is inserted

into the design, allowing one to incorporate the tracking error into the simplified, linear

dynamics. Parameter v is a function of the tracking error. The µ-synthesis optimization

process is there to guard against instabilities that may occur for when the reduced system

dynamics are unstable. So in principle, stability is investigated for a linear system with

time-varying uncertainties (functions ∆f(x), ∆g(x)) or perturbations.
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Chapter 5

UC2AV Results

The proposed controller design framework has been validated for stability and naviga-

tional control of the UC2AV . For CC to be implemented on the UC2AV , a forward impeller

centrifugal compressor is used, located in the fuselage and called Air Supply Unit (ASU),

while an Air Delivery System (ADS) integrated with a plenum is capable of distributing

air uniformly across the wingspan [7]. CC is applied through the ASU by regulating the

RPM of the centrifugal compressor. For future missions and scenarios, the RPM of the ASU

will need to be optimally controlled (CC-on-demand) with respect to power consumption

or mission performance, to complete a variety of tasks. As a result, the RPM of the cen-

trifugal compressor ranges between 0 and maximum (28,000) according to the ongoing

mission. Different RPM will generate different values for the aerodynamic coefficients of

the UC2AV , which will, in turn, generate different UC2AV flight dynamics. Therefore, the

actual UC2AV flight dynamics are explicitly described by a family of models or by model

uncertainty mainly stemming from the aerodynamic coefficients, with predefined upper and

lower bounds.
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5.1 Effects of CC on the UC2AV model

The impact of the implementation of CC on the UC2AV flight dynamics is what

distinguishes this work from existing studies conducted on navigation and control of UAVs.

A UC2AV based controller design that takes into account the effects of CC is investigated.

Hence, this section presents the changing parameters due to CC in the UC2AV model.

5.1.1 Mass

The mass of the airframe changes due to the existence of the ASU (Air Supply Unit) and

the ADS (Air Delivery System) that are both located in the fuselage of the aircraft. With this

type of equipment on-board, the UC2AV weighs 4.7 kg, (i.e., 1.2 kg of additional weight

compared to the stock RMRC Anaconda). Since CC enhances the payload capabilities of

the platform, for the aircraft’s mass m, a package delivering scenario is a promising and

realistic application.

5.1.2 Moments and Products of Inertia

According to the fixed-wing UAV equations of motion found in [3], the UC2AV flight

dynamics are affected by parameters Γi, which represent functions of the aircraft’s moments

and products of inertia. Furthermore, the moments and products of inertia depend on the

aircraft’s total mass. Due to the modified mass distribution in the fuselage, caused by the

ASU and the ADS, the total mass of the airframe changes as well. This results in a change

of the moments and products of inertia of the UC2AV .

82



5.1.3 Lift Coefficient

The relation between the lift force Flift and the respective non-dimensional lift coefficient

CL as found in [3] is:

Flift =
1

2
ρV 2

αSCL (5.1)

where ρ is the air density, Vα is the UC2AV ’s airspeed and S is the surface area of the wing.

CC is a method to enhance lift and this can be seen as an increase on the lift coefficient of

the airfoil CL. So graphically, the effect of CC can be interpreted as a translation of the lift

coefficient versus angle of attack graph. This is shown in Fig. 5.1, which illustrates a 2D

wind tunnel experimental study of the effect of CC on Cl based on different values of the

momentum coefficient of blowing Cµ [6].

Figure 5.1: 2D experimental study on the effect of CC on lift coefficient [6].
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5.1.4 Drag Coefficient

The mathematical expression for the drag force is given by:

Fdrag =
1

2
ρV 2

αSCD (5.2)

where CD denotes the drag coefficient of the UC2AV . The total drag of the aircraft is a

summation of the parasitic drag, the induced drag and the wave drag. The induced drag, also

called vortex drag, is the pressure drag caused by the tip vortices of a finite wing when it

is producing lift [4]. CC alters the induced drag of the aircraft and this is interpreted as a

change on the overall drag coefficient, CD. The exact expression of the induced drag is:

CDi =
CL

2

πeAR
(5.3)

where e is the Oswald efficiency factor and the wing aspect ratio, taken from [4], is given

by (5.4).

AR =
b2

S
(5.4)

5.1.5 Pitching Moment Coefficient

The exact expression for the pitching moment coefficient can be found in [4] but it is

restated here for completeness:

Cm = f(α, δe, q) +
xR
c̄
CL (5.5)
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Equation (5.5) highlights the dependence of the pitching moment coefficient on the lift

coefficient. Since CC changes the lift coefficient, it also affects the dynamic behavior of the

pitching moment coefficient, causing an additional pitching moment effect and a dramatic

change on the aircraft’s pitch angle. The effect has been recently validated [6], through flight

testing and data collection. It can be seen in Fig. 5.2, with the red dashed lines indicating

the intervals corresponding to the effect.

Figure 5.2: Change of pitch angle due to CC during cruise flight [6].
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5.2 Simulation Parameters

The proposed design was implemented for nonlinear control of the UC2AV . The inertia

parameters Γ1 = 0.1, Γ2 = 0.72, Γ3 = 1.63 and Γ4 = 0.09 were derived by treating the

aircraft as a sum of individual parts (fuselage, wing, etc.) and by calculating the inertia

properties of each part [2]. The longitudinal aerodynamic characteristics of the UC2AV

that were used in the simulation validation can be seen in Equation (5.6). These values were

derived through wind tunnel and flight testing.

CL01
= 0.20, CD01

= 0.04, CLα1
= 4.41

CL02
= 0.55, CD02

= 0.05, CLα2
= 4.54

CLq1 =CLq2 = 1.89

CLδe1
=CLδe2

= 0.09

(5.6)

The lateral aerodynamic characteristics are shown in Equation (5.7). The control and

stability derivatives appearing in Equation (4.6) but missing from Equation (5.7) are equal

to 0. The lower bounds were derived by using the flight simulation estimation technique

while the upper bounds were given a safe maximum value based on the analysis performed

in section 4.2, with any unwanted effects intended to be mitigated by disturbance rejection.

CYβ1
= −0.84, CYβ2

= 1.5, CYδr1
= 0.02

CYδr2
= 2.5, Cpβ1

= −0.17, Cpβ2
= 3.13

Cpp1 = −0.42, Cpp2 = 2.43, Cpr1 = 0.19

Cpr2 = 2.6, Cpδα1
= 0.13, Cpδα2

= 1.35

Cpδr1
= 0.16, Cpδr2

= 1.12

(5.7)
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The maximum values for the aircraft’s physical and control input constraints presented

in Equations (4.9) are given in Equation (5.8).

Vαmax = 25, ρmax = 1.522, αmax = π/4

γmax = π/4, βmax = 0.087, θmax = π/2

φmax = π/2, δemax = π/6, δαmax = π/3

δrmax = π/3, qmax = 0.4, pmax = 0.8

rmax = 0.8, FTmax = 45

(5.8)

The remaining parameters utilized in the simulation can be seen in Equation (5.9).

e = 0.9

S = 0.52 m2

AR = 8.32

kVα = 1.5, kγ = 1.15, kβ = 1.44

ωφ = 1, ζφ = 4.8

(5.9)

The additive uncertainty weighting functions for Vα, γ, β and φ are given by Equa-

tion (5.10).

WVα =
0.1s+ 0.32

s+ 1.5
, Wγ =

0.35s+ 0.89

s+ 1.15

Wβ =
0.01s+ 0.22

s+ 1.44
, Wφ =

0.12s2 + 0.24s+ 0.033

s2 + 9.6s+ 1

(5.10)
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For all tracking errors, the performance weighting function used throughout the simula-

tion validation process is given by Equation (5.11).

Wp =
0.25s+ 0.6

s+ 0.006
(5.11)

5.3 MATLAB Simulation Results

This section presents MATLAB simulation results for the UC2AV , derived by run-

ning simulation tests with the µ-analysis and synthesis toolbox with no disturbances and

only taking into consideration the uncertainty range for each time-varying aerodynamic

parameter. The closed loop responses for Vα, γ, β and φ using D-K iteration are shown in

Figures 5.4, 5.5, 5.6 and 5.7 respectively. The UC2AV is commanded to take-off and then

perform a circular maneuver with the airspeed reference instruction increasing exponentially

up to 21 m/s. For the flight path angle, a step reference instruction is given, occurring at 5

seconds with an amplitude of 0.26 rad. For roll angle, the UC2AV is commanded to turn

following a step reference instruction that occurs at 12 seconds with an amplitude of 0.5

rad. Throughout the maneuver (35 seconds), sideslip angle is required to stay close to 0 rad

for lateral stability. The UC2AV closed loop responses to the reference instructions in all

channels are almost ideal.

The UC2AV D-K iteration summary can be seen in Fig. 5.3. The controller is of order

26, requiring 2 iterations of D-K optimization. The control effort for thrust, elevator, rudder

and aileron that was required to perform this maneuver can be seen in Figures 5.8, 5.9, 5.10

and 5.11 respectively.
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Figure 5.3: D-K iteration summary for the UC2AV .

Figure 5.4: Airspeed response using D-K iteration.

Figure 5.5: Flight path angle response using D-K iteration.
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Figure 5.6: Sideslip angle response using D-K iteration.

Figure 5.7: Roll angle response using D-K iteration.
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Figure 5.8: Commanded thrust for the UC2AV .

Figure 5.9: Commanded elevator deflection for the UC2AV .
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Figure 5.10: Commanded rudder for the UC2AV .

Figure 5.11: Commanded aileron for the UC2AV .
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5.4 XPlane Simulation Results

The proposed controller design methodology has been extensively tested on XPlane

flight simulator by performing three benchmark maneuvers, take-off and cruise, take-off

and circular and take-off and spiral. Throughout the simulations, five wind conditions were

considered and they are depicted in Table 5.1. Specifically, the wind conditions (a-e) range

from no wind to strong wind of 13.3 mph, with the average being 6-12 mph according to

https://sciencing.com/average-daily-wind-speed-24011.html.

Table 5.1: Wind conditions for SIL XPlane simulations.

wn we wd Vw Time interval

a 0 0 0 0 mph −

b 2 2 2 3.46 mph 10-20 secs

c 3 4 3 5.83 mph 10-20 secs

d 4 5 4 7.54 mph 30-40 secs

e 8 7 8 13.3 mph 30-40 secs

Wind hits the aircraft following the gust and turbulence framework described in section

4.6 and the time intervals this is happening is highlighted in Table 5.1. In what follows,

UC2AV SIL responses for airspeed, flight path angle, sideslip angle and roll angle are

illustrated for each maneuver and each wind condition mentioned above.
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Figure 5.12: Airspeed response for cruise with wind conditions a.

Figure 5.13: Flight path angle response for cruise with wind conditions a.
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Figure 5.14: Sideslip angle response for cruise with wind conditions a.

Figure 5.15: Roll angle response for cruise with wind conditions a.
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Figure 5.16: Airspeed response for cruise with wind conditions b.

Figure 5.17: Flight path angle response for cruise with wind conditions b.
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Figure 5.18: Sideslip angle response for cruise with wind conditions b.

Figure 5.19: Roll angle response for cruise with wind conditions b.
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Figure 5.20: Airspeed response for cruise with wind conditions c.

Figure 5.21: Flight path angle response for cruise with wind conditions c.
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Figure 5.22: Sideslip angle response for cruise with wind conditions c.

Figure 5.23: Roll angle response for cruise with wind conditions c.
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Figure 5.24: Airspeed response for cruise with wind conditions d.

Figure 5.25: Flight path angle response for cruise with wind conditions d.
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Figure 5.26: Sideslip angle response for cruise with wind conditions d.

Figure 5.27: Roll angle response for cruise with wind conditions d.
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Figure 5.28: Roll angle response for cruise with wind conditions e.

Figure 5.29: Airspeed response for circular with wind conditions a.
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Figure 5.30: Flight path angle response for circular with wind conditions a.

Figure 5.31: Sideslip angle response for circular with wind conditions a.
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Figure 5.32: Roll angle response for circular with wind conditions a.

Figure 5.33: Airspeed response for circular with wind conditions b.
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Figure 5.34: Flight path angle response for circular with wind conditions b.

Figure 5.35: Sideslip angle response for circular with wind conditions b.
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Figure 5.36: Roll angle response for circular with wind conditions b.

Figure 5.37: Airspeed response for circular with wind conditions c.
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Figure 5.38: Flight path angle response for circular with wind conditions c.

Figure 5.39: Sideslip angle response for circular with wind conditions c.
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Figure 5.40: Roll angle response for circular with wind conditions c.

Figure 5.41: Airspeed response for circular with wind conditions d.
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Figure 5.42: Flight path angle response for circular with wind conditions d.

Figure 5.43: Sideslip angle response for circular with wind conditions d.
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Figure 5.44: Roll angle response for circular with wind conditions d.

Figure 5.45: Roll angle response for circular with wind conditions e.
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Figure 5.46: Airspeed response for spiral with wind conditions a.

Figure 5.47: Flight path angle response for spiral with wind conditions a.
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Figure 5.48: Sideslip angle response for spiral with wind conditions a.

Figure 5.49: Roll angle response for spiral with wind conditions a.
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Figure 5.50: Airspeed response for spiral with wind conditions b.

Figure 5.51: Flight path angle response for spiral with wind conditions b.
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Figure 5.52: Sideslip angle response for spiral with wind conditions b.

Figure 5.53: Roll angle response for spiral with wind conditions b.
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Figure 5.54: Roll angle response for spiral with wind conditions c.

5.5 Remarks

Wind models for the SIL XPlane simulation results of section 5.5 were implemented

in Simulink by using an enabled subsystem, with a time array condition consisting of ones

where the wind is on and with zeros for when the wind is off. For cruise flight, sideslip and

roll are commanded to stay close to 0 degrees. Flight path angle is given a step reference

instruction occurring at 5 seconds with a magnitude of 14 degrees. For the circular maneuver,

the reference instruction for sideslip and flight path angle is the same while roll reference

is a step function occurring at 12 seconds with a magnitude of 28 degrees. Finally, for the

spiral maneuver, sideslip is required to stay close to 0, roll angle follows the same reference

as for the circular while flight path is given a reference of 30 degrees, for the aircraft to

ascend. Airspeed reference is an exponential up to 15 m/s for all cases and maneuvers.
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Fig. 5.12 through Fig. 5.54 prove that the proposed technique is promising and provides

acceptable efficiency. The aircraft’s responses are almost ideal in most cases given a realistic

gust model and wind variety. Aircraft’s stability was tested to the limit to highlight wind

disturbance bounds for current design tuning parameters and specifications. Specifically,

the UC2AV loses stability in three cases; (i) cruise flight with a total wind of 13.3 mph

(Fig. 5.28), (ii) circular maneuver with a total wind of 13.3 mph (Fig. 5.45) and (iii) spiral

maneuver with a total wind of 5.83 mph (Fig. 5.54).

116



Chapter 6

Conclusion and Future Work

This dissertation presented a hybrid, nonlinear, inner-outer loop autopilot for fixed wing

UAVs with time-varying aerodynamic parameters, consisting of a dynamic inversion and a

µ-synthesis controller. The novelty the author is proposing relates to the uncertainty range

of the respective, uncertain parameters with time-varying structure and an appropriate modi-

fication of unmodeled dynamics via additive uncertainty weighting functions. MATLAB

and software-in-the-loop, Simulink/XPlane results for a new generation UAV (UC2AV )

were demonstrated, proving that the proposed technique is reliable.

The focal point that may limit applicability of the proposed nonlinear controller design

to any type of nonlinear system, from ground vehicles to spacecraft, is the uncertainty

range itself. In the ideal case, system identification will be available for a given system

so the uncertainty range will be known and utilized for the derivation of the uncertainty

weighting functions. Analysis that was conducted herein shows that with extreme uncertainty

bounds and appropriately tuned performance weighting functions, robust performance can

be achieved following the proposed methodology. The question is how can one optimally

adjust the uncertainty interval for a certain system with specific time-varying uncertainties.
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Is it possible to have a stochastic, multi-model, adaptation algorithm that somehow

adjusts the lower/upper bounds accordingly for random uncertainties and any nonlinear sys-

tem? Work in this direction was initially proposed in [110], an overview of which is shown

in Fig. 6.1. Local-non adaptive compensators are blended with multi-estimators achieving

robust performance based on a multi-level Kalman filtering and system identification. As a

result, the proposed nonlinear controller framework will be integrated with a multi-model

algorithm for system identification, thus making the technique a rigid and mathematically

rigorous method, applicable to any nonlinear system.

Figure 6.1: Robust multi-model adaptive architecture.
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