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ABSTRACT

A sensor network is typically modeled as a collection of spatially distributed objects

with the same shape, generally for the purpose of surveilling or protecting areas and lo-

cations. In this dissertation we address several questions relating to sensors with linear

shapes: line, line segment, and rays in the plane, and hyperplanes in higher dimensions.

First we explore ray sensor networks in the plane, whose resilience is the number of

sensors that must be crossed by an agent traveling between two known locations. The

coverage of such a network is described by a particular tripartite graph, the barrier graph

of the network. We show that barrier graphs are perfect (Berge) graphs and have a rigid

neighborhood structure due to the rays’ geometry.

We introduce two extremal problems for networks in the plane made of line sensors,

line segment sensors, or ray sensors, which informally ask how well it is possible to si-

multaneously protect k locations with n (line/ray/segment)-shaped sensors from intruders.

The first question allows any number of intruders, while the second assumes there is a lone

intruder. We show these are questions to be answered separately, and provide complete

answers for k = 2 in both cases. We provide asymptotically tight answers for question (1)

when k = 3, 4 and the locations are in convex position. We also provide asymptotic lower

bounds for question (1) for any k.

Finally, we generalize these extremal problems to d dimensions. For the d-dimensional

version of question (1) we provide asymptotic lower and upper bounds for any combination

of k and d, though these bounds do not meet.
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CHAPTER 1: BARRIER GRAPHS

1.1 Introduction

Consider a pair of points α and β in the plane, and an arrangement R of rays. If there

is no path, unobstructed by rays, from α to β, then we say the rays of R form a barrier for

α and β, and that the rays represent a ray barrier network.

In this chapter, we will explore some natural questions about such a network and struc-

tures that arise from its study. An initial question is: given a particular ray arrangement R

and point pair α and β, can one efficiently determine whether R forms a barrier? Naturally

following this, we may ask which subsets of R are smallest so that removal of any such

subset leaves an unobstructed path, and moreover how to find one of these, or how to find

its size.

An important observation of Kirkpatrick, Yang, and Zilles (KYZ) [9] was that R forms

a barrier if and only if some pair of rays contained in it forms a barrier alone. This pairwise

information yields a graph, the barrier graph for R, α, and β, with rays as vertices and an

edge for any pair forming a barrier.

Definition 1.1. Let α and β be distinct points. A pair of rays r1 and r2 forms a barrier for

α and β if as an arrangement they separate the plane into two disjoint cells, one of which

contains α while the other contains β.
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Definition 1.2. Let R be a collection of rays not containing α or β. The barrier graph for

R, α, and β is the graph G = (V,R) with vertices V = R and an edge (x, y) ∈ E for any

x, y ∈ R such that x and y form a barrier for α and β.

As discussed by [9] and in section 1.2, these are tripartite graphs, an example of which

is seen in Figure 1.1. Note that the straight segment αβ in Figure 1.1a is used to compute

the graph (Figure 1.1b) but in no way implies that a path from α to β needs to be straight.

A barrier forces all paths from α to β to cross at least one ray.

Figure 1.1: (a) An arrangement of rays with points α and β, and (b) their barrier graph.

Starting with a graph G, we can ask whether G is a barrier graph, i.e., whether there is

some arrangement R of rays, together with points α and β, so that G is the corresponding

barrier graph. If the answer is yes, we say that the tuple 〈R,α, β〉 is a realization of G.

However, because any arrangement of rays with points α and β can be rotated, scaled,

and translated so that α and β are any other convenient pair of points without changing

the corresponding barrier graph, we will usually just refer to the arrangement R as the

realization of G, where α and β are understood.

Kirkpatrick and Bereg [2] introduced the notion of a sensor network’s resilience, which

is the minimum number of sensors whose removal permits a path (not necessarily straight)
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between the chosen points. Since barriers are formed by pairs of rays [9], a ray-barrier

network’s resilience is the size of a minimum vertex cover of the barrier graph. One can

also ask whether knowing the size of a minimum vertex cover without having a realization

in hand can tell us whether a realization could be found, which we explore in Section 1.4.

In general graphs, the minimum vertex cover problem is NP-hard [8], but as KYZ

have shown, the ray barrier resilience (and in particular, a set of rays which witnesses the

resilience) of an arrangement of rays can be found efficiently by making use of geometric

information about the arrangement in addition to the barrier graph; this suggests quite

strongly that the underlying geometric structure greatly limits the graphs which can arise

as a barrier graph. KYZ’s algorithm takes O(n2m) steps, where n is the number of rays

and m is the number of barriers they form.

It is ultimately the question of which graphs can be realized as barrier graphs which

will be the main focus of this chapter. We will first show that any barrier graph belongs

to the special class of graphs called perfect graphs, a class for which some algorithmically

difficult problems become efficiently solvable. Then we will show how to find a realization

for some of the usual classes of bipartite graphs, including complete bipartite graphs, paths,

even-length cycles and trees. In addition, and in spite of how natural these constructions for

many well-recognized bipartite graphs are, it turns out that few bipartite graphs are barrier

graphs, which we show in Section 1.3.

1.2 The Tripartite Structure of Barrier Graphs

One of the key observations of KYZ is that not only does a collection of ray sensors

yield a barrier graph, but this graph must be tripartite. In order to show this, they con-

structed a 3-coloring of a barrier graph as follows (see the example in Figure 1.1). Consider
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any arrangement of rays and a pair of points α, β – the start and target points – and rotate

the realization so that the segment αβ is horizontal. Rays will be colored red if they inter-

sect αβ from above, blue if they intersect αβ from below, and black if they don’t intersect

αβ.

KYZ showed that with this coloring, barriers can only form from intersecting pairs of

differently colored rays. Furthermore, if red and blue rays intersect they always form a

barrier, but if one of the rays is black, then a barrier is only formed when the intersection

is on the same side of the supporting line of αβ as the ancho r of the non-black ray. Since

edges in the barrier graph are exactly these barrier pairs, the colors give three sets of vertices

connected by edges only to elements of a differently colored set. We will refer to this

coloring for every barrier graph as if it were part of the definition of the graph.

Viewing barrier graphs through the lens of this coloring provides a glimpse of how the

graph structure depends on the rays’ geometry, and allows us to find properties that prevent

a graph from being a barrier graph, starting with the following proposition.

Figure 1.2: A barrier graph may not contain an induced red-black-blue path. The bold
segment is the segment αβ. The region labeled ? cannot contain the anchor of k. The

anchor of b must be located in the region labeled ?? as, otherwise, it will either not be blue
or it will intersect k above `(αβ). This forces b to also intersect r.
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Proposition 1.3. Let G be a barrier graph, and fix a realization with a particular set of

rays and the path endpoints α and β. Then there is no induced length 2 path r − k − b

where r is red, k is black, and b is blue.

Proof. Fix a realization of G, so that the coloring of the vertices of the barrier graph is

fixed, and suppose r − k − b is an induced path of length 2 in G, with r red, k black, and b

blue.

Because r is red, it must be anchored above the segment in bold αβ, and must also

intersect αβ. Therefore, its ray r lies somewhere in the wedge bounded by the dashed lines

in Figure 1.2. Then, since k forms a barrier with r, it cannot be placed in the shaded region

labeled ? for, otherwise, it would either intersect αβ (thus being blue instead of black) or

intersect r below αβ (thus not forming a barrier with r).

k can either start above or below the supporting line of αβ, which we will call `, as long

as k intersects r above ` and crosses ` so that a proper intersection with b is possible. We

proceed with the case that has the anchor of k below ` and its supporting line to the left of

αβ (see Figure 1.2). The argument for each of the other possibilities is similar.

Since b must intersect k below ` to form an edge with it, it must be anchored in the

region labeled ??, since were it anchored elsewhere, it would either not intersect αβ (and

thus not be blue) or not intersect k below `. But any blue ray anchored in ??would intersect

r, which means that the vertices r, k, and b would induce a triangle instead of a path. So

there could not have been such an induced subgraph.

Proposition 1.4. If G is a barrier graph, then any induced subgraph is a barrier graph.

5



Proof. This follows immediately from the fact that any pair of rays forms a barrier (or does

not) independently of all the other rays in the collection.

Proposition 1.3 will be our most basic tool to connect the geometry of ray sensor ar-

rangements to the graph structure of their barrier graphs. Proposition 1.4 is more graph

focused, but together with Proposition 1.3 leads to the following stronger structural result

about barrier graphs.

Proposition 1.5. No graph containing a chordless cycle of odd order ≥ 5 is a barrier

graph.

Proof. Let G = (V,E) be an odd cycle graph with |V | ≥ 5 and with no chords, and

suppose G is a barrier graph. Fix any realization of G, and let R, B, and K be the sets of

red, blue, and black vertices respectively. R, B, and K are all nonempty since otherwise G

is bipartite, which odd cycles are not.

For subsets C,D ⊆ V , define CD := {c ∈ C | N (c) ⊆ D}, i.e. those elements of C

whose neighborhood consists only of elements of D.

Suppose every element of K has two neighbors of the same color. Then, K is the

disjoint union KR∪KB. If we define R′ = R ∪ KB and B′ = B ∪ KR, then R′ and B′

partition V into disjoint sets.

There are no edges between two elements of R′ or between two elements of B′, so we

have found a bipartition of G, a contradiction.
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But then there is an element k ∈ K with differently colored neighbors r ∈ R and

b ∈ B. So, r − k − b is an induced subgraph (since G is longer than a triangle and is

chordless), which contradicts, by Proposition 1.3, that G was a barrier graph.

Thus, odd cycles of order ≥ 5 are not barrier graphs and, by Proposition 1.4, no graph

with such an induced subgraph can be a barrier graph.

While Proposition 1.5 prevents certain tripartite graphs from being barrier graphs, it

also leads to an interesting connection to perfect graphs. Recall that a graph is perfect if

the chromatic number and clique number of every induced subgraph are equal.

The strong perfect graph theorem [5], of Chudnovsky, Robertson, Seymour and Thomas,

gives an alternate structural characterization of perfect graphs by showing that they are the

same as the so-called Berge graphs. A Berge graph is a graph which has no odd hole (a hole

with an odd number of vertices) or odd antihole with length longer than 3 as an induced

subgraph.

From Proposition 1.5 we have that barrier graphs have no odd hole of size ≥ 5. Now,

the cycle C5 has itself as its graph complement, so this also rules out size-5 antiholes in any

barrier graph. If we can also rule out antiholes of larger odd size in any barrier graph, then

we will have shown that barrier graphs are perfect.

Lemma 1.6. If G is a barrier graph, then G has no antiholes of size 2k + 1 for any k ≥ 2.

Proof. We may exclude odd antiholes of size 5 by the comment above that C5 is its own

complement, and so is an antihole.
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First, we’ll show that antiholes of size 2k + 1 have chromatic number k + 1. Label the

vertices of an antiholeH of size 2k+1 as v1, . . . , v2k+1 so that each vi and vi+1 are adjacent

in the cycle which is the graph complement of H . Then vi and vi+1 are not adjacent in H ,

so we can assign the color j to each vertex 2j and 2j − 1, for 1 ≤ j ≤ k. This leaves

one vertex not in a color pair, which needs its own color. So we have used k + 1 colors to

properly color H .

Now, fix any proper coloring of H . If v1 is colored c, then because v1 is adjacent to all

other vertices except v2 and v2k+1, only these two may also be colored c. Moreover, these

are adjacent, and so only one of them may be colored c. This argument applies to every

vertex, for whatever its color is, and thus each color may appear on at most two vertices.

Therefore, the 2k + 1 vertices of H require at least k + 1 colors, and the chromatic

number of an antihole with 2k+ 1 vertices is k+ 1. Since barrier graphs are tripartite, they

cannot have induced subgraphs with chromatic number greater than 3, so for k ≥ 2, barrier

graphs have no antiholes.

Corollary 1.7. Every barrier graph is a perfect graph.

Perfect graphs have various properties that distinguish them from tripartite graphs.

First, unlike tripartite graphs, we already have algorithms to recognize perfect graphs ef-

ficiently [4]. Furthermore, many algorithmically hard problems, such as graph coloring,

maximum clique, and maximum independent set have polynomial time algorithms for the

class of perfect graphs [6].

We can take advantage of these algorithms in various ways. For instance, since S

is an independent set for G(V,E) if and only if V \ S is a vertex cover, it follows that

8



a polynomial time algorithm for computing the size of a maximum independent set of a

perfect graph can be used, verbatim, to compute the resilience of a barrier graph, also in

polynomial time.

This approach provides us with an compelling alternative to the algorithm in KYZ that

is also efficient, but does not require explicit use of or access to the geometric information.

One could receive a barrier graph and compute its resilience in polynomial time without

knowledge of the location and orientation of the sensors involved, and therefore one could

compute the resilience of the entire equivalence class of ray barrier arrangements which

realize a particular barrier graph. This is impossible with the KYZ algorithm, which makes

heavy use of the underlying geometric information.

With the knowledge that barrier graphs are tripartite and perfect, a natural question is

whether the converse is true: are all perfect tripartite graphs barrier graphs?

A natural class of perfect tripartite graphs is the class of bipartite graphs, which have

both clique number and chromatic number equal to two. In Section 1.3 we will investigate

the rigid structure of neighborhoods in barrier graphs, and will show that, in fact, few

bipartite graphs are barrier graphs.

1.3 The Rigidity of Barrier Graphs

1.3.1 Stabbing Rays and Segments

The next few results connect the geometry of a barrier graph’s realization to the kinds

of neighborhoods that can appear in the graph. To this end, we give a bound of O(n3) on

the number of subsets of a set of n rays or line segments that could be stabbed by another
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ray. These next lemmas are general geometric results, but will be particularly helpful in

addressing the neighborhood structure of barrier graphs.

Below, we will use the standard geometric dual transformation D in two dimensions,

which associates points in the Euclidean plane with non-vertical lines in the plane. For each

point p = (px, py) ∈ R2 we associate a line ` = D(p) given by the equation y = py − pxx,

and for each such line we write p = D(`).

For sets of points P or sets of lines L, we define D[P ] = {D(p) : p ∈ P} and similarly

D[L] = {D(`) : ` ∈ L}.

An important basic property of D is that it reverses signed distance along the y-axis

between points p = (p1, p2) and lines ` : y = `y − `xx:

py − (`y − `xpx) = − (`y − (py − px`x))

Figure 1.3: The vertical distance (x) between a point and line is the same as the vertical
distance between their respective duals, though the role of the point and the line is reversed

10



This property implies both that D preserves the above/below order and also preserves

incidence between points and lines: if point p is above (below) line `, then D(p) is above

(below) D(`), and if p and ` intersect, then so do D(p) and D(`).

The duals of certain kinds of point sets will be particularly useful for us: the dual D[ab]

of a (non-vertical) segment s = ab, between points a and b in the plane, is a region of the

plane consisting of the union of the points lying on each line D(p) for p ∈ s; this region

looks like a bowtie, or a double-wedge – a pair of infinite wedges with a common apex (see

Figure 1.4).

Figure 1.4: Dual transformation of a ray (left) and of a segment (right).

Every dual line D(p) of a point p ∈ s contains the dual of the supporting line of s, and

this point is where the two wedges of the bowtie meet. This follows from the preservation

of incidence between points and lines.

The sides of both wedges in D[s] are just the dual lines of the segment’s endpoints a

and b, since the points between these on s have intermediate x-values as well (a vertical

segment will, then, just be an infinite strip bounded by parallel lines).

Now, if a line ` intersects s at a point q, then since q ∈ s it must be that D(q) lies

somewhere in the bowtie regionD[s]. If we are considering the intersection of a line ` with

multiple segments s1, . . . , sn, since all of the intersection points lie on the line ` their duals
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must all intersect the point D(`), and therefore the point D(`) must lie within each bowtie

region corresponding to an intersected segment.

The dual of a ray r is a similar bowtie-like region, bounded by the dual of the anchor of

r and by a vertical line through the dual of r’s supporting line, and the same reasoning as

above means that the dual of a line intersecting multiple rays lies in the intersection of the

dual regions of all the rays.

Because we will most often compare duals of objects to duals of other objects, we will

sometimes refer to a “primal” plane and a “dual” plane, both of which are just copies of

R2.

The fact that the duals of segments and of rays can each be summarized by two bound-

ing lines is one we will take repeated advantage of. In the following lemma, we begin to

formalize the connection between the locations of points and the locations of dual objects.

Lemma 1.8. Let Y be a set consisting of r distinct rays and s distinct line segments in the

plane. Then there exists a set Y ′ of lines that divide the dual plane into regions so that any

two points lying in the same region correspond to two lines in the primal plane intersecting

the same elements of Y in the same left-right order. Furthermore, Y ′ can be chosen so that

|Y ′| ≤
(
r + s

2

)
+ 2(r + s).
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Proof. Let Y ′ consist of the following types of lines in the dual plane:

(I) For each ray in Y , the dual line of the anchor and a vertical line through the dual of

the supporting line, and for each line segment in Y , the dual of the endpoints (these

are the “bow-tie” bounding lines).

(II) For each pair of elements in Y , the dual line of the intersection point of their sup-

porting lines (if they intersect).

(a) Cases ii, iv, vi see a→ b (b) Cases i, iii, and v see b→ a

(c) 6 regions in the dual plane

Figure 1.5: Lines of (a) intersect a, then b from left to right, and lines of (b) intersect b, then a from left to
right. All lines which intersect a and b are one of these 6 types, and their duals are in the corresponding

regions of (c), determined by Type II lines.

The intuition behind this lemma is that regions from Type I lines tell us which elements

of Y a primal line intersects, and regions from Type II lines tell us in which order (from left

to right) this occurs. The latter information is important for distinguishing between subsets
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of those elements stabbed by a line can be stabbed by a ray or segment lying within that

line.

Let n := s + r. Clearly there are at most
(
n
2

)
=
(
s+r
2

)
points of intersection between

elements of Y (and hence at most
(
s+r
2

)
lines of Type II), and at most 2(r+s) lines of Type

I.

Now, consider the partition P of the dual plane defined by Y ′. The regions of this

partition are simply the k-faces of the partition, i.e., the points of intersection of these lines,

the open line segments connecting two points, and the open regions in the plane created by

removal of these points and segments. We claim this partition has the desired property.

Consider an arbitrary pair of points x, y in the same region of P . First note that the

position of x (or y) with respect to Type I lines determines which line segments and rays

of Y the dual of x (or y) intersects. This is precisely determined by the bowtie regions of

Figure 1.4. That is, within a region all points are duals of lines which intersect the same

elements of Y . Now, fix a pair of elements a, b ∈ Y which are both intersected by the duals

lines of x and y. We show they are intersected in the same left-right order. It suffices to

assume that a and b are both lines (possibly replacing a ray or segment with their supporting

line.)

The order in which a line intersects two others is determined by both the relative order

of the slopes of the lines and whether the first line passes above or below the intersection

point of the other two. This is illustrated in Figure 1.5 and is determined by the position of

the line’s dual with respect to Type I & II lines. In particular, Type II lines carry the data on

whether the first primal line passes above or below, while position with respect to the Type
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I lines (beyond simply carrying information about whether or not the primal line intersects

the involved ray or segments) carries the information about the slope.

Thus, by our construction of P , being in the same region of P implies that x and y have

the same relation with D(a) and D(b), and hence D(x) and D(y) intersect a and b in the

same left-right order. Note that a point which lies within one of the line segments might

not intersect one or the other (or both) of a and b, or might intersect both at the same time.

Nonetheless, the information required to determine this is captured by the region.

Since a and b are arbitrary, this means that D(x) and D(y) intersect all elements of Y

in the same order as desired.

Let us suppose Y has r rays and s line segments, where r + s = n, and consider the

partition of the dual plane offered by Lemma 1.8. Consider a line in the primal plane. It

intersects at most n elements of Y in some order, and hence there are at most 2n subsets

that a ray can intersect.

We have just shown that given two lines, if the duals of those lines fall into the same

region of the dual plane in our partition, they intersect the same elements of Y in the same

order. Thus the subsets of Y potentially stabbed by segments of a line are completely

determined by the region of the dual plane. For such a region A, we denote this set of

subsets by RY (A), or R(A) when Y is understood. In this language, our observation

above is that |R(A)| ≤ 2n.
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Figure 1.6: Two intersecting Type II lines in the dual plane and the left-right order in
which the surrounding regions intersect the corresponding elements of Y

Lemma 1.9. Let `1 = D(p) and `2 = D(q) be two intersecting Type II lines in the dual

plane, and let A,B,C, and D be the regions adjacent to the intersection of `1 and `2 (see

Figure 1.6). Then

R(D) ⊆ R(A) ∪R(B) ∪R(C).

Proof. Note that p and q are the intersection points for pairs xp, yp ∈ Y and xq, yq ∈ Y , so

the difference between dual points in R(A) and in R(B), or for any pair of these regions,

is only in the left-right order in which (the supporting lines of) xp, yp, xq, and yq are

intersected.

Suppose that the dual of a point in the region A intersects elements of Y in the left-

right order [. . . , xp, yp, . . . , xq, yq, . . . ], B intersects them as [. . . , yp, xp, . . . , xq, yq, . . . ], C

intersects them as [. . . , xp, yp, . . . , yq, xq, . . . ], andD intersects [. . . , yp, xp, . . . , yq, xq, . . . ].
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Since a ray intersects elements of Y according to a prefix or a suffix of the order lines

intersect within a region, the containment above is clear.

What Lemma 1.9 gives us is a tool to avoid over-counting subsets of Y . It says that the

four regions around any crossing of Type II lines cannot all correspond to distinct subsets

that can be stabbed by a ray.

Lemma 1.10. Let Y be a set of n rays or line segments in the plane. Let SY denote the set

of all subsets A ⊆ Y so that there exists a ray intersecting exactly the elements of A, and

no other elements of Y . Then

|SY | ≤ 6n3.

Proof. We will again use the Type I and Type II descriptions of the lines of the dual-plane

partition in Lemma 1.8.

For adjacent 2-faces A and B separated by a Type I line, we have |R(A) \ R(B)| ≤ n.

This follows as two points on different sides of a Type I line in the dual plane correspond

to one line intersecting that element of Y , and one line not intersecting it. On the other

hand for adjacent 2-faces A and B separated by a Type II line, |R(A) \ R(B)| ≤ 2 since

passing through such a line either induces a transposition of the order of two order-adjacent

intersected elements of Y or has no effect at all.

We now proceed to bound the total number of subsets encountered. Partition the dual

plane first by the Type I lines, and then refine this partition by including the Type II lines.

We will first (carefully) fix any spanning tree of the 2-faces in the dual plane according to

the Type I partition. This tree is shown in red in Figure 1.7 (a). We then fix a root, and

note that the total number of subsets encountered by rays within the 2-faces is at most 2n
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Figure 1.7: (a) The primary spanning tree of 2-faces for Type I lines, which are blue and
dashed, and (b) the secondary tree obtained by refining it for a particular 2-face using

Type II lines, which are black and dotted.

for the root, plus n times the number of Type I lines crossed by the spanning tree, plus a

yet-undetermined amount for the Type II crossings.

In order to do this as efficiently as possible, we do the following: First, consider the

regions of the dual plane determined by the (at most) 2n different Type I (bow-tie) lines.

There are at most
(
2n+1

2

)
+ 1 such regions, so the primary spanning tree has at most

(
2n+1

2

)
edges.

Next, we consider the regions defined by all the lines together. This refines the Type I

partition of the plane. Within each 2-face A according to the Type I partition, we claim that

once we account for R(B) for all refined 2-faces B inside of A and sharing a boundary

with A, then we have also accounted forR(C) for any other refined 2-face C inside of A.

This follows from iterated applications of Lemma 1.9. Indeed, suppose some subset of

faces including the boundary faces are accounted for. Then the union of the remaining 2-

faces (if any) consist of a collection of polygonal faces. Each of these must have a convex
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vertex around which three faces are already accounted for, and applying Lemma 1.9 to

those faces, one easily observes that all four incident faces are accounted for.

We use this information to refine the (red) spanning tree so that it also connects these

Type II boundary 2-faces by first connecting each set of border 2-faces with a path, and

then connecting these paths at any boundary 2-face for each edge in the original spanning

tree. This spanning tree crosses Type I lines at most
(
2n+1

2

)
times, and in general has one

less than the number of 2-faces as edges.

Now we need to count the number of these boundary 2-faces. For each intersection of a

Type I line with a type II line, there are four such 2-faces, but since each border 2-face has

at least two Type II lines bordering it, each is counted at least twice. So there are at most

2(2n)
(
n
2

)
of these border 2-faces.

Thus the total number of subsets encountered within the 2-faces is at most

2n+ 2 ·
(
2n2(n− 1)

)
+ n ·

(
2n+ 1

2

)
= 6n3 − 3n2 + 2n ≤ 6n3. (1.1)

Finally, we must determine the contribution from lower dimensional regions in the dual

plane. A point in the dual plane which occurs in a Type II line corresponds in the primal

plane to a line through the intersection point. It is clear these account for fewer subsets of

SY as if a segment contains one of the intersecting lines it contains both. But also, these

subsets are easily seen to be realizable by lines occurring in the neighboring 2-faces of the

dual plane. Thus, for the purposes of differentiating between corresponding collections of

subsets of Y , we can ignore points lying on Type II lines.
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Similarly, we can ignore points lying on Type I lines: points in the dual plane occurring

in these lines correspond to lines through the ‘endpoints’ (where a point at infinity counts

as an endpoint for rays) and the subsets realized by segments of these lines are captured in

the neighboring 2-faces.

Thus the bound (1.1) suffices to complete the proof of the lemma.

1.3.2 Rigidity

With the results of the previous section in hand, it is finally possible to state and prove

our main structural theorem about barrier graphs. This next result strongly limits adjacen-

cies within a barrier graph to any fixed subset. In a general graph, when a subset of vertices

of size t is fixed, other vertices may potentially have any of the 2t different adjacencies

within the subset. This result states that in a barrier graph G, for any subset Y ⊆ V (G),

only polynomially many subsets of Y can appear as the neighborhood of a vertex outside

of Y .

This is a strong rigidity theorem in the sense that it implies there are few distinct neigh-

borhoods of vertices outside of Y contained in Y and, instead, there must be many vertices

whose neighbors in Y are the same. Quite remarkably, this is true even for fairly large sets

Y (for an n vertex graph G; there must be many neighborhood clones even into sets of size

nearly n1/3). The proof, however, follows quite easily from Lemma 1.10.

Together, Lemmas 1.8 and 1.10 support the following theorem, which provides that the

number of subsets of sets Y of n rays that can be stabbed by another ray is O(n3).
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Theorem 1.11 (Barrier Rigidity). Suppose G is a barrier graph, and Y ⊆ V (G) with

|Y | = t. Let

SY = {NY (y) : y ∈ V (G) \ Y }.

Then

|SY | ≤ 12t3.

Proof. Let f(t) := 6t3.

Fix a realization of G, and vertex y ∈ V (G) \ Y . The vertex y corresponds to a ray in

the realization. Note thatNY (y) is determined by the intersection of that ray, with rays and

line segments determined by Y .

In particular, if y is red in our coloring, then the neighborhood of y is determined by

its intersections with the blue rays determined by Y and with the parts of black rays above

the line αβ. Suppose there are r red, b blue, and k black colored vertices in Y . By Lemma

1.10, there are at most f(b + k) subsets of Y that can arise from such intersections. If y is

instead blue, by similar reasoning we see there are most f(r+k) subsets of Y which could

be the neighborhood of y.

Similarly, if y is colored black, the neighborhood of y is determined by the intersection

of the y-ray with the line segments given by cutting off red rays above the αβ-line and blue

rays below the αβ line, giving a bound of f(r + b).

In total, we arrive at an upper bound on the number of subsets of Y occurring as some

vertex’s neighborhood of

f(r + b) + f(r + k) + f(k + b) = f(t− k) + f(t− b) + f(t− r),
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where we are subject to the constraint that r + b + k = t. Convexity of f implies that this

quantity is also convex, and so is maximized when r = t, b = 0, and k = 0, yielding a

bound of 2f(t) = 12t3 as claimed.

Theorem 1.11 implies strong conditions on the neighbors of vertices within a barrier

graph. This is sufficient to show that barrier graphs are rare amongst bipartite graphs, and

hence amongst tripartite graphs as well. Indeed, we show an even stronger theorem: barrier

graphs are rare for any size of bipartite graph, even when one of the sides of the bipartite

graph is not large.

Theorem 1.12. Suppose G is chosen uniformly at random from all bipartite graphs with

bipartition (A,B) satisfying 16 ≤ |A| ≤ |B|, and |A|+ |B| = n. Then the probability that

G is a barrier graph is at most 216e−n2
−17

= o(1).

Proof. Fix (arbitrarily) t ≥ 16 vertices in A, and call these t vertices A′, so that A′ ⊆ A.

We will prove that if n is sufficiently large, with probability at least 1− 2te−n2
−(t+1) ,

|{NA′(y) : y ∈ B}| = 2t.

In other words, we will show that with high probability, every subset of A′ is exactly the

neighborhood of some element of B. On the other hand, our Barrier Rigidity Theorem

(Theorem 1.11) tells us that the number of subsets of A′ which could be the neighborhood

of any vertex in B is no more than 12t3, which by our choice of t is smaller than 2t.

Let Z denote the number of subsets of A′ which do not appear as a neighborhood of a

vertex in B. In this language, what Theorem 1.11 says is that if G is a barrier graph, then
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Z ≥ 2t− 12t3. In particular, when t is at least 16, if G is a barrier graph then Z is certainly

at least 1.

Now, for any y ∈ B, the probability that any fixed subset of A′ is the neighborhood of

y is just 1
2t

because in a uniformly random bipartite graph each edge is present with proba-

bility 1
2
, and therefore the probability that any fixed subset of A′ is not the neighborhood of

y is just 1− 1
2t

.

Hence, for S ⊆ A′, the probability that S is not NA′(y) for all y ∈ B is (1 − 1
2t

)|B|,

since these events are independent. Let IS be the indicator variable for when S is not the

neighborhood of any y; then Z is just the sum
∑

S⊆A′ IS .

By linearity of expectation,

E[Z] = E

[∑
S⊆A′

IS

]

=
∑
S⊆A′

E[IS]

=
∑
S⊆A′

(
1− 1

2t

)|B|
= 2t

(
1− 1

2t

)|B|
.

Since |A| ≤ |B| and |A|+ |B| = n, we have E[Z] = 2t
(
1− 1

2t

)|B| ≤ 2t
(
1− 1

2t

)n/2.
Because Z is nonnegative and integer-valued, we can use Markov’s inequality to bound

the probability that it is nonzero: P(Z ≥ 1) ≤ E[Z].
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Putting together these last two inequalities and using the identity (1+a)b ≤ eab we find

that:

P(Z ≥ 1) ≤ 2t
(

1− 1

2t

)n/2
≤ 2te−(n2

−t)/2

= 2te−n2
−(t+1)

.

This probability can thus be made arbitrarily small by choosing large enough n, which

implies that the probability that G is a barrier graph is also arbitrarily small.

An almost immediate corollary of this is the following:

Corollary 1.13. The probability that a random bipartite graph with n vertices is o(1).

The main reason the corollary isn’t immediate is that choosing a bipartite graph on n

vertices uniformly at random in general is not quite as easy as it is when the bipartition is

fixed.

Proof. Let G be chosen uniformly at random from the set of (unlabeled) bipartite graphs

on n vertices. We say that G admits an s-decomposition if there exists A,B ⊆ V (G) with

|A| = s and such that (A,B) is a bipartition of G. Note that G admits an s-decomposition

iff it admits an (n− s)-decomposition.

Let As denote the event that G admits an s-decomposition and B denote the event that

G is a barrier graph. The content of Theorem 1.12 is that
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P(B|As) ≤ 2te−n2
−(t+1)

,

if s ≥ t, where t = 16 is as in Theorem 1.12.

On the other hand, there is some 0 < s ≤ bn/2c so that G ∈ As, because there must be

some bipartition witnessing that G is bipartite, and we may take s to always be the size of

the smaller half of the partition.

Thus, summing over possible values of s, we have P(B) ≤
∑bn/2c

s=1 P(B ∩ As), with

inequality instead of equality because the events As are not disjoint.

Rewriting this and using the inequality that follows from Theorem 1.12, we have

P(B) ≤
bn/2c∑
s=1

P(B ∩ As)

=

bn/2c∑
s=1

P(B|As)P(As)

=
t−1∑
s=1

P(B|As)P(As) +

bn/2c∑
s=t

P(B|As)P(As)

≤
t−1∑
s=1

P(As) + 2te−n2
−(t+1)

bn/2c∑
s=t

P(As)

≤
t−1∑
s=1

P(As) +
n

2
2te−n2

−(t+1)

≤
t−1∑
s=1

P(As) + o(1),

Finally, we estimate P(As) for s < 16 rather crudely. There are 2s(n−s) labeled, bipartite

graphs with partite sets sized s and n − s, and so there are at most this many unlabeled

bipartite graphs admitting s-decompositions.
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For the same reason, there are at least 2bn/2c
2 labeled bipartite graphs with n ver-

tices. Since n! ≤ n log2(n), this means there are at least 2bn/2c
2
/n! ≥ 2bn/2c

2−n log2 n ≥

2n
2/4−n log2 n unlabeled bipartite graphs with n vertices.

Thus, P(As) ≤
2s(n−s)

2n2/4−n log2(n)
= o(1) for s < 16, and therefore P(B) = o(1).

1.4 Resilience of Barrier Graphs

Recall that the resilience of a sensor network is the number of sensors whose removal

from the network prevents that network from providing its coverage. In the case of the ray-

barrier sensor networks considered in this chapter, a network provides coverage if every

path from the designated starting location α to the target location β crosses at least one ray

sensor.

This idea of the resilience of a sensor network was originally explored in sensor net-

works whose sensors were modeled as discs [2], which is useful, for example, in cell-tower

networks to ensure customers have service unless some unlikely number of towers fail

simultaneously. In disc sensor networks, where the network’s coverage of an area is rep-

resented by the area overlapping at least one sensor, there is not as clear an abstraction to

a graph as there is with ray-sensor barriers; because of the correspondence between ray-

sensor networks and barrier graphs, the resilience of the network is the resilience of the

graph.

Thus we can also consider the resilience that a network would have, assuming that it

realizes a given graph. Consider the class of graphs with a fixed minimum vertex cover

size r (which, for the purposes of this discussion, we call resilience even if the graph is not
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realizable). For which r, if any, are all graphs of resilience r realizable? In the general case

this proves to be a fairly uninteresting question as the 5 cycle, for instance, has resilience 3

and is not realizable. However, the question seems much more interesting (and much less

trivial) when restricted to the class of bipartite graphs.

In particular, it is not difficult to prove the following theorems, which we will prove

later in this chapter.

Theorem 1.14. All bipartite graphs of resilience 2 are realizable as barrier graphs

Theorem 1.15. All bipartite graphs of resilience 3 are realizable as barrier graphs.

The realizations proving these theorems, which we leave in Section 1.5.1, are both

natural and simple. On the other hand, Theorem 1.12 shows that most bipartite graphs of

large enough fixed resilience are not realizable, so clearly there is some largest resilience r

such that all bipartite graphs of resilience r are realizable. Hence we propose the following

question:

Question 1. What is the minimum resilience r? such that there exists a bipartite graph of

resilience r? that is not realizable as a barrier graph?

We have shown that r? exists, and that 4 ≤ r? ≤ 16, where the upper bound on r?

follows from Theorem 1.12, and ultimately from Theorem 1.11. Determining r?, or even

tightening these bounds, would be an interesting step in our understanding of bipartite

barrier graphs. Some optimization of the bounds in Lemma 1.10 and Theorem 1.11 can

reduce the upper bound on r? slightly, but a substantial tightening seems to require a new

idea.
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1.5 Realizing Particular Barrier Graphs

Recall that a realization of a graph as a barrier graph is an arrangement A of rays

together with two points α and β. There are many barrier graphs for which a realization

is not difficult to find. In this section, we present some classes of graphs and schemes

for realizing them. Several of these classes are bipartite, but several others are identified

instead by the size of their minimum vertex cover.

Note that while many of these constructions are natural, they are usually not unique. We

begin by showing how to realize barrier graphs of given small resilience through proving

the two theorems stated in Section 1.4.

1.5.1 Realizing Graphs of Resilience 2 and 3

Recall that we refer to the minimum size of a vertex cover of a graph as the resilience

of that graph.

A connected graph can, to some extent, be addressed in terms of vertex covers and the

subgraphs they induce, because the edges of vertices not in the cover exactly pick out a

subset of the vertex cover. When the vertex cover is small, therefore, the set of possible

descriptions of neighborhoods in the graph also becomes small, as do the neighborhoods

themselves.

For graphs of small resilience, we can use this idea to consider all possible cases at once

and develop a general construction that works for any graph of that resilience. To that end,

we begin with the simplest case that is not a star graph: resilience 2.
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(a) General resilience 2 bipartite graph with independent-set vertex cover and its realization

(b) General resilience 3 bipartite graph with independent-set vertex cover and its realization

(c) General resilience 3 bipartite graph with one edge between elements of the vertex cover,
and its realization. (Vab, Vabc, and Vbc from (b) shown for context; they are empty)

Figure 1.8: General bipartite graphs with resilience 2 or 3 (left) and their realizations (right)
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Theorem 1.14. All bipartite graphs of resilience 2 are realizable as barrier graphs

Proof. Let G = (V,E) be a resilience 2 bipartite graph, and {a, b} a vertex cover. For

S ⊆ {a, b}, let VS ⊆ V be the set of vertices in V \{a, b} adjacent to exactly those vertices

in S. Note that the VS partition V \ {a, b}.

Each VS is an independent set, and there are no edges between these sets, because all

edges are incident to either a or b.

If (a, b) ∈ E, then V{a,b} is empty, because otherwise G contains a triangle and is not

bipartite. In this case, G is just a tree, and can be realized as shown in Section 1.5.3.

If (a, b) 6∈ E, G may be realized as in Figure 1.8a.

V∅ is realized by any collection of |V∅| black rays that intersect no other rays, and is not

pictured in the figure.

Theorem 1.15. All bipartite graphs of resilience 3 are realizable as barrier graphs

Proof. Fix a resilience 3 bipartite graphG = (V,E) and a vertex cover {a, b, c}. As before,

for S ⊆ {a, b, c} let VS be the set of vertices in V \ {a, b, c} adjacent to exactly the vertices

in S.
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There are only three graphs that can be induced by the vertex cover up to isomorphism:

the vertex cover {a, b, c} could be an independent set (realization shown in Figure 1.8b);

the graph induced by {a, b, c} has one edge (realization shown in Figure 1.8c); or the graph

induced by {a, b, c} is a path. The realization for the third case is identical to the one in

Figure 1.8c, except that the ray for c must be extended so that it also intersects the ray for

b.

Note that in the case where the graph induced by {a, b, c} has one edge (a, b), if Vac =

V{a,c} is not empty then any vertices in Vbc would induce a triangle, and so Vac and Vbc are

not both nonempty. Vab and Vabc are empty in this case for the same reason.

Again, V∅ is realized by any collection of |V∅| black rays that intersect no other rays,

and is not pictured in the figure.

1.5.2 Realizing Complete Bi/Tripartite Graphs, Paths, and Cycles

A complete tripartite is perhaps the most natural barrier graph to realize (see Figure

1.9).

Because induced subgraphs of barrier graphs are also barrier graphs, the construction

for any complete bipartite graph is built from that for a tripartite barrier graph with two

partite sets of the same size, and discarding the third partite set.

A natural construction for realizing a path graph is just as easy, and only uses two

colors: alternate blue and red rays that each intersect two consecutive rays of the opposite

color, and stop once you’ve reached as many rays as vertices in the graph (See Figure 1.10).
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(a) (b)

Figure 1.9: A realization (b) of a given complete tripartite graph (a).

To realize a cycle of even length, a natural construction is (not surprisingly) very similar

to that for a path. The main trick is to designate a particular vertex to connect the ends of a

path into a cycle. As in Figure 1.11, given an even cycle graph on vertices v0, v1, . . . , vn−1,

with edges (vi, vi+1)∀i and (v0, vn−1), we build a path on the (odd-number many) vertices

v1, . . . , vn−1, and extend the anchor of one of the ends of this path so that there is a straight

line that goes above each of the anchors of the path endpoints and also above α. Placing a

ray for v0 of the opposite color from the path endpoints along this line completes the cycle.

Perhaps most interesting about the simplicity of this construction for arbitrarily long

even-length cycles is the fact that there cannot be a construction for odd-length cycles

longer than a triangle, as we saw in Proposition 1.5 of Section 1.2.
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(a)

(b)

Figure 1.10: A realization (b) of a given path graph (a) with an even number n of vertices.
The realization for odd n is the same but without one of the endpoint blue rays.
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(a)

(b)

Figure 1.11: A realization (b) of a given even-length cycle graph (a).
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1.5.3 Realizing Trees

To see how to find a realization of an arbitrary tree, we will first show how to find a

realization of an arbitrary full k-ary tree. A k-ary tree of height h is a rooted tree where

the root has degree k, every other non-leaf vertex has degree k + 1, and where the root is

distance h from every leaf. We will denote the k-ary tree of height h by T hk .

Every tree T is an induced subgraph of T hk , where k = max
v∈V (T )

deg(v) and

h = max
u,v∈V (T )

d(u, v), where d(u, v) is the length of the shortest path in T with endpoints

u and v. To see this, designate any vertex r of T as the root and assign it to the root of

T hk and its children arbitrarily to children of the root of T hk . Then, for each neighbor of r,

assign each of their respective unassigned neighbors (on the second level) to children of

their assigned vertices, and so on. Each step like this is possible because k was chosen to

be large enough to accommodate any degree in T and h was chosen to be large enough that

the process doesn’t reach a leaf of T hk until it reaches the end of the longest path in T , and

therefore no vertex with unassigned children is ever assigned to a leaf of T hk .

By Proposition 1.4, induced subgraphs of barrier graphs are also barrier graphs; given

a realization for T hk we may simply remove rays for vertices not assigned by the process

above to arrive at a realization for T .

The construction for a realization of T hk is recursive, and proceeds by levels in the tree

(i.e. by distance from the root). For brevity, we will refer to a vertex and its corresponding

ray (once chosen) as if they were the same object. Also, for convenience, we will number

the vertices of the `th level from 1 to k` so that the children of each vertex are numbered

consecutively, and children of lower-number vertices in level ` have lower number than
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children of higher-number vertices in level `. Then we may refer to the ith vertex of level `

as v(`)i .

In the process below, many choices of angle are immaterial; it is the relative location

of intersections that matter. Because the process cuts convex polygons into multiple longer

and thinner convex polygons in which later recursive steps will work, the description of the

process is easier to follow when drawn as in the figures.

First, place a red ray for the root r. The root has k neighbors, so for each neighbor v(1)i

anchor a blue ray along r at even intervals from αβ. These rays should not intersect before

crossing αβ. Each v(1)i has k children (v(2)j ), which will be made with red rays anchored

along v(1)i . These red rays are placed so that they intersect the root ray r in the same left-

right order that they intersect their parent ray v(1)i . See Figure 1.14 for an illustration of the

rays for these first two levels of a 3-ary tree.

Note that placing each of these level-2 rays v(2)j leaves a convex quadrilateral below it,

which is bounded by its parent, by r, by itself, and by its next-highest-index sibling, if it

has one. If v(2)j has no next-highest-index sibling, the convex quadrilateral is completed by

a line through the following two points: the intersection of the next-highest-index sibling of

the parent of v(2)j and a point further from r along the parent of v(2)j . For such a quadrilateral,

call the side defined by v(2)j itself the “left” side, and the side opposite this the “right” side,

and call the other two sides the “top” and “bottom” sides (one is always below the other).

For examples of such quadrilaterals, see Figure 1.12.

A quadrilateral like the one above, whose left side is the ray for red (resp. blue) leaf

vertex vij , is called the Extending Quadrilateral for v(i)j if its bottom side is red (resp.

blue), its top side is blue (resp. red), and any ray anchored on its left side (along v
(i)
j )
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(a) (b)

Figure 1.12: A normal Extending Quadrilateral (a) and one for the highest-index child of
v
(1)
1 in a 3-ary tree of height 2 (b).

and intersecting its top or bottom intersects only one color of ray (other than the ray it is

anchored along).

For example, the Extending Quadrilateral for v(2)2 in Figure 1.14 is bounded by v
(2)
2

itself, its sibling v(2)3 , its parent v(1)1 , and the root r. On the other hand, in the same figure

the convex region corresponding to v(2)3 is bounded by itself, the root, its parent, and v(1)2 ,

which is its parent’s sibling.

The first tool we will need for our recursive construction is that it is safe to extend the

construction by anchoring rays for a vertex v’s children along v within this quadrilateral.

Invariant 1.1 (Extendable Tree Realization). Let A be a set of rays that realizes the tree

T hk . A has the Extendable Tree Realization invariant if there is a distinct Extending Quadri-

lateral for each leaf v of T hk .
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Lemma 1.16. Let A be an Extendable Tree Realization for T hk , where h ≥ 2. Then there is

a set of rays A′ ⊇ A that is an Extendable Tree Realization for T h+1
k .

Proof. Let v(i)j be the ray of any leaf of T hk and let Q be its Extending Quadrilateral.

Suppose v(i)j is red. Because Q is an Extending Quadrilateral, each of the k children

u1, . . . , uk of v(i)j in T h+1
k can be created by adding a blue ray anchored along v(i)j above

the segment αβ and through the top (blue) edge of Q; these rays intersect only red rays

In each case the anchor represents the only intersection of the new blue ray with a red

one, and thus the only barrier created by the new ray is with it’s parent v(i)j , so that we

preserve the tree structure of the realized barrier graph. Since this can be done to add

children to each leaf of T hk , this process will successfully produce a realization of T h+1
k .

Each of the new rays forms the left side of a new quadrilateral, which has as its bottom

side a segment of v(i)j , and as its top side a segment of the top side of Q. The right side of

this quadrilateral is either v(i)j+1 (if j < k), or an auxiliary segment like the one in Figure

1.12b.

These new quadrilaterals are Extending Quadrilaterals Qt for their corresponding rays

ut, the children of v(i)j (See Figure 1.13). This is true for the following reasons:

• Their top sides are sub-segments of the top side of Q (an Extending Quadrilateral)

and the only new rays above this top side are also blue rays, so rays anchored along

a child and through the top of its quadrilateral will only intersect other blue rays.
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• Their bottom sides are the red ray v(i)j itself, and because of the angle of ut, rays

pointing downward and anchored along ut can intersect only the rays belowQ, which

are guaranteed to all be of the same color (red).

For a demonstration of placing such rays, see Figure 1.14. If instead v(i)j is blue, repeat the

same argument, but exchange the roles of red and blue, and above and below.

Figure 1.13: Adding the (blue) children of the ray v(2)1 within an Extending Quadrilateral
in a way that leaves Extending Quadrilaterals for each child.

Lemma 1.16 shows that if there is any Extendable Tree Realization for T 2
k , then there

is one for T hk for any h; the lemma required that h ≥ 2 simply because otherwise the rays

do not form the needed quadrilaterals.

The description of how to construct a realization of T 2
3 shown in Figure 1.14 is easily

changed to T 2
k for any k, and so we have shown that any T hk is realizable, and therefore any

tree is realizable.
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(a) (b)

Figure 1.14: A realization (b) of a 3-ary height-2 tree with root r (a).

40



1.5.4 Further Realization Questions

One notable aspect of all the realizations of bipartite graphs in this section is that none

of them requires three colors of rays, but of course there are alternative realizations of

the same graphs that use three colors. For example, in any path, one can exchange the

endpoints with black rays and still realize the path.

This raises the question of whether all bipartite barrier graphs can be realized with

rays of only two colors, or whether there exists a bipartite barrier graph for which every

realization uses rays of three colors. Obviously if our standard coloring of an arrangement

of rays only requires two colors, then the corresponding graph is bipartite, but the opposite

implication (though intuitive) is not as obvious, and if true requires proof. Nonetheless,

this is our suspicion:

Conjecture 1.17. If a bipartite graph G is realizable, then there is a realization for G

requiring only two ray colors.

One approach to this question (and others) would be to develop an algorithm which

produces a realization of a given graph, if one exists, and reports failure if this is not pos-

sible. Analyzing this algorithm might lead to a constructive proof based on assumptions

about the input graph. So far, such an algorithm is not known, nor is the complexity of this

problem known.

Conjecture 1.18. There is an algorithm that takes any tripartite graph G as input and

either produces a realization of G or a certificate that G is not a barrier graph.
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CHAPTER 2: EXPOSING POINTS

2.1 Exposure and Joint Exposure

In this chapter, we describe two new notions of network coverage with corresponding

extremal questions, initially in the plane. We then generalize their geometry to any number

of dimensions, and begin to address these questions in that domain as well.

Initially, we consider networks whose sensor geometry is just like those from Chapter

1: arrangements of rays in the plane. Networks whose sensors are line segments or lines

have very similar properties, as we will see in Lemma 2.5, and because the questions we

will address are more naturally framed in terms of line sensors, we will begin this chapter

by describing line sensor networks.

Consider a set L of n lines and a set P of k points in the plane. We will say L and P

are in general position if no line of L contains any point of P , and if no line of L is parallel

to a line through any two points of P ; we assume all sets of points and lines are in general

position. Note that this means we do allow lines of L to be parallel to each other.

L partitions the plane into convex cells such that only 2-cells (polygonal regions) con-

tain points of P . As a sensor network protecting the point locations in P , we may consider

that locations are protected by line sensors in L from intruders if they are surrounded on

all sides by sensors. This means that a point p ∈ P is protected if the 2-cell containing it is

bounded, and that L protects p.
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Similarly, a point p ∈ P is exposed by L if it is in an unbounded cell, and L exposes P

if all p ∈ P are exposed.

An exposing set X ⊆ L is one such that L \ X exposes P . In other words, X is an

exposing set of sensors if removing it from L leaves all points exposed. Relatedly, a witness

set is a set W of k rays, one anchored at each point of P . A witness set W intersects some

subset of sensors EL(W ) ⊆ L, which is necessarily an exposing set (written E(W ) when

L is understood), and we say that W witnesses E(W ).

In addition, for every exposing setX there is a witness set that witnessesX , and usually

there are many.

Lemma 2.1. If L \X exposes P , then there exists a witness set W with E(W ) ⊆ X .

Proof. Consider a point p ∈ P . It suffices to show that there is a witness ray anchored at p

completely contained in c, the unbounded cell of the plane partition with respect to L \X

that contains p. If X = L then every ray has this property, so suppose X 6= L.

The boundary of c contains at least one unbounded ray r. Since c is convex, the ray rp,

anchored at p and parallel to r, does not intersect any element of X , for any line in X that

rp hits would also hit r, which would contradict that r is entirely contained in the boundary.

Then the set of rays W = {rp : p ∈ P} witnesses that X is an exposing set, since by

construction no ray in W intersects any element of X .

Such a witness set can now conveniently be called a witness set of X . Note that Lemma

2.1 implies that if X is an exposing set for a set of lines L, and L′ is another set of lines,

then X ∪ L′ is an exposing set for L ∪ L′.
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We are now ready to introduce our first extremal question.

Question 2. Given k designated target locations and allowing the placement of n line

barriers, what number of those barriers is always sufficient and sometimes necessary to

remove so that all target locations are exposed?

With regard to this question we will establish a general lower bound of the form k
k+1

+

O(1); we prove that such a bound is tight for k ∈ [3], where we use the conventional

notation [n] = {1, 2, . . . , n}. We also prove that our lower bound is tight for k = 4 provided

the points are in convex position. This first question models a situation where there are as

many intruders as target locations, because two locations may be exposed while there is no

sensor-avoiding path between them.

It turns out that Question 2 has the same answer whether the network consists of line

segments, rays, or infinite lines (see Proposition 2.5), but interestingly, this does not hold

when there is only one intruder who must reach all locations, which is represented in the

following question:

Question 3. Given k designated target locations and allowing the placement of n ray

barriers, what number of those barriers is always sufficient and sometimes necessary to

remove so that a single unbounded region contains all of the targets?

We find the answer to Question 3 quite interesting. While in the k = 1 case this is

identical to the answer to Question 2 above (and hence, asymptotically is n
2
), we show that

for k = 2 the answer differs and is actually asymptotically equal to 3
4
n rather than 2

3
n.

The notation we introduce below for the answer to Question 2 emphasizes line barriers

because of the relative ease of analysis, but additionally, this is the type of barrier for which
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these questions are most naturally generalized to higher dimensions; a line is a hyperplane

in R2, and hyperplane sensors are what we will examine in d ≥ 2 dimensions.

Definition 2.2. For a finite set P ⊆ Rd of k points and finite set L of n lines in R2, λ(P,L)

is the size of the smallest exposing set X ⊆ L that exposes P .

The problem of computing λ(P,L) is clearly identical to finding a witness set witness-

ing a minimum size exposing set in L. Since λ(P,L) is the size of a subset of L, it is an

integer satisfying 0 ≤ λ(P,L) ≤ n, and we may define the following.

Definition 2.3.

λ(P, n) = max{λ(P,L) : L is a set of n lines in R2}

λ(k, L) = max{λ(P,L) : P is a set of k points in R2}

One may view λ(P, n) as communicating the smallest exposing set size in the “best”

set of n lines for protecting the fixed point set P . In other words, λ(P, n) is the number of

lines which it is always sufficient to remove from any set of n lines to expose the points in

P .

Similarly, λ(k, L) may be viewed as communicating the size of the smallest exposing

set for the “hardest to protect” set of points for a fixed set L of lines.

Definition 2.4.

λk(n) = max{λ(P, n) : P ⊆ R2 and |P | = k}

= max
|P |=k,|L|=n

λ(P,L)

= max{λ(k, L) : L a set of n lines in R2}
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First, this means that removing λk(n) lines from any set of n lines is always sufficient

to expose any set of k points.

Second, this means that it is sometimes necessary to remove λk(n) lines from a set

of n in order to expose a set of k points, because there exists a pair P ∗, L∗ such that

λ(P ∗, L∗) = λk(n).

Hence, the value of λk(n) is the answer to Question 2.

Note that the above implies that if removing λ′ lines from a set of n is a always sufficient

to expose any set of k points, then λk(n) ≤ λ′; we thus may compute upper bounds for

λk(n) by focusing on sufficiency. The above also means that if it is sometimes necessary to

remove λ′′ lines from a set of n to expose some set of k points, then λ′′ ≤ λk(n); we then

may demonstrate that λ′′ is a lower bound for λk(n) by exhibiting a particular set P of k

points and a corresponding set L of n lines such that λ(P,L) = λ′′.

When we consider only points in convex position, we define λ̃k(n) analogously to

λk(n), so that λ̃k(n) is the smallest number so that every set of n lines protecting a set

of k points in convex position in R2 has a smallest exposing set of size at most λ̃k(n).

We also define rk(n), r̃k(n), sk(n), and s̃k(n) to be the analogous values for rays and for

segments, respectively, instead of lines.

Proposition 2.5. λk(n) = rk(n) = sk(n) ≥ λ̃k(n) = r̃k(n) = s̃k(n).

Proof. Fix a collection P of k points, and let L be a set of n lines. Choose a set of rays

R so that each ray in R has a distinct line of L as its supporting line, and so that each ray

intersects all lines intersected by its supporting line. Choose a set of segments S supported

by lines in L similarly.
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Suppose L′ ⊆ L is an exposing set of minimal size. Let R′ ⊆ R be the set of rays

whose supporting lines are in L′, and let S ′ ⊆ S be similar for segments. Then P is also

exposed by R\R′ and S \S ′, because each point of P is in an unbounded region according

to the partition induced by L\L′, which is a refinement of the partitions according toR\R′

and S \ S ′.

On the other hand, the supporting lines of an exposing set of rays (or of segments) are

witnessed by the same witness set that witnesses the rays. Since P was arbitrary, this means

the minimal size of an exposing set for any collection of k points is the same whether we

are using line barriers, ray barriers, or segment barriers.

We mention that these questions, while motivated by the topic of ray sensor networks,

are natural questions in combinatorial geometry regarding how well a collection of rays can

‘protect’ a set of k points. As mentioned above, the first question is agnostic to whether the

barriers considered are rays, lines, or segments, but for the second question, rays are the

only interesting type of barrier, in the following sense.

With n line sensors and more than one point, by placing all lines between some pair

of points one forces a single intruder to cross all of them, and so the function for k ≥ 2

points would be identically n. On the other hand, using n segment sensors, a single intruder

has no more difficulty than k intruders, since a segment arrangement always has a single

unique unbounded region; therefore, for segment sensors the answers to Question 2 and to

Question 3 are the same.

For these reasons we will explore the answer to Question 3 separately and through

networks of ray sensors in Section 2.3.
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2.2 Point Exposing Bounds in 2 dimensions

We ultimately seek the values of λk(n), λ̃k(n) as functions of n, for fixed k. In lieu of

being able to directly calculate these functions, we find upper and lower bounds for them,

and make these bounds as tight as possible.

We note in the next lemma that for fixed k, adding one barrier to any set of barriers can

increase the size of the smallest exposing set by at most one, and of course cannot reduce

the size of the smallest exposing set.

Lemma 2.6. 0 ≤ λk(n+ 1)− λk(n) ≤ 1

Next we prove an asymptotic lower bound for λk(n) for all k. We then prove asymp-

totically matching upper bounds for k = 1, 2, 3, and 4.

As remarked in Section 2.1, to find upper bounds we must describe what is always

sufficient, and so the upper bound proofs have a common flavor, in that we choose a small

collection of canonical witness sets W as a function of the set of points P , show that each

E(W ) is always an exposing set for P , and moreover that its size is small enough. In spite

of this common flavor, extending these tight upper bounds to larger values of k as with the

lower bounds has proven elusive.

To find lower bounds we must describe a point set and line set as a function of k and n

for which removing enough lines is necessary, and this summarizes our approach to lower

bounds in the following theorem.
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Theorem 2.7. λk(n) ≥ λ̃k(n) ≥
⌈

k
k+1

n
⌉
− k

Proof. Let P be any set of k points in the plane, convex or not. We construct a set of lines

so that every exposing set has at least the desired size.

First suppose that n = a(k+1). Choose a different slopes that are not the slope between

any pair of points in P . For each chosen slope t, place k + 1 line barriers so that each pair

of these barriers closest to each other has a single point between them (see Figure 2.1 for

examples). These slope t barriers we will call t-barriers.

Consider an exposing set X of minimal size, and let W be a witness set as guaranteed

by Lemma 2.1. We proceed to lower-bound |E(W )|, and hence |X|.

Fix a slope t among the chosen slopes and let k′(t) denote the number of rays in W of

that slope. Note that t induces an order on P and the t-barriers, and each ray anchored at

p ∈ P not parallel to t intersects all t-barriers either above or below p.

From this it’s easy to see that rays in W cross at least k − k′(t) t-barriers.

Thus

|X| ≥ |E(W )| ≥
∑
t

(k − k′(t)) =
∑
t

k −
∑
t

k′(t) ≥ ak − k =
k

k + 1
n− k.

If instead n = a(k + 1) + b, just add the additional b < k + 1 barriers in a group

of parallel barriers with slope different from the rest of the groups. The argument above

applies to this group as well, except that we only have b total barriers instead of k + 1, so

50



Figure 2.1: Two sets of 7 t-barriers for a set of 6 points.

the barriers from this group crossed by witness rays is now b− k′(t). This implies

|E(W )| ≥ ak + b− k =
k

k + 1
(n− b) + b− k ≥

⌈
k

k + 1
n

⌉
− k.

Because the proof of Theorem 2.7 did not assume convexity of the k points, it holds as

a lower bound both for λk(n) and λ̃k(n).

The next lemma is a tool we will use for many of our proofs of upper bounds for λk(n).

Lemma 2.8. Suppose P is a set of any number of points and L a set of lines such that at

most one line intersects the convex hull of P (and no line of L contains a point of P ). Then

there is an exposing set in L of size at most
⌊
1
2
(|L| − 1)

⌋
.

Proof. Suppose there is no line through the convex hull of P . Then all points lie in the

same convex region of the partition. Pick an arbitrary point p in that region, and line
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` ∈ L. Consider the two rays from p parallel to ` in opposite directions. One of these rays

witnesses an exposing set of size at most
⌊
1
2
(|L| − 1)

⌋
, by the pigeonhole principle.

If there is a line ` ∈ L through the convex hull, the points in P are split into two regions.

The proof in this case proceeds similarly, taking rays starting at two arbitrary points, one

in each of the two regions, parallel to `.

Theorem 2.9. λ1(n) = b1
2
(n− 1)c.

Proof. Let L be any set of n lines in general position with respect to some target point p. By

Lemma 2.8, there is an exposing set of size at most
⌊
1
2
(n− 1)

⌋
. Thus, λ1(n) ≤

⌊
1
2
(n− 1)

⌋
.

For the improved lower bound, fix n and a point p. Let L be any set of n lines with

their perpendiculars through p uniformly distributed around p. If n is odd, then every ray

anchored at p and its opposite together intersect at least n−1 lines of L, because they could

be parallel to one line. Each of these rays thus witnesses an exposing set of size at least

1
2
(n− 1)− 1 =

⌊
1
2
(n− 1)

⌋
.

If n is even, each ray anchored at p intersects at least 1
2
(n−2) =

⌊
1
2
(n− 1)

⌋
lines of L,

because they can be parallel to at most 2 lines of L. So, every ray anchored at p witnesses

an exposing set of size no smaller than
⌊
1
2
(n− 1)

⌋
.

Note that while the lower bound in Theorem 2.9 is larger than that of Theorem 2.7, they

are asymptotically the same.

For k > 1, by removing most lines separating points and thereby placing them in the

same region, we can essentially reduce to the case of Theorem 2.9, as captured by the

following lemma.
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Theorem 2.10. λ2(n) = λ̃2(n) = 2
3
n−O(1).

Proof. Let L = LI ∪ LE be any set of n lines not containing points p and q, where LI are

the lines that pass between p and q (the “interior” lines), and LE are the rest (the “exterior”

lines). Let |L| = n and |LI | = i, so that |LE| = n− i.

LE is clearly an exposing set of size n−i, witnessed by the rays along the line through p

and q pointing outward. On the other hand, LE along with any one element ` ∈ LI satisfies

the conditions of Lemma 2.8, so there is an exposing set for LE ∪ {`} = L \ (LI \ {`}) of

size at most
⌊
1
2
(|LE|+ 1− 1)

⌋
=
⌊
1
2
(n− i)

⌋
. This exposing set, together with the rest of

LI , is an exposing set for L of size at most i− 1 +
⌊
1
2
(n− i)

⌋
.

For fixed i, the smaller of these two exposing sets is clearly no smaller than λ2(n). This

implies

λ2(n) ≤ max
0≤i≤n
i∈Z

min

{
n− i, i− 1 +

⌊
1

2
(n− i)

⌋}
≤ max

0≤i≤n
i∈R

min

{
n− i, i− 1 +

⌊
1

2
(n− i)

⌋}
≤ max

0≤i≤n
i∈R

min

{
n− i, i− 1 +

1

2
(n− i)

}
.

This maximum occurs when the two bounds are equal, and hence at i∗ = n+2
3

. So,

λ2(n) ≤ n − i∗ = n − n+2
3

= 2
3
(n − 1). Since λ2(n) is integer-valued, this means

λ2(n) ≤
⌊
2
3
(n− 1)

⌋
. From this and the bound from Theorem 2.7, the result follows.

In fact, λ2(n) = b2
3
(n − 1)c exactly, but the proof of the tighter lower bound is more

complicated to describe than illuminating (although not difficult).
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Theorem 2.11. λ3(n) = λ̃3(n) = 3
4
n−O(1).

Proof. Let a, b, and c be any three points, listed in clockwise order. Consider the lines

through each pair of these, with the rays at their ends labeled a1, a2, b1, b2, c1, and c2, in

clockwise order according to the nearest point, as in Figure 2.2.

Let L be any set of n lines not containing a, b, or c, and separate L into “interior” and

“exterior” lines LI and LE as before, according to whether they intersect the convex hull

of {a, b, c} or not, respectively. As before, let |L| = n and |LI | = i, so that |LE| = n− i.

Let A1 be those lines of LI intersecting a1, B2 be lines of LI intersecting b2, and so on.

For lines of LI that do not intersect any of these, include them with A1 as well.

Letting L1 := A1∪B1∪C1 and L2 := A2∪B2∪C2, we have that LI is the disjoint union

of L1 and L2, since a line intersecting any two of these labeled ends does not separate any

of a, b, or c. Then either |L1| ≤ i
2

or |L2| ≤ i
2
; without loss of generality, assume |L1| ≤ i

2
.

Figure 2.2: A canonical witness set of three rays for a set of three points.

LE ∪ L1 is an exposing set, as witnessed by W1 = {a1, b1, c1}, and has size at most

n− i
2
.
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For a second bound, we again note that LE ∪ {`} satisfies the conditions of Lemma 2.8

for any ` ∈ LI , and so there is an exposing set for LE ∪ {`} = L \ (LI \ {`}) of size at

most
⌊
1
2
(n− i)

⌋
, which together with the rest of LI yields an exposing set of size at most

i− 1 +
⌊
1
2
(n− i)

⌋
.

As before, the minimum of these two upper bounds is maximized when they are equal,

and hence when i∗ = n
2

+ 1. Thus λ3(n) ≤ n− i∗/2 = n− 1+n/2
2

= 3
4
n− 1

2
, which implies

(since λ3(n) is integer-valued) that λ3(n) ≤ b1
4
(3n− 2)c = 3

4
n−O(1).

From Theorem 2.7 we have that d3
4
ne − 3 ≤ λ3(n), so the result follows.

Theorem 2.12. λ̃4(n) =
⌈
4
5
n
⌉
−O(1).

Proof. Let a, b, c, and d be points in convex position, and suppose L is a set of n lines

containing none of the four points. Let LI and LE be the set of lines in L which cross the

convex hull of the points (“internal”) and the set which do not (“external”), respectively.

Again, let |L| = n and |LI | = i, so that |LE| = n− i.

As before, using Lemma 2.8 yields an exposing set for LE ∪ {`} (where ` ∈ LI) which

together with the rest of LI is an exposing set of size at most i− 1 + b1
2
(n− i)c.

Consider the diagram in Figure 2.3. Group the rays anchored at the points and pointing

outward along the line between each pair of points, as in the figure. Every line of LI avoids

intersecting one of these groups entirely, so let R, G, and B be the sets of lines that avoid

the red, blue, and green rays respectively (the dotted, dashed, and solid rays). If a line in L

doesn’t intersect any of the rays, include it along with R.
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Figure 2.3: The three canonical witness sets for 4 points in convex position; witness sets are
grouped by dash type.

Then LI = R∪G∪B and by the pigeonhole principle one of R, G, or B (say, R) must

contain at least 1
3
i lines; therefore, G ∪ B contains at most 2

3
i lines. But LE ∪G ∪ B is an

exposing set, witnessed by the red rays, and thus λ̃4(n) ≤ n− i+ 2
3
i = n− 1

3
i.

Together these bounds give λ̃4(n) ≤ max
i

min


i− 1 + b1

2
(n− i)c

n− 1
3
i

.

As before, the minimum of these upper bounds is maximized when they are equal, and

hence when i∗ = 3
5
(n+ 2).

This implies λ̃4(n) ≤ bn− 1
3
(3
5
(n+2))c = b2

5
(2n−1)c ≤ b4

5
nc. Together with the result

of Theorem 2.7, we have
⌈
4
5
n
⌉
− 4 ≤ λ̃4(n) ≤ b4

5
nc, so that λ̃4(n) =

⌈
4
5
n
⌉
−O(1).
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2.3 Jointly Exposing Multiple Points in the Plane

In this section we examine Question 3 for networks of ray sensors, expanding the idea

of exposing points to the idea of exposing a set of points simultaneously, or jointly.

Definition 2.13. Let P be a set of k points in the plane, and Y a set of n rays. Y partitions

the plane into connected regions that are either convex or are the result of removing a finite

number of line segments connected to the border of a convex region. We say the points of P

are jointly exposed by Y , or that the partition jointly exposes them if they are contained

in the same region and that region is unbounded.

A joint exposing set for a set of rays (resp. segments) Y is a subset X ⊆ Y such that

the plane partition induced by Y \ X jointly exposes the points of P . Similarly, a joint

witness set is a set of rays, one anchored at each point of P , with a common direction.

Rk(n) is the smallest integer so that for any k points, any set of n rays has a joint

exposing set of size Rk(n).

Observation 2.1. A joint witness set W induces a joint exposing set J(W ) composed of

those rays it intersects.

This observation highlights a similarity to the situation for Question 2 – that we may

examine joint exposing sets through the lens of joint witness sets. Indeed, our lower bound

argument in this section will still take the form of a construction: an arrangement of rays

which requires at least a particular fraction of them to be part of any joint exposing set. We

provide and argue bounds for such a construction for R2(n) in the majority of this section,

but the (asymptotically) matching upper bound is relatively simple and, as before, relies on

finding canonical joint witness sets, as we argue in the next theorem.
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In arguing each bound we will make use of some properties of the barrier graph (see

Chapter 1), which aids in analyzing the case of finding a path between two points by remov-

ing some of a set of ray barriers. The notion of the barrier graph for ray barrier networks

is crucial to the problem of finding a joint exposing set for two points. Indeed, removal of

any joint exposing set yields an unobstructed path between the exposed points, and hence

its rays must form a vertex cover of the associated barrier graph (although typically not a

minimal one).

Theorem 2.14. R2(n) ≤ 3
4
n

Proof. Let p and q be points in the plane, and Y any collection of n rays not containing

either point. Without loss of generality, suppose p and q lie on a common horizontal line

` and p is left of q. Partition Y into four subsets (see Figure 2.4): Yleft, those rays whose

supporting line intersects ` left of p; Yright, those rays whose supporting line intersects `

right of q; Yabove, those rays themselves intersecting the segment pq from above; and Ybelow,

those rays themselves intersecting pq from below. Include rays parallel to pq along with

Yleft.

As argued by [9], Y separates the points p and q if and only if some pair of rays in it

does. Moreover, two rays from Yabove cannot be in such a pair, nor can two rays from Ybelow

or two rays from Yleft ∪ Yright; in addition, if a ∈ Yabove, b ∈ Ybelow, then a and b separate p

from q if and only if they intersect, while if c ∈ Yabove ∪ Ybelow and d ∈ Yleft ∪ Yright, then

c and d separate the two points if and only if they intersect on the same side of ` as the

anchor of c.

Clearly, then, each of Yabove, Ybelow, Yleft, and Yright is on its own insufficient to separate

p from q without a ray from one of the other sets, and the plane partition induced by any
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one of them jointly exposes p and q. Thus, each of (Y \Yabove), (Y \Ybelow), (Y \Yleft), and

(Y \ Yright) is a joint exposing set for p and q.

On the other hand, summing the sizes of these four exposing sets yields (n− |Yleft|) +

(n−|Yright|) + (n−|Yabove|) + (n−|Ybelow|) = 3n, so at least one of them has size at most

3
4
n, and is thus an exposing set of the desired size, yielding the result.

Figure 2.4: The partition of the set Y of rays in Theorem 2.14.

We now give a construction yielding a lower bound for R2(n) that asymptotically

matches the upper bound of Theorem 2.14.

Theorem 2.15. R2(n) = 3
4
n−O(1).

To prove Theorem 2.15 we will provide a general construction of a set Y of n rays

around a pair of points for the case when n = 8m, which only has large joint exposing sets

of size at least 6m−O(1) = 3
4
n−O(1).

Fix points p, q at (−δ, 0) and (δ, 0), and fix points a and b at (−δ′, 0) and (δ′, 0) for some

0 < δ′ < δ < 1 to be precisely determined later. a and b are the points to be protected.

Note that a subset of Y is a joint exposing set for a and b if and only if there is some

point t that is jointly exposed along with a and b, which is in an unbounded region of the
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plane partition due to Y (so that t is initially exposed without removing any ray in Y ). This

point can be thought of as marking a target region in which to jointly expose a and b.

The anchors of all rays in Y will be located on the unit circle, as follows (see Figure

2.5):

• 8m anchor locations are chosen by placing 4m of them uniformly around the top half

of the unit circle and 4m uniformly around the bottom half and each half indexed

1, 2, . . . , 4m from left to right.

• P , a set of 2m rays intersecting the point p, where m are anchored uniformly around

the top of the unit circle in locations 1, 4, 7, . . . , and m are anchored uniformly

around the bottom of the unit circle antipodal to these (so, in locations 4m, 4m −

3, . . . ).

• Q, a set of 2m rays similarly placed intersecting q, in locations 2, 5, 8, . . . , on the top

of the unit circle and 4m− 1, 4m− 4, . . . , around the bottom.

• M , a set of 4m rays that intersect the origin. These anchors are placed in pairs, where

the distance between members of a pair is δ′′, and so that the midpoints of the pairs

are at locations 3, 6, 9, . . . , on the top of the unit circle and 4m−2, 4m−5, . . . around

the bottom. Note that this placement gives antipodal rays of M the same supporting

line; if one perturbs the anchors around the unit circle a small enough amount, the

argument will still follow.

The rays of P,Q, and M are placed so that no anchor is on the x-axis, and so that no

two rays are parallel.
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Figure 2.5: The relative arrangement of some of the rays in P (solid), Q (dotted), and M
(dashed).

Since a, b, and t must have unobstructed paths to each other when jointly exposed, the

corresponding joint exposing set forms a vertex cover of each of the barrier graphsGa,b and

Gt,b for the point pairs (a, b) and (t, b), respectively. Note that it also forms a vertex cover

for the barrier graph Gt,a, however as any joint vertex cover of the first two graphs has this

property, we will not explicitly exploit it.

We define a graph G as the graph with Y as vertices and all edges from both Ga,b and

Gt,b, A vertex cover of G thus is a vertex cover of each of Ga,b and Gt,b, and a minimum

vertex cover of G is therefore a smallest set of rays whose removal from Y jointly exposes

a and b.

A choice of δ, which is the distance from p or q to the origin, determines a circular

permutation of the anchors in Y and their intersections with the unit circle (two per ray,

one at the anchor and one not). There is some value of δ such that any smaller positive

value induces the same permutation, so choose this or any smaller positive value for δ.
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In particular, this choice ensures that as one traverses the top of the unit circle in a

clockwise fashion, one witnesses the tail of a ray in P followed by an anchor of a ray from

P , then a ray’s anchor from Q followed by the tail of a ray from Q, and then a pair of ray

tails from M and a pair of anchors from M (the tails each contain an anchor), after which

the pattern repeats. The same pattern is observed traversing the bottom of the unit circle

in a clockwise fashion, except the order of consecutive anchors and tails from P or Q is

reversed. This fact is key to understanding neighborhoods in G and thus how vertex covers

of G are formed.

After fixing such a δ, there is some circle centered at the origin that intersects the

interior of each of the unbounded regions of the plane as partitioned by Y , and without loss

of generality we can always choose t to be on this circle, in any of these regions’ interiors.

Choose 0 < δ′ < δ, which controls the distance from a and b to the origin, so that

the triangle with vertices a, b, and t contains at most one anchor from a ray of Y . Finally,

choose δ′′ so that each pair anchored near the same designated location intersects exactly

the same set of other rays in Y . Ideally, we would place these paired rays in the exact same

location, but general position forbids this, so we use this δ′′ to get as close as is needed.

The following lemma connects joint exposure of a and b to vertex covers of G.

Lemma 2.16. If C is a minimum vertex cover of G, then |C| ≤ R2(n).

Our goal, then, is to show that all vertex covers of G := Ga,b ∪ Gt,b contain at least

6m−O(1) vertices, for any choice of t.

Fix some point t in an unbounded region of the partition according to Y , and suppose

without loss of generality that t is in the top half plane. The line through the origin and t
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Figure 2.6: The angle α from the positive x-axis to the line through t and the midpoint of
ab and the partition of the unit circle into half-open arcs which group the rays anchored on

it.

forms an angle α with the positive x-axis, normalized to be between 0 and 1, where α = 1

corresponds with π radians (See Figure 2.6). This line and the x-axis together divide the

unit circle into four regions, labeled 1 through 4 as in the figure.

These regions partition the rays in P ,Q, andM further into four subsets each, according

to the region containing the ray’s anchor. For the rays anchored in region i, call these

subsets P i(α), Qi(α), and M i(α), or P i, Qi, and M i when α is clear from context.
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We create an auxiliary graph whose vertices are the twelve sets P i, Qi, and M i, which

we will call Gα = (Vα, Eα). Gα has an edge between a pair A,B ∈ Vα if and only if G has

an edge in A×B. A vertex cover of Gα then corresponds to a vertex cover of G by simply

taking the union of the vertices of Gα. We will refer to the cardinalities of the vertices in

Vα (which are sets of rays) as their weights. The weights of these vertices are as follows,

where the −O(1) terms account for rounding.

|P 1| = |P 3| = |Q1| = |Q3| = αm−O(1)

|P 2| = |P 4| = |Q2| = |Q4| = (1− α)m−O(1)

|M1| = |M3| = 2αm−O(1)

|M2| = |M4| = 2(1− α)m−O(1)

First, notice that each A ∈ Vα is an independent set of G, and moreover that many pairs

A,B ∈ Vα do not share an edge, a fact recorded by dots in the modified adjacency matrix

in Table 2.7.

P 1 P 2 P 3 P 4 Q1 Q2 Q3 Q4 M1 M2 M3 M4

P 1 · · · c h · · · h · h c
P 2 · · · c c h · h c h · c
P 3 · · · c h · h · h · h c
P 4 c c c · · h c h c c c h
Q1 h c h · · · c · h c c ·
Q2 · h · h · · c · · h c h
Q3 · · h c c c · c c c h c
Q4 · h · h · · c · · h c h
M1 h c h c h · c · · · c c
M2 · h · c c h c h · · c c
M3 h · h c c c h c c c · c
M4 c c c h · h c h c c c ·

Figure 2.7: The modified adjacencies of Gα, where · represents a non-edge, c represents a
complete edge, and h represents a half edge.
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The rest of the pairs in Gα form edges that correspond to specific types of subgraphs

of G, which we will show in the next lemma. Recall that a half graph with 2x vertices is

a bipartite graph with vertices u1, . . . , ux and v1, . . . , vx that has an edge (ui, vj) whenever

i ≤ j. A doubled half graph is the the result of duplicating the vertices on one side of a

half graph, including adjacencies.

Lemma 2.17. Each auxiliary edge (A,B) ∈ Eα induces a subgraph of G that is either a

complete bipartite graph, a half graph, or a doubled half graph.

Proof. Let r1, r2 ∈ Y .

If r1 and r2 are both anchored on the top unit semicircle, then (r1, r2) is an edge of G

if and only if they intersect above the x-axis, because then they will either separate a from

b or t from b. This means that the Gα auxiliary edges (P 2, Q1), (P 2,M1), and (Q1,M2),

correspond to complete bipartite graphs in G.

For pairs of rays from any of the auxiliary edges (P 1, Q1), (P 1,M1), (P 2, Q2), (P 2,M2),

(Q1,M1), and (Q2,M2), whether or not they share an edge in G depends on their relative

order around the unit circle (See Figure 2.8 for the case of (M2, Q2) as an example). In the

Figure, a fixed ray M2
j ∈ M2 forms a barrier with each Q2

i ∈ Q2 counterclockwise of it

and none clockwise of it, which means its neighborhood in Q2 is strictly contained in the

neighborhood of M2
j+1 ∈ M2 (a ray clockwise from M2

j in M2). Because of this interac-

tion, these auxiliary edges all correspond to half subgraphs or doubled half subgraphs ofG,

where edges involving M i are doubled half subgraphs and the rest are just half subgraphs.
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If instead r1, r2 ∈ Y are both anchored on the bottom unit semicircle, whether they

form a barrier is still related to whether their intersection is on the same side (below) of the

x-axis as their anchors, but now this is not enough because the infinite wedge formed by

this interaction could contain all of a, b, and t, or could contain only t (separating it from

a and b). Otherwise, the same kinds of observations are in play. So, the auxiliary edges

(P 3, P 4), (P 3,M4), (P 4, Q3), (P 4,M3), (Q3, Q4), (Q3,M4), (Q4,M3), and (M3,M4)

all correspond to complete bipartite subgraphs of G, and the auxiliary edges (P 3, Q3),

(P 4, Q4), (P 3,M3), (P 4,M4), (Q3,M3), and (Q4,M4) all correspond to half subgraphs

or doubled half subgraphs of G. Again, the half subgraphs involving M i on only one side

are the doubled half graphs.

Next, suppose r1, r2 ∈ Y are anchored on different sides of the x-axis. As before, they

form a barrier if and only if the infinite wedge they form contains a nonempty proper subset

of {a, b, t}. Although the wedges formed by ray pairs from the same auxiliary edge don’t

all contain the same subset because the presence of an edge in G only records whether

there is some pair of separated points, the same kinds of subgraphs are still formed. In this

group, the edges (P 1, P 4), (P 1,M4), (P 2, P 4), (P 2,M4), (P 4,M1), (P 4,M2), (Q1, Q3),

(Q1,M3), (Q2, Q3), (Q2,M3), (Q3,M1), (Q3,M2), (M1,M3), (M1,M4), (M2,M3),

and (M2,M4), all represent complete bipartite subgraphs of G. The remaining edges rep-

resent half-graphs or doubled half-graphs, and these are: (P 1,M3), (P 2, Q4), (P 3, Q1),

(P 3,M1), (P 4, Q2), (Q2,M4), and (Q4,M2).

This accounts for all edges in Gα.

With Lemma 2.17 in hand, we will refer to edges of Gα as either complete edges (for

complete bipartite subgraphs of G) or half edges (for both half subgraphs and doubled half
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subgraphs of G), and we will refer to the subgraph of Gα induced by the complete edges

as Gc
α, while the subgraph induced by the half edges is Gh

α.

A modified adjacency matrix of Gα is shown in Table 2.7, indicating complete edges

with a c, half edges with an h, and non-edges with a dot. Gα itself is shown in Figure 2.9.

With the next lemma we connect these edge labelings to vertex covers; in any vertex

cover of our barrier graph G, at least one end of each complete edge of Gα is included as a

subset of the cover. What this means is that vertex covers of G can be viewed as extensions

of vertex covers of the auxiliary graph Gc
α by taking the union of the sets in the cover of

Gc
α and adding rays appearing in the ends of edges of Gh

α.

Lemma 2.18. Let C be a vertex cover of G, and let (A,B) ∈ Eα be a complete edge. Then

either A ⊆ C or B ⊆ C.

Proof. Suppose A 6⊆ C. Then ∃x ∈ A \ C. x is adjacent to every element of B since

(A,B) is complete, so B ⊆ C, because C is a vertex cover of the edges of G.

In light of Lemma 2.18, we can bound from below the size of all vertex covers of G by

beginning with vertex covers of Gc
α and showing that any extension to a vertex cover of G

includes at least 6m−O(1) rays in total.

The only vertex covers of G that do not immediately satisfy the target lower bound of

3
4
n − O(1) = 6m − O(1) are thus those that extend vertex covers of Gc

α whose weight is

not already at least 6m− O(1); without loss of generality, we may extend minimal covers

of Gc
α. Each minimal cover Cc of Gα is the complement of a maximal independent set in

Gc
α, V c

α \Cc. Moreover, it is from V c
α \Cc that we find rays to extend the cover to a minimal

vertex cover of G.
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Figure 2.8: Rays Q2
i ∈ Q2 that are counterclockwise from M2

j ∈M2 form a barrier
between b and t and between a and b (left), whereas rays Q2

i′ that are clockwise from M2
j

do not (right). This is what makes the edge (Q2,M2) in Gα a half graph, which is doubled
because each M2

j is paired with another ray with the exact same barrier graph adjacencies.
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For such a minimal cover Cc of Gc
α, the rays we add to get a minimum vertex cover of

G are in the complement V c
α \ Cc, which is a maximal independent set in Gc

α.

For any α there are 5 maximal independent sets inGc
α with weight more than 2m+O(1),

which means their complements, vertex covers of Gc
α, have weight less than 6m − O(1).

This was verified by an exhaustive enumeration of the vertex covers of this graph using the

igraph package in R.

Code is available at https://github.com/Kirkules/extremal problems ray sensors. These

independent sets are pictured in Figure 2.10.

In the next lemma we show that a minimum vertex cover of G cannot take too few

vertices from both sides of a half edge, which further allows us to bound from below the

size of a vertex cover of G extending a cover of Gc
α.

Figure 2.9: Gα with half edges shown as solid lines, and complete edges shown as dashed
lines, and relative vertex weights visualized by vertex radius.
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Lemma 2.19. Fix t (and thus α) and a vertex cover C of the barrier graph G. If (M t, B)

is a half edge of Gα (for any B ∈ Vα), then |B ∩C| ≥ (1− ε)|B| −O(1), where ε depends

on B.

Proof. The doubled half graph between M t and B labels M t as {m1, . . . ,m|Mt|}, where

i < j =⇒ NB(mi) ⊆ NB(mj).

Let r be the largest index so that mr 6∈ C. Since the rays in M t are paired so that pairs

have the same neighborhood, i.e. NB(m2i−1) = NB(m2i) for each i.

Because each consecutive pair has a neighborhood larger by 1 than the last, and because

r may be the smaller index of its pair, degB(mr) ≥ r
2
− 1. (We subtract 1 because the first

pair, m1 and m2, may have no neighbors in B, depending on α.)

Since C is a cover of all edges in G and mr 6∈ C, we have that NB(mr) ⊆ C. This

means that |B ∩ C| ≥ degB(mr) ≥ r
2
− 1, and we may write:

|B ∩ C| ≥ r

2
− 1

=
1

2
(r + 1)− 3

2

=
|M t|

2
− |M

t|
2

+
1

2
(r + 1)− 3

2

= |B| − |M
t|

2

(
|M t| − (r + 1)

|M t|

)
− 3

2

= |B| − |B|ε− 3

2

= (1− ε)|B| −O(1),
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where ε =
(
|Mt|−(r+1)
|Mt|

)
, and where we have made use of the fact that |B| = |Mt|

2
since the

only half edges adjacent to M t connect it to sets with exactly half as many rays.

For a vertex cover C of G, this ε may be thought of as the fraction of M t included in C

due to this particular half edge. What this means is that |M t ∩ C| ≥ ε|M t| − 1.

Moreover, applying the lemma to an M t adjacent to two half edges yields both an ε1

and an ε2, marking fractions of M t included in the cover C from each side of the ordered

list of rays in M t (there are only two such orderings of the rays because the order comes

from viewing the anchors of rays clockwise or counterclockwise around the unit circle). In

other words, when M t is adjacent to two half edges, |M t ∩ C| ≥ (ε1 + ε2)|M t| − 2.

Lemma 2.19 is the final tool we need to prove Theorem 2.15.

Proof of Theorem 2.15. The five subgraphs in of Gh
α whose complements correspond to

vertex covers of Gc with total weight below 3
4
n − O(1). Were a vertex cover of G to have

weight smaller than 3
4
n − O(1), it must extend one of these subgraphs’ complements by

adding enough vertices of the subgraph itself; we therefore show that each such extension

leading to a minimum vertex cover must still have total weight at least 3
4
n − O(1) =

6m−O(1).

These subgraphs are labeled S(a), S(b), S(c), S(d), and S(e), where each S(·) = (V(·), E(·)),

and we address extending in each case separately. However, arguments for all cases are

structured similarly: first we note the total weight of the complement of S(·) (i.e. the rays

already known to be in the cover of G), and then we use Lemma 2.19 to bound below the

number of rays that must be added from S(·) to make a vertex cover of G, based on the

edges appearing in S(·).

71



(a) Auxiliary graph (a) (b) Auxiliary graph (b) (c) Auxiliary graph (c)

(d) Auxiliary graph (d) (e) Auxiliary graph (e)

Figure 2.10: The subgraphs of Gc
α whose vertices are maximal independent sets in Gc

α,
and that correspond to subgraphs of G that need to be covered. Note that edges shown are

from Gh
α, since these are vertexes from independent sets in Gc

α

S(a) : Vα\V(a) is a vertex cover ofGc
α with weight |Vα\V(a)| = |P 4|+ |Q1|+ |Q3|+ |M1|+

|M3|+ |M4| = m [(1− α) + α + α + 2α + 2α + 2(1− α)] = (3 + 3α)m−O(1).

Any vertex cover of G with no rays in M2 must include all rays in Q2, P 2, and Q4

except for up to 3, since each of these sets is the neighborhood of some ray of M2

(except at most one ray each). In this case, the weight of the extended vertex cover is

(3 + 3α)m+ |Q2|+ |P 2|+ |Q4| = (3 + 3α)m+ 3(1− α)m−O(1) = 6m−O(1).

If instead C is a vertex cover of G with at least one ray in M2, then as in Figure 2.8,

those rays in M2 anchored further clockwise have more neighbors in Q2 and Q4, and

simultaneously have fewer neighbors in P 2. So the ordering of M2 in the half edge

with P 2 is opposite the ordering in the half edges with Q2 and Q4.
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By Lemma 2.19, then, there are 0 ≤ ε1, ε2 ≤ 1 so that |M2 ∩C| ≥ (ε1 + ε2)|M2| − 2

and | (P 2 ∪Q2 ∪Q4) ∩ C| ≥ (1− ε1)|P 2|+ (1− ε2)(|Q2|+ |Q4|).

Therefore, the number of additional rays required to get a vertex cover ofG is at least

|(M2 ∪ P 2 ∪Q2 ∪Q4) ∩ C|

≥ (ε1 + ε2)|M2| − 2 + (1− ε1)|P 2|+ (1− ε2)(|Q2|+ |Q4|)

≥ (ε1 + ε2) · 2(1− α)m+ (1− ε1) · (1− α)m+ (1− ε2) · 2(1− α)m−O(1)

≥ (3 + ε1)(1− α)m−O(1)

≥ (3− 3α)m−O(1),

and so the size of a vertex cover extending Vα \ V(a) is at least (3 + 3α)m + (3 −

3α)m−O(1) = 6m−O(1).

Note that we did not need to address rays from (Q2, P 2) or from (Q4, P 2) directly.

S(b) : The complement of S(b) is a vertex cover of Gc
α satisfying:

|Vα \ V(b)| = |P 4|+ |Q1|+ |Q2|+ |Q4|+ |M1|+ |M2|+ |M4|

= (7− 4α)m−O(1),

Note that if α ≤ 1/4, then |Vα \ V(b)| ≥ 6m−O(1) and this case is done.

A vertex cover of G with no rays from M3 must include all rays in P 1, P 3, and

Q3, which together have weight 3αm ≥ (4α − 1)m since α ≤ 1. In this case, the

extended vertex cover has weight at least 6m−O(1).

So suppose C is a vertex cover of G taking at least one ray of M3. Rays of M3

anchored more counterclockwise have more neighbors in Q3 and fewer in P 1 and
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P 3. By Lemma 2.19, there are 0 ≤ ε1, ε2 ≤ 1 so that |M3 ∩ C| ≥ (ε1 + ε2)|M3|

while |(Q3 ∪ P 1 ∪ P 3) ∩ C| ≥ (1− ε1)|Q3|+ (1− ε2)(|P 1|+ |P 3|).

|(M3 ∪ P 3∪Q3 ∪ P 1) ∩ C|

≥ (ε2 + ε1)|M3|+ (1− ε2)(|P 1|+ |P 3|) + (1− ε1)|Q3|

= [(ε2 + ε1)(2α) + (1− ε2)(α + α) + (1− ε1)α]m−O(1)

= (3 + ε1)αm−O(1)

≥ (4α− 1)m−O(1),

which again means the extended vertex cover has weight at least (7− 4α)m+ (4α−

1)m−O(1) = 6m−O(1).

S(c) : |Vα \ V(c)| = |P 2| + |P 4| + |Q1| + |M2| + |M3| + |M4| = [(1 − α) + (1 − α) +

α + 2(1− α) + 2α + 2(1− α)]m = (6− 3α)m− O(1), so the goal is to show any

vertex cover C of G extending the complement of S(c) takes more than 3αm−O(1)

vertices from S(c), because (6− 3α)m− 3αm−O(1) = 6m−O(1).

A vertex cover of G with no rays from M1 must take all of P 1, P 3, and Q1, totaling

at least 3αm−O(1) additional rays.

If instead (again applying Lemma 2.19) at least (ε1 +ε2)|M1|−2 rays are taken from

M1, then at least (1 − ε1)|Q1| + (1 − ε2)(|P 1| + |P 3|) rays are taken from Q1, P 1,

and P 3, giving that

|(M1 ∪ P 1 ∪ P 3 ∪Q1) ∩ C|

≥ (ε2 + ε1)|M1|+ (1− ε2)(|P 1|+ |P 3|) + (1− ε1)|Q1|

= [(ε2 + ε1)(2α) + (1− ε2)(α + α) + (1− ε1)(α)]m−O(1)

74



= (3 + ε1)αm−O(1)

≥ 3αm−O(1),

and so the extended cover contains at least (6− 3α)m+ 3αm−O(1) = 6m−O(1)

rays.

S(d) : |Vα \ V(d)| = |P 2|+ |P 4|+ |Q1|+ |Q3|+ |M3|+ |M4| = 4m−O(1).

Since S(d) has two connected components with any edges (one component with M1

and one with M2), we can address them independently.

A cover with no rays from M1 must include all rays in both P 1 and P 3, totaling

2αm − O(1). If instead it takes ε|M1| − 1 rays from M1 as in Lemma 2.19, then

the contribution from this connected component is ε|M1| + (1 − ε)(|P 1| + |P 3|) =

2εαm + (1 − ε)(α + α)m − O(1) = 2αm − O(1). Note that the same ε applies

because neighborhood size for edges from M1 into P 1 and into P 3 increase together.

Hence, vertex covers must take at least 2αm−O(1) rays from this component.

Similarly, a cover with no rays from M2 must include both Q2 and Q4, totaling

2(1− α)m−O(1). Instead taking ε|M2| − 1 from M2 means the contribution from

this component is ε|M2| + (1 − ε)(|Q2| + |Q4|) = 2(1 − α)m − O(1), and the

contribution to any vertex cover from this component is at least 2(1− α)m−O(1).

The two components together thus contribute at least 2m − O(1) rays to any vertex

cover ofG, and thus any cover extending Vα\V(d) contains at least 4m+2m−O(1) =

6m−O(1) rays.

S(e) : |Vα \V(e)| = |P 1|+ |P 2|+ |P 3|+ |Q3|+ |M1|+ |M2|+ |M3| = (3 + 4α)m−O(1).

A vertex cover of G with nothing from M4 takes all of P 4, Q2, and Q4, which have

a combined weight of (3− 3α)m ≥ (3− 4α)m−O(1).
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Taking instead (ε1 + ε2)|M4| rays from M4 in the cover C of G, we have that |(M4∪

P 4 ∪ Q2 ∪ Q4) ∩ C| ≥ (ε1 + ε2)|M4| + (1 − ε1)(|Q2| + |Q4|) + (1 − ε2)|P 4| =

[(3 + ε2)− ε2α]m, which is at least (3− 4α)m since 0 ≤ ε2 ≤ 1.

But (3 + 4α)m+ (3− 4α)m−O(1) ≥ 6m−O(1).

Finally, because every vertex cover of G extends a vertex cover of Gc
α, and as we have

shown, every extension of such a cover to a cover ofG contains at least 6m−O(1) elements

of G, it follows that every vertex cover of G has at least 6m−O(1) = 3
4
n−O(1) vertices

in it. This, together with the results of Theorem 2.14, yields R2(n) = 3
4
n−O(1).
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CHAPTER 3: EXPOSING IN HIGHER DIMENSIONS

3.1 d-dimensional Exposure and Joint Exposure

The notion of protecting points from exposure with lines in the plane has a natural

analog in d dimensions: protecting points in Rd with affine hyperplanes, which we will

hereafter simply call hyperplanes.

Although Rd also contains lines, for d > 2 no finite number of these can protect a point

from an intruder. Indeed, flats of dimension less than d − 1 do not partition the rest of Rd

into multiple cells. In this sense, hyperplane “sensors” are the most natural analog of line

sensors in higher dimensions.

Consider a set H of n hyperplanes in Rd and a set P ⊆ Rd of k points. H partitions Rd

into convex sets, called the t-faces of the hyperplane arrangement AAA(H), such that for two

points p and q in the same t-face and any A ∈ H , p is above (respectively below, or on) A

if and only if q is. We refer to the d-faces of AAA(H) as its cells, or d-cells.

We will sayH and P are, together, in general position if no point p ∈ P is contained in

any hyperplane A ∈ H . Unless otherwise specified, all point sets and hyperplane arrange-

ments are taken to be in general position.
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As before, a point p ∈ P is protected if the d-cell containing it is bounded, and exposed

otherwise; an exposing set X ⊆ H is one such that H \X exposes P , and a witness set is

a set W of k rays with each point of P as an anchor.

The lemma below is the d-dimensional analog of Lemma 2.1, connecting witness sets

to the exposing sets that they witness; it has essentially the same proof as well, since un-

bounded d-cells also contain at least one unbounded ray in their boundary, and since d-cells

are also convex.

Lemma 3.1. If H \X exposes P , then there is a witness set W with E(W ) ⊆ X .

Now, the generalized version of Question 2 is straightforward:

Question 4. Given k designated target locations and allowing the placement of n hyper-

plane barriers in Rd, what number of those barriers is always sufficient and sometimes

necessary to remove so that all target locations are exposed?

To describe the answer to this question, we define functions analogously to their two-

dimensional counterparts:

Definition 3.2. For a finite set P ⊆ Rd of points and finite set H of hyperplanes in Rd,

hd(P,H) is the size of the smallest exposing set X ⊆ H . In addition,

hd(P, n) = max{hd(P,H) : H is a set of n hyperplanes in Rd}

hd(k,H) = max{hd(P,H) : P ⊆ Rd and |P | = k}

hdk(n) = max{hd(P, n) : P ⊆ Rd and |P | = k}

= max{hd(k,H) : H a set of n hyperplanes in Rd}
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For points in convex position, we again use a tilde to recognize this assumption: h̃dk(n)

is the smallest number so that every set of n d-dimensional hyperplanes protecting a set of

k points in convex position in Rd has an exposing set of size at most h̃dk(n).

3.2 Lower Bounds on hdk(n)

Our approach to examining the functions hdk(n) is again to find nontrivial upper and

lower bounds. In two dimensions, we were able to find matching bounds and thus the exact

value of the functions λk(n) = h2k(n) for some values of k. In higher dimensions, such

precision has been more elusive.

However, the fact that each finite dimensional Euclidean space is a subspace of the next

allows us to carry lower bounds upward to higher dimensions.

Theorem 3.3 (Lower Bound Dimension Raising). If k ≤ t < d, then hdk(n) ≤ htk(n).

Proof. Let P ⊆ Rd be a set of k points and let H be an arrangement of hyperplanes

in general position in Rd. Let Π be any t-dimensional flat of Rd containing P (always

possible since k ≤ t). For each π ∈ H , if π ∩ Π 6= ∅ then let π′ be any subflat of Π, with

dimension t− 1, containing Π ∩ π but not containing a point of P .

This choice of π′ is always possible: if Π ∩ π itself has dimension less than t − 1 it

can be extended to any (t− 1)-dimensional subspace Φ containing Π∩ π and translating it

along some vector in Π so that it still misses all of P .

Π is a copy of Rt containing P and sitting inside of Rd, and the set H ′ = {π′ : π ∈

H, π∩Π 6= ∅} is a collection of (t−1)-dimensional flat inside of Π. These are hyperplanes

in Π and by construction are in general position with respect to P .
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If X ′ ⊆ H ′ is an exposing set for P in the context of Π, then by definition there

is a witness set W ′ whose rays are all contained in Π, and such that EH′(W ′) = X ′ is

of minimum size. Let X = {π ∈ H : π′ ∈ X ′}, which can be thought of as the set

of hyperplanes π in Rd whose corresponding hyperplanes π′ in Π are represented in the

exposing set X ′.

For any w ∈ W ′, if π′ ∈ S ′ \X ′, then w∩Π∩π ⊆ w∩π′ = ∅. But w∩π = w∩Π∩π

since w ∈ Π, and thus w ∩ π ⊆ w ∩ π′ = ∅. Thus, ES(W ′) ⊆ X; in other words, W ′

witnesses that X is an exposing set for H . Moreover, since X ′ is of minimum size, every

hyperplane in X ′ intersects some ray of W ′.

But |X| = |X ′|, and so we have found an exposing set, X ′, for P and H whose size is

no larger than htk(n).

Corollary 3.4. For d > 2,

hd1(n) ≤
⌊

1

2
(n− 1)

⌋

hd2(n) ≤
⌊

2

3
(n− 1)

⌋

hd3(n) ≤
⌊

1

4
(3n− 2)

⌋
=

3

4
n−O(1).

Now, the argument we used to prove our lower bound on λk(n) for all k can be extended

to apply in d dimensions, and to support this generalization we introduce the following

lemma.

Lemma 3.5. There are arbitrarily large sets of vectors V in Rd such that every subset

S ⊆ V , with |S| ≤ d, is linearly independent.
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Proof. Recall that the Vandermonde matrix of size n,



1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12

...
...

... . . . ...

1 xn x2n · · · xn−1n


is invertible, and that such a matrix is defined for any n distinct real values xn.

Fix n > 0. Choose n distinct nonzero real values x1, x2, . . . , xn, and let vi be{
1, xi, x

2
i , . . . , x

d
i

}
for 1 ≤ i ≤ n. Any subset of {vi} provides the rows of a size d

Vandermonde matrix, and are thus linearly independent.

Now that we have shown such sets of vectors exist, we will say a set of vectors is a

d-independent set if it contains at least d vectors and every subset of size d is linearly

independent.

Theorem 3.6. In any dimension d, and for any k points in Rd, we have that

hdk(n) ≥ k

k + 1
n− dk.

Proof. Fix any set P of k points in Rd.

Suppose n = m(k + 1) for some m ∈ N. Let V be any d-independent set of n vectors

in Rd so that the normal of any hyperplane containing more than one point of P is not a

multiple of any vi ∈ V .

For each 1 ≤ i ≤ m let Xi be any set of k + 1 hyperplanes that interlace the points in

P and which all have normal vi. (This interlacing is always possible by the choice of V ).
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For convenience, we will refer to the direction of vi as “right”, and its opposite as “left”

when considering a fixed i, and we will refer to the linear order imposed by this vector on

the hyperplanes of Xi as well as on P . See Figure 3.1 for an example in three dimensions.

Figure 3.1: Two sets Xi of 4 parallel planes for a set of 3 points in three dimensions, viewed from
two angles.

Fix any set W of k rays each anchored at a different point of P , and fix i.

Let k′i be the number of rays in W orthogonal to vi, let `i be the rightmost of the rays

in W that points to the left, and let ri be the leftmost of the rays in W that points to the

right. `i intersects all hyperplanes of Xi to its left and ri intersects all hyperplanes in Xi to

its right.

If `i is to the right of ri, all hyperplanes of Xi are intersected by `i and ri together.

Suppose instead `i is left of ri. Then all rays of W anchored between `i and ri (with

respect to vi) must be orthogonal to vi, since otherwise the offending ray would replace `i

or ri by definition.

If the anchors of `i and ri are adjacent in the order imposed by vi on P , one hyperplane

of Xi lies between them missed by W . Otherwise, for each ray in W between them we

find another hyperplane of Xi that is not intersected by any ray in W and there are at most

k′i such rays anchored between `i and ri.. So, all but at most k′i + 1 hyperplanes in Xi are
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intersected by a ray in W , for a total of k + 1 − (k′i + 1) = k − k′i hyperplanes in Xi

witnessed by W .

Because this argument applies for all i, the total number of hyperplanes witnessed by

some ray in W is at least
∑

i (k − k′i) = mk −
∑

i k
′
i.

Recall that k′i is the number of rays in W orthogonal to vi ∈ V . Let W and V be the

partite sets of a bipartite graph which has an edge for every pair w ∈ W, v ∈ V satisfying

w ⊥ v. Then
∑

i k
′
i is the number of edges in this graph.

Now, since every size d subset of V spans Rd, each ray inW is orthogonal to at most d−

1 vectors in V . If nw is the number of vectors in V orthogonal to w ∈ W , then the number

of edges in the auxiliary graph is also
∑

w∈W nw this gives that
∑
i

k′i =
∑
w∈W

nw ≤ (d− 1)k,

and therefore at least mk− (d− 1)k = k
k+1

n− (d− 1)k hyperplanes are witnessed by W .

If instead n = m(k+1)+ b for some b < k+1, then choose V as above but with m+1

vectors, and choose m sets of k + 1 hyperplanes for each of the first m vectors. For the

additional vector vm+1, choose a set of b hyperplanes with normal parallel to vm+1 so that

each pair of hyperplanes is separated by at least one point of P .

Then all but 1 + k′i hyperplanes in each Xi intersect some ray of W except when i =

m+ 1; all but at most b+ k′m+1 hyperplanes of Xm+1 intersect some ray of W .

The number of hyperplanes witnessed in Xi for i < m+ 1 is then |Xi| − (1 + k′i), and

the number witnessed in Xm+1 is |Xm+1| − (b+ k′m+1).

83



The total number of hyperplanes witnessed by W is thus at least

∑
i

|Xi| −
∑
i<m+1

(1 + k′i)− (b+ k′m+1)

= n− (b+ k′m+1)−
∑
i<m+1

(1 + k′i)

= m(k + 1) + b− (b+ k′m+1)−

(
m+

∑
i<m+1

k′i

)

= mk +m+ b−m− b− k′m+1 −
∑
i<m+1

k′i

= mk −
∑
i

k′i

≥ mk − (d− 1)k

=
k

k + 1
(m(k + 1) + b− b)− (d− 1)k

=
k

k + 1
(n− b)− (d− 1)k

≥ k

k + 1
n− k

k + 1
b− (d− 1)k

=
k

k + 1
n− dk.
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3.3 Upper Bounds on hdk(n)

Our approach to upper bounds for hdk(n) is similar to our approach for upper bounds

for λk(n); we describe a canonical set of rays from which we select a witness set whose

size yields the bounds we desire.

Lemma 3.7. Let P ⊆ Rd with P = {p1, . . . , pk} and let H be a set of n hyperplanes

in Rd in general position with respect to P . If HI is the set of hyperplanes separating

at least one pair of points in P , then there is an exposing set X ⊆ H of size at most

|HI |+ 1
2
(n− |HI | − 1).

Proof. Remove HI , and choose any line through p1 parallel to some hyperplane π ∈ H .

The two opposite rays anchored at p1 along this line together intersect at most n − |HI |

hyperplanes in H \ HI , and thus one of these rays, r, intersects at most half of them.

Translating r to be anchored at other pi does not change the subset of hyperplanes in H it

intersects since no remaining hyperplane passes between two points of P . Thus, the set of

these translations of r constitutes a witness set witnessing an exposing set of at most half

of the remaining hyperplanes other than π, or 1
2
(n− |HI | − 1) of them. Together with HI

itself, these hyperplanes form an exposing set of size |HI |+ 1
2
(n− |HI | − 1).

We begin with a bound in 3 dimensions for clarity, in part because these are planes we

can visualize and draw.

Theorem 3.8. h34(n) ≤ 7
8
n−O(1) .

Proof. Let P = {p1, p2, p3, p4} ⊆ Rd be any four points in R3.

For {i, j} ⊂ [4], let rij be the ray anchored at pj , along the line between pi and pj ,

pointing away from pi.
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For each of i ∈ [4], let Pi be the set {rij : j ∈ [4], j 6= i}. So, Pi is the set of rays

pointing away from pi, anchored at other points of P .

Figure 3.2: The ray set P1 = {r12, r13, r14}

Claim. Any plane π intersecting conv(P ), but not P , hits rays in at most two

of the ray sets Pi.

Proof of claim: Fix pi ∈ P . If pj is on the same side of π as pj and no closer to

π than pi, then rij does not intersect π (it points away from π). If pj is on the

other side of π from pi, then rij still does not intersect π.

Therefore, if pa and pb are the closest elements of P to π on each side, then π

misses all rays in both Pa and Pb.
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See Figure 3.3 for a visualization with the points of P arranged in a tetrahe-

dron.

Figure 3.3: A plane π, the closest points to it on either side represented by stars (on the left,
behind the plane and on the right, in front of it), and the rays pointing away from these points

which also point away from π.

A plane thus may both intersect conv(P ) and hit rays from exactly one, exactly two, or

none of the ray sets Pi.

Let H be any collection of n planes that do not contain any points of P , and write

H = HI ∪HE , whereHI are those planes intersecting conv(P ) (“internal planes”) andHE

are the rest (“external planes”).
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For a set S ⊆ [k] = [4], let HS be the sets of internal planes which hit rays from Pi

whenever i ∈ S, and miss Pi whenever i ∈ S. Note that for i 6= j, this definition implies

that Pi ∩ Pj = ∅.

Then, by the Claim above, HI is the union of all HS with 1 ≤ |S| ≤ 2, i.e. HI =( ⋃
i∈[4]

H{i}

)
∪

 ⋃
i,j∈[4]
i 6=j

H{i,j}

, and we have that

∣∣∣∣∣ ⋃i∈[4]H{i}
∣∣∣∣∣ = α|HI | while

∣∣∣∣∣∣∣
⋃

i,j∈[4]
i 6=j

H{i,j}

∣∣∣∣∣∣∣ =

(1− α)|Hi| for some 0 ≤ α ≤ 1.

Next, for each pair of indices {x, y} ⊂ [4], define the set of hyperplanes:

Xxy = Xyx =
⋃
S⊂[4]

x∈S or y∈S
1≤|S|≤2

HS.

Note that each HE ∪Xxy is an exposing set for P , because none of the hyperplanes that

remain, after removing these, intersect any of the rays in Px or Py. The exposure of pi with

i 6= x is witnessed by rxi ∈ Px, and the exposure of px is witnessed by ryx ∈ Py.

Consider the size of Xxy for fixed {x, y} ⊂ [4]. Because the HS are all disjoint, this

size can be rewritten as the sum of their sizes:

|Xxy| =
∑
S⊂[4]

x∈S or y∈S
1≤|S|≤2

|HS|.
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Using this, we consider the sum of all of these sizes:

∑
{x,y}⊂[4]

|Xxy| =
∑

{x,y}⊂[4]

∑
S⊂[4]

x∈S or y∈S
1≤|S|≤2

|HS|.

If S = {i} ⊆ [4], then HS ⊆ Xix for x 6= i, and so each HS with |S| = 1 appears three

times in the summation.

If instead S = {i, j} ⊆ [4], then HS ⊂ Xij , which occurs once in the summation,

and each of HS ⊆ Xit or HS ⊆ Xjt for t 6∈ {i, j} occurs 2 times in the summation, once

for each of the 2 other values of t not equal to i or j. Such a set HS therefore appears

1 + 2(2) = 5 times in the summation.

With this information, we can rewrite the summation over all Xxy as follows:

∑
{x,y}⊂[4]

|Xxy| =
∑

{x,y}⊂[4]

∑
S⊂[4]

x∈S or y∈S
1≤|S|≤2

|HS|

=

∑
i∈[4]

3|H{i}|

+

 ∑
{i,j}⊂[4]

5|H{i,j}|


= 3α|HI |+ 5(1− α)|HI |.

This sum is maximized when α = 0, which implies that

∑
{x,y}⊂[4]

|Xxy| ≤ 5|HI |.
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There are 6 such hyperplane sets Xxy, so there must be some pair {x′, y′} ⊂ [4] for

which |Xx′y′| ≤ 5
6
|HI |, which means that the exposing set HE ∪ Xx′y′ contains at most

n− |HI |+ 5
6
|HI | = n− 1

6
|HI | hyperplanes. Call this exposing set X .

Recall that, by Lemma 3.7, there is also an exposing set consisting of all but one hy-

perplane of HI and about half of HE , with size at most |HI | + 1
2
(n − |HI | − 1). Call this

alternative exposing set X ′.

|X| and |X ′| are linear functions of |HI |, and |HI | takes integer values between 0 and n,

with each value easily realizable. |X| decreases and |X ′| increases as |HI | increases, and

therefore the largest value of min{|X|, |X ′|} is obtained when |X| = |X ′|. This occurs

when |HI | = 3
4
(n+ 1), for which the value of |X| is 7

8
n− 1

8
.

By definition, h3(P,H) ≤ min{|X|, |X ′|}, as it is the minimum size among the sizes

of all exposing sets for P and H , and thus h3(P,H) ≤ 7
8
n− 1

8
.

Then, from the definition of hdk(n), we have that

h34(n) = max
|H|=n,|P |=4

{h3(P,H)}

≤ max
|H|=n

7

8
· n−

1

8


=

7

8
· n−

1

8
.

We can generalize this approach for any k points in Rd, since the structure of the argu-

ment doesn’t depend on the dimension. We begin with the following lemma.
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Lemma 3.9. Let P = {pi}ki=1 be any set of points in Rd. Let Pi be the set of rays, an-

chored at {pj}j 6=i, each along the line between pi and pj , pointing away from pi. Then any

hyperplane intersecting conv(P ), but not P, intersects rays from at most k − 2 of the Pi.

Proof. Fix a vertex pi. If pj is on the same side of π as pj and no closer to π than pi, then rij

does not intersect π. If pj is on the other side of π from pi, then rij still does not intersect

π because it points away from pi and thus away from π.

Therefore, if pa and pb are the closest elements of P to π on each side, then π misses all

rays in both Pa and Pb. This proves that there are always at least two ray sets that π misses,

and that rays from at most k − 2 sets are hit.
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Theorem 3.10. hdk(n) ≤
k2 − k + 2

k2 − k + 4
· n−O(1).

Proof. Fix k ∈ N. Let P = {pi}ki=1 be any set of k points in Rd. Let H be any set of n

hyperplanes in Rd not containing any of the pi. Let H = HI ∪HE , where HI is the set of

“interior” hyperplanes of H (passing between two points of P ) and HE is the rest of H .

For each {i, j} ⊆ [k], let rij be the ray anchored at pj and pointing away from pi along

the line between pi and pj .

For each i ∈ [k], let Pi := {rij : j ∈ [k], j 6= i}. So, Pi is the set of these rays pointing

away from pi.

If S ⊆ [k], let HS ⊆ HI be the subset of interior hyperplanes that hit some ray in Pi

for each i ∈ S, and hit no rays in Pj for each j 6∈ S. Note that for distinct S, S ′ ⊆ [k],

HS ∩HS′ = ∅. Also note that HS = ∅ for |S| > k − 2, by Lemma 3.9.

For each s ∈ [k], let 0 ≤ αs ≤ 1 be the fraction of HI made up of hyperplanes in some

HS with |S| = s, i.e. ∑
S⊆[k]
|S|=s

|HS| = αs|HI |

and note that
∑k−2

s=1 αs = 1.

Next, for any pair of indices {x, y} ⊂ [k], define the set of hyperplanes

Xxy = Xyx =
⋃
S⊆[k]

x∈S or y∈S
|S|≤k−2

HS.
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This set is such that HE ∪ Xxy is an exposing set, because none of the hyperplanes in

HI that remain after removing all of HE and Xxy intersect any rays in Px or in Py. The

exposure of pi with i 6= x is witnessed by rxi ∈ Px, and the exposure of px is witnessed by

ryx ∈ Py.

Now, consider the size of Xxy for fixed {x, y} ⊂ [k]. Because the HS are all disjoint,

this size can be rewritten as the sum of their sizes:

|Xxy| =
∑
S⊂[k]

x∈S or y∈S
|S|≤k−2

|HS| =
k−2∑
s=1

∑
S⊂[k]

x∈S or y∈S
|S|=s

|HS|.

Next, consider the sum of all of these sizes,

∑
{x,y}⊂[k]

|Xxy|. (3.1)

Suppose S = {i} ⊂ [k]. Then HS ⊆ Xix for any x ∈ [k] with x 6= i, and there are k − 1

distinct choices of x, so each HS with |S| = 1 appears k − 1 times in the summation in

Equation 3.1.

If S = {i, j} ⊂ [k] instead, then HS ⊂ Xij , which occurs once in the summation;

HS ⊂ Xit and HS ⊂ Xjt for t 6∈ S, each of which occurs k − 2 times (once for each t

different from i and j). Such a set HS therefore appears 1 + 2(k− 2) = 2k− 3 times in the

summation.

In general, if S = {i1, . . . , is} ⊂ [k] for 1 ≤ s ≤ k − 2, then HS ⊂ Xi`ir for

1 ≤ ` < r ≤ s which occurs
(
s
2

)
times in the summation (once for each pair of indices in

S); HS ⊂ Xi`t for 1 ≤ ` ≤ s and t 6∈ S, which occurs s(k − s) times in the summation

(counting all `, t pairs). Thus, such an HS occurs
(
s
2

)
+ s(k − s) times in the summation.
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With this information, since all the HS are disjoint and appear at most once per Xxy,

we can rewrite the summation over all Xxy as follows:

∑
{x,y}⊂[k]

|Xxy| =
∑

{x,y}⊂[k]

k−2∑
s=1

∑
S⊂[k]

x∈S or y∈S
|S|=s

|HS|

=

k−2∑
s=1

∑
S⊆[k]
|S|=s

((
s

2

)
+ s(k − s)

)
|HS|



=

k−2∑
s=1

((
s

2

)
+ s(k − s)

) ∑
S⊆[k]
|S|=s

|HS|


=

(
k−2∑
s=1

((
s

2

)
+ s(k − s)

)
αs|HI |

)

=

(
k−2∑
s=1

((
s

2

)
+ s(k − s)

)
αs

)
|HI |.

We would like an upper bound that doesn’t depend on the values of the αs, and since H

could be any arrangement of hyperplanes in general position whatsoever, we look for the

largest value the above sum could take, ranging over possible values of the αs. The sum is

thus maximized when
(∑k−2

s=1(
(
s
2

)
+ s(k − s))αs

)
is maximized. Each αs is nonnegative,

and
∑

s αs = 1, so this function is largest when all the αs are zero except for the one whose

coefficient is largest.

The coefficient of αs in the sum is f(s) =
(
s
2

)
+ s(k − s) = ks − s

2
− s2

2
, for which

f ′(s) = k− 1
2
− s. For 1 ≤ s ≤ k− 2, this means f(s) is largest for s = k− 2. Therefore,

the sum is maximized when αk−2 = 1 and αi = 0 for i 6= k − 2.
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In concrete terms, this corresponds to an arrangement for which all interior hyperplanes

intersect rays from k − 2 different sets of witness rays Pi.

This yields the inequality

∑
{x,y}⊂[k]

|Xxy| ≤
((

k − 2

2

)
+ (k − 2)(k − (k − 2))

)
|HI | ≤

(
k2 − k − 2

2

)
|HI |.

There are
(
k
2

)
such sets Xxy, so there must be some pair {x′, y′} ⊂ [k] for which |Xx′y′ | ≤

k2 − k − 2

2
(
k
2

) |HI |. So, the exposing setHE∪Xx′y′ contains at most n−|HI |+
k2 − k − 2

2
(
k
2

) |HI | =

n−
1(
k
2

)|HI | hyperplanes. Call this exposing set X .

Recall that, due to Lemma 3.7, there is also an exposing set consisting of all but one

hyperplane of HI and about half of HE , with size at most |HI |+ 1
2
(n− |HI | − 1). Call this

exposing set X ′.

We may think of |X| and |X ′| as linear functions of |HI |, and |HI | takes integer values

between 0 and n, each of which is easily realizable.

|X| decreases and |X ′| increases as |HI | increases, and therefore the largest value

of min{|X|, |X ′|} is obtained when |X| = |X ′|. For fixed k, this occurs when |HI | =

k(k − 1)(n+ 1)

k2 − k + 4
, for which the value of |X| is

k2 − k + 2

k2 − k + 4
n−

2

k2 − k + 4
.

By definition, hd(P,H) ≤ min{|X|, |X ′|}, as it is just the minimum of the sizes of all

exposing sets for P and H , and thus hd(P,H) ≤
k2 − k + 2

k2 − k + 4
n−

2

k2 − k + 4
.
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But then, working from the definition of hdk(n), we have that

hdk(n) = max
|P |=k,|H|=n

{hd(P,H)}

≤ max
|H|=n


k2 − k + 2

k2 − k + 4
· n−

2

k2 − k + 4


=
k2 − k + 2

k2 − k + 4
· n−

2

k2 − k + 4
.

The general upper and lower bounds that we found for hdk(n) can both be expressed as

fractions of n that tend to 1 as k tends to infinity. The lower bound can be expressed as

k

k + 1
n−O(1) = n−

1

k + 1
n−O(1) =

(
1−O

(
1

k

))
n−O(1),

and the upper bound can be expressed as

k2 − k + 2

k2 − k + 4
n−O(1) = n−

2

k2 − k + 4
n−O(1) =

(
1−O

(
1

k2

))
n−O(1).

We note, however, that the factor in the upper bound tends to 1 much more quickly. It

would be interesting to resolve this difference.

3.4 Point Exposing Algorithms and Related Problems

There are a number of problems whose settings are very similar to the problem of

exposing points. The first is a notion of data depth in statistics called the “arrangement

depth” [10], or “hyperplane depth” [1], of a point p with respect to a set of hyperplanes H ,

defined as the minimum number of hyperplanes in H crossed by a ray anchored at p.
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The definition of the d-dimensional hyperplane depth hdepth(p,H) initially suggests

that the depth is the same as hd({p}, H), but the depth takes objects to intersect at infinity,

so that a point between two lines is “deeper” if those lines are parallel. This means that

h({p}, H) ≤ hdepth(p,H), and in fact the two values are distinct in many cases with

parallel lines. The two values are the same in the cases considered by [10], however,

because those authors take general position of hyperplanes to forbid parallel hyperplanes.

hdepth(p,H) is the geometric dual of the Regression Depth [11], a distribution-free

measure of the fit quality of a linear regression. The dual line D(p) is a regression fit to the

set of data points D[H]. A ray w anchored at p corresponds in the dual to a transformation,

analogous to a homotopy, between the dual of p and some vertical line, where D(p) is one

boundary of the bowtie D[w] and the vertical line is the other boundary. If w witnesses no

lines, then the data points are all outside of the bowtie, and consequently to points that the

transformation does not have to “pass by” on the way from the regression fit D(p) to the

non-fit vertical line.

If p is between two parallel lines `, `′ ∈ H , then the duals of these lines are data points

with the same x-coordinate with the regression D(p) passing between them. There is no

vertical line attainable by this homotopy-like transformation from D(p) that does not pass

through one or both of the data pointsD(`) orD(`′), and yet a ray anchored at p and parallel

to ` does not intersect ` or `′. Hence the assumption that parallel objects intersect at infinity.

Because we are not tied to the dual relationship with statistics, we are not interested

in, and do not make, this assumption. This assumption, along with the concern with the

statistical setting, is likely the primary reason that our extremal problems have not been

explored by those authors or others in their field, despite being a meaningful generalization

of the setting; the simultaneous interdependent non-fit status of a set of multiple distinct
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linear regressions with respect to a common set of data does have particularly obvious

applications.

Another problem, called the Densest Hemisphere problem [7], asks for a hemisphere

of a d-dimensional sphere which contains the largest number of some finite set of points

on the sphere. While on its face less directly related to exposing points, it turns out that

solving the Densest Hemisphere problem yields the value of hd({p}, H), and conversely

any Densest hemisphere instance can be solved by computing some hd({p}, H).

Formally, we use the following version of the problem, which is more conveniently

described in terms of vectors:

Definition 3.11 (Densest Hemisphere Problem [7]). Let K be a set of points in Rd. Find

x ∈ Rd with |x| > 0 so that |{P ∈ K : x · P ≥ 0}| is maximized.

Theorem 3.12. hd({p}, H) may be computed by solving a particular instance of the Dens-

est Closed Hemisphere problem. Conversely, any instance of Densest Closed Hemisphere

may be solved by finding a witness set witnessing the value of hd({p}, H) where p is the

origin and H is a particular set of hyperplanes in Rd.

Proof. Let p ∈ Rd and let H be a set of n hyperplanes in Rd, for which we would like to

compute hd({p}, H).

First, without loss of generality we may assume that p is the origin, and otherwise

translate p to the origin and translate all hyperplanes in H by the same vector. For π ∈ H ,

orthogonally project the origin onto π and reflect this projection about the origin. Let qπ be

the point obtained by this process. Then let K = {qπ : π ∈ H}.
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Note that a point qπ ∈ K, viewed as a vector, is simply a negative multiple of the

normal vector of π.

The solution to the Densest Hemisphere Problem with input K is a vector x such that

|{qπ ∈ K : x · qπ ≥ 0}| is maximized, and thus |{qπ ∈ K : x · qπ < 0}| = n− |{qπ ∈ K :

x · qπ ≥ 0}| is minimized. But, by construction, x · qπ < 0 if and only if x points toward

the hyperplane π, and thus any ray in the direction of x, anchored at the origin, intersects a

minimum number of hyperplanes in H .

Therefore, x is a witness to the fact that hd({p}, H) = n− |{qπ ∈ K : x · qπ ≥ 0}|.

On the other hand, supposeK ′ is the set of input points to an instance of Densest Closed

Hemisphere. Then for a point q, if πq is the hyperplane containing q and with normal vector

q, let H ′ = {πq : −q ∈ K ′}. Intuitively, H ′ is a set of hyperplanes tangent to the sphere

containing the antipodes of the input points.

Let w be a ray witnessing thatX ⊆ H ′ is a smallest exposing set for the origin, and−w

its opposite ray also anchored at the origin. Then any point x on −w is such that x · q < 0

for all q ∈ X , and moreover |X| = |{q ∈ K ′ : x · q < 0}| is of minimum size for such a

set. This means that, for the same x, |{q ∈ K ′ : x · q ≥ 0}| is maximized, and thus x is a

solution to the original Densest Hemisphere Problem with input K ′.

A major contribution of [7] is that the Densest Hemisphere problem is NP-complete, if

the dimension is not fixed in advance. This immediately leads to the following corollaries.
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Corollary 3.13. Finding an exposing set that witnesses the value of hd({p}, H) is NP-

complete if d is not fixed.

Corollary 3.14. Finding an exposing set witnessing the value of hd(P,H) for any P is also

NP-complete if d is not fixed.
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CHAPTER 4: CONCLUSION

Starting in chapter 1, we have made considerable progress toward the classification of

ray-barrier graphs: they are tripartite, perfect graphs with a strong neighborhood rigidity

property that implies that few bipartite graphs are barrier graphs.

In proving the neighborhood rigidity of barrier graphs, we provided a result that is an

interesting geometric result in its own right: that a set of rays can be stabbed by another

ray in polynomially many ways, as opposed to the naive expectation of exponentially many

ways. We also provided realizations for several natural classes of bipartite and non-bipartite

graphs.

A number of open questions about barrier graphs remain. The primary, overarching

question is whether there is a completely graph-theoretic classification of them. In this

direction, we would like an algorithm that could compute a ray sensor network that corre-

sponds to a given graph if that graph is a barrier graph, and otherwise reports failure.

In Section 1.5 we showed that finding sensor networks realizing bipartite graphs of

resilience (minimum vertex cover size) 2 and 3 is straightforward; thus, all bipartite graphs

of resilience at most 3 are barrier graphs. On the other hand, the neighborhood rigidity

property indirectly implies that bipartite graphs with resilience larger than 16 can never be

barrier graphs. We asked for the minimum resilience r? such that there exists a bipartite

graph of resilience r? that is not realizable as a barrier graph; we have shown that 4 ≤ r? ≤

16.
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In chapter 2 we introduced two extremal problems regarding Exposing and Jointly Ex-

posing points in Euclidean space protected by networks of linearly shaped sensors: lines,

rays, and segments in two dimensions, and hyperplanes in higher dimensions.

The first extremal problem seeks the value of hdk(n), which is the number of d-dimensional

hyperplanes whose removal from a set of n is sometimes necessary and always sufficient

to expose a set of k points. We provided a general lower bound for the value of hdk(n), with

a way to construct an n-sensor network in d dimensions protecting k points that has a large

minimum exposing set of about
(
1−O

(
1
k

))
n sensors.

We provided matching upper bounds for 1 ≤ k ≤ 4 in the two dimensional case, with

the assumption for k = 4 that the points are in convex position. Our more general upper

bound in d dimensions, which does not match the lower bound, says that an exposing set

of
(
1−O

(
1
k2

))
n sensors always exists. This result is the strongest we have, even in two

dimensions. Future work should aim to tighten these bounds.

Our second extremal problem asks about the joint exposure of points for rays in the

plane, rather than lines (hyperplanes in 2 dimensions); the problem seeks the value of

Rk(n), the number of rays in the plane whose removal from a set of n is sometimes neces-

sary and always sufficient to jointly expose a set of k points. We determined the asymptotic

value of R2(n) to be 3
4
n using an upper and lower bound that meet.

In the same way that we generalized the first extremal problem to higher dimensions, it

would be interesting to generalize joint exposure to higher dimensions, but for essentially

the same reasons as in two dimensions, joint exposure is not interesting for hyperplane

sensors, as placing all sensors between any pair of input points forces a single attacker to

pass through all of them.
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The first step in generalizing is then to choose a sensor geometry, and there are several

natural choices. One choice is to use half-planes, which is in a sense what a ray is in two

dimensions; take a (d− 1)-dimensional flat and cut it in half by a (d− 2)-dimensional flat.

Another choice is to use a sensor that is the intersection of d such half-spaces at a common

point. There are a number of other choices between the two of these that could also raise

interesting questions.
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