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ABSTRACT 

 The reemergence of deep learning in recent years has led to its successful 

application in a wide variety of fields. As a subfield of machine learning, deep learning 

offers an array of powerful algorithms for data-driven applications. Orthopaedics stands 

to benefit from the potential of deep learning for advancements in the field. This thesis 

investigated applications of deep learning for the field of orthopaedics through the 

development of three distinct projects. 

First, algorithms were developed for the automatic segmentation of the structures 

in the knee from MRI. The resulting algorithms can be used to accurately segment full 

MRI scans in a matter of seconds. Reconstructed structures from predicted segmentation 

maps yielded on average submillimeter geometric errors when compared to geometries 

from ground truth segmentation maps on a test set. The resulting frameworks can further 

be applied to develop algorithms for automatic segmentation of other anatomies and 

modalities in the future.  

Next, neural networks (NNs) were developed and evaluated for the prediction of 

muscle and joint reaction forces of patients performing activities of daily living (ADLs) 

in a gait lab environment. The performance of these models demonstrates the potential of 

NNs to supplement traditional gait lab data collection and has implications for the 
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development of new gait lab workflows with less hardware and time requirements. 

Additionally, the models performed activity classification using standard gait lab data 

with near-perfect accuracy. 

Lastly, a deep learning-based computer vision system was developed for the 

detection and 6-degree of freedom (6-DoF) pose estimation of two surgical tracking tools 

routinely used in total knee replacement (TKR). The resulting model demonstrated 

competitive object detection capabilities and translation error as little as a few 

centimeters for the pose estimation task. A preliminary evaluation of the system shows 

promise for its applications in skill assessment and operations research. 

The development of these three projects represents a significant step towards the 

adoption of deep learning methodologies by the field of orthopaedics and shows potential 

for future additional applications. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Introduction 

“Remember, there will not be an ‘AI industry’. Instead, machine learning and AI 

will find their way into every problem in every industry.” 

Francois Chollet, Google 

 

In 2012, the introduction of AlexNet (Krizhevsky et al., 2012) sparked a renewed 

interest in deep learning by significantly outperforming state-of-the-art results on the 

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) (Deng et al., 2009) using 

a novel convolutional neural network (CNN) trained on multiple graphics processing 

units (GPUs). Since then, deep learning has made massive strides in computer vision (He 

et al., 2016a), natural language processing (Gehring et al., 2017; Kalchbrenner et al., 

2016), and predictive modeling (Shi et al., 2015). This progress comes as a result of 

novel algorithms, new and powerful hardware, availability of data, and open-source 

frameworks that allow for efficient experimentation and implementation.  

The success of deep learning has many implications for the field of orthopaedics 

in the context of solving complex computer vision problems and using predictive 

modeling to increase efficiency of common workflows. The work presented in this thesis 
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explores three specific applications of deep learning in orthopaedics: automatic 

segmentation of medical imaging, predictive modeling of patient mechanics, and surgical 

tool tracking. Application of deep learning algorithms to automatic segmentation can 

result in faster medical imaging analysis and address the time-intensiveness associated 

with manual segmentation. Predictive modeling of patient mechanics can circumvent 

hardware and expertise requirements, as well as time-intensiveness of the standard gait 

lab workflow. Additionally, tracking of surgical tools has implications for robotic 

assisted surgery, augmented reality, and assessment of surgical skill and workflow as part 

of a broader goal of obtaining metrics around surgical operating room (OR) activity. For 

each of these applications, deep learning systems are developed and their performance is 

evaluated.  

 

1.2 Objectives 

The objectives of this thesis are to: 

1. Develop CNNs for automatic segmentation of anatomical structures of the knee 

from MRI for applications in biomechanics research. 

2. Develop NNs for predictive modeling of muscle and joint reaction forces based 

on patient kinematics, ground reaction forces, and anthropometrics. 

3. Develop a deep learning-based computer vision system for detection and 6-Dof 

pose estimation of surgical tools in real-time. 

4. Contribute to the general goal of accelerating the application of deep learning 

techniques into the field of orthopaedics. 
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1.3 Thesis Overview 

Chapter 2 provides a brief technical review of NNs and relevant concepts. 

Chapter 3 presents CNNs for automatic segmentation of medical imaging, in 

which CNNs were developed with semi-supervised learning methods and 

evaluated for the automatic segmentation of the structures of the knee from MRI. 

Chapter 4 presents predictive modeling of patient mechanics, in which deep 

learning algorithms were developed to predict patient muscle and joint reaction 

forces from standard gait lab data. 

Chapter 5 presents the development and evaluation of a computer vision system 

that leverages deep learning and traditional computer vision concepts for the 

tracking of surgical tools. 

Chapter 6 briefly reviews each project along with significance. 
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CHAPTER 2. A BRIEF REVIEW OF NEURAL NETWORKS 

 

2.1 The Structure of Neural Networks 

 A NN is a hierarchy of functions that can learn from data. In the field of machine 

learning, there are four main types of learning: unsupervised, supervised, semi-

supervised, and reinforcement learning. The current work focuses on supervised and 

semi-supervised learning.  

Supervised learning represents the situation in which there exists a set of data 

characterized by 𝑁 inputs 𝑋 ∈ ℝ𝐴×𝑁 and outputs 𝑌 ∈ ℝ𝐵×𝑁. In these matrices, 𝑥(𝑖) ∈ ℝ𝐴  

and 𝑦(𝑖) ∈ ℝ𝐵 are the 𝑖𝑡ℎ columns of 𝑋 and 𝑌, and represent the inputs and outputs of a 

single instance in the data set. The objective of supervised learning is to develop a 

relationship that maps 𝑋 to 𝑌 so that, given a new input 𝑥 ∈ ℝ𝐴 this mapping can be used 

to infer the new 𝑦 ∈ ℝ𝐵. Sometimes this problem can be solved with a model as simple 

as a linear regression, where the output 𝑌 can be described as a linear function of 𝑋:  

 

𝑌 = 𝑊𝑇𝑋 + 𝑏     (2.1) 

 

Where 𝑊 ∈ ℝ𝐴×𝐵 and 𝑏 ∈ ℝ𝐵. Sometimes the data can’t be described by a linear 

mapping and complex, non-linear functions are necessary. NNs offer a solution here. 
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NNs take as input some data 𝑋 ∈ ℝ𝐴×𝑁 and map it to an output using a hierarchy of both 

linear and non-linear functions. These functions are developed with learnable parameters. 

For instance, consider, again, a linear regression. In a linear regression the goal is to learn 

ideal values for 𝑊 and 𝑏 by using the given data. In this scenario 𝑊 and 𝑏  are learnable 

parameters.  

Fully-connected NNs represent the most fundamental type of NN and are 

composed of stacked layers that couple matrix transformations with non-linear activation 

functions. Given a vector 𝑋 ∈ ℝ𝐴, the application of a single network layer to the input 

vector can be defined by: 

 

   𝑍 = 𝑔(𝑊𝑇𝑋 + 𝑏)      (2.2) 

 

This structure is similar to the linear regression with one addition. The function 

g(.) is a non-linear activation function that is applied to the layer. Non-linear activation 

functions are important for giving the model the capacity to represent complex functions. 

Traditionally, the sigmoid function 𝑔(𝑥) =
1

1+𝑒−𝑥 was the activation function of choice 

but many different functions are now used in practice (He et al., 2015). The matrix 

transformation 𝑊𝑇𝑋 can be interpreted as a set of 𝐵 nodes in a given network layer (Fig. 

2.1). A node in a layer consists of a linear combination of each element of the input 

vector 𝑋, combined with the node’s specific bias unit (before applying the non-linear 

activation). As a result, the layer yields a vector 𝑍 ∈ ℝ𝐵,  that can be fed to another 

hidden layer. Layers are stacked together in a recursive fashion to create complex 
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architectures and in each layer, 𝑊 and 𝑏 are parameters that must be tuned to transform 

the incoming vector in meaningful ways. In the final layer of a fully-connected network, 

the layer’s input is mapped to an output whose dimensions correspond to the prediction 

task. In the simplest case, regression for predicting 𝑌 ∈ ℝ, the final layer will have 

dimensionality of 1 and may not be accompanied by the non-linear activation function.  

The entire structure of a basic fully-connected NN can be described by recursively 

applying these layers. A network with 2 sigmoid-activated hidden layers and an output 

layer may look like this:  

 

   𝑍 = 𝑊3
𝑇𝑔(𝑊2

𝑇𝑔(𝑊1
𝑇𝑋 + 𝑏1) + 𝑏2) + 𝑏3    (2.3) 

 

As can be seen, the original input vector 𝑋 is fed to an initial hidden layer, which is fed to 

a second hidden layer. After the second hidden layer has applied its activation function, 

the resulting vector is applied to a final output layer (without a non-linear activation) to 

complete the mapping from 𝑋 to 𝑌. This represents the structure of a fully-connected NN, 

which is the most basic class of NN. Realistically, there are many other forms of NNs. 

For instance, CNNs use a different set of functions that are more conducive for image 

data and recurrent neural networks (RNNs) are architectures that are conducive for 

sequence data. 
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Figure 2.1. A pictorial representation of a fully-connected NN with two hidden layers and 

a 1D output. Each node in a layer aggregates context from all nodes from the previous 

layer. 

 

 

 

2.2 Training Neural Networks 

As a proxy for NNs, it helps to consider the linear regression. In simple linear 

regression, the goal is to learn the ideal parameters 𝑊 ∈ ℝ𝐴×𝐵 and 𝑏 ∈ ℝ𝐵. This goal can 

be represented as an optimization problem. In order for 𝑊 and 𝑏 to be optimal, the 

difference between 𝑊𝑇𝑋 + 𝑏 and 𝑌 should be minimal over the whole training set. This 

can take the form of the sum of the errors over all examples in the training set.  

 

𝐿(𝑊, 𝑏) = argmin
𝑊,𝑏

∑ (𝑊𝑇𝑥(𝑖) + 𝑏 − 𝑦(𝑖))
2

 𝑁
𝑖=1     (2.4) 

 

The objective function that needs to be minimized is called the loss function, because it 

measures the error between what the model’s predictions are and what the actual ground 

truth is. The optimal parameters for a linear regression can be found with a closed-form 

solution using the classic least-squares approach, but can also be found by using gradient-
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based optimization. To do this, the derivatives of the loss function are computed with 

respect to each parameter and then the current parameter values are updated in the 

opposite direction of the gradient. The parameters 𝑊 and 𝑏 are consolidated into a single 

variable to make things easier to manage. Let 𝑊′ ∈ ℝ(𝐴+1)×𝐵 denote this parameter. In 

order for this matrix to be compatible with the matrix 𝑋, a new variable 𝑋′ ∈ ℝ(𝐴+1)×𝑁 is 

defined where the bottom row is a vector of ones. The new optimization problem is as 

follows: 

 

 𝐿(𝑊′) = argmin
𝑊′

∑ (𝑊′𝑇𝑥′(𝑖) − 𝑦(𝑖))
2

 𝑁
𝑖=1    (2.5) 

 

𝑊′ is iteratively updated by calculating the current value of the gradient and then using 

this value to update the parameter based on: 

 

𝑊′𝑡+1=𝑊′𝑡 − 𝛼
𝜕𝐿(𝑊′)

𝜕𝑊′
     (2.6) 

 

Where 𝛼 is a hyperparameter called the step size, or learning rate, that controls how much 

the parameter can be altered at once. This approach is called gradient descent and is a 

fundamental concept in optimization. The gradient is computed using calculus: 

 

𝜕𝐿(𝑊′)

𝜕𝑊′
= 2𝑥′(1)(𝑊′𝑇𝑥′(1) − 𝑦(1)) + ⋯ + 2𝑥′(𝑁)(𝑊′𝑇𝑥′(𝑁) − 𝑦(𝑁))   (2.7) 
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𝜕𝐿(𝑊′)

𝜕𝑊′
= 2 ∑ 𝑥′(𝑖)(𝑊′𝑇𝑥′(𝑖) − 𝑦(𝑖))𝑁

𝑖=1     (2.8) 

 

The parameters for a linear regression are updated until the loss function ceases to 

improve. The resulting value of 𝑊′ is taken as the trained model. 

The training of NNs uses the same approach. The gradient of the loss function is 

used to change all trainable parameters of the model by a small amount at each training 

step. Applying this approach to NNs is more complicated because there are many 

parameters that need to be updated. Many times, NNs have millions of parameters. At 

each training step, the gradient of the loss function must be computed with respect to 

every trainable parameter before using each parameter’s corresponding gradient to update 

its value. For the 3-layered NN from Equation 2.3, it is necessary to compute 

𝜕𝐿(𝜃)

𝜕𝑊1
, 

𝜕𝐿(𝜃)

𝜕𝑊2
, 

𝜕𝐿(𝜃)

𝜕𝑊3
, 

𝜕𝐿(𝜃)

𝜕𝑏1
, 

𝜕𝐿(𝜃)

𝜕𝑏2
, and  

𝜕𝐿(𝜃)

𝜕𝑏3
 at every training iteration. These gradients can be 

computed using the chain rule of calculus. To demonstrate this, the 3-layered NN is 

represented by the computational graph in Figure 2.2, where operations are nodes in the 

graph; and inputs and outputs to these operations are edges: 

 

 

Figure 2.2. A computational graph representation of a 3-layered NN. 
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The gradient for 
𝜕𝐿(𝜃)

𝜕𝑏2
 is computed by decomposing this value into a product of gradients 

around local nodes: 

 

𝜕𝐿(𝜃)

𝜕𝑏2
 = 

𝜕𝐿(𝜃)

𝜕ℎ

𝜕ℎ

𝜕𝑔

𝜕𝑔

𝜕𝑓

𝜕𝑓

𝜕𝑒

𝜕𝑒

𝜕𝑏2
     (2.9) 

 

Once the gradients are determined for each parameter, the parameters are updated similar 

to Equation 2.6. The process of computing the gradients for all parameters in the network 

is known as backpropagation (Rumelhart et al., 1986).  

In summary, it helps to conceptualize the training of NNs by comparing to the 

numerical training of linear regressions. Training instances are fed through the model 

(called the forward pass) and the outputs are compared to the ground truth using a cost 

function. The parameters of the model are then updated based on the gradient of the loss 

function with respect to each parameter. A single forward pass can be performed using 

the entire training set at once, a subset of the training set (called a “batch”), or even a 

single training instance. Much of the time, the batch size is determined based on 

computational constraints, because each instance in a batch is processed in parallel. 

 

2.3 Convolutional Neural Networks 

The NN presented in Equation 2.3 is called a fully-connected NN because every 

node of a layer is connected to every input to that layer via some weighting. For problems 

dealing with image data, a fully-connected structure may be extremely computationally 

expensive because of the number of pixels in images. Therefore, convolutional layers are 
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used instead (Fig. 2.3) (LeCun et al., 1998). Convolutional layers replace the matrix 

transformation of a fully-connected layer with convolutions. In the case of a 2D image 

with depth of 1 (i.e. greyscale), a convolutional layer is implemented by sliding a small 

matrix (known as a convolutional filter) over the input image and taking the sum of 

elementwise products between the filter’s and image’s elements. The output of a 

convolutional filter 𝐴 with dimensions [𝑚, 𝑛] applied at location (𝑥, 𝑦) on an image 𝐼 is 

defined by: 

 

𝐼(𝑥, 𝑦) ∗ 𝐴 = ∑ ∑ 𝐴(𝑖, 𝑗) × 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)𝑛−1
𝑗=0

𝑚−1
𝑖=0      (2.8) 

 

A NN that is composed of convolutional layers (but may also contain fully-connected 

layers) is a CNN. In a CNN, the convolution can be followed by the addition of a bias 

term, the application of a non-linear activation function, output normalization techniques, 

as well as pooling operations, which aggregate context into a more compressed 

dimensionality. A CNN that does not make use of any fully-connected layers is called 

fully-convolutional. 

The work in chapers 3-5 of this thesis utilize CNNs. CNNs can be applied to data 

with any number of dimensions. For a 2D image, a 2D convolutional filter is applied over 

the height and width of the image. For a 3D image, a volumetric convolutional filter is 

applied the height, width, and depth of the volume. 1D convolutions can be applied to 1D 

data such as a time series.  
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Figure 2.3. A 2D convolutional filter applied to a patch on a 2D image with depth of 1.  

 

2.4 Recurrent Neural Networks 

Recurrent neural networks are NNs that are designed for time series data (Hochreiter 

& Schmidhuber, 1997). Time series data is unique because it may be of variable 

dimensions. In contrast, fully-connected NNs are designed to only handle data of constant 

dimensionality.  

At a time step 𝑡, an RNN cell stores compressed information from previous time 

steps 1: 𝑡 − 1 in a vector called the hidden state. The hidden state can be used to inform 

predictions at the current time step, and can be used in subsequent time steps. The hidden 

state at the current time step is a function of the input to the NN at time 𝑡 as well as the 

hidden state from the previous time step 𝑡 − 1. Suppose ℎ𝑡 ∈ ℝ𝑁 and 𝑋𝑡 ∈ ℝ𝑀 are the 

hidden state and input to the NN at time 𝑡. For a basic “vanilla” RNN cell, the hidden 

state is updated based on: 
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ℎ𝑡 = tanh (𝐴𝑇𝑋𝑡 + 𝐵𝑇ℎ𝑡−1 + 𝑐)      (2.9) 

 

Where 𝐴, 𝐵 and 𝑐 are parameters to be learned. These parameters are shared over all time 

steps. The hidden state can be passed to additional fully-connected layers to generate 

some output. RNNs are usually conceptualized as a computation graph “unrolled” 

through time with shared weights over each increment (Fig. 2.4).   

 

 

 

Figure 2.4. A representation of an RNN computation graph unrolled through time. 

Computations are made at each time step using the same parameters. 

 

 

2.5 Implementing Neural Networks 

The implementation of NNs is complicated because of backpropagation. A 

gradient value must be tabulated for every parameter in the NN during training and the 

manual computation of these gradients can become very tedious. Fortunately, current 

deep learning libraries (Abadi et al., 2016; Chollet, 2015; Paszke et al., 2017) compute 

these gradients automatically using a concept called auto-differentiation  (Kucukelbir et 
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al., 2017). As a result, training NNs is reduced to stacking together the layers that 

compose the architecture, defining a loss function and optimization scheme, and then 

feeding training batches to the computational graph. Computational capabilities of GPUs 

are leveraged in the case of heavy architectures. The advent of popular deep learning 

frameworks has allowed for convenient and scalable implementations of NNs.  
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CHAPTER 3. CONVOLUTIONAL NEURAL NETWORKS FOR AUTOMATIC 

SEGMENTATION OF THE KNEE FROM MAGNETIC RESONANCE IMAGING 

 

3.1 Segmentation of Medical Imaging 

Segmentation of medical imaging is an important task in orthopaedics workflows 

that rely on medical images to represent subject-specific geometries. Segmentation 

consists of annotating an image by assigning every pixel in the image with a semantic 

class. The image can be a three-dimensional volume such as a computed tomography 

(CT) scan. Segmentation of medical imaging is used to build computational models of 

anatomical structures. The resulting geometries are used in a variety of applications 

including statistical models to assess morphological variation through a population and 

finite element (FE) modeling to couple subject-specific kinematics and geometries. 

Reconstructed geometries are used to develop statistical models to describe 

variations throughout a population. Smoger et al. (2015) used principal component 

analysis to characterize relationships between kinematics of the knee and the shape of the 

bones and cartilage of the knee. Sintini et al. (2018) developed a statistical shape model 

of the proximal humerus to assess anatomical differences throughout a population. 

Burton et al. (2019) used principal component analysis to describe the variation of 

morphology as well as material property distributions of healthy scapulae. The use of 
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SSMs is important in the context of informing implant designs to best fit a population. 

The development of these statistical models relies on computational geometries rebuilt 

from segmented medical images. 

Segmented geometries are used to develop subject-specific FE models. Ali et al. 

(2016) developed and validated an FE model of the knee based on subject-specific 

geometries by segmenting the femur, patella, and tibia from CT scans; and the 

corresponding articular cartilages from magnetic resonance imaging (MRI).  

Hume et al. (2019) validated a muscle-driven FE model of the knee developed from 

segmented CT and MRI scans.  

Segmentation of medical imaging is also used for characterizing kinematics  by 

registering and tracking geometries in fluoroscopy images (Ivester et al., 2015). In this 

workflow, a patient performs an ADL, such as a lunge, in front of a biplane fluoroscopy. 

A sequence of frames is captured throughout the activity. The bones of the joint of 

interest are captured using CT and segmented to recreate the geometries of the joint. 

Then, the geometries are semi-automatically registered to each pair of frames to locate 

the bones in a 3-dimensional coordinate system. The transformations of the bones 

throughout the ADL are used to quantify kinematics (Myers et al., 2011a, 2011b, 2012).  

The applications of medical imaging segmentation extend beyond these examples, 

to quantitative anatomical studies (Yu et al., 2017) and pre-surgical planning. 

Segmentation of medical imaging is traditionally performed manually, which is time-

intensive and requires significant expertise. For instance, segmentation of the femoral 

cartilage from an MRI scan consisting of 160 sagittal slices can require multiple hours to 



  

17 

 

complete. Accordingly, methods for improving efficiency of medical imaging 

segmentation have been proposed. These methods range from semi-automatic 

(Vezhnevets & Konouchine, 2005; Zhu et al., 2014) to fully automatic (Atkins & 

Mackiewich, 2002).  

Recently, CNNs have yielded state-of-the-art results in computer vision tasks, and 

have been successfully applied to automatic segmentation of images (Noh et al., 2015; 

Badrinarayanan et al., 2017; Shelhamer et al., 2017). These approaches have further been 

applied to the medical imaging domain (Ronneberger et al., 2015; Christ et al., 2016; 

Çiçek et al., 2016; Kamnitsas et al., 2016). Most of these works were performed in the 

domain of supervised learning, in which CNNs were trained with fully annotated data. A 

drawback associated with supervised learning is the cost of obtaining ground truth data. 

This limitation is especially prevalent in the context of segmentation, where annotation of 

a single MRI scan may take hours; and in the medical imaging domain, where medical 

imaging data may be hard to access.  

Semi-supervised learning provides an alternative to supervised learning by 

leveraging both labeled and unlabeled data for training deep neural networks. As with 

other machine learning problems, the objective of semi-supervised learning is to develop 

a model using a set of training instances 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑙 , 𝑥𝑙+1, … , 𝑥𝑛}. What makes 

semi-supervised learning unique is that the set of labels 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑙} is only 

available for a portion of the training instances. In segmentation of medical imaging, 

semi-supervised learning algorithms may be useful in a situation in which a dataset 

consists of 𝑁 MRI scans, but segmentation maps are only available for the first 𝐿 scans, 
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where 𝐿 < 𝑁. Semi-supervised learning algorithms leverage the unlabeled instances to 

achieve improved generalization. One approach to semi-supervised learning exploits 

unlabeled data by updating a model’s parameters based on predictions made by a stronger 

model. This framework is referred to as the student-teacher approach (Laine & Aila, 

2017; Tarvainen & Valpola, 2017; Perone & Cohen-Adad, 2018). Another semi-

supervised framework, known as virtual adversarial training (VAT), applies an auxiliary 

loss function that evaluates the divergence between predictions based on an original 

instance and a virtual adversarial perturbed instance (Szegedy et al., 2014; Miyato et al., 

2018). This approach forces a model to be robust to small perturbations to input data and 

can be applied with unlabeled data. 

The objectives of this chapter are to develop convolutional neural networks for 

automatic segmentation of medical imaging using semi-supervised learning algorithms 

and to assess the performance gains of these methods compared to a fully-supervised 

baseline. The models are validated using an in-house dataset of MRI scans of the knee, as 

well as a publicly available unlabeled dataset (Nevitt et al., 2006). 

 

3.2 Deep Learning Concepts for Automatic Segmentation 

This section reviews CNNs for segmentation of the knee and two semi-supervised 

learning approaches, called mean teachers (MT) and virtual adversarial training (VAT). 

Semi-supervised learning is well-suited for segmentation applications given the difficulty 

of obtaining large volumes of labeled data.  

Automatic Segmentation of the Knee from MRI 
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Use of CNNs for automatic segmentation of the anatomical structures of the knee 

has been previously explored. CNNs make use of 2D convolutions (Noh et al., 2015; 

Badrinarayanan et al., 2017; Shelhamer et al., 2017) or 3D convolutions (Çiçek et al., 

2016; Milletari et al., 2016). 2D CNNs take as input single MRI slices (sometimes with 

multiple MRI weightings at once), whereas 3D CNNs are applied using 3D patches of an 

MRI volume. A third approach uses 2D slices from multiple views. This approach, 

known as 2.5D, leverages context in all three anatomical planes but may not be as 

computationally expensive as 3D CNNs. The ability to use inter-slice context for 

informing predictions improves performance for segmentation (Milletari et al., 2016).  

CNNs were trained for segmentation of the knee and evaluated on two different 

datasets by Raj et al. (2018). The proposed architecture exercised extensive use of skip 

connections (He et al., 2016a, 2016b; Huang et al., 2017) and deep supervision (Lee et 

al., 2015). The model was trained and evaluated on the SKI10 dataset  (Heimann et al., 

2010) as well as on Osteoarthritis Initiative (OAI) data (Nevitt et al., 2006). The CNNs 

trained on these datasets only classified cartilage and menisci in each scan. The SKI10 

dataset also includes annotations for femur and tibia but these annotations appear not to 

have been utilized in the study. Additionally, segmentation was applied after down 

sampling all scans to coarser voxel dimensions, which may reduce the accuracy of the 

output mask to below what is necessary for most orthopedic applications. 

Bone and corresponding cartilage were initially combined into one class for 

segmentation using 2D CNNs by Lee et al. (2018). This approach identified structures of 

both bone and cartilage, as well as a structure of only bone, with the difference between 
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these segmented structures representing predicted cartilage. Final predictions for an entire 

scan were taken from an ensemble of predictions from each anatomical plane. The 

models were trained and evaluated using the SKI10 dataset, which provides 60 training 

scans and 40 validation scans for segmentation of the femur, tibia, and femoral and tibial 

cartilage.  

A multiview approach was developed by Prasoon et al. (2013) by using a triplanar 

CNN for segmentation of tibial cartilage. Their CNN took as input voxels in all three 

anatomical planes to predict the class of the voxel that is intersected by each plane. 

Extracted features from each plane were vectorized and concatenated for a fully-

connected layer before final classification of the target voxel. This approach efficiently 

leveraged context from each anatomical plane while avoiding the computational expense 

associated with 3D CNNs.  

 

Mean Teachers 

The student-teacher approach is predicated on the intuition that model ensembles 

produce more accurate predictions than those by a single model. The goal of this 

approach is to train a model by jointly forcing predictions to be closer to provided ground 

truths (if available) and also closer to predictions made by the teacher model. As such, 

the student-teacher training framework can be described by two different aspects: 

conventional loss and consistency loss (Fig. 3.1). Conventional loss is the supervised loss 

applied to the labeled data regime, such as cross-entropy for classification or dice loss for 

segmentation. This loss can only be applied to labeled instances. Separately, the 
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consistency loss is a cost that is computed based on two different predictions of a training 

instance; one from the student model and one from the teacher model. A training instance 

is fed to the student model and to the teacher model separately under distinct applications 

of noise. The objective of the student-teacher approach is to train the weights of the 

weaker student based on how its predictions differ from the teacher’s predictions. In this 

way, the teacher model’s predictions can be thought of as “pseudo-ground truths”. The 

consistency loss is applied to both labeled and unlabeled training instances. Following 

Tarvainen & Valpola (2017), the consistency loss for an instance is defined as:  

 

𝐽𝐶,𝑖(𝜃) = ||𝑓(𝑥𝑖, 𝜃′, 𝜂′) − 𝑓(𝑥𝑖 , 𝜃, 𝜂)||
2
   (3.1) 

 

Where 𝑓(𝑥𝑖 , 𝜃′, 𝜂′) is the prediction resulting from applying the teacher model with 

parameters 𝜃′ to a training instance 𝑥𝑖 with applied noise 𝜂′, and 𝑓(𝑥𝑖, 𝜃, 𝜂) is the student 

model’s prediction for 𝑥𝑖 under different noise. The application of noise allows the model 

to learn a function that is smooth in the space around the input. It is assumed that the 

ground truth distribution is invariant to the noise applied. When using the student-teacher 

approach, two separate loss functions can be defined for a labeled instance 𝐿𝜄,𝑖(𝜃) and 

unlabelled instance 𝐿𝜇,𝑗(𝜃). 

 

𝐿𝜄,𝑖(𝜃) = 𝐿( 𝑓(𝑥𝑖, 𝜃, 𝜂), 𝑦𝑖 ) + 𝜆𝐽𝐶,𝑖(𝜃)     (3.2) 

 

𝐿𝜇,𝑗(𝜃) = 𝜆𝐽𝐶,𝑗(𝜃)      (3.3) 
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Where 𝑦𝑖 is the ground truth corresponding to labeled training instance 𝑥𝑖, 

𝐿(𝑓(𝑥𝑖, 𝜃, 𝜂), 𝑦𝑖 ) is some conventional supervised loss function computed between 

ground truth and student model’s prediction, and 𝜆 is a constant that controls the 

contribution of the consistency loss. 

The teacher model has been presented in different forms. Two different dropout 

instances (Sutskever et al., 2014) differentiate the student and teacher predictions in the 

approach of Laine & Aila (2017), where dropout is applied under training conditions. 

This same work (Laine & Aila, 2017) also proposes to store the predictions of the 

training instance, taken at different points during training, and average over these 

predictions to obtain the teacher’s prediction. Exponential moving averages of model 

weights during taken training are the teacher model proposed by Tarvainen & Valpola 

(2017), a framework called mean teachers (MT). These approaches are proposed in the 

context of image classification, in which the true class of an image is invariant to input 

noise.  

Separately, Perone & Cohen-Adad (2018) propose to use MT for automatic 

segmentation. In segmentation, the ground truth of a training instance is not invariant to 

geometric transformations (translation, rotation, shear, etc.). Therefore, in order to 

preserve the validity of the consistency loss, any augmentation in the form of a geometric 

transformation applied to a training instance that is fed to the student model must also be 

applied to the teacher model’s prediction. 

Virtual Adversarial Training 
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It was found by Szegedy et al. (2014) that neural networks are not robust to 

adversarial perturbations. Given an input image, in practice the adversarial example is the 

input perturbed by some noise vector of a constrained magnitude that maximizes the 

difference between that image’s ground truth and the CNN’s prediction, xi+radv, where 

radv is some noise applied to the input (Goodfellow et al., 2015): 

 

𝑥𝑖,𝑎𝑑𝑣 = 𝑥𝑖 + 𝑟𝑎𝑑𝑣      (3.4) 

 

𝑟𝑎𝑑𝑣 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑟(𝐶(𝑦𝑖, 𝑓(𝑥𝑖 + 𝑟, 𝜃)))  |  ||𝑟|| ≤ 𝜖    (3.5) 

 

Where 𝐶(𝑦𝑖, 𝑓(𝑥𝑖 + 𝑟, 𝜃)) is a cost function that penalizes the distance between ground 

truth and adversarial example prediction. The constant 𝜖 is some constraint on the 

magnitude of the noise vector. In order to address this problem Goodfellow et al. (2015) 

proposed to add a supplementary loss function that penalizes the difference between a 

training example’s ground truth and the prediction based on the corresponding 

adversarial example. This loss was extended by Miyato et al. (2016, 2018) to unlabeled 

examples by penalizing the difference between a CNN’s predictions from both the 

original training instance and the virtual adversarial perturbed training instance. This 

approach circumvents the need for ground truth and allows for application in semi-

supervised settings. Similar to the student-teacher approach, VAT employs a 

supplementary loss function in addition to the conventional loss function. However, the 

virtual adversarial loss originates from a different motivation. This loss function 
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effectively acts as a regularizer that forces a CNN’s predictions to be smooth around 

training instances, specifically in the virtual adversarial direction. The computation of the 

virtual adversarial loss is straightforward once the virtual adversarial example is obtained. 

However, the calculation of the virtual adversarial direction is complicated and 

necessitates estimation (Miyato et al., 2016). In this chapter, the VAT method is applied 

in tandem to MT for segmentation: 

 

𝐽𝑉𝐴𝑇,𝑖(𝜃) = ||(𝑓(𝑝𝑖, 𝜃) − 𝑓(𝑝𝑖 + 𝑟𝑣𝑎𝑑𝑣, 𝜃))||
2
    (3.6) 

 

Where the L2 norm is taken over all pixels of the input image. Similar to MT, the loss 

function for labeled and unlabeled training instances can be defined separately:  

 

𝐿𝜄,𝑖(𝜃) = 𝐿( 𝑓(𝑥𝑖, 𝜃), 𝑦𝑖 ) + 𝛼𝐽𝑉𝐴𝑇,𝑖(𝜃)      (3.7) 

 

𝐿𝜇,𝑗(𝜃) = 𝛼𝐽𝑉𝐴𝑇,𝑗(𝜃)       (3.8) 

 

Where 𝛼 is a constant that controls the contribution of the virtual adversarial loss.  
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Figure 3.1. An overview of the MT (left) and VAT (right) frameworks 

 

 

3.3 Semi-Supervised Learning for Automatic Segmentation of the Knee from 

MRI with Convolutional Neural Networks 

Methods 

Semi-supervised learning methods were applied to the problem of automatic 

segmentation of the knee from MRIs. Given an MRI, the trained CNNs classified each 

voxel of a scan into 1 of 7 classes. The models were trained and evaluated using a data 

set that consisted of both labeled and unlabeled training instances. The labeled training 

set comprised 29 subjects, which were previously used in the development of a statistical 

shape model of the knee (Smoger et al., 2015). This resulted in 3,864 labeled training 

images in the sagittal plane. An additional 2 subjects were withheld for validation and 5 

subjects were used for evaluation. For the unlabeled data, 25,875 MRI slices from 51 

scans were sampled from the OAI dataset (Nevitt et al., 2006). The data consisted of T2 
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and DESS MRIs with slice thicknesses of 0.7 or 1 mm and pixel dimensions of 0.23-0.46 

mm in the slice plane. 

2D CNNs were trained using different quantities of labeled data to explore the 

performance gains obtained from using semi-supervised learning algorithms. MT and 

VAT were applied separately to train CNNs with labeled cohorts of 500, 1,000, 2,000, 

and 3,864 slices. For each case, any excluded labeled instance was used in training as an 

unlabeled instance. All models were trained with an L2 regularization constant of 0.0001 

and were implemented using TensorFlow (Abadi et al., 2016). 

Each model was trained using the RMS-Prop optimization scheme. A 2D CNN 

architecture similar to U-Net was used (Fig. 3.2, Tab. 3.1) (Ronneberger et al., 2015). 

This architecture had an initial depth of 64 filters, and the number of filters was  

multiplied (divided) by 2 at each down sampling (up sampling). Additionally, two 

dropout layers were added to the network to be consistent with the dropout feature 

utilized in student-teacher approaches (Perone & Cohen-Adad, 2018; Tarvainen & 

Valpola, 2017). The dropout layers had a drop probability of 0.3. Skip connections were 

instantiated between equivalent scales of the encoder and decoder using concatenation of 

tensors, as opposed to residual connections. 

MRI slice pixel values were thresholded at 2.5 standard deviations above a slice’s 

mean value and then normalized to the range 0 to 255 and mean-centered. Random data 

augmentation was used during training in the form of contrast adjustment, shear, 

horizontal flipping, and pixel size resampling. The training cohort consisted of MRI 

slices with only a subset of pixel sizes. In order to make the models robust to a range of 
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pixel dimensions, the data augmentation pipeline uniformly sampled from the range 0.19-

0.45 mm, and then rescaled the input image, ground truth (if available), and teacher 

model prediction based on the ratio between the input image’s current pixel size and the 

desired sampled size to obtain an augmented pixel spacing of the MRI slice. The CNNs 

were trained using random image crops of 368 x 368 pixels (which usually represented 

around 80% of the slice original area) and batches with 2 supervised instances and 2 

unsupervised instances for semi-supervised training. 

 The conventional loss of choice was the weighted general dice loss similar to that 

presented by Sudre et al. (2017).  

 

𝐿( 𝑦′𝑖 , 𝑦𝑖 ) = −2
(∑ 𝑤𝑖,𝑐

𝐶
𝑐=1 ∑ (𝑦′𝑖 ,𝑐𝑛 ×𝑦𝑖 ,𝑐𝑛)𝑁

𝑛=1 )2

(∑ 𝑤𝑖,𝑐
𝐶
𝑐=1 ∑ (𝑦′𝑖 ,𝑐𝑛 +𝑦𝑖 ,𝑐𝑛)𝑁

𝑛=1 )2     (3.9) 

 

𝑤𝑖,𝑐 =
1

(∑ 𝑦′𝑖 ,𝑐𝑛 
𝑁
𝑛=1 )2

       (3.10) 

 

Where 𝐶 is the pixel class, 𝑁 sums over all pixels in training instance i, yi is the 

one-hot encoded ground truth of the segmentation map, and y’i is the softmax probability 

obtained by the student model. The weight wi,c increases loss for pixels with low 

frequency. It was found that the use of this weighting was important for segmentation 

given the infrequency of some classes. Without the class-wise weights, the model learned 

to ignore entire classes, even with aggressively small learning rates.  
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The mean-squared error over all pixels between the student model’s and the  

teacher model’s softmax probabilities were used for the MT consistency loss. Similar to 

Tarvainen & Valpola (2017), the value of  𝜆 was ramped up from 0 to 1 according to 𝜆 =

𝑒−5(1−𝑡/50000)2
 where t is the training step. The models were trained for 100,000 

iterations. 

2D CNNs were also trained using VAT similar to the methods of Miyato et al. 

(2016). L2 loss was implemented for the virtual adversarial loss instead of the original 

use of KL-Divergence. Models were trained for 100,000 iterations and a constant value 𝜖 

= 5. The value of 𝛼 from 0 to 1 was ramped up similar to the 𝜆 parameter in MT.  

These 2D CNNs were trained to predict a segmentation map given a single MRI 

slice in the sagittal plane. One limitation of this approach is that voxel (e.g. pixel in three-

dimensional space) classification predictions were obtained based on a single 2D image. 

This approach fails to leverage context in the transverse and coronal anatomical planes. A 

triplanar ensemble was developed to address this problem (Fig. 3.3) (Prasoon et al., 

2013). Three separate CNNs with the same architecture as Table 2.1 were trained with 

MT using the full amount of data to segment scans in the sagittal, transverse, and coronal 

planes. The entire image of a slice was kept as input for each of the triplanar models 

instead of taking random crops. 

3D CNNs were also trained for the automatic segmentation of the knee from MRI 

(Figure 3.4). Given a volumetric input patch of 𝑥(𝑖) ∈ ℝℎ×𝑤×𝑑×1, the 3D CNNs were 

trained to predict corresponding segmentation maps of 𝑦(𝑖) ∈ ℝℎ×𝑤×𝑑×7. The 

architecture used for the 2D CNNs (Table 3.1) was extended to the 3D scenario by 
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replacing 2D convolutional filters with 3D filters. Also, the concatenation skip 

connections used for the 2D CNNs were replaced with residual skip connections for 

computational efficiency. A fully-supervised 3D CNN was trained on the labeled data set 

and an additional 3D CNN was trained with the MT framework. Each 3D CNN was 

trained with an initial training stage where training instances were sampled as a sequence 

of 4 slices and then down sampled in the slice plane dimensions to result in tensors 𝑥(𝑖) ∈

ℝ96×96×4×1. The pretraining on down sampled training instances allowed for accelerated 

training. This stage lasted for 60,000 iterations. Afterwards, the 3D CNNs were trained 

for an additional 90,000 iterations with input tensors 𝑥(𝑖) ∈ ℝ192×192×4×1. Here, the 

tensors were not down sampled versions of the original slices, but were instead random 

crops that were significantly smaller than the original slice size. 

All trained models were evaluated on the 5 test subjects. Inference was performed 

with the 2D CNNs by obtaining segmentation maps for each slice, one at a time, before 

applying a connected components algorithm to filter out noisy clusters from the 

segmentation maps (Fiorio & Gustedt, 1996; Wu et al., 2005). 

Predictions with the triplanar ensemble were computed by taking the class-wise 

probabilities for all voxels in a scan using models trained in each anatomical plane, and 

then averaging the predictions across the scan. Specifically, the final predicted 

segmentation map was a 4-dimensional tensor represented by 𝑃𝑓𝑖𝑛𝑎𝑙 ∈ ℝℎ×𝑤×𝑑×7. The 

final prediction from a scan was obtained using: 

𝑃𝑓𝑖𝑛𝑎𝑙 =
1

3
× (𝑃𝑠𝑎𝑔𝑖𝑡𝑡𝑎𝑙 + 𝑃𝑐𝑜𝑟𝑜𝑛𝑎𝑙+𝑃𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒)   (3.13) 
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Inference with the 3D CNNS was performed differently from the 2D CNNs. The 2D 

CNNs used an entire MRI slice as input, but the 3D CNNs sacrificed voxels in the slice 

plane for voxels in the depth dimension. As a result, it was hypothesized that voxel 

prediction accuracy was dependent on the location of the voxel relative to a sampled 

patch. That is, it was thought that voxels in the center of a patch enjoyed better accuracy 

because the 3D CNN had access to more context around voxels in the patch center. This 

perceived issue was addressed using a novel “Monte Carlo patch sampling” algorithm. 

First, patches were iteratively sampled from a test scan and predictions were obtained so 

that every voxel had an initial prediction associated with it. Then, patches were sampled 

by drawing from uniform distributions over the height, width, and depth of a test scan to 

produce a new sampled patch. Voxel predictions at a sampled patch were ensembled by 

taking the mean over all voxel predictions from any time that voxel had been included in 

a sampled patch. The mean was applied in a computationally efficient way to save on 

memory. That is, instead of storing predictions from every Monte Carlo iteration and then 

averaging at the end, voxel predictions were updated based on: 

 

𝑝(𝑡+1) = 𝑝(𝑡) +
1

𝑡
(𝑝(𝑡+1) − 𝑝(𝑡))      (3.14) 

 

Where the prediction at voxel 𝑝 is being updated for the 𝑡𝑡ℎ time and the value of 𝑡 is 

kept separately for all different voxels in a scan. Final predictions for the 3D CNNs were 

taken as the ensembled predictions after 2,000 Monte Carlo iterations. 
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 Segmentation performance was evaluated using Intersection-over-Union (IoU) 

and Dice Similarity Coefficient (DSC) over each volume defined by: 

 

𝐼𝑜𝑈(𝑋, 𝑌) =
|𝑋∩𝑌|

|𝑋∪𝑌|
     (3.15) 

 

𝐷𝑆𝐶(𝑋, 𝑌) =
2×|𝑋∩𝑌|

|𝑋|+|𝑌|
    (3.16) 

 

The geometries of the anatomical structures of the knee were reconstructed using the 

predicted segmentation maps of the best-performing models to assess geometric quality. 

Specifically, the reconstructed geometries from predicted and ground truth segmentation 

maps were compared by representing each segmented voxel as a node in 3-dimensional 

space and using a k-nearest neighbors search to find the closest node on the manual 

geometry’s surface for each predicted geometry surface node. This nodal error yielded 

intuition about the quality of the predicted geometries that is not provided by standard 

segmentation metrics such as IoU.  

The geometries of all 5 test subjects as predicted by the best model were 

developed into an FE model to assess the feasibility of using the predicted geometries as 

part of a more complete workflow in biomechanics research methods. The bones were 

converted to a triangular surface mesh and the cartilage geometries were developed into 

meshes using the approach of Rodriguez-Vila et al. (2017). The resulting geometries 

were subjected to boundary conditions with Abaqus to check for FE-readiness.  
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Figure 3.2. A pictorial representation of the U-Net Architecture. In the encoder, 

convolutional layers are applied and then down sampled. In the decoder, convolutional 

layers are applied, up sampled, and fused with feature maps from the encoder. 

 

 

 

 

 

 
 

 

Figure 3.3. A pictorial representation of the triplanar ensemble. Images are used to 

predict segmentation maps in all three anatomical planes using distinct models. The 

predictions over the entire volume are fused to rebuild the full predicted geometries. 
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Figure 3.4. The 3D CNN differed from the 2D CNN in that 3D convolutional layers were 

applied to a volumetric patch of an MRI scan. The 3D CNN inherently leveraged inter-

slice context as a result. 

 

 

 

 

Table 3.1. A description of the CNN architecture used for automatic segmentation. 

Convolutional layers are accompanied by instance normalization (Huang & Belongie, 

2017) and parametrized ReLU (PReLUs) (He et al., 2015) activation functions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Layer Number of Filters Features 

Conv 1a 64  

Conv 1b 64 Followed by max pool 

Conv 2a 128  

Conv 2b 128 Followed by max pool 

Conv 3a 256  

Conv 3b 256 Followed by max pool 

Conv 4a 512  

Conv 4b 512 Followed by dropout layer; max pool 

Conv 5a 1024  

Conv 5b 1024  

Conv 5c 1024 Followed by dropout layer 

Upconv 1 512 Followed by fusion with Conv 4b 

Conv 6a 512  

Conv 6b 512  

Upconv 2 256 Followed by fusion with Conv 3b 

Conv 7a 256  

Conv 7b 256  

Upconv 3 128 Followed by fusion with Conv 2b 

Conv 8a 128  

Conv 8b 128  

Upconv 4 64 Followed by fusion with Conv 1b 

Conv 9a 64  

Conv 9b 64  

Conv 10 7 Followed by softmax function; no activation function 
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Results 

The trained models were evaluated on 5 test subjects. Representative predicted 

segmentation maps are presented for the 2D semi-supervised models (Fig. 3.5). Mean 

IoU for the fully-supervised baseline was 0.948 (Tab. 3.2). The best-performing 2D MT 

and VAT models yielded IoU values of 0.964 and 0.967. Class-wise IoU as well as 

overall and class-wise DSC (Tab. 3.3) are also presented for all models. The performance 

of the MT and VAT models surpassed that of the fully-supervised model with only 1,000 

labeled examples. The 2D fully-supervised baseline yielded an IoU of 0.948, compared to 

IoU values of 0.952 and 0.954 from the 2D MT and VAT models trained with only 1,000 

labeled instances. This is roughly a fourth of the full amount of labeled data used to train 

the fully-supervised baseline.  

The triplanar ensemble and 3D CNNs performed better than the models trained 

only in the sagittal plane. The triplanar ensemble returned an IoU value of 0.976 on the 

test set. This is the best performance of all models that were explored, including the 3D 

CNNs, which yield IoU’s of 0.971 and .970 for the full-supervised and MT-trained 

models. The 3D CNN results are presented by ensembling the predictions of 2,000 Monte 

Carlo patch samples. IoU performance on the test set was shown to improve with the 

number of Monte Carlo samples (Fig. 3.16). 

Geometries were reconstructed using predicted segmentation maps from the fully-

supervised, MT, and VAT models as well as the triplanar ensemble and MT-3D CNN for 

comparison with geometries reconstructed from ground truth segmentation maps (Fig. 

3.7-16). The median, mean, and standard deviation of nodal error between predicted and 
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ground truth geometries are tabulated in Tables 3.4 and 3.5. Median nodal error ranged 

from 0.36 to 0.98 mm across all classes and models. Mean nodal error (Table 3.5) was 

higher for the femur and tibia than for the other structures of interest. No trend is evident 

for median error across models and structures. However, the models that leveraged inter-

slice context yielded lower mean error for the femur and tibia than the standalone 2D 

CNNs. This demonstrates the advantage of using 3D CNNs or using 2D CNNs in 

multiple planes. 

The FE models developed from the predicted geometries of all 5 test subjects 

were successfully subjected to boundary conditions. The meshes for one of the test 

subjects is illustrated in Figure 3.17.  

 

 

 
Figure 3.5. Predicted segmentation maps from the top fully-supervised (2nd row), MT 

(3rd), and VAT (4th) 2D CNNs with corresponding input images. 
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Table 3.2. IoU results for all models trained. 
 

Model Overall Background Femur Femoral 

Cartilage 

Patella Patellar 

Cartilage 

Tibia Tibial 

Cartilage 

Fully-

Supervised 

0.948 0.969 0.888 0.670 0.814 0.649 0.888 0.624 

MT (500 

labeled) 

0.936 0.965 0.850 0.399 0.628 0.196 0.836 0.423 

MT (1000 

labeled) 

0.952 0.973 0.893 0.516 0.826 0.545 0.892 0.508 

MT (2000 

labeled) 

0.959 0.978 0.904 0.530 0.824 0.565 0.906 0.544 

MT (3864 

labeled) 

0.964 0.980 0.927 0.676 0.831 0.650 0.896 0.659 

VAT (500 

labeled) 

0.908 0.952 0.808 0.401 0.474 0.183 0.627 0.436 

VAT (1000 

labeled) 

0.954 0.975 0.881 0.502 0.819 0.426 0.895 0.568 

VAT (2000 

labeled) 

0.950 0.972 0.894 0.539 0.804 0.538 0.844 0.558 

VAT (3864 

labeled) 

0.967 0.981 0.931 0.690 0.839 0.630 0.913 0.541 

Sagittal MT 0.973 0985 0.950 0.676 0.831 0.592 0.936 0.623 

Coronal 

MT 

0.969 0.983 0.946 0.639 0.801 0.436 0.926 0.628 

Transverse 

MT 

0.971 0.984 0.946 0.625 0.824 0.576 0.935 0.622 

Triplanar 

Ensemble 

0.976 0.986 0.955 0.688 0.855 0.572 0.943 0.675 

Fully-

Supervised 

3D CNN 

0.971 0.983 0.947 0.690 0.804 0.571 0.927 0.660 

MT 3D 

CNN 

0.970 0.983 0.939 0.660 0.789 0.567 0.932 0.640 
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Table 3.3. DSC results for all models trained. 
 

Model Overall Background Femur Femoral 

Cartilage 

Patella Patellar 

Cartilage 

Tibia Tibial 

Cartilage 

Fully-

Supervised 

0.973 0.984 0.930 0.792 0.891 0.774 0.933 0.752 

MT (500 

labeled) 

0.967 0.982 0.919 0.556 0.720 0.280 0.909 0.569 

MT (1000 

labeled) 

0.975 0.986 0.943 0.670 0.904 0.702 0.941 0.656 

MT (2000 

labeled) 

0.979 0.989 0.949 0.685 0.903 0.718 0.950 0.690 

MT (3864 

labeled) 

0.981 0.990 0.962 0.805 0.907 0.783 0.944 0.789 

VAT (500 

labeled) 

0.951 0.975 0.893 0.558 0.590 0.275 0.761 0.595 

VAT (1000 

labeled) 

0.976 0.988 0.937 0.656 0.900 0.596 0.944 0.714 

VAT (2000 

labeled) 

0.974 0.986 0.944 0.694 0.891 0.695 0.913 0.702 

VAT (3864 

labeled) 

0.983 0.990 0.964 0.815 0.912 0.771 0.955 0.699 

Sagittal MT 0.986 0.992 0.974 0.805 0.907 0.740 0.966 0.758 

Coronal 

MT 

0.985 0.991 0.972 0.779 0.889 0.578 0.962 0.627 

Transverse 

MT 

0.985 0.992 0.972 0.769 0.902 0.726 0.966 0.765 

Triplanar 

Ensemble 

0.987 0.993 0.977 0.814 0.915 0.720 0.971 0.790 

Fully-

Supervised 

3D CNN 

0.985 0.992 0.973 0.816 0.889 0.710 0.962 0.794 

MT 3D 

CNN 

0.984 0.991 0.969 0.793 0.886 0.708 0.964 0.779 
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Figure 3.6. Test set IoU increased with the number of Monte Carlo patch samples used 

during inference and then leveled out. 
 

 

Figure 3.7. Reconstructed geometries from the 2D supervised model’s predictions (blue) 

compared with contours of ground truth geometries (black). 
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Figure 3.8. Reconstructed geometries from the 2D MT model’s predictions (red) 

compared with contours of ground truth geometries (black). 

 

 

 

Figure 3.9. Reconstructed geometries from the 2D VAT model’s predictions (green) 

compared with contours of ground truth geometries (black). 
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Figure 3.10. Reconstructed geometries from the triplanar ensemble’s predictions (gold) 

compared with contours of ground truth geometries (black). 

 

 
Figure 3.11. Reconstructed geometries from the MT-trained 3D CNN predictions (cyan) 

compared with contours of ground truth geometries (black). 
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Figure 3.12. Reconstructed geometries from manual segmentations (gray) and predicted 

segmentations from the 2D fully-supervised model (blue). 

 

 

 

Figure 3.13. Reconstructed geometries from manual segmentations (gray) and predicted 

segmentations from the 2D model trained with MT (red). 
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Figure 3.14. Reconstructed geometries from manual segmentations (gray) and predicted 

segmentations from the 2D model trained with VAT (green). 

 

 

 

Figure 3.15. Reconstructed geometries from manual segmentations (gray) and predicted 

segmentations from the triplanar ensemble (gold). 
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Figure 3.16. Reconstructed geometries from manual segmentations (gray) and predicted 

segmentations from the MT-trained 3D CNN (cyan). 

 

 

 

 

 

 

Table 3.4. Median surface error between geometries from predicted and manual 

segmentation maps (mm) 

 
Class Supervised MT VAT Triplanar 

Ensemble 

Supervised 3D MT 3D 

Femur 0.65 0.64 0.59 0.36 0.52 0.60 

Femoral Cartilage 0.51 0.59 0.53 0.46 0.64 0.60 

Patella 0.58 0.78 0.63 0.58 0.66 0.67 

Patellar Cartilage 0.58 0.68 0.65 0.58 0.66 0.64 

Tibia 0.66  0.97 0.58 0.41 0.52 0.50 

Tibial Cartilage 0.46 0.46 0.48  0.46 0.49 0.51 
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Table 3.5. Mean ± std surface error between geometries from predicted and manual 

segmentation maps (mm) 

 
Class Supervised MT VAT Triplanar 

Ensemble 

Supervised 3D MT 3D 

Femur 1.48 ± 2.50 1.19 ± 2.42 0.82 ± 0.84  0.46 ± 0.46 0.68 ± 0.69 0.75 ± 0.68 

Femoral 

Cartilage 
0.94 ± 1.50 0.93 ± 1.34 0.77 ± 0.77 0.61 ± 0.67  0.82 ± 0.72 0.74 ± 0.55 

Patella 0.86 ± 0.94 1.01 ± 1.01 0.78 ± 0.60 0.71 ± 0.60 0.90 ± 0.74 0.90 ± 0.73 

Patellar 

Cartilage 
0.69 ± 0.53 0.81 ± 0.57 0.76 ± 0.54 0.76 ± 0.71 0.82 ± 0.63 0.80 ± 0.62 

Tibia 1.41 ± 2.17 1.31 ± 1.23 1.32 ± 2.4 0.50 ± 0.56 0.66 ± 0.68 0.63 ± 0.61 

Tibial 

Cartilage 
0.53 ± 0.43 0.60 ± 0.48 0.6 ± 0.45 0.55 ± 0.53 0.70 ± 0.69 0.67 ± 0.59 

 

 

 

Figure 3.17. Automatically meshed FE model from predicted segmentation maps. 

 

 

 

Discussion 

The objectives of this chapter were to explore the performance gains obtained 

from using semi-supervised learning methods and to develop robust CNNs for automatic 

segmentation of the knee from MRIs with these frameworks. The 2D semi-supervised 



  

45 

 

frameworks not only performed better than the 2D fully-supervised baseline, but they 

also exceeded the performance of the fully-supervised baseline with only a fourth of the 

labeled data. This finding yields intuition about the potential of semi-supervised learning 

for automatic segmentation in scenarios with small quantities of labeled data. The 

experiments in this chapter leveraged 25,000 unlabeled MRI slices in the sagittal plane. 

However, in practice it would be preferable to increase the amount of unlabeled data 

used, especially given the sheer size of publicly available datasets (Nevitt et al., 2006).  

 Automatic segmentation of the knee has previously been explored in literature. 

3D CNNs were developed by Raj et al. (2018) to explore segmentation of ligaments and 

cartilage on two different datasets. They achieved DSC metrics of the femoral, tibial, and 

patellar cartilage of 0.849, 0.832, and 0.785 on scans from the OAI dataset. This contrasts 

with the current study’s best cartilage DSC values of 0.816, 0.794, and. 0.783. These 

differences can be explained by the use of less than half of the amount of labeled training 

data as compared to the referenced study. Additionally, the referenced study discusses the 

use of 2 scans per patient in the total data set (taken at different time points) and mentions 

the possibility of the 2 scans being split between training and testing sets during their 

cross validation. It is believed that this would lead to a significant boost in performance 

on the test set. In contrast, the subjects of the dataset used in this chapter are distinct 

between training, validation, and testing subjects. The triplanar ensembles of Lee et al. 

(2018) were trained on 60 labeled scans and resulted in DSC values of 0.973, 0.844, 

0.981, and 0.838 for femur, femoral cartilage, tibia, and tibial cartilage. Only 29 labeled 

subjects are used to train the models in this study while still obtaining corresponding 
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DSC values 0.977, 0.816, 0.971, and 0.794. Although direct comparisons are not feasible 

between the distinct datasets, it is clear that using semi-supervised learning with 2D 

CNNs leads to performance competitive with larger studies.  

 The CNN-predicted geometries were evaluated for FE-readiness by developing 

FE models from the predicted geometries. The resulting FE models were subjected to 

boundary conditions and FE studies were successfully completed. This demonstrates the 

geometric quality of the predicted geometries and has implications for the potential of the 

CNNs to be incorporated into traditional biomechanics research methods. 

The models trained in the sagittal plane inherently failed to leverage interslice 

context. Multiple methods have been proposed to address this fundamental issue (Prasoon 

et al., 2013, Milletari et al., 2016). Triplanar ensembles and 3D CNNs were explored in 

this chapter to address this. The 3D CNNs were sufficiently expensive that both training 

and inference were performed on a small 3D patch of the volume of interest (or a 

significantly down sampled version of the full volume) while still necessitating the use of 

2 GPUs with 11 GB of memory each. Additionally, the batch size was limited and a 

single forward pass of the CNN is slower as well, leading to slower training and slower 

inference. Contrastingly, the triplanar ensemble was able to take as input entire slices for 

a single forward pass while still leveraging interslice context.  

The triplanar ensemble method used in this chapter fused predictions from each 

anatomical plane with a simple voxel-wise average. This approach failed to consider that 

some views may provide stronger predictions for different locations in the 3D volume. 

For instance, the coronal or transverse plane may be more effective for predicting voxel-
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wise classes at the medial and lateral borders of the femoral cartilage. Ideally, when 

predicting segmentation maps for this area in the volume, it may be preferable to weight 

the sagittal view prediction lower than the other two views. Although this idea was not 

explored here, it was implemented by Wang et al. (2019) by using a form of the 

expectation-maximization (EM) algorithm. Future research directions for automatic 

segmentation will explore this method. 

The triplanar ensemble and 3D CNN predictions yielded lower mean surface error 

than the single-plane models on the femur and tibia. The surface error is ultimately the 

metric that is more important from the perspective of biomechanics research.  

The CNNs in this chapter were trained on a relatively small number of MRIs. 

Additionally, the training set constituted a limited number of MRI sequences; mostly 

DESS. In practice, these CNNs would not be robust to different MRI sequences without 

being trained on the sequence of interest in some capacity.  

Training segmentation models from scratch (e.g. without transfer learning (Tan et 

al., 2018)) is difficult. Specifically, the biggest issue encountered during training was the 

tendency for a CNN to learn to ignore entire classes during training. Once a CNN ceased 

to predict a specific class altogether, it rarely recovered from this local minimum. Listed 

below are some strategies that seemed to be effective in avoiding this issue: 

 

1. Reduce the learning rate – The CNNs in this chapter were trained with 

learning rates from 1e-5  to 1e-8 when using the RMS Prop Optimizer.  
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2. Increase batch size – It was observed that increasing batch size helped to 

avoid the class-ignoring issue. This is presumably because as the batch size 

increases, the probability of all classes occurring in the batch also increases. If 

computational constraints limit the batch size, simply down sample the 

resolutions of the training instances to increase batch size initially. Then 

reduce batch size later and return the training instances to their preferred 

resolution. 

3. Strategic training instance sampling – Early in training it may be beneficial to 

manually choose which training instances to include in the batch. Specifically, 

ensure that all classes are present in each batch.  

4. Annealing the dice loss weight coefficient – The denominator of the dice loss 

weight (Eq. 3.10) is traditionally squared. It may be useful to tune this 

exponent. If the CNN ignores classes of small frequency (cartilage), increase 

this exponent. If the CNN ignores classes of high frequency (femur, tibia), 

reduce this exponent. 

5. Dropout layers – Conventional dropout (as opposed to Monte Carlo dropout 

(Gal & Ghahramani, 2016)). is more often used in fully-connected layers. 

However, the use of conventional dropout layers with drop probabilities 

ranging from 0.4-0.2 seemed to address the class-ignoring problem.  
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3.4 Conclusion 

    This chapter evaluated 2D and 3D CNNs trained with fully-supervised and 

semi-supervised techniques for automatic segmentation of 6 structures of the knee. The 

semi-supervised methods were able to successfully leverage unlabeled data and achieved 

performance that is on par with existing literature despite using significantly less labeled 

data. Triplanar ensembles and 3D CNNs were developed to leverage context from all 

three anatomical planes for informing predictions. It was found that 3D CNNs yield 

superior performance to 2D CNNs, which verifies findings in other literature.  

    Given that reconstructed geometries from predicted segmentation maps are of 

sufficient quality, it would be interesting to explore how surface error of reconstructed 

geometries propagates through to results of downstream biomechanics applications. For 

instance, comparing differences between FE study results obtained from predicted and 

ground truth (e.g. manually obtained) geometries would serve to further validate the use 

of CNNs for automatic segmentation as part of more complete workflows in 

biomechanics research methods.  
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CHAPTER 4. TOWARD REAL-TIME MUSCULOSKELETAL MODELING FOR 

ESTIMATING PATIENT MECHANICS USING DEEP LEARNING  

 

4.1 Gait Lab Analysis in Orthopaedics 

Gait lab measurement of whole-body kinematic data and ground reaction forces is 

utilized in clinical settings for patient diagnosis and monitoring; as well as in research 

settings to obtain metrics needed to drive computational models. These data are 

commonly processed in musculoskeletal modeling platforms such as OpenSim (Delp et 

al., 2007) and Anybody (Damsgaard et al., 2006) to estimate muscle forces and joint 

reaction forces during activity.  

Berchuck et al. (1990) used gait lab data to assess kinematic differences between 

patients with deficient anterior cruciate ligaments and a control population. Myers et al. 

(2018) used gait lab data to inform musculoskeletal models that were used to simulate the 

effects of hip implant alignment on muscle and joint loads. Hume et al. (2019) used gait 

lab data to tune joint loading and muscle forces for FE modeling of the knee. The gait lab 

workflow is also applied within the context of joint replacement evaluation and results in 

valuable output metrics for use in implant design and surgical decision making, as well as 

characterizing overall patient function (Ngai & Wimmer, 2009).  
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However, the processing required to obtain musculoskeletal modeling estimates 

can be time consuming, requires expertise and hardware, and thus limits the patient 

populations studied. The expense of mapping kinematics and ground reaction forces to 

metrics of interest may benefit from data-driven machine learning techniques. 

Deep learning has found applications in predictive modeling of sequence data in 

which neural networks are used to predict an output given a sequence of input data. This 

class of problems is called sequence-to-sequence learning. Sutskever et al. (2014) used 

RNNs to translate sentences between different languages; a process called neural 

machine translation. Ping et al. (2018) applied deep learning techniques generate speech. 

Gehring et al. (2017) and Kalchbrenner et al. (2016) developed CNNs for neural machine 

translation instead of RNNs.  

Machine learning techniques provide potential for supplementing or even 

replacing the tedious workflow for processing joint reaction or muscle forces from 

standard gate lab data by learning mappings from data. The fast inference time of these 

algorithms could allow for real-time mapping. Accordingly, the objective of this chapter 

was to explore the potential of deep learning techniques for learning to map standard gait 

lab data to joint reaction and muscle forces. This was performed by applying two 

different neural network architectures to an in-house dataset and evaluating the 

performance of each on a test set.  
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4.2 Deep Learning Concepts for Sequence-to-Sequence Modeling 

Long Short-Term Memory Cells 

Neural networks have been successfully applied to sequence-to-sequence 

problems. Examples include neural machine translation (Sutskever, et al., 2014) and 

generating spoken voice (Ping et al., 2018). Traditionally, RNNs are the architecture of 

choice for this problem class (Graves, 2012; Hochreiter & Schmidhuber, 1997). One 

known issue with the vanilla RNN unit formulation presented in Chapter 2 is known as 

the vanishing gradient problem. This problem is characterized by a gradient that is 

reduced to an insignificant magnitude as it is backpropagated through time steps during 

training of the RNN. The vanishing gradient problem limits an RNN’s ability to learn 

dependencies over large time scales. As a result, it is common to use a specialized RNN 

unit called a long short-term memory cell (LSTM). While there are numerous definitions 

for the LSTM cell that slightly differ from each other (e.g. with or without peepholes 

(Sak et al., 2014)) the LSTMs used in this chapter are formulated as follows: 

 

𝑖𝑡 = 𝜎(𝑊1
𝑇𝑋𝑡 + 𝑊2

𝑇𝐻𝑡−1 + 𝑏1)      (4.1) 

 

𝑓𝑡 = 𝜎(𝑊3
𝑇𝑋𝑡 + 𝑊4

𝑇𝐻𝑡−1 + 𝑏2)     (4.2) 

 

𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ tanh (𝑊5
𝑇𝑋𝑡 + 𝑊6

𝑇𝐻𝑡−1 + 𝑏3)   (4.3) 

 

𝑜𝑡 = 𝜎(𝑊7
𝑇𝑋𝑡 + 𝑊8

𝑇𝐻𝑡−1 + 𝑏2 + 𝑏4)    (4.4) 
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𝐻𝑡 = 𝑜𝑡 ∘ tanh (𝐶𝑡)      (4.5) 

 

Where 𝑋𝑡 is the input at the current time step, 𝐻𝑡 is the familiar hidden state, and 𝐶𝑡 is 

called the cell state. Similar to vanilla RNNs, the hidden state is used to make predictions 

at the current time step and also passed to the future time step to inform future 

predictions. Additionally, ∘ is known as the Hadamard product.  

 

Temporal Convolutional Neural Networks 

A disadvantage of RNNs is that they have an inherent linear sequential structure. 

The computational graph of an RNN is essentially unrolled for 𝑡 time steps and can only 

be evaluated one step at a time. The computational speed of evaluating an input sequence 

becomes an issue as the input sequence length becomes larger. As a result, 1D CNNs 

have also been applied to sequence-to-sequence modeling (Kalchbrenner et al., 2016), in 

which a hierarchy of 1D convolutional layers are applied to an input sequence to map it 

to an output. This format of NN is referred to as a temporal convolutional network 

(TCN). Given an input sequence 𝑋 ∈ ℝ𝑇×𝑁 with 𝑇 time steps and 𝑁 features per time 

step, a 1D convolutional filter 𝐴 ∈ ℝ𝑀×𝑁 is applied to time step 𝑡 of the sequence based 

on:  

 

  𝑋(𝑡) ∗ 𝐴 = ∑ ∑ 𝐴(𝑖, 𝑗) × 𝑋(𝑡 + 𝑖, 𝑗)𝑁−1
𝑗=0

𝑀−1
𝑖=0      (4.6) 
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For sequence-to-sequence learning, successive 1D convolutional layers apply 

convolutions with different dilations between convolutional filter elements along the time 

dimension. For a dilation rate 𝑑, a dilated convolution is applied at a single location by: 

 

𝑋(𝑡) ∗ 𝐴 = ∑ ∑ 𝐴(𝑖, 𝑗) × 𝑋( 𝑡 + (𝑑 × 𝑖) , 𝑗 )𝑛−1
𝑗=0

𝑚−1
𝑖=0     (4.7) 

 

Notice that a dilation rate of 𝑑 = 1 corresponds to a standard convolution. Introducing 

dilations allows a convolution with a fixed number of elements to capture larger global 

context of sequence data. Using TCNs for predictive modeling with time series data 

allows for each time step in a series to be processed in parallel and thus the inference 

speed of a TCN does not scale with input sequence length at the same rate as it does for 

an RNN. 

 

 

Figure 4.1. A 1D convolutional filter applied to a time series with multiple input features. 
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Figure 4.2. A dilated 1D convolutional filter applied to a time series. The location at 

which the convolutional filter elements are applied is controlled by the dilation 

hyperparameter. 

 

4.3 Neural Networks for Classification and Predictive Modeling of Patient 

Mechanics 

Methods 

Two experiments were performed around the use of NNs for predictive modeling 

of patient mechanics. 70 TKR patients were fitted with 32 reflective markers used to 

define anatomical landmarks for 3D motion capture.  Patients were instructed to perform 

multiple tasks including sit-to-stand, right and left sided step down, and gait. Tasks were 

performed onto a Bertec force platform embedded in the floor while force data was 

collected at 2000 Hz and an 8 camera Vicon motion capture system collected at 100 Hz. 

Step down was performed off of a stool with height 8” and sit-to-stand was performed 

with a chair of height 43”. The resulting data was processed in OpenSim (Fig. 4.3) to 

acquire kinematics, as well as joint reaction and muscle forces in the hip and knee, 

similar to the methods of Myers et al. (2018). All data was normalized to 100 time steps. 
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The full set of data consisted of 135 instances from 70 patients with 63 sit-to-stands, 15 

right sided step downs, 14 left sided step downs, and 43 gait sequences. The resulting 

data was used in the development and evaluation of NNs for predictive modeling around 

gait lab data.  

For the first experiment, NNs were trained to classify the ADL based on joint 

angle, ground reaction force, and anthropometrics (Figure 4.4). The data was split into 

100 training instances, 15 validation instances, and 20 testing instances. This task was 

explored using TCNs as well as RNNs. The architectures used for training are presented 

in Tables 4.1 and 4.2. The RNN classification was taken by applying a softmax layer only 

at the final time step of the sequence, taking the form of a “many-to-one” configuration. 

Losses during training were backpropagated through all time steps from only the final 

time step. The TCN consisted of a series of convolutional layers and max pooling 

operations with a final fully-connected layer followed by a softmax layer for 

classification.  

Training was performed using a learning rate of 1E-4 and stochastic gradient 

descent with a momentum of 0.9. A L1 regularization constant of 3E-3 was used to 

constrain the magnitude of the model’s parameters to address overfitting. This was found 

to be crucial given the small size of the training set. Early stopping was implemented 

using the validation instances by terminating the training process after the model’s 

performance on validation subjects ceased to improve for 20 epochs.  

The second experiment explored the sequence-to-sequence learning problem with 

RNNs and TCNs. Each algorithm was given the input sequential data consisting of the 
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kinematics, ground reaction forces, height, and weight and trained to predict hip and knee 

reaction forces as well as muscle forces (Figure 4.5). NNs were trained to predict hip and 

knee joint reaction forces, as well as vastus medialis and vastus lateralis muscle forces, 

throughout the ADL for both left and right sides. All 8 output sequences were predicted 

at once by a single model. 

The RNN architecture utilized fully-connected layers with sigmoid activation 

functions, 3 LSTM cells, and skip connections (Table 4.3). For the RNN architecture, 

Training settings were consistent with the first experiment. Backpropagation-through-

time was implemented over all time steps during a single training step. That is, the RNNs 

were fed all 100 time steps of a training instance before performing a parameter update.  

The TCN architecture is detailed in Table 4.4. Convolutional layers used filters 

with length of 5 and were augmented with layer normalization and exponential linear 

units. After training, each NN was evaluated on the test set using correlation coefficient, 

median absolute error, and root-mean-square-error (RMSE).  

 
 

Figure 4.3. Marker data and ground reaction force data obtained from gait lab studies 

were processed in OpenSim to obtain patient mechanics. 
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Figure 4.4. NNs were trained to classify an ADL based on patient kinematics, ground 

reaction forces, and anthropometrics. 

 

 

 

Figure 4.5. NNs were trained to predict muscle and joint reaction forces over time as a 

function of patient kinematics, ground reaction forces, and anthropometrics. 
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Table 4.1. RNN Architecture for Classification 

 
Layer Features 

Layer 1 Fully-connected layer; 150 nodes 

LSTM 1 State and cell sizes of 150; hidden state concatenated with layer 1 

LSTM 2 State and cell sizes of 150; hidden state concatenated with layer 1 and LSTM 1 

LSTM 3 State and cell sizes of 150; hidden state concatenated with layer 1 and LSTM 1,2 

Layer 2 Fully-connected layer; 150 nodes 

Layer 3 Fully-connected softmax classification layer, applied only at final time step. 

 

Table 4.2. TCN Architecture for Classification 

 
Layer Features 

Conv 1 32 filters, dilation rate of 1, followed by max pooling layer 

Conv 2 64 filters, dilation rate of 2, followed by max pooling layer 

Conv 3 128 filters, dilation rate of 4, followed by max pooling layer 

Conv 4 256 filters, dilation rate of 8, followed by max pooling layer 

Layer 1 Fully-connected layer, softmax output 

 

 

Table 4.3. RNN Architecture for Prediction of Patient Mechanics  

 
Layer Features 

Layer 1 Fully-connected layer; 150 nodes 

LSTM 1 State and cell sizes of 150; hidden state concatenated with layer 1 

LSTM 2 State and cell sizes of 150; hidden state concatenated with layer 1 and LSTM 1 

LSTM 3 State and cell sizes of 150; hidden state concatenated with layer 1 and LSTM 1,2 

Layer 2 Fully-connected layer; 150 nodes 

Layer 3 Fully-connected 1D regression output layer 

 

Table 4.4. TCN Architecture for Prediction of Patient Mechanics 

 
Layer Number of Filters Dilation Rate 

Conv 1 32 1 

Conv 2 64 2 

Conv 3 128 4 

Conv 4 256 8 

Conv 5 256 8 

Conv 6 128 4 

Conv 7 64 2 

Conv 8 32 1 

Conv 9 1 1 
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Results 

Performance of the RNNs and TCNs for activity classification were evaluated on 

a test set of 20 patients performing different ADLs (Tables 4.5-4.6). The RNN predicted 

activity classification with 90% accuracy, only misclassifying two different step-downs 

as gait. The TCN achieved 100% accuracy on the classification task.  

 Correlation coefficient, median absolute error, and RMSE are presented in Table 

4.7 for the evaluation of the second task. Qualitative results for each ADL class are 

presented in Figures 4.6-4.9. Both classes of NN were able to effectively estimate the 

trends of the output metrics over time. Correlation coefficients ranged from 0.786-0.926 

for the RNN and 0.650-0.950 for the TCN across prediction tasks. Median absolute error 

for left and right knee reaction forces were 0.306 and 0.195 kN for the RNN and 0.438 

and 0.166 kN for the TCN.  Median absolute error for left and right hip reaction forces 

were 0.394 and 0.332 kN for the RNN and 0.365 and 0.307 kN for the TCN. 

 

 

Table 4.5. Confusion matrix for activity classification with RNN. The RNN yielded an 

overall accuracy of 90%. 

 
 Ground Truth Sit-

to-Stand 

Ground Truth 

Right Step Down 

Ground Truth Left 

Step Down 

Ground Truth Gait 

Predicted Sit-to-

Stand 

11 0 0 0 

Predicted Right 

Step Down 

0 1 0 0 

Predicted Left 

Step Down 

0 0 0 0 

Predicted Truth 

Gait 

0 0 2 6 
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Table 4.6. Confusion matrix for activity classification with TCN. The TCN yielded an 

overall accuracy of 100%. 

 
 Ground Truth Sit-

to-Stand 

Ground Truth 

Right Step Down 

Ground Truth Left 

Step Down 

Ground Truth Gait 

Predicted Sit-to-

Stand 

11 0 0 0 

Predicted Right 

Step Down 

0 1 0 0 

Predicted Left 

Step Down 

0 0 2 0 

Predicted Truth 

Gait 

0 0 0 6 

 

 

 

 

 

Table 4.7. Quantitative Results for Prediction of Patient Mechanics on a Test Subject 

 
 RNN 

Corr. 

Coef. 

TCN Corr. 

Coef. 

RNN Med. 

Abs. Error 

(kN) 

TCN Med. 

Abs. Error 

(kN) 

RNN 

RMSE 

(kN) 

TCN 

RMSE 

(kN) 

Hip (R) 0.858 0.894 0.332 0.307 0.669 0.532 

Knee (R) 0.910 0.881 0.195 0.166 0.540 1.101 

Vastus Med. (R) 0.926 0.950 0.059 0.126 0.159 0.367 

Vastus Lat. (R) 0.786 0.808 0.086 0.119 0.290 0.404 

Hip (L) 0.815 0.650 0.394 0.365 0.914 0.947 

Knee (L) 0.872 0.767 0.306 0.438 0.794 1.036 

Vastus Med. (L) 0.894 0.793 0.071 0.155 0.171 0.326 

Vastus Lat. (L) 0.807 0.814 0.097 0.152 0.278 0.409 
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Figure 4.6. Predicted patient mechanics for a sit-to-stand ADL 
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Figure 4.7. Predicted patient mechanics for a left step down ADL 
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Figure 4.8. Predicted patient mechanics for a right step down ADL 
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Figure 4.9. Predicted patient mechanics for gait 
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Discussion 

The objective of these experiments was to assess the ability of deep learning 

techniques for the application of predictive modeling of patient mechanics. The 

performance of the models demonstrates the potential for deep learning to be used in a 

clinical system for estimating metrics of interest from standard gait lab data. 

The applied NNs effectively bypass a single computational step in the gait lab 

workflow by estimating the output metrics of interest that would normally be obtained by 

performing a series of processing steps in specialized software. However, the model still 

requires ground reaction forces as input and joint angles, which are derived from marker 

data. As such, the models presented here would cut out only a single step. Future research 

will explore which other steps in the gait lab workflow can be substituted by data-driven 

methods with the overall goal of reducing hardware constraints, expertise requirements, 

and processing time for obtaining metrics of interest for patients performing ADLs. An 

idealized system would sufficiently predict joint reaction and muscle forces for patients 

given only a sequence of video frames and anthropometrics.  

The lack of data presents a significant bottleneck for further development of these 

models. The current study was performed using a data set with only 135 instances that 

represented a limited number of tasks. More data is needed to develop truly robust 

models that can be trusted to the point of deployment.  
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4.4 Conclusion 

Two different classes of NNs were developed for the classification and estimation 

of patient mechanics from standard gait lab data. Both classes of NN effectively 

estimated metrics of interest on a test set despite being trained with small quantities of 

data. The small quantities of available data as well as the cost of obtaining more present 

the largest obstacle to the development of a robust data-driven approach for estimation of 

mechanics for patients performing ADLs. 

 

 

  



  

68 

 

  

 

 

CHAPTER 5. A DEEP LEARNING-BASED COMPUTER VISION SYSTEM FOR 

DETECTION AND POSE ESTIMATION OF SURGICAL TOOLS 

 

5.1 Surgical Tool Tracking 

 Real-time tracking of surgical tools has implications for assessment of surgical 

skill and workflow. Accordingly, efforts have been devoted to the development of 

systems that track the location of surgical tools in real-time.   

Jin et al. (2018) proposed a convolutional neural network to classify different 

laparoscopic surgical tools and predict their spatial bounds in the image plane. Rieke et 

al. (2018) proposed to combine a template tracking approach with regression forests to 

predict bounding boxes and semantic key points of surgical tools used for retinal 

microsurgery. Du et al. (2016) used an algorithm based on SIFT (Lowe, 1999) features to 

predict the pose of surgical instruments from RGB frames. Laina et al. (2017) 

implemented a CNN to segment and localize laparoscopic surgical tools. These works 

proposed algorithms that returned spatial information about surgical instruments on the 

image plane. This 2D information alone may not sufficiently characterize surgical tool 

pose, depending on application. 3D information can subsequently be recovered using 

depth cameras or stereo vision.  
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Marker-based approaches have also been applied to surgical tool tracking. Fan al. 

(2018) developed an algorithm for registering markers on surgical tools for minimally-

invasive surgery. A patterned cylindrical marker was attached to tools for convenient 

registration by Zhang et al. (2017). These approaches can accurately localize surgical 

tools in 3D space, which may be necessary for certain applications. However, this comes 

at the cost of bulky additions to the surgical tool, which can affect ergonomics, 

performance, and maneuverability. 

A computer vision system that can detect and localize surgical tools in 3D space 

without significantly altering the shape of the tool would be beneficial for OR 

assessment. One potential approach to this is based on the estimation of objects in 3D 

space using only RGB images. An approach for estimating the 6-DoF pose of an object 

from RGB images was proposed by Pavlakos et al. (2017). The workflow consists of 

three steps: object detection, key point localization, and an optimization step. They used a 

CNN for object detection, a separate CNN for key point localization, and an optimization 

step to place an object of interest in 3D space by leveraging predicted key points, known 

object geometries, and camera geometry. This chapter expands upon this work and 

applies a similar approach to the detection and pose estimation of surgical tools used in 

total knee replacement (TKR).  

An alternative to estimating the 6-DoF position of an object from RGB images is 

to directly use depth cameras or RGB-D cameras. Indeed, the use of depth cameras has 

shown success in various computer vision tasks (Shotton et al., 2013). This work focuses 

only on the use of RGB cameras because the use of color cameras is conducive to the 



  

70 

 

proposed data synthetization pipeline, which is crucial for the training of robust CNNs. 

Additionally, the proposed system results in less expensive hardware. However, the use 

of RGB-D or depth cameras is a future research direction. 

The objective of this chapter is to develop and evaluate a deep learning-based 

computer vision system for the detection and pose estimation of 2 types of surgical tools 

routinely used in TKR. The performance of the resulting system demonstrates the 

potential of the system to be used for operations research applications. 

 

5.2 Deep Learning and Computer Vision 

This section introduces concepts used in the development of the proposed 

system. The system relies on CNNs for object detection, CNNs for key point 

detection, and optimization concepts for estimating 6-DoF pose from RGB pixels.  

 

Object Detection 

The first step of the proposed workflow uses computer vision algorithms for 

detecting objects of interest. Object detection is more complicated than simple image 

classification because it does not assume there to be only a single object in an entire 

image. The objective of object detection is to predict the occurrence and class of 

potentially multiple instances in an image, and to predict the spatial bounds of each 

detected instance using a bounding box. State-of-the-art object detection is performed 

using deep learning (Girshick et al., 2015; Liu et al., 2016; Redmon & Farhadi, 2017; 

Redmon et al., 2016; He et al., 2017). The current work focuses on the class of object 
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detectors known as single-shot detectors. An approach similar to the Single-Shot 

Detector (SSD) (Liu et al., 2016) is used for object detection. 

The SSD approach uses a single forward pass of a fully-convolutional CNN 

for the detection, classification, and localization of objects in an image frame. An 

image frame is passed through convolutional and down sampling layers to aggregate 

global features from the image and obtain an [𝑁, 𝑀] feature map, where 𝑁 and 𝑀 are 

generally smaller than the original image dimensions. The CNN predicts bounding 

boxes for each cell in the [𝑁, 𝑀] grid. To do this, the CNN must predict the location 

of the instance centroid, bounding box dimensions, objectness score (i.e. confidence 

that there is an object), and classification of the detected instance. A box’s centroid is 

encoded as its relative position within a given grid cell. It is constrained to the range 

[0,1] using a sigmoid function. Box dimensions are predicted as offsets from prior 

bounding box dimensions, known as anchor boxes. The objectness score is a 

confidence value for each anchor constrained to the range [0,1]. The classification 

prediction is a vector of length 𝐶 for each anchor box with class-wise probabilities, 

conditioned on the presence of an object (Redmon et al., 2016). 

It has been shown that training a single-shot object detector to leverage 

multiple anchor boxes leads to stronger performance on benchmark datasets (Liu et 

al., 2016). Accordingly, for 𝐴 anchor boxes used in the model, the CNN outputs an 

[𝑁, 𝑀] feature map with depth of 𝐴 × (5 + 𝐶), where 𝐶 is the number of classes that 

the model is trained on.  
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Suppose there is an object detection CNN trained with only a single anchor 

box to detect 𝐶 different classes. In this case, the CNN would output a tensor of shape 

[𝑁, 𝑀, (5 + 𝐶)]. The values at position (𝑐𝑥, 𝑐𝑦) of this tensor can be represented as  

𝐿 = {𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, 𝑙6 … 𝑙5+𝑁}. The bounding box prediction can be obtained for this 

location by: 

𝑏′𝑥 = 𝑙′1 + 𝑐𝑥/𝑀      (5.1) 

𝑏′𝑦 = 𝑙′2 + 𝑐𝑦/𝑁      (5.2)  

𝑏′𝑤 = 𝑝𝑤𝑒𝑙′3        (5.3) 

𝑏′ℎ = 𝑝ℎ𝑒𝑙′4       (5.4) 

𝑏′𝑜 =  𝑙′5       (5.5) 

 

Here it is assumed that the values of 𝑙′1, 𝑙′2, and 𝑙′5 have already been passed 

through the sigmoid function 𝜎(. ). The values 𝑐𝑥 and 𝑐𝑦 are the cell coordinates of 

the predictions (indexing starting from 0), and 𝑝𝑤 and 𝑝ℎ are the anchor box 

dimensions represented as percentage of original image dimensions. These equations 

return the location of a predicted box’s centroid (𝑏′𝑥, 𝑏′𝑦) and dimensions (𝑏′𝑤, 𝑏′ℎ)  

in percentage of the original image’s dimensions. The value 𝑏𝑜 is the objectness 

score.  

During inference, objectness scores greater than some threshold (0.5 for 

instance) are taken as detected instances. The other outputs are then used to infer the 

bounding box and instance class. Additionally, in practice, a CNN may be responsible 

for detecting objects based on multiple anchor boxes and may also use multiple scales 
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to detect objects. Figure 5.1 depicts a bounding box prediction module for a single 

anchor box with 2 classes. 

The model is trained by taking bounding box annotations from a known 

training set and encoding them into the format required by the CNN. Then, a loss 

function is used to tune each component of the model. Thus, the loss function for 

training a CNN for object detection is a linear combination of the errors of the 

predicted objectness score, bounding box dimensions and locations, and 

classification. This error is computed over all scales and all anchor boxes at each 

scale for which there are bounding box prediction modules. The following loss 

function is used in this chapter, and slightly differs from the YOLO object detection 

literature (Redmon et al., 2016):  

 

𝐿𝑏𝑜𝑥(𝜃) = ∑ ∑ ∑ 𝜆𝑜𝑏𝑗𝕀𝑖,𝑗
𝑜𝑏𝑗

[(𝑙1,𝑖,𝑗 − 𝑙′
1,𝑖,𝑗)2 + (𝑙2,𝑖,𝑗 − 𝑙′

2,𝑖,𝑗)2]
𝐵𝑚
𝑗=0

𝑁×𝑀
𝑖=0 +𝑆

𝑚=0

𝜆𝑜𝑏𝑗𝕀𝑖,𝑗
𝑜𝑏𝑗

[(𝑙3,𝑖,𝑗 − 𝑙′
3,𝑖,𝑗)2 + (𝑙4,𝑖,𝑗 − 𝑙′

4,𝑖,𝑗)2] + 𝜆𝑜𝑏𝑗𝕀𝑖,𝑗
𝑜𝑏𝑗

(𝑙5,𝑖,𝑗 − 𝑙′
𝑜,𝑖,𝑗)2 +

𝜆𝑛𝑜−𝑜𝑏𝑗𝕀𝑖,𝑗
𝑛𝑜−𝑜𝑏𝑗

(𝑙5,𝑖,𝑗 − 𝑙′5,𝑖,𝑗)2 +  𝜆𝑜𝑏𝑗𝕀𝑖,𝑗
𝑜𝑏𝑗 ∑ (𝑙5+𝑛,𝑖,𝑗 − 𝑙′5+𝑛,𝑖,𝑗)2𝐶

𝑛=1    (5.6) 

 

Where the loss function sums over 𝑆 prediction modules. In this equation, notation is 

slightly abused by assuming that each value is specific to its appropriate scale. As can be 

seen, the bounding box dimensions and locations, as well as the class predictions, are 

only penalized given that there is a ground truth box at that location. Also, locations with 

a ground truth bounding box are penalized differently than those without. This is because  
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the number of locations without instances greatly outnumbers the occurrence of instances  

during training. To address this, 𝜆𝑜𝑏𝑗 = 20 and  𝜆𝑛𝑜−𝑜𝑏𝑗 = 0.1 are used.  

The fact that each bounding box prediction module in a CNN uses multiple 

anchor boxes necessitates a strategy for choosing which anchor box should be 

“responsible” for detecting an object during training. The method of SSD is adopted for 

this. Specifically, given the ground truth bounding box of an object in the training set, the 

anchor box whose dimensions have the highest IoU with the object’s bounding box is 

assigned that instance for training. Additionally, any anchor box whose dimensions result 

in a sufficient overlap with the ground truth box is also assigned this instance for training. 

An IoU threshold of 0.5 is used to control this. As a result, an object of interest will 

always be paired with an anchor box, but also any anchor box that is deemed to be similar 

enough to the ground truth box in question will also be paired with it.   

 During inference, box predictions are made by deriving bounding box 

characteristics when a certain confidence threshold is reached. It is possible that multiple 

anchor box predictions at multiple grid cells and anchor boxes will detect the same object 

instance. Therefore, non-max suppression (NMS) is used to filter out redundant 

predictions. Predicted bounding boxes that have an IoU greater than 0.5 with other 

predictions of a similar class are kept in a greedy fashion based on the confidence of each 

box. 
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Figure 5.1. A bounding box prediction module from a CNN with a single anchor box. 

Each feature map in the depth direction is responsible for a different variable of interest 

needed to produce bounding box predictions. Modules are augmented with multiple 

anchor boxes by concatenating multiple tensors of this format in the depth direction. 

 

Key Point Detection 

CNNs can be used to detect semantic key points on an object of interest in an 

image. The structure of these CNNs is similar to those used for segmentation. CNNs are 

structured for key point localization with heat map outputs. That is, given an [𝑁, 𝑀, 3] 

RGB input image, the CNN will output an [𝑁, 𝑀, 𝐷] feature map where 𝐷 is the number 

of key points that the model is trained to predict. Key points are obtained by taking the 

maximum activation over all 𝑁 × 𝑀 cells for each of 𝐷 key points. The loss function for 

key point localization is considerably more manageable than the one used for bounding 

boxes: 
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𝐿𝑘𝑝(𝜃) = ∑ ∑ 𝜆𝑖𝑛−𝑏𝑜𝑥𝕀𝑖,𝑗
𝑖𝑛−𝑏𝑜𝑥[(𝑙𝑖,𝑗 − 𝑙′

𝑖,𝑗)2] + 𝜆𝑜𝑢𝑡−𝑏𝑜𝑥𝕀𝑖,𝑗
𝑜𝑢𝑡−𝑏𝑜𝑥[(𝑙𝑖,𝑗 − 𝑙′

𝑖,𝑗)2]𝐷
𝑗=0

𝑁×𝑀
𝑖=0   

(5.7) 

 

Where 𝑙𝑖,𝑗 is the heat map value at the 𝑖𝑡ℎ pixel in channel 𝑗. This loss function is 

essentially an element-wise squared error over all outputs. Similar to the bounding box 

loss function, it is preferred to weight the loss higher for the sparser “positive” examples. 

In the case of key point predictions, this means weighting the loss higher for CNN 

outputs that are spatially close to the object of interest. The bounding box annotations 

from the training set are used for this. The element-wise error is weighted higher for 

elements that are within a bounding box, and lower for elements that are not. In practice 

this concept manifests in the form the of a “loss mask” that is applied to the squared error 

at each element. 

 

6-DoF Pose Estimation from RGB Images 

Estimating the 6-DoF pose of an object from a single RGB image is a well-

studied topic in computer vision (Zhou et al., 2015). The approach presented in this 

section is based on Pavlakos et al. (2017). This problem can be solved using 

optimization, where the objective function is based on the full-perspective camera model. 

The intuition behind the full-perspective model is that each pixel in an image corresponds 

to a vector extending out into 3D space. The direction of this vector is determined by a 

series of parameters called the camera intrinsic parameters. However, in the case of RGB 

images, it is unknown how far this vector should extend into space for a given key point. 
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The optimization step attempts to place a prior known geometry into 3D space by finding 

the correct orientation of the geometry as well as the correct vector for each predicted key 

point (Figure 5.2).  

Let 𝐾𝑥 ∈ ℝ1×𝑝 and  𝐾𝑦 ∈ ℝ1×𝑝 represent the vectors of x- and y-coordinates in 

pixel dimensions of the predicted key points for an object. These coordinates are 

converted to homogenous coordinates 𝑊 ∈ ℝ3×𝑝  using the camera intrinsic parameters, 

where 𝑤𝑖 ∈ ℝ3 is the homogenous vector for the 𝑖𝑡ℎ key point. The homogenous 

coordinates can be determined based on: 

 

𝑊 = [ ((𝐾𝑥
𝑇 − 𝑝𝑥)/𝑓𝑥) | ((𝐾𝑦

𝑇 − 𝑝𝑦)/𝑓𝑦) | 1 ]𝑇    (5.8) 

 

𝑓𝑥 and 𝑓𝑦 are the camera’s focal lengths, and 𝑝𝑥 and 𝑝𝑦 represent the principal point of 

the image plane. The homogenous coordinates are used to define an objective function 

that relates the pose of a known object geometry in 3D space to corresponding 

homogenous coordinates of the key points: 

 

𝐿(𝜃) =
1

2
× ‖(𝑊𝑍 − 𝑅𝐵 − 𝑇1𝑇)𝐷1/2‖

𝐹

2
    (5.9)  

 

Where 𝑅 ∈ ℝ3×3 is a rotation matrix, 𝑇 ∈ ℝ3 is a translation vector, 𝑍 ∈ ℝ𝑝×𝑝 is a 

diagonal matrix, 𝐵 ∈ ℝ3×𝑝 represents the 3D Cartesian coordinates of the semantic key 

points on the object geometry in 3D space (STL nodes), and 𝐷 ∈ ℝ𝑝×𝑝 is a diagonal  
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matrix where 𝑑𝑖,𝑖 is the confidence of the prediction for key point 𝑖. Leveraging the 

prediction confidence using the matrix 𝐷 allows the objective function to penalize 

confident key points more harshly. In order to estimate the object pose in 3D space, the 

objective function must be minimized with respect to 𝜃 = {𝑍, 𝑅, 𝑇}.  

The optimization problem is solved using block coordinate descent. That is, the 

objective function is iteratively minimized while optimizing for one of the 3 parameters 

while holding the other two parameters constant. The updates for each of these individual 

parameters can be found with closed-form solutions. By relating the squared Frobenius 

norm of a term to the trace of a matrix, the updates for each term can be found using the 

classic least-squared approach. 

 

‖𝐴‖𝐹
2 = 𝑡𝑟(𝐴𝑇𝐴) = 𝑡𝑟(𝐴𝐴𝑇)     (5.10) 

 

The least-squares approach is performed by equating the gradient of the function (
𝜕𝐿(𝜃)

𝜕𝜃
) 

to 0 and isolating the parameter of interest. The updates for 𝑇 are directly performed in 

this way: 

 𝑇 = (
2

𝑡3+𝑡4
(𝑡1 − 𝑡2))𝑇      (5.11) 

 

𝑡1 = 1𝑇𝐷
1

2(𝑊𝑍𝐷
1

2)𝑇        (5.12) 

 

𝑡2 = 1𝑇𝐷
1

2(𝑅𝐵𝐷
1

2)𝑇      (5.13) 
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𝑡3 = 1𝑇𝐷1      (5.14) 

 

𝑡4 = (1𝑇𝐷1)𝑇      (5.15) 

 

Updates for the other two parameters necessitate additional considerations. 𝑅 is a rotation 

matrix and thus must satisfy the constraint that 𝑅𝑇𝑅 = 1 and det(𝑅) = 1. In order to 

update 𝑅, the objective function is rearranged to match the form needed to perform 

orthogonal Procrustes analysis (Schönemann, 1966) and then solved accordingly: 

 

𝑋 = (𝐵𝐷
1

2)𝑇       (5.16) 

 

 𝑌 = (𝑊𝑍𝐷1/2 − 𝑇1𝑇𝐷1/2)𝑇      (5.17) 

 

  𝑈, 𝑆, 𝑉𝑇 = 𝑆𝑉𝐷(𝑋𝑇𝑌)     (5.18) 

 

  𝑅 = 𝑈𝑉𝑇        (5.19) 

 

 𝑍 must satisfy the constraint that it is a diagonal matrix so off-diagonal elements must be 

zero. The update of 𝑍 cannot be performed all at once. Instead, each diagonal element of 

𝑍 is treated as its own least-squares problem and the updates are determined accordingly.  

 

𝑧𝑖,𝑖 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌     (5.20) 
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 𝑋 = 𝑑𝑖,𝑖
1/2

× 𝑤𝑖      (5.21) 

 

𝑌 = 𝑑𝑖,𝑖
1/2

× (𝑅𝑏𝑖 + 𝑇)      (5.22) 

 

Given a series of predicted key points in the image plane as well as the corresponding 

object geometry, the optimization step is performed by iteratively updating 𝑅, 𝑇, and 𝑍 

until some convergence criteria is met (Figure 5.2). The resulting values for 𝑅 and 𝑇 

determine where the object lies in the local camera coordinate system. The diagonal 

elements of  𝑍 describe the distance of the key points on the object from the image plane. 

All nodes of the object geometry can be re-projected back onto the image plane to 

qualitatively verify the result. 

 

 

 

Figure 5.2. An illustration of the optimization problem for determining 6-DoF pose from 

predicted key points on the image plane. The optimization step minimizes a residuals 

function based on 𝑅, 𝑇, and 𝑍 
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5.3 A Deep Learning-Based Computer Vision System for Estimating Surgical 

Tool Pose from RGB Images 

Overview 

A computer vision system was developed for the detection and pose estimation of 

2 different surgical tools used in TKR from RGB video frames. The proposed system is 

illustrated in Figure 5.3 and is largely based on Pavlakos et al. (2017). The system 

initially detects object instances using the described object detection formulation of 

CNNs. Key point predictions are extracted from within the spatial bounds of each 

bounding box using the same CNN architecture, after applying NMS. The CNN is trained 

to predict key points for all object classes. Therefore, the class of the predicted bounding 

box dictates which key point predictions are extracted from the CNN and passed to the 

optimization step. The optimization step takes as input the predicted key points 

(converted to homogenous coordinates) as well as the prior known geometry of the 

predicted object class in the form of a point cloud. Finally, the block coordinate descent 

scheme is executed to estimate the object’s position in the camera’s coordinate system. 

The tools supported by the model are presented in Figures 5.4 and 5.5, with 

corresponding semantic key points. 
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Figure 5.3. The proposed computer vision system. A CNN extracts bounding boxes 

and key point predictions from a given frame and the resulting key points are fed to 

an optimization step to yield 6-DoF pose. 

 

 

 

 

 
Figure 5.4. The first TKR tool that the proposed system was developed for was a 

hammer. 
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Figure 5.5. The second TKR tool that the proposed system was developed for was a 

broach handle. 

 

 

Data 

 This section describes the approaches used to obtain the data necessary for 

training the system. CNNs have largely dominated the object detection space in recent 

years, with most benchmark leaderboards consisting primarily of deep learning-based 

approaches (Everingham et al., 2010; Lin et al., 2014). These benchmarks provide 

thousands of training instances on which researchers develop their algorithms. The 

resulting models serve as robust object detectors with the ability to detect a variety of 

generic classes. But meeting the data requirement for training CNNs on a niche task 

presents a challenge. For the proposed computer vision system, training data was initially 

aggregated by manually annotating 5,000 images with bounding boxes and key points. 

This resulted in insufficient performance, even after significant hyperparameter tuning. 

Therefore, a pipeline was developed for generating synthetic data with ground truth 

annotations. 
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A series of video frames of each object class was captured (about 75 frames per 

object class). The MATLAB (Mathworks, Exeter, UK) segmenter toolbox 

implementation of graph cut (Boykov et al., 2001) was used to generate masked images 

of just the tool in each video frame (Figure 5.6). Then, a proprietary GUI was developed 

to annotate the bounding boxes and key points on each of these frames (Figure 5.7). As a 

result, each original captured frame was associated with a segmented image of a tool, a 

bounding box, and key points.  

 Large-scale image datasets were downloaded and combined with the segmented 

images in the data synthetization pipeline. Specifically, the pipeline randomly sampled a 

background image and a segmented tool mask with corresponding annotations. Random 

perturbations were applied in the form of scaling, rotation, translation, and brightness 

before placing the segmented tool mask image on the sampled background. The pipeline 

sampled 1-3 tools per image. 

 This pipeline allowed for the generation of thousands of instances for the training 

of CNNs. Additionally, an improved version of the pipeline simulated tool movement 

over multiple frames by randomly placing a tool, and then sampling small movements 

and rotations of each tool in subsequent frames (Figure 5.8). This approach was used to 

train a specialized CNN that leveraged temporal context.  
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Figure 5.6. Graph cut results for quick segmentation of surgical tools. 

 

 

 

 

 

 
Figure 5.7. GUI for data annotation. The GUI imports an image, corresponding 

segmentation mask, and allows for annotation of boxes and key points for multiple object 

types. 
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Figure 5.8. Two sequences of generated training data with overlaid ground truth that 

simulate tool movement. 

 

 

Multitask CNNs for Object Detection and Key Point Prediction 

The proposed computer vision system necessitated object detection and key point 

prediction. Both of these tasks were accomplished using multitask CNNs. Three different 

CNN architectures were explored. 

The first architecture was characterized by an encoder-decoder structure 

composed of residual units, residual skip connections between corresponding scales of 

the encoder and decoder, and atrous spatial pyramid pooling modules (Chen et al., 2016) 

(Figure 5.9). The CNN was trained to predict bounding boxes at two different scales and 

key points at the final layer. Each bounding box prediction module was associated with 

36 anchor boxes that resulted from all combinations of the set 

{0.15, 0.3, 0.45, 0.6, 0.75, 0.9} (Where the units are in percentage of image dimension). 

Deep supervision was used at scales that weren’t responsible for box or key point 

predictions. Accordingly, the total loss function of the CNN was defined by:  
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 𝐿(𝜃) = 𝐿𝑏𝑜𝑥(𝜃) + 𝐿𝑘𝑝(𝜃) + 𝐿𝑑𝑒𝑒𝑝−𝑠𝑢𝑝(𝜃) + 𝜆‖𝜃‖2
2   (5.23) 

 

The CNN was trained using images of resolution 256 by 352 and gradient 

clipping. This CNN was named Multitool.  

One fundamental issue of Multitool was that it failed to leverage temporal 

context. That is, given a single frame in a video sequence, the CNN had no way of 

aggregating information from previous frames to inform predictions in the current frame. 

A second CNN architecture, called Multitool2 (Figure 5.10), was developed in an attempt 

to address this issue. The CNN architecture was built by augmenting the original 

Multitool with convolutional long short-term memory (CLSTM) units. CLSTMs are a 

reformulation of the original LSTM that replace the underlying matrix transformations 

with convolutional operators. This allows a CNN to leverage temporal context without 

being subjected to the computational expenses associated with the fully-connected layers 

of the original LSTM formulation. Given the current time step’s tensors 𝑋𝑡, 𝐻𝑡, and 𝐶𝑡 of 

the input, hidden state, and cell state, the CLSTM units were implemented similar to (Shi 

et al., 2015): 

 

𝑖𝑡 = 𝜎(𝑊1 ∗ 𝑋𝑡 + 𝑊2 ∗ 𝐻𝑡−1 + 𝑏1)    (5.24) 

  

𝑓𝑡 = 𝜎(𝑊3 ∗ 𝑋𝑡 + 𝑊4 ∗ 𝐻𝑡−1 + 𝑏2)    (5.25) 

 

𝐶𝑡 = 𝑓𝑡 ∘ 𝐶𝑡−1 + 𝑖𝑡 ∘ tanh (𝑊5 ∗ 𝑋𝑡 + 𝑊6 ∗ 𝐻𝑡−1 + 𝑏3)  (5.26) 
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𝑜𝑡 = 𝜎(𝑊7 ∗ 𝑋𝑡 + 𝑊8 ∗ 𝐻𝑡−1 + 𝑏2 + 𝑏4)    (5.27) 

 

𝐻𝑡 = 𝑜𝑡 ∘ tanh (𝐶𝑡)     (5.28) 

 

Where 𝑊𝑖’s are learned convolutional filters, 𝑏𝑖’s are learned channel-wise biases,  

and ∗ and ∘ denote convolution and Hadamard product, respectively.  

The CLSTMs were placed at two different scales of the network, directly before 

each bounding box prediction module. The inputs to the CLSTM units were concatenated 

with the outputs: 

 

    𝑂𝑡 = [𝐻𝑡 𝑋𝑡]      (5.29) 

 

 Multitool2 was trained in the same way as the first CNN except that the training 

instances used were the frame sequences that simulated tool movement, as described in 

the previous section. Details for both CNNs are presented in Tables 5.1 and 5.2. 

Both CNNs were initially trained with a batch size of 1 to allow for quick training 

iterations. Using a batch size of 1 resulted in poor convergence so a batch size of 10 was 

subsequently used. However, the preprocessing required for setting up batches with size 

of 10 was computationally expensive. Naively importing an image with annotations and 

then encoding these annotations into the format required by the CNN resulted in training 

steps that took 3 seconds each. Therefore, a parallel processing pipeline was developed to 

allow for faster training iterations. First, a list of 10 batches (with each batch comprising 
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10 training instances) with information properly encoded into the format required by the 

CNN was generated before beginning training. Training iterations were performed by 

randomly sampling from the list of preprocessed batches. The list of batches was updated 

in parallel by asynchronously generating a training instance and assigning the result to 

the instance queue upon completion (Figure 5.11). As a result, computational time for a 

single training iteration was reduced to about 0.9 seconds, which effectively sped up 

training for a given number of training instances by 200%.  

A third CNN architecture, called SegBox, reformulated the object detection 

problem as a segmentation problem. The bounding box modules towards the throat of the 

network were replaced with segmentation map outputs at the end of the network (Figure 

5.12, Table 5.3). A single segmentation map was allocated for each class of the model 

and the model was formulated such that the pixel-wise classifications at each location 

were not mutually exclusive. This is intuitive because, given an image, a pixel may 

correspond to multiple objects at different depths. 

Thus, this third architecture terminated with a single tensor that was responsible 

for both segmentation as well as key point predictions (Figure 5.13). The segmentation 

feature maps were trained using dice loss and the key point predictions were trained as 

usual. During inference, object predictions were taken by thresholding segmentation 

maps at a confidence level of 0.5 to get binarized maps. Dilation was applied with the 

purpose of joining potentially disconnected components. A connected components 

algorithm was applied to find the largest component in each segmentation map (Each 

class). The bounds of the resulting component were taken as the bounding box prediction. 
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Figure 5.9. A representation of the Multitool architecture. Blue cubes represent residual 

modules. The scale of feature maps are down sampled and up sampled 5 times using max 

pooling and transpose convolutional layers. 2 scales of the CNN are augmented with 

bounding box prediction modules. The final scale is responsible for key point predictions. 

The remaining scales of the decoder are augmented with deep supervision modules for 

accelerated training.  

 

 

 

 

Figure 5.10. A representation of the Multitool2 architecture. Multitool2 is similar to the 

first architecture except that CLSTM modules are added to the architecture prior to each 

bounding box prediction, as shown by the red cubes. 
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Table 5.1. Details for Multitool.  

 

 

  

Layer Number of 

Filters 

Features Prediction 

Module 

Conv 1 64 Residual module; followed by max pool  

Conv 2 128 Residual module; followed by max pool  

Conv 3  256 Residual module; followed by max pool  

Conv 4 512 Residual module; followed by max pool; followed by dropout layer  

Conv 5 1024 Residual module; followed by max pool; followed by dropout layer  

Conv 6 1024 Atrous spatial pyramid pooling module  

Conv 7 1024 Atrous spatial pyramid pooling module; followed by dropout layer Object 

detection 

module 

Upconv 1  1024 Followed by residual connection with Conv 5  

Conv 8 1024 Residual module; followed by dropout layer Object 
detection 

module 

Upconv 2 512 Followed by residual connection with Conv 4  

Conv 9 512 Residual module Deep 

supervision 
module 

Upconv 3 256 Followed by residual connection with Conv 3  

Conv 10 256 Residual module Deep 

supervision 
module 

Upconv 4 128 Followed by residual connection with Conv 2  

Conv 11 128 Residual module Deep 

supervision 
module 

Upconv 5 64 Followed by residual connection with Conv 1  

Conv 12 64 Residual module Key point 

prediction 
module 
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Table 5.2. Details for Multitool2  

 

 

 
Figure 5.11. A pipeline for asynchronous execution of batch preprocessing and training 

steps. 

Layer Number of 

Filters 

Features Prediction 

Module 

Conv 1 64 Residual module; followed by max pool  

Conv 2 128 Residual module; followed by max pool  

Conv 3  256 Residual module; followed by max pool  

Conv 4 512 Residual module; followed by max pool; followed by dropout layer  

Conv 5 1024 Residual module; followed by max pool; followed by dropout layer  

Conv 6 1024 Atrous spatial pyramid pooling module  

Conv 7 1024 Atrous spatial pyramid pooling module; followed by dropout layer; 

augmented with CLSTM 

Object detection 

module 

Upconv 1  1024 Followed by residual connection with Conv 5  

Conv 8 1024 Residual module; followed by dropout layer; augmented with 
CLSTM 

Object detection 
module 

Upconv 2 512 Followed by residual connection with Conv 4  

Conv 9 512 Residual module Deep supervision 
module 

Upconv 3 256 Followed by residual connection with Conv 3  

Conv 10 256 Residual module Deep supervision 
module 

Upconv 4 128 Followed by residual connection with Conv 2  

Conv 11 128 Residual module Deep supervision 

module 

Upconv 5 64 Followed by residual connection with Conv 1  

Conv 12 64 Residual module Key point 

prediction 

module 
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Table 5.3. Details for SegBox. 

 

 

 

 

 

 

 

 
 

Figure 5.12. A representation of the SegBox architecture. SegBox reformulates  

traditional deep learning-based object detection as a segmentation problem. 

 

 

 

Layer Number of 

Filters 

Features Prediction 

Module 

Conv 1 64 Residual module; followed by max pool  

Conv 2 128 Residual module; followed by max pool  

Conv 3  256 Residual module; followed by max pool  

Conv 4 512 Residual module; followed by max pool; followed by dropout layer  

Conv 5 1024 Residual module; followed by max pool; followed by dropout layer  

Conv 6 1024 Atrous spatial pyramid pooling module  

Conv 7 1024 Atrous spatial pyramid pooling module; followed by dropout layer  

Upconv 1  1024 Followed by residual connection with Conv 5  

Conv 8 1024 Residual module; followed by dropout layer Deep supervision 
module 

Upconv 2 512 Followed by residual connection with Conv 4  

Conv 9 512 Residual module Deep supervision 
module 

Upconv 3 256 Followed by residual connection with Conv 3  

Conv 10 256 Residual module Deep supervision 
module 

Upconv 4 128 Followed by residual connection with Conv 2  

Conv 11 128 Residual module Deep supervision 

module 

Upconv 5 64 Followed by residual connection with Conv 1  

Conv 12 64 Residual module Segmentation + 

key point 

prediction 
module 
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Figure 5.13. A representation of the SegBox architecture prediction module. A single 

output tensor is responsible for segmentation as well as key point predictions. 

 

 

Optimization 

The optimization step previously described was implemented on a GPU using 

PyTorch (Paszke et al., 2017). STLs models (Figure 5.14, 5.15) were generated using 

Skanect software and the nodes on the geometries that most closely corresponded to the 

semantic key points on each tool were manually estimated (Figures 5.4, 5.5). One 

weakness of the original approach was the brittleness of the solution in the presence of 

false positive key point predictions (Figure 5.16). It was observed that overconfident 

predictions of key points that were far from the true key point location would lead to poor 

solutions. After all, key point predictions are chosen by only taking the maximum heat 

map activation within a predicted bounding box, which is not a robust method.  
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An additional step was added to the optimization workflow to address this 

problem. Instead of naively taking only the maximum activation within a bounding box 

from each key point channel, all activations that exceeded some threshold were 

considered for the optimization problem. For each heat map of interest, all activations 

that exceeded 0.1 were filtered using NMS and then stored. This lead to a combination of 

potential solutions. To choose ideal key points, it was found that performing an 

exhaustive search over the solutions of all key point combinations did not significantly 

affect computation time if a loose convergence criteria was used. A modified version of 

the objective function (Equation 5.24) was solved using all combinations of key point 

predictions taken from the heat map. Solutions were stored once the optimization 

procedure failed to change by at least 1% over a single cycle of block coordinate descent. 

The confidence of the key point predictions was removed from this modified objective 

function: 

 

𝐿(𝜃) =
1

2
× ‖(𝑊 × 𝑍 − 𝑅 × 𝐵 − 𝑇 × 1𝑇)‖𝐹

2      (5.30) 

 

After searching over all combinations of key points, the combination with the best 

solution was taken to be the true combination of key points and then fed to the full 

optimization step. A convergence criteria of Δ = 0.1% was used for the full optimization 

step.  
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Figure 5.14. STL of the hammer.    Figure 5.15. STL of the broach handle. 

  

  
Figure 5.16. Two examples of heat map predictions with multiple proposals for a specific 

key point. An exhaustive search scheme is proposed to explore each key point proposal 

as a potential solution to the optimization problem. 
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Training Methods 

The proposed computer vision system was developed to support the detection and 

pose estimation of 2 surgical tools commonly used in TKR surgeries: A hammer and a 

broach handle. One side of the hammer head was wrapped in red tape to supplement its 

appearance with more discriminative features, as well as to counteract the symmetry of 

the object about the handle. The broach handle was wrapped in green tape. STLs and 

point clouds were created for each of the tools using Skanect. 

Nine key points were chosen to represent each of the tools for the key point 

localization step (Figures 5.3, 5.4). Synthetic data with ground truth bounding boxes and 

key point annotations was generated using the described pipeline. 350,000 instances were 

generated to train Multitool and SegBox, which was trained for 3 epochs. Multitool2 was 

pre-trained on these images for one epoch before being trained on the synthesized 

sequences of frames. 50,000 sequences of 10 frames each were generated to further train 

Multitool2. Training was performed by randomly sampling 5 subsequent frames from one 

of the sequences and then performing a training iteration. Because the frames were 

generated to simulate movement of the tools in RGB images, Multitool2 was trained 

using backpropagation through time to accumulate gradients over different time steps 

through the CLSTMs. All CNNs were also trained with gradient clipping by constraining 

gradients to the range [-1, 1]. 
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Evaluation Methods 

The computer vision system was evaluated by assessing the quality of the object 

detection component, as well as the accuracy of pose predictions. An Intel RealSense D-

435 camera (Figure 5.17) was used to capture a video stream of 200 frames with each of 

the tools present at 5 frames per second (FPS) in the Experimental Biomechanics Lab 

(EBL) at the University of Denver. The video stream was manually annotated with 

bounding boxes and key point annotations for evaluating the object detection 

performance of the CNNs. The video stream was fed to each of the CNNs and bounding 

box predictions were obtained. Bounding box predictions were compared to ground truth 

using an Average Precision (AP) with IoU at 0.5 (Lin et al., 2014). AP was not recorded 

for the SegBox predictions because this metric necessitates some form of bounding box 

prediction confidence, and it was not obvious how to apply this to bounding boxes 

obtained via segmentation maps. Confusion matrices were also obtained for each model 

and class. For frames in which there was both a ground truth box and a predicted box, a 

true positive was recorded if the predicted box yielded a IoU of at least 0.5 with the 

ground truth. Otherwise, a false positive was recorded because the bounding box was too 

inaccurate. An “accuracy” metric was determined from the confusion matrices to allow 

for the comparison between SegBox and the Multitool CNNs. 

A method for validating the accuracy of the pose predictions was developed. Each 

tool was fitted with three motion capture markers and placed on the ground in the Human 

Dynamics Lab (HDL) at the University of Denver. STLs were generated for each tool 

with three markers attached. A calibration wand with five markers was placed adjacent to 
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each tool and the Intel RealSense was placed so that the calibration wand and tools were 

in the camera’s field of view (Figure 5.18). The Intel RealSense captured a color frame 

while a VICON system was used to locate the markers on the calibration wand and on the 

tools in the scene. Six different scenes were captured.  

The 5 markers on the calibration wand were manually annotated on the image 

plane and the optimization problem from Equation 5.30 was solved to determine a 

transformation between the wand markers in the Vicon coordinate system and in the local 

camera coordinate system. The transformation was qualitatively verified by transforming 

the wand and tool markers to the local camera coordinate system and reprojecting the 

result onto the image plane (Figure 5.19). The transformation was applied to the tool 

markers to retrieve the wand markers in the camera coordinate system. The use of depth 

data from the Intel RealSense camera was originally explored as an alternative to using 

the optimization step. However, the depth data was noisy and resulted in marker 

coordinates that did not maintain the geometric constraints of the wand. 

Each scene was processed by the computer vision system using each CNN 

separately to predict the pose of the tool in the scene in the local camera coordinate 

system. The resulting values of R and T from Equation 5.9 were applied to STL nodes 

that represented the marker positions on the STL to get the predicted marker positions in 

the camera coordinate system. The predicted position of the tool markers was compared 

to the markers as located by the Vicon system and transformed into the camera 

coordinate system. The translation error for each scene was determined based on L2 norm 

between predicted and ground truth marker positions. Additionally, pose estimation error 
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was assessed from manually annotating key points in an image frame. Errors were 

calculated for all 6 scenes. The resulting computer vision system was thus evaluated by 

assessing the object detection performance of the CNNs as well as the final pose 

estimation produced by the full system.  

 

 

 
Figure 5.17. The Intel RealSense D-435 camera.  
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Figure 5.18. A Vicon calibration wand and the hammer with attached Vicon markers 

were placed in the camera’s field of view. The markers on the calibration wand were 

located in both the local coordinate system and Vicon coordinate system. A 

transformation was determined in order to compare the ground truth tool marker locations 

to the system’s prediction. 

 

 

 
Figure 5.19. The transformation between the Vicon and camera coordinate systems was 

verified by applying the transformation to the markers in the Vicon coordinate space, and 

then reprojecting the result onto the image plane.  
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Results  

Qualitative results for the object detection and key point predictions are presented 

for Multitool and Multitool2 (Figure 5.20). Segmentation maps and resulting bounding 

box and key point predictions are presented for SegBox as well (Figure 5.21).  

AP metrics for both CNNs and tools are presented in table 5.3 and compared to 

numbers from literature. Multitool2 performed slightly better on average than Multitool, 

with AP values of 87.2 and 78.6 for the hammer and broach handle, compared to 59.1 

and 89.0 for Multitool. AP values for a variety of laparoscopic tools from a recent paper 

are presented for comparison, which range from 17.5 to 86.3. Performance from 

benchmark literature is also reported to lend intuition around object detection 

performance on less specialized tasks. 

 Class-wise confusion matrices and derived accuracy metrics are presented for 

each CNN in Tables 5.4-5.10. Multitool2 outperformed the other two architectures on 

these metrics as well. 

The pose estimation predictions are presented for each validation frame by 

projecting the position of STL nodes back onto the image plane (Figure 5.22-5.27). 

 Median nodal translation errors from pose estimations are presented for each 

frame (Table 5.12).  SegBox failed to recognize 3 of the 6 validation scenes. Multitool2 

failed to recognize 1 of the scenes. Medial translation error ranged from 1.4-89.6 cm. 

Additionally, errors resulting from manually annotated key points are presented in Table 

5.13. These errors ranged from 1.1-7.5 cm. 
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Figure 5.20. Test frame predictions from Multitool (left column) and Multitool2 (right). 
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Figure 5.21. Test frame predictions (left column) from SegBox along with class-specific 

segmentation maps before (middle) and after (right) applying dilation. 
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Table 5.4. Comparison of results with object detection literature. 
Method Object AP 

(Jin et al., 2018) Laparoscopic grasper 48.3 

(Jin et al., 2018) Laparoscopic bipolar 67.0 

(Jin et al., 2018) Laparoscopic hook 78.4 

(Jin et al., 2018) Laparoscopic scissors 67.7 

(Jin et al., 2018) Laparoscopic clippers 86.3 

(Jin et al., 2018) Laparoscopic irrigator 17.5 

(Jin et al., 2018) Laparoscopic specimen bag 76.3 

SSD512 (Liu et al., 2016) COCO test-dev2015 Mean over class (mAP) 46.5 

YOLOv2 (Redmon and Farhadi, 

2017) 

COCO test-dev2015 Mean over class (mAP) 44.0 

Faster RCNN (Ren et al., 2017) PASCAL VOC 2012 Mean over class (mAP) 73.2 

Multitool (Us) Hammer 59.1 

Multitool (Us) Broach 89.0 

Multitool2 (Us) Hammer 87.2 

Multitool2 (Us) Broach 78.6 

 

Table 5.5. Confusion matrix for the hammer as predicted by Multitool. 
 Predicted box No predicted box 

Ground truth box 73 5 

No ground truth box 30 90 

 

Table 5.6. Confusion matrix for the broach handle as predicted by Multitool. 
 Predicted box No predicted box 

Ground truth box 83 4 

No ground truth box 5 106 

 

Table 5.7. Confusion matrix for the hammer as predicted by Multitool2. 
 Predicted box No predicted box 

Ground truth box 77 3 

No ground truth box 7 111 

 

Table 5.8. Confusion matrix for the broach handle as predicted by Multitool2. 
 Predicted box No predicted box 

Ground truth box 75 6 

No ground truth box 13 104 

 

Table 5.9. Confusion matrix for the hammer as predicted by SegBox. 
 Predicted box No predicted box 

Ground truth box 35 5 

No ground truth box 48 110 

 

Table 5.10. Confusion matrix for the broach handle as predicted by SegBox. 
 Predicted box No predicted box 

Ground truth box 68 3 

No ground truth box 24 103 
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Table 5.11. Accuracy derived from confusion matrices. 
 Hammer Broach Handle 

Multitool 82% 95% 

Multiool2 95% 90% 

SegBox 73% 86% 

 

Table 5.12. Median absolute nodal translation error for pose estimations (cm). 
 Multitool Multitool2 SegBox 

Head 

Marker 

Middle 

Marker 

Bottom 

Marker 

Head 

Marker 

Middle 

Marker 

Bottom 

Marker 

Head 

Marker 

Middle 

Marker 

Bottom 

Marker 

Scene 1 18.1 9.9 2.9 4.4 4.3 11.0 N/A N/A N/A 

Scene 2 7.3 5.2 5.4 74.9 89.7 106.4 N/A N/A N/A 

Scene 3 43.2 47.6 52.6 N/A N/A N/A N/A N/A N/A 

Scene 4 12.6 14.0 14.9 8.6 9.8 10.3 16.5 12.3 25.4 

Scene 5 5.9 4.5 9.3 5.8 2.0 4.5 5.1 7.4 11.7 

Scene 6 5.2 2.4 1.9 5.6 2.0 2.3 5.1 1.4 1.8 

 

Table 5.13. Marker translation error from manual key point annotation (cm). 
 Head Marker Middle Marker Bottom Marker 

Scene 1 7.2 7.0 6.9 

Scene 2 2.4 1.8 1.5 

Scene 3 1.4 2.2 1.1 

Scene 4 7.0 7.3 7.9 

Scene 5 2.5 2.3 2.9 

Scene 6 2.6 3.0 4.7 

 

 

 

 
Figure 5.22. Pose estimation for scene 1 from Multitool, Multitool2, and SegBox. 
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Figure 5.23. Pose estimation for scene 2 from Multitool, Multitool2, and SegBox. 

 

 
Figure 5.24. Pose estimation for scene 3 from Multitool, Multitool2, and SegBox. 

 

 
Figure 5.25. Pose estimation for frame 4 from Multitool, Multitool2, and SegBox. 

 

 
Figure 5.26. Pose estimation for frame 5 from Multitool, Multitool2, and SegBox. 
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Figure 5.27. Pose estimation for frame 6 from Multitool, Multitool2, and SegBox. 

 

 

Discussion 

 The proposed computer vision system represents one of many potential 

approaches for detecting and localizing surgical tools in the OR. The system 

requirements consist of an RGB camera with calibrated intrinsic parameters and a GPU. 

The use of a system that relies on only RGB images allows for efficient data 

synthetization for the development of the deep learning components of the system. 

The AP metric was used to evaluate the object detection component of the deep 

learning system on a sequence of manually-annotated video frames. Because both the 

training and testing data sets were developed in-house, direct comparisons with literature 

are not conclusive. However, values from literature are presented to develop intuition 

about the quality of the object detection component of the system. A relevant paper by Jin 

et al. (2018) used CNNs for object detection of laparoscopic surgical tools in video 

frames captured during surgery. Average precision reported using IoU thresholds of 0.5 

ranged from 17.5 to 86.3, with a mean over all classes (mAP) of 63.1. In contrast, 

Multitool and Multiool2 reported AP values ranging from 0.59 to 0.89. Although direct 

comparisons are not feasible between the two datasets, AP values reported for Multitool 

and Multitool2 demonstrate the effectiveness of the object detection component when 
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compared to recent literature on surgical tool detection, with Multitool2 outperforming 

Multitool on average over the two classes. 

The model by Jin et al. (2018) was trained on around 1,200 images, validated on 

750, and tested on 500. The model was also pre-trained on ImageNet (Deng et al., 2009). 

The CNNs in this chapter were not pretrained. Finetuning of pretrained weights available 

through Keras (Chollet, 2015) was initially explored but the imported models were found 

to be slower than architectures built from scratch in TensorFlow. Pre-training was 

subsequently abandoned due to the importance of speed. Additionally, these models were 

trained on over 100,000 images each, not validated, and tested on 200 images. Validation 

data was previously used in the training of Multitool but was deemed to be unhelpful so 

the data was added to the training set. The noisy labels of the key point annotations on the 

validation data resulted in key point predictions that did not line up during training. As a 

result, the loss on the validation set seemed to diverge very early on during training, 

giving the illusion of overfitting to training data. However, predictions on the validation 

data continued to improve from a qualitative standpoint. This is important to keep in 

mind in cases of noisy data.  

The mAP metric was also reported for state-of-the-art object detection literature 

on benchmark datasets. Everingham et al., (2010) present a dataset that contains 20 object 

classes, some of which are very difficult to detect. The dataset by Lin et al. (2014) 

contains 91 classes. In contrast, Multitool and Multitool2 were developed to support only 

2 classes. This partially explains the gap in performance that is demonstrated in Table 

5.3.  



  

110 

 

The data synthetization pipeline proved to be an effective tool for the training of 

CNNs. In order to develop a robust CNN, it is preferable to capture multiple views and 

lighting of the tools to be used. Additionally, it was found that if the model was not 

trained on images with multiple tools in a single frame, then the resulting model was not 

able to detect 2 tools in one frame. The training data should match the inference scenario 

as closely as possible. This tool would ideally be used in an OR but the training data was 

completely unrelated to OR scenes. A future research direction is to consider this issue 

either by choosing OR images as background for the data pipeline, or by capturing OR 

frames that contain the tools of interest. The captured data could then be leveraged in 

training with a semi-supervised framework to avoid manual annotation of the images. 

That is, a new CNN could be trained using the synthetic data but also by applying MT to 

the unsupervised OR footage. Bolstering the training data set to include real images is a 

future research direction. 

The development of SegBox presented an experimental approach to the object 

detection problem. In addition to performing worse than the other two CNNs, another 

limitation of the SegBox formulation is its ad hoc inference scheme. The inference 

scheme assumes only a single instance per class is possible. This defeats the purpose of 

object detection, which ideally is agnostic to the possible number of instances in a frame. 

There is potential to extend the current formulation of SegBox to deal with multiple 

instances of a class. The use of associative embeddings is a potential solution (Newell et 

al., 2017). 
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The pose validation approach verified the efficacy of the computer vision system. 

Pose estimation errors stem from poor key point predictions by the CNN, disconnects 

between STL nodes and key point predictions, and uncertainties associated with the 

validation approach itself. Key points for each tool were manually annotated on the 

image plane by hand and the corresponding nodes on the tool geometry were also 

manually estimated. Therefore, there is an inherent disconnect between the key points 

predicted by the CNN and the actual location on the STL geometry. This source of error 

is accurately captured by the validation approach. An alternative method for verifying the 

relation between key point predictions and corresponding STL nodes may be 

instrumental in reducing pose estimation error. Another source of error stems from the 

STL geometry. The STL was generated using Skanect, which comes with its own source 

of error.  In fact, the resulting STLs were of poor quality. This may result in differences 

between the STL geometry and the actual physical tool, leading to subpar optimization 

performances. Uncertainties in the validation approach stem from error in the 

transformation from the Vicon to camera coordinate system. Additional uncertainties 

stem from a disconnect between the Vicon markers on the tool and the STL nodes used to 

represent these markers. Pose estimation error was determined based on manually 

annotated key points in an attempt to yield intuition about the magnitude of these 

uncertainties 

 The proposed computer vision system demonstrates potential for tracking surgical 

tools in the OR. Based on the initial pose accuracy results, the system may be most 

beneficial for operations research applications, such as tracking the spatial flow of tools 
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throughout an operation. However, by improving upon the detection and optimization 

components of the system, it is not inconceivable that this system could be used for 

applications that demand a higher precision. The current system is able to operate at 

around 4 FPS using a GPU, which approaches the speed required for operations research 

methods. Improvements in speed are a future goal. 

  Additional future research directions include further development of the deep 

learning components of the system and improvement of the validation approach to reduce 

uncertainties in pose estimation.  

 

5.4 Conclusion 

A computer vision system was presented for the detection and 6-DoF pose 

estimation of two surgical tools commonly used in TKR. The system utilized deep 

learning methodologies and an optimization step to place a prior known geometry in the 

local camera coordinate system. The object detection component of the system yielded 

performance on par with current literature and the pose estimation component was 

deemed to be accurate enough for operations research applications. However, ultimately, 

the object detection component still needs improvement because the success of the entire 

system depends on initial detection of the objects of interest. Future development of this 

system aims to improve the CNN components of the system and develop higher quality 

validation pipelines.  
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

 

 The work presented in this thesis explored how deep learning can be applied to 

the field of orthopaedics through the development of three distinct applications. In each 

of these applications, model performance was upper-bounded by the availability of data. 

Machine learning, by definition, requires data to be successful; and neural networks are 

particularly data-hungry. Methods for tackling the data bottleneck were presented for two 

of the three applications in this thesis. Semi-supervised learning algorithms were 

successfully applied to automatic segmentation of medical imaging to leverage unlabeled 

data in addition to the small quantities of labeled data. A pipeline for the generation of 

synthetic data was proposed for the training of CNNs used in the surgical tool tracking 

system. The employment of these methods led to successful models. However, for 

predictive modeling of patient mechanics, it was unclear how to efficiently generate 

synthetic labeled data; and even obtaining unlabeled data for use in semi-supervised 

learning frameworks would be expensive in this domain. The expense associated with 

obtaining labeled data for the training of these predictive models emphasizes the need for 

a data-driven approach for quick and accurate estimation of metrics of interest.  

 Thus, tackling a machine learning problem is never just about the algorithm itself. 

In fact, the algorithm may end up being the most trivial part of a machine learning 
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algorithm. When facing a new machine learning problem, the first question should 

always focus on the nature of the data. No matter what form of algorithm is used, the 

performance will depend heavily on the availability of data. 

Future development around automatic segmentation could focus on expanding to 

new anatomies and modalities and utilizing the resulting models in a practical workflow. 

Additionally, exploring how to get sufficient model performance from minimal labeled 

data would be useful. 

 The deep learning-based computer vision system performed decently well when 

trained on synthetic data but nevertheless it is hypothesized that the CNN predictions 

would benefit from real data as well. Real footage can easily be obtained for use in semi-

supervised learning scenarios but there may be another way to cheaply obtain (real) 

labeled data as well. A proposed approach consists of capturing a video sequence that 

tracks an object of interest and annotating the first frame with ground truth bounding 

boxes and key points. Then, optical flow algorithms could be applied to estimate the 

optical flow at each subsequent frame. The original manual annotations could be 

iteratively updated at each frame to follow the estimated optical flow. It would be 

interesting to assess the quality of labeled data that is obtained in this manner.  

 It is currently unclear how to overcome the data bottleneck associated with the 

patient mechanics predictive modeling but it is hypothesized that the aggregation of 

significantly larger quantities of data could result in a production-ready system for the 

prediction of patient mechanics during ADLs.  
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