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Abstract
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Experiments with nanoscale structures, designed to measure some of their thermal and

optical properties, are the subjects of this dissertation. We studied the transport of thermal

energy in systems of nanoparticles, and used the method of transient thermoreflectance to

monitor those dynamics, and assess whether thermal transport features special to nanoscale

systems emerged. This same method was also used to study the thermal transport of a single

system of layered membranes. Optical properties were investigated using computational

simulations of a nanoparticle system, using the method of finite-difference time-domain

simulation.

In nanoparticle studies, there are two features of interest special to nanoscale sys-

tems: the transition from diffusive to ballistic thermal transport, and the presence of ther-

mal resistance at interfaces. Our platform for studying these features was a system of gold

nanoparticles, having citrate capping layers, and embedded in a polymer matrix. Our tran-

sient thermoreflectance method uses an ultrafast, infrared, pulsed laser to impulsively heat
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the particles, with an initial laser pulse, then measures the power of a second pulse, which

reflects from the particles at a controlled delay time following the heating. The reflected

power depends on the steadily decreasing temperature of the particles, and collecting this

data over a range of delay times provides a picture of the nanoparticles’ cooling dynamics.

We have developed the first multilayer, spherical model of this diffusive cooling process,

explicitly including interfacial boundary resistance. By adjusting it to our measurement

results, we determine the amount of boundary resistance, the capping layer thickness, and

the thermal conductivity of the matrix. Though we do not observe ballistic transport in

this system, we have measured both the first value of the gold/polymer interfacial thermal

resistance, and the capping layer thickness, and found both of them to significantly affect

the transport of thermal energy.

Thermal boundary resistance was also a property of interest in our membrane systems,

which consisted of a suspended bridge structure of a molybdenum (Mo) film deposited on

a silicon nitride (SiN) substrate. This thermal isolation structure, designed and fabricated

by our collaborators, enabled us to test whether the substrate material retains its bulk

value of thermal conductivity and heat capacity at the nanoscale, which must otherwise

be assumed in larger-scale experiments. Using transient thermoreflectance to monitor the

thermal dynamics following impulsive heating of the upper surface of the metal film, we

have measured the thermal boundary resistance present at the Mo/SiN interface, and found

that, within experimental uncertainties, the bulk SiN conductivity and heat capacity values

are retained.
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In a separate study, we modeled the optical absorption properties of gold nanoparti-

cles, in the visible range, using the method of finite-difference time-domain simulation. This

method calculates the change induced in an incident pulse of visible light as it propagates

past a particle, placed in a water matrix, and finds the fraction of the pulse’s electromag-

netic energy absorbed by the particle. The energy absorbed is determined by the dielectric

properties of gold – one picture of which is the Lorentz-Drude model, which derives dielectric

properties from electron scattering behavior and resonances. Fitting this model to literature

dielectric data, we predict an absorption spectrum which agrees with experimental values

within several nanometers.
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Chapter 1

Introduction

1.1 Physical systems which impel the study of nanoscale
thermal transport

Multiple developing technologies continue to claim the advantages made possible by

devices engineered at the nanoscale. The diversity of applications where siginificant or dra-

matic progress are enabled through nanotechnology is represented by examples in continu-

ally smaller and more powerful microelectronics; nanostructured, advanced materials, both

solid and fluid, with enhanced properties; nano-sensors, including chemical sensing devices;

medical applications in nanophototherapy, medical imaging and drug delivery; efficiency of

chemical catalyts; and optical applications, including improved laser gain media and poten-

tial photovoltaic light trapping. Understanding these new systems includes understanding

their thermal properties, and is essential for tasks such as optimizing thermal management

of microelectronics, developing effective and efficient enhanced materials, and designing the

nanoscale thermal devices of medical applications.

Accompanying the exciting developments that lie on the path to progressively smaller

devices are challenges which are inherent in their advantageous small size: physical realities

that bring into question, and eventually negate, the validity of previously accurate, classical

approximations, as the nanometer scale is approached and entered. In the case of nanoscale

thermal physics, the most significant considerations are the finite, i.e. non-zero, phonon

1



mean-free-path, and the finite, also non-zero, resistance of thermal interfaces. In particular,

the increasing difficulty in controlling climbing temperatures in microelectronics, a recog-

nized barrier to reducing device sizes, is due to both of these effects. In the case of medical

nanoparticles used as nanoscale thermal sources, the choices of particle core and capping

materials is significantly affected by thermal resistance at interfaces.

For macroscale systems, thermal dynamics are understood through proven, classi-

cal physical science. This understanding is theoretically grounded in the laws of thermo-

dynamics, and material properties, primarily specific heat and thermal conductivity, are

well-defined. The resulting ability to accurately predict system temperatures from known

heating, material properties, and dimensions, is especially important and valuable. In fact,

the classical theory even seems to incorporate and account for nanoscale considerations, at

least initially: the concept of the mean-free-path is a basic part of the physical picture, and

boundary resistance is represented properly and quantitatively in calculations.

However, in truly nanoscale systems, limitations of the classical method clearly emerge.

Predictions increasingly and significantly underestimate temperatures as the nanoscale is

approached. Just as importantly, the model of interface resistance is phenomenological only,

i.e. it has no capability for, or intention of, predicting the interface resistance between two

given materials.

The developing theories and experimental methods of nanoscale thermal physics

address all of the above considerations.1 In these studies in particular, we will examine the

transition from a macro- to a nanoscale picture, begin to understand theories of thermal

dynamics and interface resistance, and validate a theoretical interface resistance prediction

with our experimental results. We continue with an outline of the successive sections of this

dissertation.
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1.2 Outline

In chapter 2, we begin by developing a physical picture of thermal transport, pre-

senting two different intuitions of how transport occurs in macroscopic solids, and show

that they both lead to the same fundamental, characteristic equation, the classical heat

equation. We discuss how the heat equation is used to predict the specific distribution

of temperatures resulting from a known source of heating, for both spherical and planar

geometries.

Chapter 3 moves our study to the nanoscale, considering special features of transport

which emerge there, the property of thermal boundary resistance in particular. We describe

theories that move away from the classical continuum picture, toward the implications of

lattice structure for available vibrational energies, and the effect of small scales on the

transport of this energy. We also estimate the scales of length and time which are implied

by this nanoscale picture, and which are required by the structures we employ to study

nanoscale effects.

With an understanding in place of the physical mechanisms and systems being consid-

ered, chapter 4 describes the experimental method of transient thermoreflectance. We dis-

cuss how pulses from an ultrafast laser and the property of thermoreflectance work together

in an apparatus capable of monitoring cooling dynamics at the time and length scales

required by the nanoscale systems of chapter 3. The TTR description is completed by sec-

tions on additional components which provide the apparatus with its required sensitivity

and stability.

Chapter 5 presents the studies of nanoscale thermal transport in a nanoparticle sys-

tem. After reviewing some existing related studies, we describe in detail the design of our

TTR apparatus for sensitive measurements of the nanoscale properties of interest. Here we

3



also derive a multilayer theoretical model of the TTR signal which is required to calculate

thermal parameters from our data. We present the first simultaneous measurement of both

TBR and capping layer thickness in the same NP system.

Chapter 6 begins with examples of experiments studying nanoscale thermal proper-

ties, using TTR with thin films on thick substrates, and points out some assumptions which

were required in order to calculate numerical results. We then describe the thermal isola-

tion platform structure, with its thin underlying substrate, and how our experiments were

designed to test these assumptions. Our initial results suggest that the assumptions are

valid in the case of thin metal films on thin membranes, and demonstrate the effectiveness

of the TTR method in nanoscale transport studies on membranes. An accepted planar

model of the TTR signal is applied to the calculation of our results.

We move from thermal to optical properties of gold NPs in chapter 7, with a description

of the role of their absorption spectra in chemical sensing experiments and other applica-

tions. The FDTD computational method simulates the interaction of an NP with an incident

pulse of visible light, and the calculation of absorption properties from this interaction is

described. The features of the resulting spectrum are determined by the underlying dielec-

tric function of gold, literature values of which vary significantly. We show that by fitting

the Lorentz-Drude model of the dielectric function to recently published data, we predict

absorption spectra that agree closely with experimental absorption results.

NP thermal transport and absorption simulation results are summarized in chapter

8, and we consider some interesting ideas for future studies suggested by these findings.
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Chapter 2

Diffusive Thermal Transport

2.1 Equivalence of continuum and random walk pictures

Before beginning a description of the thermal systems used in these thermal transport

studies, let’s prepare tools that will enable the calculation of the thermal properties of

interest from measurements made on those systems. Thermal properties such as TBR

define how a system behaves when it possesses a given amount of thermal energy, and also

how it responds to a change in that energy. In our experiments, we observe the response to

energy changes in the form of system heating, and its response is its resulting temperature.

So we are seeking a model that relates observed, changing temperatures, as the system

heats or cools, at whatever location in the system the measurement is done, to known

heating. We vary property values appearing in the model to match measurement data,

thereby calculating a property value, if measured temperatures are sufficiently sensitive to

the property’s value.

So how does heating a certain material determine how temperatures respond over

time, at a certain location in the system? Intuition suggests some key ideas: after heat-

ing has occurred, temperatures begin to decrease, so thermal energy must be moving, i.e.

transport is happening; it seems natural that the hotter temperatures are, relative to sur-

roundings, the faster the energy would move; the motion isn’t the result of any directed
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force, though, so it must move randomly, in such a way that it speads out over time; thermal

energy in a solid must represent the vibrational energy of its atoms and molecules.

To make the first two above ideas quantitative, if hotter (compared to surroundings)

means faster, then the thermal energy flow per unit area f , the thermal flux, must increase

with the rate of temperature T decrease with distance x. Let’s call this idea “continuum

transport.” Direct proportionality is the simplest such relation:

f ∝ − dT

dx
(2.1)

for temperature decreasing along the x-axis. Relation (2.1) would be true at any point r,

at any time t, in the system, and extending it to three dimensions gives Fourier’s law:

f(r, t) = −k ∇T (r, t) (2.2)

where k is the thermal conductivity of the material. This is a classical, first step in predicting

the field of temperatures caused by heating.

Returning to the ideas of vibrational energy and random motion, vibrational energy

in a finite space is quantized on the atomic scale, so we can picture thermal transport as

the random motion, in a series of steps of varying length, of individual thermal energy

units, phonons. This picture of transport is reasonably thought to be the net result of

more phonons diffusing from a higher energy-density, warmer region, than the diffusion to

the same region from an adjacent, cooler, lower energy-density region. Calling this picture

“diffusive transport,” let’s again write the flux in terms of temperature. With l the mean

step length, the mean free path, and t the mean step duration, the mean relaxation time,

consider a 1D space with temperature decreasing in the x-direction, on overall length scale

L� l. Let’s calculate the flux between two adjacent regions of length l, with total thermal

energies Ei and energy densities ei related by Ei = eil, and temperatures Ti. Over one

relaxation time, since the phonon transport is random, and there are two options for the

6



direction of transport, half the energy in each region must cross the boundary between the

two, as shown in figure 2.1, so the mean flux is

f(x, t) =
E1(x,t)

2 − E2(x,t)
2

t
= −1

2

l

t
(e2(x, t)− e1(x, t)) = −1

2

l2

t

e2(x, t)− e1(x, t)

l
. (2.3)

Since l� L, the last factor is ∂e
∂x , and the flux becomes

f(x, t) = −α∂e(x, t)
∂x

, (2.4)

with the diffusivity α = l2

2t . We’re seeking flux in terms of temperature, and (2.4) is in terms

of energy density, but the two are related through the volumetric specific heat cV = ∂e(r,t)
∂T ,

giving

f(x, t) = −α∂e(x, t)
∂T

∂T (x, t)

∂x
= −αcv

∂T (x, t)

∂x
. (2.5)

l l

x

l l

1 2

Figure 2.1: Projecting a single step of diffusion along one dimension x, between regions 1
and 2. Each phonon path is of mean length l. Green paths originate in region 1, red in
region 2. Each may move in either the +x or −x direction, with equal numbers of each
case. There is a net flow of thermal energy from region 2 to region 1.
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The 3D extension is again Fourier’s law,

f(r, t) = −k∇T (r, t), (2.6)

with diffusivity defined by k = αcv. This result indicates that it is the diffusion transport

picture that actually underlies the continuum picture. We have assumed that conductivities

and specific heats are material properties independent of space and time, and that the scale

of the system is much larger than the phonon mean free path. Within these limits, the

continuum and diffusive intuitions both lead to the same equation for flux and temperature,

indicating that both pictures are equally and simultaneously correct. In the chapters that

follow, the continuum picture most easily leads to the boundary conditions required to

predict a temperature distribution from input heating, while the diffusion picture will lend

itself to theoretical calculation of the main nanoscale quantity of interest, the thermal

boundary resistance.

2.2 The heat equation

Fourier’s law (2.2) relates flux and temperature to each other, but if we’re seeking

an expression for temperature only, let’s look at the flux term: it’s the energy flow at a

point, and energy and temperature changes are related by the material’s isochoric heat

capacity, so writing flux in terms of energy could eliminate flux from the expression, leaving

just temperature, as desired. Energy conservation is exactly the flux/energy connection

we need. Vibrational energy would have to be attributed to a finite volume V of material

instead of only a point, so the flux through the enclosing surface S must be the rate of

decrease of the volume’s energy E:∮
S

f(r, t) · da = −∂E(r, t)

∂t
. (2.7)
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Again utilizing the volumetric specific heat cv allows the RHS of (2.7) to be written as a

function of temperature:

−∂E(r, t)

∂t
= −

∫
V

∂e(r, t)

∂T

∂T

∂t
dV = −cv

∫
V

∂T

∂t
dV. (2.8)

Applying the divergence theorem to the LHS of (2.7), with the arbitrarily-chosen V

allowing the volume integration to be dropped, leaves

∇ · f(r, t) = −cv
∂T (r, t)

∂t
, (2.9)

and f(r, t) is eliminated by equating the divergence of (2.2) with (2.9):

∇2T (r, t) =
1

α

∂T (r, t)

∂t
. (2.10)

This is the classical heat equation, expressing the conditions on the temperature field T (r, t)

implied by the ideas of continuum transport, diffusive tranport, and energy conservation.

It is the primary tool we will use to predict the response of our thermal systems to heating,

as shown in the following sections. In the particular experimental systems studied here, the

region of heating is well approximated by a surface area, as opposed to body heating, and

is described in section 2.4 on boundary conditions. With no body heating term needed in

the homogeneous heat equation (2.10), we move on to solutions for the temperature.

2.3 Steady-state planar and spherical solutions in infinite media

The TTR experimental method specifically measures the time-domain response of a

system to heating - impulsive heating, in our case, so we will need to solve the heat equation

(2.10) for the time-dependent temperature field due to a train of heating pulses. The heat

equation is linear, and as mentioned all of the thermal parameters (including the TBR

quantity defined below) are time-invariant. For systems that are linear and time-invariant
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(LTI), Fourier analysis and superposition directly provide the temperature solution as the

net response to the sinusoidal frequencies making up the impulsive heating input.

So if we need the response to certain frequencies as a prior step to calculating the

time-domain response, let’s convert the heat equation to the frequency domain for a given

angular frequency ω. For the planar case, we expect a cylindrical geometry centered around

the optical axis of the heating beam – this is the approach used in the widely-used model

of Cahill,2 in which the solution is calculated as an integration over a radial distribution

of periodic point sources. In this section we’ll establish the solution for a point source at

the origin,3 and extend it to the cylindrical geometry in section 6.2, where the TTR signal

model is discussed.

The form of the heat equation implies a particular solution of

T (r, t) =
Q

8cv(παt)
3/2

e
−r2
4αt . (2.11)

The total energy would be
∫∞
−∞ cvT (r, t)d3r, and at any time t > 0, the result is the constant

Q. Also, (2.11) is zero at t = 0, except at the origin, where it diverges. Equation (2.11)

therefore defines the impulse response to instantaneous heating at the origin ψ(r, t) =

Qδ(r)δ(t) of energy Q, in a solid of diffusivity α and specific heat cv. Now for periodic

heating of power amplitude A, we have ψ(r, t) = Re{Aδ(r)eiωt} = Aδ(r)
∫∞
−∞ e

iωt′δ(t′−t)dt′

(real parts are understood from here on). This is an integration over time of impulsive inputs

with weights eiωt, so for this LTI thermal system, the resulting output temperature becomes

the time integral of the likewise weighted impulse solution (2.11) - with A replacing Q, since

we’re now integrating over time. For a steady-state response at time t, the integration is

taken from t′ = −∞ to t:

T (r, t) =
A

8(πα)3/2

∫ t

−∞
eiωt

′ e
− r2

4α(t−t′)

(t− t′)3/2
dt′ = A

e−qr

4πkr
eiωt, (2.12)
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where q2 = iω
α . Equation (2.12) is the steady-state temperature due to periodic heating at

the origin.

For the isotropic, spherical geometry, the steady-state heat equation for a periodic

source can be solved directly. Solutions are of the form T ′(r, t) = T (r)eiωt, and with the

substitution F (r) = rT (r), the heat equation becomes

d2F (r)

dr2
− q2F (r) = 0, (2.13)

with general solution

F (r) = c−eqr + c+e−qr. (2.14)

In chapters 5 and 6 we will apply the planar and spherical steady-state solutions to the

multilayer geometries used in these experiments, and derive the TTR signals we need for

comparison with experimental data.

2.4 Applicable boundary conditions

Although thermal boundary resistance R is the primary nanoscale thermal property

of interest in these studies, its definition is independent of scale. In the continuum transport

picture, thermal flux is driven by a temperature gradient, so for a boundary at x0 between

materials 1 and 2, as shown in figure 2.2, a finite boundary conductivity G = 1
R allows flux

for a given discontinuity of temperature by:

f(x−0 , t) = G(T1(x−0 , t)− T2(x+
0 , t)) =

1

R
(T1(x−0 , t)− T2(x+

0 , t)), and (2.15)

T2(x+
0 , t)− T1(x−0 , t) = k1R

∂T (x−0 , t)

∂x
. (2.16)

Fourier’s law at point x−0 has been used in the last step. Equation (2.16) also implies that

temperatures are continuous at a boundary where R = 0.
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x

x0

1 2

x0 x0
- +

G = 1/R

Boundary conductivity

f(x0,t)

T(x0
-,t) T(x0

+,t)

Figure 2.2: Quantities involved in the definition of thermal boundary resistance.

Surface heating is represented as a discontinuity of flux, when crossing the surface. For

a surface located at x0, heating of strength A0 in the x direction induces the discontinuity

f2(x+
0 )− f1(x−0 ) = q, and (2.17)

k2
∂T (x+

0 , t)

∂x
− k1

∂T (x−0 , t)

∂x
= −q, (2.18)

showing that temperature derivatives are related by the ratio of conductivities in the absence

of surface heating. These two boundary conditions will be used to both solve for the

temperatures resulting from heating, and to construct the multilayer models we require.
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2.5 Conclusions

We have developed pictures of how thermal transport happens in the systems of these

studies, and clarified some assumptions on which we rely. The steady-state heat equations

and their boundary conditions now provide a platform for developing a multilayer model of

our experimental structures, and show how TBR is included in the thermal models of these

structures. We now turn to considerations of transport that are special to the nanoscale

regime.
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Chapter 3

Nanoscale Thermal Transport

In section 2.1, macroscopic thermal transport was shown to arise from the underlying

diffusive transport picture, with phonons moving randomly in three dimensions, and char-

acteristic mean free paths and relaxation times for a given medium. The validity of the

heat equation, as the means of predicting system temperatures from given heating, relies on

the assumption that the system’s overall scale is much greater than the largest mean free

path of its materials. In these experiments, the greatest mean free path is that of electrons

in gold NPs, and experiments are carried out near room temperature, where the mean free

path of gold is approximately 38 nm4. Our NPs, with an average radius of 10 nm, are on

a small enough scale to be significantly sensitive to nanoscale effects.

A range of such effects is surveyed in Cahill, Nanoscale Thermal Transport II, 2014.5

In addition to ballistic transport and thermal boundary resistance, nanoscale effects also

include anisotropy and reduction of conductivity due to surface scattering,6 where, for

example, the conductivity of silicon, in silicon-on-insulator transisitors, is observed to be

reduced to about 25 W/m K from its bulk value of 150 W/m K. Boundary resistance along

the path from active devices to the environment also plays a significant role in determining

peak operating temperatures and long-term reliability. Complex non-equilibrium conditions

can exist when fast electrical switching transient signals, on the order of 10 ps, are shorter

than the silicon lattice thermal relaxation time.5 Nanoscale dimensions also affect radiation
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transport, where the surprising result of near-field thermal transfer exceeding that of black

body transfer has been observed in systems with dimensions less than the thermal radiation

wavelength, ∼ 10 µm.

In these studies, the most significant effects to consider are the overall scale effect of

ballistic transport and the surface effect of boundary resistance, described in the next two

sections. Although the thermal transport measurements of these experiments agree well

with the diffusive picture of chapter 2, several of the ideas underlying ballistic transport

will be involved in our study and measurements of thermal boundary resistance.

3.1 Ballistic transport

3.1.1 Quantum oscillations and crystal structure

The above derivation of the heat equation, based on the simple but effective idea of

thermal energy as randomly moving energy units, must be replaced by a far more sophisti-

cated picture and theory of thermal energy in solids in order to predict thermal dynamics

at the nanoscale. The nanoparticles of these experiments are primarily composed of gold,

and taking this as an example material, the physical picture becomes one in which thermal

energy is the vibrational energy of oscillation modes supported by the crystal lattice of gold

ions, alongside the kinetic energy of their nearly-free conduction electrons. The new picture

is also quantum mechanical, and the combination of the uncertainty principle and phonon

and electron identicality imply that phonons populate energies according to Bose-Einstein

statistics, while electrons populate by Fermi-Dirac statistics. These distributions depend

very differently on temperature, such that as temperatures T increase from absolute zero,

the number of phonon modes grows much more rapidly than those of electrons. With more

modes available for the storage of thermal energy, metals at room temperature, including
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gold, derive nearly all of their heat capacity from phonons, so only the phonon contribution

to thermal energy is considered from here on. Electrons are the primary contributors to

thermal conduction, however, through their scattering with the lattice vibrations repre-

sented by phonons, as discussed in section 3.1.3.

The lattice structure of gold is face-centered cubic (fcc), a simple cubic array with an

additional lattice site at each face of each cubic element, and with one gold ion located at

each site. The atoms located at a site are the basis of the material, and though our example

of gold has only one gold ion at each site, in general each site may be polyatomic. The

lattice structure along with the basis define the material’s crystal structure. The fcc lattice

is a Bravais lattice, whereby the structure, as viewed from a given site, is seen identically

from all other sites, i.e. there are no variations such as regions of differing site density or

dislocations. The entire lattice is defined by the set of lattice vectors, from a single site

chosen as an origin, to every other site, and for a Bravais lattice, the set of lattice vectors is

spanned by linear combinations, with integer coefficients, of three primitive lattice vectors

ai:

a1 =
a

2
(ŷ + ẑ), a2 =

a

2
(ẑ + x̂), and a3 =

a

2
(x̂+ ŷ). (3.1)

A conventional cell is a region of volume of the lattice which, when translated through a

subset of the lattice vectors, reproduces the full lattice, with no voids or overlap. Conven-

tional cells contain more than one lattice site in general, and the natural choice for the fcc

lattice is a conventional cell with vertices coinciding with the original simple cubic lattice

- this choice implies 4 sites per conventional cell. A gold conventional cell has side length

a = 4.08Å, its lattice parameter. A primitive cell has exactly one site per cell, reproduces

the lattice by translation over all lattice vectors, and such a cell defined to contain points at

the minimum possible distance from the contained lattice site is a Wigner-Seitz primitive

cell. The FCC conventional and Wigner-Seitz cells are shown in figure 3.1.7 The complete
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set of lattice vectors R for cubic finite crystals of volume V and N0 = N3 atoms are spanned

by the primitive vectors with integer coefficients ni between ±N
2 . For example, for a 1 mm3

volume of gold, N ≈ 4·106. Sums over R appear frequently in solid state physics derivations,

such as for the total potential energy of a crystal.

Figure 3.1: The FCC lattice conventional and Wigner-Seitz primitive cells. The smaller cell
is the primitive cell. The conventional cell is not coincident with the cubic lattice - instead,
the four vertices at half height are four cubic vertices, and the upper half/lower half of the
conventional cells below/above the primitive cell are shown. Image from reference 7.

Lattice vibrations, i.e. periodic atomic displacements from equilibrium positions,

are waves which occupy the space of a crystal (as are conduction electron wave functions

(see section 4.2). Such a wave with wave vector k is represented by a point in reciprocal

space, and the spatial Fourier transform of the real-space lattice (called the direct lattice

in this context) is the reciprocal lattice. A point in the reciprocal lattice represents a wave

with the periodicity of the direct lattice. Reciprocal lattice vectors of increasing length (in

reciprocal space) represent waves with increasing numbers of oscillations (in direct space)

between adjacent direct lattice points. The fcc reciprocal lattice is a bcc lattice with lattice

parameter 4π
a , spanned (with integer coefficients) by the primitive reciprocal vectors bi :

b1 =
2π

a
(ŷ + ẑ − x̂), b2 =

2π

a
(ẑ + x̂− ŷ), b3 =

2π

a
(x̂+ ŷ − ẑ). (3.2)
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The final construction needed to calculate the phonon energies making up the distribu-

tion is that of regions of reciprocal space called Brillouin zones. The original measurements

of crystal structures were x-ray diffraction (XRD) experiments, in which incident x-ray

wave vectors which will produce a diffraction maximum can be predicted as those lying

on a Bragg plane, the plane midway between adjacent reciprocal lattice points and normal

to the line joining them. The nth Brillouin zone is the region of reciprocal space reached

by crossing exactly n − 1 Bragg planes from the origin - the first Brillouin zone is also

the Wigner-Seitz primitive cell of the reciprocal lattice. Section 4.2 discusses how Bragg

planes affect the occupation of a material’s electronic band structure. In the context of both

phonons and electrons, energies in reciprocal space have the periodicity of the reciprocal

lattice, due to the original periodicity of the direct lattice. All energies are thus spanned by

wave vectors lying in the first Brillouin zone, and plots of representative energies are given

in the reduced-zone scheme shown in figure 3.3.

The boundaries of the first Brillouin zone of the fcc lattice is shown in figure 3.2.8

Each face is a region of a Bragg plane lying at the midpoint between the reciprocal lattice

site at the zone center and the next-nearest points. The point Γ is at the center of the zone

at k = 0. The paths ∆, Σ, and Λ are along the lines joining Γ with high-symmetry points

X, K, and L respectively, and path Z joins points X and W.

3.1.2 Equilibrium mode distribution

For monatomic gold, each phonon acoustic mode is characterized by a wave vector

and polarization branch designation as (k, j). Polarization can be either longitudinal, or

one of two transverse, oscillations. (Materials with a basis of more than one atom possess

additional optical modes.) The finite extent of the lattice is represented by the Born-von

Karman periodic boundary conditions, whereby each dimension of the lattice is taken to
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Figure 3.2: The boundary of the first Brillouin zone of the fcc lattice, along with the
primitive reciprocal lattice vectors bi. In this plot [001] is upward, [100] is in the direction
from Γ through the center of the left-front square face, and [010] is along the path from Γ
to X. Image from reference 8.

loop back upon itself, and the displacement of the final ion in one direction is identical to

that of the equivalent atom in the opposite direction. For macroscale crystals, or nanoscale

crystals with nevertheless large numbers of atoms, edge effects are significant only for a very

small fraction of the atoms, and the Born-von Karman conditions treat the edge effects as

negligible. The possible values of ki are multiples of 2π/L, where L is the material’s length

in direction i, a near-continuum for a macroscopic system. Each atom oscillates about its

stable equilibrium position as a quantum mechanical oscillator, its energy above its ground

state is a multiple of ~ times its oscillation frequency, the single-phonon energy. From this

point, if we can relate each mode to its energy, and determine how these modes are populated

at equilibrium, then we can then determine what thermal flux would be generated by either

a heating input or by a temperature gradient existing in the system, by considering how

these excitations affect the distribution of modes.
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To relate each mode to its vibration frequency, the lattice energy above the ground

state is approximated by the sum of harmonic, i.e. quadratic, interatomic potentials,

determined by gold’s established and experimentally-confirmed elastic constants. Writ-

ing Newton’s second law for the atomic displacements, and assuming their periodic time

dependence, the result is an eigenvalue problem for each polarization, with eigenvalues

giving the system’s dispersion relation, its frequency as a function of wave number and

polarization mode, denoted as ω(k, j). The dispersion relation for gold is plotted in figure

3.39,10. The lattice structure of the molybdenum films of our thermal isolation platforms

is body-centered cubic (bcc), with a lattice parameter of a = 3.15Å, and the same method

applies to the calculation of the phonon modes of Mo, using its appropriate elastic constants.

We will soon also need the propagation speed of an initial displacement in direction i of

characteristic length 2π/ki, the displacement’s group velocity v(k, j) = ∂ω(k,j)
∂k . Dispersion

relations calculated using this physical picture agree within a few percent of results from

neutron scattering experiments for many materials of interest, including gold. The intervals

of energy traversed by each branch of the curves in figure 3.3 define the phonon band

structure - the equivalent structure for electrons determines the electron interband transition

thresholds, relevant to section 4.3.

So if the phonon energy of a mode (k, j) is ~ω(k, j), and the distribution among

energies is (for bosonic phonons) the Bose-Einstein distribution

fBE(E, T ) =
1

e
− E
kBT − 1

, (3.3)

where kB = 1.38·10−23 J/K is Boltzmann’s constant, then the equilibrium mode distribution

n̄(k, j, T ) is

n̄(k, j, T ) =
1

e
− ~ω(k,j)

kBT − 1
. (3.4)

Section 3.1.3 will apply the equilibrium distribution to the prediction of temperatures in
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Γ Γ

Figure 3.3: The calculated dispersion relation for gold in reciprocal space, at room tem-
perature, plotted along paths joining high-symmetry points as indicated on the upper axis,
with reciprocal space distances in fractions of 2π/a. Data from reference 10.
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response to excitation by considering the time rate of change of the distribution, expressed

by the Boltzmann transport equation.

3.1.3 Ballistic conduction

As a process of thermal transport proceeds, energy is moving from one region to

another in a thermal system, and in these TTR experiments, we observe, for example,

the cooling of a nanoparticle to its surrounding medium. The energy distribution of the

gold NP changes such that the NP contains less net energy as cooling occurs. The specific

parameter being monitored is the NP’s surface temperature, so if the temperature can be

found from the energy distribution, and we can also express and predict how the dynamics

of the distribution change during conduction, without assuming that system dimensions

are large compared with the phonon mean free path, then we have a nanoscale theory and

method for understanding how thermal features of a system affect its response to heating in

an experiment such as TTR, and how those features correlate with a measured signal. The

differing nature of diffusive versus ballistic conduction is illustrated in figure 3.4. In the

diffusive case, with paths small relative to the sphere radius, phonons near the boundary

experience net transport across the boundary (black, white, yellow phonons), while those

near the nanosphere center remain within the nanosphere (blue, pink, green). In the ballistic

case, over the same time period and number of steps, transport not occurring in the diffusive

case is possible: the smaller nanopartice radius means that phonons originating near the

nanosphere center may cross the boundary (green), those originating outside the boundary

can arrive deep within the nanoparticle (blue), and phonons beginning near the boundary

can travel a significant fraction of the particle size (pink). The net effect is reduced transport

in the ballistic case relative to the diffusive case.
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Figure 3.4: Illustration (not to scale) of differing characters of transport between the diffu-
sive (nanosphere boundary represented by the large circle) and the ballistic (small circle)
cases. Black dots are phonon beginning positions, and crosses are end points. All illustrated
phonons move in random walks of 50 steps, with each step length equal to the phonon mean
free path for clarity. See text for additional description.
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The key quantity of this strategy is the energy distribution n(k, j, T, t), now taken

as a dynamic, time-dependent quantity. The calculation and experimental verification of

these dynamics are challenging areas of ongoing research. Two methods have received

attention in recent years: molecular dynamics and solutions of the Boltzmann transport

equation (BTE). Both methods have their own advantages. Molecular dynamics (MD) is

a computational method that allows the explicit definitions of structures and interfaces,

including roughness and composition, and successfully predicts transport in structures such

as superlattices and interfaces. MD simulations solve Newton’s second law for individual

atoms and molecules using interatomic potential energies, well-known for many materials.

Simulations can become computationally difficult for systems which require a large number

of atoms for an accurate representation, and its classical basis overpredicts heat flow for

materials with high phonon frequencies, such as graphene. Efforts to implement quantum

mechanical MD are ongoing.

Let’s consider the BTE more closely. In TTR experiments, an object is heated impul-

sively, and the system relaxes from a non-equilibrium state. BTE analyses begin with the

initial non-uniform temperature field T (r, t = 0), and calculate the resulting flux. As the

phonon population for a given mode experiences collisions with other phonons, electrons,

grain boundaries and other defects, isotopes, and impurities, an imbalance between the

rates of population and depopulation is represented by a ‘collision’ term in the distribution

rate of change. Additionally, since temperatures are non-uniform, and the Bose-Einstein

distribution depends on temperature, we would expect the distribution to be non-uniform

also, with imbalances in phonon flux leading to a ‘drift’ term in the BTE:

∂n(k, j, r, t)

∂t
=
∂n(k, j, r, t)

∂t

∣∣∣∣∣
coll

− v(k, j) · ∇n(k, j, r, t), (3.5)

the Boltzmann transport equation for phonons11. For a TTR experiment involving small

temperature changes, the temperature as a function of positon and time could be approx-
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imated by using an iterative method, beginning with the initial temperature field and the

linearized, time-independent BTE:

~ω(k, j, r)

kBT (r)2
n̄(k, j, r)(n̄(k, j, r) + 1)v(k, j) · ∇T (r) =

∂n(k, j, r)

∂t

∣∣∣∣∣
coll

(3.6)

Here we utilize our equilibrium distribution n̄(k, j, r) and the dispersion relation ω(k, j, r).

The collision term includes two contributions: one from phonon-phonon collisions, and

another from independent phonon decay:

∂n(k, j, r)

∂t

∣∣∣∣∣
coll

=
∑
k’j’

C(k, j,k’, j’)n(k’, j’, r)d3k’− n(k, j, r)

τ(k, j, r)
. (3.7)

The second term, representing the rate of change due to decay and collision processes, is

the relaxation time approximation for phonons, whereby phonon dynamics are simplified

by assuming that, for a given mode, the distribution rate of change does not depend on the

distribution value of other modes, but only on that of the given mode, and that once an

equilibrium distribution value for the local temperature T (r) has been reached, the rate of

change becomes zero (driving the system to equilibrium). However, the distribution rate

of change does depend on position through its dependence on temperature, and likewise

for the lifetimes, in this approximation. A method for lifetime calculation is given in a

classic paper by Maradudin12, where an interatomic potential model, chosen to agree with

experimental values, and crystal thermal expansion properties are used to calculate mode

lifetimes.

An important simplification is that the phonon decay and collision rates are propor-

tional to the temperature, for temperatures greater than the Debye temperature ΘD = 170K

and less than the melting point Tm = 1337K, as for these experiments, where three-phonon

collisions are predominant. A calculation based on a nearest-neighbor central force model

for fcc crystals is given by Maradudin and Tamura.13 For low frequencies and wave vectors,

collisions are dominant over decays in the Alkiezer regime14 where ωτ̄ < 1, where τ̄ is

25



the mean lifetime, and thermoelastic damping and viscosity effects15 must be taken into

account.

The relaxation time approximation overestimates the effectiveness of phonon decays

and collisions in returning a system to equilibrium. The first term in eq. 3.7 involves the

collision kernel C(k, j,k’, j’), which corrects this overestimate by giving a weight C to the

distribution value of each mode n(k, j, r). Like the lifetimes, the collision kernel can also be

calculated by defining an interatomic potential model, including harmonic and anharmonic

terms16.

Ballistic conduction calculations are challenging, and experimental confirmation of

some of the approximations mentioned above is not yet available5. On the other hand,

many of the required parameters are well-known for gold: the dispersion relation, elastic

constants, potential energy coefficients to the third degree, and expansion coefficients. Such

calculations have been done for silicon, germanium, and diamond16–18.

A calculation of the ballistic impulse response for the gold NPs of these experiments

can be visualized. An NP absorbs energy from an ultrashort pulse, and with gold’s conduc-

tivity three orders of magnitude greater than that of the surrounding polymer matrix, the

NP would be nearly at internal equilibrium relative to the matrix. A reasonable model for

the initial temperature distribution would then be a nearly-constant value within the NP,

with a sharp downward step of length δr at the NP radius a. With this initial distribution

and the above parameters, eq. 3.6 would be solved numerically, with spherical symmetry,

yielding n(k, j, r, t = 0), and the energy flux from5

j(r, t = 0) =
∑
k,j

n(k, j, r, t = 0)vr(k, j)~ω(k, j), (3.8)

where vr = |v|. The change of temperature ∆T over time ti could be approximated by

dividing the radius into thin shells of thickness rs � a, and finding a new temperature
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distribution at multiples of rs, after a short time interval ti, from the volumetric specific

heat cpv by

∆T (r = nrs) =
ti

cpvrs

[
j((n− 1)rs, t = 0)− j((n+ 1)rs, t = 0)

]
(3.9)

where n is an integer between 0 and a
rs
. The process is then iterated with the shifted

temperatures eq. 3.9 substituted into the BTE eq. 3.6, and the process repeated with

successively smaller values for δr, rs and ti until T (r, t) converges to within an acceptable

approximation error.

3.2 Thermal boundary resistance

3.2.1 TBR concepts

When two different materials are in contact, and a temperature gradient is present to

drive a thermal flux (power per unit area) across their interface, the thermal resistance of

the boundary is defined as the temperature drop, per unit thermal flux, between opposite

sides of the interface. It was in 1941 CE that the first measurement of TBR was reported by

Kapitza19 between a bronze wire thermometer and liquid helium.20 Boundary resistance,

defined this way, implies two additional specific points: that incident phonon reflections

will occur at the interface, and also that there be a discontinuity of temperature on the

opposite sides of the interface. The concept of resistance implies that there is a decrease in

potential in the direction of transport - a temperature decrease, in the thermal case - and

since we are considering boundary resistance, as opposed to that due to the thickness of a

material, the temperature decrease must occur between points immediately adjacent to the

boundary, on opposite sides. TBR is not inherently a nano- or atomic-scale property - the

acoustic mismatch model (details in subsection 3.2.2) includes macroscale mechanisms of

phonon reflection, and its predictions which are accurate in at least some cases. For many
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interface pairs, TBR has relatively little effect at the macroscale, since experimental values

(see figure 3.6) indicate that typical TBR at interfaces presents the equivalent resistance of a

material thickness of well under 1µm, but in nanoscale devices, TBR can be the controlling

factor of thermal transport. So though not inherently nanoscale, TBR is of great nanoscale

significance.

In a microscopic picture of thermal energy and transport, TBR for crystals is sug-

gested intuitively1 by the fact that the interface interrupts the periodicity of the lattice, and

within the phonon mode picture of section 3.1 it is reasonable to suspect that differences

in available phonon modes between the two materials could cause phonons to reflect at

an interface. At any scale, interface roughness, mixing, disorder, or mismatch of acoustic

velocity, or mass density, could cause reflection. Phonon reflection of any sort is a mecha-

nism of thermal resistance, reducing thermal flux and implying a temperature discontinuity

at the interface. Some of these ideas are developed theoretically in two different models:

in the acoustic mismatch model (AMM),21 phonon transmission probability is calculated

from acoustic and mass density properties, while in the diffuse mismatch model (DMM),22

phonons incident on the interface retain no memory of their original direction or polariza-

tion, and scatter with probabilities based on their energy densities of states and phonon

dispersion.

These two models do not include explicit definitions of interface characteristics, such

as morphology, bond strengths, or mixing, instead finding results from bulk properties of

the two materials in contact. Molecular dynamics simulations very effectively allow such

definitions, however, and agree well with experiments on interfaces between water and self-

assembled monolayer silanes.23,24 Other experiments23,25 show a relationship of decreased

TBR with greater interfacial bond strength. None of the models accurately predict TBR in

all experimental cases, but they do give values that are generally useful for comparisons to
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experimental results, and are accurate in special cases: the AMM is a good approximation

at low temperatures,5 and it predicts a lower limit of TBR even in the limit of high bond

strengths.26 The DMM predicts that TBR is decreased when the materials’ vibrational

spectra match, in cases where diffuse scattering is dominant. This effect has also been seen

in MD simulations27 and in experiments with carbon nanotubes in water.28

The models differ in their approaches to the calculation of phonon transmission prob-

ability. Once transmission probabilities for phonon modes are known, they can be used

to calculate the TBR R through its reciprocal, the thermal boundary conductivity (TBC)

G = 1
R , defined as the thermal flux across the interface per unit temperature difference. For

a given mode, thermal flux is the thermal energy density of the mode times its velocity, so

for a rectangular volume V adjacent to the interface, a heuristic total flux incident to the

interface is

1

V

∑
kinc,j

~ω(k, j)fBE(k, j, T )vz(k, j), (3.10)

where vz(k, j) is the component of velocity along the z-axis, oriented away from the inter-

face, and kinc indicates summing only over modes with wave vectors directed toward the

interface (kz < 0). In section 3.2.3 below, we describe how the TBC can be determined

from a derivative of thermal flux with respect to temperature. If each mode transmits with

probability αk,j , the TBC is the difference in incident transmitted flux induced by a unit

temperature change at the interface:

G =
1

R
=

1

V

∂

∂T

∑
kinc,j

~ω(k, j)fBE(k, j, T )vz(k, j)αk,j , (3.11)

showing that TBC could, in principle, be calculated from the phonon dispersion (ω and v)

along with the transmission probabilities α. More detailed derivations are described in the

following sections.
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3.2.2 The acoustic mismatch model

The AMM is set in a fully continuum picture - all properties are those of continuous

media. TBR arises from differences in the acoustic impedances of the two materials. It

approximates transport across an interface by supposing that no diffuse scattering occurs

there: all interactions of phonons with the interface are either specular refraction or specular

reflection. The AMM also accounts for the possibility of polarization conversion. Cheeke29

describes the AMM derivation: boundary conditions of continuous stress and strain at

the interface (i.e. requiring the interface to be fixed) leads to a system of four equations,

with unknowns of the ratios of ingoing and outgoing amplitudes as well as outgoing angles,

and with normal components of velocities, mass densities, and the angle of incidence as

known parameters. The Snell-Descartes relations then allow the system to be solved for the

transmission probability as a function of the angle of incidence. TBC of a given interface

is calculated in terms of the transmission probability averaged over incoming angles, and

Cheeke29 describes how the averaged transmission can be expressed in terms of the ratios

of acoustic velocities and mass densities of the two materials, and found from these ratios

using their published tables. We follow this method of calculating TBC with the AMM in

section 5.6.

The AMM tends to underestimate the TBC for solid-solid interfaces, especially for

similar materials, i.e. those with similar Debye temperatures. In order to define a likely

range of TBC for a given pair of solids, the radiation limit was proposed by Snyder30 as

the upper limit for TBC, assuming that transmission occurs through elastic, two-phonon

processes only, and with the AMM prediction as the lower limit. To find the radiation

limit, the maximum phonon frequencies are compared - whichever is lower, denoted ωmax,

becomes the cut-off frequency for phonons from the other material, where transmission is

100% for incident phonons below ωmax, and zero above ωmax. The measured TBC of many
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Figure 3.5: Illustration from reference 20 of the acoustic mismatch picture of phonon scatter-
ing and transmission at the interface between two continuous media. Transmitted phonons
refract according to the exact acoustic analog of Snell’s law.

materials falls within the range of the AMM value as the lower limit, and the radiation

limit as the upper limit. However, the TBC of very dissimilar materials tends to exceed the

radiation limit value, motivating the development of the DMM.
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3.2.3 The diffuse mismatch model

Figure 3.631 plots measured TBC against temperature for interfaces between sev-

eral pairs of similar and dissimilar materials. The prediction of the DMM for the simi-

lar materials of the TiN/MgO interface is the upper dotted curve, and it agrees roughly

with experimental values. The lower dotted line is the radiation limit for the dissimilar

Bi/H-terminated diamond interface - these experiments show that the TBC is higher than

the radiation limit for several interfaces, indicating that inelastic, three-phonon, or diffuse

scattering at the interface, or a combination of those, contribute significantly to conduc-

tion. Both the AMM and DMM assume equilibrium, while in the experiments described

here, measuring the impulse temperature response of structures, will necessarily be non-

equilibrium systems. The models still provide useful values for comparison, and the validity

of the equilibrium approximation is discussed in the DMM derivation below.

The DMM, though predicting values close to the AMM for similar materials, also

improves estimates for dissimilar materials, by predicting TBC for some cases to be greater

than the radiation limit. The DMM takes the transmission of an incident phonon to be

independent of polarization, and material of origin, but dependent on energy or wave vector,

and like the AMM also assumes elastic, two-phonon processes. Since the material of origin

does not determine transmission, the sum of transmission from one side and reflection from

the other side must be 100%.

Figure 3.7 depicts the behavior of phonons of differing modes/wavelengths arriving

at an interface between two materials, with the label 1 assigned to the higher temperature

material, and 2 for the lower temperature. Phonons from material 1 (red) can reflect from

or transmit through the interface, but with no memory of their original direction, so their

outgoing directions are generally altered from their incident directions. The same is true
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Figure 3.6: A plot from reference 31 of experimental TBC for solid-solid interfaces, with
a prediction of the DMM for TiN/MgO TBC, and the radiation limit for Bi/H-terminated
diamond. The triangles are for Ge2Sb2Te5/(ZnS, SiO2 composite), and the open squares are
for Al/oxide/Si structures.
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of phonons originating from material 2 (blue). Though not shown, longitudinal modes are

also present.

Figure 3.7: Scattering of phonons at a thermal interface in the basic diffuse mismatch
model. Phonons originating from material 1 (foreground) are drawn in red, likewise blue
for material 2 (background). Phonons can reflect from or transmit through the interface,
but with no memory of their original direction, so their outgoing directions are generally
altered from their incident directions.

The approach to calculating the TBC is to first express it by its definition in terms of

thermal currents, then to replace currents with a sum over phonon modes of their energies,

velocities, population, and probability of transmission. To this point, the derivation is

identical to that of the AMM. The DMM differs in the calculation of the transmission

probability, using the model’s above condition that the sum of transmission from one side

and reflection from the other side must be 100%. The TBC is then known in terms of the

phonon dispersion, for which the Debye approximation is made.
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The TBC definition is

G =
1

R
=

Q̇/A

T1 − T2
(3.12)

for thermal current Q̇ over area A, and temperatures Ti. For practical cases in which a metal

or other crystal is in contact with an amorphous material, as it is in our own experiments, the

calculation is assisted by expressing, as much as possible, the TBC in terms of properties

of the crystal, for which phonon modes may be defined. In fact, this approach can be

implemented very well by approximating the system by one in equilibrium, and through

conservation of energy. In our experiments, with temperature differences across the interface

at 1 K or less, the equilibrium approximation is at least a reasonable initial approach. As

described below, the result is that the TBC is expressed in terms of modes and dispersion

of the crystal, with dependence on the opposite material entering through the transmission

probabilities.

By energy conservation, and with no energy being stored or converted at the interface

itself, the current approaching the interface from one side equals that leaving the interface on

the opposite side, and the reverse is also true. The net current Q̇ is the difference between

currents in opposite directions. For a given side, the current approaching the interface

originates on the same side, and is at the temperature of that side, unlike the current leaving

the interface, part of which originates from the other material at a different temperature.

The DMM therefore uses the incident currents initially, so that Q̇ = Q̇1,inc(T1)− Q̇2,inc(T2),

where Q̇1,inc is the incident current from side 1. If material 1 is the crystal, we want

expressions in terms of that side, so the net current becomes Q̇ = Q̇1,inc(T1) − Q̇1,dep(T2)

from energy conservation, with Q̇1,dep as the current departing the interface on side 1.

Though departing currents are initially not known, with the equilibrium approximation

detailed balance requires that departing currents are balanced by incident currents. The
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side 2 temperature is retained, so the net current becomes

Q̇ = Q̇1,inc(T1)− Q̇1,inc(T2) (3.13)

and the TBC is

G =
Q̇1,inc(T1)− Q̇1,inc(T2)

A(T1 − T2)
(3.14)

which for small temperature differences is

G =
d(Q̇1(T )/A)

dT
. (3.15)

The derivation now turns to calculating Q̇1(T )/A. The transmitted phonon energy current

density is the product of the phonon energy ~ω, spatial density of states per unit frequency

n, the Bose occupation factor fBE(ω, T ), the normal component of the phase velocity vj

for polarization j, and the transmission probability α, summed over modes (frequency and

polarization). In this simple form of the DMM, the properties of materials are assumed

to be isotropic and temperature-independent. The isotropy approximation is relaxed in a

study by Duda32 et al. The small temperature differences of our experiments again make

this last approximation reasonable. Regarding isotropy, and considering any dependence

on direction of the quantities to be integrated over phonon modes, we find that the DMM

model of phonon behavior at the interface is that they lose any memory of their incident

direction, so the probability α must be independent of initial direction. Expressions for n

and v are found from the phonon dispersion. The DMM utilizes the Debye approximation

for the dispersion, making both quantities direction-independent, and mode-independent,

with the exception of retaining the significant dependence of velocity on polarization. We

note that Reddy33 and Young34 have studied the effect of exact phonon dispersions on TBC

calculations in the case of metal/Ge and metal/Si interfaces, finding that, in the case of

interfaces with copper, the models differ by about ±50% of the Debye result. This difference

suggests that including phonon dispersion could improve the accuracy of the DMM, possibly
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more than removing the equilibrium approximation. The only dependence on incident angle

that remains is a cos θ factor for the normal component of phase velocity.

In the Debye approximation, phonons have fixed velocities independent of wave num-

ber, and an upper cutoff frequency ωD. The number of phonon states per unit volume and

frequency is

nj(ω) =
1

2π2

ω2

v3
j

. (3.16)

This form of nj(ω) is for a single state of polarization j (one longtitudinal and two trans-

verse) - Debye approximations grouping polarizations together have an additional factor of

three. The current density per unit solid angle and frequency for polarization j is

1

4π
αnj(ω)fBE(ω, T ) ~ω vjcos θ. (3.17)

The dependences of α are discussed in the following paragraph. To integrate over all modes,

we integrate over frequencies up to the Debye frequency, and sum polarizations, so that the

TBC is

G =
1

2

∑
j

v1,jΓ1,j

∫ ωD

0
~ω n1,j(ω)

dfBE(ω, T )

dT
dω, (3.18)

where the subscript 1 indicates material 1, and Γ1,j is

Γ1,j =

∫ π/2

0
α cos θ sin θ dθ, (3.19)

and is called the averaged transmission probability: it is the probability averaged over polar

angles, but also weighed by the cos θ factor for the normal component of velocity.

Given the approximations of isotropy, equilibrium, and the Debye approximation, eq.

3.18 is applicable to both the DMM and the AMM. Results special to the DMM follow from

the following evaluation of the transmission probability α. In general, phonons of a given

wave number and polarization have multiple energy values, as shown in figure 3.3, but with

the fully diffuse scattering of the DMM and no memory of incident side and direction, the
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transmission probability must be independent of wave vector and polarization. Temporarily

retaining dependence on energy and frequency, we have the condition α1,j(ω,k) = α1(ω),

and the equivalent for side 2. Most importantly, no memory of incident side means that the

transmission probability from one side must equal the reflection probability from the other

side, i.e. a phonon leaving the interface into a given side must be equally likely to have been

reflected from that side or transmitted from the other side, so that α1(ω) = 1−α2(ω), and

likewise for side 2. Again within the equilibrium approximation and detailed balance, we

consider the number of phonons leaving side 1, per unit area, time, and frequency, which

must equal the same for side 2. The three polarizations are summed:

∑
j

v1,j n1,j(ω) fBE(ω, T )α1(ω) =
∑
j

v2,j n2,j(ω) fBE(ω, T )α2(ω). (3.20)

Finally, the above independence of side memory condition and expressions for densities of

states and Bose-Einstein distributions are substituted, resulting in solutions for the trans-

mission probabilities:

α1(ω) = α1 =

∑
j v
−2
2,j∑

i,j v
−2
i,j

, (3.21)

where the sum over i is over sides 1 and 2, and Γi,j = Γi = 1
2αi (Γi,j is independent of

polarization j). With the Debye approximation for the phonon dispersion, we find that the

probabilities are independent of frequency. In this implementation of the DMM, the TBC

can be calculated from the acoustic velocities and Debye frequencies of the two materials.

We also consider any contribution to interface thermal transport that could be made

by electron transmission. In fact, for metal-metal interfaces in general, which can have

conductances an order of magnitude higher than our metal/organic case, TTR experi-

ments35 have found that electron transmission accounts for about 90% of transport. The

authors successfully adapt the DMM to electron transmission at an interface.35 Another

study by the same research group31 conversely shows that, in the case of metal/dielectric

interfaces, electron-phonon coupling is minimal, and transport is dominated by phonon
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transmission. In this work, TTR measurements of TBC between either Bi, a semimetal,

or Pb, a metal, on one side of an interface, and several different dielectrics on the oppo-

site side, reveal TBC values falling within a fairly narrow range. By making this com-

parison between conduction from a material with a high availability of electrons (Pb) to

another with relatively few (Bi), the conclusion is that electron transport does not con-

tribute strongly to metal/dielectric transport. We take this conclusion to also be applicable

to our metal/dielectric (gold/organic) experiments.

To close the description of this theory of boundary resistance and the DMM, we con-

sider implications of the several approximations that have been made to this point. Think-

ing broadly, there are several approximations and assumptions present: the equilibrium and

Debye approximations; spatial uniformity, as well as temperature and time independence, of

properties; isotropy; elastic scattering; the absence of crystal defects or coating impurities;

and the harmonic approximation. Of these, we suggest that the Debye approximation is

likely to be the least accurate, and we give the following reasons for retaining it.

The Debye approximation is valid for a material at low temperatures, i.e. below

the Debye temperature (170 K for Au), a condition not satisfied in our room-temperature

experiments. At low temperatures, only modes near the center of the 1st Brillouin zone

are excited, and experimental phonon dispersion measurements confirm the validity of the

Debye approximation for these modes. At higher temperatures, both the nondispersive

assumption of the basic DMM, and the approximated density of states, are inaccurate, and

we acknowledge this difficulty. However, as mentioned earlier in the section, the use of exact

phonon dispersions in the work of Reddy33 and others seems very promising: dispersion

relations are well-known for gold and other metals, and in their study, the expression for

TBC remains primarily in terms of the better-known properties of just one side of the

interface (the metal). Also, the TBC can be expressed in a variant form of summing over
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wave vectors and polarizations, rather than frequency, which implicitly includes the actual

density of states in the result. For our purposes, the problem arises in calculating the last

required quantity, the transmission probabilities. In our studies, these would be in terms

of the unknown dispersion relation for amorphous citrate, whereas in the work of Reddy,

known dispersions are available for the two crystals on both sides of the interface in the

cases they consider.

Another published DMM calculation, which has been shown to agree fairly well with

experiments on metal/(amorphous) water interfaces, is also initially a good possibility for

a more accurate theory: the work of Caplan,36 utilizing the phonon theory of liquids of

Bolmatov,37 calculates the TBC at the interfaces between Al/water and Au/water, and

the results differ from measurements by 18% or less. This method accounts for the fact

that transverse modes do indeed propagate in liquids in general (not only longitudinal), if

they are above a minimum frequency (the Frenkel frequency). The TBC integration over

modes is carried over frequency ranges selected by the polarization of a mode, and also

by whether the interface is hydrophobic or hydrophilic. However, upon closer examination

of this method, we find that the Debye approximation appears once again. So, although

this study does not provide a new method of calculating TBC at a crystalline/amorphous

interface, we see that the DMM with the Debye approximation can provide an approximate

value in some cases. We therefore move ahead with applying it to our metal/organic case.

The best possibility for improvement of the model for our case would be to use the

exact phonon dispersion for gold on one side of the interface, while using the Debye approx-

imation for the amorphous organic side. This would allow a calculation of the transmission

probability by equating the phonon number flux on opposite sides, similarly to eq. 3.20.

The RHS (amorphous) would be unchanged, while the LHS (metal) would change to an

integral over wave numbers throughout the first Brillouin zone. The gradient of the phonon
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dispersion would provide the velocity factor. An expression for the phonon dispersion as a

function of band and wave number would be needed for the metal. Finding this from the

well-known method38 of solving the system of equations resulting from Newton’s second law

and the harmonic approximation, with elastic constants as the main inputs, would improve

results significantly over the Debye approximation.

3.3 Conclusions

A nanoscale picture of thermal energy and transport, based on the vibrational modes

of an atomic lattice structure, has been presented to provide a means of understanding and

predicting thermal processes for systems of size smaller than the phonon mean free path.

Boundary resistance is the effect of greatest interest in these studies, and the TTR method

of measuring it is described in chapter 5. Though a predictive general theory of TBR does

not yet exist, relevant features of transport, such as the nature of collisions occurring at an

interface and the degree of diffuse scattering, can be applied to problems such as thermal

management. We continue with a description of the TTR method.
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Chapter 4

Transient Thermoreflectance

4.1 Pump/probe design

Transient thermoreflectance2,39 is an ultrafast optical experimental method for mea-

suring thermal dynamics of a nanoscale system. Our implementation of TTR applies exci-

tation and measurement pulses to nanostructure samples such that all of the requirements

placed on pulse duration, frequency, power, resolution, and delay time between excitation

and measurement, as described in section 4.6, are satisfied. The thermal parameters we are

interested in are determined by measuring an experimental signal which is sensitive to those

parameters,40,41 and varying their values in a mathematical model until a best fit to the

data is found. The quantitative verification of these requirements is discussed in sections

5.4 and 6.3.

Figure 4.1 shows a diagram of our TTR optical layout - this figure is shown again in

section 5.4, where it is discussed in greater detail. TTR measures a signal which is a fre-

quency component of the impulse response of the system by impulsively heating the system

with a pump pulse, and measuring its response with a probe pulse. The separate pump and

probe arms are shown in figure 4.1. The pump pulse heats the system by photoabsorption

over a pulse duration that is small fraction of the system’s response time, so that the mea-

sured signal is not significantly different than the ideal impulse response. Allowing samples
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to be excited and measured by a continuous train of pulses makes adjustment and noise

reduction efforts much easier, so ideally pump pulses are far enough from each other in time

that the response is not significantly affected by the arrival of earlier pulses, requiring that

the pulse repetition rate be low enough to allow a repetition period that is long relative to

the response time. As described in section 5.4.2, our repetition period meets this condition.

As described in section 4.3, each pump pulse should carry sufficient energy so that the

fraction absorbed by the target surface increases its temperature by about 1 kelvin.

Figure 4.1: TTR optical layout, with pump (pink) and probe (yellow) arms identified. Pump
and probe pulse paths rejoin at the polarizing beamsplitter, upstream of the objective lens.

The response of our nanostructures to impulsive heating is measured by monitoring

the optical power of the beam of probe pulses reflected from the nanostructure surface. The

probe reflected power is proportional to the target’s surface temperature, and is sensitive

to the values of the thermal parameters we are seeking. The origin of this dependence is

discussed in section 4.3. For each data point each must be from a reflected probe pulse

sufficiently short that its power is a good approximation of the instantaneous cooling of

a target surface, following prior impulsive heating. In our implementation of TTR, pump
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and probe pulses split from the same beam and having the same durations satisfy these

requirements.

A natural choice for the probe power would be a value which is a small fraction

of the pump power, so that the measured value of its reflected power is not significantly

different than an ideal measurement which causes no perturbation of the response of the

nanostructure. In practice, reducing the probe power this low would result in a signal which

can not be distinguished from measurement noise, so the probe power has been set to 50%

of the pump for most measurements. However, the detection of the probe signal is locked

into a narrow band centered on the modulation frequency of the pump, while the probe

beam is modulated at a distantly-located frequency. This ensures that probe measurements

are only sensitive to temperature changes caused in targets by the pump pulse train, as

opposed to a response to an original component of the probe pulse train itself. Probe pulse

powers near this 50% (relative to the pump power) value are typical of TTR experiments.

4.2 Electron band structure

As discussed in section 3.1, the theory of phonon ballistic transport relied on the

phonon energy band structure as an essential quantity. Similarly, an understanding of why

and how optical reflection properties (of gold in our case) depend on temperature, enabling

the mechanism of thermoreflectance to serve as a nanoscale temperature measurement,

requires knowledge of the electron energy band structure of gold. The essential picture of

electrons in a metal is that of their nearly-free motion in a weak periodic potential due to

the atoms of the metallic crystal. Similarities with the phonon case then arise. An electron

state is characterized in part by a wave vector k, and while there are no vibration modes

to consider, the two values of electron spin each denote a distinct state. The direct lattice

periodicity and extent again determine the same possible values of k as in the phonon case.
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A non-relativistic, time-independent equation of motion (Schrödinger equation instead of

Newton’s second law), employing an interatomic potential with coefficients that decrease

with increasing order, predicts energies which agree well with measurements. Energies are

again represented in reciprocal space, divided into the same Brillouin zones, which take on

additional importance in the electron case. Energies again resolve into bands which may or

may not overlap in general.

For the case of the electron energies of gold, with atomic number 79, 54 electrons of

the filled 5p shell of xenon, and below, are tightly bound to each nucleus, and are considered

to remain fixed at each lattice site. Fourteen electrons of the 4f shell, though at the next

higher single-atom energy, are likewise bound, leaving ten 5d and one 6s electron per atom

which are termed conduction electrons. Those of 4f energies and below are core electrons.

The atomic nuclei and core electrons together make up the positive ions of the lattice, the

matrix in which the motion of conduction electrons takes place. Accurate energies of the 5d

shell are calculated using the tight-binding method, while the 6s electron energies are found

through the nearly-free electron approximation. The results of both methods are relevant

to the transitions involved in the mechanism of thermoreflectance.

Both methods account for the finite extent of a crystal via the Born-von Karman

boundary conditions. Each ion is taken to have the same interatomic potential, and elec-

tron wave function periodicity is established by Bloch’s theorem, which requires that the

wave function has the form of a plane wave times another function unk(r) which has the

periodicity of the lattice:

ψnk(r) = eik·runk(r), (4.1)

which also implies

ψnk(r + R) = eik·Rψnk(r), (4.2)

i.e. wave functions change only by the phase k ·R between primitive cells. The symbol n
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is the band index. The Bloch and Born-von Karman conditions together lead to the same

wave vector values k as for phonons.

For the d-shell energies, the tight-binding method considers a given electron to be

mobile throughout the crystal, and equally likely to be found at any lattice site, but to have a

probability density centered around the ions (unlike the nearly-free electron approximation,

which represents them as modified traveling plane waves). Its wave function is expanded

as a linear combination of (isolated) atomic orbitals (abbreviated as LCAO), with modifi-

cation due to the proximity of neighboring ions, if its isolated wave function has a spatial

extent comparable to the lattice constant. The form of the wave function in Bloch’s the-

orem is not used explicitly in the tight-binding method, though the allowed wave vector

values k are found from it. Coefficients and associated energies are found by solving the

eigenvalue problem of a two-dimensional square matrix, with each dimension length equal

to the number of degenerate isolated atom energies, i.e. five for the d -shell. The matrix

is the operator for the difference of the actual interatomic potential from the isolated-atom

(Coulomb potential) case, in the isolated atom wave function basis.

Applied to the fcc lattice of gold, the tight-binding method yields a relation En(k)

for the d -shell energies in which the originally degenerate, discrete levels are broadened

into finite bands, and partially split, but continue to lie close to each other relative to the

s-shell levels, as shown in figure 4.242. The energy scale is plotted relative to the Fermi

energy, the highest energy occupied by free electrons for a solid at zero temperature. At

room temperature, a small fraction of the electron population occupies energies above the

Fermi energy. The energies spanned by curves lying fully below (not crossing) the Fermi

energy span the gold d -band.

For the s-band, the nearly-free electron approximation takes the wave function form of

Bloch’s theorem, expands a known interatomic potential in terms of plane waves eiK·r with
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Γ ΓX W L

Figure 4.2: The electron band structure of gold, calculated using many-body perturbation
theory, from reference 42. Energies are plotted relative to the Fermi energy. Note the
overlap in energy, characteristic of conductors, of the full (below the Fermi level) d -bands
and the partially filled or empty (spanning or above the Fermi level) s-band curves.42 The
green arrow indicates the energy of the interband transition threshold, about 2.5 eV.

the periodicity of the direct lattice, and substitutes these into the Schrödinger equation. The

result is a reciprocal space Schrödinger equation in terms of k and the potential Fourier

coefficients Uk. The nearly-free approximation takes the electron wave functions to be

perturbations of free-electron waves due to the weak potential of the lattice, such that

keeping only first-order terms in Uk is justified. As a result, only degenerate energies

located near a Bragg plane contribute a significant term to the perturbed energies. Since

the electron wave functions and energies are both periodic in reciprocal space, the effect of

the weak periodic potential can be characterized by its shifting of energies as k approaches
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the first Brillouin zone boundary.38 Figure 4.2 shows the effect of the lattice potential as

an increased curvature of En(k), for a given n, as k approaches one of the high-symmetry

points X, W and L.

With the nearly-free electron and tight-binding models providing an accurate band

structure En(k), the equilibrium electron distribution g0
n(r,k) over k for band n is

g0
n(r,k) =

1

e
En(k)−µ(r)
kBT (r) + 1

. (4.3)

Shifts in this distribution with temperature are the origin of the property of thermore-

flectance, discussed in section 4.3.

4.3 Thermoreflectance properties

A TTR experiment, prepared with its excitation and measurement pulses appro-

priate to the length and time scales of the thermal properties being studied, acquires its

capacity to measure temperature through the mechanism of thermoreflectance. Thermore-

flectance relates the optical power reflected from a surface to its temperature, and for the

small temperature changes of about 1 kelvin in these experiments, the relation is nearly

a direct proportionality43, with the magnitude and sign of the proportionality constant,

the thermoreflectance coefficient, generally depending on material and wavelength. The

thermoreflectance is defined as the fractional change in reflectance per unit temperature

increase.

The coefficient of reflection, of a paramagnetic surface, for incident radiation of fre-

quency ω depends, weakly, through its refractive index, on its dielectric function ε(ω), or

ε(λ) with wavelength λ. For a classical electromagnetic wave of frequency ω at normal

incidence on a surface from vacuum, the reflectance R, the ratio of reflected to incident
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optical power, is

R =

∣∣∣∣1− ñ1 + ñ

∣∣∣∣2, (4.4)

with the complex refractive index ñ related to the dielectric function by ñ2 = ε(ω).

The width of the step of the electron Fermi-Dirac distribution increases with tem-

perature, so that fewer states above the Fermi level are available for absorption, and

vice-versa. The phonon population also increases with temperature, such that increased

electron-phonon scattering decreases the electron relaxation time. In fact, at room temper-

ature, scattering of electrons by phonons predominates over that by impurities, isotopes,

and other electrons. At time scales longer than those involved in our experiments, thermal

expansion also affects the dielectric function through additional shifts in the electron band

structure due to the resulting increase of lattice spacing.

The thermoreflectance coefficient for gold is measured by spectroscopic ellipsometry

by Wilson44, and has a value of −3.25 · 10−5K−1, at 800 nm, as shown in figure 4.3.

Its negative value is due to increased scattering of photon-absorbing electrons by lattice

phonons, due to the increase of phonon population with temperature. Electron-phonon

scattering transfers optical energy to lattice vibrational energy, increasing absorption and

decreasing reflectance. Our experiment uses a probe beam of wavelength 800 nm, with

photon energies of 1.55 eV, significantly below the 5d to 6s interband transition threshold

(see section 3.1) of gold at 494 nm (2.54 eV). The interband transition threshold value is

revealed in figure 4.2, as the minimum energy difference between an unoccupied state (above

the Fermi energy) and an occupied state (below), occurring for k slightly less than its value

at high symmetry point X. The thermoreflectance of molybdenum is 5.80 · 10−4K−1 44, and

is shown in figure 4.4, at photon energy 1.55 eV.
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4.4 Time-resolved measurements with pulsed

laser excitation

TTR experiments measure the probe signal as a function of a well-known delay time

between the arrival of pump and probe pulses at a sample. The same method of controlling

delay time is used in both our NP and thermal isolation platform experiments. Our TTR

experiment implements the delay with a fixed optical path for the probe arm of the optical

set up, and an adjustable pump arm path length. The pump path is adjusted until the two

paths are equal, and the pump path is then incrementally shortened to advance the arrival

of the pump pulse at the sample relative to the probe pulse. Our TTR experiment uses

a translation stage to shorten four segments of the pump path simultaneously. Constant

overlap of the pump and probe spots on samples during stage motion requires careful align-

ment of the four segments with each other and with the axis of stage motion. Procedures

for the equalizing of pump and probe arms and the alignment of pump beams to the stage

axis are described in section 5.4.

4.5 Dynamics of ultrafast excitation of metals

As mentioned in section 4.6 below, the thermal response time for the nanostructures of

our studies is expected to be on the order of 300 ps or longer. The applied ultrafast excitation

pulse duration is on the order of 100-200 fs, about three orders of magnitude faster than

the thermal response time, so we justifiably consider the excitation to be impulsive, and

presume that the energy of each absorbed optical pulse causes a rise in temperature in the

nanostructure material. This picture is correct but simplified - there is actually a structure

of energy conversion underlying the pulse absorption process which moves through several

stages of time scale, as described in Siemens46, von der Linde47, and Hohlfeld48. This

structure implies a minimum delay time of the probe pulse for which the measured TTR
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signal represents a dynamic thermal diffusive or ballistic process, and not an incomplete,

different relaxation process occurring on an earlier time scale. This consideration affects the

choice of probe delay times for curve fitting and thermal parameter calculation purposes.

An overview of associated time scales is shown in figure 4.5.

Ion cores and surrounding conduction electrons are the two candidates, in our model of

a gold target nanoparticle, for direct absorption of incident pulse energy. The ions prove to

absorb almost none of the incident 1.55 eV photons directly, and the Debye quantum model

of harmonic crystals provides a reason. A quantum harmonic model finds the specific heat of

a crystal by considering each ion to be a harmonic oscillator, and calculates the specific heat

as the temperature derivative of the crystal’s energy density, in turn found as an integral,

over the first Brillouin zone due to lattice periodicity, of lattice vibrational energies. The

Debye model approximates the lattice vibrational band structure as consisting of three non-

dispersive modes, with an upper vibration frequency limit, the Debye frequency ωD, and

upper energy limit of ~ωD. ωD is taken to be the crystal’s speed of sound times the radius

in reciprocal space of a sphere which encloses a number of wave vectors equal to the density

of ions in the crystal, equivalent to the reasonable assertion that the maximum wave vector

of a vibration is that of one cycle per lattice spacing. For gold, ~ωD evaluates to 15 meV

as the greatest available vibrational energy, about 1% of the incident photon energy of 1.55

eV. With effectively no energies available for excitation, lattice ions absorb no significant

pulse energy directly.

Therefore nearly all of the incident pulse energy which is not reflected or transmitted

is absorbed by conduction electrons. Initially polarized, these electrons are excited and

dephase over a time scale of ∼ 10 fs. Only a small fraction of conduction electrons are

within 1.55 eV of the Fermi level and can be excited to an available state, so only these

are excited by the pulse directly, up to an optical depth of about 13 nm49 in the case
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of gold. The electron population is now in a non-equilibrium condition, and the excited

electrons penetrate ballistically further into the metal, up to about 100 nm48 for gold,

while also thermalizing with the rest of the conduction electrons, over about a 100 fs scale.

The two-temperature model of Anisimov50 now describes the ’hot’ electron and phonon

populations of the crystal in this state, with different temperatures and specific heats for

electrons and the lattice, but with each in thermal equilibrium separately. Ultrafast pump-

probe experiments can induce very high hot electron temperatures: Hohlfeld describes 400

nm pump pulses heating electrons to about 2700 K in a 1 µm gold film48. After electron-

phonon scattering on a scale of ∼ 1 ps, the much greater specific heat of the lattice places

the final equilibrium temperature closer to the initial lattice temperature. Phonon diffusion

proceeds over times of about 10 ps or greater, determined by the thermal conductivities

and dimensions of the metal and its matrix or substrate.

In our TTR experiments with both gold nanoparticles and membrane systems, cooling

times are observed to be occurring over 100s of ps. Since our models represent cooling due

to thermal diffusion, we generally begin fitting TTR signal models to data at 100 ps or

later delay time, out to 1500 ps, to avoid fitting models to data that represent non-diffusive

electron thermalization and hot electron-phonon scattering processes occurring at short

delay times.

4.6 Diffusive transport length and time scales required for sensitivity
to thermal boundary resistance measurement

4.6.1 Length and time scales of a nanoparticle system

With a primary goal of measuring the TBR of the Au/polymer interface of gold

nanoparticles, the TTR experiment must be applied to an NP system in which the TBR

is the controlling channel of transport, so that changes (by say 10%) produce a significant
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and measureable change in the measured signal, which in our case is the mean power of

the beam reflected from NP surfaces, and is proportional to NP surface temperature (see

section 4.3). As mentioned in section 3.1.3, gold NPs come to internal equilibrium rapidly,

relative to the system response time. For this type of system, Ge et al.40 estimate a critical

value of the TBR for a spherical NP, above which TBR becomes the controlling channel,

by equating the response times for two systems: an NP of zero TBR, where transport is

controlled by the conductivity of the surrounding matrix, and a finite TBR NP surrounded

by a perfectly conducting matrix. Effectively, the TBR of the second case is increased until

the response time equals that of the zero TBR case. For the zero TBR case, the response

time τd is found by equating the heat capacity of the NP with that of a surrounding layer

of the matrix, with a thickness equal to a matrix 1D diffusion length d =
√
α τd:

τd =
r2c2

vNP

9cvmkm
, (4.5)

with NP radius r, volumetric specific heat cvNP , matrix volumetric specific heat cvm, matrix

conductivity km, and diffusivity α related to the specific heat and conductivity by cmα = km.

For the TBR case, the heat capacity of the NP is equated to the TBC times the response

time, giving response time

τi =
rcvNPR

3
. (4.6)

Equating the two times gives the critical TBR value

Rcrit =
rcvNP

3cvmkm
. (4.7)

Equation 4.7 indicates that the minimum value of TBR for TBR-controlled transport

decreases with the NP radius. Well-known fabrication methods exist for NPs of radius in

the 10s of nm, as discussed in detail in section 5.4, and NPs of mean radius of 10 nm were

selected for the experiment. Gold and the polymer matrix are very dissimilar materials,

with significantly different bond types, strengths, and Debye temperatures, so a low value
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of TBC may be expected, perhaps near values for the dissimilar metal/diamond materials

in figure 3.6, about 20 MW/m2K. Evaluating eq. 4.7 with literature values for the specific

heat of gold, and estimated values of specific heat and conductivity for the polymer matrix,

we find 1
Rcrit

= 28 MW/m2K, near the above Pb/diamond results. MD Si/polymer TBC

simulations51 estimate a value of 17.5 MW/m2K, so we expect that our choice of matrix

material and NP radius will likely be sensitive to the TBR value.

As an estimation of the impulse response time of NPs, the Rcrit value above gives a

response time of ∼ 300ps, so the time-resolved method of TTR must have data points spaced

in time sufficiently closely to resolve this cooling time, thereby minimizing uncertainty in

fitting parameters. It must also generate heating in a small fraction of this time so that the

NP response is not significantly different than the impulse response. These considerations

will be evaluated in section 5.4.

4.6.2 Length and time scales of a membrane system

As mentioned in section 1.1, these experiments test thermal transport assumptions

which are relied on in TTR studies, by measuring the TTR reponse of a metal/insulating

membrane structure. The thermal isolation platform structure we studied was a molybde-

num film of 200 nm thickness, thermally deposited on an insulating silicon-nitride mem-

brane. The impulse response time of this system is that of the diffusive transport channel

of excited phonons from near the upper Mo surface, where optical absorption takes place

within a thin optical penetration depth of 5.5 nm52 (at the 800 nm wavelength of heating

pulses used in these experiments) from the upper surface, to the opposite side of the Mo

film. Again applying the 1D diffusion formula t = d2/α as an estimate of diffusion time,

using bulk values for Mo cross-plane conductivity and specific heat, we find that phonons

diffuse 200 nm in about 1900 ps. The TTR experiment must be able to measure temper-
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ature changes over this time in order to provide data for a thermal tranport model which

tests the assumptions in question.

4.7 Conclusions

TTR experiments combine short pulse durations, pump/probe measurement with con-

trolled delay times, sensitive lock-in measurement, and the thermoreflectance mechanism

itself, described by electron band structure theory, to produce an apparatus able to measure

the thermal responses of a nanostructure on a picosecond time scale. An understanding of

the ultrafast excitation of metals allows appropriate delay times to be selected for mea-

surement of thermal parameters by fitting models to data. The next chapters are detailed

descriptions of the TTR experiments with two different types of interesting nanostructures.
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Figure 4.3: The thermoreflectance coefficient of Au against wavelength, given in reference
44. The probe wavelength used in our implementation of TTR is 800 nm.

Figure 4.4: The thermoreflectance coefficient of Mo against photon energy, given in reference
45. The photon energy of our implementation of TTR is 1.55 eV, with a thermoreflectance
value of 5.80 · 10−4K−1.
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Figure 4.5: Time scales involved in the ultrafast excitation of metals, showing stages of
evolution in overall energy transfer from incident photon energy to diffusing phonon energy.
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Chapter 5

Nanoparticle Systems

5.1 Introduction

Nanotechnological materials are being studied and produced in diverse forms, includ-

ing nanostructured materials (e.g. corrosion-resistant nanocomposites), nanoscale devices

(e.g. microcircuits), and nanoparticles. In the case of nanoparticles, fabrication methods

and optical property tuning have been well-studied. The predictive power of theoretical

methods has been confirmed: for the case of spherical particles, Mie theory is an accurate

analytical method, while finite-difference time-domain (FDTD, see chapter 7) simulations

perform well as a numerical analysis method, and as one which is not restricted to spherical

particles.

Combining absorption spectrum tunability and nanoscale dimensions, nanoparticles

have generated interest for their use as nanoscale thermal sources.5 For example, nanother-

mal phototherapy,53 the ablation of vascularized tumors by the thermal energy of irradiated

NPs, is possibly such a use, and is being actively studied as a potential medical applica-

tion.54 However, while potentially relied on to raise biological temperatures, as well as in

other applications, the thermal transport properties of NPs have been the subject of rel-

atively few studies,41 including the property of thermal boundary resistance. The scale

on the right of figure 3.631 is the equivalent thickness, of a material of 1 W/mK conduc-
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tivity, to a TBC value on the opposite scale, illustrating that the TBR for typical metals

such as aluminum and gold, in contact with oxides, can have a resistance equivalent to a

material layer with thickness on the order of 10 nm, the scale of a nanoscale device. In this

chapter we describe the application of the method of ultrafast transient thermoreflectance,

which resolves thermal dynamics55 in response to impulsive heating, to a system of gold

NPs embedded in a polymer matrix, allowing the calculation of thermal properties, includ-

ing TBR. We find that TBR is a significant controller of transport in this system, with a

high value relative to that measured in other studies of metallic particles in contact with

insulators.

Calculations of the TTR response, often carried out in the frequency domain, require

a thermal model giving amplitude and phase values of the particle surface temperature.

Suitable multilayer planar models for this purpose are common,2 but are not relevant to

studies of the cooling of spherical NPs. Existing spherical models,40,56 though inclusive

of the TBR property, do not represent stratified particle structures, as is the case when

capping layers are present, or in core-shell NP geometries. We therefore have developed

a multilayer, spherical model of thermal transport, and apply it to the calculation of the

signal expected in TTR experiments. Our multilayer model enables us to explicitly separate

the effect on measurements of nanoparticle structural layers, typically capping layers (as in

our study) or those in core/shell geometries, which would otherwise mimic or contribute to

an apparent TBR effect.

5.2 Existing studies of metallic nanoparticle thermal boundary resis-

tance

Several distinct types of physical phenomena in NPs have been studied using TTR,

including electron and phonon dynamics,57,58 acoustic behavior,59,60 plasmon resonance,61
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optical absorption and scattering,62 and thermal properties.40,41,55,56,63,64 Important mod-

eling methods include molecular dynamics,65 finite-difference time domain simulation,66

and classical electromagnetism,67–72 including Mie theory.73–77 Among experiments that

have examined NP thermal dynamics, some have included thermal boundary resistance as

a parameter, in terms of its reciprocal thermal boundary conductance. These experiments

used colloidal, thiol-capped Au and Au/Pd alloy NPs in toluene,40,64 and Au NPs embedded

in glass.56 For the colloidal NP measurements of TBR, these studies use a frequency-domain

solution of the heat equation with TBR as an explicit parameter, but the model does not

include any effect of the capping layers, so results could be dependent on the capping

layer present. In order to differentiate the effects of TBR and any capping layers, we have

developed the following multilayer model for the measured signal in TTR studies, presented

in the next section, which represents capping layers and TBR independently, and which we

use to fit to measurements and determine experimental TBR values.

5.3 Multilayer spherical diffusion and TTR signal model

The primary inputs to TTR signal model mentioned in section 5.1 are detector

responsivity, nanoparticle thermoreflectance, and particle surface temperature. Presuming

that the heating strength generated in the particle from optical excitation may be treated

as a fitting parameter, we then need a spherical, multilayer thermal model which predicts

surface temperature from given heating. General multilayer spherical models exist, but

none have been applied to thermal systems with resistance at boundaries, and measured

using TTR. Following the matrix formulation approach of Feldman for the propagation of

thermal waves in planar stratified media,78 we develop a spherical wave model by defining

a stratified spherical system, as shown in figure 5.1, and solve for the steady-state temper-

ature throughout the system. Individual layers are denoted by the label n, with n = 1 for
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the material at the center, and n = N for the surrounding matrix. Each layer n ends at

radius rn, and has thermal parameters of diffusivity αn, volumetric isobaric specific heat

cn, and thermal conductivity kn = αncn.

Figure 5.1: The multilayer spherical system, with layer labeling indicated. Each layer has
distinct diffusivity αn, specific heat cn, and thickness rn − rn−1.

The modulated absorption of optical energy at the surface of a layer is represented

by a surface thermal source of strength A0 as A0e
iωt, at frequency ω and time t. Tn(r) is

the temperature at radial distance r in a layer n, and the radially-scaled temperature Fn

is defined as Fn(r) = r Tn(r). Since heat sources are treated as surfaces between layers,

diffusion within a uniform, isotropic layer is described by the one-dimensional homogeneous

heat equation

d2Fn
dr2

− q2
nFn = 0, (5.1)

with general solution

Fn(r) = c−n eqnr + c+
n e−qnr. (5.2)
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Fn(r) is the temperature distribution within the layer, where the coefficient superscript

indicates the direction of wave propagation, 1/qn =
√
αn/iω is the thermal penetration

depth at frequency ω, along with a factor of 1/
√
i conventionally included for notational

simplicity2. Because qn is compex, the two terms in the expression for the radially-scaled

temperature Fn(r) represent decaying waves. We will also be using the symbols γn = qnkn

and γ±n = (qn ± 1/r)kn.

The matrix formulation represents the scaled temperature as the vector

Fn(r) =

F−n (r)

F+
n (r)

 , (5.3)

with the upper component equal to the first term in eq.(5.2), describing a wave traveling

in the negative radial direction, and likewise the lower element for a positive-traveling

wave. The complete temperature expression is the sum of the two vector components. The

temperature throughout the system is determined by applying a succession of transition

matrices to the temperature vectors at the system limits of r = 0 and r → ∞, giving

temperature at all points in terms of the limit temperatures, and solving the resulting

system of two equations in two unknowns for the complete temperature field. The required

transition matrices are calculated using interface boundary conditions, layer thickness, and

knowledge of source strength, as next described.

5.3.1 Transition matrix calculation

The transitions of crossing an interlayer boundary, and traversing a single layer, are

each represented by distinct matrices. A surface heating boundary condition is also imple-

mented in matrix form. Temperature and thermal flux discontinuity conditions are used to

calculate these expressions. For an interlayer boundary at an interface at radius rj between

an inner layer i and adjacent outer layer j = i + 1, with thermal resistance R, no thermal
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source at the boundary, and flux f , the temperature discontinuity condition is

Tj(r
+)− Ti(r−) = Ri f(r−), (5.4)

where r± is the decreasing/increasing radius as the boundary at rj is approached. In terms

of the scaled temperature F (r), the matrix notation of eq.(5.3), and

f(r−) = −ki
dTi
dr

∣∣∣∣
r−
, (5.5)

the discontinuity condition reads

F+
j + F−j = (1 + γ−i Ri) F

+
i + (1− γ+

i Ri) F
−
i . (5.6)

Flux discontinuity at an interface with surface heating strength A0 is

fj(r
+)− fi(r−) = A0 (5.7)

which likewise becomes

γ−j F
+
j − γ

+
j F
−
j = γ−i F

+
i − γ

+
i F
−
i −A0r. (5.8)

At a boundary with no heating, combining eqs. (5.6) and (5.8) to successively express first

F+
j , then F−j , in terms of F±i , yields

Fj(r
+) = Γji(rj) Fi(r

−) (5.9)

where

Γji(rj) =
1

2γj

γ+j +γ−i +γ+j γ
−
i Ri γ+j −γ

+
i −γ

+
j γ

+
i Ri

γ−j −γ
−
i +γ−j γ

−
i Ri γ−j +γ+i −γ

−
j γ

+
i Ri

 . (5.10)

The matrix Γji(rj) thus represents the transition of the temperature vector from layer i to

layer j.

The traversal matrix Ui(d) for traversing a distance d above initial radius r0 within

layer i is determined by requiring

Fi(r0 + d) = Ui(d) Fi(r0), (5.11)
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which directly gives

Ui(d) =

eqid 0

0 e−qid

 . (5.12)

In crossing a heating surface at radius r, lying within layer i, the temperature is

continuous, and eq.(5.6) with R = 0 is

F+
j + F−j = F+

i + F−i , (5.13)

which, combined with eq.(5.8), gives the condition

Fi(r
+)− Fi(r

−) =
A0r

2γi

−1

1

 . (5.14)

Heating surfaces which are coincident with an interface are handled by placing the source

a distance ζ from the interface, and evaluating eq.(5.14) in the limit ζ → 0.

In a spherically-symmetric system with concentric surface heating only, thermal flux

at the origin is zero, f(r → 0) = 0, and for finite temperatures as r →∞, FN (r →∞) = 0.

From eq.(5.2), these conditions yield

F1(r = 0) = c−1

 1

−1

 , (5.15)

and

FN (rN ) = c+
N

0

1

 . (5.16)

5.3.2 Determination of temperature

Temperatures throughout the system, for the case of a single heating surface located

within layer i at radius rs = ri−ζ, are determined by relating the vectors Fi(r
±
s ) on opposite

sides of the surface by eq.(5.14). Using the transition matrices Γji and Ui, Fi(r
±
s ) are then
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expressed in terms of F1(r = 0) and FN (rN ), leaving two equations in the two unknowns

c−1 and c+
N of eqs. (5.15) and (5.16) above.

Defining

A =

A−
A+

 = Ui(ri − ri−1 − ζ)Γi,i−1(ri−1)

Ui−1(ri−1 − ri−2)Γi−1,i−2(ri−2)

...U1(r1)

−1

1

 (5.17)

and

B =

B−
B+

 = Ui(−ζ)Γi,i+1(ri)Ui+1(ri − ri+1)

... ΓN−1,N (rN )

0

1

 , (5.18)

Fi(r
±
s ) become

Fi(r
+
s ) = c+

NB, (5.19)

and

Fi(r
−
s ) = c−1 A. (5.20)

The source condition (5.14) then reads

c+
NB− c−1 A =

A0(ri − ζ)

2γi
, (5.21)

yielding

c−1 =
A0(ri − ζ)

2γi

B− +B+

A−B+ −A+B−
(5.22)

and

c+
N =

A0(ri − ζ)

2γi

A− +A+

A−B+ −A+B−
. (5.23)
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Temperature distributions in any layer i may now be calculated from Ti(r) = 1
r [F−i (r) +

F+
i (r)]. For example, in layer 2, T2(r) = 1

r [F−2 (r) + F+
2 (r)], with

F2(r) = c−1 U2(r − r1)Γ21(r1)U1(r1)

−1

1

 . (5.24)

5.3.3 Incorporation into a frequency-domain TTR signal model

TTR experiments define a TTR signal based79 on the increase in phase of the optical

power of a reflected or transmitted probe pulse, in response to an underlying temperature

increase44 in the system induced by a pump, or excitation, pulse, arriving at the system

a time τ before the probe. Pulses are typically generated by ultrafast lasers with pulse

durations on the order of 10 to 100 fs, impulsively heating nanoparticles with typical cooling

times of 10 to 100 ps. In addition, the heating pulse train is typically optically modulated

for subsequent lock-in detection. Here we assume the case of sinusoidal modulation at

frequency ω0 = 2π
T0
. Probe beams are not necessarily modulated in general. The signal is

measured by a lock-in amplifier, receiving its input from a probe beam photodetector, and

referenced to the modulation frequency ω0 of the pump pulse beam. The lock-in amplifier

mixes the input with a modulation reference signal, and outputs the in-phase (real) and 90◦

out-of-phase (imaginary) parts of the detected signal. In order to relate this to a quantity

which is positive and increases with temperature, and which is also independent of the

pump and probe beam powers, the TTR signal TTR(ω0, τ) is defined79 as

TTR(ω0, τ) = −Re(Z(ω0, τ))

Im(Z(ω0, τ))
, (5.25)

where Z(ω0, τ) is the lock-in signal.
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The complex lock-in output for a TTR experiment, as a function of probe delay time

τ , is given by Schmidt80 as

Z(ω0, τ) =
βQQprobe

T 2

∞∑
k=−∞

H(ω0 + kωrep)e
ikωrepτ (5.26)

where β is the product of detector responsivity and electronics gain, 1/T is the repetition

rate of the laser, Q and Qprobe are the absorbed pump and incident probe pulse energies,

and H is the frequency-domain surface temperature.

We can now apply our spherical transport model to calculate thermal parameters

by fitting the signal (5.25) to TTR data. For the simple case of a particle of radius a at

layer 1, in an embedding medium at layer 2, with resistance R at the interface, H(ω) =

1
r [F−1 (a) + F+

1 (a)], where

F1(a) = c−1 U1(a)

−1

1

 , (5.27)

c−1 =
A0a

2γ1

B− +B+

A−B+ −A+B−
, (5.28)

and

A = U1(a)

−1

1

 , B = Γ12(a)

0

1

 . (5.29)

5.3.4 Multilayer model applications

Before applying the multilayer model to our own experimental measurements, in this

section we present interesting applications of the model for broader purposes in studies of

nanoparticle thermal responses. The model may be used to predict the thermal response

of a stratified nanoparticle system generally, to evaluate the sensitivity of the TTR signal

to changes in thermal and geometric parameters, and to simulate the effect of the presence

of layered structures. As described previously, nanoparticle systems usually have char-

acteristic sizes well below the phonon mean free path of one or more of the constituent
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materials, calling for a quasi-81,82 or fully83,84 ballistic model of transport. Although bal-

listic thermal flux is not determined by the local temperature as in diffusive transport, a

pseudo-temperature81 may be defined in terms of the system’s internal energy at a given

position and time, providing a means of comparing the results of diffusive and ballistic mod-

els. The diffusive model presented here is useful as an approximation to a more accurate

and mathematically complex ballistic model.

Utilizing a multilayer model can improve agreement with TTR measurements of mul-

tilayer and core/shell nanoparticles, and can produce more accurate values for fitted param-

eters, than simpler models. Figure 5.2 shows the results of fitting the multilayer model to

the TTR data of Wilson64 et al. for Pt nanoparticles in water, with nanoparticle radius of

5 nm, a citrate capping layer, and TTR parameters given by the authors.64 The change in

optical depth shown in this data may be calculated in the multilayer model by replacing the

thermoreflectance coefficient of the model given above80 with a ∆T/T coefficient, such as

calculated by Averitt et al.85 The fitting parameters were thermal boundary conductance

at the Pt/citrate interface and capping layer thickness. The multilayer model fits the TTR

data with a slightly improved R2 value of 0.974, compared to the estimated value of 0.966

for the original two-layer model fit by Wilson. We find a conductance of 226 MW/m2K,

about 70% greater than the authors’ result of 130 MW/m2K, and a capping layer thickness

of 0.17 nm. The greater quality of fit indicates that the citrate layer contributes signif-

icantly to thermal resistance, and that correspondingly less resistance is due to interface

resistance, as opposed to other models which effectively replace the TBR plus cappin glayer

with TBR only. Consequently, the multilayer model finds a more accurate, higher value

of TBC. Additionally, the similarity of the fitted citrate thickness value to measurements

found for gold citrate-capped nanoparticles,86 determined by observing increased aggrega-

tion with increasing known adsordbed hycarbon lengths, shows that the thickness value is

reasonable.
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(this work)

Figure 5.2: Fit of the multilayer model to TTR data of Wilson64 et al. for Pt nanoparticles
in water, with TBR value and capping layer thickness as fitting parameters. The multilayer
model fits the measurements with an improved R2 value, and yields a thermal boundary
conductance of 226 MW/m2K.

We also consider the case of aqueous gold nanoparticles, applicable to biological appli-

cations, and show the predicted increase of TTR signal decay times due to increasing TBR

at the Au/H2O interface. Figure 5.3 is a plot of the modeled TTR signal for aqueous gold

nanoparticles of radius a = 10 nm, with the parameters in Table 5.1. The value for TBR

is estimated as the intermediate value of the range given by Ge et al.40 for Au-core/AuPd

shell and solid AuPd nanoparticles.

For this example and others with dimensions well below the phonon mean free path

of gold, we expect that models employing platinum and gold thermal conductivities that

are reduced for nanoscale effects may provide the best match to data. However, not all

NP systems are sensitive to all conductivities present. To assess the sensitivity of the
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Figure 5.3: Raw (unscaled) modeled TTR signal for aqueous Au nanoparticles. Times
are indicated for decay to 50% of the signal at probe delay of 10 ps. The TTR signal is
dimensionless, as indicated by eq. (5.25).

fit to conductivity values in this case, we vary both gold88 and citrate89 conductivities

between 50% of bulk and twice bulk values, finding essentially no change in results for

fitted parameters, the calculated TTR signal, or for sensitivities to parameters found from

TTR values. With a large conductivity for gold, relative to both the water matrix and

the citrate layer, interface transport and diffusion in the water matrix are the dominant

decay channels, so the TTR signal is not sensitive to the nanoparticle conductivity. We

also expect sensitivity to citrate conductivity to decrease with capping thickness, so low

sensitivity to citrate conductivity is expected for the fitted thickness value, which is small

relative to particle radius. In general, however, when fitting the diffusive multilayer model

to data from cooling nanostructures, large differences between modeled and measured TTR

values imply the need for a more advanced ballistic transport model.81
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Aqueous gold NP modeling

Repetition rate ωs 2π · 75 Mrad/s
Pump modulation frequency ω0 2π · 100 krad/s
Nanoparticle radius a 10 nm
Au thermal conductivity87 k1 318 W/mK
Au volumetric specific heat87 c1 2.49 · 106 J/m3K
H2O thermal conductivity87 k2 0.6 W/mK
H2O volumetric specific heat87 c2 4.18 · 106 J/m3K
Au/H2O thermal boundary 1/R 200 MW/m2K

conductance40

Table 5.1: Model parameters for aqueous gold nanoparticles.

Resistance to thermal flux in nanoparticles can be due to both TBR and capping layers

simultaneously, and with similar magnitudes of effect on the TTR signal. These physically

distinct resistances are modeled independently in the multilayer thermal model, and the

model can therefore show that the TTR signal changes differently, at different delay times,

with changes to these parameters, so that the two quantities can be determined separately

by fitting the model to TTR data. These differences are quantified by the sensitivity of

the TTR signal, which for TBR is defined as the relative change of the signal with respect

to the fractional change in TBR, at a fixed probe delay time of 100 ps.90 For example, a

sensitivity of 0.5 means that a 10% increase in the TBR would cause a 5% increase in the

TTR signal. Figure 5.4 shows the change of the TTR signal for separate changes to TBR

and capping thickness for a Pt nanoparticle in water, with a citrate capping layer. The

signal change between 0 and 60 ps probe delay shows that increasing TBR has a greater

effect on the signal at short times than increasing capping thickness, which is reasonable

because the TBR is located closer to the source of heating at the nanoparticle. Increasing

capping thickness has greater effect on the signal at times after 60 ps. Because the TTR

signal responds differently to TBR and capping thickness at different delays (except at the

single time near 60 ps), fitting the model to TTR data will reveal a local minimum at the
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independent TBR and capping values that give a best fit. Figure 5.5 plots the sensitivity

of the TTR signal to TBR and capping thickness changes, and shows that the greatest

sensitivities occur at 275 and 285 ps respectively. Fitting the model to data that includes

these delays will yield the least uncertainty in results.

5.4 Design of the gold nanoparticle experiment

The elements mentioned in section 4.7, required for TTR meaurements of thermal

dynamics of a nanoscale system, are implemented by the experimental setup shown in figure

5.6. In the following sections we discuss details of each component of the TTR apparatus,

and table 5.2 lists typical parameters.

TTR parameters

Source wavelength 800 nm
Pulse duration 150 fs
Repetition rate 76 MHz
Maximum probe pulse delay 1.8 ns
Pump modulation rate 50 kHz
Probe modulation rate 500 Hz
Beam waist 6.59 µm FWHM
Pump average power at sample 2.9 mW
Pump pulse energy 38 pJ
Probe average power at sample 1.5 mW
Objective lens focal length 20 mm
Beam diameter before objective 0.95 mm FWHM
Pump lock-in integration time 100 µs
Pump lock-in sensitivity 100 mV
Probe lock-in integration time 3 s
Probe lock-in sensitivity 1 mV
Lock-in roll-off 6 dB/octave
Lock-in reserve 60 dB

Table 5.2: Numerical parameters of the ultrafast TTR experiment. FWHM indicates ‘full
width half maximum,’ the beam diameter at 50% of peak intensity.
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Figure 5.4: Calculated change of the TTR signal for a 1% increase of TBR and cap-
ping thickness, as a function of delay time, for Pt nanoparticles in water. TBR has the
experimentally-measured value64 R0 = 7.69 · 10−9 m2K/W, and the capping layer is 1 nm
of citrate. The nanoparticle radius is 5 nm.
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Figure 5.5: Sensitivity of the TTR signal to TBR and capping layer thickness for Pt
nanoparticles in water. The multilayer model predicts the greatest sensitivities to TBR
and capping thickness at 275 and 285 ps, respectively.
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Figure 5.6: Optical layout of the TTR apparatus. The pump and probe beams include
colinear alignment at the sample and objective, crossed linear polarizations, dual modulation
and separate lock-in detection. Red shading indicates the pump arm, and yellow shading is
for the probe arm. The pump arm also includes a 4-passed delay line. To equal the optical
path of the pump arm for simultaneous arrival of pulses at the sample, the extended section
of the probe path, including the acousto-optic modulator, is measured to the appropriate
length. Half-waveplates are aligned to rotate linear polarizations by 90◦ relative to the
vertical.

TTR equipment

Ti:sapph pulsed laser In-house
Pump lock-in amplifier Stanford Research SR 844
Probe lock-in amplifier Stanford Research SR 830, 810
Electro-optic modulator (pump) Conoptics 350-210, M-25D controller
Function generator (EOM) Hewlett-Packard 3325
Acousto-optic modulator (probe) Isomet 1250C-2, 535C-1 controller
Function generator (AOM) Hantek DDS-3X25
Delay line translation stage Newport Research, ESP 300 controller
CCD camera Mightex BCE-C050-US
Photodetector Thor Labs DET 110
Band-pass filter In-house
Objective lens Mitutoyo 10X NIR

Table 5.3: Major equipment used in the TTR experiment.
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5.4.1 Ultrafast source and optical isolation

For our experiments we used a home-built ultrafast laser, which uses a Coherent

Verdi G5, 532 nm, 5 W OPSL laser as a pump laser, and a Ti-doped sapphire (Ti:sapph)

crystal as its broadband gain medium, lasing at 800 nm. Our laser uses a typical ultrafast

laser configuration, in which Kerr lens mode-locking occurs as a balance between the pulse-

shortening Kerr effect and the pulse-stretching self-phase modulation effect. Focusing of

mode-locked pulses onto the crystal is by a pair of curved mirrors, and a pair of triangular

prisms provide the negative dispersion required for Kerr lens mode-locking. The laser

cavity length was about 2 m, giving a repetition rate of ωrep = 76.33 MHz of this Ti:sapph

oscillator. The average optical power after the output coupler was about 350 mW. Following

the oscillator are a red-reflecting dichroic mirror to eliminate 532 nm leak-through from the

beam, as well as a collimating lens pair.

We have measured the pulse duration using an auto-correlation method: a non-

linear, frequency-doubling BBO (β BaB2O3) crystal, followed by a filter that transmits

the frequency-doubled pulses at 400 nm and blocks the original 800 nm. Frequency dou-

bling is a ‘χ(2)’ non-linear process, with an output that is proportional to the square of the

sum of the incoming pulse power from the pump and probe pulses each, so that the 400 nm

output pulse power is very sensitive to the amount of overlap of pump and probe pulses in

the BBO crystal. By stepping the translation stage of the pump arm (see section 5.4.2),

we can estimate the duration of ultrafast pulses: we find a duration of about 150 fs for our

laser, more than fast enough to time-resolve thermal dynamics taking place on a 100s of ps

scale.

Our apparatus also includes an optical isolator, which allows pulses to propagate in

the downstream direction only. In early trials, using reflective thin film samples at normal

incidence to the incoming beam, pulse backreflections propagated to the Ti:sapph source,
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causing it to easily drop out of mode-locked operation into continuous-wave (CW) operation.

The polarization-dependent isolator readily fixed this problem, using the mechanism of

Faraday rotation of the linearly polarized beam. The beam leaving the oscillator has linear

polarization in the horizontal (‘P’) direction, which is rotated to vertical (‘S’) polarization

by a periscope mirror pair before the dichroic mirror. A 1/2-wave (‘λ/2’) plate aligns

the incoming S beam to a polarizer just after the isolator’s incoming aperture at 45◦ to

the vertical so that the beam is passed. The Faraday effect rotates the beam back to S

mode. The upstream, backreflected beam experiences Faraday rotation in the same absolute

direction, crossing it with the polarizer at the isolator incoming end, where the upstream

beam is extinguished.

5.4.2 Heating (pump) and signal (probe) arm parameters

As time-domain experiments, TTR designs must consider any possible residual heat-

ing of the system due to pulses arriving at the sample prior to the last pulse before a given

instantaneous time. For our nanoparticle system, the cooling time estimated in section

4.6 was approximately 300 ps. At the oscillator’s repetition rate of 76.33 MHz, the time

between pulses is 13.1 ns, very long relative to the estimated cooling time, so we expect

only a small effect due to pulse accumulation. The pulse accumulation effect is accounted

for in the TTR signal model we employ in eq. (5.26).

Again as a time-resolved measurement, the TTR apparatus must pump and probe

nanoparticles using pulse durations much shorter than the estimated cooling time. The

ultrafast pulse duration of 150 fs certainly fulfills this requirement, being about 103 times

shorter than the cooling time estimate. However, pulses are stretched in time by propagation

through dispersive media, and while the air medium of the majority of the beams’ paths has

relatively little stretching effect, the passage of the beam through the crystal medium of the
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optical isolator of the previous section, as well as that of the pump beam through the KDP

crystal of the EOM discussed in section 5.4.3, have a significant stretching effect. Pulse

durations folowing the EOM were measured using the BBO method described in section

5.4.1, and although precise data were not retained, the result was a pulse duration near

1 ps, so that pump pulses were stretched up to approximately seven times their original

duration. This value remains sufficiently short for time-resolved TTR measurement.

The controlled delay time of probe pulses arriving at NP samples is effected by short-

ening the pump beam path, so that pump pulses arrive successively earlier than probe

pulses. Probe delay times are calculated by dividing the speed of light into the amount by

which the pump path length is shortened, found by multiplying the pump delay line position

relative to a ‘time zero’ position, where the two arm paths are of equal length, by a factor

of 4 to account for the 4-passing of the delay line described in section 4.4. The time zero

position of the translation stage is generally found by moving the stage until a sharp peak

in the lock-in signal of eq. (5.26) is observed. At this position, very high electron tempera-

tures, occuring prior to thermalization with the ionic lattice, give the Au NPs a very high

thermoreflectance coefficient,48 which is observed as a large change in the lock-in signal at

the pump modulation frequency. Prior to interaction with the lattice, but following electron

thermalization among themselves, electrons can generally have temperatures on the order

of 103 K, and at these high temperatures the effect of the broadening of the step of their

Fermi distribution function becomes dominant over that of the phonon density increase

mentioned in section 4.3. The broadening effect is much stronger at photon energies near

the ITT of 2.54 eV (494 nm), but is still significant at our experiment’s photon energy of

1.55 eV (800 nm).

The time resolution of the TTR apparatus is nominally the minimum step size of the

delay line, times four for the four-passing of the stage, divided by the speed of light, for a
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value of about 14 fs. Actually, the limiting factor of time resolution is the greater value of

the pump and probe pulse duration, mentioned above.

As discussed in section 4.3, we choose a maximum phonon temperature increase of

1 K per pump pulse absorption by a nanoparticle to ensure that changes in reflected probe

pulse power are linearly related to the particle surface temperature. As mentioned in section

4.1, the probe pulse energy was adjusted downward, with neutral-density (ND) filtering, to

equal 50% of the pump pulse energy. Lab optical power meters measure the average optical

power Pave of a pulse train beam. To determine the desired Pave to cause the chosen

temperature increase of 1 K, we consider two features of the absorption process. First, with

a pulse duration of 150 fs, and diffusion taking place on the 100 ps scale, no significant

pulse energy will have diffused from the nanoparticle, so we may estimate the thermal

energy ∆Eth gained by the particle, but prior to diffusion, as the pulse energy initially

absorbed Eabs. Second, although greater absorption within the particle occurs near its

surface facing incident photons, the gold particle has a thermal conductivity about three

orders of magnitude greater than the surrounding polymer, and the particle comes to an

internal equilibrium prior to significant diffusion, so that the specific heat of gold cp,V may

be used to calculate the thermal energy required to raise its temperature by ∆T = 1 K. We

then have

∆Eth = Eabs = cp,V V ∆T, (5.30)

where V is the nanoparticle volume. The absorbed pulse energy Eabs is the average absorbed

power Pabs times the period of pulse repetition, or in terms of the pulse repetition rate frep

Eabs =
Pabs
frep

. (5.31)

The natural choice to express absorbed power in terms of the desired incident average

pump beam power, the nanoparticle absorption cross-section σabs is the natural choice,

with Pabs = σabsIinc, where Iinc is the incident beam intensity. For the cross-section,
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we find a value calculated from Mie theory and the discrete dipole approximation75 of

σabs = σeff Aproj = 0.030 Aproj , where Aproj is the particle’s projected area and σeff is the

nanoparticle absorption efficiency. The particle reflectivity is effectively included in the

value of σeff . For the intensity, we use the average intensity over the 1
e2

beam diameter, w,

for Iinc = Pinc
πw

2
2 . Combining expressions for Eabs, Pabs, and Iinc in eq. 5.30, we have Pinc in

terms of ∆T with

Pinc =
π

3

cp,V freprw
2

σeff
∆T, (5.32)

with r the nanoparticle radius. The most readily adjusted values in eq. 5.32 are the pump

incident power and the beam diameter. Rearranging, and considering other parameters as

constants, we have

Pinc
w2

=
π

3

cp,V frepr

σeff
∆T = constant, (5.33)

to show the relationship between changes in these two most easily adjusted parameters

(incident power and beam diameter). To ensure that sufficient beam power is present at

the sample, we see that its required value can be reduced by lowering w, and that it scales

as the square of w. Choosing an objective lens with a typically short focal length and small

spot size should assure that the required pump power can be achieved. Short focal lengths

suggest utilizing microscope objectives: for a Mitutoyo near-infrared 10X objective with

a focal length of 20 mm, we measure a waist size of w = 6.59 µm, about 12% below an

estimate of 7.47 µm from the Gaussian beam optics formula w = 4λ
π
f
D for the waist diameter

of a converging or diverging beam, where the parameters of wavelength λ, lens focal length

f , and beam width incident to the lens D, are listed in table 5.2. The 12% discrepancy is

most likely due to a change in optics between the times of beam diameter and waist size

measurements, which caused an increase in the value of the beam diameter from the value

in the table. Evaluating eq. 5.32 with this waist size, we find Pinc = 2.9 mW. Additionally,

the square wave modulation of the pump beam causes its average power to drop to half the
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value of the unmodulated beam, so a reading of 2 · 2.9 mW = 5.9 mW is set using a lab

power meter to obtain the proper pulse energy for 1 K temperature increase.

We note that in the formula for waist diameter the beam width D is defined as the

1
e2

beam width, while the width in table 5.2 is the FWHM value DFWHM. Both definitions

refer to a Gaussian intensity profile along a normal to and through the optical axis, with

maximum intensity I0, of the form I(r) = I0e
−2 r2

(D/2)2 , at distance r from the axis. The two

definitions of beam width are related by

I(DFWHM) =
I0

2
= I0e

−2
(DFWHM/2)2

(D/2)2 , (5.34)

from which DFWHM =
√

log 2
2 D = 0.589 D.

5.4.3 Modulation and lock-in detection

As described in section 4.3, TTR relies on a change in reflected optical power with

temperature as a temperature probe. A linear relationship between power and temperature

is expected for temperature increases of about 1 K. From the values of the thermoreflectance

coefficients for Au and Mo, the reflected power fractional change for a 1 K temperature

change is on the order of one part in 104. At the very least, a photodetector with more

than 4 digits of precision would be required to detect such a change. In practice, the

contribution of each noise source has to be reduced as much as reasonably possible to reduce

the accumulation of uncertainties in final results, to extract the change in power from a

background about 104 times larger than the quantity of interest, and to safely attribute the

measurement to NP temperature increase, rather than to other plausible effects: examples

include changing pump/probe spot overlap at the sample due to imperfect alignment of an

incoming beam to the translation stage employed to control pump and probe pulse relative

delay times, or unintended heating due to probe pulses, as opposed to the intended heating

due to pump pulses.
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TTR experiments apply beam modulation with lock-in amplifier detection, referenced

to the modulation frequency, to meet these practical needs. In all implementations of our

TTR experiments, pump and probe pulses traversed two different optical paths, or arms,

and were recombined into a single beam upstream of arrival at a sample. All beams were

linearly polarized. In early implementations of our TTR apparatus, the probe arm was

unmodulated, and its path length was fixed. During data collection with this early imple-

mentation, probe pulses were continually incident on samples at fixed, regular times. For

the pump arm, the optical path passed over a translation stage four times, using retrore-

flecting mirrors to ensure mutually parallel beams and negligible lateral beam drift during

stage translation. The pump path length was adjusted to equal that of the probe by mov-

ing the stage by small increments, setting that stage position as ‘time zero,’ the position of

zero delay of probe pulses relative to pump pulses. To effect a probe delay, the pump arm

was shortened by moving the stage, advancing the arrival of pump pulses at the sample,

providing the equivalent of a probe pulse delay.

The translation stage in the pump arm was followed immediately by an electro-optic

modulator (EOM), modulating both phase and amplitude. The EOM functions by passing

light through several cm of a potassium dideuterium phosphate (KDP) crystal, an optical

material with a strong Pockels, or electro-optic, effect: a degree of birefringence which

depends on the strength of an externally applied, DC, electric potential, supplied to the

KDP by a separate controller. By applying the Pockels effect to one component of the

beam polarization, we have a voltage-controlled phase delay of that component, and with

the delay adjusted to 90 ◦, a voltage-controlled polarization rotation. The beam then passes

through a polarizing beamsplitter (internal to the EOM) aligned to the unmodulated beam,

and the EOM then functions as an amplitude modulator, turning the beam off whenever

a control signal is applied to the EOM controller. The controller output could be either

at a fixed voltage, or off, i.e. the controller was a ‘digital,’ as opposed to continuous or
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‘analog’ controller, so that the EOM functioned as a square wave modulator of the pump

beam power. The EOM control signal was run at frequency 1/T0 = 50 kHz for final data

collection. This frequency value was chosen as a balance between high values, to reduce

signal noise which decreasd with frequency, while remaining below about 1 MHz, where

decreasing sensitivity of the TTR signal to TBR was predicted, shown in figure 5.7. The

pump pulse train is illustrated in figure 5.8.

Figure 5.7: Plot of sensitivity of the TTR signal to a 1% increase in TBR value at the
Au/citrate interface.

Later experiments added sinusoidal modulation of the probe beam optical power by

means of acousto-optical modulation (AOM), the Bragg diffraction of light by a transient

grating induced by RF acoustic waves in an optical crystal, TeO2, in our experiment. The

acoustic waves are generated by a piezoelectric crystal attached to the optical crystal. Our

AOM used traveling acoustic waves, which cause a Doppler shift in the diffracted beam

wavelength, which was a small fraction of the incoming wavelength. The probe arm was

routed to use the first order diffracted beam, which had intensity proportional to the AOM

control signal amplitude applied to its controller. The control signal frequency 1/Tprobe was
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set to 500 Hz for final data collection, observed to have the least measurement uncertainty

within the bandwidth of the signal generator providing the signal. Sinusoidal modulation

of the probe beam is graphed in figure 5.9.

Figure 5.10 shows the effect of the two modulation stages on the intensity of pulses

arriving at the sample. In addition to modulation, the pump and probe arms were arranged

with linear polarizations crossed at 90◦, and beams reflected from samples passed through a

polarizing beamsplitter before reaching the photodetector, as discussed in subsection 5.4.4,

so that any pump signal reaching the detector carries about 104 times less power than the

probe beam, and any oscillation in the probe signal, at the pump modulation frequency,

may be attributed to the temperature changes in samples and consequent modulation in re-

flected probe power via the thermoreflectance effect. To detect this frequency, the detector

output was first sent to a lock-in amplifier referenced to the pump modulation frequency;

this lock-in was followed by another lock-in referenced to the probe modulation frequency.

In this arrangement, the first modulation stage serves as a detector of temperature effects

in the sample. The second stage, with the probe beam locked into its own modulation fre-

quency, functioned as a noise reduction measure. As discussed in section 5.5.1, we believe

fluctuations in the beam powers arriving at the sample to be the main source of noise.

Additionally, although the probe pulse train induces heating in the sample, at a strength

lower than, but on the same scale, as the pump train, because it has no significant compo-

nent at the pump modulation frequency, the reflected probe pulse train may be taken as

responsive to the surface temperature as heated by the pump pulses.80

The component of the reflected probe spectrum which is actually measured at the

output of the second lock-in is shown in figures 5.11 through 5.13. This and the following

plots show the amplitude of a frequency spectrum. Before modulation, the probe has

the delta function comb spectrum of a pulse train. With a measured pulse duration of
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T0 Trep

Figure 5.8: Pump beam intensity arriving at samples. In our experiment, T0/Trep ≈ 102.

tpulse ≈ 100 fs, the envelope in figure 5.11 has width relative to the repetition rate ωrep

1/tpulse/ωrep ≈ 106, so that the peaks effectively have equal areas. Although the width of

each peak in the spectrum is actually finite and found from the time of exposure texp of the

sample to probe pulses as 2/texp, this bandwidth is many orders of magnitude smaller than

ωrep, so that the peaks may be taken as delta functions.

In figure 5.12, the square wave modulation of the reflection coefficient of the sample,

at rate ω0, shown in figure 5.10, and thus of the reflected probe power, adds sidebands to

each original delta function, at multiples of distance ω0 from the original delta functions,

as seen by the convolution theorem of Fourier transforms. The theorem specifies that the

transform of a product of functions is the convolution of individual transforms, and that the

same is true for inverse transforms. The first stage of probe modulation occurs indirectly
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Figure 5.9: Incident probe beam intensity at samples. Tprobe/Trep ≈ 105 in our TTR
implementation.

through the temperature changes induced by the pump beam, effectively multiplying the

time-domain probe by a square wave plus a constant. Being a linear transform, the Fourier

transform of a sum is the sum of transforms, so that the added constant only increases

the weight of the delta function at zero frequency. A square wave of frequency ω0 has a

spectrum of delta functions with relative weights 1, 1/3, 1/5, etc., and spacing ω0. The first

three harmonic sidebands are shown. Because the thermoreflectance effect only modifies

the probe time-domain signal by a small fraction, the sidebands weights shown in figure

5.12 are exaggerated. The convolution of a function with a delta function shifts the original

function origin to the delta function location, giving a modified comb spectrum.

The second stage of modulation follows the same frequency shifting process as for

square wave modulation, except that the modulating spectrum is that of a sine wave of
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Figure 5.10: Illustration of the effect of the two stages of modulation on the beam intensity
reflected from samples. With frequency ω0 = 2π/T0, probe pulses have reduced (in the
case of Au NPs) intensity due to pump-induced thermoreflectance of the sample material.
Signal detection is locked in to frequency ω0.

frequency ωprobe � ω0 plus a constant, i.e. delta functions located at ±ωprobe. Convolution

then adds two sidebands next to each probe component, giving the spectrum in figure 5.13,

with those chosen for dual lock-in measurement indicated. Lock-in amplifiers measure a

signal’s amplitude and phase by mixing a signal with a reference, i.e. multiplying the signal

by a sine wave at the reference frequency. In the frequency domain, this process is again

described by the convolution theorem: the mixing operation is equivalent to convolution

with the single delta function spectrum of a sine wave, effectively selecting the reference

frequency for measurement. The indicated probe spectral components, of relatively small

weight relative to the original comb spectrum weights, can be differentiated from the original
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signal due to their being shifted away from the original frequency values of the spectrum,

enabling the small thermoreflectance changes induced in the probe signal to be measured.

Figure 5.11: Frequency spectrum of the probe pulse train, with spacing ωrep. The decay
of the envelope function is exaggerated, and the peaks are considered to have equal areas;
similarly the pulse width 2/texp is not significant relative to ωrep, so that the peaks are
considered to be delta functions.

Figure 5.12: Modification of the probe spectrum due to square wave modulation of optical
power reflected from samples. In our experiment, ωrep/ω0 ≈ 102. Peak heights are propor-
tional to delta function areas.

5.4.4 Colinear design and polarized beam separation

The last essential feature of the TTR setup to consider is seen on the apparatus dia-

gram in figure 5.6, where the pump and probe arms recombine at the polarizing beamsplitter
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Figure 5.13: Further probe spectrum alteration from sine wave modulation, adding sum
and difference frequencies. The experimental ratio of pump to probe modulation rates
is ω0/ωprobe ≈ 103. The circled components are the amplitudes measured by dual lock-in
amplifiers.

cube into a single colinear beam, which appears to reflect from the nanoparticle sample and

transmit through the beamsplitter again, then through the probe’s 50/50 beamsplitter,

to reach the photodetector, seemingly removing the distinct roles of the pump and probe

beams as excitation and measurement beams.

Though the beams are colinear to and from the sample as far as the polarizing beam-

splitter, at this point they are again split, so that essentially only the probe beam transmits

through the beamsplitter to arrive at the photodetector, while the pump beam is reflected

at the beamsplitter along its incoming path, and is not strongly detected. In the beam

paths shown in figure 5.6 the polarization is linear and vertical, i.e. normal to the surface

of the table, or S mode, with the exception of a short distance at the optical isolator, as

described in section 5.4.1, and the probe beam following the half-waveplate downstream

from the first 50/50 beamsplitter, which rotates the polarization to be parallel to the table

surface, or P mode. Unlike a fractional beamsplitter, the polarizing beamsplitter cube

is polarization-sensitive, and is aligned so that nearly all incident pump beam power is

reflected toward the sample, then reflected again away from the photodetector on its return
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path from the sample. Likewise, nearly all the incident P -mode probe power is transmitted

through the cube to the sample, then again transmitted to the photodetector on the return

path. In attempting to measure the discrimination efficiency of the cube with the pump

beam, we found that 91% of the S-mode incident power was reflected by the cube, while the

transmitted power was very low and therefore difficult to accurately measure. We suspect

that the remaining 9% of the beam power was mostly backreflected at the incoming face of

the cube.

The separate functions of pump and probe are maintained by these polarization fea-

tures. The modulated pump may be considered as modulating the surface temperature of

the nanoparticles, inducing a small decrease in the (separate) reflected probe power when

the pump is in the ‘on’ state. However, a small fraction of the pump beam is transmitted

by the cube, and reaches the photodetector. Because the first lock-in amplifier is locked to

the same modulation frequency of this ‘leak-through’ pump power, and also since the ther-

moreflectance effect causes only a small fractional change in probe power, the leak-through

contributes an offset which is comparable to the desired probe signal. We decribe correction

for this offset in section 5.5 below.

5.4.5 Sample imaging

Our TTR apparatus included sample imaging optics consisting of a magnifying ‘tele-

scope’ lens pair, a CCD camera, and a glass slide just upstream of the photodetector, to

divert a fraction of the probe beam power to the camera (see figure 5.14). The resulting

image was used to view the size of the beam spot on the sample or on a substituted mir-

ror, while the sample was being moved along the optical axis and through the objective

lens waist on a manual translation stage. The imaged spot size decreases as the waist is

approached, and moving the sample to where the minimum spot size is seen places the
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sample at the beam waist. The image was also used to simultaneously view the spots on

the sample from the pump and probe beams, and to adjust the position of the probe using

two-axis rotation of an upstream mirror for maximum overlap of pump and probe spots.

A lens pair in a telescope arrangement, with an object in the focal plane of the first

lens, and focal lengths f1 and f2, has a magnification of −f2
f1
, with the image located in the

focal plane of the second lens. In our experiment, the objective had f1 = 20 mm, and the

focusing lens before the CCD had a typical focal length of 15 cm, for a magnification of

approximately 7.5, and the beam waist of 6.59 µm after the objective was then magnified

to an image of about 50 µm. Our CCD camera had 2.2 µm square pixels, so that the spot

image on the CCD would span about 25 pixels or more, and the beam position and size

could be resolved and optimized.

Figure 5.14: Zoomed-in view of the TTR optical layout, showing the imaging components.
The objective lens upstream of the sample (not shown in this view, see figure 5.6) is the
pair lens to the CCD focusing lens shown, making a ‘telescope’ pair.
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5.4.6 Band-pass filtering

As a final feature of the TTR apparatus, we recall from section 5.4.3 that the pump

modulation frequency for final data collection was chosen to be 50 kHz. Prior to final data

collection, it was important to have the option to increase the frequency well above this

value, to test for the best combination of signal-to-noise ratio and TBR sensitivity. This

required frequencies above the bandwidth of 102 kHz of the Stanford 830 lock-in amplifier,

which was available and could otherwise have been used as the pump/first lock-in. We

therefore used a Stanford 844 RF lock-in for the first stage of lock-in detection, with a range

of 25 kHz to 200 MHz. The controller generating the EOM control signal had a bandwidth

of 30 MHz, and frequencies up to this value were available. However, the RF lock-in is

designed to be a square wave-detecting lock-in, meaning that its output is calculated by

mixing the input, presumed to be an RF square wave, with an internally-generated square

wave at the detection frequency, so that the output includes contributions from both the

fundamental and also odd harmonics of the input. As mentioned in section 5.4.3, the

control signal for the EOM modulator of the pump beam was available only as a square

wave. While locking into this square wave modulation spectrum would have been effective

from a detection point of view, including harmonic contributions would have complicated

the theoretical model of the TTR signal, and departed from the typical practice of detection

at a single frequency, making comparisons with the results of other studies more difficult.

We therefore required a band-pass filter of the photodetector output, to remove any

significant harmonics above the fundamental, and pass only the fundamental to the RF

lock-in for mixing, effectively using it as a sine wave-detecting lock-in. We could therefore

remain with a single-frequency model of the lock-in signal. We also desired to remove any

DC offset from the photodetector output, to aid in keeping the input to the lock-in within

its limits. We implemented the bandpass filter in-house as an RC highpass filter followed by
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a second-order Butterworth lowpass filter, using a 300 MHz op amp (Analog Devices 8055).

The op amp was powered by the output of a voltage regulator (Fairchild Semiconductor

LM 317). Using the spectrum analyzer feature of an oscilloscope and a square wave test

signal, we confirmed that the amplitude of second harmonic, and higher harmonics, were a

small fraction of that of the first harmonic. We also avoided any overload indication at the

RF lock-in input by removing most of the original DC offset.

Figure 5.15: The band-pass filter between the photodiode output and the first lock-in input.
Filter parameters are listed in table 5.4.

5.5 Experimental results

From figure 5.7, it can be seen that the estimated sensitivity of the TTR signal to

the main property of interest, TBR, was somewhat low at 0.078% change in TTR value

per 1% increase in TBR value. At this sensitivity, a 1% measurement uncertainty in the
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Band-pass filter parameters

R1 6.8 kΩ
R2 24 kΩ
R3 5 kΩ
R4 3.9 kΩ
C2 330 pF
C4 330 pF
R 47 kΩ
C 3.3 nF

Table 5.4: Component values for the filter shown in figure 5.15.

TTR signal would imply a 1
0.07 = 14% uncertainty in the final TBR value. For this reason,

it was important to minimize random measurement error as much as reasonably possible,

and this was done in two ways: increasing the integration times of the two second-stage

lock-in amplifiers to 3 s, to stabilze the signal, and additionally taking multiple scans over

the chosen range of probe delays, 100 to 1500 ps, and averaging these scans together. In

our final data collection, nine such scans were averaged together, yielding the data plotted

in figure 5.19.

An additional step of data processing was required to correct for the arbitrary dif-

ference in phase between the photodetector output and the frequency reference (from the

function generator controlling the EOM driver). The true phase of the lock-in signal meets

the condition2 that the change in the imaginary part of the signal is zero between times

shortly before and after time zero. The difference in our setup is due to the different paths

taken by the two signals from the EOM’s function generator: the detector output reaches

the lock-in by a path consisting of a cable from the function generator to the EOM con-

troller, through its electronics to cables to the EOM itself, an optical path about 1.5 m

long, to the detector, and along another cable to the lock-in, while the reference signal

is the sync output of the function generator connected to the lock-in directly by a cable.
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The RF lock-in has a phase adjustment for this purpose which would have worked equally

well to remove the phase difference - in our case, we chose to correct the phase as a data

processing step. The phase of all data points was rotated by the same amount to meet

the condition above. Figures 5.16 and 5.17 illustrate the phase correction process with a

clockwise rotation.

Pre-time-zero data points

Increasing  pro
be delay

100 ps delay

1500 ps delay

Post-time-zero data points

Rapid signal change with delay
near time zero

Figure 5.16: TTR data before phase correction.

The final step of data processing was compensation for the effect of the ‘leak-through’

of pump power through the polarizing beamsplitter to the photodetector, as mentioned in

section 5.4.4. In order to assess the magnitude of the offset caused by the leak-through, we

measured the signal output, with the sample in place, while blocking the probe beam. The

offset proved to be a large value of 85% relative to the TTR signal at 100 ps probe delay
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100 ps delay
1500 ps delay

Increasing probe delay

Figure 5.17: TTR data after a phase correction of −27◦, ensuring that the pre-zero and
post-zero imaginary parts are constant.

time. The offset value was constant with probe delay time, and following phase correction,

was subtracted from the lock-in output. The remainder of the signal is attributed to the

probe beam, the values of which appear in figure 5.19.

Figure 5.19 shows our TTR cooling data (black dots), as well as fits of two models: the

multilayer model of section 5.3 (red line), and a single-interface model that considers only

the nanoparticle and matrix layers, with TBR at the interface (black line). Experimental

and fitted modeling parameters are given in Table 5.5. The fitted parameters were TBC,

capping layer thickness, and matrix conductivity. For the multilayer model, greater dissim-

ilarities in both elastic properties and phonon spectra are expected at the metal/organic

(Au/citrate) interface, than at the organic/polymer (citrate/pDADMAC) interface, and we

model TBR as present only at the Au/citrate interface. Discussion of the significance of

these measurements continues in section 5.7.
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In addition to improving the quality of the fit to experimental data, the multilayer

model leads to measured materials properties which compare much better with literature

and expected values. Using the model geometry shown in figure 5.18 and the parameters

of table 5.5, we find a fitted TBC of 410 MW/m2K, which is only 17% higher than the

value calculated from the diffuse mismatch model,20 described in section 5.6, from which

we find a value of 349 MW/m2K. By comparison, the single-interface model fit gives a

near-zero result for TBR at the Au/polymer interface. The fitted value of the capping

layer thickness is 7.3 nm. Though we did not find literature values for the conductivity

of pDADMAC for comparison, significant porosity may account for its fitted conductivity

value of 0.062 W/mK, lying below values for non-porous, pure polymers ranging from 0.1

to 0.6 W/mK.91

The parameter values used for fits, listed in table 5.5, include a value for the conduc-

tivity of gold which is a bulk experimental value. However, phonon mean-free-paths in gold

are comparable to the listed mean nanoparticle diameter of 20 nm: a recent first-principles

study92 places mean-free-paths in the range of 22 to 41 nm for the electron contribution

to conductivity in gold. We acknowledge that the actual conductivity is likely reduced

significantly from the bulk value. In our particular case of gold nanoparticles embedded

in a polymer matrix, the low conductivity of the polymer controls the cooling dynamics,

and we assumed that our model is insensitive to the conductivity value used for the gold

particle, which remains in internal equilibrium during diffusion in the adjacent polymer. To

confirm this, we calculated the TTR signal over the probe delays plotted in figure 5.19 with

both the listed gold conductivity, and a value reduced by 50%. The difference between the

two cases was less than one part in 103 relative to the curve found using the bulk value of

conductivity, confirming minimal sensitivity of the model to nanoparticle conductivity in

this case.
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Figure 5.18: Model geometry for fitting to nanoparticle cooling TTR data. The Au particle
is layer 1, the citrate capping layer is 2, and the polymer matrix is layer 3. Surface heating
is shown at the boundary between layers 1 and 2. Each layer i has thermal conductivity ki
and specific heat ci, given in table 5.5.

Final TTR data was collected in a series of nine scans and averaged, as described in

section 5.5.1, with an overall uncertainty of 0.9% (see section 5.5.1). To quantify the effect

of this uncertainty on the precision of the fitted TBC value, we utilize the multilayer model

to plot the sensitivity of the TTR signal to TBC in figure 5.20. The multilayer model was

fitted to data over the range 100 to 1500 ps probe delay, and we therefore select the delay

time which places the greatest restriction on the TBC value at the maximum of 0.078% at

275 ps. We find a TBC uncertainty of 0.9%TTR
0.078% TTR/% TBC = 12%, and report our TBC result

as 410 MW/m2K± 12%.
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Figure 5.19: TTR data (black dots) with multilayer and single-interface fits (red and black
lines, respectively) for polymer-embedded Au nanoparticles. The multilayer model shows
an improved fit (R2 = 0.994) over the single-interface model (R2 = 0.947). The small
amplitude oscillations, with period 106 ps, are possibly due to acoustic wave reflection in
the nanoparticle and capping layer. The multilayer fitted value of TBC is 410 MW/m2K,
while the single-interface model fit gives a misleading nearly-zero value for TBR.

5.5.1 Experimental uncertainties

Figure 5.21, which plots the average of nine TTR scans, includes the estimated random

error of the TTR signal as a function of delay time. The random error was calculated as

the standard deviation of the signal value of the nine scans at each delay time. The average

relative uncertainty over all delay times is 3.8%, and the average uncertainty of the mean

is 0.9%. Relative uncertainties refer to the mean signal value at each delay time.

These uncertainties are judged to be acceptably low (see the discussion in section

5.5). We attribute the low error to the reduction of noise by the dual lock-in amplifier
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Experiment parameters

Model inputs
Repetition rate ωs 2π · 76.3 Mrad/s
Pump modulation frequency ω0 2π · 50 krad/s
Probe modulation frequency ωpr 2π · 500 rad/s
Beam width w 6.59 µm
Nanoparticle radius a 10 nm
Au thermal conductivity87 k1 318 W/mK
Au volumetric specific heat87 c1 2.49 · 106 J/m3K
Au longitudinal acoustic velocity38 vAu,l 3240 m/s
Au transverse acoustic velocity38 vAu,t 1200 m/s
Au Debye frequency38 ωAu 2.23 · 1013 rad/s
Citrate thermal conductivity89 k2 0.1353 W/mK
Citrate volumetric specific heat93 c2 1.82 · 106 J/m3K
Citrate longitudinal acoustic velocity89 vcit,l 1653 m/s
Citrate transverse acoustic velocity94 vcit,t 827 m/s
Citrate Debye frequency95 ωcit 1.96 · 1013 rad/s
Polymer volumetric specific heat91 c3 1.1 · 106 J/m3K

Model outputs
Thermal boundary conductance (fitted) 1/R 410 MW/m2K
Capping layer thickness (fitted) r2 − r1 7.3 nm
Polymer thermal conductivity (fitted) k3 0.062 W/mK

Table 5.5: Experimental and modeling parameters for polymer-embedded gold nanoparti-
cles. In the absence of a literature value for the specific polymer pDADMAC, the specific
heat is an estimate taken from typical polymer values. See section 5.6 concerning the
acoustic velocities and Debye frequencies.

configuration. Also, the function generator driving the pump beam’s EOM modulator

controller was selected for its frequency stability. To attempt to identify sources of noise,

we consider the fluctuating power of the pump and probe beams, and noise generated in the

bandpass filter and lock-in amplifier electronics. We find that the larger contributor is likely

to be noise generated by the pump’s lock-in. Beam power data was collected automatically

during TTR scans from a power meter (not shown in figure 5.6) which was connected to

the auxiliary input of one of the lock-ins for the probe beam. The typical uncertainty in

the beam power is approximately 0.9%. This value happens to be essentially the same as

our uncertainty in the average TTR signal, when averaged over nine repeats.
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Figure 5.20: Sensitivity of the TTR signal to changes in TBC. The greatest sensitivity
occurs at 275 ps, with a value of 0.078%/(% change in TBC).

For the case of the pump lock-in, its noise is estimated by

(input noise)
√
ENBW (gain), (5.35)

where ENBW is the bandwidth of an ideal step edge low-pass filter which would generate

the same noise as the lock-in’s low pass filter. With the parameters in table 5.2, the ENBW

is 2.5 kHz, and the lock-in input noise specification is 6 nV/
√

Hz. The gain is automatically

set by the lock-in to give an output of 10 V for a full-scale input, so gain was 10/100mV

for a gain of 100, giving an rms noise value of 30 µV. The output of the pump lock-in was

on the scale of the sensitivity setting of the probe lock-in of 1 mV, so the pump lock-in

noise was near 3% of the output signal. This is a relatively high noise value for a well-

adjusted lock-in, and is due to a requirement of the dual-lock-in configuration: the time

constant was set to a low value to ensure that the pump lock-in had a response time (about

5 · (time constant) = 0.5 ms) which was smaller than the period of the probe modulation

( 1
500 Hz = 2 ms). This low time constant gives a higher ENBW, increasing the output noise.
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However, the overall result of the dual lock-in arrangement was acceptably low noise in the

measured TTR signal.

The probe lock-ins were run at long integration times of 3 s for greater noise reduction.

This long time constant reduces the ENBW relative to the pump case. For greater resolution

of the collected amplitude and phase data, the probe lock-ins’ sensitivities were set slightly

above the input level, causing the automatic gain to be higher than the pump case. Despite

the greater gain, with the narrow bandwidth setting, the probe lock-ins generate noise of

less than 0.1% of the output. Combining the beam power and pump lock-in uncertainties

as independent random errors, the result is 3.1% uncertainty, near the observed value of

3.8%. This method of adding uncertainties, as well as the identification of beam power and

pump lock-in as the greatest noise sources, was not tested systematically. For example, the

pump lock-in gain could have been doubled in a controlled experiment, and the effect on the

measurement uncertainty observed. The near agreement of the estimated uncertainty with

the observed uncertainty suggests that the two largest error sources have been identified.

Other possibilities are breathing modes in the nanoparticles, as seen in figure 5.19, vibrations

of the sample and optics, and variance in the timing of probe pulses following pump pulses.

5.6 Comparison with diffuse mismatch model prediction

Section 3.2 describes the DMM20 as a theory which best predicts TBC at interfaces

between dissimilar materials, and as such we employ it to evaluate our TTR experimental

result for the Au/citrate TBC of 410 MW/m2K ± 12%. The inputs to this model are the

acoustic velocities and Debye frequencies in table 5.5. For the measurement of acoustic

velocities in solids, both the transient pulse method,96 as well as calculation from the

measurement of the frequency of standing waves, continue to be chosen methods for accurate
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Figure 5.21: TTR data with measured error. The data points are the averages of nine scans,
while the error bars show the standard deviation calculated from the nine scans.

measurement, and provide our values for the two vibration modes of gold. For citrate, we

referred to published ultrasonic velocimeter measurements for the longitudinal acoustic

velocity.95 For the transverse acoustic velocity of citrate, in the absence of a literature

value, we estimate it as 50% of the longitudinal acoustic velocity.94 Debye frequencies are

found from literature Debye temperatures by ~ωD = kB TD.
38,97 In reference 38, the Debye

temperatures were obtained by adjusting the value so that the specific heat in the quantum

harmonic model of the solid, using the Debye approximation, matches the observed specific

heat.

From these parameters, we calculate a TBC value of 349 MW/m2K from the DMM,

using eqs. 3.18, 3.19, and 3.21. Uncertainty in the DMM value is due to uncertainties in the

input parameters, and although these are not known, we estimate the DMM value uncer-
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tainty by considering the change in the value if the acoustic velocity of citrate, perhaps the

least certain input, were uncertain by (at least) 10%, in the absence of measurements. We

find that the DMM result changes by 6%, for a DMM TBC result of 349 MW/m2K± 6%.

Our experimental value was 410 MW/m2K± 12%. The DMM result of 349 MW/m2K value

is 15% lower than the experimental value of 410 MW/m2K, and is below the experimental

uncertainty range by 3%. However, the uncertainties overlap by 2% of the experimental

value. Considering uncertainty in the DMM value due to the use of the Debye approxi-

mation, and the use of literature values, rather than measurements, for some parameters,

this is good agreement between the DMM and the measured value. From the AMM model

described in section 3.2.2, we calculate a TBC of 9.5 MW/m2K, a small fraction of the

experimental value. Park86 et al., in a rare structural study of the adsorbtion of citrate

anions to the surface of Au NPs, find that three different configurations of anions bond to

the Au surface, and that their configurations also vary between whether the exposed Au

face is the (111), (110), or (100) surface. This variety of configurations implies significant

disorder at the Au/citrate interface and a high rate of diffuse phonon scattering, and is

consistent with the good agreement of the DMM prediction with measurements.

5.7 Conclusions

This chapter on nanoparticle studies has described the design and implementation of

our TTR experiment for measuring the TBR of gold nanoparticles, and the development

of the spherical multilayer model required to calculate the TBR value from measurements.

Having quantified measurement uncertainties, our experimental result lies slightly above

the value predicted by the DMM, and the DMM prediction is 3% below the experimental

uncertainty range. The best way to reduce measurement error would be by enclosing the

experiment, thereby stabilizing beam powers and pointing. On the theoretical side, more
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accurate material parameters for the DMM could improve the agreement between theory

and experiments. We have also discussed the Debye approximation as the most significant

source of theoretical discrepancy,

Beyond considerations of agreement, our results indicate that phonon scattering at

the Au/citrate interface is diffuse. The estimate of the (specular) AMM lies far below the

measured TBC, as it does for other material pairs. The approximate agreement we see

in these results confirms, as an underlying concept of the DMM, that diffuse transmission

channels not accounted for in the specular picture contribute heavily to conduction at the

interface.

105



Chapter 6

Membrane Systems

6.1 Extending existing TTR studies of metal films

on insulating substrates

Though TTR is established as one of the primary tools for exploring and measuring

thermal properties at the nanoscale,5 it continues to rely on certain assumptions which

may be reasonable, but which are unconfirmed in some cases. One of its successes has been

the accurate measurement of reduced thermal conductivity in planar thin films approaching

nanoscale thickness.98 However, such experiments have been carried out with films deposited

on substrates with large thicknesses, relative to film thickness. Any transport occurring in

the substrate is assumed to take place in substrate regions very close to the thin film, within

a substrate depth on the order of the film thickness. Also, in order to calculate results from

a TTR signal - for example, the thermal conductivity of the film - models generally assume

that thermal transport is diffusive in character.

To test the assumption of near-film diffusion, we have applied the TTR method to a

structure which consists of a thin metal film deposited on a thermally insulated membrane.99

In a system in which significant cooling occurs in the substrate far from the film, relative

to the film thickness, a model should underestimate the actual cooling time in our thin-

substrate system. In a system with cooling occurring ballistically, our diffusive model
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should again underestimate the actual cooling time. Our initial results agree with the

assumptions of near-film substrate transport, and diffusive transport: we observe a cooling

time comparable to the estimated time of 1900 ps, and film conductivity results comparable

to that observed in the same structures by means of the thermal isolation method. To fully

confirm these result, we suggest further experiments to accomplish the additional task of

removing any bridge-to-air conduction by performing experiments in a vacuum.

6.2 Multilayer planar diffusion and TTR signal model

Our thermal model is an accepted diffusive, multilayer model of the TTR signal similar

to that used in section 5.3.78,80 The planar model of Schmidt et al.80 is directly applicable

to the thermal isolation platform system, if the assumption of zero transport from bridge

to air is made. In this model, the multilayer structure is again handled by means of the

transfer matrix method - however, instead of the thermal wave formulation of Feldman,78

temperatures within the system are represented by 2 ·1 column vectors with temperature as

the upper element, and flux as the lower. The model also distinguishes between the in- and

cross-plane thermal conductivities kri and kzi of a layer i by applying a Hankel transform

to the frequency-domain heat equation. The temperature/flux vector at the bottom of the

n-layer system system is then related to that of the top byθb
fb

 = Mn Mn−1...M1

θt
ft

 = M

θt
ft

 , (6.1)

M =

A B

C D

 , (6.2)

and with each layer matrix given by

Mi =

 cosh qidi − 1
kiqi

sinh qidi

−kiqi sinh qidi cosh qidi

 , (6.3)
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with

q2
i =

krik
2 + iωcpvi
kzi

, (6.4)

where k is the transform variable, and cpvi is the isobaric, volumetric specific heat of layer

i. The top temperature is determined by the zero bridge-to-air transport condition fb = 0,

giving

θt = −D
C
ft, (6.5)

for a fixed value of k. The real-space temperature H(ω), the inverse transform of θt,

H(ω) =
A0

2π

∫ ∞
0

k

(
−D
C

)
e
−k2w2

8 (6.6)

with heating A0 and beam width w, is substituted into eq. 5.26 for the TTR response. The

heating A0 is treated as a free parameter, and the film conductivities kr,z0 are determined

as fitting parameters. Values for model parameters are listed in table 6.1.

Lastly, we use the planar model to estimate the sensitivity of the measured signal to

the values of any fitted thermal parameters, in order to select a pump modulation frequency

with the greatest sensitivity, and least uncertainty in fitted values. Figure 6.1 shows the

TTR signal −ReZ
ImZ sensitivity plotted as a function of modulation frequency. As in section

5.5, the sensitivity is defined as the signal percent change per percent change in the parame-

ter. We choose 1 MHz as the experimental modulation frequency, a value which retains high

sensitivity to all three of in- and cross-plane film conductivity, and film/substrate thermal

boundary resistance,

6.3 Design of thermal isolation structure experiment

6.3.1 The thermal isolation platform

The thermal isolation platform99,100 is designed to enable experiments which directly

measure the thermal conductivities of thin films of controlled thickness. The platform is
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Figure 6.1: The sensitivity of the TTR signal to thermal parameters of in- and cross-plane
film conductivity, and film/substrate thermal boundary resistance.

designed, fabricated, and characterized by our collaborators of the Zink research group

at the University of Denver, for whose support and assistance we are grateful. Platform

parameters are listed in table 6.1. The platform’s essential feature is its structure of thin

metallic or insulating films coated on suspended, thermally-insulated silicon nitride (Si-N)

membranes (see figure 6.2). The thermal isolation and small thickness of the Si-N under-

lying the coated film enables the sensitive measurement of the thermal conductance of the

coating, which would otherwise be indistinguishable from the large conductance of a thick

substrate. The membrane structure is accomplished by a KOH back-etch of the Si substrate

supporting an original 500 nm Si-N coating. The membranes make thermal contact at each

end with larger island structures, themselves suspended by Si-N legs, and experiments are

performed in vacuum. A controlled temperature at one island is obtained by joule heating

in a conductor lithographically patterned on the island, while a similar conductor acts as

a thermometer measuring the resulting temperature on the opposite island. From known

specific heats, dimensions, and input power, the film thermal conductivity can be calcu-

lated. The platforms have been successfully used for a number of experiments, including
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transport by long-wavelength phonon modes near room temperature,100 measurement of

the conductivity of the suspended Si-N membranes themselves,99 and observation of the

planar Nernst effect.101

Thermal isolation platform TTR
Dimensions and model parameters

Bridge length 800 µm
Bridge width 35 µm
Mo coating thickness d0 200 µm
Mo specific heat c0 0.251 J/gK
Mo mass density ρ0 10.28 · 106 g/m3

Si-N thickness d1 500 µm
Si-N conductivity k1 3.0 W/mK
Si-N specific heat c1 0.40 J/gK
Si-N mass density ρ1 3.2 · 106 g/m3

Beam spot size w 2.71 µm

Table 6.1: Parameters of the thermal isolation platform and thermal model used in TTR
experiments.

6.3.2 TTR experiment implementation

The TTR experiment optical layout for bridge structure studies was the same as

shown in figure 5.6, and has parameters listed in table 6.2. The bridge structure was

mounted on a two-axis manual translation stage, with axes normal to the optical axis,

for positioning relative to the beams. The location of the pump and probe beams on the

structure was imaged with a CCD as described in section 5.4.5, using long exposure times,

and with the addition of a green 532 nm laser focused on the structure for illumination,

incident at approximately 45◦ from the optical axis. Figure 6.3 is a typical image of the

thermal isolation structure, showing the illumination laser incident from the left, and the

white reflection of the pump and probe beam spots. Note that the long CCD exposure

causes the beams to appear to have a greater width than that listed in table 6.2. A section

of an island component is visible in the lower portion of the image.
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Figure 6.2: SEM image of the thermal isolation platform, provided by our collaborators of
the Zink research group at the University of Denver.99 The Si-N bridge has length 800 µm,
thickness 500 nm, and is coated with a Mo film of 200 nm thickness. The island components
have dimensions 250 · 250µm2.

The pump beam power required for a 1 K temperature gain in the Mo film is calculated

in a similar way to that described in subsection 5.4.2. An expression for the pump arm

power has the same structure as eq. 5.32,

Pinc =
(heat capacity)(temperature gain)(frequency)

1− R

= (heat capacity)
∆T frep
1− R

,

(6.7)

where again ∆T = 1 K and frep = 76.3 MHz. For the heat capacity we use the volumetric

specific heat of Mo times the volume of a right cylinder with diameter equal to the e−2 beam
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width, and height equal to the optical penetration depth ζo of Mo, found from ζo = λ
4πk ,

46

where the wavelength λ = 800 nm, and the imaginary part k of the complex refractive index

ñ = 3.653 + i 3.357102 at 800 nm. We find the reflection coefficient at normal incidence R

from the Fresnel equation

R =

∣∣∣∣1− ñ1 + ñ

∣∣∣∣ . (6.8)

The final power reads

Pinc = π
(w

2

)2
ζocpv

∆T frep
1− R

. (6.9)

With these values and those in tables 6.1 and 6.2, we find a pump power of 0.24 mW for

a 1 K temperature gain of the Mo film. In experiments, a pump beam power of 3.5 mW,

stepped down with an ND 1 filter to 0.35 mW, was used for final data collection, for an

acceptably low temperature gain between 1 and 2 K. Probe beam power was usually set to

half the pump beam power.

Thermal isolation platform TTR
Optical parameters

Pump beam power 0.35 mW
Probe beam power 0.18 mW
Beam spot size w 2.71 µm FWHM
Pump modulation frequency ω0 1 MHz
Probe modulation frequency 500 Hz
Objective lens focal length 9 mm
Lock-in integration time 1 s
Lock-in sensitivity 10 µV

Table 6.2: Optical parameters of the TTR thermal isolation platform experiment.

6.4 Experiment results

Data from initial TTR scans are shown in figure 6.4, and a subset of the data points,

selected for clarity, are shown in figure 6.5. These scans were taken with the pump and

probe beam powers varying by a factor of up to 101.6 ≈ 40. The lock-in amplitude results
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35 m

Figure 6.3: CCD image of the thermal isolation platform positioned in the pump/probe
beam. In the lower part of the image, a portion of an island structure scatters the green
illumination laser.

were scaled upward by the same downward factor of ND filtering of the beam powers, so that

e.g. with downward filtering of 10−0.6 ≈ 0.25, the amplitude values were mathematically

scaled upward by 100.6 ≈ 4 for comparison between scans. These results show us that the

signal is strongly dependent on the probe pulse delay time, with a cooling time of about 800

ps, so the signal must be responding to the thermal cooling process in the Mo film surface,

rather than originating as an unwanted signal, such as pump leak-through or scatter at the

pump modulation frequency. The scaled values vary by a factor of approximately 2 or less,

while the incident powers vary by a factor of 40, with consistent cooling times, indicating

that thermal parameters, including the Mo thermoreflectance coefficient are at most weakly

dependent on the incident beam power and film temperature. We expect these behaviors

in a correctly functioning TTR measurement, and can reasonably interpret the TTR signal

as proportional to the film surface temperature.
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We use a separate series of measurements shown in figure 6.6 to investigate the effect

of substrate thickness, and for the determination of the Mo film conductivity. The spot

location was moved from the lengthwise center of the bridge structure toward one of the

islands, with other parameters remaining constant. The positioning of the Mo surface at the

beam waist, and the overlap between pump and probe spots, were optimized with each TTR

scan. The multilayer TTR signal model of section 6.2 was fit to each scan, with the heating

power as a free parameter, and the Mo thermal conductivity as a fitting parameter, with

the results shown in the figure inset, varying from 77 to 85 W/mK. By comparison, a value

of 55.1 W/mK,99 at room temperature was measured using the thermal isolation method,

for a similar 200 nm Mo film sputtered on the bridge structure surface, and measured in a

vacuum environment.

The higher value from our TTR measurements could be due to an additional cooling

channel of bridge-to-air conduction which was not included in the model of cooling. TTR

experiments are normally done with samples in air, with the assumption that the transport

channel of conduction from an excited layer to adjacent lower and substrate layers greatly

outweighs any excited layer to air transport. With a relatively thick substrate present

to act as a cold reservoir, thereby supporting heavy transport through this channel, the

assumption is reasonable. However, in our film-on-membrane experiments, without a thick

substrate serving as a reservoir, transport could be significantly less, making excited layer to

air conduction visible against the excited layer to thin substrate background. Including this

additional conduction would decrease modeled cooling times, and the fitted Mo conductivity

would also then decrease for the modeled cooling time to match observations, decreasing

the difference between the TTR and thermal isolation results.

An alternative explanation for the difference in conductivities is the age of the Mo

film at the time of measurements, and likely significant oxidation of the film. With a scale
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on the order of 100s of nm, and pulse absorption and heating occurring at the upper Mo

film surface, cooling dynamics in TTR measurements are controlled primarily by diffusion

in the Mo film. Oxidation would increase the heat capacity of the Mo layer and increase

cooling times. The sample preparation procedure described in nuclear resonant scattering

experiments103 explains that, in order to limit the thickness of a forming native Fe-oxide

layer to several nm, Fe films could be exposed to ambient air for controlled times. It is

therefore reasonable that oxides have formed through a large part of the depth of the long-

exposed Mo film of our experiments. Mo has two prevalent oxidation states, MoO2 and

MoO3. X-ray photoelectron spectroscopy studies104 of Mo films indicate that while MoO3

is predominant in oxidized crystalline films, amorphous films, as in our studies, contain both

oxides. The effect of increasing oxidation on the volumetric specific heat of Mo, the form

which appears in the multilayer model, in shown in table 6.3, where specific heat increases

significantly with oxidation. Using a higher heat capacity in the model would raise the fitted

conductivity for the modeled cooling time to match observations, increasing the already-

large difference between the TTR and thermal isolation conductivity values. An analysis

of the sensitivity of the cooling time to Mo heat capacity would gauge the importance of

characterizing oxidation in the Mo film.

Molybdenum and its oxides

Specific Mass Molecular Specific Relative
heat, density, weight, heat, specific heat,

J/mol K 106 g/m3 Da 10−8 J/m3 K to Mo

Mo 24.06 10.28 95.95 2.44 1.0
MoO2 55.88 6.47 127.94 6.75 2.8
MoO3 75.00 4.70 143.95 11.09 4.5

Table 6.3: Specific heat and mass density comparison between Mo and its oxides. Specific
heats in the last column are relative to the volumetric value for Mo in the fifth column.
Values are taken from references 87 and 93.
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Figure 6.4: TTR data from the center location of the bridge structure, with a 200 nm thick
Mo film. Pump power has been stepped downward from the original value Ppump by the
factors shown, and the resulting signal was scaled upward by the same factor for comparison
between powers. The signal uncertainty is seen to increase with decreasing pump power.

6.5 Conclusions

For the amorphous Si-N substrate of these experiments, literature100,105 methods of

estimating the mean-free-path of phonons places the value at a relatively small 0.6 nm at

room temperature. This value would place thermal dynamics firmly in the diffusive regime,

and is implicit in the hypothesis that cooling dynamics would be identical between experi-

ments with substrates at the 500 nm thickness, as in our studies, and those with very thick

substrates. In this picture, no significant transport occurs far from the film/substrate inter-

face, i.e. at distances much greater than the film 200 nm thickness. Significant macroscale

transport by modes with mean-free-path much longer than our 500 nm substrate thickness

would produce measurements on our membrane structure with cooling times longer than

those of our diffusive model, which assumes zero thermal flux at the lower surface of the
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Figure 6.5: A subset of TTR bridge structure data selected for clarity from figure 6.4, with
points chosen from near the mean value of the original signal. The cooling time is seen to
be consistently about 800 ps.

substrate. The agreement between the model and measurements suggests that diffusion is

indeed occurring near the film/substrate interface.

However, the mean fitted value of Mo film conductivity was 81 W/mK, 47% above

the value of 55 W/mK obtained with thermal isolation measurements,100 and the same

studies show that long mean-free-path modes, of length up to 3µm, contribute significantly

to transport and to this conductivity value. Performing TTR measurements with bridge

structures in vacuum would increase observed cooling times, and decrease fitted conduc-

tivities. A fitted conductivity less than 55 W/mK could be independent evidence of long

mean-free-path contributions to transport.

117



0 200 400 600 800 1000 1200 1400 1600

Pump-probe delay (ps)

0

0.001

0.002

0.003

0.004

0.005

T
T

R
 s

ig
n

a
l 
fr

o
m

 l
o

c
k
in

 a
m

p
lif

e
r 

(m
V

)

100 200 300 400

Bridge position (µm)

75

80

85

k
 

(W
/m

 K
)

M
o

i
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Chapter 7

Nanoparticle Optical Properties

7.1 Introduction

The exciting nanoparticle applications of chemical sensing and biosensing utilize the

sensitivity of nanoparticle absorption of visible light to changes in the surrounding medium,

such as the arrival of an organic compound of interest.74 Plasmon resonance is the oscillation

of electrons in response to an external electromagnetic field, either in a plasma, or in

the electron gas of a solid, as in our case of gold nanoparticles. The oscillation occurs

throughout the bulk of the material, and is coherent and collective among the electrons. In

the case of light propagating through air, or another dielectric material, and impinging on

the surface of a solid, surface plasmon resonance (SPR) occurs as the incident wave induces

surface waves of periodically-varying electron density, which propagate along the surface

of the solid.106 SPR is the interaction between incident photons and quanta of electron

polarization (plasmons) to form the hybrid quasiparticle state of surface plasmon polaritons

(SPPs). SPPs exist only within the optical penetration depth of the solid, but in some

metals can propagate along the surface tens of nm before scattering or absorption occurs.

Localized surface plasmon resonance (LSPR) describes SPR in the case of nanoparticles of

sub-wavelength size, which confine SPPs to within the particle’s surface, producing a sharp

absorption peak in the visible spectrum.
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Small changes in the medium refractive index can shift the LSPR wavelength,61,62

and the shift is measurable with conventional equipment, such as a UV/visible spectrom-

eter. This is one way of enabling the diagnostic method of chemical sensing,68 which is

especially useful in biochemical experiments, in which nanoparticles are functionalized to

bond with specific proteins, which change the refractive index surrounding the nanoparticle

upon bonding to it. A redshift of the nanoparticle absorption peak wavelength then signals

the presence of specific proteins.

The chemical sensing application relies on an understanding of how the refractive

index of a nanoparticle’s medium influences absorption properties. With collaborators

Scott Reed and Stephen Budy of the University of Colorado, Denver, Department of Chem-

istry, we planned to numerically analyze the relationship between absorption spectra and

the medium refractive index. Studies of nanoparticle absorption using the computational

method of finite-difference time-domain (FDTD) modeling can simulate the interaction of

a particle/medium system with an exciting optical pulse.66 Our simulation goals consisted

of utilizing an FDTD simulation to predict the medium refractive index change occurring

with an observed resonance shift, for the case of gold particles in water, simulated from

the interaction of an optical pulse with a single nanoparticle. Additionally, an observation

of peak redshifting due to medium index change can be mimicked by redshifting due to

particle aggregation. We therefore planned to also simulate the spectra of collections of

nanoparticles, and identify spectral features, including peak redshifting and broadening,

which could distinguish the redshifting caused by aggregation from that of medium index

change.

However, we initially find that significant discrepancies exist between spectral sim-

ulation results and experimental spectra. Part of the discrepancy is explained by varying

literature values for the dielectric function of gold,107 which underlies its refractive index
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and absorption properties, and is used as an input to an FDTD model. The implementation

of FDTD we used for calculations expresses the dielectric function with the Lorentz-Drude

(LD) model, which represents the electronic behavior in gold as a combination of distinct

scattering and resonance responses. Agreement is improved by fitting the LD model to

recent experimental dielectric function data.108 Despite this improved agreement, signifi-

cant differences remain between the modeled and measured spectra (shown in figure 7.5

below). We find that close agreement of the FDTD model and experimental spectra would

require an FDTD implementation which can represent the dielectric function as an interpo-

lation to data in a tabular format, rather than relying on the LD form. Without accurate

spectra for single particles, we were unable to proceed to multiparticle simulations. How-

ever, we identified the source of the discrepancy as the dielectric function of gold provided

with the simulation software, and found recent dielectric data which we used to calculate

improved absorption spectra.

7.2 FDTD modeling method

The finite-difference time-domain109 numerical analysis method uses Faraday’s and

Ampère’s laws to approximate the electric and magnetic fields throughout a region in

response to a given incident wave. The incident wave is known over a set of points at

the beginning of the simulation time, and the fields throughout the simulation region are

calculated from these known fields over the total simulation time. In our simulations, we

then use the field values to calculate the optical power leaving the region, and subtract the

result from the incident power to find the nanoparticle absorbed power.

The only condition on Maxwell’s equations is that the system has no free charges

or currents. In our simulations, we also assumed that materials were non-magnetic, and

that the dielectric function of the materials is not explicitly time-dependent. Faraday’s and
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Ampère’s laws then read

ε(~r, ω)
∂ ~E

∂t
= ∇× ~H (7.1)

µ0
∂ ~H

∂t
= −∇× ~E (7.2)

The simulation region is defined as two orthorhombic lattices, one each for ~E and ~H,

with side lengths ∆x, ∆y, and ∆z. The two lattices are offset from each other by half the

side length in each direction, giving finite difference approximation accuracy to the second

degree in side length. Beginning with an isolated particle of 20 nm diameter, we used

successively smaller values of the side length starting from about 3 nm, until we saw less

than 1% change between successive values. Our simulation used cubic lattices with fianl

values of ∆x = ∆y = ∆z = 1.3 nm for both fields. A lattice cell is shown in figure 7.1. Fields

values are defined at the midpoints of the edges of each lattice: in the figure, components of

~E are defined at the blue points shown, and components of ~H at the black points. Unlike

a region in continuous space, only one of three components is defined at each field point.

Time is also discretized with step ∆t. At each time step, the ~H field is calculated from the

~E field values from half a time step earlier, and vice-versa, so that field values are staggered

in both space and time. The value of a field component at a given point and time step is

found from its value at the previous full time step and from the four components of the

other field lying on the edges of the square centered on the point of interest. For example,

in figure 7.1, using indices (i, j, k) andn for the lattice points and time steps, respectively,

the central difference approximation for E(i, j + 1
2 , k, n+ 1) (a y-component of ~E) at time

step n+ 1 is found from its value at step n and the four values of H(i, j, k ± 1
2 , n+ 1

2) and

122



H(i± 1
2 , j, k, n+ 1

2) at time n+ 1
2 by means of Ampère’s law (eq. 7.1):

ε(i, j +
1

2
, k)

E(i, j + 1
2 , k, n+ 1)− E(i, j + 1

2 , k, n)

∆t

=
[H(i, j + 1

2 , k + 1
2 , n+ 1

2)−H(i, j + 1
2 , k −

1
2 , n+ 1

2)]

∆x

−
[H(i+ 1

2 , j + 1
2 , k, n+ 1

2)−H(i− 1
2 , j + 1

2 , k, n+ 1
2)]

∆x
.

(7.3)

In general, the lattice spacing must be small enough66 to support the shortest wavelengths

Figure 7.1: A single Yee cell in the FDTD computational domain. Both fields ~E and ~H lie
on the edges of cubes defined by a cubic lattice, but with the ~E and ~H lattices staggered
from each other by ∆x

2 .

present in a simulation. Ten to twenty66 points within the shortest simulated wavelength

is generally adequate; with our spectral range of 400 to 800 nm (see table 7.1), twenty

points/wavelength would give a spacing of 20 nm. In our simulation we chose an even

smaller value, to place about fifteen points spanning a nanoparticle diameter of 20 nm, for a

spacing of 1.3 nm. The approximation error for this value was estimated as described above.

The convergence in time of the approximation is dependent on satisfying the Courant-

Friedrichs-Lewy110 condition for the convergence of discrete approximations to systems of
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partial differential equations. In three dimensions (d = 3) the condition is

∆t = SC
∆x

c0

√
d
, (7.4)

where the Courant number SC lies between 0 and 1, and c0 is the speed of light in the

predominant medium. Our FDTD implementation software sets the value of SC to 0.729

by default, determining the time step we used of 2.43 · 10−18 s in an aqueous medium.

For our simulations we used the OptiWave OptiFDTD software, running on Microsoft

Windows 7. The 3D arrangement of the simulation is shown in figure 7.2. The simulation

region was a cube of sides 100 nm, centered on a gold nanoparticle with diameter 20 nm,

in a water medium. FDTD simulations rely on two additional regions surrounding the

main simulation space (called the ‘total field’ region), to simulate an infinite surrounding

medium while also allowing truncation of the total field region to a finite size. The first

layer outside the total field region is the ‘scattered field’ layer, which is then surrounded

by the ‘absorbing’ layer where fields are set to zero. Truncation of the total field space

artificially generates wave reflections into the simulation which become part of the model

outputs. Selection of the proper scattered field layer reduces any reflections to a negligible

level relative to the outgoing wave. The scattered field layer is defined by its boundary

conditions and thickness in number of cells. By both enlarging the total field region, and

also comparing outputs to experimental spectra, we found that a scattered field layer using

‘asymmetric perfectly matched layer’ (APML) boundary conditions, with a thickness of 10

cells, reduced wave reflections sufficiently. A parameter selection dialog is shown in figure

7.3.

The experimental spectra to which FDTD outputs were to be compared were taken

over the spectral range of 400 to 800 nm. To generate FDTD results over this range, we

made use of the ability of the FDTD method to find responses to an input defined in the

time domain, but with spectral content spanning our range of interest. Figure 7.4 shows
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Figure 7.2: 3D editor view from the OptiFDTD Designer application of a single Au spherical
nanoparticle of 20 nm diameter, with H2O defined as the matrix material. The cubical
region of the model has side length 100 nm, and the final mesh spacing was 1.3 nm. The
red plane on the left was the source of the incident plane wave. The model output was the
total energy passing through the right-hand plane during the simulation time.

our input waveform, and our calculated amplitude of its fast-Fourier transform. The input

was a linearly-polarized plane wave with x-direction field shown in the figure. To center

the wavelength peak at about 550 nm, we used an input of a 1100 nm monochromatic wave

modulated by a Gaussian pulse of duration chosen to span the 400 to 800 nm range. Since

optical power was our main model output, and is proportional to the square of the field

strength, the power spectrum peaks at twice the frequency/half the wavelength of the input

field. The final envelope duration was 10.2 fs. The FDTD software normalizes the output

power spectrum to the relative input spectral amplitude. By reducing the total number of

time steps of the simulation from a larger value, we found that a total time of 25 fs, about

2.5 times longer than the input pulse duration, gave convergence of the output power.

A summary of parameters used in our simulations is shown in table 7.1. The dielectric

function of gold is discussed in section 7.3.
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Figure 7.3: Definition of simulation parameters apart from materials. With the number
of time steps at 10500 and with the default 2.43 as step duration for this model, the total
simulation time was 25 fs.

7.3 FDTD modeling results

Initial absorption spectrum simulation results are shown in figure 7.5, along with

spectra taken by collaborators at CU-Denver and another published spectrum.74 Aqueous

gold nanoparticles with diameter 20 nm have a well-known absorption peak near 520 nm.

The experimental spectra agree well with each other, with peaks at 518 nm. Simulation

results initially placed the peak at 538 nm, significantly too high, and also with a greater
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Figure 7.4: Time-domain waveform and wavelength spectrum of the input Gaussian pulse
which enters the simulation from the red-colored plane of figure 7.2. The frequency spectrum
of the input is actually symmetric about the peak at 550 nm, the asymmetry of the wave-
length spectrum is due to the reciprocal relationship between wavelength and frequency,
from λ(ω) = 2πc/n

ω .

width than observed spectra. Several simulation features were investigated as possible

causes of the discrepancy, including time step and cell sizes, scattering layer boundary

conditions, computational region size, and particle diameter. Varying these features had

only small effects on the final calculated spectra, but we found a large effect from varying

the dielectric function of the gold particle.

These initial simulations used the dielectric function provided in the OptiFDTD

Designer materials library, which was originally determined by using the Lorentz-Drude111

(LD) phenomenological model of the dielectric function, with LD parameters determined

by a fit by Djurîsić et al.112 of the model to early spectroscopic ellipsometry data.102 The

LD model has the form of a sum of oscillator resonances,

ε(ω) = ε∞ −
N∑
n=0

fnω
2
p

ω2 − ω2
n − iΓnω

, (7.5)
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Finite-difference time-domain
Simulation parameters

Simulation space cube side length 100 nm
Target spectral range 400 to 800 nm
Nanoparticle diameter 20 nm
H2O refractive index 1.33
Time steps 10500
Time step duration 2.43 as
Cell side length 1.3 nm
Input pulse center wavelength 1100 nm
Gaussian pulse envelope duration 10.2 fs
Scattering layer thickness 10 cells
Scattering layer boundary condition APML

Table 7.1: Parameters of the aqueous Au nanoparticle absorption simulation.

Figure 7.5: Comparison of Au nanoparticle absorption spectra between the FDTD modeled
spectrum, calculated from a fit of the Au LD dielectric function model to early experimental
values, and experimental spectra from collaborators at CU-Denver and published measure-
ments.74 The modeled absorption peak lies about 20 nm greater than the observed peak at
518 nm.

where ε(ω) is the relative permittivity, ωp is the plasma frequency for gold, ε∞ is the

dielectric value as ω →∞, N is the number of Lorentz resonance peaks, fn is the oscillator

128



strength, ωn is the resonance frequency, and Γn is the scattering rate. The term n = 0

is the Drude peak representing intraband, free-electron scattering, with ω1 = 0, and the

higher terms are interband resonances. The frequencies are often given in units of eV from

~ω, while the oscillator strength parameters are dimensionless.

We also referred to an evaluation108 by Olmon, Raschke, et al., published in 2012,

of several literature sources of data, which shows that literature data varied by as much as

a factor of three over our spectral range of interest. The Olmon study also reported their

own ellipsometry measurements of the dielectric function, using gold films and varying

their surface preparation between three different methods, so that the effect of surface

morphology on the dielectric function could be understood. Over our range of interest, the

Olmon results varied by only ±15%, and the results also lie near the mean of the collection

of earlier studies. The authors conclude that significant systematic errors were likely present

in the earlier studies.

The particular data102 due to Lynch et al. used indirectly by OptiFDTD was not

included in the Olmon evaluation, but was reprinted in Djurîsic̀;112 an interpolation is shown

in figure 7.6, alongside the Olmon results. The imaginary part is plotted separately in figure

7.7, to show the significant discrepancy between the Djurîsic̀ fit used by OptiFDTD and the

Olmon data. We chose to perform our own fit of the LD model to the Olmon data, and use

this fit for our FDTD simulations, to achieve results which would be based on data closer

to the actual properties of gold. The OptiFDTD software includes the feature of adding

additional materials to the software library, as long as they are given in the LD model form.

Our fits are shown in figure 7.6, along with the Olmon data, and the earlier data and fits

from the materials library. Actually our fits agree better with both sets of data, especially

for the imaginary part of the function. This is likely because we had the advantage of fitting

over a smaller near-infrared to visible range of 1.5 to 3.2 eV (400 to 800 nm), while the
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original fit was for the much larger mid-infrared to extreme ultraviolet range of 0.1 to 20 eV

(12µm to 60 nm). The final parameters of our fit, and those of the original by Djurîsic̀,112

are shown in table 7.2. Our fit contains two Lorentz resonances in addition to the Drude

term, while for the broader spectral range, the Djurîsic̀ fit contains 6 Lorentz terms.

Gold dielectric function
LD model fitting parameters

n 0 1 2 3 4 5 6

Green
ωp 9.41 - 9.41 9.41 - - -
ωn 0 - 2.929 4.256 - - -
fn 0.866 - 0.140 0.746 - - -
Γn 0.0233 - 0.789 0.410 - - -

Djurîsic̀
ωp 9.03 9.03 9.03 9.03 9.03 9.03 9.03
ωn 0 0.899 2.467 6.236 9.878 13.635 19.340
fn 1.048 1.650 4.740 0.115 2.571 4.959 8.520
Γn 0.083 0.970 7.177 1.236 5.489 13.286 9.398

Table 7.2: Parameters of least-squares fits of the LD model to experimental Au dielectric
function data. Units are eV from E = ~ω, except for dimensionless oscillator strengths.
Both models use ε∞ = 1. The terms for our fit are placed at the index n of the Djurîsic̀ fit
with the closest resonance.

The resulting simulations were significantly improved, with a typical spectrum shown

in figure 7.8. The surface morphology which best agrees with observed spectra is that

resulting from ‘template stripped’ surface preparation. The simulated absorption peak is

now slightly wider than in the measured spectrum, and the resonance lies about 7 nm above

the measured, compared with the library dielectric function which placed the peak 20 nm

above the measured peak. We consider the significance of this improvement in section 7.4.
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Figure 7.6: Models and measurements of the dielectric function of Au. Negative plotted
values are the real part, and positive values are the imaginary part. Fits are of the Lorentz-
Drude dielectric function model to recent spectroscopic ellipsometry data108 (dotted), and
to earlier data102 (dashed). Referenced to the Olmon data, our least squares fit (red line)
had an error function value of 1.9, while the earlier fit112(gray line, originally fit to different
data) had an error of 125 (also referenced to Olmon data).

7.4 Conclusions

In chemical sensing experiments and applications, the sensitivity of a nanoparticle as

a sensor is typically measured in 10s to 100s of nm/(refractive index change) of resonance

redshift, and a refractive index change on the order of 0.1 is a practical value. The sensitivity

depends strongly on composition, shape, and size of the particle. Given these numbers, a

typical desired redshift might be a few nm, so a reasonable choice for the accuracy of

simulations of the peak would be about 1 nm at the most, and the discrepancy of about 7

nm was considered too large to proceed with simulating particle sensitivities and proximity

effects.
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Figure 7.7: Models and measurements of the imaginary part of the dielectric function of
Au.

518

Figure 7.8: Comparison of Au nanoparticle absorption spectra between an improved FDTD
modeled spectrum, calculated from a fit of the Au LD dielectric function to recent exper-
imental values, and experimental spectra from collaborators at CU-Denver. The modeled
absorption peak continues to lie above the observed peak by about 5 nm.
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However, the work done by Olmon108 et al. has shown us at least two reasons for the

differences: the effects of surface morphology and systematic errors in measurements of the

dielectric function, and has provided data which improves our simulations. Additionally, we

can see a clear possibility for fully resolving the accuracy issue from figure 7.6, where the

best LD model fit still carries significant differences from the observed dielectric function,

especially in the imaginary part. Changing the software platform to one which is able to

accept a material’s function in tabular or polynomial format could readily produce more

accurate simulations. Sensitivity could then be predicted by simply varying the medium

index and calculating the redshift, and any width change. Additionally, utilizing 3D design

software such as Blender would allow the design of particles of varying shapes and sizes,

with their geometry specified by the coordinates of mesh structures which could be imported

into FDTD software with such a feature.
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Chapter 8

Conclusions

8.1 Nanoparticle systems

To summarize the major conclusions reached in these studies, we begin by considering

the role of thermal isolation in each of the two main systems which were studied. For

polymer-embedded gold nanoparticles, the low conductivity of the medium extended the

thermal cooling time to the 100s of ps scale, allowing the cooling dynamics to be clearly

distinguished from other effects, such as electron/phonon interaction, occurring at shorter

times. For membrane studies, the bridge design of the thermal isolation platform, and

thinness of the bridge layers, enabled a comparison of measurements to those done with

thick substrates.

In our study of nanoparticle thermal transport, we developed a spherical multilayer

model which enables the explicit separation of the effects of thermal boundary resistance and

capping layer presence on transient thermoreflectance cooling measurements, in the regime

of diffusive transport. The dual lock-in configuration of the transient thermoreflectance

experiment achieved a high signal-to-noise ratio for measuring the small signal of oscillations

at the pump beam modulation frequency. The thermal boundary resistance of the noble

metal/organic interface of Au/citrate was measured within acceptable uncertainty, while

other parameters were seen to converge to reasonable values in fitting the model to data.
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Lastly, we saw that phonon scattering at this metallic/organic boundary is predominantly

diffuse, with the diffuse mismatch model estimating a reasonably accurate resistance value.

For future work with boundary transport in multilayer nanoparticles, our study

pointed to identifiable improvements: measuring or confirming more experimental parame-

ters, rather than estimating from literature, would be important. The greatest value would

lie in measuring the thermal conductivity of the citrate capping layer, and of the matrix

polymer. For the matrix polymer, its conductivity is a controlling parameter of the cooling

process: a sensitivity calculation of its value could be done with the existing model, and its

uncertainty determined from the sensitivity and measurement uncertainty. Similarly, mea-

surements on a similar sample with capping layers of increasing thickness could improve the

measurement sensitivity of the capping layer conductivity. Possibilities for more accurate

determination of such parameters is discussed in section 8.3.2 below.

8.2 Membrane systems

Thermal isolation of the bridge structure films and membrane substrates enabled us

to make initial measurements of any effect of large thickness of substrates on the cooling

dynamics of a metallic film. This was an experiment which tested the reasonable but

unconfirmed assumption that transport in a thick, relatively insulating substrate, with

phonon mean-free-paths much smaller than film thickness, occurs near the film/substrate

boundary. We showed that the observed transient thermoreflectance signal was indeed

due to the structure cooling dynamics, and that mounting bridge structures on manual,

three-axis translation stages was a simple and effective method of sample alignment.

Although the observed cooling times of this system were on the expected time scale,

our agreement between data and the multilayer diffusive model needs to be improved. Two

opportunities in this direction are apparent from the work so far: removing any structure-
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to-air conduction by performing measurements in a vacuum, and including any signal offset

due to pump leak-through to the photodetector in analysis of data. Also in contrast to

the above ideas about transport, evidence of in-plane transport in the SiN beams of the

thermal isolation platform was observed in studies by the Zink research group.100 With

these improvements in place, and with length scales on the order of 100s of nm and larger,

fitting the diffusive transport model we have described to TTR data could reveal whether

the above assumptions prove to be valid, or if transport by long mean-free-path phonons is

also observed in the cross-plane direction. If possible, performing TTR experiments with a

series of platforms with increasing bridge thickness could be a probe of the upper phonon

mean-free-path cutoff of significant contribution to transport.

8.3 Nanothermal research outlooks

Nanothermal transport is an active and rich area of research, which is continuing to

grow in importance as technologies continue to move toward smaller scales, and progress in

understanding it more robustly is rightly considered a key to advancement in many actual

and potential areas of technology. We conclude by suggesting some possibilities for the

futures of transient thermoreflectance and nanothermal theoretical methods.

8.3.1 Transient thermoreflectance

As a time-resolved technique, TTR necessarily involves a pulsed laser source, and for

nanoscale systems, the required pulse duration implied by cooling times on the order of

100s of ps, or faster, is on the ultrafast or 100 fs scale of pulse duration, or faster. The

availability of such lasers up to high optical powers, including wavelength-tunable lasers,

means that many systems of interest can be probed. The photon energies are more limited

in general, but advancements such as tabletop pulsed x-ray sources113 continue to appear.
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An area of greater limitation for TTR is in the materials and systems being studied: a

sufficient coefficient of thermoreflectance is necessary for a measureable signal, and practical

minimum beam waist diameters sit at several microns, at least an order of magnitude larger

than many systems of interest. Again, for a measureable signal, a significant fraction of the

probe pulse energy must be reflected from the cooling nanostructure.

We suggest two ideas that could lead to improvements in these areas. In our gold

nanoparticle experiments, we confirmed that, with sufficiently long integration times, and

measurement repetitions, a high signal-to-noise ratio could be achieved even when the pho-

ton excitation energy (1.55 eV/800 nm in our experiments) was significantly below, but still

in the vicinity of, the interband transition threshold (2.54 eV/494 nm for gold), where the

thermoreflectance peak occurs. The greatest contribution to the thermoreflectance coeffi-

cient in this case is increased phonon population and resulting electron-phonon scattering

with temperature, as opposed to the changes in available electron states near the Fermi

level that occur near the ITT energy. Workers in the Halas group also observed such a

thermoreflectance response,62 where it is identified as a temperature-induced change in the

screening role of hot electrons. If the screening effect is sufficiently strong in typical nan-

odevice materials, TTR experiments could potentially probe thermal dynamics in devices

without requiring the addition of thermoreflective materials to serve as transducers.

TTR experiments with nanoparticles successfully collect a signal from large numbers

of nanoparticle arrays, i.e. large numbers of sub-spot size particles contribute to a measure-

able probe pulse reflection. This suggests designing arrays of nanodevices which reach up to

the spot size in total extent, and where a single device electrode is accessible to pump/probe

pulses, e.g. a CMOS array in which only the source electrodes are exposed, while other

connections are masked. A single device is too small to be probed by a ‘large’ laser spot,

but an array of devices, fabricated by a stable system with a sufficiently narrow distribution
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of variables such as dimensions, surface roughnesses and defect densities, could enable the

measurement of thermal features of real devices.

As a broader consideration, typically several secondary, but important, parameters

of materials, such as a matrix conductivity, of an experiment require determination, with

minimal uncertainty, to enable the calculation of a final desired quantity through fittings

of a model to data, and with minimal uncertainty in the final result. Of course, literature

values may be available, but there is no real substitute for measurements of the actual

device under study. In many research settings, independent methods of measuring such

parameters could be available, but are often macroscale methods, and therefore possibly

inapplicable, or if capable of nanoscale measurements, may have limitations of availability

and access. Simply put, there are great benefits to a TTR experiment that can be shown

to be itself sensitive to the values of several parameters. We consider possible advances in

this experimental area by means of theoretical improvements in the following subsection.

8.3.2 Nanothermal theory

Relaxing certain simplifying assumptions suggests some opportunities for improve-

ments in the theoretical areas of models of TBR and in models of transport. We begin with

TBR modeling.

Two fairly clear strategies can be visualized for TBR models: utilizing exact phonon

dispersions,33 rather than assuming a Debye approximation, when metals and other crystals

are involved, and accounting for mixed specular/diffuse phonon transmission and reflection

at a boundary, rather than assuming one of the extremes of fully specular/acoustic or diffuse

mismatch models. These models also assume thermal equilibrium at interfaces, but since

TTR experiments can function well with only about 1 K temperature differences, this is

likely a milder assumption than that of phonon dispersions. The equilibrium approxima-
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tion allows the calculation of transmission probabilities with the knowledge of the phonon

dispersion on only one side of the interface, so if one material is crystalline with a known

spectrum, that side can be used. To address the issue of mixed specular/diffuse interaction,

we note that both the AMM and the DMM find TBC from the same equation for flux, and

differ only in the calculation of transmission probabilities. The probability, already a func-

tion of polarization and frequency, could have dependence on one additional binary variable

m specifying interaction mode (specular or diffuse), itself a function of phonon frequency:

at frequencies of greater overlap of energies between the two materials is greater, the specu-

lar mode is given more weight, and vice-versa, and smooth transitions between frequencies

assumed. Sums would run over modes, frequencies, and polarizations. Additionally, molec-

ular dynamics simulations could also have an important role through calculation of phonon

densities of states from interatomic potentials, again in place of ideal Debye pictures.36

Moving further away from diffusive models toward ballistic ones, and ideally also away

from the relaxation-time approximation, is far more challenging, but could ultimately lead to

greater discoveries. Ballistic models rest on the solid foundation of the Boltzmann equation,

but they present significant challenges: they require phonon dispersions, carrier relaxation

times, and interatomic potentials which may not be known for materials of interest, and are

mathematically complex, even for simple geometries.114 Cahill5 nevertheless discusses fully

ballistic modeling as a forefront issue for two main reasons: studies aim to investigate the

modification of thermal properties due to nanoscale dimensions, but often determine values

by fitting incongruous diffusive models, and TBR models (inaccurately) assume thermal

equilibrium at all distances from interfaces.

A great deal of insight has been reached through quasi-ballistic115 models, which

divide transport between ballistic and diffusive contributions. Application of these models

to measurements116,117 of nanoscale devices demonstrates the device scales at which ballistic
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effects emerge, and how thermal properties are affected. Such models often make the

relaxation-time approximation.

However, at least for the case of well-studied, crystalline materials, the works of

Broido et al.16 and Omini et al.118 show a path forward, based mostly on first principles,

with the exception of calculating the collision kernel from empirical interatomic potentials.

From a mathematical perspective, calculations use an iterative, analytical method, and the

method is used to calculate the bulk thermal conductivity of silicon. The authors show that

modification of the interatomic potential is required for close agreement of the modeled

conductivity with measurements.

If some progress can be achieved along these lines, there are many possibilities for

realizing the above-mentioned potential of TTR to determine multiple thermal parame-

ters of a nanoscale device or system. With a more robust model in place, and leveraging

the capability of TTR experiments to vary excitation modulation frequencies over large

ranges, the sensitivity of parameters to the TTR signal could be calculated, and experi-

ments designed which could determine the values of the most important thermal features.

Also, for a given thermal device, a true diffusive/ballistic transition could be calculated by

scaling down the device size.

Specifically, if a multilayer ballistic transport model could be developed which includes

TBR, exploring the boundary between diffusive and ballistic transport in these systems,

with measurements of responses from a series of particles with decreasing diameter, would

be an exciting project. A quasi-ballistic model of this kind has been developed by Shirdel-

Havar et al.,119 using a core-shell solution of the Boltzmann transport equation by Rashidi-

Huyeh et al.,81 the relaxation-time approximation, and the diffusive-ballistic approximation

of Chen.115 This model assumes zero TBR, but solutions are reached using a finite-difference
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solution of a system of differential equations, so it is possible that a TBR term could be

added to the analytical equations, and then solved numerically, as in Shirdel-Havar.119
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