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Abstract 

 Parental age can affect offspring fitness across taxa and through various 

mechanisms. However, the effect(s) of advanced maternal age on offspring, particularly 

in insects, has not been comprehensively reviewed making it difficult to draw 

conclusions about the effects of advanced maternal age on offspring in insects. In my first 

chapter, I reviewed maternal age literature and found overall negative effects of advanced 

maternal age on offspring fitness. However, results vary depending on which fitness 

measures were used, the life stages at which offspring were measured, and the 

experimental design of the study. In my second chapter, I conducted an experiment where 

I collected a suite of fitness measures, including immune response, which is often 

overlooked, and found that advanced maternal age has an overall positive effect on 

offspring fitness. My work highlights the importance of following offspring throughout 

all life stages and implementing various fitness measures, including immune function.
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Chapter 1: A comprehensive review of maternal age effects on offspring fitness in 
insects 

 
Introduction 
 

 Aging can have widespread negative effects on individual fitness. As organisms 

age, individuals can experience progressive declines in physiological (e.g. metabolism, 

immune function, stress response, motor function, body movement), cellular (e.g. 

mitochondrial function, tissue regeneration), and cognitive traits (e.g. attention, memory; 

(Harman 1956; Semba et al. 2010; Linton & Dorshkind 2004; Glisky 2007; Gruver et al. 

2007; Alt et al. 2012; Muller et al. 2013; Buzzi et al. 2003). The mechanisms driving 

these negative effects on fitness vary. For example, the mitochondrial theory of aging 

argues that mitochondrial DNA is highly susceptible to lesions caused by free radical 

oxidative damage, which accumulate over time resulting in the deterioration of an 

organism’s physical and cognitive state with advanced age (Gavrilov et al. 1997; Harman 

1956). Furthermore, telomeres play an important role in protecting chromosomes from 

oxidative stress associated with cell division but shorten in length as the organism ages, 

leading to cell death; individuals with shorter telomeres have been found to have shorter 

lifespans (Asghar et al. 2015; Heidinger et al. 2016). General cellular breakdown (or lack 

of upkeep) that becomes more common with age, regardless of mechanism, can lead to 

reduced fitness of the individual and, indirectly, of the offspring given the heritability of 

DNA and telomeres (Dugdale & Richardson 2018; Delgado et al. 2018).
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 Aging not only affects the fitness of individuals but may also affect the fitness of 

their offspring. There are two theories that predict contrasting effects of advanced 

maternal age on offspring: aging theory and life history theory. Aging theory predicts that 

as females age, their reproductive investment deteriorates, suggesting that older females 

may produce fewer offspring or that the offspring from older mothers could be less fit 

than those produced by young mothers because they can inherit both damaged 

mitochondrial DNA and short telomeres (Dugdale & Richardson 2018; Delgado et al. 

2018). In contrast, a component of life history theory predicts that late in life females 

may invest heavily in reproduction to increase their own fitness before death (terminal 

investment), suggesting that the quantity or quality of the offspring from older mothers 

may be higher than in offspring from younger mothers (Partridge & Harvey 1988; Fessler 

et al. 2005). 

 Fifty-five years ago, Parsons (1964) reviewed the effects of parental age on 

offspring and found that the overall effects of advanced maternal age on offspring were 

mixed in mammals, and negative in insects and plants. For example, Parsons’ (1964) 

review found that the occurrence of congenital abnormalities in human offspring 

increased with maternal age but decreased with maternal age in mice and guinea pigs. 

Furthermore, in Drosophila, eggs from old mothers hatched less frequently relative to 

eggs laid by young mothers and those offspring that did hatch had a lower chance of 

surviving to subsequent instars than offspring from young mothers (Hadorn & Zeller 

1943, as cited in Parsons 1964). In his review, Parsons (1964) acknowledged the need to 

separate maternal and paternal age so their effects can be assessed independently, and he 
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emphasized the need for additional studies on a broader pool of study organisms. At the 

time, data were only available for five species (mice, guinea pigs, humans, Drosophila, 

and duckweed). Most notably, he emphasized the need for direct investigation of parental 

age effects on offspring fitness, noting that much of the data on maternal age at the time 

were collected as a by-product of other work (Parsons 1964). In the intervening 55 years, 

dozens of studies have investigated how maternal age affects a variety of offspring fitness 

measures in numerous study systems. To date, research on how maternal age affects 

offspring fitness in vertebrate systems vastly outnumbers work done with invertebrate 

systems (e.g. see review by Liu et al. 2011 on humans). Our review is the first to 

investigate the effects of maternal age in insects in 55 years (but see Soliman 1986, which 

focused on the flour beetle). We focus our review on insects because they are one of the 

most diverse groups of organisms and allow us to perform large scale aging projects 

within a relatively short period of time.  

 In this review, we summarize the work that followed Parsons’ (1964) call to 

advance our understanding of parental age effects on offspring fitness. In the intervening 

years, maternal effects have received more widespread attention than paternal effects, 

particularly regarding female reproductive investment (Sinervo 1990; Mousseau & Fox 

1998; Wells 2014). Although we agree with recent work suggesting paternal effects may 

be underappreciated (Curley et al. 2011), the imbalance of existing research has led us to 

focus maternal age effects rather than paternal age. We examine the approaches used in 

studies of maternal aging, the trends found in the results of this research, common pitfalls 

in the experimental design of the studies, and conclusions we can make about patterns in 
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maternal aging research. Finally, we offer suggestions for experimental design of 

maternal age research and future directions in the field. 

 

Methods 

 To identify literature on how maternal age affects offspring fitness in insects, we 

searched for a set of terms in five databases: Web of Science Biological Abstracts, Web 

of Science Core Collection, Zoological Record Plus, Agricultural & Environmental 

Science (ProQuest), and Google Scholar. Our search terms were ‘maternal age,’ ‘parental 

age,’ ‘fitness,’ ‘offspring,’ ‘progeny,’ ‘longevity,’ ‘lifespan,’ ‘life history,’ ‘development 

time,’ ‘insect,’ and ‘arthropod,’ including different spellings of ‘aging’ (e.g. ageing) and 

every possible combination of these terms. We performed the searches between 

December 23, 2017 and January 26, 2018 and found a total of 253 papers. We then 

removed papers that did not include empirical data collected by the author(s) and studies 

that did not focus on insects. We also excluded papers that did not test for maternal age 

effects on offspring or did not isolate maternal age effects from paternal age effects on 

offspring if they tested parental age effects. This review narrowed the pool of 253 papers 

to 75 papers. However, some studies reported results for more than one organism, so we 

assigned a case ID for each of the experiments within a paper that used a different 

species. For example, if a paper performed the same study on two different species, we 

categorized them as two cases within the same paper (case A and case B). Thus, we 

analyzed 82 cases from 75 papers. 
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 For each case, we recorded an array of details about the authors’ experimental 

design. We determined which measurement(s) of offspring fitness were collected (See 

Appendix A) and whether the consequences of advanced maternal age were negative or 

positive on each measure of offspring fitness or if there was no effect. For example, if a 

case examined the size of the adult offspring and found that the offspring of old mothers 

had higher mass than the offspring of young mothers, we assigned the effect as ‘positive’ 

on offspring fitness. If a case examined the number of eggs laid by old and young 

mothers and found that old mothers laid fewer eggs, we would label this as a ‘negative’ 

effect. If there was no difference in the offspring fitness between the maternal age 

treatments, we assigned this as ‘no effect’ Finally, for cases in which the authors recorded 

sex ratio, we recorded whether the sex ratio was male or female biased or equal (not 

different from 50:50) if there was no effect. Lastly, we also recorded the features of the 

experimental design, which we will refer to hereafter as case attributes: whether the study 

investigated multiple generations of maternal effects, used inbred or laboratory-adapted 

populations, whether the females were virgin at mating or mated multiply, whether they 

used the same females for both ‘young’ and ‘old’ ages (e.g. old at first mating or mated 

multiply at a young and an old age), whether the authors controlled for paternal age, and 

the amount of time that separated ‘young’ and ‘old’ age groups (e.g. days or weeks; 

Appendix B). 

 During the coding process, we established a standardized method of 

categorization. We kept a concise list of fitness measures, grouping measures together 

when appropriate (Appendix A). For example, if a case measured ‘number of adult 
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offspring,’ we categorized it as ‘survival to adulthood’ or if a case measured ‘larval 

duration,’ we categorized it as ‘development time.’ Many cases measured different 

aspects of body size (e.g. mass, pronotum width), which we classified generally as ‘size’ 

for whichever life stage the organism was measured. If the case assessed the fitness 

consequences across a spectrum of maternal ages, we only analyzed results that 

compared the youngest age and the oldest age of the mother. Finally, there were four 

cases that reported numbers of offspring but did not specify in which life stage they were 

when the authors recorded this measure; we therefore included these in a fitness measure 

called ‘total offspring’ to avoid making assumptions about the authors’ experimental 

design.  

Analysis 

 To isolate patterns in the results and experimental designs of the 82 cases we 

reviewed, we created a series of contingency plots. We asked whether the proportions of 

the fitness effects (negative, positive, or no effect; for sex ratio: male bias, or female bias, 

or no effect) were all equal. We asked the same question regarding the proportion of 

direction of fitness effects across all case attributes (e.g. what proportion of negative 

effects were also in studies that used inbred or lab-adapted populations), and across all 

orders (e.g. what proportion of negative effects were represented in each of the 

taxonomic orders). Furthermore, we asked if the distribution of case attributes differed 

across each taxonomic order (e.g. the proportion of cases that controlled for paternal age 

within each taxonomic order). To determine if there were trends within each of the 

taxonomic orders in the distribution of the fitness effects (negative, positive, or no effect), 
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regardless of fitness measure, we created another contingency plot. We also performed a 

series of separate chi square goodness-of-fit tests to test for each fitness measure that had 

at least 10 cases, to determine whether negative, positive, or no effect of advanced 

maternal age were disproportionately represented within those cases. Lastly, we 

performed the same goodness-of-fit test comparing the fitness effects (negative, positive, 

or no effect) within each taxonomic order.  

 

Results 

 In the 82 cases reviewed here, 7 orders were represented: Hymenoptera, Diptera, 

Coleoptera, Hemiptera, Lepidoptera, Orthoptera, and Blattodea (from most to least 

studied; Figure 1.1).  
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Figure 1.1. 

 

Figure 1.1. The relative proportion of each of the 7 insect orders included in the 82 cases 

reported in this review. The color for each order is the same as in Table 1.1. 

 

Within each and across all orders, we found that authors report fitness measures on the 

egg and adult life stages of the offspring more often than larval or pupal life stages 

(Figure 1.2).  



 9 

Figure 1.2. 
 

 
 
Figure 1.2. A. The relative proportion of overall fitness effects of advanced maternal age 

across all 82 cases reported in this review. B. The number of cases in this review that 

address each of the 19 fitness measurements used to assess the effects of advanced 

maternal age on offspring. The dashed vertical lines subdivide the measurement into 

categories of various offspring life stages during which the measurements were recorded 

by the authors. Total offspring is considered a separate category here because the term 

was used in four cases that did not specify from which life stage the fitness measures 

were recorded. The colors of the bars indicate the number of cases that found negative, 
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positive, or no effect of advanced maternal age on offspring. For example, if an old 

mother produced smaller offspring than a young mother, this would be a negative effect 

on fitness (empty bars). If there was no difference in the size of the offspring between 

young and old mothers, this would be a considered ‘no effect’ on fitness (grey bars). If an 

old mother produced larger offspring than a young mother, this would be a positive effect 

on fitness (black bars). The sex ratio of the offspring from old mothers is also subdivided 

to avoid associating male-bias (horizontal dashed bars) or female-bias (diagonal dashed 

bars) in adult offspring as either positive or negative. Sex ratios that did not differ from 

50:50 are also represented as grey bars, indicating no effect of advanced maternal age. 

 

Of the 82 cases we reviewed, we found that 11% performed multigenerational studies. 

Authors used inbred/lab-adapted populations of organisms in 55% of the cases whereas 

34% did not and 11% of cases did not report this information. In 35% of cases, mothers 

were mated as virgins, 16% were non-virgin (mated multiply), and in 49% of the cases 

this information was not provided. In 54% of cases, researchers used the same female for 

old and young mating, 36% used different females for the two age groups, and in 10% of 

the cases did not provide this information. Finally, 8% of cases controlled for paternal 

age, 37% did not, and in 55% of the cases this information was not provided. 

 When we consider all of the fitness measures for which we could record negative, 

positive, and no effect results for (i.e. all variables except sex ratio), we found that 63% 

of all results reported negative effects of advanced maternal age while 21% found no 

effect and only 16% reported a positive effect (Figure 1.2A). Within each taxonomic 

order, we found that, 4 taxonomic orders had been studied in 10 or more cases, allowing 

us to perform chi square goodness-of-fit tests. We found that 82% of Hymenoptera cases, 

64% of Coleoptera, 58% of Diptera, and 55% of Hemiptera cases resulted in negative 

effects of advanced maternal age, regardless of fitness measure. The proportion of 
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negative effects also differed across taxonomic orders with 28% of all negative fitness 

effects found in cases that examined Coleoptera, 23% found in Hymenoptera, 18% found 

in Diptera, and 15% found in Hemiptera. These results suggest that negative fitness 

effects on offspring may be confounded with how often each order was studied to answer 

maternal aging questions. 

 On average, we found that cases assessed 3 measures of fitness; the most 

frequently reported measurement was the number of eggs laid by mothers of young and 

old ages, followed by egg size (Table 1.1). However, some measures across orders were 

severely underrepresented (e.g. egg load was measured by just one case compared to the 

number of eggs laid, which was measured by 30 cases). Finally, we found that the life 

stages of the offspring at which they were assessed for the fitness measures were not 

equally represented; more cases measured fitness in the egg-related and adult-related life 

stages than pupal or larval life stages. 

 Of the 19 fitness measures reported in the dataset, we found that 8 were measured 

at least 10 times, allowing us to assess whether the proportions of negative, positive, or 

no effect fitness results equally represented for these fitness measures (Figure 1.2B). For 

measures related to eggs, we found that authors most often reported egg size (n=28 cases) 

number of eggs laid (n=30), and hatching success (n=26). For measures related to adult 

offspring, authors most often reported adult size (n=14), development time (n=26), 

lifespan (n=12), sex ratio (n=24), and survival to adulthood (n=27). 
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Egg measures 

 In the egg-related life stage, authors collected 7 types of measurements (Table 

1.1, Figure 1.2). 

 

Table 1.1. A heat map showing the fitness measures assessed in each of the 7 insect 

orders represented in this review. In each box, the percentage reported indicates what 

proportion of the overall fitness measures studied in all orders is represented by studies 

reporting a particular fitness measure in that particular order. For example, 0.5% of all 

cases measured the number of eggs laid in Blattodea and 4% of all cases measured the 

number of eggs laid in Coleoptera. Each order is represented in a different color, and the 

degree of shading indicates the frequency of the fitness measure, with darker colors 

representing higher frequency, both within the order and overall for all fitness measures 

and orders. For example, in Hymenoptera, more cases measured sex ratio than the 

number of eggs, whereas in Blattodea, all fitness measures were equally represented. 

Similarly, more cases studied development time in Hemiptera than studied the number of 

eggs in Orthoptera. The fitness measures are listed from top to bottom in order of stage 

of development (egg, larva, pupa, adult), with stages of development divided by dashed 

lines. The right-most column shows the proportion of all cases (out of the 82 studied 

across all orders) that addressed each fitness measure. Please see Appendix A for 

descriptions of fitness measures. 
 

 

 



 

 Table 1.1 
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Overall, 71% of the results showed a negative effect of advanced maternal age, 11% were 

positive, and 18% found no effect (Figure 1.2B). We found that the fitness effects of 

advanced maternal age (negative, positive, or no effect) differed from the null expectation 

of equal representation for egg size (c2=16.36, df=2, p<0.001), number of eggs laid 

(c2=22.4, df=2, p<0.001), and hatching success (c2=21.31, df=2, p<0.001) with negative 

effects more common than positive or no effect. Notably, all cases measuring hatching 

success found either negative or no effect of advanced maternal age; no cases reported a 

positive effect of advanced maternal age on hatching success.  

Larval and pupal measures 

 In the larval life stage, authors collected only 3 types of measurements (Figure 

1.2B). Overall, 45% of the results showed a negative effect of advanced maternal age, 

22% were positive, and 33% found no effect. In the pupal life stage, authors collected 

only 2 types of measurements, and 25% of results found negative effects of advanced 

maternal age and 75% found no effect (Figure 1.2B).  

Adult measures 

 Authors collected seven types of fitness measures in the adult life stage (Figure 

1.2B). For the fitness measures on adult offspring (excepting sex ratio), we found that, 

overall, 58% of results were negative, 21% were positive, and 21% found no effect. 

However, while overall fitness effects were mainly negative, we highlight that this is 

fitness measure-dependent. Within the five adult measures that had a sufficient number of 

cases that allowed us to compare the distribution of fitness effects (negative, positive, or 

no effect) using chi square goodness-of-fit tests, only two showed a non-equal 
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distribution (i.e. a non-equal proportion of fitness effect results): offspring lifespan 

(c2=9.5, df=2, p<0.01 and survival of offspring to adulthood (c2=17.56, df=2, p<0.001). 

However, we did not find a difference in the direction of fitness effects of the size of 

adult offspring from old mothers (c2=0.14, df=2, p>0.9) or the development time 

(c2=4.69, df=2, p>0.1). In cases that assessed sex ratio as a consequence of advanced 

maternal age (n=24), 17% of cases were female-biased, 54% of cases were male-biased, 

and 29% showed no difference in sex ratio of the offspring from old and young mothers 

(Figure 1.2B). We did not find a difference in the direction of fitness effects of the sex 

ratio of the adult offspring from old mothers (c2=5.25, df=2, p>0.1). 

Case attributes  

 We performed multiple contingency plots to determine the proportion of fitness 

effects (negative, positive, or no effect) across each fitness measure. Most notably, 100% 

of cases that resulted in female-biased sex ratios as a result of advanced maternal age 

were from studies of inbred or lab-adapted populations. Most cases did not report 

whether the authors had controlled for paternal age. However, of the cases that reported 

female-biased sex ratios, 100% of them did control for paternal age while only 25% of all 

male-biased results were from studies that controlled for paternal age. The results of the 

contingency plots on the other case attributes are more variable and reveal no clear 

pattern on how fitness effects may be affected by case attributes. Of all negative fitness 

effects, 51% were from inbred or lab-adapted populations while 57% of no-effect results 

and 69% of all positive fitness effects were also from inbred or lab-adapted populations. 

Furthermore, 38% of all male-biased sex ratios were from populations that were inbred 
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and/or lab-adapted. Similarly, we found highly variable results when authors used virgin 

females: 50% of all female-biased sex ratios resulted from old females mated as virgins, 

25% of all male-biased sex ratios came from old virgin mothers, and 42% of all negative 

results, 21% of all fitness measures where no effect was found, and 31% of all positive 

effects on offspring fitness were in studies that mated old females as virgins. None of the 

female-biased sex ratio results were from experimental designs where the authors used 

the same female for both young and old but 38% of the male-biased results did use the 

same female for both maternal age treatments. Further, 56% of all negative results, 43% 

of all results where no effect was found, and 77% of all positive effects were in studies 

where the same females were used as both young and old. 

 

Discussion 

 Aging affects all organisms and can have an impact on future generations across 

taxa. While paternal age is important, maternal age effects have received more attention, 

most likely due to the perceived difference in maternal investment. Parsons (1964) 

laudably reviewed the maternal age literature and concluded that a more direct and 

thorough approach to the examination of maternal age effects was needed to find patterns 

across and within taxa. In the subsequent 55 years, impacts of maternal aging on 

offspring fitness have received much more attention, especially for insects. Here, we 

present findings and conclusions from our comprehensive review covering 55 years of 

research on the effects of maternal aging on insect offspring.  
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 The results of the 82 cases (from 75 papers) included in our review highlight the 

incredible variability in fitness effects of advanced maternal age on insect offspring 

(Figure 1.2B). When viewed across all fitness measures investigated and all taxa, the 

overall trend (63%) in maternal aging research in insects is that having an older mother 

negatively affects offspring (Figure 1.2A). However, we show that the direction of fitness 

effects on offspring depends to some extent on which taxa are investigated, the fitness 

measures studied, and important attributes of experimental design (e.g. using the same 

female for both ‘young’ and ‘old’). As such, we urge researchers to consider this overall 

conclusion with caution for reasons outlined below, and we emphasize the need for 

expansion and diversification in all aspects of authors’ approach to future aging research. 

We found that, on average, researchers include only three measures of fitness in each 

case within this review and the types of fitness measures and study system(s) used seem 

to influence whether authors find that advanced maternal age affects offspring fitness 

positively, negatively, or not at all. For example, in this review we found that 100% of 

cases that investigated the effects of advanced maternal age on hatching success (i.e. a 

quantitative measure) resulted in either negative effects or no effect; none of these studies 

reported a positive effect. Due to the lack of variety in types of measurements (i.e. both 

quantity and quality), this trend may or may not be indicative of true overall effects of 

maternal age on offspring fitness if researchers do not employ a broad-spectrum approach 

in assessing offspring fitness. Although we found equal representation of measures of 

quality and quantity across all cases in this review, with only three fitness measures per 

case (on average), it is clear that some cases were more balanced in their approach than 
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others in this regard. We suggest that researchers collect data on a greater variety of 

fitness measures to gain a comprehensive assessment of the impacts of advanced 

maternal age on offspring fitness (see Hallagan et al. In Prep; Wilson et al. In Prep).  

 The life stages at which offspring are measured by the authors of the cases 

presented here are not equally represented; egg-related and adult-related measurements 

were disproportionately recorded over larval- and pupal-related measures. We 

acknowledge that not every insect species has a larval or pupal stage, but juvenile stages 

were severely underrepresented from all cases within this review and we therefore 

encourage authors to record an array of measurements across all life stages of the 

offspring. Using the same example as above, 100% of the hatching success results were 

either negative or showed no effect of advanced maternal age but due to the lack of 

variety in types of measurements (i.e. quality and quantity), this trend may or may not be 

indicative of true overall effects of maternal age on offspring fitness when viewed in the 

context of measurements made across the organisms’ lifespan; viewed in isolation, this 

trend could be misleading.  

 Finally, the taxonomic orders represented in this review were not equally 

represented, nor were the fitness effects of advanced maternal age within each order 

(Figure 1.1; Figure 1.2B). For example, we found that 31% of our 82 cases used 

Hymenoptera while only 1% used Blattodea as the study system used for maternal aging 

research. The imbalance in representation of taxa may influence the overall negative 

results found in this review, due to trends in taxonomic orders or simply due to a 

difference in sample size. For instance, the cases that studied Hemiptera used inbred or 
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lab-adapted populations 73% of the time while only 25% of Orthoptera cases were 

inbred/lab-adapted. However, the sample size of cases that studied Hemiptera was 11 

compared to Orthoptera which were only used in 4 cases out of 82. Therefore, any 

offspring fitness effects as a result of advanced maternal age may be a reflection of one or 

many various factors: there may be certain fitness measures that are typically used within 

Hemiptera, depending on the motivation behind the research and which fitness measures 

are deemed more important than others, that give rise to similar consistent results, the 

results found in cases (like in this comparison) are not related to the orders but instead to 

the negative effects of inbreeding, the difference in sample size between the two 

taxonomic orders is too great for the patterns to be comparable, or perhaps the life stages 

at which these orders typically measure offspring fitness. Notably, 82% of cases that used 

Hymenoptera found negative results, regardless of which fitness measure(s) the authors 

recorded. When we compare this trend to, for example, Hemiptera with 55% negative 

effects, it suggests that some taxa may be more likely to have negative results than others 

(e.g. studies that typically use inbred populations, like in Drosophila). However, we 

acknowledge that the trends we find in fitness effects from advanced maternal age in 

cases that use a limited number and type of measurement, the life stages of the study 

organism the authors use, or the order to which the study organism belongs may not 

result from just one of these factors alone but instead, they may be a culmination of some 

or all. 
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Research Challenges 

The approaches and experimental designs used in aging research projects can be 

challenging, with many variables to consider in both the design and execution of the 

research projects and how best to truly measure fitness. These challenges may even have 

unforeseen effects on experimental results. Below, we consider trends in the results 

reviewed here that highlight challenging areas in the field of aging research and where 

future authors have opportunities to consider their approach and/or avoid common 

pitfalls. 

Defining age 

 Natural lifespans, of course, differ among insect species and there is no 

comprehensive definition for what constitutes ‘young’ or ‘old’ age. Instead, the two terms 

are relative and species-specific. For instance, what is considered old for Drosophila (e.g. 

40 days post-eclosion into adulthood) may be young for some Hymenoptera species that 

spend years as adults (Bauer et al. 2004; Al-Lawati & Bienefeld 2009; Qazi et al. 2017). 

We must therefore design aging research that is tailored to the study organism’s natural 

life history. We emphasize natural life histories here because laboratory-adapted 

populations may experience altered lifespans compared to their wild counterparts due to 

unintentional artificial selection under laboratory rearing conditions (Spencer & 

Promislow 2005; Linnen et al. 2001). Investigators should consider whether their study 

organism would realistically mate at their defined ‘old’ age in wild populations that are 

subject to selection pressures absent in the lab. For example, some of the selected ages of 

mating in Drosophila experiments lie outside of the natural lifespans of Drosophila in the 
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field (Bauer et al. 2004). We suggest that authors clearly justify the ages chosen and 

consider whether these would be realistic in a wild population of the species being 

studied. Furthermore, we implore all researchers to report the ages used for their ‘young’ 

and ‘old’ age treatments; we were surprised to find that some did not, and this oversight 

makes it difficult to assess results and to repeat or expand interesting experiments. 

 We also found that in the few cases where authors investigated maternal age 

effects by using a spectrum of ages (e.g. mothers aged at 3 (youngest), 10, 15, and 21 

(oldest) days post-eclosion into adulthood) instead of binary ‘young’ and ‘old’ 

treatments, the results told a more detailed story regarding maternal investment. For 

instance, the effect of advanced maternal age on offspring fitness was sometimes initially 

either positive or negative but then shifted in the opposite direction. These results suggest 

that there may be periods of high, low, and potentially peaks in female fecundity that may 

affect offspring fitness (see  Singh & Singh 2005) that may not be captured by only using 

two extremes in maternal age. We therefore recommend that although it is more difficult, 

researchers should employ an experimental design that includes a spectrum of maternal 

ages (as opposed to two binary extremes) as the best approach to identify patterns of 

female reproductive investment and at what age female fecundity and offspring fitness 

are highest. 

Laboratory breeding and egg laying order 

 A pitfall of investigating lab-adapted populations is the potential confounding 

effect of inbreeding on offspring fitness in such studies. Of the 82 cases reviewed here, 

55% studied organisms from inbred and/or lab-adapted populations (another 12% of 
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cases did not report sufficient information to make that classification and could 

potentially have been inbred as well). Inbreeding depression can have deleterious effects 

on offspring of closely-related parents (Wright 1922; Su et al. 1996; Saccheri et al. 1996; 

Van Eldik et al. 2006). Much of the groundbreaking aging research in Drosophila (63%) 

used heavily inbred, isofemale lines (genetic lines originating from a single wild-caught 

female) to conduct their maternal age experiments and found negative effects on 

offspring fitness 54% of the time. A criticism of this approach is that the negative fitness 

consequences experienced by offspring in these studies could, at least in part, be 

attributed to interactions between advanced maternal age and inbreeding depression. 

Laboratory settings often differ from natural settings, highlighting the importance of 

replicating natural breeding habits as closely as possible for the study system being used. 

We emphasize the use of large, genetically diverse populations and colonies to best 

replicate natural populations in the field and to avoid the complications associated with 

inbreeding depression. 

 Egg-laying organisms pose a unique challenge in understanding how maternal age 

affects offspring. We found that 55% of investigators use the age at which females 

oviposited, instead of the age at which the females were mated, as the basis for whether a 

mother is considered to be ‘young’ or ‘old.’ This practice could confound effects of 

advanced maternal age with egg-laying order (i.e. age at oviposition). Begon & Parker 

(1986) introduced a model, designed to be applied specifically to insects, which predicted 

that the eggs laid first (i.e. at a young maternal age) should be larger than eggs laid later 

(i.e. at an old maternal age) due to differences in maternal investment. This decrease in 
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egg size with egg laying order within clutches and across different maternal ages is a 

common occurrence in birds (Hong et al. 2007; Badyaev et al. 2002; Saino et al. 2002) 

but is not as commonly found in empirical work with insects, which tend to have more 

mixed results with some authors finding larger eggs laid earlier and some finding larger 

eggs laid later in the oviposition period (Wiklund & Persson 1983; Fox & Savalli 1998; 

Cherrill 2002). With such variable results regarding egg-laying order and its effect on 

offspring fitness in the insect-related literature, we propose that, instead of using age at 

oviposition, senescence research should use the organisms’ age at mating, especially if 

there is a large gap of time between mating and oviposition, to fully understand the 

interaction between maternal investment and maternal aging, and how offspring may be 

affected. 

Virginity versus multiple mating 

 Whether a female is virgin at the time of mating or has previously mated at a 

younger age could affect the differences we see in the offspring from mothers of different 

ages. If females are allowed to mate multiply (i.e. the same females are used for ‘young’ 

and ‘old’ ages), their reproductive investment may differ between matings and egg 

clutches as a consequence of multiple mating, rather than age per se. Furthermore, if 

females mate multiply, it becomes more difficult to separate maternal age effects from 

any potential paternal effects, particularly if the female mates with different males. The 

resources that females receive from males (e.g. nuptial gifts, ejaculate proteins, and 

hormones) can not only affect female fitness, but can also affect offspring fitness both 

directly and indirectly (García-Palomares et al. 2009; Curley et al. 2011). Therefore, the 
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effects of multiple female mating opportunities may be confounded with maternal age 

consequences (positive or negative). While virgin females allow for a straightforward 

analysis of maternal reproductive investment, there can also be costs associated with old 

virginity (e.g. shorter lifespans; Markow 2011). Of the 82 cases reviewed here, 49% did 

not report whether the females used in their maternal age treatments were virgin, making 

it difficult to isolate any patterns between maternal virginity and maternal age effects on 

offspring. We therefore recommend that authors make this information available for the 

reader in their publications. Given the complexity of virgin and multiple matings, we 

suggest future research opportunities investigate the interactions between maternal 

virginity at young and old ages and multiply mated females of the same ages. 

Female condition 

 Female condition also contributes to offspring fitness. Frequently in maternal age 

research, authors use ‘young’ and ‘old’ mothers that are also introduced to a form of 

stress before and/or during mating and egg production; exposure to toxic metals or heat, 

forced mobility, and resource depletion stress are most commonly used in the literature 

(Augustyniak et al. 2009; Faurby et al. 2005; Ducatez et al. 2012; Fox 1993a; Ito 1997; 

Jann & Ward 1999). However, the introduction of these stressors is yet another case of 

confounding variables; old maternal age could be considered a stressor in and of itself. 

Notably, parental effects are not limited to genetic inheritance. Behavior and responsivity 

to stress are common non-genomic heritable parental effects (Champagne & Meaney 

2001; Chahwan et al. 2011). For example, Lehto & Tinghitella (In Revision) show that, in 

three spine sticklebacks, the offspring from predator-exposed parents have altered mate 
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choice behavior that reflects the behavior that we would see in conspecifics that have 

been directly exposed to a predator. Considering how these parental effects that are not 

related to age influence offspring, if female condition is not accounted for, offspring 

fitness effects may not solely be the result of maternal age but rather non-genomic 

changes resulting from maternal experience (e.g. stress). It is imperative to isolate the 

effects of maternal age from other possible parental effects. 

Multigenerational experimental design 

 We discovered that several authors attempted a multigenerational approach to 

understand the effects of maternal age and also grandmaternal age on offspring. These 

attempts are admirable and ambitious given their widescale approach to find potentially 

additive or diminished effects of advanced maternal age across multiple generations. 

However, we encourage authors to take certain measures to isolate maternal and 

grandparental effects as well as to take into consideration the other attributes listed in this 

review. To discover whether effects of advanced maternal age are cumulative through 

multiple generations or if offspring may recover from any negative effects, we propose 

that researchers should use a fully factorial design, similar to Andersen et al. (2005) in 

which maternal age effects are tested separately from grandmaternal effects (e.g. young 

grandmother and young mother, young grandmother and old mother, old grandmother 

and old mother, and old grandmother and young mother as separate treatments). 

However, we suggest that researchers compare the magnitude of effects between the 

generations. For example, isolating the effects that the grandmaternal generation have on 

the maternal generation while also isolating the effects the maternal generation have on 
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the offspring generation allows investigators to determine if maternal age effects are 

additive (or diminished) across the generations. Another exciting area of proposed 

research in the maternal aging field could investigate ultimate and proximate perspectives 

of how maternal age affects offspring fitness. Particularly, long-term effects and the 

mechanisms behind the differences we see in the quantity and quality of the offspring 

from mothers of various ages. 

Importance of paternal effects 

 Maternal and paternal effects may be equally important for offspring fitness, but 

maternal age has received more attention than paternal age in the literature, which is why 

this review focuses on maternal age only. Yet, evidence exists to suggest that paternal age 

and experience affect offspring fitness (Curley et al. 2011; Crowl & JE Alexander 1989). 

Males have historically been overlooked citing their lack of reproductive investment 

(sperm is less costly to produce than female gametes; Trivers 1972). However prezygotic 

investment (e.g. nuptial gifts in Hemiptera) and postzygotic investment (e.g. guarding in 

Odonates) are indirect paternal effects mediated through maternal effects and direct 

paternal effects, both being considerable paternal contributions that can affect the 

offspring. Advanced paternal age, specifically, can have adverse effects on offspring 

fitness (e.g. reduced reproductive success and longevity, increased risk of disease and 

disorders in offspring; (García-Palomares et al. 2009; Curley et al. 2011). We therefore 

suggest that reports on parental age should control for the age of one parent in order to 

isolate which effects are caused by which parent and at which age. If paternal age is not 

controlled for, conclusions made about maternal age effects on offspring may not carry 
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the same validity and importance as if researchers do control for paternal age. Given the 

imbalance of maternal to paternal effects in the literature, we suggest that future research 

could investigate solely paternal age effects or a fully factorial design where insect 

parents were mated as ‘young’ parents, ‘young’ father + ‘old’ mother, ‘old’ father + 

‘young’ mother, and ‘old’ parents and compare offspring fitness from each treatment. 

This experimental design would not only allow investigators to isolate parental age 

effects but also improve the shortage of paternal effects in the literature. 

Conclusions and suggestions for future directions 

 Our review has summarized the last 55 years of research investigating maternal 

age effects on insect offspring. Our overall conclusion is that maternal age has a negative 

effect on offspring fitness. However, we urge caution when interpreting this overall 

conclusion considering the many challenges that accompany aging research. While the 

cases examined in this review have offered valuable insight, there are certainly 

opportunities to improve experimental design. We suggest that future researchers 

consider the importance of using wild-caught populations to better replicate natural 

conditions, collecting a suite of fitness measures that assess both the quantity and quality 

of the offspring throughout multiple life stages, female condition, and controlling for 

paternal age. With these recommendations in mind, we should find that future research 

will be more indicative of trends solely due to advanced maternal age and not due to a 

confounding of variables, seen or unforeseen.
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Chapter 2: Advanced maternal age leads to greater immune function and fitness in 

cricket offspring 

Introduction 

 Aging theory predicts that reproductive investment deteriorates with age, 

suggesting that offspring from old mothers could be less fit than offspring from young 

mothers (Harman 1956; Kirkwood & Rose 1991; Gavrilov et al. 1997; Heidinger 2016). 

Mitochondrial DNA accumulates oxidative damage with age and telomeres, which 

protect chromosomes from oxidative stress and are directly linked with longevity, shorten 

over time. These two mechanisms affect an individual’s fitness and, due to their 

heritability, also their offspring’s fitness (Harman 1956; Gavrilov et al. 1997; Heidinger 

et al. 2016). For example, in humans, maternal age is positively correlated with risk of 

childhood cancers, autism, and mortality (Yip et al. 2006; Durkin et al. 2008; Johnson et 

al. 2009). Further, in some non-human organisms, mothers of advanced maternal age 

have fewer eggs and then their offspring have low hatching success, are smaller, and have 

higher rates of mortality and longer development times than offspring of young mothers 

(e.g. flies, mice, guinea pigs, beetles, birds; Parsons 1962; Qazi et al. 2017; Fox 1993b; 

Kern et al. 2001; Hercus and Hoffmann 2000; Yanagi & Miyatake 2002; Heidinger et al. 

2016).

 In contrast, the terminal investment hypothesis, which is a component of life 

history theory, predicts that allocation to current fitness should increase as females age 



29 

because the importance of trade-offs between current and future reproduction declines 

with age (Fisher 1930; Williams 1966; Partridge & Harvey 1988; Stearns 1989). Mothers 

of advanced age may thus reduce investment in their own survival, but invest heavily in 

offspring, producing more or higher quality offspring close to the time of death. This 

increase in investment suggests that offspring from old mothers may be equally or more 

fit than offspring from young mothers (Trivers 1974). In agreement with these 

predictions, studies that have measured fitness components including size of offspring, 

survival rates, offspring reproductive success, and litter size find that offspring of older 

mothers are more or equally as fit as offspring of young mothers (Descamps et al. 2008; 

Creighton et al. 2009; Hansen et al. 2014; Clark et al. 2017).  

 Conflicting reports of either positive or negative effects of maternal age on 

offspring fitness in the literature may be a consequence of the fitness measures that 

researchers have traditionally used. Individual studies tend to emphasize measures of 

either the quantity of offspring (number of eggs, hatchability, number of offspring to 

survive to adulthood; Fox 1993b; Yanagi and Miyatake 2002) or to a lesser extent 

offspring quality (egg and adult body size, starvation resistance, development time; 

Poykko and Manttari 2012; Ito 1997). Measuring only quantity or only quality of the 

offspring limits our understanding of maternal effects stemming from age and may yield 

conflicting reports in the literature. There may be trade-offs that would not be accounted 

for by measuring only one type of fitness measure (e.g. fewer but higher quality offspring 

as a result of maternal age). 
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One aspect of offspring quality that is often overlooked in the aging literature is 

immune function. A more inclusive view of comprehensive fitness might reveal that the 

fitness differences observed in offspring from old and young mothers are a result of 

trade-offs between the quantity and quality of offspring, including immune response (see 

Nystrand & Dowling 2014). Few researchers have studied the effects of maternal age in a 

comprehensive way that includes both traditional measures of offspring fitness and 

offspring immunocompetency. Aging has widespread negative effects on immune 

function in many different taxa; in general, older organisms do not launch as effective 

immune responses to an immune challenge as younger conspecifics (Linton and 

Dorshkind 2004; Gruver et al. 2007; Muller et al. 2014). However, offspring from old 

mothers have been found to be less susceptible to an introduced pathogen than offspring 

of young mothers in Atlantic cod (Hansen et al. 2014) and Daphnia (Clark et al. (2017). 

Therefore, maternal age can also positively affect the immunocompetency of offspring. 

In invertebrates, like vertebrates, offspring inherit their immunity from their mothers, 

who transfer immune-related proteins during egg development, establishing baseline 

immune function for the offspring (referred to as transgenerational priming; Sun et al. 

1990; Huang & Song 1999; Moret & Schmid-Hempel 2001; Grindstaff et al. 2003; Sadd 

et al. 2005). Maternal immune function can be reflected in the immune function of the 

offspring throughout life (Sadd 2005; Reid 2006). Insects lack acquired immunity (the 

development of immune memory in response to pathogen exposure), so the immune 

function of an individual insect is dependent on parental immunity (Zuk and Stoehr 2002; 

Beckage 2008).  
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 Much aging research is done in vertebrate study systems, predominantly humans, 

and the few studies that have investigated impacts of parental age on invertebrates tend to 

do so in heavily inbred, lab-adapted populations (Parsons 1962; Beardmore & Al-

Baldawi 1975; Kern et al. 2001; Priest et al. 2002; Qazi 2017; Hallagan et al. In Prep). 

Using lab-adapted populations can be advantageous in some areas of research (e.g. 

artificial selection, when there is a need to control the genetic background), but the use of 

lab-adapted populations may also limit our ability to predict the nongenomic effects of 

advanced maternal age on fitness in natural populations. To gain a more complete 

understanding of how maternal age affects insect offspring fitness, we measured both 

traditional fitness proxies (e.g. body size, eggs laid, hatching success) and 

immunocompetence of offspring whose mothers were mated at either an old or young 

age. We tested the effects of maternal age on offspring fitness in a non-lab-adapted 

species of field cricket, Teleogryllus oceanicus. Trade-offs permeate our thinking about 

life history traits, and we may be more likely to find trade-offs between measured fitness 

traits when a comprehensive set of quantity and quality characteristics are measured. 

Generally, however, support for aging theory would come from finding that old mothers 

have fewer, lower quality, and/or immunocompromised offspring when compared to 

young mothers. Alternatively, if life history theory is supported, we expect to instead find 

that older mothers have either more or higher quality offspring with enhanced immune 

function. 
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Methods 

Study system and experimental design 

 Teleogryllus oceanicus, the Pacific field cricket, is an ideal research organism to 

test how parental age affects offspring fitness as they are relatively long-lived insects (as 

compared to model organisms like Drosophila), mate readily in the lab and lay eggs 

continuously throughout their adult lives. The natural adult lifespan of T. oceanicus 

ranges from 1-2 months, allowing a complete a multigenerational experiment (maternal 

and offspring generations) within one year. Teleogryllus oceanicus is also subject to 

parasitism in the wild (Zuk et al. 2006; Tinghitella 2008), making immune response an 

important component of survival in parasitized populations. Methods for collecting both 

fitness and immune response measures are well established in this and closely related 

species (Adamo et al. 2001; Fedorka et al. 2004). 

To test the effects of maternal age on offspring fitness and immune function, we 

established 10 founding maternal lines whose offspring were the F1 generation. With the 

F1 generation, we used a split brood design (explained in detail below) in which we 

assigned females to be mated at either a young or an old age (Figure 2.1).  
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Figure 2.1.

 

Figure 2.1. Experimental design to measure reproductive fitness and immunity for 
individuals in the F1 and F2 generations. We established 10 founding lines in 2016 to 
produce the F1 generation. We established two maternal age treatments: females mated 
young or mated old in the F1 generation. We aimed to mate at least five females at a 
young age and five females at an old age from each founding line, but often our sample 
size was much larger than that (Appendix D). Here, we depict the fitness measures we 
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recorded from offspring and grandoffspring of those founders. We measured body size 
for all crickets and six reproductive fitness measurements for all mated F1 generation 
female crickets (young and old). We could not perform immune testing on the mated 
crickets, so we used their full siblings instead. We measured immunocompetence for the 
F1 generation male and non-mating female crickets using hemocyte counts and 
encapsulation responses. We performed the same immunocompetency tests on the male 
and female F2 generation offspring of the F1 mated females. 
 
 
After F1 females mated and laid eggs, we reared the offspring of the mated F1 females as 

the F2 generation. We collected body size measurements (detailed below) for all crickets. 

For the F1 females that mated, we recorded 7 reproductive fitness measures (detailed 

below). Finally, we measured the immune responses of all offspring crickets in the F2 

generation (Figure 2.1).  

Rearing and mating 

We used a laboratory colony of T. oceanicus that was established in 2014 with the 

offspring of field caught females collected at the Gump Field Station on the island of 

Mo’orea in French Polynesia. We reared early instar crickets in 1.9L plastic containers 

(approximately 50 hatchlings per container) and later instar crickets in 0.5L plastic 

containers (1-15 crickets each, depending on size and instar). All the plastic containers 

that we used to house crickets were held within Percival incubators (model I36VLC8) set 

to 27oC and on a 12:12 light:dark schedule. We provided Fluker’s High Calcium Cricket 

Chow (for hatchlings and juveniles), Kaytee Rabbit Chow (for adults), and water ad 

libitum, as well as egg carton for shelter (similar to Tinghitella 2008; Simmons et al. 

2010; Bailey et al. 2017).  
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We reared juvenile females from the laboratory colony in isolation until 7 days 

after eclosing to adulthood and established 10 founding maternal lines by mating them 

with randomly assigned unrelated young (7-10 days after eclosing to adulthood) colony 

males in a low light, temperature-controlled arena or incubator (25-27oC). To increase the 

probability of mating, we allowed the 10 founding females to mate inside of a 0.5L 

container with the same randomly assigned male up to four hours per day, once per day 

for one week. We isolated the males and females between each four-hour mating period 

to avoid aggressive behavior and to increase male reproductive effort during mating 

opportunities. Following the last day of mating opportunities, we isolated females in 

individual 0.5L containers and collected eggs from each female continuously for five 

weeks. We then housed the hatchlings from each founding female in isolation from other 

maternal lines (these hatchlings were the F1 generation). We reared F1 hatchlings in 1.9L 

plastic containers and, when sex could be determined, we further separated offspring by 

sex within each maternal line to prevent mating. When offspring eclosed from the 

juvenile to the adult life stage, we individually housed them in 0.5L containers until they 

were scheduled to mate to produce the F2 generation. 

To propagate the F2 generation, we used at least ten daughters of the F1 

generation from each maternal line in a split-brood design; we aimed to mate at least five 

of the ten daughters at a young age and five daughters at an old age (actual sample sizes 

can be found in Appendix D). We mated ‘young’ females at 7 days post-eclosion (DPE) 

and ‘old’ females at 25 DPE. These ages are realistic for the age of mating in wild 

populations (Simmons & Zuk 1994) and our decision to treat 25 DPE as ‘old’ age also 
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ensured that the females were sufficiently advanced in age while still allowing them time 

to lay eggs before death. In the lab, adult females live 1-2 months post-ecolosion. To 

produce the F2 generation, we allowed F1 females the opportunity to mate with a 

randomly assigned colony male for four hours per day for three consecutive days under 

the same conditions as described above. Again, we isolated mating pairs between mating 

opportunities. As with the founding females, we paired F1 females with unrelated males 

who were 7-10 DPE on the first day of mating. Thus, we controlled for male age across 

female age treatments.  

Fitness measurements 

 For all F1 females that were mated, we counted the number of eggs that each 

female laid, measured mean egg size for a subset of eggs, and assessed the proportion of 

offspring that hatched (hatching success). We also measured the F2 offspring’s 

development time, the number of offspring that survived to adulthood, and the sex ratio 

of the adult offspring (Fig. 1). By examining the reproductive investment of the F1 

generation in the offspring (the F2 generation), we combine typically disparate methods 

(traditional fitness measures and immunity) and address offspring quantity and quality to 

better characterize the effects of maternal age on offspring fitness.  

We used Mitutoyo digital calipers to measure the width of the pronotum (plating 

that covers the thorax) to the nearest 0.01 mm and recorded the mass of each cricket, in 

both F1 and F2 generations, to the nearest 1.0 mg using an Ohaus Adventurer Pro balance 

(model AV264). To assess egg characteristics, we provided F1 females with moistened 

cheesecloth as an egg-laying substrate for 14 days post-mating and counted the number 



37 

of eggs laid by each female under a dissecting microscope. To measure egg size, we 

randomly selected five of the counted eggs to be weighed individually and then also as a 

group. Hatching generally occurs 10-14 days after egg laying (personal observations), so 

we calculated hatching success (the proportion of eggs laid that hatched) of the eggs 14 

days after we counted the eggs (28 days post-mating). For the hatched F2 offspring of 

young and old F1 females, we counted how many survived to adulthood, determined the 

sex ratio of the adult offspring, and recorded development time (time from hatching to 

eclosion) and size at adulthood by measuring pronotum width and wet mass (N=785; see 

Appendix D for all sample sizes in the maternal age treatments and fitness measures). 

In addition to the traditional fitness measures above, we also assessed 

immunocompetency of the F2 generation (N=505) adult offspring. We performed two 

standard immunological tests: hemocyte abundance and encapsulation response to a 

foreign object (Fig. 1). Hemocytes are specialized immune response cells that aid in the 

encapsulation of foreign bodies in insects’ bodies (Smilanich 2009; Beckage 2008). 

Hemocyte abundance, therefore, can be used as a measure of immune strength; increased 

hemocyte abundance indicates increased immune response (Graham 2011). To measure 

hemocyte abundance, we extracted 2uL hemolymph from each cricket and stored it in 

4uL of anticoagulant (EDTA, citric acid, and PBS regulated at pH 7.4; adapted from 

Adamo et al. 2001). We dispensed the hemolymph-anticoagulant mixture in a Kova 

Glasstic Slide System, which we used as a substitute for a hemocytometer, and counted 

hemocytes in each grid under 400X magnification of a Leica compound microscope. 

Another method to quantify immune response is to insert a foreign object, which acts as a 
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proxy for parasitoid oviposition, into the body of an insect and measure the strength of 

the response (Zuk & Stoehr 2002; Smilanich et al. 2009). When an insect is immune 

challenged by a foreign body, like a parasitoid egg or larva, its immune cells encapsulate 

the foreign body with layers of hemocytes to asphyxiate the invader (Zuk & Stoehr 2002; 

Strand 2008; Smilanich 2009). During this process, the cells die and become melanized 

(dark in color) and melanization can be quantified as a measure of immune strength. To 

simulate a foreign body, we roughened 3mm lengths of 0.2mm gauge nylon fishing line 

(filaments) to provide an adhesive surface for the cells and sterilized the filaments with 

90% ethanol (adapted from Rantala et al. 2000). We used a 30-gauge hypodermic needle 

to pierce into the center of the crickets’ pronotum and inserted a single filament. We 

returned crickets to their individual containers and extracted the filaments after 24 hours 

using sterilized forceps. We photographed each filament on a sterilized watch glass under 

40X magnification of Leica CME compound microscope using iDu Optics LabCam 

Microscope Adapter for iPhone and an iPhone 6. Using the image processing program 

Fiji (Schindelin et al. 2012), we quantified both the proportion and total area of a sample 

section of the filaments that were melanized. To avoid shadowing that occurred along the 

edges of the filaments, which could alter the melanization measurement, we selected a 

standardized section (1.5mm x 0.17mm) of the filament image and used Threshold plugin 

(Y=0-20; U=0-255; V=0-255; adapted from Schneider et al. 2012 and Tinghitella et al. 

2017). During pilot immune testing, we found that the two methods for assessing immune 

function sometimes caused crickets to die shortly after the tests were performed. Thus, 

we performed these tests on the full siblings of the mated F1 females and not on the 
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females used in the mating experiments. We performed the same immunocompetency 

tests on both male and female offspring in the F2 generation. 

Statistical Analysis 

 To determine whether maternal age affects maternal fitness, we tested if the fixed 

effect of maternal age (young vs. old) affected the number of eggs laid, egg mass, egg 

hatching success, offspring development time, number offspring surviving to adulthood, 

adult offspring size, and sex ratio using separate linear mixed models. We included 

maternal body size as a covariate and founding line as a random effect. We expected the 

response variables to vary with maternal body size (Berrigan 1991; Blackburn 1991; 

Bernardo 1996), so it was important to account for variation in maternal size to test the 

effect of maternal age.  

To test whether offspring from young or old mothers varied in their immune 

response, we performed a linear mixed model, using body size as a covariate and 

founding line as a random effect, to compare the mean number of hemocytes and the 

proportion of melanization of filaments between offspring from each maternal age 

treatment. Given our various measures of fitness, we also performed both Bonferroni (at 

α<0.05 and α<0.01) and false discovery rate (at q<0.1 and q<0.05) adjustments to correct 

for type I error on the nine measures of offspring fitness (hemocyte abundance, 

development time, hatching success, egg mass, filament melanization, number of eggs, 

and offspring mass, sex ratio, and survival to adulthood; McDonald 2014). We used JMP 

Pro version 13 for all statistical analyses.
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Results 

We found that young mothers laid eggs that were 13% larger than eggs laid by old 

mothers (F9.2, 172.1=6.32, P=0.013; Figure 2.2A) and that the hatching success of the eggs 

laid by young mothers was 80% higher than that of eggs laid by old mothers (F8.7, 

172.1=13.05, P=0.0004; Figure 2.2B).  

Figure 2.2. 

 
 

Figure 2.2. Eggs laid by young 
and old mothers in the F1 
generation differed in their A) 
mass, and B) hatching success 
(percentage of eggs laid that 
hatched). Means given ± SE; * 
indicates P<0.05 and ** 
indicates P<0.01. 
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We found no significant difference in the number of eggs laid by old and young mothers 

(F2.4, 171.1= 3.41, P=0.067). The offspring from old mothers that survived to adulthood 

developed an average of six days faster than offspring from young mothers (F7, 

98.3=13.99, P=0.0003; Figure 2.3A).  

 

Figure 2.3.  

 

Figure 2.3. For the F2 generation 
offspring of young and old 
mothers, the A) development time 
(time from hatching to eclosing to 
adulthood),  
B) percent area of the filament 
segment that was melanized after 
24 hours of insertion into the 
pronotum, and C) number of 
hemocytes present in the 
hemolymph. Means given ± SE; * 
indicates P<0.05, ** indicates 
P<0.01, and *** indicates P<0.001. 
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 Otherwise, we did not find any additional differences in our traditional fitness 

measures between the two maternal age treatments: there were no differences in the 

number of offspring that survived to adulthood (F6.8, 182.2=0.01, P=0.91), the size of the 

adult offspring (wet mass: F8, 679.6=1.27, P=0.26; pronotum width: F8.2, 767.9=0.48, 

P=0.49), or in sex ratio of adult offspring from young and old mothers (F10.5, 132=0.75, 

P=0.38). We found that offspring from old mothers had a 7% higher percent area 

melanization than the offspring from young mothers (F7.9, 499.4=3.95, P=0.047; Figure 

2.3B). Offspring from old mothers had 56% more hemocytes in their hemolymph than 

offspring from young mothers (F9.2, 497.5=50.22, P<0.0001; Figure 2.3C). Given that 

insects do not have an acquired immune system (the ability to build one’s immunity with 

pathogen exposure over time), we compared the hemocyte abundance between the 

parental and offspring generations to ensure that any differences between the offspring of 

the two maternal age treatments (F2 generation) were indeed due to maternal age effects 

and found no difference in hemocyte abundance between the two generations (F10.6, 

616.3=0.81, P=0.37). We found no effect of maternal body size on offspring hemocyte 

abundance or proportion melanization (P=0.21, P=0.06 respectively). 

 After our Bonferroni adjustment at α<0.01, hemocyte abundance remains 

significant and development time and hatching success also remain significant at α<0.05. 

However, egg mass and percent area melanization of the filament are no longer 

significant. Similarly, when we performed the FDR at q<0.05, hemocyte abundance, 

development time, hatching success, and egg mass remained significant while only 
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filament melanization remained significant at q<0.1. A summary of all offspring fitness 

results can be found in Table 2.1. 

Table 2.1. Offspring fitness measures from young and old mothers. The P-value reported 
is the original value from the statistical model used to compare the fitness of the offspring 
from young and old mothers.  
 
Table 2.1. 
 

Fitness Measure df F statistic P-value 
Hemocyte abundance 9.2, 497.5 50.22 0.0001**†† 
Development time 7, 98.3 13.99 0.0003*†† 
Hatching success 8.7, 172.1 13.05 0.0004*†† 
Egg mass 9.2, 172.1 6.32 0.013†† 
Filament melanization 7.9, 499.4 3.95 0.047† 
Number of eggs 2.4, 171.1 3.41 0.067 
Mass 8, 679.6 1.27 0.26 
Sex ratio 10.5, 132 0.75 0.38 
Survival to adulthood 6.8, 182.2 0.01 0.91 

 
*Remains significant (α<0.05) after Bonferroni adjustment to correct for type I error. 
**Remains significant (α<0.01) after Bonferroni adjustment to correct for type I error. 
†Remains significant (q<0.1) after false discovery rate adjustment to correct for type I 
error. 
††Remains significant (q<0.05) after false discovery rate adjustment to correct for type I 
error. 
 
 
 Discussion 
 
 Maternal age significantly affects offspring fitness and immune response. We 

found support for both life history theory (predicting positive effects of advanced 

maternal age in offspring) and aging theory (predicting negative effects of advanced 

maternal age on offspring). Notably, support for either of these theories depends on 

which measures of offspring quantity or quality we consider (Table 2.2).   
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Table 2.2. A summary of our results that support either aging theory or life history 
theory. We categorize support for each theory by whether or not those results were from 
tests assessing the quantity of offspring or the quality of offspring. 
 
Table 2.2. 

 Aging theory Life history theory 
Q

u
an

ti
ty

 

Fewer eggs hatch from 
old mothers 

No difference in offspring survival 
between young and old mothers 

No difference in offspring sex ratio 
between young and old mothers 

No difference in number of eggs laid 
between young and old mothers 

Q
u

al
it

y  

Old mothers laid smaller 
eggs 

No difference in offspring size between 
young and old mothers 

Shorter development time in offspring 
from old mothers 

Increased immune response in offspring 
from old mothers 

 

 

The eggs laid by young mothers were more 80% more likely to hatch than those laid by 

old mothers (offspring quantity) and the eggs laid by young mothers were 13% larger 

than those laid by old mothers (quality). These two results are consistent with decades of 

aging theory research that has also found that young mothers lay more eggs than old 
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mothers and that their eggs are more likely to hatch (Fox 1993b; Kern et al. 2001; Yanagi 

& Miyatake 2002; Qazi et al. 2017). However, when we consider our Bonferroni and 

FDR corrections, the size and hatching success of eggs laid by old and young mothers no 

longer remains significant under various levels of the corrections, indicating that we 

should interpret these data with caution when attributing them as support for aging 

theory. 

 Conversely, we also found support for life history theory in that there was no 

difference in the number of offspring that survived to adulthood, the sex ratio of the adult 

offspring between the two maternal age treatments (quantity; Table 2.2), and no 

difference in the size of offspring between the two maternal age treatments. We 

acknowledge, however, that finding no difference between the offspring from old and 

young mothers may be caused by other factors (e.g. pleiotropy) that are not associated 

with life history theory. Therefore, while we categorize many of our results as support for 

life history theory, we recognize that the results that show no difference between the 

offspring from the two maternal age treatments may not necessarily show support for life 

history theory, but rather a lack of support for aging theory. We also found that the 

offspring from old mothers had shorter development time (quality; Table 2.2), which may 

be advantageous for this species as they are not seasonal and do not have to time their 

emergence with seasonal cues. Shorter development time could reduce the amount of 

time individuals are exposed to predators before reaching reproductive maturity and thus 

increase fitness (i.e. slow-growth high-mortality hypothesis; Price 1980; Mousseau & 

Dingle 1991, Murphy et al. 2018). Short development times, even for those organisms 
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that spend more time as adults, can lead to higher population growth rates because they 

reach maturity and can reproduce sooner than individuals that take longer to develop 

(Roff 1980).  

 Further support for life history theory can be found in our results that show that 

offspring from old mothers have higher immune function than the offspring from young 

mothers (quality; Table 2.2). Offspring from old mothers had 56% more hemocytes in 

their hemolymph and a 7% higher encapsulation response than offspring of young 

mothers. However, similarly to our Bonferroni and FDR corrections on egg mass and 

hatching success, we found that filament melanization between the two maternal age 

treatments also loses statistical significance at most correction levels, though we still 

categorize these data as support for life history theory (or lack of support for aging 

theory). The difference we found between hemocyte abundance and filament 

melanization could be due to variation of the types of hemocytes found in insect 

hemolymph. The hemocytes active in the melanization process may not have been as 

equally represented as other types of hemocytes, accounting for the high statistical 

significance of overall hemocyte abundance but a lower or null difference in 

melanization. Our overall results suggest that the transfer of immune proteins from 

mother to egg may differ with age. The specific mechanism(s) involved in changes in 

insect maternal investment, however, remain unknown. Previous insect aging research 

suggests an increased provisioning of available resources by old mothers but precise 

mechanism(s) behind maternal investment with age have not yet been identified. 

Transgenerational effects are often underlaid by epigenetic effects, such as decreased 
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methylation with age (Maegawa et a. 2010), which may play a role in our results. Change 

in the non-sequencing region(s) of the genome may negatively affect the lifespan of adult 

offspring as well as some cellular functions (Masser et al. 2018). However, we did not 

measure any potential epigenetic effects in this study. 

Our research highlights a missing component in the field of aging research within 

natural insect populations. Much of the previous research in this field has used inbred, 

lab-adapted populations that may not accurately predict maternal age effects in natural 

insect populations. Natural populations may respond differently to immune challenges 

than populations that are inbred, reared from iso-female lines, or severely lab-adapted. 

Furthermore, laboratory populations may have different responses in traditional fitness 

measures in terms of both quality and quantity of offspring. For example, diminished 

genetic variation in heavily inbred populations may be confounded with fitness effects of 

offspring from old mothers, making it difficult to determine which (and to what extent) 

results are linked to maternal age and which are due to inbreeding. When we consider 

both quantity and quality of offspring, the majority of our results show that there are 

trade-offs associated with advanced maternal age in that old mothers may not produce 

more offspring than young mothers, but the offspring are of higher quality. The 

combination of collecting both quantity and quality measures of fitness is important in 

understanding the comprehensive effects of advanced maternal age on offspring fitness. 

 We found that offspring from old mothers were ultimately more fit than those 

from young mothers. More eggs may hatch from young mothers, but there is no 

difference in the number of offspring that survive, their body size, or their sex ratio when 
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compared to offspring of old mothers; furthermore, the immune systems of offspring 

from old mothers are stronger than those of offspring from young mothers. Our 

immunocompetence results suggest that maternal investment differences may be focused 

in the immune priming process from mother to egg. Our results emphasize the 

importance of measuring offspring fitness as both traditional measures (body size, 

survival, etc.) as well as immunocompetence for a complete understanding of the effects 

of maternal age. If we had only measured egg quality and quantity, as many studies do, 

we would have come to similar conclusions as many others in the aging field: that old 

mothers produce offspring of lower fitness than young mothers. In considering both a 

wider array of traditional fitness measures as well as immune function, however, we 

found that maternal age effects are far more intricate than a single strategy for measuring 

fitness can assess. We believe that both immunity and traditional fitness measures should 

be considered in all future aging research to form a complete picture of aging effects. We 

may need a paradigm shift in our approach to aging research; we need to consider both 

quantity and quality of the offspring to fully understand maternal effects.  
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Appendices 

 Appendix A. A list of the fitness measures used in the cases we reviewed, 
descriptions of each, and the number of cases in this review that recorded each fitness 
measure. 

Fitness measure Description Number 
of cases 

Egg load The number of eggs in the female oviducts 1 

Number of eggs The number of eggs laid by the female 30 

Egg size Measures of the size of the eggs laid by the female (e.g. mass, 
length, width) 28 

Egg fertility Whether the eggs laid by the female were fertilized by male sperm 
(opposed to unfertilized eggs) 3 

Egg composition Nutrient composition of eggs (e.g. sugar, lipid, protein, carbohydrate 
content) 3 

Embryo size Length of the developing embryo inside the egg 1 

Hatching success Proportion of eggs laid that hatched 26 

Number of larvae For a female, the number of offspring that reached the pupal stage 3 

Larval size Measures of the size of the larvae produced by the female (e.g. mass) 5 

Larval survival The number of larvae from young and old mothers that survived on 
host plants that were resistant to the herbivorous insect used 1 

Number of pupae The number of pupae produced by the female 1 

Pupal size Measures of the size of the pupae (e.g. mass, length, width) 3 

Development time The time it took for the offspring to develop from the egg stage or (if 
there was no egg stage) the larval stage into adulthood 26 

Starvation survival The amount of time offspring could survive without feeding until 
death 2 

Survival to 
adulthood The number of offspring that survived to reach adulthood 27 

Adult size Measures of the adult offspring size (e.g. mass, length, width) 14 

Total offspring The number of offspring produced by a female, but the authors failed 
to provide the life stage at which the offspring were counted 4 

Lifespan The length of time the offspring survived until natural death 12 

Sex ratio The proportion of male to female offspring produced by a female 25 
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Appendix B. A list of case attributes and their descriptions recorded in this review. 

Case attribute Description 

Paper number Number attributed to each paper (1-75) 

Case ID Letter attributed to each case within each paper if the authors used 
more than one system or experiment 

Title Title of the paper 

Author(s) Name of author(s) of the paper 

Year Year the paper (and thus case) was published 

Species common name Common species name of the study organism in the case 

Latin genus Latin name of the genus of the study organism in the case 

Latin species Latin name of the species of the study organism in the case 

Taxonomic order Taxonomic order to which the study organism belongs 

Fitness measure Fitness measures that the author(s) collected on the offspring of young 
and old mothers 

Direction of effect of 
advanced maternal age 

Whether the effects (for each of the fitness measures) of advanced 
maternal age were negative, positive, or had no effect. For sex ratio: 
whether the offspring were male or female biased or if there was no 
effect. 

Multigenerational 
(0/1) Whether the author(s) examined maternal age effects beyond a 
single generation. “0” means they did not, “1” means they did, if 
unknown, we entered “NA” 

Inbred or lab-adapted 
(0/1) Whether the populations used for the experiment were inbred or 
lab-adapted. “0” means they did not, “1” means they did, if unknown, 
we entered “NA” 

Virgin mating 
(0/1) Whether the mating females used in the experiment were virgin at 
the ‘young’ and ‘old’ ages. “0” means they did not, “1” means they 
did, if unknown, we entered “NA” 

Same female for 
‘young’ and ‘old’ 

(0/1) Whether the same female was used for the ‘young’ and ‘old’ age 
(i.e. egg laying order). If unknown, we entered “NA” 

Control for paternal age (0/1) Whether the author(s) controlled for paternal age. “0” means they 
did not, “1” means they did, if unknown, we entered “NA” 

Difference between 
‘young’ and ‘old’ age 

The numeric difference in units (see below) between ‘young’ and old’ 
ages of mothers 

Units of difference of 
age treatments 

The units of time used in the difference of ‘young’ and ‘old’ mothers 
(e.g. days, weeks)  



 

 Appendix C. The number of cases per five years, from 1965-2017, that investigate the effects of advanced maternal   
 age in insect offspring. Each 5-year bin is subdivided to show the number of cases that were published in each of the 7   
 insect orders investigated (colors for the orders are the same as those used in Table 1.1 and Figure 1.1). 
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Appendix D. Sample size of young and old breeding F1 generation females and their 
offspring (F2 males and females) on which we performed immune testing from each of 
the ten founding maternal lines. The Founding Maternal Line (A-J) indicates the colony 
female that was used to establish the line for each family. The 10 founding females 
reported here are those that survived to produce enough offspring for the breeding 
experiment and immunocompetency testing. F1 Females Mated Young and F1 Females 
Mated Old refer to the number of females in the F1 generation (produced by each 
founding maternal line) that were mated at a young or old age (7 or 25 days post-
eclosion). F1 Females Immune Tested and F1 Males Immune Tested refer to the female 
and male offspring of the founding females that we did not mate, but instead performed 
immune tests on. F2 Females Immune Tested and Males Immune Tested refer to the 
female and male offspring in the F2 generation, produced by the mating females in in the 
F1 generation, that underwent immune testing. The colors of the column headers all 
correspond with the colors used in Figure 2.1. 
 

Founding 
Maternal 

Line 

F1 
Females 
Mated 
Young 

F1 
Females 
Mated 

Old 

F1 
Females 
Immune 
Tested 

F1 Males 
Immune 
Tested 

F2 
Females 
Immune 
Tested 

F2 Males 
Immune 
Tested 

A 7 7 5 5 9 33 

B 12 13 5 5 26 40 

C 12 14 6 7 33 40 

D 8 8 6 6 19 29 

E 7 7 6 7 0 13 

F 9 8 7 5 23 34 

G 11 11 6 6 21 41 

H 9 8 5 6 17 25 

I 8 8 5 5 20 29 

J 11 10 6 6 20 33 
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