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Abstract 

The traditional approach for microgrid design and deployment has been mainly 

focused on AC systems. DC microgrids, however, are gaining attention due to numerous 

advantages they provide over AC microgrids, such as removing the need for 

synchronization and frequency adjustment as well as appropriateness in supporting DC 

loads and distributed energy resources (DERs). Moreover, considering that both AC and 

DC DERs are utilized in microgrids, hybrid microgrids would provide viable and economic 

solutions as they can potentially eliminate the need for AC-to-DC or DC-to-AC voltage 

conversions. This dissertation focuses on a hybrid microgrid planning model with the 

objective of minimizing the microgrid total planning cost. The model determines the 

optimal DER size and generation mix, the point of connection of DERs, and the type of 

each feeder, i.e., AC or DC. Moreover, it identifies threshold ratios of AC/DC loads at each 

feeder causing one type of feeder to be more economical than the other. It also proposes a 

co-optimization generation and distribution planning model in microgrids in which 

simultaneous investment in generation, i.e., distributed generation (DG) and distributed 

energy storage (DES), and distribution, i.e., upgrading the existing distribution network, is 

considered. Since uncertainty considerations in microgrid operation and planning are of 

high importance and uncertain factors can potentially alter the microgrid planner’s 

decisions, this dissertation investigates a detailed discussion and analysis of prevailing 

uncertainties in microgrid operation and planning. New mathematical approaches, such as 
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robust optimization, are commonly adopted to capture uncertainties and ensure practicality. 

However, this added practicality is at the expense of increased problem size and 

computational complexity. This dissertation accordingly proposes a new preprocessing 

approach to integrate uncertainties while reducing computational requirements.  

Numerical simulations exhibit the merits of the proposed microgrid planning and 

co-optimization generation and distribution planning models in microgrid by analyzing the 

sensitivity of solutions on various decisive planning factors and reveal the effectiveness of 

the proposed preprocessing approach over the commonly used robust optimization method 

from the execution time and practicality perspectives. 
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1. Chapter One: Introduction 

1.1 Importance of Microgrids 

Microgrid deployments are trusted to improve power quality, reduce emissions, 

reduce network congestion and power losses, increase energy efficiency, and potentially 

improve system economics. Microgrids could also eliminate investments on additional 

generation and transmission facilities to supply remote loads. Moreover, microgrids 

islanding capability in the event of faults or disturbances in upstream networks would 

enhance grid and customers’ reliability and resilience [1][2][3][4][5][6][7][8] [9]. 

During the past decade, a significant amount of research has been devoted to study 

microgrids and to facilitate development and implementation efforts. Microgrid 

deployments have been extensively supported by the federal government in the United 

States, particularly by establishing the U.S. DOE Microgrid Initiative [10]. There has 

been a considerable increase in the number of microgrid projects such that the total 

global installed microgrid capacity has risen from 4,393 MW in 2014 to 12,031 MW in 

2015 [11], and to 16,552.8 MW in 2016 with 1,681 operating and under development 

projects [12]. As of the second quarter of 2017 [13], Navigant Research has identified 

1,842 microgrid project entries, including 173 new projects which represent 19,279.4 

MW of capacity for projects that are operating, under development, and proposed. 

Moreover, as of the second quarter of 2018 [14], 2134 projects have been identified in 

the world, representing 24,981 MW of proposed, under development, and operational 
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power capacity. It includes 240 new projects from 139 countries. Based on [15], North 

America is the leading microgrid market in terms of total capacity. The next positions 

belong to Asia Pacific and the Middle East & Africa.  

Solar PV and energy storage feature prominently in modern microgrid systems, 

particularly as rural electrification and energy access programs fuel growth in the remote 

segment. Moreover, according to a 2016 report [12], if the microgrid growth rate holds, 

the market will expand 116% in four years. Additionally, GTM Research predicts the 

US microgrid market opportunity to double from $836 million in 2016 to $1.66 billion 

in 2020. These figures clearly represent the growing interest in this new technology and 

picture future power grids as systems of interconnected microgrids. 

This dissertation investigates microgrid planning and uncertainty consideration 

in microgrids while focuses on AC, DC, and hybrid microgrids. 

1.2 AC/DC Microgrids 

Microgrids can be categorized into different groups based on the type (such as 

campus, military, residential, commercial, and industrial), the size (such as small, 

medium, and large scales), the application (such as premium power, resilience-oriented, 

loss reduction, etc.), and the connectivity (remote and grid-connected). Based on the 

voltages and currents adopted in a microgrid, however, three microgrid types can be 

identified: AC, DC, and hybrid. In AC microgrids, all distributed energy resources 

(DERs) and loads are connected to a common AC bus. DC generating units as well as 

distributed energy storage (DES) will be connected to the AC bus via DC-to-AC 

inverters, and further, AC-to-DC rectifiers are used for supplying DC loads. In DC 

microgrids, however, the common bus is DC, where AC-to-DC rectifiers are used for 
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connecting AC generating units, and DC-to-AC inverters are used for supplying AC 

loads. In hybrid microgrids, which could be considered as a combination of AC and DC 

microgrids, both types of buses exist, where the type of connection to each bus depends 

on the proximity of the DER/load to the bus. Extensive studies can be found on different 

aspects of microgrids operation and control, where the majority of these studies focus 

on AC microgrids, perceivably due to the connection to the AC utility grid and the 

utilization of AC DERs. DC microgrids could however offer several advantages when 

studied in detail and compared with AC microgrids: 1) higher efficiency and reduced 

losses due to the reduction of multiple converters used for DC loads, 2) easier integration 

of various DC DERs, such as DES, solar PV, and fuel cells, to the common bus with 

simplified interfaces, 3) more efficient supply of DC loads, like electric vehicles and 

LED lights, 4) eliminating the need for synchronizing generators, which enables rotary 

generating units to operate at their own optimum speed, and 5) enabling bus ties to be 

operated without the need for synchronizing the buses [16]. These benefits, combined 

with the significant increase in DC loads such as personal computers, laptop computers, 

LED lights, data and telecommunication centers, and other applications where the 

typical 50-Hz and 60-Hz AC systems are not available, could potentially introduce DC 

microgrids as viable and economic solutions in addressing future energy needs.  

1.3 AC Versus DC Microgrid Planning 

The prior research on DC microgrid planning is rather limited and available 

studies on microgrid planning mostly focus on AC microgrids. The study in [17] 

proposes a planning model for AC microgrid considering uncertain physical and 

financial information. In this study, the microgrid planning problem is broken down into 
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an investment problem and an operation subproblem. The optimality of the solution is 

examined by employing the optimal planning decisions obtained from the master 

problem in the subproblem under uncertain conditions. The study in [18] proposes an 

operation planning model considering load/generation changes for a low voltage DC 

microgrid including DC sources such as battery, fuel cell, and PVs. The objective of the 

study is to minimize daily operation costs. The model utilizes a multi-path dynamic 

programming approach to solve the problem. In [19], a two-layer control scheme is 

proposed for improving the economic operation of islanded hybrid AC/DC microgrids. 

At the lower layer, an iterative solution for the decentralized dispatch in real time is 

presented to ensure the simultaneous implementation of the decentralized economic 

dispatch and frequency/voltage regulations in each section. At the upper layer, the 

operation of AC and DC sections is coordinated by regulating the interlinking converters 

power exchange. The study in [20] proposes the concept of a transfverter inspired by 

how transformers link ac grids to address challenges of stiff voltage sources in AC or 

DC subgrids in designing interlink converters between AC and DC subgrids. In [21], a 

distributed architecture for robust and optimal control of DC microgrids with a network 

of multiple DC-to-DC converters is proposed. The study in [22] presents an optimal 

energy-emission management in hybrid AC-DC microgrids with vehicle-2-grid 

technology. This model is proposed as a constrained multi-objective problem which 

optimizes both cost and emission objectives. An effective optimization solution called 

the theta-crow search algorithm is developed to cope with the problem complication and 

nonlinearity. In the presence of various renewable DGs, robust controllers are required 

to ensure good power quality and regulate grid voltage. In [23], these challenges are 
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addressed by proposing a fixed frequency sliding mode control of renewable energy 

resources in DC microgrids. The study in [24] proposes an optimal and robust control 

approach in DC microgrids in which trajectory tracking for nonlinear systems is 

achieved. The trajectory tracking approach in power converters’ control is suitable for 

harmonics compensation/reduction, power factor correction, and sinusoidal 

voltage/current restoration.  

The study in [25] presents a multi-objective optimal scheduling of a DC 

microgrid consisting of a PV system and an electric vehicle charging station. In this 

study, the cost of electricity and energy circulation of storage are taken as objective 

functions, and the mathematical model is built and solved to obtain the Pareto optimal 

solution. The study in [26] investigates a control system for hybrid AC/DC microgrids 

connected by multi-level inverters. The droop control technique is offered to manage 

power flows between AC microgrid, DC microgrid, and the main grid. The study in [27] 

discusses the power management in a hybrid AC/DC microgrid and proposes an 

interlinking AC-to-DC converter accompanied by a suitable control system. The power 

flow between different sources throughout both microgrids is controlled. The hybrid 

AC/DC microgrid allows different loads and DERs connect with the minimum need for 

electrical conversion, which decreases the cost and energy losses. The study in [28] 

states that the efficiency of distributed generations and DESs in a microgrid might 

reduce because of microgrid operation, hence running some consumers into problem. 

This study proposes an optimized operation planning for distributed generations and 

DESs in microgrids to solve this issue. In [29], a model for energy management and 

operational planning of microgrids with PV-based active generators is presented, which 
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includes a deterministic energy management system for microgrids composed of PV 

units, energy storage system, and gas microturbines. The integration of the proposed 

deterministic energy management method for business customers in the microgrid is 

further discussed. 

1.4 Hybrid AC/DC Microgrid Planning 

Hybrid microgrids provide the opportunity to combine the benefits of both AC 

and DC microgrids. In hybrid microgrids, AC loads and DERs could be connected to 

AC buses, and DC loads and DERs could be connected to DC buses. Therefore, the 

number of the required converters and the associated conversion power losses would be 

minimized, thus significantly decreasing the planning cost and increasing the energy 

efficiency. Moreover, the integration of DC DERs would be easier through simplified 

interfaces compared to connections in AC microgrids. These benefits can introduce 

hybrid AC/DC microgrids as one of the most viable and desirable options in developing 

the future power grids. A literature review about existing work on hybrid AC/DC 

microgrid planning is provided below. 

 A bi-level planning approach for hybrid AC/DC distribution system considering 

N-1 security criterion is proposed in [30]. The proposed model consists of two levels. 

The upper-level model optimizes the total investment and operation costs in both AC 

and DC system over the planning horizon. The lower-level model aims at improving the 

DC system’s reliability by minimizing curtailment cost of wind and solar under the 

worst N-1 contingency. In [31], a planning model for hybrid AC/DC microgrids is 

proposed which takes into account the line factors for the distributed power capacity. 

The presented model integrates a number of factors, such as power investment costs, 
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line expansion, and load reliability. The study in [32] proposes an optimal configuration 

of hybrid AC/DC urban distribution networks for high penetration renewable energy. 

The proposed model consists of two levels. In the upper level, a multiple objective 

optimal model is proposed to balance investments, power losses, and the maximum load 

level and renewable energy capacity. In the lower level, daily operations of the installed 

voltage source converters are optimized by a chance constraint programming. 

The study in [33] investigates the optimal planning and design of a hybrid 

microgrid which aims at minimizing the total planning cost by considering 

environmental issues such as carbon emissions. In order to assess the economical and 

operational performance of the proposed model, various DER mixes are compared. In 

[34], a comprehensive review on AC and DC technology in microgrids is provided and 

various parameters, features, advantages, and disadvantages of each technology type are 

discussed. It is explained that DC technology has several advantages over AC 

technology specifically for long distances. For example, DC lines are associated with 

lower losses and higher transmit power. On the other hand, DC protection systems are 

more expensive than AC systems. It is stated that although HVDC installations have 

been increasing due to the advantages of the DC technology, most microgrids still use 

the AC technology as there is a need for more research on islanding control techniques 

and standardization of DC systems. At the end, it is specified that hybrid AC/DC 

microgrids could be more practical than dc microgrids. In [35], two main groups of 

hybrid microgrids have been identified: coupled AC and decoupled AC configurations. 

The coupled AC configuration includes two approaches of the completely-isolated and 

partially-isolated topologies. It is shown that the topology with a full-size power 
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transformer and an AC-to-DC converter has a smaller size and better performance 

compared to the other one. As of the decoupled AC configuration, the three-stage 

converter topology is proved to have several advantages in terms of an easier integration 

of various devices and providing a full power control over the network. In [36], 

microgrid uncertainties are considered to design a fault tolerant predictive control 

mechanism for a reliable energy management by ensuring the availability of the required 

energy in storage systems. This study is an extension of a model predictive control 

approach which considers power consumption, energy constraints, and multiple sources 

of uncertainties associated with variations in the environment, such as the wind speed, 

solar irradiance, load, and electricity market price changes. In [37], a microgrid planning 

problem with the objective of determining the optimal size and type of distribution 

generations (DGs) to be installed with combined heat and power (CHP) systems is 

studied. The model aims at simultaneously minimizing the total planning cost and 

carbon dioxide emissions. The problem is solved using multi-objective genetic 

algorithm. It is assumed that the microgrid operates in the grid-connected mode to be 

able to buy/sell power from/to the utility grid. It is shown that the installation of thermal 

storage would significantly improve the system performance by compensating the 

fluctuations and intermittency of the power generated by renewable DGs. In [38], a 

model for the integration of renewable DGs in hybrid AC/DC microgrids is proposed. 

In this model, an additional dc power line is considered in the microgrid as the point of 

connection of renewable DGs. A thorough review of various control schemes and power 

management strategies of hybrid AC/DC microgrids under both steady-state and 

transient conditions is proposed in [39]. In [40], the impact of location and load on 
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microgrid design is studied, where 96 different combinations of location and load 

profiles are tested for a planning period of 20 years. The considered DGs include solar 

PV, wind turbine, microturbine, thermal storage, and a battery bank. The artificial neural 

network has been used to predict the relative cost, emissions, and renewable penetration 

in the microgrid optimal design. The results show how the optimal design is different 

for microgrids serving commercial loads. The necessity of coordination between the 

distributed load and generation in microgrids by enhancing the system controllability, 

flexibility, energy management, and storage capability is studied in [41]. The work 

further implements a real-time optimal power flow management on a real hybrid smart 

microgrid.  

1.5 Co-Optimization Generation and Distribution Planning in Microgrids 

One important issue in distribution lines is power congestion. Congestion in 

distribution lines or disturbance in the upstream utility grid may prevent fully supplying 

the loads in a distribution network. Moreover, addition of new loads to the network may 

require timely upgrade of the existing distribution network assets. An efficient 

distribution planning is required in this case to cope with the potential network 

problems. There are various methodologies proposed in the literature for distribution 

network planning. In [42], a methodology for optimal expansion planning of distribution 

networks is presented which considers network contingencies and relocation of 

switchgears. The optimization methodology consists of two stages in which the 

investment and operation problems are solved in the first and second stages, 

respectively. The study in [43] proposes an algorithm to capture the load variations 

along with the generation volatility and intermittency of renewable energy sources. The 
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proposed model coordinates voltage control among smart grid technologies by 

determining the optimal number of DG units. In [44], a model for distribution grid 

planning enhancement is presented using profiling estimation technique. The objective 

of the proposed model is to reconstruct the load profile of the medium/low voltage 

substations. The study in [45] proposes a methodology to be used by distribution system 

operators (DSOs) for optimal distribution grid planning. The proposed model can be 

used in meshed and radial grids. Both passive and active network measures are 

considered in this study. The solution of this model determines whether a new line or 

transformer should be installed or any other reinforcement actions should be taken. In 

[46], the economic impact of demand response on distribution network planning is 

investigated. The reference network model, a large-scale distribution network planning 

tool, is used to take appropriate action in response to demand growth in a ten-year 

planning horizon. The study in [47] presents the microgrid planning as an alternative to 

generation and transmission expansion. The microgrid-based co-optimization planning 

problem is solved by decomposition to a planning problem and annual reliability 

subproblem.  

The rest of the dissertation is organized as follows. A model for AC versus DC 

microgrid planning is proposed in Chapter Two, in which only individual AC or DC 

microgrids are considered. Chapter Three introduces hybrid AC/DC microgrids as a 

more economical solution compared to individual AC or DC microgrids. Chapter Four 

presents a co-optimization generation and distribution planning in microgrids aiming at 

minimizing the microgrid long-term operation cost while ensuring a reliable supply of 

loads. In this research, power flow is modeled, and respective equations are linearized 
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using minor approximations in order to be able to formulate the problem using mixed 

integer linear programming (MILP). Further, this chapter proposes a preprocessing 

approach to identify uncertainties in the microgrid that result in the robust (i.e., worst-

case) solution. All the proposed models are tested on a test microgrid to show their merit 

and effectiveness. 
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2. Chapter Two: AC Versus DC Microgrid Planning 

A model for AC versus DC microgrid planning is proposed in this chapter [48]. 

It is assumed in this study that the microgrid developer is planning to deploy a microgrid, 

however, the challenge is to determine the type of the microgrid, i.e., either AC or DC, 

based on the system characteristics and accordingly determine the optimal DER 

generation mix. This study aims at proposing a microgrid planning model with the 

overarching goals of i) Determining the optimal DER generation mix; ii) Determining 

the optimal type of the microgrid, i.e., either AC or DC, from an economic perspective; 

and iii) Identifying threshold ratios of DC loads which make the DC microgrid a more 

economically viable alternative than the AC microgrid. This chapter is limited to the 

modeling of individual AC and DC microgrids, and the hybrid AC/DC microgrid 

planning model is investigated in Chapter Three. The proposed microgrid planning 

model minimizes the total planning cost associated with the investment costs of DERs, 

AC-to-DC rectifiers, and DC-to-AC inverters, as well as the microgrid operation and 

reliability costs.  

The investment cost is typically higher for DERs compared to conventional 

energy resources within large-scale power plants due to economies-of-scale of the latter. 

Nevertheless, DERs could provide less expensive energy in comparison with the energy 

purchased from the main grid specifically during peak hours when the market price is 

high. The DES could be further employed to be charged by the power from the main 
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grid during low-price hours and discharged during high-price hours. One important and 

salient feature of microgrids that increases the reliability is their islanding capability 

which allows microgrids to be disconnected from the main grid in the presence of faults, 

disturbances, or voltage fluctuations in the upstream network. However, if after 

disconnecting from the main grid the microgrid could not supply all the loads, some 

loads should be curtailed, but critical loads will still be supplied. Another economic 

benefit of the microgrid is selling back the excess power to the main grid. The microgrid 

economic viability is ensured when the total microgrid revenue from all available value 

streams in a specified time horizon exceeds the microgrid total investment cost. The 

total planning cost is comprised of three parts: the investment cost, the operation cost, 

and the reliability cost. The investment cost is long-term and calculated annually while 

the operation and reliability costs are short-term and should be calculated hourly for 

each day of the planning horizon. 

2.1 Model Outline 

In reality, several components should be considered to install the microgrid, but 

only the investment cost of DERs, rectifiers and inverters are included in this study. 

Other costs associated with distribution network upgrade and installation of additional 

transformers, switches, measurement devices, and controllers are ignored in this study 

since these costs will be similar in both types of the microgrid. A general structure of 

DC microgrids is shown in Fig. 2.1. In DC microgrids, three-phase AC-to-DC rectifiers 

and transformers are required to connect AC DERs to the common bus, single- and 

three-phase DC-to-AC inverters are needed for supplying AC loads, and a three-phase 
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DC-to-AC/AC-to-DC converter, a transformer, and a point of common coupling switch 

are required for connecting the microgrid to the utility grid.  

 

Fig. 2.1 General structure of DC microgrids 

 

A general structure of AC microgrids is shown in Fig. 2.2. In AC microgrids, 

three-phase DC-to-AC inverters are required to connect DC DERs to the common bus, 

three-phase AC-to-DC rectifiers are needed for supplying DC loads, and similar to DC 

microgrids, a transformer and a point of common coupling switch are required to 

connect the microgrid to the utility grid. The direction of arrows in Figs. 2.1 and 2.2 

shows the direction of power flow. It should be noted that different DC loads require 

different DC voltage levels, so some DC-to-DC converters have to be considered as well 

in order to change the voltage level of the DC sources to desired levels. In both 

microgrids, a common bus is considered to show all the connections of loads and DERs. 

In reality, however, the common bus could represent one or more loop/radial distribution 

networks that connect loads and DERs within the microgrid. In DC microgrids the 

common bus would handle DC voltages and currents, while in AC microgrids the 

common bus would be used for AC voltages and currents. 
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Fig. 2.2 General structure of AC microgrids 

 

The capacity of lines in a microgrid distribution network is typically much higher 

than the power transferred through the lines, therefore, the power flow is not considered 

in the proposed planning problem as the congestion is less likely and would not impact 

the planning results. Moreover, although the proposed planning model can be extended 

to include hybrid microgrids, it is limited in this chapter to the modeling of AC and DC 

microgrids. The hybrid microgrid planning problem will be investigated as a follow-on 

work.   

2.2 Problem Formulation 

The objective of the microgrid planning problem is to minimize the microgrid 

total planning cost (2.1), which comprises the investment cost of DERs, rectifiers, and 

inverters (IC), the microgrid operation cost (OC), and the reliability cost (RC). The 

investment, operation, and reliability costs are determined in (2.2)-(2.5). Associated 

constraints are defined in (2.6)-(2.17). The type of the microgrid, i.e., either AC or DC, 

would impact the components to be installed in the microgrid, and accordingly, alter the 

investment cost. Constraints (2.2) and (2.3) respectively define the DC investment cost 
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and the AC investment cost, based on a binary decision variable 𝑧. If the microgrid is 

DC, the binary decision variable is set to one, relaxing (2.3), and the investment cost 

would be determined by (2.2). Similarly, if the microgrid is AC, the binary decision 

variable is set to zero, relaxing (2.2), and the investment cost would be determined by 

(2.3). 

min IC OC RC+ +  (2.1) 

 ac ac

max

{G,W}

max max

S

max

G ,W

I

max

I

1 1

1 max

t it i

t i

t it i it i

t i

t it i

t i

t it bht

t i

t it M

t i

κ CC P

κ (CP P CE C )

-M( - z) IC - κ CR P M( - z)

κ CI ( α). (PD )

κ CI P











 
+ 

 
 + +
 
 

 +  
 
 − +
 
 
 
 

 



 





 
(2.2) 

 dc dc

max

{G,W}

max max

E

max

G ,W ,E

R

max

t it i

t i

t it i it i

t i

t it i

t i

t it bht

t i  

κ CC P

κ (CP P CE C )

-Mz IC - Mz
κ CI P

κ CR α. (PD )









 +
 
 

+ + 
  
 +
 
 
 
 

 



 



 (2.3) 

G

t i ibht t bht M,bht

t h b i t h b

OC κ c P κ ρ P


= +   (2.4) 

=
t h b

bhtbhtt LSvκRC  (2.5) 

AC and DC microgrids have some similar components in the investment cost. 

The first two terms within the investment cost in (2.2) and (2.3) indicate the investment 

cost of DGs and DES, respectively. The investment cost of DERs depends on their 

installed power capacity which will be determined by the optimization problem. The 
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investment cost of DES further depends on its installed energy capacity. A single-step 

price curve is considered for DERs, which could be simply extended to a multi-step 

price curve. If the microgrid is DC, the output voltage of AC generating units should be 

converted to DC using rectifiers. Therefore, another term that should be considered is 

related to the investment cost of AC-to-DC rectifiers. Additionally, there are AC loads 

in the microgrids requiring the use of DC-to-AC inverters. As a result, the investment 

cost of these inverters is included in the investment cost. The last term of the investment 

cost considers the DC-to-AC inverter which is used for connecting the DC microgrid to 

the utility grid. For AC microgrids, as proposed in (2.3), DC-to-AC inverters have to be 

used for connecting DC units to the microgrid, and AC-to-DC rectifiers are needed for 

supplying DC loads. These costs are included in the investment cost as well.  

The operation cost (2.4) includes the generation cost of dispatchable generating 

units and the cost of energy purchase from the main grid, which is defined as the amount 

of purchased energy times the market price at the point of common coupling. If the 

microgrid is exporting its excess power to the main grid, the main grid power PM would 

be negative (assumed to be paid at the market price under net metering); hence, there 

would be a benefit from selling the excess power. On the other hand, if there is a need 

for importing power from the main grid, PM would be positive, increasing the operation 

costs. The reliability cost (2.5), which is the cost of unserved energy, is defined as the 

load curtailment quantity multiplied by the value of lost load (VOLL). VOLL represents 

customers’ willingness to pay for reliable electricity service in order to avoid outage. 

VOLL highly depends on sector or customer type, timing of outage, duration of outage, 

and time of advanced notification of outage and preparation. Generally, VOLL for 
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residential customers ranges from approximately $0/MWh to $17,976/MWh, while for 

commercial and industrial customers ranges from $3,000/MWh to $53,907/MWh [49]. 

Higher VOLLs represent more critical loads [50][51]. A discount rate r is considered in 

order to evaluate the objective in terms of discounted costs. The present-worth cost 

component t is present in all parts of the cost function which is calculated as

11 (1 )t

t r − = + . In (2.1)-(2.4), investment costs are calculated annually while operation 

and reliability costs are calculated hourly and summed over all the years in the planning 

horizon. 

Islanding is the most salient feature of microgrids, which enables the microgrid 

to be disconnected from the main grid in case of upstream network disturbances. In order 

to include the islanding ability of the microgrid, it is required to consider a condition to 

make sure that dispatchable generation capacity installed in the microgrid is adequate to 

seamlessly supply critical loads (2.6). The parameter 𝛽 defines the peak ratio of critical 

loads to total loads. 

max max

G

i

i

β.PD P


  (2.6) 

Sum of the power from the main grid and from all DERs, including dispatchable 

and nondispatchable units as well as DES, should be equal to the total load in each 

scheduling hour. Equations (2.7) and (2.8) consider the power balance equation in DC 

and AC microgrids, respectively. If the microgrid is DC, the binary decision variable is 

set to one, thus (2.8) would be relaxed, and (2.7) would be applied. Similarly, if the 

microgrid is AC, (2.7) would be relaxed and (2.8) would be applied. 
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(2.8) 

In DC microgrids, since power conversion causes power loss, an efficiency 

coefficient is defined in (2.7) for AC-to-DC rectifiers, used for converting the output of 

AC generating units and the power from the main grid, and for DC-to-AC inverters, 

used for supplying AC loads. Similar efficiency coefficients are considered for the AC 

microgrid (2.8).  

The planning problem is further subject to constraints associated with the main 

grid power limits (2.9), dispatchable and nondispatchable unit operation and planning 

(2.10)-(2.12), DES (2.12)-(2.16), and load curtailment (2.17). 

max max

, , , ,M M bht M bht M M bhtP u P P u b h−      (2.9) 

max0 G, ,ibht iP P i b h        (2.10) 

max . W, ,ibht i ibhtP P i b h=      (2.11) 
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i iP P i    (2.12) 
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max0 E, ,ch
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The amount of exchanged power with the main grid is limited by the capacity of 

the line connecting the main grid to the microgrid (2.9). In (2.9), the islanding capability 

of the microgrid is considered by defining a binary parameter which controls microgrid 

islanding. The power generated by dispatchable units is limited by their installed 

capacity (2.10). For nondispatchable units, a variable and a parameter are used to 

consider their generation. Similar to dispatchable DGs, the variable Pi
max represents their 

installed capacity, which will be determined via the optimization problem. The 

parameter 𝜁𝑖𝑏ℎ𝑡 represents the normalized generation forecast of nondispatchable DGs 

and has a value between 0 and 1 (2.11). Once a forecast is obtained, it is divided by the 

rated power of the candidate DER, hence, the normalized generation forecast is 

obtained. In this case, the selected size of the nondispatchable DG will be considered as 

a scaling factor to scale up/down the normalized generation forecast and further obtain 

the actual generation. All DERs have an allowable installation capacity, and their 

installed capacity cannot exceed this limit (2.12). The allowable installation capacity 

may be obtained from budget limitations, choice of technology, or space limitations. 

The DES charging and discharging power in all hours is limited by its installed capacity 

(2.13)-(2.14). The DES installed energy capacity is limited by its allowable installation 

energy capacity (2.15). Additionally, its stored energy is determined based on the net 
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charged power, efficiency, and the stored energy in previous hours (2.16). It is further 

ensured that in case of local curtailments, the hourly curtailed load does not exceed the 

hourly total load (2.17).  

2.3 Numerical Simulations 

A microgrid is to be installed for a group of electricity customers with a peak 

annual load demand of 8.5 MW. The set of DERs used in this study includes four AC 

dispatchable units, one AC nondispatchable unit (wind generator), one DC 

nondispatchable unit (solar PV), and one DES, as represented in Tables 2.1-2.3. The 

cost of converters is provided in Table 2.4. The load, renewable energy, and market 

price are forecasted based on historical data obtained from the Illinois Institute of 

Technology Campus Microgrid [52]. Data of wind, solar, and converters are gathered 

from [53][54][55]. The DES efficiency and VOLL are considered to be 90% and 

$10,000/MWh, respectively. The planning horizon is 20 years. The lifetime of candidate 

DERs is considered to be equal to the planning horizon, i.e., 20 years. Twelve hours of 

islanding is considered in each planning year. The microgrid planning problem was 

implemented on a high-performance computing server consisting of four 10-core Intel 

Xeon E7-4870 2.4 GHz processors. The problem was formulated by mixed-integer 

programming (MIP) and solved by CPLEX 12.6 [56]. Following cases are studied. The 

approximate running time for each simulation is 118-155 minutes.  

Case 0: Base case microgrid planning 

Case 1: Sensitivity analysis on the ratio of DC loads  

Case 2: Sensitivity analysis on the ratio of critical loads  
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Case 3: Sensitivity analysis on the efficiency of AC-to-DC rectifiers and DC-to-

AC inverters  

Case 4: Sensitivity analysis on the market price  

Table 2.1 Dispatchable Units Characteristics 

Unit 

Number 
Type 

Allowable installation 

capacity (MW) 

Cost Coefficient 

($/MWh) 

Annualized Investment 

Cost ($/MW) 

1 Gas 5 90 50,000 

2 Gas 5 90 50,000 

3 Gas 3 70 70,000 

4 Gas 3 70 70,000 

 

Table 2.2 Nondispatchable Units Characteristics 

Unit 

Number 
Type 

Allowable Installation 

Capacity (MW) 
Cost Coefficient 

($/MWh) 

Annualized Investment 

Cost ($/MW) 

5 Wind 2 0 132,000 

6 Solar 2 0 133,000 

 

Table 2.3 DES Characteristics 

Allowable 

Installation 

Capacity (MW) 

Allowable 

Installation 

Energy (MWh) 

Annualized 

Investment Cost – 

Power ($/MW) 

Annualized 

Investment Cost – 

Energy ($/MWh) 

1 6 60,000 30,000 

 

Table 2.4 Annualized Investment Cost of Converters 

Three-Phase AC-to-

DC Rectifier 

($/MW) 

Single-Phase DC-

to-AC Inverter 

($/MW) 

Three-Phase DC-

to-AC Inverter 

($/MW) 

4,200 6,000 6,500 

 

Case 0: Initial values for the ratio of DC loads 𝛼, the ratio of critical loads 𝛽, 

and the efficiency of inverters and rectifiers 𝜂, are chosen to be 0.40, 0.50, and 0.70, 

respectively. The microgrid planning solution would install dispatchable units 3 and 4 

and the solar unit all with the maximum allowable capacity. The planning solution 

would be the AC microgrid. The total planning cost in the base case is $25,608,640 with 
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a cost breakdown of $6,679,653, $18,614,730, and $314,251 for the investment, 

operation, and reliability costs, respectively.  

Case 1: In this case, the effect of changing the ratio of DC loads 𝛼 on the type 

of the microgrid and installation of DERs is studied. The ratio of DC loads is changed 

by a step of 0.1 while all other parameters are kept unchanged. Results are represented 

in Tables 2.5 and 2.6. For values of 𝛼 between 0 and 0.4, the microgrid planning solution 

would install dispatchable units 3-4 and the solar unit, while by changing 𝛼 between 

0.5-0.8, dispatchable units 1 and 2 are also installed. However, for 𝛼=0.9 and 1, units 1 

and 2 are not installed anymore, and the microgrid planning solution would install the 

DES since the type of the microgrid is DC. The obtained results advocate that the 

installation of dispatchable units 3 and 4 with a higher investment cost is more 

economical than that of units 1 and 2. The reason is that units 3 and 4 offer a less 

expensive power compared to units 1 and 2. Additionally, between the two available 

nondispatchable units, the solar unit is installed for all values of 𝛼 although it has a 

higher investment cost than the wind unit since the generation pattern of the solar unit 

partially coincides with market price and load variations. The daily values of load, solar 

generation, and market price, averaged over one year, are shown in Fig. 2.3 to 

demonstrate the partial correlation of the solar generation with the market price and the 

load. According to Fig. 2.3, during the day, especially at peak hours, the market price is 

higher, and the solar unit generates power. Therefore, part of loads could be supplied by 

solar generation. On the other hand, the wind energy is available mostly at early morning 

hours, when the market price is relatively low. As expected, according to results and 

based on the values of 𝛽 and 𝜂, increasing the ratio of DC loads causes the microgrid to 
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shift from AC (associated with z=0) to DC (associated with z=1). According to Table 

2.6, by increasing 𝛼 from 0.4 to 0.8, the microgrid investment cost increases because of 

increasing the installed capacity of units 1 and 2 and also increasing the investment cost 

of rectifiers for supplying DC loads. For values of 𝛼 between 0.4 and 0.8, the operation 

cost would increase as well since the amount of hourly power generated by dispatchable 

units 1 and 2 increases. By increasing 𝛼 from 0.8 to 0.9, again the investment cost rises 

due to the installation of the DES, but the operation cost would decrease since units 1 

and 2 are not installed anymore. The investment and operation costs would decrease by 

increasing 𝛼 from 0.9 to 1. The investment cost drops as there are not any AC loads in 

the microgrid when 𝛼=1, thus the investment cost of inverters is eliminated. The 

operation cost drops as the overall exchanged power with the main grid decreases by 

changing all loads to DC. Accordingly, the microgrid total planning cost would decrease 

by increasing α from 0.9 to 1. An interesting point is the change in the total planning 

cost by changing the load mixture. According to Table 2.6, increasing the ratio of DC 

loads would cause an increase followed by a decrease in the total planning cost. 

Therefore, it would identify threshold ratios of DC loads which make the DC microgrid 

a more economically viable solution than the AC microgrid. In other words, for ratios 

smaller than the threshold ratio, AC microgrid would be more economical and for ratios 

larger than that, DC microgrid would be more economical. 
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Table 2.5 Installed DER Capacity (MW) with Respect to Ratio of DC Loads 

Ratio of 

DC Loads 

Microgrid 

Optimal 

Type 

DER 

1 2 3 4 5 6 7 
DES 

P E 

0.00- 0.40 AC 0 0 3.0 3.0 0 0 2.0 0 0 

0.50 AC 0.03 0.03 3.0 3.0 0 0 2.0 0 0 

0.60 AC 0.15 0.15 3.0 3.0 0 0 2.0 0 0 

0.70 AC 0.27 0.27 3.0 3.0 0 0 2.0 0 0 

0.80 AC 0.40 0.40 3.0 3.0 0 0 2.0 0 0 

0.90, 1.00 DC 0 0 3.0 3.0 0 0 2.0 1.0 4.44 

 

 

Table 2.6 Microgrid Costs with Respect to Ratio of DC Loads 

Ratio of 

DC Loads 

Investment 

Cost ($) 

Operation Cost 

($) 

Reliability 

Cost ($) 
Total Cost ($) 

0.40 6,679,653 18,614,730 314,251 25,608,634 

0.50 6,740,727 19,514,640 359,810 26,615,177 

0.60 6,888,104 20,372,440 370,847 27,631,391 

0.70 7,035,482 21,230,250 381,884 28,647,616 

0.80 7,182,860 22,088,070 392,922 29,663,852 

0.90 9,736,027 20,640,090 247,109 30,623,226 

1.00 9,688,322 19,335,080 190,476 29,213,878 

 
Fig. 2.3 Annual average value of load and solar generation (MW), and the market price ($/MWh) for 

24 hours 

 

0

20

40

60

80

100

120

140

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

$
/ 

M
W

h

M
W

Time

Load Solar Market price



 

26 

Case 2: In this case, the effect of changing the ratio of critical loads 𝛽 on 

planning results is studied. Results are represented in Tables 2.7 and 2.8. The microgrid 

planning solution would be the AC microgrid for all values of 𝛽. It is reasonable that by 

keeping 𝛼 constant, there is not a shift from the AC microgrid to the DC microgrid. The 

impact of 𝛽, however, could be noticed on the installed generation mix. According to 

Table 2.7, when the value of 𝛽 is between 0.1 and 0.7, the microgrid planning solution 

would install dispatchable units 3 and 4 and the solar unit. By increasing the ratio of 

critical loads to 0.8 and more, units 1 and 2 are also installed, and their installed capacity 

would increase in order to supply critical loads. Similar to Case 1, the solar unit is always 

installed due to the coincidence of its generation pattern with the load and market price 

variations. According to Table 2.8, the operation and reliability costs would decrease by 

increasing 𝛽. Increasing the ratio of critical loads would cause an increase in the total 

installed DER capacity, while the total load has not changed. As a result, the excess 

power would be sold to the main grid, which would increase the revenue of the 

microgrid thus decreasing the operation cost. On the other hand, by increasing the ratio 

of critical loads, the additional available dispatchable capacity would fully supply loads 

during islanding events, which causes load curtailments to decrease. Specifically, if all 

loads are considered as critical (associated with 𝛽=1.0), the microgrid planning solution 

would install more dispatchable capacity so as to fully supply all loads which causes 

load curtailments to reach zero in expense of a higher investment cost. 
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Table 2.7 Installed DER Capacity (MW) with Respect to Ratio of Critical Loads 

Ratio of 

Critical 

Load 

Microgrid 

Optimal 

Type 

DER 

1 2 3 4 5 6 7 
DES 

P E 

0.10- 0.70 AC 0 0 3.0 3.0 0 0 2.0 0 0 

0.80 AC 0.40 0.40 3.0 3.0 0 0 2.0 0 0 

0.90 AC 0.82 0.82 3.0 3.0 0 0 2.0 0 0 

1.00 AC 1.25 1.25 3.0 3.0 0 0 2.0 0 0 

 

 

Table 2.8 Microgrid Costs with Respect to Ratio of Critical Loads 

Ratio of 

Critical 

Load 

Investment 

Cost ($) 

Operation 

Cost ($) 

Reliability 

Cost ($) 
Total Cost ($) 

0.10-0.70 6,679,653 18,614,730 314,251 25,608,634 

0.80 7,050,504 18,433,520 165,911 25,649,935 

0.90 7,448,045 18,238,630 76,485 25,763,160 

1.00 7,845,585 18,043,630 0 25,889,215 

 

Case 3: In this case, the effect of changing the efficiency of inverters and 

rectifiers 𝜂, which are considered to be equal, on planning results is studied. Results 

show that changing converters efficiencies while other parameters are kept unchanged 

would not affect either the type of the microgrid or installed DER mix. According to 

Table 2.9, the significant impact of changing 𝜂 would be on the operation and reliability 

costs. By increasing 𝜂, there would be less power loss in inverters and rectifiers. 

Therefore, the importing power from the main grid in many operation hours would 

decrease, which causes a reduction in the total operation cost. On the other hand, 

because of the reduced power loss in converters, more critical loads could be supplied 

by increasing the efficiency. Accordingly, there would be a reduction in the load 
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curtailment which reduces the reliability cost. Since the installed power of all DERs is 

unchanged, the investment cost for different values of 𝜂 would not change. 

Table 2.9 Microgrid Costs with Respect to Converters’ Efficiency 

Converters’ 

Efficiency 

Investment 

Cost ($) 

Operation 

Cost ($) 

Reliability 

Cost ($) 
Total Cost ($) 

0.70 

6,679,653 

18,614,730 314,251 25,608,634 

0.80 16,695,660 204,170 23,579,483 

0.90 15,114,700 144,303 21,938,656 

1.00 13,770,440 114,252 20,564,345 

 

Case 4: In this case, the effect of changing the market price 𝜌 on planning results 

is studied. The installed power of DERs and costs associated with different market prices 

are represented in Tables 2.10 and 2.11, respectively. By 10% decrease in the market 

price, the microgrid planning solution remains unchanged, except for the installed 

capacity of dispatchable units 3 and 4. Generally, when the market price is low, the 

microgrid would buy more power from the main grid, hence the exchanged power with 

the main grid would be positive in many hours. Therefore, the power generation of 

DERs would decrease in several hours, which reduces the operation cost. Increasing the 

market price by 10% causes the microgrid planning solution to install DERs 1 and 2 in 

addition to DERs 3, 4, and 7, thus the investment cost would decrease. By increasing 

the market price by 20% or more, the microgrid should generate more power in several 

hours in order to supply loads, and on the other hand, it would be desirable to sell more 

electricity to the main grid. Therefore, all AC dispatchable units, wind generator and 

solar PV would be installed at their maximum capacity, and the exchanged power with 

the main grid would be negative in several hours. As a result, the operation cost would 
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decrease due to the revenue from selling more power to the main grid. It is further 

reasonable that all critical loads be supplied by increasing the total DER capacity. 

Accordingly, there would not be any load curtailment, which causes the reliability cost 

to reach zero. Since DER generation mix is the same when there is a 20% or more 

increase in the market price, the investment cost would not change. Similar to previous 

cases, the type of the microgrid would remain the same, i.e., AC, since the ratio of DC 

loads is unchanged.  

Table 2.10 Installed DER Capacity (MW) with Respect to Market Prices 

Price Change 

Coefficient 

Microgrid 

Optimal Type 

DER 

1 2 3 4 5 6 7 
DES 

P E 

0.9 AC 0 0 2.91 2.91 0 0 2.0 0 0 

Original Price AC 0 0 3.00 3.00 0 0 2.0 0 0 

1.1 AC 1.23 1.23 3.00 3.00 0 0 2.0 0 0 

1.2 AC 5.00 5.00 3.00 3.00 0 2.0 2.0 0 0 

1.3 AC 5.00 5.00 3.00 3.00 0 2.0 2.0 0 0 

1.4 AC 5.00 5.00 3.00 3.00 0 2.0 2.0 0 0 

 

Table 2.11 Microgrid Costs with Respect to Market Prices 

Price Change  

Coefficient 

Investment 

Cost ($) 

Operation 

Cost ($) 

Reliability 

Cost ($) 
Total Cost ($) 

0.9 6,558,827 17,790,310 348,773 24,697,910 

Original Price 6,679,653 18,614,730 314,251 25,608,634 

1.1 7,830,468 18,306,340 0 26,136,808 

1.2 13,834,450 11,436,000 0 25,270,450 

1.3 13,834,450 9,209,981 0 23,044,431 

1.4 13,834,450 6,537,612 0 20,372,062 
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Although in proposed studies, it is assumed that annual changes in load, 

renewable generation, and market prices are negligible, the proposed microgrid 

planning model has the capability to efficiently consider respective annual changes. 

Considering significantly small changes in the load is a practical assumption, 

perceivably due to the limited geographical boundaries of the microgrid which limits 

significant load increase as well as the increased adoption of efficiency schemes which 

helps with load reduction. Also renewable generation would remain the same over the 

planning horizon as the installed capacity will not change. The market price, however, 

has the highest possibility to increase. To demonstrate the impact of the market price 

increase the proposed planning problem is solved for a 2% annual increase in market 

prices. The total planning cost in this case is reduced to $24,635,350 with a cost 

breakdown of $9,296,503, $15,239,520, and $99,326 for the investment, operation, and 

reliability costs, respectively. Following the increase in market prices, the microgrid 

would be willing to sell more power to the main grid which causes a drop in the 

operation cost. On the other hand, in order to be able to sell more electricity the 

microgrid would install additional DER capacity which causes an increase in the 

investment cost. 

Arbitrary values for DERs’ allowable installation capacity were used in the 

proposed studies to show the effectiveness of the microgrid planning model in handling 

capacity limitations. If the limits are removed, the planning problem will select only the 

most economical candidate while ignoring all other candidates, which is not a very 

practical assumption. Some examples of these limitations are the rooftop solar panel 

installations in a community microgrid, which would be restricted by the rooftop area 
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that can be covered by panels, and thermal unit, which cannot be installed in densely 

populated areas.  

2.4 Discussions 

DC microgrids could potentially improve microgrid economic benefits when the 

ratio of DC loads is high, and further be considered as viable alternatives to AC 

microgrid installations. According to the studied cases, following could be concluded: 

• Among AC dispatchable generating units, those which offer a less expensive power 

would be installed first although they may be associated with higher capital costs. 

• Among nondispatchable units, the solar unit would be installed in all cases because 

of the partial coincidence of its generation pattern with the market price and load 

variations. 

• The most decisive factor in determining the type of the microgrid is the ratio of DC 

loads. Changing this ratio would cause the total cost to change, so it could be used 

as a tool to find a critical point where DC microgrid would be more economical than 

the AC microgrid. 

• Increasing critical loads, converters efficiency, or the market price would cause a 

decrease in the operation and reliability costs. 

• An increase in critical loads would cause the microgrid planning solution to install 

more dispatchable capacity which increases the investment cost. Since the total load 

is unchanged, there would be an excess generated power which would be sold to the 

main grid, hence the operation cost would decrease. On the other hand, more critical 

loads would be supplied which causes a decrease in the load curtailment and the 

reliability cost. 
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• Increasing converters efficiency would cause a decrease in the power loss which on 

one hand decreases the importing power from the main grid in many hours, thus 

decreasing the total operation cost, and on the other hand, more critical loads could 

be supplied; hence, there would be a reduction in the load curtailment which reduces 

the reliability cost. 

• The investment cost would change by changing the installed DER capacity. 

Therefore, the investment cost would remain unchanged by increasing 𝜂 since the 

DER generation mix does not change. 

• By increasing the market price, it would be desirable to install all dispatchable and 

nondispatchable units in order to sell as much power as possible to the main grid 

which would cause a decrease in the operation cost, and also supply all critical loads, 

thus decreasing the load curtailment, and accordingly, the reliability cost. 
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3. Chapter Three: Hybrid AC/DC Microgrid Planning 

3.1 Model Outline 

The model proposed for AC versus DC microgrid planning in Chapter Two is 

extended to consider AC and DC buses/components together as a hybrid AC/DC 

microgrid [57]. A general structure of hybrid AC/DC microgrid is shown in Fig. 3.1. In 

AC (DC) microgrids, there are only AC (DC) buses, whereas in a hybrid microgrid, both 

AC and DC buses exist. A point of common coupling (PCC) switch along with a 

transformer is required to connect AC and DC buses to the utility grid. The AC bus can 

be directly connected to the PCC while this connection for the DC bus should be 

performed using a converter. Various DERs could be used in the microgrid based on the 

cost, availability, location, and operator preferences. However, the connection of each 

DER to its associated feeder needs to be done using proper converters. The DC DERs 

(such as solar PV, fuel cell, DES, etc.) need to be connected to AC feeders using DC-

to-AC inverters, and similarly, AC DERs (such as wind turbine, co-gen, etc.) need to be 

connected to DC feeders using AC-to-DC rectifiers. This is also the case for loads, in 

which the loads need to be connected to opposite type feeders using proper converters. 
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Fig. 3.1 General structure of a hybrid AC/DC microgrid 

  

In this study, both renewable and dispatchable DGs are considered for 

deployment in the microgrid. Renewable DGs have attracted significant attention in 

recent years, mainly due to the falling cost of the renewable technology, various 

economic incentives offered to customers, rapid construction and commissioning, and 

the ease of installation compared to other types of DGs. Lacking, however, is the 

generation dispatchability that can ensure an economic and reliable supply of loads in 

grid-connected and islanded operation modes. Dispatchable DGs, therefore, are 

deployed in microgrids to ensure a controllable generation and guarantee an economic 

operation during grid-connected mode and an uninterrupted supply of critical loads 

during the islanded mode. The DES is further deployed to support renewable generation, 

enable energy arbitrage to increase economic benefits, and support microgrid control 

and islanding to increase reliability.  

It is assumed in this study that there are a number of feeders while the type of 

each feeder, i.e., AC or DC, needs to be determined. The decisive factors in determining 

the type of each feeder include the ratio of AC and DC loads at each feeder and the type 

of DERs connected to each feeder, which would accordingly impact the investment cost. 

Considering that the capacity of lines in a microgrid distribution network is typically 
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much higher than the power transmitted through the lines, the congestion would be less 

likely to occur. Therefore, the microgrid distribution network power flow and associated 

line limits are not considered in the proposed planning problem as they would not affect 

the planning results. 

3.2 Problem Formulation 

The objective of the hybrid microgrid planning problem is to minimize the total 

planning cost (3.1), similar to what was discussed in Chapter two. In (3.1), each of the 

investment, operation, and reliability costs is expressed as the sum of the costs in each 

planning year. These costs are further explained in detail in (3.2)-(3.4), which are 

different from those explained in Chapter two, in that the type of each feeder and the 

point of connection of DERs to feeders should be determined.  

( )min t t t t

t

κ IC OC RC+ +  (3.1) 

   

( )
ac ac dc dc

max max max

{G,W,E} G ,W G ,W ,E

max max max
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t it i ik i ik k i ik k

k i k i k i

k k k k M

k

IC CC P x CR P x z CI P x z

CI α PD z CR α PD z CI P w t

  

= + + −

+ + − + 

     


 (3.2) 

G

t iq iqbht ik bht F,kbht

k h b i q k h b

OC c P x ρ P t


= +    
(3.3) 

t bht kbht

k h b

RC v LS t=   
(3.4) 

The investment cost (3.2) comprises the DER investment cost (first term), and 

the converter cost (the rest of the terms). The DER investment cost is calculated as the 

installed power capacity 𝑃𝑖
𝑚𝑎𝑥, which would be determined via the planning problem, 

times the DER capital cost. For DES, specifically, an additional term associated with 

the energy investment cost is considered to show the impact of both installed power and 
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energy capacities (as explained in Chapter two). The investment binary decision variable 

𝑥𝑖𝑘 is further defined and added to the investment cost term to show that, first, whether 

the DER is installed, and second, determine the feeder to which the DER is connected. 

In other words, if 𝑥𝑖𝑘 is obtained as 1 via the planning problem, it means that DER i will 

be installed and will be connected to feeder k. The remaining terms in the investment 

cost represent the cost of converters (both inverters and rectifiers) in the microgrid and 

are modeled using the binary decision variable 𝑧𝑘. If the microgrid planning solution 

determines feeder k to be DC, the variable 𝑧𝑘 would be set to one, otherwise feeder k is 

AC and 𝑧𝑘 would be zero. If a feeder is determined to be DC, the cost of rectifiers used 

to convert the output of AC DGs should be added. Similarly, if a feeder is determined 

to be AC, the cost of inverters required to convert the output of DC DGs and DES should 

be considered in the cost function. The second and third terms in (3.2) address the 

investment cost of converters. The ratios of DC and AC loads to total loads in each 

feeder are respectively shown by parameters 𝛼𝑘 and 𝛼�́�. The fourth term in (3.2) is 

associated with the cost of inverters and rectifiers required to support voltage 

conversions for connecting AC and DC loads to DC and AC feeders, respectively. The 

last term represents the investment cost of the inverter used for connecting DC feeders 

to the utility grid. A binary decision variable w is employed and would be set to one if 

at least one feeder is DC in the planning problem and set to zero otherwise. This variable 

would be determined by (3.5) and (3.6). It is assumed that the annualized investment 

costs of the converters used for all various types of DERs and loads are similar. 

kw z k   (3.5) 
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k

k

w z  
(3.6) 

The operation cost (3.3) includes two parts: the generation cost of dispatchable 

DGs and the cost of energy purchase from the utility grid at all feeders. The former is 

calculated as the sum of the amount of energy provided by each DG, 𝑃𝑖𝑞𝑏ℎ𝑡, times its 

generation price, 𝑐𝑖. For dispatchable DGs, a multi-step price curve is considered. The 

latter is defined as the sum of the amount of purchased energy at each hour in all feeders, 

i.e., 𝑃𝐹,𝑘𝑏ℎ, times the market price 𝜌𝑏ℎ𝑡 at the point of common coupling. 𝑃𝐹,𝑘𝑏ℎ could 

be either positive or negative showing that each feeder is acting as a load or a generation.  

The reliability cost of each feeder (3.4), which represents the cost of unserved 

energy, is defined as the amount of load curtailment multiplied by VOLL. There are a 

number of bilinear terms in the investment cost (3.2) resulting from the multiplication 

of one continuous and multiple binary variables, which should be linearized in order to 

obtain a mixed integer programming (MIP) formulation. 

The objective function is subject to investment and operation constraints (3.7)-(3.16):  

 1 G, Wik

k

x i    
(3.7) 

max max

G

. i ik

k i

β PD P x


  (3.8) 

( ) , ,F,kbht kbht M,bht

k

P LS P b h t+ =     (3.9) 

Constraint (3.7) is imposed to the planning problem to make sure that each DER 

is connected to only one feeder. To ensure that the microgrid can seamlessly supply 

critical loads during islanded operation mode, (3.8) is used. This constraint guarantees 

that the installed capacity of dispatchable DGs is larger than the peak of critical loads in 
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the microgrid. The parameter 𝛽 defines the peak ratio of critical loads to total loads. The 

microgrid power balance at PCC is ensured by (3.9) in which the sum of transferred 

power and associated load shedding at all feeders in each hour is equal to the microgrid 

total exchanged power with the utility grid. If the net exchange power with the utility 

grid is negative, it means that the microgrid is exporting its excess power to the utility 

grid, i.e., acting as a generator. However, if the net exchange power with the utility grid 

is positive, the microgrid acts as a load and imports power from the utility grid. 

The feeder load balance constraints are represented by (3.10), where the sum of 

the power transferred to the feeder with the power from dispatchable and 

nondispatchable DERs in that feeder equals the total feeder load in each scheduling 

hour. It should be noted that the power of DES is its net power, obtained by subtracting 

its power during the charging period from that during the discharging period in each 

scheduling hour. 
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 ((3.10) 

The first two terms in (3.10) are associated with the energy delivered by AC and 

DC DERs in each hour, respectively. If a feeder is DC (associated with 𝑧𝑘 = 1), AC 

DERs should be connected via AC-to-DC rectifiers, so an efficiency coefficient is added 

to consider the power loss in converters. Similarly, if a feeder is AC (associated with 

𝑧𝑘 = 0), DC DERs should be connected via DC-to-AC inverters, so again an efficiency 

coefficient is added. The third term represents the power transferred to the feeder. A 

converter is required for exchanging power with the utility grid if at least one feeder is 
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determined to be DC. The right-hand side of this equation represents AC and DC loads, 

respectively. The total AC and DC loads in each feeder are calculated as 𝛼𝑘𝑃́ 𝐷𝑏ℎ𝑡 and 

𝛼𝑘𝑃𝐷𝑏ℎ𝑡, respectively. In DC feeders, DC-to-AC inverters should be used to supply AC 

loads, so their efficiencies are considered to calculate losses in power conversion. This 

is also true for DC loads located in AC feeders which should be connected to their feeder 

via AC-to-DC rectifiers. The planning problem is further subject to DER and load 

constraints (2.9)-(2.17).  

The linearization method of bilinear terms is explained here. If variable A is 

equal to the multiplication of a continuous variable B and n binary variables 

𝑥1, 𝑥2, … , 𝑥𝑛, such as illustrated in (3.11), it can be described by 2(n+1) constraints as 

shown in (3.12)-(3.13). M is a large positive constant. 

1 2 3... nA Bx x x x=  (3.11) 

(1 ) (1 )
1 1

n n
B M x A B M xi i

i i
 − −   + −
= =

 (3.12) 

 1,2,...,i iMx A Mx i n−      (3.13) 

If at least one binary variable is zero, according to (3.13), A would be zero, and 

(3.12) would be relaxed. If all binary variables are one, all n constraints in (3.13) would 

be relaxed, and according to (3.12), A would be equal to B. Therefore, the equation is 

linearized, and the results of the constraints defined in (3.12)-(3.13) conform to the 

original equation in (3.11). 

3.3 Numerical Simulations 

A microgrid is to be installed for a group of electricity customers with a peak 

annual load demand of 8.5 MW, similar to what considered in Section 2.3. The set of 
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DERs used in this study includes four AC dispatchable DGs, one wind generator, one 

solar PV, and one DES, as represented in Tables 2.1-2.3 in Section 2.3. The annualized 

investment cost of converters is represented in Table 2.4. Three steps for the power 

capacity and the cost coefficient of each dispatchable DG are considered as shown in 

Table 3.1. The load, renewable generation, and market price are forecasted based on the 

historical data obtained from IIT Campus Microgrid. The VOLL is considered to be 

$10,000/MWh [48]. It is assumed that the microgrid has three main feeders that their 

type (AC or DC) needs to be determined. The planning horizon is considered to be 20 

years. Twelve hours of islanding is assumed in each planning year, i.e., an average of 

one hour of islanding in each month. The microgrid planning problem is implemented 

on a high-performance computing server consisting of four 10-core Intel Xeon E7-4870 

2.4 GHz processors. The problem is formulated by MIP and solved by CPLEX 12.6 

[56]. 

Table 3.1 Dispatchable Units Cost Coefficients of Different Steps 

Unit Number 
Power Generation 

Capacity (MW) 

Cost Coefficient  

($/MWh) 

1, 2 

2 85 

1.5 95 

1.5 105 

3, 4 

1 65 

1 70 

1 75 

Following cases are studied. The approximate computation time for each 

simulation is between 4 to 10 hours.  

Case 0: Base case hybrid microgrid planning 

Case 1: Sensitivity analysis on the ratio of DC loads  

Case 2: Sensitivity analysis on the ratio of critical loads 

Case 3: Sensitivity analysis on the efficiency of AC-to-DC rectifiers and DC-to-AC 
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inverters  

Case 4: Sensitivity analysis on the market price  

Case 0: For the base case, initial values for the total ratio of DC loads 𝛼, the 

total ratio of critical loads 𝛽, and the efficiency of inverters and rectifiers 𝜂, are 

respectively assumed to be 0.40, 0.50, and 0.70, similar to Section 2.3. The ratio of DC 

loads to the total DC loads at feeders 1, 2, and 3 is considered to be 39%, 33%, and 28%, 

respectively. The ratios of AC loads to the total AC loads at feeders 1, 2, and 3 are 

considered to be 28%, 33%, and 39%, respectively. The ratios of DC loads to the total 

load in the microgrid in feeders 1, 2, and 3, which are obtained by multiplying the 

aforementioned ratios by 𝛼, is 15.6%, 13.2%, and 11.2%, respectively. It is assumed 

that all dispatchable DGs can only be installed in feeder 3 (based on space 

considerations), while the point of connection of renewable DGs and the DES should be 

determined via the planning problem. 

The hybrid microgrid planning solution in this case would install all DGs. 

Dispatchable units 1 and 2 are installed with a capacity of 0.049 MW and dispatchable 

units 3 and 4 are installed with a capacity of 2.376 MW. Both wind and solar units are 

installed with the maximum capacity of 2 MW in feeder 2. All feeders are determined 

to be AC. The total planning cost is $11,117,190 with a cost breakdown of $8,379,934 

for the investment cost and $2,737,252 for the operation cost. The total cost of supplying 

loads during the planning horizon without the microgrid deployment would be 

$14,548,920 which shows that the installation of the microgrid is economically viable. 

Case 1: The impact of changing the ratio of DC loads 𝛼 on the type of the 

microgrid, the installation of DERs, and planning costs is studied in this case. The type 
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of feeders, i.e., either AC (associated with z=0) or DC (associated with z=1), the installed 

capacity of DERs, and the point of connection of the DES and renewable DGs to feeders 

are represented in Table 3.2. Table 3.3 summarizes the microgrid investment, operation, 

and planning costs for different values of 𝛼. For values of 𝛼 between 0 and 0.6, all 

feeders would be AC. By increasing 𝛼 to 0.7 and 0.8, feeders 1 and 2 are selected to be 

DC due to higher DC load compared to feeder 3. By increasing 𝛼 to 0.9 and 1 (meaning 

that all the loads in the microgrid are DC), all feeders would be DC. For all values of 𝛼, 

the microgrid planning solution would install wind and solar units at their maximum 

capacity, conceivably due to their negligible operation costs. By increasing 𝛼 from 0 to 

0.7, the total installed capacity of dispatchable units increases, so the microgrid 

investment cost increases. The operation cost would increase as well since the hourly 

power generation of dispatchable units increases. Therefore, the planning cost would 

increase by increasing 𝛼 from 0 to 0.7.  

Table 3.2 Feeder Types and Installed DER Capacity (MW) with Respect to Ratio of DC Loads 

Ratio 

of DC 

Load 

Feeder 

Optimal 

Type 

DERs 

Installed Capacity of 

Dispatchable DGs 

Wind Solar Storage 

Feeder 

No. 
Cap. 

Feeder 

No. 
Cap. 

Feeder 

No. 
P E 

1 2 3 1 2 3 4 

0.0 

AC AC AC 

0.048 0.048 2.167 2.167 2 2.0 3 2.0 - 0 0 

0.1 0.048 0.048 2.219 2.219 2 2.0 3 2.0 - 0 0 

0.2 0.049 0.049 2.272 2.272 2 2.0 2 2.0 - 0 0 

0.3 0.050 0.050 2.325 2.325 1 2.0 1 2.0 - 0 0 

0.4 0.049 0.049 2.376 2.376 2 2.0 2 2.0 - 0 0 

0.5 0.051 0.051 2.429 2.429 2 2.0 2 2.0 - 0 0 

0.6 0.053    0.053     2.481     2.481     1 2.0 2 2.0 - 0 0 
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0.7 DC DC AC 0.055 0.055 2.534     2.534 3 2.0 1 2.0 - 0 0 

0.8 DC DC AC 0 0 2.386 2.386 3 2.0 2 2.0 - 0 0 

0.9 DC DC DC 0 0 2.122 2.122 3 2.0 3 2.0 3 0.15 0.76 

1.0 DC DC DC 0 0 2.122 2.122 3 2.0 3 2.0 3 0.11 0.44 

 

Table 3.3 Microgrid Costs with Respect to Ratio Of DC Loads 

Ratio of 

DC Load 

Investment 

Cost ($) 

Operation  

Cost ($) 

Planning Cost 

($) 

Total Cost 

without MG ($) 

0.0 7,971,634 1,013,403 8,985,037 12,305,810 

0.1 8,073,077 1,443,375 9,516,452 12,866,590 

0.2 8,177,006 1,872,492 10,049,498 13,427,370 

0.3 8,279,570 2,303,688 10,583,258 13,988,150 

0.4 8,379,934 2,737,252 11,117,186 14,548,920 

0.5 8,484,488 3,166,727 11,651,215 15,109,700 

0.6 8,588,628 3,596,657 12,185,285 15,670,480 

0.7 8,692,648 4,026,716 12,719,364 16,231,260 

0.8 8,832,766 4,057,311 12,890,077 16,792,040 

0.9 8,945,022 3,252,891 12,197,913 17,352,810 

1.0 8,783,130 2,658,670 11,441,800 17,913,590 

By increasing 𝛼 to 0.9 or 1.0, the total installed capacity of dispatchable units 

decreases, and the DES would be installed since all feeders are DC. As a result of the 

DES installation, the total investment cost increases. However, the operation and 

planning costs would decrease. The investment cost slightly drops for 𝛼=1 since all 

loads in the microgrid are DC and the investment cost of inverters is eliminated. The 

operation cost drops since by selecting all feeders to be DC, the power loss in the 

converters will be reduced. Therefore, lower power generation of dispatchable DGs and 

lower imported power from the utility grid in different hours would be required. 

The increase followed by the decrease in the microgrid investment and operation 

costs causes the microgrid planning cost to increase and then decrease, with the 
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maximum planning cost occurring at 𝛼=0.8. As a result, the threshold ratios of DC loads 

could be identified which make DC feeders economically more viable solutions than 

AC feeders. According to Table 3.2, for 𝛼=0.8 where both AC and DC feeders exist, the 

solar unit would be connected to a DC feeder, i.e., either 1 or 2, and the wind unit would 

be connected to feeder 3, which is AC, in order to eliminate the cost of voltage 

conversion. 

According to Table 3.3, the microgrid planning cost is always lower than the 

total cost of supplying loads without microgrid installation, meaning that the microgrid 

is economically viable for all values of the DC loads. It should be also noted that the 

microgrid reliability cost would be zero for all values of 𝛼 since the installed capacity 

of dispatchable units is adequate to fully supply the critical loads. 

Case 2: The impact of changing the ratio of critical loads 𝛽 on planning results 

is studied in this case. Results are provided in Tables 3.4 and 3.5. The microgrid 

planning solution would determine all feeders to be AC for different values of 𝛽. This 

result is expected since the ratio of DC loads does not change. According to Table 3.4, 

𝛽 has a significant effect on the installed capacity of dispatchable units. All DGs would 

be installed for different values of 𝛽, and renewable generation units are installed with 

full capacity. By increasing 𝛽, larger dispatchable capacity would be installed to supply 

all the critical loads, therefore the microgrid investment cost and the planning cost would 

increase. In this case, dispatchable units 3 and 4 are installed with higher capacity 

compared to units 1 and 2. The reason is that although units 3 and 4 have higher 

annualized investment costs compared to that of units 1 and 2, they offer a less expensive 

power generation, hence ensuring a reduced operation cost. According to Table 3.5, the 
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operation cost would decrease by increasing the ratio of critical loads. The reason is that 

increasing 𝛽 would cause an increase in the total installed capacity of dispatchable units, 

while the total load has not changed. Therefore, there would be excess power generation 

in the microgrid which is sold to the utility grid. Selling power to the utility grid would 

increase the microgrid revenue thus decreasing the operation cost. Since there is not any 

change in the microgrid total load or converters’ efficiencies, the cost of supplying loads 

without the microgrid deployment would remain unchanged, but still higher than the 

microgrid planning cost for all values of 𝛽. 

Table 3.4 Feeder Types and Installed DER Capacity (MW) with Respect to Ratio of Critical Loads 

Ratio of 

Critical 

Load 

Feeder 

Optimal 

Type 

DERs 

Installed Capacity of 

Dispatchable DGs 

Wind Solar Storage 

Feeder 

# 
Cap. 

Feeder 

# 
Cap. 

Feeder 

# 
P E 

1 2 3 1 2 3 4 

0.0- 

0.5 

AC AC AC 

0.049     0.049     2.376 2.376 2 2.0 2 2.0 - 0 0 

0.6 0.171     0.171     2.376 2.376 2 2.0 2 2.0 - 0 0 

0.7 0.595 0.595 2.376 2.376 3 2.0 3 2.0 - 0 0 

0.8 1.019 1.019 2.376 2.376 3 2.0 2 2.0 - 0 0 

0.9 1.444 1.444 2.376 2.376 3 2.0 2 2.0 - 0 0 

1.0 1.868 1.868 2.376 2.376 2 2.0 3 2.0 - 0 0 

 

Table 3.5 Microgrid Costs with Respect to Ratio of Critical Loads 

Ratio of 

Critical 

Load 

Investment 

Cost ($) 

Operation Cost 

($) 

Planning Cost 

($) 

Total Cost 

without MG ($) 

0.0-0.5 8,379,934 2,737,252 11,117,186 

14,548,920 
0.6 8,493,422 2,648,368 11,141,790 

0.7 8,890,879 
2,570,115 

 

11,460,994 

0.8 9,288,336 11,858,451 
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0.9 9,685,793 12,255,908 

1.0 10,083,250 12,653,365 

Case 3: The effect of inverters’ and rectifiers’ efficiencies 𝜂 is studied in this 

case. Results are represented in Tables 3.6 and 3.7. Similar to previous cases, changing 

converters’ efficiency while other parameters are kept constant, does not affect the type 

of feeders. Since there is less power loss by increasing converters’ efficiencies, lower 

capacity of dispatchable DGs would be required to supply loads, hence the investment 

cost would decrease. On the other hand, since the hourly power generated by 

dispatchable DGs decreases following the increase in converters’ efficiencies and also 

a lower amount of energy is imported from the utility grid due to lower power losses, 

the microgrid operation cost would decrease as well. Therefore, the installation of high-

efficiency converters would decrease the microgrid planning cost. According to Table 

3.7, since the microgrid planning cost is less than the cost of supplying loads without 

microgrid deployment, the microgrid installation would be economically viable for all 

values of 𝜂. The planning results also show that the microgrid reliability cost for all 

values of converters’ efficiencies is zero. 

Table 3.6 Feeder Types and Installed DER Capacity (MW) with Respect to Converters’ Efficiency 

Converters’ 

Efficiency 

Feeder 

Optimal 

Type 

DERs 

Installed Capacity of 

Dispatchable DGs 

Wind Solar Storage 

Feeder 

# 
Cap. 

Feeder 

# 
Cap. 

Feeder 

# 
P E 

1 2 3 1 2 3 4 

0.7 

AC AC AC 

0.049 0.049 2.376 2.376 2 2.0 2 2.0 - 0 0 

0.8 0.016 0.016 2.235 2.235 1 2.0 2 2.0 - 0 0 

0.9 0.007 0.007 2.115 2.115 1 2.0 2 2.0 - 0 0 

0.95 0.053 0.053 2.069 2.069 3 2.0 3 2.0 - 0 0 
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Table 3.7 Microgrid Costs with Respect to Converters’ Efficiency 

Converters’ 

Efficiency 

Investment 

Cost ($) 

Operation 

Cost ($) 

Planning Cost 

($) 

Total Cost without 

MG ($) 

0.7 8,379,934 2,737,252 11,117,190 14,548,920 

0.8 8,164,430 1,657,549 9,821,979 13,669,940 

0.9 7,998,331 730,559 8,728,889 12,986,280 

0.95 7,980,876 270,535 8,251,411 12,698,430 

Case 4: In this case, the effect of changing the electricity market price on the 

planning solution is studied. Results are shown in Tables 3.8 and 3.9. Based on the 

obtained results, changing the market price does not affect the type of feeders. In other 

words, all feeders would be AC, similar to the result obtained from the base case, since 

the ratio of DC loads remains unchanged. According to Table 3.8, by decreasing market 

prices in all hours by 10%, the microgrid planning solution would install dispatchable 

units 3 and 4 with lower capacities and also the solar unit with the maximum allowable 

capacity. The reason of reduction in the capacity of units 3 and 4 is that the decrease in 

market prices makes it economical to purchase more energy from the utility grid rather 

than relying on local generation. Therefore, the investment cost would decrease while 

the operation cost would increase. It should be also noted that the wind unit would not 

be economical to install in this case, but the solar unit is installed as its generation pattern 

coincides with market prices and load variations. 

Table 3.8 Installed DER Capacity (MW) with Respect to Market Prices 

Price Change 

Coefficient 

DERs 

Installed Capacity of Dispatchable DGs 
Wind Solar 

Feeder # Cap. Feeder # Cap. 
1 2 3 4 

-10% 0 0 2.122 2.122 - 0 3 2.0 

Original Price 0.049 0.049 2.376 2.376 2 2.0 2 2.0 

+10% 0.076 0.076 2.432 2.432 3 2.0 2 2.0 
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+20% 0.085 0.085 2.530 2.530 3 2.0 2 2.0 

+30% 0.056 0.056 2.606 2.606 3 2.0 2 2.0 

 
Table 3.9 Microgrid Costs with Respect to Market Prices 

Price Change 

Coefficient 

Investment 

Cost ($) 

Operation 

Cost ($) 

Planning Cost 

($) 

Total Cost 

without MG ($) 

-10% 5,528,558 6,427,358 11,955,916 13,107,390 

Original Price 8,379,934 2,737,252 11,117,186 14,548,920 

+10% 8,478,715 1,537,441 10,016,156 15,990,460 

+20% 8,614,995 216,965 8,831,960 17,432,000 

+30% 8,686,841 -1,076,090 7,610,751 18,873,540 

By increasing the market price, it would be more desirable for the microgrid to 

sell energy to the utility grid, meaning that power exchange would be negative in many 

hours which reduces the operation cost. As a result, a larger dispatchable capacity should 

be installed, which causes the investment cost to increase. By increasing market prices 

by 30%, the microgrid would sell as much energy as possible to the utility grid such that 

the operation cost becomes negative, meaning that the microgrid has revenue from 

energy exchange with the utility grid. 

According to Table 3.9, the microgrid total planning cost decreases by increasing 

market prices, while the total cost of supplying loads without the microgrid deployment 

increases, meaning that the microgrid deployment would be an economical solution 

when market prices increase. It should be finally noted that similar to previous cases, all 

critical loads would be supplied for all values of market prices, so the reliability cost is 

zero. 
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3.4 Discussions 

The proposed hybrid microgrid planning model offers various features and 

provides an insight on the microgrid planning decisions:  

• Ratio of DC loads: The most decisive factor in determining the type of each 

feeder within the microgrid distribution network is the ratio of DC loads in each feeder. 

By increasing this parameter, more feeders are selected to be DC. Since changing this 

ratio would alter the total cost, it can be used as a tool to determine the turning point for 

the type of feeders from AC to DC or DC to AC. 

• Removing the cost of power conversion: In cases with both AC and DC feeders 

in the microgrid, the wind turbine is installed in AC feeders and the solar PV and DES 

are installed in DC feeders to avoid the cost of power conversion. 

• Tradeoff between operation and investment costs: Among AC dispatchable 

units, those offering a less expensive power would be installed with larger capacities 

although their capital costs might be higher. Moreover, the wind and solar units would 

be installed with maximum capacity in almost all cases because their operation cost is 

zero. 

• Changes in the operation cost: Increasing critical loads, converters’ efficiencies, 

or market prices would cause a decrease in the operation cost. Specifically for critical 

loads, by increasing their percentage a larger dispatchable capacity would be installed. 

Since the total load in the microgrid does not change, there is excess generated power 

which would be sold to the utility grid. Therefore, the operation cost would decrease. 

• Importance of more efficient converters: By using highly efficient converters, 

there would be less power loss in the microgrid. Therefore, not only are dispatchable 
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units installed with lower capacities, which reduce the investment cost, but also less 

energy would be imported from the utility grid, which reduces the operation cost. 

• Impact of market prices: By increasing market prices, it would be desirable for 

the microgrid to install a larger dispatchable capacity in order to sell as much energy as 

possible to the utility grid, which increases the microgrid revenue by decreasing the 

operation cost. 

• The microgrid economic viability: The proposed model is also capable of 

ensuring the microgrid economic viability. According to the obtained results in all 

studied cases, the microgrid deployment is economically viable since the planning cost 

is lower than the total cost of supplying loads without the microgrid deployment. 
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4. Chapter Four: Co-Optimization Generation and Distribution Planning in 

Microgrids 

This chapter presents a co-optimization generation and distribution planning in 

microgrids which aims at minimizing the microgrid long-term operation cost while 

ensuring a reliable supply of loads. One solution to increase the distribution network 

reliability and prevent load curtailment is to build new distribution lines or to reinforce 

the existing lines through upgrades. Another solution is to install DERs in strategic 

locations in distribution network. In this study, both these solutions are considered 

simultaneously, allowing the identification of the most viable solution. Various types of 

DERs are considered in this study in which their optimal size and location are 

determined through the proposed model. The power flow equations are linearized, using 

minor approximations, in order to be able to formulate the problem using MILP.  

One important issue in managing microgrids is the role of uncertainties. 

Uncertainty represents factors, which having a major influence on scheduling decisions, 

are out of control of the microgrid controller and/or cannot be forecasted with certainty. 

Uncertainty considerations in power system operation and planning have been 

significantly increased in the past few years. Two common approaches for considering 

uncertainty are stochastic programming and robust optimization. Stochastic models are 

commonly based on sampling methods with pre-assumed probability distribution 

functions, which convert the original objective to the weighted average of objectives for 
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individual scenarios. However, a concrete characterization of the uncertainty requires a 

large number of scenarios, especially when uncertainties are not discrete. Thus, the 

derived large-scale stochastic problem is more time-intensive and considerably harder 

to solve than the original problem. In addition, probability distributions cannot be 

accurately estimated which would obstruct the practical implementation of this 

technique. On the other hand, in robust optimization, each uncertain parameter is 

associated with an uncertainty interval, i.e., an upper bound and a lower bound, where 

the optimization problem ensures the feasibility of the solution in the worst-case 

scenarios [17]. Thus, in contrast with stochastic programming, there is no need to 

accurately determine distribution probability functions related to uncertain data. 

Furthermore, the robust optimization problem does not suffer from the curse of 

dimensionality since only one robust problem is solved rather than a set of problems 

corresponding to individual scenarios. However, the robust optimization solution is 

obtained at the expense of sacrificing a certain level of the solution optimality and 

increased computational complexity. This chapter further proposes a preprocess 

approach to identify uncertainties that result in the robust (i.e., worst-case) solution [58]. 

In other words, the solution of the robust optimization will be achieved without the need 

to solve the robust problem. Using this preprocess approach, the primal microgrid 

operation problem, which is linear and convex, can be solved instead of the dual problem 

that is required in the robust optimization and contains a large number of binary 

variables, hence addressing the computational complexity problem. This study performs 

studies on the microgrid optimal scheduling problem which also acts as a core 

component in longer term maintenance and planning problems. 
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4.1 Model Outline and Formulation of Co-Optimization Generation and 

Distribution Planning in Microgrids 

There are both dispatchable and nondispatchable candidate DGs in a microgrid. 

Nondispatchable DGs are renewable energy sources such as solar PV and wind. 

Distributed energy storage (DES) is employed in order to increase the controllability 

and dispatchability of these energy sources. DES is charged at off-peak hours with low 

electricity prices and discharged at peak hours when electricity price is high. The 

microgrid is connected to the utility grid to exchange power as needed and further 

govern voltage and frequency. One significant feature of the microgrid is its islanding 

capability which allows operation in the islanded mode in case of any disturbance in the 

upstream grid. Islanding is defined as a set of scenarios in the planning problem as will 

be further explained. The microgrid can buy power from the utility grid, associated with 

positive exchanged power, or sell back the excess power to the utility grid, associated 

with negative exchanged power which increases the microgrid revenue. A number of 

candidate distribution lines between predetermined buses are considered in order to 

alleviate potential congestion in existing lines. The solution of the optimization problem 

determines the optimal size and location of DERs as well as the installation of lines.  

The proposed co-optimization generation and distribution planning problem 

aims at minimizing the microgrid total planning cost (4.1) comprising of the investment 

cost of DERs and distribution lines (IC), the operation cost (OC), and the reliability cost 

(RC), similar to what was discussed in Chapters two and three. It should be noted that 

the investment cost is calculated annually while the operation and reliability costs are 
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calculated hourly for all hours and days in the planning horizon. The investment, 

operation, and reliability costs are defined in (4.2)-(4.4), respectively.  

( )min t t t t

t

κ IC OC RC+ +  (4.1) 

( )max max max

{G,W} E L

t it i it i it i lt l

i i l

IC CC P CP P CE C CL o t
  

= + + +     (4.2) 

0 , 0

G

t i ibht bht M bht

h b i h b

OC c P ρ P t


= +    (4.3) 

m

t s mbhts

s h b

RC pr vLS t=    (4.4) 

The investment cost (4.2) comprises the investment cost of dispatchable and 

nondispatchable DGs (derived by multiplying the DGs’ annualized capital cost by their 

installed capacity), investment cost of the DES, and investment cost of distribution lines. 

The DES investment cost has two components associated with installed power capacity 

and energy capacity, in which both are calculated as the associated annualized capital 

cost times installed capacity. The investment cost of line is determined as the given 

annualized capital cost times a binary investment variable, ol. The binary variable is 

employed to consider the installation of distribution lines; that is if a candidate line is 

installed, ol would be one, otherwise it is zero. The operation cost (4.3) consists of two 

terms, the operation cost of dispatchable DGs calculated by their generation price times 

generated power in each hour, and cost of power exchanged with the utility grid, 

calculated by electricity market price times the amount of exchanged power with the 

utility grid. Both terms are aggregated over all hours and days in the planning horizon. 

The reliability cost (4.4) represents the cost of unserved energy and is defined as the 

value of lost load (VOLL) times the amount of hourly load curtailment, aggregated over 
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all hours, days, and islanding scenarios in the planning horizon. A comprehensive 

discussion on VOLL for different types of customers can be found in [59]. The operation 

and reliability costs are further summed over the considered scenarios (for grid-

connected and islanded operation) based on the associated probability. In (4.3), s=0 

represents the grid-connected mode. The objective function (4.1) is further subject to 

DERs and power balance constraints (4.5)-(4.19) and power flow equations (4.20)-

(4.28) [60].  

DERs and Power Balance Constraints: A binary decision variable, xim, is used 

to determine the location of DER installations, which would be one when DER i is 

installed at bus m, and zero otherwise. Constraint (4.5) ensures that each DER is 

connected to only one bus. The total dispatchable capacity should be larger than the 

microgrid critical load to ensure a reliable supply of loads when operating in the islanded 

mode (4.6). The active load balance equation (4.7) ensures that the generated power 

from all DERs and lines connected to each bus plus the exchanged power with the utility 

grid at the point of interconnection (POI) is equal to the hourly load demand minus the 

amount of curtailed load. Similarly, the reactive load balance equation (4.8) ensures that 

the reactive power from all DERs and lines connected to each bus plus the exchanged 

reactive power with the utility grid is equal to the amount of hourly reactive load. The 

exchanged power with the utility grid is limited by the capacity of the line connecting 

the microgrid to the utility grid (4.9). The amount of hourly generated power of 

dispatchable DGs cannot exceed their installed capacity (4.10). The hourly power 

generated by nondispatchable DGs is determined by a normalized forecasted generation 

times the associated installed capacity (4.11). Additionally, installed DG capacity 
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cannot exceed its allowable installation capacity limits (4.12), which is determined 

based on budget or space limitations. The load curtailment at each bus cannot exceed its 

hourly load demand (4.13). The DES constraints are represented in (4.14)-(4.19). The 

DES power in both discharging and charging modes is limited by its installed power 

capacity (4.14)-(4.15). The DES stored energy is determined based on the net charged 

power, efficiency, and the stored energy in previous hours (4.16). Additionally, the DES 

net charge is assumed to be zero at the end of each day in the planning horizon (4.17). 

Finally, the installed DES power and energy capacity are limited by its allowable power 

and energy capacity limits, respectively (4.18)-(4.19). 

 1 G, W,Eim

m

x i    (4.5) 
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max0 E, , , ,dch

ibhts iP P i b h t s         
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b
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max Ecap

i i im

m

P P x i    
(4.18) 

max Ecap

i i im

m

C C x i    (4.19) 

Power Flow Constraints: Power flow equations are nonlinear and cannot be 

directly included in the developed MILP formulation. Assumptions (4.20) and (4.21) 

are applied to linearize the equations. Voltage magnitudes and angles are considered as 

those of bus 1 (i.e., the POI) plus deviations, as represented in (4.22) and (4.23). The 

resulting multiplication of voltage magnitude and voltage angle variables is very small 

and thus can be eliminated from power flow equations. 

sin( ) L, , , ,mbhts nbhts mbhts nbhts mn b h t s−  −           (4.20) 

cos( ) 1 L, , , ,mbhts nbhts mn b h t s−          (4.21) 

1.0 , , , ,mbhts mbhtsV V m b h t s= +        (4.22) 

0 , , ,,mbhts mbhts m b h t s= +         
(4.23) 

The linear active and reactive power flow equations for distribution lines are 

represented by (4.24) and (4.25), respectively. If a candidate line is not installed, ol 

would be zero, and (4.24)-(4.25) would be relaxed. Therefore, the real and reactive 
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powers passing through the lines would be zero according to (4.26) and (4.27). 

Likewise, if the solution of the optimization problem is to install a line, ol would be one, 

and real and reactive powers would be respectively determined by (4.24) and (4.25) with 

the limits imposed by (4.26) and (4.27). It should be noted that (4.24) and (4.25) are 

nonlinear and are solved in a two-stage fashion. The term ∑ 𝑎𝑙𝑚 △ 𝑉𝑚𝑏ℎ𝑡𝑠𝑚∈𝐵𝑙
 is 

considered zero in stage one, and then by finding △ 𝑉𝑚𝑏ℎ𝑡𝑠, this term will be replaced, 

and the problem is solved again in stage two. Finally, the voltage magnitudes at all buses 

cannot exceed their minimum and maximum limits (4.28).  
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max max
, , ,,l l lbhts l lPL o PL PL o l b h t s−         (4.26) 

max max
, , ,,l l lbhts l lQL o QL QL o l b h t s−         (4.27) 

min max
, , , ,m mbhts mV V V m b h t s           (4.28) 

4.2 Model Outline and Formulation of Microgrid Optimal Scheduling Under 

Uncertainties  

Uncertainties involved in the microgrid optimal scheduling can be attributed into 

two groups of forecasting-related and islanding-related. Forecast errors represent 

uncertainties in accurately forecasting future values of microgrid load, variable 
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renewable generation, and time-dependent market prices. The islanding-related 

uncertainty represents the uncertain time and duration of main grid outages in which the 

microgrid needs to operate in the islanded mode. An extensive discussion on 

uncertainties in microgrids can be found in [17]. This study only focuses on the 

forecasting-related uncertainty.  

The day-ahead microgrid optimal scheduling problem is formulated as follows.  
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The objective of the optimal scheduling problem is to minimize the microgrid 

operation cost (4.29), including the generation cost of dispatchable units, the cost of 

energy purchase from the main grid, and the cost of unserved energy. The objective is 

maximized over uncertainty sets to achieve the worst-case microgrid optimal operation 

solution. The load balance equation (4.30) ensures that the sum of power generated by 
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all DERs, including dispatchable and nondispatchable units as well as DES, and power 

from the main grid is equal to the hourly load. Additional operational constraints include 

the limit the amount of exchanged power with the main grid (4.31), dispatchable units’ 

generation capacity limits (4.32), nondispatchable units generation (4.33), the DES 

charging and discharging limits (4.34)-(4.35), the DES available energy (4.36), and the 

limit on load curtailments (4.37). A binary islanding parameter is added to (4.31) to 

model grid-connected (𝑢𝑀,𝑏=1) and islanded (𝑢𝑀,𝑏=0) operation modes. Since line 

flows are relatively small, the distribution network congestion is neglected. The 

proposed microgrid optimal scheduling model is developed in a linear format where the 

binary variables associated with the commitment state of dispatchable units and 

charging/discharging states of DES are ignored.  

To solve the proposed microgrid optimal scheduling problem, in which its 

objective has a max-min format, the dual problem of the inner minimization problem is 

combined with the outer maximization problem. The resultant problem with dual 

variables and uncertain parameters is as follows: 
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( )b b b b b   + −+ − =              (4.43) 

b b bv b+                (4.44) 

where λ, μ, π, υ, ψdch, ψch, ξ, and 𝜎 are dual variables of constraints (4.30)-(4.37), 

respectively. Considering polyhedral uncertainty sets, and assuming that the worst-case 

solution occurs at extreme points, uncertain parameters can be represented as a function 

of the nominal forecasted value and the uncertainty interval with the aid of auxiliary 

binary variables. For example, the uncertain parameter y can be written as 𝑦 = �̃�𝑏 −

𝑦𝑏𝑢𝑏 + 𝑦
𝑏

𝑢𝑏 where inserted bars represent its upper/lower bounds. To prevent 

simultaneous occurrence of extreme points, one binary variable can be set at one at any 

given hour, i.e., 𝑢𝑏 + 𝑢𝑏 ≤ 1. Compared to the primal problem which was a linear 

problem, a large amount of binary variables will be added to the robust problem. The 

addition of binary variables would create a nonlinear and computationally more 

challenging optimization problem. Bilinear terms, as would appear in (4.38) when 

binary variables are used, should be further converted into linear terms which would 

accordingly add additional variables to the problem [61].  

4.2.1 Uncertainty Control 

The level of solution conservatism can be efficiently controlled by limiting the 

total number of uncertain parameters that can reach their extreme values, or in other 

words, the total number of binary auxiliary variables that can reach a value of 1. The 

limit on uncertainty options is given in (4.45). The larger the limit on uncertainty option, 

a more robust solution is obtained against uncertainties, resulting in a larger operation 

cost. On the other hand, the smaller the limit on uncertainty option, a more aggressive 
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solution is obtained, resulting in a less robust solution. A moderate solution considers 

some level of uncertainty in between.  

( )bb b

b

u u b+                (4.45) 

The limit on uncertainty option is a necessary tool to control the solution 

conservatism and prevent large deviations from the optimal solution. This limit, 

however, adds additional computational complexity to the problem as only a selected 

set of binary variables can reach a value of 1. To address the computational complexity, 

a preprocessing approach, as discussed in the next Section, is proposed.  

4.3 Proposed Preprocessing Approach  

The objective of the proposed preprocessing approach is to determine 

uncertainties without the need to solve the computationally challenging robust 

optimization problem developed in Section 4.2. To perform preprocessing, first a set of 

efficient signals for each type of uncertainty should be developed as discussed in the 

following: 

Load signal: Considering the proposed uncertainty definition, the load 

uncertainty will be defined as 𝑃𝐷 = 𝑃�̃�𝑏 − 𝑃𝐷𝑏𝑢𝑏
𝑙 + 𝑃𝐷𝑏𝑢𝑏

𝑙
 and the corresponding 

term in the objective function (10) would be ∑ (𝜆𝑏 + 𝜎𝑏)(𝑃�̃�𝑏 − 𝑃𝐷𝑏𝑢𝑏
𝑙 + 𝑃𝐷𝑏𝑢𝑏

𝑙
)𝑏 . It 

can be shown that 𝜆𝑡, i.e., the dual variable associated with the load balance constraint 

(4.30), is always positive in the proposed robust problem, and also 𝜃𝑏 is zero in grid-

connected modes as there will be no load curtailments. Therefore, demand will 

maximize the objective (4.38) when it is larger than the forecasted value, or 

equivalently, when it is at its upper bound, i.e., 𝑢𝑏
𝑙

= 1 and 𝑢𝑏
𝑙 = 0. The uncertain load 
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will be accordingly represented by 𝑃�̃�𝑏 + 𝑃𝐷𝑏. Considering that the upper and lower 

bounds of the uncertainty interval are linear functions of the nominal value, e.g., 𝑃𝐷𝑏 =

0.1 × 𝑃�̃�𝑏 for a 10% forecast error, the load signal of 𝜆𝑏(𝑃�̃�𝑏 + 𝑃𝐷𝑏) will be 

considered for characterizing the load uncertainty. By calculating this signal and sorting 

values from the highest to the lowest, the order of hours of the day in which the worst-

case load has happened can be efficiently determined. 

Renewable generation signal: The renewable uncertainty will be defined as 

𝑃𝑖𝑏 = �̃�𝑖𝑏 − 𝑃𝑖𝑏𝑢𝑖𝑏
𝑔

+ 𝑃𝑖𝑏𝑢𝑖𝑏
𝑔

. It can be shown that 𝜗𝑖𝑏, i.e., the dual variable associated 

with the generation of renewable sources (4.33), is always negative in the proposed 

robust problem. Therefore, variable renewable sources will maximize the objective 

(4.38) when they generate less than the forecasted value, or equivalently, when reaching 

the lower bound, i.e., 𝑢𝑖𝑏
𝑔

= 1 and 𝑢𝑖𝑏
𝑔

= 0. The power generated by variable renewable 

sources will be accordingly represented by �̃�𝑖𝑏 − 𝑃𝑖𝑏. A lower value for 𝜗𝑖𝑏(�̃�𝑖𝑏 − 𝑃𝑖𝑏) 

will result in a larger impact on the objective value, hence this term will be considered 

as the signal to determine the worst-case scenario of uncertainties in renewable 

generation. By calculating this signal and sorting values from the lowest to the highest, 

the order of hours of the day in which the worst-case has happened would be determined.  

Market price signal: The worst-case scenario of uncertainties in market prices 

depends on the microgrid power exchange with the main grid, i.e., selling or buying. If 

the microgrid is selling power in a specific hour, i.e., negative exchange power with the 

main grid, the worst-case in that hour would occur at the lower bound in which the 

market price is less than the forecasted value. Similarly, if the microgrid is buying power 
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in a specific hour, i.e., a positive exchange power with the main grid, the worst-case in 

that hour would occur at the upper bound in which the market price is more than the 

forecasted value. By changing market prices, generation prices of dispatchable units 

should be noted. If the market price in a specific hour is less than the generation price 

of a dispatchable unit, the microgrid would prefer to buy power from the main grid 

instead of dispatching that unit, therefore 𝑃𝑀,𝑏 would be positive. The worst-case in this 

situation would occur when the market price is increased. If the market price in that hour 

increases to the extent that it becomes higher than the generation price of the 

dispatchable unit, the microgrid would prefer to dispatch that unit and sell power to the 

main grid. On the other hand, if the market price in a specific hour is higher than the 

generation price of a dispatchable unit, the microgrid would prefer to dispatch that unit 

and sell power to the main grid, therefore 𝑃𝑀,𝑡 would be negative. The worst-case in this 

situation would occur when the market price is further decreased. As a result, the signal 

for measuring the uncertainty in market price would comprise two parts; one is the effect 

of the exchange power and change in the market price, and the other is the effect of 

changes in the market price on turning dispatchable units on or off. In summary and 

based on the discussions, ∆𝜌𝑏 . 𝑃𝑀,𝑏 + ∆𝑃𝑖𝑏 . (𝑐𝑖 − 𝜌𝑏 − ∆𝜌𝑏) could be considered as a 

signal to determine the worst-case scenario of uncertainties in market prices. Again, by 

calculating the proposed signal and sorting values from the highest to the lowest, the 

order of hours of the day in which the worst-case has happened would be determined.  
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4.4 Numerical Simulations 

4.4.1 Co-Optimization Generation and Distribution Planning 

The IEEE standard 33-bus test system, as shown in Fig. 4.1 is used for microgrid 

installation. This system comprises 33 buses, 32 distribution lines, and 32 loads, with a 

maximum initial aggregated load of 2.7 MW [57]. Tables 4.1, 4.2, and 4.3 show the 

characteristics of candidate DGs, DES, and distribution lines, respectively. As 

renewable DGs have a negligible operation cost, their cost coefficient is assumed to be 

zero. The investment cost of the candidate lines is calculated based on studies in [62]. 

The hourly load demand, renewable generation, and market price data are forecasted 

based on the historical data from a practical system [63]. The DES efficiency is assumed 

to be 95%. The planning horizon is 20 years. No islanding scenarios are considered in 

simulations, meaning that the microgrid operates in grid-connected mode at all times. 

However, the proposed model can efficiently consider islanded operation. The 

microgrid planning problem is implemented on a high-performance computing server 

consisting of four 10-core Intel Xeon E7-4870 2.4 GHz processors. The problem is 

formulated by MILP and solved by CPLEX 12.6 [56], with average running time of 70 

minutes. Following cases are studied. 

Case 0: Base case microgrid planning 

Case 1: Sensitivity analysis on the ratio of critical loads 

Case 2: Sensitivity analysis on load demand 

Case 3: Sensitivity analysis on market prices 

Case 0: The ratio of critical loads to total load is considered to be 40% for all 

operation hours. It is assumed that DGs 1-6 can be installed in buses 17, 21, 32, 24, 15, 
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and 15, respectively, as end lines have lower capacity and congestion is more likely. It 

is further assumed that the DES can be installed in bus 15. The microgrid planning 

solution would install dispatchable DGs 3 (with 0.65 MW capacity) and 4 (with 0.44 

MW capacity) as well as the solar unit (with 0.48 MW capacity). No candidate lines are 

installed in the base case. The total planning cost is $9,462,578 with a cost breakdown 

of $1,310,805 for the investment cost and $8,151,773 for the operation cost. 

 
Fig. 4.1 IEEE 33-bus test system. 

 

Table 4.1 Candidate DGs Characteristics 

Unit 

Number 
Type 

Allowable 

installation 

capacity (MW) 

Cost Coefficient 

($/MWh) 

Annualized 

Investment Cost 

($/MW) 

1 Gas 3 90 50,000 

2 Gas 3 90 50,000 

3 Gas 1 70 70,000 

4 Gas 1 70 70,000 

5 Wind 2 0 132,000 

6 Solar 2 0 133,000 

 

Table 4.2 Candidate DES Characteristics 

Allowable 

Installation Capacity 

(MW) 

Allowable 

Installation 

Energy 

(MWh) 

Annualized 

Investment Cost – 

Power ($/MW) 

Annualized 

Investment Cost – 

Energy ($/MWh) 

1 6 60,000 30,000 

 

 

 



 

67 

Table 4.3 Candidate Lines Characteristics 

Line 
From 

bus 

To 

bus 
R(Ω) X(Ω) 

Line Capacity 

(kW) 

Annualized 

Investment 

Cost ($) 

33 12 13 1.468 1.155 500 37749 

34 13 14 0.5416 0.7129 450 12534 

35 14 15 0.591 0.526 300 9118 

36 15 16 0.7463 0.545 250 9595 

37 16 17 1.289 1.721 250 16573 

38 17 18 0.732 0.574 100 3765 

39 20 21 0.4095 0.4784 210 4423 

40 21 22 0.7089 0.9373 110 4010 

41 23 24 0.898 0.7091 1050 48492 

42 24 25 0.896 0.7011 500 23040 

43 30 31 0.9744 0.963 500 25056 

Case 1: The impact of changing the ratio of critical loads, β, on planning results 

is studied in this case. The microgrid planning is studied two scenarios, with and without 

allowing installation of candidate lines, and results are tabulated in Table 4.4. The total 

dispatchable capacity increases by increasing the ratio of critical loads as the microgrid 

should be able to seamlessly supply critical loads. Therefore, the microgrid investment 

cost increases too by increasing β, as shown in Table V. By increasing the ratio of critical 

loads from 0 to 60%, none of the candidate lines are installed, but by increasing β to 0.8 

and 1 (meaning all loads are considered as critical), lines 34, 35, and 39 are installed. 

The investment cost suddenly increases in comparison with the case without line 

installation. If there is no critical load in the microgrid (associated with β=0), only the 

solar unit is installed, but none of the dispatchable units, meaning that importing power 

from the utility grid is more economical than installing local DGs. It is worth mentioning 

that for the ratio of critical loads at 80% and 100%, a larger capacity of solar unit is also 

installed when the line installation is considered (increased from 0.48 MW to 0.78MW). 

The reason is that the solar unit is installed in bus 15, and lines 34 and 35 are respectively 

between buses 13-14 and 14-15, thus can help with transferring the additional generated 
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power. As total load does not change, there would be excess power to sell back to the 

utility grid, which causes the operation cost to decrease. As the increase in the 

investment cost is higher than the decrease in the operation cost, the planning cost would 

increase by increasing the ratio of critical loads. According to results, the planning cost 

would decrease in case of the installation of candidate lines, which means the 

simultaneous installation of DERs and distribution lines would be more economical. It 

should be noted that DES is not installed for any ratio of critical loads. 

Table 4.4 Investment Plan with Respect to Changes in Ratio of Critical Loads 

Ratio of Critical 

Load 
1 2 3 4 5 6 

Installed 

Lines 

0 
w/o lines 0 0 0 0 0 0.48 - 

w/ lines 0 0 0 0 0 0.48 - 

0.2 
w/o lines 0 0 0 0.55 0 0.48 - 

w/ lines 0 0 0 0.55 0 0.48 - 

0.4 
w/o lines 0 0 0.10 1.00 0 0.48 - 

w/ lines 0 0 0.10 1.00 0 0.48 - 

0.6 
w/o lines 0 0 0.65 1.00 0 0.48 - 

w/ lines 0 0 0.65 1.00 0 0.48 - 

0.8 
w/o lines 0.17 0.35 0.68 1.00 0 0.48 - 

w/ lines 0.17 0.35 0.66 1.00 0 0.78 34,35,39 

1.0 
w/o lines 0.28 0.76 0.68 1.00 0 0.48 - 

w/ lines 0.50 0.55 0.68 1.00 0 0.78 34,35,39 

 

Table 4.5 Microgrid Costs with Respect to Ratio of Critical Loads 

Ratio of Critical 

Load 

Investment 

Cost ($) 

Operation 

Cost ($) 

Planning Cost 

($) 

0 
w/o lines 

596,650 8,809,487 9,406,137 
w/ lines 

0.2 
w/o lines 

953,736 8,459,261 9,412,997 
w/ lines 

0.4 
w/o lines 

1,310,805 8,151,77 9,462,578 
w/ lines 

0.6 
w/o lines 

1,668,653 7,864,340 9,532,993 
w/ lines 

0.8 
w/o lines 1,932,385 7,759,704 9,692,089 

w/ lines 2,354,132 7,116,085 9,470,217 

1.0 w/o lines 2,187,500 7,758,661 9,946,161 
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w/ lines 2,613,157 7,082,358 9,695,515 

Case 2: In this case, a sensitivity analysis of planning results with respect to the 

load demand is carried out. The installed DER capacity and installed lines are 

represented in Table 4.6. The hourly load in all years is increased by up to 100%, 

investigating additional cases with different load growth rates. As expected, by 

increasing the load demand, more DER capacity should be installed, which causes the 

investment cost to increase (Table 4.7). It should be noted that among dispatchable DGs, 

units 3 and 4, despite their higher capital costs, are installed first because they are 

associated with a lower cost coefficient compared to that of units 1 and 2. Also, 

following more than 60% increase in the load, the microgrid planning solution would 

install candidate lines, as represented in Table 4.6, which causes a sudden increase in 

the investment cost. On the other hand, by increasing the total load, more power is 

generated by DGs, and more power would be imported from the utility grid, which cause 

the operation cost, and hence the planning cost, to increase. 

Table 4.6 Investment Plan with Respect to Load Changes 

Load Change 

Coefficient 
1 2 3 4 5 6 Installed Lines 

Original Load 0 0 0.10 1.00 0 0.48 - 

+20% 0 0 0.31 1.00 0 0.52  

+40% 0 0 0.53 1.00 0 0.55 - 

+60% 0 0 0.75 1.00 0 0.58 38 

+80% 0.02 0.14 0.80 1.00 0 0.91 33,34,36,38,40,41,42 

+100% 0.03 0.31 0.84 1.00 0.10 0.96 
33,34,35,36, 

37,38,39,40,42 
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Table 4.7 Microgrid Costs with Respect to Load Changes 

Load Change 

Coefficient 

Investment 

Cost ($) 

Operation 

Cost ($) 

Planning Cost 

($) 

Original Load 1,310,805 8,151,773 9,462,578 

+20% 1,497,853 9,961,260 11,459,113 

+40% 1,683,933 11,734,030 13,417,963 

+60% 1,876,168 13,594,840 15,471,008 

+80% 2,644,088 14,884,100 17,528,188 

+100% 2,904,977 16,729,010 19,633,987 

Case 3: In this case, market prices are changed from -80% to +80%, and their 

impact on planning results is studied. Price changes are studied in two cases of 

considering and ignoring line installations. The planning results are represented in 

Tables 4.8 and 4.9. By 20% decrease in the market price, the total dispatchable capacity 

would remain unchanged, but unit 1 is also installed as its capital cost is relatively low, 

and as the market price has decreased. Therefore, it is financially beneficial to dispatch 

unit 1 instead of increasing the installed capacity of units 3 and 4. By 40% decrease in 

market prices, units 3 and 4 are not installed anymore, but unit 1 is installed with a 

higher capacity, as its annualized investment cost is lower. By additional reduction in 

the market price up to -80%, the solar unit is not installed either, and only a capacity of 

1.09 MW of unit 1 is installed. This is due to the very low market price which makes it 

more economical to buy power from the utility grid. Unit 1 is installed in this case for 

the mere purpose of supplying critical loads. On the other hand, by increasing the market 

price, it would be desirable for the microgrid to generate more power in order to sell 

back to the utility grid (associated with negative exchange power with the utility grid in 

many hours), which causes the operation cost to drop. Therefore, more DG capacity 

would be installed. For more than 40% increase in the market price, a number of 
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distribution lines become congested, therefore, candidate lines are also installed, which 

would cause an increase in the investment cost. By increasing the market price, the 

decrease in the operation cost would be more dominant over the increase in the 

investment cost, so the planning cost would increase and then decrease. As shown in 

Table 4.9, for the values of percentage change in market prices that candidate lines are 

installed, the planning cost is lower than the case without allowing the installation of 

candidate lines. It means that the simultaneous installation of DGs and candidate lines 

would be economically more viable than installation of only DGs. Also, it should be 

mentioned that the DES is not installed for any change in market prices. 

Table 4.8 Investment Plan with Respect to Market Price Changes 

Price Change 

Coefficient 
1 2 3 4 5 6 

Installed 

Lines 

-80% 
w/o lines 1.09 0 0 0 0 0 - 

w/ lines 1.09 0 0 0 0 0 - 

-60% 
w/o lines 1.09 0 0 0 0 0 - 

w/ lines 1.09 0 0 0 0 0 - 

-40% 
w/o lines 1.09 0 0 0 0 0.48 - 

w/ lines 1.09 0 0 0 0 0.48 - 

-20% 
w/o lines 0.45 0 0 0.64 0 0.48 - 

w/ lines 0.45 0 0 0.64 0 0.48 - 

Original 

Price 

w/o lines 0 0 0.10 1.00 0 0.48 - 

w/ lines 0 0 0.10 1.00 0 0.48 - 

+20% 
w/o lines 0.32 0 0.67 1.00 0.12 0.48 - 

w/ lines 0.32 0 0.67 1.00 0.12 0.48 - 

+40% 

w/o lines 0.46 0 0.68 1.00 0.12 0.48 - 

w/ lines 0.75 0 0.68 1.00 0.21 0.77 
34,35,36, 

39,41 

+60% 

w/o lines 0.50 0 0.68 1.0 0.12 0.47 - 

w/ lines 0.79 0 0.68 1.0 0.21 0.77 34,35,39,41 

+80% 

w/o lines 0.62 0 0.68 1.0 0.19 0.44 - 

w/ lines 0.88 0 0.68 1.0 0.30 0.73 34,35,39,43 
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Table 4.9 Microgrid Costs with Respect to Market Price Changes 

Price Change Coefficient 
Investment 

Cost ($) 

Operation 

Cost ($) 

Planning Cost 

($) 

-80% 
w/o lines 510,117 

 

1,957,936 

 

2,468,053 

 w/ lines 

-60% 
w/o lines 510,117 

 

3,915,872 

 

4,425,989 

 w/ lines 

-40% 
w/o lines 1,106,618 

 

5,270,609 

 

6,377,227 

 w/ lines 

-20% 
w/o lines 1,225,734 

 

6,883,798 

 

8,109,532 

 w/ lines 

Original 

Price 

w/o lines 1,310,805 

 

8,151,773 

 

9,462,578 

 w/ lines 

+20% 
w/o lines 1,988,144 

 

8,298,427 

 

10,286,571 

 w/ lines 

+40% 
w/o lines 2,059,625 8,622,853 10,682,478 

w/ lines 2,824,677 7,354,827 10,179,504 

+60% 
w/o lines 2,078,623 8,893,008 10,971,631 

w/ lines 2,831,566 7,307,358 10,138,924 

+80% 
w/o lines 2,174,184 9,012,843 11,187,027 

w/ lines 2,883,257 7,110,567 9,993,824 

 

4.4.2 Preprocessing Approach to Identify Uncertainties 

A microgrid is installed for a group of electricity customers with a peak load 

demand of 17 MW. The set of DERs used in this study is the same as what was 

considered in Section 2.3. The cost coefficients of dispatchable units 1-4 are considered 

to be $27.7/MWh, $39.1/MWh, $61.3/MWh, and $65.6/MWh, respectively. The upper 

and lower bounds for all sources of uncertainty are considered to be 10% of the 

forecasted data. The microgrid optimal scheduling problem is implemented on a high 

performance computing server consisting of four 10-core Intel Xeon E7-4870 2.4 GHz 

processors with 128 GB memory. The problem was formulated by MIP (for the robust 
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optimization problem) and linear programming (for the primal problem in the proposed 

approach) and solved by CPLEX 12.6 [56]. Two cases are studied to validate the 

accuracy of the proposed approach as well as its impact on reducing the computational 

complexity.  

Case 1 (Validation): The proposed preprocess approach in uncertainty 

consideration is applied to the test microgrid to ensure its viability in identifying 

uncertainties for loads, renewable generation, and market prices. By increasing the 

budget of uncertainty option in the load from 0 to 24 and solving the dual problem, the 

order of hours that cause the worst-cases would be 17, 18, 19, 20, 16, 21, 14, 15, 22, 13, 

12, 23, 24, 11, 10, 8, 9, 6, 7, 5, 4, 1, 3, and 2. The calculations of the proposed signal for 

load uncertainties, i.e., 𝜆𝑏(𝑃�̃�𝑏 + 𝑃𝐷𝑏), are shown in Fig. 4.2. By sorting the calculated 

values in all hours, it can be seen that the results would be the same as those obtained 

by solving the dual problem, meaning that the term 𝜆𝑏(𝑃�̃�𝑏 + 𝑃𝐷𝑏) would be a proper 

signal to assess the load uncertainty. Similarly, for the renewable generation, by 

increasing the budget of uncertainty option in renewable generation units from 0 to 24 

and solving the dual problem, the order of hours that cause the worst-case realization 

with respect to the wind generation would be 21, 22, 13, 12, 14, 11, 6, 8, 9, 5, 7, 10, 17, 

and 18. Similarly, the order of hours that cause the worst-case realization with respect 

to the solar generation would be 17, 16, 18, 20, 15, 14, 19, 13, and 12. The wind and 

solar generation in other hours is zero. The calculations of the proposed signal for wind 

and solar uncertainties, i.e., 𝜗𝑖𝑏(�̃�𝑖𝑏 − 𝑃𝑖𝑏), are shown in Fig. 4.3. By sorting the 

calculated values in all hours, it can be seen that the results would be the same as those 
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obtained by solving the dual problem, meaning that the term 𝜗𝑖𝑡(�̃�𝑖𝑡 − 𝑃𝑖𝑡) would be a 

proper signal to assess the renewable generation uncertainty. 

 
Fig. 4.2 Impact of the proposed signal for load uncertainties. 

  

 

Fig. 4.3 Impact of the proposed signal for renewable uncertainties. 

 

For the market price uncertainty, first it is assumed that there is not any storage 

unit. By increasing the budget of uncertainty option in market prices from 0 to 24 and 

solving the dual problem, the order of hours that cause the worst-case realization would 

be 12, 22, 21, 8, 9, 10, 6, 7, 16, 4, 5, 11, 1, 20, 17, 3, 19, 2, 18, 24, and 13. The calculated 

signal for market price uncertainties, i.e., ∆𝜌𝑏 . 𝑃𝑀,𝑏 + ∆𝑃𝑖𝑏 . (𝑐𝑖 − 𝜌𝑏 − ∆𝜌𝑏), is shown 

in Fig. 4.4. It should be noted that 10% change in the market price would cause 

dispatchable unit 1 in hour 10, unit 2 in hour 11, unit 4 in hour 15, and unit 3 in hour 23 
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to be turned on. It also causes dispatchable unit 4 in hours 12 and 22 and also units 3 

and 4 in hours 13 and 14 to be turned off. Therefore, as discussed in Section 4.3, the 

second term of the proposed signal, i.e., ∆𝑃𝑖𝑏 . (𝑐𝑖 − 𝜌𝑏 − ∆𝜌𝑏), should be considered for 

calculations at the aforementioned hours. By sorting the calculated values in all hours, 

it can be seen that the results would be the same as those obtained by solving the dual 

problem, meaning that ∆𝜌𝑏 . 𝑃𝑀,𝑏 + ∆𝑃𝑖𝑏 . (𝑐𝑖 − 𝜌𝑏 − ∆𝜌𝑏) is a proper signal to assess the 

market price uncertainty. By considering DES in the assessment of market price 

uncertainties, the results calculated by the signal are slightly different from those 

obtained by solving the dual problem. However, the differences are marginal and can 

be ignored with acceptable accuracy.  

 

Fig. 4.4 Impact of the proposed signal for market price uncertainties. 

Case 2 (Evaluation): The optimal scheduling problem is formulated using MIP 

and extended to obtain a one-year planning problem based on the data in [48]. There are 

eight sets of binary variables in the robust problem associated with upper and lower 

bounds of uncertainty intervals: two sets for the load, two sets for each of the two 

renewable generation units, and two sets for market prices. Each variable should be 
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defined at every single hour during the scheduling period, therefore there would be 

70,080 (= 8×8760) binary variables which should be determined in order to find the 

worst-case realization. Such a large number of binary variables would considerably 

increase the computational complexity. The number of binary variables will also be 

further larger when: 1) a longer planning time horizon, e.g., 20 years, is considered, and 

2) a shorter operation time period, e.g., 10-min operation to capture renewable 

generation variability instead of the hourly scheduling, is considered. In either case, the 

obtained robust problem will be significantly larger and noticeably more difficult to 

solve considering the large number of added binary variables.  

The comparison between the two methods for a one-year planning problem is 

shown in Table 4.10. The proposed method in this work, which introduces signals to 

determine uncertainties, does not employ binary variables and formulates the problem 

using linear programming. The results show that reducing the number of variables and 

constraints would significantly decrease the computation time from 2.5-4 hours to less 

than a minute.  

Table 4.10 Comparison Between the Robust Optimization Problem and the Proposed Preprocessing 

Approach 

 
Robust Optimization 

with Dual Variables 

Proposed Uncertainty 

Preprocessing 

Number of 

Continuous Variables 
201,480 87,600 

Number of Binary 

Variables 
70,080 0 

Number of 

Constraints 
411,725 122,640 

Computation Time 2.5-4 hours ~20 seconds 
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5. Chapter Five: Conclusion and Future Directions 

Amongst different categories of microgrids, i.e., AC, DC and hybrid, extensive 

research has been conducted in the operation and control of AC microgrids. DC 

microgrids could however offer several advantages compared to AC microgrids: 

providing a more efficiently supply of DC loads and reducing losses due to the reduction 

of multiple converters used for DC loads, easier integration of DC DERs, and 

eliminating the need for synchronizing generators. In this dissertation, various 

components of AC, DC, and hybrid microgrids were explained, followed by developing 

a microgrid planning model. The model determined the optimal DER generation mix, 

size, and location, the optimal type of feeders in the microgrid, i.e., either AC or DC, as 

well as the threshold ratio of AC/DC loads at each feeder causing one type of feeder to 

be more economical than the other. In other words, for ratios smaller than the threshold 

ratio, AC microgrid would be more economical and for ratios larger than that, DC 

microgrid would be more economical. The problem objective was to minimize the total 

planning cost (comprising the investment cost of DERs and converters, the operation 

cost of dispatchable DGs and energy exchange with the utility grid, as well as the cost 

of unserved energy) subject to prevailing planning and operation constraints and was 

formulated using MILP. Numerical results were presented to analyze the impact of ratio 

of DC loads, ratio of critical loads, converters efficiency, and market price on microgrid 

planning solutions. It was verified that the decisive factor in determining the type of the 
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microgrid would be the ratio of DC loads. In other words, if other parameters change 

except for the ratio of DC loads, the type of the microgrid would not change. It was also 

shown that increasing the ratio of critical loads would increase the total installed 

dispatchable generation capacity. It was further demonstrated that changing critical 

loads, converters efficiency, or the market price, significantly affects the operation and 

reliability costs. 

Moreover, a microgrid co-optimization generation and distribution planning was 

proposed in this dissertation, with the objective of determining the optimal DER 

generation mix and upgrading the network by building new lines. The nonlinear power 

flow equations were linearized to formulate the problem by MILP. The problem was 

tested on the IEEE 33-bus standard system, demonstrating the sensitivity of the planning 

results with respect to various planning factors, including the ratio of critical loads, total 

aggregated load, and electricity prices. Obtained results advocated that microgrid 

planners can ensure better planning economics by considering a simultaneous expansion 

in generation and distribution as opposed to traditional models focused only on 

generation expansion.   

Furthermore, a detailed discussion and analysis of uncertainties in the microgrid 

optimal scheduling problem were provided in this dissertation. The least-cost operation 

objective was maximized over uncertainty sets, using robust optimization, to achieve 

the worst-case optimal solution in the microgrid day-ahead operation and accordingly 

capture forecast uncertainties. To address the computational complexity associated with 

the robust optimization model, a preprocess approach was proposed which was capable 

of identifying uncertainties without the need to formulate and solve the robust problem. 
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Instead, the preprocessing approach relied on solving the original linear problem and 

accordingly creating a set of uncertainty signals to identify the worst-case realizations 

of uncertain parameters. Based on the proposed preprocess approach, it was shown that 

the worst-case realization for load would occur at its upper bound, and for renewable 

generation at its lower bound. The worst-case realization for the market prices were 

contingent on whether the microgrid was selling power to or buying power from the 

utility grid. Numerical examples demonstrated that the proposed signals can accurately 

determine worst-case realization in load, renewable generation, and market prices, and 

the proposed approach was capable of significantly reducing the complexity and the 

computation time of microgrid operation and planning problems under uncertainty. 

Considering that planning problems are big problems with a large number of 

binary and continuous variables over the planning horizon which is usually considered 

for 20-30 years, applying decomposition methods (such as Bender’s Decomposition) 

could be considered as a future work.  Bender’s Decomposition converts the problem 

into a set of smaller and easier to solve, yet coordinated, subproblems. A suggested 

decomposition for the proposed microgrid planning problem would include a long-term 

investment master problem, a short-term operation subproblem, and a reliability 

subproblem. The investment plan obtained in the master problem will be examined in 

subproblems to find optimal DER schedule as well as desired levels of reliability. The 

final solution would be obtained in an iterative fashion. 
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