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ABSTRACT

Networks, or graphs, are useful for studying many things in today’s world. Graphs

can be used to represent connections on social media, transportation networks, or even the

internet. Because of this, it’s helpful to study graphs and learn what we can say about the

structure of a given graph or what properties it might have. This dissertation focuses on

the use of the probabilistic method and spectral graph theory to understand the geometric

structure of graphs and find structures in graphs. We will also discuss graph curvature and

how curvature lower bounds can be used to give us information about properties of graphs.

A rainbow spanning tree in an edge-colored graph is a spanning tree in which each edge

is a different color. Carraher, Hartke, and Horn showed that for n and C large enough, if G

is an edge-colored copy of Kn in which each color class has size at most n/2, then G has at

least bn/(C log n)c edge-disjoint rainbow spanning trees. Here we show that spectral graph

theory can be used to prove that if G is any edge-colored graph with n vertices in which

each color appears on at most δλ1/2 edges, where δ ≥ C log n for n and C sufficiently

large and λ1 is the second-smallest eigenvalue of the normalized Laplacian matrix of G,

then G contains at least
⌊

δλ1
C logn

⌋
edge-disjoint rainbow spanning trees.

We show how curvature lower bounds can be used in the context of understanding

(personalized) PageRank, which was developed by Brin and Page. PageRank ranks the

importance of webpages near a seed webpage, and we are interested in how this importance
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diffuses. We do this by using a notion of graph curvature introduced by Bauer, Horn, Lin,

Lippner, Mangoubi, and Yau.
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CHAPTER 1: INTRODUCTION

1.1 Overview

Graphs, or networks, are interesting but complex objects that we would like to better

understand. Understanding geometric properties of graphs allows us to prove results about

their structure and about substructures they contain. Two ways of doing this are by using

spectral graph theory and curvature lower bounds. For example, we can use spectral graph

theory, along with the probabilistic method to show that graphs contain certain substruc-

tures.

The probabilistic method, pioneered by Paul Erdős, allows one to establish the exis-

tence of combinatorial objects by demonstrating that (in a suitable probability space) the

probability that a random object has the desired property is positive. It enables us to show

the existence of objects without explicitly constructing them. The probabilistic method

has become a central tool in modern combinatorics. It has been used to make advances in

Ramsey theory, graph theory, and number theory. Probabilistic methods can also be used

to obtain asymptotic results, which offer insight into unsolved problems or conjectures.

The study of randomly constructed objects, such as random graphs, has proven to be an

important topic on its own. It has also played a big role in the study of complex networks.

Spectral graph theory relies on using information about eigenvalues of matrices asso-

ciated with graphs to understand their properties. For example, we might be interested in

understanding geometric properties of a graph, such as whether or not the graph has a bot-
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tleneck (that is, a sparse cut). The Cheeger, or isoperimetric, constant is a graph parameter

that measures bottlenecking. Determining this value is NP-hard, partly because there are

exponentially many cuts of a graph. However, a result known as Cheeger’s inequality for

graphs relates eigenvalues of certain matrices (such as the normalized Laplacian matrix) to

the Cheeger constant so that if one is small, then the other is small. Similarly, eigenvalues

also give information about other geometric properties of graphs such as diameter and dis-

tances between subsets of vertices. Spectral graph theory also has ties to randomness. The

spectrum of the normalized Laplacian matrix is related to the the mixing of random walks,

and spectral information certifies ‘pseudo-randomness’ of edge distributions of graphs.

Cheeger’s inequality for graphs is related to the study of manifolds. In [15], Cheeger

showed that an eigenvalue of the Laplace-Beltrami operator of a manifold is related to the

isoperimetric constant of the manifold. This shows that, in some sense, graphs “act like”

discrete manifolds. This motivates us to use the study of manifolds to better understand

graphs. Notions of curvature of manifolds are well-studied, and it is natural to try to extend

notions of curvature to graphs in meaningful ways. This dissertation will discuss recently

developed notions of graph curvature. Spectral graph theory gives us a way to capture

global geometric properties of a graph from just a few eigenvalues, which are global quan-

tities that depend on the structure of the entire graph. Graph curvature, on the other hand,

is a local property which, on graphs, depends only on vertices and their second neighbor-

hoods. However, curvature lower bounds can also be used to give us information about

global properties of our graphs. (This is similar to how notions of curvature can be used in

Riemannian geometry.)

Both the spectrum of a matrix and graph curvature, then, provide enough information

for applying probabilistic methods to understand general classes of graphs. Here we will
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introduce both spectral graph theory and graph curvature and show how they can be used

to understand the geometry and structure of graphs. Understanding the structure of a graph

allows us to answer a lot of interesting questions. For example, we show how spectral

information can be used to say something about the number of rainbow spanning trees in

general graphs. We also use a notion of graph curvature to understand the diffusion of

PageRank on a graph.

In Chapter 2 we will discuss rainbow spanning trees in graphs and show how one can

use spectral graph theory to have enough information about our graph in order to give a

meaningful bound on rainbow spanning trees in general graphs. Chapter 3 will focus on

graph curvature and how we can use curvature lower bounds in order to better understand

PageRank.

1.2 Preliminaries

1.2.1 Definitions, Notation, and Terminology

Graphs, or networks, are collections of vertices and edges where each edge joins two

vertices. If two vertices u and v have an edge between them, then we say that u and v are

adjacent and write u ∼ v. The degree of a vertex, v, is the number of vertices that are

adjacent to v, and is denoted deg(v). For a graph G, the volume of a subset X ⊂ V (G),

denoted by Vol(X), is defined as follows:

Vol(X) =
∑
v∈X

deg(v).
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For a subset, S, of V (G), S denotes the complement of S, and we denote by e(S, S) =

|E(S, S)| the number of edges with one end in S and the other in S.

1.3 Spectral Graph Theory

We are interested in learning information about the structure of graphs. In order to do

this, we can associate some matrix with a graph. Then our hope is that the eigenvalues of

that matrix give us information about properties of our graph. There are several natural

matrices to associate with graphs. In this section, we will discuss the adjacency matrix, the

degree matrix, the Laplacian matrix, and the normalized Laplacian matrix. Each of these

matrices gives us information about our graph. However, much of this dissertation focuses

on the normalized Laplacian matrix for reasons that we will discuss later.

1.3.1 Adjacency Matrix

The adjacency matrix of a graph with n vertices is the n × n matrix with rows and

columns indexed by vertices where the entry corresponding to vertices u and v has a one if

u and v have an edge between them, and a zero if they do not. For example, if we consider

the graph, G, in Figure 1.1, we see that the adjacency matrix is

A =



0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0


.

The adjacency matrix is a real, symmetric matrix and has n eigenvalues, λ1 ≥ |λ2| ≥

· · · ≥ |λn|.
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Figure 1.1: G

It follows from linear algebra that

λ1(A) = max
x∈Rn

xTAx

xTx
.

This is a useful identity, and can be used to show relationships between λ1(A) and other

quantities related to the graph.

Eigenvalues of A capture many graph properties, but not all. For instance, they tell us

how many edges are in the graph, but they do not tell us if the graph is connected in general.

Recall that if an n× n matrix, B, is symmetric, then the sum of its eigenvalues is equal to

its trace, Tr(B). This implies that

n∑
i=1

λ2
i (A) = Tr(A2) =

n∑
i=1

deg(vi) = 2e(G),

so we can determine the number of edges in the graph if we know the eigenvalues of the

adjacency matrix. In order to see that eigenvalues of A do not give us information about

whether or not a graph is connected, notice that in Figure 1.2, there are two graphs – one

of the graphs is connected, and the other is not. However, the adjacency matrices of these

graphs have the same eigenvalues. It would be nice to be able to recover information about

the connectedness of a graph from the spectrum of a matrix. The adjacency matrix can’t

5



(a) Disconnected graph (b) Connected
graph

Figure 1.2: Two graphs with adjacency matrix eigenvalues 2, −2, and 03

give us this information, but some of the matrices we introduce later can tell us whether or

not our graph is connected.

1.3.2 Degree Matrix

The degree matrix of a graph is the matrix with the degrees of vertices along the diag-

onal and zeros everywhere else. For example, the degree matrix of the graph in Figure 1.1

is

D =



2 0 0 0

0 2 0 0

0 0 3 0

0 0 0 1


.

The degree matrix is not very interesting on its own, but it is useful for defining the

Laplacian matrix.

1.3.3 Laplacian Matrix

The Laplacian matrix (which is sometimes called the combinatorial Laplacian matrix)

is defined to be L = D − A. L has n eigenvalues, 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. It turns out

6



that we can use the eigenvalues of the Laplacian matrix to say something interesting about

certain substructures of our graph. A tree is a connected graph without cycles. A spanning

tree in a graph is a tree that includes every vertex of the graph. We will later be interested

in looking for certain kinds of spanning trees in graphs, and the following theorem shows

an important connection between spanning trees and the Laplacian matrix.

Theorem 1.3.1 (Kirchhoff’s Matrix Tree Theorem). The number of spanning trees of a

graph is the determinant of any principal submatrix of L.

(A principal submatrix of L is a square submatrix obtained by deleting a row and

column associated with a vertex, v.)

The following corollary of the Matrix Tree Theorem tells us that the number of span-

ning trees of a graph is related to the eigenvalues of the Laplacian matrix.

Corollary 1.3.2. If the eigenvalues of L are 0 = λ1 ≤ λ2 ≤ · · · ≤ λn, then the number of

spanning trees of G is
1

n
(λ2 · λ3 · · ·λn) .

This result is very interesting because it shows that eigenvalues can be helpful in count-

ing spanning trees in graphs. In Chapter 2 we will be looking for certain kinds of spanning

trees in edge-colored graphs, and Corollary 1.3.2 might prompt the reader to think that

spectral methods could be helpful when looking for trees in graphs.

An alternate definition of the Laplacian matrix comes from a matrix called the oriented

edge-incidence matrix. If n = |V (G)| and m = |E(G)|, then the oriented edge-incidence

matrix, B, is an m× n matrix. Choose an arbitrary ordering of the edges of the graph and

assign an orientation to the edges. (The matrix L is independent of the orientation.) If vivj

7



is the kth edge in the ordering, then the kth row ofB has a 1 in the ith column and entry−1

in the jth column and zeros in all other entries. (If the oriented edge originates at vj and

terminates at vi, then there will be a −1 in the ith column and 1 in the jth column.) Then

L = BTB. Using this definition, we can learn more information about the eigenvalues of

L. Note that for a vector, ϕ, we have

ϕTLϕ = ϕTBTBϕ

= (Bϕ)T (Bϕ)

=
∑
vi∼vj

(ϕ(vi)− ϕ(vj))
2 . (1.1)

From this, we see that L is a positive semi-definite matrix. In particular, if ϕ is an

eigenvector, then
∑

vi∼vj (ϕ(vi)− ϕ(vj))
2 = λ · ||ϕ||22 for an eigenvalue, λ. This implies

that all eigenvalues of L are non-negative.

Note that 0 is always an eigenvalue of L since ϕ ≡ 1 implies that ϕTLϕ = 0. So 1

is an eigenvector corresponding to the eigenvalue 0. Also, by looking at (1.1), we see that

if ϕ is constant on components of the graph, then ϕTLϕ = 0. Conversely, (1.1) is zero if

and only of ϕ(vi) = ϕ(vj) for all edges vivj . Hence, eigenvectors corresponding to 0 are

constant on components.

1.3.4 Normalized Laplacian Matrix

The normalized Laplacian matrix, L, which was popularized by Chung (see [23]), is

the Laplacian matrix normalized by the degrees. That is,

L = D−1/2(D − A)D−1/2.
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Since D is a diagonal matrix, the matrix D1/2 is the matrix obtained from D by raising

each entry to the 1/2 power. When talking about the normalized Laplacian matrix, we

always assume that there are no isolated vertices.

The matrix L is a real, n × n symmetric matrix, so it has n real eigenvalues, λ0 ≤

λ1 ≤ · · · ≤ λn−1 with orthonormal eigenvectors ϕ0, · · · , ϕn−1. The eigenvalues of the

normalized Laplacian matrix tell us a lot about the structure of our graph. It is always that

case that λ0 = 0. In fact, just as for L, the number of eigenvalues that are zero is the number

of connected components of the graph. So λ1 > 0 if and only if the graph is connected.

Also, we know that λ1 ≤ n
n−1

and λn−1 ≥ n
n−1

. Additionally, λ1 ≤ 1 except if G is

complete. The largest eigenvalue of the normalized Laplacian also gives us information

about the graph. We always have that λn−1 ≤ 2, and λn−1 = 2 if and only if the graph has

a bipartite component.

For the remainder of this dissertation, λi = λi(L).

Let ϕ be an arbitrary column vector from V (G) → R. The quotient
ϕTLϕ
ϕTϕ

is called

the Rayleigh quotient. We can use the Rayleigh quotient to say something about the eigen-

values of our graph. Notice that

ϕTLϕ
ϕTϕ

=
ϕTD−1/2BTBD−1/2ϕ

ϕTϕ

=

∑
x∼y
(
ϕ(x) deg(x)−1/2 − ϕ(y) deg(y)−1/2

)2∑
x∈V (G) ϕ(x)2

.

9



Define f(x) = ϕ(x) deg(x)−1/2. Then ϕ(x) = f(x) deg(x)1/2. Then

ϕTLϕ
ϕTϕ

=

∑
x∼y(f(x)− f(y))2∑
x f(x)2 deg(x)

. (1.2)

The Courant-Fischer Theorem says that the second-smallest eigenvalue of L can be

found by looking at a minimum over this Rayleigh quotient:

λ1 = min
ϕ⊥ϕ0

ϕTLϕ
ϕTϕ

= min
ϕ:
∑

v ϕ(v)
√

deg(v)=0

ϕTLϕ
ϕTϕ

= min
f :
∑

v f(v) deg(v)=0

∑
x∼y(f(x)− f(y))2∑
x f(x)2 deg(x)

by (1.2).

So

λ1 = min
f⊥D1

∑
x∼y(f(x)− f(y))2∑
x f(x)2 deg(x)

. (1.3)

(Such an f that achieves this minimum is called a harmonic eigenfunction.)

The normalized Laplacian matrix is related to random walks on graphs. The transition

probability matrix for a simple random walk, D−1A, is similar to the matrix I − L since

D1/2(D−1A)D−1/2 = D−1/2AD−1/2 = I − L. The matrices D−1/2AD−1/2 and D−1A

hence share the same eigenvalues, and we can use what we know about the eigenvalues of

L to answer questions about the convergence of random walks on graphs. This is related to

the study of heat dispersion on graphs, which we will touch on in Chapter 3.
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1.3.5 Normalized Laplace Operator

In Chapter 3, the principal matrix that we will consider is the normalized Laplace

operator

∆ = I −D−1A,

where D is the diagonal matrix of vertex degrees and D−1A is the transition probability

matrix for simple random walk.

As a quick observation, note that ∆ is non-positive semidefinite. This is contrary to

usual sign conventions in graph theory, but is the proper sign convention for the Laplace-

Beltrami operator in Riemannian manifolds, the analogy to which we emphasize here. Also

note that this matrix is (up to sign) the unsymmetrized version of the normalized Laplacian,

L = (D−1/2AD−1/2)− I .

1.3.6 Expander Mixing Lemma

Since we are interested in understanding the structure of a graph, it is often helpful

to have a bound on the number of edges between two subsets of vertices. It turns out

that we can do this using the spectral gap of the normalized Laplacian matrix, σ(G) =

max{|λ1 − 1|, |λn−1 − 1|}.

Theorem 1.3.3 (Expander Mixing Lemma). SupposeG is a graph and σ(G) = max{|λ1−

1|, |λn−1 − 1|}. For any subsets X, Y ⊆ V (G), let e(X, Y ) be the number of edges with

one end in X and one in Y . Then

∣∣∣∣e(X, Y )− Vol(X) · Vol(Y )

Vol(G)

∣∣∣∣ ≤ σ ·
√

Vol(X) · Vol(Y ).
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Note that
Vol(X) · Vol(Y )

Vol(G)
is the expected number of edges betweenX and Y in a ran-

dom graph with the same degree sequence as G; this makes precise the comment from the

introduction that spectral information certifies ‘pseudo-randomness’ of edge-distributions

of graphs.

As the proof of Theorem 1.3.3 reflects a common way of using spectral graph theory

to understand graph structure, we record the proof here.

Proof of Expander Mixing Lemma. Let 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1 be eigenvalues of L,

and let d1/2√
Vol(G)

= ϕ0, ϕ1, ..., ϕn−1 be the orthonormal eigenvalues of L. Then

e(X, Y ) = 1XA1Y

= 1
T
XD

1/2D−1/2AD−1/2D1/2
1Y

= 1
T
XD

1/2(I − L)D1/2
1Y

= 1
T
XD

1/2

(
n−1∑
i=0

(1− λi)ϕiϕTi

)
D1/2

1Y

= 1
T
XD

1/2

(
1 · d1/2√

Vol(G)
· (d1/2)T√

Vol(G)
+

n−1∑
i=1

(1− λi)ϕiϕTi

)
D1/2

1Y

=
Vol(X) Vol(Y )

Vol(G)
+ 1

T
XD

1/2

(
n−1∑
i=1

(1− λi)ϕiϕTi

)
D1/2

1Y .

Let 〈u, v〉 denote the dot product of the vectors u and v. Then

∣∣∣∣e(X, Y )− Vol(X) Vol(Y )

Vol(G)

∣∣∣∣ =

∣∣∣∣∣1TXD1/2

(
n−1∑
i=1

(1− λi)ϕiϕTi

)
D1/2

1Y

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
i=1

(1− λi)
〈
D1/2

1X , ϕi
〉 〈
D1/2

1Y , ϕi
〉∣∣∣∣∣
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≤ σ
n−1∑
i=1

∣∣〈D1/2
1X , ϕi

〉∣∣ · ∣∣〈D1/2
1Y , ϕi

〉∣∣
≤ σ

√(
Vol(X)− (Vol(X))2

Vol(G)

)(
Vol(Y )− (Vol(Y ))2

Vol(G)

)
by Cauchy-Schwartz

≤ σ

√
Vol(X) Vol(X) Vol(Y ) Vol(Y )

(Vol(G))2

≤ σ
√

Vol(X) Vol(Y ).

1.3.7 Cheeger’s Inequality

One of the most important bits of geometric information certified by the spectrum is

expansion: the number of edges leaving subsets. For instance, when looking for disjoint

spanning structures in graphs, a sparse cut limits the number we can hope to find. It turns

out that sparse cuts in our graph are related to an eigenvalue of the normalized Laplacian

matrix through Cheeger’s inequality. Before discussing Cheeger’s inequality, we introduce

some necessary notation.

For a subset S, of V (G), we define hG(S) =
|E(S, S)|

min{Vol(S),Vol(S)}
. The Cheeger

constant (or isoperimetric constant), hG is then defined by

hG = min
S
hG(S).

Determining hG is computationally difficult, but is related to the smallest eigenvalue

through the following result known as Cheeger’s inequality.

13



Theorem 1.3.4 (Cheeger’s inequality [23]). IfG is a connected graph and λ1 is the second-

smallest eigenvalue of the normalized Laplacian of G, then

h2
G

2
< λ1 ≤ 2hG.

What Theorem 1.3.4 tells us is that we have a sparse cut in G if and only if λ1 is small.

Hence λ1 is a measure of sparse cuts in the graph. This is very helpful information about

the structure that we can use to our advantage.

The lower bound of this inequality is analogous to Cheeger’s inequality in Riemannian

geometry [15]. The first graph theoretical result was by Dodziuk and Karp [30], for infinite

graphs. Later versions were proved for regular graphs [3]. It is interesting to note that not

just are the statements of the Cheeger inequality similar in Riemannian geometry and graph

theory, but even the proofs are similar.

Notice that as a consequence of Cheeger’s inequality, we have the following inequality

for a subset S ⊆ V (G) with Vol(S) ≤ 1
2

Vol(G):

e(S, S) ≥ λ1

2
Vol(S). (1.4)

The upper bound on λ1 from Cheeger’s inequality is not too difficult to prove. (This

upper bound is analagous to Buser’s inequality in Riemannian geometry.) For the proof,

we use (1.3).
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Proof that λ1 ≤ 2hG. Let S ⊆ V (G) such that hG = e(S,S)
Vol(S)

. Let

f(x) =


1

Vol(S)
if x ∈ S

− 1
Vol(S)

if x ∈ S.

Since

∑
v∈V (G)

f(v) deg(v) =
∑
v∈S

f(v) deg(v) +
∑
v∈S

f(v) deg(v)

=
1

Vol(S)

∑
v∈S

deg(v)− 1

Vol(S)

∑
v∈S

deg(v)

= 1− 1

= 0,

we know that f ⊥ D1. So by (1.3), we have

λ1 ≤
∑

u∼v(f(u)− f(v))2∑
v(f(v))2 · deg(v)

.

If u and v are both in S or if u and v are both in S, then (f(u)− f(v))2 = 0.

If u ∈ S and v ∈ S (or vice-versa), then

(f(u)− f(v))2 =

(
1

Vol(S)
+

1

Vol(S)

)2

.
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Also,

∑
v

(f(v))2 · deg(v) =
∑
v∈S

(f(v))2 · deg(v) +
∑
v∈S

(f(v))2 · deg(v)

=
1

(Vol(S))2
·
∑
v∈S

deg(v) +
1

(Vol(S))2
·
∑
v∈S)2

deg(v)

=
1

(Vol(S))2
· Vol(S) +

1

(Vol(S))2
· Vol(S)

=
1

Vol(S)
+

1

Vol(S)
.

So

λ1 ≤
∑

u∼v(f(u)− f(v))2∑
v(f(v))2 · deg(v)

=
e(S, S)

(
1

Vol(S)
+ 1

Vol(S)

)2

1
Vol(S)

+ 1
Vol(S)

= e(S, S)

(
1

Vol(S)
+

1

Vol(S)

)
≤ 2e(S, S)

min{Vol(S),Vol(S)}

= 2hG.
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CHAPTER 2: RAINBOW SPANNING TREES

2.1 Introduction

Spectral graph theory and graph curvature are very helpful tools that can help us gen-

eralize results about complete graphs. Often we would like to be able to answer questions

about general graphs that are not necessarily complete. When we are working with the

complete graph, we have much more information with which to work. However, geometric

information can be used to better understand the structure of graphs and extend results to

non-complete graphs. In this chapter we are interested in using spectral methods in order

to generalize results about the number of rainbow spanning trees that can be found in edge-

colored complete graphs. For an edge-colored graph G, a rainbow spanning tree of G is a

spanning tree in which each edge is a different color.

Our motivation is the following conjecture of Brualdi and Hollingsworth.

Conjecture 2.1 ([11]). If Kn (for n ≥ 6 and n even) is edge-colored such that each color

class is a perfect matching, then there is a decomposition of the edges into n/2 edge-disjoint

rainbow spanning trees

Progress was slow: Brualdi and Hollingsworth proved that in any such edge-colored

Kn, there are at least two edge-disjoint rainbow spanning trees. Krussel, Marshall, and

Verrall [50] showed that there are at least three edge-disjoint rainbow spanning trees. Horn

[41] showed that under these hypotheses, a postitve fraction of the graph can be covered by

edge-disjoint rainbow spanning trees. Fu, Lo, Perry, and Rodger [35] gave a constructive

17



proof that in a properly edge-colored Kn (where n is even) there is a decomposition of

the edges into at least b
√

3n+ 9/3c edge-disjoint rainbow spanning trees. While asymp-

totically weaker, this result holds for all values of n. Pokrovskiy and Sudakov [57] later

showed that in a properly edge-colored complete graph there are at least n
9
−6 edge-disjoint

rainbow spanning trees, and very recently Glock, Kühn, Montgomery, and Osthus [37] set-

tled the conjecture of Brualdi and Hollingsworth for sufficiently large n. In fact, they

showed that under the hypotheses, there is a decomposition of the edges into isomorphic

edge-disjoint rainbow spanning trees, settling a conjecture of Constantine ([24], [25]).

Kaneko, Kano, and Suzuki strengthened the conjecture of Brualdi and Hollingsworth

with the following.

Conjecture 2.2 ([47]). IfG is a properly edge-coloredKn where n ≥ 6 and n is even, then

G contains bn/2c edge-disjoint rainbow spanning trees.

Also related, Akbari and Alipour showed in [1] that ifG is an edge-coloredKn (n ≥ 5)

in which each color appears at most n/2 times, then G contains at least two edge-disjoint

rainbow spanning trees. Carraher, Hartke, and Horn showed in [14] that for n and C

sufficiently large, if G is an edge-colored copy of Kn in which each color appears less

than n/2 times, then G contains at least bn/(C log n)c edge-disjoint rainbow spanning

trees. Independently, Pokrovskiy and Sudakov [57] and Balogh, Liu, and Montgomery [5]

showed that under the conditions of the conjecture of Kaneko, Kano, and Suzuki, a positive

fraction of the graph can be covered by edge-disjoint rainbow spanning trees. In fact, under

these conditions, Pokrovskiy and Sudakov showed that this can be done with isomorphic

rainbow-spanning trees. Recently, Montgomery, Pokrovskiy, and Sudakov [54] showed

that a properly edge-coloredKn contains (1−o(1))n
2

edge-disjoint rainbow spanning trees.
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There are a number of results about rainbow structures other than spanning trees in

edge-colored graphs. Kano and Li did a survey of many results and conjectures about

such structures in [48]. Brualdi and Hollingsworth [12] looked at edge-colored complete

bipartite graphs and proved results about when such graphs contain rainbow forests or trees.

Constantine [25] showed that for p prime (p > 2), there is some proper edge-coloring of the

complete graphKp such that there is a partition of the edges ofKp into rainbow hamiltonian

cycles. He also showed that for certain values of n, there is a proper edge-coloring of Kn

such that there is a partition of the edges of Kn into isomorphic rainbow spanning trees.

Rainbow cycles in graphs have also been studied. Albert, Frieze, and Reed [2] showed that

for n sufficiently large, if Kn is edge-colored such that each color appears less that n/64

times, then there is a rainbow hamiltonian cycle. (Rue gave a correction of this constant

– see [34].) Frieze and Krivelevich [34] proved that there is a constant c > 0 such that

an edge-coloring of Kn in which each color appears at most max{cn, 1} times contains a

rainbow cycle of length k for each 3 ≤ k ≤ n.

Here we show that for any edge-colored graph G on sufficiently many vertices and

with large enough minimum degree, we can give a lower bound on the number of edge-

disjoint rainbow spanning trees in G. This lower bound will depend on the second-smallest

eigenvalue of the normalized Laplacian matrix.

Theorem 2.1.1. If G is an edge-colored graph with minimum degree δ ≥ C log n (for C

and n sufficiently large) in which each color class has size at most δλ1/2, then G contains

at least
⌊

δλ1
C logn

⌋
edge-disjoint rainbow spanning trees.

Remark: We have not attempted to optimize the constant, C, but the result holds for

C ≥ 1500 and n ≥ 14398. (The limiting factor comes from an inequality in Lemma 2.3.1.)
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We note that δ
2

is essentially the best possible bound on the size of the color classes

that we could hope for, and there are graphs for which λ1 = 1, so δλ1
2

= δ
2
. Let C1, ..., Cs

be the color classes and let ci = |Ci|. If ci ≤ δ
2

for each i, then notice that on the one hand,

|E(G)| =
∑
i∈[s]

ci

≤ s · δ
2
.

On the other hand,

|E(G)| = 1

2

∑
v∈V (G)

deg(v)

≥ 1

2

∑
v∈V (G)

δ

=
1

2
nδ.

So 1
2
nδ ≤ s δ

2
, which implies that n ≤ s. If s < n − 1, then no rainbow spanning

tree would be possible. So this bound on the size of the color classes is a natural condition

to consider. If we let colors show up more than δ
2

times, then we might run into trouble

and not be able to find even one rainbow spanning tree. For example, if the host graph is

a cycle, then if colors are allowed to have multiplicity greater that 1 we may not be able to

find a rainbow spanning tree.

We emphasize that our theorem works for both regular and irregular graphs; use of

spectral methods frequently restrict results to apply only for irregular graphs. We also

emphasize that the colorings considered in our theorem need not be proper – there is only a

restriction on the multiplicity of a color. Another advantage of our approach is that it uses
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only the smallest eigenvalue. Results in extremal combinatorics using spectral graph theory

frequently assume strong control on both the smallest (non-trivial) and largest eigenvalue

of L as such gives stronger pseudo-random properties of the edge set of a graph via the

expander mixing lemma. We also note that our result does not actually require λ1 to be

close to 1 (another common requirement), although our result is certainly strongest if λ1 is

close to 1. Some additional comments regarding the hypothesis of our results are given in

Section 2.5.

The chapter is organized as follows: Sections 2.2 and 2.3 introduce definitions and

preliminary results. The proof of Theorem 2.1.1 is in Section 2.4, and we conclude in Sec-

tion 2.5 with some discussion, along with some applications of Theorem 2.1.1 to particular

classes of graphs where it yields particularly strong results.

2.2 Definitions and Background

The general outline of our proof is as follows: We partition our original graph G into

graphs G1, G2, . . . , Gq for an appropriately chosen integer q, then show that each Gi con-

tains a rainbow spanning tree. In order to avoid bias in our partition, it turns out to useful to

construct the partition randomly. That is, for each edge we uniformly select a Gi to place it

into; hence we place an edge into Gi uniformly with probability 1/q. Each edge is placed

independently.

In order to analyze this, we require a criterion to verify that the Gi contain rainbow

spanning trees (with high probability) along with a method to get structural information

out of our (general) graph G. The remainder of this section discusses these basic tools.
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In order to show that a graph has a rainbow spanning tree, we use the following propo-

sition, originally due to Schrijver [58].

Proposition 2.2.1. A graphG has a rainbow spanning tree if and only if for every partition

P of V (G) into t parts, there are at least t−1 different colors represented between the parts

of P .

Broersma and Li [10] showed that the Matroid Intersection Theorem [31] can be used to

determine the largest rainbow spanning forest in a graph. (See [58].) Schrijver [58] showed

that the conditions of the Matroid Intersection Theorem are equivalent to the necessary and

sufficient conditions from Proposition 2.2.1 for the existence of a rainbow spanning tree.

Suzuki [59] and Carraher and Hartke [13] provided additional graph theoretical proofs of

this result.

Our strategy is to take our random partition of the edges ofG and prove some structural

results that hold with high probability (Lemma 2.3.1 below). Then we show deterministi-

cally that each graph satisfies Proposition 2.2.1. The strategy is similar to that of [14], with

additional technical difficulties given from the fact that our underlying graph is not com-

plete and, instead, we only have spectral information to understand the geometry of the

host graph G. In some sense our primary new difficulty is to extract sufficient geometric

information from the spectrum to push the analysis through.

We will frequently use the fact that if A1, ..., A` are events, then

P

[⋃̀
i=1

A`

]
≤
∑̀
i=1

P[Ai],
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where P(X) for an event X denotes the probability that X occurs. We also use the follow-

ing Chernoff bounds.

Lemma 2.2.2 ([16]). If λ > 0 and Xi are independent random variables with

P(Xi = 1) = pi, P(Xi = 0) = 1− pi

and X =
∑

iXi, (E[X] =
∑

i pi) then

P[X ≤ E[X]− λ] ≤ exp

(
− λ2

2E[X]

)

and

P[X ≥ E[X] + λ] ≤ exp

(
− λ2

2(E[X] + λ/3)

)
.

2.3 Preliminary Results

Standard Assumptions

Throughout the remainder of the chapter, we use several conventions to simplify the

discussion and make the statements of lemmas more readable. The following standard

assumptions for parameters underlie the lemmas and theorems for the remainder of the

chapter:
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• There are q = b δλ1
C logn

c graphs, G1, . . . , Gq. Edges are placed into exactly

one

Gj , each with probability p.

• There are color classes C1, . . . , Cs and |Ci| = ci,

• ej(S, S̄) is the number of edges in Gj with one edge in S and the other in S̄.

• Parameters have the following values:

δ ≥ C log n

p =
C log n

δλ1

ε = 0.1

for each i ∈ [s] : 1 ≤ ci ≤
δλ1

2

C is a sufficiently large constant. (This is an absolute constant C. For instance,

C=1500 works.)

Remark: Note that qp ≤ 1, and strict inequality is possible as a result of the floor. This

technically means that there is a (small) chance that edges won’t be in any Gj , but it is

more convenient than keeping the floor throughout and does not materially change the

result. Also, we have chosen ε = 0.1, but any sufficiently small value of ε will suffice.

In order to show that each Gj has a rainbow spanning tree, we use Proposition 2.2.1.

We proceed by proving some preliminary results. We begin by establishing some prop-

erties of each of the graphs Gj constructed above.
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Lemma 2.3.1. Under the standard assumptions, for every j ∈ [q], the edge sets, Ej of Gj

satisfy

(i) For every i ∈ [s], |Ej ∩ Ci| ≤ (1 + ε)C logn
2

.

(ii) For every set S ⊆ V (G),

ej(S, S̄) ≥ (1− ε)E[ej(S, S̄)].

(iii) For every vertex v ∈ V (G),

degGj
(v) ≥ (1− ε)C

λ1

log n.

simultaneously with probability at least 1− n−2, assuming n is sufficiently large.

Proof. Fix a color i ∈ [s].

To prove (i), note that E[|Ej ∩ Ci|] = pci ≤ C
2

log n. Using Lemma 2.2.2 with λ =

εC logn
2

implies that

P
(
|Ej ∩ Ci| ≥ (1 + ε)

C log n

2

)
≤ exp

(
− ε2C log n

2(1 + ε/6)

)
≤ exp

(
−ε

2C log n

3

)
≤ n−5 for C ≥ 15

ε2
.

Part (iii) is merely a (useful) special case of (ii), so it suffices to prove (ii). For part

(ii), notice that for any set S, either Vol(S) ≤ 1
2
Vol(G) or Vol(S) ≤ 1

2
Vol(G), and hence it
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suffices to prove it for sets with Vol(S) ≤ 1
2

Vol(G). Fix a set S of size k and with volume at

most 1
2

Vol(G). Then by (1.4), e(S, S̄) ≥ λ1
2

Vol(S) ≥ λ1δk
2

. Hence E[ej(S, S̄)] ≥ Ck logn
2

.

Applying the Chernoff bounds with λ = εE[ej(S, S̄)] yields

P
(
ej(S, S̄) ≤ (1− ε)E[ej(S, S̄)]

)
≤ exp

(
−ε

2

2
E[ej(S, S̄)]

)
≤ exp

(
−Cε

2

4
k log n

)
. (2.1)

Let B denote the event that there exists a set S which doesn’t satisfy the conclusion of part

(ii). A union bound over k and S of size k yields

P(B) ≤
n∑
k=1

∑
S⊆V (G)
S:|S|=k

Vol(S)≤Vol(G)/2

P
(
ej(S, S̄) ≤ (1− ε)E[ej(S, S̄)]

)

≤
n∑
k=1

(
n

k

)
exp

(
−Cε

2

4
k log n

)
≤

n∑
k=1

exp

(
−
(
Cε2

4
− 1

)
k log n

)
≤ n−4.

Here the second inequality follows from (2.1) and the fact that there are at most
(
n
k

)
sets of

size k satisfying Vol(S) ≤ Vol(G)/2, the third from the simple bound that
(
n
k

)
≤ nk, and

the last inequality holds assuming that C is sufficiently large.

A union bound over all j ∈ [q] and all color classes i ∈ [s] yields the result.

Lemma 2.3.1 provides lower bounds on the number of edges leaving a set, and upper

bounds on the number of edges in a particular color in each of our graphs Gj . In order to
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apply Proposition 2.2.1 to then prove that the graphs contain rainbow spanning trees, we

thus must study the number of edges between parts. This requires some care.

Suppose P = {P1, P2, . . . , Pt} is partition of V (G) into t parts. We use the notation

ej(P) =
1

2

∑
i∈[t]

ej(Pi, P̄i)

to denote the total number of edges between parts in the graph Gj . (We denote the number

of edges between parts in G by e(P).)

The following Lemma is then immediate.

Lemma 2.3.2. Let P be a partition of V (G) into t parts. If each color appears at most k

times in Gj and ej(P) ≥ (t− 2)k + 1, then there are at least t− 1 colors between parts of

P in Gj .

We often use this in the following way.

Corollary 2.3.3. Let P be a partition of V (G) into t parts. If

ej(P) ≥ (t− 2)(1 + ε)
C log n

2
+ 1,

then there are at least t− 1 colors between parts of P in Gj .

Using the Cheeger inequality to lower bound the number of edges leaving a set proves

insufficient for our goals, at least for small sets. For a set S ⊆ V (G), let

f(S) = max

{
λ1

2
Vol(S),Vol(S)− 2

(
|S|
2

)}
. (2.2)
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Both quantities serve as a lower bound for e(S, S̄) and hence,

E[ej(S, S)] ≥ pf(S).

In order to be able to apply Lemma 2.3.2 to verify the hypothesis of Proposition 2.2.1,

we need to be somewhat careful when minimizing the number of edges crossing a partition.

We accomplish this as follows:

Lemma 2.3.4. Assume the standard assumptions hold. Suppose P = {P1, ..., Pt, P?} is a

partition of [n], satisfying |P1| ≤ |P2| ≤ · · · ≤ |Pt| and satisfying either that

(a) Vol(P?) >
1
2

Vol(G), or

(b) P? = ∅ and Vol(Pi) ≤ 1
2

Vol(G) for 1 ≤ i ≤ t.

Let M = 1 + δ − λ1δ
2

, and t′ ≤ t denote the largest index such that |Pt′ | ≤ M .

Finally, set N ′ =
∑t′

i=1 |Pi|. Then there exist unique integers x := x(|P1|, · · · , |Pt|) and

1 < x? ≤M satisfying N ′ = x+M(t′ − x− 1) + x?. For this integer x:

2e(P) ≥

(
λ1

2
Vol

(
t⋃
i=1

Pi

)
+ δx

(
1− λ1

2

))
+ e(P?, P̄?) (2.3)

≥ λ1δ(n− |P?| − x)

2
+ δx+ e(P?, P̄?) (2.4)

Furthermore, x ≥ t− b n−t
M−1
c − 1.

Proof. Let P1 = {Pi ∈ P : |Pi| ≤ M}; then t′ = |P1|. Let P ′1 be a partition of
⋃
Pi∈P1

Pi

into |P1| parts, each of size 1 or M , with possibly one set with size x?, where 1 < x? ≤M .
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Then
∑

Pi∈P1

(|Pi|
2

)
≤
∑

P ′i∈P ′1

(|P ′i |
2

)
. Let x = |{P ′i ∈ P ′1 : |P ′i | = 1}|. Note that x is the

number of parts of size one, so x · 1 + x? + (|P1| − (x+ 1))M = N ′.

Also, x + x? + M(t − x − 1) ≤ n. From this, we know that x(M − 1) ≥ Mt − n −

M + x? = (M − 1)t− (n− t)− (M − x?), so

x ≥ t− n− t
M − 1

− M − x?

M − 1

≥ t− n− t
M − 1

− 1.

This proves the “furthermore” statement in the lemma.

Observe,

∑
Pi∈P1

e(Pi, P i) ≥
∑
Pi∈P1

[
Vol(Pi)− 2

(
|Pi|
2

)]
≥
∑
P ′i∈P ′1

[
Vol(P ′i )− 2

(
|P ′i |
2

)]
.

Note that Vol(Pi) ≥ δ|Pi| for each i ∈ [t], so if δ|Pi|−2
(|Pi|

2

)
≥ λ1

2
δ|Pi|, then Vol(Pi)−

2
(|Pi|

2

)
≥ λ1

2
Vol(Pi), since λ1

2
< 1. By our choice of M , all parts of size at least M satisfy

this inequality as M was chosen so that δM − 2
(
M
2

)
= λ1δM

2
. Thus,

∑
Pi∈P1

e(Pi, P i) ≥
∑

P ′i∈Pi:|P ′i |=1

(
Vol(P ′i )− 2

(
1

2

))
+

∑
P ′i∈P ′1:|P ′i |>1

λ1

2
Vol(P ′i )

=
∑

P ′i∈P ′1:|P ′i |=1

(
λ1

2
Vol(P ′i ) +

(
1− λ1

2

)
Vol(P ′i )

)

29



+
∑

P ′i∈P ′1:|P ′i |>1

λ1

2
Vol(P ′i )

≥
∑
P ′i∈P ′1

λ1

2
Vol(P ′i ) + xδ

(
1− λ1

2

)

=
∑
Pi∈P1

λ1

2
Vol(Pi) + xδ

(
1− λ1

2

)
.

This implies that

2e(P) ≥
∑
Pi∈P1

λ1

2
Vol(Pi) + xδ

(
1− λ1

2

)
+

∑
Pi∈P\P1

λ1

2
Vol(Pi) + e(P?, P ?)

=
∑
i∈[t]

λ1

2
Vol(Pi) + xδ

(
1− λ1

2

)
+ e(P?, P ?)

≥ λ1

2
Vol(∪Pi) + xδ

(
1− λ1

2

)
+ e(P?, P ?)

≥ λ1

2
δ(n− |P?| − x) + δx+ e(P?, P ?).

2.4 Proof of Theorem 2.1.1

Our strategy now is, in principle, simple: We use Lemma 2.3.4 along with Lemma 2.3.1

(iii) to prove that there are sufficiently many edges leaving any partition that Lemma 2.3.2

will allow us to apply Proposition 2.2.1 in each of our graphs Gj . Unfortunately, while this

straightforward approach works (with some effort) for partitions into not too many parts, it

breaks down as the number of parts gets very close to n. We handle these at the end in a

slightly different way.
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2.4.1 Partitions with a large part

Lemma 2.4.1. Under the standard assumptions, for all partitions P = {P1, ..., Pt} such

that there exists a part, P? ∈ {P1, ..., Pt} with Vol(P?) ≥ 1
2

Vol(G), we have that

(1− ε)E[ej(P)] >
(1 + ε)(t− 2)C log n

2
.

Proof. Fix a partition P = {P1, ..., Pt} such that there exists a P? ∈ {P1, ..., Pt} with

Vol(P?) ≥ 1
2

Vol(G). Without loss of generality, let us assume that P? = Pt. Note that

E[ej(P)] = pe(P). Observe,

2

p
E [ej(P)] =

∑
i∈[t−1]

e(Pi, P i) + e(P?, P ?)

≥ δx+
λ1δ(N − x)

2
+ e(P?, P ?) by Lemma 2.3.4, where N = n− |P?|.

Thus,

2

p
E [ej(P)] ≥ δx+

λ1δ(N − x)

2
+
λ1

2
Vol(P ?) by (1.4) and the fact that

Vol(P?) >
Vol(G)

2

≥ δx+
λ1δ(N − x)

2
+
λ1δ

2
N since |P ?| = N

≥ δx+
λ1δ(2N − x)

2
.
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Therefore,

2

p
E [ej(P)] ≥

(
δ − λ1δ

2

)
x+ λ1δN

≥ λ1δ

[
1

2
x+N

]
.

Notice that N ≥ x + 2(t − 1 − x) since N is equal to |P ?|, so it must be at least the

number of parts of size one plus 2 times the number of parts of size bigger than one. From

this, one obtains x ≥ 2(t− 1)−N . Thus,

1

2
x+N ≥ 1

2
(2(t− 1)−N) +N

= t− 1 +
N

2
.

Let N = αt. Then t−1+ N
2

=
(
1 + α

2

)
t−1. Since N ≥ t−1, we have that α ≥ 1/2.

This implies that

E[ej(P)] ≥ C log n

2

(
5

4
t− 1

)
.

Therefore,

(1− ε)E[ej(P)] ≥ (1− ε)C log n

2

(
5

4
t− 1

)
,
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and for 0 < ε < 1
9
< t+4

9t−4
we have that

(1− ε)C log n

2

(
5

4
t− 1

)
>

(1 + ε)(t− 2)C log n

2
.

By Lemma 2.3.1, we know that ej(P) ≥ (1 − ε)E[ej(P)] with probability at least

1− n−2. So we have shown that ej(P) > (1+ε)(t−2)C logn
2

with probability at least 1− n−2.

By Corollary 2.3.3, each graph Gj satisfies Schrijver’s condition with probability at least

1− n−2.

2.4.2 Partitions where 2 ≤ t ≤ (1−ε)
(1+4ε)

n.

Lemma 2.4.2. Under the standard assumptions, for all partitions P = {P1, ..., Pt} where

Vol(Pi) ≤ 1
2

Vol(G) for each i ∈ [t] and 2 ≤ t ≤ (1−ε)
(1+4ε)

n, we have that

(1− ε)E[ej(P)] >
(1 + ε)(t− 2)C log n

2
.

Proof. Fix a partition P = {P1, . . . , Pt}. Note that E[ej(P)] = pe(P).

Case 1: 2 ≤ t < (1−ε)
(1+ε)

n
2
.

In this case, we may apply (1.4) directly to each part of the partition. Observe,

2E[ej(P)] = p
∑
i∈[t]

e(Pi, Pi)
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≥ p
∑
i∈[t]

λ1δ

2
|Pi|

= p
λ1δ

2
n

=
Cn log n

2
.

Thus,

E[ej(P)] ≥ Cn log n

4
.

Since t ≤ (1−ε)
(1+ε)

n
2
, we have that

(1− ε)n
4

>
(1 + ε)(t− 2)

2
.

This implies that

(1− ε)E[ej(P)] ≥ (1− ε)nC log n

4

>
(1 + ε)(t− 2)C log n

2
.

Case 2:
(1− ε)
(1 + ε)

n

2
≤ t ≤ (1− ε)

(1 + 4ε)
n.

Let M = 1 + δ − λ1δ

2
, as in Lemma 2.3.4. Observe,

2

p
E[ej(P)] ≥ δx+

λ1δ

2
(n− x) by Lemma 2.3.4

≥
(
δ − λ1δ

2

)
x+

λ1δ

2
n
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≥ δ

2

(
t−
⌊
n− t
M − 1

⌋
− 1

)
+
λ1δ

2
n as x ≥ t−

⌊
n− t
M − 1

⌋
− 1 by

Lemma 2.3.4 and since λ1 ≤ 1

≥ λ1δ

(
t+ n

2
− o(n)

)

since λ1 ≤ 1, M ≥ δ
2
, and δ � C log n.

Thus,

(1− ε)E[ej(P)] ≥ (1− ε)C log n

2

(
t+ n

2
− o(n)

)
.

Notice that

(1− ε)
(
t+ n

2

)
− (1− ε)t =

(1− ε)n− (1 + 3ε)t

2

≤
(1− ε)n− (1 + 3ε)

(
1−ε
1+4ε

)
n

2
since t ≤ 1− ε

1 + 4ε
n

= cn for some positive constant c.

So, (1− ε)
(
t+ n

2

)
= (1 + ε)t+ Ω(n), and

(1− ε)C log n

2

(
t+ n

2
− o(n)

)
≥ (1 + ε)tC log n

2

≥ (1 + ε)(t− 2)C log n

2
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for n and C sufficiently large. Note that for the sake of clarity, we identified the n−1
M−1

and

constant terms as a ‘o(n)’ term. A tedious (but relatively simple) computation shows that

the inequality is satisfied for a relatively mild n, depending on C.

By Corollary 2.3.3, we have that for partitions P = {P1, ..., Pt} of V (G) into t parts

with 2 ≤ t ≤ (1−ε)
(1+4ε)

n and Vol(Pi) ≤ 1
2

Vol(G) for each i ∈ [t], Schrijver’s condition is

satisfied with probability at least 1− n−2.

2.4.3 Partitions where (1−ε)
(1+4ε)

n ≤ t < n− 6.

Lemma 2.4.3. Assume that the standard assumptions hold and that for each i ∈ [t],

Vol(Pi) <
1
2

Vol(G) and (1−ε)
(1+4ε)

n < t < n − 6. Then there are at least t colors between

parts with probability at least 1− n−2.

Notice that this is a corollary of the following lemma.

Lemma 2.4.4. Assume that the standard assumptions hold, and let Π be the set of partitions

of [n] into t parts, where (1−ε)
(1+4ε)

n < t < n− 6. Let C1, ..., Cs be the color classes of G, and

let ci = |Ci|. Let C be the set of collections of s − t color classes. For a partition, P ∈ Π

and C ∈ C, let BP,C be the event that none of the s− t color classes in C show up between

the parts of P . Then

P

[⋃
P∈Π

⋃
C∈C

BP,C

]
≤ n−2

for n and C sufficiently large.
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Remark: This implies that there are at least t colors between the parts in Π of size t.

Technically, we only need t − 1 colors between parts, but proving this result as stated,

where C consists of collections of s − t color classes instead of s − (t − 1) color classes,

makes an already messy computation slightly cleaner.

Proof. For k, ` ∈ N,
(

[k]
`

)
denotes the collection of all subsets of [k] of size `. Fix a

partition, P ∈ Π, and for each i ∈ [s], let CPi be the number of edges of color i between

parts in P .

Then

P

(⋃
C∈C

BP,C

)
≤
∑
C∈C

P (BP,C)

=
∑
C∈C

∏
Ci∈C

(1− p)|Ci|−|Ci∩P|

=
∑
C∈C

∏
Ci∈C

(1− p)CPi

=
∑

I∈( [s]
s−t)

(1− p)
∑

i∈I CPi

≤
∑

I∈( [s]
s−t)

exp

(
−p
∑
i∈I

CPi

)
.
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So we want to consider
∑

I∈( [s]
s−t)

exp

(
−p
∑
i∈I

CPi

)
. Let

f (x1, ..., xs; t) =
∑

I∈( [s]
s−t)

exp

(
−p
∑
i∈I

xi

)
.

We begin with an observation:

Claim. Let k be the smallest integer such that e(P) ≥ (s− k)λ1δ/2. Then

f
(
CP1 , · · · CPs ; t

)
≤ f

0, · · · , 0︸ ︷︷ ︸
k times

,
λ1δ

2
, · · · , λ1δ

2︸ ︷︷ ︸
s−k times

; t

 .

To see this, observe that by convexity,

f
(
CP1 , · · · CPs ; t

)
≤ f

0, · · · 0︸ ︷︷ ︸
k−1 times

, x∗,
λ1δ

2
, · · · , λ1δ

2︸ ︷︷ ︸
s−k times

; t

 ,

where 0 ≤ x∗ < λ1δ
2

. (The details are as in [14].) Note that the integer k was chosen so that

(s− k)λ1δ
2

+ x∗ = e(P). The claim then follows from monotonicity of f in its variables.

Let x be as in Lemma 2.3.4. Then

f
(
CP1 , ..., CPs ; t

)
=

∑
I∈( [s]

s−t)

exp

(
−p
∑
i∈I

CPi

)
(2.5)
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≤
min{t,k}∑

r=max{0,t−(s−k)}

(
k

r

)(
s− k

s− t− k + r

)
exp

(
−p(s− k − t+ r)

λ1δ

2

)
.

(2.6)

This inequality follows from the claim, noting that in (2.5), the sum is bounded above

by a sum where each of the CPi are 0 or λ1δ
2

and that choosing s − t colors consists of

choosing k−r of the classes of size zero, and s−t−(k−r) classes of size λ1δ
2

. The number

of ways of doing this (by symmetry of the binomial coefficients) is
(
k
r

)(
s−k

s−t−k+r

)
. Note that

writing them in this form is most convenient for bounding the binomial coefficients using

the inequality
(
n
k

)
≤ nk.

(2.6) ≤
min{t,k}∑

r=max{0,t−(s−k)}

exp
(
r log k + (s− k − t+ r) log(s− k)− C logn

2
(s− k − t+ r)

)
≤ n exp

(
(s− k − t) log(s− k)− C log n(s− k − t)

2

)
≤ exp

(
log n+ (s− k − t)

(
log(n2)− C log n

2

))
= exp

(
log n

(
1− (s− k − t)

(
C − 4

2

)))
. (2.7)

Here, in the first inequality we use that r log k+r log(s−k)− Cr logn
2
≤ 0 for C sufficiently

large. The second follows as s ≤ n2 and bringing the n to the exponent and the final

equality by algebra.
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To continue we need to use a lower bound on s− k to show that the exponent in (2.7)

is negative. To that end, note

s− k ≥ e(P)

λ1δ/2
− 1

≥ |E(G)|
δ

+
x

λ1

(
1− λ1

2

)
− 1 by Lemma 2.3.4

≥ |E(G)|
δ

+

(
t− n− t

M − 1
− 1

)(
1− λ1

2

)
1

λ1

− 1 by Lemma 2.3.4

≥ |E(G)|
δ

+
1

2

(
t− n− t

M − 1
− 3

)
as
(

1− λ1

2

)
1

λ1

≥ 1

2

≥ n

2
+

1

2

(
t− n− t

M − 1
− 3

)
. (2.8)

Using (2.8) in (2.7) we continue:

(2.7) ≤ exp

(
log n

(
1−

(
n

2
+

1

2

(
t− n− t

M − 1
− 3

)
− t
)(

C − 4

2

)))
= exp

(
− log n

((
(n− t)

(
1

2
− 1

2(M − 1)

)
− 3

2

)(
C − 4

2

)
− 1

))
≤ exp

(
− log n

((
n− t

4
− 3

2

)(
C − 4

2

)
− 1

))
.

Here, the second line followed by algebra (and in particular, combining the n
2
, t

2
and

−t terms) and factoring out n− t, while the final inequality follows as 1
2(M−1)

≤ 1
4
.

Now, observe that the number of partitions of the vertices into t parts is at most

(
n

t

)
tn−t =

(
n

n− t

)
tn−t

≤ nn−ttn−t

≤ exp(2(n− t) log(n)).
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Thus, a union bound shows that

P

[⋃
P∈Π

⋃
C∈C

BP,C

]
≤ exp

(
2(n− t) log(n)− log n

((
n− t

4
− 3

2

)(
C − 4

2

)
− 1

))
= exp

(
− log n

((
(n− t)− 6

4

)(
C − 4

2

)
− 1− 2(n− t)

))
.

So long as n − t ≥ 7 and C is sufficiently large this exponent is less than −2 log n.

Hence for n− t ≥ 7,

P

[⋃
P∈Π

⋃
C∈C

BP,C

]
≤ n−2.

2.4.4 Partitions where n− 6 ≤ t ≤ n.

Lemma 2.4.5. Assume that the standard assumptions hold, and let t ∈ {n− 6, n− 5, n−

4, n−3, n−2, n−1, n}. Then there are at least t−1 colors between parts with probability

at least 1− n−2.

Proof. Fix a partition with t parts where t ∈ {n−6, n−5, n−4, n−3, n−2, n−1, n}. We

want to show that there are at least t− 1 colors between the parts of our partition. Unfortu-

nately it is impossible to prove a lower bound on the number of edges in a particular color

class Ci in some Gj since Ci may be too small. To circumvent this, instead of considering

each individual color class, we combine color classes to create pseudocolor classes. As

shown in [14], we can construct n− 1 pseudocolor classes D1, ..., Dn−1 such that for each
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k ∈ [n− 1],

Dk =

(⋃̀
j=1

Dj

)
\

(
k−1⋃
i=1

Di

)
,

where ` is the least integer such that
∣∣∣(⋃`

j=1Cj

)
\
(⋃k−1

i=1 Di

)∣∣∣ ≥ n/4. Fix i ∈ [n− 1] and

j ∈ [t]. Let Z(j)
i = |E(Gi) ∩Dj|. Then

E[Z
(j)
i ] ≥ p

n

4
=
nC log n

4λ1δ
≥ nC log n

4δ
≥ C

4
log n.

Observe,

P
(
Z

(j)
i ≤

C

8
log n

)
≤ P

(
Z

(j)
i ≤

1

2
E[Z

(j)
i ]

)
≤ exp

(
−1

8
E[Z

(j)
i ]

)
by Lemma 2.2.2

≤ exp

(
−1

8

C

4
log n

)
= exp

(
−C log n

32

)
≤ n−4

for C and n sufficiently large. Thus,

⋃
j∈[t]

⋃
i∈[n−1]

P
(
Z

(j)
i ≤

C

8
log n

)
≤ t(n− 1)n−4

< n2n−4

= n−2.
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This shows that in each Gj there are at least C
8

log n edges within each pseudocolor

class with probability at least 1− n−2. It remains to show that, in the range that t ≥ n− 6,

that the edges of these pseudocolor classes cannot be contained entirely within parts. This

holds, however, as with so many parts there are only at most n− t parts of size greater than

one, and none of these can have size larger than n− t+ 1 – indeed, the most edges within

a part in this regime is
(

7
2

)
= 21, which occurs when t = n − 6 and one part has size 7

and the others size 1. Since C
8

log n > 21 (for n and C large enough) all n− 1 pseudocolor

classes are represented, and there are at least t− 1 colors between parts with probability at

least 1− n2.

Proof of Theorem 2.1.1. Theorem 2.1.1 follows almost immediately from the previous lem-

mas and Schrijver’s condition (2.2.1). Indeed, we have shown that for any 1 ≤ t ≤ n every

partition into t parts satisfies Schrijver’s condition with probability at least 1 − n−2. This

follows by combining Lemmas 2.3.1, 2.3.2, 2.4.1, and 2.4.2 (for 2 ≤ t ≤ (1−ε)
(1+4ε)

n), by

Lemma 2.4.3 (for (1−ε)
(1+4ε)

n ≤ t ≤ n− 6) and by Lemma 2.4.5 (for n− 6 ≤ t ≤ n). A union

bound over values of t completes the proof.

2.5 Applications and Discussion

While Theorem 2.1.1 applies to all sufficiently large graphs (as a function of λ1) it is

strongest when λ1 is close to one. This is when the requirements on the color classes are

weakest and the conclusion is strongest. Fortunately there are some graph classes satisfying

this. The only graphs with λ1 = 1 are complete bipartite graphs. The corollary below

follows immediately from Theorem 2.1.1 since λ1(Kn,m) = 1.
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Corollary 2.5.1. Let G be an edge-colored copy of Kn,m where m ≥ n and n ≥ C log(n+

m) for n,m, and C sufficiently large in which each color appears on at most n/2 edges.

Then G contains at least b n
C log(n+m)

c edge-disjoint rainbow spanning trees.

While non-complete graphs have λ1 < 1, there are several natural classes of graphs

which have λ1 close to one. First, consider random d-regular graphs. Friedman, Kahn, and

Szemerédi gave a bound on the eigenvalues of such graphs with d fixed in [33]. This was

a combination of two papers – one by Friedman, and the other by Kahn and Szemerédi.

Their techniques were different, and in [9], Broder, Frieze, Suen, and Upfal showed that

Kahn and Szemerédi’s technique could be applied to more dense random d-regular graphs.

More recently, Cook, Goldstein, and Johnson improved the range at which the eigenvalue

bound was known.

Theorem 2.5.2 ([26]). LetA be the adjacency matrix of a uniform random d-regular graph

on n vertices. Let λ0(A) ≥ · · · ≥ λn−1(A) be the eigenvalues of A, and let λ(A) =

max{λ1(A),−λn−1(A)}. For any C0, K > 0, there exists α > 0 such that if 1 ≤ d ≤

C0(n2/3), then P(λ(A) ≤ α
√
d) ≥ 1− n−K for n sufficiently large.

In a d-regular graph, we have that λ1(L) = 1− 1
d
λ1(A). Therefore, this result gives us

a lower bound on λ1(L), which we can use to apply Theorem 2.1.1.

Corollary 2.5.3. Let G be an edge-colored uniform random d-regular graph in which

C log n ≤ d ≤ Cn2/3 (for C and n sufficiently large). Then there exists α > 0 such

that if each color class has size at most d
(

1− α√
d

)
/2, then G contains at least

⌊
d−α
√
d

C logn

⌋
edge-disjoint rainbow spanning trees with high probability.

Our result applies to some graphs with very skewed degree distributions. The graph

Gn,p is the graph on n vertices in which each edge appears with probability p. This can be
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generalized in the following way. For a sequence w = (w1, · · · , wn), let ρ = 1∑n
i=1 wi

. Then

G(w) is a random graph in which we label the vertices v1, ..., vn, and the edge vivj appears

with probability wiwjρ [21]. (Here, we allow for loops.) In the graph G(w), it is easy to

see that E[deg(vi)] = ωi. Notice that if we take w = (np, · · ·np), we get G(w) = Gn,p.

It is well known [36] that λ1(Gn,p) ≥ 1− 2√
np

with high probability. So for all ε > 0,

λ1(Gn,p) ≥ 1 − ε for n sufficiently large. Also, δ(Gn,p) ≥ (1 − ε)np if np � log2 n.

These results also apply to irregular graphs. For instance, consider G(w). Fix ε > 0. If

wmin � log2 n, then δ ≥ (1 − ε)wmin with high probability for n large enough. Also,

if wmin � log2 n, then λ1(G(w)) ≥ 1 − ε with high probability. This is implied by the

following result of Chung, Lu, and Vu.

Theorem 2.5.4 ([22]). For a random graph with given expected degrees, if the minimal

expected degree wmin satisfies wmin � log2 n, then almost surely the eigenvalues of the

Laplacian satisfy

max
i 6=0
|1− λi| ≤ (1 + o(1))

4√
w

+
g(n) log2 n

wmin

,

where w =
∑n

i=1 wi

n
is the average expected degree and g(n) is a function tending to infinity

(with n) arbitrarily slowly.

This bound on λ1(G(w)) gives us the following corollary of Theorem 2.1.1.

Corollary 2.5.5. Fix ε > 0. Assume that wmin � log2 n and G(w) is edge-colored so

that each color class has size at most wmin(1−ε)
2

. Then for n and C sufficiently large, a

graph G ∈ G(w) contains at least
⌊
wmin(1−ε)
C logn

⌋
edge-disjoint rainbow spanning trees with

probability 1− o(1).
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One can also wonder about the sharpness of our result and the dependence on λ1.

Let S ⊆ V (G) such that hG = e(S,S)
Vol(S)

. By Cheeger’s inequality, λ1 > 1
2

(
e(S,S)
Vol(S)

)2

. So

if λ1 is very small, then e(S, S) is much smaller than Vol(S). That is, there is a sparse

cut in the graph. A sparse cut limits the number of disjoint spanning trees the graph can

contain, let alone the number of disjoint rainbow spanning trees. Also, if S ⊆ V (G) with

Vol(S) ≤ 1
2

Vol(G), Cheeger’s inequality implies that e(S, S) ≥ λ1
2

Vol(S). From this we

can see that if e(S, S) is small, then λ1 is also small. However, it is not clear whether or

not this dependence on λ1 can be improved.

Question 2.5.1. Is it possible to improve this dependence on λ1? Is it possible to replace

λ1 with
√
λ1, say, in Theorem 2.1.1?

On the other hand, certainly no more than δ edge disjoint spanning trees are possible

in any graph with minimum degree δ. It seems plausible that the logarithmic factor could

be removed in our lower bound on the number of rainbow spanning trees. In the more

specialized situation of proper edge colorings of Kn, this is what [41] does.

In our proof of the main result, λ1 was mostly used to lower bound the isoperimetric

constant by Cheeger’s inequality. It seems likely that λ1 could be replaced by the isoperi-

metric constant. However, the isoperimetric constant is practically impossible to compute

so stating the hypothesis in terms of λ1 seems most natural.

It’s also possible that the bound on the size of the color classes could be improved.

It is clear that if color classes are allowed to be larger than δ
2

in a δ-regular graph, then

rainbow spanning trees can be avoided entirely. In particular, for complete bipartite graphs

(where λ1 = 1) our size bound on color classes is correct. It is less clear that the factor

of λ1 appearing in our bound is actually required. We suspect that this dependence can be
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somewhat weakened, though it is unclear to us exactly what the dependence (if any!) on

λ1 the size of the color classes should have. Our proof rather naturally leads to bounding

color classes by λ1δ
2

as we have done.

Finding edge-disjoint rainbow spanning trees also has potential applications in commu-

nication networks. Consider a communication network with n nodes. It would be helpful

to find a way to connect all of the nodes in the cheapest way possible. A tree is a way of

connecting nodes “cheaply”, and that tree should be spanning if we want every node in the

network to be connected. A rainbow spanning tree in this setting could represent a way of

connecting all the nodes where the colors of the edges represent different wavelengths or

frequencies. Showing that such a communications network has many edge-disjoint rainbow

spanning trees shows that it is robust, in a certain sense.

It is also worth mentioning that the method of proving Theorem 2.1.1 is more interest-

ing than the result itself. In Theorem 2.1.1 we used spectral graph theory to extend a result

about the complete graph to general graphs. These methods can be used to help answer

extremal questions on general classes of graphs.

2.6 Related Questions

Erdős and Gallai [32] showed that if a graph, G, has average degree bigger than k− 2,

then G contains a path on k vertices. This is related to the Erdős-Sós Conjecture:

Conjecture 2.3. Let G be a graph, and let d denote the average degree of G. If d > k− 2,

then G contains every tree on k vertices as a subgraph.

This motivates the question of what rainbow structures edge-colored graphs contained.

If G is a properly edge-colored complete graph, then we have that d > n− 2. However, G
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does not necessarily contain a rainbow Hamiltonian path [53]. However, we can still ask

what one can say along these lines.

Question 2.6.1. Suppose you have a properly edge-colored graph, G, with average degree

d. What is the largest k = k(d) such thatG contains every rainbow tree on up to k vertices?

Related to this, Montgomery, Pokrovskiy, and Sudakov [55] proved the following

result.

Theorem 2.6.1 ([55]). Assume that ε, 1
k
� 1

n
> 0 and G is the complete graph on n

vertices and is edge-colored so that each vertex is incident to at most k edges of any one

color. Then G contains a rainbow copy of every tree with at most (1− ε)n/k vertices.

Instead of looking into average degree, we could, instead, ask what trees a graph is

guaranteed to contain if we know something about the minimum degree of the graph. In

fact, if we have information about the average degree of a graph, then we can make the

following observation.

Observation 2.6.2. If a graphG has average degree at least d, thenG contains a subgraph

with minimum degree at least d
2
.

This can be proved by induction on |V (G)|. Let G be a graph with n vertices and

average degree at least d. If the minimum degree of G is at least d
2
, then we are done. So

assume δ(G) < d
2
. Let v ∈ V (G) with deg(v) < d

2
. Let G′ be the graph obtained by

deleting v. Let d(G′) denote the average degree of G′, and let degH(u) denote the degree

of a vertex u in a graph H .
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Notice that

d(G′) =
2|E(G)| − 2 degG(v)

n− 1

>
2|E(G)| − d

n− 1
since degG(v) <

d

2

≥
2|E(G)| − 2|E(G)|

n

n− 1

= 2|E(G)|
(

1− 1
n

n− 1

)
= 2|E(G)|

( n−1
n

n− 1

)
= 2|E(G)|

(
1

n

)
=

2|E(G)|
n

≥ d.

So by induction, G′ contains a subgraph with minimum degree at least d
2
, so G contains a

subgraph with minimum degree at least d
2
.

Question 2.6.2. SupposeG is a properly edge-colored graph with minimum degree d. What

is the largest k = k(d) such that G contains every rainbow tree on up to k vertices?

It is not hard to find a k such that G contains every rainbow tree on up to k vertices, as

evidenced by the following proposition. However, it seems unlikely that this is the largest.

Proposition 2.6.3. If G is a properly edge-colored graph with minimum degree at least d,

then G contains every rainbow tree on up to
⌊
d

2

⌋
+ 1 vertices.

Proof. We proceed by induction on the size of trees. Assume G contains every rainbow

tree on up to t vertices where 1 ≤ t ≤ bd/2c, and let T be a tree on bd/2c+ 1 vertices. Let
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x be a leaf of T , and assume x ∼ y for y in T . Delete x. Then the remaining tree, T ′, has

bd/2c vertices. By induction, we can embed T ′ in G. We handle the cases that d is even

and odd separately.

• If d is even, then T ′ has
d

2
vertices. Since the minimum degree of G is at least d, we

know that the vertex v has at least d −
(
d

2
− 1

)
=
d

2
+ 1 neighbors that are not in

T ′. Also, since T ′ has
d

2
vertices, we know that there are

d

2
− 1 colors represented in

T ′. Since
(
d

2
+ 1

)
−
(
d

2
− 1

)
= 2, there are two neighbors of v that can be added

to the tree without repeating any colors.

• If d is odd, then T ′ has
d− 1

2
vertices. So the vertex v has at least d−

(
d− 1

2
− 1

)
=

d+ 3

2
neighbors that are not in T ′. Also, there are

d− 1

2
− 1 =

d− 3

2
colors repre-

sented in T ′. Notice that
d+ 3

2
− d− 3

2
= 3, so there are 3 neighbors of v that can

be added to the tree without repeating a color.

Rainbow Matchings

It is also interesting to consider substructures other than rainbow trees in graphs, such

as rainbow matchings. A rainbow matching in an edge-colored graph is a matching in

which each edge is a different color. Rainbow matchings are well-studied.

Fu [62] showed that a properly-colored complete graph on an even number of ver-

tices contains a rainbow matching. Wang and Li [61] showed that if G is an edge-colored
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graph in which each vertex has color degree at least k, then G has a rainbow matching of

cardinality
⌈

5k−3
12

⌉
. They conjectured the following:

Conjecture 2.4 ([61]). Let G be an edge-colored graph, and let d̂(v) denote the color

degree of a vertex v ∈ V (G). Suppose that d̂(v) ≥ k ≥ 4 for each v ∈ V (G). Then G has

a rainbow matching with
⌈
k
2

⌉
edges.

In [51], LeSaulnier, et al., showed that if G is an edge-colored graph, then G has a

rainbow matching of size at least
⌊
δ̂(G)

2

⌋
, where δ̂(G) = minv∈V (G) d̂(v). They also proved

the following theorem:

Theorem 2.6.4 ([51]). Each condition below guarantees that an edge-colored graphG has

a rainbow matching of size at least
⌈
δ̂(G)

2

⌉
.

(a) G contains more than 3(δ̂(G)−1)
2

vertices.

(b) G is triangle-free.

(c) G is properly edge-colored, G 6= K4, and |V (G)| 6= δ̂(G) + 2.

Wang asked the following question:

Question 2.6.3 ([60]). Is there a function f(n) such that for each properly colored graph,

G, with |V (G)| ≥ f(δ(G)), G must contain a rainbow matching of size δ(G)?

Wang proved that if a graphG is properly edge-colored and has at least 8δ
5

vertices, then

G has a rainbow matching of size at least
⌊

3δ
5

⌋
. Wang also showed that if G is a properly

edge-colored triangle-free graph, then G has a rainbow matching of size at least
⌊

2δ
3

⌋
.
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Diemunsch, et al. [28] answered this question of Wang and showed that if G is a

properly edge-colored graph with |V (G)| ≥ 98δ(G)
23

, then G contains a rainbow matching of

size δ(G). Gyárfás and Sárközy [38] improved this result by showing that ifG is a properly

edge-colored graph with |V (G) ≥ 4δ(G)− 3, then G contains a rainbow matching of size

δ(G).

2.7 Conclusion

In this chapter, we successfully generalized a result related to the Brualdi-Hollingsworth

conjecture to general graphs. In particular, we showed that edge colored graphs with

bounded color class size have many edge-disjoint rainbow spanning trees.

The most important part of this work is that it illustrates that spectral graph theory

gives us enough information about the structure of a general graph to apply probabilistic

methods and extend a result about the complete graph to say something about substructures

in general graphs. Recent results have improved the bounds on edge-disjoint rainbow span-

ning trees in edge colored complete graphs, and it would be interesting to consider different

techniques that would allow Theorem 2.1.1 to be improved. In particular, it would be good

to remove the log factor.

(Part of this chapter is based on the paper “Many edge-disjoint rainbow spanning trees

in general graphs” [43], which is joint work with Paul Horn. This paper has been submit-

ted.)
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CHAPTER 3: PAGERANK

3.1 Introduction/Background

Personalized PageRank, developed by Brin and Page [8] ranks the importance of web-

pages ‘near’ a seed. PageRank can be thought of in a variety of ways, but one of the

most important points of view of PageRank is that it is a the distribution of a random walk

allowed to diffuse for a geometrically distributed number of steps. A key parameter in

PageRank, then, is the ‘jumping’ or ‘teleportation’ constant which controls the expected

length of the involved random walks. As it controls the length, it controls locality – that is,

how far from the seed the random walk is (likely) willing to stray.

When the jumping constant is small, the involved walks are (on average) short, and the

mass of the distribution will remain concentrated near the seed. As the jumping constant

increases, then the involved walk will (likely) be much longer. This will allow the random

walk to mix, and the involved distribution will tend towards the stationary distribution of

the random walk. As the PageRank of individual vertices (for a fixed jumping costant)

can be thought of as a measure of importance to the seed, then as the jumping constant

increases this importance diffuses.

Here, we are interested in how this importance diffuses as the jumping constant

increases. This diffusion is related to the geometry of the graph; in particular the impor-

tance can get ‘caught’ by small cuts. This partially accounts for PageRank’s importance

53



Figure 3.1: Sparse cut

in web search but has other uses as well – for instance Andersen, Chung and Lang use

PageRank to implement local graph partitioning algorithms in [4].

This chapter seeks to understand the diffusion of influence (as the jumping constant

changes) in analogy to the diffusion of heat. The study of solutions to the heat equation

∆u = ∂
∂t
u on both graphs and manifolds has a long history, motivated by its close ties to

geometric properties of graphs. The geometry of a graph is very important when consid-

ering the diffusion of heat. If a graph has a sparse cut, as in Figure 3.1, then it will take

longer for heat to diffuse. This is similar to the diffusion of influence when considering

PageRank. A particularly useful way of understanding positive solutions to the heat equa-

tion is through curvature lower bounds. Knowing that a graph satisfies certain curvature

lower bounds can tell us that our graph does not contain a sparse cut.

On graphs, the relationship between heat flow and PageRank has been noticed and

used several times: Chung [17] introduced the notion of heat kernel PageRank and used it

to improve the algorithm of Anderson, Chung, Lang for graph partitioning and it is well

known that solutions to the heat equation reflect the diffusion of a continuous time random

walk. In [17], Chung used solutions of the heat equation, and what we do here is essentially

replacing PageRank with solutions to the heat equations.
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Curvature lower bounds can be used to prove ‘gradient estimates’, which bound how

heat diffuses locally in space and time and which can be integrated to obtain Harnack

inequalities. Most classical of these is the Li-Yau inequality [52], which (in its simplest

form) states that if u is a positive solution to the heat equation, ∂
∂t
u = ∆u, on a non-

negatively curved n-dimensional compact manifolds, then u satisfies

|∇u|
u2
− ut
u
≤ n

2t
. (3.1)

It was difficult to find a discrete version of this inequality. One reason for this is that

the Laplace does not satisfy the chain rule. However, in the graph setting, Bauer, et al.

proved a gradient estimate for the heat kernel on graphs in [6]. In this chapter we aim to

prove a similar inequality for PageRank. Our gradient estimate, which is formally stated

as Theorem 3.3.3 below, is proved using the exponential curvature dimension inequality

CDE, introduced by Bauer et. al. This is a new notion of curvature, and it is beneficial to

us because it effectively ‘bakes in’ the chain rule.

Although much has been done with curvature of manifolds, there isn’t necessarily a

clear way of defining curvature on graphs. Ollivier [56] introduced a notion of Ricci curva-

ture of Markov chains on metric spaces, and Lin, Lu, and Yau modified Ollivier’s definition

of curvature in order to study other classes of graphs.

In some ways, our inequality is more closely related to another inequality of Hamilton

[39] which bounds merely |∇u|
u2

, and was established for graphs by Horn in [40]. Other

related works establish gradient estimates for eigenfunctions for the Laplace matrix; these

include [19].
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This chapter is organized as follows: In the next section we introduce definitions for

both PageRank and the graph curvature notions used. We further establish a useful ‘time

parameterization’ for PageRank, which allows us to think of increasing the jumping con-

stant as increasing a time parameter, and makes our statements and proofs cleaner. In

Section 3 we prove a gradient estimate for PageRank. In Section 4 we use this gradient

estimate to prove a Harnack-type inequality that allows us to compare PageRank at two

vertices in a graph.

3.2 Preliminaries

3.2.1 PageRank

(Personalized) PageRank was introduced as a ranking mechanism [45], to rank the

importance of webpages with respect to a seed. To define personalized PageRank, we intro-

duce the following operator which we call the PageRank operator. This operator, P (α), is

defined as follows:

P (α) = (1− α)
∞∑
k=0

αkW k,

where W = D−1A is the transition probability matrix for a simple random walk. Here the

parameter α is known as the jumping or teleportation constant. For a finite n-vertex graph,

P (α) is a square matrix; the personalized PageRank vector of a vector u : V → R is

uTP (α) = (1− α)
∞∑
k=0

αkuTW k
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PageRank can then be viewed as the distribution of a geometric sum of the distribu-

tion of simple random walks: that is, the expected distribution of a simple random walk

of length geometrically distributed with parameter 1 − α starting at initial distribution u.

As α → 1, the expected length of this geometric random walk tends to infinity, and the

resulting distribution tends to the limiting distribution of a simple random walk (which, for

a finite graph is proportional to the degree.)

It has been noticed ([17],[18]) that PageRank has many similarities to the heat kernel

et∆. Chung defined the notion of ‘Heat Kernel PageRank’ to exploit these similarities. In

this work, we take inspiration in the opposite direction: we are interested in understanding

the action of the PageRank operator in analogy to solutions of the heat equation.

The Laplace operator, ∆, on a graph G is defined at a vertex x by

∆f(x) =
1

deg(x)

∑
y∼x

(f(y)− f(x)).

In order to emphasize our point of view, we note that graph theorists view the heat

kernel operator in two different ways: For a vector u : V → R studying the evolution of

uT et∆

as t → ∞ is really studying the evolution of the continuous time random walk while

studying the evolution of

et∆u
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as t→∞ is studying the solutions to the heat equation

∆u = ut.

The differing behavior of these two evolutions comes from the fact that (for irregu-

lar graphs) the left and right eigenvectors of ∆ = I − W are different: the left Perron-

Frobenius eigenvector of ∆ is proportional to the degrees of a graph (as it captures the

stationary distribution of the random walk) while the right Perron-Frobenius eigenvector is

the constant vector. In particular as t→∞ the vector et∆u tends to a constant. Physically,

this represents the ‘heat’ on a graph evening out, and this regularization (and the rate of

regularization) is related to a number of geometric features of a graph.

A similar feature holds for PageRank. As α → 1, uTP (α) tends to a vector propor-

tional to degrees, but P (α)u regularizes. In this chapter we study this regularization.

To see this regularization, notice that

W = D−1A

= D−1/2
(
D−1/2AD−1/2

)
D1/2

= D−1/2

(
n−1∑
i=0

λiϕiϕ
T
i

)
D1/2,

where 1 = λ0 ≥ λ1 ≥ · · · ≥ λn−1 are the eigenvalues of D−1/2AD−1/2 and ϕ0, · · · , ϕn−1

are the corresponding eigenvectors. Notice that ϕ0 = d1/2√
Vol(G)

is the eigenvector corre-

sponding to λ0 = 1, since

D−1/2AD−1/2d1/2 = D−1/2A1
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= D−1/2d

= d1/2.

So

W k = D−1/2

(
n−1∑
i=0

λkiϕiϕ
T
i

)
D1/2.

Thus,

P (α) = (1− α)
∑
k=0

αkW k

= (1− α)
∞∑
k=0

D−1/2

(
n−1∑
i=0

(αλi)
kϕiϕ

T
i

)
D1/2

= (1− α)
n−1∑
i=0

D−1/2

(
∞∑
k=0

(αλi)
kϕiϕ

T
i

)
D1/2 by Fubini’s theorem

= (1− α)
n−1∑
i=0

D−1/2

(
1

1− αλi
ϕiϕ

T
i

)
D1/2

= (1− α)

(
1

1− α
D−1/2d

1/2
(
d1/2

)T
Vol(G)

+
n−1∑
i=1

D−1/2

(
1

1− αλi
ϕiϕ

T
i

)
D1/2

)

=
1 · d

Vol(G)
+

n−1∑
i=1

1− α
1− αλi

D−1/2ϕiϕ
T
i D

1/2.

(Recall the proof of Theorem 1.3.3, and note that this computation is very similar.)

Consider
1− α

1− αλi
. (3.2)

Notice that if G is connected and not bipartite, then λi < 1 for 1 ≤ i ≤ n − 1. So
1− α

1− αλi
→ 0 as α → 1. As α → 1, the dominant term in P (α) becomes

1 · d
Vol(G)

. Note
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that the smaller λi are, the faster this tends to zero. This is Cheeger’s inequality in action

– if λ1 ≈ 1, then there is a sparse cut (since D−1/2AD−1/2 = I − L), so diffusion will

take longer. If the λi are far from 1, then there won’t be a sparse cut, so the diffusion will

happen more quickly.

If ϕ is a probability distribution, then

ϕT
1 · d

Vol(G)
=

d

Vol(G)
,

which is the stationary distribution for a random walk.

If, instead, we consider P (α)u for a vector u, then
1 · d

Vol(G)
u = c1, for a constant c. So

P (α) regularizes, or “smooths out” as α→ 1.

We note that the left and right action of the PageRank operator are closely related, and

we study the left action versus the right action. For an undirected graph

uTP (α) = (P (α)Tu)T = (DP (α)D−1u)T ,

so that the regularization of D−1u can be translated into information on the ‘mixing’ of the

personalized PageRank vector seeded at u.

To complete the analogy between P (α)u and et∆u, it is helpful to come up with a time

parameterization t = t(α) so we can view the regularization as a function of ‘time’, in

analogy to the heat equation. To do this in the best way, it is useful to think of α = α(t)

and compute
∂

∂t
Pα.
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Proposition 3.2.1.
∂

∂t
Pα =

α′

(1− α)2
∆P 2

α,

where ∆P 2
α = ∆Pα(Pα).

Proof. Notice that

∂

∂t
Pα =

∂

∂t
(1− α)(I − αW )−1

= −α′(I − αW )−1 + (1− α)α′W (I − αW )−2

= α′((αW − I)(I − αW )−2 + (1− α)W (I − αW )−2

= α′((W − I)(I − αW )−2)

=
α′

(1− α)2
∆P 2

α.

This is remarkably close to the heat equation if α′(t) = (1−α)2; solving this separable

differential equation yields that α = α(t) = 1 − 1
t+C

. Since we desire a parameterization

so that α(0) = 0 and α→ 1 as t→∞, this gives us that C = 1 from whence we obtain:

α(t) = 1− 1

t+ 1

t =
α

1− α

(3.3)

(3.4)
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We showed that (3.2)→ 0 as α→ 1. If we used this time parameterization, we would

get that

(3.2) =
1−

(
1− 1

t+1

)
1−

(
1− 1

t+1

)
λi

=
1
t+1

1− λi + 1
t+1
λi
.

Since λi is bounded away from 1 for 1 ≤ i ≤ n− 1, we have that

1
t+1

1− λi + 1
t+1
λi
→ 0 as t→∞.

Given the time parameterization in Equation 3.3, we get the following Corollary to

Proposition 3.2.1.

Corollary 3.2.2.
∂

∂t
Pα = ∆P 2

α,

where ∆P 2
α = ∆Pα(Pα).

Proof. From Proposition 3.2.1, we see that

∂

∂t
Pα =

α′

(1− α)2
∆P 2

α

=

1
(t+1)2(

1
t+1

)2 ∆P 2
α by Equation 3.3.

= ∆P 2
α.
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Fix a vector u : V → R. From now on, we let

f = Pαu. (3.5)

Lemma 3.2.3. For f = Pαu and t =
α

1− α
, we have that ∆f =

f − u
t

.

Proof. We know that W = D−1A and ∆ = W − I , so

∆ = (W − I)(1− α)(I − αW )−1

= (W − 1

α
I +

(
1− α
α

)
I)(1− α)(I − αW )−1

= − 1

α
(I − αW )(1− α)(I − αW )−1 +

1− α
α
· (1− α)(I − αW )−1

= −1− α
α

I +
1− α
α

Pα

=
1− α
α

(Pα − I).

So

∆f = ∆Pαu

=
(1− α)

α
(Pα − I)u

=
f − u
t

.

3.2.2 Graph curvature

In this chapter we study the regularization of P (α)u for an initial seed u as α → 1.

On one hand, the information about this regularization is contained in the spectral decom-
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position of the random walk matrix W . The eigenvalues of P (α) are determined by the

eigenvalues of W : indeed, if λ is an eigenvalue of W , then 1−α
1−αλi is an eigenvalue of

Pα. One may observe that, then, as α → 1 all eigenvalues of Pα tend to zero except for

the eigenvalue, 1 , of W and this is what causes the regularization. Thus the difference

between Pαu and the constant vector can be bounded in terms of (say) the infinity norms

of eigenvectors of Pα and α itself.

On the other hand, curvature lower bounds (in graphs and manifolds) have proven to be

important ways to understand the local evolution of solutions to the heat equation. As we

have already noted important similarities between heat solutions and PageRank, we seek

similar understanding in the present case. Curvature, for graphs and manifolds, gives a

way of understanding the local geometry of the object. A manifold (or graph) satisfying

a curvature lower bound at every point has a locally constrained geometry which allows a

local understanding of heat flow through where a ‘gradient estimate’ can be proved. These

gradient estimates can then be ‘integrated’ over space-time to yield Harnack inequalities

which compare the ‘heat’ of different points at different times. This, in turn, can be used to

establish geometric properties of the graph, which we will discuss in more detail later.

While a direct analogue of the Ricci curvature is not defined in a graph setting, a

number of graph theoretical analogues have been developed recently in an attempt to apply

geometrical ideas in the graph setting. In the context of proving gradient estimates of

heat solutions, a new notion of curvature known as the exponential curvature dimension

inequality was introduced in [6]. In order to discuss the exponential curvature dimension

inequality, we first need to introduce some notation. Since it will show up frequently in

computation, we define the following averaged sum.
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Definition 3.2.1. For x ∈ V (G),

∑̃
y∼x

h(x, y) =
1

deg(x)

∑
y∼x

h(x, y).

Definition 3.2.2. The gradient form Γ is defined by

2Γ(f, g)(x) = (∆(f · g)− f ·∆(g)−∆(f) · g)(x)

=
∑̃

y∼x
(f(y)− f(x))(g(y)− g(x)).

We write Γ(f) = Γ(f, f).

In general, there is no “chain rule” that holds for the Laplacian on graphs. However,

the following formula does hold for the Laplacian and will be useful to us:

∆f = 2
√
f∆
√
f + 2Γ(

√
f). (3.6)

At the heart of the exponential curvature dimension inequality is an idea that had been

used previously based on the Bochner formula. The Bochner formula reveals a connection

between solutions to the heat equation and the curvature of a manifold. Bochner’s formula

tells us that if M is a Riemannian manifold and f is in C∞(M), then

1

2
∆|∇f |2 = 〈∇f,∇∆f〉+ ||Hessf ||22 + Ric(∇f,∇f).
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The Bochner formula implies that for an n-dimensional manifold with Ricci curvature

at least K, we have

1

2
∆|∇f |2 ≥ 〈∇f,∇∆f〉+

1

n
(∆f)2 +K|∇f |2. (3.7)

An important insight of Bakry and Emery was that an object satisfying an inequality

like (3.7) could be used as a definition of a curvature lower bound even when curvature

could not be directly defined. Such an inequality became known as a curvature dimension

inequality, or the CD inequality.

Klartag, Kozma, Ralli, and Tetali [49] used this notion of curvature and showed that

Cayley graphs of abelian groups, the complete graph, the symmetric group, Sn, with all

transpositions, and slices of the hypercube satisfy certain curvature lower bounds. In [20],

Chung, Lin, and Yau proved a Harnack inequality for finite connected graphs that satisfied

this curvature lower bound. The CD inequality has applications for graphs, but it is badly-

suited for studying diffusion.

Bauer, et al. [6] introduced a modification of the CD inequality that defines a new

notion of curvature on graphs that we will use here – the exponential curvature inequality.

Definition 3.2.3. A graph is said to satisfy the exponential curvature dimension inequal-

ity CDE(n,K) if, for all positive f : V → R and at all vertices x ∈ V (G) satisfying

(∆f)(x) < 0

∆Γ(f)− 2Γ

(
f,

∆f 2

2f

)
≥ 2

n
(∆f)2 + 2KΓ(f), (3.8)

where the inequality in (3.8) is taken pointwise.
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While the inequality (3.8) may seem somewhat unwieldy it, as shown in [6], arises from

‘baking in’ the chain rule and is actually equivalent to the standard curvature dimension

inequality (3.7) in the setting of diffusive semigroups (where the Laplace operator satisfies

the chain rule.) Additionally, in [6], it is shown that some graphs including the Ricci flat

graphs of Chung and Yau satisfy CDE(n, 0) (and hence are non-negatively curved for this

curvature notion) and some general curvature lower bounds are given.

An important observation is that this notion of curvature only requires looking at the

second neighborhood of a graph, and hence this kind of curvature is truly a local property

(and hence a curvature lower bound can be certified by only inspecting second neighbor-

hoods of vertices.)

3.3 Gradient Estimate for PageRank

Our main result will make use of the following lemma from [6], and we include its

simple proof for completeness.

Lemma 3.3.1 ([6]). LetG(V,E) be a (finite or infinite) graph, and let f,H : V ×{t?} → R

be functions. If f ≥ 0 and H has a local maximum at (x?, t?) ∈ V × {t?}, then

∆(fH)(x?, t?) ≤ (∆f)H(x?, t?).

Proof. Observe that

∆(fH)(x?, t?) =
∑̃

y∼x?
(f(y, t?)H(y, t?)− f(x?, t?)H(x?, t?))

≤
∑̃

y∼x?
(f(y, t?)H(x?, t?)− f(x?, t?)H(x?, t?))

= (∆f)H(x?, t?).
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Our goal is to show that Γ(
√
f)√

f ·M ≤
C(t)
t

for some function C(t). However, C(t)
t

is badly

behaved as t → 0. The way that we handle this is by showing that H := t · Γ(
√
f)√

f ·M ≤ C(t).

If H is a function from V × [0,∞) → R, then instead consider H as a function from

V × [0, T ] → R for some T > 0. Then, by compactness, there is a point (x?, t?) in

V × [0, T ] at which H(x, t) is maximized. At this maximum, we know that ∆H ≤ 0 and

∂
∂t
H ≥ 0. Since L = ∆− ∂

∂t
, this implies that at the maximum point, LH ≤ 0. Using the

CDE inequality, along with some other lemmas and an identity, we are able to relate H2

with itself. This allows us to find an upper bound for H , and thus for Γ(
√
f)√

f ·M . Our situation

is a little easier, because we consider a fixed t.

Lemma 3.3.2. Let G be a graph, and suppose 0 ≤ f(x) ≤ M for all x ∈ V (G) and

t ∈ [0,∞), and let H = tΓ(
√
f)√

f ·M . Then

∆
√
f =

f − u
2t
√
f
−
√
MH

t
.

Proof. Using (3.6), we get that ∆
√
f =

∆f − 2Γ(
√
f)

2
√
f

. Thus,

∆
√
f =

∆f

2
√
f
− Γ(

√
f)√
f

=
f − u
2t
√
f
−
√
MH

t
by Lemma 3.2.3.

68



At the heart of the proof of the Li-Yau inequality on manifolds is the identity

∆ log u =
∆u

u
− |∇ log u|2 =

∆u

u
− |∇u|

2

u2
.

The Li-Yau inequality on graphs [6] uses the identity

∆
√
u√
u

=
∆u

u
− |∇

√
u|2

u
.

Lemma 3.3.2 is similar to these other identities and the CDE inequality allows us to

exploit this relationship.

Theorem 3.3.3. Let G be a graph satisfying CDE(n, 0). Suppose 0 ≤ f ≤ M for all

x ∈ V (G) and t ∈ (0,∞). Then

Γ(
√
f)√

f ·M
≤ n+ 4

n+ 2
· 1

t
+ 2

√
n

n+ 2
· 1√

t
.

Notice that a true Li-Yau-type inequality would have a time derivative. However, prov-

ing this in space is just as strong as it would be with the time derivative.

Proof. Let H =
tΓ(
√
f)√

f ·M
. Fix t > 0. Let (x?, t) be a point in V × {t} such that H(x, t)

is maximized. All of the following computations are made at the point (x?, t). In order to

apply the exponential curvature dimension inequality to
√
f , we must have that ∆

√
f < 0.
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If ∆
√
f ≥ 0, then by Lemma 3.3.2 we get that

f − u
2t
√
f
−
√
MH

t
≥ 0. Thus,

√
MH

t
≤ f − u

2t
√
f
≤
√
f

2t
,

which implies that

H ≤
√
f

2
√
M
≤ 1

2
.

So we can assume ∆
√
f < 0, which allows us to use the inequality in (3.8).

Then we have that

(∆
√
f)H ≥ ∆(

√
fH) by Lemma 3.3.1

≥ t√
M

(
2

n

(
∆
√
f
)2

+ 2Γ

(√
f,

∆f√
f

))
by (3.8).

Thus,

(
∆
√
f
)
H ≥ t√

M

 2

n

(
f − u
2t
√
f
−
√
MH

t

)2

+
2

t
Γ(
√
f)− 2

t
Γ

(√
f,

u√
f

) ,

using Lemma 3.2.3 and the fact that Γ is bilinear. Notice that

2

t
Γ(
√
f)− 2

t
Γ

(√
f,

u√
f

)
=

2

t

(∑̃
y∼x

(
√
f(y)−

√
f(x))2 −

∑̃
y∼x

(
√
f(y)−

√
f(x))

(
u(y)√
f(y)

− u(x)√
f(x)

))

≥ −2

t

∑̃
y∼x

(
√
f(y)−

√
f(x))

(
u(y)√
f(y)

− u(x)√
f(x)

)
.
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Therefore,

(
∆
√
f
)
H ≥ 2√

Mnt

(
(f − u)2

2
√
f
− (f − u)

√
MH√

f
+MH2

)

+
2Γ(
√
f)√

M
− 2√

M
Γ

(√
f,

u√
f

)
≥

2
(
−
√
f
√
MH +MH2

)
√
Mnt

− 1√
M

∑̃
y∼x

(
√
f(y)−

√
f(x))

(
u(y)√
f(y)

− u(x)√
f(x)

)

≥
2
(
MH2 −

√
f
√
MH

)
√
Mnt

− 1√
M

∑̃
y∼x

(
u(x)

(
1−

√
f(y)

f(x)

)
+ u(y)

(
1−

√
f(x)

f(y)

))

≥
2
(
MH2 −

√
f
√
MH

)
√
Mnt

−
√
M.

By Lemma 3.3.2, we have that

∆
√
f =

f − u
2t
√
f
−
√
MH

t

≤
√
f

2t
−
√
MH

t
.

So we have that (∆
√
f)H ≤

√
fH

2t
−
√
MH2

t
.
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This implies that

√
fH

2t
−
√
MH2

t
≥ 2
√
MH2

nt
− 2
√
fH

nt
− 2
√
M.

Combining terms, we get

(√
f

2t
+

2
√
f

nt

)
H + 2

√
M ≥

(
2
√
M

nt
+

√
M

t

)
H2.

Multiplying by t/
√
M yields the inequality

( √
f

2
√
M

+
2
√
f

n
√
M

)
H + 2t ≥

(
2

n
+ 1

)
H2,

which implies (
1

2
+

2

n

)
H + 2t ≥

(
2

n
+ 1

)
H2

since
√
f√
M
≤ 1. Thus,

H2 ≤ ( 1
2

+ 2
n)H

(1+ 2
n)

+ 2t

(1+ 2
n)

= C1 ·H + C2 · t (3.9)

for constants C1 = C1(n) and C2 = C2(n).
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If C1H ≥ C2 · t, then H2 ≤ 2C1H , which implies that H ≤ 2C1. Thus,

Γ(
√
f)√

f ·M
≤ 2C1

t
.

If C2 · t > C1H , then H2 ≤ 2C2t, so H ≤
√

2C2t. Therefore,

Γ(
√
f)√

f ·M
≤
√

2C2t

t
=

√
2C2√
t
.

Since

C1 =
1
2

+ 2
n

1 + 2
n

and

C2 =
2

1 + 2
n

,

we have that

Γ(
√
f)√

f ·M
≤ 2C1

t
+

√
2C2√
t

= 2 ·
( 1

2
+ 2

n

1 + 2
n

)
· 1

t
+

√
4

1 + 2
n

· 1√
t

=
1 + 4

n

1 + 2
n

· 1

t
+

√
4

1 + 2
n

· 1√
t

=
n+ 4

n+ 2
· 1

t
+ 2

√
n

n+ 2
· 1√

t
.

Remark: In a typical applicataion of the maximum principal, we maximize over [0, T ]

and then use information from the time derivative. Here, we don’t do this. This is important
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because of the form of the inequality 3.9. Because of the dependence of this inequality on

the time where the maximum occurs, if the t? maximizing the function over all [0, T ] is

considered, then the result will depend on t?, giving a bound like H ≤
√

2C2t?

t
. However,

since we are able to do the computation at t, this problem does not arise.

Corollary 3.3.4. • If 0 < t ≤ 1

4
+

3n+ 8

2n2 + 4n
, then

Γ(
√
f)√

f ·M
≤ 2(n+ 4)

(n+ 2)
· 1

t
.

• If t ≥ 1

4
+

3n+ 8

2n2 + 4n
, then

Γ(
√
f)√

f ·M
≤ 4

√
n

n+ 2
· 1√

t
.

Proof. Let A = 2C1 and B =
√

2C2. We are interested in knowing when A
t

= B√
t
. This is

equivalent to
√
t = A

B
, so

t =
A2

B2

=
(2C1)2

(
√

2C2)2

=
4C2

1

2C2

=
2
(

1
2

+ 2
n

1+ 2
n

)2

(
2

1+ 2
n

)
=

(
1
2

+ 2
n

)2

1 + 2
n

=
1
4

+ 2
n

+ 4
n2

1 + 2
n

=
n2

4
+ 2n+ 4

n2 + 2n

=
1
4
(n2 + 2n) + 3n

2
+ 4

n2 + 2n

=
1

4
+

3n
2

+ 4

n2 + 2n

=
1

4
+

3n+ 8

2n2 + 4n
.
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If t ≤ 1

4
+

3n+ 8

2n2 + 4n
, then

A

t
≥ B√

t
, so

Γ(
√
f)√

f ·M
≤ 2 · A

t
=

2(n+ 4)

(n+ 2)
· 1

t
.

If t ≥ 1

4
+

3n+ 8

2n2 + 4n
, then

A

t
≤ B√

t
, so

Γ(
√
f)√

f ·M
≤ 2 · B√

t
= 4 ·

√
n

n+ 2
· 1√

t
.

3.4 Harnack-Type Inequality

We can use Theorem 3.3.1 to prove a result comparing PageRank at two vertices in a

graph depending on the distance between them. This result is similar to a Harnack inequal-

ity. The classical form of a Harnack inequality is the following.

Proposition 3.4.1 ([6]). Suppose G is a graph satisfying CDE(n, 0). Let T1 < T2 be

real numbers, and let d(x, y) denote the distance between x, y ∈ V (G). If u is a positive

solution to the heat equation on G, then

u(x, T1) ≤ u(y, T2)

(
T2

T1

)n
exp

(
4Dd(x, y)2

T2 − T1

)
,

where D = maxv∈V (G) deg(v).

A result like this allows one to compare heat at different points and different times.

This can make it possible to deduce geometric information about the graph, such as bottle-
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necking. Delmotte [27] showed that Harnack inequalities do not only allow us to compare

heat at different points in space and time – they also have geometric consequences, such

as volume doubling and satisfying the Poincaré inequality. Horn, Lin, Liu, and Yau [42]

completed the work of Delmotte by proving that even more geometric information can be

obtained from Harnack inequalities.

Using Theorem 3.3.3, we are able to relate PageRank at different vertices, but our

result is not quite of the right form to be a Harnack inequality. In Theorem 3.3.3, it would

be better if we had an f instead of
√
f ·M in the denominator. Since we do not, this makes

proving a “Harnack-type” inequality more difficult. (What we do is similar to what Horn

does in [40].)

To prove our Harnack-type inequality, we will use a lemma comparing PageRank at

adjacent vertices. From now on, we will consider t fixed and write f(x) instead of f(x, t).

If a vertex, w, is adjacent to a vertex, z, then we want to lower bound
√
f(z) by a function

only involving f(w). The trick to this is to rewrite
√

f(w)
f(z)

so that we can use Theorem 3.3.3

in order to get rid of the ‘
√
f(z)’ in the denominator.

Lemma 3.4.2. If w ∼ z, then

√
f(w)

f(z)
≤ 2CD

√
M√

t
· 1√

f(w)
+ 2,

where D = maxv∈V (G) deg(v).

Proof. If
√
f(z) ≥ 1

2

√
f(w), then

√
f(w)
f(z)
≤ 2 ≤ 2CD

√
M√

t
· 1√

f(w)
+ 2.
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If
√
f(z) < 1

2

√
f(w), then

√
f(w)

f(z)
=

√
f(w)−

√
f(z) +

√
f(z)√

f(z)

=

√
f(w)−

√
f(z)√

f(z)
+ 1

=
D(
√
f(w)−

√
f(z))2

D
√
f(z)(

√
f(w)−

√
f(z))

+ 1

≤ CD
√
M√
t
· 1√

f(w)−
√
f(z)

+ 1

≤ CD
√
M√
t
· 2√

f(w)
+ 1 since

√
f(z) <

1

2

√
f(w)

≤ 2CD
√
M√

t
· 1√

f(w)
+ 2.

Using this, we can prove Theorem 3.4.3.

Theorem 3.4.3. Let G be a graph satisfying CDE(n, 0). If dist(x, y) = d, where d ≥ 2,

then
1√
f(y)

≤ 42d−2 ·max
k=0,d

{
A2k−1

(
√
f(x))2k

}
,

where A = 4CD
√
M√

t
.

Proof. We proceed by induction on d.

If d = 2, then let z ∈ V (G) such that x ∼ z and z ∼ y. Then by Lemma 3.4.2,
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1√
f(y)

≤ 2C
√
M√

tf(z)
+

2√
f(z)

≤ max

{
A

f(z)
,

4√
f(z)

}

≤ max

{
A ·max

{
A2

(f(x))2
,

42

f(x)

}
, 4 ·max

{
A

f(x)
,

4√
f(x)

}}

= max

{
A3

(f(x))2
,

42A

f(x)
,

42√
f(x)

}

≤ 42 ·max

{
A3

(f(x))2
,
A

f(x)
,

1√
f(x)

}
.

Assume the result holds for d ≥ 2. Let x, y ∈ V (G) with dist(x, y) = d + 1. Let

z ∈ V (G) such that z ∼ y and dist(x, z) = d. Then by Lemma 3.4.2, we have that

1√
f(y)

≤ 2C
√
M√

tf(z)
+

2√
f(z)

≤ max

{
A

f(z)
,

4√
f(z)

}

≤ max

{
A · 42d+1−22 ·max

k=0,d

{
A2k+1−2

(
√
f(x))2k+1

}
, 4 · 442

d−2 ·max
k=0,d

{
A2k−1

(
√
f(x))2k

}}

by the induction hypothesis

= max

{
42d+1−22 ·max

k=0,d

{
A2k+1−1

(
√
f(x))2k+1

}
, 42d−1 ·max

k=0,d

{
A2k−1

(
√
f(x))2k

}}

≤ 42d+1−2 ·max

{
max

k=0,d+1

{
A2k−1

(
√
f(x))2k

}
,max
k=0,d

{
A2k−1

(
√
f(x))2k

}}
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= 42d+1−2 · max
k=0,d+1

{
A2k−1

(
√
f(x))2k

}
,

where the last step follows since

max
k=0,d

{
A2k−1

(
√
f(x))2k

}
≤ max

k=0,d+1

{
A2k−1

(
√
f(x))2k

}
.

To see this, notice that
A2k−1

(
√
f(x))2k

=

(
A√
f(x)

)2k

· 1

A
. This function of k is either

increasing or decreasing, so the maximum over the interval 0 ≤ k ≤ t + 1 is achieved at

either k = 0 or k = d+ 1.

3.5 Discussion

In order to prove a Harnack-type inequality, we first needed to look at adjacent vertices.

If x ∼ y, then we wanted to lower bound f(y) by a function of x. The classical way of

doing this is to lower bound the log term log
(√

f(y)
f(x)

)
. We can do this by using the power

series expansion for ln(1 + x): For |x| < 1:

log(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
. (3.10)

Notice that for −1 < x < 0,

ln(1 + x) = −
(
|x|+ |x|

2

2
+
|x|3

3
+ · · ·

)
≥ −(|x|+ |x|2 + |x|3 + · · · )
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= − |x|
1− |x|

.

Lemma 3.5.1. Let G be a graph satisfying CDE(n, 0). For adjacent vertices x and y, we

have that

f(y) ≥ f(x) exp

(
− 6CD

√
M

√
t
√
f(x)

− 1

)
,

where D = maxv∈V (G) deg(v).

Proof. If f(y) ≥ f(x)
e

, then we are done since

f(y) ≥ f(x) exp(−1)

≥ f(x) exp

(
− 6C

√
M

√
t
√
f(x)

− 1

)
.

So assume f(y) < f(x)
e

.

We want to lower bound f(y) by a function purely of x. Observe,

log

(√
f(y)

f(x)

)
= log

(
1−

√
f(x)−

√
f(y)√

f(x)

)

≥
−
(√

f(x)−
√
f(y)√

f(x)

)
1−

(√
f(x)−
√
f(y)√

f(x)

)
=
−(
√
f(x)−

√
f(y))√

f(y)

= −
D
(√

f(x)−
√
f(y)

)2

D
√
f(y)

· 1√
f(x)−

√
f(y)

≥ −CD
√
M√
t
· 1√

f(x)−
√
f(y)

,
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where the last inequality follows from Theorem 3.3.3.

Since f(y) < f(x)
e

, we have that
√
f(y) <

√
f(x)√
e

. So

−CD
√
M√
t
· 1√

f(x)−
√
f(y)

≥ −CD
√
M√
t
· 1√

f(x)
(

1− 1√
e

)
≥ −CD

√
M√
t
· 1√

f(x)
(
1− 2

3

)
= − 3CD

√
M

√
t
√
f(x)

.

From this, we see that

√
f(y)

f(x)
≥ exp

(
− 3CD

√
M

√
t
√
f(x)

)
,

so

f(y) ≥ f(x) exp

(
− 6CD

√
M

√
t
√
f(x)

)
.

This is the type of result we were hoping to get, and this allows us to get the following

Harnack-type result.

Theorem 3.5.2. Let w1(x) = exp

(
−6C

√
M

√
t
√
f(x)

− 1

)
, and for k > 1, let

wk(x) = exp

(
−6C

√
M

√
t
√
f(x)

∏k−1
i=1

√
wi(x)

− 1

)
.
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For vertices x, y ∈ V (G) with dist(x, y) = n,

f(y) ≥ f(x) ·
n∏
i=1

wi(x).

Proof. We proceed by induction on n.

If n = 1, then the result holds by Lemma 3.5.1.

Assume the result holds for n ≥ 1. Let x, y ∈ V (G) with dist(x, y) = n+1. Let z ∈ V (G)

such that z is adjacent to x, and dist(y, z) = n.

By Lemma 3.5.1, we have that

f(z) ≥ f(x) · w1(x).

We can also see that for each i ∈ {1, ..., n}, wi(z) ≥ wi+1(x).

By the induction hypothesis,

f(y) ≥ f(x) ·
n∏
i=1

wi(z)

≥ f(x) · w1(x) ·
n+1∏
n=2

wi(x)

= f(x) ·
n+1∏
i=1

wi(x).
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3.6 Conclusion

We have shown that graph curvature can be used to give us enough information about

the geometry of a graph to allow us to say something about how PageRank diffuses. Using

curvature lower bounds, which give us local information about a graph, we were able to

prove a gradient estimate for PageRank and use that to compare PageRank at any two

vertices. An interesting future direction would be to fix the scaling in Theorem 3.3.3 and

get an f instead of
√
M · f in the denominator.

(This chapter is based on the paper “A gradient estimate for PageRank” [44], which is

joint work with Paul Horn.)
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CHAPTER A: APPENDIX

This thesis contains results about the structure and geometry of graphs. The main results

show how the spectral graph theory and graph curvature can be used to prove interesting

results about graphs. Other work has been done by the author in other areas of combina-

torics and graph theory, including graph coloring and combinatorial games. 1

A.1 Color-blind index

This is work done with J. Diemunsch, N. Graber, L. Kramer, V. Larsen, L.L. Nelsen, D.

Sigler, D. Stolee, and C. Suer. This paper has been published in Discrete Applied Mathe-

matics [29].

Let c : E(G) → {1, ..., k} be an edge-coloring (not necessarily proper). For a vertex,

v, let c(v) = (a1, ..., ak), where ai = |{u : uv ∈ E(G), c(uv) = i}|. Reorder the sequence

c(v) in non-decreasing order to obtain c?(v) = (d1, ..., dk).

When c? induces a proper vertex coloring we say that c is color-blind distinguish-

ing. The minimum k for which there exists a color-blind distinguishing edge coloring

c : E(G)→ {1, ..., k} is the color-blind index of G, which we denote by dal(G).

There are a number of results that show that dal(G) is small for certain graphs G. In

[29], we show the following:

1These collaborations began as part of the 2014 and 2016 Rocky Mountain–Great Plains Graduate
Research Workshops in Combinatorics, supported in part by NSF-DMS Grants #1427526, #1604458,
#1604773, #1604697 and #1603823.
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Theorem A.1.1 (Diemunsch, et al., [29]). Determining if dal(G) = 2 is NP-complete, even

under the promise that dal(G) ∈ {2, 3}.

A result of Kalinowski, Pilśniak, Pryzbyło, and Woźniak gives a class of graphs with

such a promise.

Theorem A.1.2 ([46]). If G is a k-regular bipartite graph with k ≥ 2, then dal(G) ≤ 3.

In this case, determining if dal(G) = 2 is equivalent to asking if k-uniform, k-regular

hypergraphs are 2-colorable.

One can also think about what happens when we have graphs that are far from being

bipartite. We look at 3-regular graphs in which every vertex is in at least one 3-cycle, and

investigate the color-blind index of such graphs. An example of such a graph is an odd

cycle of diamonds. A diamond is made up of two triangles that share an edge. An odd

cycle of diamonds is a 3-regular graph with an odd number of diamonds that are connected

in a cycle.

Theorem A.1.3 (Diemunsch, et al., [29]). Let G be a connected 3-regular graph where

every vertex is in at least one 3-cycle of G. Then G has a color-blind coloring iff G is not

an odd cycle of diamonds. When G is not an odd cycle of diamonds, then dal(G) ≤ 3.

A.2 Erdős-Szekeres Online

This is work done with K. Boyer, L.L. Nelsen, F. Pfender, E. Reiland, and R. Solava. This

paper has been submitted [7].

In 1935, Erdős and Szekeres proved that the minimum number of points in the plane

which definitely contain an increasing subset of m points or a decreasing subset of k points
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(as ordered by their x-coordinates) is (m−1)(k−1)+1. We consider their result from an on-

line game perspective: Let points be determined one-by-one with player A first determining

the x-coordinate and then player B determining the y-coordinate. We would like to know

the minimum number of points such that player A can force an increasing subset of m

points or a decreasing subset of k points. We introduce this as the Erdős-Szekeres on-line

number, and denote it by ESO(m, k).

In [7], we show that ESO(m, k) < (m−1)(k−1) + 1 for m, k ≥ 3, and ESO(m, k) ≥

bk
2
c(m − k + 5) − 3 for m ≥ k ≥ 4. We also determine ESO(m, 3) up to an additive

constant.

Theorem A.2.1 (Boyer, et al., [7]). ESO(m, 3) = m+ (6m)1/3 +O(1). Specifically,

m+ (6m)1/3 − 2 < ESO(m, 3) < m+ (6m)1/3 + 3.
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