
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2019

Decidability for Residuated Lattices and Substructural Logics Decidability for Residuated Lattices and Substructural Logics

Gavin St. John
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Algebra Commons

Recommended Citation Recommended Citation
St. John, Gavin, "Decidability for Residuated Lattices and Substructural Logics" (2019). Electronic Theses
and Dissertations. 1623.
https://digitalcommons.du.edu/etd/1623

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/175?utm_source=digitalcommons.du.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1623?utm_source=digitalcommons.du.edu%2Fetd%2F1623&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Decidability for Residuated Lattices and Substructural Logics Decidability for Residuated Lattices and Substructural Logics

Abstract Abstract
We present a number of results related to the decidability and undecidability of various varieties of
residuated lattices and their corresponding substructural logics. The context of this analysis is the
extension of residuated lattices by various simple equations, dually, the extension of substructural logics
by simple structural rules, with the aim of classifying simple equations by the decidability properties
shared by their extensions. We also prove a number of relationships among simple extensions by
showing the equational theory of their idempotent semiring reducts coincides with simple extensions of
idempotent semirings. On the decidability front, we develop both semantical and syntactical methods for
establishing decidability as well as tractability of decision procedures. On the undecidability front, we
develop a notion of algebraic machines for which the theory of residuated frames will allow us to encode
decision problems within the theories of residuated lattices and their substructural analogues. We prove
the undecidability of the word problem for a broad class of simple extensions for both commutative and
non-commutative residuated lattices. Furthermore, through a deduction theorem we establish the
undecidability of the equational theory for a broad class of simple extensions. Translated in terms of
substructural logics, we prove that the undecidability of both provability and deducibility for a multitude of
extensions of FLe by simple rules.

Document Type Document Type
Dissertation

Degree Name Degree Name
Ph.D.

Department Department
Mathematics

First Advisor First Advisor
Nikolaos Galatos, Ph.D.

Keywords Keywords
Algebraic logic, Decidability, Residuated lattice, Substructural logic, Undecidability

Subject Categories Subject Categories
Algebra | Mathematics | Physical Sciences and Mathematics

Publication Statement Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.

This dissertation is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/1623

https://digitalcommons.du.edu/etd/1623

Decidability for residuated lattices and substructural logics

A Dissertation

Presented to

the Faculty of Natural Sciences and Mathematics

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Gavin St. John

June 2019

Advisor: Nikolaos Galatos

Author: Gavin St. John
Title: Decidability for residuated lattices and substructural logics
Advisor: Nikolaos Galatos
Degree Date: June 2019

ABSTRACT

We present a number of results related to the decidability and undecidability of various

varieties of residuated lattices and their corresponding substructural logics. The context

of this analysis is the extension of residuated lattices by various simple equations, dually,

the extension of substructural logics by simple structural rules, with the aim of classifying

simple equations by the decidability properties shared by their extensions. We also prove a

number of relationships among simple extensions by showing the equational theory of their

idempotent semiring reducts coincides with simple extensions of idempotent semirings. On

the decidability front, we develop both semantical and syntactical methods for establishing

decidability as well as tractability of decision procedures. On the undecidability front,

we develop a notion of algebraic machines for which the theory of residuated frames will

allow us to encode decision problems within the theories of residuated lattices and their

substructural analogues. We prove the undecidability of the word problem for a broad

class of simple extensions for both commutative and non-commutative residuated lattices.

Furthermore, through a deduction theorem we establish the undecidability of the equational

theory for a broad class of simple extensions. Translated in terms of substructural logics,

we prove that the undecidability of both provability and deducibility for a multitude of

extensions of FLe by simple rules.

ii

ACKNOWLEDGEMENTS

First and foremost, I must thank my advisor Nick Galatos. Nick has the unique ability

to both inspire his students with his brilliance and empower them with his optimism and

encouragement. Nick makes mathematics exciting, and I am grateful for every chance I

have had to explore the mathematical world with him. Without his mentoring, collabora-

tion, and zealous character, I would be lost.

I am deeply grateful to Dr. Wesley Fussner, my academic brother. Our camaraderie

during graduate school was essential to my development as a mathematician. In particular, I

thank Wesley for sharing with me his intuitions and helping me cultivate my understanding

of logic. I am indebted to Dr. Sara Ugolini, who has been my mathematical muse. This

dissertation could not have been completed without her support and guidance. I sincerely

thank Wesley and Sara for their inspiration as researchers, as mathematicians, and most

importantly, as friends.

I would like to thank the many friends and mentors who enabled my journey into

higher academia. My fascination with reason truly began at the University of Pittsburgh

with a group composed of Vincent Isaac Page, Alex Pruszenski, and Katherine “Kitty”

Durgin. Our many coffee-fueled nights discussing mathematics, physics, and philosophy

serve as the bedrock for my inspiration to study mathematical ideas. I am grateful to

Dr. L.J. Nickisch and the rest of the team at NorthWest Research Associates for their

encouragement and guidance. I also must thank the many researchers I have met during

my time at Youngstown State University, in particular, Dr. Nathan Ritchey, Dr. Stephen

E. Rodabaugh, Dr. Jeffrey T. Denniston, Dr. Jamal Tartir, Dr. Zbigniew Piotrowski, and

Dr. Neil Flowers. I would also like to thank the entire mathematics department at the

University of Denver, in particular Dr. Petr Vojtechovsky and Dr. Michael Kinyon.

Lastly, I extend my deepest gratitude to my parents Lori and Timothy and my siblings

Brittany and Tyler, whose love and support are the foundation I rest upon in all my pursuits.

iii

TABLE OF CONTENTS

1 Introduction 1
1.1 Chapter summaries . 3
1.2 Preliminaries . 8

1.2.1 Ordered Sets . 9
1.2.2 Notions from Universal Algebra 10
1.2.3 Algebras and Varieties . 13
1.2.4 Inference rules and proofs . 18
1.2.5 The Full Lambek Calculus . 19
1.2.6 Notions of Decidability . 22

2 Equations in the signature {∨, ·, 1} 23
2.1 Equations in ISR . 24

2.1.1 ISR-equations and structural rules 28
2.2 Simple Equations and Residuated Frames 28

2.2.1 Preservation of simple equations 30
2.3 Subvariety Containment . 31

2.3.1 The frame WΣ . 33
2.4 Knotted and other special ISR-equations 37
2.5 Deduction theorem for expansive varieties 41

3 Decidability and Complexity Upper-bounds 44
3.1 The FMP, FEP, and some known results 44

3.1.1 Failure of the FEP . 45
3.2 A note on decidability in ISR . 46
3.3 The FMP and completely linear simple equations 47
3.4 Potent Commutative Varieties . 50

3.4.1 Sequents in FLe and the ∗ function 50
3.4.2 ∗-sequents and inference rules . 53
3.4.3 Reduced proofs for potent varieties 55
3.4.4 The decision procedure . 59

4 Algebraic Machines and Complexity Lower-bounds 64
4.0.1 The word problem . 65

4.1 Algebraic Machines, Residuated frames, and the Word Problem 66
4.1.1 Complexity and the Word Problem 70
4.1.2 Simple equations and Admissibility 71

iv

4.1.3 Canonically admissible . 73
4.1.4 Hardware-admissibility . 74

4.2 Counter machines in RL and the {≤, ·, 1}-fragment 77
4.2.1 Counter machines and residuated frames 81
4.2.2 Observations on admissibility . 82

4.3 And-branching counter machines in (C)RL and the {∨, ·, 1}-fragment . . . 84
4.3.1 Observations on admissibility . 87
4.3.2 Simulating CMs as ACMs and the Zero-Test Program 88

4.4 Non-primitive recursive lower bounds . 91
4.4.1 An outline of the Urquhart construction 93
4.4.2 Observations of the construction 95
4.4.3 Weakly-expansive and expansive equations 97

5 Undecidability and the class U of simple equations 100
5.1 Admissibility for ACMs . 101

5.1.1 Motivation for axiomatic extensions of CRL 101
5.1.2 The BK Machine . 104
5.1.3 Simple equations and admissibility for ACMs 118
5.1.4 Undecidability, the class U , and spinal equations 123

5.2 Admissibility for CMs . 126
5.2.1 The MK Machine . 126
5.2.2 Simple equations and admissibility for CMs 132

5.3 Membership of U . 135
5.3.1 The class of equations U . 135
5.3.2 Spinal equations . 140
5.3.3 Pre-spinality . 143
5.3.4 Solutions in Rn . 145
5.3.5 (?) and (??) . 147

6 Concluding remarks 151
6.1 The class U and known results . 151

6.1.1 Horčı́k and the word problem for non-commutative varieties 151
6.1.2 Chvalovský & Horčı́k and the non-commutative varieties 153

6.2 Open problems and future work . 154

v

LIST OF FIGURES

1.1 Inference rules of FL . 20

3.1 Logical rules of FLe . 51
3.2 Proof heuristic for reduced sequents . 56

5.1 Simple equations as set of vectors . 138
5.2 Reduced-spinal equation . 141
5.3 Spines as products of upper-triangular block matrices 144

vi

Chapter 1: Introduction

Decidability is a fundamental problem in the study of mathematical logic. In short,

a logic is decidable if there exists an algorithm for determining whether or not any given

formula is provable. Classical propositional logic is so explicitly decidable that we teach it

to college sophomores when they learn truth tables. On the other hand, first-order classical

logic is undecidable as consequence of Gödel’s incompleteness theorems, that is, there

cannot in principle exist an algorithm for determining provability.

As many mathematical fields are rooted in the investigation of certain first-order theo-

ries of classical logic, a distinction between what is true and what is provable, semantics

and syntax, was made. Different concepts of truth and provability arose, giving birth to the

formulation and study of nonclassical logics, which can be viewed as any departure from

the classical setting.

In particular, a framework that includes most of the interesting nonclassical logics is

given by substructural logics. Substructural logics encompass, besides classical logic,

intuitionistic logic, relevance logics, many-valued logics, fuzzy logics, linear logic and

their non-commutative versions. Originally, substructural logics were introduced as logics

which, when formulated as Gentzen-style systems, lack some (including “none” as a special

case) of the three basic structural rules for intuitionistic logic, contraction (c), weakening

(w) and exchange (e). For example, relevance logics and linear logic lack the weakening

rule, many-valued logics, fuzzy logics and linear logic lack the contraction rule, and hence

all of them can be regarded as substructural logics. The Gentzen system for intuitionis-

tic logic LJ is equivalently denoted FLecw as a structural extension of the Full-Lambek

calculus FL.

1

A powerful tool for analyzing substructural logics uniformly is given by semantical

methods, due to the fact that they are algebraizable. Indeed, syntactic properties of alge-

braizable logics can be rendered as semantical properties for a particular variety of algebras,

and vice versa. In particular, decidability properties of a logic can be handled abstractly in

the algebraic setting.

The algebraic models of substructural logics are residuated lattices. Residuated lattices

encompass a broad class of widely studied algebras, including Boolean algebras, Heyting

algebras, MV-algebras, basic logic algebras and lattice-ordered groups. In the light of

algebraization, the various structural rules correspond to analogous algebraic equations.

For instance, the exchange rule for a logic corresponds to the commutativity of its algebraic

models. One of the purposes of this thesis is to address the properties-of and relationships-

between certain structural rules and their algebraic counterparts.

Within the substructural logic framework, Gentzen was able to prove the decidability

of propositional intuitionistic logic FLecw in the 1930s. It remained unknown whether any

“natural” propositional logics were undecidable, outside of directly constructing logics for

this purpose. A first surprising breakthrough comes when Urquhart showed that the propo-

sitional relevance logic R was undecidable in the late 1980s. However, R is not an exten-

sion of FL by structural rules due to the fact that R is distributive. A major breakthrough

within this framework came when FLc was shown to be undecidable by Chvalovský and

Horčı́k in 2016. In contrast, the question of whether any structural extensions of FLe are

undecidable has remained an open problem. Actually, FLe and many of its structural exten-

sions were shown to be decidable. The main results of this thesis resolves this problem by

demonstrating the undecidability for an infinite class of such logics.

Approaches for proving decidability come in many different flavors, whether it be syn-

tactical versus semantical analysis, or a constructive versus nonconstructive argument. In

this thesis we utilize all such techniques. In the presence (or absence) of specific structural

2

rules in each case, we provide constructive syntactic proofs for decidability and noncon-

structive algebraic proofs of decidability, as well as complexity upper bounds or lower

bounds for such procedures.

In contrast to the variety of techniques for establishing decidability, proving undecid-

ability almost always traces down to the same approach: encode some halting problem for

Turing machines within the structure. However the difficulty is twofold. One must provide

a suitable encoding of the machine as well as demonstrate that such an encoding is faithful.

In this thesis, we present a general theory for encoding decision problems in residuated

structures. From the substructural logic perspective, in the presence (or absence) of spe-

cific structural rules we prove that deducibility in that logic is undecidable. In particular,

we demonstrate that provability is undecidable establishing the claim mentioned above. In

this way, we demonstrate the undecidability for an infinitude of nonclassical propositional

logics.

1.1 Chapter summaries

This chapter serves as both the theoretical and historical context for this thesis. In the

preliminaries section we develop the formal background for the objects of study. In par-

ticular, we recall basic definitions and propositions about ordered algebraic structures and

substructural logics. Specifically the variety of (commutative) residuated lattices (C)RL,

the Full Lambek calculus FL, and the intimate connections of these two structures via alge-

braization. Particularly, the syntactic notions of provability and deducibility are semanti-

cally rendered as satisfaction for the equational and quasi-equational theories, respectively,

for varieties of residuated lattices. Most of this background can be found in the standard

monograph [9].

3

Chapter 2 concerns properties of equations in the {∨, ·, 1}-fragment of residuated lat-

tices, as well as their relation to structural rules for substructural logics.1 It is here that the

theory of residuated frames is first introduced, as developed by Galatos and Jipsen in [8],

for it will serve as an essential technical tool for the entirety of this paper. In particular, we

will highlight the preservation of simple equations and their structural counterparts simple

rules within residuated frames constructions. In Section 2.1, we present key definitions

and propositions about equations in the signature {∨, ·, 1}, which we call basic idempotent

semiring (ISR)-equations, in the setting of both residuated lattices and idempotent semir-

ings. It is here where simple equations and simple structural rules find their definition.

In Section 2.2, we recall residuated frames and their preservation of simple equations as

seen in [8]. In Section 2.3, we investigate when simple equations are consequences of oth-

ers. Through a straightforward residuated frames construction, we achieve Theorem 2.3.4

in particular, which essentially states that the {∨, ·, 1}-fragment of the equational theory

for the variety RL + Σ coincides with the equational theory of ISR + Σ, where Σ is a set

of simple equations. This construction also provides a recursively enumerable procedure

for determining whether one equation implies another, often called the subvariety contain-

ment problem. In Section 2.4, we inspect some widely-studied classes of simple equations.

Using the results from the previous section, we demonstrate some characterizations that

will be useful for the remaining chapters e.g., Theorem 2.4.1 and Corollary 2.4.3. Lastly, in

Section 2.5 we prove a deduction theorem for so-called expansive varieties of commutative

residuated lattices.2 Corollary 2.5.2 will be needed for the remaining chapters, specifically

for bootstrapping the undecidability of the quasi-equational theory to undecidability of the

equational theory for such residuated lattices.

1The following footnotes of this section will contain examples of {∨, ·, 1}-(in)equations. These are meant
to be read as the variety V + (e), where (e) is such an equation and V some variety understood in context.

2E.g., x ≤ x2 or x ≤ x2 ∨ x3

4

Chapter 3 establishes the decidability of many structures extended by the equations and

structural rules presented in Chapter 2. In Section 3.1, we recall the finite embeddability

property (FEP) and finite model property (FMP) for algebraic varieties and its relation to

the decidability of universal theories. We also show how a result of Blok and van Alten [3]

establishes the failure of the FEP for a collection of special simple equations in Proposi-

tion 3.1.3.3 In Section 3.2, we illustrate how Theorem 2.3.4 provides a decision procedure

for the {∨, ·, 1}-fragment of the equational theory for many varieties in RL. In Section 3.3,

we remark about the applicability of [8] for proving the FMP, and in Theorem 3.2.2 we

establish the FMP for varieties extended by so-called completely linear equations.4 Lastly,

in Section 3.4 we present a decision procedure for the substructural logic counterpart of

so-called potent-varieties, which are varieties satisfying some equation xn = xn+m. This

is a generalization of the proof due to Gentzen [11] showing the decidability of FLecw.

Furthermore, in Theorem 3.4.6 we show that this decision procedure is at worst double-

exponential with respect to the number of symbols present in the input. Although such a

procedure is computationally expensive, it is nevertheless primitive recursive. In contrast,

the procedure for FLec was shown to be non-primitive recursive by Urquhart [23], and even

more dramatically, FLc was shown to be undecidable by Chvalovský and Horčı́k [5].

Chapter 4 begins our investigation of complexity lower bounds for satisfaction in the

equational and quasi-equational theories for varieties of residuated lattices. At its heart,

the techniques of this chapter are inspired by those found in [17, 23, 8, 14, 5]. In Sec-

tion 4.1, we develop a general definition of algebraic machines. These machines are meant

to encode the computations of some abstract mathematical machine as order relations in

the algebra. Due to the fixed structure of a given machine, this correspondence relates to

3E.g., x ≤ x2 ∨ 1 or xy ≤ x2 ∨ y2.

4E.g., xy ≤ x ∨ y or xyz ≤ xy ∨ yz ∨ zx ∨ x ∨ y ∨ z.

5

the complexity of the word problem for these algebraic structures. Inspired by [14], we use

a residuated frames construction to prove the completeness of this result, while the sound-

ness is easily achieved since residuated lattices have semiring reducts. Furthermore, we

introduce a notion of admissibility of simple equations for such machines. We will view

instances of a simple equation [R] as “glitches” within the computations, and admissibility

being a certain resiliency to such glitches. In this way, our residuated frames construction

allows us to produce an algebra satisfying the equation, i.e., W+ ∈ RL + [R], to serve

as our countermodel for completeness. In Section 4.2 we introduce counter machines and

their algebraic renderings. Since counter machines have an undecidable halting problem,

we show that such a presentation proves the undecidability of the word problem for RL,

particularly in its {≤, ·, 1}-fragment. We also show that this same encoding establishes

that certain weakenings of commutativity are admissible.5 In Section 4.3 we present the

algebraic rendering of And-branching counter machines, as invented in [17] to prove the

undecidability of linear logic. At the cost of adding ∨ to the signature, this presentations

allows for the construction of algebraic machines in which commutativity is admissible.

As a consequence, this proves undecidability of the word problem, particularly for the

{∨, ·, 1}-fragment, for any variety V in the interval CRL ⊆ V ⊆ RL. Lastly, in Section 4.4

we outline a construction due to Urquhart [23] establishing that any decision procedure for

provability in FLec cannot be primitive recursive. We show how this construction precisely

fits within our framework of algebraic machines, and therefore naturally extends to a larger

class of simple equations.

Chapter 5 is the demonstration of new undecidability results, utilizing the techniques

developed in the previous chapter, for extensions of (C)RL by simple equations from a class

U . In Section 5.1, we provide a construction that can guarantee admissibility for any finite

5E.g., x2y2 = y2x2 or generally xnym = ymxn for any n,m ≥ 2.

6

set of simple equations from U . The main idea is essentially that, when viewed as glitches

in a machine, members of U are well-behaved-enough in their effect on computations of a

machine. That is, given any machine M and equation [D] ∈ U ,6 we can faithfully simulate

the acceptance of M in a straightforward way by another machine M ′ so that [D] is admis-

sible in M ′. In this way, Corollary 4.1.10 guarantees the undecidability of the {∨, ·, 1}-

fragment of the word problem for (C)RL+ [D]. This will prove Theorem 5.3.1, which also

simultaneously demonstrates the undecidability of deducibility for the corresponding sub-

structural logic FLe + (D). Consequently, using the deduction theorem from Section 2.5,

our capstone Theorem 5.1.13 proves that the equational theory for CRL+[D] is undecidable

for any expansive [D] ∈ U . Equivalently, this shows that provability in the corresponding

substructural logic FLe + (D) is undecidable. E.g., the equation [D] : x ≤ x2 ∨ x3 is an

expansive member of U , so the equational theory of CRL+[D] is undecidable, and therefore

provability is undecidable in FLe + (D) where (D) is the structural rule

∆1,Γ,Γ,∆2 ⇒ Π ∆1,Γ,Γ,Γ,∆2 ⇒ Π
∆1,Γ,∆2 ⇒ Π

(D)
.

Section 5.2 proceeds in a similar way to Section 5.1, and aims at proving undecidability for

the smaller ordered-monoid fragment of the word problem for RL. We show that this can

be achieved, at least in general, for a class of equations U−1 ⊆ U in Theorem 5.2.6.

Lastly, in Section 5.3 we provide a characterization for the class of equations U which

is essential for both Theorem 5.3.1 and Theorem 5.2.6. The definition of U is equivalently

stated via, [D] ∈ U if and only if CRL + [D] 6|= [V], for some spinal equation [V] of the

form:

[V] : x
f(1)
1 · · · xf(k)

k ≤ 1 ∨ x
v1(1)
1 ∨ x

v2(1)
1 x

v2(2)
2 ∨ · · · ∨ x

vk(1)
1 · · · xvk(k)

k ,

6E.g., x ≤ xn ∨ xn+m for any n,m > 0.

7

for some k ≥ 1 and vectors f, v1, . . ., vk ∈ Nk such that f 6= vk and vi(i) > 0 for each

i = 1, . . . , k. The goal of this section is to establish that such non-spinal equations satisfy

a condition that guarantees admissibility for the machines defined in Sections 5.1 and 5.2.

However, the techniques needed to prove this claim are quite distinct and unrelated to those

needed in rest of the chapter, which is why they are presented last. We show that the prop-

erty of satisfying a spinal equation is related to whether or not there exists positive solutions

to some corresponding systems of linear equations in Rn. Each joinand of an equation will

be associated to some vector, and the right-hand side of simple equations as a set of vectors,

which we may view as a matrix. In this context, monoid substitutions will also correspond

to an associated matrix, and applications of a substitution as the transformation, or product,

of this matrix with a vector (i.e., monoid term) or matrix (i.e., a finite join of monoid terms).

In this way, a simple equation is a member of U if and only if its associated matrix does

not appear in the decomposition of some spinal equation in terms of upper-triangular block

matrices. Further, we show that this is equivalent to satisfying the sufficient condition of

admissibility defined in Section 5.1.3.

Finally, in Chapter 6, we remark about the relationship of our results to related results

known for non-commutative structures. We conclude by presenting a list of open problems

for future research.

1.2 Preliminaries

By Z,Q,R we denote the set of integers, rational numbers, and real numbers, respec-

tively. By N we denote the set of non-negative integers, i.e., natural numbers, by Z+ the

set of positive integers. Let A,B,C be sets. The powerset, i.e., the set of all subsets of A,

is denoted by ℘(A). By idA : A→ A we denote the identity map a 7→ a for all a ∈ A. We

define BA to be the set of all functions f : A → B. If f : A → B and g : B → C, their

composition is written as g ◦ f : A → C, defined pointwise via (g ◦ f)(a) = g(f(a)) for

8

each a ∈ A. For a function f : A→ A, we recursively define f 0 := idA and fn+1 := f◦fn,

for each n ∈ N.

1.2.1 Ordered Sets. A structure P = (P,≤P) is a preordered set, or preorder, if ≤P is a

binary relation on Q such that, for all x, y, z ∈ P the following hold:

• x ≤P x (reflexivity),

• x ≤P y and y ≤P z imply x ≤P z (transitivity).

P is called a partially ordered set, or poset, if P is a preorder which additionally satisfies

the following for every x, y ∈ P :

• x ≤P y and y ≤P x imply x = y (antisymmetry).

We will denote ≤P simply by ≤ if it is understood unambiguously in context.

Let P and Q be posets. A map f : P → Q is said to be monotone if x ≤P y implies

f(x) ≤Q f(y) for all x, y ∈ P . For f : P → P , we say f is expanding if x ≤ f(x) for all

x ∈ P , and idempotent if f ◦ f = f . We call a map γ : P → P a closure operator on P

if γ is expanding, monotone, and idempotent, and by Pγ we denote the poset of γ-closed

elements, that is Pγ := γ[P] = {γ(p) : p ∈ P}.

A Galois connection on P and Q is a pair of maps (., /), where . : P → Q and

/ : Q→ P such that q ≤Q p. iff p ≤P q
/ for all p ∈ P and q ∈ Q.

Proposition 1.2.1 ([9]). If (., /) is a Galois connection on posets P and Q, then the map

γ : P → P defined by γ(x) = x./ is a closure operator on P.

Example 1.2.1. Given sets A,B and a relation R ⊆ A × B, for sets X ⊆ A and Y ⊆ B,

we define

X R Y ⇐⇒ x R y for all x ∈ X and y ∈ Y .

9

For x ∈ A and y ∈ B, we write x R Y and X R y as abbreviations for {x} R Y and

X R {y}, respectively. Define . : ℘(A)→ ℘(B) and / : ℘(B)→ ℘(A) via

X. := {y ∈ B : X R y} and Y / := {x ∈ A : x R Y },

for all X ∈ ℘(A) and Y ∈ ℘(B). Then (., /) forms a Galois connection on the posets

(℘(A),⊆) and (℘(B),⊆), called the Galois connection induced by R.

1.2.2 Notions from Universal Algebra. Assuming familiarity with basic set-theoretical

concepts, in this section we will recall the basic notions of Universal Algebra. We shall

refer to [4] for a more detailed exposition.

Given a (non-empty) set A, a n-ary operation on A is any function f from An to A;

the map σ(f) = n, that associates to a function symbol a natural number called the arity of

f . The image of (a1, . . . , an) under an n-ary operation f is denoted by f(a1, . . . , an). An

algebraic type is a pair F = (F, σ) of a set of function symbols F together with an arity

map σ : F → N.

An algebra of type F is a pair A = (A, 〈fA〉f∈F) made of a domain set A and a

family 〈fA〉f∈F of operations fA : Aσ(f) → A. We will refer to them as the fundamental

operations of A. The underlying set A is often called the universe of the algebra. The

superscripts of the operations will usually be omitted in the text, and we will often write

the type of the algebra as the sequence 〈σ(fA)〉f∈F .

By a subalgebra of A we mean an algebra B = (B, 〈fA�B〉f∈F) where B ⊆ A,

where fA�B is the restriction of fA to B, and B is closed under the operations of A, i.e.

fA(b1, b2, . . . , bσ(fA)) ∈ B, for all b1, . . . , bσ(fA) ∈ B. If F is a type and G ⊆ F , the

G -reduct of an algebra of type F , A = (A, 〈fA〉f∈F), is the algebra AG with underlying

set A and operations 〈fA〉f∈G. A partial algebra C of A is any subset C of A equipped

10

with partial operations restricted to C, i.e., If fA(a1, . . ., an) = c and a1, . . ., an, b ∈ C,

then fC(a1, . . ., an) = c.

Suppose that A and B are two algebras of the same type F . A mapping h : A→ B is

called a homomorphism from A to B if for each f of arity n in F and every a1, . . . , an ∈ A,

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).

If {Ai : i ∈ I} is a family of algebras of the same type, we define the direct product

algebra
∏

i∈I Ai, with universe the Cartesian product of the universes Ai, and fundamental

operations defined by:

f
∏

(〈ai1〉i∈I , . . . , 〈aiσ(f)〉i∈I) = 〈fAi(ai1, . . . , aiσ(f))〉i∈I ,

for all aij ∈ Ai, i ∈ I and j ∈ {1, . . . , σ(f)}.

A class of algebras of the same type is called a variety if it is closed under homomorphic

images, subalgebras and direct products. We shall refer to the variety generated by a class

of algebras K as V(K). Let now H(K),S(K) and P(K) denote respectively the classes of

homomorphic images, subalgebras and direct products of algebras in K, then the following

well known theorem due to Tarski holds.

Theorem 1.2.2 ([22]). For every class of algebras K, V(K) = HSP(K).

Let X be a set of variables, F a type and (X ∪ F)∗ the set of all finite sequences of

elements of X ∪ F . The set TF (X) of terms in F over X is the least subset of (X ∪ F)∗

that contains X and if f ∈ F and t1, t2, . . . , tσ(f) ∈ TF (X), then the sequence

ft1t2 . . . tσ(f) ∈ TF (X).

11

The term algebra TF (X) is the algebra with underlying set TF (X), type F and operations

fTF (X) , for f ∈ F , defined by fTF (X)(t1, t2, . . . , tσ(f)) = ft1t2 . . . tσ(f), for all ti ∈

TF (X).

If A is an algebra of type F , t a term in F over a set of variables X and the variables

occurring in t, denoted supp(t) := {x1, x2, . . . , xn}, we define the term operation tA of

t inductively on the sub-terms of t to be the operation defined as follows: xAi is the i-th

projection operation on An, and given ft1t2 . . . tσ(f), where f ∈ F and t1, t2, . . . , tσ(f) ∈

TF (X), then sA is defined by

sA(a1, a2, . . . an) = fA
(
tA1 (a1, a2, . . . an), tA2 (a1, a2, . . . an), . . . , tAσ(f)(a1, a2, . . . an)

)
.

If t1, t2, . . . tn are terms of TF (X) and n = |supp(t)|, then the substitution of t1, t2, . . . tn

into t is the element tTF (X)(t1, t2, . . . tn). If A is an algebra of type F and t a term in F ,

then the operation tA is called a term operation. Two algebras of possibly different types

are called term equivalent if every operation of one is a term operation of the other.

An equation, or identity, of type F over a set of variables X is a pair of terms of

TF (X). If t, s are terms we write t = s for the equation they define, instead of (t, s). We

say that an equation t = s in F over X is valid in an algebra A of type F , or it is satisfied

by A, in symbols A |= t = s, if tA = sA. The notion of validity is extended to classes

of algebras and sets of equations. A set E of equations in a type F is said to be valid in,

or satisfied by a class K of algebras of type F , in symbols K |= E , if every equation of

E is valid in every algebra of K. Equations are preserved by subalgebras, homomorphic

images and direct products. A theory of equations, or equational theory T in a type F is a

congruence on TF (X) closed under substitutions, i.e., if (t = s) ∈ T, supp(t)∪supp(s) =

{x1, . . . , xn}, and t1, . . . , tn ∈ TF (X), then (tTF (X)(t1, . . . , tn) = sTF (X)(t1, . . . , tn)) ∈

T . It is easy to see that if K is a class of algebras of type F , then ThEq(K) = {(t = s) ∈

12

TF (X) : K |= t = s} is an equational theory, called the equational theory of K. Given a

set E of equations of a similarity type F the equational class axiomatized by E is defined

to be the class Mod(E) = {A : A |= E} of algebras of type F , that satisfy all equations

of E ; the set E is called an equational basis for Mod(E). By previous observations, every

variety is an equational class. More precisely, the following well-known theorem due to

Birkhoff holds.

Theorem 1.2.3 ([1]). For every class of algebras K,HSP(K) = Mod(ThEq(K)). Thus K

is a variety iff it is the class of models of an equational theory.

1.2.3 Algebras and Varieties. Let A be a set. A function ∗ : A × A → A is called a

binary operation on A, and we will write a ∗ b := ∗(a, b). We say ∗ is:

• associative iff ∀a, b, c ∈ A, a ∗ (b ∗ c) = (a ∗ b) ∗ c,

• commutative iff ∀a, b ∈ A, a ∗ b = b ∗ c, and

• idempotent iff ∀a ∈ A, a ∗ a = a.

We say an element 1 ∈ A is an identity element for ∗ if for all a ∈ A, a ∗ 1 = 1 ∗ a = a. An

algebra S = (S, ∗) is called a semigroup if ∗ is an associative binary operation on S. Note

that if a semigroup has an identity then the identity is unique.7 A structure M = (M, ∗, 1)

is called a monoid if (M, ∗) is a semigroup where 1 is the identity element for ∗. We

say S (M) is a commutative or idempotent semigroup (monoid) if ∗ is commutative or

idempotent, respectively.

A commutative idempotent semigroup S is also known as a semilattice. The structure

S = (S,∨) is called a ∨-semilattice, where ∨ is called join. We often call the term a∨ b the

least upper bound of a and b, where we define the relation≤∨ on S via a ≤∨ b iff a∨b = b,

for all a, b ∈ S. We see that ≤∨ is reflexive since ∨ is idempotent, it is antisymmetric since

7If e, e′ are identities for ∗ then e = e ∗ e′ = e′.

13

∨ is commutative, and transitive since ∨ is associative. Hence (S,≤) is a poset. Similarly,

(T,∧) is called a ∧-semilattice, where a ∧ b denotes the greatest lower bound of a and b,

with the relation≤∧ on T via a ≤∧ b iff a∧b = a, and deduce that (T,≤) is a poset.8 If the

∨-semilattice [resp. ∧-semilattice] is a monoid, we will represent the identity for ∨ [resp.

∧] by the falsum symbol ⊥ [resp. verum symbol >], and call such a structure (S,∨,⊥) a

⊥-bounded semilattice [resp. (S,∧,>) is >-bounded].

Proposition 1.2.4. Let S = (S,∨) be a ∨-semilattice. Then for all a, b, c ∈ S, (i) a ≤ a∨ b

and (ii) a ∨ b ≤ c implies a ≤ c and b ≤ c. Similarly, if (T,∧) is a ∧-semilattice, then for

all a, b, c ∈ S (iii) a ∧ b ≤ a and (iv) c ≤ a ∧ b implies c ≤ a and c ≤ b

Proof. (i) a ∨ b = (a ∨ a) ∨ b = a ∨ (a ∨ b). (ii) a ≤ a ∨ b and b ≤ a ∨ b, and so by

transitivity, a ≤ c and b ≤ c. Both (iii) and (iv) follow by similar arguments.

If + and · are operations on a set A, we say A is left [right] (·,+)-distributive if for all

a, b, c ∈ A, a · (b+ c) = (a · b) + (a · c) [(b+ c) · a = (b · a) + (c · a)]. We say A is (·,+)-

distributive if it is both left and right (·,+)-distributive. Henceforth, when using symbol ·

we will write ab := a · b, and will assume · binds more tightly than any other operation so

to remove parenthesis and render expressions easier to read, e.g., ab+ cd := (a · b)+(c ·d).

We call an algebra R = (R,+, ·, 1) a semiring if (R,+) is a commutative semigroup,

(R, ·, 1) is a monoid, andR is (·,+)-distributive. We say R is commutative if (R, ·) is com-

mutative, and idempotent if (R,+) is idempotent. Semirings form a variety, and therefore

so do (commutative) idempotent semirings. We denote the variety of (commutative) idem-

potent semirings by (C)ISR. We call an algebra R = (R,+, ·, 0, 1) a semiring with zero

if (R,+, ·, 1) is a semiring where (R,+, 0) is a monoid and 0x = x0 = 0 for all x ∈ R.

8Note that the relations ≤∨ and ≤∧ defined from the same operation on a commutative idempotent semi-
group S are dual, i.e., a ≤∨ b iff b ≤∧ a

14

We will only be interested in the variety of idempotent semirings with zero, denoted ISR⊥,

where we will use the falsum symbol ⊥ to denote additive identity. 9

A structure G = (G, ·, 1,≤) a partially-ordered monoid if (G, ·, 1) is a monoid and

(G,≤) is a poset such that multiplication is order-preserving, i.e., x ≤ y implies xz ≤ yz

and zx ≤ zy for all x, y, z ∈ G.

Proposition 1.2.5. If (R,∨, ·, 1) be an idempotent semiring, then multiplication is order

preserving and hence (R, ·, 1,≤) is a partially-ordered monoid.

Proof. Let x, y, z ∈ R and suppose y ≤ z. By defintion, z = y∨z, and so xz = x(y∨z) =

xy ∨ xz. Hence xy ≤ xz. Similarly, we deduce yx ≤ zx.

An algebra L = (L,∧,∨) is a lattice if (L,∧) and (L,∨) are ∧ and ∨-semilattices,

respectively, that satisfy the following absorption laws each x, y ∈ L:

• x ∨ (x ∧ y) = x,

• x ∧ (x ∨ y) = x.

We see that the ∧ and ∨-semilattice orders coincide since x∧ y = x iff y = x∨ y. A lattice

is ⊥-bounded (resp. >-bounded) if the ∨-semilattice [resp. ∧-semilattice] reduct is, and a

lattice is called bounded if it is both> and⊥-bounded. A lattice L is said to be distributive

if it is both (∨,∧) and (∧,∨)-distributive.10

9In the literature, a semiring is often defined to include a constant 0 in the signature such that (R,+, 0) is
a commutative monoid with x0 = 0x = 0 for all x ∈ R, and may or may not include the constant 1 in the
signature, the latter only stipulating that (R, ·) is a semigroup. For our purposes, we wish to include the mul-
tiplicative unit 1, while the inclusion of the additive unit 0 is unnecessary for the results that follow. However,
we note that for the cases we consider, namely the {∨, ·, 1}-reduct of residuated lattices, the existence of an
additive unit ⊥ will have the property x⊥ = ⊥x = 0.

10In fact, these conditions are equivalent in lattices. I.e., a lattice is distributive iff it is (∨,∧)-distributive
iff (∧,∨)-distributive.

15

Definition 1.2.1. An algebra R = (R,∧,∨, ·, \, /, 1) is called a (commutative) residuated

lattice if (R,∧,∨) is a lattice, (R, ·, 1) is a (commutative) monoid and (\, /) is a pair of

binary operations satisfying the following law of residuation for all x, y, z ∈ R:

xy ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z.

The residual operations \ and / are called, respectively, left and right implication, and

can be viewed as a weaker notion of left and right division. In this way, we say a is the

numerator and b the denominator in both the terms b\a and a/b. We prove the following

proposition for the sake of completeness, however a more comprehensive exposition of

such facts can be found in [8].

Proposition 1.2.6. Let R = (R,∧,∨, ·, \, /, 1) be a residuated lattice. The following hold:

1. For all x, y ∈ R, x(x\y) ≤ y and (x/y)y ≤ x.

2. Multiplication is order-preserving.

3. R is (·,∨)-distributive.

4. Implication is increasing in the numerator and decreasing in the denominator.

5. R is left (\,∧)-distributive and right (/,∧)-distributive.

6. If R is commutative, then x\y = y/x for all x, y ∈ R.

7. If R |= 1 ≤ x then R = {1}.

Proof. Let x, y, z ∈ R.

(1) x(x\y) ≤ y iff x\y = x\y by residuation, and so by symmetry (x/y)y ≤ x.

(2) Suppose x ≤ y. Since yz ≤ yz, residuation entails y ≤ (yz)/z. So x ≤ (yz)/z

by transitivity with the assumption, and hence xz ≤ yz by residuation. By symmetry we

obtain zx ≤ zy.

16

(3) Since y ≤ y ∨ z then xy ≤ x(y ∨ z) by (2). Similarly, xz ≤ x(y ∨ z), and hence

xy∨xz ≤ x(y∨z). Let c ∈ R, then x(y∨z) ≤ c iff y∨z ≤ x\c iff y ≤ x\c and z ≤ x\c iff

xy ≤ c and xz ≤ c iff xy∨xz ≤ c. So by setting c = xy∨xz we deduce x(y∨z) = xy∨xz.

By symmetry, we obtain (y ∨ z)x = yx ∨ zx and so R is (·,∨)-distributive.

(4) Suppose y ≤ z. By (1), x(x\y) ≤ y ≤ z by assumption, so x\y ≤ x\z by

residuation. Similarly, using (2), y ≤ z implies y(z\x) ≤ z(z\x) ≤ x by 1. Hence

z\x ≤ y\x by residuation. By symmetry we obtain y/x ≤ z/x and x/z ≤ x/y.

(5) By (4), division is increasing in the numerator implies x\(y∧ z) ≤ x\y and x\(y∧

z) ≤ x\z, hence x\(y ∨ z) ≤ x\y ∧ x\z. Fix c ∈ R, then by residuation, c ≤ x\(y ∧ z)

iff xc ≤ y ∧ z iff xc ≤ y and xc ≤ z iff c ≤ x\y and c ≤ x\z iff c ≤ x\y ∧ x\z. Hence

x\(y ∧ z) = x\y ∧ x\z. Symmetrically, we obtain (y ∧ z)/x = y/x ∧ z/x.

(6) Suppose R is commutative. By (1), x(x\y) ≤ y, so by commutativity (x\y)x ≤ y

which implies x\y ≤ y/x. By symmetry, we obtain x\y = y/x.

(7) Suppose for all x ∈ R, 1 ≤ x. Fix x ∈ R, then 1/x ∈ R so 1 ≤ 1/x by assumption.

By residuation, we obtain x ≤ 1. Hence x = 1 and therefore R = {1}.

When R is a commutative residuated lattice, we will write x→ y := x\y = y/x. It is

well known that (commutative) residuated lattices form a variety (see [9]), which we denote

by (C)RL. By Proposition 1.2.6, it is clear that the {∨, ·, 1}-reduct of a (commutative)

residuated lattice is a (commutative) idempotent semiring.

We say a residuated lattice is distributive, ⊥-bounded, or bounded if the lattice reduct

is distributive, ⊥-bounded, or bounded, respectively, and denote these respective varieties

by DRL, RL⊥, and BRL.

A full Lambek algebra, or FL-algebra, is a structure A = (A,∧,∨, ·, \, /, 1, 0) where

(A,∧,∨, ·, \, /, 1) is a residuated lattice and 0 ∈ A is some constant. Note that residuated

lattices are exactly the 0-free reducts of FL-algebras. We denote the variety of FL-algebras

17

by FL, and commutative FL-algebras by FLe, where the naming convention will become

apparent in the following section.

1.2.4 Inference rules and proofs. Let Q be a set. A subset ` of ℘(Q) × Q is called a

consequence relation over Q, if for every subset X ∪ Y ∪ {x, z} of Q:

• if x ∈ X then X ` x,

• if X ` Y and Y ` z, then X ` z,

where X ` x stands for (X, x) ∈ ` and X ` Y the proposition: X ` y for all y ∈ Y .

We note that for a consequence relation `, the map X 7→ {x ∈ Q : X ` x} is a closure

operator on ℘(Q).

A k-dimensional consequence relation over a structure S is a consequence relation

over Sk (we use the boldface to indicate there is additional structure). A consequence

relation ` on a structure S is substitution invariant if X ` x implies σ(X) ` σ(x), for

every substitution σ on S. For the purposes of this paper we only focus on (substitution

invariant) k-dimensional consequence relations, where k ∈ {1, 2}.

A k-dimensional inference rule over S (or simply, a rule) is a pair (r) = (t, T), where

T ∪ {t} is a subset of Sk, and we write inference rules in fractional notation T
t
(r), where

T is called the premises and t the conclusion of (r). If T = {t1, . . ., tn} we write

t1 · · · tn
t

(r)
,

where the premises are understood conjunctively. An instance of a rule (r) is obtained by

applying a substitution σ to each term appearing in the rule, denoted by the pair σ[T]
σ(t)

(σ, r).

A proof of s (conclusion) from (the set of) assumptions S in a set of rules R is a finite

rooted tree with labeled vertices, defined inductively as follows:

1. Every element of S is a proof with that element as assumption and conclusion.

18

2. If σ is a substitution,
s1 · · · sn

s (r)

is a rule in R, and P1, . . .,Pn are proofs with conclusions σ(s1), . . .,σ(sn) and sets

of assumptions S1, . . ., Sn, respectively, then

P1 · · · Pn
σ(s)

(σ, r)

is a proof with a set of assumptions S1 ∪ · · · ∪ Sn with conclusion s.

In this way, we see that the relation `R over S defined by X `R s iff there is a proof of

s from assumptions X over the rules R, is a substitution invariant consequence relation.

1.2.5 The Full Lambek Calculus. We now recall the sequent system FL, the Full Lam-

bek calculus, which will serve as our basis for substructural logics. The formulas of FL are

built from propositional variables p, q, r, . . . and constants 1 (unit) and 0 by using binary

logical connectives · (fusion), \ (right implication), / (left implication), ∧ (conjunction),

and ∨ (disjunction). The set Fm of formulas is the smallest set containing the proposi-

tional variables and constants 0, 1, and (a ∗ b) ∈ Fm for each a, b ∈ Fm and connective

∗ ∈ {·, \, /,∧,∨}. FL sequents are expressions of the form a1, . . ., am ⇒ b1, . . ., bn, where

m ≥ 0 and 1 ≥ n ≥ 0. The rules of FL are displayed in Figure 1.1.

19

Γ⇒ α ∆1, α,∆2 ⇒ Π
∆1,Γ,∆2 ⇒ Π

(cut)
α⇒ α (init) ⇒ 1

(1r)

Γ1, α, β,Γ2 ⇒ Π

Γ1, α · β,Γ2 ⇒ Π
(·l) Γ⇒ α ∆⇒ β

Γ,∆⇒ α · β (·r) Γ1,Γ2 ⇒ Π
Γ1, 1,Γ2 ⇒ Π

(1l)

Γ⇒ α ∆1, β,∆2 ⇒ Π

∆1,Γ, α\β,∆2 ⇒ Π
(\l) Γ, α⇒ β

Γ⇒ α\β (\r) Γ⇒
Γ⇒ 0

(0r)

Γ⇒ α ∆1, β,∆2 ⇒ Π

∆1, β/α,Γ,∆2 ⇒ Π
(/l)

Γ, α⇒ β

Γ⇒ β/α
(/r)

0⇒ (0l)

Γ1, α,Γ2 ⇒ Π Γ1, β,Γ2 ⇒ Π

Γ1, α ∨ β,Γ2 ⇒ Π
(∨l) Γ⇒ β

Γ⇒ α ∨ β (∨r1) Γ⇒ α
Γ⇒ α ∨ β (∨r2)

Γ1, β,Γ2 ⇒ Π

Γ1, α ∧ β,Γ2 ⇒ Π
(∧l1)

Γ1, α,Γ2 ⇒ Π

Γ1, α ∧ β,Γ2 ⇒ Π
(∧l2)

Γ⇒ α Γ⇒ β

Γ⇒ α ∧ β (∧r)

Figure 1.1: Inference rules of FL

The inference rules are presented in terms of meta-variables, where the letters α, β

stand for formulas and are called meta-formulas, Γ,∆, . . . stand for finite (possibly empty)

sequences of formulas called meta-sequences, and Π stands for either a formula or the

empty-sequence, and is called a stoup. A meta-sequent s is given by Υ⇒ Ψ, where Υ is a

specific sequence of meta-variables and Ψ is either empty, a meta-variable for formulas or

sequences of sequences of formulas. An assignment ν is a substitution from meta-variables

to sequences of formulas (separated by commas) of the appropriate type. If s is the meta-

sequent Υ⇒ Ψ, then ν(s) is the sequent ν(Υ)⇒ ν(Ψ).

In this way, proofs in FL are defined as above and `seqFL is a (2-dimensional) substitution

invariant consequence relation over Fm. If Φ∪{ψ} is a set of formulas, we write Φ `FL ψ

if { ⇒ φ : φ ∈ Φ} `seqFL ⇒ ψ.

20

A structural rule is any rule (R) of the form for n ≥ 0:

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Υ0 ⇒ Ψ0
(R)

,

where each Υi is a specific sequence of meta-variables and each Ψi is either empty, a meta-

variable, or sequence of meta-variables (see [6]).

A substructural logic L over FL is an axiomatic extension of FL (by some set of axiom

schemes). The extensions we primarily consider in the paper are those by sets of special

structural rules called simple rules.11 We write `L to denote the substitution invariant

consequence relation defined by L in the usual way. We will be primarily interested in

those extension of FL by some set Σ of structural rules, denoted by FLΣ. A few examples

of widely studied structural rules are:

Γ, α, β,∆⇒ Π

Γ, β, α,∆⇒ Π
(e)

Γ,∆⇒ Π
Γ, α,∆⇒ Π

(w)
Γ, α, α,∆⇒ Π
Γ, α,∆⇒ Π

(c)
,

where (e) is called exchange, (w) weakening, and (c) contraction. The structure FLecw

is the Gentzen calculus for intuitionistic logic, commonly denoted by LJ. Algebraically,

(e) corresponds to commutativity (xy = yx), (w) to integrality (x ≤ 1), and (c) to square-

increasing contraction (x ≤ x2).

All three relations `seqFL, `FL, and |=FL are equivalent (see [9],[10]), and this fact is

known as the algebraization of FL, in the sense of Blok and Pigozzi [2]. The trans-

lation between sequents, formulas, and equations can be given as follows: For a given

sequent α1, . . ., αn ⇒ α, the corresponding equation and formula are α1 · · ·αn ≤ α and

(α1 · · ·αn)\α; for α1, . . ., αn ⇒ we put α1 · · ·αn ≤ 0 and (α1 · · ·αn)\0. To a formula α,

we associate ⇒ α and 1 ≤ α. And to an equation s = t we identify the formula s\t ∧ t\s

11See Section 2.1.1.

21

and the sequent ⇒ s\t ∧ t\s (by s ≤ t we associate s\t and the sequent s ⇒ t). In light

of this algebraization, we have that for a set of sequents S ∪ {s},

S `seqFL s iff ε[S] |=FL ε(s),

where ε(s) is the equation corresponding to s, and for every set of equations E ∪ {ε},

E |=FL ε iff s[E] `seqFL s(ε).

where s(ε) is the sequent corresponding to ε.

If L is a substructural logic, by L+ we denote the 0-free fragment of L. The equivalent

algebraic semantics of FL+ are given by RL.

1.2.6 Notions of Decidability.

A substructural logic L has a decidable deducibility relation if there is an algorithm

that decides whether Φ `L {ψ}, for all sets Φ ∪ {ψ} of formulas. A class of algebras

has a decidable (quasi)equational theory if there is an algorithm that decides whether a

(quasi)equation holds in the class or not. Note that decidability problems for varieties of

FL-algebras axiomatized by 0-free sets of equations reduce to the corresponding problems

for the varieties of residuated lattices axiomatized by the same equations.

22

Chapter 2: Equations in the signature {∨, ·, 1}
In this chapter, we will examine properties of equations in the {∨, ·, 1}-fragment of

residuated lattices. It is here that the theory of residuated frames [8] is first introduced. In

particular, we highlight the preservation of simple equations and their structural counter-

parts simple rules within residuated frames constructions, which will be essential for the

following chapters. In the first section, we present key definitions and propositions about

equations in the signature {∨, ·, 1} in the setting of both residuated lattices and idempotent

semirings. It is here where simple equations and simple structural rules find their defini-

tion. In the second section, we recall residuated frames and their preservation of simple

equations. The third section investigates when simple equations are consequences of oth-

ers, often called the subvariety containment problem. In particular, we exhibit a recursively

enumerable procedure for determining whether one equation implies another. We achieve

Theorem 2.3.4 in particular, which essentially states that the {∨, ·, 1}-fragment of the equa-

tional theory for the variety RL+ Σ coincides with the equational theory of ISR+ Σ, where

Σ is a set of simple equations. The fourth section inspects some widely-studied classes of

simple equations, in particular so-called knotted equations. Using the results from the pre-

vious section, we demonstrate some characterizations that will be useful for the remaining

chapters e.g., Theorem 2.4.1 and Corollary 2.4.3. In the last section, we prove a deduction

theorem for so-called expansive varieties of commutative residuated lattices. In particular,

Corollary 2.5.2 will be needed for the remaining chapters, specifically for bootstrapping

the undecidability of the quasi-equational theory to undecidability of the equational theory

for such residuated lattices.

23

2.1 Equations in ISR

Since RL has a semiring reduct, an equation over {∨, ·, 1} is equivalent to an equal-

ity between two finite joins of monoid terms by distributivity. Since RL also has a ∨-

semilattice reduct, by Proposition 1.2.4, such an equality is ISR-equivalent to a conjunction

of inequations, which we call ISR-equations. In the following sections, we will let Var be

a countable set of variables. For a subset X ⊆ Var we will denote by X∗ := T{·,1}(X) the

set of monoid terms generating by X , and by X∗∨ the free semiring generate by X . Since

Var∗∨ is a semiring structure, every element of Var∗∨ can be written as a join of monoid

words over Var∗.

Given a term t ∈ Var∗, we define the support of t to be the set supp(t) ⊆ Var containing

exactly those distinct variables which occur in t, i.e., t ∈ supp(t)∗ but t 6∈ Y ∗ for any

Y (supp(t). By definition, t ∈ Var∗ implies supp(t) is finite. For Y ⊆ Var∗, let

supp(Y) be the set of exactly those distinct variables which occur in elements of Y , i.e.

supp(Y) =
⋃
t∈Y supp(t). Similarly, for terms t1, . . ., tn ∈ Var∗, by supp(t1∨· · · tn) set of

exactly those distinct variables which occur in each joinand of ti, i.e., supp(t1 ∨ · · · tn) =

supp({t1, . . . , tn}).

Definition 2.1.1. Let m ≥ 1, t0, . . ., tm ∈ Var∗ be monoid terms. A universally quantified

inequation [A] of the form t0 ≤ t1 ∨ · · · ∨ tm is called a ISR-equation, and in this way we

write [A] = (t0, A), where A = {t1, . . ., tm}. A ISR-equation [A] = (t0, A) is called:

• trivial if t0 ∈ A,

• linear if t0 is linear, i.e., each variable appearing in t0 occurs exactly once.1,

• proper if A ⊆ supp(t0)∗,

• integral if supp(t0) \ supp(A) is nonempty,

1This can be stated via t0 =
∏
x∈supp(t0) x, since Π is well-defined by commutativity.

24

• degenerate if t 6∈ supp(t0)∗ for each t ∈ A, namely every t ∈ A contains a variable

not appearing in t0, and

• a simple equation if [A] is a proper linear ISR-equation.2

If σ is a substitution, then [σA] := (σ(t),σ[A]), i.e., [σA] : σ(t0) ≤ σ(t1 ∨ · · · ∨ tm).

Since RL has an ISR-reduct, the following is immediate:

Proposition 2.1.1. Let Γ ∪ {[A]} be a set of ISR-equations. Then ISR + Γ |= [A] implies

RL + Γ |= [A].

When understood in context, we will refer to an ISR-equation simply as an equation.

Through a process called linearization, as shown in [8], we can prove an equation is equiv-

alent to a linear equation:

Proposition 2.1.2. The following hold:

1. In ISR, every finite set of ISR-equations is equivalent to an ISR-equation.

2. In ISR, every ISR-equation is equivalent to a linear equation.

3. In ISR, every integral equation entails integrality (x ≤ 1).

4. In RL and ISR⊥, every degenerate equation is equivalent to 1 ≤ x.

5. In RL and ISR⊥, every non-degenerate equation is equivalent to a simple equation.

Proof. (1) Let ti ≤ ui, for i = 1, . . ., n be ISR-equations where ti ∈ Var∗ and ui ∈ Var∗∨.

By choosing fresh variables, we can assume that their sets of variables are disjoint. We

claim the set {ti ≤ ui : 1 ≤ i ≤ n} is equivalent to the equation t1 · · · tn ≤ u1 · · ·un, in

which case we can even distribute on the right-hand side. The forward direction is obtained

since multiplication is order preserving. The converse is obtained by, for each 1 ≤ i ≤ n,

2Note that if [A] is a simple equation and t0 = 1 then A = {1}.

25

substituting 1 for each variable not appearing in ti, ui. This substitution yields exactly

ti ≤ ui, since the variables was assumed to be distinct.

(2) Fix an equation [A] given by t ≤ u, for some monoid term t ∈ Var∗ and u ∈ Var∗∨.

For each variable x appearing in t, we consider fresh variables x1, . . . , xn not appearing in

t, u. Substitute x1∨· · ·∨xn for x in [A] and distribute on both sides of≤. So, if t = vxnw,

we obtain

vxnw ≤ u =⇒ v(x1 ∨ · · · ∨ xn)nw ≤ u′ =⇒ vx1 · · ·xnw ≤ u′,

where u′ is obtained by the substitution x 7→ x1 ∨ · · · ∨ xn and the last implication hold by

distribution and the fact that a ∨ b ≤ c implies a ≤ c. The reverse direction is obtained by

setting x = x1 = · · · = xn, producing t ≤ u. Doing this for all variables in t produces a

linear term.

(3) Suppose t ≤ u is integral. Then there exists a variable x in t that occurs nowhere

in u. If tL ≤ uL is the linearization of t ≤ u as defined in (2), all the variables x1, . . . , xn

appear only in tL precisely once, and appear nowhere in uL. Substitute all variables differ-

ent from x1 to 1. Then x1 ≤ 1∨ · · · ∨ 1, which is equivalent to x1 ≤ 1 by the idempotency

of ∨.

(4&5) By the method of linearization from (2), it is enough to consider the equation

[A] : s ≤ t1 ∨ · · · ∨ tn where s is linear. Let J = {t1, . . ., tn} and Jd ⊆ J be the set of all

joinands ti such that ti contains variables that do not appear in s. Note that [A] is degenerate

if and only if Jd = J . For ISR⊥, both (4) and (5) are obtained by the substitution σ mapping

x 7→ ⊥ if x ∈ supp(J) \ supp(s). This yields σ(t) = ⊥ for each t ∈ Jd, and σ(s) = s. If

[A] is degenerate then [A] implies s ≤ ⊥ (which trivially entails 1 ≤ x) and we are done.

Otherwise, there are joinands ti such that supp(ti) ⊆ supp(s), i.e., J \ Jd 6= ∅ implies

26

σ(t) = t for all t ∈ J \ Jd, and hence [A] implies s ≤
∨
t∈J\Jd t, a simple equation. We

now proceed with the case of RL.

Now, if [A] is degenerate, fix a fresh variable x ∈ Var and define the substitution τ

generated by x 7→ 1, for each x ∈ supp(s), and y 7→ x ∧ 1 for each y 6∈ supp(s). Then

τ (s) = 1 and for each t ∈ J , and τ (t) = (x ∧ 1)mt for some mt ≥ 1, since J = Jd.

Hence τ (t) ≤ x since (x ∧ 1)mv ≤ x ∧ 1 ≤ x. Thus 1 = τ (s) ≤
∨
t∈J τ (t) ≤ x. Since

RL + (1 ≤ x) defines the trivial variety, it follows that RL |= [A] iff RL |= 1 ≤ x.

If [A] is not degenerate then Jd (J . Define v =
∨
t∈J\J ′ t. For each w ∈ Jd,

there exists yw 6∈ supp(s) such that w = uwywvw, for some terms uw, vw ∈ Var∗. Let

u′w, v
′
w ∈ Var∗ be terms obtained by replacing each y 6∈ supp(s) in uw, vw by 1, for each

w ∈ Jd. Now y 6∈ supp(s), make the following substitution τ

y 7→ 1 ∧
∧
w∈Jd

u′w\(v/v′w).

It follows that τ (v) = v and for every w ∈ Jd, τ (uw) ≤ u′w and τ (vw) ≤ v′w, since

τ (y) ≤ 1 for each y 6∈ supp(s). Furthermore, since τ (yw) ≤ u′w\(v̄/v′w), we obtain

τ (w) ≤ u′wτ (yw)v′w ≤ v. In this way we obtain

s = τ (s) ≤[A] τ (v) =
∨
t∈J

τ (t) ≤
∨

t∈J\Jd

t.

Since t ∈ supp(s)∗ for each t ∈ J \ Jd, we have that [τA] is a simple equation. Hence

RL + [A] |= [τA]. The converse is obtained since v ≤ v ∨
∨
w∈Jd w, and so RL+ |= [A].

Therefore, RL + [σA] |= [A] iff RL + [A] |= [σA].

For an indexing on Var = {x1, x2, . . .}, we define the n-variable linear term 1n ∈ Var∗

via 1n :=
∏n

i=1 xi, and 10 := 1. If [A] is a simple equation, then [A] is ISR-equivalent to

some rule [R] = (1n,R) by simply indexing the set Var in a particular way. In this way,

27

when we represent ISR-equations by non-italicized letters we implicitly assume an indexing

on Var, e.g., [R] = (1n,R) or [A] = (a0,A). We define Var⊥ := Var ∪ {⊥}, and Var∗⊥ to

be the free monoid over Var⊥ where ⊥ is an absorbing element, i.e., ⊥x = x⊥ = ⊥ for all

x ∈ Var∗⊥.

2.1.1 ISR-equations and structural rules. To each ISR-equation [A] = (a0,A), we asso-

ciate the following structural rule in FL:

{∆1, a
FL(Γ1, . . .,Γn),∆2 ⇒ Π}a∈A

∆1, a
FL
0 (Γ1, . . .,Γn),∆2 ⇒ Π

(A)
, (2.1)

and vice versa, where supp(A ∪ {a0}) = {x1, . . ., xn}. As described in Section 1.2.5, the

relations `FL+(A) and |=FL+[A] are equivalent. We call a structural rule, as written above, a

simple rule if [A] is a simple equation.

Proposition 2.1.3 ([8]). For any set of simple rules Σ, the cut rule is admissible in FL+Σ.

2.2 Simple Equations and Residuated Frames

We recall the structures known as residuated frames, as developed in [8]. For our

purposes, a residuated frame is a structure W = (W,W ′, N) where

• (W, ∗, 1) is a monoid,

• W ′ is a set,

• N ⊆ W × W ′, often called the Galois relation, is nuclear, i.e., there exists :

W ×W ′ → W ′ and � : W ′ ×W → W ′ such that for all u, v ∈ W and w ∈ W ′,

u ∗ vN w iff uN w � v iff vN u w.

The relation N defines a Galois connection (., /) on ℘(W), ℘(W ′), as defined in Exam-

ple 1.2.1. Hence, γN : ℘(W) → ℘(W) defined by γ(X) = X./ is a closure operator on

28

℘(W). In fact, a relation N is nuclear if and only if γN is a nucleus (see [8]), where a

nucleus is a closure operator γ : G → G on a partially ordered groupoid G satisfying

γ(x)γ(y) ≤ γ(xy) [or equivalently, γ(γ(x)γ(y)) = γ(xy)] for all x, y ∈ G.

Proposition 2.2.1 ([8]). Let W be a residuated frame. Then the structure

W+ :=
(
℘(W)γN ,∩,∪γN , ∗γN , \, /, γN ({1})

)
is a residuated lattice, where

X ∪γN Y := γN (X ∪ Y), X\Y := {z ∈ W : X ∗ {z} ⊆ Y },

X ∗γN Y := γN (X ∗ Y), Y/X := {z ∈ W : {z} ∗X ⊆ Y }.

and X ∗ Y := {x ∗ y ∈ W : x ∈ X, y ∈ Y } for all X, Y ∈ ℘(W)γN .

We note that W+ is a complete3 residuated lattice. In fact, ⊥W+
:= γN (∅) is the least

element in W+, and thus X ∗γN ⊥W+
= ⊥W+ ∗γN X = ⊥W+ for any X ∈ W+.

Let (W, ∗, 1) be a monoid, W ′ a set, and N ⊆ W ×W ′. Define W̃ ′ := W ×W ′ ×W

and Ñ ⊆ W × W̃ ′ to be the relation given by

x Ñ (u, z, v) iff u ∗ x ∗ vN z,

for all x, u, v ∈ W and z ∈ W ′. We call (W,W ′,N) a preframe and (W, W̃ ′, Ñ) the

structure induced by the preframe (W,W ′,N).

Proposition 2.2.2. Let (W,W ′, N) be a preframe. Then (W, W̃ ′, Ñ) is a residuated frame.

3A lattice L is complete if it is closed under arbitrary joins, written
∨
X ∈ L for every X ⊆ L. Equiva-

lently, L is complete if it is closed under arbitrary meets, written
∧
X ∈ L for every X ⊆ L.

29

Proof. Observe Ñ is nuclear since x∗y Ñ (u, z, v) iff x Ñ (u, z, y ∗ v) iff y Ñ (u ∗ x, z, v),

for all x, y ∈ W and (u, z, v) ∈ W̃ ′.4

2.2.1 Preservation of simple equations. Let W = (W,W ′,N) be a residuated frame

and [A] = (a0,A) be an ISR-equation where supp(A ∪ {a0}) = {x1, . . ., xn} for some

n ≥ 0. We write W |= (A)W if:

{aW(u1, . . ., un)N v}a∈A

aW0 (u1, . . ., un)N v
(A)W

,

for all u1, . . ., un ∈ W and v ∈ W ′.

Proposition 2.2.3 ([8]). Let [A] be an ISR-equation and W a residuated frame. If W+ |=

[A] then W |= (A)W.

Proposition 2.2.4 ([8]). If [R] is a simple equation and W a residuated frame, then W |=

(R)W if and only if W+ |= [R].

The above proposition is not true in general for non-proper linear ISR-equations.5 To

handle such equations, a sufficient condition on the frame W = (W,W ′,N) is that⊥W+ 6=

∅, i.e., the nuclear image of the emptyset is not the emptyset.

Lemma 2.2.5. Let [A] be a non-proper linear ISR-equation and W a residuated frame. If

⊥W+ 6= ∅, then W |= (A)W implies W+ |= [A].

Proof. Let W = (W,W ′,N), be a residuated frame, where (W, ∗, 1) is the monoid, such

that ⊥W+ 6= ∅, and suppose W |= [A], for some non-proper linear [A] = (1n,A) where

4That is ,� are given by x (u, z, v) := (u ∗ x, z, v) and (u, z, v) � y := (u, z, y ∗ v).

5Proposition 2.2.3 can be found in Theorem 3.10 in [8]. However, we remark that Theorem 3.10 in [8]
as stated is not true in general for residuated frames and special care must be taken for non-proper linear
ISR-equations.

30

supp(A ∪ {1n}) = {x1, . . ., xk} and k > n. Note that u⊥ ∈ ⊥W+ implies u⊥N v for all

v ∈ W ′. In fact, since ⊥W+ is absorbing in W+, u⊥ ∈ ⊥W+ implies x ∗ u⊥ ∗ yN v for all

v ∈ W ′ and x, y ∈ W .

If [A] is degenerate, then supp(a) \ supp(1n) 6= ∅ for each ∈ A. It is enough to show

that W+ |= 1 ≤ x. Since ⊥W+ is the least element, it suffices to show γN ({1}) ⊆ ⊥W+ ,

or equivalently, ∅. ⊆ {1}.. Fix u⊥ ∈ ⊥W+ , and set u = (ui)
k
i=1 where ui = 1 for i ≤ n

and uj = u⊥ for n < j ≤ k. Then aW(u) = uka for each a ∈ A, where ka > 0, and

1n
W(u) = 1. Hence for every v ∈ W ′, we obtain aW(u)N v, and since W |= (A)W, it

follows that 1n
W(u)N v, i.e., 1N v. Thus γN ({1}) ⊆ ⊥W+ , hence W+ |= 1 ≤ x.

Now, if [A] is non-degenerate, then n > 0 and the set A′ := {a′ ∈ A : supp(a′) ⊆

supp(1n)} is nonempty. Then [A′] := (1n,A
′) is a simple rule. We claim that W |= (A′).

Let u1, . . ., un ∈ W and u⊥ ∈ ⊥W+ . Define u = (u1, . . ., un) and u′ = (u′i)
k
i=1 where

u′i = ui for i ≤ n and uj = u⊥ for n < j ≤ k. Note that 1n
W(u′) = 1n

W(u) and

a′W(u′) = a′W(u) for each a ∈ A′. Now, suppose for some v ∈ W ′, a′W(u)N v for each

a′ ∈ A′. Then aW(u′)N v for every a ∈ A since a ∈ A\A′ is such that aW(u′) = x∗u⊥∗y,

for some x, y ∈ W . Since W |= (A)W, it follows that 1n
W(u′)N v. Hence W |= (A′)W.

Since [A′] is a simple equation, by Proposition 2.2.4, W+ |= [A′]. Since A′ ⊆ A and ∨ is

increasing, it follows that W+ |= [A].

2.3 Subvariety Containment

We will now address the question: for given sets Σ,Σ′ of simple equations, when does

RL+ Σ |= Σ′, i.e., is RL+ Σ ⊆ RL+ Σ′? We will show this is equivalent to whether or not

ISR + Σ |= Σ′.

Let [A] = (a0, A) be an ISR-equation. We define the 1-dimensional inference rule

(A)Var∗ on Var∗ via:
{x · a · y}a∈A

x · a0 · y (A)Var∗ , (2.2)

31

where x, y ∈ Var \ supp(A ∪ {a0}) are distinct.

We define the relation `Γ ⊆ ℘(Var∗) × Var∗ to be the smallest relation closed under

the following conditions for all X ⊆ Var∗:

• X `Γ x for all x ∈ X ,

• If X `Γ σ(uav) for all a ∈ A, then X `Γ σ(ua0v), where [A] = (a0, A) ∈ Γ,

u, v ∈ Var∗, and σ a substitution.

By Section 1.2.4 we obtain:

Lemma 2.3.1. Let Γ be a set of ISR-equations. Then `Γ is a substitution invariant conse-

quence relation on Var∗.

In this way, we will write a0 ≤Γ

∨
A if A `Γ a0, for some finite nonempty A ⊆ Var∗

and term a0 ∈ Var∗.

Lemma 2.3.2. Let Γ∪{(a0, A)} be a set of ISR-equations. If A `Γ a0 then ISR+Γ |= [A].

Proof. We induct on the height n of the proof-tree that represents the derivation of a0 from

A. If n = 0, then a0 ∈ A. Since ∨ is idempotent, we have a0 ∨
∨
A =

∨
A and hence

a0 ≤ISR
∨
A. Suppose for every 0 ≤ m < n, if a′ has a derivation of height m from A,

then a′ ≤ISR+Γ
∨
A. Since n > 0, there exists a substitution σ and [R] = (r0,R) ∈ Γ such

that
{σ(xry)}r∈R

σ(xr0y)
(σ, (R)Var∗)

,

where a0 = σ(xr0y) and σ(xry) has a derivation of heightmr < n fromA for each r ∈ R.

Since σ(xry) ≤Γ

∨
A for each r ∈ R and mr < n, it follows by the inductive hypothesis

that σ(xry) ≤ISR+Γ
∨
A. Hence

a0 ≤[R]

∨
r∈R

σ(xry) ≤ISR+Γ
∨

A.

32

Therefore ISR + Γ |= [A].

2.3.1 The frame WΣ. DefineW := Var∗ andW ′ := ℘(Var∗). For a fixed set Σ of simple

equations, we define N Σ ⊆ W ×W ′ via

xN Σ X iff X `Σ x,

for all x ∈ W and (u,X, v) ∈ W ′. So (W,W ′,N Σ) is a preframe which induces the

residuated frame WΣ = (W, W̃ ′, ÑΣ) by Proposition 2.2.2, where we recall that W̃ ′ :=

W ×W ′ ×W and for all x ∈ W and (u,X, v) ∈ W̃ ′,

x ÑΣ (u,X, v) iff uxvN ΣX.

Therefore W+
Σ is a residuated lattice.

Lemma 2.3.3. Let Σ be a set of simple equations. Then W+
Σ ∈ RL + Σ.

Proof. If Σ is empty then we are done. So assume Σ is nonempty and let [R] = (1n,R) ∈

Σ. By Proposition 2.2.4, it is enough to show W |= (R)W. Let a1, . . ., an ∈ W and

(u,X, v) ∈ W̃ ′, and suppose r(ā) ÑΣ (u,X, v) for each r ∈ R, where ā := (a1, . . ., an). By

definition, this is equivalent to u · r(ā) · vN ΣX for each r ∈ R, which in turn is equivalent

X `Σ u · r(ā) · v for each r ∈ R. By definition of `Σ, we obtain X `Σ u · 1n(ā) · v, which

is equivalent to 1n(ā) ÑΣ (u,X, v). Hence WΣ |= (R)W for each [R] ∈ Σ. Therefore

W+
Σ |= Σ by Proposition 2.2.4.

Theorem 2.3.4. Let Σ be a set of simple equations. Then for a given proper ISR-equation

[A] = (a0,A), the following are equivalent:

1. RL + Σ |= [A].

2. A `Σ a0.

33

3. ISR + Σ |= [A].

Proof. Note that (2⇒ 3) by Lemma 2.3.2, and (3⇒ 1) by Proposition 2.1.1. For (1⇒ 2),

suppose RL + Σ |= [A]. Then by Lemma 2.3.3, W+
Σ |= [A]. By Proposition 2.2.4, this

implies WΣ |= (A)W. Since `Σ is a consequence relation, A `Σ a for every a ∈ A, where

[A] = (a0,A). Hence a ÑΣ (1,A, 1) for each a ∈ A. Since WΣ |= (A)W, this implies

a0 ÑΣ (1,A, 1), which is equivalent to A `Σ a0.

Observe that Theorem 2.3.4 is a partial converse to Proposition 2.1.1, since we only

consider simple equations. For instance, if Γ is a set of equations containing a degenerate

equation then RL + Γ |= 1 ≤ x by Proposition 2.1.2, and so RL + Γ is the trivial variety,

while ISR + Γ need not to be. However, there is a stronger relationship between RL and

ISR⊥ in the following way:

Let Γ be a set of ISR-equations and let `Γ⊥⊆ ℘(Var∗⊥) × Var∗⊥ be the relation closed

under
{x · a · y}a∈A

x · a0 · y (A)Var∗⊥ ,

for each [A] ∈ Γ, where x, y ∈ Var⊥ \ supp(A∪{a0}) are distinct. Note that X `Γ⊥ ⊥ for

every X ⊆ Var∗⊥.

By the same argument as Lemma 2.3.1, `Γ⊥ is a substitution invariant consequence

relation. By the same argument as Lemma 2.3.2, we obtain:

Lemma 2.3.5. Let Γ∪{[A]} be a set of ISR-equations where [A] = (a0,A). Then A `Γ⊥ a0

implies ISR⊥ |= [A]

In a similar fashion to the above, we obtain the preframe (Var∗⊥, ℘(Var∗⊥),N Γ⊥) defined

via xN Γ⊥X iff X `Γ⊥ x. Let WΓ⊥ be the residuated frame induced by this preframe.

Lemma 2.3.6. Let Γ be a set of linear ISR-equations. Then W+
Γ⊥ ∈ RL + Γ.

34

Proof. Observe that⊥W+
Γ⊥ = {⊥}. By same argument as Lemma 2.3.3, we obtain WΓ⊥ |=

ΓW. Therefore, by Lemma 2.2.5, it follows that W+
Γ⊥ |= Γ.

Theorem 2.3.7. Let Γ∪{[A]} be a set of ISR-equations. Then ISR⊥+ Γ |= [A] if and only

if RL + Γ |= [A] if and only if A `Γ⊥ a0, where [A] = (a0,A).

Proof. If Γ contains a degenerate equation, then by Proposition 2.1.2(4), both ISR⊥ + Γ

and RL + Γ are the trivial variety, and A `Γ⊥ a0 since {⊥} ` t for all t ∈ Var∗,6 so we

are done. So let Γ contain no degenerate equations. By Proposition 2.1.2(5) we assume,

without loss of generality, that Γ is a set of simple equations. Observe:

RL + Γ |= [A] ⇐⇒ W+
Γ⊥ |= [A] (Lemma 2.3.6)

⇐⇒ WΓ⊥ |= (A)W (Lemma 2.2.5)

Now, if WΓ⊥ |= (A)W, then A `Γ⊥ a0 by definition of N Γ⊥, and hence ISR⊥+Γ |= [A] by

Lemma 2.3.5. Conversely, if W+
Γ⊥ 6|= [A], then ISR⊥ 6|= [A] since the {∨, ·, 1,⊥}-reduct of

W+
Γ⊥ is in ISR⊥ + Γ, and hence A 6`Γ⊥ a0 by Lemma 2.3.5.

We say a set Γ of ISR-equations is degenerate if it contains a degenerate equation. For

Γ not degenerate, the simplification of Γ is the set ΣΓ containing all the equivalent simple

equations given by Proposition 2.1.2.

Corollary 2.3.8. Let Γ be a set of ISR-equations. Then RL + Γ is the trivial variety if and

only if Γ is degenerate.

6If [R] = (r0,R) is degenerate, then there exists xir ∈ supp(r) \ supp(r0) for each r ∈ R. Let u ∈ Var∗⊥
such that

ui =

{
⊥ if i = ir for some r ∈ R
1 otherwise .

Then t · r(u) = t · ⊥ = ⊥ for each r ∈ R and t · r0(u) = t · 1 = t. Hence {⊥} `[R]⊥ t. Then A `[R]⊥ t
since A `[R]⊥ ⊥.

35

Proof. The reverse direction follows from Proposition 2.1.2(4). For the forward direction,

note W+
Γ⊥ ∈ RL+Γ by Lemma 2.3.6, so if RL+Γ is the trivial variety then W+

Γ⊥ |= 1 ≤ x.

Hence WΓ⊥ |= (1 ≤ x)W by Proposition 2.2.3, and thus {x} `Γ⊥ 1. We proceed by

inspecting the proof-tree of {x} `Γ⊥ 1, which we may assume is of minimal height. By

definition, there exists a substitution σ, u, v ∈ Var∗⊥, and [A] = (a0,A) ∈ Γ such that

1 = uσ(a0)v, {x} `Γ⊥ uσ(a)v for all a ∈ A, and

{uσ(a)v}a∈A

uσ(a0)v
(σ, (R)Var∗⊥)

.

Now, since 1 = uσ(a0)v, it follows that u = v = 1 and for every xi ∈ supp(ao), σ(xi) =

1. Let a ∈ A. Since the proof is of minimal height, it must be that uσ(a)v 6= 1. So there

is xj ∈ supp(a) such that σ(xj) 6= 1, and thus supp(a) \ supp(a0) 6= ∅. Therefore [A] is

degenerate.

Theorem 2.3.9. If Γ is a non-degenerate set of ISR-equations, then RL + Γ |= [A] if and

only if A `Σ a0, where [A] = (a0,A) is an ISR-equation and Σ = ΣΓ is the simplification

of Γ.

Proof. By Proposition 2.1.2(5), RL + Σ = RL + Γ and, by Theorem 2.3.7, RL + Σ |= [A]

iff A `Σ⊥ a0. Observe that the reverse direction follows by Theorem 2.3.7 since A `Σ a0

implies A `Σ⊥ a0. For the forward direction, assume RL + Σ |= [A]. We induct on the

height k of the proof-tree for A `Σ⊥ a0, which we may assume is of minimal height. If

the height is k = 0 then [A] ∈ Σ. This implies A `Σ a0 by definition. Suppose the claim

holds for all `Σ⊥-proofs of height less than k > 0. Then there exists a substitution σ and

[R] = (1n,R) ∈ Σ such that A `Σ⊥ {xσ(r)y : r ∈ R} and xσ(1n)y = a0, for some

x, y ∈ Var∗⊥. By the inductive hypothesis, A `Σ {xσ(r)y : r ∈ R}. So xσ(r)y 6= ⊥, for

all r ∈ R, and hence x, y 6= ⊥ and σ(xi) 6= ⊥ for all 1 ≤ i ≤ n. Hence {xσ(r)y : r ∈

R} `Σ xσ(1n)y = a0. Therefore A `Σ a0.

36

2.4 Knotted and other special ISR-equations

Given t ∈ Var∗ and x ∈ Var, by #(t, x) we denote the length of x in t, where #(t, x)

the number of occurrences of the variable x in t. By #(t) we denote the length of t to be to

total number symbols in t, i.e., #(t) =
∑

x∈supp(t) #(t, x).

Definition 2.4.1. Let [A] be an ISR-equation. We say [A] is:

• knotted if [A] : xn ≤ xm for some n 6= m.

• expansive if [A] : xn ≤
∨
p∈P x

n+p, for some n > 0 and finite nonempty P ⊆ Z+.

• compressive if [A] : xn ≤
∨
p∈P x

p, for some n > 0 and nonempty P ⊆ {1, ..., n−1}.

• k-mingle if [A] : xk ≤ x, for some k > 1.

A simple equation [R] is called pre-knotted, pre-expansive, or pre-compressive if there

exists a substitution σ such that [σR] is knotted, expansive, or compressive, respectively.

We say [R] is mingly if [R] is integral or there is a substitution σ such that [σR] is k-mingle

for some k > 1. We say a set Σ of simple equations has a property if it contains an equation

with that same property.

We say a variety V ⊆ RL is knotted, expansive, compressive, or mingly if V |= [A]

for some equation [A] that is knotted, expansive, compressive, or mingly, respectively. We

denote the knotted equation xn ≤ xm by [kmn], and by [Kmn] we denote the linearization of

[kmn], i.e. [Kmn] = (1n, K
m
n), where Km

n := {t ∈ {x1, . . ., xn}∗ : #(t) = m}. Note that by

Proposition 2.1.2, [kmn] and [Kmn] are RL-equivalent.

Theorem 2.4.1. Let Σ be a set of simple equations.

1. RL + Σ is integral iff Σ is integral.

2. RL + Σ is knotted iff Σ is pre-knotted.

3. RL + Σ is expansive iff Σ is pre-expansive.

37

4. RL + Σ is compressive iff Σ is pre-compressive.

5. RL + Σ is mingly iff Σ is mingly.

Proof. Note that the reverse direction clearly follows for each case. The forward direction

is of the form RL + Σ |= [A] for some ISR-equation [A] = (a0, A) for each case, and

hence A `Σ a0 by Theorem 2.3.9. We proceed by inspecting the leaves of its proof-tree of

minimal height for each case. Note that a leaf must be of the form:

{uσ(r)v}r∈R

uσ(1k)v
(σ, (R))

,

where {uσ(r)v : r ∈ R} ⊆ A, for some substitution σ, [R] = (1k,R) ∈ Σ, and u, v ∈

Var∗. Since the proof is of minimal height, uσ(1k)v 6= uσ(r)v and hence σ(1k) 6= σ(r),

for each r ∈ R.

(1) Suppose [A] : x ≤ 1 is integrality. Then a0 = x and A = {1}. So uσ(r)v = 1 for

each r ∈ R, and hence u = v = σr = 1. Thus σ(xi) = 1 for each xi ∈ supp(R). Now,

since σ(1k) 6= 1, there must exist xj ∈ supp(1k) such that σ(xj) 6= 1. But this implies

xj ∈ supp(1k) \ supp(R), and so [R] is integral.

(2) Suppose [A] : xn ≤ xm is knotted. If [R] is integral then it is pre-knotted and we

are done, so we assume supp(R) = supp(1k). Now, a0 = xn and A = {xm} for some

n 6= m. Hence uσ(r)v = xm for each r ∈ R, so σ[R] = {xc} for some c ≤ m. Since

σ(xi) = x for each xi ∈ supp(R), It follows that σ(1k) = xd for some d ≥ 0. Hence

c 6= d since σ(1k) 6= σ(r). But this implies [σR] = xc ≤ xd for some c 6= d, a knotted

rule. Hence [R] is pre-knotted.

(3) [(4)] Suppose [A] : xn ≤
∨
p∈P x

n+p is expansive [compressive], for some n > 1

and finite nonempty P ⊆ Z+ [P ⊆ {1, . . ., n − 1}]. By the same argument in (2), for

each leaf (σ, (R)), σ(1k) = xcR for some cR ≥ 0. If there exists a leaf (σ, (R)) such that

cR < d [cR > d] for all xd ∈ σ[R], then [σR] is expansive [compressive], and we are

38

done. Otherwise, for every leaf (σ, (R)), since σ(1k) 6∈ σ[R] it follows that cR > dR > n

[cR < d < n] for some xdR ∈ σ[R]. So [A′] : xn ≤
∨
r∈R x

cR is an expansive [compressive]

equation such that A′ `Σ xn, where each branch of its proof-tree has height strictly less

than each branch in the proof-tree of A `Σ xn. Continuing this process inductively, we

conclude Σ contains a pre-expansive [pre-compressive] equation.

(5) We may assume Σ is not integral, otherwise we are done by (1). So suppose [A] :

xn ≤ x is n-mingle for some n > 1. Then a0 = xn and A = {x}. So uσ(r)v = x for

each r ∈ R. Note that u = x or v = x implies σ(r) = 1, and since [R] is not integral,

supp(R) = supp(1k) and so it follows that σ(1k) = 1. Since σ(1k) 6= σ(r) it must be

that and hence u = v = 1. Thus σ(r) = x for all r ∈ R. Hence for every r ∈ R, there

exists xr ∈ supp(r) such that σ(xr) = x and σ(y) = 1 for all y ∈ supp(r) \ {xr}. Hence

σ(1k) = xm for some m ≥ 1. Since σ1k 6= x, it follows that m > 1. Hence [σR] is

m-mingle, and therefore [R] is mingly. Thus σ(xi) = 1 for each xi ∈ supp(R). Now,

since σ(1k) 6= 1, there must exist xj ∈ supp(1k) such that σ(xj) 6= 1. But this implies

xj ∈ supp(1k) \ supp(R), and so [R] is integral.

Let 0 < n < m ∈ N. We say a variety V ⊆ RL is (n,m)-potent if V |= xn = xm, and

we will say the V is potent if it is (n,m)-potent for some 0 < n < m. We say a pre-knotted

equation [A] is expansive [resp. compressive] if the knotted equation witnessing that [A] is

pre-knotted is expansive [compressive].

Lemma 2.4.2. Let [kaa+c] and [kb+db] be compressive and expansive knotted rules, respec-

tively, for some a, b, c, d > 0. Then RL + [kaa+c] + [kb+db] is (n, n + m)-potent, where

n = max(a, b) and m = min(c, d).

Proof. On the one hand, if n = a, then xn+c ≤[kaa+c]
xn by definition. Since b ≤ n and

multiplication is order-preserving, it follows that xn ≤[kb+db] x
n+d. On the other hand, if

n = b, then xn ≤[kb+db] x
n+d by definition, and since a ≤ n, it follows that xn+c ≤[kaa+c]

xn.

39

In either case, we find that xn+c ≤Σ xn ≤Σ xn+d, where Σ = {[kaa+c], [k
b+d
b]}. Apply-

ing [kaa+c] on the left and [kb+db] on the right, we obtain:7

xn+lcm(c,d) ≤[kaa+c]
xn+c ≤[kaa+c]

xn ≤[kb+db] x
n+d ≤[kb+db] x

n+lcm(c,d).

Hence RL + Σ |= xn = xn+m.

Corollary 2.4.3. Let Σ be a set of simple equations and V ∈ {RL,FL}. Then V+Σ is potent

if and only if Σ is pre-compressive [or resp. pre-expansive] and contains an expansive [resp.

compressive] pre-knotted equation.

Proof. By Proposition 2.1.2, V + Σ is (n,m)-potent if and only if RL + Σ |= {[kmn], [knm]}.

Since [kmn] and [knm] are expansive and compressive knotted equations, respectively, it

follows that RL + Σ |= {[kmn], [knm]} implies Γ is pre-knotted, pre-expansive, and pre-

compressive by Theorem 2.4.1, satisfying the forward implication. For the reverse, suppose

Σ is pre-knotted, pre-expansive, and pre-compressive by Theorem 2.4.1. Since the other

case can be handled similarly, without loss of generality we may assume the witnesses are

an expansive [E] and compressive knotted [kaa+c], where [E] : xn ≤
∨
p∈P x

n+p for some

a, c, n > 0 with finite nonempty P ⊆ Z+. By Lemma 2.4.2, it is enough to show that

RL + Σ |= [kb+db] for some b, d > 0. Let N = max{a, n}, b = cN and d = c. Then

xc(N+k) ≤[kaa+c]
xc(N+1) ≤[kaa+c]

xcN for all k ≥ 1. Hence, since p > 0 for every p ∈ P ,

xb = (xc)N ≤[E]

∨
p∈P

xc(N+p) ≤[kaa+c]
xcN+c ≤[kaa+c]

xb.

So RL + Σ |= [kb+db]. Therefore RL + Σ is (b, b+ d)-potent.

7Where lcm(j, k) denotes the least common multiple of integers j, k ∈ N.

40

2.5 Deduction theorem for expansive varieties

In certain cases, the satisfaction of a quasi-equation can be related the satisfaction a

single equation. If the satisfaction of a quasi-equation is equivalent to the satisfaction of

an equation, for all quasi-equations, we say that variety has a deduction theorem. The

existence of a deduction theorem can be vitally useful, in particular, for establishing decid-

ability results. For instance, in Chapter 3 we will use a deduction theorem to establish that

the quasi-equational theory for some varieties are decidable using the fact that their equa-

tional theory has a decision procedure, while in Chapters 4 and 5 we will use a deduction

theorem to establish the undecidability of the equational theory for some varieties by using

the undecidability of their quasi-equational theory. In this section we will demonstrate that

all expansive varieties have a deduction theorem. First we must review some preliminary

notions.

The negative cone of a residuated lattice A is the set A− = {a ∈ A : a ≤ 1}. We say

that a variety V ⊆ CRL is negatively n-potent if the negative cone of each algebra in V is

n-potent, i.e., V |= (x ∧ 1)n = (x ∧ 1)n+1 (or equivalently, V |= (x ∧ 1)n ≤ (x ∧ 1)n+1).

Let t be a term and S be a finite set of terms in the language of CRL. It can be easily

verified that

(∃m ∈ N)(∃s1, . . ., sm ∈ S) CRL |=
∏m

i=1(1 ∧ si) ≤ t

if and only if (∃k ∈ N) CRL |= (1 ∧
∧
S)k ≤ t.

(2.3)

Clearly the forward direction is satisfied by taking k = m, since s ≥
∧
S, for all s ∈ S.

The reverse direction holds by settingm = k·|S|, and observing that
∏

s∈S(s∧1) ≤ 1∧
∧
S.

If V ⊆ CRL is a negatively n-potent variety, then we obtain

(∃m ∈ N)(∃s1, . . ., sm ∈ S) V |=
m∏
i=1

(1 ∧ si) ≤ t ⇐⇒ V |= (1 ∧
∧

S)n ≤ t, (2.4)

41

where reverse direction follows from Equation (2.3), while the forward direction uses the

fact that (1 ∧ x)n ≤ (1 ∧ x)k, if k ≤ n, and (1 ∧ x)n = (1 ∧ x)k, if k > n, by the negative

n-potency of V .

We consider the quasi-equation ξS(t) and the equation εnS(t), respectively, below:

&
s∈S

1 ≤ s =⇒ 1 ≤ t (1 ∧
∧

S)n ≤ t.

In this way we establish the fact that satisfaction of quasi-equations in a negatively

n-potent subvariety of CRL is equivalent to the satisfaction of a corresponding equation.

Theorem 2.5.1. If V is a negatively n-potent subvariety of CRL and S ∪ {t} a finite set of

terms in the language of V , then

V |= ξS(t) ⇐⇒ V |= εnS(t).

Proof. Let FV be the free algebra for V over countably many generators, and define the

congruence C := Cg({(1 ∧ s, s) : s ∈ S}). We denote the quotient algebra of C on FV by

FV/C. For a subset X of F−V , we denote by M(X) the convex normal submonoid of F−V

generated by X .8 Observe that V |= &
s∈S

1 ≤ s⇒ 1 ≤ t

⇐⇒ in FV/C, [1 ∧ t]C = [1]C

⇐⇒ in FV , (1 ∧ t) ∈M({1 ∧ s : s ∈ S}) [9]

⇐⇒ in FV , (∃m ∈ N)(∃s1, . . ., sm ∈ S)
∏m

i=1(1 ∧ si) ≤ t [9]

⇐⇒ (∃m ∈ N)(∃s1, . . ., sm ∈ S) V |=
∏m

i=1(1 ∧ si) ≤ t

⇐⇒ V |= (1 ∧
∧
S)n ≤ t Eq. (2.4).

8See Theorem 3.47 in [9].

42

If [E] : xn ≤
∨
p∈P x

n+p is an expansive equation, then CRL + [E] is negatively n-

potent since x∧1 ≤ 1 and thus (x∧1)n+k ≤ (x∧1)n+1 ≤ (x∧1)n for every k ≥ 1, which

in the presence of [E] implies (x ∧ 1)n ≤
∨
p∈P (x ∧ 1)n+p ≤ (x ∧ 1)n+1 ≤ (x ∧ 1)n, i.e.,

(x ∧ 1)n = (x ∧ 1)n+1.

Corollary 2.5.2. CRL + Γ admits a deduction theorem for every pre-expansive set Γ of

ISR-equations, and thus the computational complexity for its equational theory is at least

as complex as the complexity of its quasi-equational theory.

43

Chapter 3: Decidability and Complexity Upper-bounds

In this chapter we establish the decidability of many structures extended by the equa-

tions and structural rules presented in Chapter 2. In the first section, we show how [3]

establishes the failure of the finite embeddability property for a collection of special simple

equations that are satisfied by (products of) chains. In the second section, we provide some

sufficient conditions that guarantee the {∨, ·, 1}-fragment of the equational theory for cer-

tain subvarieties of RL are decidable using Theorem 2.3.4. The third section utilizes results

in [8] for proving the finite model property for subvarieties of RL extended by so-called

completely linear equations. In the last section, we give proof-theoretic decision procedure

for potent-varieties. This is a generalization of the proof due to Gentzen [11] showing the

decidability of the Gentzen-system FLecw for propositional intuitionistic logic. Further-

more, we show that this decision procedure is at worst double-exponential with respect to

the number of symbols present in the input.

3.1 The FMP, FEP, and some known results

A class of algebras K is said to have the finite model property (FMP) if every equation

that fails in K fails in a finite member of K. As a consequence of Harrop’s theorem (see

[9]), if K is finitely axiomatizable, of finite type, and has the FMP, then K has a decidable

equational theory.

We say a class K of algebras has the finite embeddability property (FEP) when for any

given finite partial subalgebra B of an algebra A in K, there exists a finite algebra D in K

into which B can be embedded. In particular, K is generated by its finite members, and

therefore has the FMP. Furthermore, if K is a quasivariety of finite type (e.g., K ⊆ RL or

K ⊆ FL), the FEP is equivalent to the strong finite model property, i.e., every quasi-identity

44

that fails in K fails on a finite member of K. Consequently, if K is finitely axiomatizable,

of finite type, and has the FEP, then its universal theory, and quasi-equational theory in

particular, are decidable (see [9]).

In [24], van Alten establishes that CRL + [kmn] has the FEP, for any knotted equation

[kmn]. Furthermore, the residuated frames construction in [8] demonstrates:

Proposition 3.1.1 ([24],[8]). CRL + Γ has the FEP for any pre-knotted set Γ of ISR-

equations.

3.1.1 Failure of the FEP. In [3], Blok and van Alten track the failure of the FEP down to

the existence of a certain infinite algebra.1 Clearly, structure Z with its natural ordering as a

chain, product as integer addition, and residuation as integer subtraction, is a commutative

residuated lattice and it falsifies the quasi-equation

x ≥ 1 & xy = 1 =⇒ x = 1, (3.1)

which says that the only positive invertible element is the unit.2 However, this quasi-

equation is satisfied in every finite commutative residuated lattice.3 The same argument

works with Z expanded with an additional constant 0, set to be any element of Z.

Proposition 3.1.2 ([3]). Any subvariety of RL or FL containing Z lacks the FEP.

We call a residuated lattice representable (or semilinear) if it is the subdirect product

of chains. As shown by Hart, Rafter, and Tsinakis in [12], a commutative residuated lattice

1Specifically, a lattice-ordered abelian group, or abelian l-group.

2Written the standard notation of Z, the quasi-equation is read x ≥ 0 & x+ y = 0 =⇒ x = 0, which is
clearly false in Z.

3If A ∈ CRL is finite, then it is bounded. If x > 1 is invertible then x2 > x and x2 is invertible, since
1 ≤ x implies x ≤ x2 and xy = 1 implies 1 = xy ≤ x2y = x. Hence > = xn for some n ∈ N is invertible.
But this results in a contradiction since >y = 1 implies > ≤ 1 since >2 = >.

45

is representable iff it satisfies the equation

1 ≤ (x→ y) ∨ (y → x) (prelinearity).

Since Z is a chain, if V ⊆ CRL contains the variety of prelinear commutative residuated

lattices, then Z ∈ V , and hence V lacks the FEP.

Proposition 3.1.3. If a set Σ of ISR-equations is a CRL-consequence of prelinearity, then

CRL + Σ lacks the FEP. In particular, CRL + [A] lacks the FEP for

[A] : smtn ≤ s2m ∨ t2n,

where s, t ∈ Var∗ and m,n ∈ N.

Proof. Prelinearity implies 1 ≤ (tn → sm) ∨ (sm → tn). Since multiplication is order-

preserving and distributes over joins, this implies

smtn ≤ smtn(tn → 1) ∨ smtn(1→ tn) ≤ s2m ∨ t2n.

Hence [A] is satisfied by any chain in CRL. Therefore CRL + [A] lacks the FEP.

3.2 A note on decidability in ISR

For a set of simple equations Σ, Theorem 2.3.9 shows that the equational theories for

the ISR + Σ and the {∨, ·, 1}-reduct of RL + Σ are equivalent. Therefore any decision

procedure for one is a decision procedure for the other. E.g., by Proposition 3.1.1,

Theorem 3.2.1. If Σ is a pre-knotted set of simple equations, then ISR + Σ has the FMP.

On the other hand, suppose Σ is a set of simple equations for which given any finite

set A ⊆ Var∗, the Σ-closure ΓΣ(A) := {x ∈ Var∗ : A `Σ x} is finite. Call such a set

46

Σ downwards-finite. For example, consider the equation [R] : x ≤ x2 ∨ 1. For any finite

set A ⊆ Var∗, t ∈ Γ[R](A) implies supp(t) ⊆ supp(A) and the degree of t is no larger

than the degree of A, i.e., #(t) ≤ max{#(a) : a ∈ A}. Since supp(A) is finite, the set

TA := {t ∈ Var∗ : supp(t) ⊆ supp(A) & #(t) ≤ #(A)} is finite, establishing that Γ[R](A)

is finite since Γ[R](A) ⊆ TA. Hence [R] is downwards-finite.

Now by Theorem 2.3.9, ISR+[R] |= [A] if and only ifA `[R] a0, for any non-degenerate

[A] where (a0, A) is the simplification of [A]. Let γ[R](X) be the single step closure of a set

X ⊆ Var∗ by (R)∗Var (see Equation (2.2)). It is easily verified that Γ[R](X) =
⋃
n∈N γ

n
[R](X).

Since A is finite and [R] is downwards-finite, there is an nA ∈ N such that γnA[R] (A) =

Γ[R](A). Thus for all t ∈ Var∗, ISR + [R] |= t ≤
∨
A iff t ∈ γnA[R] (A). This a decision

procedure for the equational theory of ISR + [R]. By the same argument,4

Theorem 3.2.2. Let Σ be a finite set of simple equations. If Σ is downwards-finite then the

equational theories of ISR + Σ and the {∨, ·, 1}-reduct of RL + Σ are decidable.

The set Σ being downwards-finite is only a sufficient condition for decidability. Indeed,

extensions of ISR by compressive knotted rules [knn+m] (and thus also their linearization

[Knn+m]) have a decidable equational theory, even though they are not downwards-finite.

For instance, consider the set A = {xn}. Then Γ[Knn+m](A) ⊇ {xn+km : k ∈ N}, an infinite

set. We note that there are no examples known to the author for which the equational theory

of ISR + [R] is undecidable.

3.3 The FMP and completely linear simple equations

Let L be a substructural logic. For a sequent s in L, we define s← to be the set of

all sequents involved in an exhaustive proof search for s. Precisely, s← is the least set of

sequents such that s ∈ s← and if (t, T) is an instance of a rule of L and t ∈ s←, then

T ⊆ s←. Clearly s← is the set of all sequents involved in an exhaustive proof search for

4In the case that |Σ| = n ≥ 2, index Σ = {[R1], . . ., [Rn]} and define γΣ := γ[Rn] ◦ · · · ◦ γ[R1].

47

s. We say that a rule (r) in L does not increase complexity if for each instance of the

rule, the complexity of each sequent in the numerator is no larger than the complexity of

the denominator. By complexity, we typically mean a function from the set of sequents

to some well partially-ordered set.5 For some structural rules, complexity for a sequent

can be defined to be, for example, its length, i.e., the number of symbols which occur.

However, rules like contraction (c) or the cut-rule (cut), are examples of structural rules

which do increase complexity. We note, though, that extensions FL by simple rules enjoy

cut-admissibility, and so one only need consider the set s← omitting instances of the cut-

rule.

A logical rule in L is an inference rule that introduces a logical connective (e.g.,

∧,∨, ·, \, /) on the left or right of the denominator. It is said to have the subformula prop-

erty if for all instances of the rule, all formulas appearing in the numerator are subformulas

of the denominator. If L has logical rules with the subformula property and the structural

rules do not increase complexity, then for any sequent s the set s← is finite. It is easy

to verify that FL (see Figure 1.1) and its extensions by simple rules have the subformula

property. In [8], the following is proved:

Proposition 3.3.1 ([8]). FL and its extensions with simple rules that do not increase com-

plexity have the FMP.

Here, the finite countermodel falsifying the provability of a sequent s is constructed

from a residuated frame which encodes membership of s←, where the finiteness of s←

guarantees the finiteness of the resulting algebra.

We say that a simple equation [R] = (1n,R) is completely linear if the set of terms R is

linear, i.e., for each r ∈ R and i ∈ [1, k], #(r, xi) ≤ 1. For instance, commutativity (xy ≤

5A well partially-ordered set is a poset (A,≤) that contains no infinite antichains, i.e., every infinite set
X ⊆ A contains a pair x, y ∈ X such x ≤ y.

48

yx) is completely linear, integrality and (the linearization of) k-mingle are all completely

linear,6 and non-pre-knotted equations such as

xyz ≤ xy ∨ xz ∨ yz ∨ 1, (3.2)

are completely linear. Analogously, we say a simple rule (R) is completely linear if the

simple equation [R] is completely linear. E.g., the simple rule (R) obtained from Equa-

tion (3.2) vis-à-vis Equation (2.1) yields the following completely linear rule:

∆1,Γ1,Γ2,∆2 ⇒ Π ∆1,Γ1,Γ3,∆2 ⇒ Π ∆1,Γ2,Γ3,∆2 ⇒ Π ∆1,∆2 ⇒ Π
∆1,Γ1,Γ2,Γ3,∆2 ⇒ Π

(R)

(3.3)

It is immediate the simple rule (R) from Equation (3.3) does not increase complexity of

length, since each sequent in the numerator contains no more instances of a metavariable

than those which occur in the denominator. This property holds for any completely linear

simple rule by definition of each term of the numerator being linear and containing no

metavariable not contained in the denominator (i.e., the rule is proper). Therefore, if Σ

is a finite set of completely linear simple rules, then the proof searches in FL + Σ will

be finitely branching and will not increase the complexity of length. Consequently, by

Proposition 3.3.1, we obtain:

Theorem 3.3.2. FL+Σ has the FMP for any set finite Σ of completely linear simple rules.

We note that, as a consequence of [15], the decision problem for provability in FL+ Σ

is PSPACE-complete for any finite set Σ of completely linear simple rules. In fact, the

results [15] entail that provability in FL+ Σ is PSPACE-hard for any set Σ of simple rules,

providing a fundamental lower-bound for complexity of any decision procedure.

6The equation xk ≤ x is called k-mingle, and its linearization is given by [K1
k], see Section 2.4.

49

3.4 Potent Commutative Varieties

Although the FMP guarantees provability is decidable for a given logic, the demon-

stration of this fact is inherently non-constructive and so the direct implementation of the

decision algorithm is not feasible. Notably, while CRLc has the FEP, Urquhart showed in

[23] that the decision procedure for provability in FLec is not primitive recursive.7

However, we will show that potent substructural logics admit primitive recursive deci-

sion procedures. This demonstration is a natural generalization of the prototypical decid-

ability proof for FLecw given in [11] by Gentzen.

3.4.1 Sequents in FLe and the ∗ function. By the presence of the exchange rule,

∆1,Ψ,Γ,∆2 ⇒ Π
∆1,Γ,Ψ,∆2 ⇒ Π

(e)

the antecedent of a sequent in FLe may be represented by a different data-type, namely that

of a multiset of formulas instead of a sequence of formulas. For a function X : Fm → N,

we write |X|a := X(a) as the value (or multiplicity) of a formula a ∈ Fm in X . By [X]

denote the Fm-support of X , where [X] := {a ∈ Fm : |X|α > 0}. If [X] is finite, we say

the function X is a multiset, and we typically view X as a finite unordered list of formulas

from [X], with possible repetitions, where each a ∈ [X] occurs exactly |X|a many times.

We define X, Y to be the addition of multisets X and Y , where [X, Y] = [X] ∪ [Y] and

|X, Y |a = |X|a + |Y |a for each a ∈ Fm. Let Mset denote the collection of all multisets.

Note that Mset forms a monoid with multiset addition as defined above.

Fix n ∈ N. For a given formula a ∈ Fm, we define an to be the multiset with support

[an] = {a} such that |an|a = n. Similarly, given a multiset X , we define Xn to be the

multiset with support [Xn] = [X] such that |Xn|b = n · |X|b for each b ∈ Fm.

7We will revisit and extend this construction in Section 4.5.

50

X ⇒ Π
X, 1⇒ Π

(1l) X ⇒
X ⇒ 0

(0r)

X,α, β ⇒ Π

X,α · β ⇒ Π
(·l) X ⇒ α Y ⇒ β

X, Y ⇒ α · β (·r)

X ⇒ α Y, β ⇒ Π

X, Y, α→ β ⇒ Π
(→ l)

X,α⇒ β

X ⇒ α→ β
(→ r)

X,α⇒ Π X, β ⇒ Π

X,α ∨ β ⇒ Π
(∨l) X ⇒ β

X ⇒ α ∨ β (∨r1) X ⇒ α
X ⇒ α ∨ β (∨r2)

X ⇒ α X ⇒ β

X ⇒ α ∧ β (∧r) X, β ⇒ Π

X,α ∧ β ⇒ Π
(∧l1)

X,α⇒ Π

X,α ∨ β ⇒ Π
(∧l2)

Figure 3.1: Logical rules of FLe, where α, β ∈ FmV, Π either empty or in FmV,
0, 1 ∈ ConV, and X, Y, Z ∈ MsV \ (FmV ∪ ConV).

Recall that a sequent in FLe is an expression of the form X ⇒ Π, for some X ∈

Mset and Π is either a formula or the emptyset. For our purposes, it will be important to

distinguish between a metasequent and an instance of a metasequent (which is a sequent).

We define four classes of metavariables. Let FmV = {α, β, . . .} denote formula-type,

ConV = {1, 0}∪{α?β : α, β ∈ FmV, ? ∈ {∨,∧, ·,→}} denote connective-formula-type,

MsV denote multiset-type with FmV ∪ ConV ⊂ MsV, and MsV∗ = {X∗ : X ∈ MsV}

denote ∗-multiset-type. A metasequent s is an expression of the form V1, . . ., Vk ⇒ Vk+1,

where {Vi}ki=1 ⊂ MsV ∪MsV∗ and Vk+1 is either in FmV ∪ ConV or is the empty word.

A valuation ν : FmV → Fm is a function assigning each α ∈ FmV to a formula

ν(α) ∈ Fm and the empty word to the emptyset. We will denote ν(α) by α if the valuation

is understood in context. Given such a valuation, we may extend it to a function ν : MsV∪

MsV∗ → Fm ∪ Mset via α ? β = α ? β for any α ? β ∈ ConV, X ∈ Mset for any

51

X ∈ MsV \ (FmV ∪ ConV), and

V ∗ =

 V , if V ∈ FmV ∪ ConV

∗ ◦ V , otherwise
,

for V ∗ ∈ MsV∗, where ∗ : N → N is a function that will be defined below. Note that we

may view the range of ν as a subset of Mset by the embedding a 7→ a1, for any a ∈ Fm.

Given a valuation, we define an instance of a metasequent s = V1, . . ., Vk ⇒ Vk+1, denoted

by ν(s) (or by s if clear by context), to be the sequent V1, . . ., Vk ⇒ V k+1. We let V n be

shorthand for the n successive occurrences V, . . ., V, for any V ∈ MsV ∪MsV∗. If n = 0,

then a metasequent such as Y,Xn ⇒ Π denotes Y ⇒ Π.

Now, for n,m > 0, we define ∗mn : N→ [0, n+m) via

∗mn (x) =

 x where x < n+m, otherwise;

x− qxm where qx ∈ Z+ and x− qxm ∈ [n, n+m)

When the values n,m are understood in context, we will simply write ∗ := ∗mn .

Lemma 3.4.1. For all a, b ∈ N, ∗(a+ b) = ∗(∗(a) + ∗(b))

Proof. Note that for each x ∈ N, ∗(x) = x− qxm for some qx ∈ N and ∗(x) < n + m. It

is easy to see that ∗ is idempotent and non-increasing. Furthermore, ∗(x) = ∗(x− qm) for

any 0 ≤ q ≤ qx. Note that if ∗(a) + ∗(b) < n then ∗(a), ∗(b) < n, and hence ∗(a) = a and

∗(b) = b and we are done. So we may assume ∗(a) + ∗(b) ≥ n. Since ∗ is non-increasing

it follows a+ b ≥ n, and so

∗(a+ b) = (a+ b)− qa+bm ∈ [n, n+m).

52

But ∗(a) + ∗(b) = (a + b) − (qa + qb)m ∈ [n, 2n + 2m). Since qa+b is the least such

number k such that (a + b) − km ∈ [n, n + m), we have that qa + qb ≤ qa+b. Hence

∗(∗(a) + ∗(b)) = ∗(a+ b).

Let [R] = (1k,R) be a simple equation. For each r ∈ R, define

r∗ :=
k∏
i=1

x
∗(ni)
i ,

where ni = #(r, xi) for each i = 1, . . ., k, and let R∗ = {r∗ : r ∈ R}. We define the

simple equation [R∗] := (1k,R
∗).

Lemma 3.4.2. Let Σ be a set of simple equations. Then CRL + (xn = xn+m) + Σ is

equivalent to CRL + (xn = xn+m) + Σ∗, where Σ∗ := {[R∗] : [R] ∈ Σ}.

Proof. Let [R] = (1k,R) ∈ Σ. For each r ∈ R, define r(i) = #(r, xi) for each i =

1, . . ., k. So CRL |= r =
∏k

i=1 x
r(i). Since r∗ :=

∏k
i=1 x

r(i), we obtain CRL + (xn =

xn+m) |= r = r∗. Therefore it follows that CRL + (xn = xn+m) + [R] |= [R∗] and

CRL + (xn = xn+m) + [R∗] |= [R].

3.4.2 ∗-sequents and inference rules. Given a metasequent s given by Υ⇒ Ψ, we write

s∗ to denote the metasequent Υ∗ ⇒ Ψ, where Υ∗ := V ∗1 , . . ., V
∗
k if Υ = V1, . . ., Vk. For a

sequent t given by X ⇒ Π, by ∗t we denote the sequent ∗X ⇒ Π, where ∗X := ∗ ◦ X .

Given a set of metasequents Γ and a set of sequents ∆, we write Γ∗ := {s∗ : s ∈ Γ} and

∗∆ := {∗t : t ∈ ∆}. For an inference rule (r) given by Γ
s
(r), we define the rule (r)∗ via

Γ∗

s∗
(r)∗. By the definition of valuations, it is easy to check that for every inference rule (r)

of FLe, an instance of (r)∗ is an instance of (r): E.g.,

X∗ ⇒ α Y ∗, β∗ ⇒ γ

X∗, Y ∗, α∗ → β∗ ⇒ γ
(→ l)∗

,

53

and for a valuation ν, V ∗1 = V1 if V1 ∈ FmV and V ∗2 = ∗V2 if V2 ∈ MsV, and so both

(ν, (→ l)∗) and ∗(ν, (→ l)) are equivalent to the following instance:

∗X ⇒ α ∗Y , β ⇒ γ

∗X, ∗Y , α→ β ⇒ γ .

Furthermore, any metasequent Υ ⇒ Ψ that appears in an inference rule (r) for FLe (see

Figure 3.1) is one of three possible forms: (i)X ⇒ Ψ, (ii)X, Y ⇒ Ψ, or (iii)X, Y, α⇒ Ψ,

where X, Y ∈ MsV, α ∈ ConV, and Ψ is either empty or in FmV ∪ ConV. Hence for

any formula a ∈ Fm and inference rule (r) for FLe with conclusion Υ⇒ Ψ, we have that

|Υ∗|a ≤ 2(n+m)− 1, since (iii) is the most complicated form of Υ and

|Υ∗|a ≤ |X∗, Y ∗, α|a = |∗X|a + |∗Y |a + |α|a ≤ 2 · (n+m− 1) + 1, (3.4)

If [R] = (1k,R) is a simple equation, then the simple rule (R) is FLe-equivalent to the

following inference rule

{Y,Xr(1)
1 , . . ., X

r(k)
k ⇒ Π}r∈R

Y,X1, . . ., Xk ⇒ Π
(R)e,

where r(i) := #(r, xi), for each r ∈ R and 1 ≤ i ≤ k. Similarly, by the definition of

valuations (R)∗e is an instance of (R)e:

{Y ∗, (X∗1)r(1), . . ., (X∗k)r(k) ⇒ Π}r∈R

Y ∗, X∗1 , . . ., X
∗
k ⇒ Π

(R)e.

Thus, for any metasequent Υ⇒ Ψ which appears in (R)e and a ∈ Fm, it follows that

∣∣Υ∗∣∣
a

=
∣∣∣Y ∗, (X∗1)r(1), . . ., (X∗k)r(k)

∣∣∣
a

=
∣∣Y ∗∣∣

a
+
∑k

i=1 |X∗i |ar(i)

≤ (n+m− 1)
(

1 +
∑k

i=1 r(i)
)
,

(3.5)

54

where r ∈ R ∪ {1k}. Hence
∣∣Υ∗∣∣

a
≤ (n + m − 1)

(
1 +

∑k
i=1 r(i)

)
for any a ∈ Fm and

metasequent Υ⇒ Ψ of (R)e, where M[R] := max{
∑k

i=1 r(i) : r ∈ R ∪ {1k}}.

3.4.3 Reduced proofs for potent varieties. Let n,m > 0 and set ∗ := ∗mn . Let Σ be a

finite set of simple equations and define MΣ := max{M[R] : [r] ∈ R}. Henceforth, we

define

L := FLe + (Kn+m
n) + (Knn+m) + Σe.

We note that L is cut-admissible by [8] since it is an extension of FL by simple rules. By

definition (Kn+m
n) and (Knn+m),8 L satisfies the following inference rules:

Y, αn+m ⇒ Π
Y, αn ⇒ Π

(↑m)
&

Y, αn ⇒ Π

Y, αn+m ⇒ Π
(↓m)

,

where Y ∈ MsV and α ∈ FV .

Lemma 3.4.3. Let t be any sequent. Then t is provable in L if and only if ∗t is provable in

L. In particular, ∗t `L t and t `L ∗t.

Proof. Suppose `L ∗t. Let t be given by X ⇒ Π. For each a ∈ [X] we will apply (↓m)

sequentially to obtain the proper multiplicity of a in X . If ∗|X|a = |X|a, we need do

nothing. Otherwise, ∗|X|a = |X|a− qam ∈ [n, n+m), where qa > 0. First, we repeatedly

apply the exchange rule (e) to obtain the sequent ∗X−, a|X|a−qam ⇒ Π, where X− is the

multiset such that |X−|a = 0 but |X−|b = |X|b for all b ∈ Fm \ {a}. Then we may apply

rule (↓m) exactly qa many times to the formula a.9 Once this has been completed for each

a ∈ [X], by applying the exchange rule repeatedly we will have derived t. See Figure 3.2.

8See Section 2.4.

9By this we mean that we apply instances (↓m) to a sequentially such that t = ν1(sπ) and νi(sc) =
νi+1(sπ) for i = 1, . . ., qA − 1, where sπ and sc are the premise and conclusion of (↓m), respectively.

55

Similarly, suppose `L t. For each a ∈ [X] we will apply (↑m) sequentially to obtain

the proper multiplicity of a in ∗X . If |X|a = ∗|X|a, we need do nothing. Otherwise,

|X|a ≥ n+m, so ∗|X|a = |X|a−qam ∈ [n, n+m), where qa > 0. Similarly to the above,

we begin by applying the exchange rule to put the sequent in the proper form, and then we

apply rule (↑m) exactly qa many times to the formula a. Once this has been completed for

each a ∈ [X], we will have derived ∗t by possible further applications of exchange. See

Figure 3.2.

∗t
...

(e)

∗X−, a|X|a−qam ⇒ Π
(e)

∗X−, a|X|a−qam+m ⇒ Π
(↓m)

...
(↓m)

∗X−, a|X|a−m ⇒ Π
(↓m)

∗X−, a|X|a ⇒ Π
(↓m)

t
...

(e)

X−, a|X|a+qam ⇒ Π
(e)

X−, a∗|X|a+qam−m ⇒ Π
(↑m)

...
(↑m)

X−, a∗|X|a+m ⇒ Π
(↑m)

X−, a∗|X|a ⇒ Π
(↑m)

Figure 3.2: Proof heuristic for reduced sequents. Here, X− is the multiset such that
|X−|a = 0 but |X−|b = |X|b for all b ∈ Fm \ {a}.

By Lemma 3.4.2, we may assume Σ = Σ∗. Note that this impliesMΣ ≤ (n+m−1)mΣ,

where mΣ := max{x ∈ Z+ : (1x,R) ∈ Σ}. Define ML := max{3,MΣ + 1}, which

represents the maximum number of metavariables that can can appear in a metasequent of

an inference rule from L. By Equations (3.4) and (3.5), it follows that for any metasequent

Υ⇒ Ψ appearing in an inference rule in L, valuation ν, and formula a ∈ Fm.

|Υ∗|a ≤ML(n+m− 1). (3.6)

56

Let ∆ be a (possibly empty) set of sequents. We say a proof of a sequent t from ∆

in L is k-reduced, denoted ∆ `kL t, if there is a proof from ∆ to t in which every sequent

X ⇒ Π in the proof-tree of t is such that |X|a ≤ k for each formula a ∈ Fm.

Lemma 3.4.4. Set k := ML(n+m− 1). Let s be a metasequent from an inference rule in

L. Then for any valuation ν,

1. ∗s `kL s∗.

2. s∗ `kL ∗s.

Proof. Let s be a metasequent as above, given by X1, . . ., XN ⇒ Π, and ν a valuation.10

Note that N ≤ML by definition of ML.

(1) For a formula a ∈ Fm, observe that ∗|X1, . . ., XN |a = ∗(
∑N

i=1 |Xi|a). If

∗

(
N∑
i=1

|Xi|a

)
< n+m,

then by definition of ∗ this implies ∗
(∑N

i=1 |Xi|a
)

=
∑N

i=1 |Xi|a, so |Xi|a < n + m and

thus ∗|Xi|a = |Xi|a for each i ≤ N . It then follows that ∗|X1, . . ., XN |a = |∗X1, . . ., ∗XN |a

and we need do nothing. Otherwise,

∗

(
N∑
i=1

|Xi|a

)
=

N∑
i=1

|Xi|a − qam ∈ [n, n+m),

for qa > 0. By Lemma 3.4.1, we have that

∗

(
N∑
i=1

∗|Xi|a

)
= ∗

(
N∑
i=1

|Xi|a

)
.

10If any of the Xi’s are in FmV ∪ ConV, view them as multisets via the embedding described in Sec-
tion 3.4.1.

57

Apply rule (↓m) exactly qa many times to obtain precisely
∑N

i=1 ∗|X i|a occurrences of a.11

Once this has been completed for each formula a, we will have derived ∗X1, . . ., ∗XN ⇒

Π, which is exactly s∗. Furthermore, for any formula b ∈ Fm, since we only used the rule

(↓m), the most occurrences of b that appear in the antecedent of a sequent in this proof

occur after the final application of (↓m), so by Equation (3.6)

|∗X1, . . ., ∗XN |b =
n∑
i=1

∗|Xi|b ≤
ML∑
i=1

n+m− 1 = ML(n+m− 1) = k.

Hence ∗s `kL s∗.

(2) For a formula a, observe that |∗X1, . . ., ∗XN |a =
∑N

i=1 ∗|X i|a. If

N∑
i=1

∗|X i|a = ∗

(
N∑
i=1

|X i|a

)
,

then |∗X1, . . ., ∗XN |a = ∗|X1, . . ., XN |a and we need do nothing. Otherwise,

N∑
i=1

∗|Xi|a = n+ ra + qam,

where 0 ≤ ra < m and qa > 0. Apply rule (↓m) exactly qa many times to obtain precisely

∗(
∑N

i=1 ∗|Xi|a) occurrences of a. But by Lemma 3.4.1,

∗

(
N∑
i=1

∗|Xi|a

)
= ∗

(
N∑
i=1

|Xi|a

)
.

Once this has been completed for each formula we will have obtained ∗(X1, . . ., XN)⇒ Π,

which is exactly ∗s. Since we only used the rule (↓m), it follows that s∗ `kL ∗s.

Theorem 3.4.5. Let t be a sequent. Then `L t iff `kL ∗t.

11As was shown in Lemma 3.4.3 and Figure 3.2.

58

Proof. The (⇐) direction follows from Lemma 3.4.3.

(⇒) Since t is provable in L, by [8] there is a cut-free proof of t in L. We proceed by

induction on the height n of the cut-free proof of t. If n = 1 then (r) ∈ {(init), (1r), (0l)},

and it must be that ∗t = t, and we are done by our assumption.

So suppose the proof of s has height n > 1. By definition, t is labeled by (ν, (r)), and

t = s0 := ν(s0) where s0 is the conclusion of (r), an inference rule in L. Then

Γ
s0

(r)
,

where Γ is the set premises of (r) and Γ = {s : s = v(s) & s ∈ Γ} is the set of sequents

that are the immediate children of s0 in the proof-tree. Each sequent in Γ therefore has a

proof-tree of height strictly less than n and is the conclusion of some inference rule. Hence

by the inductive hypothesis, `kL ∗s for each s ∈ Γ. Given s ∈ Γ, we have ∗s `kL s∗ by

Lemma 3.4.4(1). Thus we obtained s∗0 via

Γ∗

s∗0
ν ′(r)

,

for a valuation ν ′ such that {ν ′(s) : s ∈ Γ} = Γ∗ and ν ′(s0) = s∗0. By Lemma 3.4.4(2) we

obtain s∗0 `kL ∗s0. Therefore `kL ∗t.

3.4.4 The decision procedure. In this way, for a given sequent s, a proof-search for s

need only consider k-reduced proofs of ∗s. The complexity of the proof-search for ∗s can

be crudely bounded above as follows:

Suppose ∗s is given by ∗X ⇒ Π, and let N := |SubFm(∗X,Π)| denote the total

number of subformulas from formulas appearing in ∗X and Π. Let T denote the total

number of k-reduced sequents constructed from SubFm(∗X,Π). Since each of the N -

many formulas in SubFm(∗X,Π) can appear in the antecedent at most k-many times, there

59

are (k + 1)N many possible antecedents. Since there are N -many possible formulas that

can appear as the consequent, the total number of k-reduced sequents is T = N(k + 1)N .

Let (∗s)←k denote the set of all possible k-reduced sequents in ∗s←.12 Since L satisfies the

subformula property, |(∗s)←k| ≤ T . The height of a proof-attempt is the total number of

sequents along the line of the tallest branch. The maximum height of a proof-attempt cannot

exceed the total number of k-reduced sequents T . Indeed, we may omit proof-attempts that

contain duplicate occurrences of a sequent along the line of a single branch. Therefore,

an exhaustive proof-search of ∗s need only consider proof-attempts whose height does not

exceed T . We provide a bound Ps for the total number of proof-attempts of height T , which

will be doubly-exponential with respect to the number of subformula N .

We first find a bound for the maximum number RL of instances of rules from L in

which a sequent in (∗s)←k can be the conclusion. Let Rlog be the total number of instances

of logical rules and Rstr be the total number of structural rules, for which a sequent in

(∗s)←k can appear as their conclusion. It is then clear that RL ≤ Rlog +Rstr. Since logical

rules are only applicable to the formulas that appear in a sequent, and the structural rules

can only be applied to the appropriate partitioning of the multiset in a sequent’s antecedent,

the values Rlog and Rstr can be bounded by inspecting sequents that contain the maximum

number of formulas. By Nw we denote the maximum number or formulas that can appear

in a sequent t from (∗s)←k. Every formula appearing in t is a subformula of ∗s and can

appear at most k-many times since every element of (∗s)←k is k-reduced. Thus the sequent

t can have at most k ·N many formulas in its antecedent, a single formula as its consequent,

and therefore the total number of formulas in t no larger than Nw = kN + 1.

Now, logical rules can only be applied to formulas with the appropriate outermost

connective. For any formula α, either α is a constant in {0, 1}, a propositional variable,

12Recall, t← is the least set of sequents that can appear in any proof-search with sequent t as the root. See
Section 3.3.

60

or α = β ? γ for formulas β, γ and outermost connective in ? ∈ {∨,∧, ·,→}. The only

(non-structural) rule applicable to a propositional variable is an instance of (init). Recall

Figure 3.1. For α a constant 0 or 1 there are at most two unique instances from the rules

(init), (0r) and (1l) applicable to α. If α = β?γ then there are at most two unique instances

of rules for ? ∈ {∨,∧}. Namely, the pairs (∨r1), (∨r2) if α = β ∨ γ is the consequent, and

(∧l1), (∧l2) if α = β ∧ γ in the antecedent. However, for ? ∈ {·,→} there are at most 2Nw

possible applications of a rule. Namely, for (·r) if α = β · γ is the consequent, or for (→ l)

if α = β → γ in the antecedent. Indeed, for (·r) as an example, since there are no more

than Nw-many formulas in a sequent t ∈ (∗s)←k, there are at most 2Nw many ways to write

t = Xw, Yw ⇒ α, so each representation of Xw, Yw as the antecedent corresponds to an

instance of (·r). Hence, for a given formula α, there are at most 2Nw-many applications of

a logical rule applicable to a sequent containing α in all cases. Therefore there are at most

Rlog = Nw · 2Nw instances of structural applicable to any sequent in (∗s)←k.

We now consider how many possible instances of structural rules from L = FLe +

(Kn+m
n) + (Knn+m) + Σe are applicable to a given sequent. Define ML to be the maximum

number of multiset variables which appear in the conclusion of a structural rule from the

set Γ := {(Kn+m
n), (Knn+m)} ∪ Σe. E.g., if Σe = ∅ then ML = (n + m) + 1 since (Knn+m)

contains (n + m) + 1 many multiset variables in its conclusion. Since the cut rule is

admissible, we need only consider structural rules from the set Γ. Such structural rules

are applicable to a sequent only when a partition of its antecedent into (at most) ML-many

multisets is chosen. Since there are no more thanNw formulas that appear in the antecedent

of t ∈ (∗s)←k, and each formula can be contained in one of the ML-many multisets, there

are at most MNw
L -many ways to partition the antecedent of t into ML-many multisets. Thus

for any given rule in Γ, there are at most MNw
L -many instances applicable to t. Hence there

are at most Rstr = |Γ| ·MNw
L many instances of structural rules applicable to any sequent

in (∗s)←k.

61

In total, there are no more than Rlog + Rstr many instances of rules in L that are

applicable to any given sequent in (∗s)←k. For a sequent t ∈ (∗s)←k and number h ≥ 0,

by P#(t, h) we denote the set of all proof-attempts with root t of height h. In this way, the

maximum number of proof-attempts for ∗s of height T is given by Ps := |P#(∗s, T)|. By

the observations above, since there are at most RL-many rule instances in L where t is the

conclusion, the value |P#(t, 1)| ≤ RL. Note that every proof-attempt in P#(t, 1) is of the

form
t1 · · · tB

t ,

with B ≤ BL, where BL is the maximum number of sequents that appear as the premises

from rules in L. That is, each proof-attempt in P#(t, 1) has at most BL-many branches.

Now, every attempt in P#(t, h + 1) is a result of applying instances of rules from L

to the leaves of an attempt in P#(t, h) that are not axioms. Note that, if there is a proof-

attempt in P#(t, h) in which all leaves are axioms (i.e., empty leaves obtained by (init)),

then t is provable and we halt the proof-search. Otherwise,

|P#(t, h+ 1)| = (# of proof-attempts in P#(t, h))

×(# of leaves in an attempt from P#(t, h))

×(# of rules applicable to a non-axiom leaf)

≤ |P#(t, h)| ·Bh
L ·RL

Hence, for each h ≥ 1, |P#(t, h)| ≤ Rh
L · B

4(h)
L , where 4(h) :=

∑h
i=1 i = h(h+1)

2
is the

h-th triangular number. Note that4(h) ≤ h2 for all h ≥ 1. Therefore, an exhaustive proof

62

search for ∗s need only check no more than

Ps = |P#(∗s, T)|

≤ RT
L ·B

4(T)
L

≤ RT
L ·BT 2

L

,

k-reduced proof attempts. That is, if this process has not halted in RT
L · BT 2

L many proof-

attempts, then ∗s is not provable. We recall the value RL := Rlog + Rstr = Nw · 2Nw +

|Γ| ·MNw is a bound for the maximum number of rule-instances applicable to a sequent

in (∗s)←k, where Nw = kN + 1 is the length a worst-case sequent, T = N(k + 1)N is

the total number of k-reduced sequents from the subformulas, and N is the total number of

subformulas that appear in ∗s. Since the values k, BL, |Γ|, and ML are fixed for L, we see

that Ps as a function of sequents s is double-exponential in the number of subformulas N

occurring in s. That is, in big-O notation,

Ps ≤ O
((
Nw · 2Nw + |Γ| ·MNw

L
)N(k+1)N ·BN2(k+1)2N

L

)
= O

(
NNN

)
= O

(
22N
)
.

Theorem 3.4.6. L has a primitive recursive decision procedure. In particular, there is a

decision procedure for L that is, at worst, double-exponential in the number of of subfor-

mula that appear in a given sequent.

Corollary 3.4.7. Let Σ be a finite potent set of simple equations. Then the equational,

quasi-equational, and universal theories of CRL + Σ are decidable and admit a primitive

recursive decision procedure.

While this proof-search is still computationally impractical, it demonstrates the possi-

bility to cut down the complexity, unlike that for FLec. For instance, in [7] it is proved that

the decision problem for extensions of FLew by expansive knotted rules is in EXPTIME.

63

Chapter 4: Algebraic Machines and Complexity Lower-bounds

We now begin our investigation of complexity lower-bounds for the quasi-equational

(and equational) theories for varieties of residuated lattices, specifically those which are

defined by ISR-equations.

The fundamental decision problem we utilize is grounded in the halting problem for

a class of abstract mathematical machines known as counter machines. The simplicity of

the language for counter machines makes them distinctly well-suited for representations as

ordered monoids or semirings. From this point of view, the key observations in [17, 14]

are that acceptance of a machine (i.e., whether, for a given input, the machine halts) can be

faithfully simulated as the satisfiability of a particular quasi-equation in a variety of resid-

uated lattices. In fact, due to the fixed structure of a given machine, this correspondence

relates to the complexity of the word problem for these algebraic structures. Inspired by

[14], we use a residuated frames construction to prove the completeness of this result, while

the soundness is easily achieved since residuated lattice have semiring reducts. In such a

way, the varieties RL and CRL have been shown to have undecidable word problems. The

first three sections of this chapter serve as the theoretical foundation in which we expand

these results in Chapter 5. However, using the machinery developed in the first three sec-

tions, the final section is devoted to describing how [23] can be naturally extended to a

broader class of simple equations. We note that the techniques developed in this section are

not necessary for establishing the results in Chapter 5.

As shown in Chapter 2, residuated frames are also uniquely well-suited for the con-

struction of residuated lattices that satisfy specific simple equations. In particular, we are

able to bootstrap the undecidability of the word problem for (C)RL to prove the same for

64

subvarieties extended by simple equations from a class U . This is accomplished by con-

structing a counter machine which is “resilient” to applications of a simple equation from

U , so-called admissibility, in the sense that the presence of such a simple equation does

alter acceptance in the machine in a meaningful way.

4.0.1 The word problem. A presentation for a language L is a pair 〈X,E〉 where X is

a set of generators and E is a set of equations over T (X). A presentation 〈X,E〉 is said to

be finite iff both X and E are finite. We denote the conjunction of equations in E by &E.

For a variety V of algebras in the language L, we say V has an undecidable word problem

if there exists a finite presentation 〈X,E〉 such that there is no algorithm that can decide,

for inputs s, t ∈ T (X), whether the quasi-equation

&E =⇒ s = t (4.1)

holds in V . That is, membership of the set of pairs (s, t) ∈ T (X)2 such that (4.1) holds in

V is undecidable. Note that if V has undecidable word problem then its quasi-equational

and universal theories are undecidable as well.

Since RL has a poset reduct, any equation s = t is equivalent to the conjunction of

inequations s ≤ t and t ≤ s. In this way, we will consider ≤-rendering of the word

problem

&E≤ =⇒ s ≤ t, (4.2)

where E≤ is a set of inequations. Consequently, for partially ordered structures, decidabil-

ity of the word problem in this (inequational) rendering is equivalent to the decidability of

the (equational) word problem.

By the {∨, ·, 1}-fragment of the word problem, we mean the restriction of the word

problem to inequations amongst ISR-terms in the signature {∨, ·, 1}. Similarly, by the

{≤, ·, 1}-fragment of the word problem, we mean the restriction of the word problem to

65

inequations of monoid-terms in the signature {·, 1}. Clearly, undecidability of the {≤, ·, 1}-

fragment implies undecidability of the {∨, ·, 1}-fragment, which implies undecidability of

the word problem for RL.

4.1 Algebraic Machines, Residuated frames, and the Word Problem

Let X be a finite set of variables. By (X∗, ·, 1) we denote the free monoid generated

by X , and by AX = (AX ,∨,⊥, ·, 1) we denote the free semiring generated by X , i.e.,

(AX ,∨) is a commutative semigroup, (AX , ·, 1) is a monoid, and · distributes over ∨. For

a set S ⊆ X∗, define the set S∨ ⊆ AX via

u ∈ S∨ ⇐⇒ ∃s1,, sn ∈ S, u =AX
s1 ∨ · · · ∨ sn.

Note that X∗∨ = AX .

We will call a pair p = (x, y) ∈ X∗×AX an instruction, which we suggestively denote

by p : x ≤ y. We say an instruction p : x ≤ y is of monoid-type if furthermore y ∈ X∗.

Let P be a finite set of instructions. We will call the structure M = (X,P) an algebraic

machine. The computation relation ≤ for the machine M = (X,P) is defined to be the

smallest {·,∨}-compatible preorder on AX containing P , and will be denoted by ≤M to

specify the machine M . For an instruction p, it will be useful to define the relation ≤p to

be the smallest {·,∨}-compatible relation on AX generated by p, i.e., the smallest relation

containing p and closed under the following inference rules:

v ≤p w
xvy ≤p xwy [·] and

v ≤p w
v ∨ t ≤p w ∨ t [∨]

,

for all v, w, x, y, t ∈ AX . Consequently, w ≤p w′ if and only if p : x ≤ y and w = uxv ∨ t

and w′ = uyv∨t, for some u, v ∈ X∗ and t ∈ AX . It is easy to verify that≤M is equivalent

to the transitive closure
⋃
{≤p: p ∈ P}. In this way, w ≤M w′ iff there is a sequence of

66

instructions (pi)
n
i=1 from P , and a sequence of AX-terms (wi)

n
i=0 such that

w =AX
w0 ≤p1 w1 ≤p2 · · · ≤pn wn =AX

w′,

for some n ≥ 0 called the length of the computation. In this way, we say w ≤M w′

is witnessed by the above computation. Note that, if there is a computation witnessing

w ≤M w′, then there is a computation of minimal length. As a consequence of Section 1.2.4

we obtain the following proposition.1

Proposition 4.1.1. Let s, t, t′ ∈ AX . Then t∨t′ ≤M s if and only if there exists s′, s′′ ∈ AX

such that t ≤M s′ and t′ ≤M s′′, where s = s′∨s′′. Furthermore, the sum of the computation

lengths of t ≤M s′ and t′ ≤M s′′ is no larger than the computation length of t ∨ t′ ≤M s.

Let xf ∈ X∗ be a designated final term for M , and Fin(M) := {xf}∨ be the set of all

finite joins of the term xf . We will say a term w ∈ AX is accepted in M if w ≤M uf for

some uf ∈ Fin(M), and we denote the set of all accepted terms by Acc(M) ⊆ AX .

Algebraic machines will typically come equipped with additional structure in which

the computations are meant to operate. For instance, in the following sections on counter

machines, this set is called Conf(M), defined depending on the type of machine M . There

will typically be a designated set Q ⊆ X of states, and a set of instructions Pcom meant

to allow states, or even other variables, to freely permute within a monoid term. If M =

(X,P ∪Pcom), then we define =com to be the compatible equivalence relation generated by

Pcom. We encode this form of commutativity for the instructions in P via

≤pcom:= (=com) ◦ (≤p) ◦ (=com).

1That is, t0 ≤m t1 ∨ · · · ∨ tn iff {t1, . . . , tn} `P t0, where `P is the consequence relation generated by
the set {(

{ux1v, . . . , uxkv}, ux0v
)

: (x0 ≤ x1 ∨ · · · ∨ xn) ∈ P, u, v ∈ X∗
}
.

67

Note that if all instructions in P are monoid-type then acceptance of w ∈ X∗ reduces

to x ≤M xf . We will see that the frames we construct below are defined with no mention

to ∨, in fact the extension from {≤, ·, 1} to {∨, ·, 1} is conservative. Inspired by [14], we

obtain:

Theorem 4.1.2. Let WM = X∗, W ′
M = X∗ × X∗. Then WM = (WM ,W

′
M ,NM) is a

residuated frame, where for all x ∈ WM and (u, v) ∈ W ′
M ,

xNM (u, v) ⇐⇒ uxv ∈ Acc(M)

Proof. We define the functions �, by (u, v) � y = (u, yv) and x (u, v) = (ux, v).

Clearly, for x, y ∈ WM and (u, v) ∈ W ′
M ,

xyNM (u, v) ⇐⇒ uxyv ∈ Acc(M) ⇐⇒ xNM (u, yv)

⇐⇒ yNM (ux, v)
.

Lemma 4.1.3. Let M = (X,P) be an algebraic machine and define the valuation e : X →

W+
M via e(a) := {a}./. Then W+

M , ē |= P , where ē : T (X) → W+
B is the homomorphic

extension of e. Furthermore, ē(x ∨ y) = {x, y}./ for any x, y ∈ WM .

Proof. Let γ := γNM be the nucleus defined by NM on ℘(WM), and for convenience we

write γ(x) := γ({x}) for all x ∈ WM . Since γ is a nucleus, for each a, b ∈ WM we observe

ē(ab) = ē(a) ·γ ē(b) = e(a) ·γ e(b) = γ(γ(a) · γ(b)) = γ(ab).

Hence ē(x) = γ(x) for each x ∈ WB. Let x, y ∈ WB, then

ē(x ∨ y) = ē(x) ∪γ ē(y) = γ(x) ∪γ γ(y) = γ(γ(x) ∪ γ(y)) = γ({x, y})

68

where the last equality is obtained using the fact that γ is expanding and idempotent.

Now, let p ∈ P be given by p : x ≤ y, where y = t1 ∨ · · · ∨ tn for some x, t1, . . ., tn ∈

WM . We will first show that {t1, . . ., tn}. ⊆ {x}.. Suppose (u, v) ∈ {t1, . . ., tn}., then

tiNM (u, v) ⇐⇒ utiv ∈ Acc(M), i = 1, . . ., n.

By definition of Acc(M), this implies uyv =AM

∨n
i=1 utiv ∈ Acc(M). Now x ≤p y

implies uxv ≤p uyv, and since ≤M is transitive it follows that uxv ∈ Acc(M). Hence

xNM (u, v). So ē(x) = {x}./ ⊆ {t1, . . ., tn}./ = ē(t1 ∨ · · · ∨ tn) = ē(y) and W+
M , ē |=

x ≤ y. Therefore W+
M , ē |= P.

For each w ∈ AM , we define the quasi-equation accM(w) to be

&P ⇒ w ≤ xf ,

where xf is the final term of M .

Lemma 4.1.4. Let V be a subvariety of RL containing W+
M for some algebraic machine

M = (X,P). Then for all w ∈ AM , w ∈ Acc(M) if and only if V |= accM(w).

Proof. (⇒) Suppose w ∈ Acc(M). By definition of Acc(M), w ≤M uf for some uf ∈

Fin(M). By definition of ≤M , and there exists n ∈ N, w0, . . ., wn ∈ AX , and a sequence

{pi}ni=1 ⊆ P such that

w = w0 ≤p1 w1 ≤p2 · · · ≤pn wn = uf ,

69

for some n ≥ 0. Note that, for each i = 1, . . .n, pi : xi ≤ yi for some xi, yi ∈ AM , and

hence by definition on ≤pi

wi−1 = uixivi ∨ si∨ ≤pi uiyivi ∨ si = wi,

for some ui, vi ∈ X∗ and si ∈ AM . Let R ∈ V and h : T (X) → R a homomor-

phism. Suppose R, h |= P . Then for each i = 1, . . ., n, h(xi) ≤R h(yi), and since h

is a homomorphism we obtain h(wi−1) ≤R h(wi). By transitivity of ≤R, it follows that

h(w) ≤R h(wn) =R h(xf). Since h and R were arbitrary, V |= accM(w).

(⇐) Let ē be the map from Lemma 4.1.3. Since W+
M , ē |= P , and W+

M ∈ V , we

have that W+
M , ē |= w ≤ xf . By Lemma 4.1.3, {w}./ ⊆ {xf}./, or equivalently to

{xf}. ⊆ {w}.. Since xf ∈ Acc(M) it follows that xf NM (1, 1) by definition of NM , so

(1, 1) ∈ {xf}.. Hence (1, 1) ∈ {w}., i.e., wNM (1, 1). Therefore by definition of NM ,

w ∈ Acc(M).

4.1.1 Complexity and the Word Problem.

As a consequence of Lemma 4.1.4, if V ⊆ RL is a variety containing W+
M , for some

algebraic machine M = (X,P), then

{accM(u) : u ∈ Acc(M)} = {accM(u) : V |= accM(u)} (4.3)

Theorem 4.1.5 ([14]). Let M be an algebraic machine and W+
M ∈ V ⊆ RL for a variety

V . Then the computational complexity for the word problem of V is at least as high as the

one for membership in Acc(M).

Proof. Suppose there is an algorithm for deciding membership in

QP = {(s, t) ∈ T (X)2 : V |= &P =⇒ s ≤ t}.

70

This algorithm would decide membership of the set {u ∈ T (X) : V |= accM(u)}. By

Equation (4.3) this same algorithm would decide membership of the set Acc(M).

Corollary 4.1.6. If V is a subvariety of RL containing W+
M such that membership in

Acc(M) is undecidable, then V has an undecidable word problem.

Since {accM(u) : V |= accM(u)} ⊆ {ξ : ξ is a quasi-eq. such that V |= ξ}, we obtain

the following.

Corollary 4.1.7. Let M be an algebraic machine and V ⊆ RL a variety. The computational

complexity for the quasi-equational theory of V is at least as high as that of membership of

Acc(M).

Furthermore, by Corollary 2.5.2 we obtain:

Corollary 4.1.8. Let V be an expansive subvariety of CRL containing W+
M , for some alge-

braic machine M . Then the computational complexity of the equational theory of V is as

high as the one for membership of Acc(M).

4.1.2 Simple equations and Admissibility. Let [R] = (1n,R) be a simple equation

and M = (X,P) an algebraic machine. Recall that W+
M |= [R] iff WM |= (R) by

Proposition 2.2.4

Define the relation ≤R on AX to be the smallest {·,∨}-compatible relation containing

1n
AX (x) ≤

∨
r∈R

rAX (x),

for all x1,, xn ∈ X∗, where x = (x1, . . ., xn). Equivalently, we often view ≤p as the

smallest {·,∨}-compatible relation containing σ(1n) ≤
∨
r∈R σ(r), for any substitution σ

generated by an assignment Var→ X∗.

71

We view ≤R as a sort of “ambient” instruction that can be implemented, at least triv-

ially, to any term within a computation. In this way, it is useful to view ≤R as a “computa-

tional glitch,” and we define the relation ≤ΣM to be the computation relation generated by

Σ and P for some set of simple equations Σ, i.e., ≤ΣM is the smallest {·,∨}-compatible

preorder generated by {≤R: [R] ∈ Σ} ∪ {≤p: p ∈ P}. In this way, u ≤ΣM u′ iff there

exists u0, . . ., un ∈ AX and p1, . . ., pn instructions such that

u =AM
u0 ≤p1 u1 ≤p2 · · · ≤pn un =AM

u′,

for some n ≥ 0, where pi ∈ P ∪ Σ for each i = 1, . . ., n. In this way, we define

Acc(ΣM) := {u ∈ AM : u ≤ΣM uf ∈ Fin(M)}. Since ≤M ⊆ ≤ΣM it easily fol-

lows that Acc(M) ⊆ Acc(ΣM). Define WΣM = (WM ,W
′
M ,N ΣM), where xN ΣM u, v iff

uxv ∈ Acc(ΣM)

Lemma 4.1.9. Let M be an algebraic machine and Σ a set of simple equations. Then

WΣM is a residuated frame and W+
ΣM |= Σ, i.e., W+

ΣM ∈ RL + Σ.

Proof. We first observe that WΣM is a residuated frame by Theorem 4.1.2. By Proposi-

tion 2.2.4, it is enough to show that WΣM |= (R) for each [R] ∈ Σ. Fix [R] = (1n,R) ∈ Σ

and suppose for some x1, . . ., xn ∈ WM and (u, v) ∈ W ′
M ,

rAM (x)N ΣM (u, v)

for every r ∈ R, where x = (x1, . . ., xn). By definition of N ΣM , it follows that urAM (x)v ∈

Acc(ΣM) for each r ∈ R. By definition of ≤R and since Acc(ΣM) is closed under finite

joins, this implies

u1n
AM (x)v ≤R

∨
r∈R

urAM (x)v ∈ Acc(ΣM).

72

Since Acc(ΣM) is closed under transitivity, it follows that u1n
AM (x)v ∈ Acc(ΣM), i.e.,

1n
AM (x)N ΣM (u, v).

Hence WΣM |= (R). Since [R] was arbitrary, we obtain W+
ΣM |= Σ.

We say Σ is strongly admissible in M if Acc(ΣM) = Acc(M). That is, the presence

of Σ-instructions does not increase the set of accepted terms. If Σ is strongly admissible in

M then W+
M = W+

ΣM .

Corollary 4.1.10. Let M be an algebraic machine and Σ a set of simple equations. If Σ is

strongly admissible in M , then W+
M |= Σ. Then for every variety V such that W+

M ∈ V ⊆

RL, the complexity of the word problem for V is at least as high as that for membership of

Acc(M).

The following lemma will be useful for demonstrating strong admissibility, which fol-

lows as a consequence from Section 1.2.4.

Lemma 4.1.11. For a set of simple equations Σ and algebraic machine M = (X,P), Σ is

strongly admissible in M if and only if

t1, . . ., tn ∈ Acc(M) =⇒ t0 ∈ Acc(M),

for all t0, . . ., tn ∈ X∗ such that t0 ≤R t1 ∨ · · · ∨ tn, for some [R] ∈ Σ.

4.1.3 Canonically admissible. For the machines we use there will typically be some

proper subset ofX∗ of canonical monoid terms on which operations of the machine remain

stable. Let C ⊆ X∗. We say a set C ⊆ X∗ is stable in M if xf ∈ C and for all p ∈ P and

u, v ∈ AX , if u ≤p then u ∈ C∨ iff v ∈ C∨.

For a given stable set C, we will often use typewriter font to denote elements, e.g.,

C ∈ C and u ∈ C∨.

73

Proposition 4.1.12. Let M = (X,P) be an algebraic machine with set C stable in M .

1. Suppose u ≤M v. Then u ∈ C∨ iff v ∈ C∨.

2. Acc(M) ⊆ C∨.

Proof. Since C is stable in M , this follows by induction on computation length.

We now introduce a weaker notion of admissibility, called canonically admissible.

Suppose C is stable in M , and let Can(M) = C∨. By Proposition 4.1.12, Acc(M) ⊆

Can(M). However, for a given set of simple equations Σ, it is possible that Acc(ΣM) *

Can(M) (e.g., Section 5.1.1). In which case there must exist some u, v ∈ AM and [R] ∈ Σ

such that u ≤R v but u 6∈ Can(M) and v ∈ Can(M), and so Σ is not strongly admissible in

M .

We say Σ is canonically admissible in M if for every u ∈ Can(M),

u ∈ Acc(ΣM) ⇐⇒ u ∈ Acc(M).

We will often refer to canonical admissibility simply by admissible. This means that the

presence of Σ does not increase acceptance in a meaningful way, modulo the canonical

terms. It is clear that strong admissibility implies admissibility.

Theorem 4.1.13. Let M be an algebraic machine such that Acc(M) ⊆ Can(M). Let Σ be

a set of simple equations such that W+
ΣM ∈ V for some variety V ⊆ RL. If Σ is admissible

in M then the complexity of the word problem for V is at least as high as that for Acc(M).

4.1.4 Hardware-admissibility. The algebraic machines M = (X,P) we consider will

have designated sets H1, . . ., Hk ⊆ X of hardware.2 Let H ⊆ X be a set of hardware

2The hardware that we consider later will always consist of a set H0 of states, and in some cases a
sequence i = 1, . . ., k + 1 of stopper variables, where Hi = {Si}.

74

with elements called components. We say M is H-stable if the final term xf ∈ X∗ for M

contains precisely one component variable from H , and for each instruction p ∈ P , where

p : t0 ≤ t1∨· · ·∨tn for some t0, t1, . . ., tn ∈ X∗, ti ∈ X∗ contains precisely one component

variable for each i = 0, . . ., n.3 Let H∗X ⊆ X∗ be the set of all monoid terms that contain

precisely one component variable fromH . That is, H∗X = (X \H)∗ ·H · (X \H)∗. Clearly,

if M is H-stable then the set H∗X is stable for M ,

Let Σ be set of simple equations and M = (X,P) be H-stable with hardware H ⊆ X .

We say Σ is H-admissible in M if Acc(ΣM) ⊆ H∗∨X .

Recall that Σ is mingly iff Σ contains a simple equation [R] that is either integral or

[σR] : xk ≤ x for some k > 1 and substitution σ.4

Lemma 4.1.14. Let M = (X,P) be an H-stable algebraic machine with some set of

hardware H , and Σ a set of simple equations. The following are equivalent:

1. Σ is H-admissible in M .

2. For every w,w′ ∈ AX , w ≤Σm w′ implies w ∈ H∗∨X ⇐⇒ w′ ∈ H∗∨X .

3. Σ is not mingly.

Proof. Let xf be the final term for M .

(1⇒ 2) Assume Acc(ΣM) ⊆ H∗∨X . Since H∗X is stable in M , Fin(M) ⊆ H∗∨X . By the

same argument as Proposition 4.1.12, it follows that w ≤ΣM w′ implies w ∈ H∗∨X ⇐⇒

w′ ∈ H∗∨X .

(2 ⇒ 3) Proceeding by contraposition, suppose [R] = (1n,R) ∈ Σ is mingly. Then

there is a 1-variable substitution σ such that σ(1n) = xk and σ[R] = {xδ} where δ ∈

3That is, t ∈ X∗ contains precisely one component variable iff supp(t) ∩H = {q} and #(t, q) = 1.

4See Theorem 2.4.1.

75

{0, 1} and k > δ. This implies that

xk+δ′

f ≤R
∨
r∈R

xδ+δ
′

f =
∨
r∈R

xf ∈ Fin(M),

where {δ, δ′} = {0, 1}. Since M is H-stable, Fin(M) ⊆ H∗∨X . Since k + δ′ > 1, xk+δ′

f 6∈

H∗X . Hence w ≤ΣM w′ such that w 6∈ H∗∨X but w′ ∈ H∗∨X .

(3 ⇒ 1) Proceeding by contraposition, suppose there Acc(ΣM) \ H∗∨X 6= ∅. We may

assume t ∈ Acc(ΣM) \ H∗∨X has the minimal computation length N ≥ 0 witnessing this

fact. I.e., if t ≤ΣM uf ∈ Fin(M) has a witness of length N . By Proposition 4.1.1, the

minimality of N implies t ∈ X∗ \ H∗X . Since Fin(M) ⊆ H∗∨X by assumption, it follows

that N > 1. So t ≤p w ≤ΣM uf for some instruction p ∈ P ∪ {R : [R] ∈ Σ} and

w ∈ X∗∨. Since N is minimal and w ∈ Acc(ΣM), it follows that w ∈ H∗∨X and hence

p ∈ {R : [R] ∈ Σ} since H∗X is stable. Hence there is [R] = (1n,R) ∈ Σ such that

t = u1n(x)v ≤R
∨
r∈R

ur(x)v = w

for some u, v, x1, . . ., xn ∈ X∗ where x = (x1, .., xn). Define I := {i ≤ n : xi ∈ X∗ \

(X \H)∗} to be the set of all i ≤ n such that xi contains at least one component variable.

We have two cases:

Case 1: If uv ∈ H∗X , then r(x) ∈ (X \ H)∗ for all r ∈ R. Hence for all i ∈ I ,

#(r, yi) = 0 for each r ∈ R, where supp(1n) = {y1, . . ., yn}. Without loss of generality,

suppose 1 ∈ I . Consider the 1-variable substitution σ that maps y1 7→ y and yj 7→ 1 for all

j > 1. Then [σR] : x ≤ 1. Hence [R] is mingly.

Case 2: If uv 6∈ H∗X , then uv ∈ (X \ H)∗, otherwise w 6∈ H∗∨X . Since Σ is a set of

simple equations, it is non-degenerate and so every variable that appears in w must appear

in t. Since w ∈ H∗∨X , it must be that x contains a component variable. Hence for each

76

r ∈ R, there exists a unique ir ∈ I such that #(r, yir) = 1 and for each i ∈ I \ {ir},

#(r(, yi) = 0, otherwise ur(x)v 6∈ H∗X . We claim that |I| > 1. Suppose otherwise, i.e.

I = {i}, and thus #(r, yi) = 1 for all r ∈ R. But this implies xi ∈ H∗X and xj ∈ (X \H)∗

for all j 6= i since ur(x)v ∈ H∗X for all r ∈ R. But this implies

t = u1n(x)v = ux1 · · ·xnv ∈ H∗X ,

since u, v, xj ∈ (X \H∗X)∗, a contradiction.

Hence k := |I| ≥ 2. Consider the substitution σ that maps yi 7→ y for all i ∈ I ,

otherwise and yj 7→ 1 for j 6∈ I . Then σ(r) = σ(yir) = y for all r ∈ R, and σ(1n) = yk.

Hence [σR] : yk ≤ y. Therefore [R] is mingly.

4.2 Counter machines in RL and the {≤, ·, 1}-fragment

For proving lower-bounds for the complexity of decision problems, we will use a type

of abstract machine known as a Counter Machine (CM). We will first present CM’s in a

semi-informal language typical for such automata, and then present two representations

of counter machines as algebraic machines, as defined in the previous section. A more

detailed exposition of counter machines as multi-tape Turing machines can be found in

[13].

A CM models a computer having a finite number of registers r1, . . ., rk each of which

can contain an arbitrary non-negative integer (a machine with k registers will be called a

k-CM), a finite number of states with a designated final state qf , and a finite set of instruc-

tions that indicate whether, given a certain state of the machine, to alter the contents of the

registers, in a specific way, and update its state. The basic instructions are of the machine

are called increment, decrement, and zero-test, which consist of consist of adding 1 to a

register, subtracting 1 from a non-empty register, or verifying a register is empty, respec-

tively.

77

We will represent a k-CM M by the triple M = (Rk, Q, P), where Rk = {r1, . . ., rk}

is a set of register-names, Q is a finite set of states with designated final state qf , and P

is a finite set of basic instructions, with no instruction of the form qf · · · (i.e., qf is only

an outgoing transitional state). Using a fresh set of variables Stpk := {S1, . . ., Sk, Sk+1},

define (WM, ·, 1) to be the free monoid generated by Rk ∪ Stpk ∪ Q.

A configuration of a k-CM is the description of the machines current state and register

contents, and will be canonically associated with a monoid word

qS1r
n1
1 S2r

n2
2 S3 · · · Skrnkk Sk+1

The data-type of a configuration is essentially that of a tuple 〈q;n1, . . ., nk〉, where q indi-

cates the current state of the machine, and n1, . . ., nk ∈ N are the current contents of

registers r1, . . ., rk, respectively.

The instructions of a machine will be written as qSi ≤ q′Siri, qSiri ≤ q′Si, and

qSiSi+1 ≤ q′SiSi+1, for some states q, q′ and i ∈ {1, . . ., k}, denoting instances of incre-

ment ri, decrement ri, and zero-test ri instructions. In this way, the basic instructions of

a CM are understood as follows: when the machine is in state q and there is an increment

instruction qSi ≤ q′Siri, then the machine may increment the register ri by 1 and tran-

sition to the state q′; when the machine is in state q and there is a decrement instruction

qSiri ≤ q′Si, then if the value of the register ri is nonzero the machine may decrement the

register ri by 1 and transition to the state q′; when the machine is in state q and there is a

zero-test instruction qSiSi+1 ≤ q′SiSi+1, then if the register ri is empty, i.e., has value 0,

the machine may transition to the state q′ with the registers unaltered.

78

For each p ∈ P, define≤p to be the compatible relation onWM defined as in Section 4.1.

i.e., as the relation on WM containing p and closed under the inference rule

u ≤p v
xuy ≤p xvy [·]

, (4.4)

for all u, v, x, y ∈ WM.

To implement instructions as intended, we must allow the state variables to freely per-

mute within terms from WB. We define the set

Pcom := {qx ≤ xq : q ∈ Q, x ∈ Rk ∪ Stpk} ∪ {xq ≤ qx : q ∈ Q, x ∈ Rk ∪ Stpk}, (4.5)

and the equivalence relation =com defined as in Section 4.1. We will abuse notation and

write ≤p instead of ≤pcom if the context is clear. We note that, since all instructions are of

monoid type, the closure under the inference rule [∨] is not needed in this context. However,

the closure of [∨] is conservative, and will be useful for the following chapter.

For a given k-CM M = (Rk, Q, P), the structure (XM, P) is an algebraic machine, where

XM = Rk ∪ Stpk ∪ Q and PM = P ∪ Pcom. We will abuse notation by denoting (XM, PM) by

M. In this way, the computation relation ≤M is as defined in Section 4.1. As before, it will

be useful to view ≤M as the transitive closure of (=com) ∪ {≤p: p ∈ P}.

Define the set of register boxes

Boxk := {S1r
n1
1 S2r

n2
2 S3 · · · Skrnkk Sk+1 ∈ WM : n1, . . ., nk ∈ N}

and the set of configurations by

Conf(M) := {uqv ∈ WM : q ∈ Q, uv ∈ Boxk},

79

and by Cf := qfS1 · · · SkSk+1 we denote the final configuration, where qf ∈ Q is the final

state of M. Now, we see that for given configurations C, C′ ∈ Conf(M),

C =com C′ ⇐⇒ C = uqv & C′ = u′qv′ & uv = u′v′ ∈ Boxk , (4.6)

Abusing notation, we write C = 〈q;n1, . . ., nk〉 iff C = uqv ∈ Conf(M) and uv =

S1

∏k
i=1 r

ni
i Si+1. Note that C =Q Cf iff C = 〈qf ; 0, . . ., 0〉.

In this light, we view implementations of instructions from P as follows:

p : qSi ≤ q′Siri 〈q;n1, . . ., ni, . . ., nk〉 ≤pcom 〈q′;n1, . . ., ni + 1, . . .nk〉

p : qSiri ≤ q′Si 〈q;n1, . . ., ni + 1, . . ., nk〉 ≤pcom 〈q′;n1, . . ., ni, . . .nk〉

p : qSiSi+1 ≤ q′SiSi+1 〈q;n1, . . ., ni−1, 0, . . ., nk〉 ≤pcom 〈q′;n1, . . ., ni−1, 0, . . ., nk〉

.

It easily follows that C ≤M C′ if and only if there exists n ≥ 0, C0, . . ., Cn ∈ Conf(M),

and a sequence of instructions (pi)
n
i=1 from P such that

C = C0 ≤p1
com · · · ≤pncom Cn = C′.

The following will serve as our undecidable problem:

Proposition 4.2.1 ([20, 16]). There exists a 2-CM M̃ for which membership of Acc(M̃) is

undecidable.

Example 4.2.1. Consider the 1-CM Meven = (R1, Qeven, Peven), where Qeven = {q0, q1, qf}

and Peven = {p0, p1, pf} are given by

p0 : q0S1r1 ≤ q1S1

p1 : q1S1r1 ≤ q0S1

pf : q0S1S2 ≤ qfS1S2.

80

For an example,

q0S1r
2
1S2 ≤p0 q1S1r1S2 ≤p1 q0S1S2 ≤pf qfS1S2

is a computation showing that 〈q0; 2〉 is accepted in Meven. On the other hand, the only

computation possible starting from the configuration 〈q0; 1〉 is given by 〈q0; 1〉 vp0 〈q1; 0〉,

and so 〈q0; 1〉 is not accepted. In general, it is easy to see that 〈q0;n〉 is accepted in Meven if

and only if n is even.

4.2.1 Counter machines and residuated frames. Consider an instruction p : u ≤ v in

P ∪ Pcom from definitions in Equations (4.4) and (4.5). We observe that u, v ∈ WM, i.e.,

the instruction p is of monoid type, and each contain precisely one state-variable. Further-

more, the terms u, v contain precisely the same stopper variables with the same multiplicity,

where no stopper variable has multiplicity greater than 1, and no stopper variables in u are

permuted in v. Since Cf ∈ Conf(M), by the above the following is immediate:

Lemma 4.2.2. The set Conf(M) is stable in M. In particular, M is H-stable for all H ∈

{Q, {S1}, . . .{Sk+1}}.

By Corollary 4.1.6 and the fact that all instructions in P ∪ Pcom are of type {·, 1}, we

obtain:

Theorem 4.2.3. Let M be a k-CM and W+
M ∈ V ⊆ RL for a variety V . Then the computa-

tional complexity for even the {≤, ·, 1}-fragment word problem of V is at least as high as

the one for membership in Acc(M).

By Proposition 4.2.1, since membership of Acc(M̃) is undecidable, we obtain:

Corollary 4.2.4. Any variety V ⊆ RL for which W+
M̃
∈ V , the word problem, particularly

for the {≤, ·, 1}-fragment, of V is undecidable.

81

4.2.2 Observations on admissibility. We first observe that W+
M 6∈ CRL for any CM M.

Let u = S1, v = S2, and w =
∏k

i=2 Si+1. Clearly, the final configuration Cf = qfuvw ∈

Acc(M) but qfvuw 6∈ Acc(M) since it is not a configuration. In other words, uvN M(qf , w)

but vu /N M(qf , w), and hence by Proposition 2.2.4 W+
M 6|= xy ≤ yx for any k-CM M.

In fact, by Mayr and Meyer [19], the {≤, ·, 1}-fragment of CRL has a decidable quasi-

equational theory, and therefore this particular algebraic rendering of counter-machines is

insufficient to capture undecidability for commutative varieties. In the next section, we

will present an algebraic rendering in which commutativity will be admissible, at the cost

of adding ∨ to the signature.

On the other hand, W+
M satisfies the permutation of squares x2y2 = y2x2. In essence,

this due to the fact,

x2y2 N M(u, v) ⇐⇒ ux2y2v ∈ Acc(M) [by def. of N M]

=⇒ x2y2 contains no variables in Q ∪ Stpk [Acc(M) ⊆ Conf(M)]

=⇒ x2y2 = rni for some i ≤ k and n ∈ N [by def. of Conf(M)]

=⇒ x2y2 = y2x2

=⇒ y2x2 N M(u, v),

.

Let [R] = (14,R) be the linearization of x2y2 ≤ y2x2,

[R] : x1x2y1y2 ≤
∨
{yiyjxlxk : 1 ≤ i, j, k, l ≤ 2}.

Since each y2x2 ∈ R for each y ∈ {y1, y2} and x ∈ {x1, x2}, the above argumentation

establishes that [R] is strongly admissible in M, so WM |= (R), and hence W+
M |= [R]. More

generally, this same argument shows W+
M |= xnym ≤ ymxn for any integers m,n ≥ 2.5

5Note that xnym ≤ ymxn is RL-equivalent to xnym = ymxn.

82

Therefore, by Corollary 4.1.10, the word problem for RL + (xnym = ymxn), in particular

its {≤, ·, 1}-fragment, is undecidable for any m,n ≥ 2.

The above argument also follows as a consequence from the following technical lemma,

which will be needed in Section 5.2.2. For a set Σ of simple equations, we say Σ entails

commutativity if ISR + Σ is commutative, or equivalently yx `Σ xy by Theorem 2.3.4.

Lemma 4.2.5. Let Σ be a non-mingly set of simple equations and M = (Rk, Q, P) a counter

machine. If Σ does not entail commutativity then for a monoid term t, if t ∈ Acc(ΣM) then

t = uqv where q ∈ Q, and

uv = S1x1S2x2 · · · SkxkSk+1, with x1, . . ., xk ⊆ R∗k. (4.7)

Proof. Suppose t ∈ Acc(ΣM). Let H ∈ {QK , {S1}, . . ., {Sk}, {Sk+1}}. By Lemma 4.2.2,

M is H-stable. By Lemma 4.1.14, Σ is H-admissible since Σ is not mingly. Therefore t

contains precisely one state variable from H . Since this holds for all sets H , t = uqv for

some q ∈ Q and

uv = Sn1x1Sn2x2 · · · SnkxkSnk+1
,

where x1, . . ., xk ⊆ R∗k and {1, . . ., k + 1} = {n1, . . ., nk+1}. We need only show that if

Σ does not entail commutativity then ni = i for each i = 1, . . ., k + 1. We induct on

the minimal computation length N ≥ 0 witnessing t ≤ΣM uf ∈ Fin(ΣM). Clearly, if

N = 0, then t = Cf = qfS1 · · · SkSk+1 and we are done. So suppose the claim holds for

all computations of length M < N . Then t ≤p
∨m
j=1 ti ∈ Acc(ΣM) for some instruction

p ∈ P ∪ Σ and monoid terms t1, . . ., tm. Hence by the induction hypothesis, the term tj

has the form of Equation (4.7), for all j = 1, . . .,m. Now, if p ∈ P then m = 1. Since no

instruction in P permutes stopper variables, it follows that ni = i for each i = 1, . . ., k + 1.

83

So we may assume p = [R] = (1n,R) ∈ Σ. Hence {t1, . . ., tm} = {tr : r ∈ R}, and

t = wσ(1n)w′ ≤R
∨
r∈R

wσ(r)w′,

for some substitution σ and monoid terms w,w′.

Suppose the contrary, i.e., that ni 6= i for some i ≤ k + 1. We will show [R] entails

commutativity. Without loss of generality, we may assume t is of the form t = aS2bS1c.

Since each ti is of the form of 4.7, it follows that S2bS1 must be a subword of σ(1n). Now,

if either S1 or S2 are subwords of ww′, then this implies supp(1n) \ supp(R) 6= ∅, making

[R] integral. Since [R] is non-mingly, it follows that neither S1 not S2 are subwords of ww′.

Hence there exists variables x, y ∈ supp(1n) such that S2 is a subword of σ(x) and S1 is a

subword of σ(y), and x, y ∈
⋂
r∈R supp(r). Note x appears to the left of y in 1n. For each

r ∈ R, since tr has form 4.7, it follows that #(r, x) = #(r, y) = 1 and y appears to the

left of x in r. Consider the substitution τ that maps x 7→ x, y 7→ y, and for all variables

z 6∈ {x, y}, z 7→ 1. Then

xy = τ (1n) ≤[R]
∨
r∈R

τ (r) =
∨
r∈R

yx = yx.

Hence [R] entails commutativity.

We will revisit admissibility of simple equations for such structures in a Section 5.2.2.

4.3 And-branching counter machines in (C)RL and the {∨, ·, 1}-fragment

We now define a class of machines known as an And-branching k-Counter Machine

(k-ACM), as introduced in [17] to prove the undecidability of linear logic. A k-ACM is

essentially the same as a k-CM with the exception that there are no zero-test instructions,

but rather “branching” instructions that are typically called forking. In this way, a k-ACM is

a type of parallel-computing counter machine where instructions replace a configuration by

84

a possible set of configurations, and the machine involved computes one finite set of con-

figurations from another. For our purposes, a k-ACM is a tuple B = (Rk, Q, P) representing

a type of parallel-computing counter machine, where

• Rk := {r1, . . ., rk} is a set of k registers, each able to store a non-negative integer

(representing the number of tokens in that register),

• Q is a finite set of states with a designated final state qf ,

• and P is a finite set of instructions (to be formalized below) that indicate whether

to, given a certain state of the machine, increment a register or decrement a nonzero

register, as well as a “branching” instruction known as forking, with no instruction

applicable to the state qf .

The most important feature of ACMs is their ability to capture some effect of the zero-

tests in the presence of commutativity, as we will see in Section 4.3.2. In the case for

CMs, if Pcom contained all variable pairs, e.g.,← : Siri ≤ riSi and→ : riSi ≤ Siri, then

improper implementations of a zero-test p : SiqSi+1 ≤ Siq
′Si+1 as follows,

qSiriSi+1 ≤← qriSiSi+1 =com riSiqSi+1 ≤p riSiqSi+1 =com q′riSiSi+1 ≤→ q′SiriSi+1.

Since we will allow Pcom to contain such instructions, the stopper variables can all be

pushed to the back, and are therefore irrelevant. Therefore, a configuration C of a k-ACM

coincides with that of a k-CM, i.e., it is a tuple consisting of a single state and, for each

register, a nonnegative integer indicating the contents of that register, but with the stopper

variables removed. We represent a configuration C as a term in the free monoid generated

by Q ∪ Rk, and canonically arranged as

qrn1
1 rn2

2 · · · r
nk
k ,

85

We imagine a configuration being a box labeled by a state and containing tokens labelled

by elements from the set Rk. where q ∈ Q is the state of the configuration and ni is the

number stored in the register ri, for each i = 1, .., k, and if ni = 0, we say the register ri

is empty. Since C contains precisely one state, we canonically identify configurations with

the set Q · R∗k.

The instructions of a k-ACM replace a single configuration by a new configuration

(via increment and decrement), or by two configurations (via forking). The increment

and decrement instructions will be given by q ≤ q′ri and qri ≤ q′, respectively, and

are understood as per usual. A forking instruction will be of the form q ≤ q′ ∨ q′′, and

can be understood as “if a box is labeled by state q, duplicate the box and its contents,

resulting in two boxes relabeled by q′ and q′′, respectively.” As a consequence of the forking

instruction, the machine can be operating on multiple configurations, i.e. branches, in

parallel and is inherently nondeterministic. The status of a machine at a given moment in a

computation, called an instantaneous description (ID), is represented by the configurations

that are present. Formally, an ID u is an element

C1 ∨ · · · ∨ Cm,

of the free commutative semigroup (ID(B),∨) generated by Conf(B).

Given a k-ACM B = (Rk, Q, P), let Pcom := {xy ≤ yx : x, y ∈ Rk ∪ Q}. We note

that Pcom is finite since Rk ∪ Q is finite. Hence (XB, PB) is an algebraic machine where

XB := Rk∪Q and PB := P∪Pcom. As before, will abuse the notation by using B to represent

both structures. Let ≤B be the computation relation for B and the compatible relations ≤p

be given defined in Section 4.1.

86

Similar to Section 4.2, we define

Conf(B) := {xqy ∈ X∗B : q ∈ Q, xy ∈ R∗k},

and ID(B) := Conf(B)∨. The final term for B is the final configuration Cf := qf , and the set

Acc(B) is as defined in Section 4.1.

Let =com be the equivalence relation generated by Pcom. As in Equation (4.6), for

all C, C′ ∈ Conf(B), C =com C′ iff C =com qrn1
1 · · · r

nk
k =com C′ for some q ∈ Q and

n1, . . ., nk ∈ N. Since t ∈ Conf(B) iff t contains precisely one state variable, and each

instruction p : x ≤ y is such that x ∈ Conf(B) and y ∈ ID(B), we immediately obtain:

Lemma 4.3.1. Conf(B) is stable for any k-ACM B. In particular, B is Q-stable.

For each p ∈ P, we will abuse notation and write ≤p to mean ≤pcom.

4.3.1 Observations on admissibility. By definition, for all s, t ∈ X∗B , we obtain st =

comts and so st ∈ Acc(B) iff ts ∈ Acc(B). Therefore we obtain:

Lemma 4.3.2. Commutativity is strongly admissible in B, for any k-ACM B. Therefore

W+
B ∈ CRL.

By Corollary 4.1.10, and since all instructions in PB are of type {∨, ·, 1}, we deduce:

Lemma 4.3.3. Let B be a k-ACM. Then for any variety V ⊆ (C)RL containing W+
B , the

complexity of the word problem, particularly the {∨, ·, 1}-fragment, is at least as high as

membership in Acc(B).

Given the admissibility of commutativity for any k-ACM B = (Rk, Q, P), henceforth

we will implicitly assume AX , as defined in Section 4.1 is the free commutative semiring

generated by X = Rk ∪ Q.

87

4.3.2 Simulating CMs as ACMs and the Zero-Test Program. As demonstrated [17],

considering only those computations that result in the final ID with all branches resulting

in a final configuration qF , i.e. where all registers are empty, is vital to the construction

of our result. Such a convention allows us to implement a program that behaves like the

zero-test instruction of a standard Counter Machine, i.e. a program that tests whether a

given register is empty at a given state, and transitions to a new state only when the register

is in fact empty. Such behavior cannot be directly implemented in a k-ACM, but can be

simulated in its set of accepted IDs by augmenting its structure with the (sub)machine

ø = (Rk, Qø, Pø), where Qø = {z1, . . ., zk, qF} and set of instructions Pø are given by:

øij : zirj ≤ zi

øiF : zi ≤ qF ∨ qF
,

for each i ∈ {1, . . ., k} and j ∈ {1, . . ., k} \ {i}.

We call the above machine the zero-test program, and we denote its computation rela-

tion by≤ø. The zero-test program for a register ri is implemented by a zero-test ri instruc-

tion p, where p is of the form qin ≤ qout∨ zi. Since the desired final ID’s of BK consist only

of joins of the configuration qF , i.e. all registers are empty, the above instruction copies

the contents of the registers and creates two paths; one path with the state qout where ri is

intended to be empty, and the second with a state zi where ø is intended to empty registers

rj and rk and then output to the final state. Below is an example of implementing the

zero-test on register r1 via the instruction p : qin ≤ qout∨z1 on the configuration qinr1r2r3:

qinr1r2r3 ≤p qoutr1r2r3 ∨ z1r1r2r3

≤ø1
2 qoutr1r2r3 ∨ z1r1r3

≤ø1
3 qoutr1r2r3 ∨ z1r1

≤ø1
F qoutr1r2r3 ∨ qFr1 ∨ qFr1.

88

As we see, the above computation detected that register r1 is not empty in the con-

figuration qr1r2r3 since the final ID contains the configuration qFr1, and there are no qF -

instructions. In fact, z1r1r2r3 6∈ Acc(ø) since there is no instruction applicable to the state

z1 which alters the contents of register r1. By a similar analysis, we obtain the following,

Proposition 4.3.4 ([17]). zirn1
1 · · · r

nk
k ∈ Acc(ø) if and only if ni = 0.

Consequently, we obtain

Lemma 4.3.5. Let Σ be a set of simple equations. If Σ is not mingly then Σ is strongly-

admissible for any k-ACM ø-program.

Proof. This follows from Proposition 4.3.4, Lemma 4.1.14, and Lemma 4.3.1.

For a given k-ACM B = (Rk, Q, P), we will call P = (Rk, QP , PP) a program if QP ≤ Q

and PP ⊆ P, and by ≤P we denote its corresponding computation relation. We define

the relation vP on Conf(B) via C vP D iff C ≤P D or C ≤P D ∨ u with u ∈ ID(ø) and

u ∈ Acc(ø).6 If P is a program containing no Qø-instructions, then C vP D iff there is

a computation from C to D ∨ u with instructions from P ∪ Pcom such that every zero-test

was properly applied. Note thatvP is transitive on configurations. All programs P defined

henceforth will satisfy this property and, as a further consequence, if C vP∪ø D, for some

D 6∈ Conf(ø), then C vP D.

Proposition 4.3.6. Let p be the instruction qin ≤ qout ∨ zi with distinct qin, qout 6∈ Qø. For

x, x′ ∈ R∗3, qinx v{p} qoutx
′ if and only if x = x′ = rn1

1 rn2
2 rn3

3 and ni = 0.

Proof. Let x = rn1
1 rn2

2 rn3
3 . The only instruction applicable to qinx is p, so

qin ≤ qout ∨ zi =⇒ qinx ≤p qoutx ∨ zix.

6If p is an instruction, by C v{p} D we mean C ≤p D ∨ u.

89

Since the only instructions applicable are those from {p} and qin 6= qout, the computation

cannot proceed from this configuration. Hence,

qinx v{p} qoutx
′ ⇐⇒ x = x′ and zix ≤ø qF ⇐⇒ x = x′ and ni = 0,

by Proposition 4.3.4.

Proposition 4.3.7 ([17]). For every k-CM M, there exists a k-ACM B such that for any

configuration C ∈ Conf(M), C is accepted in B iff θ(C) ∈ Acc(B), for some map θ.

Proof. Let M = (Rk, Q, P) be a k-CM with final state qf . We will suppose Qø \ {qF} and Q

are disjoint and qF = qf . Consider the k-ACM B = (Rk, Q
′, P′), where Q := Q ∪ Qø with

final state qf , and P′ := P ∪ Pø, with P := θ[P] where

θ(qSi ≤ q′Siri) : q ≤ q′ri

θ(qSiri ≤ q′Si) : qri ≤ q′

θ(qSiSi+1 ≤ q′SiSi+1) : q ≤ q′ ∨ zi,

and for a configuration C = 〈q;n1, . . ., nk〉 of M, θ(C) := qrn1
1 · · · r

nk
k ∈ Conf(B′). We

claim for every configuration C of M, C is accepted by M if and only if θ(C) ∈ Acc(B′.

Clearly, if p ∈ P is an increment or decrement instruction, then C ≤p C′ if and only if

θ(C) ≤θ(p) θ(C′). Furthermore, by Proposition 4.3.4, if p is a zero-test, then C ≤p C′ if and

only if θ(C) v{θ(p)} θ(C′). Hence, for any configurations C, C′ of M,

C = C0 ≤p1 · · · ≤pn Cn = C′ ⇐⇒ θ(C) = θ(C0) vθ(p1) · · · vθ(pn) θ(Cn) = θ(C′),

for some configurations C0, . . ., Cn in M and instructions p1, . . ., pn ∈ P. Hence C is accepted

in M if and only if θ(C) ∈ Acc(B).

90

Example 4.3.1. Consider the 1-CM Meven = (R1, Qeven, Peven). We simulate acceptance of

Meven by a 1-ACM Beven = M∨even := (R1, Q
∨
even, P

∨
even) in the following way. Let Q∨even =

Qeven ∪ {z1} and Peven contains Pø and the instructions

p0 : q0r1 ≤ q1

p1 : q1r1 ≤ q0

pf : q0 ≤ qf ∨ z1

By Proposition 4.3.7 and the machine M̃ from Proposition 4.2.1, we obtain

Theorem 4.3.8. ([16, 20, 17]) There exists a 2-ACM B̃ = (R2, Q, P) such that membership

of Acc(B̃) is undecidable.

Consequently, by Lemma 4.3.3 and Lemma 4.3.2

Theorem 4.3.9. The word problem is undecidable for CRL. More generally, for any variety

V ⊆ RL containing W+
B̃

, the word problem is undecidable, in particular for its {∨, ·, 1}-

fragment.

Corollary 4.3.10. Let V be an expansive subvariety of CRL containing W+
B , for some k-

ACM B. Then the computational complexity of the equational theory of V is as high as the

one of membership in Acc(B).

4.4 Non-primitive recursive lower bounds

In [23], Urquhart proves that there does not exist a primitive recursive decision proce-

dure for FLec. Although FLec has the FMP and is hence decidable, the proof establishing

this fact is inherently nonconstructive. Urquhart actually proves that any decision procedure

for FLec is primitive recursive in the Ackermann function, which is a recursive function

that is properly non-primitive recursive. Rendered algebraically, this proves that, while the

equational theory of CRL + (x ≤ x2) is decidable, there is no primitive recursive decision

procedure. That is, although it is decidable, there is no tractable procedure.

91

The purpose of this section is to note that the construction at the basis of Urquhart’s

proof exactly falls within the framework we have established above, and can therefore be

naturally extended to capture complexity lower bounds for a more general class of sim-

ple equations. Although we provide a detailed outline of the main results, this section is

intended to be supplemented by [23].

Before we provide the outline, some preliminary notions are needed. A more complete

treatment can be found in the standard monograph [13].

A space-bounded version of the halting problem for off-line Turing machines is used

as the intractable problem. An off-line Turing machine is defined to be a multi-tape Turing

machine with a read-only input tape, a write-only output tape on which the head never

moves left and a read-write work tape. Let Σ be a finite alphabet, and Σ∗ the set of all finite

strings over Σ, where |α| denotes the length of string |α|. A machine M accepts A ⊆ Σ∗ if

for all inputs α ∈ Σ∗, M gives the output “1” iff α ∈ A.

Let Σ1, Σ2 be finite alphabets. A function f : Σ∗1 → Σ∗2 reduces a set A ⊆ Σ∗1 to a set

B ⊆ Σ∗2 provided that α ∈ A iff f(α) ∈ B for all α ∈ Σ∗. If f reduces A to B, and in

addition f is computable by a Turing machine that visits at most log2(n) work tape squares

during its computation on any word α ∈ Σ∗1 of length n > 1, then A is said to be log-space

reducible to B; if in addition the length of f(α) is O(|α|), then A is log-lin reducible to B.

A set A ⊆ Σ∗ is said to be decidable in space g : N → N if there is a Turing machine

that accepts A and visits at most g(n) work tape squares during its computation on any

word β ∈ Σ∗ of length n. The set A is primitive recursive if it is decidable in space

g where g is a primitive recursive function. We note that the distinction between time

and space is insignificant for the boundary between primitive recursive and non-primitive

recursive algorithms. The lower bound for the space requirements of an algorithm imply

a corresponding lower bound for time, since a machine must take at least one time step to

visit a new square. The primitive recursive sets are closed under log-space reducibility in

92

the sense that if B is a primitive recursive set, and A is log-space reducible to B, then A is

also primitive recursive.

4.4.1 An outline of the Urquhart construction. Essentially, Urquhart’s construction

establishes a complexity lower bound for membership of the quasi-equational theory for

CRL + (x ≤ x2), and then uses a deduction theorem similar to Corollary 2.5.2 to establish

the same for the equational theory.

The reduction of the intractable problem into CRL + (x ≤ x2) is given as follows:

1. Choose an enumeration of off-line Turing machines in which Mw is the machine

encoded by the binary string w; where we assume that each machine occurs infinitely

often in the enumeration. Define the set AHP (Ackermann-bounded version of the

halting problem) to be

{w : Mw accepts w in space bounded by A(|w|)},

where A is a function, borrowed from [19], that majorizes all primitive recursive

function. A is defined via A(n) := An(2), where

A0(x) = 2x+ 1,

An+1(x) = A
(x+1)
n (0).

(4.8)

2. Let M be a k-CM with an initial state q1. Define the initial configuration C1 to be the

one labeled by state q1 with all registers empty, and we say the machine M terminates

if C1 ∈ Acc(M). We say a computation of a machine is bounded by n if at every step

in the computation, the contents of all the registers of the machine are bounded by

n. The machine M is n-bounded if, when run from initial configuration, the resulting

computation is bounded by n. Given that AHP is not primitive recursive (Thm. 4.2

93

[23]), a reduction from AHP to the set

ACP := {M : M = (R3, Q, P) is a terminating A(|Q|)-bounded 3-CM},

establishes that ACP is not primitive recursive (Thm. 5.1 [23]).

3. Next, Urquhart defines a class of counter machines known as expansive counter

machines (ECM). An ECM is a structure M = (Rk, Q, P ∪ PE), where (Rk, Q, P) is

a k-CM and PE is a set of expansive instructions of the form qSiri ≤ qSir
2
i , for each

q ∈ Q and register ri. Similarly, he defines the class of expansive and-branching

counter machines (EACM), where an ECM is a structure B = (Rk, Q, P ∪ PE), where

(Rk, Q, P) is a k-ACM and PE is a set of expansive instructions of the form qri ≤ qr2
i ,

for each q ∈ Q and register ri. Termination for these structures is defined analogously

as above. In the same manner as Proposition 4.3.7, Urquhart shows that the set ECP

is log-space reducible to EACP (Thm. 6.1 [23]), where

ECP := {M : M is a terminating ECM},

EACP := {B : B is a terminating EACM}.

4. The next step shows that ACP is log-lin reducible to ECP, which demonstrates that

EACP is not primitive recursive. Let M = (R3, Q, P) be a 3-CM and n > 1. Urquhart

first constructs a k-CM MA(n) = (Rk, Q
A(n), PA(n)) (where the value k happens to be

2n+ 10), such that

M is A(n)-bounded ⇐⇒ C
A(n)
1 ∈ Acc(MA(n)),

94

where C
A(n)
1 is the initial configuration of MA(n). Consider the corresponding ECM

for MA(n) given by M
A(n)
E = (Rk, Q

A(n), PA(n) ∪ PE). Urquhart then proves (Thm. 9.2)

C
A(n)
1 ∈ Acc(MA(n)) ⇐⇒ C

A(n)
1 ∈ Acc(M

A(n)
E),

where we note that CA(n)
1 is also the initial configuration of M

A(n)
E . That is, MA(n)

E

terminates iff CA(n)
1 ∈ Acc(M

A(n)
E) is witnessed by a computation with no expansive

instructions iff MA(n) terminates. Therefore we may conclude M = (R3, Q, P) is A(n)-

bounded iff ME = (R3, Q, P ∪ PE) is A(n)-bounded.

5. Lastly, using a deduction theorem (Thm. 7.1), essentially an FL-rendering of Corol-

lary 2.5.2, it is established that for any 3-EACM M, M terminates iff FLec ` φ(M),

where φ(M) is the formula encoding the instructions of M and the question of whether

M terminates. Hence, AHP is log-space reducible to provability in FLec, and therefore

FLec has no primitive recursive decision procedure.

4.4.2 Observations of the construction. Our first observation begins with (3) from the

above outline. The expansive instructions are meant to encode the effect of contraction

[c] : x ≤ x2 into an E(A)CM so that step (5) can be carried out. Clearly, for any expansive

instruction of an E(A)CM p : qSiri ≤ qSir
2
i (qri ≤ qr2

i),

t ≤p t′ =⇒ t ≤[c] t′,

since p is an instance of contraction. Since [c] is not mingly, [c] is H-admissible in M by

Lemma 4.1.14, for any H ∈ {Q, {S1}, . . . , {Sk+1}}, where M = (Rk, Q, P) is a k-(A)CM.

Hence instances of [c] can only be applied to terms in R∗k. Since the instance qSirni ≤ qSir
2n
i

95

can equally be obtained by the following computation:

qSir
n
i ≤p qSirn+1

i ≤p · · · ≤p qSir2n−1
i ≤p qSir2n

i , (4.9)

we obtain

C ∈ Acc(cM) ⇐⇒ C ∈ Acc(ME), (4.10)

where ME = (Rk, Q, P ∪ PE) is the corresponding E(A)CM for M. That is, [c] is admissible

in ME . Therefore, the word problem for CRL + [c] is at least as complex as membership in

Acc(ME) by Corollary 4.1.10.

For a k-(A)CM M, we say M is a terminating c(A)CM if C1 ∈ Acc(cM) where C1 is the

initial configuration of M. Similarly as in (3), we define

cCP = {M : M is a terminating cCM},

cACP = {M : M is a terminating cACM}.
(4.11)

The same argument (Thm. 6.1 [23]) establishes that cCP is log-space reducible to cACP.

Using the machine notation from (4), by Equation (4.10) it follows that M is A(n)-bounded

if and only if

C
A(n)
1 ∈ Acc(MA(n)) ⇐⇒ C

A(n)
1 ∈ Acc(M

A(n)
E) ⇐⇒ C

A(n)
1 ∈ Acc(cMA(n)).

Therefore, ACM is log-space reducible to cCP.

Define set of quasi-equations cQE as follows: acccM(C1) ∈ cQE if and only if cM =

(R3, Q, P∪≤c) is a terminatingA(|Q|)-bounded cACM with initial configuration C1. Observe

that cACP = {cM : acccM(C1) ∈ cQE}.

By the reductions in the outline and the observations above, it is clear that AHP is log-

space reducible to cQE. By Lemma 4.1.4, it follows that there is no primitive-recursive

96

decision procedure for the quasi-equational theory of CRL + [c]. Hence, as (5) in the

outline, by Corollary 2.5.2 it follows that there is no primitive recursive decision procedure

for the equational theory of CRL + [c].

4.4.3 Weakly-expansive and expansive equations. We will now consider a class of

single-variable equations for which the very same argument for the quasi-equational theory

above can be carried out. We say a single-variable equation xn0 ≤ xn1∨· · ·∨xnm is weakly

expansive if ni > n0 for some 1 ≤ i ≤ m, where n1, . . ., nm ≥ 0, n0 > 0, and m ≥ 1.

Note that all expansive equations (as defined in Section 2.4) are weakly expansive. For

illustrative purposes, we will consider the following weakly expansive equation

[d] : x ≤ x2 ∨ 1.

We claim that Urquhart’s construction entails there is no primitive-recursive decision pro-

cedure for the quasi-equational theory of CRL+ [d]. Define the sets dCP, dACP, and dQE

as above by replacing [c] with [d]. By the same argument (namely Thm. 6.1 [23]), dCP is

log-space reducible to dQE.

Therefore, since W+
dB ∈ CRL+ [d] for any ACM B, by Lemma 4.1.4 it follows that any

decision procedure for the quasi-equational theory of CRL + [d] is at least as complex as

membership in dCP. To obtain the full result, we need only show that ACP is log-space

reducible to dCP. We proceed with the machines in (4) from the outline. First observe

C
A(n)
1 ∈ Acc(MA(n)) =⇒ C

A(n)
1 ∈ Acc(dMA(n)),

since all the proper instructions present in MA(n) are also present in dMA(n) by definition. For

the reverse direction, suppose CA(n)
1 ∈ Acc(dMA(n)). Let N ∈ N be the smallest number for

which

C
A(n)
1 ≤p1 C2 ≤p2 · · · CN ≤d D ∨ D′ ∈ Acc(dMA(n)),

97

where p1, . . ., pN−1 ∈ PA(n) are all proper instructions. If N = 0 then no ≤d instruction

are present in the computation, and hence C
A(n)
1 ∈ Acc(MA(n)). Now suppose N > 1. We

proceed by contradiction. By definition of CN ≤d D ∨ D′, there exists monoid words x, u, v

such that

CN = uxv ≤d ux2v ∨ uv = D ∨ D′.

We note that x cannot contain any state-variable nor stopper variable by Lemma 4.1.14.

Since D ∨ D′ ∈ Acc(MA(n)), it follows that ux2v = D ∈ Acc(MA(n)).

Now, by Equation (4.9), we obtain uxv ≤
M
A(n)
E

ux2v. Hence

C
A(n)
1 ≤p1 · · · CN ≤M

A(n)
E

D.

Continuing in this way for each instance in the computation, i.e., selecting the “x2” branch

of each instance of [d], we recover the computation in M
A(n)
E witnessing C

A(n)
1 ∈ Acc(M

A(n)
E).

This contradicts step (4) in Urquhart’s construction since C
A(n)
1 ∈ Acc(M

A(n)
E) only if no

expansive instructions are present in the computation. Therefore N 6> 1 and we are done.

Proposition 4.4.1. The quasi-equational theory of CRL + [x ≤ x2 ∨ 1] has no primitive

recursive decision procedure.

We note that the only requirements that make the above argument succeed are that:

(i) the equation is single-variable and not mingly to ensure Acc(M) ⊆ Conf(M)∨, and (ii)

the equation is weakly expansive to ensure at least one branch of an instance of [d] can

be obtained by a sequence of expansive instructions. Let [R] = (1n0 ,R) be the simple

equation obtained by linearizing a weakly expansive equation xn0 ≤ xn1 ∨ · · · ∨ xnm , and

without loss of generality suppose n1 > n0. By linearization, for each 1 ≤ i ≤ n0

x1 · · ·xi−1 · xci · xi+1 · · ·xn0 ∈ R, (4.12)

98

where c := n1 − n0 > 0. It is immediate that (i) and (ii) hold for [R].

Corollary 4.4.2. Let [R] be the simple equation of some single-variable weakly expansive

equation. Then there is no primitive recursive decision procedure for the quasi-equational

theory of CRL + [R]. If [R] was obtained from an expansive equation, then there is no

primitive recursive decision procedure for the equational theory of CRL + [R].

In particular, let [kmn] : xn ≤ xn+m, for m,n ≥ 1 be an expansive knotted rule.

Urquhart’s result shows that, even though it is decidable by Proposition 3.1.1, the equa-

tional theory CRL + [kmn] does not have a primitive recursive decision procedure.

Furthermore, we note that for any weakly expansive equation [d] : xn ≤ xm+n ∨ 1,

where m,n ≥ 1, there is no primitive recursive decision procedure for the quasi-equational

theory of CRL + [d].

99

Chapter 5: Undecidability and the class U of simple equations

This chapter is devoted to establishing new undecidability results, particularly for

extensions of CRL by simple equations, utilizing the techniques developed in the previ-

ous chapter. Both the first and second sections proceed along similar lines, the former

focusing on the {∨, ·, 1}-fragment for extensions of (C)RL, and the latter focusing on

{≤, ·, 1}-fragment for extensions of RL. Specifically we prove undecidability results for

the extension by equations from a class U of simple equations. For CRL, Theorem 5.3.1

establishes that the word problem for extensions from U is undecidable. Consequently,

using the deduction theorem from Section 2.5, our capstone Theorem 5.1.13 proves that

the equational theory for CRL + [D] is undecidable for any expansive [D] ∈ U . Equiva-

lently, this shows that provability in the corresponding substructural logic FLe + (D) is

undecidable. For example, the equation [D] : x ≤ x2 ∨ x3 is an expansive member of U , so

the equational theory of CRL+ [D] is undecidable, and therefore provability is undecidable

in FLe + (D) where (D) is the structural rule

∆1,Γ,Γ,∆2 ⇒ Π ∆1,Γ,Γ,Γ,∆2 ⇒ Π
∆1,Γ,∆2 ⇒ Π

(D)
.

In the last section, we provide a characterization for the class of equations U which is

essential for both Theorem 5.3.1 and Theorem 5.2.6. The definition of U is equivalently

stated via, [D] ∈ U if and only if CRL + [D] 6|= [V], for some spinal equation [V] of the

form:

[V] : x
f(1)
1 · · · xf(k)

k ≤ 1 ∨ x
v1(1)
1 ∨ x

v2(1)
1 x

v2(2)
2 ∨ · · · ∨ x

vk(1)
1 · · ·xvk(k)

k ,

100

for some k ≥ 1 and vectors f, v1, . . ., vk ∈ Nk such that f 6= vk and vi(i) > 0 for each

i = 1, . . . , k. The goal of this section is to establish that such non-spinal equations sat-

isfy a condition that guarantees admissibility for the machines defined in Section 5.1 and

5.2. However, the techniques needed to prove this claim are quite distinct and unrelated

to those needed in rest of the chapter, which is why they are presented last. We show that

the property of satisfying a spinal equation is related to whether or not there exists positive

solutions to some corresponding systems of linear equations in Rn. Each joinand of an

equation will be associated to some vector, and the right-hand side of simple equations as

a set of vectors, which we may view as a matrix. In this context, monoid substitutions will

also correspond to an associated matrix, and applications of a substitution as the transfor-

mation, or product, by this matrix. In this way, a simple equation is a member of U if and

only if its associated matrix does not appear in the decomposition of some spinal equation

in terms of upper-triangular block matrices. Furthermore, we show that this is equivalent

to satisfying the sufficient condition of admissibility defined in Section 5.1.3.

5.1 Admissibility for ACMs

Our goal will be to find proper subvarieties of (C)RL for which Corollary 4.1.6 will be

applicable, as well as strengthening this result to the equational theory for some expansive

subvarieties of CRL using the deduction theorem Corollary 2.5.2. Motivated by Chapter 4,

we will restrict our attention to varieties axiomatized by equations in the signature {∨, ·, 1},

i.e., ISR-axioms. We will further restrict our attention to only simple equations, since

degenerate equations correspond to 1-element models in RL and non-degenerate non-proper

equations are RL-equivalent to simple equations (see Proposition 2.1.2).

5.1.1 Motivation for axiomatic extensions of CRL. Consider the 1-ACM Beven from

Example 4.2.1 and note that its computations faithfully represent the inequality relation

in CRL. If we consider the inequality relation in CRL + [D], where [D] is the equation

(∀x) x ≤ x2 ∨ x4, we observe that for a machine to faithfully represent the associated

101

inequality relation it must further admit the “ambient instruction” given by

t ≤D t2 ∨ t4,

for all t ∈ (Qeven ∪ R1)∗ in addition to being closed under the inference rules [·] and

[∨]. Let ≤DBeven be the smallest compatible preorder generated by Peven∪ ≤D, and define

Acc(DBeven) be the set of accepted ID’s under the relation ≤D(B). Clearly, Acc(Beven) ⊆

Acc(DBeven), and since there are no instructions (nor instances of ≤D) that remove state

variables we obtain Acc(DBeven) ⊆ ID(Beven). However, q0r
3
1 6∈ Acc(Beven), but q0r

3
1 ∈

Acc(DBeven) since

q0r
3
1 ≤D q0r

6
1 ∨ q0r

12
1 ∈ Acc(Beven).

It is clear that the expansion of the machine by the ambient instruction (needed for repre-

senting the inequality relation in CRL + [D]) does not have the same computation relation,

or put differently, the machine Beven is not suitable for representing the inequality relation

in CRL+ [D] because these ambient instructions are not already admissible in it. Likewise,

there is no guarantee that there is a machine that has an undecidable acceptance problem

(for example the machine B̃) and in which these ambient instructions are available/admis-

sible. For that reason we cannot use the same argumentation to show that CRL + [D] has

undecidable word problem.

Exactly the same issue occurs if the simple equation is contraction x ≤ x2. Actually,

for the case of contraction not only does this particular encoding fail to be faithful, but

there is no faithful encoding of an undecidable machine: the word problem for CRL+ [c] is

actually decidable. We will show that even though for the equation [D] above our current

encoding is problematic (as is with contraction), surprisingly, unlike with contraction, there

is a different encoding that works for [D]; this will allow us to prove that the word problem

for CRL + [D] is undecidable. We present the idea of this new encoding by showing that it

102

faithfully encodes the machine Beven. We will actually see that what makes it work is that

the new encoding is such that even if the ambient instructions were available, they would

not contribute to any increase in the accepted configurations; this is a rephrasing of what

we referred to as: the given equation is admissible in the particular machine.

The idea is to construct a new machine BK , for an appropriate integer K, as a mod-

ification of Beven that manages to replace the decrement instructions p0, p1 by programs

P0,P1, respectively, that divide the contents of register r1 by a fixed constant K; for exam-

ple q0r
K`
1 ≤P0 q1r

`
1, and more specifically, q0r

Kn+1

1 ≤P0 q1r
Kn

1 . In this case, we will say a

term is accepted if it computes a join of configurations of the form qfr1, so q0r
n
1 ∈ Acc(BK)

iff n = K2m for some m ≥ 0. That is, we put a necessary condition on configurations to

be accepted.1 For our equation [D], if we set K ≥ 3, it is easy to verify that if

qrn1r
m
1 ≤D qrn1r

2m
1 ∨ qrn1r4m

1 = qrn+2m
1 ∨ qrn+4m

1 ,

the only way n+ 2m and n+ 4m are both powers of K is if m = 0, and hence an instance

of [D] in a computation, at least with respect to being accepted, is superfluous.2 Thus we

obtain

qrn1r
2m
1 ∨ qrn1r4m

1 ∈ Acc(BK) =⇒ qrn1r
m
1 ∈ Acc(BK),

and thus Acc(BK) = Acc(DBK). So, the equation [D] is admissible in the machine BK .

In the next sections we will make rigorous the notions of admissibility, the machines

BK , and a class of simple equations U that are admissible for such ACMs. This will prove,

in particular, that CRL + [D] has an undecidable word problem for any [D] ∈ U .

1This definition of acceptance for the machine B′ is for heuristic convenience. In Section 5.1.2, to properly
define programs to multiply/divide by K, we will need to add a fresh variable qF , acting as a new final state,
and a set of instructions that put qfr1 ≤BK qF .

2If n + 2m = Ka and n + 4m = Ka+b, for some a ≥ 0 and b ≥ 1, then Ka ≥ 2m = Ka+b −Ka ≥
Ka(K − 1), and hence K ≤ 2.

103

5.1.2 The BK Machine. Given any 2-ACM B = (R2, Q, P) and simple equation [D], our

ultimate goal is to construct a new machine B′ that simulates the machine B such that [D] is

strongly admissible in B′, i.e. Acc(DB′) = Acc(B′). This can be achieved for all [D] ∈ U

by constructing a 3-ACM BK = (R3, QK , PK), for some K > 1 provided by Lemma 5.3.13,

that will simulate the acceptance of the 2-ACM B in the following way:

C ∈ Acc(B) if and only if CK ∈ Acc(BK),

where C ∈ Conf(B) and (qrn1
1 rn2

2)K := qrK
n1

1 rK
n2

2 . We will have Q ⊂ QK , a new final

state qF ∈ QK \ Q, and for the instructions PK , replacing each increment and decrement

instruction of B by the programs multiply by K and divide by K, respectively, with the

corresponding pair of states, while keeping all forking instructions of B the same.

We recall the machine ø = (R3, Q0, Pø) defined in Section 4.3.2. The zero-test instruc-

tions q ≤ q′ ∨ zi will be used to define the multiply and division programs.3 We will

construct these programs from simpler programs named transfer, add-K, and subtract-K.

We will assume that all state names defined by the following machines are disjoint from

each other, disjoint from Qø, and disjoint from the set of states Q from a fixed 2-ACM B.

A transfer program Ti(qout) = (R3, QTi , PTi(qout)) is meant to transfer all contents in

register r3 to register ri and output state qout. We define the set QTi = {t0, t1} and the set

of instructions PTi(qout) = {T−, T+, Tout}, where:

T− : t0r3 ≤ t1

T+ : t1 ≤ t0ri

Tout : t0 ≤ qout ∨ z3

.

3As we will see later, this same construction can be implemented for CMs using the instructions q 0ri q
′.

104

Below is an example of T1(qout) running on the configuration t0r2
3:

t0r
2
3 ≤T− t1r3 ≤T+ t0r1r3 ≤T− t1r1 ≤T+ t0r

2
1 v{Tout} qoutr

2
1.

We define ≤Ti to be the computation relation of the transfer program Ti(qout).

Proposition 5.1.1. Let Ti(qout) be a transfer program with {i, j} = {1, 2}. If δ ∈ {0, 1},

then tδrn1
1 rn2

2 rn3
3 vTi qoutr

m1
1 rm2

2 rm3
3 if and only ifm3 = 0,mi = ni+n3+δ, andmj = nj .

Proof. Without loss of generality, suppose i = 1.We proceed by induction on n3. Since the

only instruction applicable to a configuration labeled by state t1 is T+, we will first examine

only the case that δ = 0. If n3 = 0, then the only instruction applicable to t0rn1
1 rn2

2 is Tout,

thus

t0r
n1
1 rn2

2 ≤Tout qoutr
n1
1 rn2

2 ∨ z3r
n1
1 rn2

2 ,

and z3r
n1
1 rn2

2 ∈ Acc(ø) since n3 = 0. Hence

t0r
n1
1 rn2

2 rn3
3 vT1 qoutr

m1
1 rm2

2 rm3
3

if and only if m3 = 0, mi = ni + n3, and mj = nj .

Now suppose the claim holds for some n3 ≥ 0. The only instructions applicable to

t0r
n1
1 rn2

2 rn3+1
3 are T− and Tout. On the one hand,

t0r
n1
1 rn2

2 rn3+1
3 ≤Tout qoutr

n1
1 rn2

2 ∨ z3r
n1
1 rn2

2 rn3+1
3 ,

but by Proposition 4.3.6, z3r
n1
1 rn2

2 rn3+1
3 6∈ Acc(ø). So the only possible instruction appli-

cable is T−, hence

t0r
n1
1 rn2

2 rn3+1
3 ≤T− t1rn1

1 rn2
2 rn3

3 .

105

Now,

t1r
n1
1 rn2

2 rn3
3 ≤T+ t0r

n1+1
1 rn2

2 rn3
3 vT1 qoutr

m1
1 rm2

2 rm3
3

if and only if m1 = n1 +n3 +1, m2 = n2, and m3 = 0, by the induction hypothesis. Hence

t0r
n1
1 rn2

2 rn3+1
3 vT1 qoutr

m1
1 rm2

2 rm3
3

if and only if m1 = n1 + n3 + 1 = n1 + (n3 + 1), m2 = n2, and m3 = 0, completing the

induction. Hence, for δ = 1, since the only applicable instruction to t1rn1
1 rn2

2 rn3
3 is T+,

t1r
n1
1 rn2

2 rn3
3 ≤T+ t0r

n1+1
1 rn2

2 rn3
3 vT1 qoutr

m1
1 rm2

2 rm3
3

where the latter vT1 is achieved iff m1 = (n1 + 1) + n3 = n1 + n3 + 1, m2 = n2, and

m3 = 0 by the above argument.

The add-K program is denoted by +K = (R3, Q+K , P+K), and is intended to add K

tokens to register r3 and output with state aK . We define the set Q+K = {a0, . . ., aK}, and

the set of instructions P+K = {+1, . . .,+K}, where:

+1 : a0 ≤ a1r3

+2 : a1 ≤ a2r3

...
...

+K : aK−1 ≤ aKr3

.

We define ≤+ to be the computation relation on the add-K program. Note that the above

program is deterministic on a single configuration, and it is easily verified that a0 ≤+

aKr
K
i . In fact,

106

Proposition 5.1.2. Let 0 ≤ δ ≤ K and u be an ID. Then aδrn1
1 rn2

2 rn3
3 ≤+ u if and only

if u = qrm1
1 rm2

2 rm3
3 where q = aδ′ for δ ≤ δ′ ≤ K, m3 = n3 + (δ′ − δ), m1 = n1 and

m2 = n3.

We now define the multiply by K programs, denoted by ×i(qin, qout) = (R3, Q×i , P×i),

where i ∈ {1, 2}. This program is meant to multiply the contents of ri by K, with input

state qin and output state qout. We define the set Q× = Q+K ∪ QTi and the set P×i =

PTi(qout) ∪ P+K ∪ {×in,×loop,×out}, where:

×in : qin ≤ aK ∨ z3

×loop : aKri ≤ a0

×out : aK ≤ t0 ∨ zi

,

where the initial instruction ×in is meant to verify that register r3 is empty and initiate the

multiplication process. That is, a token in register ri is removed and K tokens are added

to r3 by the instruction ×loop and the program +K repeatedly until all tokens are removed

from ri. Once ri is emptied, ×3 transfers the tokens in r3 to ri.

Below is an example of ×1(qin, qout) running on the configuration qinr
2
1r2:

qinr
2
1r2 v{×in} aKr

2
1r2

≤×loop a0r1r2

v+ aKr1r2r
K
3

≤×loop a0r2r
K
3

v+ aKr2r
2K
3

v{×out} t0r2r
2K
3

vT1 qoutr
2K
1 r2.

107

We define ≤×i(qin,qout) to be the computation relation on the multiply by K program,

and will write ≤×i when the program is understood in context. We are interested in the

consequences of a single run of a×i(qin, qout) program starting from a given configuration.

This requires special care in the case that qin = qout, but is characterized by how many

times the instruction ×in is implemented in a computation.

Proposition 5.1.3. Let 0 ≤ δ ≤ K. Then aδrn1
1 rn2

2 rn3
3 v×i qoutr

m1
1 rm2

2 rm3
3 , witnessed

by a computation with no instance of instruction ×in, if and only if mj = nj , m3 = 0,

and mi = Kni + n3 + (K − δ). Hence qinr
n1
1 rn2

2 rn3
3 v×i qoutr

m1
1 rm2

2 rm3
3 , witnessed by a

computation with precisely one instance of ×in, if and only if mj = nj , m3 = n3 = 0, and

mi = Kni.

Proof. Note that the only instruction that outputs the state qout is Tout ∈ PTi , which is only

applicable to an ID containing a configuration labeled by state t0 in the subprogram Ti.

Now, the only instruction in P×i that outputs a state in QTi is×out which is only applicable to

an ID containing a configuration labeled by state aK . Since the only instructions applicable

to a state aδ′ , for 0 ≤ δ′ < K, are those from P+K , we obtain aδx v×i qoutx
′ iff there is a

computation

aδx ≤+K aKx1 v×i t0x2 vTi qoutx
′,

for some x, x′, x1, x2 ∈ R∗3. We will prove the above claim only for i = 1, since the proof

for the other case is identical. We proceed by induction on n1. For n1 = 0, observe that

aδr
n2
2 rn3

3 ≤+K aKx ⇐⇒ x = rn2
2 r

n3+(K−δ)
3 by Prop. 5.1.2,

aKr
n2
2 r

n3+(K−δ)
3 v×1 t0x ⇐⇒ x = rn2

2 r
n3+(K−δ)
3 by Prop. 4.3.6,

t0r
n2
2 r

n3+(K−δ)
3 vT1 qoutx ⇐⇒ x = r

n3+(K−δ)
1 rn2

2 by Prop. 5.1.1.

Note that there are no instructions applicable to a configuration with state qout except ×in

in the case that qin = qout. Hence, by the observation above, aδrn2
2 rn3

3 v× qoutr
m1
1 rm2

2 rm3
3

108

if and only if m2 = n2, m3 = 0, and m1 = n3 + (K − δ). Now suppose the claim holds

for some n1 ≥ 0. Observe that

aδr
n1+1
1 rn2

2 rn3
3 ≤+K aKx ⇐⇒ x = rn1+1

1 rn2
2 r

n3+(K−δ)
3 by Prop. 5.1.2.

Now, the only instructions applicable to aKrn1+1
1 rn2

2 r
n3+(K−δ)
3 are ×loop and ×out. We see

that the latter must be excluded since

aKr
n1+1
1 rn2

2 r
n3+(K−δ)
3 ≤×out (t0 ∨ z1)rn1+1

1 rn2
2 r

n3+(K−δ)
3 ,

but z1r
n1+1
1 rn2

2 r
n3+(K−δ)
3 6∈ Acc(ø) by Proposition 4.3.4. Hence the only instruction that

allows the computation to proceed is ×loop, and thus we obtain

aKr
n1+1
1 rn2

2 r
n3+(K−δ)
3 v{×loop,×out} qx

iff x = rn1
1 rn2

2 r
n3+(K−δ)
3 with q = a0, and

a0r
n1
1 rn2

2 r
n3+(K−δ)
3 v×1 qoutx

iff x = r
Kn1+n3+(K−δ)
1 rn2

2 by the induction hypothesis. Thus our claim is satisfied.

Now, the only instruction applicable to qinr
n1
1 rn2

2 rn3
3 is the zero-test ×in. So qinx v×

qoutx
′ only if n3 = 0. Thus we obtain,

qinr
n1
1 rn2

2 rn3
3 v{×in} aKx ⇐⇒ x = rn1

1 rn2
2 rn3

3 and n3 = 0,

where aKrn1
1 rn2

2 rn3
3 v× qoutr

m1
1 rm2

2 rm3
3 if and only if m2 = n2, m3 = n3 = 0, and

mi = Kni by the above.

109

Next we define the subtract-K program, denoted by −iK = (R3, Q−iK , P−iK), for

i ∈ {1, 2}, which is meant to subtract K tokens to register ri and output state sK . We

define Q−i = {s0, . . ., sK} and the instructions P−iK = {−1, . . .,−K}, where:

−1 : s0ri ≤ s1

−2 : s1ri ≤ s2

...
...

−K : sK−1ri ≤ sK

.

We denote the computation relation on the subtract-K program by≤−. It is easy to see that

the subtract-K program is deterministic on a single configuration. Furthermore, it easily

follows that:

Proposition 5.1.4. Let {i, j} = {1, 2}. If 0 ≤ δ ≤ K, then sδrn1
1 rn2

2 rn3
3 v− sKrm1

1 rm2
2 rm3

3

if and only if ni ≥ K − δ, mi = ni − (K − δ), and mj = nj .

We are now ready to define the divide by K program for i ∈ {1, 2}, denoted by

÷i(qin, qout) = (R3, Q÷i , P÷i(qin, qout)). We define the set Q÷i = Q−i ∪ QTi and the instruc-

tions P÷i(qin, qout) = PTi(qout) ∪ P−iK ∪ {÷in,÷loop,÷out}, where:

÷in : qin ≤ s0 ∨ z3

÷loop : sK ≤ s0r3

÷out : s0 ≤ t0 ∨ zi

.

We denote the computation relation on the divide by K program by ≤÷i(qin,qout), but will

write ≤÷i when understood in context. Similar to the multiply by K program, the initial

instruction÷in is meant to verify that register r3 is empty and initiates the division process.

That is, a block of K tokens are removed from ri and 1 token is added to r3 repeatedly

until ri is empty. If ri was emptied at state s0, then ×3 transfers the tokens in r3 to ri. This

110

can only happen if the original number of tokens in ri was divisible by K, otherwise the

computation would stop at some configuration labeled by a state sδ where 0 < δ < K.

Proposition 5.1.5. Let ÷i(qin, qout) be a divide by K program for some i ∈ {1, 2} and

0 ≤ δ ≤ K. Then sδrn1
1 rn2

2 rn3
3 v÷i qoutr

m1
1 rm2

2 rm3
3 , witnessed by a computation with no

instance of instruction÷in, if and only ifmj = nj ,m3 = 0,K | (ni+δ) andmi = n3+ni+δ
K

.

Hence qinr
n1
1 rn2

2 rn3
3 v÷i qoutr

m1
1 rm2

2 rm3
3 , witnessed by a computation with precisely one

instance of instruction ÷in, if and only if mj = nj , m3 = n3 = 0, K | ni and mi = ni
K

.

Proof. Note that the only instruction that outputs the state qout is Tout ∈ PTi , which is only

applicable to an ID containing a configuration labeled by state t0 in the subprogram Ti.

Now, the only instruction in P÷i that outputs a state in QTi is÷out which is only applicable to

an ID containing a configuration labeled by state s0. Since the only instructions applicable

to a state sδ′ , for 0 < δ′ ≤ K, are those from P−iK ∪ {÷loop}, none of which are forking

instructions, we obtain sδx v÷i qoutx
′ iff there is a computation

sδx ≤÷i s0x1 v÷i t0x2 vTi qoutx
′,

for some x, x′, x1, x2 ∈ R∗3.

Without loss of generality, assume i = 1. We proceed by induction on n1. Suppose

n1 = 0. If δ = 0 then the only applicable instructions are −1 and ÷out. We observe then

s0r
n2
2 rn3

3 v{−1,÷out} qx ⇐⇒ q = t0 & x = rn2
2 rn3

3 ,

by Proposition 4.3.6 and since n1 = 0. By Proposition 5.1.1, t0rn2
2 rn3

3 vT1 qoutx iff

x = rn3
1 rn2

2 , and the claim is satisfied. If δ 6= 0, then only instructions applicable are those

111

from P−iK ∪ {÷loop}. Furthermore,

sδr
n2
2 rn3

3 ≤−1K sKx ⇐⇒ δ = K and x = rn2
2 rn3

3 by Prop. 5.1.4.

Now, the only instruction applicable to sKx is ÷loop, and

sKr
n2
2 rn3

3 ≤÷loop s0x ⇐⇒ x = rn2
2 rn3+1

3 .

Thus, by the above,

s0r
n2
2 rn3+1

3 vT1 qoutx ⇐⇒ x = rn3+1
1 rn2

2 .

Note that there are no instructions applicable to a configuration with state qout except ÷in

in the case that qin = qout. Hence sδrn2
2 rn3

3 v÷1 qoutr
m1
1 rm2

2 rm3
3 if and only if m2 = n2,

m3 = 0, and m1 = n3 + δ
K

.

Now suppose the claim holds for some n1 ≥ 0. For δ = 0, the only applicable instruc-

tions are −1 and ÷out, where we observe

s0r
n1+1
1 rn2

2 rn3
3 v{−1,÷out} qx ⇐⇒ q = s1 & x = rn1

1 rn2
2 rn3

3 ,

since z1r
n1+1
1 rn2

2 rn3
3 6∈ Acc(ø) by Proposition 4.3.4. By the induction hypothesis, we

have s1r
n1
1 rn2

2 rn3
3 v÷1 qoutr

m1
1 rm2

2 rm3
3 iff m2 = n2, m3 = 0, and K | (n1 + 1) with

m1 = n1+1
K

+ n3, and we are done.

For 0 < δ < K, the only instruction applicable is −δ+1 in P−1K , and

sδr
n1+1
1 rn2

2 rn3
3 ≤−δ+1 sδ+1r

n1
1 rn2

2 rn3
3 .

112

By the induction hypothesis, sδ+1r
n1
1 rn2

2 rn3
3 v÷i qoutr

m1
1 rm2

2 rm3
3 iff m2 = n2, m3 = 0, and

K | (n1 + δ + 1) with m1 = n1+δ+1
K

+ n3 = (n1+1)+δ
K

+ n3, and we are done.

If δ = K, then the only instruction applicable is ÷loop, and we observe

sKr
n1+1
1 rn2

2 rn3
3 ≤÷loop s0r

n1+1
1 rn2

2 rn3+1
3 .

By the first case, s0r
n1+1
1 rn2

2 rn3+1
3 v÷1 qoutr

m1
1 rm2

2 rm3
3 iff m2 = n2, m3 = 0, and K |

(n1 + 1) with m1 = n1+1
K

+ n3 + 1 = (n1+1)+K
K

+ n3, and we are done.

Lastly, the only instruction applicable to qinr
n1
1 rn2

2 rn3
3 is ÷in, hence

qinr
n1
1 rn2

2 rn3
3 v{÷in} s0r

n1
1 rn2

2 rn3
3 v÷ qoutr

m1
1 rm2

2 rm3
3

if and only if n3 = m3 = 0, m2 = n2, K | n1 and m1 = n1

K
by the above.

Lastly, we define the end program, denoted by F = (R3, QF , PF) to be a transition of the

final state qf of B to the final state qF of BK . We define QF = {cF , qF} and the instructions

PF = {F1, F2} are the following pair:

F1 : qfr1 ≤ cF

F2 : cFr2 ≤ qF

.

We define ≤F to be the computation relation on the end program.

Proposition 5.1.6. qrn1
1 rn2

2 rn3
3 ∈ Acc(F) if and only if n3 = 0 and (i) n1 = 1 and n2 = 1

for q = qf , (ii) n1 = 0 and n2 = 1 for q = cF , and (iii) n1 = n2 = 0 for q = qF .

We can now formally define the BK machine. For a 2-ACM B = (R2, Q, P), define P+,

P−, and P∨ to be the sets of increment, decrement, and forking instructions, respectively,

from P. Hence P = P+ ∪ P− ∪ P∨ is a disjoint union. Assume Qø and QF are disjoint

113

from Q, and for each increment and decrement instruction p+ : qin ≤ qoutri ∈ P+ and

p− : qinri ≤ qout ∈ P−, for i ∈ {1, 2}, we relabel the elements of the following sets

Q
p+

×i := {qp+ : q ∈ Q×i} & Q
p−
÷i := {qp− : q ∈ Q÷i}

P
p+

×i := {pp+ : p ∈ P×i(qin, qout)} & P
p−
÷i := {pp− : p ∈ P÷(qin, qout)},

making the sets disjoint.

Definition 5.1.1. Let B = (R2, Q, P) be a 2-ACM and fix K > 1. We define the machine

BK := (R3, QK , PK), where

• QK := Q ∪ Qø ∪ QF ∪
⋃
p∈P+

Q
p
× ∪

⋃
p∈P−

Q
p
÷,

• PK := P∨ ∪ Pø ∪ PF ∪
⋃
p∈P+

P
p
× ∪

⋃
p∈P−

P
p
÷.

Lemma 5.1.7. Let p ∈ P+ ∪ P− be an instruction acting on register ri, where {i, j} =

{1, 2}. Let C = qrn1
1 rn2

2 rn3
3 ∈ Conf(BK) and suppose C ∈ Acc(BK) witnessed by

C ≤p1 u1 ≤p2 · · · ≤pN uN = uF ∈ Fin(BK).

1. If p ∈ P+ and q ∈ Q
p
×, then there exists k ≤ N such that uk = D ∨ u with C v× D =

qoutr
m1
1 rm2

2 rm3
3 , where m3 = 0, mj = nj , and

(i) mi = ni + n3 + δ, if q = tpδ for δ ∈ {0, 1};

(ii) mi = Kni + n3 +K − δ, if q = apδ for 0 ≤ δ ≤ K.

2. If p ∈ P− and q ∈ Q
p
÷, then there exists k ≤ N such that uk = D ∨ u with C v÷ D =

qoutr
m1
1 rm2

2 rm3
3 , where m3 = 0, mj = nj , and

(i) mi = ni + n3 + δ, if q = tpδ for δ ∈ {0, 1};

(ii) K | (ni +K − δ) and mi = n3 + ni+K−δ
K

, if q = spδ for 0 ≤ δ ≤ K.

114

Proof. For (1), suppose p ∈ P+. Then there exists a multiply by K program ×pi (qin, qout)

in BK . Since the only instructions applicable to C are those from P
p
×, none of which with

outgoing state qF , there must exist a smallest k ≤ N such that pk = T p3 and uk = D ∨ u

for some u ∈ ID(BK) and D = qoutr
m1
1 rm2

2 rm3
3 . Since each instruction of Pp× \ {T

p
out} only

outputs states that are in Q
p
×∪Qø, the instructions {p1, . . ., pk} ⊆ P

p
×∪Pø. Hence u ∈ ID(ø),

and since uk ∈ Acc(BK), it follows that u ∈ Acc(ø) and C v×∪ø D. Since there are no Qø-

instructions in P
p
×, it follows that C v× D. Since k is minimal and q 6∈ Q, it must be that

×pin 6∈ {p1, . . ., pk}. Therefore the values of m1,m2,m3 are determined by Propositions

5.1.1 and 5.1.3.

By the same argument, (2) follows with the values of m1,m2,m3 and conditions on ni

determined by Propositions 5.1.1 and 5.1.5.

Lemma 5.1.8. Let C = qinr
n1
1 rn2

2 rn3
3 ∈ Conf(BK) and suppose qin ∈ Q. Then C ∈ Acc(BK)

if and only if there exists C′ ∈ Conf(B) such that C′ ∈ Acc(B) and C = C′K .

Proof. Let C = qinr
n1
1 rn2

2 rn3
3 ∈ Conf(BK) be given such that qin ∈ Q.

(⇐) Suppose there exists C′ ∈ Conf(B) such that C = C′K and C′ ∈ Acc(B). Then there

exists N ∈ N, u0, . . ., uN ∈ ID(B), and p1, . . ., pN ∈ P such that

C′ = u0 ≤p1 u1 ≤p2 · · · ≤pN uN = uf ∈ Fin(B).

We proceed by induction on N . If N = 0, then C′ = qf . Hence C = C′K = qfr1r2. By

Proposition 5.1.6(i),

C = qfr1r2 ∈ Acc(F) ⊂ Acc(BK).

Now let N ≥ 1 and suppose the claim holds for all k < N . Let C′ = qinr
m1
1 rm2

2 , then

C = qinr
Km1

1 rK
m2

2 . We have three cases.

115

Case 1: Suppose p1 is the increment instruction, without loss of generality, on register

r1 given by qin ≤ qoutr1. Then u1 = qoutr
m1+1
1 rm2

2 . Since u1 ∈ Acc(BK) and has a

computation of length N − 1, by the induction hypothesis it follows that

qoutr
Km1+1

1 rK
m2

2 ∈ Acc(BK).

By the definition of PK , Pp×1
⊂ PK and thus,

C = qinr
Km1

1 rK
m2

2 v×p1 qoutr
Km1+1

1 rK
m2

2 by Prop. 5.1.3

∈ Acc(BK) by induction hyp.

Case 2: Suppose p1 is the decrement instruction, without loss of generality, on register

r1 given by qinr1 ≤ qout. Then m1 ≥ 1 and u1 = qoutr
m1−1
1 rm2

2 . Since u1 ∈ Acc(B) has a

computation of length N − 1, by the induction hypothesis it follows that

qoutr
Km1−1

1 rK
m2

2 Acc(BK).

By the definition of PK , Pp÷1
⊂ PK and thus,

C = qinr
Km1

1 rK
m2

2 v÷p1 qoutr
Km1−1

1 rK
m2

2 by Prop. 5.1.5,

∈ Acc(BK) by induction hyp.

Case 3: Suppose p1 is the forking instruction given by qin ≤ q′ ∨ q′′. Then u1 =

q′rm1
1 rm2

2 ∨ q′′rm1
1 rm2

2 . Hence q′rm1
1 rm2

2 ∈ Acc(B) and q′′rm1
1 rm2

2 ∈ Acc(B). Since u1 ∈

Acc(B) and has a computation of length N − 1, so do the computations above, and by the

induction hypothesis and the compatibility of ≤BK with ∨, it follows that

q′rK
m1

1 rK
m2

2 ∨ q′′rKm1

1 rK
m2

2 ∈ Acc(BK).

116

Since p1 ∈ PK by definition, it follows that C ∈ Acc(BK).

(⇒) Suppose C ∈ Acc(BK). Then there exists N ∈ N, u0, . . ., uN ∈ ID(B), and

p1, . . ., pN ∈ PK such that

C = u0 ≤p1 u1 ≤p2 · · · ≤pN uN = uF ∈ Fin(BK).

Since qin ∈ Q, the smallest N ≥ 2. We proceed by induction on N . If N = 2, then

qin = qf and p1 is the initial instruction of the end-program, which halts iff C = qfr1r2

by Proposition 5.1.6. Then C′ = qf ∈ Conf(B) is such that C = C′K and C′ ∈ Acc(B) by

reflexivity of≤B. So supposeN > 2 and the claim holds for all k < N . Since qin ∈ Q\{qf},

there exists an instruction p ∈ P such that either p1 = p ∈ P∨, p1 = ×pin ∈ P
p
×, or

p1 = ÷pin ∈ P
p
÷.

Case 1: Suppose p1 ∈ P∨ is a forking instruction qin ≤ q′ ∨ q′′. Since P∨ ⊂ P, we

obtain

u1 = q′rn1
1 rn2

2 rn3
3 ∨ q′′rn1

1 rn2
2 rn3

3 ∈ Acc(BK),

and so q′rn1
1 rn2

2 rn3
3 ∈ Acc(BK) and q′′rn1

1 rn2
2 rn3

3 ∈ Acc(BK), with computations less than

N . By the induction hypothesis, n1 = Km1 , n2 = Km2 , n3 = 0, where q′rm1
1 rm2

2 ∈ Acc(B)

and q′′rm1
1 rm2

2 ∈ Acc(B). Thus C = C′K where C′ = qrm1
1 rm2

2 , and

C′ = qrm1
1 rm2

2 ≤p1 q′rm1
1 rm2

2 ∨ q′′rm1
1 rm2

2 ∈ Acc(B),

and therefore C′ ∈ Acc(B).

Case 2: Suppose p1 = ×pin, where p ∈ P+ is some increment instruction qin ≤ qoutri.

Without loss of generality, suppose i = 1. Now,

C = qinr
n1
1 rn2

2 rn3
3 ≤p1 apKr

n1
1 rn2

2 rn3
3 ∨ z3r

n1
1 rn2

2 rn3
3 ∈ Acc(BK)

117

so n3 = 0 by Proposition 4.3.4 and apKr
n1
1 rn2

2 rn3
3 ∈ Acc(BK) by Proposition 4.1.12. Hence,

by Lemma 5.1.7(1), there exists 1 < k < N such that uk = D ∨ u and C v×p1 D =

qoutr
Kn1
1 rn2

2 . Since uk ∈ Acc(BK) has a computation of length less thanN , by the induction

hypothesis it follows that there is D′ ∈ Conf(B) such that D = D′K , i.e. Kn1 = Km1+1 and

n2 = Km2 , and D′ = qoutr
m1+1
1 rm2

2 ∈ Acc(B). Let C′ = qinr
m1
1 rm2

2 ∈ Conf(B). Therefore

C = C′K and, since C′ ≤p D′, C′ ∈ Acc(B).

Case 3: Suppose p1 = ÷pin, where p ∈ P− some decrement instruction qinri ≤ qout.

Without loss of generality, suppose i = 1. Now,

C = qinr
n1
1 rn2

2 rn3
3 ≤p1 sp0r

n1
1 rn2

2 rn3
3 ∨ z3r

n1
1 rn2

2 rn3
3 ∈ Acc(BK),

so n3 = 0 by Proposition 4.3.4 and sp0r
n1
1 rn2

2 rn3
3 ∈ Acc(BK) by Proposition 4.1.12. Hence,

by Lemma 5.1.7(2), there exists 1 < k < N such that uk = D ∨ u, K | n1, and C v÷p1
D = qoutr

n1/K
1 rn2

2 . Since uk ∈ Acc(BK) has a computation of length less than N , by the

induction hypothesis it follows that there is D′ ∈ Conf(B) such that D = D′K , i.e. n1

K
= Km1

and n2 = Kn2 , and D′ = qoutr
m1
1 rm2

2 ∈ Acc(B). Let C′ = qinr
m1+1
1 rm2

2 ∈ Conf(B).

Therefore C = C′K and, since C′ ≤p D′, we obtain C′ ∈ Acc(B).

Let B̃ be the 2-ACM given by Theorem 4.3.8. Since membership of Acc(B̃) is undecid-

able, we obtain the following:

Corollary 5.1.9. Membership of the set Acc(B̃K) is undecidable for K > 1.

5.1.3 Simple equations and admissibility for ACMs.

When writing simple equations, we will be using the set of variables {xi}i∈Z+ , and

we will assume implicitly that this set is ordered by the natural order of the indices. We

also define xn := (x1, . . . , xn), for all n ∈ Z+ and for a tuple a = (a1, . . . , an) of natural

numbers, we define xn
a = xa1

1 · · ·xann ; we also define xn
1 = x1 · · ·xn. In this way, any

commutative monoid term is of the form xn
a, and thus it is fully specified by such an a.

118

Let [R] = (1n,R) be a simple equation. Since, for any k-ACM B, W+
B is commutative

(Lemma 4.3.2), W+
B |= [R] iff W+

B |= [R]com, where

[R]com : xn
1 ≤

∨
r∈R

xn
r,

where r ∈ Nn for each r ∈ R such that r(i) := #(r, xi). That is CRL |= [R] ≡ [R]com. We

call equations of the form [R]com the canonical simple equations of CRL. It will be useful

to identify the set R ∪ {1n}, of some canonical simple equation [R] = (1n,R) of CRL,

directly as a set of n-tuples with entries in N, where 1n = (1, . . ., 1) ∈ Nn.

In the following we will work interchangeably in the free monoid over the variable set

{x1, . . ., xn} and also in the isomorphic monoid Nn, for some fixed n ≥ 1. For reasons that

will be clear soon, we view the elements of Nn as column vectors and we also consider the

bijective set (NT)T of the row vectors, which are the transposes of the elements of Nn. In

particular, for r ∈ Nn and σ ∈ (Nn)T , the matrix product σr yields a 1 × 1 matrix, which

we identify with the natural number equal to its unique entry. For a set A ⊆ Nn, we write

σA := {σa ∈ Nk : a ∈ A}.

Lemma 5.1.10. Let [R] = (1n,R) be a non-integral simple equation. Then for all σ ∈

(Nn)T , if σR = {0} implies σ = 0.

Proof. Suppose σ ∈ (Nn)T is such that σ 6= 0 but σR := {σr ∈ N : r ∈ R} = {0}. Since

σ 6= 0, there exists i ≤ n such that σ(i) > 0. Since σr = 0, it must be that r(i) = 0 for all

r ∈ R. Since 1n(i) = 1, this implies supp(1n) \ supp(R) 6= ∅. Hence [R] is integral by

Definition 2.1.1.

119

Let [D] = (1n,D) be a simple equation and K > 1. We write [D], K |= (??) if the

following technical condition is satisfied:

For all σ, σ′ ∈ (Nn)T and for all C,C ′ ∈ N,

if C + σd and C ′ + σ′d are powers of K for each d ∈ D,

then there exists d̄ ∈ D such that σd̄ = σ1n and σ′d̄ = σ′1n.

(??)

For a set of simple equations Σ, by Σ, K |= (??) we mean [R], K |= (??) for all [R] ∈ Σ.

Lemma 5.1.11. Let Σ be a non-mingly set of simple equations, B be a 2-ACM, andK > 1.

If Σ, K |= (??) then Σ is strongly admissible for BK .

Proof. Let [D] = (1n,D) ∈ Σ. By Lemma 4.1.11, we need only show that if t ≤D
∨
d∈D td,

then

∀d ∈ D, td ∈ Acc(BK) =⇒ t ∈ Acc(BK),

where t, td ∈ (QK ∪ R3)∗ for each d ∈ D. So suppose td ∈ Acc(BK) for all d ∈ D. Since

Acc(MK) ⊆ Conf(BK), it follows that td = Cd ∈ Conf(BK) for each d ∈ D. Since Σ is

not mingly, BK is QK-admissible by Lemma 4.1.14, which implies t = C ∈ Conf(BK). We

need only show C ∈ Acc(BK). By definition of ≤D,

C = qx · xn
1n ≤D

∨
d∈D

qx · xn
d =

∨
d∈D

Cd,

for some q ∈ QK and x, x1, . . ., xn ∈ R∗3, where xn = (x1, . . ., xn).

If [D] is trivial then there is d̄ ∈ D such that d̄ = 1n, so C = Cd̄ ∈ AccBK and we

are done. So assume [D] is not trivial. Write x = rC1
1 rC2

2 rC3
3 , where C1, C2, C3 ≥ 0, and

for each j ∈ {1, 2, 3}, define σj ∈ (Nn)T via σj(i) = nj where xi = rn1
1 rn2

2 rn3
3 , for each

120

i = 1, . . ., n. So xi = r
σ1(i)
1 r

σ2(i)
2 r

σ3(i)
3 , for each i = 1, . . ., n. Thus,

C = qx
n∏
i=1

xi = qrC1+σ11n
1 rC2+σ21n

2 rC3+σ31n
3 ,

and for each d ∈ D,

Cd = qx
n∏
i=1

x
d(i)
i = qrC1+σ1d

1 rC2+σ2d
2 rC3+σ3d

3 .

We proceed by case analysis for each state q ∈ QK . Suppose q = qF . Since there is no

qF -instruction in PK , it follows that Cd = qF for each d ∈ D. Hence x = 1 and σjD = {0}

for each j ∈ {1, 2, 3}. By Lemma 5.1.10, this implies that σj = 0 for each j ∈ {1, 2, 3}.

Therefore C = qF ∈ Acc(BK).

Suppose q = cF . By Proposition 5.1.6, Cd ∈ Acc(F) iff Cd = cFr2. Hence C1 = C3 =

0, σ1d = σ3d = 0 for each d ∈ D, and C2 + σ2d = 1. By Lemma 5.1.10, σ1 = σ3 = 0, and

by (??), there exists d̄ ∈ D such that C2 + σ2d̄ = C2 + σ21n. Hence C = Cd̄ ∈ Acc(BK).

Suppose q = zi, and without loss of generality, let i = 3. Then for all d ∈ D,

Cd ∈ Acc(ø) iff C3 + σ3d = 0 by Proposition 4.3.4. This implies C3 = 0 and σ3D = {0}.

So by Lemma 5.1.10, σ3 = 0. Hence C3 + σ31n = 0 and C ∈ Acc(ø) ⊂ Acc(BK).

Suppose q ∈ Q. By Lemma 5.1.8, for each d ∈ D, Cd ∈ Acc(BK) iff there exists C′d ∈

Conf(B) such that Cd = (C′d)K with C′d ∈ Acc(B). I.e., for each d ∈ D, C1 + σ1d and

C2 + σ2d are powers of K and C3 + σ3d = 0. By Lemma 5.1.10, C3 = 0 and σ3 = 0, and

by (??), there exists d̄ ∈ D such that σ1d̄ = σ11n and σ2d̄ = σ21n. Therefore,

C = qrC1+σ11n
1 rC2+σ21n

2 = qrC1+σ1d̄
1 rC2+σ2d̄

2 = Cd̄ ∈ Acc(BK).

121

Lastly, suppose q ∈ QK \ (Q ∪ QF ∪ Qø). Then q is an internal state of a multiply or

divide by K program given by some instruction p ∈ P+ ∪ P−. We can assume, without loss

of generality, that p acts on register r1 with input state qin ∈ Q and output state qout ∈ Q.

First, observe that

1. C vT
p
1
D = qoutr

(C1+σ11n)+(C3+σ31n)+δ
1 rC2+σ21n

2 if q = tpδ by Proposition 5.1.1,

2. C v×p1 D = qoutr
K(C1+σ11n+K−δ)+(C3+σ3)1n

1 rC2+σ21n
2 if q = apδ by Proposition 5.1.3,

3. C v÷p1 D = qoutr
(C3+σ31n)+(C1+σ11n+K−δ)/K
1 rC2+σ21n

2 if q = spδ and

K | (C1 + σ11n +K − δ) by Proposition 5.1.5.

Now, for each d ∈ D and j ∈ {1, 2, 3}, we define ndj := Cj + σjd. Since Cd ∈ Acc(BK)

for all d ∈ D, by Lemma 5.1.7 it follows that Cd vBK Dd and Dd ∈ Acc(BK), where

Dd := qoutr
md1
1 r

md2
2 with md

2 = nd2 and

1. md
1 = nd1 + nd3 + δ if q = tpδ for δ ∈ {0, 1},

2. md
1 = Knd1 + nd3 +K − δ if q = apδ for 0 ≤ δ ≤ K, and

3. K | (nd1 +K − δ) and md
1 = nd3 + (nd1 +K − δ)/K if q = spδ for 0 ≤ δ ≤ K.

Furthermore, since qout ∈ Q, by Lemma 5.1.8, md
1 and md

2 are powers of K for each

d ∈ D (and thus Kmd
1 is as well). Note that K · (σd) = (K · σ)d, for any σ ∈ (Nn)T . So

for each d ∈ D we observe,

nd1 + nd3 + δ = (C1 + C3 + δ) + (σ1 + σ3)d

Knd1 + nd3 +K − δ = (KC1 + C3 +K − δ) + (Kσ1 + σ3)d

nd1 +Knd3 +K − δ = (C1 +KC3 +K − δ) + (σ1 +Kσ3)d

,

122

for any δ ≤ K. Since md
1 and md

2 are powers of K (and thus Kmd
1), for each d ∈ D, by

(??) there exists d̄ ∈ D such that σ2d̄ = σ21n and σd̄ = σ1n, where

σ ∈ {σ1 + σ3, Kσ1 + σ3, σ1 +Kσ3}.

It immediately follows that C vT
p
1
D = Dd̄ if q = tpδ , and C ≤×p1 D = Dd̄ if q = apδ . For

q = spδ , we need only show that K | (C1 + σ11n +K − δ). Now, md̄
1 = Kt for some t ≥ 0,

hence
Kmd̄

1 = Kt+1 = (C1 +KC3 +K − δ) + (σ1 +Kσ3)d̄

= (C1 +KC3 +K − δ) + (σ1 +Kσ3)1n

= (C1 + σ11n +K − δ) +K(σ31n) +KC3

=⇒ Kt = 1
K

(C1 + σ11n +K − δ) + σ31n + C3,

and sinceKt, C3, and σ31n are integers, it follows thatK | (C1+σ11n+K−δ). Therefore,

by Proposition 5.1.5, C v÷p1 D = Dd̄. In any case C vBK Dd̄ ∈ Acc(BK), and therefore

C ∈ Acc(BK).

5.1.4 Undecidability, the class U , and spinal equations.

An ISR-equation [V] = (f, V) is called spinal if [V] is of the form:

[V] : x
f(1)
1 · · ·xf(k)

k︸ ︷︷ ︸
f

≤ (1 ∨)︸ ︷︷ ︸
0

x
v1(1)
1︸ ︷︷ ︸
v1

∨xv2(1)
1 x

v2(2)
2︸ ︷︷ ︸

v2

∨ · · · ∨ xvk(1)
1 · · ·xvk(k)

k︸ ︷︷ ︸
vk

,

where f 6∈ V and (1∨) is meant to signify 1 may or may not be included in the join. In

this way, a simple equation [R] is pre-spinal if there exists a substitution σ such that [σR]

is equivalent, modulo commutativity, to a spinal equation [V] (written [V] = [σR]com).

Example 5.1.1. Let [R], [D] the simple equation [R] : x ≤ x2∨1 and [D] : x ≤ x2∨x4. By

our definition, [R] is a spinal equation, while there is no substitution on [D] that can result

in a spinal equation, so [D] is not pre-spinal.

123

Consider the machine Beven. As before, it is easy to see that q0r
3
1 ∈ Acc(RBeven) \

Acc(Beven). However, unlike for the equation [D] (see Section 5.1.1), this behavior cannot

be controlled with BK for any K > 1. E.g., n = (K4 −K2)/2, then q0r
K2+n
1 6∈ Acc(BK)

since K2 + n 6= K2m for any m ∈ N, however

q0r
K2+n
1 = q0r

K2

1 rn1 ≤R q0r
K2

1 r2n
1 ∨ q0r

K2

1 r0
1 = q0r

K4

1 ∨ q0r
K2

1 ∈ Acc(BK).

In fact, we will show this failure occurs, not just for functions of the form n 7→ Kn but

actually for any (computable) injective function on N. This is due to the fact that [D], K |=

(??) (see Theorem 5.3.1) for all sufficiently large K, but [R], K 6|= (??) for any possible

K > 1. To see this, note that [R] = (11, {r0, r2}), viewing R ⊆ N1 where, 11 = 1, r0 = 0,

and r2 = 2. Then σ := n ∈ NT and C = K2 are such that C + σr0 = C = K2 and

C +σr2 = K2 + 2n = K4, both powers of K, but σ11 = K2 +n 6∈ {K2, K4}, witnessing

[R], K 6|= (??).

Definition 5.1.2. Define U to be the class of simple equations defined via [D] ∈ U if and

only if [D]com is not pre-spinal.

Note that all knotted equations [kmn] : xn ≤ xm are spinal and so their equivalent

simple equations [Kmn] (as defined in Section 2.4) are pre-spinal. As a consequence of the

definition, [R] is spinal if an only if [R ∪ {0}] is spinal, so all equations xn ≤ xm ∨ 1 are

spinal as well.4 On the other hand, equations of the form [A] : xn ≤
∨
p∈P x

p is not spinal

for any n ≥ 1 and finite set P ⊆ N such that |P \ {0}| ≥ 2, and it is easy to prove that the

equivalent simple equation for [A] is not pre-spinal.

4It should be noted that knotted extensions of CRL have the FEP (see Proposition 3.1.1) and hence a
decidable word problem, but decidability results for xn ≤ xm ∨ 1 are unknown to this author.

124

In Section 5.3, we will show that [D], K |= (??) for some K > 1 if and only if [D] is

not pre-spinal. In fact, Theorem 5.3.13 states that [D] is not pre-spinal if and only if there

exists N ∈ N such that [D], K |= (??) for any K ≥ N .

Therefore, by Theorem 4.3.8, Lemma 5.1.11, and Theorem 5.3.13 proved in Sec-

tion 5.3, we obtain

Theorem 5.1.12. Let Γ ⊆ U be finite. Then any variety V in the interval CRL + Γ ⊆ V ⊆

RL has an undecidable word problem, particularly for its {∨, ·, 1}-fragment.

As a consequence of Corollary 2.5.2, it follows that:

Theorem 5.1.13. Then CRL + Γ has an undecidable equational theory for anyfiniteand

expansive Γ ⊆ U .

Hence CRL + [E] has an undecidable equational theory, for any expansive equation

[E] : xn ≤
∨
p∈P

xn+p,

where n ≥ 1 and |P | ≥ 2. E.g., CRL+(x ≤ x2∨x3) has an undecidable equational theory.

125

5.2 Admissibility for CMs

As in the previous section, we wish extend undecidability results for the {≤, ·, 1}-

fragment of RL to those varieties defined by simple equations. We begin as before by

defining the MK for an arbitrary 2-CM M.

5.2.1 The MK Machine. Proceeding as in the previous section, we will define the corre-

sponding 3-CM MK from a given 2-CM M. We will provide sufficient conditions for when a

simple equation [D] is admissible for MK , i.e., conditions which ensure that C ∈ Acc(DMK)

iff C ∈ Acc(MK), for all C ∈ Conf(MK). Such equations will be closely related to the set U

of simple equations, insofar as the encoding breaks down for pre-spinal equations as well

as equations satisfying some corresponding technical weakening of commutativity.

As before, if M = (R2, Q, P) is a 2-CM, then the set of instructions of PK for MK are

obtained by replacing each increment and decrement instruction in P by the programs mul-

tiply by K and divide by K, respectively. However, we will need to replace zero-test

instructions by K0-test programs, whose implementation is meant to test whether a given

register contains exactly one token (i.e., K0) or not. That is, if p : qinSiSi+1 ≤ qoutSiSi+1

is a zero-test the ri-register instruction and Pp is some program meant to simulate p in MK ,

i.e., say i = 1, then if C = 〈qin;n1, n2〉 ∈ Conf(M) and C′ = 〈qout;m1,m2〉 ∈ Conf(M),

C ≤p C′ ⇐⇒ CK = 〈qin;Kn1 , Kn2 , 0〉 ≤Pp 〈qout;K
m1 , Km2 , 0〉 = C′K ,

then is must be that n1 = m1 = 0 and n2 = m2, so the r1-register of CK therefore contains

precisely one ri-token. Using the language of counter machines, this can be achieved by

126

defining auxiliary states zp1 , z
p
2 and proper instructions

qinS1ri ≤ zp1S1

zp1S1S2ri ≤ zp2S1S2

zp2S1 ≤ qoutS1r1.

However, since we are only checking for the appearance of a specific word in a configura-

tion, namely S1r1S2 for i = 1, we will opt to instead simulate p by a single, non-proper,

instruction of the form:

1p : qinSiriSi+1 ≤ qoutSiriSi+1 (5.1)

The construction and implementation of the multiply and divide programs are essen-

tially the same as in Section 5.1.2, with the added benefit that the zero-test program can be

replaced by zero-test instructions native to the structure of counter machines. As before,

these programs are defined from simpler programs named transfer, add-K, and subtract-K.

Their intended interpretation is the exactly the same as their counterparts in Section 5.1.2.

We will assume that all state names defined by the following machines are disjoint from

each other, disjoint Qø, and disjoint from the states Q from a fixed 2-CM M.

A transfer program Ti(qout) = (R3, QTi , PTi(qout)) is meant to transfer all contents in

register r3 to register ri and output state qout. We define the set QTi = {t0, t1} and the set

of instructions PTi(qout) = {T−, T+, Tout}, where:

T− : t0S3r3 ≤ t1S3

T+ : t1Si ≤ t0Siri

Tout : t0S3S4 ≤ qoutS3S4

.

We define ≤Ti to be the computation relation of the transfer program Ti(qout).

127

The add-K program is denoted by +K = (R3, Q+K , P+K), and is intended to add K

tokens to register r3 and output with state aK . We define the set Q+K = {a0, . . ., aK}, and

the set of instructions P+K = {+1, . . .,+K}, where:

+1 : a0S3 ≤ a1S3r3

+2 : a1S3 ≤ a2S3r3

...
...

+K : aK−1S3 ≤ aKS3r3

.

We define ≤+ to be the computation relation on the add-K program.

We now define the multiply by K programs, denoted by ×i(qin, qout) = (R3, Q×i , P×i),

where i ∈ {1, 2}. This program is meant to multiply the contents of ri by K, with input

state qin and output state qout. We define the set Q× = Q+K ∪ QTi and the set P×i =

PTi(qout) ∪ P+K ∪ {×in,×loop,×out}, where:

×in : qinS3S4 ≤ aKS3S4

×loop : aKSiri ≤ a0Si

×out : aKSiSi+1 ≤ t0SiSi+1

.

Set ≤×i(qin,qout) to be the computation relation on the multiply by K program, and will

write ≤×i when the program is understood in context.

We define the subtract-K program, denoted by −iK = (R3, Q−iK , P−iK), for i ∈

{1, 2}, which is meant to subtract K tokens to register ri and output state sK . We define

128

Q−i = {s0, . . ., sK} and the instructions P−iK = {−1, . . .,−K}, where:

−1 : s0Siri ≤ s1Si

−2 : s1Siri ≤ s2Si

...
...

−K : sK−1Siri ≤ sKSi

.

We denote the computation relation on the subtract-K program by ≤−.

We are now ready to define the divide by K program for i ∈ {1, 2}, denoted by

÷i(qin, qout) = (R3, Q÷i , P÷i(qin, qout)). We define the set Q÷i = Q−i ∪ QTi and the instruc-

tions P÷i(qin, qout) = PTi(qout) ∪ P−iK ∪ {÷in,÷loop,÷out}, where:

÷in : qinS3S4 ≤ s0S3S4

÷loop : sKS3 ≤ s0S3r3

÷out : s0SiSi+1 ≤ t0SiSi+1

.

We denote the computation relation on the divide by K program by ≤÷i(qin,qout), but will

write ≤÷i when understood in context.

Lastly, we define the end program, denoted by F = (R3, QF , PF) to be a transition of the

final state qf of M to the final state qF of MK . We define QF = {cF , qF} and the instructions

PF = {F1, F2} are the following pair:

F1 : qfS1r1 ≤ cFSi

F2 : cFS2r2 ≤ qFS2

.

We define ≤F to be the computation relation on the end program.

We can now formally define the MK machine. For a 2-CM M = (R2, Q, P), define P+,

P−, and Pø to be the sets of increment, decrement, and zero-test instructions, respectively,

129

from P. Hence P = P+ ∪ P− ∪ Pø is a disjoint union. Assume QF is disjoint from Q, and for

each increment and decrement instruction p+ : qinSi ≤ qoutSiri ∈ P+ and p− : qinSiri ≤

qoutSi ∈ P−, for i ∈ {1, 2}, we relabel the elements of the following sets

Q
p+

×i := {qp+ : q ∈ Q×i} & Q
p−
÷i := {qp− : q ∈ Q÷i}

P
p+

×i := {pp+ : p ∈ P×i(qin, qout)} & P
p−
÷i := {pp− : p ∈ P÷(qin, qout)},

making the sets disjoint. Lastly, for each pø : qinSiSi+1 ≤ qoutSiSi+1 ∈ Pø, by Equa-

tion (5.1) we define 1pø : qinSiriSi+1 ≤ qoutSiriSi+1, and

P1 := {1pø : pø ∈ Pø}.

Definition 5.2.1. Let M = (R2, Q, P) be a 2-CM and fix K > 1. We define the machine

MK := (R3, QK , PK), where

• QK := Q ∪ QF ∪
⋃
p∈P+

Q
p
× ∪

⋃
p∈P−

Q
p
÷,

• PK := P1 ∪ PF ∪
⋃
p∈P+

P
p
× ∪

⋃
p∈P−

P
p
÷.

Lemma 5.2.1. Let p ∈ P be an instruction acting on register ri, where {i, j} = {1, 2}. Let

C = 〈q;n1, n2, n3〉 ∈ Conf(MK) and suppose C ∈ Acc(MK) witnessed by

C ≤p1 C1 ≤p2 · · · ≤pN CN = CF ∈ Acc(MK).

1. If p ∈ P+ and q ∈ Q
p
×, then there exists k ≤ N such that C ≤× D = 〈qout;m1,m2, 0〉,

where mj = nj and

(i) mi = ni + n3 + δ, if q = tpδ for δ ∈ {0, 1};

(ii) mi = Kni + n3 +K − δ, if q = apδ for 0 ≤ δ ≤ K.

130

2. If p ∈ P− and q ∈ Q
p
÷, then there exists k ≤ N such that C ≤÷ D = 〈qout;m1,m2, 0〉,

where mj = nj and

(i) mi = ni + n3 + δ, if q = tpδ for δ ∈ {0, 1};

(ii) K | (ni +K − δ) and mi = n3 + ni+K−δ
K

, if q = spδ for 0 ≤ δ ≤ K.

3. If p ∈ Pø, then C ≤1p 〈qout;m1,m2, n3〉 iff mj = nj and mi = ni = 1.

Proof. The proofs of (1) and (2) are identically those given in Lemma 5.1.7, where only the

arguments for the zero-test program are replaced by the same argument that C ≤p C′ iff and

only if the i-th register of both C and C′ are empty, where p : qinSiSi+1 ≤ qoutSiSi+1 is an

instruction internal to some multiply or divide program. (3) clearly holds by the definition

of ≤1p as a {·}-compatible relation.

Lemma 5.2.2. Let C = qinr
n1
1 rn2

2 rn3
3 ∈ Conf(MK) and suppose qin ∈ Q. Then C ∈ Acc(MK)

if and only if there exists C′ ∈ Conf(M) such that C′ ∈ Acc(M) and C = C′K .

Proof. This proof is essentially the same as Lemma 5.1.8, where only the instructions

corresponding sets Pø and P1 need to be checked. Consequently, it is sufficient to verify

that for all p ∈ Pø,

C ≤1p D ∈ Acc(MK) ⇐⇒ (∃C′, D′ ∈ Conf(M)) C′ ≤p D′ ∈ Acc(M) and C = C′K , D = D′K .

Let p : qinSiSi+1 ≤ qoutSiSi+1 for some i ∈ {1, 2} and qin, qout ∈ Q. Since qF 6∈ Q,

qout 6= qF . So by the construction of MK and the definition of the end program, qout ∈ Q, C ∈

Acc(MK) if and only if C ≤MK qfS1r1S2r2S3S4 = (Cf)K , where Cf is the final configuration

for M. This observation completes the base case for induction for each direction. The

inductive steps follow from Lemma 5.1.7(3).

131

Let M̃ be the 2-CM given by Theorem 4.2.1. Since membership of Acc(M̃) is undecid-

able, we obtain the following:

Corollary 5.2.3. Membership of the set Acc(M̃K) is undecidable for K > 1.

5.2.2 Simple equations and admissibility for CMs.

Consider a simple equation [D] ∈ U . By Theorem 5.3.1, the word problem for RL+[D]

is undecidable, witnessed in its {∨, ·, 1}-fragment. We may inquire whether the root of

undecidability can be traced further down to its {≤, ·, 1}-fragment in the same way by using

the machine M̃K . However, unlike Section 5.1.3, a more delicate approach is necessary to

prove admissibility. This technicality is rooted in that many rules in U may have instances

that allow stopper variables to permute amongst register terms, potentially allowing non-

configurations to be accepted. Since our machines are {Si}-stable, if there are instances of

≤D that have this effect, then it implies there exists x ∈ supp(D) such that #(d, x) = 1

and d = udxvd where x 6∈ supp(udvd), for all d ∈ D. Therefore, if [D] ∈ U is such that, for

all x ∈ supp(D) there exists d ∈ D such that #(d, x) 6= 1, then [D] is strongly admissible

in MK by essentially the same argument as Theorem 5.3.1, establishing undecidability of

the {≤, ·, 1}-fragment.

We first establish the following technical lemma as a consequence of Lemma 5.1.11.

Lemma 5.2.4. Let [D] ∈ U be a simple equation and M a 2-CM. Then for all sufficiently

large K > 1, if C ∈ Conf(MK) is such that C ≤D v ∈ Acc(MK) then C ∈ Acc(M).

Proof. Let [D] = (1n,D) ∈ U . By Theorem 5.3.1, for all K sufficiently large [D], K |=

(??). Fix such a K > 1. Let C ∈ Conf(MK) and suppose C ≤D v ∈ Acc(MK). Since

Conf(MK) is stable in MK by Lemma 4.2.2, v =
∨
d∈D Cd ∈ Conf(MK)∨. Hence Cd ∈

Acc(MK) for each d ∈ D by Proposition 4.1.12. Let σ be the substitution such that

C = uσ(1n)v ≤D
∨
d∈D

uσ(d)v,

132

where u, v are monoid terms and Cd = uσ(d)v for each d ∈ D. For each d ∈ D, define

d ∈ Nn via d(i) := #(d, xi), where {x1, . . ., xn} is set of distinct variables appearing in

[D]. Under this notation, 1n = (1, . . ., 1) ∈ Nn. For each j ∈ {1, 2, 3}, define σi ∈ (Nn)T

via σj(i) = #(σ(1n), ri) and Cj ∈ N via Cj = #(uv, ri). Therefore there is a q ∈ QK

such that
C = 〈q;C1 + σ11n, C2 + σ21n, C2 + σ21n〉

Cd = 〈q;C1 + σ1d, C2 + σ2d, C2 + σ2d〉
,

for each d ∈ D. This is precisely the same setup as Lemma 5.1.11, and thus by fol-

lowing the same arguments and using the corresponding Lemma 5.2.1, we deduce that

C ∈ Acc(MK).

Motivated by above, let U−1 be the class of all [D] = (1n,D) ∈ U such that for every

i = 1, . . ., n there exists di ∈ D such that #(d, xi) 6= 1. It is straightforward to verify,

in the style of Theorem 2.4.1, that Σ ⊆ U−1 implies Σ does not entail commutativity (see

Section 4.2.2).

Lemma 5.2.5. Let Σ ∈ U−1 be finite and M a 2-CM. Then there exists K > 1 such that [Σ]

is strongly admissible in MK .

Proof. Since Σ is finite, by Corollary 5.3.14 there exists a K > 1 such that Σ, K |= (??).

Fix [D] = (1n,D) ∈ Σ. By Lemma 4.1.11, it is enough to show that if t ≤D
∨
d∈D td for

some monoid terms t and {td : d ∈ D}, then

∀d ∈ D, td ∈ Acc(MK) =⇒ t ∈ Acc(MK).

Now, td ∈ Acc(MK) implies td = Cd ∈ Conf(MK) by Lemma 4.2.2. So t ≤D
∨
d∈D Cd. We

first show that t ∈ Conf(MK).

133

Since Σ does not entail commutativity, it follows that t must be of the form Equa-

tion (4.7) from Lemma 4.2.5, i.e., t = uqv for some q ∈ QK and monoid terms u, v such

that uv = S1x1S2x2S3x3S4 for some x1, x2, x3 ∈ R∗3. We wish to show uv ∈ Box(MK).

Let σ be the substitution witnessing t ≤D
∨
d∈D Cd, i.e.,

uv = wσ(1n)w′ ≤R
∨
d∈D

wσ(d)w′,

where w,w′ are monoid words. Since each Cd =QK qwσ(d)w′ is a configuration and

[D] ∈ U−1, by definition it follows that no variable from QK ∪ Stp3 that is a subword of

σ(d), for all d ∈ D. This implies that

ww′ = S1r
m1
1 S2r

m2
2 S3r

m3
3 S4 ∈ Box(MK)

and there is an i ∈ {1, 2, 3} such that for each d ∈ D, σ(d) = rmdi since wσ(d)w′ ∈

Box(MK). Since [D] ∈ U , [D] is not integral and hence σ(1n) = rmi . Hence, uv =

wσ(1n)w′ ∈ Box(MK). Therefore t ∈ Conf(MK).

Since Σ, K |= (??) and t ∈ Conf(MK), by Lemma 5.2.4, we obtain t ∈ Acc(MK).

Therefore Σ is strongly admissible in MK .

Therefore, by Corollary 5.2.3 and Corollary 4.1.10 we obtain:

Theorem 5.2.6. Let Σ ⊆ U−1 be finite. Then the {≤, ·, 1}-fragment of the word problem

for RL + Σ is undecidable

We note that the above is only a sufficient condition for our result. One can define

weaker conditions that imply canonical admissibility. However, we will only motivate

such an investigation with the following example.

134

Example 5.2.1. Consider the simple equation [R→] given by

[R→] : xy ≤ yx ∨ y.

Now, [R→]com : xy ≤ xy ∨ y, which is trivial and therefore [R→] ∈ U but [R→] 6∈ U−1.

Consider the machine MK where M = Meven and K > 1. Recall that for a monoid term t,

t ∈ Acc(MK) implies t ∈ Conf(MK). Hence, for q0 ∈ Qeven and u, v ∈ AMK , we observe that

uq0v ∈ Acc(MK) iff uq0v ∈ Conf(MK) and uq0v = 〈q0;K2n〉. Consider the substitution

that maps x 7→ rK
2−1

1 and y 7→ S1. Then rK
2−1

1 S1 ≤ S1r
K2

1 ∨ S1, and therefore

q0r
K2−1
1 S1r1S2 ≤R→ q0S1r

K2

1 S2 ∨ q0S1r1S2 ∈ Acc(MK),

since in both joinands the r1-register contains K2 and K0 many tokens, respectively. How-

ever, q0r
K2−1
1 S1r1S2 6∈ Conf(MK), and therefore [R→] is not strictly admissible in MK .

Although strict admissibility fails for [R→], since we can only permute variables in one

direction, we will prove that [R→] is admissible in MK , i.e., for every C ∈ Conf(MK),

C ∈ Acc(R→MK) ⇐⇒ C ∈ Acc(MK).

Roughly, the argument is as follows: The only way an instance of ≤R→ that, when applied

to a configuration, results in a non-configuration is if a r1-variable permutes over the stop-

per S2. Since there are no instances in ≤MK nor instances of ≤R→ that can “undo” this

effect, such an application cannot result to an accepted term in MK .

5.3 Membership of U

5.3.1 The class of equations U . We will now define a class U ⊆ S of simple equations

for which we will show (C)RL + [D] has an undecidable word problem, for [D] ∈ U . The

135

collection U is so vast that it is easier to define its complement in S. We motivate the

definition with the following observation.

Consider the machine Beven and the simple equation [R] : x ≤ x2 ∨ 1. As before, it

is easy to see that q0r
3
1 ∈ Acc(RBeven) \ Acc(Beven). However, this behavior cannot be

controlled with BK for any K > 1. E.g., let n = (K4 −K2)/2, then q0r
K2+n
1 6∈ Acc(BK)

since K2 + n 6= K2m for any m ∈ N, however

q0r
K2+n
1 = q0r

K2

1 rn1 ≤R q0r
K2

1 r2n
1 ∨ q0r

K2

1 r0
1 = q0r

K4

1 ∨ q0r
K2

1 ∈ Acc(BK).

In fact, we will show this failure occurs, not just for functions of the form n 7→ Kn but

actually for any (computable) injective function on N.

Given the natural ordering of our variable set {xi : i ∈ Z+}, note that using our

vector notation, every commutative monoid term can be written in the form xn
f , for some

n ∈ Z+ and f an n-tuple of natural numbers; recall that xn = (x1, . . . , xn). If we actually

extend our notation to the case where x∞ = (xi)i∈Z+ = (x1, x2, . . .) and f is a sequence

of natural numbers that is eventually constantly zero, then every commutative monoid term

is of the form x∞
f , and thus it is fully specified by such an f . In the following we will

work interchangeably in the free monoid over the variable set {xi : i ∈ Z+} and also in

the isomorphic monoid F of eventually-zero sequences of natural numbers. More formally,

NZ+ denotes the set of all functions from Z+ to N and for f ∈ NZ+ , we define supp(f) :=

{i ∈ Z+ : f(i) 6= 0} to be the support of f . Then the set F := {f ∈ NZ+
: |supp(f)| <∞}

of all functions of finite support forms a commutative monoid (F,+,0), under addition

and with unit the constantly-zero function 0. Clearly, this monoid is simply an additive

rendering of the free commutative monoid on countably many generators and isomorphic

to the above multiplicative rendering by exactly the map f 7→ x∞
f , and we will freely

136

move between the two representations. Under this isomorphism the variable xi maps to the

generator ei, which has 1 in the i-th entry and 0 everywhere else.

For reasons that will be clear soon, we view the elements of F as column vectors and

we also consider the bijective set FT of the row vectors, which are the transposes of the

elements of F. In particular, for f ∈ F and σ ∈ FT , the matrix product σf yields a 1 × 1

matrix, which we identify with the natural number equal to its unique entry. Even though

f and σ are each of infinite dimension, they both have finite support, so their product is

well defined. For a set X ⊆ F, we write σX := {σf ∈ N : f ∈ X} and supp(X) :=⋃
f∈X supp(f). For n ∈ N, we will often define the set n := {1, . . . , n} for ease of

notation.

In this way, for n ∈ Z+, the n-variable linear vector 1n ∈ F is written

1n :=
∑
k∈n

ek.

Definition 5.3.1. We identify the proper ISR-equations for CRL by the set A ⊆ F× ℘(F),

where (a0, A) ∈ A if and only if A is finite and supp(A) ⊆ supp(a0). Similarly, the simple

equations for CRL by are represented by S ⊆ A, where (a0, A) ∈ S if a0 = 1n for some

n ∈ Z+.

We see that each proper n-variable equation [A] corresponds to some (a0, A) ∈ A via

xn
a0 ≤

∨
r∈A

xn
r.

137

By the terminology of Definition 2.1.1, an equation [A] = (a0, A) is trivial if a0 ∈ A, and

integral if supp(A) (supp(a0).5

Figure 5.1 contains examples of simple equations [R] viewed as sets of vectors R:

[R] 1n R
(i) x ≤ 1 11 {0}
(ii) x ≤ x2 11 {2e1}
(iii) x ≤ x2 ∨ 1 11 {2e1,0}
(iv) x ≤ x2 ∨ x4 11 {2e1, 4e1}
(v) xy ≤ x2y ∨ x3y2 12 {2e1 + e2, 3e1 + 2e2}
(vi) xyz ≤ x2y ∨ y2z ∨ xz2 13 {2e1 + e2, 2e2 + e3, e1 + 2e3}
(vii) xyz ≤ xz2 ∨ yz 13 {e1 + 2e3, e2 + e3}

Figure 5.1: Simple equations as set of vectors

A substitution σ on F is fully determined by its application on the generators ei 7→

fi ∈ F for each i ∈ Z+, and as it is a homomorphism, namely an additive/linear map,

its application is given by multiplication of an associated matrix Mσ; so σ(f) = Mσf .

Since we only consider finite sets R ⊆ F for equations [A] = (a0, A) ∈ S, we may view

R ⊆ Nn and, in this way, will only consider substitutions σ : Nn → Nk, in which case the

associated Mσ is a k × n matrix; in this case, we say σ is a k-variable substitution. We

will write σi ∈ Nn for the i-th row of Mσ for each i ≤ k and also Mσ = (σi)
k
i=1. Abusing

notation, we will identify σ = Mσ = (σi)
k
i=1. If [A] = (a0, A) ∈ A, then (σa0,σA) ∈ A,

which we denote by [σA].

Definition 5.3.2. We say a finite set V ⊆ F is a spine if V = {0} or V \{0} = {v1, . . ., vk}

such that i ∈ supp(vi) ⊆ {1, . . ., i} for each 1 ≤ i ≤ k. If σ is a substitution, we say V

is a σ-spine if σV is a spine. We say an equation [V] = (f, V) ∈ A is spinal if [V] is

5That is, a0 ∈ A implies RL |= [A], and by Proposition 2.1.2, supp(a0) \ supp(A) 6= ∅ implies R |=
[A] ⇐⇒ R |= x ≤ 1 for any R ∈ RL.

138

nontrivial and V is a spine. I.e., viewing it as an ISR-equation, [V] is equivalently written

as:

[V] : x
f(1)
1 · · ·xf(k)

k︸ ︷︷ ︸
f

≤ (1 ∨)︸ ︷︷ ︸
0

x
v1(1)
1︸ ︷︷ ︸
v1

∨xv2(1)
1 x

v2(2)
2︸ ︷︷ ︸

v2

∨ · · · ∨ xvk(1)
1 · · ·xvk(k)

k︸ ︷︷ ︸
vk

,

where (1∨) is meant to signify 1 may or may not be included in the join, i.e., whether 0

is contained in V . We say a simple equation [R] = (1n,R) ∈ S is pre-spinal if there is a

substitution σ such that [σR] is spinal.

Note that all knotted equations [kmn] : xn ≤ xm are spinal and so their equivalent

simple equations [Kmn] (as defined in Section 2.4) are pre-spinal. As a consequence of the

definition, [R] is spinal if an only if [R ∪ {0}] is spinal, so all equations xn ≤ xm ∨ 1 are

spinal as well.6 From Table 5.1, we see that (i)-(iii) are spinal. The simple equation (vii)

is pre-spinal via the 1-variable substitution σ given by σ := (e1 +e2)T , i.e., CRL+(vii) |=

x2 ≤ x. On the other hand, no trivial equations are pre-spinal. The general characterization

of whether a simple equation is pre-spinal will be addressed in Section 5.3, where it can be

verified that (iv)− (vi) in Table (5.1) are not pre-spinal by Theorem 5.3.5.

Definition 5.3.3. The set U contains all simple equations that are not pre-spinal. If [R] is

any simple equation in RL, we write [R] ∈ U iff [R]com ∈ U .

In the following sections we will prove, in particular, the following theorem as a con-

sequence of Lemma 4.1.11, Lemma 5.1.11, Corollary 5.1.9, and Corollary 5.3.14:

Theorem 5.3.1. Let Γ ⊆ U be finite. Then any variety V in the interval CRL+Γ ⊆ V ⊆ RL

has an undecidable word problem.

In particular, by Corollary 4.3.10 we prove:

6It should be noted that knotted extensions of CRL have the FEP (see Proposition 3.1.1) and hence a
decidable word problem, but decidability results for xn ≤ xm ∨ 1 are unknown to this author.

139

Theorem 5.3.2. Let Γ ⊆ U be finite. If CRL + Γ is expansive then it has an undecidable

equational theory.

We will characterize the complement of U by giving conditions for when a simple

equation [D] is pre-spinal. We will show that if there are infinitely many K such that

[D], K 6|= (??) then we can construct σ witnessing the pre-spinality of [D]. Then by

Lemma 5.3.4, [D] ∈ U if and only if there is N > 1 where [D], K |= (??) for all K > N ,

establishing Theorem 5.3.1. To that aim, we make the following definitions and observa-

tions.

For f ∈ F and for S ⊆ Z+ finite, we write f [S] to be the restriction of f to the indices

S, and can naturally view f [S] ∈ N|S|. We say f is S-positive if f [S] > 0, i.e., f [S] 6= 0

and f(i) ≥ 0 for each i ∈ S. For T ⊆ S, we say f is (T, S)-positive if f is T -positive and

supp(f) ⊆ S. For D ⊆ F with supp(D) ⊆ n, we write D[S] = {d[S] : d ∈ D} and will

interchangeably view D[S] as both set or a |S|×|D|matrix with columns from D[S] ⊆ Nn;

in which case we denote the i-th row of D by D[i] := D[{i}].

By definition, [D] = (1n,D) is pre-spinal iff there exists a substitution σ such that

σD ⊆ F is a spine and σ1n 6∈ σD, ensuring it is not trivial. Since no integral equation is in

U by Lemma 5.1.10, we will assume supp(D) = n henceforth. Similarly, if σD is a spine

then we will assume σD\{0} 6= ∅. Since (1n,D) is pre-spinal if and only if (1n,D∪{0})

is pre-spinal, we will assume any spine is of the form V = {v0, v1, . . ., vk}, where always

v0 = 0 and vi given so that i ∈ supp(vi) ⊆ {1, . . ., i} for each 1 ≤ i ≤ k.

5.3.2 Spinal equations. Let V ⊂ F be a spine. Viewing it as a matrix of column vectors

[v0 v1 · · · vk], we see that V is an upper-right triangular matrix such that vi(i) 6= 0. For

f ∈ F, (f, V) ∈ A only if supp(V) ⊆ supp(f), and is furthermore spinal only if f 6∈ V . It

easily follows that [V] = (f, V) ∈ A is spinal only if f 6= vk. We say [V] is reduced-spinal

if furthermore f(1) 6= vk(1) but f(i) = v(i) for all i > 1. So for every spinal equation [V],

140

(f [X], V [X]) is reduced-spinal, where m = max{i : f(i) 6= vk(i)} and X = {m, . . ., k}.

That is, [τV] is reduced-spinal, where τ = (eTi+m)k−mi=0 .

V =

0 v1(1) · · · vm(1) · · · vk(1)
...

...
...

...
0 0 · · · vm(m) · · · vk(m)
...

...
...

...
0 0 · · · 0 · · · vk(k)

 τV

; f =

f(1)

...
f(m)

...
f(k)

 τf

Figure 5.2: Reduced-spinal equation

Lemma 5.3.3. Let [V] = (f, V) ∈ A be spinal. For any injection φ : N → N there exists

τ ∈ FT and C ∈ N such that C + τV ⊆ φ[N] but τf 6∈ τV .

Proof. By the above observation, we may assume [V] is reduced-spinal. By definition of

[V] being reduced, f(1) 6= vk(1) but f(i) = vk(i) for each i > 1. Hence τf 6= τvk for

any τ ∈ FT with τ(1) > 0. To ensure τf 6∈ τV , it is enough to construct a τ such that

τ(i+ 1) > τvi for each i = 1, . . ., k − 1, which is well defined since vi(i+ j) = 0 for any

j ≥ 1. Indeed, if any τ satisfying such a property, then for each 1 ≤ i < k,

τf =
k∑
j=1

τ(j)f(j) ≥ τ(i+ 1)f(i+ 1) ≥ τ(i+ 1) > τvi,

since f(j) > 0 for each j = 1, . . ., k by definition of [V] being reduced-spinal. And hence

τf 6∈ τV .

Let φ be an injection. With the above in mind, we will construct a τ ∈ FT satisfying the

property that τ(i+ 1) > τvi for each i = 1, . . ., k − 1, as well as ensuring C + τV ⊆ φ[N]

for some C ∈ N.

Define Ni :=
∏k

j=i vj(j) for each 1 ≤ i ≤ k. Since φ is an injection, φ[N] is infinite,

there exists an infinite subset A ⊆ N such that for all a, b ∈ A, φ(a) ≡ φ(b) mod N1.

Define C = min{φ(a) : a ∈ A} and a0 = φ−1(C). We inductively construct τ such

141

that C + τvi ∈ φ[N]. For n = 1, since φ[A] is infinite, there exists a1 ∈ A such that

φ(a1) − C = N1k1 = t1v1(1), for some k1 > φ(a0) = C and t1 := N2k1. Hence

C + (t1e
T
1)v1 = C + t1v1(1) = φ(a1). Define τ1 = t1e

T
1 ∈ FT .

Suppose that for n ≥ 1, there exists t1, . . ., tn and a1, . . ., an such that C + τnvi =

φ(ai), where τn =
∑n

i=1 tie
T
i , and ti = Ni+1ki with ki > φ(ai−1), for each 1 ≤ i ≤ n.

By definition for a ∈ A, there exists ma ∈ N such that φ(a) − φ(a0) = N1ma. Let

xa := φ(a)− C − τnvn+1 ∈ Z. By the induction hypothesis,

xa = N1ma −
n∑
i=1

Ni+1kivn+1(i) ≡ 0 mod Nn+1, (5.2)

since C = φ(a0) and Nn+1 | Ni for all i ≤ n+ 1. Since φ[A] is infinite, there exists infinite

A′ ⊆ A such that xa > 0 for each a ∈ A′. So by Equation 5.2, there exists ā ∈ A′ such

that xā = Nn+1kā = tāvn+1(n + 1), for some kā ≥ φ(an) and tā := Nn+2kā. We set

an+1 := ā, kn+1 := kā, tn+1 := tā, and τn+1 = τn + tn+1e
T
n+1. Thus τn+1(n + 1) > φ(an)

and C + τn+1vi = φ(ai), for each 1 ≤ i ≤ n+ 1.

Set τ = τk. Since [V] is reduced-spinal, τf 6= τvk. Furthermore, τf > τvi since

tau(i+ 1) = ti+1 > τvi, for each i = 0, 1, . . ., k − 1. Therefore τf 6∈ τV .

We deduce that Lemma 5.1.11 is not applicable to any pre-spinal equation:7

Corollary 5.3.4. If [D] is pre-spinal and K > 1 then [D], K 6|= (??).

Proof. Let [D] = (1n,D) ∈ S be pre-spinal. Then there exists a reduced-spinal [V] =

(f, V) ∈ A such that [V] = [σD] for some substitution σ. Fix K > 1 and let φK be the

map n 7→ Kn. By Lemma 5.3.3, C + τV ⊆ φK [N] but τf 6∈ τV , for some τ ∈ FT and

7In fact, Lemma 5.3.3 implies that the argumentation used in Lemma 5.1.11 will be ineffective for prov-
ing register-admissibility for any machine Bφ, which simulates the register contents for a machine B by an
injective function, without having more information about Acc(B).

142

C ∈ N. Setting σ = τσ ∈ FT , we obtain C + σD ⊆ φK [N] but σ1n 6∈ σD. Setting σ′ = σ

and C ′ = C we deduce [D], K 6|= (??).

5.3.3 Pre-spinality. Let σ be a substitution and D ⊆ F. If σD = {f} for some f ∈ F,

we say σ solves D, and we write σD = f . Similarly, if σ ∈ FT such that σD = {a} for

some a ∈ N, we say σ is a solution for D and write σD = a, and define Sol(D) ⊆ FT to

be the set of all solutions of D. Clearly, σ solves D iff σ = (σi)
k
i=1 and σi is a solution

for D for each i = 1, . . ., k. Given non-empty T ⊆ S ⊆ supp(D), we say σ ∈ FT is a

(T, S)-solution for D if σ ∈ Sol(D) and σ is (T, S)-positive.

Let σ = (σi)
k
i=1 be a substitution for k ≥ 1. Suppose D is a σ-spine witnessed by

σD = V , for some spine V . Viewed as a matrix equation and rearranging the columns,

this substitution naturally partitions the columns of D so that σD = [σDσ
0 · · · σDσ

k] =

[v0 · · · vk], i.e., Dσ
j := {d ∈ D : σd = vj} and so σ solves Dj . In other words, we use the

flexibility of moving columns in aims to display a better presentation.

For each 0 ≤ j ≤ k, we define Sj ⊆ n, for j ≥ 1 with i ∈ Sj iff Dσ
j [i] 6= 0 and

Dσ
l [i] = 0 for all 0 ≤ l < j, and S0 = n \ S↑1 , where S↑j :=

⋃
j>i Si. Now, σiDσ

j = vj(i)

and since i ∈ supp(vi) ⊆ {1, . . ., i}, σiDσ
i > 0 and σiDσ

j = 0 only if i > j, for each i > 1.

Therefore Sj 6= ∅ for each j ≥ 1 and so bσ := (S0, . . ., Sk) partitions n, with S0 possibly

empty. Furthermore, every row of Dσ
i [Si] is non-zero, while Dσ

j [Si] = 0 when i > j, for

each i ≥ 1. For the same reason, σi[Si] 6= 0 but σi[Sj] = 0 for each j < i, i.e., σi is

(Si, S
↑
i)-positive.

For each k ≥ j ≥ 1 define Dbσ
∗j := {d ∈ D : supp(d) ∩ Sj 6= ∅} \

⋃
i>j Dbσ

∗i and

Dbσ
∗0 = D \

⋃k
i=1 Dbσ

∗i . Then Dbσ
∗j = Dσ

j for each j ≥ 0. So Dσ = Dbσ := [Dbσ
∗0 · · · Dbσ

∗k].

Visually, we rearrange D and σ into upper-triangle block matrices Dbσ and σbσ so that:

143

0 σbσ

11 · · · σbσ
1i · · · σ1k

...
...

...
...

0 0 · · · σbσ
ii · · · σbσ

ik
...

...
0 0 · · · 0 · · · σbσ

kk

Dbσ
00 Dbσ

01 · · · Dbσ
0i · · · Dbσ

0k

0 Dbσ
11 · · · Dbσ

1i · · · Dbσ
1k

...
...

...
...

0 0 · · · Dbσ
ii · · · Dbσ

ik
...

...
0 0 · · · 0 · · · Dbσ

kk

= V,

Figure 5.3: Spines as products of upper-triangular block matrices

where Dbσ
ij := Dbσ

∗j [Si] and σbσ
ij := σi[Sj]. That is, starting from the right, we collect

all rows D[i], that are only non-zero in Dσ
k , into a collection Dbσ

k∗ and move it to the bottom.

We then repeat this process for the submatrix of D with the rows Dbσ
j∗ and columns Dj

removed, for j ≤ k.

Let R ⊆ F with supp(R) = n, and let b = (X0, . . ., Xk) a tuple of subsets X0, . . ., Xn

that partition n, where we allow X0 possibly empty. Define Rb := [Rb
∗0 · · · Rb

∗k], where

Rb
j := {r ∈ R : supp(R) ∩Xj 6= ∅} \

⋃
i>j

Rb
∗i

for each 0 < j ≤ k, and Rb
∗0 = R \

⋃k
j=1 Rb

∗j . We say b is a blocking for R iff the sets Rb
∗j

are nonempty for each 0 < j ≤ k. Given b = (X0, . . ., Xk), we define X↑i :=
⋃k
j=iXi.

Note that there are only finitely many possible blockings for R, and if (X0,, Xk) is a

blocking then (n \X↑i , Xi, . . ., Xk) is a blocking for each i = 1, . . ., k.

From the observation above, if D is a σ-spine then bσ is a blocking for D. Moreover,

if σ = (σi)
k
i=1, then σi is a (Si, S

↑
i)-solution for each Dbσ

∗j . On the other hand, if b =

(S0, . . ., Sk) is a blocking for D and there exists σ1, . . ., σk ∈
⋂k
j=1 Sol(Db

∗j) such that each

σi is (Si, S
↑
i)-positive, then D is a σ-spine for σ := (σi)

k
i=1. If [D] = (1n,D), then [σD] is

a spine if σj1n 6= σjD
b
∗k for some j ≥ 1. Since we need only consider reduced-spines, we

conclude:

144

Theorem 5.3.5. Let [D] = (1n,D) ∈ S. Then [D] is pre-spinal if and only if [D] is

integral or there exists a blocking b = (S0, . . ., Sk) of D, with k ≥ 1, and σ1, . . ., σk ∈⋂k
j=1 Sol(Db

∗j), where each σi is (Si, S
↑
i)-positive, but σ11n 6= σ1Db

∗k.

Example 5.3.1. Consider the simple equation

[R] : wxyz ≤ 1 ∨ w ∨ w4x2y ∨ w3y2z ∨ w2xz2.

Indexing the variables alphabetically, [R] is equivalent to (14,R) ∈ S where

R = {0, (1, 0, 0, 0), (4, 2, 1, 0), (3, 0, 2, 1), (2, 1, 0, 2)},

its natural presentation as a subset of N4. Observe that

σRb =

 1 0 0 1

0 1 1 1

 ·

0 1 4 3 2

0 0 2 0 1

0 0 1 2 0

0 0 0 1 2

=

 0 1 4 4 4

0 0 3 3 3

 = V,

where b = (∅, {1}, {2, 3, 4}) and σ = (σi)
2
i=1, where σ1 = (1, 0, 0, 1)T ;σ2 = (0, 1, 1, 1)T .

Since σ14 = (2, 3) 6∈ σR and V is a spine, (σ14,σR) is spinal. Therefore [R] is pre-

spinal. Reverting to the multiplicative notation, this substitution shows

CRL + [R] |= x2y3 ≤ 1 ∨ x ∨ x4y3.

5.3.4 Solutions in Rn. Let v ∈ Rn and M ⊆ Rn. We say a vector v is orthogonal

to the set M if vTM = 0. We say v ∈ Rn is strictly (strongly) positive if v 6= 0 and

v(i) ≥ 0 (v(i) > 0) for each i ∈ n. The set Xn
+ (Xn

++) denotes the set of all strictly

145

(strongly) positive vectors inXn, called the strictly (strongly) positive orthant inXn, where

X ∈ {Z,Q,R}. Note that span(M)[S] = span(M [S]) for any M ⊆ Rn and S ⊆ n.

Let σ ∈ FT , D ⊆ F and S ⊆ n. Then σ is a solution for D[S] iff σ[S] is orthogonal

to D̄[S] in Rn, where D̄ := {d − d̄ : d ∈ D} for any fixed d̄ ∈ D. Hence, if T ⊆ S, then

there exists a (T, S)-solution for D iff there exists a T -solution for D[S] iff there exists a

T -positive v ∈ Rn
+ orthogonal to D̄[S].8 We recall a theorem of the alternatives for positive

solutions to linear systems.

Theorem 5.3.6 ([21]). Let M ⊆ Rn be a set of vectors. Then exactly one of the following

holds:

1. There exists a strictly (strongly) positive v ∈ Rn orthogonal to M , or

2. span(M) intersects the strongly (strictly) positive orthant of Rn.

Corollary 5.3.7. Let M ⊆ Rn and S ⊆ {1, . . ., n} be nonempty. If there is no S-positive

vector v ∈ Rn
+ orthogonal to M then there exists a strictly positive w ∈ span(M) with

S ⊆ supp(w).

Proof. The assumption implies, in particular, there is no strongly positive vector orthog-

onal to M . By Theorem 5.3.6, there exists a strictly positive v ∈ span(M). Proceeding

inductively, if n = 1 then supp(v) = {1} = S and we are done. Suppose the claim is true

for all 1 ≤ m < n. Let Y = {i : ∃u ∈ span(M) ∩ Rn
+ with u(i) > 0} and X := n \ Y .

Since v is strictly positive, Y 6= ∅ and there exists w1 ∈ span(M) with Y = supp(w1).

If S ⊆ Y then we are done. Otherwise, T := X ∩ S 6= ∅ and we consider the projection

M [X] ⊆ R|X|. Since a T -positive u ∈ R|X|+ orthogonal to M [X] would also serve as an

S-positive vector in Rn
+ orthogonal to M , there must be no T -positive u ∈ Rn

+ orthogo-

nal to M [X]. Since 1 ≤ |X| < n, by the induction hypothesis we have that there exists

8For the reverse direction, since D̄[S] ⊆ Zn, by Gaussian Elimination we may assume v ∈ Qn+, and so
σ = t · v ∈ Zn+ for some t ∈ N.

146

w′ ∈ span(M [X]) with T ⊆ supp(w′). Let w2 ∈ span(M) such that w2[X] = w′. Let

t = max{|w2(i)| : i ∈ Y }. Then since w1[X] = 0 and w2[X] is strictly positive, we have

that w := (t+ 1)w1 + w2 ∈ span(M) ∩ Rn
+ such that S ⊆ supp(w).

Corollary 5.3.8. Let M ⊆ Rn and T ⊆ S ⊆ n be non-empty. If there is no T -positive

v ∈ Rn
+ orthogonal to M [S] then there exists L ∈ N such that, for any v ∈ Rn

+ orthogonal

to M , v(i) ≤ L ·max{v(j) : j ∈ n \ S} for each i ∈ T .

Proof. By Corollary 5.3.7, there exists a strictly positive vector w̄ ∈ span(M [S]) with

T ⊆ supp(w̄). So there is w ∈ span(M) with w[S] = w̄. Let X = n \ S and L =

|X| ·max{|w(j)| : j ∈ X}. Suppose v ∈ Rn
+ is orthogonal to M , then vTw = 0 and, since

T ⊆ supp(w) we have

v(i) ≤
∑
j∈S

w(j)v(j) =
∑
j∈X

−w(j)v(j) ≤
∑
j∈X

|w(j)|v(j) ≤ L ·max{v(j) : j ∈ X},

for each i ∈ T .

5.3.5 (?) and (??). Recall ∆[D] :=
∑n

i=1 max{|d(i) − d′(i)| : d, d′ ∈ D} for finite

D ⊆ F. For each K > 1, let φK be the mapping n 7→ Kn.

Lemma 5.3.9. Let d, d′ ∈ F and K > 1 and suppose C + σd, C + σd′ ∈ φk[N] with

σd > σd′, for some C ∈ N and σ ∈ FT . If there exists L ∈ N such that σ(i) ≤ L · (σd′)

for each i ∈ supp{d, d′}, then K ≤ L ·∆[d, d′] + 1.

Proof. Suppose C + σD = Ka+b and C + σd′ = Ka are distinct, for some a ≥ 0 and

b ≥ 1. On the one hand, σd− σd′ = Ka(Kb− 1) ≥ Ka(K − 1). While on the other hand,

σd− σd′ ≤ σ|d− d′| ≤ LKa∆[d, d′]. Hence K ≤ L∆[d, d′] + 1.

For σ ∈ FT , define Dσ = [Dσ
0 · · · Dσ

k], where σ(D ∪ {0}) = {n0, . . ., nk}, for

0 = n0 < · · · < nk, and Dσ
j := {d ∈ D : σd = nj}. We say σ defines a blocking for D if

Db = Dσ for some blocking b for D, i.e., σ ∈
⋂k
j=0 Sol(Db

∗i) with σDb
∗k > · · · > σDb

∗0 = 0.

147

Lemma 5.3.10. Let D ⊆ F be finite and K > 1. Suppose σ ∈ FT and C ∈ N such that

C + σD ⊆ φK [N]. If K > ∆[D] + 1 then σ defines a blocking for D.

Proof. Suppose supp(D) = n. If k = 0 then b = (n) is the blocking, so consider k ≥ 1.

We claim for each d ∈ Dσ
k , supp(d) \ supp(

⋃k−1
i=0 Dσ

i) 6= ∅. Supposing otherwise would

entail that for each i ∈ supp(d) there exists j < k and d′ ∈ Dσ
j such that i ∈ supp(d′),

implying K ≤ ∆[D] + 1 by Lemma 5.3.9 and contradicting our assumption. Then Sk :=

{i ∈ n : Dσ
l [i] 6= 0 ⇒ l = k} is nonempty and Dσ

k = {d ∈ D : supp(d) ∩ Sk 6= ∅}.

Continuing in this way for 1 ≤ j < k, since D′ ⊆ D implies ∆[D′] ≤ ∆[D], the same

argument shows supp(d) \ supp(
⋃j−1
i=0 Dσ

i) is nonempty for each d ∈ Dσ
j , and so Sj :=

{i ∈ n : l ≤ j & Dσ
l [i] 6= 0 ⇒ l = j} is nonempty with Dσ

j = {d ∈ D : supp(d) ∩ Sj 6=

∅} \
⋃k
i=j+1 Dσ

j . By defining S0 = supp(D) \ S↑1 , we conclude b = (S0, . . ., Sk) is a

blocking of D such that Db = Dσ.

Lemma 5.3.11. Let b = (S0, . . ., Sk) be a blocking for D with k ≥ 1. Suppose for some

i ≥ 1 there is no (Si, S
↑
i)-solution in

⋂k
j=0 Sol(Db

∗j). Then there exists L ∈ N such that for

any σ ∈ FT with Dσ = Db, if C + σD ⊆ φK [N] then K ≤ L∆[D] + 1.

Proof. If i = 1, then σ ∈ Sol(Db
∗1) implies σDb

∗1 = 0 by assumption, so Dσ 6= Db and

the claim is vacuously satisfied. Suppose i > 1. Observe there exists a (Si, S
↑
i)-solution in⋂k

j=0 Sol(Db
∗j) iff there exists an Si-positive v ∈ R+ orthogonal to D̄b[S↑i]. Since Dσ = Db

implies σDb
∗j > σDb

∗j−1, by Corollary 5.3.8 and Lemma 5.3.9 the result follows.

For K > 1 and [D] = (1n,D) ∈ S, we write [D], K |= (?) if and only if

For all σ ∈ FT and for all C ∈ N,

if C + σd is a power of K for each d ∈ D

then there exists d̄ ∈ D such that σd̄ = σ1n;

(?)

i.e., C + σD ⊆ φK [N] implies σ1n ∈ σD.

148

Lemma 5.3.12. If [D] ∈ U then [D], K |= (?) for all K sufficiently large.

Proof. We proceed by contraposition. Suppose A := {K ∈ N : [D], K 6|= (?)} is infinite.

For each blocking b of D, define Ab ⊆ A via K ∈ Ab iff K ∈ A witnessed by σ ∈ FT

such that Dσ = Db. Since A is infinite and there are only finitely many blockings of D,

there exists b such that Ab is infinite by Lemma 5.3.10. Fix a blocking b = (S0, . . ., Sk)

for D such that Ab is infinite. Let σ1 be a witness to the failure of (?) for some K ∈ Ab

such that Dσ1 = Db. If k = 0 then [D] must be integral and we are done. If k ≥ 1, then

σ1 ∈
⋂k
j=0 Sol(Db

∗j) is (S1, S
↑
1)-solution such that σ11n 6= σDb

∗k. Furthermore, since Ab is

infinite there must be a (Si, S
↑
i)-solution σi ∈

⋂k
j=0 Sol(Db

∗j) by Lemma 5.3.11, for each

1 ≤ i ≤ k. Therefore, by Theorem 5.3.5, [D] 6∈ U .

Theorem 5.3.13. Let [D] ∈ S . Then [D] ∈ U if and only if there exists N ∈ N such that

[D], K |= (??) for every K ≥ N.

Proof. The reverse direction follows from Lemma 5.3.4. We proceed by contradiction for

the forward direction. Suppose [D] = (1n,D) ∈ U but for every M ∈ N there exists

KM > M such that [D], KM 6|= (??), i.e., there exists σ, σ′ ∈ F and C,C ′ ∈ N such that

C + σD, C ′ + σ′D ⊆ φKM [N] but for all d ∈ D, either σ1n 6= σd or σ′1n 6= σ′d. By

Lemma 5.3.10, σ and σ′ each define a blocking for D if KM > ∆[D] + 1. Since there are

only finitely many blockings of D, there must exist a pair b, c that witness this failure for

every KM in some infinite set A ⊆ N. Let b = (S0, . . ., Sk) and c = (T0, . . ., Tl). Since

[D] ∈ U , [D] is not integral and so k, l ≥ 1.

Since A is infinite, there is a (Sk, Sk)-solution σb ∈ FT for Db
∗k by Lemma 5.3.11.

Thus D is a (σb)-spine. Now, σb1n = σbD
b
k since otherwise [D] would be pre-spinal,

contradicting [D] ∈ U . So let tb := σb1n = σbDK , and note tb > 0 since k ≥ 1. By

symmetry, there is a (Tl, Tl)-solution σc for Dc
∗l such that tc := σc1n = σcD

c
l > 0.

149

We claim that Sk and Tl are disjoint. Since [D] ∈ U , by Lemma 5.3.12 there exists

N ∈ N such that [D], K |= (?) for everyK ≥ N . LetK ∈ AwithK > max{N,∆[D]+1},

and σ, σ′ falsifying (??) for some with Db = Dσ and Dc = Dσ′ . Since K > N , (?) implies

that σ1n ∈ σDb (σ′1n ∈ σDc). In addition, K > ∆[D] + 1 further implies σ1n = σDb
∗k

(σ′1n = σ′Dc
∗l) by Lemma 5.3.9. Since σ, σ′ falsify (??), there is no d ∈ D such that

σd = σ1n and σ′d = σ′1n. So Db
∗k ∩ Dc

∗l = ∅, and hence Sk ∩ Tl = ∅ by definition of b, c

being blockings. Hence σbDc
∗l = 0 and σcDb

∗k = 0. LetX1 := Db
∗k∪Dc

∗l andX0 := D\X1.

Hence, for σ̄ := tcσb + tbσc, it follows that σ̄X1 = tbtc > σ̄X0 = 0, but σ̄1n = 2tbtc >

tbtc. Therefore [D] is a (σ̄)-spine, contradicting [D] ∈ U .

Corollary 5.3.14. If Σ ⊆ U is finite then there exists K > 1 such that Σ, K |= (??).

Proof. For each [D] ∈ Σ there exists ND such that [D], K |= (??) for all K ≥ ND. Since

Σ is finite, let K := max{ND : [D] ∈ Σ}. Then Σ, K |= (??) by definition.

150

Chapter 6: Concluding remarks

We conclude this thesis with remarks about related results and a list of open problems.

6.1 The class U and known results

As our construction of algebraic machines in Chapter 4 was inspired by both [14]

and [5], there are many connections between these manuscripts and the results of Chapter

5. We wish to briefly mention here the general scope of the results obtained in [14] and

[5], natural generalizations of them, and their relation to the class U . We note that the

constructions in [14] and [5] properly require non-commutativity. Although we show there

is overlap between the consequences of [14] and Section 5.2, we note that the our results

for extensions of CRL are novel.

6.1.1 Horčı́k and the word problem for non-commutative varieties. In [14], Horčı́k

proves that the word problem for RL + [kmn] is undecidable for any knotted equation [kmn]

for the values n 6= m where m ≥ 2 and n ≥ 1. I.e., for all expansive knotted equations

and all non-mingly compressive knotted equations. The argument used to establish this fact

involves a residuated frames construction as in Section 4.1.1.

In particular, although not explicitly stated in [14], all equations present in the quasi-

equations used for the encoding are of monoid-type in the fragment {≤, ·, 1}. Hence,

[14] in fact establishes that the {≤, ·, 1}-fragment of the word problem for RL + [kmn] in

undecidable for the knotted equations described above.

We observe that since all such equations are knotted, they are by definition spinal and

therefore are not members of U . In fact, the result captures a broad class of pre-spinal

equations for which our methods in Chapter 5 are unable to address. The residuated frame

W that Horčı́k constructs is such that W+ |= (x3 ≤ x2)&(x ≤ x2). By the same argument

151

in Theorem 4.1.5, Horčı́k shows that any subvariety V ⊆ RL containing W+ will have an

undecidable word problem. Consequently, if RL |= [(∀x)(x3 ≤ x2)&(x ≤ x2)]⇒ (∀x)[R]

for some simple equation [R], then W+ ∈ RL + [R]. In particular (by Lem. 2.7 [14]):

Proposition 6.1.1 ([14]). Let [R] = (1n,R) be a nontrivial simple equation. If R contains

a square, i.e., ux2v ∈ R for some monoid terms u, v, x, then W+ ∈ RL + [R]. In partic-

ular, for any non-mingly single-variable equation [R], the word problem for RL + [R] is

undecidable.

Although this result is remarkably encompassing, there are members of U−1 for which

[14] does not explicitly capture. We can use the very same function which Horčı́k utilized

to ensure a language of square-free words (ensuring W+ |= [(x3 ≤ x2)&(x ≤ x2)]), to

obtain a simple equation for which the above proposition is not applicable. Consider the

alphabet Σ = {x, y, z} and the free semigroup Σ+ generated by Σ. Let h : Σ+ → Σ+ be

the semigroup homomorphism defined as follows:

h(x) = xyz,

h(y) = xz,

h(z) = y.

.

As shown in [18], the n-th composition hn(x) is square-free, for any n ≥ 0.

Consider the simple equation [R] : x ≤ x2 ∨ x3. Now, [R] ∈ U−1 and R contains a

square. Both Theorem 5.2.6 and [14] entail that the {≤, ·, 1}-fragment of the word problem

for RL + [R] is undecidable. Consider now the equation [hR] : h(x) ≤ h2(x) ∨ h3(x). By

the definition of h, [hR] is given by

[hR] : xyz ≤ xyzxzy ∨ xyzxzyxyzyxz,

152

and the right hand side is square-free. On the one hand, the argument in [14] seemingly

fails for the equation [hR]. On the other hand, [hR] ∈ U−1 and therefore by Theorem 5.2.6,

the {≤, ·, 1}-fragment of the word problem for RL + [hR] is undecidable.1 In this way,

infinitely many examples for which Theorem 5.2.6 hold but [14] seemingly fails can be

constructed as above.

6.1.2 Chvalovský & Horčı́k and the non-commutative varieties. In [5], Chvalovský

and Horčı́k prove that for every expansive knotted equation [kmn], i.e., for m > n > 0,

RL+[kmn] has an undecidable equational theory. In particular, they establish the remarkable

fact that provability in FLc is undecidable. The main idea developed in [5] was to obtain a

deduction theorem in which the undecidability of the word problem provided in [14] could

be bootstrapped to the equational theory.

As in [14], the primary focus of [5] was to investigate expansive knotted equations,

contraction in particular. However their result is general enough to establish that expansive

equations, as defined in Section 2.4, admit the same property. That is, RL + [E] has an

undecidable equational theory for any expansive equation [E]. As in [14], the challenge

was to create an encoding that maintained the property that only square-free words are

accepted to ensure instances of [kmn] are admissible. This is achieved by their so-called

Conditional String-Rewriting Systems (CSRS). Now, expansive rules are of the form

[E] : xn ≤
∨
p∈P

xp,

for some finite nonempty set P ⊆ N such that p > n for each p ∈ P . As observed

in Equation (4.12), if [RE] is the equivalent simple equation for [E], then [RE] contains

1It is straightforward to verify [hR] ∈ U−1. Indeed, [hR]com : xyz ≤ x2y2z2 ∨ x3y3z3. Since the
corresponding set of vectors is hR := {(2, 2, 2), (3, 3, 3)}, there is no non-zero σ ∈ N3 such that |σhR| = 1
and σ13 6∈ σhR. Hence we obtain [hR] ∈ U . Since no variable appears precisely once in each joinand in
hR, hR ∈ U−1.

153

a square, i.e., ux2v ∈ Re for some monoid terms u, v, x. As a result (Thm. 3.5 [5]),

their CSRS language L is trivially closed under the equation [RE] since it L only accepts

square-free words. That is, [RE] is admissible in the language L.

The last step in [5] was to ensure the completeness of the encoding, i.e., L accepts

some word if and only if some specific equation is satisfied in RL + [kmn]. This is achieved,

on the one hand, by a cleverly constructed formula (§4 [5]) using so-called atomic CSRSs.

On the other hand, the only role that the expansive knotted equation plays in the deduction

theorem if for carrying out the instructions of the atomic CSRS (Lem. 4.1 [5]). That is,

merely utilizing the fact that RL + [kmn] is negatively n-potent (see Section 2.5).

It is clear then that since an expansive equation [E] is such that (i) [RE] contains

squares, and (ii) the variety RL + [RE] is negatively n-potent, the variety RL + [RE] has an

undecidable equational theory (Thm. 3.5, Thm. 4.4, §5.2, §5.3 [5]).

6.2 Open problems and future work

Lastly, we conclude with a list of open problems that arise from the contents of this

thesis.

1. Let be a set of simple equations Σ and [A] = (a0, A) a proper ISR-equation. By

Lemma 2.3.3, RL + Σ |= [A] iff ISR + Σ |= [A] iff A `Σ a0. We observed in

Section 3.2, that determining whether or not A `Σ a0 is recursively enumerable. We

gave sufficient condition for decidability in Theorem 3.2.1 and Theorem 3.2.2. Is

it decidable in general? I.e., is the equational theory of ISR + Σ always decidable,

or does there exists a special set of simple equations Σ such that ISR + Σ has an

undecidable equational theory?

2. In Section 3.4, we show that the decision procedure for potent varieties of CRL

extended by finitely many simple rules not only primitive recursive, but at worst

doubly-exponential. Can this upper bound for complexity be lowered to, say, an

exponential bound?

154

3. Let m > n > 0 and [kmn] be an expansive knotted equation. By [23] and Section 4.4,

there is no primitive recursive decision procedure for the {∨, ·, 1}-fragment of the

quasi-equational theory for CRL + [kmn]. What can be said about the complexity of

the word problem for this fragment? Specifically, is the word problem for {∨, ·, 1}-

fragment of CRL + [c] primitive recursive?

4. Continuing from the above, since these varieties are commutative [23] and Sec-

tion 4.4 relied on the presence of ∨ to simulate zero-test instructions for ACMs.

What is the complexity of the quasi-equational theory (or even the word problem)

for the {≤, cot, 1}-fragment of these varieties?

5. For the compressive knotted equation [knm] with m > n > 0, CRL+[knm] has the FEP.

Does CRL + [knm] admit a primitive recursive decision procedure? More specifically,

what is a complexity lower bound for CRL+(x3 ≤ x2)? Can the construction in [23]

show there is no primitive recursive decision procedure for CRL + (x3 ≤ x2)?

6. In [14], it is established that RL+[kmn] has an undecidable word problem for any n ≥ 1

and m ≥ 2. In fact, this result holds for any single variable equation xn ≤
∨
p∈P x

p,

for n ≥ 1, so long as the set P 6⊆ {0, 1}. I.e., [14] does not cover equations of the

form xn ≤ x, xn ≤ x ∨ 1, and xn ≤ 1 (which is equivalent x ≤ 1 in RL).2 It has

been known extensions by x ≤ 1 and x2 ≤ x have decidable universal theories (and

hence the word problem is decidable). What can be said for the equations xn ≤ x

and xm ≤ x ∨ 1, for n ≥ 3 and m ≥ 2?

7. In [5] and Section 6.1.2, it is shown that extensions of RL by expansive equations

have an undecidable equational theory. Is this also true for other, non-expansive

equations, such as x3 ≤ x2 or x ≤ x2 ∨ 1?

2We note that by Section 3.3, the varieties have the FMP.

155

8. All single-variable spinal equations are either knotted or of the form xn ≤ xm ∨ 1,

where n 6= m. In the context of CRL, knotted equations have the FEP and thus have

decidable universal theories. In Theorem 3.3.2, we establish that xn ≤ x ∨ 1, where

n > 1, has the FMP since its corresponding simple equation is completely linear.

However, for equations xn ≤ xm ∨ 1, where m > 1, nothing is known. In particular,

a running example in this thesis has been the simple equation

[d] : x ≤ x2 ∨ 1,

for which we have primarily stated negative results. By Proposition 3.1.3, CRL +

[d] does not have the FEP. By [23] and Section 4.4, the quasi-equational theory for

CRL+ [d] does not have a primitive recursive decision procedure. On the other hand,

by [14], such equations are known to have an undecidable the word problem for when

extending RL. Is the quasi-equational theory of CRL + [d] decidable or undecidable?

Is the equational theory of CRL + [d] decidable or undecidable?

156

BIBLIOGRAPHY

[1] G. Birkhoff. On the structure of abstract algebras. Proc. Camb. Philos. Soc.,

31(4):433–454, 1935.

[2] W. Blok and D. Pigozzi. Algebraizable logics. Memoirs of the American Mathemati-

cal Society, 77(396):1–78, 1989.

[3] W.J. Blok and C.J. van Alten. The finite embeddability property for residuated lattices,

pocrims and bck-algebras. Algebra Universalis, 48:253–271, 2002.

[4] S. Burris and H.P. Sankappanavar. A Course in Universal Algebra, volume 91.

Springer-Verlag, 01 1981.

[5] K. Chvalovský and R. Horčı́k. Full lambek calculus with contraction is undecidable.

Journal of Symbolic Logic, 81(2):524–540, 2016.

[6] A. Ciabattoni, N. Galatos, and K. Terui. Algebraic proof theory for substructural log-

ics: Cut-elimination and completions. Annals of Pure and Applied Logic, 163(3):266–

290, 2012.

[7] A. Ciabottoni, B. Lellmann, C. Olarte, and E. Pimentel. From cut-free calculi to auto-

mated deduction: The case of bounded contraction. Electronic Notes in Theoretical

Computer Science, 332:75 – 93, 2017. LSFA 2016 - 11th Workshop on Logical and

Semantic Frameworks with Applications (LSFA).

[8] N. Galatos and P. Jipsen. Residuated frames with applications to decidability. Trans-

actions of the American Mathematical Societ, 365(3):1219–1249, 2013.

[9] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: an algebraic

glimpse at substructural logics, volume 151. Elsevier, Amsterdam, 2007.

157

[10] N. Galatos and H. Ono. Algebraization, parameterized local deduction theorem and

interpolation for substructural logics of FL. Studia Logica, 83:279303, 2006.

[11] G. Gentzen. Untersuchungen über das logische schließen I, II. Mathematische

Zeitschrift, 39(1):95–135, 405–431, 1935.

[12] J. Hart, L. Rafter, and C. Tsinakis. The structure of commutative residuated lattices.

International Journal of Algebra and Computation, 12:509–524, 2002.

[13] J. E. Hopcroft and J. D. Ullman. Introduction To Automata Theory, Languages, And

Computation. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1st edition, 1990.

[14] R. Horčı́k. Word problem for knotted residuated lattices. Journal of Pure Applied

Algebra, 219:1548–1563, 2015.

[15] R. Horčı́k and K. Terui. Disjunction property and complexity of substructural logics.

Theoretical Computer Science, 412(31):3992 – 4006, 2011.

[16] J. Lambek. How to program an infinite abacus. Canadian Mathematical Bulletin,

4:265–302, 1961.

[17] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for proposi-

tional linear logic. Annals of Pure and Applied Logic, 56:239–311, 1992.

[18] M. Lothaire. Algebraic Combinatorics on Words. Cambridge University Press, Cam-

bridge, 2002.

[19] E. W. Mayr and A.R. Meyer. The complexity of the finite containment problem

for petri nets. Journal of the Association for Computing Machinery, 28(3):561–576,

1981.

158

[20] M. Minksy. Recursive unsolvability of post’s problem of ‘tag’ and other topics in the

theory of turing machines. The Annals of Mathematics, 74:437–455, 1961.

[21] S. Roman. Positive Solutions to Linear Systems: Convexity and Separation. Springer

New York, New York, NY, 2005.

[22] A. Tarski. A remark on functionally free algebras. Annals of Mathematics, 47(1):163–

166, 1946.

[23] A. Urquhart. The complexity of decision procedures in relevance logic II. Journal of

Symbolic Logic, 64(4):1774–1802, 1999.

[24] C.J. van Alten. The finite model property for knotted extensions of propositional

linear logic. Journal of Symbolic Logic, 70(1):84–98, 2005.

159

	Decidability for Residuated Lattices and Substructural Logics
	Recommended Citation

	Decidability for Residuated Lattices and Substructural Logics
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Keywords
	Subject Categories
	Publication Statement

	Introduction
	Chapter summaries
	Preliminaries
	Ordered Sets
	Notions from Universal Algebra
	Algebras and Varieties
	Inference rules and proofs
	The Full Lambek Calculus
	Notions of Decidability

	Equations in the signature {,, 1}
	Equations in ISR
	ISR-equations and structural rules

	Simple Equations and Residuated Frames
	Preservation of simple equations

	Subvariety Containment
	The frame W

	Knotted and other special ISR-equations
	Deduction theorem for expansive varieties

	Decidability and Complexity Upper-bounds
	The FMP, FEP, and some known results
	Failure of the FEP

	A note on decidability in ISR
	The FMP and completely linear simple equations
	Potent Commutative Varieties
	Sequents in FLe and the * function
	*-sequents and inference rules
	Reduced proofs for potent varieties
	The decision procedure

	Algebraic Machines and Complexity Lower-bounds
	The word problem
	Algebraic Machines, Residuated frames, and the Word Problem
	Complexity and the Word Problem
	Simple equations and Admissibility
	Canonically admissible
	Hardware-admissibility

	Counter machines in RL and the {,,1 }-fragment
	Counter machines and residuated frames
	Observations on admissibility

	And-branching counter machines in (C)RL and the {,,1}-fragment
	Observations on admissibility
	Simulating CMs as ACMs and the Zero-Test Program

	Non-primitive recursive lower bounds
	An outline of the Urquhart construction
	Observations of the construction
	Weakly-expansive and expansive equations

	Undecidability and the class U of simple equations
	Admissibility for ACMs
	Motivation for axiomatic extensions of CRL
	The BK Machine
	Simple equations and admissibility for ACMs
	Undecidability, the class U, and spinal equations

	Admissibility for CMs
	The MK Machine
	Simple equations and admissibility for CMs

	Membership of U
	The class of equations U
	Spinal equations
	Pre-spinality
	Solutions in Rn
	() and ()

	Concluding remarks
	The class U and known results
	Horcík and the word problem for non-commutative varieties
	Chvalovský & Horcík and the non-commutative varieties

	Open problems and future work

