
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

1-1-2019

Application of Retrograde Analysis to Fighting Games Application of Retrograde Analysis to Fighting Games

Kristen Yu
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, and the Game Design Commons

Recommended Citation Recommended Citation
Yu, Kristen, "Application of Retrograde Analysis to Fighting Games" (2019). Electronic Theses and
Dissertations. 1633.
https://digitalcommons.du.edu/etd/1633

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has
been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.du.edu%2Fetd%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1133?utm_source=digitalcommons.du.edu%2Fetd%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/1633?utm_source=digitalcommons.du.edu%2Fetd%2F1633&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Application of Retrograde Analysis to Fighting Games Application of Retrograde Analysis to Fighting Games

Abstract Abstract
With the advent of the fighting game AI competition, there has been recent interest in two-player fighting
games. Monte-Carlo Tree-Search approaches currently dominate the competition, but it is unclear if this is
the best approach for all fighting games. In this thesis we study the design of two-player fighting games
and the consequences of the game design on the types of AI that should be used for playing the game, as
well as formally define the state space that fighting games are based on. Additionally, we also
characterize how AI can solve the game given a simultaneous action game model, to understand the
characteristics of the solved AI and the impact it has on game design.

Document Type Document Type
Thesis

Degree Name Degree Name
M.S.

Department Department
Computer Science

First Advisor First Advisor
Nathan R. Sturtevant, Ph.D.

Keywords Keywords
Artificial intelligence, Fighting game artificial intelligence, Reinforcement learning, Retrograde analysis

Subject Categories Subject Categories
Artificial Intelligence and Robotics | Computer Sciences | Game Design | Physical Sciences and
Mathematics

Publication Statement Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.

This thesis is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/1633

https://digitalcommons.du.edu/etd/1633

Application of Retrograde Analysis to Fighting Games

A Thesis

Presented to

the Faculty of the Daniel Felix Ritchie School

of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Kristen Yu

June 2019

Advisor: Nathan Sturtevant

©Copyright by Kristen Yu 2019

All Rights Reserved

Author: Kristen Yu
Title: Application of Retrograde Analysis to Fighting Games
Advisor: Nathan Sturtevant
Degree Date: June 2019

Abstract

With the advent of the fighting game AI competition [34], there has been re-

cent interest in two-player fighting games. Monte-Carlo Tree-Search approaches

currently dominate the competition, but it is unclear if this is the best approach for

all fighting games. In this thesis we study the design of two-player fighting games

and the consequences of the game design on the types of AI that should be used

for playing the game, as well as formally define the state space that fighting games

are based on. Additionally, we also characterize how AI can solve the game given

a simultaneous action game model, to understand the characteristics of the solved

AI and the impact it has on game design.

ii

Acknowledgements

First, I would like to thank Dr. Nathan Sturtevant, for his advice, guidance,

and for pushing me just enough so that this thesis would actually get done. Sec-

ond, I would like to thank Matt, Tram, and Chad for continuously supporting me

no matter how far I move away.

iii

Table of Contents

1 Introduction 1
1.1 A History of Games and AI . 1
1.2 Techniques for Fighting Games . 4

1.2.1 Street Fighter 2: World Warrior 5
1.2.2 Mortal Kombat 2 . 7
1.2.3 Skullgirls . 8
1.2.4 Super Smash Bros . 9
1.2.5 Killer Instinct . 11

1.3 Related Work . 13
1.4 Thesis Overview . 15

2 Fighting Games 16
2.1 Fighting Game Design . 16
2.2 Game Play Mechanics . 17
2.3 Game Play Dynamics . 19
2.4 Game Balance . 24

3 Solving a Fighting Game 26
3.1 Solving a Fighting Game . 26

3.1.1 Rumble Fish . 27
3.2 Retrograde Analysis . 29

3.2.1 Discounting . 31
3.2.2 Epsilon Greedy . 33

4 Results and Discussion 34
4.1 Analysis of Strategies . 38

5 Custom Fighting Game 40
5.1 Custom Game Design . 40
5.2 Results of Custom Game . 42
5.3 Modifications to the Custom Game . 45
5.4 Results from the Modified Custom Game 46

6 Conclusion and Future Work 48
6.1 Conclusion . 48
6.2 Future Work . 48

iv

List of Figures

1 Introduction
1.1 Example of a Decision Tree for a Fighting game AI 5
1.2 Screen Shot of Street Fighter 2: World Warrior 6
1.3 Screen Shot of Mortal Kombat 2 . 8
1.4 Screen Shot of Skullgirls . 9
1.5 Screen Shot Super Smash Bros Ultimate 11
1.6 Screen Shot of Killer Instinct (2013) . 12

2 Fighting Games
2.1 Illustration of the spacing distances for an attack 17
2.2 FSA that governs the players actions 18
2.3 Information set created by the simultaneous move model 20
2.4 Reward matrix for Player 1 in rock paper scissors 21
2.5 Effectiveness of moves A, B, and Block in relation to each other 22
2.6 Illustration of reward being propagated through time 24

3 Solving a Fighting Game
3.1 Retrograde Analysis . 31

4 Results and Discussion
4.1 Results from the Baseline Nash AI . 35
4.2 Results from the Discount AI . 36
4.3 Results from the Epsilon AI . 37
4.4 Percentage of mixed strategy moves 38

5 Custom Fighting Game
5.1 Effectiveness wheels for close distance 42
5.2 Effectiveness wheels for far distance 43
5.3 Results from the Custom Game . 44
5.4 Updated Effectiveness wheel for the close distance 46
5.5 Updated Effectiveness wheel for the far distance 46
5.6 Results from the Modified Custom Game 47

v

Abbreviations

AI Artificial Intelligence

FSM Finite State Machine

RPS Rock Paper Scissors

vi

1 Introduction

1.1 A History of Games and AI

This thesis studies the problem of fighting game AI. In this space there are a

few areas of interest that can be addressed, such as creating an AI that will beat

any human or computer opponent, creating an AI that is interesting for humans to

play against, and scaling the skill of an AI with the skill of a player. Recent work

in Fighting Game AI has focused on building strong AI players [1-12] which will

beat any opponent, and the current competition has a component which focuses on

how to beat opponents as quickly as possible [34]. This raises the question of what

it would mean to solve a fighting game, or to build a perfect fighting game AI. The

definition of a perfect player depends critically on the definition of the game being

played. However, current literature, to our knowledge, does not contain a precise

definition of a fighting game, meaning that the notion of building a perfect AI for

such games is ill-defined.

Thus, the focus of this thesis is threefold. First, the paper builds a broad defi-

nition of the state space of a fighting game based on the cross product of finite state

machines that determine the possible actions for each player at each stage of the

game. Because players have the potential to take actions simultaneously, there are

then information sets defined over these states. Next, the paper shows how a game

1

can be solved via retrograde analysis and using Nash equilibria to determine op-

timal play over the information sets. Finally, the paper builds an optimal strategy

for a small fighting AI game and characterizes the solution to the game. Even in

a simple game the optimal strategy is complex enough to be non-trivial, such that

simple strategies will not perform well against the optimal AI. This work opens

the door for deeper study of both optimal and suboptimal play, as well as options

related to game design, where the impact of design choices in a game can be stud-

ied. We begin with a historical context of work in game AI as well as specific work

in fighting games.

Games have a long history of being used as a training ground for AI, either

as applications of new ideas or for the design of new algorithms. One of the first

games that was studied was chess. Alan Turing in 1948 wrote a program that could

play chess [42]. Bellman also did early work in AI and chess, designing algorithms

using dynamic programming in 1965 [32]. During the 1960’s work was also being

done with single player games such as sliding tile puzzle and towers of Hanoi be-

cause they were simpler problems to solve [43,44]. Agents that play these single

player games have unlimited time to make a decision, and can do preprocessing

in order to understand the entire state space that these puzzles have, while mul-

tiplayer games have to account for opponent decisions. Thus, these are entirely

different problems to solve and require different algorithms to solve. Chess and

checkers can be bench-marked against humans, which allows for the effectiveness

of the algorithms used to be measured. Some of these agents were able to become

better than human players, with IBM’s Deep Blue beating a chess grand master in

1997 [45], and Schaeffer’s Chinook officially solving checkers in 2007 by showing

that the game always results in a draw with perfect play [46].

2

From there, AI research began to transition to playing more and more difficult

games. These games have state spaces that are exponentially large, so they cannot

be explored using traditional algorithms such as minimax or alpha-beta search.

Because of this, reinforcement learning or neural networks are often deployed to

solve these problems. In recent times IBM’s Watson was able to beat expert jeop-

ardy players in 2011 [47], and Google’s AlphaGo bested the world champion of Go

in 2017 [48]. Heads-up limit Texas Hold’em poker was solved by Bowling et al in

2015 [40], and the AI DeepStack designed by the same research group was able to

beat professional players in no-limit Texas Hold’em poker in 2017 [41].

Video games can also provide a variety interesting problems to solve due to

the complexity of their rules. In 2009, an A* agent designed by Baumgarten won a

competition for playing the longest level of infinite Mario, based off of Super Mario

World [50]. Google’s DeepMind bested the top Starcraft II players [51], which is a

complex real time strategy game with resource management and combat aspects,

and Elon Musk’s Open AI beat a team of esports champions at Dota 2, a multi-

player arena game in 2018 [52].

Fighting games are a genre of video games that has seen less research in the

academic community. A fighting game has 2 to 8 players fighting in a competitive

match where one player will become the victor. Fighting games differ from other

competitive multiplayer games such as first person shooters because their primary

game mechanic is centered around some form of martial arts, whether based on

a real fighting style or one created for the game. Fighting games as a genre are

popular in the esports arena, with the main interest in the game being competing

against other human players as opposed to the AI that exist within the game. This

3

is due to a variety of problems, but is largely due to the fact that the AI are either

too easy or too hard.

The design of an AI then becomes a question of not only for the AI to play

the game but also of how difficult the AI is for a human player. The other aspect

of a fighting game AI would be whether the AI is interesting to play against for

a human - an AI that is hard to beat is not necessarily interesting to play against.

The challenge then becomes finding an AI that is balanced between difficulty and

interesting play, such that this will be true for any player skill level.

1.2 Techniques for Fighting Games

The Extra Credits Youtube channel, written by an industry veteran, states that

the main technique for building fighting game AI in industry is using decision

trees [49]. A decision tree consists of three types of nodes: decision nodes, chance

nodes, and leaf nodes. A decision node is a branch in the tree which represents

a specific choice that the AI can make. The children of this node are the possible

choices that the agent may select. Chance nodes represent the possible outcomes

of an event which the agent cannot choose, and all of the children of this node

represent the possible courses of action given this chance. A leaf node represents

a singular action that results from following any single path down the tree. Figure

1.1 shows an example of a simple decision tree that could be used for a fighting

game.

Each decision tree has to be specifically tailored to a character, and modified

for each difficulty available. This is extremely time and labor intensive, and even

4

Is the opponent close?

Is the opponent currently attacking?

Chance node

Counter attack Block

Strong attack

Did the opponent use a projectile?

Is the projectile close to me?

Jump Move closer

Projectile

Yes

Yes

75% 25%

No

No

Yes

Yes No

No

FIGURE 1.1: Example of a Decision Tree for a Fighting game AI

models that seem simple take many resources to create. Despite these drawbacks

decision trees are still the dominant algorithm used to implement AI in fighting

games. The rest of this section will describe the AI used in various published

game.

1.2.1 Street Fighter 2: World Warrior

Street Fighter 2: World Warrior by Capcom was released in 1991 for arcade

cabinets. It is a classic fighting game, and is part of the franchise that initially

made this genre popular. In Figure 1.2, there is a screen shot of the game which

illustrates the important features of the game in white boxes, such as the player

health and the round timer. As with most classic fighting games, the goal is to

reduce the opponent’s health to zero before the time runs out. The AI used for

this game is a decision tree with small modifications. A fighting game enthusiast

deconstructed the compiled code to determine the decisions that some of the char-

acters use [35]. There are variables that determine which level the AI is playing at,

and other variables that directly influence the player actions. This decision tree has

5

FIGURE 1.2: Screen Shot of Street Fighter 2: World Warrior

three main branches with which the AI can choose actions. The first is waiting for

an attack from the opponent, the second is actively attacking the opponent and the

third is reacting to an opponent attack. With these branches, the AI can choose be-

tween eight layers of possible options which are dependent on the amount of time

left in the round. This AI is allowed to execute moves differently than a human

player would have to, with the example of a charge attack. In Street Fighter, some

moves require that a certain button be pressed and held down for a small amount

of time in order for that move to be executed. The AI in this game can execute

these attacks without the required input time, which makes them react faster. This

AI also includes instructions such as “wait until I can attack”, which means that

the AI is able to execute frame-perfect moves. Frame-perfect refers to an action

that is executed at the optimal frame in time, in this case attacking immediately

as it is able to do so. If the game runs at 30 frames per second, then each frame

is 33ms. Since the AI has the ability to wait, then it can simply wait for a frame

where it registers that it is capable of attack, and then initiate that attack in that

same frame, or less than 33ms later.

6

1.2.2 Mortal Kombat 2

Mortal Kombat 2 was released in 1993 for arcade cabinets by the publisher

Midway. As shown in Figure 1.3, it is another example of a classic fighting game

that uses decision trees. This decision tree frequently uses the advantages that a

computer has over a human to win matches. The Youtube channel Unbreakable

was able to decode this decision tree by executing moves, and then record the

resulting AI behavior [36]. The main state of this AI is a react phase, where the AI

will simply choose the best counter to any move that its opponent inputs. Since the

AI has perfect knowledge of the game state, it knows the move that its opponent

chooses the frame that the move is executed, and then is able to respond in that

same frame. This kind of “super human” reaction speed is the main difficulty

adjustment for the AI in this game. These AI are also allowed to execute moves in

a sequence that human players cannot. Under normal circumstances, some moves

have a cool down period. A cool down period is a period time where a player

cannot execute any actions, regardless of whether a new action is input or not. For

the AI, this cool down period is eliminated, which allows it to cheat in the game

where a human player cannot. This AI also has a clear advantage over human

players in the effectiveness of their moves. If an opponent is crouching, a human

player cannot throw them. However, an AI is able to throw crouching opponents.

This is perhaps one of the most obvious way that the AI can cheat at any game.

7

FIGURE 1.3: Screen Shot of Mortal Kombat 2

1.2.3 Skullgirls

Skullgirls, shown in Figure 1.4, was originally released in 2012 on PlayStation

Network, Xbox Live Arcade, and Steam and has since been expanded to several

other platforms, such as mobile. This game was developed by Reverge Labs and

published by Marvelous and Autumn Games. The lead programmer of this game

is a fighting game tournament veteran, and his main goal in creating this game

was to take the classing fighting game model and balance the game such that it is

suitable for esports level competition. In this game, a player is allowed to create a

team of characters and freely switch between those characters as long as they have

health, which helps combat character imbalances. Ian Cox, one of the developers

and the man in charge of AI design, wanted to create AI that is both satisfying to

play against and instructional for new players [38]. Their decision trees were de-

signed to incorporate particular strategies such as “anti-air”. These strategies are

8

FIGURE 1.4: Screen Shot of Skullgirls

hand-crafted policies, which are intentionally predictable to allow for humans to

learn that particular strategy. In addition to difficulty variants, each AI is specif-

ically modified to play against every character in the game, in order to take ad-

vantage of each character’s strengths and weaknesses. This is done in an effort to

encourage the player to learn particular skills. For example, if the player chooses

a character whose best move is a throw, then the opponent will intentionally play

using a strategy that is vulnerable to throws. Skullgirls is one of the published

fighting games available that consciously chooses to have their AI be an integral

mechanic to learning how to play the game, instead of the goal of the AI to just be

to beat the opponent.

1.2.4 Super Smash Bros

Super Smash Bros Brawl and Super Smash Bros Ultimate are two games pub-

lished by Nintendo as part of their Super Smash Bros franchise. Brawl was released

9

on the WiiU in 2014 and Ultimate was released on the Switch in 2018. These fight-

ing games are unique because they do not follow the classic fighting game model.

Instead of health, the fighters in the game have a percentage ranging from 0 to

999 that is representative of the amount of damage they have accumulated in the

game, and a finite amount of lives ranging from 1 to 99. The goal of the game

is to force the characters off the stage, and into areas called “blast zones”. These

blast zones are located on the upper, lower, right, and left hand side of the screen,

shown in Figure 1.5. When one player enters a blast zone, they lose a life. The

winner of the match is either the player with the most amount of lives when the

timer runs out, or the only remaining player with lives. There is a toy that can be

trained to play the game called an Amiibo, which implements some sort of learn-

ing algorithm based on observing human play. These Amiibo start at level 1, and

work their way to level 50, learning to play the game as their level progresses.

Unlike some other games, the hardware that powers these Amiibo has not been

cracked so there is no compiled code to dissect. However, there has been extensive

testing for the capabilities of the AI and there are some emerging theories on the

algorithms that are used in these Amiibo. According to discussions on reddit, the

Amiibo themselves have an underlying decision tree which governs specific be-

haviors that would want to be executed under all circumstances, and a learnable

section where the AI will learn to favor specific moves over other moves [37]. For

example, as shown in Figure 1.5, there is an offstage area where a character is in

danger of falling to its death. A dedicated behavior that would be necessary for

any AI would be for that AI to jump back to the stage to avoid dying. This has

been demonstrated with many tests to determine that this behavior is not affected

10

FIGURE 1.5: Screen Shot Super Smash Bros Ultimate

by the training that each individual Amiibo receive. What does appear to be af-

fected is the frequency of the moves which are executed by that Amiibo. These

Amiibo will learn a distribution of moves to be executed, but none of these moves

can be learned such that a single move is never executed. These Amiibo AI also

cannot learn to execute moves in succession, which further supports the idea that

the learning part of their algorithm is simply adjusting the frequency with which

particular actions are chosen.

1.2.5 Killer Instinct

The Killer Instinct reboot in 2013 is also a conventional fighting game, as

shown in Figure 1.6, but they shipped it with two different kinds of AI. The first be-

ing decision based AI similar to ones that have previously been discussed, and the

second being “shadow AI”. These shadow AI are perhaps the most complicated

11

attempt of creating an interesting agent for humans to play against, and are capa-

ble of being trained to play the game by replicating specific patterns that a player

would use. According to the Youtube Channel “AI and Games”, the AI records

all of the opponent play data, and then attempts to match the individual moves to

high level mechanics in order to learn complicated behavior such as combos [39].

The Shadow AI uses case-based reasoning to build models based off of the col-

lected data, which more closely mimics how humans base their strategy decisions

based off of previous experience [53]. This system is also unique due to its capac-

ity to learn weaknesses in specific characters. While the Nintendo Amiibo exhibits

more human-like behavior than purely decision based AI, it lacks the ability to

learn policies tailored to a specific character.

FIGURE 1.6: Screen Shot of Killer Instinct (2013)

There are also many AI and fighting game enthusiasts building toy AI for their

own personal projects. They are generally built using neural networks, likely due

to the high availability of packages such as PyTorch and Keras that facilitate the

creation and training of these AI. These kinds of AI are seeing some success when

12

played in their respective games, but there is often little to no bench-marking so

the true capability of these AI is unknown.

1.3 Related Work

In academia, there are several algorithm classes that have been implemented

on fighting game platforms in order to design fighting game AI. At the Confer-

ence on Games, there is an annual competition hosted by Ritsumeikan University

using a platform called Fighting ICE [34]. In this competition, the AI is playing

a fast-paced game where it has a reaction speed of 15 frames at 60 frames per

second, and is playing other AI using different strategies to determine a winner

with a round-robin tournament. Early work attempted to improve on the existing

rule-based AI that are common in published games by implementing a prediction

algorithm, K-Nearest Neighbors [1,2,3,4]. These predictions assumed that there is

one dominant move at every state in the state space, and aim to predict that sin-

gle move. Hierarchical Task Networks were also added to the existing rule-based

AI as a way of implementing prediction, but was unable to plan effectively [25].

This work was abandoned in favor of Monte Carlo Tree Search (MCTS) algorithms

which have consistently placed in the top 3 for the competition [5,6,7,8,9,10]. As

such, there has been other research to improve this model by combining it with

existing algorithms. Genetic algorithms [11], Action tables [12], and Hierarchical

Reinforcement Learning [13] have all been combined with MCTS in attempts to

improve on the original algorithm. MCTS works by searching a tree for a set pe-

riod of time, and returning either the correct answer or the best answer found so

far. This algorithm has been validated experimentally to perform well through

13

competing against other AI, but there has been no published work to understand

why this algorithm is effective. MCTS will continually reach its time limit without

finding a true optimal move, and is only finding locally optimal moves because

there is not enough time to search the state space. In this case, the locally optimal

move is usually some sort of kick, which means that the AI is usually choosing to

do damage in most states, and is therefore performing well within the competition.

Another type of algorithm that has been implemented is a multi-policy one,

where the rules of the agent are designed to be switched based off of the state pa-

rameters [16,17]. These types of algorithms rely on dynamic scripting [23,24] to

learn the optimal state with which to execute each individual policy. More compli-

cated algorithms such as genetic algorithms [19], neural networks [20,21,22], and

hierarchical reward architecture [26] have all been implemented on the fighting

ICE framework and have learned strategies that are stronger than the “default"

rule based AI.

Other research beyond the competition has been done using AI-TEM frame-

work, which is a Game Boy Emulator that can play a variety of games. The AI

reads the components of the chosen fighting game in order to make informed de-

cisions. An agent was trained by learning how a human would play a game [14],

in an attempt to learn a viable strategy. A neural network was also trained using

human play data [15] on a different game, or the human play data was used to

create a FSM that plays similar to a rule based AI.

14

1.4 Thesis Overview

In Chapter 2 we discuss the required features of fighting game design, and

analyze the mechanical impact of each design choice. The mechanics of the game

then can be evaluated based on a mechanics-dynamics-aesthetics approach. A

fighting game can be modeled as simultaneous move game, which can then be

interpreted as a matrix game. These games can be solved to create a Nash Equilib-

rium, which is an optimal policy to play the game.

In Chapter 3 we discuss the fighting game that will be solved, Rumble Fish,

and discuss the main algorithm that will be used to solve the fighting game: retro-

grade analysis. A few variations on this algorithm are also implemented to model

imperfect behavior and to encourage different play styles from the Nash Equilib-

rium player.

In Chapter 4 we solve the fighting game using retrograde analysis. This cre-

ates a Nash Equilibrium solution and that agent is evaluated against a few simple

strategies in order to characterize the solution.

In Chapter 5 we create a custom fighting game based on a new understanding

of the impact that game design has on the Nash Equilibrium solution. This custom

game is also solved using retrograde analysis, and the results evaluated against

simple strategies to characterize the Nash Equilibrium player.

Chapter 6 is the conclusion and future work for this research topic.

15

2 Fighting Games

2.1 Fighting Game Design

In its simplest form, all fighting games have these three basic design elements:

Timing, Spacing, and Effectiveness. Each of these design elements are parame-

terized to make up the overall design of the game.

• Timing is the duration attributed to the actions that can be executed in the

game. This is split into a few categories: lead time, attack duration, lag time,

and input time. The input time is the amount of time required for a player to

input a move, which is generally shorter than the other timings. Lead time is

the time before the attack is executed. The attack duration is the amount of

time that an attack has damaging potential. Lag time is the amount of time

after a move has been executed that a player is unable to input another move.

• Spacing is the distances that are important in the game. Both moves and

characters have spacing. Each character has two different dimensions that

are important: the hurtbox and the hitbox [54]. The hurtbox is the area that

the opponent can attack without taking damage, and the hit box is the area

during an attack that can inflict damage to the opponent, shown in Figure

2.1. Move spacing can be split into two categories: The distance in which

a particular action will hit an opposing character, and the area of its hitbox.

16

FIGURE 2.1: Illustration of the spacing distances for an attack

Similarly, the character spacing can be split into the area of its hurtbox and

it’s individual x and y coordinates.

• Effectiveness is the performance of a given action. Usually this is the amount

of damage assigned to an action, but it can also be affected by its relation to

other moves. Suppose there is a block mechanic in the game. If player one

blocks and player two attacks, player two’s move can be partially or fully

blocked, which decreases the effectiveness of the move.

2.2 Game Play Mechanics

This paper will analyze the mechanics and dynamics from a Mechanics-

Dynamics-Aesthetics (MDA) perspective [31]. Any fighting Game can be mod-

eled by a Finite State Machine (FSM) which determines the outcomes of a players

controls for a given state. Each FSM f has a time t associated with it, and list of

available actions that the agent can take m1...mk, where k is finite. This FSM has a

17

FIGURE 2.2: FSA that governs the players actions

starting state s0 where the player is idle, as shown in Figure 2.2. When a player se-

lects an action mi, i ∈ {1...k}, the state of the machine transitions to the start of the

chosen move, with a lead time of tlead, continues to the action which has an attack

duration of ta, and ends with lag time tlag before returning to idle. Because of how

the FSM transitions, once the player has chosen a move, that move typically must

be executed to completion before another move can be attempted.

Each player has an individual FSM that is controlling the state in which that

player exists. By combining the two FSM, we can reach a state sg ∈ FSMP1×

FSMP2 . For the full state of the game, sg also has attributes a1...an, n ∈ N, of the

current state such as the health and the spacing of the individual players. These

attributes provide information about how to transition to the next state, such as

indicating whether an action does damage, and how much damage is assigned to

a player. The state sg transitions to the next state s′g through both the action of

player one and the action of player 2. This transition is deterministic and results in

a unique time, location, and states for each attribute, which is determined by the

outcome of the interaction of the actions that each player used. If player one suc-

cessfully attacks player two while player two is not at an idle state, then the FSM

for player two will automatically either transition to idle or to lag time, preventing

it from executing the remaining part of the machine.

18

2.3 Game Play Dynamics

Assume both player one and player two have one attack, m1, with lead time

tlead = k1, and their spacing is such that if either player executes the move, they

will do damage to their opponent. If player one is in the idle state and player two

chooses to execute m1, then the attack m1 will be successful and player one will

take damage. If both players are in idle, the player that executes m1 first will do

damage. In this situation, whichever player can execute the action first will win.

However, fighting games usually have more than one move, with a variety of

lead times. Assume that player one and player two both have action m1, but now

also have action m2 with lead time tlead = k2, where k1 < k2. If player one were to

execute m2, then there is a period of time, k2 − k1, where player two can execute

m1 and counter m2. Using this model, the agent would simply have to wait for the

opponent to select a move, and then respond accordingly.

To simplify the game dynamics, assume that the FSM has no lead or lag time,

so that there is a single state with which the FSM can transition to from idle. Ad-

ditionally, restrict the timing of the game such that each player has to execute the

game, so then it becomes purely a simultaneous move game. This can be modeled

as Rock Paper Scissors (RPS) because it shares the quality of what fighting game

expert David Sirlin calls "double-blind decisions" [28]. Double-blind decisions are

created in a situation where both players are making a decision at the same time,

and both of their decisions are revealed at the same time. Double-blind decisions,

19

Sirlin argues, fully capture the essence of fighting games because at the moment a

player chooses a move, they do not know exactly what the opponent is doing due

to the fast-paced nature of the game. The opponent’s move can be modeled using

information sets. An information set is the set of all the states that cannot be dis-

tinguished by a player because the state of its opponent is unknown, and a player

must make the same action in every state in an information set. Figure 2.3 shows

a game play tree which creates an information set. The root is the state of player

one, and the edges are the different actions available to player one, punch, kick, or

idle, which can be taken from that state. Each of the children of the root represent

the state of player two, where player two can also execute actions punch, kick, or

idle at that state. Once both players have selected a move, a reward is assigned at

each leaf, and the reward is dependent on both the action from player one and the

action from player two. The information set is the set of all nodes at depth one,

and is outlined by the box in the figure.

FIGURE 2.3: Information set created by the simultaneous move model

Besides information sets in an extensive-form tree, a simultaneous move game

can also be modeled as a matrix game which maps the n actions {a1, a2, ..., an}

20

of each individual players to their rewards ri. Each player has its own reward

matrix M = n× n, which gives the instantaneous reward rij of player one taking

action i and player two taking action j at Mij. The payoff of for a given player Rk,

k ∈ {1, 2}, is the total instantaneous reward accumulated by playing strategy some

strategy. The optimal policy π1 of player one is a policy that maximizes the payoff

of player one given all possible player two strategies. However, player two also

has an optimal policy it is trying to execute, so player one wants to minimize the

reward that player two gains simultaneously. Thus the optimal policy for player

one can be defined as maxR1minR2 ∑ rij. RPS can be modeled as a matrix game

M1 by assigning values to the outcomes of player one, as show in Figure 3. If the

result of an action is a win, 1 is assigned. If the result of an action is a loss then -1 is

assigned. If the result of an action is a tie then 0 is assigned. If the reward assigned

for some set of actions ai and aj for player two is the negative value of the reward

of the reward assigned for the same set for player one, then it is a zero sum matrix

game. In that case, the reward matrix for player two is M2 = −M1.

P2
Rock

P2
Paper

P2
Scissors

P1
Rock 0 -1 1

P1
Paper 1 0 -1

P1
Scissors -1 1 0

FIGURE 2.4: Reward matrix for Player 1 in rock paper scissors

By replacing the moves of RPS with moves from a fighting game, a similar

reward matrix can be generated. Let move a and move b be attacking moves,

21

FIGURE 2.5: Effectiveness of moves A, B, and Block in relation to each
other

which have different effectiveness based on the opponent’s move. Move a will

inflict damage against a block, but not against move b. Move b will not inflict

damage against a block, but will against move a. Figure 4 shows the relationship

between these moves, where the arrow pointing 2.5 to another move indicates that

the move will "win" and inflict damage against that move.

Consider a game in which each player only selects one action, and the out-

come of the game is determined by effectiveness of the chosen moves in relation

to each other. Then the factors that influence whether a player wins are the spac-

ing between the two players and the effectiveness of the move. If the spacing is

such that the two players are out of attack distance, then, the entire reward ma-

trix would be zero. However, if the spacing between the two players is such that

they are within attack distance of each other, then the moves have the possibility of

doing damage and generating an interesting reward matrix. The diagonal of this

matrix is zero because both players would successfully execute the move, in which

case the reward would be 1 + -1 = 0.

22

A given payoff matrix can be solved using linear programming which finds

the policies π1 and π2, for player one and player two respectively. These poli-

cies are the set of probabilities with which each move in the game should be used,

which forms the strategy for each player. An optimal strategy for a player is one

that maximizes its own payoff and minimizes its opponent payoff. In practice, this

means that the player cannot unilaterally change their policy to gain more reward,

provided that their opponent does not change their strategy. If both players are

playing with their optimal policies, it is a Nash Equilibrium. Using the rock paper

scissors analogy, if both players are attempting to play optimally, the optimal strat-

egy for player one is to use each move 1/3 of the time, and the optimal strategy for

player two is to use each move 1/3 of the time.

Timing still needs to be considered in the fighting game model. Time is not

infinite, because there is a time limit imposed on the game itself. Thus, there are

two ending conditions for a match, when the timer reaches zero or if one of the

player’s health becomes 0. If the player’s health becomes 0, we can introduce a

higher reward value for that move, which incentivizes the agent to win the game.

For every state s, each time step has its own reward matrix, and the individual

reward matrices for each state are linked through time. The time in which that

state has a higher reward has an effect on the future reward matrices, because that

high reward is propagated through all future times, as show in Figure 2.6. The

value in red at time 0 is the initially high reward, and gets propagated to time 1.

At the final reward matrix at time t, the final reward is still affected by the initial

high reward.The rewards in the matrix are then influenced both by the positions

of the players, and the rewards of the previous matrices.

23

FIGURE 2.6: Illustration of reward being propagated through time

2.4 Game Balance

Balancing the game is adjusting the different game play mechanics such that

they interact in a way that produces the desired outcomes. For fighting games,

usually the goal is to prevent a dominant character or strategy from appearing. A

dominant strategy is a policy that wins against any other policy that its opponent

chooses. A dominant strategy can be difficult to prevent because there is an inher-

ent level of uncertainty integrated into the gameplay mechanics. While a player

is playing the game, they do not know which move the opponent will pick next,

which makes the player have to predict what the opponent’s move will be. Sirlin

describes the ability to predict the opponent’s next move as "Yomi" [28,29]. When

the opponent’s move is uncertain, the player engages in Yomi because they are

forced to make their best guess on what move the opponent will make, and then

respond appropriately given that prediction. Sirlin argues that using a rock paper

scissors like mechanic for the core of action resolution is the optimal way to bal-

ance fighting games, because it forces Yomi interactions and prevents any single

move from becoming dominant.

24

Aside from properly balancing the individual game mechanics, fighting games

also need to balance the level of skill. Each move is assigned a certain number of

inputs that the player must make in the correct order in order to execute that move.

These can be simple - such as simply pressing the A button - to extremely complex

- such as quarter circle right, quarter circle right, A button, B button. This skill af-

fects the game play because a higher difficulty level would create a higher chance

of the human incorrectly inputting the move, which would trigger a random move

being executed. A computer has the ability to correctly input any move at any

state, while a human will always have some probability of incorrectly inputting

any move.

25

3 Solving a Fighting Game

3.1 Solving a Fighting Game

An analysis of how MCTS performs in RPS by Shafiei et al [33] demonstrated

that it produces suboptimal play because it cannot randomize correctly for a RPS

type of game play model. In a simultaneous move fighting game, the time limit

ending condition allows for retrograde analysis to be used to work backwards

from the end of the game to the start state. Bellman showed that this technique

can be applied to chess and checkers [32] using minimax trees where the max or

the min is taken at each state and propagated through the tree. With imperfect in-

formation at each state, we instead compute the Nash Equilibrium at each state and

propagate the expected value of the Nash Equilibrium. This approach is based on

work done by Littman and Hu, which applied reinforcement learning algorithms

to markov games to create a nash equillibrium [36,37].

Using retrograde analysis allows for a quick convergence of the state space.

In a fighting game, the end of the match is when when one player’s health reaches

zero, or when the timer runs out. Neither player can change the outcome of the

game by inputting new moves. Thus, the ending states of a fighting game are

always correct, so when the values are propagated backward it has a correct start-

ing point. If forward passes were used, incorrect values would have to be passed

26

to the next iteration, until that system converges, which is more computationally

expensive.

The solution to the fighting game found using the retrograde analysis is the

optimal policy for each player to use at each state of the game. These information

sets that appear as matrix games for each state in the retrograde analysis can be

solved using linear programming to find the optimal policy and create a Nash

Equilibrium.

3.1.1 Rumble Fish

The fighting game chosen for the computational model is a game called Rum-

ble Fish. Rumble Fish is similar to Street Fighter, and is also the game that is used

in the Fighting ICE competition. It takes in eight directional inputs and two but-

tons, which can be executed in sequence to produce moves. These moves can then

be strung together into combos to deal more damage. While playing, the char-

acter can build up mana, which allows them to execute stronger moves such as

projectiles that cost mana.

We simplified the game in several ways to solve the game quickly and under-

stand the impact of the game and solver design on the optimal strategy. Only one

character was chosen, so that the same character would be playing against itself.

This was to eliminate differences between characters, where one character could

have actions that dominate other characters. This could always win the game. The

width of the game play screen was also reduced, and the jumping and mana me-

chanics were eliminated. Only five moves were chosen to begin with:

27

• Move Forward: Move towards the other player by 25 pixels

• Move Backward: Move away from the other player by 120 pixels

• Punch: A short range attack with a damage of 5

• Kick: A long range attack with a damage of 10

• Block: A block will only affect the kick, which reduces the given damage to

0. The block is ineffective against punches and the player will still take 5

damage when punched

The block was further modified to introduce an RPS mechanic. Originally, the

block will block all moves in the game, resulting in the blocking player to take

only a fraction of the damage. This causes the kick to become the dominating

action because it has the longest reach and the highest damage. Instead, the block

is modified such that it is only effective against the kick, and a successful block

will reduce all damage to zero. The initial health was also set to be 20, and all

distances between 0 and 170 pixels were examined. The maximum distance of 170

was chosen because the kick has a range of 140 pixels. All distances larger than

170 are treated as the state 170 because if the players are out of attack distance and

moving forward does not bring you into attack range, it can be treated in the same

way. If a punch or a kick is successful, the opposing player will be pushed back.

However, if the opposing player was blocking then they will not move. The length

of the game was not fixed, but the retrograde procedure in the next section was

run backwards until the policy converged.

28

3.2 Retrograde Analysis

Retrograde analysis is more efficient than forward search for this state space.

Time starts at the end of the match, and then runs backwards to the start of the

match. The flow through for this algorithm is shown in Figure 3.1. Moves Forward

Walk, Back Step, Punch, Kick, and Block have been abbreviated "fw", "bs", "p", "k",

and "b" respectively. This figure shows the payoff matrix for any given state s,

where the values at each index i, j is the value of the state at the previous time

step when actions ai and aj are chosen. When the time is zero, the box on the left

indicates the the value of the state is the difference in health for player 1 and player

2. When the time is not zero, the value of the state is calculated differently. The first

down arrow shows that the policy for player one is determined, which is then used

to find the expected value of that state. This new state value then feeds back into

the payoff matrix for the next state. A more precise description of the approach is

described below.

Each time step t is one frame backwards in time and the analysis is run un-

til the beginning of the match is reached. At time t = 0, the value v0(s) of each

state s ∈ S was initialized to be the difference in health from player one to player

two. Each possible health value for player one and player two were considered,

to account for the situation where time runs out. If the state s was a winning state

for player one, meaning that player two’s health is zero and player one’s health

is nonzero, then the value of the state was increased by 100 because those are the

most desirable states for player one to be in.

29

The reward for losing is not decreased by 100, in order to encourage the agent

to continue attacking even if it is at low health.

To calculate the value of state s at time t > 0, a 5x5 reward matrix is created

where player one is represented by the rows and player two is represented by the

columns. All of the rewards assigned to each outcome is the reward for player

one. The rewards for player two are the negative value of each reward, which

can be calculated without creating another matrix. Given a set of five actions A =

{Forward Walk, Back Step, Punch, Kick, Block}, each row i and each column j is a

selection a ∈ A, where ai is the action for player one and aj is the action for player

two. The next state s′ is the state reached by executing actions ai and aj at state

s. The intersection i x j is the reward of the moves ai and aj that were chosen at

state s, which is the value of the state vt−1(s′) . This matrix is then solved using

linear programming to produce π1 and π2, which are the policies of player one

and player two. Each policy represents the probabilities that each action in a ∈ A

should be executed for state s at Nash Equilibrium. The value of state s is the

expected value of that state calculated as follows:

vt(s) =
5

∑
i=1

5

∑
j=1

pai paj vt−1(s′) (3.1)

This value vt(s) is stored for the time t. When two actions lead to s at time

t + 1, the value vt(s) is used as the reward for those actions. In this way, the

state values will propagate through the time steps to produce the final state. The

iteration process is monitored for convergence for all states s using a δ, where

δ = Vt(s)−Vt−1(s). When δ < 0.01, the values are considered converged.

30

FIGURE 3.1: Retrograde Analysis
The flow through for the modified retrograde analysis algorithm when applied to

fighting games

3.2.1 Discounting

The basic retrograde analysis has no preference for winning a game earlier or

later in a game, but discounting can be applied to the reward function in order to

encourage the agent to prefer winning earlier. This can be done by discounting the

future reward, so that the current or immediate reward Ri has a larger impact on

the overall value of the state. The value of a state is given as follows:

vt(s) = Ri + discount ∗ vt(s′) (3.2)

vt(s′) =
5

∑
i=1

5

∑
j=1

pai paj vt−1(s′′) (3.3)

31

where s′ is the next state and s′′ is the state after the next state.

The immediate reward function was defined as followed:

• Move Forward: -1

• Move Backward: -2

• Punch: 5 if the attack was successful, 0 otherwise

• Kick: 10 if the attack was successful, 0 otherwise

• Block: 0

The terminal value of the states using this algorithm were changed to be

weighted towards the desired outcome, and are assigned as the reward values

of player one. The reward for player two in each of these situations is the negative

value of the following outcomes.

• Player 1 wins: 100

• Player 1 loses: -50

• Player 1 and Player 2 Tie: -100

• Everything else: 0

A tie was determined to be worse than simply losing, so it was weighted to be

twice as bad as just losing the game. Given these values, player two has incentive

for the game to end in a tie instead of causing player one to lose.

32

3.2.2 Epsilon Greedy

In practice, human players can make mistakes when executing actions. We can

model the same behavior by the AI with an epsilon-greedy strategy. This ensures

that non-dominated moves are also explored. An epsilon, ε, is assigned to be the

probability of choosing a random action within the current state. To model this

in conjunction with retrograde analysis, the reward function is modified such that

each i x j is equal to the expected value of the next state s′, given that there is

some epsilon that a player chooses a random move. When a player doesn’t choose

a random move, the policy is an optimal strategy π, which has a probability of

Pr[N] = 1− ε. The probability of the policy executing an incorrect move will be

called Pr[e]. The policy for each player is p = {Pr[N], Pr[e]}, where p1 is equal to

Pr[N] and p2 is equal to Pr[e]. Then the expected value of the next state is given by

vt(s) =
2

∑
i=1

2

∑
j=1

pi pjvt−1(s′) (3.4)

The performance of retrograde analysis and the variants were reasonable. All

of these algorithm variants converged in less than 100 time steps, which completed

in less than ten minutes. While we could solve larger games, this is a first step

towards understanding the game properties.

33

4 Results and Discussion

To understand the characteristics of the different Nash Equilibrium models, a

few simple rule-based AI were designed to play the game.

• Random: The agent will randomly select an action from the available move

set with equal probability

• Punch: The agent will always punch

• Kick: The agent will always kick

• Rules: The agent will punch when it is at a distance where a punch will cause

damage, kick when it is at a distance where the kick will cause damage, and

otherwise walk forward

The AI’s were then initialized to the starting conditions of the game. They

both have 20 health, and all starting distances 0 to 140 were examined, where the

starting distance is the initial spacing on the x-axis between the two players. The

maximum distance of 140 was chosen because that is the maximum range of the

kick attack, and at distances greater than 140, the equilibrium tends to choose not

to engage. Player one is always the Nash Player, which is the policy created by the

retrograde analysis and the variations as described in the previous section. There

are four possible outcomes: win, lose, tie, and run away. A win is if player one’s

health is non zero, and player two’s health is zero. A lose is if player one’s health

is zero and player two’s health is nonzero. A tie is if both player’s health is zero.

34

Run away is the situation where both agents choose to move out of range of the

attacks, and will never move forward. Each of these scenarios were run in three

trials, to account for randomized play.

P1 Wins P1 Loses Ties Run Aways

0

20

40

60

80

100

120

N
um

be
r

of
M

at
ch

es
Baseline AI

Baseline Nash vs Baseline Nash Baseline Nash vs Random
Baseline Nash vs Punch Baseline Nash vs Kick
Baseline Nash vs Rules

FIGURE 4.1: Results from the Baseline Nash AI

Figure 4.1 shows the results of the Baseline Nash player, which is playing us-

ing the retrograde analysis without any modifications. None of the simple strate-

gies are able to beat the Baseline Nash player in any of the simulated situations.

The random player is the best strategy because it minimizes the amount of wins for

the Baseline Nash player. The Nash player is playing most similarly to the Rules

AI, because it results in the most number of ties. However, the Rules AI still loses

to the Baseline Nash 95 times, so the Nash player is still a better strategy.

35

P1 Wins P1 Loses Ties Run Aways

0
20
40
60
80

100
120
140
160
180

N
um

be
r

of
M

at
ch

es

Discount AI

Discount Nash vs Discount Nash Discount Nash vs Random
Discount Nash vs Punch Discount Nash vs Kick
Discount Nash vs Rules

FIGURE 4.2: Results from the Discount AI

Figure 4.2 shows the results from introducing discounting into the retrograde

analysis. The discount was selected to be 0.85 to avoid it from being too simi-

lar to the baseline Nash Equilibrium. Again, the Random AI is the best strategy

against the Discount Nash player, because it minimizes the amount of wins that the

Nash agent receives.However, the random AI still loses roughly 46 matches, which

means that this Nash player is not playing a random strategy. If the Nash player

was playing using a random strategy, playing against the Random AI would result

in ties. This Nash player’s strategy is not similar to any of the simple AI strategies

that it played against, because it did not result in any ties. When one player is

playing using a Nash Equilibrium strategy, the other player can play any non-

dominated strategy which will result in mostly ties and the formation of a Nash

36

Equilibrium. Since the results are not ties, the other strategies must be playing

dominated moves.

P1 Wins P1 Loses Ties Run Aways

0

20

40

60

80

100

120
N

um
be

r
of

M
at

ch
es

Epsilon AI

Epsilon Nash vs Epsilon Nash Epsilon Nash vs Random
Epsilon Nash vs Punch Epsilon Nash vs Kick
Epsilon Nash vs Rules

FIGURE 4.3: Results from the Epsilon AI

Figure 4.3 shows the results from the epsilon model integrated into retrograde

analysis. The epsilon was selected to be 0.10 to model a player that is able to exe-

cute moves most of the time. Similarly, Random AI plays the best against this Nash

player because it minimizes the number of wins. The Epsilon AI playing the Rules

AI results in many ties, which indicates for some set of states the policies form a

Nash Equilibrium. However, the Epsilon Nash player is still a better strategy than

the Rules AI because it is able to win 85 matches.

Overall, the modifications to the retrograde analysis does not produce drasti-

cally different results. The main difference lies in the Discount AI, which must be

37

playing at a different strategy than the rules AI. This is to be expected because the

Discount AI is not playing a zero-sum game, where as the other two Nash agents

are.

4.1 Analysis of Strategies

mixed moves
0
1
2
3
4
5
6
7
8
9

10

Pe
rc

en
t

Percentage of Mixed Strategy Moves

Baseline Nash Discount Nash Epsilon Nash

FIGURE 4.4: Percentage of moves that agent chose that were mixed
strategy out of total moves

The total number of moves selected by the Nash agent while playing these

matches was compared to the number of moves where it had a mixed strategy,

shown in Figure 4.4. This was done to determine if the Nash players used a deter-

ministic strategy or not. The total number of moves for every match and the total

number of moves where the Nash AI selected a mixed strategy was recorded. The

38

percentage of mixed moves was then calculated as the number of mixed strategy

moves divided by the total number of moves for the match. The percentage of

moves where the Nash player was picking a mixed strategy is very low, with the

highest being the Discount Nash AI with 9.82%. This means that the Nash player

is playing a deterministic strategy in most of the states, even though the game was

designed to contain RPS mechanics and lead to mixed strategies. In the case of

RPS, if one player is playing at Nash Equilibrium, the other player can use any

strategy and still arrive at a Nash Equilibrium. In the fighting game, this is not the

case given the Nash player is able to win more than the other strategies.

In the fighting game, the Nash player rarely selects mixed moves. This means

that there is a dominating move at most states, which is making up the majority

of the strategy employed by the Nash player. When the Nash player has the same

or more health than player two and at distances 0 to 125 and 141 to 170, the Nash

player chooses to punch. At distances 126 to 140, the Nash player chooses to Kick.

Mixing occurs at states when the Nash player has less health than player two, and

at distances where the Nash player can back step into an area that is greater than

distance 140, which means it is out of range for all attacks. The Nash player could

do better if it decided to move forward at distances greater than 140. That way, it

could engage player two and then win the match, instead of ending in a run away

outcome.

39

5 Custom Fighting Game

5.1 Custom Game Design

While we can now solve a game, the game we solved isn’t as interesting as we

hoped. Now we explore a new game and the properties that make it interesting.

Given a new understanding of fighting game mechanics experimentally, a custom

fighting game was designed. One issue with the subset of moves chosen for the

experiments is that not enough attack moves were chosen, which causes a deter-

ministic strategy to emerge. To fix this problem, six moves were created such they

would produce a rich state space to analyze: Low Punch, High Punch, Low Kick,

High Kick, Low Block, and High Block. A punch attack will do 5 damage and a

kick attack will do 10 damage.

P2
High Kick

P2
Low Kick

P2
High Punch

P2
Low Punch

P2
High Block

P2
Low Block

P1 High Kick 0 -10 -5 10 0 10
P1 Low Kick 10 0 -5 -5 10 0

P1 High Punch 5 5 0 -5 0 5
P1 Low Punch -10 5 5 0 5 0
P1 High Block 0 -10 0 -5 0 0
P1 Low Block -10 0 -5 0 0 0

TABLE 5.1: Payoff Matrix for Player one at Close Distance

Given two different attack types, modifiers for those attack types were intro-

duced to change their effectiveness. Two different blocks were created, where a

40

P2
High Kick

P2
Low Kick

P2
High Punch

P2
Low Punch

P2
High Block

P2
Low Block

P1 High Kick 0 -10 -5 10 0 10
P1 Low Kick 10 0 10 10 10 0

P1 High Punch 5 -10 0 -5 0 5
P1 Low Punch -10 -10 5 0 5 0
P1 High Block 0 -10 0 -5 0 0
P1 Low Block -10 0 -5 0 0 0

TABLE 5.2: Payoff Matrix for Player one at Far Distance

block will only block an attack if it is the same variant as the attack: a high block

will block a high punch but not a low punch. A low modifier will beat a high

modifier if it is the same attack type. Additionally, the number of locations were

reduced to 2: close distance and far distance. Tables 5.1 and 5.2 show the payoff

matrices for both the close and far distance, which reflect the design of the custom

game. The effectiveness of each move was changed based on the distance between

the two players. At a close distance, the punch is more effective, and at a far dis-

tance a kick is more effective. This rule comes with a caveat - at a close distance,

a high kick will beat a low punch as shown in Figure 5.1, and at a far distance a

high punch will beat a low kick as shown in Figure 5.2. This additional rule was

introduced to prevent a dominant strategy from emerging. This design created a

state space where there are six different RPS like wheels for each distance, where

every available move is included in at least one of these wheels. The effectiveness

wheels for close distance is shown in Figure 5.1 and the effectiveness wheels for far

distance is in Figure 5.2. The attacks chosen were used to move between distances,

instead of having a move explicitly dedicated to moving. If one player blocks, both

players will end at the close distance. If no player blocks, then the players end at

the far distance.

41

FIGURE 5.1: Effectiveness wheels for close distance

5.2 Results of Custom Game

This state space was analyzed using the regular retrograde analysis. The Nash

player was found to be using a mixed strategy at every state, similar to RPS. How-

ever, the policy that was created for the Nash AI will never choose to block, and

instead mixes strategies between the available moves that do damage. To analyze

this custom game space, the Nash player was compared against two different AI.

• Random AI: The AI will randomly choose a move from the available set of

moves

• Rules AI: The AI will always choose a low punch

42

FIGURE 5.2: Effectiveness wheels for far distance

For each match, each player was initialized to have 20 health. 100 matches

were played at a close distance, and 100 matches were played at a far distance for

a total of 200 matches. Each set of matches was run 3 times, to account for the

variability of mixed strategy at every state. Figure 5.3 shows the results from this

set.

43

P1 Wins P1 Loses Ties

0
20
40
60
80

100
120
140
160
180
200

N
um

be
r

of
M

at
ch

es

Custom AI

Custom Nash vs Custom Nash Custom Nash vs Random
Custom Nash vs Rules

FIGURE 5.3: Results from the Custom Game

Unfortunately, the Nash agent did not choose to block in any distance due to

the way that this custom game was designed. The AI instead chose to mix between

the moves represented by the one RPS wheel that did not include either block in

it. From the results, the Nash player now has the ability to lose, which was not a

result of the Rumble Fish fighting game. In addition to the fact that the Nash player

will lose, it also loses at least 25% of the time. The Random AI, which plays the

most poorly against the Nash AI, will still win about 50 matches out of 200, which

is roughly 25% of the matches played. This is due to the fact that every action has

a dominating action in the game, which means that there is always a chance that

the player could lose if the opponent selected the correct counter action.

The Rules AI produced interesting results against the Nash Player because the

Rules AI lost every match. This indicates that a simple strategy is not sufficient for

44

playing this game. When an AI is playing a policy that is created by a set of rules,

and the game is designed such that every move can be countered by another move,

then the AI will always pick a move that is countered. An AI like this would be

expected to lose at a larger frequency.

5.3 Modifications to the Custom Game

The previous custom game resulted in the blocking mechanic never being

chosen by the Nash agent. In published fighting games, blocking can be part of

a useful strategy that players use, so some modifications to the fighting game

were made to understand why the block was not being selected. In a particular

state, there are dominated actions that will always lose, which indicates that these

dominated actions are objectively bad. The Custom Nash player only selects non-

dominated actions, which means that the block must be a dominated an therefore

objectively bad. This contradicts strategies of professional players, which indicates

that the block cannot be objectively bad. To address this problem, the game was

modified such that only one RPS wheel is available at each distance. Figure 5.4

shows the effectiveness wheel for the close distance and Figure 5.5 shows the ef-

fectiveness wheel for the far distance. The nature of the block was modified such

that if a block was successful, the opponent will take damage. Having two blocks

in the game is now redundant because the high block is not a part of the RPS wheel

and will therefore never be chosen, so that action is removed from the game. The

other available moves are designed to be dominated for each distance. At the close

distance, any kick move will be dominated by the moves in the RPS wheel and at

the far distance and punch will be dominated. Additionally, the behavior for when

45

both players execute the same move has been updated. Before, both players would

have taken damage from the move. Now, the moves have been updated such that

if they are pitted against the identical move, neither move will cause damage in

either opponent.

FIGURE 5.4: Updated Effectiveness wheel for the close distance

FIGURE 5.5: Updated Effectiveness wheel for the far distance

5.4 Results from the Modified Custom Game

The same experiments from the original Custom Game were run with the new

Nash Equilibrium agent. Figure 5.6 shows the results from the Nash Player.

46

P1 Wins P1 Loses Ties

0
20
40
60
80

100
120
140
160
180
200

N
um

be
r

of
M

at
ch

es

Modified Custom Game AI

Custom Nash vs Custom Nash Custom Nash vs Random
Custom Nash vs Rules

FIGURE 5.6: Results from the Modified Custom Game

The Nash player, when playing against a Nash player, wins roughly the same

amount of times that it loses. The Nash player is much more effective at playing

the game than a random player, but the Rules AI performs the worst against the

Nash player. The Rules AI was able to win matches when blocking is present

in the game, but it still lost more than 75% of the matches it played against the

Nash player. Because the Rules AI, which is playing a deterministic strategy and

losing so much of the time, the optimal strategy for this variation of the custom

game must be a mixed strategy. The Nash player is able to lose because the move

that beats the move selected by the Rules AI is the low block. If the AI is at close

distance and only has 5 health remaining, the action that does damage, high punch,

will lose to the rules agent. However, this situation occurs less than 25% of the

time, so this Nash Player is still effective at playing the game.

47

6 Conclusion and Future Work

6.1 Conclusion

In this thesis we studied the problem of fighting game AI. This thesis makes

four contributions to this area of research. First, it provides a formal definition of

the state space for fighting games which can be used as a framework for further

research. A fighting game AI is defined by a simultaneous-move game played on

the cross product of two control FSM for the players in the game. Second, this

thesis shows how a Nash Equilibrium and retrograde analysis can be used to find

an optimal solution to a game. Third, this paper characterizes that Nash solution

for the game, which identifies the features of a dominant strategy. Last, a custom

fighting game is created based on a new understanding of the characteristics of

the Nash Solution to study impact that the design of the fighting game has on the

Nash solution.

6.2 Future Work

Future work on this project would focus on three main areas, the first of which

is scale to larger games. One of the ways to accomplish this is to expand the num-

ber of moves available to the agent. Most fighting games have a large variety of

moves, more than are currently modeled, so more actions should be incorporated.

48

This could be solved by creating move sets with several actions, where each move

set has a different effectiveness against the other move sets present in the game.

Another way to increase the size of the game is to increase the range of distances.

Currently in the custom fighting game there are only two distances, but most fight-

ing games contain a much wider area of play. Distance values can either be rep-

resented by amount of pixels between the two players or as a set of these pixels

to define areas of "close" and "far". Each distance value then has its own unique

effectiveness wheel, which dictates which moves are dominant to other moves in

an RPS-like manner. The distances are then linked together through actions, where

each pair of actions deterministically causes the players to end at a particular dis-

tance. Adding these features to the current model causes for the custom fighting

game to become more similar to published fighting games, which allows for a

deeper understanding of the design choices on the overall balance and play of the

game.

Another consideration is the restrictions on how the players can take actions.

In the custom fighting game, each action has the same lead time, attack duration,

and lag time. These constraints can be relaxed to more accurately reflect published

fighting games, which can be accomplished through iteration by adding complex-

ity at each level. First, the overall attack times of each move can be varied, such that

each available action is a multiple of the action that has the shortest attack time.

Still restricting to mostly simultaneous moves, one player would then be allowed

to choose 1 long action while the other player can choose 2 or more fast actions.

Then, the different lead and lag times could be incorporated into the simultaneous

move model, so that particular moves can dominate other based not only on the

effectiveness of the action but also on timing. Once this model has been built, we

49

will have a comprehensive understanding of the full range of factors that affect

actions and the consequences of each action within the game.

Last, an analysis of human players against the Nash Equilibrium players

should be conducted. One of the main goals of solving a fighting game is to create

an AI which is interesting for humans to play against. Several Nash Equilibrium

players could be constructed, varying the difficulty of each one. Then, human

testers can play against these AI to determine whether the difficulty was able to

be successfully modified. Additionally, the humans can rate whether the AI are

interesting to play against. The satisfaction of the human players in relation to the

difficulty of the AI can be determined, in order to accommodate for human players

of any skill level.

50

Bibliography

[1] K. Asayama, K. Moriyama, K. Fukui, and M. Numao, "Prediction as Faster

Perception in a Real-time Fighting Video Game," Proc. the 2015 IEEE Conference

on Computational Intelligence and Games (CIG 2015), pp. 517-522, 2015.

[2] Yuto Nakagawa, Kaito Yamamoto, Chu Chun Yin, Tomohiro Harada, and

Ruck Thawonmas, "Predicting the Opponent’s Action Using the k-Nearest Neigh-

bor Algorithm and a Substring Tree Structure," Proc. of the 2015 IEEE 4th Global

Conference on Consumer Electronics (GCCE 2015), Osaka, Japan, pp. 531-534, Oct.

27-30, 2015.

[3] Yuto Nakagawa, Kaito Yamamoto, and Ruck Thawonmas, "Online Ad-

justment of the AI’s Strength in a Fighting Game Using the k-Nearest Neighbor

Algorithm and a Game Simulator," Proc. of the 3rd IEEE Global Conference on

Consumer Electronics (GCCE 2014), Tokyo, Japan, pp. 494-495, Oct. 7-10, 2014.

[4] Kaito Yamamoto, Syunsuke Mizuno, Chun Yin Chu and Ruck Thawonmas,

"Deduction of Fighting-Game Countermeasures Using the k-Nearest Neighbor Al-

gorithm and a Game Simulator," Proc. of 2014 IEEE Conference on Computational

Intelligence and Games (CIG 2014), Dortmund, Germany, pp. 437-441, Aug. 26-29,

2014.

[5] Shubu Yoshida, Makoto Ishihara, Taichi Miyazaki, Yuto Nakagawa, To-

mohiro Harada, and Ruck Thawonmas, "Application of Monte-Carlo Tree Search

in a Fighting Game AI," Proc. of the 5th IEEE Global Conference on Consumer

Electronics (GCCE 2016), Kyoto, Japan, pp. 623-624, Oct. 11-14, 2016.

[6] Makoto Ishihara, Taichi Miyazaki, Chun Yin Chu, Tomohiro Harada, and

51

Ruck Thawonmas, "Applying and Improving Monte-Carlo Tree Search in a Fight-

ing Game AI," Proc. of the 13th International Conference on Advances in Com-

puter Entertainment Technology (ACE 2016), Osaka, Japan, Nov. 9-12, 2016. DOI:

http://dx.doi.org/10.1145/3001773.3001797

[7] Makoto Ishihara, Suguru Ito, Ryota Ishii, Tomohiro Harada and Ruck Tha-

wonmas, "Monte Carlo Tree Search for Implementation of Dynamic Difficulty Ad-

justment Fighting Game AIs Having Believable Behaviors," Proc. of 2018 IEEE

Conference on Computational Intelligence and Games (CIG 2018), Maastricht, The

Netherlands, pp. 46-53, Aug. 14-17. 2018.

[8] Ryota Ishii, Suguru Ito, Makoto Ishihara, Tomohiro Harada and Ruck Tha-

wonmas, "Monte-Carlo Tree Search Implementation of Fighting Game AIs Hav-

ing Personas," Proc. of 2018 IEEE Conference on Computational Intelligence and

Games (CIG 2018), Maastricht, The Netherlands, pp. 54-61, Aug. 14-17. 2018.

[9] Simon Demediuk, Marco Tamassia, William Raffe, Fabio Zambetta, Xi-

aodong Li and Florian Floyd Mueller, "Monte Carlo Tree Search Based Algorithms

for Dynamic Difficulty Adjustment," Proc. of 2017 IEEE Conference on Computa-

tional Intelligence and Games (CIG 2017), New York City, USA, Aug. 22-25, 2017.

[10] Suguru Ito, Makoto Ishihara, Marco Tamassia, Tomohiro Harada, Ruck

Thawonmas, and Fabio Zambetta, "Procedural Play Generation According to Play

Arcs Using Monte-Carlo Tree Search," Proc. of the 18th International Conference

on Intelligent Games and Simulation (GAME-ON’2017), Carlow, Ireland, pp. 67-

71, Sep. 6-8, 2017.

[11] Man-Je Kim and Chang Wook Ahn, "Hybrid fighting game AI using a

genetic algorithm and Monte Carlo tree search," GECCO’ 18 Proc. of the Genetic

52

and Evolutionary Computation Conference Companion, Kyoto, Japan, pp. 129-

130, July 15 - 19, 2018.

[12] Man-Je Kim and Kyung-Joong Kim, "Opponent Modeling based on Ac-

tion Table for MCTS-based Fighting Game AI," Proc. of 2017 IEEE Conference on

Computational Intelligence and Games (CIG 2017), New York City, USA, Aug. 22-

25, 2017.

[13] Ivan Pereira Pinto and Luciano Reis Coutinho, "Hierarchical Reinforce-

ment Learning with Monte Carlo Tree Search in Computer Fighting Game," IEEE

Transactions on Games (Early Access, Date of Publication: 11 June 2018),

doi:10.1109/TG.2018.2846028

[14] S, Lueangrueangroj and V. Kotrajaras, "Real-time Imitation based Learn-

ing for Commercial Fighting Games," Proc. of Computer Games, Multimedia and

Allied Technology 09, International Conference and Industry Symposium on Com-

puter Games, Animation, Multimedia, IPTV, Edutainment and IT Security, 2009.

[15] S.S. Saini, C.W. Dawson, and P.W.H. Chung, "Mimicking Player Strate-

gies in Fighting Games," Proc. of the 2011 IEEE International Games Innovation

Conference (IGIC), pp. 44–47, 2011.

[16] S. Saini, P. W. H. Chung and C. W. Dawson, “Mimicking Human Strategies

in Fighting Games using a Data Driven Finite State Machine,” 2011 6th IEEE Joint

International Information Technology and Artificial Intelligence Conference, vol 2,

P. Yan and B. Xu, Eds. Chongqing: IEEE Press, 2011, pp. 389-393.

[17] N. Sato, S. Temsiririkkul, S. Sone. and K. Ikeda, "Adaptive Fighting Game

Computer Player by Switching Multiple Rule-based Controllers," Proc. of the

53

3rd International Conferenceon Applied Computing and Information Technology

(ACIT 2015), pp. 52-59, 2015.

[18] Yoshina Takano, Suguru Ito, Tomohiro Harada, Ruck Thawonmas, "Uti-

lizing Multiple Agents for Decision Making in a Fighting Game," Proc. of the 7th

IEEE Global Conference on Consumer Electronics (GCCE 2018), Nara, Japan, pp.

562-563, Oct. 9-11, 2018.

[19] Giovanna Martinez-Arellano, Richard Cant and David Woods, "Creating

AI Characters for Fighting Games using Genetic Programming," IEEE Transactions

on Computational Intelligence and AI in Games, Dec. 2016.

[20] Nguyen Duc Tang Tri, Vu Quang and Kokolo Ikeda, "Optimized Non-

visual Information for Deep Neural Network in Fighting Game," Proc. of 9th In-

ternational Conference on Agents and Artificial Intelligence(ICAART 2017), Porto,

Portugal, pp. 676-680, Feb. 2017.

[21] B.H. Cho, S.H. Jung, Y.R. Seong, and H.R. Oh, "Exploiting Intelligence in

Fighting Action Games using Neural Networks," IEICE Transactions on Informa-

tion and Systems, vol. E89-D, no. 3, pp. 1249-1256, 2006.

[22] Seonghun Yoon and Kyung-Joong Kim, "Deep Q Networks for Visual

Fighting Game AI," Proc. of 2017 IEEE Conference on Computational Intelligence

and Games (CIG 2017), New York City, USA, Aug. 22-25, 2017.

[23] K. Majchrzak, J. Quadflieg, and G. Rudolph, "Advanced Dynamic Script-

ing for Fighting Game AI," Proc. of Entertainment Computing (ICEC 2015), pp.

86-99, 2015.

54

[24] Yasutomo Kanetsuki, Ruck Thawonmas, and Susumu Nakata, "Optimiza-

tion and Simplification of Dynamic Scripting with Evolution Strategy and Fuzzy

Control in a Fighting Game AI," Proc. of the 2015 IEEE 4th Global Conference on

Consumer Electronics (GCCE 2015), Osaka, Japan, pp. 310-311, Oct. 27-30, 2015.

[25] Xenija Neufeld, Sanaz Mostaghim, and Diego Perez-Liebana, "HTN

fighter: Planning in a highly-dynamic game," Proc. of 2017 Computer Science and

Electronic Engineering (CEEC 2017), Colchester, UK, pp. 189-194, Sep. 2017.

[26] Yoshina Takano, Wenwen Ouyangy, Suguru Ito, Tomohiro Harada and

Ruck Thawonmas, "Applying Hybrid Reward Architecture to a Fighting Game

AI," Proc. of 2018 IEEE Conference on Computational Intelligence and Games (CIG

2018), Maastricht, The Netherlands, pp. 431-436, Aug. 14-17. 2018.

[28] Sirlin, David. “Designing Yomi.” Sirlin.Net - Game Design, Sirlin.Net -

Game Design, 22 Aug. 2014, www.sirlin.net/articles/designing-yomi.

[29] Sirlin, David. “7) Spies of the Mind.” Sirlin.Net - Game Design, Sirlin.Net

- Game Design, 3 Aug. 2014, www.sirlin.net/ptw-book/7-spies-of-the-mind.

[30] Millington, Ian, and John Funge. Artificial Intelligence for Games. 2nd

ed., Morgan Kaufmann Publishers, 2009.

[31] Hunicke, Robin, et al. “MDA: A Formal Approach to Game Design and

Game Research.” Conference on Artificial Intelligence, 2004.

[32] Bellman, R. “On The Application Of Dynamic Programing To The Deter-

mination Of Optimal Play In Chess And Checkers.” Proceedings of the National

Academy of Sciences, vol. 53, no. 2, 1965, pp. 244–247., doi:10.1073/pnas.53.2.244.

55

[33] Shafiei, Mohammad, et al. “Comparing UCT versus CFR in Simultaneous

Games.” Comparing UCT versus CFR in Simultaneous Games, 2009.

[34] “Fighting Game AI Competition.” Welcome to Fighting Game AI Compe-

tition, 2013, www.ice.ci.ritsumei.ac.jp/ ftgaic/.

[35] sf2platinum. “The AI Engine.” sf2platinum, 20 Jan. 2017,

sf2platinum.wordpress.com/2017/01/20/the-ai-engine/.

[36] Unbreakable, director. Mortal Kombat II - AI Explained. YouTube,

YouTube, 28 Oct. 2015, www.youtube.com/watch?v=pkEMT4RXa5E.

[37] Whoa1Whoa1. “r/Smashbros - AMIIBO INFORMATIONAL - They Do

Not Learn the Way You Think They Do, Dispelling the Magic of How They Work

.” Reddit, 16 Dec. 2014, www.reddit.com/r/smashbros/comments/2pi7zr/

amiibo_informational_they_do_not_learn_the_way/.

[38] Cox, Ian. “A New Perspective on Single Player AI « Skullgirls 2nd En-

core.” Skullgirls 2nd Encore A New Perspective on Single Player AI Comments, 2

May 2011, skullgirls.com/2011/05/a-new-perspective-on-single-player-ai/.

[39] AI and Games, director. Training the Shadow AI of Killer Instinct (2013)

| AI and Games. YouTube, YouTube, 28 May 2017,

www.youtube.com/watch?v=Etj5ykJugwU&feature=youtu.be.

[40] Bowling, M., et al. “Heads-up Limit Hold’em Poker Is Solved.” Science,

vol. 347, no. 6218, 9 Jan. 2015, pp. 145–149., doi:10.1126/science.1259433.

[41] Moravčík, Matej, et al. “DeepStack: Expert-Level Artificial Intelligence in

Heads-up No-Limit Poker.” Science, vol. 356, no. 6337, 5 May 2017, pp. 508–513.,

doi:10.1126/science.aam6960.

56

[42] Stezano, Martin. “In 1950, Alan Turing Created a Chess Computer Pro-

gram That Prefigured A.I.” History.com, A&E Television Networks, 29 Aug. 2017,

www.history.com/news/in-1950-alan-turing-created-a-chess-computer-program

-that-prefigured-a-i.

[43] Doran, J. “Doubletree Searching and the Graph Traverser.” Research

Memorandum EPU, 1966.

[44] Doran, Jim E, and Donald Michie. “Experiments with the Graph Traverser

Program.” Proceedings of the Royal Society of London. Series A. Mathematical

and Physical Sciences, vol. 294, no. 1437, 1966, pp. 235–259.,

doi:10.1098/rspa.1966.0205.

[45] Campbell, Murray, et al. “Deep Blue.” Artificial Intelligence, vol. 134, no.

1-2, Jan. 2002, pp. 57–83., doi:10.1016/S0004-3702(01)00129-1.

[46] Schaeffer, J., et al. “Checkers Is Solved.” Science, vol. 317, no. 5844, 19

Sept. 2007, pp. 1518–1522., doi:10.1126/science.1144079.

[47] Ferrucci, D. A. “Introduction to ‘This Is Watson.’” IBM Journal of Research

and Development, vol. 56, no. 3.4, 3 Apr. 2012, pp. 1–15.,

doi:10.1147/jrd.2012.2184356.

[48] Chouard, Tanguy. “The Go Files: AI Computer Wraps up 4-1 Victory

against Human Champion.” Nature News, Nature Publishing Group, 15 Mar.

2016, www.nature.com/news/the-go-files-ai-computer-wraps-up-4-1-victory

-against-human-champion-1.19575.

[49] Credits, Extra, director. Game AI - Funtelligence - Extra Credits. YouTube,

YouTube, 16 Aug. 2017, www.youtube.com/watch?v=1FBGR6vmNeU&t=1ss.

57

[50] Baumgarten, Robin, director. Infinite Mario AI - Long Level. YouTube,

YouTube, 5 Aug. 2009, www.youtube.com/watch?v=DlkMs4ZHHr8.

[51] Shead, Sam. “DeepMind AI Beats Professional Human StarCraft II Play-

ers.” Forbes, Forbes Magazine, 25 Jan. 2019, www.forbes.com/sites/samshead/

2019/01/25/ deepmind-ai-beats-professional-human-starcraft-ii-players/

509606817cec.

[52] OpenAI. “OpenAI Five.” OpenAI, OpenAI, openai.com/five/.

[53] “Case-Based Reasoning.” Wikipedia, Wikimedia Foundation, 4 Jan. 2019,

en.wikipedia.org/wiki/Case-based_reasoning.

[54] NiteCyperNiteCyper 5, et al. “What Do ’Hitbox’ and ’Hurtbox’ Mean?”

Arqade, 2014, gaming.stackexchange.com/questions/182350/what-do-hitbox

-and-hurtbox-mean.

58

	Application of Retrograde Analysis to Fighting Games
	Recommended Citation

	Application of Retrograde Analysis to Fighting Games
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1564785433.pdf.2TSRD

