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Abstract 

Growing energy demand and environmental concerns have led to an increased 

interest in renewable energy resources to provide a sustainable and low carbon emission 

energy supply. Among these renewable energy resources, photovoltaic (PV) systems 

have been the focus of many scientific researchers. The most vital component of a PV 

system that needs to be improved is the power converter. Grid-tied transformer-less 

inverters have gained a lot of interest in recent years because of their higher efficiency, 

reduced volume and lower cost compared to traditional line transformer inverters.  

This dissertation discusses single-phase transformer-less inverter challenges and 

provides solutions that could lead to a next generation, high performance, grid-connected, 

single-phase transformer-less inverter. A new topology with new current paths is 

proposed to increase efficiency and reduce the leakage current. A comparison study of 

the proposed topology and multiple transformer-less inverters is carried out in terms of 

leakage current, power losses and efficiency.  

This dissertation also investigates the impact of emerging Gallium Nitride (GaN)-

based power devices on a single-phase transformer-less inverter in terms of efficiency, 

high switching frequency capability, volume and cooling efforts. GaN device structure, as 

well as static and dynamic characterization, are discussed.  

Furthermore, this dissertation studies GaN power devices’ reverse conduction 

capability to provide the proposed inverter with reactive power control. Existing PWM 
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techniques cannot provide a freewheeling path in the negative power region to generate 

reactive power in a single-phase transformer-less inverter. Thus, a new PWM technique 

is proposed to provide new modes of operation to achieve reactive power generation 

capability in the proposed inverter.  

Due to the increased penetration of PV systems into the grid and the updated grid 

codes concerning PV systems, next-generation PV systems will be required to have 

several features like high efficiency, high power quality, voltage regulation and fault ride 

through capability. This dissertation also explores these future requirements for PV 

system integration into the grid. To comply with the new grid codes and to enhance the 

PV inverter capability, a simple and flexible multifunctional control strategy is developed 

to provide PV inverters with advanced functions that will support the grid. 

The simulation results validate the theory that the proposed topology reduces the 

conduction losses of the system. The conduction losses, switching losses, and thermal 

analysis at different output powers and switching frequencies verify the benefits of 

replacing Silicon (Si) MOSFET with Gallium Nitride (GaN) HEMTs. Moreover, the use 

of GaN HEMTs provides superior performance at higher frequencies when compared to 

their Si counterparts.  Consequently, the filter volume is reduced, heatsink requirements 

are also reduced, and the cost is lowered. Furthermore, the simulation results validate the 

improvement of the proposed high efficiency transformer-less inverter with the new pulse 

width modulation (PWM) techniques to generate reactive power. The results also prove 

the effectiveness of the multifunctional control strategy to provide maximum active 

power injection, ride through faults, and support the grid by providing reactive power 

during grid faults. The high efficiency PV inverter equipped with advanced functions is 
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the key to providing a reliable and cost-effective future grid tied to a PV system that can 

improve power quality. 
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1 

1. Chapter One: Introduction 

The rising cost of energy and the environmental issues of fossil resources led to 

the recent interest in renewable energy. Renewable resources provide clean and 

sustainable energy, which will reduce the pollution emissions; hence protecting the 

environment. Among renewable resources, photovoltaic (PV) gained a lot of interest in 

recent years; the power capacity of PV system installations has grown exponentially in 

the past decades being increased from 15 gigawatts in 2008 to 505 gigawatts in 2018 as 

shown in Fig. 1.1 [1]. In 2018, Solar PV power capacity saw a significant increase more 

than any other renewable source representing about 47% of renewable energy installation 

[1]. To satisfy and address this increasing demand of PV systems, power electronics 

converters ‘which are vital components of the PV systems’ should be realized and 

improved.  



 

2 

 
Fig. 1.1 Global cumulative installed capacity of PV systems [1]. 

The key enabling technology for residential PV systems is the power electronic 

converter. The reliability and efficiency of these power electronic converters play an 

important role in the system’s overall performance since they provide the connection 

between the PV system and the grid [2]. Therefore, the focus of power electronics 

research has been on developing power converters with high efficiency and reliability to 

enhance the overall performance of the power system. In addition, providing low cost, 

reduced volume converters by emerging technologies is required to provide high 

switching frequency power electronic systems. 

For residential PV system development, converter topologies and the emerging of 

Wide Bandgap (WBG) power semiconductor devices have received a lot of attention. 

Also, advanced control technologies, such as controlling the active and reactive power of 

PV inverters to compensate for any frequency or voltage disturbance, are important 

research areas. Several PV system structures and converter topologies with high 

efficiency have been reviewed and published in detail [3]–[9] . In addition, there is an 
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increased interest in emerging WBG power devices with their superior performance 

compared to their Silicon (Si) counterparts in the power conversion system. Therefore, a 

proper assessment of the impact of WBG power devices is needed to understand the 

effect of employing such technology in a power conversion system. The benefits and 

potential performance enhancement of WBG applications in renewable energy converters 

have been widely discussed [10]–[12]. 

PV inverters in residential applications are either single or three phase inverters 

with or without galvanic isolation. Isolated inverters use transformers to provide a 

galvanic isolation between the input and the output. Consequently, efficiency is reduced, 

and the size, cost, and weight of the system are increased. On the other hand, non-isolated 

inverters (transformer-less inverters) do not provide galvanic isolation, which increases 

the efficiency of the system with lower cost and smaller size. The elimination of the 

transformer removes the galvanic isolation in the system, which causes many safety 

issues. In the absence of galvanic isolation, leakage current will flow through the PV 

parasitic capacitance due to the high frequency common mode (CM) voltage. This 

leakage current leads to higher losses, PV module degradation, electromagnetic 

interference, and safety issues. To eliminate the leakage current and maintain high 

efficiency, the topology and the switching strategies of the transformer-less inverter must 

be designed properly. Several new transformer-less inverter topologies have been 

developed and proposed to eliminate the leakage current and maintain high efficiency 

[13]–[18]. 
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Transformer-less inverters are very efficient in connecting the PV system to the 

grid without galvanic isolation, thereby reducing the cost and the volume of the system. 

However, the leakage current problem, new standard requirements, and high efficiency 

requirements bring new challenges to transformer-less inverter design. To address and 

overcome these challenges, innovative transformer-less topologies, different PWM 

techniques, state-of-the-art power switching devices, and advanced functions capability, 

such as reactive power generation, need to be studied and investigated [19]–[23]. 

1.1 Research Objectives  

The objective of this research is to address single-phase transformer-less inverter 

challenges and provide solutions that can lead to the next generation of high performance, 

grid-connected, single-phase transformer-less inverters. Considering the cost and the 

future standards’ requirements, providing a high efficiency, transformer-less inverter is a 

challenge [24]–[27]. To address this challenge, a comparison of the state-of-the-art 

transformer-less inverter topologies is considered, and a new high efficiency topology is 

proposed and investigated. High efficiency is important to extract the maximum amount 

of solar energy and provide reliable operation of the system. Advanced transformer-less 

inverters have reached around 97% efficiency and with WBG-based power-switching 

devices, they have the potential to reach over 98% efficiency. Another issue in 

transformer-less inverters is the leakage current since these inverters do not have 

isolation. Thus, there is a need to investigate new topologies and PWM techniques to 

overcome these issues.  
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WBG power switching devices have attracted a lot of attention because of their 

superior performance. Thus, this research also investigates the impact of emerging WBG-

based power devices on single-phase transformer-less inverters in terms of efficiency, 

high switching frequency, volume and cooling efforts. WBG device structure and static 

and dynamic characterization are discussed.  

Another challenge is the reactive power generation capability of the single-phase 

transformer-less inverter. Existing PWM techniques cannot provide a freewheeling path 

in the negative power region to generate reactive power in single-phase transformer-less 

inverters. Thus, a new PWM technique is proposed to provide new modes of operation to 

achieve reactive power generation capability in single-phase transformer-less inverters.  

The new and updated grid codes around the world regarding PV systems 

integration into the grid also impose another challenge for future PV inverters. Next 

generation PV inverters are required to provide a wide range of services to support the 

grid, such as Low Voltage Ride Through capability (LVRT), reactive power 

compensation and active power control. Thus, a simple and flexible multifunctional 

control system is designed to provide the PV inverter with advanced functions that will 

be required to support the grid.  

1.2 Dissertation Outline  

This dissertation is organized as follows: chapter one provides an introduction of 

the research topic and its objectives. Chapter two presents a review of single-phase 

transformer-less inverter topologies with their operation principles. A comparison of 

different topologies in terms of eliminating the leakage of current, the component count, 
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power losses and efficiency is presented. Also, a modified topology derived from an H5 

inverter is proposed. Detailed operation modes, inverter structure and switching strategy 

of the proposed topology are investigated. Chapter three presents a comparison of the 

static ad dynamic characteristics of Si power devices and WBG power devices (mainly 

GaN HEMTs) under different currents and heat temperature conditions. Chapter four 

explores the benefits of employing Gallium Nitride (GaN) power devices in PV 

transformer-less inverters. Employing GaN HEMTs in the proposed topology is analyzed 

in terms of efficiency, power losses and converter volume by reducing passive 

component size and heatsink requirements. The discussion starts by inverter description 

and test parameters, followed by simulation results. The results provide a comparison of 

efficiency and power losses of the proposed topology under different switching 

efficiencies and load conditions using two different power devices (Si MOSFET and GaN 

HEMT) to evaluate the performance of each device. Finally, the impact of GaN power 

switching devices on the PV inverter is evaluated and discussed in terms of passive 

component volume and heatsink requirements.   

Chapter five introduces reactive power generation in PV inverters. A PV 

inverter’s reactive power capability will be required by future standards to enhance the 

functions of these inverters. Si MOSFETs can’t be used to generate reactive power 

because their body diodes slow reverse recovery and because of their high reverse 

recovery losses. On the other hand, GaN HEMTs do not have body diodes and are 

naturally capable of reverse conduction, so that makes them capable of reactive power 

generation with very low power losses and fast reverse recovery. This chapter focuses on 
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enhancing the PV inverter topologies and provides a modified PWM to generate reactive 

power.   

Chapter six focuses on designing a control system for single-phase grid-tied PV 

inverters. A multifunction control strategy is developed and presented. In addition, 

multiple case studies are studied and presented to test the effectiveness of the proposed 

control strategy. Chapter seven presents the conclusions and discusses the future work.  
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2. Chapter Two: Review of Single-phase Transformer-less Inverter Topologies 

2.1 Introduction 

PV systems in recent years have gained a lot of interest because of their reduced 

cost and increased efficiency. A strong demand has arisen for power generated by PV 

systems. To satisfy and address this demand, power electronic converter systems must be 

realized and improved to address efficiency concerns and new standards. In North 

America, it is required by the National Electrical Code (NEC) for PV inverters over 50V 

DC voltage to have a ground conductor as shown in Fig. 2.1 [28]. As a result, the PV 

system will need an isolation transformer since both the grid and the PV source are 

grounded. After adding sections 690.25 in 2005 and 690.35 (D) in 2008 to the NEC, it 

became allowed to operate the PV inverter with ungrounded PV source as shown in Fig. 

2.2. This change allowed the use of transformer-less PV inverters, which improves the 

efficiency of the system with lower cost and smaller size. However, eliminating the 

transformer will allow the flow of leakage current through the parasitic capacitance of the 

PV module. This leakage current will lead to many safety issues. New topologies and 

new PWM techniques are required to eliminate the leakage current and achieve high 

system efficiency. VDE 126-1-1 and UL 1741 standards provide the requirements to 

reduce and limit the leakage current [22], [29]. 
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Fig. 2.1 PV inverter with transformer. 

 
Fig. 2.2 PV transformer-less inverter. 

 

As mentioned previously, transformer-less inverters can increase the system’s 

efficiency and lower costs; however, new PWM techniques and new topologies are 

required to overcome the leakage current problem. In this chapter, first, a review of 

single-phase transformer-less topologies is presented. A modified single-phase 

transformer-less inverter is proposed with detailed operation modes, inverter structure 

and switching strategy. Then, a comparison of efficiency, power losses and leakage 

current of different topologies and the proposed topology is presented. Finally, simulation 

results are discussed to verify the effectiveness of the proposed inverter.  
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2.2 Transformer-less Inverters  

Leakage current can lead to many safety issues and needs to be eliminated or 

reduced to a certain level. To eliminate the leakage current, CM voltage must be kept 

constant for all switching states. A half-bridge inverter is the typical solution to keep the 

CM voltage constant [4]. However, a half-bridge inverter requires double the DC input 

voltage of the full bridge inverter, which requires a DC-DC converter with an extremely 

high conversion ratio. As a result, this can lead to a huge decrease in system efficiency.  

2.2.1 Full Bridge Inverter H4 

The full bridge inverter shown in Fig. 2.3 is an attractive solution because it 

requires only half of the half-bridge input voltage. In addition, it has higher conversion 

efficiency and small current ripples. However, the variation of the CM voltage at the 

switching frequency in a full bridge inverter can lead to high leakage currents. Fig. 2.4 

shows the ground leakage current path of the full bridge topology. Voltage variation 

across the PV parasitic capacitance CPV1 and CPV2 are the main causes of ground leakage 

current.  The VDE 0126-1-1 standard limits the allowable maximum RMS leakage 

current to 300 mA. The differential voltage VDM and common mode voltage VCM of 

transformer-less inverter is given by [30]: 

VDM=VAN-VBN=VAB        (2.1) 

VCM=
VAN+VBN

2
         (2.2) 
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Fig. 2.3 Full Bridge inverter. 

 

 
Fig. 2.4 Leakage current path for Full Bridge inverter. 

 

Fig. 2.5 shows unipolar PWM signals for a full bridge inverter. Unipolar PWM 

can achieve three level output voltage and there are four modes of operation.  
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Fig. 2.5 PWM signals for Full Bridge inverter.  

 

In Mode 1, S1 and S4 are turned ON, which is the positive half-period in the 

active state and all other switches are turned OFF. The current during this mode flows 

through S1 and S4. VDM =VAB= VDC, and the Common Mode voltage VCM = (VAN + 

VBN)/2 = +VDC /2. 

In Mode 2, S1 and S3 are turned ON, which is the positive half-period in the 

freewheeling (Zero) state, and all other switches are turned OFF. The current during this 

mode flows through S1, and the anti-paralleled diode of S3. VDM =VAB= 0, and VCM = 

(VAN + VBN)/2 = +VDC. 

In Mode 3, S2 and S3 are turned ON, which is the negative half-period in the 

active state and all other switches are turned OFF. The current during this mode flows in 

the opposite direction through S2 and S3. VDM =VAB= − VDC, and VCM = (VAN + VBN)/2 

=+VDC/2. 
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In Mode 4, S2 and S4 is turned ON, which is the negative half-period in the 

freewheeling (Zero) state, and all other switches turned OFF. The current during this 

mode flows through S2, and the anti-paralleled diode of S4. VDM =VAB = 0, and VCM = 

(VAN+ VBN)/2 = 0. Table 2.1 summarizes the switching states of the full bridge inverter. 

As can be noticed from the operation modes of the full bridge inverter, the common mode 

voltage is not constant and it varies during the zero states between +VDC and 0.  This 

variation will lead to high ground leakage current flowing through the PV system.  

Table 2.1 Switching states of Full Bridge inverter. 

Operation modes S1 S2 S3 S4 VDM VCM 

+VDC 1 0 0 1 +VDC +VDC/2 

+0 1 0 1 0 0 +VDC 

-0 0 1 0 1 0 0 

-VDC 0 1 1 0 -VDC +VDC/2 

 

Fig. 2.6 and Fig 2.7 show the simulation waveforms of the full bridge inverter. 

Fig. 2.6 shows the unipolar three level voltage generated from the inverter VAB. Also, it 

shows VAN and VBN of the inverter, and since they are floating, this will lead to variation 

of common mode voltage during the zero states between +VDC and 0.; thus, the common 

mode voltage is not constant. Fig. 2.7 shows the grid voltage and current. Also, it shows 

the leakage current. The full bridge inverter has high leakage current of almost 1.2 A 

RMS value, and the standards’ requirement for a PV transformer-less inverter is less than 

300mA. Hence, a full bridge inverter is not suitable for PV transformer-less application 

in its current form.  
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Fig. 2.6 Full Bridge inverter voltage simulation waveforms. 

 
Fig. 2.7 Grid voltage and current and Full Bridge inverter leakage current. 

 

Multiple transformer-less inverter topologies have been proposed [31]–[35] to 

eliminate the leakage current problem in full bridge inverters. One of the solutions 

proposed to minimize the leakage current is to maintain a constant CM voltage for all 

switching states [36]. However, such a solution requires a higher number of components 

that then increase the system’s complexity. Another solution to minimize the leakage 
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current is to isolate the two sources of the system (PV, grid) during the zero-state by 

modifying the PWM to keep the CM voltage constant [37], [38]. Multiple topologies 

have been developed based on this solution, such as the H5 topology [39] and H6 

topology [40]. 

2.2.2 H5 Topology 

One of the first derived PV transformer-less topologies from the full bridge 

inverter is H5 which is shown in Fig. 2.8 [39]. In this inverter, an extra switch S5 has 

been introduced to decouple the inverter output from the PV module during the zero 

state. By using this method, the common mode voltage can be kept constant and the 

leakage current can be reduced. Fig. 2.9 shows the hybrid PWM signals for the H5 

topology where S1 and S3 are low frequency switches (switch at grid frequency) and S5, 

S2 and S4 are high frequency switches. This modulation can achieve three level output 

voltage and there are four modes of operation.  

 
Fig. 2.8 H5 topology. 
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Fig. 2.9 Hybrid PWM signals for H5 topology. 

 

In Mode 1, S1, S4 and S5 are turned ON, which is the positive half-period in the 

active state, and all other switches are turned OFF. The current during this mode flows 

through S1, S4 and S5. VDM =VAB= +VDC, and the Common Mode voltage VCM = (VAN + 

VBN)/2 = +VDC /2. 

In Mode 2, S1 is turned ON, which is the positive half-period in the freewheeling 

(zero) state, and all other switches are turned OFF. The current during this mode flows 

through S1, and the anti-paralleled diode of S3. VDM =VAB= 0, and VCM = (VAN + VBN)/2 

= +VDC/2. 

In Mode 3, S2, S3 and S5 are turned ON, which is the negative half-period in the 

active state, and all other switches are turned OFF. The current during this mode flows in 

the opposite direction through S2, S3 and S5. VDM =VAB= − VDC, and VCM = (VAN + 

VBN)/2 =+VDC/2. 
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In Mode 4, S3 is turned ON, which is the negative half-period in the freewheeling 

(zero) state, and all other switches are turned OFF. The current during this mode flows 

through S3 and the anti-paralleled diode of S1. VDM =VAB = 0, and VCM = (VAN + VBN)/2 

= +VDC/2. Table 2.2 summarizes the switching states of the H5 inverter. 

Table 2.2 Switching states of H5 topology. 

Operation modes S1  S2 S3 S4 S5 VDM VCM 

+VDC 1  0 0 1 1 +VDC +VDC/2 

+0 1  0 0 0 0 0 +VDC/2 

-0 0  0 1 0 0 0 +VDC/2 

-VDC 0  1 1 0 1 -VDC +VDC/2 

 

Fig. 2.10 and Fig. 2.11 show the simulation waveforms of the H5 inverter. Fig. 

2.10 shows the unipolar three level voltage generated from the inverter VAB. Also, it 

shows VAN and VBN of the inverter, and it can be seen that they are floating during the 

zero state; thus, the common mode voltage is not constant. Fig. 2.11 shows the grid 

voltage and current. Also, it shows the leakage current. It can be seen that the H5 inverter 

can achieve a lower leakage current of 134.6 mA compared to the full bridge inverter. 

However, the major drawback of this topology is the high conduction losses because six 

switches are conducting during the active states. 
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Fig. 2.10 H5 topology voltage simulation waveforms. 

 
Fig. 2.11 Grid voltage and current and H5 topology leakage current. 

 

2.2.3 H6 Topology 

The H6 inverter [40] consists of six switches and two freewheeling diodes—D7 

and D8—as shown in Fig. 2.12. Fig. 2.13 shows the hybrid PWM signals for this 

topology where S5 and S6 are low frequency switches (switch at grid frequency) and S1, 

S2, S3 and S4 are high frequency switches. This modulation can achieve three level 

output voltage and there are four modes of operation.  
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Fig. 2.12 H6 topology. 

 

 
Fig. 2.13 PWM signals for H6 topology. 

 

In Mode 1, S1, S4 and S5 are turned ON, which is the positive half-period in the 

active state, and all other switches are turned OFF. The current during this mode flows 

through S1, S4 and S5. VDM =VAB= +VDC, and the Common Mode voltage VCM = (VAN + 

VBN)/2 = +VDC /2. 
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In Mode 2, S5 is turned ON, which is the positive half-period in the freewheeling 

(zero) state, and all other switches are turned OFF. The current during this mode flows 

through S5, and D7. VDM =VAB= 0, and VCM = (VAN + VBN)/2 = +VDC/2. 

In Mode 3, S2, S3 and S6 are turned ON, which is the negative half-period in the 

active state, and all other switches are turned OFF. The current during this mode flows in 

the opposite direction through S2, S3 and S6. VDM =VAB= − VDC, and VCM = (VAN + 

VBN)/2 =+VDC/2. 

In Mode 4, S6 is turned ON, which is the negative half-period in the freewheeling 

(zero) state, and all other switches are turned OFF. The current during this mode flows 

through S6 and D8. VDM =VAB = 0, and VCM = (VAN + VBN)/2 = +VDC/2. Table 2.3 

summarizes the switching states of the H6 inverter. 

Table 2.3 Switching states of H6 topology. 

Operation modes S1 S2 S3 S4 S5 S6 VDM VCM 

+VDC 1 0 0 1 1 0 +VDC +VDC/2 

+0 0 0 0 0 1 0 0 +VDC/2 

-0 0 0 0 0 0 1 0 +VDC/2 

-VDC 0 1 1 0 0 1 -VDC +VDC/2 

 

Fig. 2.14 and Fig. 2.15 show the simulation waveforms of the H6 inverter. Fig. 

2.14 shows the unipolar three level voltage generated from the inverter VAB. Also, it 

shows VAN and VBN of the inverter. Fig. 2.15 shows the grid voltage and current. Also, it 

shows the leakage current. It can be seen that the H6 inverter can achieve significantly 
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lower leakage current of 12.2 mA compared to the H5 inverter. However, H6 also suffers 

from high conduction losses because six switches are conducting during the active states.  

 
 Fig. 2.14 H6 topology voltage simulation waveforms. 

 
Fig. 2.15 Grid voltage and current and H6 topology leakage current. 

 

0

-200

-400

200

400

VAB

0

-200

200

400

600

VAN

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

Time (s)

0

-200

200

400

600

VBN

0

-100

-200

100

200

Vg

0

-20

-40

-60

20

40

60

Ig

0.3 0.32 0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5

Time (s)

0

-1

-2

-3

1

2

3

Ileakage



 

22 

2.3 Proposed High Efficiency Transformer-less Inverter  

The proposed design is derived from the H5 topology in Fig. 2.8 [41]. By 

disconnecting S5 from S1 and connecting it to terminal A, during the positive half cycle 

the current will flow through switches S4 and S5. Also, an extra switch S6 is added 

between the DC link and terminal B, which will form a new current path. Thus, the 

current during the negative half cycle active mode will flow through switches S6 and S2. 

Thus, a new transformer-less inverter topology is derived as shown in Fig. 2.16, where 

S2, S4, S5 and S6 are high frequency switches, and S1 and S3 are low frequency 

freewheeling switches. The new topology forms new current paths, which lower the 

conduction loss when compared to the H5 and H6 topologies. Therefore, the current of 

the proposed topology in the active mode flows through four switches. As a result, 

compared to the H5 and H6 topologies, the proposed topology has achieved the lowest 

conduction losses. Table 2.4 shows a comparison between the proposed topology, H5 

topology and H6 topology in terms of the number of conducting switches during the 

active states. 

 

Fig. 2.16 Proposed topology derived from H5. 
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Table 2.4 Comparison of conducting devices for different topologies. 

 H5 H6 Proposed 

topology 

Total number of devices 5 6 6 

Number of conducting devices (v>0) 3 3 2 

Number of conducting devices (v<0) 3 3 2 

Total Number of conducting devices during active 

modes 

6 6 4 

Number of devices in freewheeling 

 

2 2 2 

 

2.3.1 Operation Modes Analysis of The Proposed Topology 

The gate drive signals of the proposed topology are shown in Fig. 2.17, where vg 

is the grid voltage; Iref is the reference current of the system; and vgs1, vgs2, vgs3, vgs4, vgs5 

and vgs6 are the gate drive signals of switches S1, S2, S3, S4, S5 and S6, respectively for 

unity power factor. Modes of operation of the proposed topology are shown in Fig. 2.18. 

There are four operation modes to generate inverter output voltage: 

VInv= {
+VDc

0
-VDC

}         (2.3) 
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Fig. 2.17 Gate drive signals with unity power factor. 

 

In Mode 1, S1, S4 and S5 are turned ON, which is the positive half-period in the 

active state, and all other switches are turned OFF. The current during this mode flows 

through S4 and S5. VAB = VDC, and the Common Mode voltage VCM = (VAN + VBN)/2 = 

(VDC + 0)/2 = VDC /2. 

In Mode 2, S1 is turned ON, which is the positive half-period in the freewheeling 

state, and all other switches are turned OFF. The current during this mode flows through 

S1, and the anti-paralleled diode of S3. VAB = 0, and VCM = (VAN + VBN)/2 = (VDC/2 + 

VDC/2)/2 = VDC /2. 

In Mode 3, S2, S6 and S3 are turned ON, which is the negative half-period in the 

active state, and all other switches are turned OFF. The current during this mode flows in 
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the opposite direction through S6 and S2. VAB = -VDC, and VCM = (VAN + VBN)/2 = 

(0+VDC)/2 = VDC/2. 

In Mode 4, S3 is turned ON, which is the negative half-period in the freewheeling 

state, and all other switches turned OFF. The current during this mode flows through S3 

and the anti-paralleled diode of S1. VAB = 0, and VCM = (VAN + VBN)/2 = (VDC/2 + 

VDC/2)/2 = VDC /2. Table 2.5 summarizes the switching states of the proposed inverter.  

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 2.18 Proposed topology operational modes: (a) Active state positive half- cycle; (b) Zero-state 

positive half cycle; (c) Active state negative half- cycle; (d) Zero-state negative half cycle. 

 
Table 2.5 Switching states of proposed topology. 

Operation modes S1 S2 S3 S4 S5 S6 VDM VCM 

+VDC 0 0 0 1 1 0 +VDC +VDC/2 

+0 1 0 0 0 0 0 0 +VDC/2 

-0 0 0 1 0 0 1 0 +VDC/2 

-VDC 0 1 0 0 0 1 -VDC +VDC/2 

 

Fig. 2.19 and Fig 2.20 show the simulation waveforms of the proposed inverter. 

Fig. 2.19 shows the unipolar three level voltage generated from the inverter VAB. Also, it 

shows VAN and VBN of the inverter. Fig. 2.20 shows the grid voltage and current. Also, it 
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shows the leakage current and it can be seen that the proposed inverter can achieve 

significantly lower leakage current of 11.7 mA compared to the H5 inverter and is almost 

like that of the H6 topology. However, the proposed topology achieves lower conduction 

losses than the H6 topology because only four switches are conducting during the active 

states.  

 
Fig. 2.19 Proposed topology voltage simulation waveforms. 

 
Fig. 2.20 Grid voltage and current and the proposed topology leakage current. 
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2.3.2 Theoretical Power Loss Model Calculation 

The power losses of the semiconductor devices are analyzed using different 

power loads. The semiconductor power device losses are divided into conduction and 

switching losses. The switching losses can be divided to Switch-ON losses and Switch-

OFF losses. The semiconductor power device losses have been explained and derived in 

detail [9], [41]. To calculate the conduction losses, voltage drop across each device must 

be identified and is given by: 

vDS(MOSFET)=i(t)*RDS       (2.4) 

vAK(Diode)=Vf*RAK        (2.5) 

where vDS is MOSFET’s drain to source voltage drop, and RDS is the MOSFET ON state 

resistance. VAK is the voltage drop between the diode anode and cathode; Vf is diode 

voltage drop under zero current conditions, and RAK is the diode ON resistance. The 

current that passes the device is i(t). Thus, the conduction losses of one device during the 

active state can be calculated as follows: 

PConactive
=

1

2π
 ∫ vcon

π

0
*i(t)*Dactive(t)d(ωt)     (2.6) 

i(t)=Im sin (ωt+θ)        (2.7) 

Dactive(t)=M sin (ωt)        (2.8) 

where 𝐼𝑚 is the peak in the inverter output current; 𝜔 is the angular frequency; 𝜃 is the 

phase displacement between voltage and grid current; 𝐷𝑎𝑐𝑡𝑖𝑣𝑒 is the duty ratio during 

active state, and M can take a value between 0 and 1. The conduction losses of one 

device during zero states can be calculated as follows: 

PConzero
=

1

2π
 ∫ vcon

π

0
*i(t)*Dzero(t)d(ωt)     (2.9) 
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Dzero(t)=1-M sin (ωt)       (2.10) 

where 𝐷𝑧𝑒𝑟𝑜 is the duty ratio during zero state. The switching loss for one device during 

turn on and turn off are given by: 

PSwitch_on= (
ImVDC

2π
) ∙fsw∙ (

Eon

VtestItest
)      (2.11) 

PSwitch_off= (
ImVDC

2π
) ∙fsw∙ (

Eoff

VtestItest
)      (2.12) 

where Eon and Eoff are the turn on and turn off energy losses. These energy losses are 

measured for specific test conditions (specific test voltage Vtest and test current Itest). 

For the proposed inverter topology in Fig. 2.16, four devices (either HEMTs or 

MOSFETs) in series conduct current during the active states, while during the zero state 

the current flows through two devices (either HEMTs or MOSFETs) and two diodes. The 

low frequency switching losses are neglected. The conduction and switching losses of the 

proposed inverter can be given by: 

Ptotal(Conactive)=4(PConactive
(HEMT or MOSFET))    (2.12) 

Ptotal(Conzero)=2(PConzero
(HEMT or MOSFET))+(PConzero

(Diode))  (2.13) 

Ptotal(SWloss)=4(PSwtihc_on+PSwtihc_off)      (2.14) 

As can be seen from the power loss calculations the proposed topology achieves 

lower conduction losses than that of the H5 and H6 topologies, while maintaining the 

same switching losses. 
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2.4 Simulation Comparison of Power Losses and Efficiency   

The proposed topology in Fig. 2.16 was simulated and analyzed using PSIM 

environment with MATLAB/Simulink Co-simulation. The proposed topology was 

compared to the H5 and H6 topologies in terms of power losses, and efficiency at 

different levels of output power.  

The simulation specifications are given in Table 2.6. Infineon 650V CoolMOS 

IPW60R045CP has been used for efficiency evaluation. The inductor current ripple was 

chosen to be 20% of the maximum output current and the values of the inductor and the 

capacitance were selected based on this assumption.  The maximum output power for 

each inverter is 5 kW and the input DC voltage is 400 V. California’s Energy 

Commission (CEC) standard was used for the efficiency evaluation which defines the 

inverter efficiency with different weighted factors and percentage of load as shown in 

equation (2.15) [5]: 

ηCEC=0.04∙η10%+0.05∙η20%+0.12∙η30%+0.21∙η50%+0.53∙η75% 

+0.05∙η100%         (2.15) 

Table 2.6 Simulation Parameters. 

Parameter Value 

Output Power 5 KW 

Input Voltage 400 V 

Grid Voltage 120 

Grid Frequency 60Hz 

Switching Frequency 50kHz 

Input Capacitance (CDC) 1 mF  

Filter Inductors (Lf, Lg) 1 mH, 0.6mH 

Filter Capacitance (Cf) 6.8 μF 

PV Parasitic Capacitance (CPV) 100nF 
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Fig. 2.21 Shows the breakdown of power losses for each topology during active 

and zero modes. It can be seen from the figure that the proposed topology has the lowest 

conduction losses among all topologies, and this is because of the new current path that 

has been proposed. The switching loss of the proposed topology, H5 topology, and H6 

topology are almost the same. The Full bridge inverter is not considered for this 

comparison because it was established earlier that it is not suitable for PV transform-less 

application because of its high leakage current. 

  
Fig. 2.21 Power losses for each topology at 5kW output power. 

 

The efficiency curve of each topology at different load power is presented in Fig. 

2.22. The proposed topology has the highest efficiency among all topologies. Fig. 2.23 

shows the calculated efficiencies of each topology according to equation (2.15) the CEC 

standard. As can be seen from the figure, the proposed inverter has the highest efficiency 

among all topologies. The proposed inverter achieves efficiency of 98.4%, while H5 and 

H6 efficiencies are 98 % and 97.9%, respectively.  
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Fig. 2.22 Efficiency comparison of proposed topology and several topologies under different loads.  

  
Fig. 2.23 Efficiency comparison of proposed topology and several topologies based on CEC efficiency 

standard.   

 

2.5 Conclusion  

In this chapter, a review of the advances on transformer-less inverters based on 

full bridge topology has been presented. Challenges and leakage current requirements for 

transformer-less inverters have been discussed. Full Bridge, H5 and H6 topologies have 

been presented and compared in terms of leakage current and power losses.  A new 
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transformer-less Inverter has been proposed to enhance efficiency and reduce the leakage 

current. The new topology forms new current paths which lower the conduction losses 

when compared to the H5 and H6 topologies. Therefore, the current of the proposed 

topology in the active mode flows through four switches instead of the six switches of the  

H6 and H5 topologies. The reviewed inverters and the proposed inverter have been 

simulated and tested to evaluate their performance under different load conditions. The 

results show that, the proposed inverter achieves the lowest conduction losses and the 

highest efficiency among all presented topologies.  
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3. Chapter Three: Wide Bandgap (WBG) Power Switching Devices  

3.1 Introduction 

To enhance the efficiency and reliability of the transformer-less inverter, it is 

necessary to choose the appropriate switching devices. WBG devices, such as SiC 

MOSFETs, and GaN HEMTs, have been widely employed in renewable energy to 

enhance efficiency and reduce the power losses of the system. The advantages and the 

superior performance of wide bandgap semiconductor power devices have been reported 

in several studies [42]–[50]. According to these studies, by replacing Si IGBT by SiC 

MOSFET, the overall losses of the system can be reduced by half. Driven by their 

capability for high switching frequency with high efficiency and the reduction of 

transformer size, Gallium Nitride transistors (GaN HEMTs) are considered as promising 

devices for power conversion applications [51]–[53]. Using WBG power devices, the PV 

inverter can operate at high switching frequencies, which reduces the size and the volume 

of the system, thereby lowering the system’s overall cost. 

3.2 Performance Evaluation of Si MOSFET and GaN HEMT 

Evaluating the performance and loss profiles of Si CoolMOS and GaN HEMT 

requires study and analysis of the switching and conduction characteristics of each device 

for the proposed inverter application. Manufacturer’s datasheets can be used to provide 

the detailed data of the conduction characteristics of each device. However, using the 
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datasheet to determine the switching characteristics is difficult because normally, 

switching characteristics are determined for specific operation conditions. Therefore, to 

provide an accurate comparison between Si CoolMOS and GaN HEMT in terms of 

switching characteristics and losses; a double pulse test circuit is designed to provide the 

same operating conditions that will be used in the proposed system.  

3.2.1 Conduction Characteristics 

The voltage drop and the current that flows through the power switching devices 

are used to determine the conduction losses. For the selected switching devices Si 

MOSFET (CoolMOS) IPW60R045CP and GaN HEMT GS66516T, the forward voltage 

versus current at different temperature can be extracted from the manufacturer’s 

datasheet of each device, and they are shown in Fig. 3.1 [54], [55]. These forward 

voltages are used to determine the conduction losses of each device. Fig. 3.1 shows that 

GaN HEMT has a smaller voltage drop than Si CoolMOS over the current range of the 

system; thus, GaN HEMT will have lower conduction losses than Si CoolMOS.  

  
(a) 
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(b) 

Fig. 3.1 Forward voltages of Si MOSFET and GaN HEMT at various current and junction temperature: 

(a) Si MOSFET and GaN HEMT forward voltage at 25 ºC junction temperature; (b) Si MOSFET and 

GaN HEMT forward voltage at 150 ºC junction temperature. 

 

3.2.2 Switching Characteristics 

As mentioned previously, to provide an accurate comparison between Si 

CoolMOS and GaN HEMT in terms of switching characteristics and losses, their 

switching characteristics and losses are measured using a double pulse test circuit shown 

in Fig. 3.2 to provide the same operating conditions that are used in the proposed system. 

Fig. 3.3 shows the turn-on and turn-off waveforms of Si MOSFET and GaN HEMT at 

400 V and 30 A.  

  
Fig. 3.2 Double Pulse Test Circuit. 
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Fig. 3.3 a and b show the drain-source voltage, and drain current, during turn-on 

transition for Si MOSFET and GaN HEMT, respectively. Fig. 3.3 c and d show the drain-

source voltage, and drain current, during turn-off transition for Si MOSFET and GaN 

HEMT, respectively. The superior performance in the switching characteristics of the 

GaN HEMT in terms of di/dt and dv/dt can be seen in the figures. As an example, from 

Fig. 3.3 c and d, during the turn-off stage, GaN HEMT switches at 15.8 kV/μs while Si 

MOSFET switches at 4.9 kV/μs. Table 3.1 presents the switching characteristics for both 

devices in terms of di/dt and dv/dt during turn-on and turn-off transitions. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 3.3 The turn-on and turn-off waveforms of Si MOSFET and GaN HEMT at 400 V and 30 A: (a) Si 

MOSFET Turn-on; (b) GaN HEMT Turn-on; (c) Si MOSFET Turn-off; (d) GaN HEMT Turn-off. 

 

Table 3.1 Switching characteristics. 

 Turn-on Turn-off 

Si GaN Si GaN 

dv/dt (KV/μs) 6 9.6 4.9 15.8 

di/dt (KA/μs) 0.63 4 0.4 3 
 

The switching losses can be obtained by measuring the voltage and the current at 

different operating conditions. Thus, the switching energy losses can be obtained by 

integrating the product of the collected voltages and currents. Fig. 3.4 shows the turn-on 

and turn-off energy losses of Si MOSFET and GaN HEMT. Table 3.2 presents the values 
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of the turn-on and turn-off switching energy losses shown in Fig. 3.4. It can be noticed 

that the Si MOSFET turn-on switching energy loss is more than five times that of the 

GaN HEMT. The most attractive characteristic of GaN HEMTs is their significantly low 

turn-off energy loss, which is almost constant over the current range of the system. 

Conversely, the turn-off energy loss of the Si MOSFET increases linearly with the 

current. It can be seen from Fig. 3.4 and Table 3.2 that the switching energy loss of the Si 

MOSFET at 20 A (105.96 μJ ) is more than seven times that of GaN HEMT at 20 A (14.1 

μJ), and Si MOSFET at 40 A (1045.6 μJ) is more than 30 times that of GaN HEMT at the 

same current (14.8 μJ). 

 
(a) 

 
(b) 

Fig. 3.4 Turn-on and Turn-off switching energy losses of Si MOSFET and GaN HEMT: (a) Turn-On; 

(b) Turn-Off. 
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Table 3.2 Switching energy losses. 

Current (A) Si MOSFET GaN HEMT 

Eon (μJ) Eoff (μJ) Eon (μJ) Eoff (μJ) 

0 0 0 0 0 

5 109.16 26.86 73.1 14 

10 223.17 28.92 76.5 14.1 

15 343.9 53.59 92.3 14.2 

20 472.86 105.69 102 14.1 

25 604.8 170.94 109 14.5 

30 760.32 264.29 118.3 14.6 

40 1045.6 482.79 143.2 14.8 
 

 

3.3 Conclusion  

In this chapter, WBG materials-based power switching devices have been 

introduced. WBG power switching devices have superior characteristics, such as low gate 

charge and low on-state resistance compared to Si power switching devices. Thus, WBG-

based power switching devices can operate at high switching frequencies which will 

reduces the overall system’s weight and volume without adding more losses to the 

system. A double pulse test circuit was designed to evaluate the performance and loss 

profiles as well as provide an analysis of switching and conduction characteristics of GaN 

HEMTs in comparison to Si MOSFETs. It is noted that GaN HEMTs had lower 

conduction and switching losses compared to the Si MOSFETs. Si MOSFETs’ switching 

energy loss was more than five times that of the GaN HEMTs. 
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4. Chapter Four: Wide Bandgap Power Devices in PV Inverters 

4.1 Introduction 

WBG power switching devices have gained much interest in the power 

electronics society because of their superior switching and conduction performance 

compared to Si power devices. WGB power devices, such as SiC and GaN devices, are 

the latest advancements in power semiconductor technology, and they are considered to 

be a promising technology that can switch at high frequencies and achieve very high 

power density and very high efficiencies [56]. Application of WBG devices in renewable 

energy converters has been researched and has shown the potential benefits of these 

devices. 

The benefits and potential performance enhancement of SiC applications in 

renewable energy converters have been widely discussed [57]–[59]. The designed PV 

inverter in [57]achieved 98.8% efficiency. By just replacing Si IGBTs with SiC, JFETs 

overall losses were reduced to half in the designed PV inverter [58]. The benefit of using 

SiC MOSFET in a transformer-less inverter in terms of efficiency and power losses has 

been explored in detail [59]. The use of GaN HEMT in renewable energy has also been 

discussed [60]–[62]. The higher performance of GaN HEMT in terms of energy 

efficiency has been described [60], [61]. GaN devices have been used in [62] to achieve 

99.3% efficiency at 16kHz switching frequency and low output power. 
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4.2 Proposed GaN-Based Single-Phase Transformer-Less PV Grid-Tied Inverter 

In order to verify the benefits of replacing Si MOSFET with GaN HEMT in the 

PV inverter; the proposed topology in Fig. 2.16 was simulated and analyzed using co-

simulation between the PSIM environment and the MATLAB/Simulink Platform. Table 

4.1 shows the simulation specifications. Table 4.2 shows the switching power devices 

used in the simulation. The proposed topology power losses and efficiency were 

compared using two different power devices (Si MOSFET and GaN HEMT). Heatsink 

design and thermal analysis of the proposed inverter were simulated using COMSOL 

Multiphysics. 

Table 4.1 Simulation parameters. 

Parameter Value 

System Power 5 KW 

Input Voltage 400 V 

Grid Voltage 120 V 

Grid Frequency 60 Hz 

Switching Frequency 50 kHz and 200 kHz 

Input Capacitance 1mF 

 

Table 4.2 Switching devices parameters. 

Parameter IPW60R045CP GS66516T 

VDS (V) 650 650 

ID (A) 60 60 

RDS (mΩ) 45 25 

QG (nC) 150 12.1 

QGS (nC) 34 4.4 

QGD (nC) 51 3.4 

Ciss (pF) 6800 520 

Coss (pF) 320 130 

Crss (pF) - 4 
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The most important benefit of replacing the Si MOSFET with GaN HEMT for the 

proposed inverter is the reduction in overall loss by more than 60% at 50 kHz and more 

than that at 200 kHz as shown in Fig. 4.1 a and b. The significantly low power losses of 

GaN HEMTs can help improve the efficiency of the overall system and reduce thermal 

stress. Moreover, GaN HEMTs can operate at high switching frequencies with lower 

power losses, which will consequently reduce the total volume of the system [63]. 

 
(a) 

 
(b) 

Fig. 4.1 Power losses of Si MOSFET and GaN HEMT: (a) at 50 kHz; (b) at 200 kHz. 
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4.2.1 Efficiency Improvement 

The overall efficiency of the system is directly affected by the switching device 

power losses. Fig. 4.2 shows the efficiency of the proposed topology with Si MOSFETs 

and GaN HEMTs at different levels of rated power and different switching frequencies. 

The figure shows the efficiency improvement using GaN HEMTs with more than 2% of 

improvement at 50 kHz and more than 3% of improvement at 200 kHz. Hence, these 

results verify the superior performance of the GaN switching devices over their Si 

counterparts. 

 
Fig. 4.2 Efficiency comparison of Si MOSFET and GaN HEMT at different switching frequency. 

 

4.2.2 Passive Component Reduction 

Switching the inverter at high switching frequencies can significantly reduce the 

passive component size. Thus, by using the previously presented semiconductor loss 

model, the switching frequency of the inverter that is equipped with GaN HEMT has 

been increased until the losses of the GaN HEMT are almost equal to the losses of Si 
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MOSFET. Fig. 4.3 shows the results of this process for an output power of 5 kW; as can 

be seen from the figure, the switching frequency has been increased to 500 kHz for GaN 

HEMT to reach the balance point where its losses are equal to Si MOSFET losses at 50 

kHz. Thus, to reach the point where both devices dissipate the same power, the GaN 

HEMT switching frequency increased to 10 times the switching frequency of the Si 

MOSFET. This high switching frequency reduces the filter inductance size significantly 

since the inductance size is inversely proportional to the switching frequency [64]: 

Lf=
VDC

4×fsw×0.2×IL_max
        (4.1) 

 
Fig. 4.3 The balance point where GaN HEMT losses at 500 kHz is equal to Si MOSFET losses at 50 

kHz. 

 

The inductor current ripple was chosen to be 20% of the maximum output current. 

Fig. 4.4 shows the effect of increasing the switching frequency on the inductance size. As 

can be seen from the figure, increasing the switching frequency reduced the inductance 

size from 600 to 40 μH, which is almost 93% of reduction in inductor value. Fig. 4.5 

shows the effect of increasing the switching frequency on the magnetic core volume. The 

magnetic core volume has been reduced from initially 237 to 43.1 cm3, which is around 
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an 82% reduction in core volume. Accordingly, this will result in a reduction of the 

inductor weight as demonstrated in Fig. 4.6. The inductor weight was reduced from 618 

to 120 g, which is more than an 80% reduction in weight. 

 
Fig. 4.4 The effect of increasing the switching frequency on inductance size. 

 
Fig. 4.5 The effect of increasing the switching frequency on magnetic core volume. 
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Fig. 4.6 The effect of increasing the switching frequency on the inductor weight. 

 

4.2.3 Improvement in Power Rating 

As mentioned previously, GaN HEMTs’ most important benefit is their low 

power loss, which improves efficiency and can be used to improve the power rating of 

the proposed system. Improving the power rating can be done by increasing the output 

power of the system using the same heatsink that has been designed for Si MOSFETs. 

Fig. 4.7 presents this concept. As shown in the figure, the output power increased from 

2500 W using Si MOSFET to 3750 W using GaN HEMT with the same power losses at 

50 kHz switching frequency. Thus, the GaN HEMT-based inverter achieves more than a 

60% increase in power rating without any additional cooling. 
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Fig. 4.7 Power rating improvement, output power increase with same power losses. 

 

4.3 Thermal Design and Simulation Analysis 

4.3.1 Model Outline 

Modelling and thermal performance analysis of heatsinks using simulation 

platforms have been reported by several researchers [65]–[69]. In this research, 

COMSOL Multiphysics was used to create two 3D models of a 6-pack MOSFET module 

with Silicon (Si) and GaN as their respective semiconductor materials.  

To reduce the module’s temperature and to compare the thermal performance of 

each semiconductor, heatsinks were added to the design. The Finite Element Analysis 

(FEA) method was used to solve the temperatures of the 3D structure. Body Corp’s 

online tool AAVID Genie was used to verify the results and select the appropriate 

heatsink for each structure from their commercially available heatsinks, and then simulate 

it in COMSOL. The Joule heating generated by electric currents passing through each of 

the MOSFET modules was obtained from calculations made in PSIM, which acted as the 

heat sources for COMSOL. Thermal stresses and physical deformation are beyond the 

scope of this work. 
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4.3.2 Model Geometry 

The internal structure of the Si MOSFET module from the bottom to the top 

includes: a Copper (Cu) Baseplate, a solder layer, a Copper layer, an Aluminum Nitride 

(AlN) layer and a Copper layer [70]. The module for GaN consists of all the layers as the 

Si module except for the diode and its corresponding solder layer. The dimensions of the 

MOSFETs for the GaN module were obtained from [55]. Fig. 4.8 shows the dimensioned 

view of the Si MOSFET, and GaN HEMT, respectively.  

 

 

(a) 

 

(b) 

Fig. 4.8 xy-plane view of MOSFET modules: (a) for Si; (b) for GaN. 
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4.3.3 Model Simulation and Results 

Figs. 4.9 and 4.10 show the temperature profiles for the Si and GaN models with 

the heatsinks. The temperatures displayed on the legends are in degrees Celsius. The 

temperature profiles for the two models with the heatsink show similar distribution of 

temperatures. The Si and GaN models have higher temperatures on the heatsink uniform 

around all the MOSFETs, but the range of temperatures for the heatsinks are much lower 

in the GaN model than the Si model. 

 

Fig. 4.9 Temperature profile of Si model with heatsink visible. 

 

Fig. 4.10 Temperature profile of GaN model with heatsink visible. 
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The maximum temperatures for the Si and GaN models were found to be 96.36 ºC 

and 85.91 ºC, respectively. The minimum temperatures were 77.14 ºC and 76.87 ºC for 

the Si and GaN models, respectively. The 3D model for Si MOSFETs had a volume of 

183.8 cm3 and surface area of 1861 cm2 for the heatsink, while the GaN model had a 

volume of 125.6 cm3 and surface area of 826.3 cm2. Thus, using GaN HEMTs can 

achieve more than 55% reduction in heatsink surface area and more than 31% reduction 

in heatsink volume as shown in Fig. 4.11 a and b, respectively. As a result, the WBG 

(GaN) HEMT module requires a smaller heatsink for similar maximum temperatures. 

Using GaN HEMT will consequently reduce the overall system volume. The thermal 

modelling clearly demonstrates that the GaN module is more efficient than the Si module 

in terms of heatsink size and overall heat dissipation.  

 

(a) 
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(b) 

Fig. 4.11 Heat Sink Comparison between Si MOSFET and GaN HEMT: (a) Heatsink surface area. (b) 

Heatsink volume 

 

4.4 Conclusion  

In this chapter, an investigation of the benefits of using GaN HEMTs in a 

transformer-less PV inverter has been presented. The conduction losses, switching losses, 

and thermal analysis at different output powers and switching frequencies verified the 

benefits of replacing Si MOSFET with GaN HEMTs. The use of GaN HEMTs 

significantly reduced the overall semiconductor power losses of the proposed inverter by 

60% when compared to Si MOSFETS under the same operation conditions (load and 

switching frequency). This loss reduction will increase the overall efficiency of the 

system by more than 3%. Moreover, the GaN HEMT-based inverter operating at the 

same switching frequency as Si MOSFET-based inverter can provide more than a 60% 

increase in power rating while maintaining the same power losses. Furthermore, this loss 

reduction, when operating at the same switching frequency, allows a reduction of more 
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than 30% in heat sink volume, which will consequently reduce the overall system volume 

and cost. Finally, the superior switching characteristics of GaN HEMTs allow the 

switching frequency to be increased to more than 10 times the switching frequency of the 

Si MOSFETs. This increase will, consequently, reduce the passive components weight 

and volume, which, eventually, will reduce the overall inverter cost. 
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5. Chapter Five: Improvement of Proposed Transformer-Less Inverter with 

Reactive Power Capability 

5.1 Introduction 

The significant increase of PV system installations in recent years will have a 

significant impact on the power grid [71]. Typically, in the distribution system, the power 

flow is unidirectional and as the line distance increases, the line voltage decreases, which 

affects the end consumer voltage. Therefore, in the existing grid system, the substation 

transformer side voltage is set to a higher voltage to maintain a reasonable voltage for 

long distance consumers from substation at high load conditions. With the huge increase 

of PV system installations, the power flow in the distribution system can be bidirectional 

and the huge active power fed to the grid can maintain high voltage with long line 

distance. However, in some cases, the voltage will exceed the upper threshold voltage. 

Limiting the PV power can solve this over voltage, but a more efficient solution is to use 

the PV inverter to regulate the voltage by absorbing reactive power.   

Voltage Sags can occur for many reasons in distribution systems, such as sudden 

load change, and this sag can affect sensitive loads; therefore, sag mitigation is required 

to reduce its effect on the system. This improves power quality and grid stability and 

provides safe operation of loads. Reactive power control in PV inverters can help 

mitigate any voltage sag in the system to avoid any system interruption [72]–[74].  



 

55 

IEEE 1547a [19] and California’s Electric Tariff Rule 21 [23] introduce the future 

roles of distribution energy resources (DR) and the future standards recommendations for 

PV inverters. According to IEEE 1547a [19], it is “required for the DR to actively 

participate to regulate the voltage by changes of real and reactive power”. In [23], the 

recommended functionalities of the DR inverter are to “Provide reactive control through 

dynamic reactive power injection through autonomous responses to local voltage 

measurements, and to provide reactive power by a fixed power factor”. Thus, it is 

required to have a reactive power capability in the future PV inverter.  

5.2 Reactive Power Capability of Current Transformer-less inverters 

The flow of bidirectional current is required in the inverter circuit to generate a 

reactive power. Existing transformer-less inverters, such as the H5 and H6 inverters, all 

use the complimentary phase-leg method shown in Fig. 5.1. To create a bidirectional 

current path, the current will flow either through the body diode of the switch or through 

the addition of extra fast recovery diodes.  The most common switching devices used in 

inverter circuits are MOSFETs for low power, IGBTs for medium to high power and 

GTOs for high power applications.  

 
Fig. 5.1 Complimentary phase-leg method. 
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In order to design inverters with low losses, switching devices with low switching 

losses are required and a good reverse recovery antiparallel diode must be used across 

each switching device. MOSFETs have excellent switching performance, but their 

antiparallel body diodes have poor reverse recovery behavior. The problem with 

MOSFET’s body diode is that it can conduct current even when there is another current 

path. Also, any unexpected reverse recovery of this diode during MOSFET turn on and 

turn off will cause high frequency ringing and high switching losses which will cause 

higher stresses on the devices and electromagnetic interference (EMI).  To solve this 

problem, MOSFET-based inverters usually use extra in series and freewheeling fast 

diodes, which increases the system cost, as well as the conduction losses in the system. 

Additionally, when designing highly efficient inverters with reactive power capability, 

the MOSFET’s body diode will provide slow reverse recovery and cause high reverse 

recovery losses. Typically, IGBTs are used in inverter designs to overcome these 

problems. IGBTs tend to have higher switching losses than MOSFETs but need fewer 

diodes to provide good reverse recovery behavior. Thus, IGBTs will reduce the system 

cost compared to MOSFETs but will have lower efficiency at high switching frequencies.  

GaN switches are promising technology with excellent switching performance 

that can operate at high switching frequency with high efficiency. This reduces the size 

and the volume of the system, which in return, will lower the system’s overall cost. GaN 

HEMTs have a superior reverse recovery behavior compared to Si MOSFETs since they 

do not have a body diode, so there is zero reverse recovery charge.  Therefore, GaN 

HEMTs will reduce the losses and provide lower EMI. These devices naturally have the 
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capability of reverse conduction and depending on the gate voltage, they will provide 

different characteristics. Therefore, the gate drive of GaN HEMTs needs to be optimized 

to provide excellent reverse recovery behavior. The natural reverse conduction capability 

is an advantage because no antiparallel diodes are required compared to Si MOSFETs 

and IGBTs. These characteristics make the GaN HEMTs an excellent choice for future 

PV inverters.  

In order to verify the superior reverse recovery of GaN HEMT compared to Si 

MOSFET’s body diode, two simulations are done in PSpice using double pulse test 

circuits shown in Fig. 5.2 at 400 V and 2 A.  Two devices are selected for the simulation 

Infineon Si MOSFET (CoolMOS) IPW60R045CP and GaNSystems GaN HEMT 

GS66516T. Table 5.1 shows the characteristics of each device. As can be seen from the 

table, the GaN HEMT has zero recovery charge and faster turn on and turn off times with 

low time delay. The test is done by first turning the bottom MOSFET (or HEMT) on; this 

charges the inductor current. Then, by turning the bottom MOSFET (or HEMT) off, the 

inductor current will have only one path to conduct through which is the top MOSFET 

body diode (or the top HEMT). Finally, by turning the bottom MOSFET (or HEMT) on 

again, a forced reversed recovery can occur on the top MOSFET body diode (or top 

HEMT). In this way, the reverse recover effect on the MOSFET body diode and the GaN 

HEMT can be studied and evaluated.  
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Fig. 5.2 Double pulse test circuit. 

 

Table 5.1 Power switching devices characteristics 

Parameter IPW60R045CP GS66516T 

VDS (V) 650 650 

ID (A) 60 60 

RDS (mΩ) 45 25 

QRR (μC) 17 0 

TR (ns) 20 12.4 

TR delay (ns) 30 4.6 

TF (ns) 10 22 

TF delay (ns) 100 14.9 

 

The Si MOSFET waveforms during this process are shown in Fig. 5.3. The peak 

reverse recovery current is 41.89 A under 2 A load current conditions. Both Top and 

Bottom MOSFETs gate voltages exhibit higher voltages than intended gate voltages of 10 

V, which will lead to false turn on and turn off in the MOSFETs. Consequently, 

MOSFET failure is inevitable. On the other hand, GaN HEMTs show an excellent 

reverse recovery behavior. The GaN HEMT waveforms during this process are shown in 

Fig. 5.4. The peak reverse recovery current is less than 8 A under the same 2 A load 

current. The gate voltages are stable, and the false turn on and turn off are avoided. 
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Therefore, shoot through failure is prevented by the superior reverse recovery 

performance of GaN HEMTs. 

 
Fig. 5.3 Diode reverse recovery waveforms of Si MOSFET. 

 
Fig. 5.4 Reverse recovery waveforms of GaN HEMT. 
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5.3 Proposed GaN-Based Single-Phase Transformer-Less PV Grid-Tied Inverter 

with Reactive Power Capability  

The proposed transformer-less inverter in section 2.3 and the enhanced GaN 

HEMT-based inverter in chapter 4 is working and tested for unity power factor operation. 

The proposed topology can generate unipolar output voltage (+VDC, 0, −VDC) and 

constant CMV using conventional PWM during the positive power region. During the 

negative power region grid voltage and current have opposite polarity and four modes of 

operation are needed. When grid voltage is negative and grid current is positive, the 

current freewheels through the antiparallel diode of S2 and S6 as shown in Fig. 5.5 (in 

GaN HEMT case its reverse conduction capability). VAB = −VDC, and the Common Mode 

voltage VCM = (VAN + VBN)/2 = (0 + VDC)/2 = VDC /2. When grid voltage is positive and 

grid current is negative, the current freewheels through the antiparallel diode of S4 and 

S5 as shown in Fig. 5.6 (in GaN HEMT’s case its reverse conduction capability). VAB = 

+VDC, and the Common Mode voltage VCM = (VAN + VBN)/2 = (VDC + 0)/2 = VDC /2. 

However, there is no current path to generate zero state voltage. Therefore, the 

conventional PWM used earlier is not suitable for reactive power generation.  Thus, the 

PWM or the switching states of the proposed topology need to be modified to provide a 

current path for the zero-state voltage during the negative power region.  
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Fig. 5.5 Active state mode negative state voltage in negative power region. 

 
Fig. 5.6 Active state mode positive state voltage in negative power region. 

 

5.3.1 Modified PWM for Reactive Power Generation 

As mentioned previously, conventional PWM is not suitable for reactive power 

generation.  Therefore, the PWM signals need to be modified to generate zero voltage 

during the negative power region. Modified PWM, shown in Fig. 5.7, creates a new 

current path to generate the zero voltage in the negative power region. As shown in the 

figure, there are four regions of operation. Region I and region II are the positive power 

regions where grid voltage and current have the same polarity. Region III and region IV 

are the negative power regions where grid voltage and current have opposite polarity. 
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Operation principles for region I and region II (the positive power region) are the same as 

conventional PWM and they are discussed in detail in section 2.3.  

 
Fig. 5.7 Non-unity power factor PWM signals.  

 

There are four modes of operation in the negative power region. Region III, when 

grid voltage is negative and grid current is positive, has two modes of operation.  

In Mode 1, S2, S6 and S3 are turned ON. The current during this mode is 

freewheeling through the antiparallel diode of S2 and of S6 (in GaN HEMT case its 

reverse conduction capability), as shown in Fig. 5.5. VAB = -VDC, and VCM = (VAN + 

VBN)/2 = (0+VDC)/2 = VDC/2. 

In Mode 2, S1 and S3 are turned ON while all other switches are turned OFF. S1 

in the conventional PWM is turned OFF in this state but with the modified PWM, it is 

complimentary commutating to S2 and S6 to create a new current path for zero state in 

region III. The current during this mode flows through S1 and the anti-paralleled diode of 

S3, as shown in Fig. 5.8. VAB = 0, and VCM =VDC /2. 
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Region IV, when grid voltage is positive and grid current is negative, has two 

modes of operation.  

In Mode 3, S1, S4 and S5 are turned ON. The current during this mode is 

freewheeling through the antiparallel diode of S4 and S5 (in GaN HEMT case its reverse 

conduction capability), as shown in Fig. 5.6. VAB = +VDC, and the Common Mode 

voltage VCM = (VAN + VBN)/2 = (VDC + 0)/2 = VDC /2. 

In Mode 4, S1 and S3 are turned ON while all other switches are turned OFF. S3 

in the conventional PWM is turned OFF in this state, but with the modified PWM, it is 

complimentary, commutating to S4 and S5 to create a new current path for zero state in 

region IV. The current during this mode flows through S3 and the anti-paralleled diode of 

S1, as shown in Fig. 5.9. VAB = 0, and VCM =VDC /2. 

Applying the modified PWM, zero states can be achieved in the negative power 

region for the proposed inverter in section 2.3. As a result, reactive power can be 

generated while maintaining constant CMV and low leakage current.  

 
Fig. 5.8  Negative zero state voltage mode in negative power region. 
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Fig. 5.9 Positive zero state voltage mode in negative power region. 

 

5.3.2 Simulation Results  

To validate the theoretical analysis of the proposed inverter reactive power 

capability with the modified PWM, a simulation is carried out using co-simulation 

between PSIM environment and MATLAB/Simulink Platform. Table 5.2 lists the 

simulation parameters. GaN HEMT (GS66516T) is used in the simulation as the power 

switching device.  

Table 5.2 Simulation Parameters 

Parameter Value 

System Power 5 KW 

Input Voltage 400 V 

Grid Voltage 120 V 

Grid Frequency 60 Hz 

Switching Frequency  200 kHz 

Input Capacitance 1mF 

 

Fig. 5.10 shows the proposed inverter simulated waveforms with the modified 

PWM for unity power factor. Fig. 5.11 and Fig. 5.12 show the proposed inverter 

simulated waveforms with the modified PWM for non-unity power factor, lagging PF 

and leading PF, respectively. Thus, prove the modified PWM can allow the proposed 



 

65 

inverter to operate with both unity and non-unity power factors. Fig 5.13 and 5.14 show 

the change from unity PF to lagging PF and from unity PF to leading PF, respectively. As 

can be noticed from the figures, the modified PWM is working properly during the 

transition period either from unity PF to lagging PF or from unity PF to leading PF.  

 
Fig. 5.10 Proposed inverter with modified PWM under unity power factor. 

 
Fig. 5.11 Proposed inverter with modified PWM under lagging power factor. 
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Fig. 5.12 Proposed inverter with modified PWM under leading power factor. 

 

 
Fig. 5.13 Transition from unity power factor to lagging power factor. 
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Fig. 5.14 Transition from unity power factor to leading power factor. 

 

Fig. 5.15 shows the leakage current of the inverter with the modified PWM. The 

leakage current is still low with RMS of 10.6 mA, and it is almost the same as the 

proposed inverter with conventional PWM in section 2.3. Therefore, with the modified 

modulation technique, the proposed inverter in section 2.3 is suitable for transformer-less 

and reactive power applications without adding additional components or modifying the 

inverter structure. 

 
Fig. 5.15 Leakage current of proposed inverter with modified PWM. 

 

The efficiency curve of the proposed inverter with conventional PWM and the 

modified PWM at different load powers is presented in Fig. 5.16. The inverter with the 
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modified PWM has slightly lower efficiency than the inverter with conventional PWM 

due to the increase of switch count. The calculated efficiencies according to equation 

(2.15), the CEC standard for conventional and modified PWMs, are 99.23% and 98.80%, 

respectively. Regardless of the increase of switch count, the modified PWM provides the 

system with reactive power capability without adding additional components or 

modifying the inverter structure. This provides a simple and cost-effective PV inverter.  

 
Fig. 5.16 Efficiency comparison of proposed inverter with conventional and proposed PWM. 

 

 

5.4 Conclusion  

In this chapter, a high efficiency single-phase transformer-less inverter with 

reactive power capability has been proposed. The flow of bidirectional current is required 

in the inverter circuit to generate a reactive power. Thus, to create a bidirectional current 

path, the current will flow either through the body diode of the switch or through the 

addition of extra fast recovery diodes.  MOSFET’s body diode has poor reverse recovery 

behavior, which leads to high frequency ringing and high switching losses that will cause 
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higher stresses on the power devices. Also, adding fast recovery diodes to create a path 

for bidirectional current flow reduces the system’s efficiency and increases the cost and 

size of the system. On the other hand, GaN HEMTs naturally have the capability of 

reverse conduction and no antiparallel diodes are required compared to Si MOSFETs and 

IGBTs. Gan HEMTs provide excellent reverse recovery behavior, which makes it an 

excellent choice for future PV inverters. Furthermore, a modified PWM has been 

proposed to create a new current path and help achieve zero states in the negative power 

region. As a result, reactive power can be generated while maintaining constant CMV 

and low leakage current. It should be noted that the inverter with the modified PWM has 

slightly lower efficiency than the inverter with conventional PWM due to the increase of 

switch count. The efficiency has been reduced from 99.23% using conventional PWM to 

98.80% using modified PWM. However, the use of GaN HEMTs with its superior 

reverse recovery performance and the modified PWM provides the system with reactive 

power capability without adding additional components or modifying the inverter 

structure. Thus, the proposed inverter provides a simple and cost-effective next 

generation PV inverter.  
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6. Multifunctional Control Strategy for PV Grid-Tied Inverter to Support the 

Grid 

6.1 Introduction  

Due to the intermittent nature of solar energy, the rapid increase of PV system 

installation into the electric network will affect the reliability and the quality of the power 

system. The increasing penetration of PV power will weaken the whole power system 

due to the injection of fluctuation PV power. Thus, grid codes have been updated and 

new regulations have been introduced to control PV energy integration with the electric 

grid.  

Typically, during grid faults it is required that PV systems trigger an anti-

islanding protection in order to stop delivering power to local loads. However, due to the 

rapid increase in PV installation, its impact on the grid cannot be ignored even for small 

residential PV systems [75]–[78]. If all grid-connected PV systems switched suddenly to 

islanding mode of operation, the grid would face more severe problems than any initial 

grid fault. Therefore, many countries have updated their grid codes to solve grid-

connected PV system potential problems. Future PV Systems will be required to provide 

additional services, such as Low Voltage Ride-Through capability (LVRT) [79]–[84], 

active power control [85]–[87], and reactive power compensation [88]–[92]. The German 

grid code requires that under grid faults, any Distributed Generation system including PV  
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systems must have low voltage ride through capability when connected to medium or 

high voltage networks [93]. In the updated Italian grid code, any distributed generation 

system with more than 6KW nominal power must have voltage ride through capability 

under grid faults [94]. In IEEE 1547a [19] it is required that the DR support the grid 

during voltage recovery by controlling the active and reactive power. In California’s 

Electric Tariff Rule 21 [23], it is recommended that the DR inverter provide reactive 

power and participate in voltage regulation. Therefore, future PV systems must provide 

advanced control functions to support the grid. 

To fully benefit from solar PV energy and take advantage of the increasing 

number of grid-tied PV systems, a simple and flexible control strategy should be 

developed to provide PV inverters with advanced functions that will support the grid. A 

control system is developed in this chapter to provide the PV inverter with advanced 

functions, and this control system has the flexibility to change from one mode to another 

according to the grid requirements or the customer demands. The proposed control 

strategy is based on d-q synchronous frame controller, which is simple yet has the ability 

to provide the proper power references that will be used in the inner control systems. 

Moreover, this control strategy can provide the PV inverter with multiple operation 

modes to achieve multiple advanced functions.  

6.2 Grid-Tied Single-Phase Transformer-Less Inverter Control 

Single-phase grid-tied transformer-less PV systems are the common configuration 

for low power applications (mainly residential applications up to 5kW). Fig. 6.1 shows 

the complete configuration of the control system. To maximize the power and extract 
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more energy from the PV system, maximum power point tracking (MPPT) control is 

implemented [95]. The main control components are the phase locked loop (PLL), the 

Orthogonal System Generator (OSG), PI controllers, the sag detection unit and the power 

calculation algorithm. The power calculation algorithm is constructed by controlling the 

active and reactive power using d-q components. Using Park Transformation, the inverter 

current is transformed into Id and Iq in reference to the grid voltage rotating d-q reference 

frame [96]–[98]. Id is the active power component and Iq is the reactive power 

component. After the transformation, two PI regulators are used, and the PI outputs are 

transformed back into α-β reference frame to provide the inverter modulation signals as 

shown in Fig. 6.1. 

 

Fig. 6.1 Single Phase Transformer-less Inverter configuration with synchronous rotating frame control 

(d-q control) 
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The d-q transformation is originally used in three phase systems. Using linear 

transformation, it can be directly implanted from abc space (time varying signals) to d-q 

space [97]–[99]. This transformation also can be achieved by first transforming the abc 

vector to α-β space using α-β stationary frame, and after that transforming α-β to d-q 

space using d-q synchronous frame [100], [101]. In this theory, it is required to have two 

orthogonal components to obtain d-q components, and this is a problem in single-phase 

systems where there is only one phase signal. 

Several methods have been developed to generate the other orthogonal component 

to apply the d-q transformation in single-phase systems. [102] Proposes using the current 

of output filter capacitor which is 90º out of phase with the output voltage as the 

orthogonal component. Another approach to obtain the orthogonal component is to delay 

the original signal by 1/4 period of time [103]. If a current signal is considered, to be 

transformed to the d-q rotating frame using the time delay method, we can obtain an 

imaginary current signal, which is the time delayed version of the original real current 

signal. As a result, the real current signal will be the α component and the imaginary 

signal will be the β component. Fig. 6.2 illustrates this process.  
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Fig. 6.2 Real (α) and imaginary (β) signals. 

Mathematical foundations of sine versions of these current signals are as follows: 

 

ir= iα=A sin (ωt+φ)            (6.1) 

ii= iβ=A sin (ωt+φ-
π

2
) = -A cos (  ωt+φ)         (6.2) 

The DC values in the d-q rotating frame are obtained using linear transformation given 

in: 

[
id

iq
] = [

sin ωt
cos ωt

           
-cos ωt
sin ωt

]  [
iα

iβ
]           (6.3) 

Transforming equations (6.1) and (6.2) using linear transformation in (6.3) gives 𝑖𝑑 and 

𝑖𝑞 values as in: 

id= A sin (ωt+φ)  sin (ωt) -A sin (ωt+φ- 
π

2
)  cos(ωt) =A cos (φ)   (6.4) 

iq= A sin (ωt+φ)  cos (ωt) +A sin (ωt+φ- 
π

2
)  sin(ωt) =A sin (φ)   (6.5) 

These signals are constant DC values obtained from the original AC signals at 

fundamental frequency in the rotating d-q frame.  
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Finally, Inverse linear transformation is applied in order to transform back the d-q signals 

to the α-β signals: 

[
iα

iβ
] = [

sin ωt
cos ωt

         
cos ωt
-sin ωt

] [
id

iq
]            (6.6) 

6.2.1 5 kW PV Array Design  

The Canadian Solar CS60P-180P PV module was used in this study and modeled 

using PSIM. PSIM provides a PV panel physical model and most of the parameters were 

obtained from the PV panel’s datasheet. CS60P-180P PV panel specifications are shown 

in Table 6.1. To design a 5kW PV array, a number of series and parallel connections of 

PV modules have been performed. In this study, fourteen PV modules are connected in 

series to increase the output voltage and two modules are connected in parallel to increase 

output current to provide a 5kW PV array. Thus, the PV output power is (14 x 2 x 180 = 

5.04 kW). 

Table 6.1  Electrical Specification of CS60P-180P 

Parameter Value 

Maximum Power (Pmax) 180 W  

Voltage at maximum power point (Vmp) 28.7 V 

)mppower point (ICurrent at maximum  6.26 A 

Open circuit voltage (Voc) 35.9 V 

Short circuit current (Isc) 6.98 A 

 

6.2.2 Maximum Power Point Tracking (MPPT) 

MPPT is a control technique that allows the extraction of the maximum possible 

power from a PV system. MPPT enforces the PV system to always work at the maximum 

power by finding and tracking the maximum power point even when there is a sudden 

change in power due to the changes on solar irradiance and temperature. MPPT 
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algorithms have been widely discussed and studied [104]–[110]. MPPT techniques are 

usually applied for DC/DC converters but recently, they have been applied directly to 

inverters for the purpose of increasing the overall system efficiency. Single-stage 

(DC/AC) PV systems will reduce the cost of the system and increase efficiency but will 

increase the control complexity compared to two-stage (DC/AC/DC) PV systems. 

However, in single-stage (DC/AC) PV systems, the PV voltage and current suffers from 

low frequency voltage and current ripples because of the sinusoidal power that is fed to 

the grid. Therefore, to reduce the ripples in PV voltage and current and to prevent the 

MPPT Algorithm from making wrong decisions, in single-stage systems, the average 

values of the PV voltage and current are used in the MPPT algorithm. The most common 

MPPT methods that are used in PV systems are Perturb and Observe (P&O) MPPT, 

Incremental conductance (IC) MPPT and Constant Voltage (CV) MPPT.  

6.2.2.1 P&O MPPT  

Perturb and Observe (P&O) MPPT is a simple and low-cost algorithm that is 

widely used in research studies and commercial products. The P&O MPPT works by 

measuring the derivative power and voltage (dP and dV) of the PV source to find the 

operating point movement. Fig. 6.3 shows the power curve for different solar irradiance 

and the P&O MPPT implementation. Based on the operating point, the MPPT will 

measure dP and dV of the PV panel and if dP/dV is positive, the reference voltage will be 

increased and if dP/dV is negative the reference voltage will be decreased. This process is 

repeated until the maximum power point is reached, that is, when dP/dV = 0. Fig. 6.4 

shows the flowchart of the P&O MPPT algorithm and the detailed process. P&O MPPT 
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is a simple algorithm and requires fewer sensors compared to other MPPT algorithms. 

Therefore, it is a fast, easy implementation and cost-effective MPPT algorithm. However, 

its simplicity can be a disadvantage and lead to a decrease in efficiency in complex PV 

systems.  

 
Fig. 6.3 Maximum power point variation for different solar irradiance.  
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Fig. 6.4 P&O MPPT algorithm flowchart.  

6.2.2.2 Incremental Conductance MPPT 

IC MPPT depends on the slope of PV power curve, and the maximum power 

point is achieved if the slope equals zero (dP/dV =0) as shown in Fig. 6.3. If the slope is 

positive (dP/dV > 0) that means that the operation point is on the left side of MPP, and if 

it is negative (dP/dV < 0) that means the operation point is on the right side of the MPP. 

Since the PV power is a product of the PV voltage and current, dP/dV can be expressed 

as:  

dP

dV
=

d(IV)

dV
=I+V

dI

dV
        (6.7) 
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Therefore, the maximum power point is reached when d𝐼 d𝑉⁄ = − 𝐼 𝑉⁄  , if 

d𝐼 d𝑉⁄ > − 𝐼 𝑉,⁄  the operation point is on the left side of MPP, and if d𝐼 d𝑉⁄ < − 𝐼 𝑉⁄   

the operation point is on the right side of the MPP. Based on these equations, the 

algorithm starts by measuring the change in PV panel voltage and current and then 

calculates the incremental conductance (∆𝐼 ∆𝑉⁄ ) and 𝐼 𝑉⁄ . Based on the sign of the 

relative relation between the current and the voltage, the reference voltage will either 

increase or decrease. This process is repeated until the maximum power point is reached. 

IC MPPT has better efficiency and accuracy compared to P&O MPPT; however, the 

implementation of IC MPPT is more complex than P&O MPPT. Also, it requires more 

sensors, which will increase the cost of system. Fig. 6.5 shows the flowchart of the IC 

MPPT algorithm and the detailed process. 
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Fig. 6.5 IC MPPT algorithm flowchart.  

 

6.2.2.3 Constant Voltage MPPT 

The CV MPPT algorithm depends on the relation between the PV panel voltage at 

MPP (VMPP) and the open circuit voltage (VOC). The VOC is measured experimentally by 

disconnecting the PV panel temporarily, and the ratio of VMPP and VOC is usually a preset 

value in the range of 76%-80%. After that, the voltage at MPP (VMPP) is calculated based 

on this operation. This method is simple and has fast response; the change in solar 

irradiance and temperature will have little effect in this method. However, it has lower 
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efficiency than the P&O and IC algorithms and disconnecting and reconnecting the PV 

panel from the load to measure the open circuit voltage increases the energy losses on the 

system. 

6.2.2.4 P&O MPPT Simulation in The Proposed Control System 

Choosing the MPPT algorithm always has a tradeoff between efficiency, 

complexity and cost. For the purpose of simplicity and reducing the cost of MPPT 

implementation; in this study, the P&O MPPT algorithm is applied in the inverter control 

to track the PV’s maximum power.  

The proposed inverter using P&O MPPT was simulated using PSIM and 

MATLAB/Simulink platforms. Fig. 6.6 and Fig. 6.7 show the change in solar irradiance 

from 1 kW/m2 to 0.4 kW/m2 and the tracking of maximum PV power for the change in 

solar irradiance with reduced ripples, respectively.    

 
Fig. 6.6 Solar irradiance variation.  
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Fig. 6.7 PV output power under change in irradiance.  

6.2.3 PLL 

For power devices that feed power to the grid, phase angle information of the grid 

is critical for their operation. To find the phase angle of the grid voltage θ, PLL is 

required. PLL is a closed loop system that controls its output phase to minimize the phase 

error between the output signal and the reference signal. The phase angle of the grid 

voltage θ is important to implement linear transformations in equation (6.3) and inverse 

linear transformation in equation (6.6) to transform the signals from α-β stationary frame 

to synchronized d-q rotating frame and vice versa. 

6.2.4 Power Calculation Algorithms 

After the transformation, the voltages and the currents of the grid (vd, vq), (id, iq) 

are measured and the active and reactive power are calculated by: 

P = id∙vd+ iq∙vq              (6.8) 

Q= id∙vq- iq∙vd             (6.9) 

The currents in a d-q rotating reference frame can be expressed as: 
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[
id

iq
] =

1

vd
2+vq

2 [
vd

vq
           

vq

-vd
] [

P
Q

]                   (6.10) 

Two control loops regulated by PI controllers are used in this control system to 

regulate the error in the d component and q component of the current. The designed 

control is based on vector control of power to feed the grid with active power and to 

control the inverter to generate or absorb any reactive power demand. 

6.2.5 Control Strategy  

To get the full benefits of a solar PV system in a cost-effective approach, a control 

strategy should be designed with advanced functions. The proposed control strategy has 

three modes of operation: normal operation mode, Low Voltage Ride Through mode 

(LVRT), and low solar irradiance mode. These three operations can mitigate any voltage 

fluctuations in the system and provide a stable grid operation.  The reactive power 

consumption or generation that is needed to mitigate voltage sags will be provided by the 

PV inverter. The maximum reactive power capacity of the PV inverter is: 

Qmax=√(Smax)2-(PPV)2            (6.11) 

where Smax is the maximum apparent power of the PV inverter, and PPV is the PV system 

output power. In the proposed control strategy, the reactive power upper limit is Qmax., 

and the generation or consumption of reactive power cannot exceed this upper limit. If 

the apparent power exceeds Smax at any point, the over-current protection will be 

triggered, and the inverter will be disconnected. 

After performing the d-q transformation of the grid current in the control system, 

the delivered active and reactive power to the grid can be calculated as follows:  

P=
1

2
vdid           (6.12) 
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Q=-
1

2
vqiq           (6.13) 

6.2.5.1 Normal operation mode 

The normal range of grid voltage is when grid voltage deviation is -10% to +10% 

from the nominal voltage defined in ANSI C84.1-2016 [111] which is 120V. Thus, 

normal operation mode occurs when grid voltage is between 0.90 p.u-1.1 p.u, and there 

are no fluctuations in load conditions and weather for the PV system. In this mode, the 

system is operating in MPPT mode to deliver the maximum energy that can be extracted 

from the system to the grid. The PV system during this mode is stable and supplies active 

power to the grid. Additionally, there is no exchange of reactive power, so the reactive 

power reference in this mode is 0.  

The active and reactive power during normal operation mode can be expressed as: 

P=
1

2
Vid≈PMPP           (6.14) 

Q=-
1

2
Viq=0           (6.15) 

where V is the grid voltage amplitude, and 𝑖𝑑,and  𝑖𝑞 are the d and q components of grid 

current.  𝑃𝑀𝑃𝑃 is the PV system tracked maximum active power. 

6.2.5.2 LVRT mode 

For renewable energy systems, LVRT requirements were first introduced to wind 

power systems because many countries worldwide were using wind systems as a source 

of power, which results in high penetration of wind power. International grid standards 

require that the same level of performance and reliability of conventional generation 

systems should be achieved by wind systems. In general, many grid codes require that 

wind systems achieve two main requirements during grid disturbance and faults: 1. 
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remain connected to the grid for a specific time during voltage fault (LVRT); 2. support 

the grid recovery during fault by generating or absorbing reactive power. Similar 

requirements have been extended and enforced for large-scale PV systems. As the 

penetration of PV systems increases rapidly, these requirements in the near future will be 

posed also for small PV systems (single-phase systems and residential systems). Some 

countries, such as Germany and Japan, have already initiated these requirements for low 

power rating PV systems (single-phase systems).  

Fig. 6.8 shows LVRT requirements from various countries’ grid codes during grid 

voltage faults. As shown in Fig. 6.3, the grid-tied DGs should remain connected to the 

grid for a specific period of time during voltage fault. Simultaneously, the system should 

support the grid recovery by injecting reactive current. Fig. 6.9 shows an example of the 

required reactive current to support the grid during voltage faults [93].  
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Fig. 6.8 LVRT requirements for distributed generation systems from various countries grid codes.  

 

Fig. 6.9 Reactive current requirements to support the grid. 
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As a result, future PV systems must perform advanced functions and meet the 

future grid codes requirements in case of grid fault which are:  Remain connected to the 

grid during voltage fault and Support the grid recovery during fault by delivering reactive 

power. These requirements are implemented in the proposed control strategy shown in 

Fig. 6.1. 

When grid voltage sag is detected, fault operation mode is activated, and the 

single-phase inverter should support the grid by injecting reactive power. The amount of 

reactive power needed to support the grid is dependent on the inverter rating and the 

depth of voltage sag. Also, when fault is detected, the control system will switch to non-

MPPT operation to keep the inverter’s apparent power within limits and not trigger over-

current protection [112]. 

According to Fig. 6.8, the system is in normal operation when grid voltage is 

between 0.9 p.u and 1.1 p.u and no reactive current is injected. However, when grid 

voltage drops below 0.9 p.u, LVRT operation mode will be activated and the injected 

reactive current ratio (Iqr) to the nominal current (IN) is defined as: 

Iqr= {

0,                              0.9 p.u≤V<1.1 p.u

k∙
V-V0

VN
,                    0.5 p.u<V<0.9 p.u

 -1,                         V≤0.5p.u                      

      (6.16) 

where V is the amplitude of grid voltage during fault, 𝑉0 is the initial grid voltage and 𝑉𝑁 

the nominal grid voltage. The gain k is: 

k=
∆Iq/IN

∆V/VN
≥2 p.u              (6.17) 

Based on equation (6.15) the reference reactive current can be defined as:  

Iq
* =IN×Iqr           (6.18) 
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where IN is limited by inverter maximum rating current Imax; 𝐼𝑁 ≤ 𝐼𝑚𝑎𝑥. The active and 

reactive power references are given by:  

P*=
1

2
VId≈PPV           (6.19) 

Q*=
1

2
VIq           (6.20) 

where 𝑃PV is the PV power without MPPT control.  

6.2.5.3 Low Solar Irradiance operation mode 

Usually, PV inverter control strategies focus on day operations or only when there 

is active power and neglect the period at night or in severe weather conditions where 

there is no active power. During night and severe weather conditions in the day, the solar 

irradiance is almost 0 kW/m2 and no active power is generated by the PV system; hence 

the PV inverter becomes idle. However, during this time, the PV inverter can generate 

reactive power and since the inverter structure is basically similar to the static VAR 

generator (SVG) which is currently used to compensate reactive power and mitigate 

voltage sags,  it can be used as an SVG device to compensate reactive power for the grid 

[113], [114]. Therefore, by formulating a proper control mode, the PV inverter can 

provide reactive power compensation function for the grid during the period where the 

inverter is idle. 

The proposed control strategy can provide reactive power from the PV system to 

the grid at night or at low solar irradiance.  To perform this function, the PV system’s 

output power lower limit Pmin needs to be defined (for example Pmin= 5% PMPP ) and the 

control system must monitor the active power of the PV system. When the condition PPV 

≤ Pmin is satisfied, the low solar irradiance mode is activated. The process that the control 
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strategy uses to handle switching between the three operation modes is shown in Fig. 

6.10. 

 

Fig. 6.10 Control flowchart of the multifunctional control strategy.  

6.3 Case Studies Simulation Results  

To verify the effectiveness of the proposed control system for a single-phase 

transformer-less PV inverter, several case studies have been carried out using PSIM and 

MATLAB/Simulink platforms. The system is designed and simulated using the same 

configuration in Fig. 6.1. The single-phase transformer-less inverter shown in Fig. 2.16 is 
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used to test and verify the system. Maximum Power Point Tracking control (MPPT) is 

implemented. The P&O MPPT method is used to track the PV maximum power. Table 

6.2. shows the simulation parameters. 

6.2 Simulation Parameters 

Parameter Value 

PV Maximum Power 5 KW 

Grid Voltage (RMS) 120 V 

Grid Frequency 60 Hz 

PV Voltage 400 V 

DC Link Capacitance 1mF 

Inverter Switching Frequency kHz 

 

6.3.1 Normal Operation Mode 

The normal operation mode with MPPT for the PV system is when the grid 

voltage is between 0.9 p.u and 1.1 p.u. During this mode, the PV system is controlled by 

MPPT to extract the maximum power. Fig. 6.11 shows the performance of the control 

system during normal mode. Fig. 6.11 (a) shows the active and reactive current Id and Iq 

respectively; only active current is injected into the grid and the reactive current is 0. Fig. 

6.11 (b) shows the active and reactive power of the inverter; the inverter is capable of 

injecting maximum active power (5 kW) into the grid. Fig. 6.11 (c) shows the grid 

voltage and current. 
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(a) 

 

(b) 
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(c) 

Fig. 6.11 The performance of the control system during normal mode: (a) active and reactive current, (b) 

Inverter active and reactive power, (c) Grid Voltage and current.  

6.3.2 LVRT Mode  

 The control system switches to fault mode as soon as grid voltage fault is 

detected. After that, the system starts injecting the required reactive power based on Eq 

6.18. and disables the MPPT control. Fig. 6.12. shows the performance of the control 

system when the PV inverter is subjected to grid voltage sag at 0.5 s, and the voltage 

drops to 0.75 p.u. During the fault time, which lasts for 0.3 s, the PV inverter provides the 

grid with reactive current of 0.5 p.u and active current of 0.866 p.u during the fault time 

as can be seen in Fig. 6.12 a. Fig. 6.12 b and c show the active and reactive power of the 

inverter and the grid voltage and current during the voltage sag, respectively. As can be 

seen form the figures, the reactive power provided by the PV inverter supports the grid 

voltage recovery and as soon as the fault is cleared, the system goes back to normal mode 

and provides PV maximum output power.  
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(a) 

 

(b) 
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(c) 

Fig. 6.12 The performance of the control system during LVRT mode during voltage sag when the voltage 

drops to 0.7 p.u: (a) active and reactive current, (b) Inverter active and reactive power, (c) Grid Voltage and 

current. 

Fig. 6.13 shows the performance of the control system when the PV inverter is 

subjected to worst case of voltage sag (grid voltage ≤0.5 p.u). The grid voltage drops to 

0.3 p.u. In this case, it is required that the inverter stay connected and provide only 

reactive power to the grid. During the fault time, which lasts for 0.3 s, the PV inverter 

provides the grid with reactive current of 1 p.u and active current of 0 as can be seen in 

Fig. 6.13 a; thus, no active power is delivered to the grid. Fig. 6.13 b and c show the 

active and reactive power of the inverter and the grid voltage and current during the 

voltage sag, respectively. As soon as the fault is cleared, the system goes back to normal 

mode and provides PV maximum output power.  
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(b) 



 

96 

 

(c) 

Fig. 6.13 The performance of the control system during LVRT mode during worst case of voltage sag when 

the voltage drops to 0.3 p.u: (a) active and reactive current, (b) Inverter active and reactive power, (c) Grid 

Voltage and current. 

These results have proven the capability of single-phase transformer-less PV 

inverters employing the proposed control system to ride through faults. In addition, the 

results show that switching between different operation modes (LVRT-MPPT, MPPT-

LVRT) did not affect the stability of the system. 

6.3.3 Low Solar Irradiance Operation Mode 

Instead of disconnecting from the grid during the night or when the solar 

irradiance is 0, the PV inverter can provide reactive power to the grid during this time. 

When the solar irradiance drops to 0, which occurred at 0.5s, the control system activates 

the low solar irradiance operation mode to generate reactive power. Fig 6.14 shows the 

performance of the proposed control system for the PV inverter during low solar 

irradiance mode. When the irradiance is weak or almost zero at 0.5 s the inverter provides 

only reactive current to the grid as can be seen in Fig. 6.14 a. Fig. 6.14 b and c show the 

active and reactive power, grid voltage, and current during this mode, respectively. As 

can be seen from the figure, the PV inverter can provide reactive power to the grid during 
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the time when there is no or weak active power at night or cloudy weather effectively 

using the proposed control strategy. 

 

(a) 

 

(b) 
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(c) 

Fig. 6.14 The performance of the control system during low solar irradiance mode: (a) active and reactive 

current, (b) Inverter active and reactive power, (c) Grid Voltage and current.  

6.4 Conclusion  

This chapter has addressed the requirements for the next generation of PV 

inverters including the need for high efficiency, voltage regulation and fault ride through 

capability. To provide a reliable and stable integration of PV systems into the grid, a 

multifunctional control strategy has been presented and examined.  Several case studies 

have been simulated and analyzed to examine the performance of the multifunctional 

control strategy. The results prove that the high efficiency transformer-less PV inverter 

with the proposed control strategy shows an excellent performance by keeping the 

inverter connected during grid faults (LVRT function) and provides reactive power to 

support the grid voltage recovery. Moreover, the control strategy can enable the inverter 

to be used as an SVG device to compensate reactive power for the grid when the PV 

inverter is idle during night or in severe weather conditions.  
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7. Conclusions and Future Works 

 

7.1 Conclusions  

The limited supply of fossil fuel resources and the environmental issues they 

cause have led to the increased demand for clean and renewable energy resources 

worldwide. This demand has motivated research on renewable energy and power 

electronics technology, which is the key component in using renewable energy sources. 

State-of-the-art PV inverters and advanced power switching devices using WBG 

materials have achieved highly efficient, reduced volume and lower cost renewable 

energy systems. 

This dissertation has presented a review of the advances on transformer-less 

inverters and proposes a new high efficiency transformer-less inverter. It has also 

explored and investigated the benefits of using WBG power switching devices on PV 

inverters. A comparison study of the proposed topology and multiple transformer-less 

inverters has been carried out in terms of the leakage current, power losses and 

efficiency. The results show that the proposed inverter achieves the lowest conduction 

losses and the highest efficiency among all presented topologies.  

The impact of emerging GaN-based power devices on a single-phase transformer-

less inverter in terms of efficiency, high switching frequency capability, volume and 
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cooling efforts has been investigated. This investigation has shown that using GaN 

HEMTs significantly reduced the overall semiconductor power losses of the proposed 

inverter by 60%. This loss reduction increased the overall efficiency of the system by 

more than 3%. Furthermore, this loss reduction when operating at the same switching 

frequency, allows a reduction of more than 30% in heatsink volume, which will 

consequently reduce the overall system’s volume and cost. The superior switching 

characteristics of GaN HEMTs allow the switching frequency to be increased to more 

than 10 times the switching frequency of the Si MOSFETs. This increase reduces the 

inverter weight and volume while maintaining high system efficiency.  

Because reactive power capability will be a requirement for next generation PV 

inverters, this work improves the proposed high efficiency GaN-based inverter by 

providing it with reactive power capability.  Taking advantage of the natural reverse 

recovery of GaN HEMTs and proposing a modified PWM provided the proposed inverter 

with reactive power capability without adding additional components or modifying the 

inverter structure.  

Besides providing high efficiency inverters, grid connection advanced functions 

will be essential requirements for next generation PV systems. To provide a reliable and 

stable integration of PV systems into the grid, a multifunctional control strategy has been 

proposed and investigated. The control strategy satisfies the grid requirements during grid 

faults by keeping the inverter connected and supporting the grid voltage by providing 

reactive power. Moreover, the control strategy allows the inverter to work as an SVG 

device to compensate for reactive power during severe weather conditions and nighttime.   
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7.2 Future Works 

To enhance the overall system performance, the following points are 

recommended for future work: 

• High switching frequency has a huge impact on EMI filter design. Therefore, the 

effect of increasing switching frequency on EMI noise in GaN-based inverter 

needs to be investigated since an EMI filter has a significant impact on the 

inverter volume.  

• Reactive power compensation can increase the thermal stress on power devices, 

which will reduce the lifetime of the power device. The impact of VAR at low 

solar irradiance mode of operation on the lifetime and maintenance cost of a PV 

system needs to be investigated. A detailed thermal analysis for different VAR 

levels is needed to assess the tradeoffs between reliability and cost savings of PV 

inverters with reactive power capability.  

• Employing advanced functions on the PV inverters requires advanced monitoring 

and communication technologies. Thus, further investigation can be directed 

towards the communication methods between the distributed generation sources 

and the central dispatch. 
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