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ABSTRACT 

The world of energy sustainability landscape is witnessing high proliferation of 

smartgrids and microgrids, it has become significant to use intelligent tools to design, 

operate and maintain such crucial systems in our lives. Solar energy is an intermittent 

source and purely Photovoltaic (PV) based, or PV and storage based smartgrids require 

characterization and modelling of PV resources for an effective planning and effective 

operations. This dissertation familiarizes briefly the existing tools for design, monitoring, 

forecasting and operation of a solar system in smart electric grids infrastructure and 

proposes a unique application-based infrastructure to monitor, operate, forecast and 

troubleshoot a working PV of a smartgrid. A resilient smartgrid communication is proposed 

which enables monitoring and control of different elements in any PV system. This 

communication architecture is used to facilitate a feedback-oriented monitoring of different 

elements in a microgrid ecosystem and investigated thoroughly. This integrated 

architecture which is a combination of sensors, network elements, database and 

computation elements is designed specifically for solar photovoltaic (PV) powered grids 

on modular basis. Apart from this, the network resilience and redundancy for smooth and 

loss less communication is another characteristic factor in this research work. 

Subsequently, a deep neural network algorithm is developed to diagnose the 

underperformance in the generation of a PV system connected to a smartgrid. As PV 
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generation is predominantly dependent on climatic parameters, it is necessary to have a 

mechanism for understanding and diagnosing performance of the system at any given 

instance. To address this challenge, this deep neural network architecture is presented for 

instantaneous performance diagnosis. The proposed architecture enabled modeling and 

diagnose of soiling and partial shade conditions prevalent with an accuracy of 90+%. 

Features of monitoring and regulating the generation and demand side of the grid were 

integrated through network along with feedback-based measures for effective performance 

in the PV system of a smartgrid or microgrid using the same network. The novelty in this 

work lies in real-time calculation of ideal performance and comparison for diagnosing 

critical performance issues of solar power generation like soiling and partial shading. 

Furthermore, long-short term memory (LSTM), which is a recurrent neural network 

model, is created for forecasting the PV solar resources, in which can assist in quantifying 

PV generation in various time intervals (hourly, daily, weekly). PV based smartgrids often 

experience expensive or inaccurate resources planning due to the lack of accurate 

forecasting tools where the projected methodology would eliminate such losses. 

This research work in its whole provides a different proposition of vertical 

integration which can transform into a new concept called Internet of Microgrid (IoMG). 

Planning, monitoring and operation form the core of smartgrids administration and if 

intelligent tools intertwined with network are being used as integral part in each of these 

aspects, then it forms a holistic view of smartgrids. 
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CHAPTER ONE: INTRODUCTION 

1.1 Background and Literature 

A microgrid in its true essence could be described as a miniature framework that 

has the capabilities to operate individually or can be synced with other grids. Microgrids 

are often viewed to be the best method for apprehending distributed generation as the 

evolving prospective system through a robust methodology in which deliberates connected 

loads and generation as a subsystem [1]. Smartgrids are usually seen as the best options for 

supplying rural areas since the transmission or interconnection with the main power grids 

is not possible or not practicable for various reasons. Until the dawn of renewable energy 

technologies in their current scale, conventional generation technologies such as gas, coal, 

etc. had shown dominance and had been favorable in supplying smartgrids with electricity. 

Nevertheless, the rapid advancing proficiencies in renewable resources generation, giving 

their tremendous advantages over conventional manners, has paved the way towards the 

incorporation of all available power resources into microgrids for noticeable commercial 

accomplishments [2]. Another advantage of intertwining renewable energy generation 

technologies with smartgrids is that they can benefit from the concept of enhanced 

reliability in active distribution by installing and positioning load centers nearby generation 
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with robust control and management systems. A comprehensive assessment of recent 

research accomplishments of smartgrid mechanisms along with all-purpose overview of 

the gains and characteristics of microgrids were introduced in [3]. In [4], connected and 

islanded assumptions in dc microgrid were studied along with their control and operation 

practices.  In [5] and [6], cost optimization system and optimum operating stratagem were 

proposed for microgrids by using a fundamental approach. In recent times, amalgamation 

of islanded microgrids with solar photovoltaic (PV) power generation systems is 

motivating speedy development of distributed renewable energy systems, this would 

significantly enhance the affordability and accessibility of energy resources in rustic areas 

where lack of clean, efficient and dependable sources have been observed [7]. However, 

the main challenge associated with PV power generation is its intermittent nature which 

highly dictates its performance. Photovoltaic generation industry is going through a 

paradigm shift in terms of total renewable power generation and its related infrastructure. 

Furthermore, the twenty-first century is experiencing rapid technological development in 

numerous areas to facilitate sustainable living.  

Exploiting the concept of Internet of Things (IoT), research on digital 

administration of powered smart and microgrids is gaining traction [8]. Artificial 

intelligence tools like Neural Networks are extensively being integrated with 

administration for applications such as real-time performance monitoring [9], diagnosis 

[10] as well as operations like load shedding [11]. 
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A dedicated communication network is needed to monitor the performance of 

individual plant for sustainable operations and decision making in [12]. ANN based models 

widely expended for accurate power prediction and performance evaluation in these power 

plants. For example, the reports published by Solar Power Europe [13], emphasize the 

importance of ANN based tools to address the issues in renewable energy based powered 

smartgrids. Solar resources availability are circumscribed and in need of an precise 

modelling for power prediction, which includes climatic conditions similar to wind, 

temperature, irradiance, humidity and soiling. Research work reported in [14], predicted 

highest power harvest by implementing data input of weather elements into artificial neural 

networks techniques. In a similar research work described in [15], a proposal of radial basis 

function (RBF) was constructed neural network configuration to simulate PV solar arrays 

in a power plant. Experiments were carried out to predict solar radiation data using ANN 

models [16-20] to estimate power production of a PV system for a given duration. A day-

ahead irradiance forecast was reported in [21] and [22], a comparison of different 

forecasting techniques was investigated in [23]. Artificial Neural Networks model was 

used in [26] and [27] to predict the power output of a PV system under dusty environmental 

conditions. Recent contributions use ANN models to achieve maximum power point 

(MPP) operations of a PV system [24], control and grid integration for residential solar PV 

operations [25] and adaptive ANN models for standalone PV systems [28]. Other 

applications of ANN models include health monitoring of PV arrays [29], hour ahead 
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forecast of energy price in industries [30] and fault diagnostics of multilevel inverter used 

in these power-generating plants [31] With the advent of fourth industrial revolution, the 

intersection of electrical and communication networks for monitoring and control of utility 

level infrastructure seems inevitable [32]. Researchers designed and developed 

communication architecture intertwined with PV generation systems for smartgrids [33], 

grid-connected PV plants [34] and distributed solar power generation systems [35]. In [12], 

a mesh network-based communication architecture is proposed to monitor and control 

different elements in a PV powered microgrid, Figure 1.1. 

With the increase in the intensity of renewable proliferation and its injection into 

utility grid, monitoring the assets that produce the energy and continuously evaluating the 

parameters (climatic) that dictate the performance is becoming increasingly important [37]. 

Researchers predict the transformation of normal electric grids into smart, next generation 

electric grid with renewable generation sources that will inevitably have the intersection of 

electrical as well as communication systems [38]. 

The combination of electrical and communication systems, will enable functions 

based on the motivation of grid, like online monitoring, demand-side management, control 

along with critical functions like troubleshooting an event and its immediate reporting [39]. 

Sood et.al [40] developed a WiMax (Worldwide Interoperability for Microwave Access)-

based smartgrid communication network for monitoring distributed energy generation 

sources. In a similar work [41], a grid-connect AC microgrid was simulated using the 
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Simulink tool with basic communication infrastructure and a control strategy to optimize 

the performance in the grid was discussed. Masud and Li [42] developed and analyzed 

Internet of Things (IoT) based communication network for monitoring multiple distributed 

energy sources using Kalman filter-based state estimation of the electric grid. In [43], an 

IoT-based energy management system in smartgrids for improving efficiency was 

proposed and studied in the context of PV generation systems, while a similar energy 

management system in a PV/wind hybrid smartgrid was simulated in [44] and [45] using 

Simulink. A Self-Sustaining Wireless Neighborhood Area Network was designed in [46] 

for transmitting power grid sensing and measuring status as well as the control messages. 

While Spano et.al [47] included individual energy meters into the communication network 

to design a holistic model for smartgrid monitoring. Kristensen et.al [48] developed 

information access schemes between remote assets and controller, which are activated only 

when certain voltage thresholds are at any measurement point in the grid. 

Apart from monitoring, control is one of the important features that can be made 

possible through smartgrid when the right infrastructure is in place. Several models based 

on mathematical constraints of a practical grid in operation have been developed to control 

and optimize the performance of a smart and microgrids. Anderson et al. [49] demonstrated 

the concept of “gridcloud” comprising of a wide area architecture to monitor and control a 

smartgrid. A robust optimal control strategy for an energy storage system of a grid-

connected microgrid is elaborated in [50]. For a PV-wind-diesel-battery hybrid system, Ai-
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barazanchi and Vural [51] developed a control mechanism by controlling the Pulse Width 

Modulation (PWM) of Voltage Source Converter (VSC). Phung et.al [52] presented a 

dependable control using IoT backbone for administration of a smartgrid. Along similar 

lines, a holonic architecture is proposed in [53] and a Fuzzy based frequency control is 

discussed in [54] to address the challenges of operating grid comprising of wide variety of 

heterogeneous producers and consumers that are unpredictable. Design, control and 

performance evaluation of a hybrid microgrid comprising of solar and wind is proposed in 

[55] using principles of power electronic operations. 

 

Since demand-side management forms a crucial part of any grid, Yang Mi et.al [56] 

studied a droop control-based power sharing mechanism in a microgrid and supported it 

through Simulink simulations. A voltage sensor combined with current estimation 

algorithms were proposed and discussed for load management in [57]. A game-theory-

Figure 1.1 Intersection of Electrical and Communication Infrastructure - Root of 
Digitalization. 
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based, flexible control of demand using proportional allocation was proposed in [58] for 

an autonomous grid operation. Emphasizing on the stability of smart grids Krisminato et 

al. [59] developed a comprehensive small-signal model of a hybrid renewable-energy-

based microgrid to observe its performance. Since the smartgrids are vulnerable to cyber-

attacks, it is equally important to consider the privacy and security aspects of the grid. 

There are established standards [60] along with case specific attack solving tools [61] to 

effectively address this aspect. Artificial Networks are one of the undoubtedly abundant 

schemes toward smarter renewable power grids with their capabilities to perform 

dynamically.  Recurrent Neural Networks (RNN) have shown strong competences in 

precise for short-term learning rate and accurate forecasting models.  Unambiguously 

Long-short term memory (LSTM) [82] has been evident in proving prolonged term 

memory as a special model of RNNs. However, Support Vector Machines (SVMs) [83] 

were popular in statistical classification of data but lack several recompenses when more 

advanced methods arisen. SVMs in its new form of Regression enthused models or as 

called Support Vector Regression (SVRs) models [83]. Such models would be a greatly 

contribution in providing sophisticated accuracy projection for the grids mechanisms 

particularly in islanded mode smart and microgrids. Solar forecasting techniques have been 

under focus in the recent years due to the proliferation of RESs more widely than ever 

which has generated numerous projects around the world [84]. Predicting and forecasting 

in the generation of renewable energy has voluminous approaches which are varied as 
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numerical, statistical, Artificial, Physical and others. In [85], the authors have proposed 

five classifying categories of forecasting as:  

a) Artificial intelligence (AI)[86]-[87]: Deep Neural Networks (DNN), Artificial 

neural Networks (ANN), and K-Nearest Neighbors (KNN). 

b) Regressive methods: Autoregressive integrated moving average (ARIMA), 

nonlinear stationary models and Autoregressive.   

c) Hybrid Models[88]: Neuro Fuzzy systems and others.  

d) Numerical Weather Predication (NWP)[89]: Grid points models and others.  

e) Sensing as in [90] and [91]. 

In figure 1, the anatomy of the irradiance forecasting, and prediction methodologies 

are presented generally where much more can be found in depth, also relying techniques 

exist but those mentioned in the anatomy are generic. Physical systems are expensive to 

install, update or expand; thus, convoluted to recuperate. Statistical models have shown 

promising enhancements and encroachments; subsequently more accuracy, manipulating 

and implementation. Artificial Intelligence and machine learning prototypes explicitly 

Neural Networks (NN) are driving the forecasting enigma toward keener and more precise.  

Support Vector Machine (SVM) technique is a machine learning statistical system 

wherein assisting in minimizing the structural risk [92]. The improved version of SVM 

which is Support Vector Regression (SVR), is structured to stretch the nonlinear input to a 
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wider dimensional chattels for the sake of finding the hyperplane in order to widen the 

margin of tolerance [92].  

1.2 Problem Statement 

With the advent of renewable energy-based electricity generation, the aspect of 

modelling and characterizing intermittency of these generation sources is increasingly 

gaining importance. This modelling can help in planning, performance evaluation, accurate 

forecasting, operation and maintenance of systems powered by renewable sources. Solar 

PV smartgrids are proliferating at high intensity across the globe. To ensure sustainable 

operation of such smart electric grids, it is absolutely necessary to characterize the 

performance and accurately forecasting to be in a position to point out underperformance, 

if any, in these PV systems of smart and microgrids. Deep and Recurrent artificial neural 

networks, one of the many tools of artificial intelligence is used to facilitate and achieve 

this characterization, thus performance evaluation and sophisticated accuracy forecasting. 

1.3 Motivations 

Given the rapid expansion of the fourth industrial revolution, the intersection of 

electrical and communication networks for monitoring and control of utility level 

infrastructure seems inevitable [94]. Researchers designed and developed communication 

architecture intertwined with PV generation systems as in smartgrids [95], grid-connected 

PV plants [96] and distributed solar power generation systems [97]. In [98], IEEE smartgrid 
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communication vision document outlines the necessity of communication intertwined with 

smartgrids in the following ways: 

- Power entropy: Distributed and renewable generation in particular should remain 

synchronized with the main ac power frequency; maintaining frequency 

synchronization is a challenge requiring communication related to the 

inertia/momentum of the distributed/renewable generators. Figure 1.1 shows a 

simple communication network and equipment infrastructure for smartgrid 

technologies for renewable integration. In addition, power generation for 

renewables is subject to potentially high entropy weather variations whose 

communication requirements are proportional to the entropy.  

- Power area or density (dispersal/aggregation): The area of power control can be 

from a large wind farm to the inverter control for a domestic photovoltaic system 

over a distribution system of today’s power grid architecture.  

- Power efficiency: Maintaining the power factor within tighter bounds will require 

more communication.  

- Amount of power drives latency: As an example, protection mechanisms for 

distributed generation will require communication proportional to the amount of 

power similar to a time-current characteristic curve. 

As the number of devices that participate in smart electric grids increases, the 

relevant smart operations are increasingly adopting a decentralized approach [99], rather 



 

 11 

 

than a centralized one, leading to a subsequent increase in vulnerability and security risks 

of transmissions. To accomplish enhanced echelons of sanctuary, reliability and privacy, 

transmission schemes should be capable of detecting and handling eavesdroppers and 

malicious behavior [100]. The adopted schemes could utilize ideas from information theory 

(such as the notion of secrecy capacity [101]), multi-agent approaches [102] and game-

theoretic modeling, while considering the constraints that are imposed, e.g, by critical 

smartgrid operations (e.g., power balance control) with low latency requirements. For 

energy management and demand response purposes, the power consumption signals of the 

domestic appliances of multiple houses are gathered at a remote concentration center for 

supporting decision making procedures [103]. The amount of data, however, could be 

excessive which could exhaust the available resources of the communication infrastructure, 

meaning that compression techniques should be employed. Sparse coding and dictionary 

learning algorithms [104] can lead to novel compression techniques, which are particularly 

suited to the considered consumption signals.  

While taking cue from the IEEE vision document on smartgrids communications, 

this work aims at characterization and performance evaluation of a PV system for potential 

implementing in smartgrids through a dedicated architecture. 

1.4 Objectives 

• Familiarizing briefly the existing tools for design, monitoring, forecasting and operation 

of PV solar systems in smart and microgrids infrastructure. 
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• Proposing a unique application-based infrastructure to monitor, operate, forecast and 

troubleshoot a solar PV system in smart and microgrids.  

• Insinuating a resilient solar smartgrid communication infrastructure in which enables 

monitoring and control of different elements in such power systems.  

• Facilitating a feedback-oriented monitoring of different elements in the PV based 

smartgrid ecosystem.  

• Identifying the reasons of underperformance in the PV based system using the 

communication infrastructure. 

• Implementing and comparing various forecasting techniques for improved precision.  

• Providing a unique proposition of vertical integration which can transform into a new 

concept called Internet of Microgrid (IoMG) where planning, monitoring, forecasting and 

operation form the core of smartgrid administration intertwined with network to form a 

holistic view of smartgrids. 

1.5 Methodologies 

• PV based microgrid system is simulated based on meteorological settings of a location 

and an ideal performance model is created [12]. 

• A communication system is designed to integrate elements of a smartgrid spread across 

an area [12]. 

• Real-time performance data is obtained through a projected communication 

infrastructure [12]. 
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• Configuring a rule-base for identifying and characterizing the aspects of PV performance. 

• Feedback-based monitoring to identify underperformance by comparing ideal value 

(generated through ANN) with real-time value. In the due course, the performance of 

network and battery are also monitored [12],[36]. 

• Dwelling down to granular level by developing models to identify the reason for 

underperformance [36]. 

• Collect data samples for PV performance while subjected to soiling and shading. 

• Developing a DNN model to characterize the underperformance aspects and integrate it 

with ANN model for identifying the reasons for underperformance [36]. 

• Use real-time data through the developed model to identify whether a system is 

underperforming. If so, finding out the reasons for such underperformance [36]. 

• RNN Long-Short term memory (LSTM) is developed and simulated for forecasting and 

then comparing performance with conventional methodologies as Support Vector 

Machines-regression [91].  

1.6 Dissertation Outline 

The main aim of this research work is to streamline the monitoring, operation and 

forecasting of a PV powered electric grid (smart or microgrid) and generation systems 

using artificial intelligence techniques and mesh networks. In this regard, a suggested and 

investigated architecture for real-time monitoring for feedback-based decision making is 

proposed in chapter 2. This monitoring network is extended for diagnosing or 
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troubleshooting PV generation using a combination of deep neural networks and 

conventional neural networks as explained in chapter 3.  

A recurrent neural network technique for irradiance and generated power 

forecasting using LSTM is proposed along with simulating SVR forecasting, a comparison 

study is achieved and explained in chapter 4 for short, medium and long terms. 



 

 15 

 

 

 

 

CHAPTER TWO: FEEDBACK-ORIENTED INTELLIGENT MONITORING OF 

A STORAGE-BASED SOLAR PHOTOVOLTAIC (PV)-POWERED MICROGRID 

WITH MESH NETWORKS 

2.1 Microgrid Architecture 

A basic microgrid, as represented in Figure 2.1 is used for this research work. This 

microgrid consists of a solar power generation system with battery back-up. An inverter is 

represented after the DC bus bar, which supplies the AC power to the connected load. 

 
Figure 2.1 Microgrid electrical configuration overview. 
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In typical applications, microgrids are used to power rural areas without electricity 

access. Hence, load characteristics considered here are strictly in lieu with typical 

residential consumption profiles.  The microgrid architecture illustrates sensors connected 

to each generation node, inverter and battery. This is to facilitate monitoring of generation, 

transmission and consumption where the houses are assumed to have smart meters 

installed. 

2.1.1 Photovoltaic System  

Photovoltaic generation is connected to the DC bus through a controller powered 

with Maximum Power Point Tracking (MPPT). The power output of a PV generation 

system can be mathematically expressed as a function of Irradiance (G), Temperature (T) 

at a time (t) [62] as: 

P(t) = ቂP୮ୣୟ୩ ቀ
ୋ(୲)

ୋి
ቁ − α(Tୡ(t) − Tୗେ)ቃ ∗ η୍୬୴ ∗ η୰ୟ୬ୱ                     (1) 

where, 

P୮ୣୟ୩: Peak power of the PV installation 

Gୗେ: Solar Irradiance at Standard Test Condition (Usually 1000 W/m2) 

Tୗେ: Ambient Temperature at Standard Test Condition (Usually 25 °C) 

η୍୬୴: Inverter Efficiency 

η୰ୟ୬ୱ: Transmission (Wire) Efficiency 

α: Temperature co-efficient of PV module used for the installation 
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There are different models to calculate the energy generated from a PV system at a 

given location. The widely-used expression talks about energy as a function of solar 

radiation data in terms of a time function for the total available day light hours on a given 

day. This can be mathematically expressed as: 

E(t) = P(t) ∗ H                                           (2) 

Where H is the length of the day and is represented as: 

H =
ଶ

ଵହ
cosିଵ(−tanφ ∗ tanδ)                                   (3) 

Where φ is the Latitude of the location and,  

δ = 23.45 ∗ sin ቂ
ଷ∗(ଶ଼ସା)

ଷହ
ቃ                                    (4) 

Where N is the number of the day in the year (For example, if it is June 21, N = 172). 

2.1.2 Battery System 

The priority in any battery connected PV system for energy flow is the load. Hence, 

the effective energy across the battery is always the difference between the consumption 

at the load and generation. This can be expressed as: 

E୪୭୵(୲) = E(୲) −  E୭ୟୢ(୲)                             (5) 

If ELoad > EPV, there is deficit energy and battery is not charging 

If EPV > ELoad, there is excess energy and battery is charging 

The discharge state on a battery at a given time t + 1 can be expressed as [63]: 
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E୲ାଵ = E୲ −  ∆t
౪

ు,ౚ

ౚ
                                    (6) 

Where, 

  P୲
,ୢ is the power discharged by the battery bank to the load during time t. 

  ∆t is the time difference. 

  ηୢ is the discharge efficiency. 

While the charging status at t+1 can be expressed as: 

E୲ାଵ = E୲ +  ∆t ∗ P୲
,ୡ  ∗  ηୡ                         (7) 

Where, P୲
,ୡ is the power charged by the PV system into the battery bank during the time t. 

 ∆𝑡 is the time difference, 

 𝜂 is the charging efficiency. 

Hence, the energy flow in the battery can be represented as:  

E୲ାଵ = E୲ ∗ η୍୬୴ ∗ ηୢ ∗ η୰ୟ୬ୱ + E୪୭୵(୲) ;   when  E୪୭୵(୲) < 0            (8) 

E୲ାଵ = E୲ ∗ ηୡ − E୪୭୵(୲) ;   when  E୪୭୵(୲) > 0                    (9) 

E୲ାଵ = E୲ ;     when  E୪୭୵(୲) = 0                         (10) 
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2.1.3 Load Profile 

A load profile for 75 households is simulated based on the consumption of energy 

when using equipment like electric bulbs, fans and televisions.  Figure 2.2 represents the 

daily average consumption of 75 households. This pattern is generated keeping in view the 

usage of electricity and appliances in rural areas which have no prior electricity access [64]. 

A rural area in the country of Guinea in Africa was used as an example in this research 

work. The load profile was created using the consumption metrics defined for any rural 

area in this country. The yearly average profile is illustrated in Figure 2.2. 

 

 
Figure 2.2 Simulated load profile for a rural area. 
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2.2 Microgrid Communication Architecture 

A smartgrid communication is increasingly becoming multipurpose due to 

automation of aspects like demand-side management, generation management, load 

shedding (whenever necessary), event reporting and troubleshooting of malfunctioning 

equipment. There is a need for effective and sustainable communication architecture in a 

microgrid for the following reasons: 

 Intermittent nature: Renewable energy sources, with the virtue of being 

dependent on natural elements, are known for their notorious intermittency. When 

the proliferation of renewable-energy-based smart and microgrids are increasing, 

there is a dire need in continuously monitoring the weather parameters, their 

influence on power generation and tune the system to adapt for extreme events. 

 Bi-directional flow: With the advent of smartgrids, electricity consumers are no 

longer solely consumers but are slowly turning into prosumers (Producer + 

Consumer). Distributed rooftop installations and smart meters are paving the way 

to this revolution. Hence, an integrated communication architecture that can 

accommodate the requests from individual installations to grid and facilitate energy 

transfer in any direction is necessary to have integrated communication 

architecture. 

Hence, in this research work, communication architecture is designed keeping in 

view the aspects by classifying the elements into clusters. Every cluster contains either of 
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generation or consumption elements intertwined with communication architecture and 

analytics functionalities. In this research work, there are two such clusters, one for 

generation and the other for consumption nodes. The functional overview of the 

communication network developed in this research work is illustrated in Figure 2.3. 

 

 

This figure states the flow of information and working of communication network 

in the grid. Data is collected from different elements using sensors. This data is relayed 

through the network to a local/cloud database. Monitoring and analysis are then 

implemented on this database. 

2.2.1  Sensors 

The devices that require integration with sensors are: inverter, PV converter, 

battery, individual meters, and weather station if any installed. With the advent of fourth 

industrial revolution, these elements are being released with at least one of the following 

Figure 2.3 Structure of the communication network. 
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communication interfaces enabled: Bluetooth 4.0 (BLE or Bluetooth Smart), IEEE 802.11g 

(Wi-Fi), IEEE 802.3 (Ethernet), GPRS (2G telecom), HSPA (3G telecom) or Modbus 

Remote Terminal Unit communication. Microcontrollers available today come with most 

of these communications enabled with built-in two-way communication. Sometimes, 

additional hardware can also be used with a microcontroller to facilitate communication 

between the elements that need monitoring. Figure 2.4 illustrates the communication 

interface capabilities of a widely-used microcontroller raspberry pi, which can be used in 

the applications like this research work. 

 

 
Figure 2.4 Communication capabilities of raspberry pi. 
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2.2.2  Network 

Due to the virtue of being spread over a large area, smartgrid communication 

network is always a combination of different network configurations. In most cases, a 

Home Area Network (HAN) gets connected to Neighborhood Area Network (NAN) which 

in turn relays the data through a Wide Area Network (WAN) to internet or desired end 

user.       

In this research work, we consider a network configuration based on mesh network 

topology. A mesh topology is a topology in which all the network nodes are individually 

connected to most of the other nodes.  There are two configurations of this topology: 

1. Fully connected, where all the nodes are connected to every other node. 

2. Partially connected, where it is not necessary for all nodes to be connected to each 

other. 

Generally, mesh networks are preferred in short-range and medium-range 

communication network arrangements. However, the greatest advantage of mesh topology 

is that every node, can act as an individual router, hence making it easily scalable and light. 

By the virtue of its topology, which consists of redundant links of established 

communication paths between each node, the chances of communication failure are very 

rare. The data will always have at least one suitable path for the flow of data. The range 

can also be extended by simply adding a node and the messages can hop through the mesh 

back to the gateway, making this a robust arrangement. Finally, self-optimization is the 
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greatest asset for mesh networks. If one route happens to be slow, a mesh network can 

potentially find a better route and optimize itself. The data flow link function in a mesh 

network can be expressed as: 

𝐹 = {𝑓(𝑙)}                                        (11) 

Where, 𝑓(𝑙) is the flow in channel i; ∀𝑖 ∈ 𝑁 = {1,2, . . 𝑃} and N is the number of 

orthogonal channels. ∀𝑙 ∈ 𝐸; E is the number of data connection links at a particular node. 

A transmission function that determines the transfer of data from a node v at time t with 

link l is defined as:  

𝑣௧(𝑙) =  1,   when link l is active at node 𝑣 at time 𝑡                (12) 

𝑣௧(𝑙) =  0,   in every other case                           (13) 

 

In a mesh network, to facilitate data transfer between different nodes, the 

communication should follow constraints pertaining to the principles and resources 

existing at the node, channel and the network. To assess the present channel resources, the 

link channel constraint is expressed as: 

∑ 𝑣
௧(𝑙) ≤ 𝜏(𝑙);∀∈ே ∀𝑙 ∈ 𝐸                                 (14) 

Where, 𝜏(𝑙) is total number of channels available for communication through a link l. 

Additionally, to use the radio resources of a node at time t, the constraint can be defined 

as:     ∑ ∑ 𝑣
௧(𝑙)∀∈ே ≤ 𝜗(𝑙)∀∈ா                                    (15) 

Where 𝜗(𝑙) is total number of radio points available for communication through a link l. 
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In addition, preventing interference is critical to obtain a data that is free from noise 

and corruption. For example, at node α and its neighborhood C(α), if the link l in S(α) is 

active on channel i and s is the other node at the endpoint of the link, l is only active when 

all other channels on the link are idle. This constraint can be expressed as: 

∑ 𝑣
௧(𝑙) ≤ 1∈ௌ(ఈ)∪ௌ(ఈ`)                                     (16) 

 ∀α` ∈ 𝐸(α)                                         (17) 

The flow in a channel i at time t on link l is expressed as: 

𝑓(𝑙) =
() ∑ ௩

()ರ

்
                                      (18) 

When we sum (18) over T, 

   ∑
∑ ୴

౪(୪)ರ

 
≤ 𝜏(𝑙)∀∈ே                                     (19) 

If the mean utilization of a channel is defined as 𝑢(𝑙) which can be expressed as: 

𝑢(𝑙) =
()

()
                                         (20) 

Hence, the utilization of the entire network can be defined from (19), (20) as:  

∑ 𝑢(𝑙) = ∑
()

()ஸே ≤ 𝜏(𝑙)∀∈ே                               (21) 

The communication network in this research work for the grid system’s architecture 

is divided into two peripherals of individual mesh networks. On the consumption side, a 

short range, mesh network can be created for facilitating the communication between the 

household smart meters. This network is intertwined with the sensor at the inverter which 

is in then terminated at the internet gateway. On the generation side, the PV converter and 
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sensors connected to the battery system are also connected in an internal mesh and through 

network boost equipment; they are terminated at the local database which is connected to 

the internet gateway. From the internet gateway, relevant data is sent to the cloud 

infrastructure developed for carrying out monitoring, control and optimization activities. 

Figure 2.5 illustrates the architecture of the network designed in this research work. 

 
Figure 2.5 Communication Architecture of the Microgrid. 

 
2.2.3 Data Flow 

Each node in the network will periodically (as frequently as once in 5 seconds) 

publishes all measurements to the local database. All data would be stored in the local 

database, accessible to the operator via local monitors and to others via a cloud connection. 
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The cloud server is chosen in such a way to be capable of handling a high velocity of 

incoming requests from many devices that are concurrently connected, hence indicating a 

need for asynchronous and non-blocking operations. Upon login, the server shall send a 

response to the client (comet or long-poll architecture) to update all data and transfer more 

frequently. 

The data will be represented block wise through an integrated monitoring platform 

that can be accessed through cloud. The data collected will include but not limited to the 

following parameters outlined in Table 2.1. 

Table 2.1 Monitoring Parameters 
Data Category Parameters 

General Data 
 Timestamp 
 Device status 
 Temperature of device operating environment 

Generation Data 

 Inverter-specific data 
 Input DC voltage 
 Input DC current 
 Output AC line/phase voltage 
 Output AC line/phase current 
 Power factor 
 Frequency 

Consumption Data 
 Energy meter-specific Data of each household 
 Nearest transformer specific data 

Climatological Data 

 Ambient temperature 
 Global horizontal irradiance 
 Direct normal irradiance 
 Inclined irradiance 
 Wind speed 

 
2.3 Monitoring and Performance Feedback 

As per the data flow is outlined in the previous section, the data from each 

individual node in generation and consumption architecture gets tagged with their 
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respective data category in the database. The same database is replicated in the cloud 

software present in the remote server. Software is deployed on the cloud server to illustrate 

the data through a user interface and performance analysis on the data received. The 

functionalities of the software can be broadly classified into three parts: 

1. Monitoring: The software reads the data with respect to the tag of the device, data 

category and interprets it on a user interface.  

2. Feedback: The software verifies the data with respect to established rules and 

provides feedback about the status, working or problematic, if any at a particular 

element from the data it receives.  

3. Control: Through the software, functions like shutdown, current flow or switching 

on/off of devices can be performed.  

2.3.1 Monitoring 

The inverter, PV  DC output, battery status, energy meter status are the parameters 

that can be monitored and can be seen in the user interface as shown in Figure 2.6. 

 

 
Figure 2.6 Screenshot of the User Interface. 
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Climatological data can also be represented in the interface from the weather station 

installed in the location or the data can be fetched using open source weather data providing 

solutions. The user interface can also be customized to better understand behavior of each 

element by creating profiles based on contextual data from connected devices. This can 

help in getting a complete picture of what is happening by combining everything already 

known about the power generation and consumption architecture with incoming data from 

each of the nodes. 
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2.3.2 Feedback 

2.3.2.1 PV Performance 

Photovoltaic power generation, battery status and network strength are the three 

elements for which rules are established for performance monitoring. These parameters are 

continuously monitored for every 15 min and any related event is immediately reported. 

The rule base for each of the aforementioned three issues is illustrated in Figure 2.7. 

For a PV plant, if the climatological parameters are available, a simulation model 

can be used, where the real-time weather parameters can be substituted in the model and 

Figure 2.7 Decision chart of the proposed feedback mechanism. 
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estimated power output at that given point of time can be calculated. However, there are 

tools like PVSyst [76] that can be used to obtain the data regarding ideal performance of a 

plant, at a given location with certain tilt angle and orientation. This can be compared with 

the real-time performance data to understand whether the plant is performing in an efficient 

manner. 

The ideal performance of a PV system at a given location is the ration of total 

irradiance and reference irradiance. This can be expressed as: 

𝑌 =
ு

ீ
                                          (22) 

Where H is the total horizontal irradiance with units (Wh/m2) and G is the global radiation 

at Standard Test Conditions (STC) measured in W/m2.  

It is to be noted that this value 𝑌  is highly dependent on the environmental 

variables like irradiance, temperature along with factors such as orientation and location 

(latitude). The actual yield 𝑌, is calculated from the data obtained through monitoring the 

inverter and is expressed as: 

𝑌 =
ாುೇ

ೌೣ
                                      (23) 

Where, 𝐸, is the energy output of the PV system in the interval considered and 𝑃௫ is 

the peak power of the system at STC. Performance ratio can be expressed as: 

𝑃. 𝑅 =
ೝ


                                      (24) 

This ratio can be defined as comparison of plant output to the ideal output of the plant 

at irradiation, panel temperature, availability of grid, size of the aperture area, nominal 
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power output, temperature subjected at the location of plant in the interval of measurement. 

Here, a threshold of 70-75% on the P.R can be installed to check for the performance and 

report for under performance in a given time interval. 

2.3.2.2 Battery Status 

Checking the battery status, to monitor the state of charge and energy present is 

important in this case, as the system is completely off-grid. Continuously monitoring the 

connectivity of the nodes is also important. If any connectivity issue is reported, immediate 

action can be taken to prevent further damage to the network. The following expressions 

elaborate on the battery threshold checking mechanism included in the feedback process. 

𝐸௧ାଵ = 𝐸௧ + (𝜂 ∗ 𝑃௧ାଵ
 −  𝜂ௗ ∗ 𝑃௧ାଵ

ௗ − 𝜀)∆𝑡                  (25) 

 

𝛿,௧ାଵ ∗ 𝑃, ≤ 𝑃௧ାଵ
  ≤  𝛿,௧ାଵ ∗ 𝑃,௫                   (26) 

 

𝛿ௗ,௧ାଵ ∗ 𝑃ௗ, ≤ 𝑃௧ାଵ
ௗ  ≤  𝛿ௗ,௧ାଵ ∗ 𝑃ௗ,௫                  (27) 

 

𝛿,௧ାଵ + 𝛿ௗ,௧ାଵ ≤ 1                            (28) 

Where, 

𝐸௧ାଵ is the energy of battery at time t+1. 

𝐸௧ is the energy of battery at time t. 

𝑃௧
 is the power charged by the PV system into the battery bank during the time t. 
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𝑃௧
ௗ is the power discharged by the battery bank to the load during the time t. 

∆𝑡 is the time difference. 

𝜂 is the charging efficiency. 

𝜂ௗ is the discharge efficiency. 

𝑃, and 𝑃,௫ are the minimum and maximum power that can be charged into the 

battery respectively. 

𝑃ௗ, and 𝑃ௗ,௫ are the minimum and maximum power discharge that can occur in 

the battery respectively. 

𝜀 : Self-discharge energy loss of battery. 

𝛿,௧ାଵ: Charge status of battery at time t+1. 

𝛿ௗ,௧ାଵ: Discharge status of battery at time t+1. 

2.3.2.3 Mesh Network 

The evaluation system is configured to alert the operator when there is no response 

to the ping between the devices and the database after three consecutive pings each at an 

interval of 5 secs. Time delay is a phenomenon that can be studied in two perspectives. 

One in the context of delay in data transfer and other in the context of delay in connection 

to a device due to network limitations. Delay in data transfer can be accommodated with a 

buffer time of 45 - 90 secs for the acknowledgement. For conditions of no network 

connectivity the feedback mechanism for network in Figure 2.7 alerts pertaining to the lost 

connectivity will be immediately notified to the operator. 
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2.4 Results and Discussion  

To validate the proposed electrical and communication models, the electrical 

system was simulated with MATLAB Simulink in real-time. The Simulink design of the 

microgrid is illustrated in Figure 2.9. For a location in the country of Guinea in Africa, the 

temperature and irradiance profile are derived and illustrated in Figure 2.8 and 2.9. The 

parameters of the grid system as PV capacity and battery are calculated using the model 

described in [65] and the calculated values are expressed in Table 2.2. This table also 

consists of simulation parameters detailing peak power output and maximum battery status. 

 
Figure 2.8 (a) Temperature profile of the location;(b) irradiance profile of the location. 
 

Table 2.2 Parameters for Microgrid Simulation. 
Element Value 

Number of households 75 
PV system capacity 50 kW 

Battery capacity 68 kWh 
Average daily load requirement 98 kWh 

Average Insolation 6.2 kWh/m2/day 
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Figure 2.9 illustrates the simulated grid Simulink model of the system. The 

illustrated architecture contains mathematical models of a PV system, battery, PV 

converter, inverter and a bi-directional converter. The simulation runs for 3.04s. For PV 

system, a mathematical model that uses the irradiance, temperature inputs from the data of 

Figure 2.8 (a)-(b) is developed. For the load, the hourly load values as calculated in [67] 

and expressed in Figure 2.2 are used for the simulation. 

Simulation results of the Simulink model for AC power, voltage, duty cycle and 

battery status is illustrated in Figure 2.10 (a,b). Maximum power of 47.25 kW is obtained 

at an irradiance of 950 W/m2 and 32 C. 

Figure 2.9 Simulink model of microgrid. 
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(a) AC power and Voltage Output of microgrid. 

 
(b) Battery cycle and SOC of the storage in microgrid. 

Figure 2.10 Simulation Analysis Results. 
This Simulation was carried out with irradiance and temperature parameters for 

every month and the Yield values are recorded in a database. These yield values represent 

the reference or ideal yield values described in equation (11). 
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NSG2 software is used to build the architecture of the mesh network described in 

this research work.  Figure 2.11 illustrates the simulation of a wireless mesh network for 

the grid system. Node N0 to N8 represent the consumption side while N12, N15 represent 

the PV converter and battery side of the network connection. N9 is the inverter node and 

N17 is the node of router that is used for boosting network availability. N9 is connected to 

N17 via wire where the data is cumulated in the local database. 

 
Figure 2.11 Microgrid Communication Wireless Model. 

The grid simulink’s model also consists of a feedback module interfaced with the 

output of PV generation and battery status as shown in Figure 2.12. This feedback module 

is programmed with the proposed mechanism illustrated in Figure 2.7.  



 

 38 

 

 
Figure 2.12 The added Feed-back portion to the model. 

This feedback module consists of an input data module for real-time data. This 

model can be used to feed the real-time performance data of a system and compare with 

the ideal performance as per (13) and the state of operation (underperformance or normal 

performance) can be communicated to the operator of the grid. To validate the working of 

the simulation with real-time data, performance of a rooftop 50kW system for a single day 

is collected along with the irradiance and temperature data from the sensors. These 

irradiance and temperature values are given as input to the system and the system is 

simulated without changing any of the other parameters. Figure 2.13 illustrates the 

comparison between the real-time value and ideal value. 
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Figure 2.13 Comparison of Yi and Yr. 

There are only two instances that are reported where the ratio of actual and ideal 

value is below 70% with an average ratio of 85.2%. The evaluation system is configured 

to alert the operator when there is no response to the ping between the devices and the 

database after three consecutive pings each at an interval of 5 secs. 

In this research work, an integrated architecture intertwined with mesh networks is 

proposed for carrying out Feed Back oriented monitoring as well as computation of ideal 

performance and diagnosing the reasons for underperformance. This integrated 

architecture which is a combination of sensors, network elements, data base and 
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computation elements is designed specific for PV powered smart and microgrids. This 

architecture is designed on modular basis, which can be extended based on the number of 

nodes in the system. Apart from this, the network resilience and redundancy for smooth 

and loss less communication is another distinctive factor in this research work. 
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CHAPTER THREE:  PV PERFORMANCE DIAGNOSIS THROUGH INVERTER 

DATA USING DEEP NEURAL NETWORK ARCHITECTURE 

3.1 PV Characterization 

Numerous solar cells are linked in series to make a PV panel of specific open circuit 

voltage (Voc) and short circuit current (Isc) and hence the effective power output, mentioned 

in terms of maximum power (Pmax). Several PV panels are connected in series/parallel to 

shape an array to generate bulk power to meet the requirements of energy needs of a given 

population. Output current (I) and voltage (V) depend on the photocurrent (IL) received by 

the cell. 

The output current of a PV array with np umbers of panels connected in parallel can 

be expressed as in [68]: 

𝐼 = 𝑛𝐼 − 𝑛𝐼 𝑒


ೖಲ

ೇುೇ
ೞ − 1൨             (29) 

Where,  

𝑞 is charge; 𝑘 is the Boltzmann’s constant; 𝐴 is the ideality factor of a p-n junction; 

𝐼 is the current of one PV panel; 𝑛 is the number of panels in an array; 𝐼 is the reverse 

saturation current expressed as function of temperature given by: 
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Where, 

𝑇 is the cell temperature; 𝑇 is the reference temperature and 𝐸 is energy band 

gap of a solar cell. 

At a given irradiance S, the output of current of a PV cell is expressed by the 

implication of temperature (Tc), irradiance(S) and voltage constant of cell (𝐾௩)  as: 

 

𝐼 = 0.01ൣ𝐼௦ + 𝐾௩൫𝑇 − 𝑇൯൧𝑆           (31) 

 

Multiplying (29) with output voltage Vpv of a panel, the power output (Ppv) of an 

array is calculated as: 

𝑃 = 𝑛𝐼𝑉 − 𝑛𝐼𝑉 𝑒


ೖಲ

ೇುೇ
ೞ − 1൨                   (32) 

Substituting (31) in (32), the output of power can be expressed as: 

𝑃 = 𝑛0.01ൣ𝐼௦ + 𝐾௩൫𝑇 − 𝑇൯൧𝑆𝑉 − 𝑛𝐼𝑉 𝑒


ೖಲ

ೇುೇ
ೞ − 1൨      (33)                                      

Predominant factors prompting the output of power of a given PV array are 

irradiance received by a panel and its surrounding temperature. In addition, findings 

reported in [69] show the effect of wind speed and humidity on efficiency of a PV panel 

output.  Hence, these two additional factors were also considered for better training of ANN 

in this research work. A PV system with poly crystalline solar cell, Sun power make 315W 
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solar module is used with Voc=64.6 V and Isc = 6.14 A. Twelve such panels are linked in 

series to construct a single array and twenty-five of them are connected together to provide 

power to 100kW inverter connected at each node. DC power output is calculated using (33) 

with real time data available from weather monitoring station. Since most of the large 

scale/utility power plants are connected to AC grid, inverter efficiency (conversion of DC 

power accessible from PV array to power fed to AC grid) plays an important role in 

performance evaluation of overall plant. Inverter power output is directly related to its 

operating point and conversion efficiency along with in-built maximum power point 

tracking (MPPT). Generally, inverter manufacturers provide the data sheet pertaining to 

the efficiency vs. percentage of rated power output or irradiance. 

3.2 Performance Evaluation 

Regular performance analysis of solar plants can help in addressing the issues 

related to reliability in early stage of their installations before they affect the power 

generation significantly. It also helps in getting an indication in the strategy, framework, 

operation and maintenance of upcoming connected smartgrid systems. Performance 

evaluation of a PV system is generally identified with two aspects, efficiency of elements 

in the system and efficiency of performance of the system with respect to climatological 

parameters. Overall efficiency is product of individual efficiency of PV arrays, inverters 

and overall effectiveness. Efficiency of PV system (𝜂)  is the global efficiency factor of 
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a solar panel, where it is defined as the percentage of incident light energy that is converted 

into electrical energy by a solar panel.  

Efficiency of inverter (𝜂ூ௩)  is expressed as the ratio of the AC power output (PAC) 

and DC power input (PDC):    𝜂ூ௩ =  
ಲ

ವ
   

and its typical range is 93-95% and PV plant efficiency is given by: 

 𝜂௧ = 𝜂 ∗ 𝜂ூ௩ 

Other performance parameter includes performance ratio (PR) defined in terms of 

actual energy yield of a plant (YR) and the ideal energy yield (YI) for a given duration:  

PR = YR/YI 

and capacity utilization factor (CUF) given by: 

 𝐶. 𝑈. 𝐹 =
𝐸

365 ∗ 24 ∗ 𝑃௦
 

Where, 𝐸  is energy in kWh of the PV plant for a year and 𝑃௦ is the installed 

capacity of the PV plant in kW. 

Energy yield using parameters like solar irradiance, temperature, tilt angle, latitude 

of the location is generally calculated using automated computer aided tools like, Pvsyst 

[66]. However, these tools can only give a generalized estimate of energy available at a 

given location and often fail to address local factors responsible for power loss like soiling, 

partial shading, hot spot and other physical wear and tear over a period. Therefore, an 

artificial neural network model is developed from existing performance data of a solar 

power plant to accurately predict electrical energy available over entire duration of its 
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operation. ANN output is exploited as a reference to relate real-time output of the solar 

power system to continuously evaluate and monitor the performance efficiency. 

3.3 Mesh Network Architecture 

As mentioned in chapter 2 mesh networks are used in this research work due to 

their redundancy in node communication where there is always a path for communication 

if there is a failure of communication at a particular node. In this chapter a mathematical 

optimization is used to find the optimum path for the mesh network proposed in chapter 2 

and route the data in the mesh network. For a given mesh network where: 

N: total nodes 

D: total wavelengths per fiber 

Uab: total of fibers between a and b 

T: total transmitters at a node 

R: total of receivers at a node 

C: channel capacity or wavelength 

Ʌ: information matrix of traffic set.Ʌ =  Ʌ୬ , in which n can be any permissible less pace 

flow, 1, 3, 12, etc. In this research work i ∈ {3,5,10} 

Variables: 

 Vmn is number of node to node virtual paths in virtual topology and Vλ
mn number of 

virtual paths between nodes conducted via fiber link on wavelength λ. 

 Bλ
mn number of physical paths among nodes conducted via fiber on wavelength λ.  
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 ϒsd,t
mn,i : The tth OC-i demand of less pace traffic where node s to node d occupying 

path (m,n) as an intermediary virtual link. 

 Ρi,t
sa Ρi,t

sa =1, only when the tth OC-i demand of less pace link where node s to node 

d accurately dispatched; otherwise, Ρi,t
sa=0. 

Hence for facilitating the optimal data flow the optimization function is given by 

amplify the total successfully dispatched low-speed traffic (f) where: 

 

Max f = ∑ 𝑖 ∗ 𝑃௦ௗ
,௧

,௦,ௗ,௧                                     (34) 

With constraints, as: 

∑ 𝑉 ≤ 𝑇    ∀𝑚                  (35) 

To verify that the total quantity of paths between node pair (m,n), is fewer than or 

equal to the total number of communicators (transmitters) at node m. 

∑ 𝑉 ≤ 𝑅    ∀𝑛                         (36) 

To verify that the total quantity amongst node pair (m,n) is fewer than or equal to 

the number of recipients at node n. 

∑ 𝑉
ఒ

ఒ =  𝑉   ∀𝑚, 𝑛              (37) 

Here is to verify that the paths between m, n contain paths which have different 

wavelengths among the pair (m,n). 

∑ 𝐵
,ఒ

 =  ∑ 𝐵
,ఒ

   if 𝑘 ≠ 𝑚, 𝑛  ∀𝑚, 𝑛, 𝑘, 𝜆        (38) 

To verify intermediary node k of route (m,n) existing in wavelength 𝜆 and total 

number of inward and outward route flow are equal. 
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∑ 𝐵
,ఒ

 =  0   ∀𝑚, 𝑛, 𝜆  (39) 

To verify source node (m) of route (m,n) existing in wavelength 𝜆  and total number 

of inward route flow are equal 0. 

∑ 𝐵
,ఒ

 =  0   ∀𝑚, 𝑛, 𝜆  (40) 

To verify end node (n) of route (m,n) existent in wavelength 𝜆 and total number of 

outward route flow is 0. 

∑ 𝐵
,ఒ

 =  ∑ 𝑉
ఒ

      ∀𝑚, 𝑛, 𝜆   (41) 

To verify source node (m) of route (m,n) existent in wavelength 𝜆 and total number 

of inward route flow is equal to the overall quantity of routes amongst node pair (m,n) 

existent in wavelength 𝜆. 

∑ 𝐵
,ఒ

 =  ∑ 𝑉
ఒ

   ∀𝑚, 𝑛, 𝜆  (42) 

To verify end node (n) of path (m,n) existent in wavelength 𝜆  and the sum of 

outward route flow is equal to the overall quantity of routes among node pair (m,n) existent 

in wavelength 𝜆. 

∑ 𝐵
,ఒ

 ≤  ∑ 𝐵
ఒ

   ∀𝑖, 𝑗, 𝜆   (43) 

𝐵
,ఒ ∈ {0,1}                         (44) 

(43-44) are to guarantee the wavelength 𝜆 on a single path (m, n) is existent in a 

max of only a single path in the network.  

∑ Υௗ,
௦ௗ,௧

 = 𝑆௦ௗ
௧                                    (45) 
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∑ Υ௦,
௦ௗ,௧

 = 𝑆௦ௗ
௧                                  (46) 

For (45), (46):  

  ∀𝑠, 𝑑, 𝑡     i ∈ {3,5,10}      𝑡 ∈ ൣ1, Ʌ୧,ୱୢ൧            (47) 

∑ Υ,
௦ௗ,௧

 = ∑ Υ,
௦ௗ,௧

  if 𝑘 ≠ 𝑠, 𝑑  ∀𝑠, 𝑑, 𝑘, 𝑡        (48) 

∑ Υ௦,
௦ௗ,௧

 = 0                        (49) 

∀𝑠, 𝑑, 𝑡     i ∈ {3,5,10}     𝑡 ∈ ൣ1, Ʌ୧,ୱୢ൧ 

∑ Υௗ,
௦ௗ,௧

 = 0                    (50) 

∀𝑠, 𝑑, 𝑡    i ∈ {3,5,10}      𝑡 ∈ ൣ1, Ʌ୧,ୱୢ൧ 

∑ ∑ i ∗ Υ,
௦ௗ,௧

௦ ௗ ௧ ≤ 𝑉 ∗ 𝐶 ∀𝑚, 𝑛          (51) 

𝑆௦ ௗ
 ௧ ∈ {0,1}        (52) 

Eq. (48) – (52) to guarantee routing of less pace flow requirements on fundamental 

architecture, furthermore considering and cogitating that all channels, along with their 

wavelengths capabilities, ought to be closely monitored for the entire passing flow (data 

flow) not to exceed their capacities.  

In this research work [36], 8 PV generation systems are distributed over an area of 

5 acres is chosen where each PV system capacity is 25kW conquering the aggregate 

generation capacity up to 200 kW. The minimum distance between every system is 

illustrated in Fig 3.1. 
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Figure 3.1 Minimum distance between PV systems. 

 

Mesh networks algorithm discussed above is used to find an optimum path for data 

transfer from these systems to a centralized data collection center illustrated in Fig 3.1. The 

distance parameters and network constraints are given as input in NS2 open source 

software and two optimum path l1& l2 are obtained using the constraints (35-44). These 

are illustrated in Fig 3.2 and 3.3 where the arrows signify the transfer of data from one 

node to another. It can be seen that in both configurations redundant path exists to make 

sure that there is no interruption in data transfer if one node malfunctions. 
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Figure 3.2 Configuration l1 

 
Figure 3.3 Configuration l2 

The operational parameters for l1 and l2 as a result of the simulation are expressed 

in Table 3.1. 

Table 3.1 Mesh Network Operational Parameters 

Parameter L1 L2 
Throughput (Kbps) 50011 51274 
Latency (sec) 0.00208 0.00320 
Packet Delivery Ratio (%) 99 99 
Network Life Time(min) 507.174 499.361 
Routing overhead (%) 99.46 99.17 
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3.4 Artificial Neural Networks  

In the last couple of years, artificial neural networks have gained tremendous 

reputation since they have numerous progressive abilities for statistically classifying and 

identifying.  Utilizing ANNs is achieved by formulating nonlinear data to be categorized 

and identified by pattern based on designated mathematical functions.  The anatomy of 

rudimentary artificial neural network can be defined as input, output and hidden layers; 

hence both ends have depots, such as architecture is demonstrated in Fig. 3.4.  

An artificial neural network with multilayer perceptron is presented and it is 

constituted and designed by means of Levenberg Marquardt algorithm [30] as follows: 

 Encoded number of input parameters along with hidden layers quantity besides 

every hidden layer neurons. Also for every layer, predefining and configuring 

weights and biases. 

 Predefined weight (wi,1) is multiplied with the input arguments (Ii) in input layer 

considering summing it with the bias of the node (bi,1) as: 

  𝑎ଵ,ଵ = ൫∑ 𝐼𝑤,ଵ

ୀଵ ൯ + 𝑏,ଵ                  (53) 

 

 The frequently used activation function which is (tan or log) sigmoid, where 

summation (53) is computed, as: 

 𝜎(𝑎ଵ,ଵ) =
ଵ

(ଵାషೌభ,భ)
                  (54) 
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 Activation function yield will be used to feed next layer in which it is the input and 

this process happens repeatedly in all following layers until grasping end node. 

 Once the end node is attained, then the results are compared with the designated 

rule for this training process.. 

 Mean Square Errors (MSE) and Mean Square Deviation (MSD) are two of the 

effective widely used methods of systems  measurements: 

𝑀𝑆𝐸 = ቀ
ଵ


∑ ∑ ൫𝑡, − 𝑜,൯

ଶ
ୀଵ


ୀଵ ቁ      (55) 

In which, ti,k is desired limit and oi,k is outcome. 

 Utilizing those measurements will assist in revising biases and weights in the 

desired structure of such a network for better results in the next round of trainings 

and testing.  

 Input, training, testing and output is done repetitively until a threshold or a targeted 

value has been achieved.   

 Generally, ANNs can work cleverly by taking into account updating trajectories for 

improved outcome and accomplishing desired fallouts. 
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Figure 3.4 Neural network model. 

The propositioned model’s accurateness is around 99.7%, although the MSE of the 

neural network model’s is approximately 0.00548 as shown in Fig. 3.5 

 
Figure 3.5 Training, Testing and Validation Result. 

Figure 3.6 displays the comparison of the error value for the 3rd of March for the 

whole day. A maximum error of -0.68 is obtained at 14:24 hrs on the day while calculating 

the power output and a minimum error of -0.42 is obtained at 13:00 hrs.  
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Figure 3.6 Comparison of actual and estimated power output. 

Fig. 3.7 illustrates the average percentage error for the whole year while on 

predicting the productivity of the PV system. The highest percentage error of 6.82% is 

reported during 12:30-1:30 pm in the month of February as well as in June. In the negative 

trend side, around -4.8% error is obtained during 12:45-1pm in the month of January and -

5.2% during the same time in February and September. 

 
Figure 3.7 Percentage error for power prediction during entire year. 
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3.5 Dynamic Performance Prediction (Without Deep Neural Network)  

Real time performance prediction and evaluation is critical to understand the 

efficiency of the system and can help as an indicator regarding the health of different 

elements of the system. After network initialization, the real-time performance data of the 

solar plants along with the weather station data is logged in the central database at an 

interval of 5 minutes as shown in Table 3.2. This database is based on Denver, Colorado 

data and is interfaced with the neural network model in the same workstation. After every 

half an hour, the neural network model fetches date and time from the system and sends a 

request to the database for obtaining the climatological parameters that serve as input to 

the system. An independent program in the workstation, then randomly picks the value of 

a single instance out of six instances that occurred in the past half-an-hour in the database 

and feeds them subsequently to the MATLAB program. 

 
Figure 3.8 Flow chart for dynamic performance evaluation. 



 

 56 

 

Table 3.2 Real-time input from the network database 

Date Time 
Irradiance 

DNI(W/m2) 
Ambient 

Temperature© 
Humidity 

(%) 
Wind 

speed(m/s) 
Voltage 
PV(V) 

current(I) 
Array DC 

power(kW) 
Inverter 

efficiency(%) 
1-Mar-18 12:30:02 633 19 40.2 2.8 394.973 37.1685 3.477 97.1886 
1-Mar-18 12:35:02 633 19 40.2 2.9 394.981 37.215 3.479 97.1801 
1-Mar-18 12:40:02 639 19 40.2 3 394.980 37.50829 3.482 97.1750 
1-Mar-18 12:45:02 639 19 40.2 3 394.982 37.4987 3.501 97.1702 
1-Mar-18 12:50:02 638 19 40.2 3 394.987 37.45164 3.522 97.1642 
1-Mar-18 12:55:02 637 18 40.2 3 394.991 37.39499 3.602 97.1575 
1-Mar-18 13:00:03 638 18 40.2 3 394.995 37.45162 3.687 97.1498 
1-Mar-18 13:05:02 638 18 40.2 3 394.998 37.45162 3.784 97.1449 

 

The neural network model executes with the input provided, calculates the output 

and sends it to the independent logical program in the workstation. The real-time 

performance value of power output corresponding to the input parameters is fetched by the 

program and then compared to the estimated output. If the ratio of real time value and 

estimated value is less than 75%, which is the average performance ratio of a plant at the 

installed location, an alert is generated in the workstation regarding the underperformance 

of the system, which is presented in the flow chart in Fig. 3.8.   

Underperformance of a PV system can be characterized as hinderance in 

performance due to shading, soiling, equipment damage. In this research work, soiling and 

shading are considered, and performance data is used to model this system. 

Interactive user interface with real time energy production data is shown in Fig. 3.9. 

The average mean time for response is noted as 5.36 sec with the quickest response time 

of 2.18 sec in case of normal performance and slowest response time of 7.92 sec in case of 

underperformance. The number of instances collected in a full year and the statistics related 

to the performance evaluation are given in Table.3.3. 
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Table 3.3 Statistics for dynamic performance evaluation 
Parameter VALUE 
Number of instances collected 43240 
Number of instances selected for performance evaluation 15060 
Number of times PR reported <75% 4201 
Percentage of instances where underperformance is reported 27.8% 
Average mean time for response (sec) 5.36(Min 2.18, Max 7.92) 

 

 
Figure 3.9 User interface for notifying operator. 

Application of the proposed communication infrastructure while integrating neural 

network-based computation or performance diagnosis as well as rule-base based 

mechanism is a significant contribution in this research work. Voluminous state of art 

communication infrastructures in the prevailing literature propose a single aspect/task-

oriented application like monitoring, data storage etc. However, in this research work a 

multi-faceted application of the infrastructure was elaborated as follows: 

- Features of PV generation, battery status  are monitored and are integrated through 

network along with feedback based measures for effective performance in the 

smartgrid. 
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- Real-time performance data was collected at a centralized database while ideal 

performance was calculated and compared for diagnosing critical performance issues 

of solar power generation like soiling and partial shading. 

3.6 Underperformance Diagnosis with Deep Neural Networks 

Deep Neural Networks (DNN) as shown in fig. 3.10 are different from single-

hidden-layer neural networks due to their depth or number of node layers through which 

the data is subjected [71]. These layers establish a multistep process of feature extraction 

and pattern recognition that increases the efficiency of the DNN.  

 
Figure 3.10 Deep Neural Network Architecture. 

A solar panel output is dependent primarily on irradiance and temperature of the 

location. The system output is a function of number of panels, their connection architecture 

and the inverter characteristics. In every juncture of this performance characterization the 

non-linear dependence of variables on the power output can be clearly observed.  To 

address this high nonlinearity, a Deep Belief Network (DBN) class of DNNs is used to 

model the performance. 
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A DBN is a class of DNN with multiple hidden layers connected through layers 

instead of individual neurons in the layers [23]. A DBN can learn to probabilistically 

reconstruct its inputs and extract features. Restricted Boltzmann Machines (RBM) 

networks are used in this research work for training due to its effective, fast and generative 

training procedure. 

A Typical RBM has binary nodes in each layer denoted as a combination of visible 

layer (u) and hidden layer (k) as: 

𝑢 = {𝑢}                                 (56) 

𝑘 = {𝑘}                                         (57) 

For any {𝑢 , 𝑘} no intra-layer connection exists. A bidirectional connection, 

however exists and the probability to have a specific connection is determined by the 

energy vector E(u,k), expressed as: 

𝑝(𝑢, 𝑘) =
ଵ


𝑒ିா(௨,)  

Where,  

   𝑍 = ∑ 𝑒ିா(௨,)
௨,              (59) 

is the normalization factor. 

The energy vector E in the form of the bias vector of hidden layer 𝑏 , the bias 

vector of visible layer 𝑏௨ and weight matrix W between u and k can be expressed as: 

𝐸(𝑢, 𝑘) = −𝑏௨
்𝑢 − 𝑏

்𝑘 − 𝑢்𝑊𝑘  
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The conditional distribution for connection between visible layer with hidden layer 

and vice versa can be expressed as: 

𝑝(𝑢|𝑘) = ∏ 𝑝(𝑢|𝑘)
    

𝑝(𝑘|𝑢) = ∏ 𝑝(𝑘|𝑢)
    

Where U and K are total number of nodes in visible and hidden layers. 

With a sigmoid activation function that can defined in (54), the probability of a 

node getting activated can be expressed as: 

𝑝൫𝑘 = 1|𝑢൯ = 𝜎൫𝑏, + 𝑢்𝑊൯   

𝑝(𝑢 = 1|𝑘) = 𝜎൫𝑏௨, + 𝑘்𝑊்
൯   

The weights are updated through a contrast divergence algorithm here k-step Gibbs 

sampling is performed to reconstruct the training data by: 

∆𝑤, = 𝜀(〈𝑢, 𝑘〉ௗ௧ − 〈𝑢, 𝑘〉)  

RBM acts as an effective data pre-processing or pre-training method to classify or 

cluster the input variables according to their common characteristics. 

Input vector to ANN model is I = [S1 T1  t1 d1], where, S is irradiance; T is 

temperature; t and d correspond to the date and time at which PV power output is obtained.  

The output vector is 𝑂 = [𝐼భ 
𝑉భ

] , where, 𝐼భ
 and  𝑉భ

 correspond to DC current 

and voltage output respectively. AC power is obtained from inverter characteristics. 

The data obtained is subjected to RBM training and the output is illustrated in 

Fig.3.11. Through RBM, the features of the data points in context of irradiance and power 
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are extracted and the entire data set is clustered into 7 clusters. Every cluster corresponds 

to an irradiance and power level. For example, cluster 1 consists of data points pertaining 

to power output value in the range of 60kW . Similar is the case with cluster 4 where the 

data points corresponding to the power value of the range 20-30kW 

It can be observed that at any irradiance value, there are two or more corresponding 

power output values.  This arises because during the experimentation, artificial soiling and 

artificial shading experiments were conducted. While collecting the data, to create an 

exhaustive set of practical conditions on a solar panel, artificial soiling and artificial 

shading experiments are conducted on the panel and the data collected.  

 
 

Each of the anomalies is given a state value. In normal condition for ideal 

performance, the state condition value, s= 0. If the power output is obtained as a result of 

soiling the panel, s = 1 and for partial shading the value of s = 2.  

Figure 3.11 RBM output of the performance data. 
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After RBM classification, at each irradiance level the different power output values 

are assigned the state value (s). The irradiance, power output is used as inputs and the state 

value is used as output for a MLP neural network model. The model is simulated and a 

training efficiency of around 99.95%, validation efficiency of 99.3%, testing efficiency of 

99.51% is obtained as shown in fig. 3.12.  

 
Figure 3.12 ANN simulation output. 

The obtained model is now tested with real-time climatological data and the output 

obtained through the model is compared with the actual power output. Fig. 3.13 shows the 

comparison of the actual values and estimated value. The mean square error value in this 

comparison is 0.014.   
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Table 3.4 Statistics of Performance Diagnosis 
Parameter  Value 

Number of instances   21400 

For s=0  

Actual 14201 

Identified 14314 

False Positive 140 

For s=1 

Actual 5192 

Identified 4936 

False Positive 284 

For s=2 

Actual 2540 

Identified 2150 

False Positive 82 

 

 
Figure 3.13 Comparison of actual vs estimated power output. 

Actual power values are fed to the neural network in the second iteration to identify 

the state of performance of the system. This experiment is repeated for a period of 6 months 

and the results obtained for all the three states of s is expressed in Table.3.4. For s=0, the 

error of prediction is -0.8% while the value is 4.9% and 3.2% for s=1 and s=2.  
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Overview of the procedure followed in this research work is illustrated in Fig.3.14 

 
Figure 3.14 Overview of the Deep Neural Network Model.
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CHAPTER FOUR: RECURRENT NEURAL NETWORK (RNN- LSTM) BASED 

FORECASTING OF PV BASED ISLANDED MICROGRID 

4.1 Architecture and Problem Formulation 

 Forecasting techniques as mentioned in the literature have been investigated 

widely as in fig 4.1, in this article however, a robust technique of LSTM with comparison 

to SVM models have shown promising results [91]. Historically recorded and acquired 

Solar Data have been used in this experiment to implement LSTM and SVM models. 

National Renewable Energy Lab (NREL) has a software System Advisor Model (SAM) 

[93] to retrieve various historical data in regard to renewable resources.  

 
Figure 4.1 Solar Forecasting Categories. 
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In this work [91], Denver’s Colorado solar (beam DNI, global GHI and diffuse 

DHI) irradiances data as shown in Figure 4.2. was selected to be investigated and 

associated.  Beam Irradiance and a one PV module generated data were the main data 

parameter to be straggled in this paper. Input data modeled as a time sequence and is 

denoted as: 

𝑥ଵ,௧ , 𝑥ଶ,௧ାଵ , 𝑥ଷ,௧ାଶ , … . ., 𝑥,௧ା(ିଵ) =  𝑥,௧  ,         𝑥,௧  ∈  ℝ                 (66) 

 

Where xn is the Irradiance value at step (n) at time (t). 

 

Each input element is a real valued vector in which time stamped and labeled. The 

target sequence or the prediction output is: 

 

𝑦௧ , 𝑦௧ାଵ , 𝑦௧ାଶ , … . . , 𝑦௧ା(ିଵ) =  𝑦,௧  ,         𝑦௧,  ∈  ℝ            (67) 

 

Where yt,m is the predicted solar data point sequence of values at step (m) and time 

(t). 

The function of the prediction objective function is calculated based on the previous 

data and it is as follows:  

 

𝑂𝑏𝑗 = arg min ∑  [(𝑥,௧) − (𝑦,௧)] ଶ
ୀଵ        (68) 
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Figure 4.2 Annual average of Irradiance (GHI, DNI, DHI) Denver, CO (SAM) 

4.1.1 Recurrent Neural Networks (RNNs) 

In the recent years an enthused upbeat scheme by the abilities of the human being’s 

brains, has shown indispensably beneficial outcomes. Prediction is one of those abilities 

that interests roughly every researcher in STEM. As a crucial part of the Artificial Neural 

networks, RNNs has emerged a powerful technique in various scientific fields as robust 

and efficient in high predicting accuracy. RNNs are generally a feedforward Neural 

Network unless the directed nodes are can be useful in short-term learning dependencies 

where data updated accordingly for better prediction accuracy.  
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Long Short Term Memory networks (LSTMs) [82] is a unique kind of RNNs where 

dependencies are prolonged which would help greatly in learning process effectiveness. It 

consists of five compulsory steps (input, forget, output, cell, state) [81], where those 

rudiments perform in reading, writing and removing fundamentally to all memory 

conditions. In typical RNNs, vanishing gradient descent is an issue; in contrast, LSTMs 

have overcome this issue, and this is one of the decisive reasons it is favorable.  

The mathematical formulation of the hidden cell values (ht) at time (t) for the 

current value of (𝑥,௧): 

ℎ௧ =  𝜆(𝑊௫
் ∗ 𝑥,௧ +  𝑊

் ∗  ℎ௧ିଵ + 𝑏 )   (69) 

Where, 

𝜆: is the activation function 

𝑊௫ : the weight matrix between hidden and input layers 

𝑊 : the recurrent weight matrix between the hidden and itself 

 𝑏 : bias parameter for h 

T: is the transpose 

Nearly in all typical feedforward multilayered neural networks, input is fed to 

neurons in a sequential way at the input layer. Next, the activation function will be 

multiplying the input to become a processed input for the next layer. Then, every hidden 

layer (h) neuron’s output is multiplied by the connections weight matrices (W) and the bias 

term (b).  
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𝑦௧ =  𝜆(𝑊௬
் ∗  ℎ௧ + 𝑏௬ )     (70) 

Where, 

𝜆: is the activation function 

𝑊௬ : the weight matrix between hidden and output layers 

𝑏௬ : bias parameter for y 

T: is the transpose 

4.1.2 Support Vector Machines – Regression (SVRs): 

SVMs [83] had been strongly presented in the research arena in the last decades for 

its useful usage in numerous statistical models. On the other hand, in recent years SVRs 

[83] have developed to be in a new face of SVMs. Hence, SVRs implement the same 

principles as SVMs in regard of classifications but in a different methodology. Taking 

advantage of regression, error is minimized given the idea of separating the hyperplane in 

order to widen the margin of tolerance.  

𝑦௧ = 𝑓(𝑥) =  𝑊 ∗ 𝛽(𝑥) + 𝑏    (71) 

Where,  

x: input 

y: output 

𝑊 : is the weight vector 

𝑏 : is Bias parameter 
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4.2 Exploratory Modeling and Analysis 

By using the Artificial intelligence furthermost innovative tool to date, Python has 

proven to be a suitable tool for such demonstrating. In this section Data gathering, the 

proposed model details and Evaluation Metrics have been premeditated comprehensively 

utilizing the SAM [83] bulky data source. Supplementary, their results have been compared 

besides the results were drawn for better understanding, forecasting and predicting the 

Irradiance of Denver Colorado in the United states based on historical bulky data. 

4.2.1 Input features:  

Data was collected from the SAM application by NREL, where beam irradiance 

(W/m2) data and generated power for one PV module were obtained for the period from 

Jan 1st, 2018 to December 31st, 2018.  More than 8700+ samples are assembled and 

investigated in this research.  

4.2.2 Algorithm framework:  

Three models as shown in figure 3, were performed on the input data in which raw 

data was normalized and divided into training and testing phases 80% and 20% 

respectively. The three models are Short Term Forecasting (STF) for prediction in hours, 

Medium Term Forecasting (MTF) for prediction in days and Long-Term Forecasting (LTF) 

for prediction in weeks. Python along with its major libraries on top of them is Keras-

Tensorflow were used in this modeling with flexible epochs stipulations in which the 
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system only stops when there is no improvement in the prediction. The activation function 

that used in this model was sigmoid function.  

 
Figure 4.3 Proposed Architecture overview 

4.2.3 Evaluation Metrics:  

Measurement of the performance of any propositioned model is a necessary 

validation procedure to evaluate the outcome. Based on the raw data processing for several 

time apertures using the above-mentioned framework, a widely used techniques which is 

Root Squared Mean Error (RMSE): 

𝑅𝑀𝑆𝐸 =  ට
ଵ


∑ (𝑥 − 𝑦)ଶ

ୀଵ     (72) 
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 Consequently, the performance of prediction and the coefficient of variation were 

implemented on each model and time frame: 

𝐶𝑉 =  
ோெௌா

ఓ
     (73) 

Where,  

𝑥 : input solar data 

𝑦 : predicted output of solar 

𝜇 : average value 

4.3 Results and Discussion 

The model was trained on the aforementioned obtained data from NREL SAM 

system, thenceforward then data was tested broadly in the following two cases: 

4.3.1 LSTM (case 1):  

In this case, the system was modeled to be acquiring all the needed parameters files 

thenceforth train and test the obtained data. Additionally, the system was configured to be 

performing non-predefined epochs, in other words the algorithm would stop training and 

testing procedures only if the no noticeable improving into the classification are shown.  

4.3.1.1 LSTM Short Term Forecasting (STF):  

In this model, an hourly system was developed to predict the generated power based 

on the solar Irradiance on hourly bases. Generated power data was used, a one PV module 

was utilized in this experiment. The results of STF shown in table 1 and figure 4.4. It’s 

obvious that LSTM has performed outstandingly by predicting the desired data in the STF.  
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Figure 4.4 LSTM Hourly Forecasting Results 

4.3.1.2 LSTM Medium Term Forecasting (MTF): 

Daily predicted solar values were trained and tested. The rooted mean squared error 

and coefficient variations are calculated in table 1. Figures 4.5 & 4.6 shows the loss rate 

and variations illustrations.   
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Figure 4.5 LSTM Daily model losses illustration 

 
Figure 4.6 Forecasted data 

4.3.1.3 LSTM Long Term Forecasting (LTF): 

Here are the weekly values were considered in this model for a whole year. 

Accuracies and error values are shown in table 1 and illustrations of the resulted data 

illustrated n figures 4.7 & 4.8.  
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Figure 4.7 LSTM Weekly model losses 

 

 
Figure 4.8 LSTM Weekly model Forecasting 
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4.3.2 SVR (case 2):  

Support Vector Regression algorithm was sculpted and simulated using the sane 

parameters for LSTM. Similarly, Epochs were not predefined also where the system would 

be performing to gain the most of the obtained data. Three cases of STF, MTF and LTF 

were tested likewise in LSTM.  

4.3.2.1 SVR Short Term Forecasting (STF): 

SVR in STF which is hourly forecasting model, dissimilarly did not do well as 

expected since it doesn’t have the ability of memory status as in LSTM. Especially in 

hourly forecasting where data get scattered in the SVR methodology. In this model, an 

hourly system was developed to predict the generated power based on the solar Irradiance 

on hourly bases. The module that was utilized in this experiment is consistent of multiple 

panels that add up roughly to 3.2 squared meters. Illustrations and RMSE, CV are 

demonstrated in figure 4.9 and table 4.1.  

 
Figure 4.9 SVR Hourly forecasting data 
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4.3.2.2 SVR Medium Term Forecasting (MTF): 

In this daily forecasting part of the modeling some progress in SVR for predicting 

was presented in comparison to STF, figure 4.10.  

 
Figure 4.10 SVR Daily Forecasting data 

4.3.2.3 Long Term Forecasting (LTF): 

Weekly forecasted data was the best achievement of SVR in this architecture. 

Figure 4.11 and table 1 show the divergences and the error rates.  
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Figure 4.11 SVR Weekly forecasting data 

 

Table 4.1 Numerical RMSE And CV Results of The Tested Models in the Proposed Algorithm 

Model/Rate CV (%) RMSE (kW/h) Mean (kW/h) 

LSTM 
STF  2.442 0.018 0.739 
MTF  1.020 0.008 0.739 
LTF  6.257 0.046 0.735 

SVR 

STF  53.817 0.398 0.740 

MTF  30.661 0.227 0.740 

LTF  22.320 0.165 0.741 

 

It is obviously perceived from the diagrams of the fallouts and the table, that LSTM 

with all of its time boundaries, has accomplished way better than the conventional method 

of SVR. Specifically, the MTF class which was based on day to day forecasting procedure 

where accuracy is high. In STF, SVR executed poorly and it was its worst predictions in 

this model. In contrast to LSTM, LTF SVR achieved better only in comparison to its own 

time terms. It is worth more investigating and examining for understanding of such systems 

Ir
ra

di
an

ce
 k

W
/m

2 



 

 79 

 

 

 

 

CONCLUSION 

The propositioned framework is concocted to be a robust and a comprehensive 

structure, and the tools which were used for developing hybrid algorithms in this research 

work have a common capability of vertical integration across the communication 

infrastructure (Mesh Networks) for extended applications besides exploiting a robust 

technique as Artificial Neural Network (ANNs). Hence, along with ANN versions of Deep 

Neural Networks (DNNs) which is also an effective scheme where it was efficiently 

implemented for accurate prediction modeling with 90+% rate. Thus, the deep neural 

network-based performance modeling system can be made more sophisticated to foresee 

possible issues underlying in the inverter or the distribution network from the data trend. 

Recurrent Neural Network (RNNs) submodule Long Short-Term Memory (LSTM) scheme 

was implemented and used to forecast Irradiance data on hourly, daily and weekly basis.  

Therefore, a comparison with another conventional methodology of Support Vector 

Machine – Regression technique. Obviously, LSTM shown optimal prediction results with 

higher accuracy giving its ability of memory significance notion through the process of 

training and testing where SVR was besieged with higher RMSE and CV.  
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Future directions would be attaining more investigations on more expended 

classification techniques and engaging monitoring of PV based smart and microgrid for 

smarter controlling.  For example, EV charging stations can be integrated in the network 

as discussed in [79]. Thus, the current research effort provides a unique proposition of 

vertical integration which can be transformed into a new concept termed Internet of 

Microgrid (IoMG). Planning, monitoring, forecasting and operation form the core of 

smartgrids administration, and if intelligent tools intertwined with networks are being used 

as an integral part in each of these aspects, then it forms a holistic view of smartgrids. 

Furthermore,  Blockchain is paving the way for new directions toward more reliable 

transactional power systems; in which the idea of prosumer would be very feasible in the 

soon future. 
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Elongated Literature and Motivations: 

21st century is experiencing rapid technological developments in numerous areas to 

facilitate sustainable living. Renewable energy proliferation and Internet of Things are the 

two of many such areas, where significant progress is being achieved. With the increase in 

the intensity of renewable proliferation and its injection into utility grid, monitoring the 

assets that produce the energy and continuously evaluating the parameters (climatic) that 

dictate the performance is becoming increasingly important [37]. Researchers predict the 

transformation of normal electric grids into smart, next generation electric grid with 

renewable generation sources that will inevitably have the intersection of electrical as well 

as communication systems [38]. The grid will be a conglomeration of forward compatible 

hardware and software technologies to address evolving energy access patterns. These next 

generation grids, with the proliferation of digital infrastructure to improve financial and 

operational self-reliance, slowly transition into intertwining of communication 

infrastructure to the electrical infrastructure compulsory.  The combination of electrical 

and communication system as shown in Fig.1. in the energy infrastructure, will enable 

functions based on the motivation of grid, like online monitoring, demand side 
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management, control along with critical functions like troubleshooting an event and its 

immediate reporting [39]. This interesting and apparent intersection of electrical and 

communication systems will expose a new horizon of opportunities to lead the energy 

revolution. 

 

 

 

Fig.1. Intersection of Electrical and Communication Infrastructure - Root of Digitalization. 

 

Sood et al. [40] developed a WiMax (worldwide interoperability for microwave access)-

based smartgrid communication network for monitoring distributed energy generation 

sources. In a similar work [41], a grid-connected AC microgrid is simulated using the 

Simulink tool with basic communication infrastructure and a control strategy to optimize 

the performance in the grid is discussed. Masud and Li [42] developed and analyzed 

Internet of Things (IoT) based communication network for monitoring multiple distributed 
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energy sources using Kalman filter based state estimation of the microgrid. In [43][44], an 

IoT-based energy management system in microgrids for improving efficiency is proposed 

and studied in the context of PV generation systems, while a similar energy management 

system in a PV/wind hybrid microgrid is simulated in [45][46] using Simulink. A self-

sustaining wireless neighborhood area network is designed in [47] for transmitting power 

grid sensing and measuring status as well as the control messages. While Spano et al. [48] 

included individual energy meters into the communication network to design a holistic 

model for smartgrid monitoring. Kristensen et al. [49] developed information access 

schemes between remote assets and controller, which are activated only when certain 

voltage thresholds are at any measurement point in the grid. 
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A dedicated communication network is needed to monitor the performance of individual 

plant or microgram for streamlining operations and decision making in [50]. The  

Fig.2. Layers of the communication network [14]. 

 

infrastructure is divided into layers as shown in Fig.2. 

 ANN based models widely expended for accurate power prediction and performance 

evaluation in these power plants. For example, the reports published by Solar Power 

Europe [51], emphasize the importance of ANN based tools to address the issues in 

renewable energy based powered smartgrid or microgrid. Solar resources availability are 

circumscribed and in need of an precise modelling for power prediction, which includes 

climatic conditions similar to wind, temperature, irradiance, humidity and soiling. 
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Research work reported in [52], predicted highest power harvest by implementing data 

input of weather elements into artificial neural networks techniques. In a similar research 

work described in [53], a proposal of radial basis function (RBF) was constructed neural 

network configuration to simulate PV solar arrays in a power plant. Experiments were 

carried out to predict solar radiation data using ANN models [54-58] to estimate power 

production of a PV system for a given duration.A day-ahead irradiance forecast is reported 

in [59] and [60], a comparison of different forecasting techniques was investigated in [61]. 

ANN model was used in [62] and [63] to predict the production of power of a PV system 

under dusty environmental conditions. Recent contributions use ANN models to achieve 

maximum power point (MPP) operations of a PV system [64], control and grid integration 

for residential solar PV operations [65] and adaptive ANN models for standalone PV 

systems [66]. Other applications of ANN models include health monitoring of PV arrays 

[67], hour ahead forecast of energy price in industries [68] and fault diagnostics of 

multilevel inverter used in these power-generating plants [69]. 

With the advent of fourth industrial revolution, the intersection of electrical and 

communication networks for monitoring and control of utility level infrastructure seems 

inevitable [70]. Researchers designed and developed communication architecture 

intertwined with PV generation systems like micro grid [71], grid-connected PV plants 

[72] and distributed solar power generation systems [73]. In [38], IEEE smartgrid 
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communication vision document outlines the necessity of communication intertwined with 

microgrid in the following ways: 

A. Power entropy: Distributed and renewable generation in particular should remain 

synchronized with the main ac power frequency; maintaining frequency 

synchronization is a challenge requiring communication related to the 

inertia/momentum of the distributed/renewable generators. Figure 3 shows a simple 

communication network and equipment infrastructure for microgrid technologies for 

renewable integration. In addition, power generation for renewables is subject to 

potentially high entropy weather variations whose communication requirements are 

proportional to the entropy.  

B. Power area or density (dispersal/aggregation): The area of power control can be 

from a large wind farm to the inverter control for a domestic photovoltaic system 

over a distribution system of today’s power grid architecture.  

C. Power efficiency: Maintaining the power factor within tighter bounds will require 

more communication.  

D. Amount of power drives latency: As an example, protection mechanisms for 

distributed generation will require communication proportional to the amount of 

power similar to a time-current characteristic curve. 

As the number of devices that participate in smart microgrids increases, the relevant 

smart operations are increasingly adopting a decentralized approach [74], rather than a 
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centralized one, leading to a subsequent increase in vulnerability and security risks of 

transmissions. Accomplishing improved protection, reliability and privacy, transmission  

schemes should be capable of detecting and handling eavesdroppers and malicious 

behavior [75]. The adopted schemes could utilize ideas from information theory (such as 

the notion of secrecy capacity [76]), multi-agent approaches [77] and game-theoretic 

modeling, while taking into account the constraints that are imposed, e.g, by critical  

microgrid operations (e.g., power balance control) with low latency requirements. For 

energy management and demand response purposes, the power consumption signals of the  

 

Fig.3.  Micro-grids, consisting of DERs interconnected via the electricity grid and 
corresponding IEDs interconnected via the communication network. 
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domestic appliances of multiple houses are gathered at a remote concentration center for 

supporting decision making procedures [78]. The amount of data, however, could be 

excessive which could exhaust the available resources of the communication infrastructure, 

meaning that compression techniques should be employed. Sparse coding and dictionary 

learning algorithms [79] can lead to novel compression techniques, which are particularly 

suited to the considered consumption signals. It is interesting to point out that such 

techniques are compatible with techniques that are proposed for the problem of the so-

called non-intrusive load monitoring [80]. 

It can be summarized that the protagonist of communication systems has been a crucial 

part to be integrated for microgrids to be enhanced and better performing. It is very obvious 

that the fluctuating nature in microgrids has instigated power generation sundry curbs. 

Solar and wind generation are volatile and power output can shift very hasty depending on 

instantaneous climatic transformation [81]. Such fluctuation would effect power 

management, distribution and voltage control [82]. Thus, countless management issues or 

even instable events can arise vastly in such fluctuating environment where power can 

excessive or distributed generations and large loads are not informed of dysconnectivity.    

Artificial Neural Networks (ANNs) are mostly expended for accurate modeling prediction 

in these fields. For example, the irradiance was predicted using neural networks with 

different meteorological parameters in [83-90] while different artificial neural network 

models to predict the radiation data are compared in [91]. The power output of a solar PV 



 

 105 

 

panel depends on factors like irradiance, orientation, tilt angle, surface degradations etc. 

and many research works have used fuzzy logic and similar mathematical tools to model 

power output with these factors. The power profile of grid connected PV modules is 

predicted using artificial neural networks as discussed in [92] while a new approach based 

on ANN is used to predict the power output in Indonesia is proposed in [93]. A non-

parametrical model is developed using numerical weather forecast methods to predict the 

power output of a solar module in [94] and an optimum design of a neural tree is proposed 

in [95]. Different approaches based on neural networks have also been  used in [96] and 

[97] to predict the power output of a PV module. The effect of tilt angle on the power 

output of the panel is considered in [98] and a neural network is developed to predict the 

power output. However it was in [99], the losses occurring on a PV module have been 

modelled and the power output is predicted with respective to the loss factors. These neural 

networks have also been finding many real life applications, especially in the growing field 

of photovoltaic operations [100]. Starting from solar cell [101], standalone PV  modules 

[102] , MPPT [103] and power output [104] neural networks are being used to effectively 

model the respective phenomena. Hence, using ANN simplifies the characterization and 

strengthens the resolve of modelling PV power generation ecosystem.  
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