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Abstract
Load prediction in distribution grids is an important means to improve energy

supply scheduling, reduce the production cost, and support emission reduction. De-

termining accurate load predictions has become more crucial than ever as electrical

load patterns are becoming increasingly complicated due to the versatility of the

load profiles, the heterogeneity of individual load consumptions, and the variability

of consumer-owned energy resources. However, despite the increase of smart grids

technologies and energy conservation research, many challenges remain for accu-

rate load prediction using existing methods. This dissertation investigates how to

improve the accuracy of load predictions at the distribution level using artificial

intelligence (AI), and in particular deep learning (DL), which have already shown

significant progress in various other disciplines.

Existing research that applies the DL for load predictions has shown improved

performance compared to traditional models. The current research using conven-

tional DL tends to be modeled based on the developer’s knowledge. However, there

is little evidence that researchers have yet addressed the issue of optimizing the

DL parameters using evolutionary computations to find more accurate predictions.

Additionally, there are still questions about hybridizing different DL methods, con-

ducting parallel computation techniques, and investigating them on complex smart

buildings. In addition, there are still questions about disaggregating the net me-

tered load data into load and behind-the-meter generation associated with solar and

electric vehicles (EV).

The focus of this dissertation is to improve the distribution level load predictions

using DL. Five approaches are investigated in this dissertation to find more accu-

ii



rate load predictions. The first approach investigates the prediction performance of

different DL methods applied for energy consumption in buildings using univariate

time series datasets, where their numerical results show the effectiveness of recur-

sive artificial neural networks (RNN). The second approach studies optimizing time

window lags and network’s hidden neurons of an RNN method, which is the Long

Short-Term Memory, using the Genetic Algorithms, to find more accurate energy

consumption forecasting in buildings using univariate time series datasets. The third

approach considers multivariate time series and operational parameters of practical

data to train a hybrid DL model. The fourth approach investigates parallel com-

puting and big data analysis of different practical buildings at the DU campus to

improve energy forecasting accuracies. Lastly, a hybrid DL model is used to disag-

gregate residential building load and behind-the-meter energy loads, including solar

and EV.
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Chapter 1

Introduction

Energy consumption in the building sector (residential and commercial) ac-

counts for 40% of total energy production in the United States [1], and this percent-

age is increasing based on national trends. Thus, smart grids need reliable systems

that have intelligent features to monitor, learn, predict, and make decisions at the

distribution level to dynamically adapt to changes on demand.

Load prediction of future energy consumption can be perceived as load forecast-

ing and energy disaggregation. In the future, load prediction will be important for

all energy market participants. The load prediction will play a key role in mitigating

uncertainty in the future energy sector because it provides the information needed

to plan and maintain the operation of the power system. In addition, it provides the

ability to apply demand response to residential buildings, and the ability to have

dynamic demand pricing. In the energy market, accurate load prediction will assist

participants to increase their profits and decrease their losses by planning appropri-

ate corrections in their systems. Hence, accurate load prediction in buildings will

help system planner to make precise plans for future budgets and energy costs.
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1.1 Smart Grid

The concept of smart grids is a modern power system infrastructure that aims to

build robust, reliable, efficient grids and minimize the cost of production. Enhancing

the grids with renewable energy resources, automated control, and communication

technologies provides possible means of efficiency, reliability, and safety for smart

grids. The objective of smart grids is to advance the use of information and commu-

nication technologies by investing in the bidirectional flow of power and data. Smart

grids infrastructure is full of advanced sensing, communicating and computing abil-

ities that work in an interoperable way in different power system parts, generation,

and distribution [2]. The effectiveness of smart grids relies on three primary roles

that can help maintain and manage the grids as follows:

1. Dynamic pricing

2. Demand-side management

3. Load forecasting

1.2 Electricity Load at Distribution Level and Buildings

The electrical load at the distribution level is oscillatory and subject to change

because human activities follow daily, weekly and monthly event cycles. For in-

stance, the load is generally higher in the daytime and early evening, but it is lower

in the late evening and early morning. This means that every electrical appliance

or light bulb that is switched on or off by customers can directly affect the elec-

trical load seen on the distribution feeder. In general, customers buy electricity

from providers to power their appliances. Therefore, the distribution system exists

to deliver energy to customers in the form of electrical appliances and equipment,

lighting, heating, and cooling as well as other demands in the commercial and in-

2



dustrial sectors. The distribution system of the smart grids must satisfy customer

needs in order to deliver a high quality of service.

The building sector including residential and commercial accounts for a signif-

icant percentage of total energy production and is deemed as a major energy con-

sumer globally [1], [3], [4]. Thus, it is important to manage energy efficiency, with

objectives of energy conservation and environmental impact reduction. However,

there are many restrictions for the energy reduction on the residential and commer-

cial buildings because the priority of building management is to keep the indoor

environment (lighting and temperature) within a comfort bracket. Therefore, the

objective of energy conservation and environmental impact reduction turns into a

trade-off between indoor comfort and energy reduction.

1.3 Load Prediction Models at Distribution Level

Load prediction is a technique usually used by energy suppliers to forecast future

energy consumption to meet the load demand and supply balance in the generation,

transmission, and distribution sectors. Generally, a prediction technique is used

to forecast future load, electricity price, wind power, and solar power. Household

owners also use it; building managers in the commercial sector or energy supervisors

in the industrial sector apply it to meet their energy requirements and build their

bidding strategies. Therefore, the load prediction strategy is indispensable for all

active energy market players. We define the three main categories of forecasting

and their objectives as follows [5] [6]:

• Long-term load forecasting (LTLF): The time interval of this type of forecast-

ing lies from five years to decades in the future. The LTLF application is

mainly for the generation and transmission systems which aim to plan for the

future electricity capacity.

3



• Medium-term load forecasting (MTLF): The forecasting time interval of this

type prevails from a month to five years. The purpose of the MTLF is essen-

tially to plan for near future power plants and show the dynamics of the smart

grid.

• Short-term load forecasting (STLF): This type handles time horizons of a single

hour up to a couple of weeks. The STLF is necessary for the scheduling of

power plants. In addition, the applications of this type of forecasting include

real-time control, energy transfer scheduling, economic dispatch, and demand

response.

1.4 Common Evaluation Metrics of Prediction Models

For the prediction models, various evaluation criteria are utilized in the liter-

ature to evaluate the performance results. The first criterion is directly using the

30% testing dataset to examine the performance of the prediction model. The sec-

ond criterion of model performance evaluation is the metrics calculation where the

conventional methods are the root-mean-squared error (RMSE), the coefficient of

variation (CV) of the RMSE which is called normalized RMSE (NRMSE), the mean

absolute error (MAE), the and mean absolute percentage error (MAPE) defined as

follows:

RMSE =

√√√√ 1

m

m∑
i=1

(xi − yi)2 (1.4.1)

CV =
RMSE

x̄
× 100% (1.4.2)

MAE =
1

m

m∑
i=1

|xi − yi| (1.4.3)
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MAPE =
1

m

m∑
i=1

|xi − yi|
yi

× 100% (1.4.4)

where m represents the total number of data points in the time series, xi is the real

measured time series in the original scale of the dataset, yi is the predicted output

of the time series, and x̄ is the average of the actual values of energy consumption.

The third criterion of model evaluation is that the model is benchmarked with

conventional prediction methods such as statistical, ML and DL models.

The last criterion to examine the performance of the prediction model is cross-

validation which splits the dataset into k-fold subsets to estimate the general per-

formance of the prediction model and gives an insight on how the model generalizes

the independent variables throughout the datasets. The method repeats the process

of splitting the dataset into training and testing portions for k-times where the size

of the testing data remains fixed but moves through the original dataset and the

remainder used as training dataset every fold as in Fig. 1.1.

1st
iteration

2nd
iteration

3rd
iteration

10th
iteration

Data

Train Test

Figure 1.1: Cross validation method with kth folds.

Applying this method to the prediction model produces a robust averaged esti-

mation of the prediction when each observation in the dataset is used for training

and testing at each fold.
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1.5 Existing Research on Load Prediction

Investigating the load prediction has gained wide attention, although it has

been shown as a challenging problem due to the vast dependencies of the time se-

ries. Fortunately, the forecasting accuracy is promoted by the diversity of end-users

behaviors. For building power consumption, daily routine, occupancy, and type of

appliances are common factors that have a higher impact on load demand than

underline features like temperature and weather which have the high correlation to

the seasons and events. For instance, if a building has no occupancy for a particular

time and the temperature was high, the power consumed by this building would

not affect the overall electricity demand. Therefore, the power consumption load is

dependable on the behavior of end-users more than correlated factors, and our pro-

posed forecasting model investigates the seasonality, different timescales, and user

behaviors.

1.5.1 Traditional Prediction Models

Most of the previous studies focus on predicting electricity demand on a sys-

tem or a substation level, where this research emphasizes forecasting the load at

end-users levels. There are two major conventional load forecasting approaches in

the literature, which are physical based models and statistically based models, for

example, Autoregressive Integrated Moving Average (ARIMA) in [7], [8], [9]. In the

era of the AI, many applications in the power system gained from the intelligence of

computation including the load forecasting application. There are many approaches

to the AI used to automate, predict, classify and cluster power consumption appli-

cations. The most commonly used approach for load forecasting is machine learning

(ML), which is a subfield of the AI, such as Artificial Neural Network (ANN) in [10],

[11], [12], [13], [14], [15]. Moreover, another widely ML technique is Support Vector

Machine (SVM) used to predict the power consumption at the building level in [16],
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[17], [18], [19]. Decision Tree (DT) in [20], [21], [22] and k-nearest neighbor (kNN)

in [23], [24] were applied for time series forecasting.

1.5.2 Deep Learning Methods Applied on Load Forecasting

Deep learning (DL), which is an advanced ML method by adding multi-hidden

layers to the standard ML neural network, has gained a wide attention across a range

of disciplines, for example, image processing, speech recognition, natural language

processing, finance, and sequential problems due to state of the art results and

precise forecasting accuracy.

The Autoencoder DL algorithm is used for STLF of the electricity price [5]. The

author of this study proposed Stacked Denoising Autoencoders for short term fore-

casting. The forecasting approaches are designed for two models online forecasting

and one day ahead forecasting. Stacked Denoising Autoencoder showed effective

forecasting results especially for day ahead forecasting [25]. The results are com-

pared with state of art forecasting methods such as classical neural network (NN),

SVM, multivariate adaptive regression splines (MARS) and least absolute shrinkage

and selection operator (Lasso) [25]. Another study has investigated Autoencoder

and Long Short Term Memory (LSTM) for forecasting renewable energy power

plants [26]. The study combined the Autoencoder and LSTM for forecasting and

compared the results to the state of art approaches such Artificial Neural Network,

LSTM and DBN [26]. The method is applied for 21 solar power plants when pro-

posed method showed decreasing in the average of RMSE for training and testing

results.

A recent study for household load forecasting has used a novel approach of

Pooling Deep Recurrent Neural Network (PDRNN) [27]. The authors claimed that

adding more layers to the neural network improves the forecasting performance

[27]. This study has used a pool of inputs for a group of customers to increase the
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data diversity and volume [27]. The data of this study is collected from 920 smart

metered customers in Ireland. The authors also used GPU in their hardware in

order to accelerate the computational time by parallelizing the models. The results

were compared to the literature load forecasting techniques such as ARIMA, SVR

and DRNN [27]. This novel approach showed improvement results in RMSE when

compared with; ARIMA by 19.5%, SVR by 13.1% and DRNN by 6.5% [27].

One of the common methods of DL which is been used in short term load fore-

casting is LSTM. This method is used for two approaches in building energy load

such as standard LSTM and LSTM-based sequence to sequence (S2S) [28]. They are

implemented on consumption dataset of residential load that is trained and tested

with one hour and one minute resolution [28]. In this study, the standard LSTM per-

formed successfully in one hour resolution, however, failed in one minute resolution

[28]. For the second approach, both dataset resolutions performed well compared

to results to the literature [28]. Another study investigated LSTM for residential

load for short term forecasting has studied the usage of appliances for individual

load forecasting [24]. The researchers showed their algorithm outperforms the state

of art approaches of residential load forecasting [24].

Convolutional Neural Network (CNN) with k-mean clustering was applied in

short term forecasting [29]. The K-mean algorithm is used on a large dataset to

create clusters for training the CNN [29]. The study selected the data from August

2014 for summer data and from December 2014 for winter data to apply the method

[29]. The comparison results in this study shows great improvement in terms of

RMSE for CNN with k-means 0.2194 in summer experiment and 0.2399 in winter

experiment. Neural network was applied to both experiment which resulted RMSE

0.2379 in summer and 0.2839 in winter. The author’s also applied CNN only on

the datasets in order to compare the results with the proposed method. CNN only

resulted in lower accuracy in terms of RMSE 0.2502 in summer and RMSE 0.2614
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in winter. The study concluded that CNN outperforms other methods with help of

clustering techniques [29].

A study that has demonstrated great performance using DL in costumer’s load

electricity forecasting used Restricted Boltzmann Machine (RBM) method [30]. The

training process in the study was driven by two cases pre-training process and Recti-

fied Linear Unit without pre-training. DL approach is structured by using a heuristic

method to determine the number of hidden neurons that are used in each hidden

layer [30]. There were four hidden layers and 150 hidden neurons. A sigmoid func-

tion is used for RBM pre-training. A linear function is used for the prediction

layer which is the output layer [30]. DL forecasting results are compared with other

known methods in the literature for forecasting such sallow neural network (SNN),

double seasonal Holt-Winters (DSHW) and ARIMA [30]. The results are compared

with the previous work in the literature to verify the performance of the proposed

approach of DL short term load forecasting. In addition, the results are verified by

MAPE and relative RMSE [30]. This approach reduced relative RMSE by 22% in

comparison with SSN and by 29% in comparison with DSHW [11].

Deep belief network (DBN) algorithm was proposed in a study for load short

forecasting [31]. In this study, the authors aimed to improve the performance of

DBN with load forecasting by using ensemble methods and emerge Support Vector

Regression (SVR) [31]. The authors used three electricity load demand datasets and

three regression datasets to apply their proposed method. The results show that

the ensemble DL by combining DBN with SVR outperformed SVR, Feedforward

NN, DBN and ensemble NN [31]. The prediction results for load demand of South

Australia for the proposed method with RMSE 30.598, however, RMSE for SVR is

44.674 and RMSE for Feedforward NN is 38.8585.

A study that proposed Predictive Deep Boltzmann Machine (PDBM) for pre-

dicting wind speed was applied to wind energy [32]. The authors used raw wind
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speed data to forecast short term and long term wind speed. The algorithm was used

to predict wind speed one hour ahead and one day ahead. The proposed method

showed improved performance in comparison with autoregressive (AR), adaptive

neuro-fuzzy inference system (ANFIS), and support vector machine (SVM) for sup-

port vector regression (SVR) [32]. The study was made for short term and long

term forecasting. Short term forecasting is designed to forecast from 10 minutes

ahead to 2 hours ahead. The result of 10 minutes ahead in terms of RMSE is 0.2951

for the proposed method as correspond to the RMSE for SVR is 0.6340. The pro-

posed algorithm for one day ahead forecasting resulted RMSE 1.2926 which is an

improvement over SVR that has RMSE 1.3678.

The following table summarize most of the reviewed papers in terms of the

comparison between the proposed method in each paper and common benchmark

method in the state of art. Table 2.2 shows RMSE percentage of reduction in

comparison with the other method. Table 2.2, the reduction of RMSE in the method

of ensemble DBN and SVR is remarkable in comparison with FNN. In addition, the

method of PDRNN shows great reduction in comparison to ARIMA. Then, CNN

with k-means showed also great percentage of reduction in RMSE.

Table 1.1: Shows percentage of reduction for RMSE in comparison between proposed
method and benchmark state of art method.

Benchmark method Proposed Method RMSE % of reduction

MLP Autoencoder and LSTM 5.51%

ARIMA PDRNN 19.2%

NN CNN 7.7%

CNN CNN with k-means 12.3%

FNN DBN and SVR 21.2%

SVR PDBN 2.85%
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1.5.3 Evolutionary Computation Applied on Prediction Models

In the last decade, many intelligent evolutionary computations based on op-

timization methods have been applied to the problem of energy consumption in

buildings, e.g., Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and

Evolution Strategies (ES). These methods are types of metaheuristic optimization

techniques that are nature inspired in mathematical optimization processes. In

terms of forecasting chaotic time series, the PSO method improved the results of

the ANN predictive model in [33] [34] [35]. For the problem of energy consump-

tion prediction, PSO-ANN, and GA-ANN hybrid prediction methods applied with

principal component analysis to select relevant input energy variables in [34]. The

hybrid approaches resulted in better performance than regular ANN, where they

had the same accuracy level. In addition, the GA was employed to improve Adap-

tive Network-based Fuzzy Inference Systems using two building datasets of Great

building Energy Predictor Shootout and a library building in [36]. The optimization

population-based research found the better performance of hybrid predictive models

than regular ones. For the problem of time series, the ES was used to improve the

ANN training models and converges faster to optimal solution [37].

1.5.4 Multivariate Time Series Prediction Models

Hence, the recent development of load prediction using appliance consumption

data with the LSTM method is presented in [24]. The author concluded that by

adding power consumption measurements of major appliances, the performance is

improved since the residential electrical load is more related to residents’ behav-

iors. Therefore, it was claimed that the predictive model was improved when more

variables and parameters were added to an energy consumption dataset. In [38],

the authors used multivariable inputs including outside temperature and operating

parameters to predict the thermal load. The multivariable prediction model us-
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ing Support Vector Regression performed better than the single variable prediction

model. The multivariate regression (MR) was used for the prediction of residential

energy consumption in [39]. The kNN and DT were implemented for multivariable

time series (MTS) prediction in [40] and [41], respectively. In addition, Gated Re-

current Unit (GRU) model utilized with the MTS to predict missing data in [42]

and achieved the best performance compared with conventional prediction models.

1.5.5 Energy disaggregation and prediction models

Tremendous research has been carried out to advance energy management sys-

tems and solve the problem of energy disaggregation for buildings since the 1980s.

One of the initial studies was investigated by Hart in [43] using the event-based

method which classifies the change and difference of steady-state and transient

state consumptions. In this analysis, the author investigated household load ap-

pliances using edge detection of different consumption states. Moreover, in [44], the

authors utilized edge detection based on analyzing the variations in active and re-

active power. In general, the edge detection technique compares the variations and

detects the threshold of the on/off states at the observed voltage, current, active

power, reactive power, and power factor; the event is defined when the load exceeds

the predefined set time [45]. Another event-based analysis using harmonic pattern

recognition method, which provides extra information to the appliance load signa-

tures, was utilized for the NILM in a commercial building in [46]. In this analysis,

The authors applied their method using odd harmonic current patterns and phase

difference related to the fundamental voltage.

Nonevent-based methods learn the consumption events automatically without

the need to breakdown events in the consumption waveforms. These methods mostly

use temporal graphical models like Hidden Markov models (HMM) in [47]. In this

investigation, the authors used a factorial HMM technique for nonevent energy dis-
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aggregation, but this technique fails in local minima easily. In addition, the HMM

technique was utilized for multi-state appliances modeling in [48] and [49]. The

disadvantage of this approach for multi-state disaggregation is that fails with con-

tinuously varying loads, e.g., laptops [50].

The learning models of the energy disaggregation problem in the literature use

a combination of non-supervised and supervised techniques. The non-supervised

modeling, which does not require prior training with labeled data, was presented in

[51], [52] and [53], and it is a desirable learning method, but it is more difficult to

obtain results compared to supervised learning techniques. The supervised modeling

technique, which requires a ground truth of input and output data for each class

label in order to predict new unseen data, was presented in [54]. Therefore, it learns

from the aggregated data and the labels of individual appliances data. Furthermore,

it is used to assign the defined consumption sources to detected events and classify

them accordingly in order to predict the energy consumption of individual appliances

[54].

A variety of machine learning methods have been used to solve the classification

problem in the energy disaggregation. The classification method technique using

Support Vector Machine (SVM) was utilized in [55], [56], [57], and [58]. The clus-

tering and classification techniques of k- Nearest Neighbors (k-NN) method was used

quite frequently in [59], [60], [61], [62] and [63]. Moreover, Artificial neural networks

(ANN) was applied to the energy disaggregation in [64], [65], [66], [67], and [68].

Recently, DL methods have been utilized to enhance the energy disaggregation

in buildings. The classification technique of CNN method was utilized to identify

residential equipment in [69] and [70]. LSTM was applied to the NILM problem

using the recurrent neural network in order to supervise power disaggregation in

[54], [71], and [72]. The classification technique of GRU method was conducted on

energy disaggregation in [73].
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Constructive surveys, which have been carried out to investigate the state of the

art research of the energy disaggregation problem, can be found in [74], [75], and [76].

Although the literature is extensive, lacking is an effective method to disaggregate

residential loads when new types of distributed energy resources (DERs) such as

solar photovoltaic (PV) and electric vehicle are used.

1.6 Research Motivation and Main Contributions

The objective of this dissertation is to develop a robust and accurate prediction

model that can improve the uncertainties of load forecasting, energy consumption

prediction, and individual energy disaggregation at the distribution level. The fol-

lowing are the motivations and primary objective of each approach in this disserta-

tion.

Commonly, many hyper-parameters of the DL network, such as the number of

hidden layers, the number of hidden neurons, activation function, etc., are influential

factors in the energy prediction model. If the selected hyper-parameters of the

predictive DL model are unsuccessful, the model performs poorly and will lead to

local optimum results. In addition, the window size or time lags of the input variables

play another significant role in terms of finding optimum prediction value. Selecting

the right hyper-parameters and the optimized window size is an optimization process

that improves the accuracy of the prediction model. In [77], a literature review

shows that evolutionary computation concepts are used to improve ML algorithm

prediction, such as ANN and Fuzzy logic. Thus, there is a need to be employed

to the DL algorithms, such as for the LSTM since it has proven better prediction

performance in the literature. The motive of optimization predictive DL model using

GA, and the research objective is to find a global or near-global optimum prediction

error in the problem of building’s energy consumption prediction by searching in a

population base of the LSTM hyper-parameters and window size.
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In addition, most existing studies focused on predicting energy consumption

by using historical energy data, and a few included major appliances to improve

prediction performance. However, there are still questions regarding incorporating

all load-related building operational parameters into energy consumption prediction.

We attempt to solve the following questions. How should smart buildings be modeled

using operational parameters? How to modify and update the model continuously?

The primary motivation of this research is to create a new paradigm, that energy

consumption prediction can be modeled by a large number of building’s parameters

using hybrid DL method (LSTM-GRU), and thus provides the feasibility of precise

energy management.

Furthermore, there are still questions regarding hybridizing two significant DL

methods (CNN-GRU) to improve forecasting accuracies, using big data for training

the forecasting models and formulating the forecasting model for online prediction.

Also, there are still questions regarding different time resolutions of load forecast-

ing. In this research, we try to solve the following open questions. How should

a robust power consumption forecasting be modeled with hybrid DL methods for

STLF? How to modify and update the model continuously with parallel computa-

tion? Moreover, how accurate is the corresponding forecasting using big datasets

and different timescales resolutions such as (minutes, hours, days, weekdays, and

seasons)? The primary motivation of this research is to create a new paradigm, that

power consumption can be modeled by a parallel forecasting model, and using big

dataset for training, and thus provides the feasibility of real-time forecasting and

large-scale complex systems.

Still, a real challenge is that the available energy disaggregation cannot ade-

quately capture localized generation, which is an extremely pressing issue due to

the growing penetration of behind-the-meter energy resources. Moreover, electric

utilities have largely installed one smart meter for each customer to measure the net
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load, which masks the local generation. The primary motivation of this research

is to create an effective framework of energy disaggregation for a residential pro-

sumer that comprises different electrical loads. The proposed method employs the

data collected from the smart meter and trains a hybrid DL model (CNN-LSTM)

to classify and determine different electric loads and behind-the-meter generation.

This dissertation work contributed to the solution of accurate load predictions

(load forecasting and energy disaggregation) at the building level by using the DL

and AI technologies. The major contributions in this dissertation include:

1. A new optimization model using the GA-LSTM method that optimizes the

objective function by the time window lags and the network’s hidden neurons

to find the precision prediction.

2. A complex predictive model of a smart building that incorporates all opera-

tional parameters and uses hybrid DL to predict energy consumption in build-

ings.

3. A parallel computational framework for load forecasting in buildings using AI

technologies.

4. A new energy disaggregation paradigm in residential buildings that disaggre-

gates different electric loads and behind-the-meter loads.

5. Hybrid DL predictive models that utilize encoder and decoder for energy pre-

dictions in buildings.

1.7 Research Outline

This dissertation is organized as follows:

Chapter 2 investigates the prediction performance of non-recursive and recursive

ANNs models used for energy consumption forecasting in buildings. The prediction
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models use univariate historical energy datasets. Also, the chapter explores the

evolutionary DL method used for energy consumption prediction in buildings. The

predictive model uses univariate time series for training and testing, with the intent

to find optimal time window lags and network’s hidden neurons.

Chapter 3 investigates a complex system approach for energy consumption pre-

diction. The model hybridizes two DL methods to find an accurate prediction using

multivariate time series datasets for training and testing.

Chapter 4 studies the parallel computation of different buildings to improve load

forecasting accuracy. The approach is conducted on practical datasets of a couple

of buildings at the DU campus.

Chapter 5 investigates energy disaggregation of residential building and predicts

different electrical loads and behind-the-meter loads.

Finally, Chapter 6 concludes all research done for this dissertation and proposes

potential future research directions.
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Chapter 2

Energy Consumption

Forecasting in Buildings

2.1 Recursive and Non-Recursive ANNs in Energy Con-

sumption Forecasting in Buildings

This section investigates the accuracy with which the recursive ANNs algo-

rithms, LSTM and GRU forecasted energy consumption for individual consumers

under STLF and MTLF forecasting conditions. The study examined one-day ahead

prediction for STLF and one- month ahead for MTLF method. The experiments

were run using two historical load datasets of aggregated energy consumption for

residential and commercial buildings. The experiment was repeated using the non-

recursive algorithms, RBFN and MLP for comparison.

2.1.1 Problem Formulation

The presented approach of energy consumption prediction is to estimate the

energy consumption load using historical energy consumption data in individual
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buildings and building sectors for STLF and MTLF. Let m time steps be a sequence

of historical data and xi ∈ R, hence, the energy consumption vector is as follows:

X = {xi = (x0, x1, x2, ..., xm−1) : xi ∈ R} (2.1.1)

where xi is the historical energy consumption at a time i where i ∈ {1, 2, ...,m}.

The prediction vector using sliding window step is defined as:

Y = {yi = (ym, ym+1, ym+2, ..., ym+n−1) : yi ∈ R} (2.1.2)

where Y is the predicted energy consumption vector and n is the window size. The

prediction objective function is expressed as:

arg min
M∑
i=1

(xi − yi)2 ∀x ∈ X (2.1.3)

2.1.2 Datasets and Modeling Setup

Residential Building

The public dataset of a single residential building is named as individual house-

hold electric power consumption in [78]. The dataset consists of historical energy

consumption in kW from December 2006 to November 2010 with one-minute reso-

lution. The model in this research used only the active power consumption of the

household from the dataset. The total number of samples in the dataset is more

than 2 million time-steps. Fig. 2.1 (a) shows the variation of power consumption

with different seasons and days and Fig. 2.1 (b) shows a heat map illustration of

the averaged daily power consumption for one month. It is worth noting from the

heat map that the residential building has a large volatility of consumption for each

day during one month.
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Figure 2.1: The daily average power consumption of residential building.

Commercial Building

The energy dataset of a single commercial building, which is a primary or sec-

ondary school in Denver, Colorado, USA, is randomly chosen from a list of publicly

published commercial buildings datasets in [79] with the name 213.csv. The data

contains energy consumption values in kW/h of one year in 2012 with five minutes

resolution where the data size is 105408 time-steps. Fig. 2.2 (a) shows the line graph

of daily averaged energy consumption and Fig. 2.2 (b) shows the heat map of aver-

aged daily energy consumption for one month. From the heat map, the commercial

building has a consistent high consumption during the working hours. However, the

consumption is the lowest in the weekend days.
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Figure 2.2: The daily average energy consumption of commercial building.

Modeling Setup

The univariate time series datasets were normalized and split into training

and testing datasets for each model with 70% and 30%, respectively. The models

of STLF and MTLF case studies have been implemented in Python with Keras

package [80]. The two models were designed to predict one-time step for next day

energy consumption in the STLF method and for next month energy consumption in

the MTLF. The number of hidden neurons in each model for the non-recursive and

recursive ANN is 10 hidden neurons with one hidden layer. The activation function

was sigmoid for the MLP, LSTM and GRU, however the activation function was

radial basis function for the RBFN. The loss function was mean square error and

the number of epochs is 300.
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2.1.3 Prediction Results

The first case study, one-day ahead prediction was made using the non-recursive

ANN models and recursive ANN models applied to single residential and commercial

buildings datasets. The presented models were fed with one of the datasets, which

was split for training and testing, to evaluate the performance of the one-day ahead

prediction models. Tables 2.1 shows the results obtained fro different ANNs. The

results found from testing prediction for one-day ahead accuracies indicate slight

changes between different ANNs. The GRU showed the best performance in one-

day forecasting. This indicates the effectiveness of the recursive ANN forecasting

models in STLF. The prediction performance graphs for the GRU model for next day

prediction is shown in Fig. 2.3, where they illustrate one-day predictions of training

and testing processes with actual measurement of daily energy consumption in the

two single buildings. From Fig. 2.3 (a) and Fig. 2.3 (b), it can be seen that the

GRU follows the variation of the daily load in each dataset.

Table 2.1: The metrics evaluation for testing one-day ahead prediction in individual
buildings.

- Single Residential Building Single Commercial Building

Model RMSE (kW) CV (%) RMSE (kW/h) CV (%)

RBF 0.281 25.738 % 1.995 38.686%

MLP 0.277 25.354 % 1.895 36.618%

LSTM 0.266 24.327% 1.889 36.594%

GRU 0.247 24.308 % 1.885 36.587%

In the second case study, one-month ahead prediction was made using the non-

recursive ANN models and recursive ANN models applied to residential and com-

mercial buildings energy consumptions. The datasets were split for training and

testing with the testing dataset used to evaluate the performance of the one-month

looking ahead. Table 2.2 summarizes of the performances of the non-recursive and
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Figure 2.3: Graphs of one-day ahead energy consumption prediction for single build-
ings. a. Energy consumption prediction of single residential building. b. Energy
consumption prediction of single commercial building.

recursive ANN models. The results obtained from testing shows small variation in

the performances among different models. The GRU achieved the best prediction

accuracy in the residential building, however, the LSTM has the best performance

in the commercial building. This demonstrates that the recursive ANN models are

robust forecasting in the MTLF.
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Table 2.2: The metrics evaluation for testing one-month ahead prediction in indi-
vidual buildings.

- Single Residential Building Single Commercial Building

Model RMSE (kW) CV (%) RMSE (kW/h) CV (%)

RBF 0.179 16.417 % 1.877 36.410%

MLP 0.156 14.141 % 1.145 23.003%

LSTM 0.126 11.471 % 1.069 21.474%

GRU 0.126 11.468 % 1.082 21.503%

2.2 Evolutionary Deep Learning Based Energy Consump-

tion Prediction for Buildings

Commonly, many hyper-parameters of the DL network, such as the number of

hidden layers, the number of hidden neurons, activation function, etc., are influential

factors in the energy prediction model. If the selected hyper-parameters of the

predictive DL model are unsuccessful, the model performs poorly and will lead to

local optimum results. In addition, the predictive window size or time lags of the

input variables play another big role in terms of finding optimum prediction value.

Selecting the right hyper-parameters and the fine window size is an optimization

process that improves the accuracy of the prediction model. In [77], a literature

review shows that the evolutionary computation concepts are used to improve ML

algorithm prediction, such as ANN and Fuzzy logic. Thus, there is a need to be

employed to the DL algorithms, such as for the LSTM since it has proven better

prediction performance in the literature.

The modeling technique presented in this chapter is based on evolutionary DL

method which utilizes the GA optimization method to improve the accuracy pre-

diction levels of the LSTM method for the energy consumption in buildings. The

proposed approach is compared with the results of conventional predictive models

in the literature, e.g, ARIMA, Decision Tree, kNN, multilayer perceptron (MLP),
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which is a type of ANN with a potential of the deep neural network, and LSTM with

different deep architectures. The optimization investigation is modeled by searching

for the fine window size and the right number of hidden neurons. The GA-LSTM

model is trained and tested with two different building datasets for residential and

commercial buildings for very short-term prediction.

2.2.1 Problem Formulation

The energy consumption in a building is a time series problem that has a

sequence of observations at time-space as xi = {x1, x2, ...} where each observation

in xi ∈ R corresponding to a particular time step i. The predicted time series is

defined as yi ∈ R, which is the energy consumption prediction. The DL model is

trained and tested as a supervised learning problem for future time step predictions,

where a predictor function h predicts a next step energy consumption value yield as

yi+1. In general, the utilized sliding window method for multiple steps prediction

(τ) is defined as:

yi+τ = h(xi+τ , xi−1+τ , ...xi−w+τ ) (2.2.1)

where w is the window size. If the window size w = 1, the prediction function will

be yi+1 = h(xi).

The optimization technique used with objective function or the loss function is

expressed as:

arg min

√√√√ 1

m

m∑
i=1

(xi+τ − yi+τ )2 ∀y ∈ yi (2.2.2)

subject to. xi−w+τ ≤ xi−w+τ ≤ xi−w+τ , (2.2.3)
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where m represents the total number of data points in the time series, xi+τ and yi+τ

are the real and the predicted energy consumption of future steps, respectively, and

xi−w+τ and xi−w+τ are constraints of window size. The objective of the optimizer

is to minimize the energy consumption prediction error with a sliding window and

a number of hidden neurons in the DL network architecture. The solutions space

is defined as R for the minimization fitness function. The task of the optimization

problem is to find a solution x∗ ∈ R such that:

h∗ = h(x∗) ≤ h(x) ∀x ∈ xi (2.2.4)

where h∗ is a global optimum fitness and x∗ is the minimum location in the solutions

space.

2.2.2 Modeling Setup

The proposed model in this research is utilized to optimize the prediction error

of the LSTM as in Fig. 2.4. The hybrid model of the GA-LSTM is designed with

a couple of hidden layers and an optimizable number of hidden neurons besides an

optimizable window size. The optimization model schemes of GA-LSTM is shown

in Fig. 2.5. The first step of the model is preprocessing the input dataset through

normalization method as:

x′i =
xi −min
max−min

(2.2.5)

where xi is the original value of the input dataset, x′i is the normalized value scaled

to the range [0, 1], max is the maximum value of the features, and min is the mini-

mum value of the features. Normalizing the dataset features avoids the problem of

dominating the large number ranges and helps the algorithm to perform accurately.
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The second step is to select the appropriate time lags or window size of the

dataset observations and convert the data to a supervised learning form. Then,

splitting the data into two main datasets of a training dataset and a testing dataset

with the first 70% of the dataset and the last 30% of the dataset, respectively. To

evaluate the performance of our proposed model properly, the training data is only

utilized separately for the training process in the LSTM and the testing data is used

for evaluating the predictive model. For instance, we utilized the first 33 months of

residential building data with the one-minute resolution for training the proposed

model and 14 months of data for the testing process. Similarly, we used 73785

time-steps of commercial building data for training and the rest is used for testing.

The fourth step is training the model with an initial window size and a number

of hidden neurons in the first hidden layer. Then, testing the model by testing set

with the selected window size and the number of hidden neurons is performed to

calculate the prediction accuracy of the loss function using mean squared error, and

the optimizer is stochastic gradient descent (SGD). The total number of epochs of

all learning models is 300 epochs when one epoch is a complete pass through the

training dataset. An illustration of the LSTM hyper-parameters hybrid with GA

are demonstrated in Table 2.3. The window size, and the number of hidden neurons

are used to construct a fitness function as in equation (2). The ending condition

must be satisfied when the operation ends, otherwise, it will proceed and find a

better solution in the next generation. When the condition is satisfied in the first

LSTM model with one hidden layer, the model may need to be improved by adding

a second hidden layer to the next LSTM model. The best window size and the

number of hidden neurons in the first LSTM with one hidden layer will be held and

added to the second LSTM model with two hidden layers. The GA process is done

in the second LSTM model by only optimizing the number of hidden neurons in the

second hidden layer at the second LSTM model.
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The evolution base operation, e.g., GA as in Fig. 2.5, is a system to search for

better solutions by using evolutionary concepts, including crossover, mutation and

selection. Generating new chromosomes of window size and number hidden layers

by integrating new behavior of the model to strengthen searching dynamics and

improve the prediction accuracy. One of the important features of chromosomes in

the GA is genotyping which is the binary coding of the features, and the phenotype

refers to decoding parameters to variable values in order to be fed back to the model.

The chosen parameters in our experiment, e.g., crossover probability Pcx, mutation

probability PM , number of generations M , size of population in each generation N ,

and the length of the chromosome l are represented in Table 2.4.

Fitness calculation 

Optimal Prediction

Optimization of 
LSTM by GA

Energy consumption 
estimation by LSTM

Stop? 

Figure 2.4: The evolutionary DL algorithm scheme.

Table 2.3: The LSTM model hyper-parameters.

Hyper-parameter Selection

Number of hidden layers (Nl) 1-3

Number of hidden neurons in each layer (Nnp) Optimizable with GA

Window size (Nt) Optimizable with GA

Optimizer (opt) SGD

Loss function Mean squared error

Number of epochs (Nep) 300
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Yes Yes Yes

Can the 
model be 

improved?

Keep the selected window size and number of 
neurons for the current LSTM networks

Yes

No

Figure 2.5: The GA-LSTM optimization architecture with three hidden layers.

Table 2.4: The GA model parameters.

Parameter Selection

Crossover probability (Pcx) 0.7

Mutation probability (PM ) 0.015

Selection Tournament selection

Population Size (N) 20

Number of Generations (M) 20

Fitness Function Root mean square error

2.2.3 Prediction Results

Finding the optimal or near optimal number of time lags and the number of

hidden neurons in each layer in the LSTM network is a non-deterministic polyno-

mial (NP) problem which is not easy to solve. The GA algorithm is a promising

metaheuristic method which tends to solve such NP problems for good optimal so-

lutions sometimes near to global optimum as found in these studies for time series

lags [81] and [82]. Therefore, the number of time lags and the number of neurons
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are a potent combination of dependencies that affect the prediction process such

as model overfitting problem and computation complexity. The selected range of

window size or time lags in this experiment is (1-64) time lags and the range of

number of hidden neurons in each layer is (1-1024) neurons. The results found in

this section are solutions to the NP problem in each LSTM model.

Predicting Residential Building Power Consumption

Table 2.5 illustrates how the performance of the proposed GA-LSTM model

compares with those conventional prediction models for the first case study in res-

idential building power consumption. In the table, there are different architectures

of regular DL models e.g., MLP-1 with one hidden layer and MLP-2 with two hid-

den layers. The obtained results show that the proposed model outperformed other

models in metrics evaluations. From the table, we find that the two models MLP

and LSTM performed in a similar way to the opposite of the proposed method,

which overtook them significantly. It is noted that the prediction accuracies get

worse when the networks get deeper because of the dependencies of the of the net-

work hyper-parameters. In addition, the statistical model ARIMA and the kNN

produced the worst prediction errors in comparison with other learning methods,

however, the Decision Tree regression performed better than other conventional

models and obtained prediction error close to the DL models. The conventional

hybrid model GA-ANN performed better than all conventional methods and tra-

ditional DL methods for predicting residential energy consumption, however, the

proposed approach outperformed the conventional hybrid model.

Table 2.6 shows the optimal parameters of GA-LSTM-1, GA-LSTM-2 and GA-

LSTM-3 and the percentage of reduction in comparison with the LSTM models.

We can see the window size is the same for all hidden layers because it is used as

an input for the next hidden layer. It is worth noticing that the best percentage
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of reduction with the regular LSTM-1 model is 17.319 % in terms of RMSE value.

In addition, the deeper networks performed good percentages of reduction in terms

RMSE values.

Table 2.7 shows the 10-k fold results of the proposed model GA-LSTM-1 that

achieved the best prediction from Table 2.5. The prediction error results in each

fold are different because the training dataset (Dtr) size and testing dataset (Dts)

size are shuffled during the process of cross-validation and the final prediction error

is averaged over the 10 folds. This validation process of the model increases the

confidence of the prediction efficiency because the tested data is different and unseen

during the training operation.

Table 2.5: The comparison with conventional methods over one minute resolution
for the residential building.

Method RMSE (kW) CV (%) MAE (kW)

ARIMA 0.264 24.170 0.095

Decision Tree 0.233 21.321 0.085

kNN 0.258 23.672 0.111

GA-ANN 0.223 20.158 0.072

MLP-1 0.232 20.934 0.083

MLP-2 0.231 20.844 0.081

MLP-3 0.231 20.844 0.079

LSTM-1 0.235 21.205 0.084

LSTM-2 0.233 21.025 0.084

LSTM-3 0.238 21.476 0.086

GA-LSTM-1 0.1943 17.526 0.062

GA-LSTM-2 0.217 19.581 0.071

GA-LSTM-3 0.225 20.303 0.074

Fig. 2.6 shows a prediction comparison of the residential active power con-

sumption for very short term prediction. The comparison is made for all prediction

models given in Table 2.5. From the graph, we can note that the proposed model
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Table 2.6: The best parameters GA-LSTM models for the residential building and
the percentage of reduction with benchmark LSTM.

Proposed Method Benchmark RMSE % of reduction

Nl Nnp Nt - Percentage (%)

1 139 23 LSTM-1 17.319

2 139 & 43 23 LSTM-2 6.866

3 139 & 43 & 64 23 LSTM-3 5.462

Table 2.7: The 10-fold cross-validation results of GA-LSTM-1 for the first case study.

Fold No. Dtr Dts RMSE CV (%) MAE

1 188668 188659 0.221 20.238 0.082

2 377327 188659 0.237 21.703 0.085

3 565986 188659 0.220 20.146 0.082

4 754645 188659 0.212 19.413 0.071

5 943304 188659 0.219 20.054 0.073

6 1131963 188659 0.213 19.505 0.071

7 1320622 188659 0.203 18.589 0.069

8 1509281 188659 0.212 19.413 0.071

9 1697940 188659 0.202 18.498 0.069

10 1886599 188659 0.197 18.936 0.066

Mean - - 0.213 19.560 0.074

SD - - 0.012 1.057 0.007

is superior to the other two DL models benchmarked in this study i.e., MLP and

LSTM. The GA-LSTM-1 was the best prediction line graph followed the original

data line graph. It is worth noting that the GA-ANN is a skillful model that follows

the proposed approach. We can see that the GA-LSTM outperform the models used

to predict consumed energy.
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Figure 2.6: Prediction comparison between the proposed model with different con-
ventional prediction models for very short term prediction.

Predicting Commercial Building Energy Consumption

The second case study is predicting commercial building energy consumption as

in Table 2.8 which shows how the effectiveness of the proposed GA-LSTM model in

comparison with those conventional prediction models. The results from the table

show that the proposed method outperformed other methods in prediction accura-

cies, however, both MLP and LSTM results are close to each other. It is noticeable

that the prediction accuracies failed with the deeper network in the conventional

methods due to dependencies of the network hyper-parameters. As noted from the

first case study and the second case study, the statistical model ARIMA and the

kNN were the worst prediction errors in comparison with other learning methods

and the Decision Tree regression obtained prediction error close to the DL models.

Similarly, the conventional hybrid model GA-ANN obtained better predictions than

conventional models and DL models for predicting commercial energy consumption,

however, the proposed approach is a superior model to all compared methods.

The optimal parameters of GA-LSTM are given in Table 2.9 where the window

size is fixed for all hidden layers because it is used as an input to the next hidden layer

in the proposed method. From the table, the percentage of reduction comparison is

illustrated and the best percentage is 10.669 % in comparison with LSTM-1. The
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other two deeper networks performed close to each other in their percentages of

reduction.

The 10-k fold results of the best prediction GA-LSTM-1 from Table 2.8 are shown

in Table 2.10. From the table, the shuffle operation of the 10-fold cross-validation

produced different prediction errors due to the different size of training and testing

in each fold. when the tested data is different in each fold and unseen during the

training process, the validation technique promotes the certainty of the prediction

efficiency of the proposed model.

Table 2.8: The comparison with conventional methods over five minutes resolution
for the commercial building.

Method RMSE (kW/h) CV (%) MAE (kW/h)

ARIMA 0.539 10.462 0.297

Decision Tree 0.482 9.353 0.273

kNN 0.544 10.561 0.326

GA-ANN 0.469 9.145 0.268

MLP-1 0.495 9.615 0.305

MLP-2 0.490 9.507 0.295

MLP-3 0.478 9.271 0.271

LSTM-1 0.478 9.283 0.276

LSTM-2 0.486 9.430 0.286

LSTM-3 0.480 9.312 0.276

GA-LSTM-1 0.427 8.303 0.238

GA-LSTM-2 0.451 8.755 0.256

GA-LSTM-3 0.449 8.716 0.263

The prediction performance in Fig. 2.7 shows a comparison between the pro-

posed GA-LSTM and conventional methods of the commercial building for each

prediction model. It is noticed from the graph that the proposed model performed

better than the other models in this study and followed the original dataset for very
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Table 2.9: The best parameters of GA-LSTM models for the commercial building
and the percentage of reduction with benchmark LSTM.

Proposed Method Benchmark RMSE % of reduction

Nl Nnp Nt - Percentage (%)

1 459 42 LSTM-1 10.669

2 459 & 187 23 LSTM-2 7.201

3 459 & 187 & 82 23 LSTM-3 6.458

short term prediction. The proposed GA-LSTM proofed its strength over the other

compared methods.
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Figure 2.7: Prediction comparison between the proposed model with different con-
ventional prediction models for very short term prediction.

Optimization Results Discussions

Hybridizing LSTM with GA produced more accurate prediction as seen from

the tables and figures above. As the NP problem, it was not easy to find the best

window size and number of hidden neurons in each layer because of the suitable

combination of these parameters in each layer is a huge probabilistic task.

Fig. 2.8 (a) and (b) shows scatter plots of the best or survive offsprings in

each generation at GA optimization problem of residential energy prediction, and

comparisons between the number of hidden neurons and window size versus the

CV score in percent. Fig. 2.8 (a) illustrates the performance of the GA-LSTM
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Table 2.10: The 10-fold cross-validation results of GA-LSTM-1 for the second case
study.

Fold No. Dtr Dts RMSE CV (%) MAE

1 9586 9582 0.199 3.859 0.147

2 19168 9582 0.194 3.765 0.111

3 28750 9582 0.384 7.456 0.217

4 38332 9582 0.460 8.940 0.251

5 47914 9582 0.401 7.785 0.251

6 57496 9582 0.647 12.570 0.373

7 67078 9582 0.763 14.806 0.431

8 76660 9582 0.617 11.985 0.354

9 86242 9582 0.357 6.935 0.221

10 95824 9582 0.291 5.653 0.198

Mean - - 0.43 8.38 0.26

SD - - 0.18 3.53 0.10

model while searching the best individual of hidden neurons which is 139 with

17.5% prediction accuracy. It is noticeable from the figure that the model converged

with the number of neurons more than 100 and less than 150 neurons, however,

the larger number failed to produce precise predictions. Similarly, Fig. 2.8 (b)

presents the searching process of the proposed model to find best window size which

is 23-time lags. From the figure, we can see that between 20 to 40 time lags the

model performed the best results in comparison with smaller and larger time lags.

Therefore, the GA-LSTM model converged to optimum results in the range of (100-

150) neurons and the window size in the range of (20-40) time lags.

The scatter plots of the second case study in the commercial building are given

in Fig. 2.9 (a) and (b). The scatter plot of the number of neurons versus the CV

in Fig 2.9 (a) has a wider distribution than previous scatter plot of neurons in the

residential building. There are a couple of local optimum individuals in the figure

where the best offspring was 459 neurons with 8.3% prediction. Fig. 2.9 (b) shows
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(a) Number of hidden neurons vs
CV(%).

(b) Window size or time lags vs
CV(%).

Figure 2.8: Scatter plots of window size and number of hidden neurons individuals
in the GA optimization process for the residential energy prediction model.

the convergence results between 40 and 50-time lags where the smaller time lags

are the worst prediction accuracy in the experiment. The best individual is 42 with

CV 8.3%. Thus, the proposed model GA-LSTM led to optimum parameters of the

number of hidden neurons and the window size in the commercial energy prediction.
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(a) Number of hidden neurons vs
CV(%).

(b) Window size or time lags vs
CV(%).

Figure 2.9: Scatter plots of GA-LSTM optimization process for the commercial
energy prediction model.
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Chapter 3

A Complex System Approach

for Smart Building Energy

Consumption Prediction

3.1 Introduction

In modern buildings, advanced technology systems, such as building automation

system, have been utilized to monitor real-time operations and enhance a tremen-

dous amount of operational data to the building operators. However, there is a lack

of integrated methods to handle that high operational information where the conven-

tional methods with current building data analysis are neither effective nor efficient

in predicting useful information from the massive data. Generally, it is challenging

to predict building energy consumption precisely due to many influential factors

correlated to energy consuming. Environmental parameters have high impacts on

a building’s electrical load, e.g., outdoor temperature, humidity, the day of the

week, special events, etc.. Although environmental parameters are useful resources

for energy consumption prediction, prediction using a large number of building’s
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operational parameters, such as room temperature, major appliances and heating,

ventilation, and air-conditioning (HVAC) system parameters, is a quite complicated

problem, compared with prediction using only historical data. This huge challenge

requires the building field to tackle the energy consumption prediction using the

operational parameters.

The accurate prediction of energy usage at a specific time under many outside

and inside conditions becomes the essential step. Still, with the aging and inappro-

priate use of the HVAC system and lighting system, the actual energy usage becomes

unpredictable and infeasible for most of the existing energy estimation methodolo-

gies. Likewise, even if there are two buildings with the same building structure, the

same HVAC and lighting system and the same environmental situation, the total

energy consumption could be different from the two buildings. However, with the

emerging of ACP theory, which consists of artificial societies, computational experi-

ments, and parallel execution, gives us the practical architecture to solve the above

problem. Combined with ACP theory, we can collect buildings’ operational param-

eters using data acquisition and continuously train and update energy consumption

prediction model using DL methodologies. Utilizing the ACP theory for energy con-

sumption prediction ensures that the model is up to date with the current system

condition and can predict precisely.

To ensure energy efficiency in a complex system such as buildings, planning and

implementing precision energy consumption model and control measures are vital

tools. Setting the optimal control measure requires associating all operational vari-

ables to energy consumption. Modeling an interactive, predictive model coupled

with ACP concept provides a feasible solution of analysis and accurate prediction

for precision energy consumption and control. ACP framework consists of three sys-

tems: (1) the physical system, which comprises the HVAC system, lighting system,

and sensors, etc.; (2) the artificial system, which includes the data preprocessing
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and energy prediction model; (3) and communication system between physical and

artificial system form the complex system. We implement the theory and framework

to design the complex system and transfer the separated system into a correlated

system, which can be executed by building managers to predict energy consumption

of the specific building precisely under various control strategies and settings.

The primary objective of this research is to present a new approach to model a

smart building’s energy consumption using operational parameters. These param-

eters are MTS that include operational parameters and outside environment and

used to model energy consumption by applying DL methods. Combined with ACP

theory, this will provide new opportunities for analyzing building energy consump-

tion, energy efficiency, and precision building control. The outcome of this research

is an MTS predictive method embedded in ACP framework that can be applied to

many other smart environment problems such as smart offices, smart homes, etc..

The modeling techniques presented in this chapter are based on hybrid DL al-

gorithms. This chapter investigates the hybridization of the LSTM algorithm and

the GRU algorithm using MTS inputs for supervised learning prediction. This

case study seeks to predict the energy consumption in Daniel’s College of Business

(DCB) building at the University of Denver. To validate the proposed method, this

investigation uses a real dataset from the DCB building that includes numerous envi-

ronmental and operational parameters such as load profiles, outdoor temperatures,

classrooms temperatures, and HVAC system parameters, etc., with a five-minute

sampling interval. The model is designed for short-term load prediction which is

a one-step-ahead prediction. The obtained results are compared with conventional

prediction models by using traditional evaluation metrics.
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3.2 Problem Formulation

The problem of predicting energy consumption using operational variables is

an MTS processing problem. The MTS analysis technique is used for modeling and

resolving important parameters sets. In this research, we solve the MTS challenge

by implementing a hybrid DL approach combined with ACP theory to solve complex

systems. Fig. 3.1 shows the technical scheme of the ACP theory.
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Figure 3.1: The ACP approach.

According to the ACP approach, to train the preliminary model for a complex

system such as a smart building, the first step is that the sensors in the smart

building will collect MTS variables and store enough data from the physical system

as in Fig. 3.1, which is the energy system of the DCB building in this research. The

stored information may include various types of data such as energy usage, humidity,

temperature, weather conditions, room temperatures, and HVAC parameters, etc.

Then, the collected data will serve as an input and training data in the artificial

system. Once the model in the artificial system stage is trained, the model can

predict energy usage under different control strategies and environmental factors.

Therefore, building managers can refer to the trained artificial model to envision

their future strategies. In addition, the artificial model may enhance the building’s

management to develop more efficient controlling strategies. The ACP approach
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ensures that the model in the artificial system is inspected and evaluated by the

current data in the energy system. If an inaccurate prediction is detected, the

ACP approach will retrain the model with a new dataset which has the status of

variables and update the previous model. This mechanism guarantees that the

artificial system is always up to date corresponding to the physical system.

Coupling the physical system with the artificial system provides a feasible means

of parallel computations and intelligent systems. The physical system collects the

operational variables of the building. Hence, the MTS vector collected from M -

dimensional operational parameters and sensors can be defined as:

X = {xi,m = (xi,1, xi,2, . . . , xi,M ) : i ∈ {1, 2, ..., N}} (3.2.1)

where xi,m ∈ RM denotes the multivariable observations at a particular time step,

e.g., xn,m is the value of the mth variable at time step n. The operational parameters

observations will be transferred to the artificial system through the communication

system. The artificial system consists of two major parts: data preprocessing and

hybrid DL predictive model. The first step of the data preprocessing is normalizing

the dataset features to eliminate the large deviation of instances, map the data

vector X to a small ranges vector X ′, and help the learning algorithm to perform

accurately. The value scale of the normalized input data is in the range [0, 1] and

can be defined as follows:

X ′ =
X −Xmin

Xmax −Xmin
(3.2.2)

where X is the MTS vector in the original values of the input dataset, X ′ is the

normalized value scaled vector, Xmax and Xmin indicate the maximum value and

minimum value of the features in X, respectively. The second step of the data

preprocessing is preparing the dataset to supervised learning using a lag or sliding
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window method. The proposed hybrid DL model is trained and tested on supervised

learning for the predictive model, and the prediction function is described as:

y′i+1 = h(x′i,m, x
′
i−1,m, . . . , x

′
i−w+1,m) (3.2.3)

where y′ is the normalized energy consumption prediction value, h is the predictor

function of the supervised learning, and w is the window size. In our experiment,

the window size is one; therefore, the prediction function for the next step ahead is

defined as:

y′i+1 = h(x′i,m) (3.2.4)

The third step of the data preprocessing is splitting the MTS operational parameters

into training and testing sets. Let the training set be Xtr and the testing set be Xts

where tr ∈ {1, 2, . . . , p} and ts ∈ {p + 1, p + 2 . . . ,m}. To evaluate the predictive

model properly, the training set is 70% of the total collected time observations m

and the testing set is the last 30% of the observations.

The second part of the artificial system is our proposed predictive model which

consists of encoder and decoder. The encoder is the LSTM model which is modeled

to learn across sequential input datasets and extract the features. The decoder

is the GRU model which learns from sequentially extracted features and predicts

the output. When the predictive model trained all the training dataset Xtr, the

testing dataset Xts will be fed to the predictive model for prediction and testing

the predictive model. The prediction accuracies are evaluated with a conventional

evaluation metric. The technical details of our proposed hybrid DL method are

presented in Section IV. The objective function of the proposed predictive model is

expressed as:

arg min
x,y

1

N

N∑
i=1

(xi − yi)2 ∀x ∈ X, ∀y ∈ Y (3.2.5)
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where xi is the actual energy consumption, yi is the predicted energy consumption,

and N is the total number of observations.

3.3 Datasets and Modeling Setup

3.3.1 Smart Building Data Description

The DCB building at the University of Denver was employed in this case study.

The DCB is a six-story building with a total floor area of 110,536 square feet. All

six floors of the building were instrumented with various sensors devices and data

loggers. Different types of data were collected from the building: energy consump-

tion, outdoor temperature conditions, indoor temperature data for each classroom

or meeting room, and HVAC system parameters. The HVAC system in the DCB

building consists of two air handling units (AHU), a chilled water system (CWS), a

glycol fan coil system (GFCS), a hot water system (HWS) and a snowmelt system

(SMS). The AHU systems include supply air temperature, return air temperature,

and mixed air temperature. The CWS includes chilled water supply temperature

and chilled water return temperature. The GFCS includes glycol water supply tem-

perature and glycol water return temperature. The HWS includes hot water supply

temperature and hot water return temperature. The SMS includes snowmelt sup-

ply temperature and snowmelt return temperature. Table 3.1 shows the types and

number of operational variables collected from the DCB building. The total num-

ber of parameters used for energy prediction is 147, and they were collected with

a five-minute interval for nine months. The MTS collected data is from February

2018 to October 2018. The data collected includes four different seasons (Winter,

Spring, Summer, and Fall). Fig. 3.2 is the box plot that shows an example of eight

operational parameters. The figure demonstrates the variation of the operational

parameters in the building during the collected dataset. Fig. 3.3 shows the aggre-
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gate power consumption collected with five minutes resolution in the DCB for nine

months.
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Figure 3.2: An example eight operational parameters in the DCB building.
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Figure 3.3: The aggregated power consumption of the DCB building.

3.3.2 Hybrid DL approach

Fig. 3.4 shows the technical scheme of the proposed hybrid DL approach which

is part of the artificial system in the ACP scheme. The collected data from the DCB

will be transferred to the artificial system which consists of the data preprocessing

and the predictive model. There are three main steps in the preprocessing segment

where the first depends on normalizing the original dataset, the second is preparing
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Table 3.1: The type and number of the collected operational variables in the DCB
building.

Type Number Unit

Outdoor temperature (OT) 1 oF

Classrooms temperature (CT) 125 oF

Chilled Water System (CWS) 5 oF

Air Handling Unit (AHU) 1 4 oF

Air Handling Unit (AHU) 2 4 oF

Glycol Fan Coil System (GFCS) 2 oF

Hot Water System (HWS) 3 oF

Snowmelt System (SMS) 2 oF

Aggregated power consumption 1 kW

Total number of the MTS operational variables 147 -

the input data to supervised learning form, and the third is splitting the normalized

supervised dataset into two parts, the training set, and the testing set. To evaluate

the performance of the proposed predictive model in the ACP theory properly, the

testing set examines the trained model independently.

The predictive model is based on a coder and decoder which are the LSTM model

and GRU model, respectively. The input features to the LSTM-GRU model are

the record of operational parameters in the DCB building after the preprocessing

analysis, and the output is the power consumption prediction for the step ahead

which is the next 5 minutes in our experiment. It is unlike traditional LSTM or

GRU models by hybridizing these two methods to improve the learning process. The

first half is LSTM, which is utilized to extract the input features and encode them,

and the second half is the GRU, which is used to analyze the extracted features

from the LSTM and decodes them for energy consumption prediction. The process

of feature extraction in the LSTM can sequentially capture the dynamics of the

MTS dataset and determine complex time series events. The approach includes two
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layers of the LSTM to improve extracting the input features, and two layers of the

GRU to analyze the collected extracted features and predict the output as shown

in Fig. 3.4.
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Figure 3.4: Hybrid DL predictive model scheme.

Commonly, the training process is applied with the BP algorithm to calculate

the loss function and the gradient weights. The activation function used in our

model is Rectified Linear Unit (ReLU) which is known as a ramp function and is

widely applied for DL models in [30] [83] as:

ReLU(x) = max(0, x) (3.3.1)

where x is the input to a neuron. The total number of training epochs, which is

a full pass of training through all the training dataset, is 300 epochs. The applied

optimizer function is stochastic gradient descent, and the applied loss function is

the mean square error.

3.4 Prediction Results

In this section, we utilized different evaluation criteria that exhibit the superi-

ority of our proposed model. To test the performance comprehensively, the training
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data is set to seven months from February to August, and the testing data is two

months from September to October. If the performance is not good enough, the

system will retrain the hybrid DL model for the aforementioned ACP scheme. The

first criterion discusses the enhancement of utilizing all MTS operational parame-

ters to improve the energy consumption prediction in comparison with using only

some of the operational parameters for training and testing. The second criterion

is to compare our proposed predictive model with conventional prediction methods

including MR, kNN, DT, MLP, LSTM, and GRU. The third criterion, we explore

the advantage of the hybrid DL combined with the ACP theory compared with only

hybrid DL prediction.

3.4.1 Different Operational Parameters

Considering different control operations for short-term use and high consump-

tion, the system is modeled to predict energy consumption incorporating all opera-

tional parameters. To examine the enhancement of the use of operational parameters

to our proposed predictive model, we compared the proposed model using all MTS

parameters and using some of the operational parameters. This study, which con-

ducts 5-minute-ahead prediction, explores the improvement of energy consumption

prediction in the DCB using different types of operational parameters. According

to the results in Table 3.2, the prediction performance enhanced with incorporating

all MTS parameters. All MTS parameters have the best performance, and the AHU

has the largest prediction errors. The HWS and CWS prediction have better perfor-

mance than the AHU that has only four parameters. The results demonstrate that

increasing the number of operational parameters enhances the prediction accuracy

of the proposed model.

As shown in Fig. 3.5, the energy consumption prediction results of the MST

parameters are shown in orange curves with triangles, and the original data is shown
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Table 3.2: Performance of Different MTS Operational Parameters

Parameters RMSE (kW) CV (%) MAE (kW) MAPE (%)

AHU 7.565 4.700 5.690 3.876

CWS & HWS 7.515 4.669 5.616 3.763

All MTS 7.126 4.427 5.298 3.619

in blue curves. It is worth noting that the prediction for all MTS parameters is

almost consistent with the original data and follow the original curves. The figure

indicates the effectiveness of the proposed prediction approach.
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Figure 3.5: The prediction results of the compared prediction methods.

3.4.2 Compared with Conventional Prediction Methods

In [24] - [42], MR, kNN, DT, MLP, LSTM and GRU based multivariate and

univariate predictions are presented. These methods were utilized in this research

for comparison between the conventional models and the proposed model. The per-

formances of the conducted 5-minutes-ahead predictions are shown in Table 3.3.

According to the results in the table, the proposed approach has the best perfor-

mance, and the DT has the largest prediction error. The traditional implementation

of the GRU performed better than the traditional implementation of the LSTM. The

results demonstrate the effectiveness of the proposed approach.
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Table 3.3: Performance of different conventional prediction methods

Method RMSE (kW) CV (%) MAE (kW) MAPE (%)

MR 6.845 9.138 5.086 3.574

kNN 12.244 16.346 9.322 6.441

DT 12.603 16.825 8.904 6.266

MLP 9.971 6.195 7.825 5.154

LSTM 8.701 5.406 6.674 4.835

GRU 7.638 4.745 5.789 4.118

Proposed 7.126 4.427 5.298 3.619

Fig. 3.6 shows the energy consumption prediction of the proposed approach

compared with different conventional methods. The proposed model has the best

performance and follows the original curves of the energy consumption data. The

figure indicates that the proposed approach is efficient and robust for energy con-

sumption prediction.
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Figure 3.6: The prediction results of the compared prediction methods.

3.4.3 Hybrid DL Combined with the ACP Theory

The effectiveness of the strategy proposed in this research has been confirmed

on combing the hybrid DL predictive model with the ACP using all operational pa-

rameters. The use of the real dataset allows us to compare the proposed approach
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with using only hybrid DL predictive model for training and testing. The reasoning

behind the use of the ACP concept is that for hybrid DL predictive model, it can

update and retrain the model if the collected data is corrupted while collecting the

dataset and the prediction is inaccurate. Therefore, we compared the prediction

performances of the proposed approach and the only hybrid DL model using all

MTS parameters. The models were conducted for one month of training in Febru-

ary and tested for the last eight days in the month. The proposed approach was

trained with the original values, and the only hybrid DL model was trained with

the original values except for one day of corrupted data in the tenth of the month.

According to the results in Table 3.4, the proposed approach outperformed the only

hybrid DL model. The results demonstrate that the proposed approach has accu-

rate and robust prediction performance. Fig. 3.7 shows the prediction performance

of the proposed approach and hybrid DL model only. The results indicate that the

proposed approach is a skillful predictive framework.
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Figure 3.7: The prediction results of the hybrid DL combined with ACP and hybrid
DL only.
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Table 3.4: Performance of The ACP with hybrid DL and hybrid DL only

Parameters RMSE (kW) CV (%) MAE (kW) MAPE (%)

Hybrid DL only 10.980 6.329 8.852 4.880

Proposed 10.344 5.581 7.925 4.797
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Chapter 4

Parallel Power Consumption

Forecasting for Buildings Based

on Hybrid Deep Learning and

Big Data

4.1 Introduction

Enhancing the STLF model with the Artificial intelligence (AI) to predict the

power consumption provides real-time monitoring of power consumption, an accu-

rate forecast, and a precision decision making when training big data and parallel

buildings. Since most of the existing research of the STLF use small historical

datasets of the electric consumption load and small computational capabilities, the

forecasting accuracies need some improvements using bigger datasets and large com-

putational frameworks. As a promising solution, the emerge of artificial societies,

computational experiments, and parallel executions (ACP) theory [84], gives us the

functional architecture to solve the above problem with problem modeling through
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the artificial societies, analyzing through computational experiments, and control-

ling through parallel executions [84]. Combining the forecasting model with ACP

theory, we can implement a parallel predictive model to continuously train and up-

date the energy prediction model and ensure that the model is up to date with the

current system condition and can forecast precisely.

The research problem in this work is summed up with the use of recent DL

methods and hybridize them to forecast the power consumption for the STLF. To be

more specific, mixing two successful DL methods can produce a precision forecasting

that is close to the original value. Thus, applying the hybridized DL methods to the

power consumption problem can contribute to the improvement of power efficiency

and grid reliability with obtained precision forecasting. Moreover, emerging the

hybrid forecasting model with ACP concept can provide the primary paradigm for

parallel big data forecasting. Consequently, the proposed framework can help utility

providers and building managers to enhance their power consumption performances.

To the best of the authors’ knowledge, the previous conventional studies of

load forecasting focused on predicting energy consumption by using small histor-

ical datasets and applying offline training and testing without updating the models

with the current states. However, there are still questions regarding hybridizing two

significant DL methods to improve forecasting accuracies, using big data for training

the forecasting models and formulating the forecasting model for online prediction.

In this research, we try to solve the following open questions. How should a robust

power consumption forecasting be modeled with hybrid DL methods for STLF? How

to modify and update the model continuously with parallel computation? And how

accurate is the corresponding forecasting using big datasets and different timescales

resolutions such as (minutes, hours, days, weekdays, and seasons)?

The main motivation of this research is to create a new paradigm, that power

consumption can be modeled by a parallel forecasting model, and using big dataset,
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and thus provides the feasibility of real-time forecasting and large-scale complex

systems. And the primary objective is to present a new modeling approach to power

consumption forecasting by hybridizing CNN and GRU methods coupled with ACP.

This framework will provide new opportunities for analyzing power consumption,

energy efficiency, and precision energy control. The outcome of this research can be

applied to many other complex system problems such as smart offices, smart homes,

smart campuses etc. Our major contributions include:

1. A hybridization technique to improve the performance of the DL forecasting

model.

2. A new paradigm of online forecasting model using ACP concept and paral-

lelizing computation.

3. Understanding forecasting factors that are correlated to the power consump-

tion by investigating big data.

The modeling techniques presented in this research are based ACP theory for

parallel computing and results updating and CNN-GRU for model forecasting in dif-

ferent timescales (5-minute ahead, 30-minute-ahead, 1-hour-ahead, 12-hour-ahead,

1-day-ahead, and 3-day-ahead). Moreover, the study investigates the forecasting

accuracies for seasonality and events forecasting in comparison with the big cumu-

lative dataset for training. This case study seeks to predict the power consumption

in five buildings at the University of Denver. The proposed model is compared with

conventional forecasting models. The performance of the models is evaluated with

normalized root mean square error.
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4.2 Problem Formulation

In this research, the presented approach of power consumption forecasting is

to estimate the power consumption load using historical power consumption data

for STLF. The proposed forecasting framework is coupled with ACP concept for

parallelizing computation and real-time estimation. The ACP is connected with the

artificial system of the forecasting model as in Fig. 3.1.

The physical system in the ACP concept is the energy system in our problem,

where smart meters collect power consumption data and store them. These collected

data will serve as an input to the artificial system, which is the hybrid forecasting

model, for the training process. Once the artificial system is trained, the model can

forecast power consumption in different timescales and events. The participants can

refer to the trained artificial system for future control strategies. The ACP approach

ensures that the model in the artificial system is updated with the current data. For

instance, if the artificial system forecasts inaccurately, the ACP approach will start

over to retrain the model with the updated dataset. This mechanism provides an

up to date corresponding data to the physical system.

Coupling the physical system with the artificial system provides a feasible means

of parallel computations and intelligent systems. Fig. 4.1 represents the flowchart

scheme of the proposed model including the physical system and artificial system.

The physical system as in the flowchart collects the operational variables of the build-

ing. The artificial system consists of two main parts: data preprocessing and hybrid

DL predictive model. To achieve the most accurate prediction, the hybridization is

designed to code and decode the MTS input features.

The flowchart showed in Fig. 4.1 represents the proposed model for the STLF.

The first part in the diagram is the data preprocessing, which has two main steps, of

the collected power consumption data. In the first step, the load data is preprocessed
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Figure 4.1: Flowchart of the proposed CNN-GRU model for the STLF.

with normalization method as:

X ′i =
Xi −Xmin

Xmax −Xmin
(4.2.1)

where Xi is the original value of the input dataset, X ′i is the normalized value scaled

to the range [0, 1], Xmax and Xmin indicate the maximum value and minimum value

of the features in X, respectively. Normalizing the dataset features eliminates the

large deviation of instances, maps the data vector X to a small ranges vector X′,

and helps the learning algorithm to perform accurately. Let m be a sequence of

historical data and Xi ∈ R; hence, the power consumption vector is as follows:

X = {X0, X1, . . . , Xm−1} (4.2.2)

where Xi is the historical power consumption at a time i and i ∈ {1, 2, ...,m}. The

mapped vector with normalized values is defined as follows:

X′ = {X ′0, X ′1, . . . , X ′m−1} (4.2.3)
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In the second step of the data preprocessing is preparing the dataset to super-

vised learning. The proposed hybrid DL model is tested on supervised learning for

the forecasting output as:

Y′ = fs(X
′) (4.2.4)

where Y′ is the normalized predicted power consumption of the time series, fs is the

supervised learning function, and the normalized output vector is defined as follows:

Y′ = {Y ′m, Y ′m+1, . . . , Y
′
m+n−1} (4.2.5)

where Y ′in is the mapped predicted power consumption at a time in and in ∈ {m+

1,m + 2, ...,m + n}, n is the number of future time forecasting elements in the set

Y′. With the inverse function of the normalization preprocessing, the result Y is

computed for the original scale values of the power consumption forecasting.

The objective function of the proposed predictive model is expressed as:

arg min
X,Y

√√√√ 1

m

m∑
i=1

(Xi − Yin)2 ∀X ∈ X, ∀Y ∈ Y (4.2.6)

The second main part of the flowchart is the predictive model which consists

of encoder and decoder. The encoder is the CNN model which is modeled for

one-dimensional convolutional layers to learn across sequential input datasets and

extract the features. The decoder is the GRU model which learns from sequentially

extracted features and predicts the output. The predictive model will go back to

shuffle the training dataset for further learning until the training dataset is over.

When the predictive model trained all the training dataset, the testing dataset will

be served to the predictive model for forecasting and testing the predictive model.

The prediction output will be evaluated with a conventional evaluation metric.
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4.3 Modeling Setup

4.3.1 Modeling hybrid DL approach

Referring to the scheme of the proposed approach which is shown in Fig. 4.1, the

model stands for two main parts including preprocessing and predictive model. As

demonstrated in the problem formulation section, the data preprocessing segment

is the first part to prepare the input features collected from the physical system in

the ACP concept to the artificial system which is our proposed predictive model.

There are three main steps in the preprocessing segment where the first depends

on normalizing the original dataset as in Eq. (4.2.1), the second is preparing the

input data to supervised learning form as in Eq. (4.2.4), and the third is splitting

the normalized supervised dataset into two parts, the training data, and the testing

data. To evaluate the performance of the proposed model accurately, the training

data is used for the training process of the approach, and it shuffles during the

training process of the predictive model, and the testing data is used just for testing

the forecasting process.

The predictive model is based on a coder and decoder which are the CNN model

and GRU model, respectively. The input of the CNN-GRU is the record of power

consumption dataset of a building after the preprocessing analysis, and the output

is the power consumption forecasting for the next 5 minutes, next hour and the

next day. It is unlike traditional CNN or GRU models by hybridizing these two

methods to improve the learning process. The first half is CNN, which is utilized to

extract the input features and encode them, and the second half is the GRU, which

is used to analyze the extracted features from the CNN and decodes the features to

predict the power consumption for the next period of time. The approach includes

two layers of the one-dimensional CNN to improve extracting the input features,

one layer of the one-dimensional pooling to collect the extracted features, and two

60



layers of the GRU to analyze the collected extracted features and predict the output

as shown in Fig. 4.2.
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Figure 4.2: GRU block with reset gate and update gate.

Usually, the training process is applied with the BP algorithm to calculate the

loss function and the gradient weights. The activation function used in our model is

Rectified Linear Unit (ReLU), as in (12), which is known as a ramp function and is

widely applied for DL models in [85, 83]. The total number of training epochs, which

is a full pass of training through all the training dataset, is 300 epochs. The applied

optimizer function is stochastic gradient descent, and the applied loss function is

the mean square error.

4.3.2 Datasets

In this study, we provide a case study to demonstrate the proposed hybrid

CNN-GRU for parallel distribution power consumption forecasting. From Fig.3.1

and Fig. 4.1, utilizing the parallel computation and using the technical scheme

of the concept of ACP provides a feasible solution to achieve the objective of this

study. The detailed technical description of the proposed predictive method was
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introduced last this section. The case study proposes the strategy of smart build-

ings power consumption interact in the University of Denver (DU) campus power

grid. Five buildings from the DU campus are chosen for a demonstration of the pro-

posed method including Daniel’s College of Business (DCB), Newman Center for the

Performing Arts (NCPA), Ricketson Law Building (RLB), Ritchie Wellness Center

(RWC) and Sturm Hall Building (SHB). Table 4.1 provides detail information about

these buildings in the campus.

Table 4.1: Five buildings details at the DU Campus.

Building type Area (ft2) Floor

DCB Academic 110536 6

NCPA Performing arts 180000 5

RLB Academic 181000 4

RWC Fitness center 440000 4

SHB Academic 245000 4

The buildings datasets consist of historical power consumption in kW from Oc-

tober 2015 to September 2018 with five-minute resolution, and the total number of

attributes in each dataset is 315648 samples. Fig. 4.3 (a) and Fig. 4.3 (b) shows

the line graphs of power consumption in DCB and NCPA buildings, respectively,

and they illustrate the variations of consumptions during seasons and events during

the three years of collected data.

Fig. 4.4 (c) and Fig. 4.4(d) display the heat maps of the RWC and SHB

buildings, respectively, and illustrate the power consumptions over the daily and

hourly consumption during the collected dataset. It is worth noting, the peak power

consumption in the RWC building which is a wellness center for students is out of the

normal peak ours in other buildings. Thus, the occupants of the wellness center they

use the facility after working hours. However, the peak of the power consumption

in the academic building SHB is within the normal peak hours.
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Figure 4.3: The line graph of buildings power consumptions (DCB and NCPA) at
the DU campus.

4.4 Prediction Results

The conducted datasets include three years of collected power consumption

data with five-minute resolution for a couple of buildings at the DU campus, thus,

they consist of twelve seasons which are three winter seasons (Dec. - Feb.), three

spring seasons (Mar. - May.), three summer seasons (Jun. - Aug.), and three fall

seasons (Sep. - Nov.).

To evaluate the forecasting performance results, we utilized 30% of the test

dataset to examine the model after training with 70% of the dataset. The conven-
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Figure 4.4: The heat map of buildings power consumptions (RWC and SHB) at the
DU campus over October 2015.

tional metrics used to evaluate the predictive models are utilized to evaluate the

forecasting in our experiments.

4.4.1 Numerical results and analysis

Different seasonal resolutions

Considering different time transients and short-term disturbances of seasonal

effects, the proposed approach is conducted in different seasonal resolutions (winter,

64



spring, fall, and summer). In our study, the forecasting of the seasonal resolutions

is compared with a large-scale dataset that includes cumulative seasons datasets

for each building to show the effect of the seasonal disturbances of the load con-

sumption. In detail, the training dataset of each season is 70% of the historical

power consumption with 5-minutes resolution. To evaluate the training model, the

30% dataset is employed to the CNN-GRU with sliding window for next 5-minutes

ahead forecasting. For instance, first, the power consumption of seven months of

summer seasons in DCB building is conducted as the training data to determine

the best parameters and build the forecasting model. The remains two months are

used as the test data to evaluate the model. However, the comparative study with

big cumulative data is utilized to train twenty-six months of power consumption in

the same building regardless of the seasons. Similarly, the remain ten months are

used to test the forecasting model. This experiment examines the effect of big data

utilized for training in predictive models.

Table 4.2: Performance of different seasons for 5-minute-ahead forecasting (NRMSE
(%)).

winter spring summer fall cumulative data

DCB 2.996 2.970 2.870 2.709 2.172

NCPA 5.987 5.942 6.845 6.510 5.533

RLB 1.613 1.841 1.666 1.945 1.560

RWC 2.175 2.289 2.929 2.093 1.954

SHB 3.737 4.748 4.306 4.478 3.307

Referring to the performance results demonstrated in Table 4.2, the 5-minute-

ahead forecasting is examined for each building chosen in this study at the DU cam-

pus using NRMSE metric for performance evaluation. According to the presented

results, different seasons forecasting and cumulative data forecasting are compared

to demonstrate the ability to train big data. In general, the RLB has the best per-
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formance in comparing with other buildings. However, the NCPA building has the

largest forecasting errors. It is worth noting, the CD forecasting in each building

has performed the best among another seasonal forecasting experiments. The re-

sults confirm that big data training used in our hybrid CNN-GRU model is better

than training for different seasonal resolution.

Different timescale resolutions

In different timescales forecasting, different time scales are considered for resolu-

tion effects such as 30-minute-ahead, 1-hour-ahead, 6-hour-ahead, and 1-day-ahead

forecasting. Since the best performance of forecasting in Table 4.3 with 5-minute-

ahead forecasting was cumulative data, the approach of different timescales is imple-

mented on aggregate data in each building. The training data is 70% of the whole

dataset for each timescale study, and the testing data is 30% of the dataset. The

sliding window size depends on the timescale, for example, the sliding window of

1-hour-ahead forecasting is 1-hour size. It is worth noting, 5-minute-ahead forecast-

ing has the best predictions in each building, and the performance worsens as the

timescale resolutions increase. Moreover, the 1-day-ahead forecasting is better than

the 6-hour-ahead forecasting in a couple of buildings because of the considerable

variability of attributes in 6-hour resolution.

Table 4.3: Performance of the proposed method for different timescales ahead fore-
casting (NRMSE (%)).

5-minute 30-minute 1-hour 6-hour 1-day

DCB 2.172 3.767 4.939 6.881 7.055

NCPA 5.533 5.998 5.933 6.440 6.474

RLB 1.560 2.644 3.287 5.212 4.728

RWC 1.954 3.154 3.485 4.702 4.065

SHB 3.307 9.850 10.098 11.470 10.652
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Weekday power consumption forecasting

As shown Table 4.4, the weekday power consumption forecasting is investigated

and compared with 1-day-ahead forecasting from the previous timescale resolution.

Since most of these buildings are academic building and operates normally in the

weekdays, the approach is conducted to investigate the effectiveness of training the

model only on weekdays and excluding the weekends and national holidays. First,

the weekdays power consumption values {Xwd
0 , Xwd

1 , . . . , Xwd
m−1} are collected, where

wd = {1, 2, 3, 4, 5}, which indicates Monday, Tuesday, Wednesday, Thursday and

Friday. Then, the training set is 70% of the collected weekdays’ data which is used

to train the proposed method, and 30% is utilized to test the model. Table 4.4

shows that the weekdays forecasting did not improve the forecasting performance;

therefore, the proposed hybrid DL model performs better with big data for training.

Table 4.4: Performance of the proposed method for weekdays forecasting (NRMSE
(%)).

forecasting (data) DCB NCPA RLB RWC SHB

1-day-ahead (weekday) 7.132 6.530 5.432 4.230 11.802

1-day-ahead (cumulative) 7.055 6.474 4.728 4.065 10.652

4.4.2 Compared with other methods

In Table 4.5, the performances of 5-minute-ahead forecasting is chosen from

the different timescales forecasting. We utilize the NRMSE evaluation metric to

benchmark the performance of our proposed model with the conventional forecasting

methods proposed in the literature.

According to Table 4.5, our proposed model outperforms conventional models for

power consumption forecasting in each building. It is worth noting; the ARIMA has

performed the worst in a couple of buildings; however, the CNN performed better

than other conventional models and then it is followed by the GRU model. It is worth
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notice, hybridizing these methods CNN and GRU improves the forecasting accuracy

in each building experiment. The results prove the potential outperformance of our

proposed predictive model which is hybridizing CNN with GRU.

Table 4.5: Performance of different methods for 5-minute-ahead forecasting
(NRMSE (%)).

ARIMA MLP LSTM GRU CNN Proposed

DCB 4.121 4.084 3.849 3.600 3.471 2.172

NCPA 8.754 8.003 7.941 7.327 7.147 5.533

RLB 2.261 2.267 2.110 2.042 1.815 1.560

RWC 3.041 2.714 2.583 2.564 2.353 1.954

SHB 6.131 5.903 5.938 5.824 5.699 3.307

As shown Fig. 4.5 and Fig. 4.6, the forecasting result is shown in orange curves

with triangles and the original data is shown with blue curves. It is worth noting,

the forecasting curves are almost consistent with the with original curves except for

several abrupt deviations points. This represents the effectiveness of the CNN-GRU

forecasting method.
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Figure 4.5: The performance of the power consumption forecasting in the DCB.
The comparison between the proposed model and conventional models shows the
outperformance of the proposed model.
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Figure 4.6: The performance of the power consumption forecasting in the NCPA
building. The comparison between the proposed model and conventional models
shows the outperformance of the proposed model.

4.4.3 Cross-validation and discussion

The time series cross-validation method, which splits the dataset sets into k-

fold subsets to estimate the general performance of the forecasting model, gives

an insight on how the model generalizes the independent variables throughout the

datasets. The method repeats the process of splitting the dataset into training and

testing portions for k-times where the size of the testing data remains fixed but

moving through the original dataset and the remainder used as training dataset

every fold.

Applying this method to the proposed model produces a robust averaged esti-

mation of the forecasting when each observation in the dataset is used for training

and testing at each fold. We utilized 10-fold cross-validation in our experiment for

the best parameters of the proposed model in each case study of the residential and

commercial buildings using time series cross-validator [86].

From the previous experiments of different seasonal resolutions, timescales and

weekdays forecasting, we can notice that the performances of forecasting 5-minute-

ahead using cumulative data are the best models for all buildings. Therefore, we im-

plemented the cross-validation method for 5-minute-ahead forecasting for all build-
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ings to sight the general models’ performances. Fig. 4.7 shows the frequency distri-

bution of the accuracy forecasting produced by the 10-k cross-validation method and

Table 4.6 represents the resulted forecasting at each fold. These training datasets

are shuffled along with the cross-validation process ten times. Thus, the mean and

standard deviation (SD) of the total error forecasting are calculated. This technique

increases the confidence of the proposed predictive model because the testing data

is different and unseen during the training operation.

Table 4.6: The 10-fold cross-validation results of CNN-GRU for 5-minute-ahead
forecasting (NRMSE (%)).

Fold No. DCB NCPA RLB RWC SHB

1 2.768 4.272 1.504 2.116 4.552

2 2.931 4.588 1.561 1.957 3.643

3 2.767 5.464 1.589 2.315 3.293

4 2.696 5.607 1.780 2.119 4.113

5 2.728 5.371 1.606 2.121 3.760

6 2.729 5.442 1.633 2.166 4.565

7 2.857 5.415 1.570 2.156 4.220

8 2.759 5.389 1.562 2.017 4.296

9 2.711 5.281 1.564 2.111 4.749

10 2.670 5.947 1.536 2.175 4.292

Mean 2.76 5.28 1.59 2.13 4.15

SD 0.07 0.46 0.07 0.09 0.43

Comparing the average NRMSE for our proposed model with the standard pre-

diction models obtained from the previous section will confirm the outperformance of

our model. Referring to Table 4.5 and Table 4.6, the average error prediction of our

proposed model is still better than all compared models for each building dataset.

Fig. 4.8 represents the percentage of prediction improvement or the NRMSE reduc-

tion for each building dataset. Our proposed model improved forecasting accuracy

in comparison with conventional methods. The highest improvement percentage is
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Figure 4.7: Box plot of NRMSE error prediction of cross-validation in each building.

almost 40% in comparison with ARIMA, and the lowest is about 9% in compare

with CNN. These results confirm that our proposed model improved forecasting

accuracy more than 9% and less than 40% in comparison with other forecasting

methods. Therefore, we can conclude that the proposed method has gained a re-

markable improved performance and percentage of reduction compared with con-

ventional methods for all buildings in the study.
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GRU model.
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Chapter 5

Energy Disaggregation of

Residential Prosumers

5.1 Introduction

Energy disaggregation is an efficient computational technique that is used for

non-intrusive load monitoring (NILM) of individual loads and in particular resi-

dential appliances. It is unlike the more straightforward intrusive load monitoring

(ILM) approach that is performed by placing sensors on appliance circuits. Indeed,

the NILM is much cheaper than ILM, and it is an applicable method by preserving

customers’ privacy. In addition, The NILM is a sophisticated approach for utilities

to provide customers with detail feedback that can provide feasible means of dy-

namic pricing and demand-side management. However, an existing challenge is that

the available NILM methods cannot effectively capture localized generation which

is an extremely pressing issue due to the growing penetration of behind-the-meter

energy resources. Moreover, electric utilities have largely installed one smart meter

for each customer to measure the net load, which masks the local generation.
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A variety of NILM exists, including event-based methods which classify the

change of steady-state and transient state consumptions [43], and nonevent-based

methods that use temporal graphical models like Hidden Markov models [49]. Ma-

chine learning methods have also been used based on support vector machine [58],

and deep learning [50], [69], [87]. Although the literature is extensive, lacking is

an effective method to disaggregate residential loads when new types of distributed

energy resources such as electric vehicle (EV) and solar photovoltaic (PV) are in-

tegrated. In this letter, an effective framework of energy disaggregation for a resi-

dential prosumer that comprises different electrical loads is proposed. The proposed

method employs the data collected from smart meter and trains a hybrid deep learn-

ing model to classify and determine different electric loads and behind-the-meter

generation.

5.2 Problem Formulation

Considering different appliance signatures in a residential building is an essential

step to understand the customer behavior and load patterns. Consider the energy

system in a modern residential building is integrated with PV and EV. The on/off

state appliances are considered as type I, e.g., undimmable light bulbs. The multi-

state appliances are considered as type II, e.g., washer and HVAC system. The PV

and EV charging are considered as type III for continuously variable load.

In other words, the mathematical formulation using the real power of the net

load, the aggregated load, solar generation and EV charging and discharging can be

defined as:

Pnt = P at − P st ± P et (5.2.1)

where Pnt is the measured net load by the smart meter, P at is the aggregated pro-

sumer’s power, P st is the behind-the-meter PV generation, P et is the behind-the-
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Figure 5.1: Flowchart of the energy disaggregation framework.

meter EV charging and discharging, and t is the index for time periods. The aggre-

gated power is the summation of power usage of the individual appliances, including

EV charging, and can be defined as follows

P at =
n∑
i=1

pi,t, ∀ pi ∈ P a (5.2.2)

74



where pi,t is the power usage of individual appliance i at time t and n is the total

number of appliances inside the building.

The proposed energy disaggregation framework is shown in Fig 5.1. The frame-

work dataset comprises of weather data and building data. The preprocessing tech-

niques are applied to the dataset by normalizing and transforming to supervised

learning. The proposed disaggregation method consists of two main parts using

a hybrid deep learning method that combines CNN model for sequential feature

extraction and LSTM model for extracted feature analysis. The first part of the

approach trains the model with 70% of the weather input data to forecast solar

power, and the second half trains the model with 70% of the aggregated load data

from the building to classify individual energy consumption sources. Once these two

parts are trained, each model is tested with the last 30% of data accordingly.

Let T be a sequence of historical aggregated load data P at ∈ R,hence, the aggre-

gated load vector can be defined as follows:

P at = {P a1 , P a2 . . . P aT } (5.2.3)

The proposed hybrid deep learning model is trained and tested on supervised

learning for energy disaggregation and solar energy forecasting. The prediction

output can be defined as follows:

P̂t = fsp(P
a
t ) (5.2.4)

where fsp is the supervised learning function, P̂t is the predicted output for disag-

gregation and forecasting, and the prediction vector is defined as follows:

P̂t = {P̂T , P̂T+1 . . . , P̂T+w−1} (5.2.5)
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where P̂t the prediction vector which can be disaggregation prediction vector P̂ dt and

forecasting P̂ ft , and w is the supervised learning time window for disaggregation and

forecasting elements. Once the PV forecasting vector P̂ ft is predicted, measured net

load vector is expressed as follows:

P̂nett = Pnt − P̂
f
t (5.2.6)

The objective function of the proposed hybrid deep learning model for disaggre-

gation prediction is expressed as:

arg min

√√√√ 1

T

T∑
t=1

(P at − P̂ dt )2 (5.2.7)

The objective function of the proposed method for PV forecasting prediction is

expressed as:

arg min

√√√√ 1

T

T∑
t=1

(P st − P̂
f
t )2 (5.2.8)

5.3 Hybrid DL approach

The hybrid deep learning method consists of two learning steps, i.e., extract-

ing sequence features from the input data with CNN model for one dimensional

architecture and analyzing the extracted features with LSTM model.

The CNN operates somewhat like multilayer perceptron; however, the hidden

layers in this method are convolutional layers that apply cross-correlation to the

inputs. Generally, the time series data structure is one-dimensional grid at a time

interval. Thus, time series applications utilize one-dimensional CNNs and it can be

defined as:
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St = (P a ∗W )(t) =
∞∑

α=−∞
X(α)W (t− α), (5.3.1)

Lt = f(WL × St + bL), (5.3.2)

where P a denotes aggregated power, W is the weighting function (kernel filter), α is

the weighted average, and S is the convolutional output which is called feature map

for the continuous time t. The L(t) denotes the load classification and prediction

outputs, f(.) denotes the activation function, the WL denotes the hidden to output

weights and the bL is the hidden to output bias vector.

The LSTM operates principally in the same way of the recurrent neural networks;

however, it employs more gates for the recurrent neurons. The LSTM can be defined

as:

it = g1(Wi,cr × Lt +Wi,pr × P̂t−1 + bi), (5.3.3)

ft = g1(Wf,cr × Lt +Wf,pr × P̂t−1 + bf ), (5.3.4)

ot = g1(Wo,cr × Lt +Wo,pr × P̂t−1 + bo), (5.3.5)

U = g2(WU,cr × Lt +WU,pr × P̂t−1 + bU ), (5.3.6)

Ct = ft × Ct−1 + it × U, (5.3.7)

P̂t = ot × g2(Ct), (5.3.8)

where g1 denotes the sigmoid function, g2 denotes the hyperbolic tangents function,

Lt is the input vector to the LSTM which is the extracted features and the output

from the CNN, it is input gate, ft is the forget gate, ot is the output gate, U is the

update signal, Ct is the state value at computation time t and P̂t is the predicted

output vector from the hybrid deep learning model. W(.) and b(.) are the weight
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matrices and bias vectors, respectively. The weights correspond to the current state

are W(.),cr and the previous state are W(.),pr.

5.4 Modeling and Results

The studied residential building is modeled using Building Energy Optimization

(BEopt) software [88]. The building’s specification was chosen as default in the

Denver Int. AP location using the B10 benchmark option and weather option. The

building floor area is 1265 sqft with two floors and one garage. In addition, the

building consists of three beds and two baths. An EV with average electricity usage

of 1998 kWh/year, and a PV with a size of 6 kW are considered. The designing

process can supply related data of indoor/outdoor building characteristics, cooling

and heating interactions, hot water energy consumption, appliance choices, and plug

energy consumptions. The generated datasets are illustrated as in Fig. 5.2 for one

year with one hour time resolution.
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Figure 5.2: Shows the simulated residential building dataset for one year with one
hour resolution including aggregated load from the smart meter, PV generation,
cooling, heating, appliances and plug-in EV load.
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The performance of the proposed method is evaluated using conventional metrics

such as root mean square error (RMSE) and normalized RMSE (NRMSE). Consid-

ering different time scales for energy consumption in one day is vital to evaluate the

model properly. The considered time scales or time window for energy disaggrega-

tion are one hour, three hours and six hours. Similarly, the considered time scales

for prediction of solar generation are one hour, three hours and six hours. Generally,

the two parts models are trained with 70% of the dataset and tested with 30% of

the data accordingly.

Fig. 5.3. shows the performance of the proposed model for energy disaggregation

in three time scales. The figure shows that the performance of the proposed method

outperforms learning methods such as support vector regression (SVR), LSTM and

CNN for all time scales. It is worth noting that the disaggregation for one hour time

scale is the best performance in comparison with other time scales.
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Figure 5.3: Disaggregation performance of different methods and time scales.

Fig. 5.4 and Table 5.1 shows the performance results of the proposed method for

solar energy forecasting and net load prediction. The results are illustrated for two
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weeks of PV prediction and measured net load. The graph consists of the original

values for the aggregated load, PV generation and net load. It is worth noticing

that the forecasted PV generation follows the original values of the PV generation.

In addition, the net power load follows the original simulated values.

Table 5.1: Solar energy forecasting performance using NRMSE (%) for different
methods and time scales

Method One hour Three hours Six hours

SVR 8.964 9.487 9.982

LSTM 6.956 7.255 7.940

CNNs 6.605 6.726 7.129

Proposed 6.392 6.569 6.656
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Figure 5.4: Solar energy forecasting and predicted net load using the proposed
method.
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Chapter 6

Conclusion and Future Research

6.1 Conclusion

This dissertation focuses on the use of the DL to improve the load prediction

(load forecasting and energy disaggregation) at the distribution level through mul-

tiple proposed approaches. In general, the DL methods outperformed conventional

prediction methods in all studies in this dissertation for load prediction. In addi-

tion, hybrid DL methods performed better than traditional DL methods, and the

hybridizing showed the effectiveness of combining two successful DL methods. The

following are the accordingly conclusions to each approach in each chapter.

An investigation of energy consumption forecasting for buildings was studied in

Chapter 2. Firstly, recursive and non-recursive ANN was considered to be modeled

for energy consumption forecasting in residential and commercial buildings. The

numerical results showed that the recursive ANN including LSTM and GRU which

is a type of the DL achieved the best performance. Then, an evolutionary-based

development to the LSTM model to improve load forecasting accuracy in buildings

was proposed. The proposed approach combined the GA with the LSTM method

by evolving the window size, a number of hidden neurons and number hidden lay-
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ers. The proposed model presented better performance than conventional prediction

methods. In addition, the proposed method achieved 17.319% improvement in com-

parison with traditional LSTM for the residential building. Also, the proposed

approach achieved 10.669% improvement for the commercial building. The reason-

ing behind the evolutionary learning concept is that for DL algorithms, it is faster

and efficient to find the optimized window size and the optimized number of hidden

neurons than to find them based the developer’s knowledge and experimental tri-

als. Therefore, the proposed approach showed the effectiveness of finding optimal

prediction accuracy combining evolutionary computation with DL methods.

In chapter 3, a complex approach for a smart building was proposed and all

operational parameters in the building were considered in the DL model for train-

ing and testing. Due to the complexity of smart building modeling using all the

operational parameters, it was considered infeasible to conduct precision building

analysis and control, until the emerge of ACP theory and modern artificial intelli-

gence technology. A hybrid DL method (LSTM-GRU) was proposed to investigate

building energy consumption prediction and the numerical results showed that all

MTS operational parameters performed better than using few operational param-

eters. Also, the proposed method outperformed the benchmarked models. The

analysis performed in the chapter showed that the hybrid DL model is a powerful

artificial intelligence tool for modeling multivariable complex systems, and has the

potential to be applied in different areas, e.g., smart building, smart office, smart

home, and the smart city due to its outperformance in this chapter.

Chapter 4 investigated the accuracy of power consumption forecasting at distri-

bution and building level and proposed the approach of hybrid DL method (CNN-

GRU) to improve the forecasting accuracy and coupled with the ACP theory. The

main contribution of this research can be summarized as an effective short-term

power consumption forecasting with big data, and parallel computation was pro-
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posed for real buildings datasets at the DU. Since the research investigated the sea-

sonality and different timescales effects, the study concluded that the bigger training

dataset outperformed smaller dataset. Moreover, the performance of the proposed

model was compared with conventional and the proposed approach had the best

performance among other methods. The outcomes of the proposed approach can

contribute to the fields of energy saving, smart grid planning, electricity bidding

market, and demand response.

Finally, in chapter 5, a precision energy disaggregation based on hybrid DL

method (CNN-LSTM) was proposed for residential building modeling using BEopt

software. The disaggregation modeling included EV loads and PV generation which

are considered as continuously varying load. The proposed method performed bet-

ter than the conventional disaggregation method and obtained a high forecasting

accuracy for solar energy and net load measurement. It can significantly help the

energy suppliers to estimate the internal residential loads, appliances, plug-in EV

charging, solar generation, and net load approximations. Thus, it can dramatically

increase the certainty of demand response applications and dynamic pricing.

6.2 Future Research

In the future work, there are a couple of potential research areas that can be

considered for load prediction at the distribution level. There are still questions

about hybridizing other different DL methods such as autoencoder, RBM, DBN,

and DBM. Also, hybridizing more than two successful DL methods would produce

more accurate prediction, since hybridizing two successful DL methods performed

better in this dissertation. Another direction, there is potential research of using

reinforcement learning for control operation in buildings as an agent and environ-

ment framework. Also, there is still possible research of using ACP framework for

energy consumption prediction at residential buildings.
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Appendix

A.1 Deep Learning Methods

A.1.1 Non-Recursive Artificial Neural Network (ANN)

The non-recursive ANN has direct connections from the input to the output

where each neuron in the input layer is connected to the neurons in the hidden layers.

The mathematical representation for non-recursive ANN is described as follows:

yi = ζ(W T × xi + b) (.0.1)

where ζ(.) denotes the activation function, T denotes transpose, xi denotes inputs,

yi denotes the outputs, and W and b are the weight matrix and the bias vector,

respectively. There are two common non-recursive ANN as follows:

Multilayer Perceptron (MLP)

Generally, the multilayer perceptrons (MLP) is an implementation of artificial

neural networks (ANN) that has no feedback connections within the network [89].

The MLP may consist of three or more layers including an input, an output,

and one or more hidden layers. Usually, the input layer is not counted as one layer;

therefore, the graph representation of two-layer MLP is drawn as in Fig. A.1(a). The

MLP is widely proposed for load forecasting in the literature, as in [90], [13], [91].
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Typically, the MLP is used for supervised learning problems that can be solved with

the back-propagation (BP) algorithm. There are two steps to compute the gradients.

The first step is forward propagation, which propagates the initial information of

the inputs up to the hidden units at each layer to produce the predicted values. The

second step is BP, which computes the partial derivatives of the cost function with

respect to the network.

Radial Basis Function Network (RBFN)

The RBFN measures similarities between the new input value and previous

input values from the training dataset. The approximation result is the Euclidean

distance between the input and its similarity.

A.1.2 Recursive Artificial Neural Network (RNN)

The recursive ANN has recurrent connections from the output to the input in

the hidden layer. It is commonly applied to time series sequence because it has a

memory state in its architecture that assists sequential data to be processed. The

mathematical representation for the recursive ANN is defined as follows:

hi = ζ(W T
h × hi−1 +W T

x × xi + b) (.0.2)

yi = W T
y × hi (.0.3)

where ζ(.) denotes the activation function, T denotes transpose, xi denotes inputs,

yi denotes the outputs, hi denotes the hidden state, hi−1 denotes the previous hidden

state, Wx denotes the input to hidden weights, Wh denotes the recursive weights

in the hidden layer, Wy denotes the hidden to output weights and b is the bias
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vector. There are two common types of the recursive ANN which have gating units

as follows:

Long Short-Term Memory (LSTM)

The LSTM method is one type of the RNN that is designed to provide a longer-

term memory and overcome the vanishing of gradient descent in the RNN. In the

LSTM model, internal self-loops are used for storing information where there are five

crucial elements in the computational graph such as input gate, forget gate, output

gate, cell, and state output, as shown in the Fig. A.1(b). These gates operate as

reading, writing, and erasing for cell memory states. The following equations show

the mathematical representation of the LSTM model:

it = σ(xiWi,n + h(t−1)Wi,m + bi), (.0.4)

ft = σ(xiWf,n + h(t−1)Wf,m + bf ), (.0.5)

ot = σ(xiWo,n + h(t−1)Wo,m + bo), (.0.6)

U = tanh(xiWU,n + h(t−1)WU,m + bU ), (.0.7)

Ct = ft × Ct−1 + it × U, (.0.8)

ht = ot × tanh(Ct), (.0.9)

where σ denotes the sigmoid activation function, xi is the input vector, it is the

input of the input gate where the subscript means input, ft is the input of the

forget gate where the subscript means forget, ot is the input of the output gate

where the subscript means output, U is the update signal, Ct is the state value

at the time t and ht is the output of the LSTM cell. W(.) and b(.) are the weight

matrices and bias vectors, respectively. The weights correspond to the current state
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values of a particular variable are denoted as W(.),n and previous state signal as

W(.),m. The memory state can be modified by the decision of the input gate using

a sigmoid function with on/off state. If the value of the input gate is minimal and

close to zero, there will be no change in the state cell memory.

Gated Recurrent Unit (GRU)

A recent approach for overcoming the vanishing gradient descent in the RNN

is called the gated recurrent unit (GRU) algorithm [92]. It is similar to the LSTM

architecture by having gating units, but with fewer gates and parameters than the

LSTM. The GRU architecture consists only of two gates, which are a reset gate

rt and an update gate zt as shown in Fig. A.1(c). It does not include external

memory and output gate. The mathematical representation of the GRU is simpler

than LSTM as follows:

zt = σ(xiWz,n + h(t−1)Wz,m + bz), (.0.10)

rt = σ(xiWr,n + h(t−1)Wr,m + br), (.0.11)

U = tanh(xiWU,n + [rt � h(t−1)]WU,m + bU ), (.0.12)

ht = (1− zt)� h(t−1) + zt � U, (.0.13)

where σ denotes the sigmoid activation function, xi is the input vector, ht is the

output vector, U is the update signal, and � is element-wise multiplication. The

weights correspond to the current state values of a particular variable, are denoted

as W(.),n and previous state signal as W(.),m. W(.) and b(.) are the weight matrices

and bias vectors, respectively.
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(a) MLP network architecture.
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Figure A.1: (a) The graph representation of a two layers MLP architecture. The
representation includes one input layer for input variables, one hidden layer for
hidden neurons, and one output layer for outcome neuron. (b) The block diagram
of the LSTM cell. it, ft, ot and U are the input gate, the forget gate, output gate
and the update signal, respectively. (c) The block diagram of the GRU cell. rt, zt
and U are the reset gate, the update gate, and the update signal, respectively.

A.1.3 Convolutional Neural Network (CNN)

The CNN, which represents a type of DL algorithms, mimics the structure

of human neurons and is applied widely in various applications including visual
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processing, video recognition, and natural language processing. This method is

commonly used for processing grid data topology which includes a two-dimensional

grid of pixels for image data construction [89]. However, the construction of the time

series data is one-dimensional grid at a time interval, and we will apply the CNN

for sequential time series. The mathematical convolution operation is employed in

at least one of the CNN layers [89].

The convolution operation in signal processing is described generally in the fol-

lowing equation:

S(i) = (X ∗ w)(i) =
∑

X(a)w(i− a) (.0.14)

where X is called input, w is the kernel filter, a is the weighted average and S is

the convolutional output which is called feature map for the continuous time i.

Typically, two-dimensional CNN consists of three main stages that build the

architecture of the network. The first stage has the convolutional layer, the second

stage has the detector that is the rectified linear activation, and the third is the

pooling function layer [89].

However, the one-dimensional CNN consists of two stages for the convolutional

layer and pooling layer. Fig. A.2 shows an example of six inputs neurons, four

convolutional neurons and two pooling neurons for one-dimensional CNN. The colors

of the connections form three sets of the convolutional neurons that represent the

kernels, and the same color represents sharing weights. The convolutional layer maps

the input features, and the pooling layer extracts the important mapped features.
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Figure A.2: The One-dimensional CNN example of six inputs with one convolutional
layer and one pooling layer.

A.1.4 Other Deep Learning Methods

Autoencoder

Autoencoder is one of the feed forward neural network that is used to copy input

neurons to output neurons by passing through a hidden layer or multiple hidden h

layers as in stacked Autoencoders. [89].

The main parts of Autoencoder network architecture are based on encoder func-

tion h = f(x) and a decoder for reconstruction x̂ = g(h). Therefore, the recon-

structed output is x̂ = g(f(x)) which copies the data input. The mathematical

representation of Autoencoder is described as follows:

x̂ = g(Wx + b) (.0.15)

where x is the input, W is the weights, b is the bias and g is the activation function

which could be sigmoid or a rectified linear function. Figure A.3 shows the simple

architecture of Autoencoder for three layers input, hidden and output layer. This

learning algorithm is usually used for dimensionality reduction, feature learning or
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corrupted data reconstruction. The Autoencoder models that are used for these

kinds of problems are known as Undercomplete Autoencoder, Sparse Autoencoder

and Denoising Autoencoder, respectively [89].

Input layer Hidden layer Output layer

𝑋 𝑋"

Figure A.3: Shows the architecture of the Autoencoder learning algorithm.

Restricted Boltzmann Machine (RBM)

RBM is one of the most famous Deep probabilistic models which are undirected

probabilistic graphical models [89].

RBM has two main layers where the first contains visible inputs and the sec-

ond layer contains hidden variables. Usually, RBM is stacked in order to make it

deeper by building one on top of the other. Figure A.4a shows simple RBM for the

undirected probabilistic graphical model for two layers.

Deep Belief Network (DBN)

DBN architecture has several layers of hidden units known as stacked RBM

with multiple hidden layers that are trained using the Backpropagation algorithm

[30]. Basically, the connection units in the DBN architecture is between each unit

in a layer with each unit in the next layer, however, there are no intra connection

for each layer units [89].
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Figure A.4: Shows different architecture of a. RBM with undirected connections
between visible inputs and hidden variables. b. DBN with directed connections
toward visible inputs and the others undirected connections for the hidden layers.
c. DBM with undirected connections for one visible inputs layer and multi hidden
layers.

Figure A.4b shows DBN for three layers configuration, two hidden and one visible

layer where the top two layers are undirected, but, the connection between all other

layers should be directed pointing towards the data layer [89]. Generally, a DBN is

RBM with more hidden layers, however, RBM usually have only one hidden layer.

Deep Boltzmann Machine (DBM)

DBM neural network is like RBM architecture but with more hidden variables

and layers than RBM. Also, DBM is unlike to DBN because DBM architecture has

entirely undirected connections between variable within all layers, such a visible

layer and multi hidden layers [89].

Figure A.4c shows the architecture of DBM neural network for three hidden

layers and one visible layer.

A.2 Genetic Algorithms (GA)

The GA is a common nonlinear optimization algorithm which solves constrained

and unconstrained optimization problems and provides an optimal or near-optimal

solution through searching in a complex space. It is, found by Holland in 1975, an
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adaptive global optimization search based on natural selection of Darwinian analogy

and genetic biology [93] and utilizes crossover and mutation probabilities to guide

the search of an optimum solution (individual) in the fitness function. The GA

is based on a population search where a set of candidate solutions (individuals)

of the fitness function are obtained after a series of iterative computations. One

of the advantages of the GA is less sensitive to initialization due to the nature of

mutation and crossover probabilities, however, it is not the best method for online

implementation due to its slow convergence in a complex space [93].

The individuals are composed of chromosomes, which are candidate solutions,

based on the Darwinian principle of survival of the fitness value. The fitness function

determines the living ability and living quality of each individual as depending on

the evolutionary process of the GA.

There are three major operators of the evolutionary process in the GA, which

are the crossover operator, the mutation operator, and the selection operator. These

operators directly affect the fitness value searching process, and find the most op-

timum solution. Another strategy in the GA that pledges the convergence of the

fitness value to the optimum is elitism selection which means copying the best in-

dividual in the generation to next generation [93]. Nevertheless, the chromosome

length and crossover method, such as one-point crossover, two-point crossover, etc.,

are important techniques to find the optimum value in the efficient process.

The operation of crossover, which is the most important operation in the GA

algorithm, is a random exchange of two chromosomes that are genotyped in a binary

gene’s base using one of the crossover methods as Fig. A.5. The mutation operation

is the random alteration in one gene or more from 1 to 0 or vice versa. The selection

operation is the process of selecting the highest fitness value among the population’s

individuals by using a selection method, e.g., the roulette wheel and tournament

selection.
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Parent 1 Parent 2

Offspring 1 Offspring 2

Figure A.5: One point crossover operation.

Select GA parameters LSTM predictive 
model & fitness value  

Create random 
population

Mutation SelectionCrossover

Generate new 
population Stop? Output results & best 

child fitness value

No

Yes

Figure A.6: The GA algorithm operation scheme.

Moreover, The population size and number of generation are important factors

that influence computation complexity. If the population size, which implies the

number of the solution in each generation, is too large, the GA algorithm will cost

large computation quantity and the probability of plunged local optimum is low.

If the population size is small, the algorithm complexity will be reduced and the

likelihood of falling in a local optimum is high.

The convergence of the evolutionary process in the GA algorithm is found with

iterative steps, where the termination criterion is pre-defined with the maximum

number of iteration. Fig. A.6 shows an illustration of the GA iteration process and

the basic process of the GA steps is as follows:
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1. Generate initial population randomly.

2. Evaluate the fitness value of each individual in the population.

3. Perform the crossover operation.

4. Perform the mutation operation.

5. Perform the selection method.

6. Stop the GA algorithm if the termination criterion is satisfied, otherwise,

return to number (2).
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