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ABSTRACT 

The visual system often integrates information that “goes together”. Once 

information has been integrated, summary information (e.g., average emotion or average 

size) can be extracted; this occurs during ensemble coding. Integration thus allows for 

fast and efficient generalizations about sets to be made. In contrast, the visual system 

sometimes segments input that does not go together. For example, the perception of 

objects can be exaggerated away from natural category boundaries (e.g., a perfect circle 

is a category boundary; it is neither “flat” nor “tall”). Segmentation allows the visual 

system to make quick categorical distinctions. Much of the time, integration and 

segmentation work in parallel, and they have most often been studied in isolation. 

However, investigating how these two processes operate together, and potentially even 

conflict, was the purpose of this dissertation. I examined the ensemble coding of aspect 

ratio, which is a visual feature roughly equivalent to “tallness/flatness”. Aspect ratio has a 

category boundary (e.g., a circle or square), and the perception of aspect ratio tends to be 

exaggerated—segmented—away from that boundary. Thus, I predicted that observers’ 

ability to integrate aspect ratio information that spanned the category boundary would be 

disrupted, since in those instances, integration and segmentation would be at odds. To test 

this prediction, observers were asked about the average aspect ratio of a set of ellipses. In 

two experiments, observers were less sensitive to the mean of sets that included both tall 

and flat ellipses, compared to sets that only included tall or flat ellipses. A third 
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experiment confirmed that segmentation perceptually distorted the appearance of ellipses 

near the category boundary away from that boundary; shapes were perceived to be more 

extreme than they actually were. Segmentation thus made sets that included both flat and 

tall ellipses appear more heterogeneous than they really were, which disrupted ensemble 

coding. In general, these experiments provide a deeper understanding of how the visual 

system summarizes large sets of information, by investigating how integration interacts 

with, and even conflicts with, segmentation. 
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INTRODUCTION 

Imagine being immersed in an infinite sea of continuous information. Your task is 

to parse that information into useful, meaningful chunks. Where would you even start? 

How would you decide which bits of information go together, and which do not? What 

information is important enough to attend to? The visual system faces, and usually 

solves, this daunting puzzle every moment light enters the eye. These computational feats 

occur even in spite of the many bottlenecks in visual processing (e.g. attention, Chong & 

Treisman, 2005b; memory, Luck & Vogel, 1997). To accomplish them, the visual system 

leverages at least two strategies to make sense of input. First, it integrates information 

that, in some sense, “goes together”. Gestalt psychologists for example, as well those in 

the field of perceptual organization, have attempted to understand how the visual system 

organizes disparate retinal input into the objects and groups of objects we 

phenomenologically see (see, for example, Wertheimer, 1923; Palmer, 1999; Palmer, 

2002; Wagemans et al., 2012, 2012b; Peterson & Kimchi, 2013). For instance, objects 

that share a common region, move together, or share a common feature like color tend to 

be grouped together, and grouping of visual elements can inform object recognition 

(Palmer, 2002). The visual system does not just organize and group input, though, it 

integrates and extracts summary information from it (see Whitney, Haberman & Sweeny, 

2014; Whitney & Leib, 2018, for reviews of ensemble coding; Ross & Burr, 2008; 
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Alvarez, 2011). Information integration thus helps the visual system reduce redundancy 

and minimize differences among individual objects, it increases efficiency, it allows 

objects that go together perceptually to appear to be a group, and it facilitates the 

extraction of summary statistics about that group. Imagine, for example, catching a 

glimpse of a flock of birds. The individual birds are grouped to form a flock, and by 

integrating information about individual birds (e.g. motion heading information), the 

visual system can efficiently extract information about a gestalt object (e.g., the heading 

of the flock in general), without having to precisely model the heading of each and every 

bird (and without having to retain access to information about the individual birds). 

In contrast to information integration, the visual system also segments input that 

does not go together by, for example, exaggerating differences instead of pooling across 

them. By segmenting information, the visual system is able to avoid making 

generalizations across objects that do not belong together. For example, motion 

information about a flock of birds may not be confused with motion information about a 

nearby stationary bird perched on a tree; this information has been segmented. Critically, 

segmentation may be especially relevant for visual features that have a  category 

boundary—a value that lies exactly between dimensions and belongs to neither (e.g., a 

perfect circle is neither “tall” nor “flat”; a straight-ahead eye gaze is neither leftward nor 

rightward). Exaggerating differences around these category boundaries is especially 

important for the visual system. Segmentation thus allows the visual system to organize 

objects into one feature category or the other (e.g., is the object tall or flat?; Suzuki & 

Cavanagh, 1998; Sweeny, Grabowecky & Suzuki, 2011), and it reduces the chances of 
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making categorical errors when making noisy perceptual judgments about objects near a 

boundary (e.g., it would be better to err in perceiving a slightly tall shape as being 

moderately tall than slightly flat; Kourtzi 2010; Sweeny, Haroz & Whitney, 2012; Wei & 

Stocker, 2017). Segmentation may thus support perceptual decisions when precision is 

less important than coarse categorization (Suzuki, 2005). In general, these two broad 

computational processes–integration and segmentation–help the visual system efficiently 

handle a vast sea of input in the face of limited computational resources, and it is these 

two processes that are central to this dissertation. 

Although segmentation and integration help the visual system sort input in 

opposing ways, much of the time they operate in parallel and do not seem to conflict. 

Perhaps for this reason, these two computational methods have most often been studied in 

isolation. However, there may be instances in which they interact. For example, imagine 

laying out your pocket change onto a desk. From your perspective, each coin projects a 

two-dimensional, flattened ellipse shape on your retinae. Since each coin is aligned in-

depth in a similar way (they’re all laying on the same surface), extracting the average 

flatness—and inferring the average orientation-in-depth—should be possible (Biederman 

& Kaloscai, 1997; Treisman & Gormican, 1988). But now imagine instead a high-speed 

snapshot of those coins being tossed in the air. Some coins project flat elliptical shapes to 

the camera, but some are head-on relative to the camera and project a circular aspect 

ratio, while others project a tall shape by being vertically oriented and rotated relative to 

the camera. What is the average shape among the set of coins oriented in-depth? In this 

case, integration and extraction of summary information is more complicated. 
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On the one hand, the visual system tends to segment heterogeneous information 

like this away from the category boundary, exaggerating differences between individual 

objects. For example, flat objects are made to appear flatter and tall objects are made to 

appear taller (Suzuki & Cavanagh, 1998, Sweeny, Grabowecky & Suzuki, 2011; Sweeny, 

D’Abreu, Elias & Padama, 2017). On the other hand, in examples like the one above, the 

visual system also tends to integrate information across that same feature boundary to 

determine what the components have in common as a collective. As mentioned, prior 

research on integration—and subsequent mean extraction—has left this potential tension 

largely unexplored. In many prior investigations of integration (e.g., Ariely, 2001; Chong 

& Treisman, 2005; Haberman & Whitney, 2009; Elias, Dyer & Sweeny, 2017), category 

boundaries for the relevant visual feature are either ambiguous (e.g. the boundary 

between “small” and “large” objects), or the impact of those category boundaries was not 

explicitly considered (e.g., Sweeny & Whitney, 2014). It is important to understand not 

only how integration helps the visual system solve a host of computational problems, but 

also how that solution is potentially constrained by the system’s solution to other 

problems (e.g., segmentation of categorical visual information). Investigating the 

relationship—and potential conflict—between these two fundamental computational 

mechanisms is the primary aim of this dissertation. In doing so, I hoped to add to a more 

complete understanding of how the visual system computes the properties of sets of 

objects. 

In Experiment 1, I tested the visual system’s ability to integrate information about 

aspect ratio across category boundaries–boundaries around which information 
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segmentation normally operates. I expected integration to operate with reduced efficiency 

in these cases, and the results clearly support this prediction. Experiment 2 replicated the 

main results of Experiment 1, while also addressing a few methodological limitations 

from Experiment 1. Experiments 3a and 3b showed that segmentation repulsed the 

appearance of ellipses away from the category boundary—the aspect ratios of ellipses 

appeared to be more extreme than they really were. This distortion introduced 

exaggerated heterogeneity, which ultimately disrupted integration. 

 

Integration in the Form of Ensemble Coding 

Integration is one of the visual system’s basic approaches for solving 

computational problems. Individual cells integrate information (e.g., Miller, Gochin & 

Gross, 1993; Rolls & Tovee, 1995; Sato, 1989; Kastner, De Weerd, Pinsk, Elizondo, 

Desimone & Ungerleider, 2001; Brincat & Connor, 2004; Zoccolan, Cox, & DiCarlo, 

2005). So do populations of cells (e.g., Pasupathy & Connor, 2001; Suzuki, 2005; 

Michele, Chen, Geisler & Seidemann, 2013). In many cases, information about individual 

features or objects are integrated, via these populations. This happens, as suggested 

already, in classic grouping processes (see Palmer, 1999; Palmer, 2002; Wagemans et al., 

2012; Peterson & Kimchi, 2013). When information about multiple objects is integrated 

such that a summary judgment about the entire group can be made, the process is known 

as ensemble coding (see Whitney, Haberman & Sweeny, 2014; Whitney & Leib, 2018, 

for reviews of ensemble coding). Ensemble coding is one consequence of information 

integration – one that usually implies the pooling of information to acquire summary 
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information (e.g., the mean, variance, etc.) across sets with more than two members 

(Whitney & Leib, 2018). For example, as you pass a fruit stand full of oranges, your 

visual system can utilize ensemble coding to extract the average size of the fruits quickly 

and automatically (Allik, Toom, Raidvee, Averin, Kreegipuu, 2014), without having to 

sequentially sample each and every fruit (Ariely, 2001; Chong & Treisman, 2003; 2005; 

Sweeny, Wurnitsch, Gopnik, & Whitney, 2015). Or, perhaps you catch a glimpse of a 

group of joggers; your visual system may extract information about their average heading 

in a similar way (Sweeny, Haroz & Whitney, 2013). Similar operations can be performed 

for simple features like orientation (Parkes, Lund, Angelucci, Solomon & Morgan, 2001; 

Ross & Burr, 2008; Alvarez & Oliva, 2009; Elias, Padama & Sweeny, 2018) and speed 

(Watamaniuk & Duchon, 1992; Watamaniuk, Sekuler, & Williams, 1989), as well as for 

socially relevant information like facial expression and gaze (Haberman, Harp, & 

Whitney, 2009; Haberman & Whitney, 2007, 2009; Sweeny & Whitney, 2014; Elias, 

Dyer & Sweeny, 2017). 

Importantly, although ensemble coding helps circumvent the computational 

limitations of the visual system by compressing information about individuals into a 

“gist” representation that characterizes the group, information about individuals can be 

lost to conscious access (Haberman & Whitney, 2007; Allik et al., 2014). Indeed, 

observers sometimes fail to perceive, attend to and/or recall individual set members at all 

or do so poorly (e.g., Alvarez & Oliva, 2009, Sweeny et al., 2015). This may occur 

because images are presented for very brief durations (Haberman et al. 2009, Oriet & 

Corbett 2008), because neuropsychological deficits disrupt the perception of group 
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members (Yamanashi Leib, Landau, Baek, Chong & Robertson, 2012; Yamanashi Leib 

et al., 2012b; Robson, Palermo, Jeffery & Neumann, 2018), or because set members are 

masked from awareness in some way (Choo & Franconeri 2010; Jacoby, Kamke & 

Mattingly, 2013; Ward, Bear & Scholl, 2016; see Elias et al., 2018 for possible limits to 

pooling of complex visual features that are masked). Yet even in cases like these, 

information integration and ensemble coding can proceed and make a summary 

representation available to the perceiver. Ensemble coding even allows people to make 

judgments about groups that are more precise and accurate than judgments about a single 

individual seen in isolation (Sweeny, Haroz & Whitney, 2012, 2013; Elias et al., 2017). 

Interestingly, ensemble coding can also bias perception of an individual’s features toward 

the mean features of the overall group (Brady & Alvarez, 2011). Thus, ensemble coding 

is not only fast, efficient and robust, it is clearly very useful. It can provide very precise 

information about the general characteristics of visual information that is outside of 

focused attention, or even about forgotten or unperceived individuals in a larger set. This 

information can then help guide focused attention in future moments (Alvarez & Oliva, 

2009; Alvarez, 2011; Im et al., 2017), help detect (or ignore) notable outliers in a group 

(Haberman & Whitney, 2009b; Haberman & Whitney, 2010), or even incorporate group 

attributes into the perception of individuals (Brady & Alvarez, 2011). 

 

Segmentation 

The visual system doesn’t always pool information across objects in order to 

extract summary statistics, though. Sometimes, it instead exaggerates differences, 
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segmenting visual information so that perceivers may make categorical decisions about 

an object. A striking example of perceptual segmentation is the tilt illusion, in which the 

orientation of a center patch of parallel lines is perceptually repulsed—segmented—away 

from the orientation of lines within an adjacent concentric ring (see Clifford, 2014, for a 

review). Segmentation may also be an important component of the Poggendorff illusion, 

in which two alternate exterior acute angles may be perceptually exaggerated to appear 

different from each other (Morgan, 1999; Westheimer, 2008). Segmentation can even act 

to exaggerate spatial displacement between objects (Baddock & Westheimer, 1985; 

Suzuki & Cavanagh, 1997), and is likely involved in distinguishing figure (i.e., object) 

from ground (i.e., background; Westheimer & Levi, 1987; Grossberg, 1994). 

Thus, when computing the value of a feature, context matters. Sometimes, making 

categorical distinctions (e.g., “is the object vertical or not”, “is the object here or there”, 

“is the object figure or ground”) is what is important. This is especially true for visual 

features that have category boundaries. Aspect ratio is one such feature (other examples 

include object taper, skew and convexity; Suzuki, 2005). Aspect ratio can be thought of 

as a visual object’s “tallness” or “flatness”, and is a 2D visual feature that can provide 

information about an object’s orientation-in-depth (Beiderman & Kaloscai, 1997; 

Treisman & Gormican, 1988). Aspect ratio is encoded by cells in the inferotemporal (IT) 

cortex, separately from simpler visual features like size or curvature (Reagan & Hamstra, 

1992; de Beek, Wagemans & Vogels, 2003; Dickinson, Morgan, Tang & Badcock, 

2017). Aspect ratio varies around a category boundary or null-point (e.g., perfect circles 

and squares are equivalently “flat” and “tall”, or equivalently neither), and indeed, being 
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able to discriminate between categorically “tall” and categorically “flat” is a prioritized 

task for the visual system. For example, at short time scales – and thus perhaps in the face 

of perceptual uncertainty due to noisy neural representation (Wei & Stocker, 2017) – 

perceived aspect ratio tends to be exaggerated away from the null-point, toward extreme 

values (Suzuki & Cavanagh, 1998; Sweeny, Grabowecky & Suzuki, 2011; Dickinson et 

al., 2017; Sweeny, D’Abreu, Elias & Padama, 2017). Additionally, extremely “tall” or 

extremely “flat” shapes stand out from a field of perfect circles quite clearly, although the 

reverse is not true (Treisman & Gormican, 1988). Similarly, observers are especially 

sensitive to slight changes in aspect ratio around the null-point (Reagan & Hamstra, 

1992; Suzuki et al., 2005), supporting the accurate perception of even subtly “flat” or 

subtly “tall” objects. Perceptual evidence like this is, unsurprisingly, reflected in the way 

the visual system encodes aspect ratio at the neural level. The majority of cells in IT 

tuned to aspect ratio respond more strongly to extreme values than to values near the 

null-point (Kayaert, Biederman, Beeck & Vogels, 2005). Additionally, fewer cells are 

tuned to values near the null-point, and they respond more weakly than those tuned to 

extreme values. The perceptual consequences of this can be surprising. It is, for example, 

easier to mask circles than extreme aspect ratios, likely because the neural representation 

of circles is relatively weak (Braun & Sweeny, 2019). 

What is less clear is exactly how information about aspect ratio is encoded at the 

neural population level. Multiple encoding schemes could, theoretically, lead to the 

perceptual segmentation of aspect ratio discussed above. Below, I will briefly discuss two 

possible encoding schemes. Aspect ratio was once thought to be supported by an 
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opponent-coding scheme in which one neural population is broadly tuned to “tall” 

shapes, and a second is tuned to “flat” shapes, with perceived aspect ratio as the centroid 

of these two distributions (Regan & Hamstra, 1992; Suzuki, 2003, 2005). Instead, recent 

work suggests that a multi-channel encoding scheme—one in which multiple neural 

populations are each tuned to “flat”, “tall” or intermediate values—is more likely 

(Dickinson et al., 2017; Storrs & Arnold, 2017), although as already mentioned, 

intermediate values do seem to be represented more sparsely and weakly (Kayaert et al., 

2005). Even given a multi-channel encoding scheme, it is possible that a greater number 

of channels are distributed around the null-point compared to the number of channels 

devoted to extremely “flat” or “tall” values. Irrespective of the precise details, though, 

categorical judgements are especially important for aspect ratio. The neural coding of 

aspect ratio supports categorical judgements and segmentation; the perception of aspect 

ratio does too. 

 

Integration and Segmentation of Aspect Ratio 

Although aspect ratio is clearly subject to segmentation, there is as of yet very 

little evidence that it can be integrated by ensemble coding, or any other process (see 

Oriet & Brand, 2013, for potential aspect ratio integration, though changes in the aspect 

ratio of their stimuli were confounded with size and area, which are already known to be 

easily ensemble coded). Yet it is reasonable to expect that it should be. After all, aspect 

ratio is a mid-level visual feature, encoded in intermediate stages of vision (e.g., V4; 

Dumoulin & Hess, 2007), along with other global shape attributes in IT (e.g., Kayaert et 
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al., 2005). Aspect ratio is thus computed between simple features (e.g. orientation) and 

more complex features (e.g., facial expression) on which pooling is known to act. 

Further, it is encoded by populations of dedicated IT cells (Kayaert et al., 2005), and 

pooling operates across dedicated neural populations that encode other features 

(Pasupathy & Connor, 2004; Suzuki et al., 2005). For these reasons, I expected the 

integrative process of ensemble coding to operate on aspect ratio. Importantly though, I 

predicted that this process of ensemble coding should be particularly efficient for sets of 

aspect ratios that fall on one side of the null-point (e.g., a set of “flat-ish” ellipses), 

compared to sets that cross the category boundary (flat and tall ellipses). In cases like 

these, the visual system should be able to leverage information integration without being 

simultaneously pressed to segment information across a category boundary. In contrast, if 

“flat” and “tall” ellipses are present in a set about which generalizations must be made, 

the visual system is faced with a dilemma. On the one hand, integration should operate to 

pool information, “toward” the set mean, thus supporting generalizations. On the other, 

aspect ratio perception and encoding should segment information “away” from the null-

point, thus maximizing perceived differences between set members. So, although 

summary statistics can be extracted from a wide range of visual features, in the case of 

aspect ratio, the category boundary should matter. While ensemble coding should operate 

efficiently for sets of generally-“flat” objects, and for separate sets of generally-“tall” 

objects, it should operate with less efficiency for sets containing both “flat” and “tall” 

objects – in other words, for sets with a clear category boundary. I reasoned that the 
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presence of a category boundary would diminish the effectiveness of ensemble coding. I 

began my investigation of the conflict between integration and segmentation there. 
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EXPERIMENT 1 

Method 

Observers. Thirty-four students from the University of Denver participated in 

Experiment 1. Due to an oversight, demographic information was not collected for 

Experiment 1. Observers granted informed consent and had normal or corrected-to-

normal visual acuity. This sample size was selected based on a previous investigation 

with a related design, number of trials, and analysis, which had sufficient power to detect 

and replicate an ensemble-coding effect using different stimuli with an approximately 

equal number (thirty) of observers (Elias, Dyer & Sweeny, 2017). 

Stimuli. The stimulus set included twenty-one ellipses (0.2° thick lines) created in 

Adobe Photoshop CS6 v. 13.0 x64, each rendered in dark gray (mean luminance: 19 

cd/m2). The aspect ratios were symmetrically distributed (in log scale) around the 

category boundary aspect ratio (i.e., a circle). Flat ellipses included the following log 

aspect ratios:  −0.419, −0.374, −0.343, −0.311, −0.285, −0.221, −0.176, −0.131, −0.087, 

−0.043. Tall ellipses included the following aspect ratios: 0.043, 0.087, 0.131, 0.176, 

0.221, 0.285, 0.311, 0.343, 0.374, and 0.419. An even (circular) aspect ratio of 0.00 was 

also included. The edges of each ellipse were blurred in Adobe Photoshop using the 

Gaussian blur tool with a 2-pixel radius. 

Experiments were conducted on a CRT monitor with a refresh rate of 100 Hz at a 

viewing distance of 55 cm. Stimuli were presented against a uniform gray background 
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(RGB value = 170, 170, 170; luminance = 41.5 cd/m2). Experiments were coded and run 

using MATLAB (Version 2014b; The MathWorks, Natick, MA) with the Psychophysics 

Toolbox (Brainard, 1997). 

Procedure. Observers were individually run in a dimly lit room. The experiment 

consisted of 240 multi-ellipse and single-ellipse trials, counterbalanced. Multi-ellipse 

trials featured the presentation of either four ellipses arranged in a globally-shaped square 

around a central fixation point (four-ellipse trials), or eight ellipses arranged in a larger 

diamond shape around fixation (eight-ellipse trials; Figure 1.1). Note that the locations of 

the central ellipses in the eight-ellipse array were the very same locations as those in the 

four-ellipse array. Thus, both four- and eight-ellipse sets contained a global shape with a 

null aspect ratio, which is important given that global and local shape perception can 

interact (e.g., Navon, 1977; Badcock, Whitworth, Badcock, & Lovegrove, 1990). These 

two different types of trials were included to examine how integration might interact with 

set size. The centroids of adjacent ellipses were 5.9° away from each other along the 

horizontal axis and 5.9° away from each other along the vertical axis (Figure 1.1). Set 

size was, of course, confounded with eccentricity (the larger sets necessarily included 

more peripherally presented ellipses), although this was necessary in order to equate 

inter-shape distance in the sets, which was important for preventing visual crowding and 

maintaining a global square shape. 
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Figure 1.1. Layout of an eight-ellipse trial with fixation at center. Note that four-ellipse 

trials included ellipses only at the four most-central locations. 

 

The primary purpose of this experiment was to investigate how integration of 

aspect ratio differed as a function of a set’s relationship to the category boundary (in the 

case of aspect ratio, a circle). Multi-ellipse trials thus contained sub-conditions including 

flat, tall, center, outlier or full-range conditions (Figure 1.2). On flat, tall and center 

trials, ellipses were drawn from a limited range of 11-ellipses from within the full set of 

twenty-one ellipses. On flat trials, all ellipses were drawn from the flat range of the 

stimulus set; sets from these trials never contained a tall ellipse, and thus the distribution 

of ellipses never crossed the category boundary (in log units, ellipses from flat trials 

could have had any of the following eleven aspect ratios: −0.419, −0.374, −0.343, 

−0.311, −0.285, −0.221, −0.176, −0.131, −0.087, −0.043, and 0.00 (circle)). Note that flat 

and tall trials could both contain circles, which ensured that the presence of circles was 

not unique to any condition. Each flat trial was further randomly determined to be either a 

low-seed flat trial or a high-seed flat trial (Figure 1.2). On low-seed flat trials, one ellipse 
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(on four-ellipse trials) or two ellipses (on eight-ellipse trials) were randomly selected 

from the three flattest ellipses (i.e., aspect ratios −0.419, −0.374, and −0.343). The 

remaining three (on four-ellipse trials) or six (eight-ellipse trials) were randomly selected 

from the entire flat-ellipse range. On high-seed ellipse trials, one ellipse (on four-ellipse 

trials) or two (on eight-ellipse trials) was randomly selected from the three ellipses with 

the least-flat aspect ratio (aspect ratios −.087, −0.043, and 0.00). The remaining ellipses 

were selected from the entire flat-ellipse range. The rationale for this seeding procedure is 

explained later. Ellipses from tall trials could have had any of the following eleven aspect 

ratios: 0.00, 0.043, 0.087, 0.131, 0.176, 0.221, 0.285, 0.311, 0.343, 0.374, and 0.419. Tall 

trials were constructed similarly to flat trials: low-seed tall trials had one ellipse (two on 

eight-ellipse trials) randomly selected from the three least-tall ellipses (aspect ratios 0.00, 

0.043, and 0.087), while high-seed tall trials had one ellipse (two on eight-ellipse trials) 

randomly selected from the three tallest ellipses (aspect ratios 0.343, 0.374, and 0.419). 

Finally, center trials had the same structure, except that they contained both flat and tall 

ellipses, with the category boundary (i.e., circle) in the center of the range from which the 

ellipses were drawn. Center trials thus included ellipses from the eleven center ellipses in 

the stimulus range (aspect ratios: −0.221, −0.176, −0.131, −0.087, −0.043, 0.00, 0.043, 

0.087, 0.131, 0.176, and 0.221). Low-seed center trials had one ellipse (two on eight-

ellipse trials) randomly selected from the flattest three ellipses in this center range (aspect 

ratios −0.221, −0.176, and −0.131), while high-seed center trials had one ellipse (two on 

eight-ellipse trials) randomly selected from the tallest three ellipses in this range (aspect 

ratios 0.131, 0.176, and 0.221). 
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Figure 1.2. Multi-ellipse conditions from Experiments 1 and 2. Data and stimuli are from 

Experiment 2 (eight-ellipse trials), though the basic structure of conditions is the same 

across both experiments. Histograms denote frequency with which each ellipse from the 

stimulus range appeared across all flat trials and tall trials (which together formed non-

boundary trials), as well as all center trials—the three main conditions of interest. Outlier 

and full-range trials are also depicted. Open histograms represent frequency data for low-

seed trials, while filled gray histograms represent high-seed trials. 

 

Utilizing low- and high-seeds ensured that the distribution of aspect ratios in each 

set was always skewed. This ensured that if observers simply guessed from the middle of 

the tall, flat or center ranges on a trial-by-trial basis, their responses would not default to 

the actual mean of the set and artificially be mistaken for true, perceptual extraction of 
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the mean. Additionally, by employing low- and high-seeds, I could, in theory, determine 

whether observers were extracting the mean or the median, across trials of any given 

type, at the data-analysis stage. I verified that low- and high-seed distributions produced 

dissociated means and medians before beginning the investigation by simulating 100 

four-ellipse, low-seed flat trials and computed the average simulated mean and median 

for each. I then iterated this 100-trial simulation 500 hundred times. Across these 

iterations, four-ellipse flat-seed trials contained a mean log aspect ratio (M = −0.2573, SD 

= 0.006) that was significantly different from the median log aspect ratio (M = −0.2691, 

SD = 0.008) t(499) = 79.16, p < .01, d = 1.67. The means and medians of eight-ellipse flat 

trials, as well as those of low- and high-seed tall and center trials (all run in separate 

simulations), differed in a similar way. 

In addition to flat, tall and center trials, multi-ellipse trials could also include 

outlier or full-range trials. Outlier trials could be either low-seed or high-seed. On four-

ellipse low-seed outlier trials, one ellipse (two on eight-ellipse trials) was randomly 

selected from the five flattest aspect ratios; this ellipse was the “outlier”. The remaining 

three (or six, on eight-ellipse trials) ellipses were randomly selected from the tall ellipses 

– specifically, from aspect ratios 0.043, 0.087, 0.131, 0.176, and 0.221. Similarly, on 

high-seed outlier trials, one ellipse (two on eight-ellipse trials) – the “outlier” – was 

randomly selected from the tallest five ellipses. The remaining ellipses were randomly 

selected from the flat range, specifically from aspect ratios −0.221, −0.176, −0.131, 

−0.087, and −0.043. This approach produced trials in which the majority of ellipses were 

generally flat, while the outlier(s) was tall, and vice-versa. Finally, on full-range trials, all 
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ellipses (four or eight) were randomly selected from the entire twenty-one ellipse range 

of the stimulus set (Figure 1.2). 

I reasoned that pooling would produce less precise estimates of mean aspect ratio 

on outlier trials than on full-range trials. First, outliers tend to be discounted during 

pooling of color (Michael, De Gardelle, & Summerfield, 2014) and facial expression 

(Haberman & Whitney, 2010). If outliers are also excluded from summary judgments of 

aspect ratio, then judgments on trials with outliers should be less close to the mean of 

their sets than those without outliers. Second, because perception of extreme aspect ratios 

tends to be exaggerated away from the null-point (Suzuki & Cavanagh, 1998), the 

consistent presence of a categorical outlier might heighten the conflict between 

segmentation and integration, and thus further disrupt integration. Full-range trials, in 

contrast, were less likely to have a minority of ellipses that were categorically different 

from the rest. Thus, I reasoned that, despite the presence of boundary-crossing in both 

trial types, outlier trials would show reduced evidence of pooling, compared to full-range 

trials. 

Importantly, because the precision of ensemble integration is known to decrease 

as the heterogeneity of a set increases, (e.g., Dakin, 2001; Morgan, Chubb & Solomon, 

2008; Marchant, et al., 2013; Im & Halberda, 2013; Haberman, Lee & Whitney, 2015), I 

wanted to ensure that set heterogeneity was comparable across outlier and full-range 

trials. I confirmed this by running a 100-trial simulation with outlier and full-range trials, 

iterated 500 times. Across iterations, with these design parameters, four-ellipse outlier 

trials had slightly less heterogeneity (mean SD = 0.2443 log units, SD = 0.002) than four 



20 

 

ellipse full-range trials (mean SD = 0.2479, SD = 0.005), t(499) = 8.94, p < .01, d = 0.95. 

This simulation yielded the same pattern for eight-ellipse trials. Thus, if outlier trials did 

show evidence of reduced pooling, compared to full-range trials, it could not be because 

they simply had more heterogeneity. 

Apart from multi-ellipses trials, I also included single-ellipse trials. On single-

ellipse trials, one ellipse was randomly selected from the full range, and was displayed at 

a random location; observers could only base their response on this single ellipse. 

However, I also randomly selected three (or seven) additional ellipses from the full range, 

as if I were generating a full-range multi ellipse trial to display. Importantly though, these 

additional “invisible” ellipses were not displayed. Although these additional ellipses were 

invisible, a group mean was nonetheless calculated, and observer error relative to this 

group mean could be computed. Thus, single-ellipse trials were crucial. Observer error on 

these trials, relative to the mean of the entire set (which they could not see), allowed me 

to quantify the magnitude of error one would expect if observers simply responded to one 

random ellipse, without integrating aspect ratio information, on true multi-ellipse full-

range trials. If observers did integrate information from multiple visible ellipses on true 

multi-ellipse trials, their estimates should approach that trial’s true average, since in those 

cases multiple visible ellipses were available for integration. Thus, convincing evidence 

of integration (i.e., ensemble coding) and mean extraction would be present if observer 

error on true full-range multi-ellipse trials was reduced, compared to error on single-

ellipse trials. Less centrally, single-ellipse trials also served as a measure of sensitivity to 
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peripherally-viewed aspect ratio when error was computed relative to the actual aspect 

ratio of the single visible ellipse. 

For every observer, the experiment began with the central display of the following 

instructions: Estimate the average shape. Maintain your gaze on fixation at all times. 

Move mouse L or R to adjust response. Spacebar to begin. Each trial began with a central 

fixation point displayed for a random duration between 800 and 1200ms. Next, a four or 

eight multi-ellipse array, or a single-ellipse array, was displayed for 250ms. Aspect ratio 

information can be extracted at extremely brief durations (D’Abreu et al., 2017), and 

others have used similar display durations for sets of relatively simple static stimuli (e.g., 

Chong & Treisman, 2005; Oriet & Brand, 2013). This duration also prevented multiple 

fixations, and serial scanning of individual set members. Next, fixation was displayed 

again for 500ms, which prevented the upcoming response screen from being incorporated 

into the stimulus set. Finally, a response ellipse appeared in the center of the screen. The 

aspect ratio of the initial response ellipse was randomly selected from the full stimulus 

range. Observers reported their estimate of the set average (or the individual ellipse on 

single-ellipse trials) by moving the mouse left or right, which smoothly adjusted the 

response ellipse across the stimulus range. If, for example, the initial response ellipse 

happened to be a circle, moving the mouse leftward would increase the “flatness” of the 

response ellipse by animating across the stimulus set, in discrete steps, one ellipse at a 

time. After the “flattest” ellipse in the set was reached, the response ellipse would then 

begin to increase in “tallness”. Moving the mouse rightward had the opposite effect. If 

the observer continuously moved the mouse left or right, eventually, after a cycle that 
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included all the ellipses in the stimulus set being displayed at least once, they would 

encounter an endpoint (i.e., a point at which further left or right movement did not further 

change the response ellipse). Observers could then move the mouse in the opposite 

direction to continue response adjustment. Importantly, the aspect ratio of these endpoints 

(if they were encountered at all) were randomized across trials – they did not 

systematically correspond to the actual endpoints of the stimulus set (i.e., they did not 

systematically correspond to the “flattest” and “tallest” ellipses). When observers reached 

their desired response, they simply clicked the mouse to finalize their choice. Finally, to 

prevent any effect of an afterimage from the response ellipse on the next trial, a backward 

mask composed of a scrambled circle from the stimulus set was displayed for 250 ms at 

the center of the screen, then the next trial began. Observers were allowed as many 

practice trials as they wished before responses were recorded. 

 

Results 

My primary interest was whether observers were more sensitive to a set of 

ellipses’ average aspect ratio when that set’s members did not span the category 

boundary, compared to when they did. I began by computing the error of each observer’s 

response relative to the mean aspect ratio the set, on a trial-by-trial basis. For example, if 

on one trial a set of ellipses had a null (0.00) aspect ratio on average, and the observer 

responded with aspect ratio 0.043 , their error on that trial would be +0.043. In this case, 

their response ellipse was too tall relative to the set mean. Negative error values indicated 

a response that was too flat. For each observer, I compiled these signed-difference scores 
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into separate error distributions, one for each condition (flat, tall, center, outlier, full-

range, center and single trials). Next, I calculated the standard deviation of each 

observer’s error distributions, for each condition. Greater sensitivity to mean aspect ratio 

was expected to produce error distributions with smaller standard deviations. This 

approach has been used in previous investigations of ensemble coding (e.g., Haberman & 

Whitney, 2009; Sweeny, Haroz, & Whitney, 2013; Sweeny & Whitney, 2014; Elias et al., 

2017). This analysis yielded overall error scores (i.e., the SD of an observer’s error 

distribution) for each condition. 

Main Results. A repeated measures 6 (trial type: flat, tall, center, outlier, full-

range, single trials) x 2 (set size: four-ellipse, eight-ellipses) analysis of variance 

(ANOVA) revealed main effects of trial type, F(5, 29) = 85.44, p < .01, p
2 = 0.94, and 

set size, F(1, 33) = 130.61, p < .01, p
2 = 0.8. The interaction between trial type and set 

size was significant, F(5, 29) = 6.82, p < .01, p
2 = 0.54. The main indicator of ensemble 

coding was the comparison between full-range trials and single trials. Crucially, estimates 

of average aspect ratio were more precise on full-range trials (mean SD = .21, SD = .05) 

than they were on single-ellipse trials (mean SD = .24, SD = .04), when eight ellipses 

were displayed, t(33) = 3.48, p < .01, d = 0.6. However, this comparison was not 

significant for four-ellipse trials, t(33) = .98, n.s., although it trended in the right 

direction. Thus, although performance was better on full-range trials in both conditions, 

the best evidence for ensemble coding of aspect ratio was present on eight-ellipse trials. 

Performance on flat and tall trials did not differ, on either four-ellipse, t(33) 

=0.09, n.s, or eight-ellipse trials t(33) = 1.24, n.s. Since I had no a-priori hypotheses 



24 

 

regarding performance on flat trials versus tall trials, and the category boundary was not 

crossed in either condition, I combined both flat and tall trials into one error distribution, 

for each observer. I refer to these trials simply as non-boundary-spanning, or simply non-

boundary trials (for a schematic representation of non-boundary trials, see Figure 1.2). To 

do so, I calculated performance across flat and tall trials, separately and for each 

observer. I then took the average of these two values, per observer, to yield a measure of 

each observer’s performance on non-boundary trials. This approach was superior to 

collapsing data from these conditions into one, super distribution. This alternative 

approach could have, hypothetically, allowed for two narrow distributions with means 

biased away from zero, in opposite directions, to produce a super-distribution with an 

inflated SD, which I obviously did not want. Critically, observers performed better on 

non-boundary trials than they did on center trials, when both four (non-boundary mean 

SD = .11, SD = .03; center mean SD = .15, SD = .05) t(33) = 5.49, p < .01, d = 0.94, and 

eight ellipses (non-boundary mean SD = .12, SD = .03; center mean SD = .17, SD = .04) 

t(33) = 5.26, p < .01, d = 0.9, were displayed. Thus, regardless of whether observers were 

employing ensemble coding (as is likely for eight-ellipse trials), or leveraged some other 

method (as is possible for four-ellipse trials), sensitivity to a set’s average aspect ratio 

was greatest when ellipses did not span aspect ratio’s category boundary. These main 

results are summarized in Figure 1.3. Since the strongest evidence for ensemble coding 

occurred on eight-ellipse trials, all following analyses were carried out on those trials 

only. 
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Figure 1.3. On both four (white data points)- and eight-ellipse (black data points) trials, 

observers were more sensitive to the average aspect ratio in sets that included only “flat” 

or “tall” ellipses (i.e., non-boundary trials), compared to when sets included “flat” and 

“tall” ellipses (i.e., center trials). The comparison between single and full-range trials—

the main indicator of ensemble coding—was significant for sets of eight ellipses. Error 

bars in all figures represent 95% confidence intervals, all starred comparisons p < .01. 

 

Secondary Results. Of secondary interest was the comparison between outlier 

trials and full-range trials. Observer performance was comparable for both outlier (mean 

SD = .20, SD = .05) and full-range trials (mean SD = .21, SD = .05) t(33) = .85, n.s 

(Figure 1.3). Interestingly, observer performance was comparable for outlier and full-

range trials even though outlier trials did contain less heterogeneity (mean SD = .24, SD 

= .03) than full-range trials (mean SD = .25, SD = .07), as pre-experimental simulations 

predicted they would. It is possible that the reduced heterogeneity in outlier trials did not 

compensate for the disruptive effects of the presence of ellipses that spanned the category 

boundary, although only two ellipses were categorically different from the rest, on eight-

ellipse trials. 
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Irrespective of these secondary comparisons, observers were capable of 

integrating aspect ratio information, but were especially sensitive to the mean of sets that 

did not cross the category boundary. This is the main result of Experiment 1. 

Addressing alternative explanations. Next, I addressed three alternative 

explanations of Experiment 1’s primary result. First, I considered response compression. 

Then, I investigated whether observers were extracting the mean of the sets, the median 

of the sets, simply averaging the two most extreme ellipses present in a given set, or 

simply responding from the middle of the relevant range on a trial-by-trial basis. Finally, 

I considered the relationship between set variability (i.e., heterogeneity) and response 

error magnitude. 

I began by considering whether response compression could account for the 

observed results. The stimulus set for Experiment 1 contained “endpoints”. That is, there 

was a “flattest” and a “tallest” ellipse. These endpoints were present both in the sets of 

ellipses and in the response stage. If observers avoided responding with these extreme 

ellipses, then distributions of responses would have been compressed away from 

endpoints, toward the center of the stimulus range. Response compression like this would 

narrow error distributions and thus lower overall estimates of error. Response 

compression could be particularly relevant for trials in which the mean of the set was 

especially “flat” or “tall”—the very trials that did indeed display reduced observer error. 

Although steps were taken to reduce the impact of endpoints and potential 

response compression at the response stage (see Procedure), I conducted further analyses 

to determine if response compression was responsible for the above results. Consider flat 
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trials with a low seed: these trials had, on average, the “flattest” mean aspect ratio. In 

contrast, tall trials with a high seed had, on average, the “tallest” mean aspect ratio. Thus, 

endpoints were most relevant on flat low-seed and tall hi-seed trials, since the means of 

those trials were nearest the stimulus set’s endpoints; response compression was 

especially likely on these trials. In contrast, endpoints were less relevant for flat trials 

with a high seed and tall trials with a low seed since the means of these trials were nearer 

the category boundary (and “farther” from the potential sources of response 

compression). I calculated the SD of each observer’s error distributions for flat trials with 

a high seed, and separately, tall trials with a low seed. I then averaged these two values 

for each observer to yield a value that represented performance across flat and tall trials 

in which response compression would be relatively less relevant. I also calculated 

performance on flat trials with a low seed and tall trials with a high seed. Response 

compression, if present, would be relatively more relevant on these trials. Observer 

performance on trials in which response compression would be more relevant (mean SD 

= .11, SD = .04) was better than on trials in which it would be less relevant (mean SD = 

.13, SD = .04) t(33) = 2.33, p = .03, d = 0.4. Thus, response compression may have 

impacted our results. Importantly, however, even when I considered only trials for which 

response compression would be less relevant (mean SD = .13, SD = .04), performance 

was better on trials that did not span the category boundary than on center trials that did 

(mean SD = .17, SD = .04) t(33) = 4.75, p < .01, d = 0.82. This suggests that response 

compression cannot fully account for the main pattern of results presented above. 
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Next, I investigated whether observers were indeed extracting the mean of sets, 

the median of sets, or were simply responding by selecting the midpoint of the 

appropriate stimulus range on a trial-by-trial basis (e.g., responding with the middle-flat 

option for all flat trials). In addition to mean and median extraction though, another form 

of integration was possible: observers may have selectively averaged the two most 

extreme aspect ratios present in the set. For example, if a trial contained six circles, one 

slightly flat ellipse and one very tall ellipse, the observer may have simply averaged the 

slightly flat and very tall ellipse, and ignored the intermediaries. To disentangle these 

three possibilities (mean or median extraction, and averaging-of-extremes), I first isolated 

low-seed trials for flat ellipses. Across these trials, I calculated each observer’s error 

distribution using error computed relative to the veridical trial mean. I then did the same 

for low-seed center and tall trials. I isolated high-seed error distributions from flat, center 

and tall trials in the same manner. The average of these six values provided a single 

measure of each observer’s sensitivity across my primary three trial types, relative to the 

mean. I repeated this entire process for error relative to each trial’s median and relative to 

the average of each trial’s flattest and tallest ellipse. As a result, I obtained three final 

values: average sensitivity across my main three trial types relative to the mean, median, 

and average-of-extremes. Observer performance relative to the mean (M = .13, SD = .03) 

was better than performance relative to the median (M = .14, SD = .03) t(33) = 22.31, p < 

.01, d = 3.83. However, it was worse than performance relative to the average-of-

extremes (M = .11, SD = .02) t(33) = 3.84, p < .01, d = 0.66. Thus, it is possible that 
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observers were simply averaging the two most extreme ellipses on a given flat, tall or 

center trial. 

To further explore this possibility, I combined data from my primary three trial 

types: flat, tall and center trials, and I disregarded seed type. For each observer, I then 

computed a correlation coefficient between that observer’s responses and the true means 

of all their trials. This yielded a value representing the strength of the relationship 

between observer response and the true mean of a trial, across my main three trial types. I 

repeated this process for these trials’ medians and average-of-extremes. Across observers, 

the correlation between response and the true mean (mean R = .79, SD = .09) was 

stronger than the correlation between response and trial median (mean R = .77, SD = .09) 

t(33) = 3.47, p = .04, d = 0.59, or trial average-of-extremes (mean R = .76, SD = .09)  

t(33) = 4.8, p = .02, d = 0.82. Thus, the picture is somewhat murky. On the one hand, 

when using error distributions as the outcome, observer sensitivity to summary 

information was highest when measured relative to the average of a set’s two most 

extreme ellipses, and slightly reduced relative to a set’s mean. However, the relationship 

between observers’ responses and a set’s true mean was stronger than that between 

observer response and a set’s true median or average-of-extremes. There are several 

reasons to doubt that observers were only averaging the two most extreme aspect ratios, 

which I will discuss shortly. 

Next, I investigated whether observers were not actually integrating information, 

but were instead simply employing a response strategy. On flat trials, for example, 

observers may have simply selected a response from the middle of the flat range. They 
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may have done likewise for center and tall trials, as well. To determine if observers 

employed this response strategy, I again sorted each observer’s data by trial type 

(isolating flat, center and tall trials), as well as by seed (low-seed and high-seed). This 

resulted in six trial types (trial type: flat, center, and tall X seed: low and high). This time, 

however, I computed each observer’s average chosen aspect ratio, in each of the six trial 

types (rather than error). Note that the center of the range for both flat low-seed and flat 

high-seed trials is identical (this is also true of center and tall trials). If observers were 

simply picking from the center of the appropriate range on a trial-by trial basis, their 

responses would not depend on that trial’s seed. If observers were truly integrating 

information, however, their responses should vary, depending on the presence of a low or 

high seed. 

A repeated measures 3 (trial type: flat, center, tall) × 2 (seed: low, high) analysis 

of variance (ANOVA) revealed main effects of trial type, F(2, 32) = 460.43, p < .01, p
2 

= 0.97, and seed, F(1, 33) = 119.23, p
2 < .01, d = 0.78. The interaction between trial type 

and seed was significant, F(2, 32) = 7.52, p < .01, p
2 = 0.32. Planned comparisons 

revealed that observers chose a flatter aspect ratio (AR) on flat low-seed trials (mean AR 

= -.26, SD = .06) than on flat hi-seed trials (mean AR = -.19, SD = .07) t(33) = 5.7, p = 

.02, d = 0.98. This pattern persisted for center low-seed trials (mean AR = -.1, SD = .06) 

and center high-seed trials (mean AR = .03, SD = .07) t(33) = 9.22, p < .01, d = 1.58. 

Center low-seed trials yielded a particularly flat aspect ratio; the likely source of the 

interaction effect. Nonetheless, the pattern persisted for tall low-seed trials (mean AR = 

.15, SD = .06) and tall high-seed trials (mean AR = .25, SD = .08) t(33) = 7.0, p < .01, d = 
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1.2 as well (Figure 1.4). In other words, observer response in all of my main trial types 

depended on whether a trial was low- or high-seed. This is strong evidence against a 

simple center-of-the-range response strategy. 

 

Figure 1.4. Across all three main conditions, low-seed trials (left data point in each pair) 

were estimated to have a flatter mean than high-seed trials (right data point in each pair). 

White horizontal lines represent the midpoint of the flat, center and tall trial ranges. If 

observers were simply selecting from the midpoint of flat, center and tall ranges, each 

pair of data points would align with the horizontal white line. Instead, observers were 

sensitive low and high seeds, indicating they were not simply choosing from the midpoint 

of the relevant range, on a trial-by-trial basis. 

 

Finally, I investigated the relationship between set heterogeneity (i.e., how much 

aspect ratio variation was present in a set) and observer error. In general, I expected 

increased set heterogeneity to predict increased error. Crucially, there was less 

heterogeneity in non-boundary trials (mean SD = .14, SD = .004) than in center trials 

(mean SD = .15, SD = .006) t(33) = 6.02, p < .01, d = 1.03. Although increased set 

variability is known to impede integration, it was important to investigate whether this 

subtle difference in heterogeneity between trial types could account for superior observer 
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mean sensitivity on non-boundary trials. In order to do so, I modeled the relationship 

between heterogeneity and observer performance, and then used that model to predict the 

amount of error I might expect if heterogeneity fully accounted for observer performance. 

First, I quantified set heterogeneity in a manner similar to other ensemble coding research 

(e.g., Elias et al., 2016). On each trial, I simply took the SD of all the aspect ratios present 

in that set. Next, I computed the absolute error magnitude between an observer’s 

response and the true trial mean. For each observer, across all trials, I then computed the 

slope of the linear relationship between heterogeneity and the magnitude of observer 

error. These slopes were positive (mean slope: .36, SD = .31) t(33) = 6.78, p < .01, d = 

1.16. Finally, I used this relationship to predict the amount that observer error magnitude 

would be expected to increase, given the actual difference in heterogeneity between non-

boundary and center trials. The linear relationship between heterogeneity and observer 

error predicted an increase in error magnitude of .0027 log units given the 0.01 difference 

in heterogeneity between the two conditions. However, the observed difference in error 

magnitude between non-boundary (mean log units = .106, SD = .03) and center trials 

(mean log units = .146, SD = .04) was more than fifteen times greater than predicted. 

This approach was less-than-ideal, as it was done post-hoc and lacked an objective 

threshold for assessing heterogeneity’s ability to account for the main pattern of results 

described above. Still, the approach does suggest that variation in heterogeneity between 

trial types cannot fully account for observers’ increased sensitivity to the mean on non-

boundary trials, relative to center trials. 

 



33 

 

Experiment 1 Discussion 

Experiment 1 produced several noteworthy results. First, ensemble coding—

information integration—can indeed operate on aspect ratio. Secondly, integration 

operates best when it does not have to contend with a category boundary (i.e. when all 

ellipses in the group are “flat” or “tall”, and the group does not span the category 

boundary). This is an important result, since no ensemble coding research has explored 

this potential constraint on the process of integration, at least to the best of my 

knowledge. Observers did not appear to rely on the median to make their summary 

judgments. Nor did observers simply pick from the midpoint of the relevant range, on a 

trial-by-trial basis. Notably, observer performance on full-range trials was relatively 

imprecise. This result is hard to explain if observers were simply averaging the two most 

extreme ellipses in the set. After all, on any given full-range trial, extreme ellipses (both 

flat and tall) were likely to be present. Averaging the flattest and tallest ellipse should be 

especially easy on such trials, given that extreme ellipses tend to stand-out (Treisman & 

Gormican, 1988). Instead, observers performed worse on full-range trials than any other 

multi-ellipse condition. Additionally, across many full-range trials, the average of the two 

most extreme ellipses is simply the category boundary circle (indeed, across all eight-

ellipse full-range trials, the average of the two most extreme aspect ratios was -.0003). 

However, observers seemed to show no preference for the category boundary on full-

range trials (Figure 1.5). Strictly speaking, even if observers really were averaging the 

two most extreme aspect ratios from a given set, this would constitute ensemble coding 
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(Whitney & Leib, 2018). Still, on balance, the evidence suggests that observers were 

likely sensitive to the mean of the set, not the average of the two most extreme ellipses. 

 

Figure 1.5. Across all eight-ellipse full-range trials, the average of the two most extreme 

aspect ratios present was a circle. However, observers in Experiment 1 did not seem to 

show a preference for responding with a circle on those trials. This is one reason it is 

unlikely that observers were simply averaging the two most extreme ellipses present in a 

given set. 

 

It may be that the presence of a category boundary introduces a conflicting 

computational strategy in the visual system—segmentation. Segmentation, then, may be 

responsible for impeding integration, when a visual category boundary is present in a set. 

Before I investigated this possibility, though, I conducted an additional experiment to 

address a few limitations from Experiment 1. 
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EXPERIMENT 2 

In Experiment 1, the endpoints of the stimulus set (i.e., the “flattest” and “tallest” 

ellipses) were present in the stimuli arrays as well as in the response stage. Even though 

the response compression that likely that resulted from this issue probably did not 

meaningfully impact the main findings, it was still less-than-ideal. In Experiment 2, the 

response range again included all the ellipses that could be present on a given trial. 

Additionally though, three extremely flat and three extremely tall ellipses, ellipses that 

were never present on any trial, were included in the response ellipse range. By 

effectively “extending” the endpoints of the stimulus set at the response stage only, the 

potential for response compression should be reduced. 

Additionally, in Experiment 1, the increase (or decrease) in aspect ratio between 

each ellipse in the stimulus set was not perfectly equivalent. For example, the difference 

in aspect ratio (in log units) between the flattest ellipse and the second-flattest ellipse was 

close to, but not the same as, the difference between the fourth-flattest and fifth-flattest 

ellipses. This subtle discrepancy accounted for the difference in heterogeneity between 

non-boundary and center trials, even though both had a range of 11 ellipses. Although the 

analyses above suggest this discrepancy cannot fully account for the main results, I 

wanted to address the limitation in a more direct way. Finally, the ellipses in Experiment 

1 were not perfectly equated in terms of area. Integration of size certainly occurs (e.g., 
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Allik et al., 2014), and if trial types systematically differed in terms of average size, it 

would be difficult to attribute observer sensitivity to aspect ratio integration, as opposed 

to size integration, with certainty. Experiment 2 addressed both of these issues. In 

Experiment 2, I used a new stimulus set for which increases (and decreases) in aspect 

ratio were equated between each step in the stimulus set, and all ellipses were precisely 

equated in terms of area. 

 

Method 

Observers. Forty-five students (mean age = 19.2 years; 89% female) from the 

University of Denver participated in Experiment 2. Observers granted informed consent 

and had normal or corrected-to-normal visual acuity. I conducted a power analysis for the 

test of the presence of ensemble coding in Experiment 1 (i.e., full-range versus single-

ellipse trials). Assuming the same large effect size (d = .6), I determined that a sample of 

thirty-three would be necessary to obtain power of 0.8. I anticipated that some of the 

modifications made to Experiment 2 would result in a smaller effect size; I therefore 

increased the sample size to forty-five. 

Stimuli. The new stimulus set included twenty-seven ellipses (0.2° thick lines) 

created in Adobe Photoshop CS6 v. 13.0 x64, each rendered in dark gray (luminance: 19 

cd/m2). The aspect ratios were symmetrically distributed (in log scale) around the 

category-boundary aspect ratio (i.e., circle). Flat ellipses present in set displays included 

the following aspect ratios: −0.463, −0.417, −0.371 −0.324, −0.278, −0.232, −0.185, 

−0.139, −0.093, and −0.046. Additionally, at the response stage only, three extremely flat 
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ellipses (−.602, −.556, and −.510) were available as response options in addition to the 

rest of the flat ellipses. Tall ellipses present in set displays included the following aspect 

ratios: 0.046, 0.093, 0.139, 0.185, 0.232, 0.278, 0.324, 0.371, 0.417, and 0.463. 

Additionally, at the response stage, three extremely tall ellipses (.510, .556, and .602) 

were available as response options in addition to the rest of the tall ellipses. Note that the 

appearance of unequal changes in aspect ratio across the stimulus range in the lists above 

is due to rounding error. The incremental change between adjacent aspect ratios across 

the stimulus set was equated, in log units, past the tenth decimal. The areas of all ellipses 

were equated to the second decimal, and the edges of each ellipse were blurred in Adobe 

Photoshop using the Gaussian blur tool with a 2-pixel radius. 

Experiments were conducted on a CRT monitor with a refresh rate of 100 Hz at a 

viewing distance of 55 cm. Stimuli were presented against a uniform gray background 

(RGB value = 170, 170, 170; luminance = 41.5 cd/m2). Experiments were coded and run 

using MATLAB (Release 2014b; The MathWorks, Natick, MA) with the Psychophysics 

Toolbox (Brainard, 1997). 

Procedure. The procedure for Experiment 2 was nearly identical to that of 

Experiment 1. The experiment consisted of 240 multi-ellipse and single-ellipse trials, 

counterbalanced. Since evidence of ensemble coding was strongest for eight-ellipse trials 

in Experiment 1, all multi-ellipse trials in Experiment 2 consisted of eight ellipses 

arranged in a diamond shape around fixation (Figure 1.1). The centroids of adjacent 

ellipses were 5.9° away from each other along the horizontal axis and 5.9° away from 

each other along the vertical axis. 
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Before running the experiment, I confirmed that my design parameters should 

result in comparable set heterogeneity for non-boundary and center trials. I confirmed 

this by again running a 100-trial simulation of Experiment 2, iterated 500 times. This 

showed that, with the altered aspect ratios in Experiment 2, non-boundary trials contained 

comparable heterogeneity (M = 0.1439 log units, SD = 0.0022) to center trials (M = 

0.1440, SD = 0.002), t(499) = .85, n.s. 

The response stage was nearly identical to that of Experiment 1, but with one 

important difference. The aspect ratio of the initial response ellipse was randomly 

selected from a set of ellipses that included the full twenty-one ellipses that could be 

present in a given trial, plus the three extremely flat and three extremely tall ellipses 

described above (see Stimuli). Observers then adjusted the aspect ratio of the response 

ellipse by moving the mouse left or right, which cycled the response ellipse across 

Experiment 2’s extended stimulus range one ellipse at a time. 

 

Results 

My primary interest was again whether observers were more sensitive to a set of 

ellipses’ average aspect ratio when that set did not span aspect ratio’s category boundary, 

compared to when a set did span aspect ratio’s category boundary. I began by computing 

each observer’s error in the same manner as Experiment 1. This yielded overall error 

scores (i.e., the SD of an observer’s error distribution) for each observer, and for each 

condition. Notably, observer reaction times on non-boundary trials (mean RT in seconds 
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= 2.22, SD = .82) and reaction times on center trials (mean RT in seconds = 2.21, SD = .8) 

did not differ t(44) = .17, n.s. 

Main Results. A repeated measures one-way (trial type: flat, tall, center, outlier, 

full-range, single trials) analysis of variance (ANOVA) revealed a main effect of trial 

type, F(5, 220) = 94.81, p < .01, p
2 = 0.68. The main indicator of ensemble coding was 

the comparison between full-range trials and single trials. As in Experiment 1, estimates 

of the set’s average aspect ratio were more precise on full-range trials (mean SD = .28, 

SD = .08) than they were on single-ellipse trials (mean SD = .3, SD = .04) t(44) = 2.78, p 

< .01, d = 0.42. 

As in Experiment 1, I separately computed the SDs of each observer’s error 

distributions on flat and tall trials. For each observer, the average of these two values 

yielded a measure of their performance on non-boundary trials. Critically, observers 

performed better on non-boundary trials than they did on center trials (mean SD non-

boundary trials = .18, SD = .06; mean SD center trials = .21, SD = .06) t(44) = 4.64, p < 

.01, d = 0.69. Thus, Experiment 2’s results mirrored those of Experiment 1; observers 

showed evidence of integration, especially for sets that did not span the category 

boundary. These main results are summarized in Figure 2.1. 
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Figure 2.1. Again in Experiment 2, observers were more sensitive to the average aspect 

ratio of sets that included only “flat” or “tall” ellipses (i.e., non-boundary trials), 

compared to when sets included “flat” and “tall” ellipses (i.e., center trials). 

 

Secondary Results. Of secondary interest was the comparison between outlier 

trials and full-range trials. In contrast to Experiment 1, observer performance was better 

on outlier trials (mean SD = .26, SD = .07) than full-range trials (mean SD = .28, SD = 

.08) t(44) = 2.5, p = .02, d = .37. However, as intended, outlier trials did contain less 

heterogeneity (mean SD = .24, SD = .02) than full-range trials (mean SD = .27, SD = 

.05), which could account for some—or all—of this performance advantage. Indeed, I 

again examined the set heterogeneity present on a trial-by-trial basis against the absolute 

magnitude of observer error, across all trial types. Across observers, the relationship 

between set heterogeneity and observer error was positively correlated (mean slope: .67, 

SD = .02). I then compared the average amount of heterogeneity on outlier trials (mean 

SD = .24, SD = .02) with the average amount of heterogeneity on full-range trials (mean 

SD = .27, SD = .05). The relationship between heterogeneity and error magnitude 
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predicted that, for this amount of increase in heterogeneity, observer error should increase 

by .02 log units. This was very close to the observed difference between observer error 

magnitude on outlier (mean error log units = .23, SD = .07) compared to full-range 

(mean error log units = .25, SD = .08) trials. Thus, performance on outlier and full-range 

trials likely did not differ once the effect of heterogeneity was taken into account. 

I additionally wanted to know whether, on non-boundary trials, observers’ errors 

were systematic. In other words, although observers were most sensitive to the mean of 

non-boundary-spanning sets, they were of course not error-free. Did those errors tend to 

exaggerate or alternatively underestimate the flatness or tallness of the set? To answer 

this question, I simply computed each observer’s average signed error for flat trials and 

separately for tall trials. Across observers, mean estimates of flat trials exaggerated the 

mean flatness of the set (mean error = -.05, SD = .08) t(44) = 3.99, p < .01, d = .6. 

Likewise, across observers, mean estimates of tall trials exaggerated the mean tallness of 

the set (mean error = .05, SD = .08) t(44) = 4.25, p < .01, d = .63. 

Addressing alternative explanations. I again wanted to address three potential 

alternative explanations of my primary result. I began by considering whether response 

compression could account for the observed results, in the same manner as Experiment 1. 

Recall that endpoints were most relevant on flat low-seed and tall hi-seed trials, since the 

means of those trials were nearest the stimulus set’s endpoints; response compression was 

especially likely on these trials. 

To investigate this, I again calculated the SD of each observer’s error distribution 

on flat trials with a high seed, and separately, their performance on tall trials with a low 
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seed. I then averaged these two values for each observer, to yield a value that represented 

performance across trials in which response compression would be relatively less 

relevant. I then calculated the SD of each observers’ error distribution on flat trials with a 

low seed and tall trials with a high seed. Across observers, performance on trials in which 

response compression would be more relevant (mean SD = .16, SD = .06) was better than 

on trials in which it would be less relevant (mean SD = .18, SD = .07) t(33) = 2.55, p = 

.02, d = 0.38. Importantly, however, even when I considered only trials in which response 

compression would be less relevant (mean SD = .18, SD = .07), observer performance 

was better on non-boundary trials than on center trials (mean SD = .21, SD = .06) t(33) = 

4.09, p < .01, d = 0.61. This suggests that response compression cannot fully account for 

the main pattern of results presented above, consistent with Experiment 1. Thus, this 

result replicated even with the extended response range—and presumably attenuated 

response compression—present in Experiment 2. 

Next, I again wanted to investigate whether observers were indeed extracting the 

mean of sets, the median of sets, averaging the two most extreme aspect ratios of each 

set, or were simply responding from the midpoint of appropriate stimulus range on a trial-

by-trial basis. I began by investigating whether mean or median extraction occurred, or if 

observers simply averaged the two most extreme aspect ratios (“averaging-of-extremes”). 

To disentangle these possibilities, across observers, I calculated the average SD of error 

distributions relative to the veridical mean for flat, center and tall trials (exactly as in 

Experiment 1). I repeated this entire process for error relative to each trial’s median and 

relative to the average of each trial’s flattest and tallest ellipse. As a result, I obtained 
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three final values: average SD of error distributions relative to the mean, median, and 

average-of-extremes. Observer performance relative to the mean (M = .18, SD = .06) was 

better than performance relative to the median (M = .19, SD = .05) t(33) = 2.6, p = .01, d 

=.38. Additionally, performance relative to the mean was better than relative to the 

average-of-extremes (M = .19, SD = .05) t(44) = 5.13, p < .01, d = 0.76. In addition to 

these comparisons, I combined data from my primary three trial types: flat, tall and center 

trials, and I disregarded seed labels. For each observer, I then computed a correlation 

coefficient between that observer’s responses and the true means of these trials. This 

yielded a value representing the strength of the relationship between observer response 

and the true mean of a trial, across my main three trial types. I repeated this process for 

these trials’ medians and average-of-extremes. Across observers, the correlation between 

response and the true mean (mean R = .76, SD = .16) was stronger than the correlation 

between response and trial median (mean R = .75, SD = .16) t(44) = 5.19, p < .01, d = 

0.77, and average-of-extremes (mean R = .74, SD = .16)  t(44) = 10.37, p < .01, d = 1.55. 

Thus, the picture in Experiment 2 was clearer than from the picture in Experiment 1. 

Observers were most sensitive to the mean aspect ratio of a set, and were likely extracting 

mean, as opposed to median, values. 

Next, I again wanted to investigate whether observers were not actually 

integrating information, but were instead simply responding from the midpoint of the 

relevant stimulus range. I again sorted each observer’s data by trial type (isolating flat, 

center and tall trials), as well as by seed (low-seed and high-seed). This resulted in six 

trial types (flat, center, and tall lo-seed trials, and flat, center, and tall high-seed trials). I 
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recorded each observer’s average chosen aspect ratio, in each of the six trial types. If 

observers were simply picking from the center of the appropriate range on a trial-by trial 

basis, their responses would not depend on that trial’s seed. If observers were truly 

integrating information, however, their responses should vary, depending on the presence 

of a low or high seed. A repeated measures 3 (trial type: flat, center, tall) × 2 (seed: low, 

high) analysis of variance (ANOVA) revealed main effects of trial type, F(2, 43) = 

581.62, p < .01, p
2 = 0.96, and seed, F(1, 44) = 215.77, p < .01, p

2 = 0.83. The 

interaction between trial type and seed was not significant, F(2, 43) = 3.02, p = .054, p
2 

= 0.12. Planned comparisons revealed that observers chose a flatter aspect ratio (AR) on 

flat low-seed trials (mean AR = -.34, SD = .09) than on flat hi-seed trials (mean AR = -.22, 

SD = .09) t(44) = 11.6, p < .01, d = 1.73. This pattern persisted for center low-seed trials 

(mean AR = -.06, SD = .06) and center high-seed trials (mean AR = .03, SD = .05) t(44) = 

7.39, p < .01, d = 1.1, as well as tall low-seed trials (mean AR = .22, SD = .07) and tall 

high-seed trials (mean AR = .34, SD = .09) t(44) = 10.98, p < .01, d = 1.64. 

Finally, I again investigated the relationship between set heterogeneity (i.e., how 

much aspect ratio variation was present in a set) and observer error. Recall that prior to 

Experiment 2, simulations using Experiment 2’s parameters predicted a comparable 

amount of heterogeneity for non-boundary and center trials. There was also no reason to 

expect a difference in heterogeneity, since aspect ratios increased/decreased linearly 

across the stimulus range, and flat, tall and center trials all spanned an equal number of 

aspect ratios. Nonetheless, perhaps due to random chance or rounding error resulting 

from representing aspect ratios to three decimals, there was less heterogeneity in        



45 

 

non-boundary trials (mean SD = .151, SD = .003) than in center trials (mean SD = .153, 

SD = .005) t(44) = 2.55, p = .02, d = .38. Thus, heterogeneity was not perfectly controlled 

for in Experiment 2, despite careful efforts to do so. In order to investigate whether 

heterogeneity could completely account for the pattern of results described above, I again 

modeled the relationship between heterogeneity and observer error. As in Experiment 1, 

on each trial, I simply took the SD of all the aspect ratios present in that set. Next, I 

computed the absolute error magnitude, in log units, between an observer’s response and 

the true trial mean. For each observer, across all trials, I then computed the relationship 

between heterogeneity and the magnitude of observer error. This linear relationship was 

positive (mean slope: .67, SD = .02) t(44) = 241.14, p < .01, d = 35.95. Finally, I used 

this relationship to predict the amount that observer error magnitude would be expected 

to increase, given the difference in heterogeneity between non-boundary and center trials. 

The linear relationship between heterogeneity and observer error predicted an increase in 

error magnitude of .0013 log units. However, the observed difference in error magnitude 

between non-boundary (mean log units = .16, SD = .05) and center trials (mean log units 

= .19, SD = .05) was more than eighteen times greater than predicted. Although this 

approach was again not ideal (for same reasons it was not ideal in Experiment 1), it does 

suggest that variation in heterogeneity between trial types thus cannot fully account for 

observer’s increased sensitivity to the mean on non-boundary trials, relative to center 

trials, in Experiment 1 or 2.  
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Experiment 2 Discussion 

Experiment 2 replicated the main findings of Experiment 1. Observers were again 

more sensitive to the mean aspect ratio of sets that did not span the category boundary 

compared to sets that did. Experiment 2 addressed multiple methodological limitations 

from Experiment 1. Namely, in Experiment 2 all aspect ratios in the stimulus set 

increased/decreased in aspect ratio linearly, and were equated for area. Additionally, the 

potential for response compression was addressed by extending the response range. Still, 

the main results held. 

Observers in Experiment 2 seem to have been sensitive to the mean of sets of 

aspect ratios, as opposed to the median or the average-of-the-extremes. Observers again 

performed poorly on full-range trials; this is hard to explain if they were simply 

averaging the two most extreme ellipses. Additionally, Experiment 2 indicated both 

higher sensitivity (i.e. smaller error distribution SD’s) relative to the means of sets, and a 

stronger correlation between observer response and the true means of sets, compared to 

set medians or average-of-the-extremes. Observers did not simply select a response from 

the center of the appropriate range. Experiment 2 again demonstrated this by showing 

that observers were sensitive to skew in the distributions of aspect ratio, which owed to 

the presence of high and low seeds—something that would not have occurred if observers 

were simply selecting from the midpoint of the relevant range, on a trial-by-trial basis. 
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EXPERIMENT 3a 

I have suggested already that segmentation (specifically, perceptual distortion) is 

a plausible mechanism underlying ensemble coding’s reduced sensitivity when 

information in a set spans a category boundary. This perceptual distortion may have been 

particularly pronounced for aspect ratios near the category boundary, and less 

pronounced or absent for more extreme values (Suzuki & Cavanagh, 1998; Suzuki, 2005; 

Sweeny et al., 2012). Some circumstantial evidence for distortion away from the 

boundary was observed in Experiment 2—observers exaggerated the “flatness” of flat 

trials and the “tallness” of tall trials. Experiment 3a more directly tested the hypothesis 

that distortion away from the category boundary occurred during ellipse perception, 

particularly for aspect ratio values around the category boundary (Figure 3a.1). 

On center trials, slightly flat ellipses were hypothesized to appear flatter and 

slightly tall ellipses to appear taller; the net effect across trials would be an increased 

range of perceived aspect ratio, and thus increased perceptual heterogeneity. In contrast, 

on a flat trial (for example), repulsion would push the perception of ellipses near the 

category boundary toward the flatter set mean, potentially reducing the amount of 

perceived heterogeneity in the set. Considering that heterogeneity is known to disrupt the 

integrative process of ensemble coding (e.g., Dakin, 2001; Morgan, Chubb & Solomon, 

2008; Marchant, et al., 2013; Im & Halberda, 2014; Haberman, Lee & Whitney, 2015), 
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this potential effect of perceptual distortion would elegantly account for the disrupted 

integration on center trials observed in Experiments 1 and 2. Looked at the other way, 

perceptual distortion away from the category boundary may account for the improved 

performance on non-boundary trials. But first, does such distortion actually occur? 

The purpose of Experiment 3a was to examine whether repulsive mechanisms 

influenced the perception of individual ellipses. Specifically, I presented sets of ellipses 

or individual ellipses and, using a post-cue, asked observers to evaluate the aspect ratio of 

individual ellipses. I then evaluated the extent to which the perception of an ellipse’s 

aspect ratio was systematically distorted as a function of its proximity to the category 

boundary. I predicted that errors in aspect ratio judgments would follow an s-curve 

shaped pattern (the derivative of a Gaussian function; Figure 3a.1), with the highest 

magnitude of repulsive distortion near the category boundary, and a gradual decay of 

distortion as cued aspect ratios become progressively flatter (or taller) relative to the 

boundary. This distortion pattern has been observed for other visual features (e.g., Crane, 

2012; Sweeny et al., 2012). 
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Figure 3a.1. Idealized hypothetical model of perceptual distortion around the category 

boundary. Ellipse aspect ratio is plotted on the X-axis from flattest to tallest, and 

systematic error in aspect ratio perception (i.e., distortion) is plotted on the Y-axis. In this 

example, flat ellipses near the category boundary are perceived to be even flatter, while 

tall ellipses near the boundary are perceived to be taller than they actually were. 

Perception with no distortion would be represented by a flat line with no slope. This 

effect is hypothesized to have occurred in Experiment 1 and 2; Experiment 3a tests for 

the presence of this effect. 

 

Method 

Observers. In Experiment 1, observers did integrate information, as indicated by 

the comparison between full-range and single-ellipse trials. This primary comparison 

from Experiment 1 was used to estimate the necessary sample size for both Experiment 2 

and 3, since Experiment 2 and Experiment 3a were conceived of and created at the same 

time. Assuming the same large effect size (d = .6), I determined that a sample of thirty-

three would be necessary to obtain a power of 0.8. The task in Experiment 3a required 

observers to make judgments about individual objects in crowds, and previous work 

suggests that this can be very difficult or even impossible (e.g., Haberman & Whitney, 

2007; Allik et al., 2014). So, I increased the sample size for Experiment 3a by 
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approximately 50%, to compensate for what I expected to be a difficult task. For 

Experiment 3a, forty-five students (mean age = 19.2 years; 76% female) from the 

University of Denver were recruited. 

Stimuli. Stimuli in Experiment 3a were identical to those used in Experiment 2. 

Procedure. The experiment consisted of 240 multi-ellipse (flat, tall, center, outlier 

and full-range trials), as well as single-ellipse trials, counterbalanced. All arrays were 

constructed and displayed in the same manner as they were in Experiments 1 and 2. 

After each multi-ellipse or single-ellipse array was displayed, a blank screen was 

displayed for 100 ms. Next, a solid black circular cue (.78o) appear at the centroid of the 

location of one randomly selected ellipse (or at the location of the visible ellipse on 

single-ellipse trials), for 250 ms. The cue was followed by another 400-ms blank screen. 

In this way, disregarding the cue display time, the amount of time between the offset of 

the array of aspect ratios and the onset of the response screen (500 ms) was held constant, 

relative to Experiments 1 and 2. Observers were then presented with the same response 

screen used in Experiment 2, except in Experiment 3a they were instructed to “indicate 

the cued tallness or flatness”.  Observers were also allowed as many practice trials as they 

wished beforehand, and the experimenter confirmed that observers understood that the 

task was to replicate the aspect ratio of the cued ellipse. 

 

Results 

I began by quantifying how much repulsion, if any, occurred for the cued ellipse 

on every trial. For example, if the cued ellipse happened to have a slightly “tall” aspect 
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ratio (e.g., 0.139), and an observer responded with aspect ratio 0.00, then no repulsion 

occurred, since the observer’s response was not exaggerated away from the category 

boundary but was instead attracted to it. In this example, −0.139 log units of perceptual 

attraction occurred. In contrast, if an observer responded with aspect ratio 0.185, 0.046 

log units of perceptual repulsion occurred, since the slightly tall ellipse was perceived to 

be exaggerated away from the category boundary (i.e., it was perceived to be taller than it 

really was). Across trials, this analysis yielded an average repulsion index, for every 

observer, and more importantly, for every cued aspect ratio. Thus for every observer, I 

computed an average repulsion index for each cued aspect ratio. Across observers, I then 

had a measure of repulsion for every aspect ratio in the stimulus set. 

Across all multi-ellipse (i.e., all flat, tall, center, outlier and full-range) trials, the 

aspect ratios of ellipses were consistently underestimated. For example, extremely flat 

aspect ratios were rated as much taller than they truly were, while extremely tall aspect 

ratios were rated as much flatter than they actually were (Figure 3a.2A). Overall these 

errors produced a linear pattern with a negative slope, not the s-curved shape of repulsion 

as I predicted. Rather than reflecting a perceptual effect of attraction, this pattern instead 

suggests that observers were guessing during a very difficult task (see Sweeny, Haroz & 

Whitney, 2012 for simulations illustrating how guessing could produce this pattern; see 

Brady, Schurgin & Wixted, 2019, for a potential distinction between subjective and 

objective guessing). If, for example, a very flat aspect ratio was cued, and the observer 

simply responded randomly, the majority of random responses would, necessarily, be less 

flat (i.e., taller) than the cued aspect ratio. Similarly, if a very tall aspect ratio was cued, 
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random guessing would be most likely to produce a response that was less tall (i.e. 

flatter) than the cued aspect ratio. The magnitude of these errors would, of course 

diminish as the cued ellipse approached the center of the response range. Thus, guessing 

could plausibly account for the pattern of results seen across multi-ellipse trials. I did not 

predict this, although in hindsight it makes sense, especially if observers did not retain 

conscious access to the cued ellipse. This is reasonable since prior ensemble-coding 

research has illustrated that access to individual objects can be severely diminished when 

they are viewed in the context of a crowd (e.g., Haberman & Whitney, 2007; Allik et al., 

2014). 

In contrast to multi-ellipse trials, the overall distribution of repulsion indices for 

single aspect ratios around the category boundary did conform to my hypotheses, 

following an s-shaped curve (Figure 3a.2B). Slightly flat ellipses were perceived as flatter 

than they actually were, while slightly tall ellipses were perceived to be taller than they 

actually were. Across all aspect ratios, the absolute magnitude of repulsion indices was 

greater than zero (mean log units = .06, SD = .03) t(44) = 15.12, p < .01, d = 2.25. Across 

all observers, the pattern of repulsion indices on single-ellipse trials was well fit by a 

derivative of a Gaussian function (R2 = .86, p < .01) (Figure 3a.2B). An AICc analysis 

confirmed with 99.99% certainty that the fit for the derivative of a Gaussian characterized 

the pattern of data better than a linear fit (R2 = .33, n.s.). The derivative of a Gaussian 

function used had three parameters and the mathematical constant, e: f(x) = 

x*P1*P2*P3*e(-(P2*x2)). The values for P1, P2, and P3 were .1162, 15.58, and .3206, 

respectively. 
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Figure 3a.2. Cued ellipse response error on multi-ellipse trials (A). Ellipse aspect ratio is 

plotted on the X-axis from flattest to tallest, and systematic error in observer response is 

plotted on the Y-axis. In response to extremely flat ellipses, observers erred with tall 

values; vice-versa in response to extremely tall ellipses. Data points linearly fit (red line); 

negative slope is likely indicative of guessing. Perceptual distortion around the category 

boundary on single-ellipse trials (B). Systematic error in aspect ratio perception (i.e., 

distortion) is plotted on the Y-axis. Flat ellipses near the category boundary are perceived 

to be even flatter, while tall ellipses near the boundary are perceived to be taller than they 

actually were. Data points are fit with the derivative of a Gaussian (red curve). 
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Experiment 3a Discussion 

Overall, Experiment 3a suggests that on single-ellipse trials, perceptual distortion 

did occur, and it occurred for some ellipses more than others. Slightly flat ellipses were 

perceived to be even flatter than they really were, and slightly tall ellipses were perceived 

as taller. Interestingly, this pattern was not apparent across multi-ellipse trials, though I 

hypothesized it would be. This is perhaps not too surprising, as observers often lose the 

ability to report on individual members of a set even while ensemble information about 

the gist of the set remains nonetheless accessible to their conscious report (e.g., 

Haberman & Whitney, 2007; Alvarez & Oliva, 2008; Neumann, Ng, Rhodes & Palermo, 

2018). Pooling of visual information may even temporally precede awareness of 

individual objects (Allik et al., 2014). Although unavailable to conscious report, it seems 

reasonable to assume that the aspect ratios of multi-ellipse sets were encoded to some 

degree – otherwise integration (such as that observed in Experiments 1 and 2) could not 

have occurred. And importantly, it is possible that observers could have encoded and 

integrated distorted rather than veridical representations on multi-ellipse trials or 

Experiments 1 and 2. 
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EXPERIMENT 3b 

If the representations of individual aspect ratios in multi-ellipse trials in 

Experiment 2 were distorted in a manner compatible with the pattern observed on single-

ellipse trials in Experiment 3, then the error of observers’ estimates from Experiment 2 

should be reduced when calculated relative to set means based on distorted values rather 

than the aspect ratios that were physically present. 

Recall that in Experiment 2, observer error was computed relative to the actual 

aspect ratios displayed. However, Experiment 3 suggests that observers may not have 

encoded (or perceived, in the case of single trials) those aspect ratios veridically; they 

were distorted. Thus, if I retrospectively re-labeled the displayed aspect ratios in 

Experiment 2 with the distorted aspect ratio values from Experiment 3 (taken from the 

derivative of a Gaussian fit), then estimates of observer error in Experiment 2 should be 

systematically reduced. Investigating these possibilities was the aim of Experiment 3b. 

I predicted that observer error would decrease overall, when error values were 

recalculated relative to the aspect ratios that observers likely perceived and integrated. 

More specifically, I expected re-calculated observer accuracy to improve the most for 

transformed non-boundary trials, compared to transformed center trials. My reasoning for 

this prediction is as follows: imagine a flat trial with a mean somewhere near the center 

of the flat range. On this hypothetical flat trial, some aspect ratios, especially those that 
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are somewhat flat, would be perceived as even flatter. In contrast, aspect ratios that are 

extremely flat would be distorted less or not at all. The net effect would be that all the flat 

aspect ratios on this hypothetical trial would become, on average, more similar to one 

another. The same would be true for tall trials. As a result, transformation will not only 

change the values of individual aspect ratios in non-boundary sets, it should also 

significantly shift the mean of non-boundary trials. If observers were basing their mean 

judgments on distorted values on these non-boundary trials, then computing their error 

relative to those shifted means should significantly decrease the magnitude of observer 

error. In contrast, imagine a center-spanning trial with a mean of zero (a circle). In this 

case, the perception of slightly flat or slightly tall ellipses would be distorted away from 

the mean of the set; they would appear less similar to one another—effectively increasing 

heterogeneity! Crucially, across many center trials, the transformation (re-calculation) of 

aspect ratios based on perceived values should shift the mean less or not at all, since the 

distortion of slightly flat and slightly tall ellipses away from the category boundary 

should effectively cancel each other out. Thus, observer error relative to transformed 

values on center trials should improve less, or not at all relative to non-boundary trials. 

This brings me to the second prediction for Experiment 3b. I expected the encoded 

heterogeneity (as opposed to the actual heterogeneity) to increase for center trials more 

than for non-boundary trials, for the exact reasons described above. In sum, after 

transformation, I expected observers’ mean estimates to become especially more accurate 

when extracting the mean of non-boundary trials. Additionally, I expected encoded 

heterogeneity to increase more for center trials than for non-boundary trials. 
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Method 

I transformed the data from Experiment 2, using the s-shaped curve obtained in 

Experiment 3a to precisely guide these transformations. For example, if a set of ellipses 

from a given trial in Experiment 2 contained an ellipse with aspect ratio −0.185 (the 

fourth flattest ellipse from the circle value), its distorted aspect ratio according to the fit 

in Figure 3a.2B would be used to calculate the set mean, not its actual aspect ratio. All 

the data for each and every trial in Experiment 2 were transformed in this way. 

For example, say that one of the eight aspect ratios on some trial was -.139 – 

somewhat flat. Applying the s-shaped function to that aspect ratio yielded a value of -

.0597 log units of distortion. Thus, the aspect ratio -.139 was potentially perceived as an 

aspect ratio with a value of -.19871 – flatter than it really was. I then replaced the original 

aspect ratio (-.139) with this new, distorted aspect ratio (-.19871). I repeated this process 

for every aspect ratio present in every set in the recorded data from Experiment 2, which 

yielded a new, transformed Experiment 2 data set, referred to as such henceforth. Note 

that I did not transform observer responses in this way, since observers were free to 

deployed focused attention to the response ellipses, for an unrestricted amount of time  

(mean reaction time in seconds = 2.28, SD = 1.79). 
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Results 

To begin, it was critical to determine if the magnitude of observer error—the error 

relative to the mean of transformed trials—was reduced, compared to error relative to 

Experiment 2’s original, un-transformed trial data. In other words, did observer accuracy 

improve, once the distortion described in Experiment 3a was taken into account? Note 

that, in this case, sensitivity (i.e. error distribution SD) would have been an inappropriate 

measure to analyze. Distortion should shift the entire distribution of errors across all 

trials, systematically increasing/decreasing the average magnitude of observer error, but 

leaving the SD of an observer’s error distribution unaffected. Thus, absolute error 

magnitude was analyzed instead of SD. In addition to simply assessing whether observer 

accuracy increased, it was critical to determine if that increase was greater for non-

boundary trials than for center trials. 

I began by computing observer error relative to the new, transformed Experiment 

2 data set. I computed the absolute magnitude of each observer’s error, relative to the 

transformed trial mean, for every trial. For each observer, I was then able to compute 

average error magnitude, for all of my main three trial types (flat, tall and center trials). 

Averaging across all these transformed trial types yielded an average transformed error 

magnitude score for each observer. I repeated this process on Experiment 2’s original, 

un-transformed main three trial types. Next, for each observer, I subtracted the 

transformed average error magnitude score from their un-transformed error magnitude 

score; this difference score reflected the amount of change in error magnitude (averaged 

across all three of my main trial types) between the transformed and un-transformed data 
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sets. I refer to this difference score as the “error magnitude change index”. Positive error 

magnitude change indices represented an improvement in observer accuracy, after 

transformation. Across observers, the error magnitude change index was indeed positive 

(mean log units = .006, SD = .007) t(44) = 5.36, p < .01, d = .8 (Figure 10A). This 

indicates not just that observer error accuracy improved once perceptual distortion was 

taken into account, but also by how much. I then computed this index separately for flat 

and tall trials separately; the average of the two, computed for each observer, provided a 

measure of accuracy improvement for transformed non-boundary trials. I did the same for 

transformed center trials. Across observers, as predicted, observers evidenced a larger 

error magnitude change index for non-boundary trials (mean log units = .0078, SD = 

.0098) than for center trials (mean log units = .0022, SD = .0049) t(44) = 4.45, p < .01, d 

= .66 (Figure 3b.1A). 

   

Figure 3b.1. After transforming data from Experiment 2 in a manner retrodicted by 

Experiment 3a’s derivative of a Gaussian fit, and re-analyzing that data relative to the 

resulting transformed trial means, observer accuracy improved, particularly on non-

boundary trials (A). Additionally, after transformation, average set heterogeneity 

increased for center trials, and very slightly decreased for non-boundary trials (B). 
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Next, I wanted to investigate perhaps the most important prediction of Experiment 

3b. I hypothesized that encoded (as opposed to veridical) heterogeneity would increase 

for center trials more than for non-boundary trials, once distortion was taken into 

account. To investigate this, I began by computing the heterogeneity present on every 

trial (i.e., I computed the SD of every trial’s eight ellipses), for both the transformed and 

original, un-transformed Experiment 2 data set. For each observer, I then computed the 

average heterogeneity present for flat, tall and center trials. I did this for both data sets. 

Mirroring the logic described immediately above, I subtracted each observer’s average 

un-transformed flat trial (for example) heterogeneity from their transformed flat trial 

heterogeneity. This yielded a difference score that reflected the change in set 

heterogeneity, averaged across all flat trials, between un-transformed and transformed 

data sets, for each observer. I repeated this process for tall and center trials. I called this 

difference score the “change in heterogeneity index”. In general, a positive (or negative) 

index represented a increase (or decrease) in average transformed heterogeneity across 

trials of a given type once data had been transformed. Averaging the change in 

heterogeneity index across flat and tall trials provided an index for non-boundary trials, 

specifically. 

Across observers, the change in heterogeneity index for non-boundary trials was 

slightly negative (mean log units = -.002, SD = .001), reflecting a slight decrease in 

heterogeneity when distortion was taken into account (Figure 3b.1B). In contrast, the 

heterogeneity index for center trials was positive (mean log units = .05, SD = .001), 
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reflecting a large increase in heterogeneity for center trials. The two indices were 

significantly different from one another t(44) = 172.83, p < .01, d = 25.76. 

 

Experiment 3b Discussion 

Experiment 3b supports two important conclusions. First, as predicted, observer 

accuracy was significantly improved, once the distortion described in Experiment 3 was 

taken into account. This was particularly true for non-boundary trials. This suggests that, 

in Experiment 2, observers were basing their judgments on distorted, rather than veridical 

aspect ratios. Further, it suggests that the distortion described by Experiment 3a is a good 

model of the distortion observers likely encoded in Experiment 2. 

Further, this distortion may be responsible for observers’ disrupted ability to 

integrate information that spans the category boundary. By taking distortion into account, 

Experiment 3b showed that encoded (as opposed to veridical) heterogeneity increased 

precisely for the sets that observers had difficulty integrating. As stated many times 

already, heterogeneity is known to disrupt pooling and integration. Experiments 3a and 

3b suggest that heterogeneity need not be veridical in order to disrupt integration, it can 

be a result of the distortion—the segmentation—that occurs near a visual feature’s 

category boundary. 
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GENERAL DISCUSSION 

The results reported above suggest several important, novel conclusions. First, 

integration in the form of ensemble coding can operate on perceived aspect ratio, but this 

integration is disrupted if set members include values that span the category boundary. In 

other words, integration works best on groups that are either flat or tall, not both. Second, 

in line with previous work, values of single aspect ratios near the category boundary are 

distorted—segmented—away from that boundary when seen for a brief duration. Flat 

ellipses appear flatter, and tall ellipses appear taller. The distortion observed for 

individual ellipses may also occur for the perception of multiple ellipses seen in a set. 

Even though observers were unable to report a randomly cued aspect ratio within a set, 

those distorted values were likely still encoded. After all, once distortion was taken into 

account, people became even more accurate when extracting the mean of sets of aspect 

ratios that do not span the category boundary. The inability to report on individuals in a 

set, while still retaining access to summary information about that set, has been reported 

before for features other than aspect ratio (e.g., Haberman & Whitney, 2007; Alvarez & 

Oliva, 2008; Neumann et al., 2018). Importantly, observers also exaggerated the 

“flatness” of flat trials and the “tallness” of tall trials—further suggesting that multiple 

simultaneously presented ellipses were indeed distorted.  Finally, encoded heterogeneity 

was exaggerated for groups that include both flat and tall ellipses. I propose that this 
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exaggerated heterogeneity contributes to the visual system’s disrupted ability to integrate 

information across category boundaries. These results deepen the field’s understanding of 

integration by showing how it can interact with, and even conflict with, another 

fundamental computational method in the visual system—segmentation. 

It is important to note that heterogeneity may not entirely account for the 

disruption of integration on sets that spanned the category boundary. Visual grouping 

may also have contributed. For example, spatial proximity alone can unite objects into 

coherent groups (see Palmer, 1999; Chong & Treisman, 2003), and summary statistics 

can then be extracted from those groups (Chong & Treisman, 2003). But grouping via 

spatial proximity also aids integration; mean statistics can be extracted from spatially 

proximate groups with particular accuracy (Im & Chong, 2014). This suggests that 

grouping can “gate” integration: it can help the visual system determine which 

information to average across, and which information to exclude. Integration seems to 

operate particularly well on grouped information, perhaps regardless of which grouping 

principle (e.g., common region) facilitated grouping. Indeed, it is not just spatially 

proximate objects that are grouped and integrated. Mean statistics can be computed for 

groups that are segregated by mid-level features like color (Brady & Alvarez, 2011). Sets 

of faces that behave together over time are also treated as particularly “group-like” by the 

visual system, and indeed, the integrative process of ensemble coding is particularly 

sensitive to such sets (Elias et al., 2017); importantly, this is true even when 

heterogeneity is controlled for. The faces that behaved together may have been grouped 

by common fate (Palmer, 1999) or the principle of synchrony (Palmer, 2002). Similarly, 
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when presented with a set of complex visual objects that includes spatially interspersed 

sub-sets (e.g., a single crowd of faces that includes faces of both black and white men), 

observers do seem to be sensitive to the means of those sub-sets (Lamer, Sweeny, Dyer & 

Weisbuch, 2018). Perhaps those sub-sets were grouped by classic grouping principles, or 

perhaps the grouping of those sub-sets was informed by top-down processes relevant to 

social categorization, including past experience (see Wagemans et al., 2012; Peterson & 

Kimchi, 2013; for brief reviews of the influence of past experience on grouping). So 

grouping (via common region, common color, or even high-level information like shared 

emotion expression or racial category) may also contribute to the efficient and accurate 

integration of visual information. It may, in fact, gate the precision of ensemble coding. 

Thus, in the present work, a series of factors may have been acting to disrupt the 

integration of sets that spanned the category boundary. Yes, the evidence strongly 

suggests that segmentation interfered with integration via encoded heterogeneity. But, 

information that spans a feature category boundary may also be resistant to perceptual 

grouping. Interestingly, the pooling of height and width information occurs 

automatically, even if the task is just to pool height or width information (Oriet & Brand, 

2013). This suggests that both flat and tall objects can be automatically grouped together 

prior to integration. As noted before, though, Oriet & Brand (2013) did not equate their 

stimuli for size, so it is unclear whether aspect-ratio information was automatically 

grouped and integrated. In the present work, it is difficult to say how much grouping 

contributed to the effects observed, or to speak meaningfully about the time-course of 

grouping’s potential contribution, especially since grouping can act at multiple stages of 
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the visual processing hierarchy (either early or relatively late; see Palmer, 2002; 

Wagemans et al., 2012; Peterson & Kimchi, 2013). Grouping may have been disrupted 

first. For example, it is possible that sets that spanned the category boundary were not 

grouped as efficiently or quickly or even at all, and this disruption to grouping disrupted 

integration above and beyond the effects of increased heterogeneity from segmentation. 

This disruption to grouping could have, speculatively, been a result of the very early 

(within 100 ms) modulation of feature-based attention (Zhang & Luck, 2009). Similarly, 

it is also possible that groups of similar objects (e.g., ones that do not span a category 

boundary), were treated as a gestalt object by the visual system (perhaps as early as 

striate cortex) and subsequently received additional attentional resources, devoted to 

refined processing of the gestalt object’s constituent parts (in this work, the ellipses 

themselves) (Flevaris, Martinez & Hillyard, 2013). Or, perhaps grouping was disrupted 

only after segmentation acted; indeed, perhaps segmentation caused grouping to be 

disrupted. Regardless of the details, though, the evidence presented here strongly 

suggests that segmentation did interfere with integration. Disrupted grouping may have 

had an additional effect, though this cannot be directly evaluated based on the current 

data. Untangling the interaction between the disruptive effects of segmentation and those 

of disrupted grouping is a promising direction for future research. 

In the current investigations, the category boundary was a perfect circle. As 

already discussed, that category boundary may be a result of the way neurons dedicated 

to aspect ratio are organized at the population level (Kayaert et al., 2005; Dickinson et al., 

2017; Storrs & Arnold, 2017). Still, it is possible that the precise value of aspect ratio’s 
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category boundary is somewhat malleable – it may shift with learning or past experience. 

If, for example, an observer adapted to many trials composed of exclusively flat ellipses, 

the perceived category boundary might shift to become slightly taller. If that is indeed 

possible, an open question is whether or not distortion can occur around the new, 

perceptually shifted category boundary. 

It is also important to note that segmentation likely did not prevent the neural 

mechanisms that underlie ensemble coding from operating full-stop. Instead, those 

mechanisms proceeded, but acted on a distorted and more heterogeneous set of 

information. It is in this sense that I have used the word “conflict” throughout these 

investigations. The functions of segmentation and integration can be at odds, and can lead 

to the disrupted operation of integrative processes, even if strictly speaking, the two 

processes still unfolded serially (i.e., even if the conflict between the two processes was 

not winner-takes-all). If segmentation and integration did unfold serially in this 

investigation, I suspect that segmentation acted first. After all, in this investigation, as in 

others (e.g., Haberman & Whitney, 2007; Alvarez & Oliva, 2008; Neumann, Ng, Rhodes 

& Palermo, 2018), observers likely encoded and then integrated individual objects in the 

set, even if they could not consciously report those individuals later. Thus, it seems likely 

that in the current investigation, segmentation acted first, and integration then operated on 

a subset of distorted ellipses. Still, a more direct test of the temporal relationship between 

segmentation and integration in sets that include a category boundary is open for future 

research.   
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Prior work on summary judgments of size suggests that approximately three to 

five items are sampled from a set (Im & Halberda, 2013; Gorea, Belkoura & Solomon, 

2014), or as a more general rule, the square root of the set size (Dakin, 2001, see Whitney 

& Leib, 2018). This brings me to a limitation of the present work. It is not possible to 

confirm (or even estimate) how many ellipses observers sampled when integrating aspect 

ratio information in the current investigation. It could have been anywhere from two to 

eight ellipses. However, the estimates described immediately above certainly seem 

reasonable, for the following reason. Theoretically, heterogeneity should impact the 

precision of mean estimation less as more objects are sampled from a set (Marchant et al., 

2013). If observers sample every item from a set, heterogeneity should be irrelevant. 

Imagine randomly four a subset of ellipses from a set of eight with zero heterogeneity. 

Neglecting perceptual and decision noise, this random sample will, of course, yield a 

perfect estimate of the overall set mean—zero error. However, now imagine randomly 

sampling four ellipses from a set of eight with a large amount of heterogeneity. Error 

will, in that case, be increased, since the ellipses you sampled were less representative of 

the set mean. Given the positive relationship between heterogeneity and observer error 

described in the present work, it thus seems unlikely that observers integrated 

information from all eight ellipses in each multi-ellipse set. Still, it is possible that 

observers encoded information about all eight ellipses in each multi-ellipse set (Robitaille 

& Harris, 2011). If all eight ellipses were encoded on a given trial, then the noisiness of 

those representations may have contributed the pattern of observer error reported here 

(Alvarez, 2011; see Brady, Konkle & Alvarez, 2011; Neumann et al., 2018; Schurgin, 
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Wixted & Brady, 2019; Brady, Schurgin & Wixted, 2019). If this account is correct, then 

although all eight ellipses were encoded on each multi-ellipse trial, the ellipses contained 

in center trials would have been encoded with less fidelity and more noise. This sort of 

explanation requires an additional assumption regarding noisier representation around the 

category boundary, and is thus less parsimonious than a simpler model in which a subset 

of ellipses are used to estimate the mean. Regardless of the details though, it is clear that 

in the current investigation, observers integrated information from between two and eight 

ellipses. A more precise estimate would require additional experimentation. Most 

importantly, this uncertainty does not change the main results of this investigation. 

Additionally, in the present work, it is not possible to say precisely which ellipses 

were sampled, assuming that only a subset were sampled. For example, it is possible that 

observers tended to sample more extreme ellipses (Kanaya, Hanashi & Whitney, 2018). 

If true, this tendency may have been most pronounced on non-boundary trials in the 

current investigation. This is compatible with observers’ tendency to judge exaggerate the 

“flatness” or “tallness” of flat and tall sets respectively. By systematically sampling more 

extreme ellipses, group mean judgments would be exaggerated away from the category 

boundary. Importantly, this account of group mean exaggeration, and the account that 

relies on the distortion of individual ellipses (described above), are not mutually 

incompatible. In fact, since the accuracy of mean estimates increased once the distortion 

of individual ellipses was taken into account, biased sampling is unlikely to completely 

explain group mean exaggeration. Instead, the distortion of individual ellipses in a set 

likely contributed to the exaggeration of group means away from the category boundary. 
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Taking a broad view, it is possible that the results of the present investigation 

apply to visual features with a category boundary in general, not just to aspect ratio. 

There is good reason to think this may be the case. After all, distortion around the 

category boundary has been observed for relatively high-level visual features like 3-D 

depth (Grossberg, 1994) and biological motion (Sweeny et al., 2012) in addition to 

simpler visual information like curvature (Sweeny, Grabowecky, Kim & Suzuki, 2011). 

And, in general, perceptual bias (e.g., distortion) is likely a function of how noisily a 

feature is encoded in the first place—the more noisy the representation, the more 

distortion is needed to avoid crossing the category boundary (Wei & Stocker, 2017). 

Thus, it is likely that distortion away from the category boundary helps the visual system 

avoid categorical errors, given imperfectly encoded feature information. This distortion, 

although useful in many circumstances, may also sometimes interfere with integration by 

introducing exaggerated heterogeneity, regardless of what feature is being integrated. 

Thus, the tension between segmentation and integration may be ubiquitous. In fact, this 

investigation was never intended as an examination of aspect ratio, per se, but rather of 

the interaction between category boundaries, segmentation and integration more 

generally. Aspect ratio simply provided a good candidate visual feature to investigate this 

interaction for the first time. Future ensemble coding work, and integration work in 

general, may benefit from considering conflict between segmentation and integration 

demonstrated here. It is also possible that the conflict between segmentation and 

integration could ultimately have behavioral consequences. For example, people may be 

slower to respond to the gist of sets in which segmentation conflicts with integration, or 
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may experience extracting the gist from such sets to be more difficult or effortful 

(although, notably, the reaction times between boundary-spanning and center trials did 

not differ here). 

The first sentences of an untold number of vision science papers, this one among 

them, runs something like this: “Think about how complex a computation your everyday 

vision is. It’s remarkable that we can see at all! Don’t take it for granted!” This opener is 

a good one – our mundane, everyday visual experience really does belie the sophisticated 

computational machinations that occur “under the hood”. However, it is important to 

remember that ultimately, the visual system almost certainly does not operate the way it 

does so that you can enjoy a visual experience. Rather, the visual system must solve a 

number of difficult computational problems so that an organism can act effectively in the 

world in which it finds itself (Gibson, 2014). The problems that the visual system must 

solve are many, and the methods used to solve them are varied. Often, the system 

operates smoothly. At the very least, the system’s methods do not produce incompatible 

solutions or potentially incompatible recommendations for action. However, this is 

apparently not always the case. Our visual systems—i.e., our conscious and nonconscious 

visual “minds”—have evolved to solve computational problems in a somewhat modular 

way. Sometimes, the methods used to solve one problem (e.g., “what’s the gist of this 

clump of stuff?”) can conflict with, or be constrained by, the methods used to solve 

another (e.g., “is this stuff this or that?”). By investigating the visual system at these sites 

of conflict, we stand to gain a fuller, richer, more nuanced understanding of the visual 

system in general 
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