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ABSTRACT 

Extreme weather events and natural disasters are the major cause of power outages 

in the United States. An accurate forecast of component outages and the resultant load 

curtailment in response to extreme events is an essential task in pre- and post-event 

planning, recovery and hardening of power systems. Power system resilience improvement 

is investigated in this work from component outage prediction to identifying the potential 

power outages in the system to estimating probable load curtailment due to these outages 

and offering methods for grid hardening. Initially, two machine learning based prediction 

methods are proposed to determine the potential outage of power grid components in 

response to an imminent hurricane, namely a second order logistic regression model and a 

three-dimensional Support Vector Machine (SVM). The logistic regression model defines 

the decision boundary, which partitions the components’ states into two sets of damaged 

and operational. Two metrics are examined to validate the performance of the obtained 

decision boundary in efficiently predicting component outages. The proposed three-

dimensional SVM furthermore leverages its accuracy-uncertainty tradeoff to achieve 

highly accurate results, which can be further used to schedule system resources in a 

predictive manner with the objective of maximizing its resilience. The performance of the 

model is tested through numerical simulations and validated based on well-defined and 

commonly-used performance measures. 
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After training the outage estimation model, the predicted component outages are 

plugged into a load curtailment minimization model to estimate the nodal load curtailments 

in the system. The standard IEEE 30-bus system with a combination of hurricane path and 

intensity scenarios are used to study the model where the results demonstrate that the 

proposed modelling framework is capable of effectively capturing the dynamics of load 

curtailment estimation in response to extreme events. 

Furthermore, a machine learning based grid hardening model is proposed with the 

objective of improving power grid resilience. The predictions from previous stages are fed 

into the proposed grid hardening model, which determines strategic locations for placement 

of distributed generation (DG) units. In contrast to existing literature in hardening and 

resilience enhancement, this work co-optimizes grid economic and resilience objectives by 

considering the intricate dependencies of the two. The numerical simulations on the 

standard IEEE 118-bus test system illustrate the merits and applicability of the proposed 

model. The results further indicate that the proposed hardening model through 

decentralized and distributed local energy resources can produce a more robust solution 

that can protect the system significantly against multiple component outages. 

Finally, a probabilistic load curtailment estimation model is proposed through a 

three-step sequential method. At first, to determine a deterministic outage state of the grid 

components in response to a forecasted hurricane, a machine learning model based on 

TWSVM is proposed. Then, to convert the deterministic results into probabilistic outage 

states, a posterior probability sigmoid model is trained on the obtained results from the 

previous step. Finally, the obtained component outages are integrated into a load 

curtailment estimation model to determine the potential load curtailments in the system. 
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The simulation results on a standard test system illustrate the high accuracy performance 

of the proposed method. 
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CHAPTER ONE: INTRODUCTION 

Extreme weather events and natural disasters are the major cause of power outages 

in the United States, resulting in significant economic, social, and physical disruptions and 

cause considerable inconvenience for residents living in disaster areas [1]. It is estimated 

that only storm related outages cost the U.S. economy between $20 billion and $55 billion 

annually [2]. Various events have different characteristics and behaviour, however, the 

aftermath of all these events on the power grid is the loss of components and potential 

power outages.  

Utilities and local governments are dealing with rising expectations of 

uninterrupted service from electricity consumers to effectively respond to the outcome of 

these catastrophic occurrences. With the purpose of improving the power grid resilience, 

electric utilities in the U.S. are spending billions of dollars on proactive and preventive 

responses such as grid hardening [3]. 

An efficient prediction of the probable damages to power grid components due to 

extreme weather events is a key step for developing efficient response and recovery models 

and performing preventive actions to encounter minimum damage. Among all types of 

extreme events, hurricanes are notably recognized as one of the most recurring events in 

the United States, mostly occurred by the Atlantic Ocean throughout Gulf of Mexico, from 

Maine to Texas [1]. In this work, hurricanes are explored not only because they cause the 
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most widespread and long-lasting outages in the United States [4], but also because weather 

forecasting approaches that can predict a hurricane’s arrival and characteristics (wind-

speed, hurricane type, duration etc.) are optimally advanced to determine the probable 

impact in a localized region [5]. This work tackles the important problem of power grid 

resilience improvement in response to extreme weather events, in particular hurricanes, 

using machine learning. Different classification approaches such as Logistic Regression, 

Support Vector Machine (SVM) on different features are trained and evaluated in this 

work. The model is trained on artificial data and historical data from storm-related damages 

to predict component outages. 

If the impacts of these events on the power grid are accurately predicted, grid 

operators can deploy a range of mitigation, response, and recovery actions to considerably 

reduce the undesirable socioeconomic aftermath. This work proposes a computationally-

efficient and economically-viable grid hardening model in response to ongoing challenges 

and urgent needs in designing more resilient power grids. First, the state of each component 

is predicted using a SVM which is trained on historical data. Then, these predictions are 

fed to a hardening model, which takes grid resilience and economic needs into 

consideration. Different from existing literature in hardening and resilience enhancement, 

this work identifies that investments targeted at resilience enhancement would indeed 

impact power grid resilience and economic operations. The proposed grid hardening model 

determines the economically optimal set of candidates to be deployed for enhancing system 

resilience under prevailing uncertainties, while ensuring an adequate and secure supply of 

forecasted loads under normal, contingency, and extreme conditions. 
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The rest of the chapter is organized as follow: Section 1.1 reviews the importance 

of power system resilience and introduces some of the existing work on improving power 

system resilience. Section 1.2 presents the literature on machine learning approaches in 

system resilience and introduces logistic regression and SMV methods to estimate and 

model the system components that can potentially fail during a predicted hurricane. The 

importance of grid hardening in power system resilience is presented in Section 1.3. 

Finally, an overview of the contributions in this thesis are presented in Section 1.5. 

1.1. Power System Resilience 

Resilience denotes the capability of a system to absorb and to adapt to external 

shocks, which is an important characteristic expected from critical lifeline systems such as 

electric power grids [6]. There are several types of external shocks to the power grid, most 

notably extreme events which include adverse weather events and natural disasters that are 

known to cause considerable negative impacts not only on the system itself but also on the 

society in general. Among these extreme events, hurricanes are known to be the most 

frequent extreme event in the United States, mainly occurred along the Atlantic Ocean and 

Gulf of Mexico [1]. The devastating aftermath of these events calls for disruptive strategies 

to ensure that the power grid can still supply electricity to customers, or even if 

considerably impacted, can quickly bounce back from the contingency state to its normal 

operational condition. In this case, an accurate forecasting of the likely hurricane impacts 

on the power grid can be of significant value as it can be leveraged in achieving enhanced 

grid resilience. This work proposes a machine learning based method for predicting the 

state of the power grid components in response to upcoming hurricane strikes.  
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The concept of resilience for complex systems was originally introduced by Holling 

[7] in the ecology area. Holling defined the resilience of a system as the rate and speed of 

returning to normal conditions after an extreme event. The intent of resilience study is to 

anticipate the unexpected change due to failure, considering that systems have limits and 

gaps, and the atmosphere constantly affects both regarding design and external shocks [8]. 

Improving resilience in power systems is extensively discussed in the literature including 

research work on system modelling, resource allocation, and optimal scheduling for 

enhancing grid resilience, among others.  

In [9], the significance of geographic and cascading interdependencies are 

highlighted which are associated with urban infrastructure, and a general method to 

describe infrastructure interdependencies is proposed. In [10] the impact of resilient 

systems on diminishing the probabilities of failure in urban infrastructure is analyzed. This 

concept was extended into other systems including the power grids. In [11] an approach 

for calculating the resilience of a single infrastructure and its components is proposed. In 

[12] a proactive resource allocation method aiming to repair and recover power grid after 

extreme events is proposed. In [9] and [10] a proactive recovery framework of power grid 

components is introduced which develops a stochastic model for operating the components 

prior to the event, followed by a deterministic recovery model for managing resources after 

the event. In [15] a restoration model is proposed based on power flow constraints which 

identifies an optimal schedule using the macroeconomic concept of the value of lost load 

(VOLL) in order to minimize the economic loss due to load interruptions in the post-

disaster phase. A decision-making model, based on unit commitment solution and system 



5 

configuration, is proposed in [16] to find the optimal repair schedule after a hurricane and 

in the restoration phase of a damaged power grid.  

In [17], a power grid resilience index is proposed by analyzing the process of 

generation, transmission, and consumption of electricity in various countries. The 

geometric mean of several factors such as the generation efficiency of non-renewable fuel 

dependence, the distribution efficiency, the carbon intensity, and the diversity are 

considered to develop the resilience index. However, an index for individual components 

in the system is not considered in the methodology. In [18], a methodology to calculate 

resilience index of power delivery systems in post-event infrastructure recovery is 

proposed. A multi-infrastructure system including electric power delivery, 

telecommunications, and transportation is considered and the resilience measures of 

fragility and quality are combined with the input-output model of these infrastructures. The 

proposed index is evaluated by the data collected from post-landfall of Hurricane Katrina 

to assess the resilience and interdependence of a multi-system networked infrastructure 

during natural extreme events. The study in [19] proposes a framework for resilience 

enhancement of urban infrastructure systems. The time-dependent expected resilience 

metric is built on performance and response of the power grid following an extreme event.  

The process is performed in the stages of disaster prevention, damage propagation, and 

assessment and recovery. The hurricane resilience of electric power grids is quantified 

through a probabilistic modeling approach in [20], using a Poisson process model for 

hurricane occurrence, component fragility models, and a grid restoration model with 

component repair priority. The model is then calibrated using actual customer outage and 
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power grid restoration data in Harris County, Texas in the aftermath of Hurricane Ike in 

2008. 

1.2. Machine Learning Approaches in Power System Resilience 

Machine learning is an application of Artificial Intelligence (AI) that provides the 

system the ability to learn from historical data and to make predictions without being 

explicitly programmed. In many problems, a closed formulation of the problem and its 

solution cannot be easily derived. Machine learning investigates the algorithms that are 

capable of learning from and making forecasts from data. These algorithms can categorize 

the observed data for classification (supervised learning), combine similar patterns for 

clustering (unsupervised learning), and predict the output of the system based on its past 

behavior and historical data (regression modeling) [21]. Figure 1-1 shows the different 

aspect of Artificial Intelligence and machine learning. 

FIGURE 1-1- ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING 
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Predictive analytics and emerging applications of machine intelligence tools are 

shaping every aspect of our daily lives. Data has become the epicenter of the modern 

decision making by policy makers, corporations, and enterprises. Utilities and local 

governments are facing increasing expectations from their customers and constituencies to 

effectively respond to the aftermath of the catastrophic events such as hurricanes that can 

affect the quality of life of the communities and interrupt the business continuity. In this 

climate, the concept of resilience enhancement has become an important risk management 

measure in addressing these challenges. 

Machine learning approaches have been utilized in a considerable number of 

research efforts in the power and energy sector [22]. Machine learning has been applied to 

several power grid related problems such as forecasting (using extreme learning artificial 

neural networks) [23], security assessment (using decision tree induction, multilayer 

perceptions, and nearest neighbor classifiers) [24], risk analysis (using parametric, semi-

parametric, and non-parametric regression models, artificial neural network, and support 

vector machine) [25], distribution fault identification (using artificial neural network and 

support vector machine) [26], and power outage duration prediction (using regression 

models, regression trees, Bayesian additive regression trees, and multivariate additive 

regression splines) [27]. 

Security assessment is one of the most versatile machine learning applications in 

power grids with the applications from pattern recognition [22], decision tree induction, 

and nearest neighbor classifiers [28], to name a few. Forecasting arises as another popular 

application of machine learning. A number of Artificial Neural Networks (ANNs) have 

been proposed for short-term load forecasting [29] and wind power forecasting [30]. Some 
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other examples of machine learning applications in power grids include risk analysis using 

regression models, ANNs, and Support Vector Machine (SVM) [25], distribution fault 

detection applying ANNs and SVM  [26], and power outage duration prediction using 

regression models and regression trees/splines [27].  

1.3. Grid Hardening 

With the purpose of improving the power grid resilience, electric utilities in the 

U.S. are spending billions of dollars on proactive and preventive responses such as grid 

hardening [3]. Grid hardening represents the physical and nonphysical improvement to the 

electricity infrastructure to make it less susceptible to adverse extreme events improving 

grid resilience and enabling the grid to withstand the impacts of extreme events with the 

least possible outages [31]. Physical hardening refers to installing new facilities and 

modifying the current grid topology. Nonphysical hardening options represent adjustments 

in consumption, generation, and power flow patterns. Current electric power grid 

hardening practices merely focus on the aspect of improving system resilience in 

responding efficiently to an extreme event.  

There are a limited number of studies on the efficient hardening of electric power 

grids in response to extreme events. In [32] a comprehensive strategy for mitigating 

hazards is proposes which aims at creating resilient cities that are able to withstand 

disasters. In [33], hurricane damage predictions and topological assessment are combined 

to characterize the impact of hurricanes on power grid reliability. Component fragility 

models are applied to predict failure probability for individual transmission and distribution 

components. The research shows that topological features, such as network mesh structure, 

centrality, and the compact irregular ring mesh topology, need to be considered in hurricane 
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hardening activities. A comprehensive survey of models and algorithms for emergency 

response logistics in electric distribution systems is presented in [34], [35].  

Analysis of cost-effectiveness of engineering solutions to harden the electric power 

infrastructure is another area which has been covered in the literature. In [36], a 

probabilistic model for analyzing electric power infrastructure risk mitigation investments 

is proposed which aim to evaluate the tradeoffs between wetland restoration and 

infrastructure hardening for the electric power grid. The results indicate that wetland 

restoration and undergrounding of power infrastructure is not preferred over keeping them 

without wetland protection. The current practice of utilities and government agencies for 

hardening the power grid has been reflected in several publications and presentations. For 

example, the hurricane hardening efforts in state of Florida is described in [37], which 

presents an overview of storm hardening strategies and a discussion on the progress of a 

utility’s hardening initiative and current research efforts on cost/benefit analysis for 

hurricane.  

In practice, multiple grid hardening options may be available for system planners. 

Finding the most suitable option is a challenging task as several factors are involved in the 

modelling, and furthermore mathematical approaches may not be able to fully capture the 

behaviour and aftermath of the events. Given the amount of data that exists on previous 

hurricanes and the complexity of the system, machine learning can be a viable approach to 

tackle this problem. Machine learning approaches can learn from historical data and to 

make predictions without being explicitly programmed. Machine learning approaches are 

utilized in a considerable number of research efforts in the power and energy sector, such 
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as security assessment [22], load forecasting [29], distribution fault detection [26], and 

power outage duration prediction [27][38][39][40]. 

1.4. Probabilistic load curtailment estimation 

Having a precise prediction of the potential impacts of an upcoming hurricane plays 

a vital role in improving the power system resilience by helping identify the most efficient 

resource allocation [41]. Resource allocation before and after a hurricane is a well-studied 

topic in power systems. In [42], a proactive resource allocation model is proposed to repair 

and recover power system infrastructure located in a hurricane-impacted region, attempting 

to develop a decision-making tool which ensures the least potential damages in an efficient 

manner. In [43][44], a proactive recovery framework of power system components is 

presented based on a stochastic model for operating the components prior to the event, 

followed by a deterministic recovery model to manage the available resources after the 

event. In [45], an optimal restoration model is proposed to minimize the economic loss due 

to power supply interruptions during the post-disaster phase. In [46], a decision-making 

model is introduced based on unit commitment constraints and system configuration. The 

objective of the proposed model is to determine the optimal repair schedule after an 

extreme event and during the restoration phase.  

Pre-hurricane scheduling specifically plays an important role in improving system 

resilience. A resilience-constrained unit commitment (RCUC) model is proposed in [47] 

which ensures a resilient supply of loads even in case of multiple component outages. In 

many of the related works on hurricane modeling, the impact of the hurricane on the power 

system is the input to the model or determined by a stochastic model. Machine learning, 

however, is recognized as an efficient method in predictive analytics and data analysis to 
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identify the likelihood of future outcomes based on historical data [21]. In particular, SVM 

is a popular machine learning method for data classification (supervised learning) which is 

developed on the basis of statistical learning theory and structural risk minimization [32, 

33]. SVM has numerous advantages such as providing a global solution for data 

classification as well as great generalization capability. The achieved results in several 

studies illustrate SVM as one of the most accurate methods in several applications such as 

generation forecasting [34, 35], load forecasting [36], fault detection [37], power quality 

disturbance monitoring [38], and transient stability analysis [39]. SVM has also shown a 

superior performance in predicting possible outages of power system components in 

response to extreme events [40]. In [41], a three-dimensional SVM is proposed to predict 

the outage of power system components in response to an extreme event, where its 

accuracy–uncertainty tradeoff is leveraged to achieve more precise results. 

Despite the good performance of SVM in several applications, the performance of 

SVM drops significantly when faced with imbalanced datasets, for example when the 

number of negative instances far outnumbers the positive instances, or vice versa [42]. 

Twin support vector machine (TWSVM) is the answer to this, as an efficient machine 

learning approach which is suitable for complex classification problems. TWSVM 

classifies the patterns of two classes by using two non-parallel hyperplanes [43]. Since two 

hyperplanes are defined as representatives of each class, TWSVM can handle imbalanced 

datasets much better than the traditional SVM [44]. 

In this paper, a TWSVM classification method is trained to find the operational 

state of each component by considering the path and the intensity of the hurricane, as well 

as the distance of each component from the center of the hurricane. A posterior probability 
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model is consequently applied to the output of the TWSVM model to estimate the outage 

probability of each component. Having an accurate estimation of probable outages plays a 

vital role in responding to an upcoming hurricane.  

Unlike the existing work on outage prediction and extended outage consideration 

in security-constrained unit commitment (SCUC), including the previous work of authors 

in [5, 6], this paper considers the probability of outage obtained by a machine learning 

approach in scheduling. TWSVM is chosen for its performance in complex intertwined 

classification problems and when dealing with imbalanced datasets. This can be potentially 

problematic since the data of past hurricanes are imbalanced, i.e., the number of non-

operational components is far less than the number of operational components. The merit 

behind proposed probabilistic load curtailment estimation model is that it considers all 

contingency scenarios with their probability and hence the most probable scenario or the 

scenarios with most load curtailment can be recognized. The predicted outage and 

estimated outage probability can be useful for electric utilities to assess their risk and 

allocate necessary resources and repair crews to prepare for and recover from hurricanes 

in a considerably shorter time-frame. 

 

1.5. Contributions 

The contributions of this work are as follows: 

1.5.1. Logistic Regression Based Power Grid Outage Prediction 

In this work, an outage prediction model based on logistic regression is proposed 

to determine the probable outage of power grid components in response to an imminent 

hurricane. The proposed logistic regression model is used as a viable machine learning 
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method to determine the decision boundary between damaged (on outage) and operational 

(in service) components in response to a hurricane. The logistic regression method is 

simple, fast, robust, and can efficiently handle the complexity of the decision boundary in 

terms of characteristic parameters. The regression model is applied considering the wind 

speed and the distance of each component from the center of the hurricane as two major 

features to find the state of each component after an extreme event.  

1.5.2. SVM Based Power Grid Outage Prediction  

Despite the acceptable performance of the proposed logistic regression model, 

logistic regression requires much more data to achieve stable and meaningful results 

compared to other prediction models, such as support vector machine. In addition, the 

characteristic parameters of logistic regression increase exponentially as number of 

features increases. Hence, an SVM-based method is proposed and adopted to predict the 

state of each component in the aftermath of an imminent hurricane. Particularly, a multi-

dimensional SVM is proposed which considers the associated resilience index, i.e., the 

infrastructure quality level and the time duration that each component can withstand the 

event, as well as predicted path and intensity of the upcoming extreme event. The outcome 

of the proposed model is the classified component state data to two categories of outage 

and operational, which can be further used to schedule system resources in a predictive 

manner with the objective of maximizing its resilience. 

Furthermore, a new three-dimensional Support Vector Machine (SVM) for power 

grid component outage prediction is proposed which leverages its accuracy-uncertainty 

tradeoff to achieve highly accurate result. The new proposed SVM considers the 

component deterioration level as an additional critical and decisive factor. The objective 
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of this model is to tailor the gap made by the decision boundary to increase prediction 

accuracy. The proposed SVM model is used to define a clear gap between the outage and 

operational states. This gap is considered as an uncertain area, which is further utilized to 

improve the accuracy of the predicted states. It should be noted that such capability is not 

available using a logistic regression.  

1.5.3. Load Curtailment Estimation in Response to Extreme Events 

A minimum load curtailment problem is proposed and formulated to estimate the 

amount of load curtailment considering the predicted outage states. The predictions are 

integrated into a minimum load curtailment model to estimate the potential nodal load 

curtailments—which are of utmost importance for grid operators in order to identify critical 

and prone-to-curtailment areas to proactively mobilize the restoration resources. 

The proposed framework enables one to effectively identify the critical components 

in the power system and prioritize the limited restoration resources. Given the crucial 

importance of accurate power grid outage prediction, this model provides a practical 

forward-looking framework for utilities, local governments, and policy makers for a risk-

informed operations management, emergency response planning, humanitarian logistics, 

and restoration of the life-line power grid infrastructure in both strategic level and real-

time basis. 

1.5.4. Machine Learning Assisted Power Grid Hardening  

A new hardening a machine learning based grid hardening model is proposed with 

the objective of improving power grid resilience in response to extreme weather events. 

The proposed hardening model determines strategic locations for placement of distributed 

generation (DG) units. In contrast to existing literature in hardening and resilience 
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enhancement, this model co-optimizes grid economic and resilience objectives by 

considering the intricate dependencies of the two. This proposes approach is a 

computationally-efficient and economically-viable grid hardening model in response to 

ongoing challenges and urgent needs in designing more resilient power grids. Particularly, 

the predictions from previous contributions are fed to a hardening model, which takes grid 

resilience and economic needs into consideration. Different from existing literature in 

hardening and resilience enhancement, this model identifies that investments targeted at 

resilience enhancement would indeed impact power grid resilience and economic 

operations. The proposed grid hardening model determines the economically optimal set 

of candidates to be deployed for enhancing system resilience under prevailing 

uncertainties, while ensuring an adequate and secure supply of forecasted loads under 

normal, contingency, and extreme conditions. 

1.5.5. Probabilistic load curtailment estimation 

A three-step sequential method in identifying such load curtailments prior to 

hurricane. This work considers the probability of outage obtained by a machine learning 

approach in scheduling. TWSVM is chosen for its performance in complex intertwined 

classification problems and when dealing with imbalanced datasets. This can be potentially 

problematic since the data of past hurricanes are imbalanced, i.e., the number of non-

operational components is far less than the number of operational components. The merit 

behind proposed probabilistic load curtailment estimation model is that it considers all 

contingency scenarios with their probability and hence the most probable scenario or the 

scenarios with most load curtailment can be recognized. The predicted outage and 

estimated outage probability can be useful for electric utilities to assess their risk and 
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allocate necessary resources and repair crews to prepare for and recover from hurricanes 

in a considerably shorter time-frame. 

 In the first step, a twin support vector machine (TWSVM) model is trained on 

path/intensity information of previous hurricanes to enable a deterministic outage state 

assessment of the grid components in response to upcoming events. The TWSVM model 

is specifically used as it is suitable for handling imbalanced datasets. In the second step, a 

posterior probability sigmoid model is trained on the obtained results to convert the 

deterministic results into probabilistic outage states. These outage states enable formation 

of probability-weighted contingency scenarios. Finally, the obtained component outages 

are integrated into a load curtailment estimation model to determine the expected potential 

load curtailments in the grid. The simulation results, tested on the standard IEEE 118-bus 

system and based on synthetic datasets, illustrate the high accuracy performance of the 

proposed method. 
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CHAPTER TWO: POWER GRID OUTAGE PREDICTION  

In this chapter, the model outline and formulation of the proposed approaches to 

predict power outages in response to hurricane is presented. For this purpose, two machine 

learning approaches are studied in this work. Section 2.12 introduces the proposed logistic 

regression-based approach and evaluate the performance the performance of the obtained 

decision boundary in efficiently predicting component outages. Despite the acceptable 

performance of the proposed logistic regression model, it requires much more data to 

achieve stable and meaningful results compared to other prediction models, such as support 

vector machine. Section 2.2 introduces an SVM-based method which is proposed and 

adopted to predict the state of each component in the aftermath of an imminent hurricane. 

The model is developed based on three distinct features of component deterioration, 

distance from the extreme event, and the intensity of the extreme event, and is analytically 

investigated to exhibit its acceptable performance.  

2.1. Logistic Regression-Based Power Grid Outage Prediction 

Consider the power grid in which a subset of its components is located in the path 

of an upcoming hurricane. The path and the intensity of the hurricane can be forecasted 

based on the weather data obtained from weather forecasting agencies. Two states are 

considered for each component in the path of the hurricane: damaged (on outage) and 

operational (in service). The decisive factors to determine these states are the hurricane 
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wind speed (which also determines the category of the hurricane) and the component 

distance from the center of the hurricane, respectively represented here by parameters x1 

and x2. Figure 2-1 depicts a schematic of the damaged and operational states (shown by 

crosses and circles, respectively) from historical hurricane data, as well as the decision 

boundary separating these two states. The probability of damage increases as the wind 

speed increases or the distance to the center of the hurricane decreases. Based on the 

available data, there should be a minimum wind speed to result in an impact to components 

(hence the intersection of the decision boundary with the x1 axis). The goal is to determine 

the function representing the decision boundary, thus outages in response to imminent 

hurricanes can be effectively predicted. 

 

 

FIGURE 2-1- DAMAGED/OPERATIONAL STATES OF ELECTRIC POWER GRID COMPONENTS 
SEPARATED BY THE DECISION BOUNDARY  

 

2.1.1. Logistic Regression 

The logistic regression method [48] is used to determine the decision boundary. 

The decision boundary is defined by a second order polynomial based on the wind speed 

and the distance (1): 
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(1) 

where kj , j = 1,..., 5, is the characteristic parameter to be determined. A second 

order function is considered for the function h to prevent overfitting. The classification 

function is denoted by f(x, k) and defined as a Sigmoid function, i.e., 

 
(2) 

The Sigmoid function is depicted in Figure 2-2, which ensures that for positive 

values of h(x, k) a value of 1 is reached, while for its negative values, a value of 0 is reached 

(3). 

 

(3) 

 

FIGURE 2-2- THE SIGMOID FUNCTION 
 

 

FIGURE 2-3- PROPOSED COST FUNCTION 
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This function nicely classifies the data based on the obtained function. If h(x, k)=0, 

the value of f will be 0.5, which shows the data is exactly on the decision boundary. To 

determine the characteristic parameter kj , the cost function (4) is defined to minimize the 

errors between the fitted curve and the realized values from historical data: 

 
(4) 

 
(5) 

where m is the number of training data points, and y is the actual state (y = 0 for 

damaged and y = 1 for operational). 

This cost function, as shown in Figure 2-3, efficiently evaluates the classification 

function based on the obtained characteristic parameters by becoming equal to zero when 

the prediction is correct (i.e., f(x, k)=0 when y = 0, or f(x, k)=1 when y = 1) while becoming 

a very large number when the prediction is wrong (i.e., f(x, k)=0 when y = 1, or f(x, k)=1 

when y = 0). The second term in (4) is added for regularization, which would ensure small 

values for characteristic parameters and accordingly a simpler decision boundary. Using 

regularization, some of the terms will be automatically eliminated if the second order 

function results in overfitting. The regularization parameter, λ, controls the tradeoff 

between keeping a small number of parameters and overfitting, which however is problem-

dependent and needs to be carefully determined. 

Once the cost function J(k) is minimized, the characteristic parameters are 

determined, hence we would have the decision boundary. The outcome of this method is 

the prediction function in the form of f(x, k), with given values for kj , that can predict the 

damaged/operational state of any power grid component based on the wind speed of an 
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imminent hurricane as well as the distance of the component from the center of the 

hurricane. 

To test the performance of the obtained decision boundary, the F1-Score (6) will be 

examined on the test data: 

 
(6) 

where P is the number of positive predictions divided by the total number of 

positive class values predicted (i.e., precision), and R is the number of positive predictions 

divided by the number of positive class values in the test data (i.e., recall). For example, in 

the case of the outage prediction problem, precision (P) is the number of correctly predicted 

outages divided by the total number of predicted outages, and recall (R) is the number of 

correctly predicted outages divided by the total number of actual outages. The F1-Score 

will be a value between 0 and 1, where higher values represent a better prediction and 

justify the acceptable performance of the obtained decision boundary. 

2.1.2. Numerical Simulation  

A set of 1000 artificial data points is generated, based on a normal distribution, and 

used for training (80%), and validation (20%). The proposed method results in the 

following solution for the characteristics parameters in (1): k0 = 1.47, k1 = −2.85, k2 = 0.59, 

k3 = −2.05, k4 = 0.70, and k5 = −0.36. Table 2-1 shows the obtained confusion matrix based 

on the calculated decision boundary on validation set. The F1-Score is calculated as 0.9027 

(R = 0.8759, P = 0.9311) which shows the acceptable performance of the proposed method. 
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TABLE 2-1- CONFUSION MATRIX BASED ON THE LOGISTIC REGRESSION CALCULATED 
DECISION BOUNDARY 

                                                               Predicted 

Actual Operational Damaged 

Operational 425 67 

Damaged 35 473 

 

2.2. SVM Based Power Grid Outage Prediction 

Despite the acceptable performance of the proposed logistic regression model, 

logistic regression requires much more data to achieve stable and meaningful results 

compared to other prediction models, such as support vector machine. In addition, the 

characteristic parameters of logistic regression increase exponentially as number of 

features increases. Hence, an SVM-based method is proposed and adopted to predict the 

state of each component in the aftermath of an imminent hurricane. 

2.2.1. Support Vector Machines 

SVM is a discriminative classifier that defines a separating hyperplane between two 

classes. The best hyperplane in SVM is considered as the hyperplane with the widest gap 

between the classes which decreases the risk of miss-classifying and increases the 

generalization of the classifier. This gap is usually referred to as margin, where SVM 

intends to maximize this margin between the classes.  

The details of the SVMs are fully described in the literature [49], so only a brief 

introduction to SVM in three-dimensional space is presented in this section. Consider m 

training samples xiÎR3, i=1,...,m in a binary classification problem. . The linear decision is 

function f(x)=sign(wTx+b), xiÎR3, where w is the weight vector which defines a direction 
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perpendicular to the hyperplane of the decision function, while bÎR is a bias which moves 

the hyperplane parallel to itself. The optimal decision function given by support vectors is 

the solution of the following optimization problem: 

 

         

                                         

(7) 

where w is the normal vector to the hyperplane separating training examples, 

|g|/||w|| is the perpendicular distance of the hyperplane from the origin, and c is a penalty 

parameter. When c → ∞, SVM does not allow any training errors (hard margin 

classification) and when 0 < c < ∞, the model allows some training errors, and hence 

allowing separating nonlinear examples (soft margin). This is a quadratic programming 

problem which can be solved for the problem’s Lagrange duality multiplier aÎR3 as 

follows:  

 

    

(8) 

In order to solve the duality problem, many analytical approaches are proposed in 

the literature, depending on the size of dataset and memory limitation considerations. 

Sequential Minimal Optimization (SMO) [50] is one of the analytic approaches that is used 

to solve the quadratic programming (QP) problem (2) in many SVM toolboxes such as 

LIBSVM tool in MATLAB [51]. SMO breaks the QP problem into multiple smaller 

subproblems, which are then solved analytically. SMO picks two support vectors, finds 
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corresponding Lagrange multipliers and repeats this process until reaching convergence 

(within a user-defined tolerance) or a maximum number of iterations.  

By solving the duality problem (8), the final hyperplane only depends on the 

support vectors (i.e., sample points that are in the margin) and SVM needs to find only the 

inner products between the test samples and the support vectors. Figure 2-4 shows the 

support vectors and optimal hyperplane in a separable two-class classification of SVM. In 

regards to the objective of this work, Figure 2-4 also shows the support vectors and optimal 

hyperplane to separate outage from operational components based on the associated 

resiliency index, distance from the center of the hurricane, and the wind speed.  

 

FIGURE 2-4- SUPPORT VECTORS AND OPTIMAL MARGIN IN SVM 
 

The idea of the maximum-margin hyperplane, which is discussed above, is based 

on the assumption that training data are linearly separable. To apply SVM to nonlinear data 

(which often is the case, especially in the case of the hurricane data), kernel methods [49] 

can be used. The idea of a kernel method (or as sometime called kernel trick) is to map the 
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input space into a linear separable feature space, usually a higher dimension, where the 

linear classifiers can separate two classes (Figure 2-5). As shown in Figure 2-5, the linearly 

inseparable data in a two-dimensional space can be linearly separable in higher dimensions 

(three dimensions in this figure). Kernel trick simply states that for all x1 and x2 in the input 

space, a certain function k(x1,x2) can be replaced as inner product of x1 and x2 in another 

space. For example, a Gaussian kernel can be defined as: 

 
(9) 

where s2 is the parameter of the kernel defined by the user. In practice, the best 

kernel is found by experiment while adjusting kernel parameters via a search method to 

minimize the error on a test set. 

 

FIGURE 2-5- THE KERNEL METHOD IN SVM.  
 

2.2.2. Resilience index as a Component Features 

A feature, in machine learning, is defined as an individual measurable property of 

a phenomenon being observed [21]. Selection of discriminating, independent, and 

informative features plays a critical role in the performance of the classification method. 

Various features can be defined to determine the state of the components in response to a 
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hurricane strike. In [38], the wind speed and the distance of the each component from the 

center of the hurricane are proposed as response to a hurricane. 

Although these features are obviously adequately informative, they do not provide 

information about the component itself. Resilience index of components is also an 

important factor during weather-related events. Similar to [20], we quantify the hurricane 

resilience of the electric power grid using a probabilistic modeling approach. For the sake 

of illustration, only the Poisson process model of hurricane occurrence during a given time 

period along with fragility models are considered in this work. Other factors used in [20] 

such as DC power flow, power grid restoration and component repair priority are not 

considered in this index. However, the proposed model is a general framework and can be 

extended to other resilience indices. Based on this, hurricanes are described by a Poisson 

process of constant rate λh such that the time interval between successive hurricane events 

has an exponential distribution with a probability function of  

 
(10) 

Similar to [20] and based on historical data from 1900 to 1999 [52], the annual 

occurrence rate of hurricanes is considered as λh = 1/7 per year, and the probability of a 

hurricane belonging to each category is respectively calculated as 0.53, 0.19, 0.15, 0.08, 

and 0.05. In this work, we consider resilience index for four components: a) generation 

units, b) transmission lines, c) distribution lines, and d) substations. For their flexible 

analytical properties, similar fragility models following a normal distribution, are 

considered for all four categories with probabilities of low, moderate, severe, and complete. 

Resilience index is then considered as the average of fragility model and the probability of 
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the hurricane. The category of hurricane, the distance of each component from the center 

of the hurricane, and the calculated components resilience index are investigated as three 

main features to predict the state of each component in response to the hurricane.  

2.2.3. Leveraging Accuracy-Uncertainty Tradeoff 

SVM defines a clear margin of support vectors. The majority of miss-classification 

happens in the area near the decision boundary. In SVM, the optimal margin is found by 

checking each and every data point against the condition stated in (7), then the vectors of 

data points that lie on either side of the hyperplanes become the support vectors. This is 

usually found using a numerical approach such as Sequential Minimal Optimization (SMO) 

[50]. The margin is defined as the distance between two closest support vectors, as in (11): 

 
(11) 

In this work, the area between the support vectors (margin from the decision 

hyperplane) is considered as an uncertain area. To improve the classification accuracy, the 

SVM gap is extended by decreasing the penalty coefficient, so the estimated states in the 

certain area will become more accurate. Figure 2-6 depicts the optimal margin and the 

uncertain area for a two-dimensional classification (for the mere purpose of clarity). The 

figure on the right has a smaller penalty coefficient, hence a larger margin allowing miss-

classification, and thus, a higher prediction accuracy. As shown, by increasing the margin, 

more missclassification occurs, in which the miss-classified data are located within the 

uncertain area. Allowing a wider gap significantly increases the accuracy of the model at 

the small expense of few miss-classified data. 
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The aim of the SVM is to fit a hyperplane based on the data points at the edge of 

each class, or “support vectors.” One of the advantages of SVM over other classification 

techniques is that it only considers support vectors (i.e., data points on the border of the 

boundary) when defining the separating hyperplanes and therefore it can offer a better 

generalization compared to other techniques such as logistic regression [4]. Also, SVM 

approximates the structural risk minimization principle in statistical learning theory rather 

than the empirical risk minimization method [8]. This property makes the SVM less prone 

to overfitting the training dataset. Figure 2-7 depicts the flowchart of the proposed method 

(components in the margin of SVM are considered as uncertain). 

FIGURE 2-6- THE OPTIMAL MARGIN IN SVM AND MISS-CLASSIFIED SAMPLES.  
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FIGURE 2-7- FLOWCHART OF DETERMINING THE COMPONENT STATE.  
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2.2.4. Numerical Simulation  

Scarcity of readily available datasets still remains a challenge for research 

community and industry practitioners. However, the limited historical data on past extreme 

hurricanes at the component granularity level shall not preclude methodological 

developments in critical areas including in machine learning systems. Therefore, in this 

work, a synthetic set of 1000 sample data is generated to train the SVM model, considering 

half of the samples in outage state and the other half in the operational state. The generated 

samples follow a normal distribution function of one-minute sustained wind speed of 

different Saffir-Simpson Hurricane Scale categories with a small Gaussian noise. The 

features are normalized to [0,1] based on the maximum considered values of wind speed 

and distance. Figure 2-8 shows the generated synthetic data. 

 

FIGURE 2-8- GENERATED SYNTHETIC DATA FOR SVM TRAINING AND VALIDATION  
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To evaluate the performance of the classifier, usually a subset of the historical 

dataset is reserved as holdout sample for model validation. k-fold cross-validation is a 

common validation technique for assessing the results of a classification system and 

evaluating how well it can generalize on a dataset [53]. In k-fold cross-validation, the 

dataset is randomly partitioned into k equal sized subsamples. A single subsample is 

reserved as the validation/test set, and the other k−1 subsamples are used as training data 

for the model. This process is iterated for k times (the number folds), where each of the k 

subsamples is used only once for the validation. The k results from the folds are accordingly 

averaged to obtain a single estimation. 

2.2.4.a) Multi-Dimensional SVM with Resilience index as Component Feature 

In this case study, the proposed SVM is trained on historical data with three 

features, namely the resiliency index of the component, the distance of the component from 

the center of the hurricane, and the category of the hurricane which is determined based on 

the wind speed. 

A k-fold cross validation (k=5) is performed to measure the performance of the 

proposed model. Different kernels (linear, polynomial Quadratic, Cubic, and Gaussian) 

with various penalty parameters (c=0.01, 0.1, 1, 10, 100) are examined. Since the 

considered dataset is relatively small, an off-the-shelf SVM model implemented in 

LibSVM [51] is used in this work. In the proposed work, the SMO tolerance for 

convergence is set to 1e-3 and the maximum number of iterations is set to a large value 

(15000 iterations). In practice, since the considered dataset is relatively small, it converges 

in about 350 iterations for different folds. Table 2-2 shows the average F1-Score for various 
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penalty parameters and kernel shapes. As it is shown, SVM with Gaussian kernel and c=1 

offers the best performance among other settings. 

A third order polynomial logistic regression model is also trained and examined in 

the same fashion (i.e., k-fold cross-validation with k=5) to predict the component outages. 

Table 2-3 compares evaluation metrics of SVM with different kernels (using penalty 

parameter c=1) and a third order polynomial logistic regression model. As shown, among 

the trained models, Gaussian kernel SVM had the best overall classification accuracy with 

a precision of 0.893, a recall of 0.826, and overall F1-Score of 0.858. Comparing the result 

of logistic regression with the proposed SVM indicates that the proposed SVM approach 

has a better performance in both accuracy and F1-Score. 

Table 2-4 shows confusion matrix of predicting components as operational and 

outage using Gaussian kernel SVM. The proposed model can predict outage and 

operational states with the accuracy of 90.2% and 82.6%, respectively. 

TABLE 2-2- AVERAGE F1-SCORE OF SVM WITH VARIOUS PENALTY PARAMETERS “C” AND 
KERNELS USING 5-FOLD CROSS-VALIDATION 

Kernel c=0.1 c=1 c=10 c=100 
Linear 0.845 0.845 0.846 0.846 
Quadratic 0.858 0.856 0.855 0.857 
Cubic 0.855 0.854 0.840 0.754 
Gaussian 0.857 0.858 0.850 0.847 
 

TABLE 2-3- COMPARISON OF THE PERFORMANCE OF SVM WITH VARIOUS KERNELS AND THE 
LOGISTIC REGRESSION METHOD. 

 Accuracy Precision Recall F1-Score 
Linear SVM 0.847 0.853 0.838 0.845 
Quadratic SVM 0.863 0.898 0.818 0.856 
Cubic SVM 0.861 0.896 0.816 0.854 
Gaussian SVM 0.864 0.893 0.826 0.858 
Logistic Reg. 0.809 0.815 0.798 0.806 
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TABLE 2-4- CONFUSION MATRIX OF CLASSIFYING SYSTEM COMPONENTS USING GAUSSIAN 
KERNEL SVM (NUMBER OF SAMPLES AND PERCENTAGE) 

 Predicted 
Normal Outage 

A
ct

ua
l Normal  451 (90.2%) 49 (9.8%) 

Outage  87 (17.4%) 413 (82.6%) 

 

2.2.4.b) Leveraging Accuracy-Uncertainty Tradeoff with Multi-Dimensional SVM  

In this case study, the area between the support vectors (margin from the decision 

hyperplane) is considered as an uncertain area. To improve the classification accuracy, the 

SVM gap is extended by decreasing the penalty coefficient, so the estimated states in the 

certain area will become more accurate. A k-fold cross validation with k = 5 is used to 

evaluate the performance. Particularly, the dataset is randomly partitioned into five 

subsamples each containing 120 samples. A single subsample is retained as the 

validation/test set, and the remaining subsamples are used for training. This process is then 

repeated five times (i.e., the number of folds).  

Table 2-5 shows the performance of SVM and the number of components in 

uncertain area without considering the component deterioration. Table 2-6 shows the 

improvement when component deterioration is considered as a feature of the trained model. 

Comparing the results of the proposed approach with and without considering deterioration 

level indicates the benefit and the importance of this factor. As it is shown, the F1-score is 

improved, in both cases of base and certain, for all considered penalty coefficients. This 

improvement can be as high as 7.4% which is obtained for the case of c = 0.1. In addition, 

the number of components in uncertain area is reduced in all cases, especially when penalty 

coefficient c is larger than 1.  
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TABLE 2-5- PERFORMANCE OF SVM AND THE NUMBER OF COMPONENTS IN UNCERTAIN AREA 
WITHOUT CONSIDERING DETERIORATION LEVEL OF THE COMPONENT 

Penalty Coefficient (c) 
100 10 1 0.1 0.01 

F1 -score 84.16 85.66 87.16 83.66 84.33 
F1 -score certain 90.00 91.67 91.81 90.63 94.43 
Margin Size 0.111 0.111 0.115 0.121 0.254 
No. of uncertain 25 26 28 35 61 

 

TABLE 2-6- PERFORMANCE OF SVM AND THE NUMBER OF COMPONENTS IN UNCERTAIN AREA 
WITH CONSIDERING DETERIORATION LEVEL OF THE COMPONENT 

Penalty Coefficient (c) 
100 10 1 0.1 0.01 

F1 -score 89.67 89.50 89.33 90.17 89.67 
Improvement (%) 6.55 4.48 2.49 7.78 6.33 
F1 -score certain 95.34 95.52 95.61 95.36 95.37 
Improvement (%) 5.93 4.20 4.14 7.43 4.17 
Margin Size 0.079 0.082 0.097 0.157 0.300 
Change (%) -28.83 -26.13 -15.65 29.75 18.11 
No. of uncertain 17 17 19 30 60 

 

The obtained results advocate that by decreasing the penalty coefficient, the margin 

of SVM becomes larger and thus more components will be located in the uncertain area. 

However, the F1-Score of components is significantly improved (from 95.34 in c = 100 to 

98.37 in c = 0.01). The final decision can be considered as a tradeoff between the prediction 

accuracy and the number of components in the uncertain area.  

Figure 2-9 shows the relationship of penalty coefficient (c) and regularization 

weight (ε) of miss-classified data points inside the margin. By increasing the penalty 

coefficient, regularization weight decreases. Figure 2-10 illustrates optimal hyperplane in 

a three-dimensional feature space for the studied case. 
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FIGURE 2-9- RELATIONSHIP OF PENALTY COEFFICIENT (C) AND REGULARIZATION WEIGHT OF 
MISS-CLASSIFIED DATA POINTS INSIDE THE MARGIN.  

 

 

FIGURE 2-10- OPTIMAL HYPERPLANE IN A THREE-DIMENSIONAL FEATURE SPACE USING SVM 
ON REAL DATA  

 

A third order polynomial logistic regression model is also developed and trained 

with these three features to predict the component outage and to further show improvement 
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over existing work in Section 2.1.2. The logistic regression model is evaluated in the same 

fashion (i.e., using cross k-fold validation with k = 5), which offers an overall F1-score of 

0.885. Comparing the results of the logistic regression model with the SVM (shown in 

Table 2-6), it can be clearly seen that the proposed SVM offers a considerably better 

performance. 
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CHAPTER THREE: LOAD CURTAILMENT ESTIMATION AND GRID 

HARDENING  

The predicted component outages from previous Chapter are then plugged into a 

load curtailment minimization model to estimate the nodal load curtailments in the system.  

The formulation of the proposed load curtailment minimization model is discussed in 

Section 3.1. The standard IEEE 30-bus system with a combination of hurricane path and 

intensity scenarios are used to study the model. The results demonstrate that the proposed 

modelling framework is capable to effectively capture the dynamics of load curtailment 

estimation in response to extreme events. 

Once the probable damages to system components are estimated, these predictions 

are fed into a hardening model, which determines strategic locations for placement of 

distributed generation (DG) units, which is presented in Section 3.2. The numerical 

simulations on the standard IEEE 118-bus test system illustrate the merits and applicability 

of the proposed hardening model. The results indicate that the proposed hardening model 

through decentralized and distributed local energy resources can produce a more robust 

solution that can protect the system significantly against multiple component outages due 

to an extreme event. 
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3.1. Load Curtailment Estimation in Response to Extreme Events 

The Load Curtailment Estimation problem is solved in three consecutive stages as 

illustrated in Figure 3-1. First, the category and the path of an upcoming hurricane are 

predicted, as shown in Figure 3-1(a). The category and path are used to identify the 

intensity of the hurricane and the potentially impacted regions, respectively. These data are 

obtained from weather forecasting agencies. Next, the speed of the hurricane, and the 

distance of each power grid component from the center of the hurricane— denoted by x1 

and x2, respectively—are used to predict the state of a component, as shown in Figure 

3-1(b). An SVM method is used in this stage to classify the components into two states of 

damaged (on outage) and operational (in service). The SVM model is trained on historical 

data. Finally, a minimum load curtailment problem considering the predicted state of each 

component to estimate the potential nodal load curtailments is solve, as shown in Figure 

3-1(c).  

3.1.1. Proposed Load Curtailment Estimation Model 

The objective of the minimum load curtailment problem is defined as the value-

weighted cost of load curtailment in the system, as follows: 

 

FIGURE 3-1- THE SCHEMATIC VIEW OF THE PROPOSED LOAD CURTAILMENT ESTIMATION 
MODEL  

    
(a) Forecasting                                     (b) Component Outage 

Prediction 
   (c) Load Curtailment 

Estimation 
 

       Operational 
       Outage 

Margin 

x2 

x1 
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 (12) 

 
where VOLLb is the Value of Lost Load at bus b, and LCbts is the amount of load 

curtailment at bus b at time t during contingency scenarios s. The Value of Lost Load 

represents the average cost that each customer is willing to pay in order to avoid any load 

interruptions [13]. Assuming UXits as the outage state of unit i at time t in scenario s (where 

operational state equals to 1 and outage state equals to 0) and UYlts as the outage state of 

line l at time t in scenario s, the proposed objective function is subject to the following 

physical constraints:  

 
(13) 

 (14) 

 (15) 

 (16) 

 (17) 

where b, i, and l are the indices for buses, generation units, and lines, respectively; 

Bb is the set of components connected to bus b, s is index for scenarios, and t is index for 

time; Pimax and Pimin represent the maximum and minimum generation capacity of unit i, 

respectively; PLlts is the real power flow of line l at time t in scenario s, θbts is the phase 

angle of bus b at time t in scenario s, and M is a large positive constant. The parameter alb 

is the element of line l and bus b at line-bus incidence matrix, and Dbt is the load at bus b 

at time t. 
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The total injected power to each bus from generation units and line flows is equal 

to the nodal load which can be ensured by load balance equation (13). Load curtailment 

variable (LCbts) ensures a feasible solution in case of component outages when there is not 

sufficient generation and/or transmission capacity to supply loads. Generation unit output 

power is limited to its capacity limit and will be set to zero depending on its commitment 

and outage states (14). The change in unit generation is further limited by the maximum 

permissible limit between normal and contingency scenarios (15). Transmission line 

capacity and power flow constraints are modeled by (16) and (17), respectively, where the 

outage state variable is effectively incorporated in order to model the line outages in 

contingency scenarios. 

3.1.2. Numerical Simulation  

Due to the scarcity of structured historical data at components level from the recent 

hurricanes, a set of synthetic data is generated to train the SVM model. The data includes 

300 samples in outage state and 300 samples in the operational state. To define the 

synthetic data, Saffir-Simpson Hurricane Scale [55] is used to generate wind speed features 

of the synthetic data. These generated scenarios are used in the pre-process stage for 

training the proposed machine learning model, ensuring relevant outage scenario 

generation. A subset of data (80%) is sampled for training purpose, and the remaining 20% 

is held out to validate the model. The output of this model (i.e., the outage state of the 

power grid components) can be used as an input not only for load curtailment estimation 

application of this study, but also to enhance the accuracy of the scenarios and reduction 

of model risk in other applications such as those presented in [12], [13].  
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In this word, in order to find the best kernel and its penalty parameters, a set of 

linear, polynomial quadratic, and Gaussian kernels with different ranges of penalty 

parameter (i.e., c = 0.01, 0.1, 1, 10) are also examined in training process. Table 3-1 shows 

the accuracy of SVM with aforementioned combinations of penalty parameters and 

kernels. As shown, the polynomial kernel SVM with c=1 outperforms other models in 

terms of classification accuracy. The margin size of the SVM with polynomial kernel is 

0.1131, and the average ε (regularization weight) is 0.4558. 

 
FIGURE 3-2- DECISION BOUNDARY OF THE POLYNOMIAL KERNEL WITH PENALTY PARAMETER 

C=1  
 

Figure 3-2 shows the decision boundary of the polynomial kernel with penalty 

parameter c=1, separating outage from operational components based on wind speed and 

distance from the center of the hurricane. As shown, the instances are not linearly 

separable, and a nonlinear kernel is necessary to better classify the components. Table 3-2 

shows the confusion matrix of this classification. As shown, the proposed method can 

effectively classify the components into outage and operational classes. 

 



42 

 
TABLE 3-1- ACCURACY (%) OF SVM WITH VARIOUS PENALTY-PARAMETERS AND KERNELS 

Kernel c=0.1 c=1 c=10 
Linear 91.0 91.4 91.2 
Quadratic 91.3 91.2 91.2 
Polynomial 92.3 92.8 92.7 
Gaussian 91.3 91.2 91.8 

 
 

TABLE 3-2- CONFUSION MATRIX OF CLASSIFYING SYSTEM COMPONENTS 

Actual Predicted  
Normal Outage 

Normal 91.7%          8.3% 
Outage 6.0%         94.0% 

 
The proposed minimum load curtailment model is applied to the standard IEEE 30-

bus test system. A hurricane passes through three hypothetical paths with different 

intensities. Particularly, based on the available hurricane data and the estimated distance 

from the center of the hurricane, the state of each component in the system is predicted 

using the trained SVM model. This study estimates how much load curtailment is expected 

to occur due to an imminent hurricane. Table 3-3 shows the load curtailment of each 

contingency scenario based on the predicted outages.  

TABLE 3-3- LOAD CURTAILMENT OF BUS OUTAGES ALONG THREE HURRICANE PATHS 
Bus 

number 
Total Load 

(MWh) 
LC Scenario 1 

(MWh) 
LC Scenario 2 

(MWh) 
LC Scenario 3 

(MWh) 
2 423.08 0 0 4.91  
3 46.79 44.95  0 1.62  
15 159.87 0 0 0.37  
18 62.39 0 59.94  2.10  
19 185.22 0 177.95  0 
20 42.89 0 41.21  0 
23 62.39 0 0 9.92  
24 169.62 0 0 162.97  
29 46.79 0 0 0.31 
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As shown, buses 3 and 18 are shown to be the most sensitive buses, since in both 

Scenarios 2 and 3 these two buses are predicted to be in outage state. In addition, buses 18, 

19, and 20 are the most critical buses as more than 95% of the total load curtailments are 

expected to take place in these buses. The predicted outages and load curtailment 

estimation are of crucial for utilities to effectively mobilize their restoration resources in 

prior- and post-hurricane phases. 

3.2. Machine Learning Assisted Power Grid Hardening  

The outline of the proposed grid hardening model is depicted in Figure 3-3. The 

problem is solved in three consecutive steps. In step 1, an SVM model is trained to classify 

the components into two states of damaged (on outage) and operational (in service) based 

on historical data. In step 2, the category and the path of an upcoming hurricane are 

forecasted which can be obtained from a weather forecasting channel. The category and 

path are used to identify the intensity of the hurricane and the potentially impacted regions, 

respectively. The speed of the hurricane and the distance of each power grid component 

from the center of the hurricane are used to predict the state of each component using the 

model trained in step 1. These predictions can subsequently help determine a set of suitable 

hardening candidates. Step 3 solves a grid hardening problem to ensure a secure supply of 

loads in response to the forecasted extreme event based on the predicted state of the 

components from step 2 and through strategic placement of utility-owned DGs. The 

proposed hardening model takes grid resilience and economic needs into consideration 

with the objective of minimizing the total system upgrade cost as well as system operation 

costs, subject to prevailing investment and operation constraints. 
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FIGURE 3-3- PROPOSED GRID HARDENING MODEL  

 
 

This work focuses on physical hardening options, as resilience events are mainly 

triggered by outages and displacements of physical power grid facilities. Supply 

redundancy is considered as a valuable hardening approach. Supply redundancy 

decentralizes the electricity generation, thus instead of relying on large-scale power plants 

and bulk transmission network for power supply and delivery, a localized supply of power 

is utilized in certain regions to improve resilience. In this case, if power transfer and 

delivery from centralized generation is interrupted, a local supply of loads will be provided 

via available DGs.  
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3.2.1. Proposed Grid Hardening Model 

The proposed grid hardening model minimizes the total investment cost of the grid 

hardening candidates as well as system operation costs, subject to prevailing investment 

and operation constraints. For reliability studies in power systems, it is common to use the 

N-1 criterion. The N-1 criterion simply states that the system needs to adequately and 

reliably supply loads in case of a single component outage at any given time. However, 

after an extreme event, it is anticipated that more than one component is affected and 

becomes unavailable. Hence, different contingency scenarios are considered in 

neighboring locations along the hurricane path in which more than one component can be 

in outage state. Assuming s is the contingency scenario, the problem objective is defined 

as: 

 (18) 

 
where Fi(.) is the operation cost of unit i in normal operation, v is the value of lost 

load, LCbts is the amount load curtailment, and ICb is the investment cost associated with 

system upgrades by a DG unit with the capacity of PbG,max at bus b. The value of lost load, 

v, is defined as the average cost that each type of customer, i.e., residential, commercial, or 

industrial, is willing to pay in order to avoid load interruptions [54]. Assuming UXits as the 

operation state of unit i at time t in scenario s (1 when operating and 0 when on outage), 

and UYlts as the operation state of line l at time t in scenario s (1 when operating and 0 when 

on outage), the following operational constraints are defined: 
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(20) 

 
(21) 

 
(22) 

 
(23) 

 
(24) 

 
(25) 

Constraint (19) represents nodal load balance. The load balance ensures that the 

total injected power to each bus from generation units, supply redundancies through DGs, 

and line flows is equal to the total consumed load at that bus. The load curtailment variable, 

LC, is added to the load balance equation to ensure a feasible solution when there is not 

sufficient generation to supply loads (due to component outages). Load curtailment is zero 

under normal operation conditions. Generation unit output power is limited by its capacity 

limit and is set to zero depending on its commitment and operation states (20). The change 

in a unit generation is further limited by the maximum permissible limit between normal 

and contingency scenarios (21). Transmission line capacity limits and power flow 

constraints are modeled by (22) and (23), respectively, in which the operation state is 

included to effectively model the line outages in contingency scenarios. PGbts is the DG 

output power which is limited by its capacity limit and is set to zero depending on supply 

redundancy decision at bus b (24). Furthermore, the sum of the investment cost of all 

installed DGs in the system cannot exceed the available budget set by the system planner 

(25). 
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3.2.2. Numerical Simulation  

The proposed hardening model is applied to the standard IEEE 118-bus test system. 

A hurricane is assumed to pass through three hypothetical paths as shown in Figure 3-4. 

The components in each path and its neighboring areas are classified into two categories 

of operational and outage according to the wind speed and the distance to the center of the 

hurricane, using the SVM model trained in the previous section. The trained model 

classified 48, 56, and 55 components as outage in paths 1, 2 and 3, respectively. 

 

 

FIGURE 3-4- IEEE 118-BUS TEST SYSTEM AND THE FORECASTED HURRICANE PASSING 
THROUGH THREE HYPOTHETICAL PATHS  

 
 

The proposed hardening model and the optimal scheduling problem is solved for 

one year (8760 hours). The value of lost load is considered $100/MWh at all buses. The 

investment cost associated with installing a DG unit (supply redundancy) at any given bus 

is assumed to be $50/MW. The following cases are studied: 

Case 1: In this case, power grid scheduling is performed without hardening (supply 

redundancy). The optimal operation cost is obtained as $366,277,300. A total of 43338, 
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47143, and 44393 MWh load curtailment occurs in paths 1, 2, and 3, respectively. The 

average cost of unserved energy is calculated as $449,580,000. 

Case 2: In this case, power grid scheduling is solved using the proposed hardening 

model. It is assumed that there is no constraint on investment budget. The annual optimal 

operation cost is obtained as $492,307,700. No load curtailment has occurred in this case, 

so the cost of unserved energy is zero and the system is secure against considered 

component outage scenarios. The proposed model advocates on hardening options at buses 

33, 37, 39, 41, 42, 54, 59, and 80 to avoid load curtailments.  

Case 3: This case discusses the effect of system hardening investment budget on 

the solution when all other parameters are kept unchanged. The results are summarized in 

Table 3-4. As shown, the average unserved energy decreases by increasing the amount of 

budget.  

TABLE 3-4- EFFECT OF INVESTMENT BUDGET ON OPERATION COST AND LOAD CURTAILMENT   
Budget 

 
Load Curtailment (MWh) Average Unserved Energy Cost 

Path 1 Path 2 Path3  
$0M 43,338 47,143 44,393 $449,580,000 
$1M - 22,341 3155 $84,986,666 

$10M - 20,138 2,751 $76,296,666 
$100M - 5294 - $17,646,666 
$126M - - - $0 

 
As Table 3-4 suggests the relationship between the investment budget and average 

unserved energy cost reduction is not linear. For instance, the unserved energy cost reduced 

drastically ($364,593,334) with $1M investment, but to zero out the unserved energy cost 

(from $84,986,666 to zero), the system requires $125 M additional budget. The final 

decision is a trade-off between hardening budget and load curtailment reduction based on 

planner’s discretion.  
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CHAPTER FOUR: PROBABILISTIC LOAD CURTAILMENT ESTIMATION 

USING POSTERIOR PROBABILITY MODEL AND TWIN SUPPORT VECTOR 

MACHINE 

 

In this chapter, a TWSVM classification method is trained to find the operational 

state of each component by considering the path and the intensity of the hurricane, as well 

as the distance of each component from the center of the hurricane. A posterior probability 

model is consequently applied to the output of the TWSVM model to estimate the outage 

probability of each component. Having an accurate estimation of probable outages plays a 

vital role in responding to an upcoming hurricane.  

Unlike the existing work on outage prediction and extended outage consideration 

in security-constrained unit commitment (SCUC), including the previous work of authors 

in [56] [41], this chapter considers the probability of outage obtained by a machine learning 

approach in scheduling. TWSVM is chosen for its performance in complex intertwined 

classification problems and when dealing with imbalanced datasets. This can be potentially 

problematic since the data of past hurricanes are imbalanced, i.e., the number of non-

operational components is far less than the number of operational components. The merit 

behind proposed probabilistic load curtailment estimation model is that it considers all 

contingency scenarios with their probability and hence the most probable scenario or the 
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scenarios with most load curtailment can be recognized. The predicted outage and 

estimated outage probability can be useful for electric utilities to assess their risk and 

allocate necessary resources and repair crews to prepare for and recover from hurricanes 

in a considerably shorter time-frame. 

The rest of the chapter is organized as follows: Section 2 presents the model outline 

and formulation of the proposed machine learning method for outage prediction. Section 3 

presents simulation results on a test system, and Section 4 concludes the chapter. 

4.1. Proposed model 

The goal of this section is to determine the probable load curtailments in a power 

system as a result of hurricane-caused component outages. The considered components 

include, but are not limited to, transmission lines, generation units, and substations. The 

problem is solved in three consecutive steps. In Step 1, a TWSVM model [57][58] is trained 

on historical outage data to help classify the operational state of components after the 

hurricane.  

The speed of the hurricane and the distance of each component from the center of 

the hurricane are used to predict the probability of outage for each component. The output 

of the TWSVM model will be a list of 0/1 values, showing whether each component is 

operational or on outage, however it provides no information on the outage probability. To 

estimate the outage probability for each component, a posterior probability sigmoid model 

[59] is applied in the Step 2 to the output of the first step. The category and the path of the 

upcoming hurricane in this step are obtained from weather forecasting agencies. In Step 3, 

the obtained component outages and their associated probabilities are integrated into a 
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probabilistic load curtailment estimation model to estimate the nodal load curtailments and 

thus help identify the areas that will potentially be impacted by the hurricane.  

4.1.1. TWSVM 

The SVM method has numerous advantages including the ability to provide a 

global solution for data classification. It generates a unique global hyperplane by solving a 

quadratic programming problem (QPP) to separate the data samples of different classes 

rather than local boundaries as compared to other existing data classification approaches. 

Due to its performance, SVM is one of the most widely-used classification techniques in 

data mining. One of the main challenges with the traditional SVM, however, is that it solves 

only one QPP problem to classify the data, which may not be suitable in cases of 

imbalanced data.  

Although SVM often produces effective solutions for balanced datasets, it is 

sensitive to imbalance in datasets and produces suboptimal results [60]. In other words, the 

separating hyperplane of an SVM model trained with an imbalanced dataset can be skewed 

towards the minority class [61], and hence the performance of that model is degraded with 

respect to the minority class. Several approaches in literature have been proposed to 

improve the SVM performance when dealing with imbalanced dataset classification [60]. 

These approaches can be categorized as data processing approaches (such as resampling 

methods [62] and ensemble learning methods [63]), algorithmic approaches (such as 

different error cost [61] or z-SVM [64]), and hybrid approaches (such as hybrid kernel 

machine ensemble [65]). Despite the performance improvement of these approaches, the 

suboptimality of the soft-margin is an inherited problem of SVM and majority of these 
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approaches require an expert understanding of data shape and empirical parameter tuning, 

e.g., setting a proper weight for each class, or finding best ensemble size. 

A viable alternative to SVM is TWSVM, as a machine learning approach suitable 

for complex intertwined classification problems, which classifies the patterns of two 

classes by using two non-parallel hyperplanes [66]. The biggest advantage of TWSVM, in 

addition to the training speed, is its ability to handle imbalanced datasets [57]. This is 

because each class has its own representative hyperplane instead of one hyperplane 

separating two classes from each other, and therefore TWSVM can classify 

underrepresented classes better than traditional SVM, especially when the classes are 

intertwined. Since TWSVM classifies the data using two hyperplanes, it solves a pair of 

QPPs instead of a single complex QPP as in traditional SVM. Comparing to a traditional 

SVM over benchmark datasets, TWSVM has shown comparable performance while being 

approximately four times faster [57][58]. TWSVM has shown improvement in several 

practical applications such as classification of biomedical data [67], gesture classification 

[68] speaker recognition (i.e., personal identity from the speech signal) [69], and image 

analysis [70], to name a few. Figure 4-1 illustrates a traditional linear classifier SVM and 

TWSVM in separating two classes. As shown, traditional SVM does not take the data 

skewness into account and the separating hyperplane is the one that represents the largest 

margin between two classes. 
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FIGURE 5-1- SVM AND TWSVM FOR IMBALANCED DATASET IN TWO-DIMENSIONAL FEATURE 
SPACE. 

 
The goal of TWSVM in a binary classification problem is to construct two non-

parallel planes for each class such that each hyperplane is closer to the data samples of its 

representative class while distant from the samples of the other class [66]. The distances 

between the samples and both non-parallel hyperplanes are compared to determine the 

category of each sample.  

Consider a binary classification problem that classifies m1 training samples 

belonging to positive class and m2 training samples belonging to negative class in an n-

dimensional real space Rn, where m1+m2=m. Let matrices A1 and A2 represent the training 

samples of the positive and negative classes respectively. Since a linear TWSVM seeks 

two non-parallel hyperplanes, two hyperplanes h1(x) and h2(x) are defined as: 

               (1) 

where wi is the normal vector to the hyperplane representing training examples of 

class i; and di is the bias vector of the separating hyperplanes representing class i. |di|/||wi|| 

is the perpendicular distance from the hyperplanes to the origin. To find hyperplanes h1(x) 

and h2(x), such that h1(x) is closest to the training samples of the positive class and far 
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from the training samples of the negative class, and h2(x) is closest to the training samples 

of the negative class and far from the training samples of the positive class, the following 

QPP is solved for each class: 

                        (2) 

s.t. 

         (3) 

where ci>0 is the regularization term to control overfitting of class i; ei is a vector 

of ones of appropriate dimension; ||.||2 denotes Euclidean distance;  is slack variable of 

class i; and ρi is the coefficient of each class where ρ1=1 for the positive class and ρ2=−1 

for the negative class. TWSVM solves two QPPs problem (2) and (3) separately for each 

class. If sample sizes of both classes are approximately equal to m/2, the complexity of 

solving these two QPPs in TWSVM will be O(2×(m/2)3). Comparing with the standard 

SVM with computational complexity of O(m3) which solves one QPP problem for both 

classes at the same time, TWSVM is approximately four times faster [66]. The objective 

function seeks the distance from the sample to the hyperplane by the square distances (L2-

norm), and minimizes the distance to ensure the hyperplane is as close as possible to the 

samples of its own class. The sample x is assigned to class i if:  

               (4) 

where ||wi|| is the Euclidean length of vector wi. 

Similar to SVM, kernel method [49] can be applied to TWSVM. The idea of a 

kernel method (or as sometimes called kernel trick) is to map the input feature vector into 
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a higher-dimension space where the classes are linearly separable. To apply kernel to 

TWSVM, the QPP problem of (2) and (3) is formulated as: 

                             (5) 

s.t. 

         (6) 

where B=[A1, A2]T and K is the kernel function. Finding a proper value of penalty 

parameter c and the best kernel depends on the shape of classes, which are often found via 

a search method to minimize the error on the test set. 

4.1.2. Posterior probability estimation 

To determine the likelihood of a sample belonging to a specific class, two 

normalized distances, to each hyperplane hi, are defined as: 

             (7) 

Given the distance between two representative hyperplanes h1 and h2, two new relative 

distances can be defined as:  

                           (8) 

                           (9) 

Intuitively, the probability of a sample x belonging to a certain class depends on its 

relative distance to the positive class and the negative class . Two relevant quantities 

Dmin(x) and Dmax(x) are then defined by: 

                    (10) 
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                   (11) 

Figure 4-2 shows a sample x and its corresponding relative distances  and 

. 

 

FIGURE 4-2- AN EXAMPLE INDICATING MEANING OF RELATIVE DISTANCES OF SAMPLE X TO THE 
POSITIVE AND NEGATIVE SEPARATING HYPERPLANES IN A TWO-DIMENSIONAL FEATURE SPACE. 

 

As it is shown, the quantities Dmin(x) and Dmax(x) are the factors influencing the 

probability of belonging to the positive class. In other words, the probability of belonging 

to the positive class increases when either Dmin(x) or Dmin(x)/Dmax(x) becomes larger. 

Hence, a score function f(x) can be define as: 

               (12) 

If D1>D2, then the sample belongs to the positive class, otherwise to the negative 

class. If Dmin is small and Dmax is large, it means that the sample is very close to one of the 
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planes and far away from the other. Hence, the probability is large, i.e., f(x) becomes a very 

large positive number for the positive class and a very large negative number for the 

negative class. If Dmin ≈ Dmax, then it means the sample is relatively in the same distance 

between these classes and the f(x) is small. Constant λ is the weight parameter. This 

parameter can be determined on a validation set. The data is split into three subsets, 

training, validation and test. The training set is used to find separating hyperplanes. Then 

different values of λ in the score functions f(x) will be evaluated on the validation set and 

the best parameter will be tested on the test subset. 

The above formulation can be easily extended to nonlinear TWSVM by considering 

the kernel-generated surfaces instead of the hyperplanes as: 

                      (13) 

Since Dmin and Dmax can be any arbitrary value, the range of the score function f(x) 

is (-∞, +∞). Platt scaling or Platt calibration is a way of transforming the score of a 

classification model into a probability distribution over classes [71]. Platt scaling finds the 

parameters of a sigmoid function which converts the scoring output of (-∞, +∞) to a 

probability of [0, 1]. It has been shown that Platt method yields probability estimates that 

are at least as accurate as ones obtained by training a SVM, while being expedient [72]. 

Similar to the continuous output in an SVM, the following posterior probability function 

is constructed over the values of score function f(x) as: 

                      (14) 
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where a and ß are the scaling weights of the sigmoid function calculated using the 

maximum likelihood estimation (i.e., Platt scaling) [71], by minimizing the following 

function: 

                (16) 

s.t. 

                                (17) 

             (18) 

where tk is the target probability of a particular sample of xk; pk is the predicted 

probability of that sample; and m, m1 and m2 are the numbers of total training samples, 

positive training samples and negative training samples, respectively. 

4.1.3. Evaluation criteria 

1) Evaluation of classifier 

To evaluate the performance of the classifier, a cross-fold validation is used. The 

cross-fold validation splits the data into q subsets, in which the classifier is trained on q-1 

subsets and evaluated on the subset that is left in the training. This process is performed q 

times (such that the classifier is evaluated on all samples). The final classification accuracy 

is the average of classification accuracies on all folds. Reporting the general accuracy of 

prediction cannot be sufficient as the number of samples may not be balanced in the test 

set. The F1-score is a common and reliable measure of classification performance [21] 

defined as: 
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                               (19) 

where P (precision) is the number of correct positive results divided by the number 

of all positive results returned by the classifier; and R (recall) is the number of correct 

positive results divided by the number of all relevant samples. In case of outage estimation, 

P is defined as the ratio of number of correctly predicted outages to total number of 

predicted outages, and R is defined as the ratio of number of correctly predicted outages to 

total number of actual outages. 

A higher value of the F1-score, which is a number between 0 and 1, indicates a 

better classification and justifies the viable performance of the existing decision boundary. 

2) Evaluation of posterior probability estimation 

A common way to determine how well a posterior probability estimator model fits 

the data is the area under receiver operating characteristic (ROC) curve [21]. A ROC curve 

is a graph showing the performance of a classification model at all classification thresholds. 

The ROC curve is created by plotting the true positive rate (TPR) against the false positive 

rate (FPR) at various threshold settings. In this chapter, since the goal is to estimate outage 

probability, the outage state is considered as positive and the operational state is considered 

as negative class. The TPR is the number of correctly predicted samples in outage state 

divided by the total number of samples in outage state, and FPR is the number of incorrectly 

predicted samples in operational state divided by the total number of samples in operational 

state. 

The area under the ROC curve (AU-ROC) measures the entire two-dimensional 

area underneath the entire ROC curve as: 

1
2PRF
P R

=
+
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                         (20) 

where τ is a threshold indicating that an instance is classified as positive class if the 

posterior probability is greater than τ, and negative otherwise. AU-ROC provides an 

aggregate measure of performance across all possible classification thresholds. It is equal 

to the probability that a classifier will rank a randomly chosen positive instance higher than 

a randomly chosen negative one [21]. 

4.1.4. Probabilistic load curtailment estimation 

The objective function of the probabilistic load curtailment estimation problem is 

defined as: 

                   (21) 

where ps is the probability of each hurricane scenario where åps=1; Fg(.) is the 

operation cost function, which includes the generation cost and startup/shutdown costs, Pgt0 

is the real power generation of unit g at time t in scenario zero (i.e., normal operation), Igt 

is the commitment state of unit g at time t, v is the value of lost load, and LC,bts is the amount 

of nodal load curtailment at bus b at time t in scenario s. The value of lost load is defined 

as the average cost that each type of customer, i.e., residential, commercial, or industrial, 

is willing to pay in order to avoid power supply interruptions. Assuming UX and UY as 

outage states for generation units and transmission lines, respectively, the proposed 

objective function is subject to the following operational constraints: 

                 (22) 
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                (24) 

                (25) 

                     (26) 

                     (27) 

                 (28) 

                   (29) 

                    (30) 

where Pgts is the real power generation of unit g at time t in scenario s, PL,lts is the real 

power flow of line l at time t in scenario s, Dbt is the load at bus b at time t, Pgmin and Pgmax 

are respectively the minimum and maximum generation capacity of unit g, UR,g and DR,g 

are respectively ramp up and ramp down rates of unit g, and  are respectively the 

number of successive ON and OFF hours of unit g at time t, UT,g and DT,g are respectively 

the minimum up time and down time of unit g, is the maximum power flow of line l, 

alb is the element of line l and bus b in line-bus incidence matrix, θbts is the phase angle of 

bus b at time t in scenario s, Xl is the reactance of line l, and M is a large positive constant.   

Load balance equation (22) ensures that the total injected power to each bus from 

generation units and line flows is equal to the total load at that bus. Load curtailment 

variable (LC,bts) is further added to the load balance equation to ensure a feasible solution 

when there is not sufficient generation to supply loads (due to component outages). 

Generation unit output power is limited by its capacity limit and will be set to zero 

depending on its commitment and outage states (23). Generation units are further subject 
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to prevailing technical constraints including ramp up and down rate limits (24), (25), and 

minimum up and down time limits (26), (27). The load curtailment at each bus is 

constrained by the total load on that bus (28). Transmission line capacity limits and power 

flow constraints are modeled by (29) and (30), respectively, in which the outage state is 

included to model the line outages in contingency scenarios. Note that (21)-(30) is 

effectively a SCUC problem with weighted scenarios and simultaneous component 

outages. 

4.2. Numerical simulations 

The standard IEEE 118-bus test system is used for testing the proposed model, by 

assuming that a hurricane is predicted to pass through the system. The system 

characteristics, including generation, line, and load data, can be found in [73].  

4.2.1. TWSVM performance  

As historical data for the past hurricanes at component level are limited, 550 

samples are synthetically generated (500 samples of component in operational state and 50 

samples in outage state) following a normal distribution function with a small Gaussian 

noise. To ensure that these samples fit a practical situation, the models proposed in [56] 

are used for hurricane modeling and the models in [74] are used for identifying the response 

of each component to the modeled hurricanes. The features are normalized to [0, 1] range 

based on the maximum considered values of wind speed and distance. These samples are 

shown in Figure 4-3. 
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FIGURE 4-3- GENERATED SAMPLES FOR EACH CLASS (OPERATIONAL AND OUTAGE) 
 

Although several other features can be defined, when the dimension increases, 

typically a significant amount of training data is required to ensure that the samples cover 

all combinations of feature values. As gathering component level data is not trivial, a 

limited number of samples is synthesized in the studied dataset and only the two most 

important/salient features (i.e., wind speed and distance) are used in the outage estimation 

problem. 

To measure the performance of the proposed method, a series of penalty parameters 

(c=0.01, 0.1, 1, 10, 100) with various common kernels are examined. In each setting. A 

weighted soft-margin SVM [61] (wSVM) is used to compare the performance. The wSVM 

adjusts the class sensitivity (penalty of missclassifying) of each class inversely proportional 

to the frequencies of the class in the training set. In other words, the penalty of 

missclassifying outage samples are 0.91 (50/550) and the penalty of missclassifying of 

operational samples are 0.09 (500/550).  Table 4-1 shows the average F1-score of both 

wSVM and TWSVM over a 5-fold cross validation. On average, TWSVM took 0.0148 
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seconds to solve the problem and SVM took 0.0320 seconds to find proper separating 

hyperplane over 5-fold cross validation. 

As it is shown, TWSVM with quadratic kernel and c=1 offers the best performance 

among other settings with the average overall precision of 0.932, recall of 0.912 and F1-

score of 0.922. The relatively small variance (about 3%) in the F1-score of the SVM and 

TWSVM under various hyper-parameters indicates that both methods are insensitive to 

hyper-parameters and are not over-fitted to the training data in the studied case. A third 

order polynomial logistic regression model is also trained and examined in the same 

fashion (i.e., 5-fold cross validation) to predict the component outages. The logistic 

regression model has an F1-score of 0.856 on the test set which advocates on the superior 

performance of both SVM and TWSVM in solving this problem.   

TABLE 4-1- F1-SCORE OF CLASSIFYING SYSTEM COMPONENTS INTO TWO CLASSES OF OUTAGE 
AND OPERATIONAL WITH VARIOUS KERNELS AND PENALTY PARAMETERS 

c 
Linear Kernel Quadratic Kernel Gaussian Kernel 

wSVM TWSVM wSVM TWSVM wSVM TWSVM 

0.01 0.871 0.891 0.862 0.892 0.851 0.881 

0.1 0.871 0.899 0.871 0.901 0.852 0.891 

1 0.879 0.915 0.88 0.922 0.851 0.891 

10 0.881 0.904 0.869 0.912 0.842 0.880 

100 0.879 0.902 0.869 0.899 0.844 0.872 

 

4.2.2. Evaluating posterior probability estimation 

To determine the likelihood of a sample belonging to each class, a sigmoid posterior 

probability function is constructed over the values of score function (12) of the trained 

model with quadratic kernel and penalty parameter c=1. The scaling weights of sigmoid 
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function are calculated as α=-25.93 and ß=2.12 by solving (16). The trained model 

probability weight λ=0.5 has overall AU-ROC of 0.89 on the test subset. Other weight 

parameters (λ=0, 0.5, 1.0, 1.5) are further tested on the validation set, however λ =0.5 

produces the best result in terms of AU-ROC. Figure 4-4 demonstrates posterior probability 

for different weight parameters. As shown, by increasing λ the posterior probability 

function becomes smoother and the classes become less distinguishable. A small value of 

weight parameter, e.g., λ=0, makes the probabilistic model very sharp where probabilities 

are either zero or one depending on the predicted class, and hence the model doesn’t 

generalize well for the sample in the area between the two classes. 

 

FIGURE 4-4- POSTERIOR PROBABILITY MODELS FOR VARIOUS VALUES OF λ 
 

3.3 Evaluating probabilistic load curtailment estimation 

Eight components are considered to be damaged in the path of the upcoming 

hurricane. The outage probability of these components is calculated based on estimated 

wind speed and distance from the center of the hurricane and through the proposed 
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posterior probability estimation. Table 4-2 shows the distance and wind speed of each 

component, normalized based on the highest wind speed (obtained from the category of 

the hurricane) and the distance of the furthest impacted component from the center of the 

hurricane (line 44). The calculated outage probability is also shown in this table for each 

impacted component. As the results suggest, the components that are closer to the hurricane 

and experience higher wind speeds, such as line 46, show a very high probability of outage, 

here as much as 99.5%. On the other hand, the components far from the hurricane and 

subject to lower wind speeds may show very small chances of outages, such as line 44 

which only has a 1.7% outage probability.  

The obtained outage probabilities show a promising improvement compared to the 

existing work in this area which only provide a 0/1 output, i.e., showing whether each 

component is operational or on outage. Identifying outage probabilities would provide 

significant opportunities in better managing the available resources as the system response 

and recovery studies can shift from deterministic models to probabilistic models. 

TABLE 4-2- COMPONENTS ALONG HURRICANE PATH AND THEIR PREDICTED OUTAGE 
PROBABILITIES 

Component Wind speed Distance Outage probability 

Line 44 0.471 1.000 0.017 

Line 45 0.471 0.873 0.032 

Line 48 0.509 0.571 0.091 

Line 50 0.509 0.555 0.077 

Line 49 0.509 0.492 0.183 

Line 47 0.644 0.444 0.220 

Line 30 0.962 0.142 0.971 

Line 46 0.994 0.120 0.995 
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These outage probabilities are used to define 28=256 scenarios, where all possible 

combinations of outage/operational sets of these components are considered. These 

scenarios are fed into the load curtailment estimation problem which is formulated using 

mixed-integer linear programming (MILP) and solved by CPLEX 12.6 [75]. A value of 

lost load of $1000/MWh is considered. 

The problem objective is calculated as $1054507 in which $1024226 is the 

operation cost and the rest is the aggregated cost of load curtailment in all scenarios. The 

highest load curtailment is experienced in scenario 129, in which line 30 is in service and 

all other lines are on outage. The expected load curtailment in this scenario is 434 MWh, 

however the probability of this scenario is only 1.25×10-9. The highest probability, 0.59, 

occurs in scenario 112 in which lines 30 and 46 are on outage and other lines are in service. 

However, there is no load curtailment in this scenario. The focus of this chapter is to 

estimate potential load curtailments in response to imminent hurricanes, however, other 

probabilistic factors, such as renewable energy generation can be easily formulated and 

integrated into the proposed model. 

4.3. Conclusion 

In this chapter, a probabilistic load curtailment estimation model was proposed 

through a three-step sequential method. At first, to determine a deterministic outage state 

of the grid components in response to a forecasted hurricane, a machine learning model 

based on TWSVM was proposed. Then, to convert the deterministic results into 

probabilistic outage states, a posterior probability sigmoid model was trained on the 

obtained results from the previous step. Finally, the obtained component outages were 

integrated into a load curtailment estimation model to determine the potential load 
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curtailments in the system. The simulation results on a standard test system illustrated the 

high accuracy performance of the proposed method.  

The work concludes that the probabilistic load curtailment estimation offers a 

viable prospect to understand the most impactful outage scenarios in the system, as well as 

the severity of their impact, in response to an upcoming hurricane, and opens significant 

opportunities in better planning for those events. In this work, since historical data for 

hurricanes at component level are limited, a synthetic data is used to show the effectiveness 

of the proposed method. In future, more detailed historical data for hurricanes will be 

requested from some of the utility companies affected by hurricanes. In addition, the 

authors are currently investigating applying the proposed probabilistic outage estimation 

model for renewable energy integration and accordingly studying the impact of growing 

renewable penetration on system resilience in response to hurricanes. 
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CHAPTER FIVE: CONCLUSION AND FUTURE WORK 

Prediction of a component state in response to an extreme event is a challenging 

task in practice. An outage prediction model based on logistic regression was proposed to 

determine the probable outage of power grid components in response to an imminent 

hurricane. The acceptable performance of the proposed model was validated in this work. 

The logistic regression method is simple, fast, robust, and can efficiently handle the 

complexity of the decision boundary in terms of characteristic parameters. This method, 

however, requires much more data to achieve stable and meaningful results compared to 

other prediction models, such as support vector machine. Hence, a three-dimensional SVM 

was proposed to categorize system components into two classes of damaged and 

operational in response to an upcoming hurricane.  

The proposed SVM was trained on historical data with three features related to each 

grid component—i.e., the resilience index, the distance of the component from the center 

of the hurricane, and the category of the hurricane (the wind speed). A synthetic set of data 

was generated to train the SVM, as the publicly available data on the impact of hurricanes 

on power grid components is limited. High accuracy was obtained by allowing some data 

points to enter an uncertain area by increasing the SVM margin, thus increasing the 

estimation accuracy for other components. Practicality was ensured by considering 
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component deterioration in addition to other prevailing factors, and efficiency was 

guaranteed by outperforming other existing methods.  

After training the SVM model, a minimum load curtailment problem was 

formulated to estimate the amount of load curtailment. The predictions obtained from the 

SVM model were integrated into a minimum load curtailment model and the potential 

nodal load curtailments—which are of utmost importance for grid operators in order to 

identify critical and prone-to-curtailment areas to proactively mobilize the restoration 

resources—were estimated. Finally, an electric power grid hardening model was proposed 

through localized and decentralized supply of power in certain regions. In contrast to 

existing literature in hardening and resilience enhancement, this model co-optimizes grid 

economic and resilience objectives by considering the intricate dependencies of the two.  

Simulation results showed the effectiveness of the proposed SVM model compared 

to the results obtained from Logistic Regression, as a popular benchmark for two-class 

classification problem, and further demonstrated its acceptable performance in reaching 

high accuracy estimations. The proposed model can greatly help grid operators in 

estimating the components availability in response to extreme events, and therefore, better 

plan their resources for mitigation, response, and recovery. 

The effectiveness of the proposed load curtailment estimation model were tested 

on IEEE 30-bus system with a combination of hurricane path and intensity scenarios. The 

results demonstrate that the proposed modelling framework is capable to effectively 

capture the dynamics of load curtailment estimation in response to extreme events. The 

results indicated that the proposed framework enables one to effectively identify the critical 

components in the power system, and prioritize the limited restoration resources. 
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The numerical simulations on the standard IEEE 118-bus test system illustrated the 

merits and applicability of the proposed hardening model. The results indicated that the 

proposed hardening model can produce a robust solution that can protect the system against 

multiple component outages due to a hurricane. Given the crucial importance of accurate 

power grid outage prediction, this model provides a practical forward-looking framework 

for utilities, local governments, and policy makers for a risk-informed operations 

management, emergency response planning, humanitarian logistics, and restoration of the 

life-line power grid infrastructure in both strategic level and real-time basis.  

Finally, a probabilistic load curtailment estimation model was proposed through a 

three-step sequential method. At first, to determine a deterministic outage state of the grid 

components in response to a forecasted hurricane, a machine learning model based on 

TWSVM was proposed. Then, to convert the deterministic results into probabilistic outage 

states, a posterior probability sigmoid model was trained on the obtained results from the 

previous step. Finally, the obtained component outages were integrated into a load 

curtailment estimation model to determine the potential load curtailments in the system. 

The simulation results on a standard test system illustrated the high accuracy performance 

of the proposed method.  

5.1. Future Work 

The SVM method has numerous advantages including the ability to provide a 

global solution for data classification. It generates a unique global hyper-plane by solving 

a Quadratic Programming Problem (QPP) to separate the data samples of different classes 

rather than local boundaries as compared to other existing data classification approaches. 

Due to its better performance, SVM is one of the most widely-used classification 
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techniques in data mining. One of the main challenges with the traditional SVM, however, 

is that it solves only one QPP problem to classify the data, which may not be suitable in 

cases of intertwined data. In addition, despite the good performance of SVM in several 

applications, the performance of SVM drops significantly when faced with imbalanced 

datasets, for example when the number of negative instances far outnumbers the positive 

instances, or vice versa [76]. This can be potentially problematic since the data of past 

hurricanes are imbalanced (i.e., the number of non-operational components is far less than 

the number of operational components). 

The work concludes that the probabilistic load curtailment estimation offers a 

viable prospect to understand the most impactful outage scenarios in the system, as well as 

the severity of their impact, in response to an upcoming hurricane, and opens significant 

opportunities in better planning for those events. In this work, since historical data for 

hurricanes at component level are limited, a synthetic data is used to show the effectiveness 

of the proposed method. In future, more detailed historical data for hurricanes will be 

requested from some of the utility companies affected by hurricanes. In addition, the 

authors are currently investigating applying the proposed probabilistic outage estimation 

model for renewable energy integration and accordingly studying the impact of growing 

renewable penetration on system resilience in response to hurricanes. 
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