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Abstract 
 

Recent research has led to a much better understanding of the evolutionary processes 

that mold and structure variation within and among populations. How populations diverge at the 

genome-wide level and how polymorphism is maintained within a species, however, remains 

unclear. We address these questions with two freshwater color morphs, red and black, of the 

threespine stickleback fish (Gasterosteus aculeatus) from the northwest United States, in which a 

shift from red to black nuptial coloration occurred in several locations following glacial retreat. We 

measured phenotypic variation in a suite of traits and used next generation sequencing to 

characterize within-species and among-morph genetic variation between the two morphs. We 

found substantial phenotypic and genetic divergence between color morphs, and patterns 

observed in a third, “mixed” morph that are likely due to hybridization between anadromous and 

freshwater stickleback. This work highlights the central role of natural and sexual selection in the 

evolution of divergence in nature.  
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Chapter 1: Phenotypic divergence among threespine stickleback that differ in nuptial 

coloration 

Introduction 

Much of the historical work on the origin and maintenance of biodiversity has relied 

heavily on the characterization of phenotypic variation as a basis for inferring the existence and 

trajectory of evolutionary change (Darwin 1859; Wallace 1870). The substantial variation in traits 

we observe among taxa supports the hypothesis that divergent selection can drive reproductive 

isolation, which builds as a result of adaptation to contrasting selection regimes imposed by 

different environments (Schluter 2001). Both natural and sexual selection are important 

evolutionary forces that can generate and shape phenotypes, and also have roles to play in the 

generation of biodiversity (speciation; Ritchie 2007; Safran et al. 2013; Servedio and Boughman 

2017).  

Divergent natural selection among populations can arise because of differences in 

habitat, resources, climate, and predation (Schluter 2001). In three lizard species that inhabit the 

White Sand dunes in New Mexico, for instance, cryptic coloration has rapidly evolved and is 

selectively maintained by predation, relative to their background environment (Rosenblum et al. 

2010). Environmental differences can also affect sexually selected traits through interactions with 

eavesdropping predators and parasites (reviewed in Zuk and Kolluru 1998), interspecific 

(reviewed in Groening and Hochkirch 2008) and intraspecific competing signalers (reviewed in 

Tinghitella et al. 2018b), and transmission properties of the environment (Endler 1992; Boughman 

2002; Seehausen et al. 2008), placing sexually selected traits under conflicting selection that 

shapes phenotypic and genetic variation within and among populations. For example, natural 

selection imposes a cost on conspicuous sexual displays, such as in the Pacific field cricket 

(Teleogryllus oceanicus) where male calling song also attracts parasitoids (Zuk et al. 2006) and 
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environmental conditions affect the transmission and perception of colorful sexual signals in 

guppies (Poecilia reticulata; Endler 1991). Recent work has emphasized how natural and sexual 

selection work jointly to drive evolutionary change, divergence, and even speciation (Safran et al. 

2013). Here, we measure phenotypic change in a suite of traits across several populations of fish 

that have undergone recent divergence in their sexual signals, that likely stem from habitat 

variation.  

Species that have diversified over relatively short time scales and that are distributed 

across landscapes with varied environmental characteristics likely to generate divergent selection 

shed important light on the evolutionary processes underlying phenotypic change. The threespine 

stickleback (Gasterosteus aculeatus) is one such model study system. These fish episodically 

colonized freshwater habitats from marine environments following glacial retreat at the end of the 

Pleistocene epoch less than 12,000 years ago (McPhail 1994). In many cases, the resulting 

freshwater populations have diverged phenotypically from marine ancestors in parallel ways, 

offering natural, replicated, and independent evolutionary experiments. In colonizing freshwater 

habitats, stickleback experience selection that leads to divergence in color, shape, size, salinity 

tolerance, and foraging behavior and morphology (reviewed in McKinnon and Rundle 2002. 

Stickleback populations have also undergone divergence in the presence and number of lateral 

bony plates, a trait that has quite famously evolved repeatedly and predictably in response to 

freshwater-marine differences in predation and salinity (Bell 2001; Reimchen and Nosil 2004; 

Marchinko and Schluter 2007). Typically, marine fish are larger and have fully plated bodies 

whereas stream-dwelling freshwater populations are smaller and tend to have low or partially 

plated morphs (Hagen and Gilbertson 1973; Bell and Foster 1994).  

Though there are several parallels in the divergence of freshwater and marine 

stickleback, sexually selected traits have also undergone rapid evolutionary change in freshwater 

stickleback populations. Like ancestral marine stickleback, male stickleback from most derived 

freshwater populations display a bright red throat during the breeding season (hereafter referred 

to as red stickleback; McPhail 1969; Semler 1971; Hagen and Moodie 1979). However, in several 



 

 3 

locations along the Pacific coast of North America, males have lost their iconic mating signal, and 

instead have full-body black breeding coloration (hereafter referred to as black stickleback; 

McPhail 1969; Semler 1971; Reimchen 1989; Boughman 2001). The prevailing explanation for 

this evolutionary switch is sensory drive, the process by which sexual signals shift to improve 

transmission in their environment (Endler 1992; Boughman 2002). Red stickleback are often 

found in habitats with relatively clear water whereas black stickleback are found in red-shifted, 

tannin-rich waters, making males of each color morph highly contrasted and more visible to the 

drab females in their respective environments (Reimchen 1989; Scott 2001; Boughman 2001). 

Boughman et al. (2001) show that in red (limnetic - relatively clear water) and black (benthic - 

relatively red-shifted water) British Columbian stickleback from Lake Paxton and Lake Enos, the 

extent of divergence in male color and female preference for male color is correlated with the 

extent of reproductive isolation among populations, supporting a role for sensory drive in 

speciation.  

Recent work in red and black stickleback from Washington State similarly supports a role 

for sexual selection in divergence of red and black stickleback, albeit through a different 

mechanism of sexual selection (Tinghitella et al. 2015; Tinghitella et al. 2018a). In simulated 

secondary contact in the laboratory, females from populations containing only red or only black 

males retain their ancestral preference for the red mating signal (McKinnon 1995) and prefer to 

interact with red males (Tinghitella et al. 2015). Though there is no evidence of assortative 

mating, male competition for territories, which occurs prior to female mate choice in the breeding 

season, may be a more important isolating mechanism in this system; black males bias their 

aggression towards red males, which may contribute to habitat and reproductive isolation 

between the two color morphs (Tinghitella et al. 2018a). 

In this study, we measure a comprehensive suite of phenotypic traits that have evolved in 

parallel in freshwater stickleback (McKinnon and Rundle 2002) including nuptial color, shape, 

size, and body armor in Washington populations of red and black stickleback. Several of these 

traits are correlated and possibly genetically linked to one another, so the recent and rapid 
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changes in color may be associated with changes in a suite of traits that are associated with 

reproductive isolation in this system. For instance, body shape is correlated with male nuptial 

color such that deeper bodied fish have redder throats (Malek et al. 2012), suggesting possible 

linkage of the two. Additionally, several studies have implicated a role for body size and shape in 

the adaptive divergence of stickleback and as a driver of prezygotic reproductive isolation through 

size-assortative mating (McPhail 1977; Nagel and Schluter 1998; Head et al. 2013).  

Unveiling when or how traits are selected for or against is key to understanding the 

patterns of phenotypic variation observed in natural populations and assessing variation in 

locations where multiple morphs coexist and possibly interbreed can offer even more insight into 

the processes that maintain biodiversity (Schluter 2000; Hoekstra et al. 2004; Roulin 2004; 

Rueffler et al. 2006; Gray and McKinnon 2007). In pioneering work, McPhail (1969), and Hagen 

and Moodie (1979), found a region in southwest Washington, Connor Creek, where both red and 

black stickleback were found with overlapping breeding areas and seasons. Our own surveys in 

2018, revealed a site with only black fish plus locations where males had apparent continuous 

variation in color that prevented us from characterizing fish as clearly red or black. If red and 

black stickleback interbreed within Connor Creek, we may find a phenotypic cline indicating the 

presence of a hybrid zone or localized adaptation to an environmental gradient (Endler 1977). We 

surveyed phenotypic divergence of stickleback across six sites where red and black fish are 

allopatric (non-overlapping in distribution) and also take a finer-scale approach by examining the 

phenotypic divergence of color morphs where they historically co-occured in a single location. 

Given the variation in nuptial color between morphs, the correlated evolution of shape and color 

(Malek et al. 2012), habitat differences, and the parallel evolutionary loss of plating in freshwater 

stickleback across the northern hemisphere, we expect red and black color morphs to differ in 

body shape, size, and plating, in addition to color. To our knowledge, this is the first in depth 

investigation of variation in morphological traits (aside from coloration) in WA populations of red 

and black stickleback.  
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Methods 

Sample collection 

 We collected sexually mature, adult stickleback from streams and rivers of southwest 

Washington, US, and transferred them to the University of Denver during the summers of 2013-

2015 (Figure 1.1A). Fish with red nuptial coloration were collected from two sites (Campbell 

Slough (R1) and Chehalis River (R2)) where black fish are not found, and fish with black nuptial 

coloration were collected from four sites (Vance Creek (B1), Black River (B2), Scatter Creek (B3), 

and Connor Creek (B4)) where red fish are not found. In summer 2018, we collected stickleback 

along a 3.5 km transect in Connor Creek, where both color morphs have historically coexisted 

(McPhail 1969; Hagen and Moodie 1979). To parallel the sampling first done by McPhail (1969), 

we sampled five locations by paddleboarding along the transect, trapping at approximately 0.9-

kilometer intervals, beginning near the mouth of the creek (M1) and moving further inland toward 

our 2015 Connor Creek sampling site where only black fish are found (B4; Figure 1.1B).



 

 

 
 

Figure 1.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 1.1. Washington sites used in morphological analyses (A). Connor Creek collection sites (B) mirror those of McPhail (1969). Sites 
where we collect red stickleback are denoted with “R”, sites where we collect black stickleback are denoted with “B”, and sites where we 
collect mixed stickleback are denoted with “M” for mixed Black bars in the top right corner of each panel correspond to a distance of five 
kilometers.
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While we sampled five locations along the transect, fish did not appear to differ in morphology or 

color between locations. Thus, for the purpose of our phenotypic analyses, we hereafter refer to 

these five Connor Creek locations within our finer-scale approach as one collective “mixed” site, 

M1-M5. In the lab, fish were maintained in single sex 110-L holding tanks under controlled lighting 

and temperature conditions (17°C and a 12:12 light:dark schedule). 

Colorimetric water collection 

To confirm sensory drive as the prevailing theory behind the evolutionary switch from red 

nuptial coloration to black nuptial coloration (Reimchen 1989; Scott 2001; Boughman 2001) in our 

sampling sites, we collected three to five water samples from each site, as well as the five 

locations along the Connor Creek transect, for colorimetric analyses. We measured the 

transmittance of light through each water sample using a spectrophotometer at wavelengths of 

340, 405, 490, 550, 595, and 650 nm, calibrating with distilled water (100% transmittance) before 

each new sample following Scott (2001).  

Phenotypic data collection 

We measured four morphological traits on males and females from 11 sites total (sample 

sizes are found in Table 1.1).



 

 

Table 1.1. Collection site details including site ID, color morph found at each, GPS coordinates, and the number of individuals 
phenotyped. Sites with only red fish are denoted with “R”, sites with only black fish are denoted with “B”, and sites with mixed fish are 
denoted with “M”. 

 
Table 1.1. 

 
 

Sites Color Morph GPS Coordinates 
Shape & Size Color Plating 

Males Females Males Males & Females 

Campbell Slough (R1) Red 47°2ʹ40ʺN, 124°3ʹ33ʺ W 42 31 33 42 
Chehalis River (R2) Red 46°56ʹ22ʺN, 123°18ʹ46ʺW 57 49 21 41 
Vance Creek (B1) Black 46°59ʹ48ʺN, 123°24ʹ43ʺW 34 12 26 42 
Black River (B2) Black 46°49ʹ45ʺN, 123°8ʹ1ʺW 41 46 23 41 
Scatter Creek (B3) Black 46°49ʹ20ʺN, 123°3ʹ11ʺW 40 22 22 42 
Connor Creek (B4) Black 47°4ʹ11ʺN, 124°10ʹ5ʺW 35 28 24 41 
Connor Creek (M1) Mixed 47°6ʹ55ʺN, 124°10ʹ52ʺW 5 - 5 30 
Connor Creek (M2) Mixed 47°6ʹ26ʺN, 124°10ʹ45ʺW 7 - 7 32 
Connor Creek (M3) Mixed 47°5ʹ57ʺN, 124°10ʹ39ʺW 6 - 6 26 
Connor Creek (M4) Mixed 47°5ʹ29ʺN, 124°10ʹ30ʺW 3 - 3 18 
Connor Creek (M5) Mixed 47°5ʹ12ʺN, 124°10ʹ20ʺW 2 - 2  46 

8  
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To quantify shape, size, and color, we uniquely numbered and photographed live individuals 

using a digital camera (Canon PowerShot G15) under standardized lighting conditions inside of a 

photo box. The camera was placed at a fixed distance from a neutral background and we 

positioned fish on their right side below a millimeter ruler. All photographs were taken during the 

breeding season (June to September). When several photographs of the same fish existed, we 

used a random number generator to determine which image to analyze, ensuring that 

photographs of fish taken at particular time points in the breeding season were not selected 

preferentially. All shape, size, and color data were collected using the Image J package, FIJI 

(Schindelin et al. 2012). For each photograph, we set a scale factor using the ruler above the fish, 

cropped the image to only include the individual, and deleted the tailfin, as the tail does not 

always lay flat in photographs. This image was then used for the assessment of color, shape, and 

size.  

 Because female stickleback at sites containing both red and black male color morphs are 

drab, we only analyzed color in 172 males. All males expressed nuptial coloration at the time of 

photographing. We measured red and black coloration as a proportion of total body area from 

each image, after additionally removing the area of the eyeball from the image in ImageJ (Figure 

1.2B). First, we selected red coloration using the Threshold Color plugin within FIJI (Y=32, 

U=143, V=141; following Wong et al. 2007), removing all pixels outside of these values (any area 

on the male that is not red). We converted the remaining selected pixels to 8-bit grayscale and 

calculated total red coloration by measuring the entire area of the pixels. To select black 

coloration, the image was converted to 8-bit grayscale, the threshold was set to 25, and the entire 

area of the pixels was measured. We determined total body area using the SIOX (Simple 

Interactive Object Extraction) segmentation tool to create a silhouette of the fish. 

 We carried out morphometric analyses to quantify shape of 462 male and female 

stickleback by placing 22 landmarks on each image and collecting their X-Y coordinates (Figure 

1.2A). These landmarks have been previously established to best capture shape variation in 

stickleback (Walker and Bell 2000; Taylor et al. 2006; Albert et al. 2008; Cooper et al. 2011; 
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Malek et al. 2012; Head et al. 2013). We then quantified overall body size of males using 

standard length as our measure (Nagel and Schluter 1998; Head et al. 2009), by calculating the 

distance between landmarks one and 11 (the tip of the mouth to the base of the caudal fin). Our 

sampling regime did not include photos of females from the Connor Creek mixed sites (M1-M5) 

so they were excluded from shape and size analyses.  

 Following their natural death in the lab, we stored fish by collection site in jars containing 

90% ethanol. To quantify lateral plating across morphs, we stained fish with Alizarin red following 

standardized methods in Cresko et al. (2004). We counted lateral body plates on both sides of 

401 fish from 11 sites and additionally categorized each individual as having full, partial, 

intermediate, or low plating (Figure 1.2C).  

 

Figure 1.2. 

 
Figure 1.2. Color and morphological traits measured. A male displaying the 22 landmarks used to 
conduct shape and size analyses (A). A red male with quantification of red coloration (B; top) and 
a black male with quantification of black coloration (B; bottom). Four individuals representing 
each category of plating (C). 
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Following Bell (1982), we considered fish to be fully plated if they had a continuous row of plates 

from the head to the caudal peduncle, low plated if plating was strictly restricted to the abdominal 

region, and partially plated if they had both abdominal plating and a row of plating near the caudal 

peduncle that were separated by a gap with no plating. During the staining process, we 

discovered fish from our most recent collection in Connor Creek that could not fit into any of these 

categories. Similar to Bell et al. (2004), these atypical individuals were denoted as “intermediate”, 

as they had a row of plates that extended beyond the abdominal region but did not have a row of 

plating near the caudal peduncle (i.e. not low or partial plating). 

Statistical analyses 

Following Reimchen (1989) and Scott (2001), we used average transmittance at 405 nm 

as our standard measure of water color, as tannin staining is best indicated by low transmittance 

at shorter wavelengths and shorter wavelengths are the most variable among our collection sites. 

We conducted two one-way ANOVAs to compare the effect of sampling site on the transmittance 

of light through water samples. The first compared the average transmittance of light at 405 nm 

among all sites we categorize as red (R1 and R2), all sites we categorize as black (B1-B4), and 

the site we categorize as mixed (locations M1-M5). The second compared the average 

transmittance of light at 405 nm among sampling locations only within Connor Creek (B4 and M1-

M5) to test for variation in water color within a single site.  

To quantitively determine if what we refer to as red and black morphs differ in coloration, 

we first performed a regression of black area on red area to obtain residuals for every individual, 

allowing us to represent color as a single variable. Increasingly negative residuals indicate redder 

fish whereas increasingly positive residuals indicate blacker fish. We then used one REML linear 

mixed model with residual color as the outcome variable, categorical color morph as a fixed 

effect, and site as a random effect to assess differences in male color among morphs, and 

another with site as a fixed effect to assess differences in male color among sites.  
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We conducted the analysis of morphometric data in MorphoJ version 2.0 (Klingenberg 

2011). The landmark X-Y coordinates were imported into the program and, following Lackey and 

Boughman (2013), we used the Procrustes transformation to center, scale, and align the 

coordinates, allowing for comparisons of each landmark across images by controlling for the 

relative size and position of each individual. We used methods established by Drake and 

Klingenberg (2007), analyzing overall shape as a function of our continuous measure of color, to 

directly test for a relationship between shape and color, which we expect if body shape and color 

are correlated (Malek et al. 2012). We first performed a multivariate regression of the Procrustes 

transformed coordinates to calculate a shape score. We then used a mixed model with 

continuous (residual color) and categorical color (red, black, mixed) measures as fixed effects, 

site as a random effect, centroid size as a covariate, and the regression score representing shape 

as the outcome variable. The vectors of regression coefficients from these analyses can be 

thought of as shape changes per unit of color change. To determine how well each morph is 

classified by color and shape, we performed a linear discriminant analysis (LDA) in R using the 

packages “stats” (R Core Development Team 2010) and “MASS” (Venables and Ripley 2002) 

with categorical color as the grouping factor, and continuous color and the regression shape 

score as discriminators.  

We performed a canonical variate analyses to visualize and statistically assess shape 

features that best distinguish groups from one another, comparing body shape between color 

morphs and sexes. We then used two principal component analyses (PCAs) to examine shape 

variation among males of different color morphs. The first PCA assessed variation in shape 

among males of all color morphs and from all sites. To more closely investigate the phenotypes of 

males from Connor Creek where color morphs are not as easily distinguished, the second PCA 

assessed variation in shape among only Connor Creek males (from sites B4 and M1-M5, but no 

red males). We then used PC1 and PC2 of the all-males PCA as outcome variables in linear 

models to test for variation in shape among categorical color morphs (mixed model, site = 

random effect) and among sites. We repeated this with the Connor Creek-male PCA, using PC1 
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and PC2 from this model as outcome variables and site as a fixed effect. To visualize the 

differences in shape among color morphs, we also performed a PCA for each categorical color 

morph separately and created wireframe graphs using the independent axes of body shape 

variation (PC1 and PC2) and compared them to the average shape of all males in MorphoJ.  

To assess differences in size among male color morphs, we used a linear mixed model 

with length as the outcome variable, categorical color morph as a fixed effect, and site as a 

random effect. Finally, we used a linear mixed model with continuous plate count of both males 

and females as the outcome variable, categorical color morph as a fixed effect, and site as a 

random effect to assess differences in lateral plate count among color morphs.  

 

Results 

Water color 

The transmittance of light through water samples at 405 nm varied across sites that we 

categorized as red, black, or mixed (F2,47 = 3.87, p = 0.028; Figure 1.3A). Red sites have higher 

transmittance than black sites (Tukey’s HSD: estimate ± SE; 1.65 ± 0.018, p = <0.05), but 

transmittance in the mixed site (locations M1-M5) did not differ from red sites (1.14 ± 0.50, p = 

>0.05) or from black sites (0.51 ± 0.65, p = >0.05). Transmittance also varied within Connor 

Creek (F5,24 = 49.24, p = <0.0001; Figure 1.3B).
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Figure 1.3. 

 
Figure 1.3. Average transmittance of light through water samples from all collection sites (A) and 
from the six collection locations only within Connor Creek (C) at a range of wavelengths. Each 
data point represents the mean of three to five replicate samples. At 405 nm, transmittance of 
light differed between red and black sites, but not between red and mixed or black and mixed 
sites (B). Within Connor Creek, transmittance at 405 nm did not differ among M1, M2, and M3 nor 
did it differ among M4, M5, and B4, but transmittance differed in all comparisons within these two 
groupings (D). Grey points represent raw values, black points and bars represent the least square 
means from the analysis plus or minus standard error, and asterisks indicate significant 
differences using Tukey’s HSD (*p = <0.05, ***p = <0.0001). 
 

The transmittance of light did not differ among M1, M2, and M3, but each of the three locations 

had higher transmittance than M4, M5, and B4. The transmittance of light did not differ among 

M4, M5, and B4 (Tukey’s HSD pairwise comparisons in Table 1.2).



 

 

Table 1.2. Tukey’s HSD pairwise comparisons for transmittance of light at 405 nm among Connor Creek sampling locations. Highlighted 
cells represent significantly different pairwise comparisons (alpha = 0.05, *p = <0.0001). 

 
Table 1.2. 

 M2 M3 M4 M5 B4 

M1 0.54 ± 0.37 0.32 ± 0.37 *3.68 ± 0.37 *3.82 ± 0.37 *3.39 ± 0.37 

M2 - 0.22 ± 0.37 *3.14 ± 0.37 *3.28 ± 0.37 *2.85 ± 0.37 

M3 - - *3.36 ± 0.37 *3.50 ± 0.37 *3.07 ± 0.37 

M4 - - - 0.14 ± 0.37 0.29 ± 0.37 

M5 - - - - 0.43 ± 0.37 

15  



 

 

Figure 1.4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 1.4. The residual color scores of males differed among morphs (left) and also among sampling sites (right). Red and black males 
differ in color, but mixed males do not differ from either (A). Sites within a morph do not significantly differ in color (B). Grey points 
represent raw values, black points and bars represent the least square means from the analysis plus or minus standard error, and 
asterisks indicate significant differences using Tukey’s HSD (p = <0.05).

16 
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This strongly suggests a cline in transmittance, wherein water is less tannin stained as the creek 

approaches the ocean. 

Color 

We found quantitative differences in the color of male stickleback commonly called red 

and black (F2,3.51 = 10.96, p = 0.031; Figure 1.4A). Males commonly categorized by researchers 

(by eye) as “red” were significantly redder than those commonly categorized as “black” (Tukey’s 

HSD, alpha = 0.05: -0.079 ± 0.018, p = <0.05), and black male stickleback were significantly 

blacker than red stickleback. Consistent with our anecdotal observations, males from the five 

locations along Connor Creek where we could not definitively categorize them as red or black 

(collectively referred to as “mixed”), were intermediate in quantitative color and did not differ from 

either red (0.00063 ± 0.027, p = >0.05) or black fish (-0.073 ± 0.025, p = >0.05). We also found 

overall differences in male color by site (F6,165 = 3.00, p = 0.0083; Figure 1.4B), but there were no 

significant pairwise differences among sites using Tukey’s HSD.  

Color and shape  

Overall, we found that color and shape are correlated in this system. There was a 

significant relationship between continuous color variation and shape variation in male morphs 

(!2
1 = 13.72, p = 0.0002) that is dependent on categorical color (!2

2 = 23.73, p = <0.0001; Figure 

1.5).  
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Figure 1.5. 

 

Figure 1.5. Male residual color and body shape are correlated, but the relationship between 
residual color and shape scores of males differs among morphs. The relationship between color 
and shape differs for red and black males, and for black and mixed males, but it does not differ 
for red males and mixed males. Ellipses represent 95% confidence intervals. 
 

The relationship between color and shape differs between red and black males (Tukey’s HSD, 

alpha = 0.05: -0.016 ± 0.0016, p = <0.001), and between black and mixed males (-0.011 ± 

0.0024, p = <0.001), but the relationship between color and shape did not differ between red and 

mixed males (-0.0045 ± 0.0024, p = 0.13). The LDA showed that 99.83% of the discriminality is 

explained by LD1 (Figure 1.6). 



 

 

Figure 1.6.   

 

 
Figure 1.6. Linear discriminant analysis of males classified by shape and color. Together, male color and shape correctly classified most 
individuals from allopatric red sites as red, and most individuals from allopatric black sites as black. Nearly half of the individuals from the 
Connor Creek mixed site (locations M1-M5) were classified as red and half were classified as black (see Table 2 for LDA assignments and 
proportions).  
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Of the individuals we categorize as red (sites R1 and R2), 74.1% were classified as red and 

25.9% were classified as black by the LDA. Of the individuals we categorize as black (sites B1-

B4), 85.3% were classified as black and 14.7% were classified as red by the LDA. No individuals 

of any morph were classified as mixed by the LDA, however, of the individuals we categorize as 

mixed (site M1-M5), 43.5% were classified as red and 56.5% were classified as black (Table 1.3). 

 

Table 1.3. Proportion of stickleback assigned to red, black, or mixed color morphs based on a 
linear discriminant analysis using color and shape.  
 
Table 1.3. 

 
 
 
 
 
 
 
 
 
 
 

 

Shape 

When fish were placed into five groups by sex and morph (red females, black females, 

red males, black males, and mixed males), we found significant variation in overall body shape 

between all groups (Figure 1.7; Table 1.4). 

 
LDA Classification 

Red Black Mixed 

Red (N=54) 74.1% 25.9% 0% 

Black (N=95) 14.7% 85.3% 0% 

Mixed (N=23) 43.5% 56.5% 0% 
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Figure 1.7. 

 
Figure 1.7. Variation in shape between sexes and color morphs. There was significant variation 
in shape in all pairwise comparisons of the five groups (see Table 3). Ellipses represent 95% 
confidence intervals. 
 



 

 

Table 1.4. Procrustes distances and p-values comparing shape across sex and color morph.  
 

Table 1.4. 
 

 Black Females Red Males Black Males Mixed Males 

 
 

Procrustes 
Distance p-value Procrustes 

Distance p-value Procrustes 
Distance p-value Procrustes 

Distance p-value 

Red Females 0.028 <0.0001 0.053 <0.0001 0.050 <0.0001 0.065 <0.0001 

Black Females - - 0.056 <0.0001 0.041 <0.0001 0.054 <0.0001 

Red Males - - - - 0.030 <0.0001 0.052 <0.0001 

Black Males - - - - - - 0.036 <0.0001 22 
16 
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Within a color morph, shape significantly differed between the sexes (Procrustes distance red female 

– red male = 0.053, p = <0.0001; Procrustes distance black female – black male = 0.041, p = <0.0001), and 

within a sex, shape significantly differed between the morphs (Procrustes distance red female – black 

female = 0.028, p = <0.0001; Procrustes distance red male – black male = 0.030, p = <0.0001; Procrustes 

distance red male – mixed male = 0.052, p = <0.0001; Procrustes distance black male – mixed male = 0.036, p = 

<0.0001). CV1 explained 46.28% of the total variation in shape and CV2 explained 36.59% of the 

total variation in shape.  

In our first principal component analysis investigating shape differences among all males, 

the major axis of phenotypic variation, PC1, explained 37.48% of the total variation in shape and 

the second axis of phenotypic variation, PC2, explained 14.20% of the total variation in shape 

(Figure 1.8).  
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Figure 1.8.  

 
Figure 1.8. Principal component analysis of shape among all males by color morph (A) and site 
(B). PC1 and PC2 scores differed among morphs and sites (see Tables 4-7 for all Tukey’s HSD 
pairwise comparisons). Ellipses represent 95% confidence intervals. Wireframes showing 
differences in shape between color morphs (C). In each case, the underlying grey wireframe 
corresponds to the average of the entire male dataset, and the overlaying colored wireframes 
show how the shape of males of each color morph differ from the average on PC1 (left) and PC2 
(right).
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The linear model confirmed PC1 (F2,4.12 = 8.72, p = 0.033) and PC2 (F2,4.00 = 82.89, p = 0.0006) 

scores differed among red, black, and mixed male color morphs (Figure 1.8A; Tukey’s HSD 

pairwise comparisons in Tables 1.5 and 1.6).  

 

Table 1.5. Tukey’s HSD pairwise comparisons for PC1 scores of male shape among color 
morphs. Highlighted cells represent significantly different pairwise comparisons (alpha = 0.05). 
 
Table 1.5.  

 
 
 
 
 
 
 
 

 
Table 1.6. Tukey’s HSD pairwise comparisons for PC2 scores of male shape among color 
morphs. Highlighted cells represent significantly different pairwise comparisons (alpha = 0.05). 
 
Table 1.6.  

 
 
 
 
 

 

 

PC1 (F6,165 = 5.88, p = <0.0001) and PC2 (F6,165 = 60.19, p = <0.0001) scores also differed 

among sites (Figure 1.8B; Tukey’s HSD pairwise comparisons in Tables 1.7 and 1.8).  

 Black Males Mixed Males 

Red Males 0.023 ± 0.00063 0.030 ± 0.0090 

Black Males  - 0.0071 ± 0.00083 

 Black Males Mixed Males 

Red Males 0.015 ± 0.0027 0.049 ± 0.0038 

Black Males  - 0.034 ± 0.0035 



 

 

Table 1.7. Tukey’s HSD pairwise comparisons for PC1 scores of male shape among sites. Highlighted cells represent significantly 
different pairwise comparisons (alpha = 0.05). 

 
Table 1.7. 

 
 
 
 
 
 
 
 

 R2 B1 B2 B3 B4 M1-M5 

R1 0.018 ± 0.0077 0.013 ± 0.0073 0.017 ± 0.0075 0.012 ± 0.0076 0.020 ± 0.0074 0.023 ± 0.0075 

R2 - 0.031 ± 0.0081 0.035 ± 0.0084 0.030 ± 0.0085 0.038 ± 0.0083 0.041 ± 0.0084 

B1 - - 0.0037 ± 0.0079 0.0017 ± 0.0080 0.013 ± 0.0073 0.0092 ± 0.0079 

B2 - - - 0.0054 ± 0.0083 0.0028 ± 0.0081 0.0056 ± 0.0082 

B3 - - - - 0.0082 ± 0.0082 0.011 ± 0.0083 

B4 - - - - - 0.0028 ± 0.0081 

26 
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Table 1.8. Tukey’s HSD pairwise comparisons for PC2 scores of male shape among sites. Highlighted cells represent significantly 
different pairwise comparisons (alpha = 0.05). 

 
Table 1.8. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

 R2 B1 B2 B3 B4 M1-M5 

R1 0.0058 ± 0.0029 0.019 ± 0.0028 0.015 ± 0.0029 0.014 ± 0.0029 0.020 ± 0.0028 0.052 ± 0.0029 

R2 - 0.013 ± 0.0031 0.0095 ± 0.0032 0.0086 ± 0.0032 0.014 ± 0.0032 0.046 ± 0.0032 

B1 - - 0.0035 ± 0.0030 0.0044 ± 0.0031 0.0011 ± 0.0030 0.033 ± 0.0030 

B2 - - - 0.0009 ± 0.0031 0.0046 ± 0.0031 0.036 ± 0.0031 

B3 - - - - 0.0055 ± 0.0031 0.037 ± 0.0031 

B4 - - - - - 0.032 ± 0.0031 

27 
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The wireframe graphic of PC1 depicts how each morph deviates in body shape from the average 

of the entire male dataset whereas PC2 depicts how each morph deviates in face shape from the 

average of the entire male dataset (Figure 1.8C).  

In our second principal component analysis among only males from Connor Creek, PC1 

explained 29.43% of the total variation in shape and PC2 explained 19.89% of the total variation 

in shape. Together the two axes of variation largely differentiate black from mixed males within 

Connor Creek (Figure 1.9).  

 

Figure 1.9. 

 
 
Figure 1.9. Principal component analysis of male shape among only Connor Creek morphs. The 
color morphs differ in both PC1 and PC2. Ellipses represent 95% confidence intervals. 
 

The linear model confirmed that there was a significant difference in PC1 (F1,46 = 7.75, p = 0.008) 

and PC2 (F1,46 = 102.08, p = <0.0001) scores between the two color morphs. 
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Size 

Overall, we found differences in the size of male stickleback of different color morphs 

(F2,6.51 = 29.49, p = 0.0005; Figure 1.10).  

 

Figure 1.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Mixed males are larger than red males and larger than black males, but red and 
black males do not differ in size. Bars represent the least square means from the analysis plus or 
minus standard error and asterisks indicate significant differences using Tukey’s HSD (p = 
<0.05). 
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Red males were 49.59 ± 0.38 mm in length. Black males were 48.71 ± 0.32 mm in length. And, 

mixed males were 55.56 ± 0.83 mm in length. Red males and black males do not differ in size 

(Tukey’s HSD, alpha = 0.05: 0.89 ± 0.49, p = >0.05), but mixed males are significantly larger than 

both red (5.96 ± 0.91, p = <0.05) and black males (6.85 ± 0.88, p = <0.05). 

Plating 

We also found differences in lateral body plating among color morphs (F2,7.47 = 310.12, p 

= < 0.0001; Figure 1.11).  
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Figure 1.11. 

 
 
 
 
Figure 1.11. Lateral plate count of both males and females among color morphs. Black and 
mixed fish do not differ in lateral plate count, but red fish have significantly more body plating than 
both black fish and more body plating than mixed fish. The grey points represent raw values, the 
black points and bars represent the least square means from the analysis plus or minus standard 
error, and asterisks indicate significant differences using Tukey’s HSD (p = <0.05). 
 

98.8% of red fish were fully-plated and only 1.2% of individuals were partially-plated. 95.8% of 

black fish were low-plated, 3.0% were partially-plated, and 1.2% were fully plated. 92.1% of 

mixed fish were low-plated, 0.7% were partially-plated, 2.6% were intermediately-plated, and 

4.6% were fully-plated (Table 1.9).  
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Table 1.9. Number of individuals in each color morph categorized by plate morph.  
 
Table 1.9. 

 

All four plate morphs were observed among individuals of the mixed color morph, and the 

atypical, intermediate plate morph – an uncommon and rare occurrence (Bell 2004) – was only 

observed among individuals of the mixed color morph. On average, red males had a plate count 

of 57.61 ± 1.52 plates, black males had a plate count of 14.70 ± 1.07 plate, and mixed males had 

a plate count of 15.61 ± 1.12 plates. Black and mixed fish did not differ in lateral plate count 

(Tukey’s HSD, alpha = 0.05: 0.90 ± 1.55, p = >0.05), but red fish have significantly more body 

plating than both black (42.91 ± 1.86, p = <0.05) and mixed fish (42.00 ± 1.89, p = <0.05).  

 

 

Discussion 

Among freshwater sites in southwest Washington, we found clear phenotypic divergence 

between red and black stickleback morphs in color, shape, and plating, and further support for 

sensory drive as the prevailing mechanism behind the rapid, evolutionary switch in nuptial 

coloration in this system. We found a region in Connor Creek with a cline in water color 

(transmittance at 405 nm) and associated habitat where the “mixed” morph has traits that are 

sometimes intermediate to the red and black morphs and sometimes divergent (e.g. size). In 

Connor Creek, habitat variation may play a role in the maintenance of multiple morphs in very 

close proximity and perhaps contributes to hybridization.  

 Plate Morph 

Color Morph Low Partial Intermediate Full 

Red 0 1 0 82 

Black 159 5 0 2 

Mixed 140 1 4 7 
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Divergence in color and support for sensory drive 

 Red coloration in the threespine stickleback is a well-established component of sexual 

signaling (Semler 1971; Milinski and Bakker 1990; McKinnon 1995) and black coloration, which is 

less well-studied, has been documented in at least three different geographic regions – southwest 

Washington, the Queen Charlotte Islands, and British Colombia (McPhail 1969; Semler 1971; 

Reimchen 1989; Boughman 2001). When we assessed color as a continuous variable (the 

residuals of black coloration onto red coloration), we confirmed that red and black stickleback are 

different from one another, and that the mixed morph is intermediate in color to red and black 

(Figure 1.4A). Sites within a morph do not vary significantly in color (Figure 1.4B). In several of 

these cases, differences in the light environment have been implicated in the switch from red to 

black male coloration. When there are high concentrations of dissolved organic compounds, such 

as tannins, in freshwater environments, short wavelength light is filtered out of the visible 

spectrum, producing a background of red-shifted light (Reimchen 1989). The black male sexual 

signal is highly contrasted against these tannin-stained habitats whereas the red male sexual 

signal is highly contrasted against the green-shifted light of most clear, unstained freshwater 

habitats (Reimchen 1989; Scott 2001; Boughman 2001). Thus, if sensory drive plays a role in this 

shift in color, we would expect the distribution of color morphs to align with the transmission 

properties of their environments. Indeed, we found that the transmittance of light through water at 

405 nm was higher in sites where we collected only red stickleback and lower in sites where we 

collected only black stickleback, indicating that the black morph is distributed in environments 

with high tannin staining (Figure 1.3A).  

Interestingly, the average transmittance at the short wavelength end of the visible 

spectrum (405 nm) of the mixed site falls intermediate to that of the red and black sites (Figure 

1.3B), which is in accord with the intermediate coloration of the mixed morph relative to the red 

and black morphs. When we assessed each location within Connor Creek separately, we found 

evidence of an environmental gradient over this short distance; transmittance of light through 

water at 405 nm is higher at the three locations closest to the ocean than the three locations 
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furthest inland (Figure 1.3D; Table 1.2). In addition to a transition in transmission properties, we 

observed that the surrounding environments drastically changed from areas with high vegetation 

and deep water (B4) to sand dunes and shallow water (M1) as the creek approached the Pacific 

Ocean (Figure 1.1). Given that our water transmittance data support sensory drive, we expected 

that stickleback would be more phenotypically similar to the red morph in the location closest to 

the ocean (M1), where water is relatively clear and unstained, and gradually shift to an 

appearance more phenotypically similar to the black morph in the location furthest inland (B4), 

where water is red-shifted and tannin-rich. Instead of a phenotypic cline, we found that nearly half 

of the males we categorized as belonging to the mixed morph were classified as red and half 

were classified as black by the LDA, and that they were distributed almost evenly throughout the 

first four mixed locations (i.e. red-like fish were not only found in locations closer to the ocean and 

black-like fish were not only found in locations further inland; Figure 1.6; Table 1.3). It is possible 

that the lack of a phenotypic cline is due to the migration patterns of stickleback and the dramatic 

habitat variation we observe in Connor Creek. Given that freshwater stickleback can travel up to 

five kilometers to breeding sites and anadromous migrants can travel at least 10 kilometers to 

freshwater breeding sites (Snyder and Dingle 1989), individuals may be freely interbreeding along 

the creek, preventing the establishment of a measurable gradient across a short geographical 

range.   

Divergence in shape and size 

Body shape and size are well-studied components of sexual signaling in the marine-

benthic and benthic-limnetic stickleback species complexes, and have been shown to vary both 

between sexes (Cooper et al. 2011) and between morphs in several populations (Taylor et al. 

2006; Albert et al. 2008; Malek et al. 2012; Head et al. 2013). However, little is known about how 

shape and size diverge between morphs that inhabit different freshwater river or stream habitats. 

Here, we found variation in shape of stickleback from streams in southwest Washington between 

sexes and morphs (Figure 1.7; Table 1.4). Among only males, body shape differs between red 

and black morphs and sites (Figures 1.8A and 1.8B; Tables 1.5 and 1.6), but size does not 



 

 35 

(Figure 1.10). Mixed males differed in shape from both red and black fish on one axis of a PCA 

(PC2; Figure 1.8A, Table 1.6) and by site (Figure 1.8B; Table 1.8). As depicted in the wireframe 

graphics, PC1 appears to best explain variation in body depth and shape, whereas PC2 appears 

to best explain variation in face structure and shape (Figure 1.8C). Thus, mixed males differ from 

red and black males primarily in face shape. Additionally, mixed males were also larger than red 

and black males (Figure 1.10). Among only males within Connor Creek, shape differed between 

the mixed morph and the upstream black morph (Figure 1.9). In the benthic-limnetic pair, 

differences in body shape arose by adaptation to local foraging and predator environments 

(reviewed in McKinnon and Rundle 2002). In our red-black species pair, it is possible that 

divergent natural selection has first led to divergence in shape from anadromous ancestors by 

adapting to freshwater environments (McPhail 1994), which may be followed by divergence in 

shape of the morphs through adaptation to specialized and different niches. 

Alternatively, animals often examine more than one signal simultaneously when 

assessing competitors (Candolin and Voight 2001) and potential mates (Candolin 2003). 

Evolutionary changes in one sexually selected trait may be correlated with changes in others and 

are simultaneously under sexual selection in this system. When traits are correlated, through 

pleiotropy or linkage disequilibrium, direct selection on one may consequently lead to indirect 

selection on an associated trait (Brooks and Endler 2001). Malek et al. (2012) found that markers 

associated with male color were significantly associated with body shape in a quantitative trait 

locus analysis of benthic and limnetic stickleback, motivating our assessment of relationships 

between color and shape in SW Washington stickleback. We found that residual color and shape 

are indeed correlated, and that this relationship differs among color morphs (Figure 1.5). The 

relationship between color and shape differs for red and black males, and for black and mixed 

males, but it does not differ for red and mixed males. In addition to expressing preferences for 

extensive red coloration, there is also evidence that female stickleback have preferences for male 

body shape in some groups (Head et al. 2013). Male color and shape may thus be correlated 

through simultaneous direct natural selection on both traits during adaptation to freshwater 
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environments, because of sexual selection driven by female preference for both traits, or through 

indirect selection of one as a byproduct of direct selection on the other. Ultimately, the 

relationship between male color and shape suggests that when one is favored by natural or 

sexual selection, we might expect the other to evolve in concert.  

Variation and surprises in lateral body plating 

 While the overwhelming majority of fish from red sites were almost entirely fully-plated, 

black and mixed fish were predominately low-plated with few partial, intermediate, and full 

morphs (Table 1.9; Figure 1.11). The occurrence of fully-plated individuals in red sites is unusual, 

in that we expect a loss or reduction in body armor following invasions from oceanic to freshwater 

environments (Hagen and Gilbertson 1973; Bell and Foster 1994). However, fully-plated 

populations have been documented in this region before (Hagen and Gilbertson 1973). The 

presence of fully-plated stickleback in Washington rivers could indicate that natural selection has 

favored the maintenance or reappearance of extra lateral plates in certain habitats. Alternatively, 

fully-plated red fish may live in environments subject to more or different predators than low-

plated black fish or could be recently introduced, marine stickleback either through the migration 

of anadromous populations or through anthropogenic transfer from coastal to freshwater sites.  

 Though the number of plates did not differ between mixed and black morphs, it is 

interesting to note the unexpected presence of the intermediately-plated individuals within the 

mixed morph, which to our knowledge, has not before been documented in this region. In Loburg 

Lake, Alaska, Bell et al. (2004) also discovered rare intermediately-plated individuals and 

suggested that this plate morph does not occur in older polymorphic populations and is likely the 

result of novel allele combinations generated during adaptive radiation. 

Accumulation of evidence for Connor Creek as a potential hybrid zone 

 We have established that a suite of traits differs between the red and black stickleback 

morphs in SW Washington. However, the mixed morph differs from red and black males in some, 

but not all, traits investigated. To review, we discovered that males from the mixed morph are 

intermediate in color relative to red and black males, but do not differ in color from either type 
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statistically (Figure 1.4). Similarly, the transmittance of light at 405 nm of the five mixed locations 

together does not differ from either red or black sites (Figure 1.3B). We also show that there are 

dramatic changes in habitat (Figure 1.1) and significant differences in water color (Figure 1.3D) 

within Connor Creek. Further, male color and shape are correlated, and this relationship differs 

between black and mixed males, but not between red and mixed males (Figure 1.5). Within the 

mixed morph, an LDA based on shape and color classified slightly more individuals in Connor 

Creek as “black” than “red” (Figure 1.6). 

When assessing only shape, mixed males do not differ from red and black morphs in 

body shape (PC1) but do differ from both morphs in head shape (PC2), which is evident from the 

larger and more elongated head (Figure 1.8C). Even within Connor Creek, mixed males differed 

in shape from the black morph found further upstream (Figure 1.9). Mixed males were larger than 

both red and black males (Figure 1.10), had fewer lateral plates than red fish, but did not differ in 

lateral plating when compared to black fish. However, 4.6% of the sampled individuals were fully-

plated, which we otherwise saw only at red freshwater sites. Full plating is also characteristic of 

the anadromous form (Bell 2001).  

Together, the intermediate coloration, the variation in shape patterns, the increased size, 

and polymorphic plating relative to the red and black morphs all create a unique and perplexing 

story within Connor Creek. Although we are not certain how much of the measured variation in 

morphology and color reflects underlying genetic variation, many of the traits we examined are 

shown to be heritable (McPhail 1977; Aguirre et al. 2004) and have been genetically mapped 

(Peichel et al. 2001; Cresko et al. 2004; Schluter et al. 2004; Colosimo et al. 2005; Albert et al. 

2008). Given the genetic basis of these traits, the larger size of anadromous stickleback relative 

to freshwater forms (Head et al. 2013), the similarity in nuptial coloration and body armor of the 

red freshwater morph and anadromous form (McKinnon and Rundle 2002; Bell 2001), as well as 

its proximity to the Pacific Ocean, it is possible that the phenotypic variation we observe in 

Connor Creek is the result of introgressive hybridization between anadromous stickleback and 

the black morph that resides further upstream.  
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 Future work to determine the extent to which the color, shape, size, and plating traits we 

investigated are under ecological and/or sexual selection will illuminate how natural and sexual 

selection may interact to drive, maintain, or limit divergence among morphs in SW Washington. It 

would be interesting to know, additionally, if the phenotypic divergence that we observe between 

freshwater morphs is associated with genetic divergence among populations and color morphs, 

and if our hypothesis of an anadromous-freshwater hybrid zone in Connor Creek is also 

supported by genomic variation.  
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Chapter 2: Genetic divergence among threespine stickleback that differ in nuptial 

coloration 

Introduction 

Since Darwin first described the origin of species, the “mystery of mysteries” (1859), 

decades of research have unveiled a more complete understanding of the evolutionary 

mechanisms that reduce or prevent the exchange of genetic material between populations (gene 

flow; Mayr 1963; Coyne and Orr 2004; Schemske 2010; Sobel et al. 2010; Maan and Seehausen 

2011), preventing or promoting the emergence of different species. Early explanations for 

reduced gene flow emphasized the roles of ecology and geography (Mayr 1947; Coyne and Orr 

2004). When populations become geographically isolated, ecologically-mediated divergent 

selection and drift within isolated populations can drive phenotypic and genetic divergence 

without the homogenizing force of gene flow (Hatfield and Schluter 1999; Schluter 2001; Rundle 

and Nosil 2005; Nosil 2012). Darwin’s idea of natural selection is widely accepted, yet while he 

focused primarily on the variation observed within species, we have much to learn about the 

transition from divergence within species to divergence among species. 

 Polymorphic species have provided evolutionary biologists with important insights about 

the origin and maintenance of biodiversity (Schluter 2000; Hoekstra et al. 2004; Roulin 2004; 

Rueffler et al. 2006; Gray and McKinnon 2007). In the absence of selection maintaining multiple 

morphs, we should expect gene flow to erode differences between them (Mayr 1947; Slatkin 

1987). Under what circumstances does within-species variation lead to differences between 

species? Nosil (2005) shows that reproductive isolation is greatest between populations of 

walking sticks (Timena cristinae) that differ in host-plant use when migration between hosts is low 

enough to prevent gene flow from eroding divergence. There can also be selection sufficient 

enough to promote speciation through the evolution of reproductive isolation between diverging
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populations (Mayr 1947, 1963; Coyne and Orr 2004). This is exemplified, for instance, in the high 

rates of evolutionary diversification of cichlid fish in the African Great Lakes (Seehausen 2000) 

and in the classic example of adaptive radiation observed in Darwin’s finches (Grant and Grant 

2002). In contrast, we expect multiple discrete morphs to be maintained within species when their 

fitness is approximately equal, as with frequency-dependent selection (Slatkin 1979; Gadgil 

1972). For example, in the marine isopod (Paracerceis sculpta), three genetically discrete male 

morphs coexist and do not differ in their reproductive success or survival despite their different 

morphologies and behaviors (Shuster and Wade 1991). However, the origin and maintenance of 

multiple morphs within a species remains a major question in evolutionary biology.  

We capitalize on populations of the threespine stickleback fish (Gasterosteus aculeatus) 

from the northwest United States where two different male color morphs, red and black, are 

found, in some cases within a single stream or drainage (McPhail 1969; Hagen and Moodie 

1979). We test for genetic isolation and levels of gene flow between the two color morphs where 

their distributions do not overlap and in one region where red and black stickleback have 

historically co-occurred. While much threespine stickleback research focuses on phenotypic and 

genetic divergence between species pairs (e.g. limnetic and benthic or marine and freshwater; 

reviewed in McKinnon and Rundle 2002), we characterize within-species and among-morph 

genetic variation to understand the evolution of genetic isolation in its earliest stages.  

Threespine stickleback repeatedly and independently colonized freshwater coastal 

habitats in the northern hemisphere from marine environments at the end of the Pleistocene 

epoch, following the last glacial maximum less than 12,000 years ago (McPhail 1994). In 

ancestral marine and most derived freshwater locations, male threespine sticklebacks display a 

bright red throat during the breeding season (hereafter referred to as red sticklebacks; McPhail 

1969; Semler 1971; Hagen and Moodie 1979) that is strongly preferred by females in mate choice 

(Semler 1971; Milinski and Bakker 1990; McKinnon 1995; Tinghitella et al. 2015). However, in 

several locations along the Pacific coast of North America, males have lost their iconic mating 

signal, and instead have full-body black breeding coloration (hereafter referred to as black 
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stickleback; McPhail 1969; Semler 1971; Reimchen 1989), an evolutionary shift best explained by 

differences in water color (Reimchen 1989; Scott 2001; Boughman 2001; Jenck et al. in prep). 

The two color morphs are maintained in common garden and black fish do not express red 

throats (unlike British Columbian benthics that are also sometimes described as “black”; 

Boughman 2001; Lewandowski and Boughman 2008), even when fed carotenoid rich diets 

(personal observation). In the limnetic-benthic species pair, the mating signals of red stickleback 

have high contrast in relatively clear water whereas black stickleback have high contrast on a 

background of red-shifted, tannin-rich water (Boughman 2001), making each color morph more 

visible in their respective environments. Females are relatively drab and do not express red throat 

coloration. When sexual signals shift in response to changes in their transmission environments 

(sensory drive; Endler 1992) it can lead to variation in reproductive success among types, 

ultimately leading to genetic divergence among populations (Fisher 1930; Panhuis et al. 2001; 

Boughman 2002; Servedio and Boughman 2017). Sites where red and black stickleback are 

found in the Pacific Northwest are largely allopatric (non-overlapping in distribution) but in 

pioneering work, McPhail (1969) and Hagen and Moodie (1979) documented several regions in 

southwest Washington where red and black stickleback have overlapping breeding grounds and 

seasons. One of these is Connor Creek, WA. We collected stickleback in Connor Creek nearly 50 

years after these initial observations along a transect that mimicked McPhail’s (1969). Contrary to 

historical records, the fish we collected at several sites were phenotypically intermediate in color 

and body shape to red and black fish from allopatric sites elsewhere in Washington, and were 

also phenotypically different from black fish further upstream in Connor Creek (hereafter referred 

to as mixed stickleback; Jenck et al. in prep). These observations and the outcome of mating 

trials described below raised questions about how much gene flow occurs between morphs, if 

any, and how this polymorphism is maintained in the absence of physical barriers to gene flow. 

In polymorphic species, communication between males and females can play a critical 

role in isolation between morphs (Panhuis et al. 2001). When sexual selection plays a role in 

speciation, it is thought to do so when female preferences for specific mating signals reduce 
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mating between morphs or populations within a species, initiating reproductive isolation 

(Boughman 2001; Panhuis et al. 2001; Seehausen et al. 2008; van Doorn et al. 2009). Yet, given 

a choice, drab females from both color morphs direct more early courtship behaviors towards 

males with the ancestral red signal (Tinghitella et al. 2015), and, in no-choice mating trials 

between color morphs, there is no evidence for assortative mating, resulting in equal reproductive 

success of both male types (Tinghitella unpublished; McKinnon 1995; but see Scott 2004). Thus, 

female choice does not seem to be a driving force preventing the color morphs from interbreeding 

(Tinghitella et al. 2015). Though elaborate male mating signals and strong female preferences 

(inter-sexual selection) have been the dominant paradigm regarding sexual selection, recent work 

has emphasized the role of male competition (intra-sexual selection) in driving reproductive 

isolation, including between divergent stickleback types (Lackey and Boughman 2013, Keagy et 

al. 2016, Tinghitella et al. 2015, Tinghitella et al. 2018a, reviewed in Tinghitella et al. 2018b). In 

this study system, in simulated secondary contact, black males bias their aggression toward red 

males while red males show no bias in aggressive behavior, making red males the recipients of 

more aggression overall (Tinghitella et al. 2015). Given that more aggressive males are more 

likely to establish territories (Tinghitella et al. 2018a), the observed bias in competition behaviors 

could contribute to habitat isolation between the two color morphs, and thus reduced gene flow. 

The conflicting sexual selection patterns observed (male competition contributing positively to 

isolation, but female choice not) further prompted us to investigate the potential for genetic 

isolation between the two color morphs. 

Here, we adopt both broad scale (among sites) and fine scale (within a site) approaches 

to learn the extent to which stickleback that differ in nuptial coloration are genetically distinct from 

one another. We assess genetic divergence and estimate gene flow across a relatively wide 

geographic scale that consists of tributaries containing several red and black sites. Because the 

maintenance of multiple morphs in the absence of physical barriers to gene flow is still a heavily 

debated topic, we also assess intraspecific divergence and estimate gene flow between mixed 

stickleback, which are phenotypically intermediate to the red and black morphs, at a finer 
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geographic scale, in a single stream where historical records indicate coexistence of the two color 

morphs (McPhail 1969; Hagen and Moodie 1979). Here, there are no geographic barriers 

preventing mating between morphs, thus in the absence of other barriers, we expect unimpeded 

gene flow and breakdown in any divergence between morphs. Yet, there are no previous reports 

of hybridization in this region (McPhail 1969; Hagen and Moodie 1979). If prezygotic (behavioral 

isolation) or postzygotic (reduced viability of hybrids) reproductive barriers have evolved between 

color morphs, we should instead find that gene flow is limited and that red and black stickleback 

maintain genetic isolation by color. We used double digest restriction-site associated DNA-

sequencing (ddRAD-seq; Peterson et al. 2012; Catchen et al. 2013) to characterize partitioning of 

genetic variation among and within 14 sites where red stickleback only, black stickleback only, or 

mixed stickleback are found. The system has the potential to yield new insights into how 

phenotypic and genetic differentiation is maintained and whether evolution within a species can 

give rise to new species in the absence of assortative mating.  

 

Methods 

Collection of samples 

 We collected sexually mature, adult stickleback from streams and rivers of southwest 

Washington (WA) and western Oregon (OR), US, and fin clipped them in the field or transferred 

them to the University of Denver (followed by tissue sampling) during the summers of 2016-2017 

(Figure 2.1, Table 2.1). 



 

 

Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.1. Threespine stickleback morphs and collection sites in Washington (A,B) and Oregon (C). Connor Creek collection sites (B) 
mirror those of McPhail (1969). Sites where we collect red stickleback are denoted with “R”, sites where we collect black stickleback are 
denoted with “B”, and sites where we collect mixed stickleback are denoted with “M” for mixed. All black bars in the top right of each panel 
correspond to a distance of 5 kilometers.

44 
16 



 

 

Table 2.1. Sites collected, color morph found in each site, GPS coordinates of collection sites, collection dates, and the number of 
individuals genotyped. Red sites are denoted with “R”, black sites are denoted with “B”, and mixed sites are denoted with “M”.  

 
Table 2.1. 

 

Sites Color Morph GPS Coordinates Collection Date(s) Genotyped 

Campbell Slough (R1) Red 47°2ʹ40ʺN, 124°3ʹ33ʺ W May 2016 32 

Wishkah River (R2) Red 47°0ʹ17ʺN, 123°48ʹ49ʺW May 2018 11 

Chehalis River (R3) Red 46°56ʹ22ʺN, 123°18ʹ46ʺW May 2016 29 

Vance Creek (B1) Black 46°59ʹ48ʺN, 123°24ʹ43ʺW May 2016 20 

Black River (B2) Black 46°49ʹ45ʺN, 123°8ʹ1ʺW May 2016 28 

Scatter Creek (B3) Black 46°49ʹ20ʺN, 123°3ʹ11ʺW May 2016 27 

McKenzie River (B4) Black 44°3’41"N, 122°51'11"W June 2017 9 

Green Island (B5) Black 44°8’42"N, 123°7'5"W June 2017 11 

Connor Creek (B6) Black 47°4ʹ11ʺN, 124°10ʹ5ʺW May 2016 25 

Connor Creek (M1) Mixed 47°6ʹ55ʺN, 124°10ʹ52ʺW May 2018 46 

Connor Creek (M2) Mixed 47°6ʹ26ʺN, 124°10ʹ45ʺW May 2018 11 

Connor Creek (M3) Mixed 47°5ʹ57ʺN, 124°10ʹ39ʺW May 2018 17 

Connor Creek (M4) Mixed 47°5ʹ29ʺN, 124°10ʹ30ʺW May 2018 3 

Connor Creek (M5) Mixed 47°5ʹ12ʺN, 124°10ʹ20ʺW May 2018 27 
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We include two sites in Oregon that were not glaciated during the Pleistocene epoch (Catchen et 

al. 2013) to serve as an outgroup and to assess the relatedness of black fish across sites that 

differ dramatically in their colonization times (OR: several million years, WA: ~12,000 years). Fish 

with ancestral, red nuptial coloration were collected from three sites (Campbell Slough (R1), 

Wishkah River (R2), and Chehalis River (R3)), and fish with black nuptial coloration were 

collected from six sites (Vance Creek (B1), Black River (B2), Scatter Creek (B3), McKenzie River 

(B4), Green Island (B5), and Connor Creek (B6)). Each of these collection sites are allopatric 

regions where either the red or the black color morph exist. We collected stickleback using non-

baited, galvanized steel mesh minnow traps. In summer 2018, we also conducted a finer scale 

sampling regime within Connor Creek where the two color morphs have historically coexisted 

(McPhail 1969; Hagen and Moodie 1979). Within Connor Creek, we sampled five locations by 

paddleboarding along a 3.5 kilometer-long transect, trapping at approximately 0.9-kilometer 

intervals, beginning near the mouth of the creek (M1) and moving further inland toward our 2016 

Connor Creek sampling site where only black fish are found (B6; Figure 2.1). We dropped a total 

of 35 minnow traps in the creek with five to 10 traps set in each location along the transect, 

depending on available breeding grounds. This collection was intended to parallel the one first 

done by McPhail (1969). Following the retrieval of traps, the fish that were being transferred back 

to the lab (for behavioral experiments not reported here) were sorted, packed, and shipped 

directly to the lab as air cargo (next flight guaranteed). We released fish that were only collected 

for genotyping immediately after fin clipping. 

 Ultimately, we genotyped a total of 296 individuals from 14 sites, 127 of which are from 

the fine scale sampling of Connor Creek (Table 2.1). For fish that were used in lab experiments, 

we collected tissue samples following their natural death in the lab. Fish were fixed in jars 

containing 90% ethanol that were separated by site. We collected all of the caudal fin and muscle 

tissue up to the posterior end of the ventral fin using sterile techniques between individuals. For 

fish that were sampled in the field, we cut no more than half of the caudal fin (R2, B4, B5, and 
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Connor Creek individuals collected in 2018 (M1-M5)). Upon collection, we immediately placed 

each sample in 90% ethanol.  

Library preparation 

To extract genomic DNA, we used the DNeasy Blood and Tissue Kit (Qiagen®), following 

the manufacturer’s protocol. We prepared RAD libraries following the double digest RAD-seq 

protocol in Peterson et al. (2012), with the following modifications. After the extraction of DNA, we 

quantified DNA concentration using the Quantifluor® dsDNA System (Promega) and set up the 

double digestion using EcoRI and MspI restriction enzymes (New England Biolabs® Inc.). Using 

the package SimRAD (version 0.96; Lepais and Weir 2014) in R (R Core Development Team 

2010) and the G. aculeatus genome assembly (Peichel et al. 2017), we chose the restriction 

enzymes based on the best number of loci that each combination of enzymes could yield, which 

was calculated for fragments of 300 ± 24 base pairs. We cleaned the digested samples using 

homemade Seramega beads (produced following Rohland and Reich 2012) and quantified DNA 

concentrations again using the Quantifluor® dsDNA System. We then performed adapter ligation 

on the digested samples using up to 19 unique barcodes (Integrated DNA Technologies Inc.). 

Whenever possible, individuals from each site were divided across four library preps to avoid 

batch effects; the exception is with fish collected in 2018 (sites M1-M5 and R2). After the samples 

were pooled by index and cleaned, we size selected fragments of 300 ± 24 base pairs in length 

using Bluepippin size selection at the BioFrontiers Institute Next-Gen Sequencing Core Facility, 

University of Colorado Boulder. We amplified each size selected library in three 20µL reactions 

using Phusion® High-Fidelity DNA Polymerase (New England Biolabs® Inc.) to integrate uniquely 

indexed PCR sequences (Integrated DNA Technologies Inc.) to all fragments. Finally, we cleaned 

and quantified the amplified libraries as previously described before they were pooled to compose 

the final libraries. We single-end sequenced four libraries using an Illumina NextSeq 500 at the 

BioFrontiers Institute Next-Gen Sequencing Core Facility.  
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Population genomics 

We demultiplexed and trimmed the resulting raw sequences with process_radtags in the 

Stacks software pipeline (version 1.46; Catchen et al. 2013) using our unique barcodes. We used 

the default filtering of process_radtags to discard reads with low quality scores (phred score) and 

reads with uncalled bases; reads with a quality score below a 90% probability of being correct 

(phred score of 10), with a sliding window of 15% of the length of the read, were removed. We 

aligned these processed reads to the revised threespine stickleback genome (Peichel et al. 2017) 

using BWA-MEM (version 0.7.12; Li 2013). We then identified and called single-nucleotide 

polymorphisms (SNPs) throughout the genome using Freebayes (version 1.2.0; Garrison and 

Marth 2012) to create a VCF catalog of SNPs from all individuals and sites. We used VCFtools 

(version 0.1.16; Danecek et al. 2011) to remove individuals missing more than 60% of loci, to 

include only bi-allelic SNPs across all individuals, to exclude SNPs that are not present in 85% of 

individuals, to exclude all genotypes with a quality below a threshold of 20, and to exclude all 

genotypes that do not meet a minimum depth of five and a maximum depth of 200. Using this 

VCF catalog containing filtered SNPs across all individuals from all sites, we conducted all 

population genomic analyses described below with three different datasets: the first contained 

individuals from all sites in both WA and OR (R1-R3, B1-B6, M1-M5), the second contained 

individuals from all WA sites only (excluding OR; including R1-R3, B1-B3, B6, M1-M5), and the 

third contained individuals from sites within Connor Creek only (B6, M1-M5). 

First, we used principal component analyses (PCAs) to identify and display possible 

groupings and patterns of individuals across sites with the package SNPRelate (version 1.16.0; 

Zheng et al. 2012) in R. We then calculated pairwise FST values (Weir and Cockerham 1984) to 

assess the extent of genetic variation among sites using the package genepop (version 1.1.2; 

Rousset 2008) in R. To visualize the hierarchical relationships among clusters, we also created a 

dendrogram by performing a hierarchical cluster analysis and standardizing variability among 

individuals with z-scores using SNPRelate. To define the genetic structure of individuals across 

sites for each of the three datasets, we first used STRUCTURE (version 2.3.4; Pritchard et al. 
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2000) to analyze differences in the distribution of genetic variants among sites. For the dataset 

containing all individuals from all sites, possible K values ranged from one to nine with five 

replicates per K value. For the dataset containing individuals only from sites in WA, possible K 

values ranged from one to seven with five replicates per K value. Lastly, for the dataset 

containing only individuals from Connor Creek, possible K values ranged from one to six with five 

replicates per K value. All STRUCTURE runs were performed with a burnin period of 10,000 

followed by 20,000 Markov Chain Monte Carlo repetitions. Following all STRUCTURE analyses, 

we used Structure Harvester (version 0.6.94; Earl and vonHoldt 2012) to identify the best value of 

K for each dataset that captures the uppermost level of genetic structure (implementing the 

Evanno method; Evanno et al. 2005). Finally, we used CLUMPAK (Kopelman et al. 2015) to 

produce graphical displays of STRUCTURE results. 

Results 

We sequenced 371 individuals from 14 sites spread across four libraries using four lanes 

in a NextSeq 500 Illumina sequencer. Of the 788,037,686 total raw reads generated, we retained 

74.80% in the first library, 98.15% in the second, 95.80% in the third, and 31.31% in the fourth 

following demultiplexing and dropping of low quality reads, ambiguous barcode reads, and 

ambiguous RAD-Tag reads. Following the alignment of processed reads to the genome, calling 

SNPs across all individuals, and filtering the catalog of SNPs (see methods), we retained 296 of 

the 371 individuals and 3,304 of a possible 108,668 SNPs in the largest dataset that contained 

individuals from all collection sites in both WA and OR. In the second dataset that included only 

individuals from sites in WA, we retained 276 of the possible 347 individuals and 3,562 of the 

108,668 possible SNPs. Finally, in the third dataset including individuals from sites only within 

Connor Creek, we kept 127 of the 152 individuals and 11,567 of the 108,668 possible SNPs. 

Population genomics 

 In our PCA of the 296 individuals from sites in both WA and OR, we found that there is 

genetic divergence by distance and by color morph (Figure 2.2A).  



 

 

Figure 2.2. 

 

 
Figure 2.2. Principal component analysis of 296 individuals from all sites in Washington and Oregon (R1-R3, B1-B6, M1-M5; A), of 276 
individuals from sites in only Washington (R1-R3, B1-B3, B6, M1-M5; B), and of 127 individuals from sites only within Connor Creek (M1-
M5, B6; C).
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The first major axis of genetic variation, eigenvector 1, explained 6.65% of the total variation and 

appears to isolate clusters by geographic distance, such that individuals from sites in OR are 

separated from individuals from sites in WA. The second major axis of genetic variation, 

eigenvector 2, explained 5.73% of the total variation and appears to isolate clusters by color, 

such that individuals we categorize as “red” are grouped together, individuals we categorize as 

“black” are grouped together, individuals we categorize as “mixed” are grouped together, and all 

clusters are clearly separated from one another. The PCA of the 276 individuals from sites only in 

WA confirmed genetic divergence among the red, black, and mixed color morphs (Figure 2.2B). 

The first major axis of genetic variation, eigenvector 1, explained 6.65% of the total variation and 

separates individuals belonging to the mixed color morph from individuals belonging to both the 

red and black morphs. The second major axis of genetic variation, eigenvector 2, explained 

4.95% of the total variation largely separates the red morph from the black morph, and 

interestingly, a cluster of individuals belonging to the mixed morph falls between the red and 

black clusters. In our PCA of the 127 individuals from sites only within Connor Creek, we found 

that there is little to no genetic divergence among individuals, even between the black individuals 

at B6 and mixed individuals at sites M1-M5 (Figure 2.2C), which are 2.0 (B6 to M5) to 5.5 (B6 to 

M1) kilometers away. Eigenvector 1 and eigenvector 2 explained 2.30% and 1.85% of the total 

genetic variation, respectively.  

 Our measures of differentiation also demonstrate large amounts of divergence among 

sites and mirror the findings displayed in all three PCAs (Table 2.2).  

 

 
 
 
 
 



 

 

Table 2.2. Wier and Cockham’s FST pairwise comparisons for all sites.  
 

Table 2.2. 

 R2 R3 B1 B2 B3 B4 B5 B6 M1 M2 M3 M4 M5 

R1 0.027 0.0025 0.31 0.31 0.39 0.56 0.34 0.37 0.34 0.31 0.36 0.34 0.36 

R2  0.012 0.27 0.28 0.36 0.51 0.30 0.33 0.29 0.26 0.31 0.28 0.32 

R3   0.28 0.28 0.39 0.58 0.32 0.36 0.31 0.28 0.35 0.31 0.34 

B1    0.010 0.11 0.59 0.39 0.34 0.30 0.29 0.33 0.32 0.33 

B2     0.11 0.58 0.40 0.32 0.29 0.28 0.32 0.31 0.31 

B3      0.67 0.50 0.42 0.38 0.40 0.43 0.44 0.42 

B4       0.18 0.57 0.52 0.56 0.58 0.66 0.56 

B5        0.39 0.36 0.33 0.38 0.34 0.38 

B6         0.0043 0.0040 0.0020 -0.0024 0.0025 

M1          0.0013 0.0015 -0.0122 0.0021 

M2           0.0038 -0.019 0.0020 

M3            0.0027 -0.0021 

M4             0.0017 
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FST pairwise comparisons among WA red sites varied from 0.0025 to 0.027, indicating low genetic 

differentiation within the red color morph. However, all WA red sites are relatively divergent from 

WA black sites (FST values ranging from 0.27 to 0.39) and from WA mixed sites (FST values 

ranged from 0.26 to 0.36), and even more so from OR black sites (FST values ranged from 0.30 to 

0.58). Pairwise FST among WA black sites varied from 0.010 to 0.42. However, if we exclude the 

black site in Connor Creek (B6) from this group, FST values only varied from 0.010 to 0.11 among 

black sites within WA. Genetic differentiation is greater within the WA black color morph relative 

to the red morph. All WA black sites are relatively divergent from WA red sites, from OR black 

sites (FST values ranged from 0.39 to 0.67), and from WA mixed sites (excluding B6, FST values 

ranged from 0.28 to 0.44). Similar to the WA black morph, the FST pairwise comparison between 

OR black sites, 0.18, indicates higher genetic differentiation within the OR black color morph 

relative to other morphs. Additionally, OR black sites are relatively divergent from WA red sites, 

WA black sites, and WA mixed sites (FST values ranged from 0.33 to 0.66). FST pairwise 

comparisons among all sites within Connor Creek, including B6, varied from -0.019 to 0.0043. 

This suggests that there is little genetic subdivision in Connor Creek, even between the black and 

mixed morphs. Though we find minimal divergence, it is interesting to note that the largest 

pairwise comparison in this range, 0.0043, is between the two sites that are the furthest apart (M1 

and B6). All Connor Creek sites are largely differentiated from all WA red sites, WA black sites, 

and OR black sites. 

 STRUCTURE analyses produced results consistent with the PCAs and FST pairwise 

comparisons. With the delta K method (Evanno et al. 2005), we found that a model using K = 2 

best fits the dataset of individuals from all sites in WA and OR, and K = 4 is the next best value to 

describe their genetic structure (Figure 2.3A). 



 

 

Figure 2.3. 
 

 

 
Figure 2.3. STRUCTURE analysis of individuals from all Washington and Oregon sites with cluster assignments based on the two highest 
calculated delta K values (A): K = 2 (top; B) and K = 4 (bottom; B). Each colored vertical bar represents a single individual within a site, 
wherein the proportion of each color represents the likelihood of membership to each cluster. Collection sites are separated by black 
vertical bars. 
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The STRUCTURE plot created with K = 2 showed that together, individuals from WA red sites, 

individuals from WA black sites, and individuals from OR black sites, were distinguished from 

individuals from WA mixed sites in Connor Creek (Figure 2.3B; top). Increasing the value of K to 

four provided additional resolution of population structure in which individuals from OR black sites 

were assigned to a different, separate cluster (Figure 2.3B; bottom). We found that a model using 

K = 2 again best fits the dataset of individuals from sites in only WA, and K = 3 is the next best 

value to describe their genetic structure (Figure 2.4A).  



 

 

Figure 2.4.  

 

 

 
Figure 2.4. STRUCTURE analysis of individuals from all Washington sites with cluster assignments based on the two highest calculated 

delta K values (A): K = 2 (top; B) and K = 3 (bottom; B). Each colored vertical bar represents a single individual within a site, wherein the 

proportion of each color represents the likelihood of membership to each cluster. Collection sites are separated by black vertical bars. 
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Similar to the dataset that includes OR individuals, the STRUCTURE plot created with K = 2 

separated individuals from WA red sites plus WA black sites from individuals from WA mixed 

sites (Figure 2.4B; top). Increasing the value of K to three produced a plot in which individuals 

from WA red sites and individuals from WA black sites were separated and each was also distinct 

from the group of WA mixed individuals (Figure 2.4B; bottom). Lastly, we found that a model 

using K = 2 best fit the dataset of individuals from the black site (B6) and mixed sites (M1-M5) in 

Connor Creek (Figure 2.5A). 



 

 

Figure 2.5. 

 

 
Figure 2.5. STRUCTURE analysis of individuals from sites within Connor Creek with cluster assignments based on the highest calculated 
delta K value (A), K = 2 (B). Each colored vertical bar represents a single individual within a site, wherein the proportion of each color 
represents the likelihood of membership to each cluster. Collection sites are separated by black vertical bars. 

 
 

58 
16 



 

59 

In accordance with the PCA (Figure 2.2C), the STRUCTURE plot created with K = 2 showed that 

there is no apparent genetic differentiation or structure among individuals from different sites 

within Connor Creek (Figure 2.5B). 

 Finally, our hierarchical cluster analysis produced four well-supported groups that 

generally parallel the results shown in the PCAs, FST pairwise comparisons, and STRUCTURE 

analyses, and the dendrogram further illustrates the relationships between these groups (Figure 

2.6).  



 

 

Figure 2.6.  

 

 
Figure 2.6. Dendrogram displaying subgroups of individuals determined by hierarchical cluster analysis. The y-axis, distance, represents 
the closeness, or similarity, of individuals and clusters. 
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Most notably, we found that there were two major branches in the dendrogram, in which the 

outgroup clade comprised of individuals from the OR black sites was the most genetically 

different from the clade comprised of individuals from all WA sites. Within the WA clade, 

individuals from WA red sites were more genetically distinct from individuals from WA black and 

WA mixed sites. There were no apparent groups within the WA red cluster and individuals were 

intermixed, suggesting low genetic differentiation within the red morph. Similarly, there were no 

apparent groups within the WA mixed cluster and individuals were intermixed, suggesting low 

genetic differentiation within the mixed morph. However, the dendrogram revealed greater 

resolution than suggested in the other analyses and we found that there were apparent groups by 

site within the WA black cluster; individuals from B1 were grouped together, individuals from B2 

were grouped together, and individuals from B3 were grouped together. There were also 

apparent groups within the OR black cluster; individuals from B4 were grouped together and 

individuals from B5 were grouped together.  

 

Discussion 

 We examined genome-wide genetic variation among morphs of threespine stickleback in 

the Pacific Northwest that recently diverged in nuptial coloration. In allopatric regions of their 

distribution, the red and black morphs differ in nuptial color, body shape, and bony plating (Jenck 

et al. in prep), yet appear to interbreed freely in simulated secondary contact (McKinnon 1995; 

Tinghitella et al. 2015, 2018a, unpublished). We characterized the genetic structure among these 

morphs using ddRAD-seq data, finding clear evidence of genetic divergence between red and 

black stickleback across sites in Washington and Oregon. We also found that a “mixed” morph in 

Connor Creek (phenotypically intermediate in color and body shape characteristics) is genetically 

divergent from both the red and black WA morphs.  

Genetic divergence between Washington and Oregon 

 When we consider the broadest geographic extent of our sampling, the greatest axis of 

genetic divergence in stickleback inhabiting freshwater habitats of Washington and Oregon is one 



 

 62 

that separates fish from the two states (Figure 2.2A). This pattern is supported by the high values 

of the FST pairwise comparisons between all Washington and Oregon sites (Table 2.2), by 

separation along eigenvector 1 of our PCA of the full dataset (Figure 2.2A), and by separation of 

Oregon from all Washington clusters depicted in the dendrogram (Figure 2.6). It is possible that 

this genetic divergence may be shaped by geographic distance. Geographically distant 

populations tend to be more genetically differentiated than nearby populations (Wright 1943), and 

patterns of isolation-by-distance have been detected between stickleback inhabiting even 

contiguous lake and stream habitats on Vancouver Island, British Columbia (Weber et al. 2017). 

However, the STRUCTURE output of the best K value for this dataset (K = 2; Figure 2.3B; top), 

does not separate black Oregon fish from red or black Washington fish. Notably, Oregon fish are 

only separated from all Washington fish with the next best value of K (K = 4; Figure 2.3B; 

bottom). Much of what is presently Oregon was not glaciated during the last glacial maximum and 

many aquatic habitats, specifically those inland, are much older than northern or coastal ones 

(O'Connor 2001; Booth et al. 2003). Thus, stickleback populations that inhabit sites we sampled 

in Oregon precede the last glacial maximum and are millions of years older than those we 

sampled in Washington (Catchen et al. 2013), which colonized freshwater habitats following 

glacial retreat less than 12,000 years ago (McPhail 1994). Though isolation-by-distance may 

contribute to the genetic divergence we observe between Washington and Oregon, differences in 

geographic history between the two states may explain why Oregon individuals are the most 

genetically differentiated – the outgroup of the dendrogram – relative to Washington individuals 

(Figure 2.6). Because we only sampled two sites in Oregon that were in close proximity to one 

another, it would be beneficial for future studies to more extensively sample red and black 

stickleback from this region to add to this dataset, as well as marine stickleback to serve as a 

representative of freshwater stickleback ancestors. 

Genetic divergence among morphs in Washington 

When we consider a narrow geographic range of sites only in Washington, the greatest 

difference in genetic variation is the partition between the red and black morphs together, and all 
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individuals in Connor Creek (Figure 2.2B). This is also reflected in the STRUCTURE output (K = 

2), in which Connor Creek is isolated from the other two morphs (Figure 2.4B; top). Thus, there 

appears to be stronger divergence between stickleback in Connor Creek and the group of red 

plus black morphs, than there is between the red and black morphs. Notably, the sampling 

locations in Connor Creek approach the mouth of the creek, where it is likely that freshwater and 

anadromous stickleback come into contact.     

Within Washington, the next major axis of genetic variation is between the red and black 

morphs (Figure 2.2B). Both PCA and STRUCTURE (K = 3) separate the three morphs from one 

another and our measures of differentiation also indicate that there is strong and approximately 

equal divergence among all three morphs, suggesting that gene flow is limited among color 

morphs. FST pairwise comparisons ranged from 0.27 to 0.39 between red and black morphs, 0.26 

to 0.36 between red and mixed morphs, and 0.28 to 0.44 between the black and mixed morphs 

(Table 2.2). Similar FST values have been reported in freshwater, inland populations in Oregon 

that differ in morphology (ranging from 0.33 to 0.37; Currey et al. 2019). The genetic variation 

among these three morphs closely mirrors their phenotypic variation, wherein the mixed morph 

falls intermediate to the red and black morphs in color and body shape (Jenck et al. in prep).  

Genetic divergence within morphs 

 While there is likely little gene flow among color morphs, divergence is not as evident 

among sites within each color morph. We found that within the red morph, both FST pairwise 

comparisons and the hierarchical cluster analysis suggest substantial gene flow among red sites, 

as individuals are not clustered by site on the dendrogram (Figure 2.6), which also reflects the 

low FST values among red sites (Table 2.2). Similarly, there is no genetic divergence and high 

levels of gene flow among individuals within Connor Creek; individuals do not cluster by site on 

the dendrogram (Figure 2.6), and this reflects the low values of differentiation among sites in 

Connor Creek (Table 2.2) as well as the STRUCTURE analysis of only Connor Creek individuals 

(Figure 2.5B). It is possible that the geographic distances studied are insufficient to prevent 

migration and/or interbreeding across sites as freshwater stickleback can travel up to five 



 

 64 

kilometers to breeding sites (Snyder and Dingle 1989). Extensive gene flow is particularly likely 

among mixed sites as each collection site resides along a 3.5-kilometer-long transect within a 

single creek and we did not observe physical barriers to gene flow during collection.  

However, relative to the red and mixed morphs, there are lower levels of gene flow 

among sites within the Washington black morph (excluding B6 within Connor Creek) and among 

sites within the Oregon black morph, indicated by the higher FST values (Table 2.2) and site-level 

clustering of individuals on the dendrogram (Figure 2.6). The cluster analysis in particular, 

suggests that Vance Creek (B1) likely originated and was established first followed by the 

colonization of Black River (B2) and then Scatter Creek (B3). The evolutionary switch from red to 

black nuptial coloration occurred after the invasion of freshwater habitats by marine stickleback 

following glacial retreat and, remarkably, Vance Creek (B1) is the black site closest to the ocean 

whereas Scatter Creek (B3) is the furthest away. This further supports that stickleback may have 

invaded Vance Creek (B1) first and later colonized new locations further inland, accumulating 

genetic divergence with geographic distance. Additionally, our black collection sites (excluding 

B6) are physically isolated from one another by the Chehalis River (R3) which is a large, fast 

moving river with relatively clear water, where we find red stickleback (Figure 2.1). It is interesting 

to note that the genetic divergence we observed exists despite no evidence for assortative mating 

in this system (McKinnon 1995; Tinghitella et al. 2015, unpublished). While sexual selection 

through female choice does not appear to drive divergence between color morphs, there is 

evidence in this system that male competition patterns may contribute to divergence (Tinghitella 

et al. 2015, Tinghitella et al. 2018a). In simulated secondary contact black males bias their 

competitive behaviors toward red males, a pattern that could contribute to habitat isolation 

between morphs. If red and black stickleback come into secondary contact in locations where 

black sites (B1-B3) meet the Chehalis River (R3), it is possible that ecological selection and male 

competition work together to yield genetic isolation between red and black stickleback.  
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Accumulation of evidence for Connor Creek as a potential hybrid zone 

Despite the overall pattern of genomic divergence by color morph, our analyses of 

genetic structure showed that red and black stickleback from non-Connor Creek sites in 

Washington are more closely related to black stickleback in Oregon than they are to stickleback 

in Connor Creek (Figure 2.3B; top). This is despite the geographic proximity of red and black sites 

to Connor Creek, and the dramatic difference in age between Washington and Oregon 

stickleback. We also found that among individuals only in Washington, both PCA and 

STRUCTURE isolate Connor Creek from a grouping that includes both red and black sites 

(Figures 2.2B and 2.3B). We previously demonstrated that the mixed morph (M1-M5) differs 

phenotypically from the red and black morphs in some important ways; mixed fish are 

intermediate to the red and black color morphs in body shape and color, larger in size than red 

and black fish, and have fewer bony lateral plates than red fish (but still often express ‘full’ plating; 

Jenck et al. in prep). Curiously, the freshwater red morph shares traits that are characteristic of 

anadromous stickleback (similar color and plating; McKinnon and Rundle 2002; Bell 2001) but 

anadromous fish are larger than freshwater (Head et al. 2013). This leads us to hypothesize that 

in sites M1-M5 within Connor Creek, the mixed morph may be a consequence of interbreeding 

between phenotypically black fish and anadromous fish. Regions of overlap between divergent 

forms are characterized by high levels of gene flow, which gives rise to hybrid zones (Barton and 

Hewitt 1989). These contact zones are often found at environmental transitions and across 

ecological gradients (Endler 1986), and given how frequently marine and freshwater 

environments come into contact, it is not surprising that hybrid zones between freshwater-

resident and anadromous stickleback are widespread (McPhail 1994; Jones et al. 2006; Hendry 

et al. 2009). It is feasible that the major partitioning of genetic variation we see among 

Washington stickleback is between freshwater (red and black morphs) and anadromous-

freshwater hybrids (mixed morph). The partitioning of genetic variation within Connor Creek does 

not exactly mirror the partitioning of phenotypic variation, however. Genetic variation suggests 

extensive gene flow throughout Connor Creek, yet individuals from the five mixed sites (M1-M5) 



 

 66 

were phenotypically different from their upstream neighbor (B6) in color and body shape (Jenck et 

al. in prep). We previously found evidence of both habitat differences (sandy bottom versus highly 

vegetated habitats inland) and changes in the transmission properties of the environment, 

wherein the water from sites further inland in Connor Creek are red-shifted and tannin-rich; these 

differences are consistent with selection for black coloration at B6 through sensory drive (Jenck et 

al. in prep).  

Understanding the origin of species has been instrumental to the field of evolutionary 

biology. With the application of genomic approaches in natural populations, uncovering the 

genetic basis of multiple morphs and speciation is within reach. Although our measures of 

genome-wide divergence and genetic structure were largely consistent in their assignment of 

individuals to their respective morphs, future work is needed to better develop our understanding 

of the genes underlying diversity in this stickleback species pair. Additionally, the sampling 

regime discussed above would allow us to more definitively determine if black morphs evolved 

repeatedly upon freshwater invasions, and including marine fish representative of freshwater 

ancestors would further support our hypothesis of an anadromous-freshwater hybrid zone in 

Connor Creek. Our findings also lay the foundation for further investigation of the mechanisms 

responsible for driving genetic divergence and limiting gene flow, such as geographic or 

behavioral isolation, between stickleback color morphs, as well as those that drive phenotypic 

divergence despite an absence of barriers to gene flow. 
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