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The current study compared latent growth curve (LGC) models and latent 

change score (LCS) models capabilities in modeling complex data in a development 

framework. Using the nationally representative ECLS-K:2011 dataset, LGC and LCS 

models explored the dynamic relationship between executive function and math 

achievement.  The relationship between the two constructs has been extensively 

examined but little is understood about their dynamic relationship. The findings of 

this study indicated LCS to be more robust than LGC in modeling complex data and 

in examining dynamic relationship.  The findings also suggested that one of the two 

executive functioning tasks, Dimensional Change Card Sort (DCCS), which 

measures cognitive flexibility, was the leading indicator and math was lagging while 

math achievement was the leading indicator and number reverse (which was the other 

executive functioning task and measures working memory) was lagging. This finding 

was only possible using LCS models.  The study also demonstrated that the two EF 

measures performed differently with number reverse performing worse than its 

counterpart.    
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Chapter 1: Introduction and Literature Review 

 

  There has been an increasing number of studies examining the effect of executive 

functioning (EF) skills on mathematics achievement.  “The importance of executive 

functioning skills in mathematical achievement is well established” (Bull & Lee, 2014, p. 

36) is a declaration that is seemingly visible in the investments made in the early 

education of children.  There is increased societal interest in children’s mathematics 

achievement as society becomes more technologically advanced and intelligence based.  

Children’s early math competency has been identified as a good predictor of their school 

achievement in later grades (as cited in Nguyen, Watts, Duncan, Clements, Sarama, 

Wolfe, & Spitler, 2016, p. 550).  Math achievement shapes career ambitions in high 

school and beyond, where students who performed well in math aspired to more 

prestigious careers than their poorer performing counterparts (Shapka, Domene, & 

Keating, 2006).  Mathematics development and proficiency in young children is an 

“important predictor of later labor market success” (as cited in Nguyen et al., 2016, p. 

550).  Therefore, math achievement could be a strong predictor of future success in 

school as well as in professional life, as increasingly, jobs are requiring greater math 

proficiency (National Mathematics Advisory Panel (NMAP), 2008).  The Program for 

International Student Assessment (PISA), among other variables, measures math ability 
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in 15-year-old students in 71 countries.  In 2015, the United States ranked only 38th in 

math achievement (PEW Research Center, 2017).  Similarly, the Trends in International 

Mathematics and Science Study (TIMS) measured math achievement in fourth and eighth 

grade students in 48 countries.  In 2015, among grade four students the United States 

ranked 11 and among grade eight students ranked 8 out of 37 countries in mathematics 

scores (PEW Research Center, 2017).  It is important to comprehend and explore 

variables that can impact and improve math achievement.   

Literature states that executive functioning skills in young children can predict 

their later math achievement (Bindman, Pomerantz & Roisman, 2015; Clark, Pritchard & 

Woodward, 2010).  Developing executive functioning skills help children to focus on and 

continue in the attainment of goals, which are critical components to attain academic 

success (as cited in Little, 2017).  Executive function is described as a set of core 

cognitive skills that allow children to manage their attention and behavior (as cited in 

Bindman et al, 2015).  These core cognitive skills are a critical component in children’s 

academic achievement and executive functioning at the preschool and kindergarten levels 

predict children’s later math and literacy achievements (as cited in Bindman et al., 2015).  

The EF of preschool children contributes to growth in math competencies (Clark et al., 

2010).   

EF is widely described as a set of interrelated cognitive processes, namely, 

inhibitory control, working memory, and attention shifting which work together to  
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contribute to the development of problem-solving skills and self-regulatory behavior in 

children (Best & Miller, 2010; Clark et al., 2010; Garon, Bryson, & Smith, 2008).  By 

this definition, it may be proposed that math skills could have a reciprocal effect on the 

development of children’s executive functioning skills.  Children’s use of math skills 

may facilitate their performance on EF tasks, thus allowing for the co-development of the 

two domains.  EF does not develop at a single point in a child’s life, rather it develops 

over a period of time.  Importantly, EF does not develop in isolation of other domains.  It, 

in fact, develops within an ecosystem where there is a bidirectional relationship. This 

interactive and interconnecting relationship can be examined to determine the effects of 

one on the other and how they change over time; such that the prior level of the variable 

allows for dynamic time-dependent prediction (McArdle & Nesselroade, 2014, p.268).  

Thus, examining previous change in the variables can determine future changes.  

However, research has focused on a unidirectional relationship from EF to math 

achievement.  A more comprehensive understanding of any dynamic relationship entails 

prediction of the present status based on prior status and not just static analysis which 

measures the current state or event.  A goal of this study is to identify and understand the 

dynamics between EF and math achievement; that is, the ways in which these variables 

are recursively associated over time (Ferrer & McArdle, 2010, p 150). 

Studying these relationships using longitudinal methods will allow for the 

measurement of change.  “The study of phenomena in their time-related constancy and  
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change is the aim of longitudinal methodology” (Nesselroade & Baltes, 1979, p. 2).  The 

objectives of longitudinal research include the direct identification of intra-individual 

(within-person) change and analysis of the determinants (causes) of such change, direct 

identification of inter-individual differences in intra-individual change and the analysis of 

the determinants of this change, and examination of interrelationships in behavioral 

change (Grimm, Ram, & Estabrook, 2017).   

Latent growth curve (LGC) modeling can capture group-level development of 

executive functioning on math achievement, individual developmental trajectory, and 

differences across time-points as well as allow for the study of predictors of these 

differences (Duncan, Duncan, & Strycker, 2006).  At least three time-points are required 

to assess the validity of the linear growth trajectory, as well as the accuracy of the 

parameter estimates (Duncan et al., 2006).  LGC modeling can demonstrate changes in 

mathematics achievement in relation to executive functioning.  A LGC models the 

trajectory of changes in mathematics achievement over time.  However, it is hypothesized 

that there is a reciprocal relationship between mathematics achievement and executive 

functioning and not just a unidirectional relationship from the latter to the former but 

rather a co-developmental relationship.  A dynamic relationship may exist between the 

two domains with identifiable leading and lagging indicators.  While it is important to 

understand the unidirectional relationship as efforts are made to improve learning 

outcomes, care must be taken to model and comprehend the full extent of this 

relationship.  LGC modeling is not sufficiently flexible to model dynamic relationships. 
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Latent change score (LCS) modeling has the unique ability to model the complex, 

dynamic relationship between the two constructs.  LCS (or latent difference score) 

modeling makes time-dependent change the outcome and not the observed score (time-

dependent states) (Grimm et al., 2017) and measures within-person change and between-

person differences in the rate of within person change (Grimm, Mazza, & Mazzocco, 

2016; Grimm, Zhang, Hamagami, & Mazzocco, 2013).  LCS models, unlike LGC 

models, are flexible enough to examine dynamic relations between one or more variables 

over time (McArdle, 2001; McArdle & Hamagami, 2001) and to identify leading 

indicators, that is, variables that are the predictors of subsequent change in the lagging 

indicator (Ferrer & McArdle, 2010).  LCS models provide the capacity to explore 

bidirectional and co-development relationships between the variables currently absent 

from the literature.   

Both statistical techniques (LGC and LCS) can model unidirectional change over 

time, and both model within-person change.  However, only LCS can model the dynamic 

relationship between mathematics achievement and executive functioning and can 

examine bidirectional relationships where each construct shares a co-developmental 

relationship.  This co-developmental ecosystem is often modeled using coupled 

difference equations (Van der et al., 2006).  Data from the nationally representative Early 

Childhood Longitudinal Study, Kindergarten Class of 2010-11 (ECLS-K) was used in 

this study to explore these growth models. 
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Problem Statement 

The literature has provided evidence that EF in small children is a predictor of 

their later math achievement (Bindman et al., 2015; Clark et al., 2010).  However, there is 

a lack of investigation into whether a reciprocal relationship exists between math 

achievement and executive functioning skills.  And, studies of achievement often focus 

on limited time points (Best & Miller, 2010; Greenman, Bodovski & Reed, 2011; Reilly, 

Neumann, & Andrews, 2015).  Education reform efforts in the United States have been 

largely influenced by the need to improve math outcomes (Schiller, Schmidt, Muller, & 

Houang, 2010).  Therefore, exploration of the relationship between EF and math 

achievement is important in helping to inform researchers and practitioners in math 

education.  Examining the relationship between EF and math achievement from a 

longitudinal perspective can help to assess the change in math achievement and the 

effects of EF over time among children, as well as investigate the existence of any 

dynamic relationship between the two constructs.  Additionally, studies seem to focus on 

the examination of the effect of EF on math achievement as a whole; however, the effect 

of the different components of EF on math achievement are not well studied.  Where 

longitudinal studies do exist, they are primarily conducted using LGC models.  LGC 

modeling is a statistical analysis technique that can demonstrate such change (Duncan, 

Duncan, & Strycker, 2006).  However, in LCS, observed scores are modeled as a 

function of true scores and measurement error (Ferrer & McArdle, 2003).  That is, the 

difference between the true score at the present time and the previous time point is 

modeled.  Hence, at each time point, the LCS can model the scores directly by 
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quantitatively separating the latent true scores y and x from ey and ex (the measurement 

error) (Ferrer & McArdle, 2003).  Importantly, LCS has the unique ability to model 

dynamic relationships and examine bidirectional relationships between the constructs, 

and to address a gap in the literature which can lead to more targeted strategies to 

improving the learning outcomes of young children. 

Purpose Statement 

The purpose of the current study was to explore the use of LCS models as a more 

advanced tool for developmental research and to examine the relationship of the 

constructs EF and math achievement, determine how their development affect each other 

and if a dynamic relationship exists between the two.  EF was individually examined as 

two separate but related components, namely, cognitive flexibility (using the 

Dimensional Change Card Sort subscale) and working memory (using the Woodcock-

Johnson III Tests of Cognitive Abilities subscale).  This was examined in a cohort of 

kindergarten students over four time points. Two different models of change, LGC 

modeling and LCS modeling, were applied to a large-scale nationally representative 

dataset on early childhood development.  An incremental model-fitting approach was 

used to determine whether EF or math achievement serves as a leading indicator of 

change and if subsequent changes in one construct is influenced by the previous state of 

the other construct. The model fit and performance of LGC models and LCS models were 

assessed. 
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Literature Review 

Executive Function - Theories and Measurement 

While children are not born with executive skills its development is innate and 

slow, ranging from shortly after birth until approximately the mid-twenties (De Luca & 

Leventer, 2008).  Age 4 years is said to be the beginning and most vital period in the 

development of executive functions (Garon, Bryson, & Smith, 2008).  Here, the critical 

components of executive functions take a more prominent role in cognitive function 

(Garon, Bryson, & Smith, 2008).  However, the first signs of EF can be detected when 

babies are as young as 8 to 9 months old and they try reaching out for something 

(Carpenter, Nagell, & Tomasello, 1998; Diamond, 1990a, 1990b).  Around the age of 2 

years their inhibition mechanism begins to function and by 3 to 5 years of age they begin 

to develop problem solving skills and move between the execution of different activities 

(Diamond, 2006).  Development in the ability to switch between tasks, and to store 

information and use it occurs between 5 and 11 years (Diamond, 2006). 

Jean Piaget’s cognitive theory postulates that when children are born they have an 

inherent inquisitiveness to explore and master their environment, and through this 

exploration and drive to mastery they develop self-confidence (Nixon & Aldwinckle, 

2003; Nixon & Gould, 1999).  Piaget posited four stages of development. The first is the 

sensory motor stage which ranges from birth to 2 years of age where cognitive 

understanding is being developed through the use of motor skills and senses.  The second 

is the pre-operational stage which ranges from 2 to 7 years age when children are 

considered illogical thinkers, relying less on motor skills and senses.  The third is 
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concrete operations and ranges from 7 to 12 years of age where children begin to think 

logically.  The fourth stage is the formal operations stage which ranges from 12 to 28 

years of age and sees more capable logical thinking and problem solving (Nixon & 

Aldwinckle, 2003; Nixon & Gould, 1999).   

 Unlike Piaget, Lev Vygotsky saw children’s discovery of knowledge not as an 

isolated entity but existing and developing within their existing social environment 

(Armstrong, Ogg, Sundman-Wheat, & Walsh, 2014).  He, however, agreed with Piaget 

that children were active rather than passive learners and this activeness increased along 

with their ability to interact with their environment.  He too posited four stages of the 

logical and conceptual thinking of a child (Nixon & Aldwinckle, 2003).  He suggested 

age ranges but focused on the developmental characteristics that the child would 

experience at different developmental milestones, such as the preschool stage.  The first 

stage is thinking in unordered heaps where conceptual thought begins to develop, with 

children using problem solving techniques at the preschool stage.  The second stage is 

complex thinking where children start to make connections between objects, though not 

consistently.  The third stage is the thinking in concepts stage where children start to 

make associations and think about and understand single abstract concepts one at a time.  

The fourth stage is the thinking in true concepts stage reflecting more mature thinking 

and manipulating more than one abstract concept at a time (Nixon & Aldwinckle, 2003).  

Perhaps Vygotsky’s sharpest disagreement with Piaget is the adult’s role in extending 

children’s skills beyond their current ability or capacity through the use of external 

materials or stimuli.  These “developmental theories are useful towards understanding 
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how children learn and grow, and by what means their trajectories can be supported” 

(Armstrong et al., 2014, p. 21).   

Executive functioning is a set of higher order cognitive processes that inform 

goal-oriented behavior (Anderson, 2002; Carlson, 2005; Garon, Bryson, & Smith, 2008; 

Olson & Luciana, 2008).  Inhibition is the restraining of a motor response and 

suppressing distracting information (Bull & Scerif, 2001; Garon, Bryson, & Smith, 

2008).  Working memory is the ability to retain and manipulate information over a short 

period of time without the need for cues or aids (Alloway, Gathercole, & Pickering, 

2006; Huizinga, Dolan, & Van der Molen, 2006). Cognitive flexibility is the switching 

between tasks, set rules, and mental state and requires a great deal of inhibition (Miyake 

et al., 2000).  These skills are critical for academic thriving (Morrison, Cameron Ponitz, 

& McClelland, 2010).   

Diamond (2006) argues that executive functions include three separate 

components: (1) inhibition; (2) working memory; and (3) switching and cognitive 

flexibility (as cited in Bindman et al., 2015).  These distinct components are dissociable 

processes and indicate differential developmental trajectories (Diamond 2002; Garon, et 

al, 2008; Rosso, Young, Femia, & Yurgelun-Todd, 2004). Studying preschoolers, it was 

discovered that executive functioning skills components were differentiated even by this 

age group (Hughes, 1998).  On the other hand, Zelazo and Frye (1998) and Munakata 

(2001) theorized that EF is a unified construct.  There has been an absence of agreement 

about whether EF is a single construct or comprises independent domains (Baddeley, 
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1992; Barkley et al, 2001; Brocki & Bohlin, 2004; Dempster, 1992; Isquith et al., 2004; 

Miyake et al., 2000).  Confirmatory factor analysis was used in a study with young adults 

to determine the underlying nature of EF and found both a unitary construct and 

dissociable components and that the three components though correlated, made distinct 

contributions, and were used differentially depending on the task to be performed 

(Miyake et al., 2000). Similar findings were observed in studies with younger populations 

(Huizinga, Dolan, and Van der Molen, 2006; Lehto, Juujarvi, Kooistra & Pilkkinen, 

2003).  This model of executive functioning embraces both the unity and diversity of 

executive functioning where the components are simultaneously separated but correlated, 

where the best fitting model has partially dissociable components and has a common 

underlying mechanism which is likely inhibition (Miyake et al., 2000). It has been argued 

that inhibition may not be a distinct component (Miyake, 2009; van der Sluis et al., 2007) 

and inhibition tasks may not be true measures of inhibition as they rely on the use of 

other executive functioning skills to accomplish the tasks (Simpson & Riggs, 2005).  To 

that point, the Dimensional Change Card Sort (DCCS) measures cognitive flexibility in 

the dataset used for the current study (ECLS-K); however, during the post-switch phase 

when the children are required to sort the cards by shape and no longer by color as (they 

did in the pre-switch phase) inhibition is actually being measured (Best & Miller, 2010).   

In a school psychology context, however, EF as measured by the Behavior Rating 

Inventory of Executive Function (BRIEF) is expanded.  There are three indexes and nine 

clinical scales (Gioia, Isquith, Guy and Kenworthy, 2015). The behavior regulation index 

includes two scales, inhibit which measures the children’s ability to stop their behavior 
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by not acting on their impulse at the appropriate time, and self-monitor which is the 

monitoring of their own behavior and measuring against a standard (Gioia, et al., 2015).  

The emotion regulation index has two scales, shift or the ability to move freely from one 

task or situation to another as required, and emotional control which is the ability to 

moderate emotional response.  The third and final index is the cognitive regulation index 

which includes five scales, namely, initiate which has do with the ability to start task and 

to generate ideas independently; working memory which allows the children to hold 

information in mind to be used to complete an activity; plan/organize which is the ability 

to plan and manage current and future tasks; task monitor allows for the checking of 

one’s performance of a task during and upon completion to determine if goals were met; 

and finally, organization of materials. Which has to do with maintaining an orderly work 

space.  This demonstrates the lack of consensus around a definition of EF.  At one point 

as much as 33 separate executive skills have been identified (Eslinger, 1996).    

The current study adopted Miyake’s approach and examined EF as partially 

dissociable components with inhibition as an underlying mechanism not treated as a 

distinct component. The dataset used in the analysis used only the DCCS and Woodcock-

Johnson Tests as measures limiting the type of measures used in this study. Therefore, 

DCCS will measure cognitive flexibility with inhibition as an underlying component and 

the Woodcock-Johnson Tests used to measure working memory with inhibition not 

measured as a construct.  This allowed for the investigation of varying relationships with 

math achievement. 
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Mathematics and Association with Executive Functioning 

Studies have found an association between EF and math achievement and EF as a 

predictor of math achievement growth (Bindman, Pomerantz & Roisman, 2015; Blair, 

Ursache, Greenberg, Veron-Feagans, & The Family Life Project Investigators, 2015; Bull 

& Lee, 2014; Clark, Pritchard & Woodward, 2010; Friso-van den Bos, van der Ven, 

Kroesbergen, & van Luit, 2013; Shaul & Scwartz, 2014).  There has been limited 

examination of the effect of the different components of EF on math achievement and 

where they exist there is a lack of convergence of findings.  One study found that 

inhibition showed a higher association with math achievement than either working 

memory or switching and cognitive flexibility (Espy, McDiarmid, Cwik, Stalets, Hamby 

& Senn, 2004).  Later, another study found that working memory has a stronger 

correlation with math achievement than inhibition or switching and cognitive flexibility 

(St. Clair-Thompson & Gathercole, 2006).  Yet another study found a strong association 

between working memory and math achievement, but no relationship with the other 

components (Van der Ven, Kroesbergen, Boom, & Leseman, 2011).  These three studies 

used different methods. The first used a cross-sectional research design with a sample of 

96 children (Espy et al., 2004), the second was an experiment with a sample of 51 

children (St. Clair-Thompson & Gathercole, 2006), and the third was a longitudinal study 

with a sample of 227 children ((Van der Ven, 2011).  However, the title of this 

longitudinal study, The development of executive functions and early mathematics: A 

dynamic relationship was a bit misleading as the authors used latent growth curve 

modeling which is not flexible enough to achieve an understanding of the dynamic 
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relationship. Latent change score modeling can be used to examine dynamic 

relationships. Studies of the role of EF and math achievement have primarily been 

correlational or experimental, learning studies which included limited longitudinal 

explorations, and meta-analyses (Cragg & Gilmore, 2014).  Therefore, there is a need for 

the examination of the effect of the executive functioning components on math 

achievement longitudinally with a large enough sample size using the appropriate growth 

model which can investigate dynamic relationships. 

The causal effect of executive functioning on later math achievement has been 

questioned in a meta-analysis (Jacob & Parkinson, 2015,).  This study found “no 

compelling evidence that a causal association between the two exists” (Jacob & 

Parkinson, 2015, p. 512).  In addition to these questions about the nature of the 

relationship between EF and math achievement, it has been noted that both constructs 

develop strongly during childhood and a mutually developmental relationship is likely to 

exist where one influences the other (Bull & Lee, 2014; Jones, Gobet, & Pine, 2007; 

Messer, Leseman, Boom, & Mayo, 2010; Ottem, Lian, & Karlsen, 2007; Van der Maaset 

al., 2006), supporting the need for the examination of this relationship in a longitudinal 

way using a dynamic framework. 

 If children’s skills develop in stages then it should follow that any efforts towards 

examining and determining how “their trajectories can be supported” (Armstrong, Ogg, 

Sundman-Wheat, & Walsh, 2014, p. 21) should be done within a longitudinal framework.     
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Longitudinal methodology involves repeated, time-ordered observation of an 

individual or individuals with the goal of identifying processes and causes of 

intraindividual change and of interindividual patterns of intraindividual 

change (Baltes & Nesselroade, 1979, p.7). 

The objectives of longitudinal research include the direct identification of intra-individual 

(within-person) change, direct identification of inter-individual (between-person) 

differences in intra-individual change, analysis of interrelationships in behavioral change, 

analysis of causes (determinants) of intra-individual change, and analysis of causes of 

inter-individual differences in intra-individual change (Grimm, Ram, & Estabrook, 

2017). 

 To identify intra-individual change requires repeated measurement or observation 

of the same subject.  To identify inter-individual differences in intra-individual change 

there needs to be a comparison of the different processes of change for each subject under 

repeated observation.  To analyze the interrelationships of behavioral change requires a 

multivariate framework where variability can be measured.   To analyze the causes of 

intra-individual change requires the identification of antecedent factors.  Finally, to 

analyze the causes of interindividual differences in intraindividual change the researcher 

must understand both that causes may vary among subjects, and the nature of the 

antecedent-consequent relationships of the subjects may vary (McArdle & Nesselroade, 

2014; & Grimm, Ram, & Estabrook, 2017).   

Structural Equation Modeling 

 Structural equation modeling (SEM) is a general multilevel multivariate analysis 

framework (Raudenbush & Bryk, 2002).  It is a confirmatory framework rather than an 
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explanatory one which includes path analysis, discriminant analysis, and factor analysis 

(Hox, 2002, Bollen, 1989).  Variables used in SEM are observed and unobserved or latent 

in nature.  The model has two distinct parameters, a measurement and a structural 

parameter.  Models are theory driven and can be specified and re-specified to test 

different hypotheses.  This theory driven approach is suitable to examine the various 

hypotheses of this study. 

 SEM allows the modeling of longitudinal data within its framework (Kline, 

2016). Both latent growth curve models and latent change score models are typically 

specified within the SEM framework and are used to examine change as within-person 

and between-person models (Grimm, Mazza, & Mazzocco, 2016; Kline, 2016; Meredith 

& Tisak, 1990).  

Latent Growth Curve Modeling 

Longitudinal data, because of its repeated measures nature, allows for the analysis 

of change over time.  Waves of data collected at only two time-points do not provide 

adequate information, as LGC models uses multi-wave data which allow for the effective 

testing of systematic inter-individual variability in change (Byrne, 2010).  Latent growth 

curves are adequately modeled within the SEM framework with a continuous scale 

dependent variable, data collected in three or more waves, with either even or uneven 

time lags between time of data collection, and a sample size of at least 200 individuals at 

each time-point (Byrne, 2012).  Within-person (intra-individual) growth trajectories over 

time, that is, the direction and extent of change for each person from one time-point to 
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another, can be modeled.  If a straight line is fitted to the data, there are two individual 

growth parameters, the intercept (initial status (ηi) on the outcome variable at time-point 

1) and slope (rate of change over time) (ηs).  Both the intercept and slope latent factors 

have a mean (Mi and Ms, respectively) and a variance (Di and Ds, respectively).  The 

mean intercept is where the average individual starts while the mean slope concerns the 

average rate of change.  The intercept variance is concerned with how much the 

individuals vary in their initial status while slope variance models their rates of change 

variation (Duncan, 2006).  The time-points are modeled as observed variables with each 

having a random measurement error term.  The values of the regression paths between 

the intercept and the observed variables are 1 to indicate it is constant across time, while 

the values of the regression paths between the slope and the observed variables denote the 

different time-points.  For example, year 1 = 0, year 2 = 1, and year 3 = 2 for equal time 

intervals (Byrne, 2010).  The measurement model, that is, the regression paths, the factor 

variances and covariances, and the observed variables’ random measurement errors (Ɛ1, 

Ɛ2, and Ɛ3) are used to model intra-individual change (Byrne, 2010).  The LGC model 

equation  

               𝑦𝑖 = ηi +Ɛi,    (1) 

where Y is the outcome variable, is the association between the latent factors and 

observed variables or factor loadings, η embodies the initial status and the rate of change 

over time which includes Mi, Ms, Di and Ds.Alternately, the equation for three time-

points can be written as  
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          Y1 = b0 + b2* t1 + Ɛ1     (2) 

Y2 = b0 + b2* t2+ Ɛ2 

and 

Y3 = b0 + b2* t3+ Ɛ3, 

where b0 is the initial status, b2 is the rate of change, and t1, t2, and t3 are the values of 

time (slope regression loadings) (Duncan, 2006; Duncan & Duncan, 2009; Grimm, 

Zhang, Hamagami & Mazzocco, 2013).  B0 is the Mi score, b2 is the Ms score, t1 is set at 

0, t2 at 1 and at t3 2, and Ɛ is fixed at 0.  

The structural model, that is, the relationship between the factors and their 

residuals measures the variability across individuals (inter-individual (between-person) 

differences in change) due to the differences in their intercept and slope (Byrne, 2010).  

The mean models the average intercept and slope values and the variances model 

individual differences in the intercept and slope thus allowing for the “estimation of inter-

individual differences in change” (Byrne, 2010, p. 309).  In other words, to model inter-

individual differences the intercept means and variance, slope means and variance, and 

the covariance are used.  The means estimate the population starting point and mean 

increment over time, thus measuring the average population values for the factors.  The 

variances estimate if there are between-person differences in the initial status and growth 

trajectories (rate of change), thus measuring the variation of individual intercept and 

slope from the population mean.  The covariance between the two factors (or the 
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population covariance) estimate if individuals whose initial status is higher tends to grow 

at a higher rate, thus measuring the variation between starting point and rate of change 

(Byrne, 2010).     

Additionally, LGC models allow for the inclusion of predictors of change.  With a 

predictor introduced, it becomes a conditional model “because the fixed and random 

effects are now conditioned on the predictors” (Curran, Obeidat, & Losardo, 2010, p. 

125).  The intercept and slope become endogenous factors and have disturbances (Kline, 

2016).  For example, race-ethnicity or gender can be included to determine if differences 

exist across the various races-ethnicities or between males and females Race-ethnicity 

(like gender) would be an exogenous time-invariant covariate. 

 Difficulty may arise when modeling the changes in one construct, such as math 

achievement, as a function of a second construct, such as EF, while both are changing 

(Grimm, Mazza, & Mazzocco, 2016).  Here, any association between math achievement 

and EF remain time-invariant or static.  These time-invariant associations can only be 

examined at the between-person level or growth factor level.  Therefore, any examination 

of a developmental relationship between math achievement and EF that yields positive 

rates of growth reflects a between-person association whose effect is static, indicating 

“that the effect lacks subsequent movement, action, or change” (Grimm, Mazza, & 

Mazzocco, 2016, p. 343).  It must be noted that a positive correlation between math 

achievement and EF slopes is not an indication that changes in EF “precede or lead to 

subsequent changes in” math achievement (p. 343). 
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Autoregressive Models 

 An autoregressive (or residual change) model is another approach to studying 

change (Duncan, Duncan, & Strycker, 2006).  In an autoregressive model the past values 

of a variable are used to predict future values (Kline, 2016), where T1 score is used to 

predict T2 score (Felt, Depaoli, & Tiemensma, 2017).  This is considered controlling for 

autoregression, as the previous state of a construct (math achievement) is included to 

predict the future state of the construct (Quinn, Wagner, Petcher, & Lopez, 2015).  

Spurious associations between variables can result from not controlling for 

autoregression (Gollob & Reichardt, 1987).  However, autoregressive models have a 

major flaw when dealing with longitudinal data as they lack LGC modeling’s ability to 

model trajectories of change over different time-points. 

Latent Change Score Modeling 

 LCS, like LGC, models within-person change and analyzes means and covariance 

structures.  While the literature is predominantly focused on LCS as the model through 

which we can find answers for developmental research, LCS models seem to offer a more 

comprehensive option which includes the possibilities of LGC and more. Latent change 

score modeling is a combination of autoregressive models’ ability to model the degree to 

which a prior status is related to or influences a future status, and LGC models’ ability to 

model trajectories of change over time (McArdle, 2009).  These two abilities are 

important to modeling developmental changes.  LCSmodeling allows for the variables to 

be endogenous and the examination of any dynamic association between them across 



 

21 

 

different time-points (McArdle, 2009; Grimm, Mazza, & Mazzocco, 2016; Ferrer & 

McArdle, 2010).  

 Classical test theory has some influence in latent change score modeling  

𝑦𝑡𝑖 = 𝑙𝑦𝑡𝑖 + 𝑒𝑡𝑖,     (3) 

where 𝑦𝑡𝑖 is the observed score of individual i at time t and is composed of the 𝑙𝑦𝑡𝑖 which 

is the latent true score of individual i at time t, and 𝑒𝑡𝑖 is the residual score of individual i 

at time t.  This reflects a linear combination or growth that is considered as the additive 

(α) parameter.  𝑙𝑦𝑡𝑖 is further decomposed to reflect      

𝑙𝑦𝑡𝑖 = 𝑙𝑦𝑡−𝑖 + 𝑑𝑦𝑡𝑖.   (4) 

Where 𝑦𝑡𝑖 is the observed score of individual i at time t, 𝑙𝑦𝑡−𝑖 is the true score of 

individual i at time t-1, and 𝑑𝑦𝑡𝑖 is the true score of individual i from t-1 to time t.  This 

reflects an autoregressive model.  Here, 𝑙𝑦𝑡−𝑖 is the predictor and reflects a nonlinear 

growth component that is considered as the proportional change parameter (β or π).  It is 

the change in y from time t-1 to time t that is the outcome rather than the status on y at 

time t thus allowing the examination of “within-person change and between-person 

differences in within-person change” (Grimm, Mazza, & Mazzocco, 2016, p. 343).  

Within the latent change framework, the model for latent change score modeling is 

𝑦𝑡𝑖 = 𝑙𝑦𝑡−𝑖 + ∑ (𝑑𝑦𝑟𝑖)
𝑟=𝑡
𝑟=2  + 𝑒𝑡𝑖,    (5) 

where 𝑦𝑡𝑖 is the observed score of individual i at time t=1 (initial status), and ∑ (𝑑𝑦𝑟𝑖)
𝑟=𝑡
𝑟=2  

is the sum of the latent change scores of individual i from t=2 to time t=nth, reflecting the 

individual i score at time t is composed of individual i true score at t=1 (initial time 

point), the accumulation of changes up to time t, and the unique score (or residual score) 



 

22 

 

of individual i at time t (Grimm, Mazza, & Mazzocco, 2016; Grimm, Ram, Estabrook, 

2017). 

   Where change is being examined between two constructs (in a latent change 

score bivariate framework) over different time-points, both the α and the π parameters are 

estimated as well as this framework allows for the estimation of the coupling (ϒ) 

parameters.  The dynamic association between the two constructs math achievement and 

EF in a latent change score modeling bivariate framework has two types of indicators.  

Namely, a leading and a lagging indicator with change in the former leading to change in 

the latter; thus, their development is coupled.  Therefore, the effect of the mean level of 

EF at T1 influences the changes (level of growth) in math achievement at T2 (Ferrer & 

McArdle, 2010; McArdle, 2009; Quinn, Wager, Petscher, & Lopez, 2015). 

Univariate Models 

A framework for specifying and estimating latent change score models has been 

postulated (Grimm, Mazza, & Mazzocco, 2016; Grimm, Ram, & Estabrook, 2017).  

When specifying univariate models, one model often estimated is the no change model 

where both expected means and variances are 0 

𝑑𝑦𝑡𝑖 = 0.      (6) 

Next is the constant change model in which the amount of change is allowed to vary 

between-persons (across individuals) but fixed within-person (𝑏1𝑖 is the constant change 

component) 

𝑑𝑦𝑡𝑖 = 𝑏1𝑖.    (7) 
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Integrating this equation with the model for latent change score (𝑦𝑡𝑖 = 𝑙𝑦𝑡−𝑖 +

∑ (𝑑𝑦𝑟𝑖)
𝑟=𝑡
𝑟=2  + 𝑒𝑡𝑖) a series of latent true scores equations can be developed 

                𝑙𝑦1𝑖 = 𝑙𝑦1𝑖    (8) 

𝑙𝑦2𝑖 = 𝑙𝑦1𝑖 + 𝑏1𝑖 

𝑙𝑦3𝑖 = 𝑙𝑦1𝑖 + 𝑏1𝑖 + 𝑏1𝑖. 

Here, 𝑙𝑦1𝑖 represents the intercept of the latent variable while 𝑏1𝑖 is the slope. Then there 

is the proportional change model  

𝑑𝑦𝑡𝑖 = π * 𝑙𝑦𝑡−1𝑖.     (9) 

Here, the change detected between t – 1 and t is directly proportional to its start or status 

at t – 1.  Merging this equation with the model for latent change score (𝑦𝑡𝑖 = 𝑙𝑦𝑡−𝑖 +

∑ (𝑑𝑦𝑟𝑖)
𝑟=𝑡
𝑟=2  + 𝑒𝑡𝑖) a series of latent true scores equations can be developed 

                            𝑙𝑦1𝑖 = 𝑙𝑦1𝑖    (10) 

𝑙𝑦2𝑖 = 𝑙𝑦1𝑖 + π * 𝑙𝑦1𝑖 

𝑙𝑦3𝑖 = 𝑙𝑦1𝑖 + π * 𝑙𝑦1𝑖 + π *(𝑙𝑦1𝑖 + π * 𝑙𝑦1𝑖) 

𝑙𝑦4𝑖 = 𝑙𝑦1𝑖 + π * 𝑙𝑦1𝑖 + π *(𝑙𝑦1𝑖 + π * 𝑙𝑦1𝑖)+ π *(𝑙𝑦1𝑖 + π * 𝑙𝑦1𝑖 +  𝜋 ∗ (𝑙𝑦1𝑖  +  𝜋 ∗

 𝑙𝑦1𝑖)) 

both 𝑙𝑦1𝑖 (initial latent true score) and π (proportional change parameter) determine the 

latent true score, this model is much like the exponential change model (Grimm, Mazza, 

& Mazzocco, 2016).  Additionally, there is the dual change model which combines the 

constant change and the proportional change models 

𝑑𝑦𝑡𝑖 = 𝑏1𝑖 + π * 𝑙𝑦𝑡−1𝑖.   (11) 
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Combining this equation with the model for latent change score (𝑦𝑡𝑖 = 𝑙𝑦𝑡−𝑖 +

∑ (𝑑𝑦𝑟𝑖)
𝑟=𝑡
𝑟=2  + 𝑒𝑡𝑖) a series of latent true scores equations can be developed 

                          𝑙𝑦1𝑖 = 𝑙𝑦1𝑖    (12) 

𝑙𝑦2𝑖 = [𝑙𝑦1𝑖]+ 𝑏1𝑖 + π * 𝑙𝑦1𝑖 

𝑙𝑦3𝑖 = [𝑙𝑦1𝑖+ 𝑏1𝑖 + π * 𝑙𝑦1𝑖] + 𝑏1𝑖 + π *(𝑙𝑦1𝑖 + 𝑏1𝑖+ π * 𝑙𝑦1𝑖) 

𝑙𝑦4𝑖 = [𝑙𝑦1𝑖+ 𝑏1𝑖 + π * 𝑙𝑦1𝑖 +  𝑏1𝑖 + π *(𝑙𝑦1𝑖 + 𝑏1𝑖+ π * 𝑙𝑦1𝑖)] + 𝑏1𝑖 + π *(𝑙𝑦1𝑖 + 𝑏1𝑖 + π 

* 𝑙𝑦1𝑖 +  𝑏1𝑖 +  𝜋 ∗ (𝑙𝑦1𝑖  +  𝑏1𝑖 + 𝜋 ∗  𝑙𝑦1𝑖)), 

 (Grimm, Mazza, & Mazzocco, 2016). 

Bivariate Models 

 Where math achievement and EF as a bivariate model is concerned the equation 

would reflect  

       𝑑𝑦𝑡𝑖 = 𝑏1𝑖 + πy * 𝑙𝑦𝑡−1𝑖  (13) 

𝑑𝑛𝑡𝑖  = 𝑔1𝑖 + πn * 𝑙𝑛𝑡−1𝑖. 

The first line of equation 13 would represent math and the second line represent number 

reverse, for example. Here, the constant change component and proportional change 

parameter are incorporated for both variables. From here the dynamic associations can be 

modeled as in equation 14 where equation 13 is further developed to examine coupling 

         𝑑𝑦𝑡𝑖 = 𝑏1𝑖 + πy * 𝑙𝑦𝑡−1𝑖+ ϒy * 𝑙𝑛𝑡−1𝑖  (14) 

𝑑𝑛𝑡𝑖  = 𝑔1𝑖 + πn * 𝑙𝑛𝑡−1𝑖+ ϒn * 𝑙𝑦𝑡−1𝑖 
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In equation 14, the coupling parameters are ϒy and ϒn and serve to identify how the prior 

true score is related to the subsequent true changes, and leading and lagging indicators 

can be identified (Grimm, Mazza, & Mazzocco, 2016). 

 Of LCS modeling, Petcher, Quinn, and Wagner, (2016) highlighted that in 

education and psychology it can potentially yield “more theoretically interesting findings 

about how individuals change” (p. 1691) than other types of growth models.  

Developmental changes concerning reading, memory and depression outcomes at two 

time-points were shown to be more comprehensively studied using LCS (Hawley, Zuroff, 

Ho, & Blatt, 2006; Quinn, Wagner, Petscher, & Lopez, 2015).  Additionally, LCS was 

used to address the discrepancy in the literature on the nature of the relationship between 

reading and writing for children between the first and fourth grade by establishing a 

unidirectional rather than a bidirectional relationship (Ahmed, Wagner, and Lopez, 

2014).  Studies have shown that LCS is not without its limitations, including failure to 

converge due to its complexity and if the sample size is small (Jackson, 2007).  There 

have been difficulties with the requirement to constraining variance which has also 

caused convergence issues (Stoel et al., 2006) and proved unrealistic with real world data.  

In some cases where convergence occurs they may include negative variances and 

correlations that exceed one (Heywood case) with no clear solution (Joreskog, 1999).  

Clark, Nuttall, and Bowles (2018) in their Monte Carlo simulation study found that just 

the specification of a single constraint to achieve estimation can result in biased estimates 

but that these estimates still proved effective at capturing change and growth trajectories. 
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This study investigated the nature of the relationship between EF and math 

achievement using two models of change, namely, LGC modeling and LCS modeling.  

While latent growth curve modeling is the primary model used for studying longitudinal 

data, it does not model dynamic relationships and identify leading and lagging indicators 

to better get at the heart of co-developmental relationships. The current study proposed 

latent change score modeling as the model of choice to examine: to what extent prior 

status affects future status (autoregression); the trajectories of change over time (LGC); 

and the dynamic relationship between the variables that may be observed in 

developmental change research. LCS models can examine co-developmental 

relationships between the variables and will add to the literature on EF and mathematics 

achievement and better help practitioners identify informed strategies to advance 

learning. 

Research Questions and Hypotheses 

The research questions that this study answered are:  

(1) What are the patterns of growth and interrelationships in the development of 

executive function and math achievement?   

(2) Is one construct a leading indicator of the other and are executive function and math 

achievement dynamically dependent? 
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It was hypothesized that the patterns of association and the growth trajectory for 

EF and mathematics achievement are positively related, in that, the development of EF 

impacts change in mathematics achievement; and thus, EF skills developed in young 

children is a predictor of growth in mathematics achievement.  LGC models can 

demonstrate changes in mathematics achievement in relation to EF.  It was hypothesized 

that the developmental trajectories of EF and math achievement are co-developmental.  

Ensuing changes in one construct are influenced by the current and previous levels of the 

other construct.  LCS modeling will more accurately capture the co-developmental nature 

of the variables, and model growth and dynamics between EF and math achievement 

(Ferrer & McArdle, 2010).   
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Chapter 2: Method 

 

Data/Participants 

 This study used data from the national Early Childhood Longitudinal Study, 

Kindergarten Class of 2010-11 (ECLS-K:2011) collected by the National Center for 

Education Statistics (NCES).  It followed a cohort of students from kindergarten 

throughout their elementary school years.  The ECLS-K:2011 focuses on children’s early 

education experiences and their development (Tourangeau, et al., 2017).  A total of 

18,174 young children participated from 1,352 schools (1,052 public and 300 private), 

resulting in a nationally representative sample of those who started kindergarten 2010-11.  

The sample demographics (Table 1) reflected 49.4% and 50.6% females and males, 

respectively.  The children’s race/ethnicity included White non-Hispanic (53.3%), 

Hispanic (24), Black non-Hispanic (13.1), Asian non-Hispanic (3.8%), American Indian 

or Alaska Native non-Hispanic (0.9%), Native Hawaiian/other Pacific Islander/non-

Hispanic (0.7%), two or more races (4.1%).  Eighty-seven percent were five years of age 

when they entered kindergarten for the first time, while 10% and 3% were age 6 years or 

older and younger than 5 years, respectively (Mulligan, McCarroll, Flanagan, & Potter, 

2014). 
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Table 1  

Sample Demographics 

 Characteristics Percentage 

Sex 

Females 49.4% 

Males  50.6% 

Race/Ethnicity 

White non-Hispanic 53.3% 

Hispanic 24% 

Black non-Hispanic 13.1% 

Asian non-Hispanic 3.8% 

American Indian or Alaska Native non-Hispanic 0.9% 

Native Hawaiian/other Pacific Islander/non-Hispanic 0.7% 

Two or more races 4.1% 

Age entered kindergarten 

5 years 87% 

6 years or older and  10% 

Younger than 5 years 3 

 

Procedure 

 The ECLS-K:2011 used a multi-stage clustered sampling technique and 

assessed the cohort at nine different time points, namely, kindergarten during fall 

2010 and spring 2011, first grade during fall 2011 and spring 2012, second grade 

during fall 2012 and spring 2013, third grade spring 2014, fourth grade spring 2015, 

and finally fifth grade spring 2016.  However, for the purposes of this study four-

time points will be included, that is, kindergarten with a national representative 

sample of 18,170 (time points 1 and 2), and first grade (time points 3 and 4) with a 

fall 2011 subsample of 6,110 and a full spring 2012 of 18,174 (Najaran, 

Tourangeau, Nord, Wallner-Allen & Mulligan, 2018) (Table 2); with general 



 

30 

 

patterns of missing data across time points. The sample at time-point three was 

only a third of the sample size of the other timepoints.  Prior to the second-grade 

assessment, children were assessed using a paper-based test, then with the second 

grade the assessment was computerized, scored differently as well as differed in 

how the construct was assessed.  While the type of test was age appropriate based 

on the level of difficulty, the overall computed scores of the paper-based test cannot 

be directly compared with the overall computed score of the computerized version 

(Najaran et al., 2018).  Thus, the second grade has been excluded and deemed not 

appropriate to be included as it would not give accurate information. ECLS-K:2011 

data are collected through multiple methods and from multiple informants including 

child assessments, and interviews and questionnaires for parents, teachers, and 

school administrators.  Both direct and indirect children assessment data were 

collected.  For the current study, only the measures of interest will be discussed. 

 

 

Table 2 

Study Time Points and Sample Size 

Time Points Grade School Term Sample Size 

1 Kindergarten Fall 2010 18,170 

2 Spring 2011 18,170 

3 First Grade Fall 2011 6,110 

4 Spring 2012 18,174 
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Measures 

Math Achievement Measures 

 A two-stage direct cognitive assessment for mathematics was used in the 

ECLS-K: 2011 dataset.  In stage one, 20 questions ranging in difficulty and based 

on the children’s scores served to route children to their next level of difficulty 

(low, medium, or high) for stage two (Tourangeau et al., 2017).  There were 113 

items covering “number sense, properties, and operations; measurement; geometry 

and spatial sense; data analysis, statistics, and probability; and patterns, algebra, and 

functions” and measured “skills in conceptual knowledge, procedural knowledge, 

and problem solving” (Tourangeau et al., 2017, p.2-4).  The IRT-based math scores 

had high reliability ranging from .92 to .94 (Tourangeau et al., 2017). 

Executive Function Measures 

  Executive function, in the ECLS-K:2011, was directly measured through 

two separate constructs, cognitive flexibility and working memory (Tourangeau et 

al., 2017).  Zelazo’s (2006) Dimensional Change Card Sort (DCCS) was used to 

measure cognitive flexibility.  There were two distinct phases, a pre-switch phase 

and a post-switch phase.  In the pre-switch trials children were required to sort 22 

picture cards into one of two trays first by color in what was called the color game.  

Thereafter, in the post-switch trials children were required to sort the picture cards  
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by shape in a shape game.  To move to the third and final trial, the border game, 

children had to correctly sort four of the six picture cards in the shape game.  The 

border game required children to sort the cards into either the color or the shape tray 

depending on the presence or absence of a border (Tourangeau, et al., 2017).  The 

outcome is the number of cards correctly sorted (Garon, Bryson, & Smith, 2008).  

These three games were each scored as correct or incorrect and a scale score 

provided for each; additionally, the three scores were sum into a combined scale 

score.  The combined score, which can be a maximum of 18 correct answers, 

provides the total number of picture cards sorted correctly in all three games and is 

the recommended score to use to measure performance (Tourangeau et al., 2017).   

After the completion of the card sort games, the Numbers Reversed task was 

administered to measure working memory using the Woodcock-Johnson III Tests of 

Cognitive Abilities.  The children were required to repeat a series of numbers (up to 

8) in reverse order with each level becoming increasingly difficult (Tourangeau et 

al., 2017).  The numbers reversed items were marked as correct or incorrect.  Three 

different scores were produced for analysis of the numbers reversed data, grade and 

age percentile scores, grade and age standard scores, and W-ability scores.  Both the 

percentile and standard scores are suited for analysis for a single point in time 

whereas test publishers recommend the W score (a growth scale) as the most 

suitable for longitudinal analysis and measuring growth. W is a standardized score 

that is a special transformation ability scale with a mean of 500 and a standard  
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deviation of 100 (Tourangeau et al., 2017).  The W score is an equal interval scale 

that captures the child’s ability as well as the difficulty of the task and any increase 

would indicate growth., A W score of 403 corresponds to a raw score of 0 

(Tourangeau et al., 2017).  The mean score of 500 represents the mean performance 

of a child 10 years of age.  For the time points of interest for the current study, the 

sample is younger than 10 years and their performances are being compared to that 

of their older peers.  According to the test developers, this comparison may show 

that the younger children are underperforming; however, this is not necessarily the 

case.  W scores are a function of the number of correct answers and not age.  They 

are available for all children where the standard and percentile scores are not 

(Tourangeau et al., 2017). 

Data Analysis 

 Large datasets are prone to missing data due to nonresponse.  Using SPSS, 

the data were checked for missingness and the nature of the missing data.  That is, 

were the data missing at random (MAR), missing not at random (MNAR), or 

missing completely at random (MCAR) (Rubin, 1976).  Full information maximum 

likelihood (FIML) was used where appropriate (Quinn, Wagner, Petscher, & Lopez, 

2015) as by default Mplus (Muthén & Muthén, 2018) uses FIML where participants 

have scores on at least some of the variables, hence, cases with missing data on all 

cases are automatically excluded from the analysis (Geiser, 2013).  Where missing 

data patterns are concerned, there were 13 missing data patterns (Tables 3 and 4).  

Table 5 presents the proportion of data present that contribute to the calculation of 
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the variance or covariance (Geiser, 2013).  All the values are above the Mplus 

minimum covariance coverage value of 0.100 (10%).   

 

 

Table 3 

Missing Data Patterns (x = not missing) 

___________________________________________ 

 

___________________________________________ 

 

 

 

Table 4 

Missing Data Pattern Frequencies 

Pattern Frequency Pattern Frequency Pattern Frequency 

1 70 6 6 11 1 

2 3 7 12 12 2 

3 117 8 1 13 8 

4 27 9 11   

5 1 10 1   
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Table 5 

Proportion of Data Present  

__________________________________________________________________ 

 

___________________________________________________________________ 
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To answer the two research questions, an incremental model-fitting 

approach with varying degrees of freedom was specified in Mplus.  LGCmodeling 

was used to examine the unconditional growth trajectory of the variables as it 

allows for the modeling of linear change over time and corrects for random error, 

which in turn allows for the “estimation of interindividual differences in true 

intraindividual change in trust over time” (Coovert, Miller, & Bennett, 2017, p. 9).  

The univariate unconditional LGC for each variable, DCCS, number reverse (NR) 

and mathematics (math) achievement were modeled and assessed.  The measures of 

interest included four repeated measures each.  The final LGC model is a variation 

of the associative model where both univariate models were combined, and the 

regression paths modeled instead of covariances.  In all the models the random 

errors were initially fixed to be equal to each other and the factor loadings between 

the slope and time points as well as the factor loadings for the intercept were 

allowed to be freely estimated (thus unconstrained).  In the associative model, for 

identification purposes the means and standard deviations of the intercept and 

slopes of the constructs obtained from the univariate models were used to inform 

the model.  A series of LCS models were used to examine the growth trajectory and 

went further to examine the dynamic relationship between math achievement and 

executive functioning.  Univariate LCS modeling for the three variables included 

(a) constant change models, (b) proportional change models, and (c) dual change 

models; these were followed by bivariate LCS modeling (d) bivariate dual 

uncoupled models (Math & DCCS, and Math & NR), (e) bivariate dual change 
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unidirectional coupling model (DCCS to change in Math, NR to change in Math, 

Math to change in DCCS, and Math to change in NR) , and (f) bivariate dual 

change bidirectional couplings models (Math & DCCS, and Math & NR). 

The models were evaluated for identification, model fit, means, and 

comparisons made across models.  Model fit were assessed using multiple indices. 

The exact-fit hypothesis was assessed using the chi-square test of fit (p > 0.05) 

which is a measure of the deviation from the perfect model fit (Kline, 2016) with a 

significant chi-square value resulting in the rejection of the null hypothesis which 

indicates the exact fit of the model to the population (Geiser, 2013).  However, the 

chi-square test often indicates that the null hypothesis (model fits perfectly) is to be 

rejected in large samples due to statistical power (Bollen & Curran, 2006).  The 

comparative fit index (CFI) measures the relative improvement in the fit of the 

current model over the previous model with values between .95 and 1.00 indicating 

excellent fit and values between .90 and .95 indicating adequate fit (Garver & 

Mentzer, 1999).  The Tucker-Lewis Index (TLI) of .95, indicates the model of 

interest improves the fit by 95% relative to the null model and TLI of 1 indicates 

ideal fit; but TLI is preferable for smaller samples (Bollen & Curran, 2006).  The 

Root mean square error of approximation (RMSEA) is scaled as a badness-of-fit 

index where zero indicates best fit, with p-value > .05, a 90% C. I. (particularly a 

lower and upper threshold of .05 and .1), and values between 0 and .6 indicating 

excellent fit and values between .6 and .8 reflecting adequate fit, and values 

between .8 and 1 indicating moderate fit (Bollen & Curran, 2006; Browne and 
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Cudeck (1993) Hu & Bentler, 1995; Kline, 2016; MacCallum, Browne, & 

Sugawara, 1996).  However, care must be exercised as RMSEA can be too 

conservative with a large sample size (Kline, 2016).  The standardized root mean 

square residual (SRMR) was used to measure the mean absolute correlation residual 

and determines the overall difference between the observed and predicted 

correlations and uses Hu and Bentler’s threshold of 0.08 (Kline, 2016), while values 

less than .05 indicates excellent fit (Steiger, 1990).  The Akaike information 

criterion (AIC) and the Bayesian information criteria (BIC) considers goodness-of-

fit and parsimony and helps to determine the best model, with a good model having 

the smallest value among all the models; however, AIC penalizes for more complex 

models (Dziak, Coffman, Lanza, & Li, 2012).  Sample-size adjusted BIC is useful 

for large samples and was used in this study. 

Research Question One  

To answer research question one, three LGC unconditional models were 

specified.  For math achievement the direct measure math score was specified at T1 

– T4.  Where EF is concerned, two models were specified; the DCCS scores which 

measures cognitive flexibility, and the number reversed scores which measures 

working memory.  Univariate LCS models were also specified.  First, the constant 

change models, which are equivalent to the LGC with a linear growth model, were 

specified for math scores, DCCS scores, and number reversed scores.  Second, the 

proportional change models were specified to determine if growth is a function of 

the performance at the previous level.  Third, dual change models, which 
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incorporates the two previous models, were specified for the three variables. This 

allowed for nested model testing (Quinn, Wagner, Petscher, & Lopez, 2015). 

To examine patterns of association between the variables and determine 

their growth trajectory as well as assess if the development of executive functioning 

impacts the development of math achievement, a variation of the bivariate LGC 

associative model in which regression paths are modeled instead of covariances 

were specified.  Associative models investigate interrelationships (correlations) 

among the growth factors (development parameters) between pairs of measures but 

do not examine causation (Duncan et al., 2006).  They first require the modeling of 

univariate growth curves to comprehend the change over time.   

 LCS bivariate dual uncoupled models were specified for the three variables, 

that is, math achievement and DCCS, and math achievement and number reverse.  

Both the additive and proportional change parameters were estimated.  The 

coupling parameters were fixed to not allow for any examination of dynamic 

relations while the slopes for both variables were allowed to correlate as well as the 

intercept for both variables.  The latent change score bivariate dual uncoupled 

model is equivalent to the fitting slope and intercept parameters in an associative 

LGC model.   

Research Question Two 

 Research question two was specified using LCS models.  It was 

hypothesized that ensuing changes in math achievement are influenced by the 



 

40 

 

current level of executive functioning.  In the first set of models specified, the slope 

and intercepts of both variables were allowed to correlate.  The coupling parameters 

from executive functioning to change in math achievement was not fixed to allow 

for estimation of coupling, however, the coupling parameters from math 

achievement to change in executive functioning was fixed at zero to not allow for 

the estimation of coupling.  It is also hypothesized that ensuing changes in 

executive functioning are influenced by the current level of math achievement.  

Therefore, the coupling parameters from math achievement to change in executive 

functioning was not fixed to allow for coupling estimation, however, the coupling 

parameters from executive functioning to change in math achievement was fixed at 

zero to not allow for the estimation of coupling.  Finally, bidirectional coupling 

models were specified where coupling parameters from math achievement to 

change in executive functioning and from executive functioning to change in math 

achievement were simultaneously estimated to model dynamic relationships.  

Again, the slope and intercepts of both variables were allowed to correlate.   

Model Rationale 

Based on the analytic technique required to understand the dynamics among 

the measures, several models were specified to allow for incremental testing 

(Tables 6-8). Each construct was first individually modeled to ascertain the growth 

trajectories.  Hence, the first models to be specified were the unconditional LGC 

and the constant change model which are comparable.  These were followed by the 

proportional change model to determine if scores are predicted by scores from the 
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previous time-point.  This was followed by the dual change model which includes 

both the two previous LCS models.  The first set of bivariate models, associative 

model and the dual change uncoupled model which are comparable, were then 

specified.  The associative model helped to identify if DCCS and or number reverse 

influences math scores. This was the last LGC model to be specified as LGC is not 

robust enough to examine dynamic relationships.  A series of LCS models were 

then specified to allow for the testing of co-development and leading and lagging 

indicators.   Leading and lagging indicators were identified using the coupling 

parameters where best fit helped to determine if these indicators exist.  The LCS 

dual change score uncoupled models are specified and were used as a baseline for 

comparison with the coupled models.  This model is nested within the 

unidirectional coupled model and its bivariate parameters are housed within the 

correlations of the growth factors and the time-specific factors.  This model, for 

example math achievement to changes in DCCS, determines if subsequent changes 

in DCCS are partially accounted for by current levels of math achievement.  

Finally, the full coupling models were specified. where statistically significant 

coupling parameter from math achievement to DCCS, for example, indicates 

growth in DCCS was partially accounted for by the level of math achievement.   
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Table 6 

Latent Growth Univariate Models – Research Question 1 

Analysis 

Type 

Model 

Category 

Model Purpose  

Univariate Research Question 1 

What are the patterns of growth and interrelationships in the 

development of executive function and math achievement? 

 

 1 Models 1-3 – 

LGC 

unconditional 

models 

(Math, DCCS, 

Number Reverse) 

Models univariate growth 

curves to comprehend the 

change over time. Required 

before modeling associative 

models 

 

2 Models 4-6 – LCS 

Constant change 

models 

(Math, DCCS, 

Number Reverse) 

Equivalent to the LGC with 

a linear growth model. This 

allows for comparison of 

the results 

 

3 Models 7-9 – LCS 

Proportional 

change models 

(Math, DCCS, 

Number Reverse) 

Determine if growth is a 

function of the performance 

at the previous level 

 

4 Models 10-12 – 

LCS Dual Change 

(Math, DCCS, 

Number Reverse) 

Incorporates the two 

previous LCS models. This 

will allow for nested model 

testing 
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   Table 7 

    Latent Growth Bivariate Models – Research Question 1 

Analysis 

Type 

Model 

Category 

Model Purpose 

Bivariate Research Question 1 

What are the patterns of growth and interrelationships in 

the development of executive function and math 

achievement? 

 5 Models 13-14 

– LGC 

associative 

models 

(DCCS & 

Math, 

Number 

Reverse & 

Math) 

Examine patterns of 

association between the 

variables and determine 

their growth trajectory as 

well as assess if the 

development of executive 

functioning impacts the 

development of math 

achievement. They 

investigate interrelationships 

among the growth factors 

(development parameters) 

between pairs of measures 

but do not examine 

causation. 

6 Models 15-16 

– LCS 

bivariate dual 

change score 

uncoupled 

(DCCS & 

Math, 

Number 

Reverse & 

Math) 

Equivalent to the fitting 

slope and intercept 

parameters in an associative 

latent growth curve model. 

This allows for comparison 

of the results 
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    Table 8 

    Latent Growth Bivariate Models – Research Question 2  

Analysis 

Type 

Model 

Category 

Model Purpose 

Bivariate Research Question 2 

Is one construct a leading indicator of the other and are 

executive function and math achievement dynamically 

dependent? 

 7 Models 17-20 – LCS Bivariate 

Dual Change Model Coupling 

(Coupling from: DCCS to Math; 

Number Reverse to Math; Math 

to DCCS; Math to Number 

reverse) 

Allows for the 

examination 

of leading and 

lagging 

indicators. 

Test how 

prior true 

scores affect 

subsequent 

scores 

8 Models 21-22 – LCS 

Bidirectional Coupling 

(DCCS & Math; Number 

Reverse & Math) 

A complete 

marrying of 

autoregression 

and LGC  
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Chapter 3:  Results 

 

Descriptive Statistics and Correlations 

Sample statistics for the measures math achievement, DCCS and number reverse 

are presented in Table 9 for the four time-points.  Across time-points math achievement 

scores ranged from 7.2 to 111.58 with the average scores increasing over time after an 

initial decline at time-point 2, DCCS average scores ranged from 0 to 18 while number 

reverse average scores ranged from 393 to 596 with some fluctuation. Correlation 

between DCCS and number reverse raw scores ranged from no relationship to strongly 

correlated (Table 10). 
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Table 9 

Descriptive Statistics 

 Measure Min Max Mean SD n 

Math T1 7.2 111.58 31.67 11.37 15595 

Math T2 7.2 88.76 45.28 12.19 17143 

Math T3 17.14 108.7 52.9 14.87 5222 

Math T4 16.5 109.53 66.8 15.35 15103 

DCCS T1 0 18 14.2 3.33 15604 

DCCS T2 0 18 15.14 2.79 17149 

DCCS T3 0 18 15.7 2.44 5222 

DCCS T4 0 18 16.1 2.31 1509 

NR T1 393 581 433.01 30.21 15598 

NR T2 393 572 449.7 30.52 17147 

NR T3 393 596 456.96 28.74 5222 

NR T4 393 596 469.33 25.82 15107 
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     Table 10 

     Raw Scores Correlation by Measures Across Time-Points 

   M1 M2 M3 M4 NR1 NR2 NR3 NR4 D1 D2 D3 D4 

M1             

M2 .79**            

M3 .86** .91**           

M4 .77** .86** .86**          

NR1 .64** .37** .46** .41**         

NR2 .49** .58** .68** .62** .29**        

NR3 .66** .63** .65** .68** .48** .65**       

NR4 .55** .63** .67** .70** .31** .55** .69**      

D1 .55** .37** .34** .41** .78** .25** .38** .35**     

D2 .34** .47** .43** .37** .12 .56** .28** .28** .19**    

D3 .34** .36** .38** .33** .26* .36** .37** .25* .23* .14   

D4 .31** .35** .33** .45** .19** .24** .2 .35** .19* .23** .28**  

** p < 0.01 (2-tailed). 

 *   p < 0.05 (2-tailed). 
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Univariate Models 

 

LGC Unconditional and LCS Constant Change Model 

The first set of models fit to the data was the LGC unconditional and the LCS 

constant change models (figures 1-6).  Initially, the errors were constrained to be equal 

across time but due to a lack of fit the models had to be re-specified to not be constrained.  

Additionally, the low correlations between DCCS and number reverse across times also 

justified relaxing this constraint. The overall fit of the models to the data then indicated 

good fit.  The LGC unconditional math achievement model had good fit, X2 (3) = 5.81, p 

= .121 and RMSEA = .061 (.000, .135) with 95% confidence (CI), SRMR =.05, with CFI 

and TLI close to 1, all supporting good fit with AIC and BIC at 5631.2 and 5670, 

respectively (Table 11).  The LCS constant change math achievement model had better fit 

than the unconditional math achievement model, X2 (4) = 4.59, p = .332 and RMSEA = 

.024 (.000, .101), with CFI and TLI close to 1 supporting good fit with AIC and BIC at 

5627.9 and 5663.3, respectively.  The LGC unconditional and LCS constant change NR 

models had identical estimates, X2 (5) = 10.48, p = .063 and RMSEA = .066 (.000, .122) 

SRMR =.096, with CFI and TLI close to 1, all supporting adequate fit and the AIC and 

BIC at 7794.4 and 7831.2, respectively.  The LGC unconditional DCCS model had better 

fit than the LGC math achievement and number reverse models and was identical to the 

fit statistics of the LCS constant change DCCS model, X2 (5) = 4.78, p = .444 and 

RMSEA = .000 (.000, .086) SRMR =.054, with CFI and TLI = 1, all supporting excellent 

fit and the AIC and BIC at 4070.2 and 4102, respectively.   The math achievement LGC 
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unconditional and LCS constant change models have different indices while the other 

models were identical due to the need to modify the models for fit.  A summary of the fit 

indices of these models is presented in Table 11. 

The LGC unconditional math achievement mean intercept or the initial score (Mi 

= 31.33) and the mean slope or growth over time (Ms =13.44) were statistically 

significant (p < .001) (see Appendix, Table 17) indicating there was a systematic change 

in the children’s math achievement from Kindergarten to 1st grade.  Their level of math 

achievement increased on average by 13 units per time point.  While the variance of the 

intercept was statistically significant (Di = 120.19, p < .001) the variance of the slope 

was not (2.41, p = .38) indicating significant variability among children’s math 

achievement when they started kindergarten but not in their growth rates over the 

observed time points. The correlation between the intercept and slope was not statistically 

significant indicating no significant association between the initial and growth factors.  In 

addition, the error variances which were freely estimated across the time-points were 

statistically significant.   

The LCS constant change math achievement model mean intercept (Mi = 31.61) 

and mean slope (Ms = 13.09) were both statistically significant (p < .001) with a 

statistically significant variance of the intercept (Di = 124.73, p = < .001) and a variance 

of the slope that was not statistically significant, supporting the findings of the LGC 

unconditional math model (see Appendix, Table 20).  Additionally, the correlation 
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between the intercept and slope was not statistically significant while the error variances 

were statistically significant. 

 The LGC unconditional DCCS and the LCS constant change DCCS parameter 

estimates were identical with mean intercept (Mi = 14.03) and slope (Ms =.62) both 

statistically significant (p < .001) and the variance of the intercept (Di = 3.54, p = .025) 

but not that of the slope (Ds = .178, p = .610) (Tables 18 and 21). The freely estimated 

error variances were statistically significant while the correlation was not indicating there 

was no significant association between initial level of performance and rate of change for 

DCCS.  

 The LGC unconditional number reverse and the LCS constant change number 

reverse models also had identical parameters (see Appendix, Tables 19 and 22).  Both the 

mean intercept and the mean slope were statistically significant (Mi = 432.69, Ms = 

11.62) as well as the variance of the intercept (Di = 1360.22, p < .001) however the 

variance of the slope was not statistically significant indicating the model-predicted rate 

of change was the same among the participants.  The correlation was negative and not 

statistically significant suggesting there was not a significant association between initial 

level of performance and rate of change for number reverse.   
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         Figure 1. LGC unconditional growth curve – Math achievement with standardized estimates. 
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Figure 2. LGC unconditional growth curve model – DCCS with standardized estimates. 
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Figure 3. LGC unconditional growth curve – Number reverse with standardized estimates. 
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Figure 4. LCS constant change model – Math achievement with standardized estimates. 

 



 

 

 

 

5
5
 

 

Figure 5. LCS constant change model – DCCS with standardized estimates. 
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Figure 6. LCS constant change model – Number reverse with standardized estimates. 
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Table 11 

Fit Statistics - LGC Unconditional and LCS Constant Change Models  

Construct Model X2 df p CFI TLI RMSEA with 

95% CI 

p SRMR AIC BIC ABIC 

MATH LGC 5.81 3 .121 .996 .992 .061 (.000, .135) .320 .076 5631.20 5670.00 5635.10 

 LCS 4.59 4 .332 .999 .999 .024 (.000, .101) .613 050 5627.99 5663.28 5631.58 

DCCS LGC 4.78 5 .444 1.00 1.00 .000 (.000, .086) .736 .054 4070.20 4102.00 4073.50 

 LCS 4.78 5 .444 1.00 1.00 .000 (.000, .086) .736 .054 4070.24 4102.00 4073.47 

NR LGC 10.48 5 .063 .967 .960 .066 (.000, .122) .265 .096 7794.40 7831.20 7802.70 

 LCS 10.48 5 .063 .967 .960 .066 (.000, .122) .265 .096 7799.42 7831.19 7802.66 
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Proportional Change Model 

Next the proportional change models were fit to test if growth is a function of 

performance at the previous level.  Thereafter, the LCS dual change models were 

specified which incorporated both the constant change and the proportional change 

models and allowed for nested model testing (figures 7-9). The fit statistics and the 

parameter estimates for the proportional change models are presented in Table 12.  The 

exact fit hypothesis was not rejected for the math achievement LCS proportional change 

model X2 (3) = .509, p = .92.  Good fit was also supported by RMSEA = .000 (.000, 

.039) with 95% CI, SRMR =. 022, CFI and TLI = 1, and AIC and BIC of 5625.9 and 

5664.7, respectively.  The model had an ABIC of 5629.86 compared to the LGC 

unconditional math achievement model ABIC = 5631.6 and LCS math achievement 

constant change model ABIC = 5635.1, suggesting the better model is the LCS 

proportional change math achievement model.  The LCS proportional change DCCS 

model had good fit X2 (5) = 1.99, p = .851, RMSEA = .000 (.000, .048) with 95% CI, 

SRMR =. 048, CFI and TLI = 1, and AIC and BIC of 4067.4 and 4099.2, respectively.  

The model ABIC = 4070.7 compared to the LGC unconditional DCCS and LCS constant 

change DCCS models (ABIC = 4073.5), suggesting the better model is the LCS 

proportional change DCCS model. The LCS proportional change number reverse model’s 

exact fit hypothesis was rejected X2 (5) = 14.72, p = .012.  The RMSEA = .088 (.038, 

.142) with 95% CI and the upper bound criteria exceeded, SRMR =. 223, while CFI and 

TLI were .942 and .930 respectively, with AIC and BIC of 7803.7 and 7835.4, 

respectively.  The model ABIC = 7806.9 compared to the LGC unconditional number 
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reverse and LCS constant change number reverse models (ABIC = 7802.7), suggesting 

the LGC unconditional number reverse and LCS constant change number reverse models 

were better than the LCS proportional change number reverse model. 

Both the mean intercept and the variance of the intercept for math achievement 

were statistically significant (Mi = 31.30, p < .001; Di = 129.27, p < .001) (see 

Appendix, Table 23).  Indicating significant initial math achievement scores and children 

differed in their initial scores.   The largest and only statistically significant proportional 

effect was between spring and fall of 2011, indicating that significant changes occurred 

between these time-points (β = .176, p < .001). The error variances for math achievement 

were statistically significant like that of the DCCS and number reverse models (see 

Appendix, Table 24 and 25).    The mean intercept and the variance of the intercept for 

DCCS were statistically significant (Mi = 13.6, p < .001; Di = 2.14, p < .001).  The 

change score was predicted by the previous time-point between fall 2010 and spring 2011 

(β = .94, p < .05).   
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Figure 7. LCS proportional change model – Math achievement with standardized estimates. 
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Figure 8. LCS proportional change model – DCCS with standardized estimates. 
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Figure 9. LCS proportional change model – Number reverse with standardized estimates. 
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Table 12 

 Fit Statistics - LCS Proportional Change Models 

 

 

 

 

 

 

Construct Model X2 df p CFI TLI RMSEA with 95% CI p SRMR AIC BIC ABIC 

MATH LCS .509 3 .917 1.00 1.01 .000 (.000, .039) .965 .022 5625.90 5664.73 5629.86 

DCCS LCS 1.99 5 .851 1.00 1.13 .000 (.000, .048) .954 .048 4067.44 4099.21 4070.68 

NR LCS 14.72 5 .012 .942 .930 .088 (.038, .142)  .096 .223 7803.66 7835.43 7806.89 
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Dual Change Model 

Three LCS dual change models were specified (Figures 10-12).  The fit statistics 

are presented in Table 13.  The exact fit hypothesis was rejected for the math 

achievement LCS dual change model X2 (3) = 3.11, p = .038.  However, adequate fit was 

supported by RMSEA = .012 (.000, .108) with 95% CI and the upper bound criteria 

exceeded, SRMR =. 055, CFI and TLI = 1.  The model had an ABIC of 5632.5 compared 

to LCS proportional change math achievement model ABIC = 5629.9, suggesting the 

better model is the LCS proportional change math achievement model.  The LCS dual 

change DCCS model had good fit X2 (4) = 1.58, p = .812, RMSEA ≈.000 (.000, .059) 

with 95% CI, SRMR =. 053, and CFI and TLI = 1. The ABIC = 4072.6 compared to the 

LCS proportional change DCCS model (ABIC = 4070.7) suggesting the better model was 

the LCS proportional change DCCS model.  The LCS dual change number reverse 

model’s exact fit hypothesis was not rejected X2 (4) = 7.05, p = .133.  The RMSEA = 

.055 (.000, .120) with the upper bound criteria exceeded (95% CI), SRMR = .136 

suggesting inadequate fit, while and CFI and TLI were .982 and .972 respectively. The 

ABIC = 7801.6 compared to the LGC unconditional number reverse and LCS constant 

change models (ABIC = 7802.7) indicating the former model was better.   

Both the mean intercept and mean slope for all three models were statistically 

significant (math achievement: Mi = 31.29, Ms = 15.17, p < .001; DCCS: Mi = 13.62, p 

< .001 and Ms = 7.6, p < .01; number reverse Mi = 425.09, Ms = 159.26, p < .001) (see 

Appendix, Table 26 -28).  Therefore, the average start math score was 31 with an average 

increase of 15 units across time-points, while the average initial DCCS score was 14 with 
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an average increase of 8 units, and average initial number reverse scores of 425 with 

average increase of 159 units.  The variance of the intercept for two of the models were 

statistically significant (math achievement: Di = 122.77, number reverse: Di = 14458.29, 

p < .001), but the variances of the slopes were not.  This result indicates that while there 

was significant variability among children’s performance at the initial stage there was not 

significant variability in their growth over the observed time-points which is similar to 

the results of the unconditional and constant change models but different from the 

proportional change model (which had the better fit) where both parameters were 

statistically significant. There was no difference in children’s initial DCCS scores or their 

growth over time unlike the unconditional and constant change DCCS models where 

there was variance in the initial score, and this is also reflected in the proportional change 

model (which was the better fitting model).  However, the dual change models revealed 

that math achievement change was negative suggesting deceleration in scores (β = -

0.053), but this was not statistically significant.  There was statistically significant change 

in DCCS and number reverse scores, however, like math achievement there was 

deceleration in growth overtime (DCCS: β = -0.468, p < .05; number reverse: β = -

0.328, p < .05).  The errors for math achievement were statistically significant like that of 

the DCCS and number reverse models.  The dual change model also indicated that math 

achievement correlation was statistically significant between individual child differences 

(intercept) and slope suggesting that children with higher initial math scores will likely 

have higher growth rates.   
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   Figure 10. LCS Dual change model – Math achievement with standardized estimates. 
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     Figure 11. LCS dual change model – DCCS with standardized estimates. 

 



 

 

 

6
8
 

 

Figure 12. LCS dual change model – Number reverse with standardized estimates. 
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Table 13 

Fit Statistics - LCS Dual Change Models 

 Construct Model X2 df p CFI TLI RMSEA with 95% CI p SRMR AIC BIC ABIC 

MATH LCS 3.11 3 .038 1.00 1.00 .012 (.000, .108) .617 .055 5628.50 5667.33 5632.46 

DCCS LCS 1.58 4 .812 1.00 1.23 .000 (.000, .059) .928 .053 4069.04 4104.33 4072.63 

NR LCS 7.05 4 .133 .982 .972 .055 (.000, .120) .373 .136 7797.99 7833.29 7801.58 
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Bivariate Models 

LGC Associative and LCS Bivariate Dual Change Uncoupled Models 

The LGC associative and the LCS bivariate dual change uncoupled models were 

the first set of bivariate models to be specified (Figures 13-16).  They tested for any 

association between the variables and assessed the growth trajectory and determined if 

the development of executive functioning influences the development of math 

achievement.  The fit statistics are presented in Table 14. The exact fit hypothesis was 

rejected for the math achievement and DCCS LGC associative model X2 (26) = 149.36, p 

< .001.  Poor model fit was demonstrated by RMSEA = .137 (.116, .159) with 95% CI 

and SRMR = .187 which exceeded the thresholds for adequate fit. Additionally, CFI = 

.861, TLI = .851, AIC and BIC were 9636.6 and 9700.1, respectively.  The math 

achievement and DCCS LCS bivariate dual change uncoupled model had better fit than 

its LGC counterpart but still less than satisfactory.  The exact fit hypothesis was also 

rejected X2 (17) = 56.19, p < .001 and SRMR = .187, however the RMSEA suggested 

moderate fit (.096 (.069, .124) with 85% CI, CFI and TLI were .956 and .927, 

respectively and AIC and BIC of 9561.4 and 9656.7, respectively. The ABIC = 9571.14 

which was lower than the associative model (ABIC = 9643).  The math achievement and 

number reverse LGC associative model did not fit the data and performed even more 

poorly than the LGC math achievement and DCCS associative model, X2 (26) = 218.58, 

p < .001, RMSEA .171 (.151, .193) with 955 CI, SRMR = .441, CFI = .834, TLI = .821, 

and AIC and BIC of 13297.1 and 13360.6, respectively.  The math achievement and 

number reverse LCS bivariate dual change uncoupled model had better fit than the LGC 
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associative model.  The exact fit hypothesis remained rejected X2 (15) = 36.25, p = .002 

and SRMR = .164, however the RMSEA was adequate (.075 (.044, .106) with 95% CI, 

CFI = .982 and TLI .966, and AIC and BIC of 13136.7 and 13239, respectively. The 

ABIC = 13147.14 which was higher than the math achievement and DCCS LCS bivariate 

dual change uncoupled mode 

Where the LCS Math achievement and DCCS bivariate dual change uncoupled 

model was concerned the mean intercept, the mean slope, the variance of the intercept 

and the variance of the slope were all statistically significant.  Math achievement Mi = 

32.15, Ms = 14.71, p < .001, DCCS Mi = 13.79, p < .001, Ms = 6.31, p = .029 (see 

Appendix, Table 29).  Indicating the average start math score was 32 with an average 

increase of 15 units, while the average initial DCCS score was 14 with an average 

increase of 6 units.  The variance of the intercept and the variance of the slope were 

statistically significant for math achievement Di = 118.67, p < .001, Ds = 7.53, p = .047, 

and for DCCS Di = 5.48, p = .012, Ds = .695, p = .025.  This demonstrates that children 

differed in their initial scores and in their growth over time.  The math achievement 

change score was negative indicating deceleration over time, but this was not statistically 

significant.  However, the DCCS change score was negative and statistically significant 

(β = -0. 383).  The correlation between math achievement mean intercept and slope was a 

strong positive statistically significant (r = .81, p < .001) while the DCCS mean intercept 

and slope was negative and not statistically significant.  The errors were statistically 

significant. For the math achievement and number reverse LCS bivariate dual change 

uncoupled model, the mean intercept, and mean slope for math achievement and number 
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reverse were statistically significant (math achievement Mi = 31.99, Ms = 10.86, p < 

.001, number reverse Mi = 426.77, Ms = 201.60, p < .001) (see Appendix, Table 30), 

reflecting that the average starting math score was 32 with an average unit increase of 11 

while the average initial number reverse score was 427 with 202 unit increase over time.  

The variance of the intercept was also statistically significant, but the variances of the 

slopes were not (math achievement Di = 134.88, p < .001, number reverse Di = 1558.69, 

p < .001). These indicated there was no variability in the children’s growth over the time-

points.  The math achievement change score was negative indicating deceleration over 

time, but this was not statistically significant.  However, the number reverse change score 

was negative and statistically significant (β = -0. 427), indicating change decelerated over 

time or as the children got older.  The errors were statistically significant.   
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    Figure 13. LGC associative model – Math and DCCS with standardized estimates. 
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       Figure 14. LGC associative model – Math and number reverse with standardized estimates 
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        Figure 15.  LCS bivariate dual change no coupling model – Math and DCCS with standardized estimates 
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               Figure 16. LCS bivariate dual change no coupling model – Math and number reverse with standardized estimates. 
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   Table 14  

   Fit Statistics - LGC Associative and LCS Bivariate Dual Change Models  

Construct Model X2 df p CFI TLI RMSEA with 

95% CI 

p SRMR AIC BIC ABIC 

MATH & 

DCCS 

LGC 149.32 26 .000 .861 .851 .137 (.116, .159) <.001 .187 9636.57 9700.09 9643.04 

 LCS 56.19 17 .000 .956 .927 .096 (.069, .124) .004 .112 9561.44 9656.74 9571.14 

MATH & 

NR 

LGC 218.58 26 .000 .834 .821 .171 (151, .193) <.001 .441 13297.05 13360.58 13303.52 

 LCS 36.25 15 .002 .982 .966 .075 (.044, .106) .087 .164 13136.72 13239.02 13147.14 
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Bivariate Dual Change Unidirectional Coupled Model 

Latent change score bivariate dual change unidirectional coupled models were 

specified to examine leading and lagging indicators (Figures 17-19).  The fit statistics are 

presented in table 15.  The exact fit hypothesis was rejected for the model of DCCS to 

changes in math achievement X2 (16) = 44.23, p < .001.  Adequate model fit was 

supported by RMSEA = .084 (.055, .114) although the upper boundary was exceeded 

(with 95% CI), and SRMR = .080; CFI = .968, TLI = .944, AIC and BIC of 9551.5 and 

9650.3, respectively and ABIC was 9561.54 which showed an improvement over the 

DCCS and math achievement no coupling model.  The exact fit was rejected for the 

model of number reverse to changes in math achievement X2 (19) = 101.14, p < .001.  

Poor model fit was supported by RMSEA = .131 (.107, .157) with 95% CI, SRMR = 

.201; CFI = .929, TLI = .896, AIC and BIC of 13193.6 and 13281.9, respectively.  The 

exact fit hypothesis was rejected for the model of math achievement to changes in DCCS 

X2 (16) = 55.67, p < .001.  with RMSEA = .099 (.072, .128) as well as the upper 

boundary was exceeded (with 95% CI), and SRMR = .111; CFI = .955, TLI = .922, AIC 

and BIC of 9562.9 and 9661.8, respectively.    Where math achievement to changes in 

number reverse was concerned, the exact fit hypothesis was again rejected X2 (16) = 

38.82, p = .002.  Adequate model fit was supported by RMSEA = .071 (.042, .101) with 

95% CI, however, SRMR = .111; CFI = .981, TLI = .959, AIC and BIC of 13135.3 and 

13230.6, respectively and ABIC was 13144.99 and was an improvement over the number 

reverse no coupling model.  It was observed that the number reversed models performed 
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poorer than their DCCS counterparts with the model of DCCS changes in math 

achievement having the lowest ABIC.  

Both mean intercepts for the DCCS to changes in math achievement model were 

statistically significant, math achievement Mi = 32.13, p < .001 and DCCS Mi = 14.24, p 

< .001 indicating children’s initial math and DCCS scores were on average 32 and 14, 

respectively (see Appendix, Table 31).  The mean slopes were negative and not 

statistically significant.  Math achievement variance of the intercept was statistically 

significant indicating differences among the children’s starting scores.   The errors were 

statistically significant.    The coupling parameter from DCCS to changes in math 

achievement was estimated and was not statistically significant indicating that subsequent 

changes in math achievement were not partially accounted for by current levels of DCCS.  

The proportional change parameter for math achievement was negative and statistically 

significant (-0.215, p < .05), indicating that while math scores are influenced by its 

previous state, change in scores decelerate as scores increased. 

Where math achievement to changes in DCCS is concerned, the mean intercepts 

and mean slopes were statistically significant (math achievement Mi = 32.13, p < .001 

and Ms = 14.82, p < .001 and DCCS Mi = 13.85, p < .001 and Ms = 8.42, p = .016) (see 

Appendix, Table 32).  Children had an initial math score of 32 which would likely 

increase by 15 units while DCCS initial score was 14 and likely increase by 8 units over 

time. The variance of the intercepts were statistically significant (math achievement: Di = 

118.7, p < .001; DCCS: Di = 6.17, p = .042), but only the math achievement slope was 



 

80 

 

statistically significant (Ds = 7.48, p = .047).  There was variability in children’s initial 

scores for both measures but not in their growth rate.  All the errors were statistically 

significant.  In the math achievement to changes in DCCS, the proportional change 

parameters for math achievement (-0.089, p < .05) and DCCS (-0.583, p < .05) indicated 

that they were influenced by their previous state but that these changes slowed over time 

as scores increased.  The coupling parameter was not statistically significant indicating 

that subsequent changes in DCCS were not partially accounted for by current levels of 

math achievement.  The intercept and slope of math achievement were strongly 

correlated (r = .84, p <.001) indicating that children with a higher initial math score will 

likely show more change over time. The math achievement and DCCS intercepts were 

strongly correlated (r = .78, p <.001), indicating children with a higher initial DCCS 

score will likely show more change over time.  Additionally, the slopes of the two 

constructs were strongly correlated (r = .82, p < .05) 

In the math changes in number reverse model the mean intercepts were 

statistically significant (math achievement Mi = 32.04, p < .001 and number reverse Mi = 

427.34, p < .001 (see Appendix, Table 33), indicating an initial math score of 32 and an 

initial number reverse score of 427.  Only the math achievement mean slope was 

statistically significant (Ms = 10.79, p < .001) indicating that over time math scores were 

likely to increase by 11 units.  The variance of the intercepts were statistically significant 

while the variance of the slopes were not (math achievement Di = 133.39, p < .001 and 

number reverse Di = 1417.22, p < .001), indicating children differed in initial scores but 

not in their growth rate.  All the errors were statistically significant.  Where the math 
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changes in number reverse is concerned neither the proportional parameter nor the 

coupling parameters were statistically significant. Indicating that scores were not 

influenced by previous state and current math scores does not predict subsequent number 

reverse scores. 
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Figure 17. LCS bivariate dual change unidirectional coupling model - DCCS changes in math with standardized estimates. 
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Figure 18. LCS bivariate dual change unidirectional coupling model – Number reverse changes in math with standardized 

estimates. 
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Figure 19 LCS bivariate dual change unidirectional coupling model - Math changes in DCCS with standardized estimates. 
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Figure 20. LCS bivariate dual change unidirectional coupling model - math changes in number reverse with standardized 

estimates. 
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Table 15  

Fit Statistics - LCS Bivariate Dual Change Unidirectional Coupling Models   

Construct Model X2 df p CFI TLI RMSEA 

with 95% CI 

p SRMR AIC BIC ABIC 

DCCS & 

MATH 

DCCS 

to Math 

44.23 16 <.001 .968 .944 .084 (.055, 

.114) 

.029 .080 9551.48 9650.30 9561.54 

NR & 

MATH 

Number 

Reverse 

to Math 

101.14 19 <.001 .929 .896 .131 (107, 

.157) 

<.001 .201 13193.62 13281.85 13202.59 

MATH 

& DCCS 

Math to 

DCCS 

55.67 16 <.001 .955 .922 .099 (.072, 

.128) 

.003 .111 9562.93 9661.75 9572.98 

MATH 

& NR 

Math to 

Number 

Reverse 

38.82 16 .002 .981 .959 .071 (.042, 

.101) 

.109 .119 13135.29 13230.59 13144.99 
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Bidirectional Coupling Model 

The final set of models to be fit to the data were the LCS bidirectional coupling 

models (Figures 21-22) which were a full combination of LGCM and autoregression.  

The exact fit hypothesis was rejected for the DCCS and math achievement model X2 (23) 

= 57.92, p < .001 and SRMR = .223, however the RMSEA was acceptable (.078 (.053, 

.103), CFI and TLI were .961 and .952, respectively and AIC and BIC were 9551.2 and 

9625.3, respectively (Table 16).  This is an improvement over the unidirectional models.  

The exact fit hypothesis was also rejected for the math achievement and number reverse 

model X2 (18) = 59.82, p < .001 and SRMR = .319, however the RMSEA showed 

moderate fit (.096 (.079, .123)), CFI and TLI were .964 and .944, respectively and AIC 

and BIC were 13154.3 and 13246.1, respectively. The DCCS and math achievement 

bidirectional model’s ABIC = 9558.7 and indicated better model fit than the 

unidirectional models, DCCS changes in math achievement (ABIC = 9561.5) and math 

achievement changes in DCCS (ABIC = 9572.9). The math achievement and number 

reverse bidirectional model’s ABIC = 13163.6 had slightly poorer fit than the 

unidirectional math achievement to changes in number reverse model (ABIC = 13144.9). 

The mean intercepts and the mean slopes were all statistically significant (math 

achievement Mi = 36.77, p < .001, Ms = 22.19, p < .001 and DCCS Mi = 13.60, p < 

.001, Ms =14.09, p < .001) in the DCCS and math achievement bidirectional coupling 

model (see Appendix, Table 34).  These indicated children had a mean starting math 

score of 37 and with everyone unit change in DCCS would likely see a 22 unit increase in 

math scores over time. Mean DCCS starting scores were 14 with a 14 unit increase in 
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DCCS scores for every unit change in math scores over time.  The variance of the 

intercepts were statistically significant (math achievement Di = 201.37, p < .001, and 

DCCS Di = 17.56, p < .001), but only the DCCS slope was statistically significant (Ds = 

16.30, p < .025).  This shows that there were differences in children’s initial math and 

DCCS scores but only DCCS scores showed any differences in growth rate. All the errors 

were statistically significant.    Both the change parameters for math achievement and 

DCCS were statistically significant (math achievement: .48, p < .001; DCCS = -1.09, p < 

.001). Significant change parameters are an indication of change being predicted by the 

previous state, hence changes in math achievement and DCCS are predicted by 

performance at the previous level.  The positive parameter for math achievement 

indicated acceleration in math scores and the negative parameter for DCCS indicates that 

change decelerates as DCCS scores increased.  Both the coupling parameters were 

statistically significant (math achievement to changes in DCCS: 0.061, p < .01; DCCS to 

changes in math achievement: -2.36, p< .001).  Therefore, subsequent changes in DCCS 

were partially accounted for by current levels of math achievement and subsequent 

changes in math achievement were partially accounted for by current levels of DCCS 

with DCCS being the leading predictor.  The math achievement intercept and slope had a 

moderate inverse association (r = -0.54, p < .001) indicating that children with a higher 

initial math score showed less change in DCCS over time.  The math achievement 

intercept and the DCCS intercept had a strong correlation (r = .723, p < .001) indicating 

that children with a higher initial DCCS score showed greater change over time. The 
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DCCS intercept and slope association (r = 357, p < .01) indicated that children with a 

higher initial DCCS scores tended to show greater change over time. 

The number reverse and math achievement model had mean intercepts and slopes 

that were statistically significant (math achievement Mi = 30.98, p < .001, Ms = 298.26, p 

= .002 and number reverse Mi = 416.58, p < .001, Ms = 730.33, p < .001) (see 

Appendix, Table 35).  The variance intercepts were statistically significant (math 

achievement Di = 256.35, p < .001 and number reverse Di = 1423.13, p < .001) while 

only the number reverse variance slope was statistically significant (Ds = 296.76, p < 

.001), indicating there were differences in children’s initial math and number reverse 

scores but only number reverse scores showed any differences in growth rate.  All the 

errors were statistically significant.   

Both the change parameters for math achievement and number reverse were 

statistically significant indicating the changes were predicted by the previous state (math 

achievement: 1.36, p < .001; number reverse = -1.85, p < .001).  The positive parameter 

for math achievement indicated acceleration in math scores and the negative parameter 

for number reverse indicates that change decelerated as scores increased.  Both the 

coupling parameters were statistically significant (math achievement to changes in 

number reverse: 2.40, p < .001; number reverse to changes in math achievement: -0.784, 

p < .001).  Therefore, subsequent changes in number reverse were partially accounted for 

by current levels of math achievement and subsequent changes in math achievement were 

partially accounted for by current levels of number reverse, respectively, with math 
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achievement being the leading indicator.  The math achievement intercept and slope had 

a weak inverse association (r = -0.28, p < .001) indicating children with a higher initial 

math score while there would be growth the change slowed over time.  The math 

achievement intercept and the number reverse intercept had a strong correlation (r = 

.908, p < .001) indicating that children with a higher initial math score showed greater 

change over time. The number reverse intercept and slope association (r = 231, p < .01) 

indicated that children with a higher initial number reverse scores tended to show greater 

change over time.  The slopes of both constructs were strongly associated (r = .873, p< 

.001). 
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       Figure 21. LCS bivariate dual change bidirectional coupling models – DCCS & math with standardized estimates. 
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      Figure 22. LCS bivariate dual change bidirectional coupling models – Number reverse & math with standardized estimates. 
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Table 16 

Fit Statistics - LCS Bivariate Dual Change Bidirectional Coupling Models  

Construct Model X2 df p CFI TLI RMSEA p SRMR AIC BIC ABIC 

DCCS & 

MATH 

DCCS & 

MATH 

57.92 23 <.001 .961 .952 .078 (.053, 

.103) 

.034 .223 9551.17 9625.29 9558.72 

NR & 

MATH 

NR & 

MATH 

59.82 18 <.001 .964 .944 .096 (.070, 

.123) 

.003 .319 13154.29 13246.06 13163.64 
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Chapter 4:  Discussion 

 

The purpose of this study was to explore the use of LCS as a more advanced tool 

for developmental research than LGC and to examine the growth trajectories and in 

particular, the unidirectional and bidirectional longitudinal relationship between math 

achievement and EF (cognitive flexibility and working memory) during kindergarten and 

1st grade years.  LGC and LCS modeling techniques were used to model the data to (1) 

investigate the relationship by component, (2) compare LGC and LCS models within a 

development framework, (3), explore LCS’ complex co-development capabilities and 

identify leading and lagging indicators.  Prior research has predominantly focused on the 

effect of EF on mathematics (Bindman, Pomerantz & Roisman, 2015; Blair, Ursache, 

Greenberg, Veron-Feagans, & The Family Life Project Investigators, 2015; Bull & Lee, 

2014; Clark, Pritchard & Woodward, 2010; Friso-van den Bos, van der Ven, 

Kroesbergen, & van Luit, 2013; Shaul & Scwartz, 2014).  This study explored a 

bidirectional relationship with the hypothesis that both the constructs develop within an 

ecosystem and not in isolation. 

   



 

95 

 

Findings by Research Questions 

What are the patterns of growth and interrelationships in the development of executive 

function and math achievement?  

The growth trajectories as explored by the three models (math achievement, 

DCCS, and number reverse) was linear.  LGC and LCS models, which modeled 

univariate growth curves to estimate growth over time, revealed that for the constructs 

math achievement and number reverse there were significant inter-individual differences 

at the start but not in the growth rates, whereas there were differences at the start and in 

the slope of growth for DCCS.  While the previous LGC and LCS models were able to 

model linear growth, the proportional change models’ ability went further and 

investigated if growth was a function of performance at a prior level. The proportional 

model fits were compared with those of the LGC unconditional and LCS constant change 

models for the same construct and the better fitted model was used to interpret the data.  

The results highlighted that previous time-points successfully predicted the change score 

at certain levels for math achievement and DCCS, between spring and fall of 2011 and 

between fall 2010 and spring 2011, respectively.  The change scores for number reverse 

was predicted by the previous time-points at each level.  Therefore, growth was a 

function of the performance at the previous level, particularly for number reverse.  

Whereas students continuously built on number reverse foundations laid in prior stages, 

DCCS and math achievement saw students build on the foundations in the very early 

stages and this pattern did not continue in later grades.   The LCS proportional change 



 

96 

 

math achievement and DCCS models were better fitted to the data than their LGC 

unconditional and LCS constant change model counterparts suggesting their change is 

proportional while the LGC unconditional and LCS constant change models for number 

reverse had slightly better fit than the LCS proportional change, suggesting change is 

linear. 

The dual change model for math achievement when compared to the constant 

change model had similar fit and when compared with the proportional change model, the 

proportional change had a slightly better fit suggesting growth in math is more constant 

(or linear) than proportional.  This was the same for DCCS.  However, the dual change 

number reverse model fit the data better than the constant and proportional change 

models, reflecting that the development of number reverse is both linear and proportional 

change with a greater acquisition of number reverse skills in the earlier time.  The 

negative change parameters for the constructs indicated the rate of growth decreased 

yearly.  Where math achievement was concerned, the highest performing students at the 

start were never caught by the lower performing students while the opposite obtained for 

DCCS and number reverse.  The LCS dual change models are very useful in providing 

this type of information. 

The univariate models discussed above indicated that each set of models played a 

different role.  The LGC unconditional and LCS constant change models are useful to 

model linear growth only, LCS proportional change models are useful to model 

autoregression but not linearity, while dual change univariate models paired both the 
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constant change and autoregression parameter in one model to determine if change is 

constant, proportional, or both.  To determine if this was the case it necessitated all three 

LCS univariate models be specified to allow for comparison by construct and the model 

with best fit indicated the type of growth that the children were experiencing.  The LGC 

univariate models were important in determining the growth trajectory before modeling 

patterns of association. 

 The LGC associative models with math achievement and DCCS and math 

achievement and number reverse performed poorly despite multiple re-specifications to 

obtain better fit.  This seemed to suggest that associative models are not appropriate to 

use with this data. It is at this point also that we begin to clearly notice that number 

reverse performed differently compared to the other constructs, as the math and number 

reverse performed worse than the LGC associative models.  Where the LCS bivariate 

dual change uncoupled models were concerned, the strong positive correlation between 

the math achievement intercept and slope in the LCS math achievement and DCCS 

bivariate dual change uncoupled model supported that the highest performing students in 

math and DCCS remained ahead of their lower performing counterparts.  Again, the 

negative change score for both the variables indicated deceleration in growth for the 

subsequent levels.  The LCS bivariate dual change uncoupled number reverse model’s 

performance was very poor, even worse than the LGC associative math achievement and 

DCCS models, highlighting the need to look critically at the EF construct.  
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Is one construct a leading indicator of the other and are executive function and math 

achievement dynamically dependent? 

The unidirectional models were not able to highlight leading indicators among the 

constructs but was able to reinforce that math achievement was influenced by the 

previous level and change decelerated with subsequent levels, which indicated that 

children with a higher initial math score would likely show more growth on math over 

time, and children with a higher initial DCCS score will likely show more growth on 

DCCS over time.  However, in the bidirectional math achievement and DCCS coupled 

model changes were predicted by their previous state with math achievement changes 

accelerating compared to the deceleration in changes for DCCS.  The coupling 

parameters revealed that there is clearly a bidirectional relationship between math 

achievement and DCCS where DCCS is a leading indicator of the changes in math 

achievement, but the changes decelerate with subsequent levels. The bidirectional math 

achievement and number reverse coupled model were also predicted by their previous 

state, that is math achievement was predicted by its previous state and number reverse 

was predicted by its previous state, with math achievement changes accelerating 

compared to the deceleration in changes for number reverse.  There is also a bidirectional 

relationship between math achievement and number reverse with math achievement 

being the leading indicator of the changes in number reverse with changes accelerating 

with subsequent levels as indicated by the coupling parameter. This finding is consistent 

with the literature indicating that EF functions develop earlier than math skills.  However, 



 

99 

 

what it indicates is that once they both start to develop math achievement becomes a 

leading indicator over number reverse specifically. 

While the DCCS and math achievement model results support the view that 

executive functioning skills in young children can predict their later math achievement 

(Bindman, Pomerantz & Roisman, 2015; Clark, Pritchard & Woodward, 2010), it 

highlighted that the EF components perform differently.  Not only does DCCS and 

number reverse perform differently throughout model specifications, but the bidirectional 

relations are also different by construct.  DCCS was a stronger construct throughout and 

culminated as the leading indicator in its relationship with math achievement.  This 

supports previous studies that found that the EF components made distinct contributions 

(Huizinga, Dolan, and Van der Molen, 2006; Lehto, Juujarvi, Kooistra & Pilkkinen, 

2003, Miyake et al., 2000).   

Theoretical Implications 

 Investigations into the relationship between EF and learning outcomes primarily 

talk about the effect of “executive function.”  This use of the term may give the 

impression that that there exists a tool that measures EF as a construct in and of itself.  

There are different views on what specifically comprises EF with school psychology 

exposing a wider description of EF (Gioia, Isquith, Guy and Kenworthy, 2015) than 

education (Diamond 2002; Garon, et al, 2008; Rosso, Young, Femia, & Yurgelun-Todd, 

2004).  Likewise, there are different schools of thought as to whether EF is a single 

construct or comprises independent domains (Baddeley, 1992; Barkley et al, 2001; 
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Brocki & Bohlin, 2004; Dempster, 1992; Diamond 2002; Garon, et al, 2008; Isquith et 

al., 2004; Miyake et al., 2000; Rosso, Young, Femia, & Yurgelun-Todd, 2004).  Despite 

these differences there does not exist an instrument that measures EF as a construct but 

rather instruments exist that measures the different components.  This study has 

highlighted that these components are far from identical in their development and growth. 

The dataset used in this study relied on two specific measures of EF (DCCS and 

NR).  Both have a bidirectional relationship with math but only DCCS is a leading 

indicator of math achievement.  Math achievement turned out to be a leading indicator of 

number reverse.  Number reverse is purported to measure working memory and DCCS 

measures cognitive flexibility and both are components of the latent construct EF.  

However, there seems to be justification to stop uniformly referring to EF as if it is a 

single construct as demonstrated by the different performance in this study.  Importantly, 

it seems to suggest that the constructs contribute differently to learning outcomes. 

With this discovery, one must wonder what is happening with number reverse in 

kindergarten. It seems to depend on how familiar or fluent children are with their 

numbers or their exposure to numbers for them to be successful.  Importantly, 

development theory suggested that between 2-7 years children are considered illogical 

thinkers and it is between 7 and 12 years that children begin to think logically (Nixon & 

Aldwinckle, 2003; Nixon & Gould, 1999).  Most children who entered kindergarten for 

the first time, in this study were five years of age (87%) with a smaller set being 6 years 

or older (10).  Based on the theory, a majority of these children are not yet at the place 
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where they can be logical thinkers as noted by Piaget and Vygotsky in their theories of 

child development.  The measures used in this study do require some logic for success 

and theory suggests that at this age the children are not equipped to use logic. 

Practical implications 

 The results of this study indicated that the achievement gap persisted during the 

first two years of elementary school as poor performing students at the entry point did not 

close these gaps.  Early educational interventions must be provided for such at risk 

students who may likely show early struggles as this may follow them throughout later 

grades.  Math achievement as a leading indicator of number reverse suggest that 

instructional practice should include early math skills in a codevelopment framework as 

EF and math achievement codevelops in an ecosystem and the development of math 

skills will promote the development of EF.  The literature states that the importance of EF 

to math achievement has been well established (Bull & Less, 2014). However, this study 

documents that the importance of math achievement to EF should not be understated or 

ignored.  There needs to be a targeted approach toward students so that their development 

of math and EF skills can co-support each other. This new instructional practice which 

models learning within an ecosystem framework must not only include math achievement 

and the components of EF but must include other key and relevant developmental 

processes codeveloping much like math achievement and EF, such as language 

acquisition and development and motor skills development. 
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 School curriculum needs to be assessed for age or development alignment.  The 

discussion on child development theory and the widely accepted premise of child 

development should be used to guide curriculum development.  In conjunction with child 

development theory, the findings of the current study suggest that curriculum should not 

only reflect the previous notion of a unidirectional relationship between EF and math 

achievement but also a bidirectional one.  Additionally, curriculum should be influenced 

by the knowledge that the EF components perform differently and if they perform 

differently where leading and lagging indicators are identified then those leading 

indicators should be focused on in the curriculum as the drivers for the other indicators. 

Methodological Implications 

 LGC and LCS models were applied to the same data in order to provide a 

comparison of capacities.  They were used to determine the trajectory of growth and the 

longitudinal relationships among math and the two EF constructs.  The literature 

indicated that LGC unconditional model is equivalent to the LCS constant change model.  

This study was able to demonstrate that the models were indeed equivalent and had 

identical estimates in some cases.   

Three LCS proportional change models were estimated and fit the data better than 

the LGC unconditional and LCS constant change models for math achievement and 

DCCS with LCS proportional change number reverse model performing the worst as the 

LGC unconditional and LCS constant change models had better fit.  However, only the 

LCS dual change number reverse model had better fit than the LCS proportional change 
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model.  The LGC associative models performed poorly compared to the LCS bivariate 

dual change uncoupled models and did not fit the data. Of the two LCS bivariate dual 

change uncoupled models, math achievement and DCCS fit the data better than math 

achievement and number reverse once more highlighting that the number reverse 

construct performed poorly compared to its DCCS counterpart, perhaps implying 

underlying issues with the construct.   

Four bivariate dual change unidirectional coupled models were specified with 

DCCS affecting changes in math achievement fitting the data better followed by math 

achievement affecting changes in DCCS and lastly math achievement to changes in 

number reverse.  In these models the relationship sequence is determined by the presence 

of a significant path from the one variable to the regressor.  Again, the number reverse 

models performed poorer than the DCCS models with number reverse to changes in math 

achievement not fitting the data.  DCCS to changes in math achievement, math 

achievement to changes in DCCS, and math achievement to changes in number reverse 

all performed better than the LCS bivariate dual change uncoupled models.  These 

models were used to determine if there were associations between the variables and if one 

affects the other, but this model does not have the ability to determine if there is a 

dynamic relationship between the two constructs as only one parameter was allowed to 

be estimated at a time.  The specification of the unidirectional model was important to 

later provide comparison with the full coupled model to determine the nature of the 

relationship, unidirectional or bidirectional. Finally, the DCCS and math achievement 

bidirectional coupled model fit the data better than the math achievement and number 
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reverse model.  More importantly, the DCCS and math achievement bidirectional 

coupled model fit the data better than the unidirectional models as well as they were not 

able to make any determination. The DCCS and math achievement bidirectional coupled 

model was an improvement over the unidirectional models (DCCS to changes in math 

achievement and math achievement to changes in DCCS models).  However, the math 

achievement and number reverse bidirectional coupled model had a slightly higher ABIC 

than the math achievement to changes in number reverse unidirectional model, but the 

former model was able to model the relationships where the latter did not. 

LGC models more readily fit the data and did not require much modifications 

with the exception of the associative models which never fit the data even when estimates 

from the unconditional models were used to specify the models.  The LGC unconditional 

model was initially specified with fixed error variances but were later allowed to be 

different across time for better fit as well as the low correlations between DCCS and 

number reverse across times also justify relaxing this constraint.  The LCS constant 

change, proportional change, dual change, and bivariate dual change models also did not 

require significant modifications except estimating another path where necessary to 

achieve good fit.   

Additional methodological observations included that as the LCS models grew 

more complex they required more modifications and iterations.  While LGC models 

required limited iterations the complex LCS models had to be increased to 5000 iterations 

to allow for convergence.  This was particularly true for models that included the number 
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reverse construct, again highlighting that the number reverse variable would in some 

instances perform differently than DCCS.  The number reverse to changes in math 

achievement did not fit the data despite multiple modifications suggesting there is a 

ceiling effect.  Several modification indices were provided with the outputs, but many did 

not meet theoretical justifications.  Where theoretically sound modifications were 

specified, and convergence achieved there were instances where correlations exceeded 1 

and respecification did not fix this issue. 

Limitations and Directions for Future Research 

 This study has made significant methodological and substantive contributions to 

the literature, but it is not without its limitations.  LCS requires time invariance in the 

change parameters which caused convergence issues.  Model re-specifications and 

multiple iterations helped to achieve convergence but, in the end, not all models fit the 

data.  In some cases, as a result of the time invariance requirement, the model converged 

with correlation exceeded one (Joreskog, 1999).  Additionally, there are concerns that the 

modifications made to accomplish estimation and fit may result in bias estimation. 

Although it has been shown that despite any bias that may occur, LCS models can still 

capture change and estimate growth trajectories (Clark, Nuttall, & Bowles, 2018). 

However, there still needs to be a thorough investigation of these bias effects on real 

world data.  Literature acknowledges that convergence issues due to LCS models’ 

complexity can be further exacerbated by small sample size. This study had some 

missingness however the use of FIML was suitable and even with missing data the 
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sample remained large.  Therefore, there needs to be more investigation with real world 

data to fully understand how the convergence issues experienced in this study will behave 

in small datasets like those used in school psychology.          

 Another limitation of this study is that it did not address the need to investigate 

EF across a wider age group span than is often found in the literature.  The ECLS-K 2011 

dataset used, follows children between kindergarten and elementary school.  

Additionally, the measures used in this study are those used with the ECLS-K 2011 

dataset and therefore limited the examination of a wider and more comprehensive 

definition of EF.  This is particularly important as the results of the current study 

indicates that EF does not affect math as a single construct but that its components 

behaved differently.  Number reverse needs further examination as a measure of EF as 

well as how it will relate and perform with a different measure.  Therefore, EF 

measurement quality needs to be examined particularly with using DCCS and number 

reverse only.  Given the two constructs’ distinctly different functioning in the models, 

there’s a need for a more holistic tool to measure EF for this age group. 

 One of this study’s key limitation is the time-points used.  Due to the change in 

the testing environment grades 2 and later years could not be included in the analysis.  

The literature could benefit from the replication of the current study across a wider time 

span.  Therefore, future research must find a psychometric way to make the data before 

and after the second-grade equivalent to foster the modeling of the data beyond early 

elementary years.  



 

107 

 

Finally, future research must examine these variables in greater depth. With the 

findings of this research concerning the math achievement and EF relationships further 

work should examine how it might apply to language and motor skills development.  

Using the BRIEF scale from school of Psychology as a possible measure should prove 

useful as these relationships are explored further.  Future work must explore learning and 

curriculum development within a codevelopmental ecosystem framework.  

 The current study provided a comparison between LGC and LCS models to assess 

their abilities.  It went beyond the correlational and experimental studies and used 

longitudinal data with a large nationally representative sample to investigate growth.  In 

light of the existing literature, this study went further and used appropriate advanced 

quantitative analysis to investigate dynamic relationships; examined bidirectional 

relationships between the constructs and identified DCCS to be a leading indicator and 

math to be lagging in the DCCS and math achievement relationship and math 

achievement as a leading indicator and number reverse as lagging in the number reverse 

and math achievement relationship.  Importantly, it showed LCS to be more robust at 

modeling the data than LGC.  Additionally, it examined the EF components and was able 

to add to the literature on how differently the EF measures performed.    
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Appendix 
Parameter Estimates 

 

Table 17 

Parameter Estimates – Math Achievement LGC Unconditional 

 

 LGC Math S.E. 

Means   

-Intercept 31.33*** .851 

-Slope  13.44*** .582 

Variance   

-Intercept 120.19*** 14.42 

-Slope  2.41 2.76 

E1 54.37*** 7.57 

E2 18.92*** 3.49 

E3 21.06*** 5.44 

E4 52.16*** 9.54 

Correlation 1.27  .860 

Covariance 21.52*** 4.39 

R2   

- T1 .689*** .044 

- T2 .898*** .019 

- T3 .903*** .903 

- T4 .823*** .823 
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Table 18 

Parameter Estimates – DCCS LGC Unconditional 

 

 LGC DCCS S.E. 

Means   

-Intercept 14.03*** .239 

-Slope  .623*** .094 

Variance   

-Intercept 3.54* 1.58 

-Slope  .178 .350 

E1 20.99*** 2.53 

E2 7.96*** 1.02 

E3 9.01*** 1.55 

E4 3.73* 1.44 

Correlation -0.472 .357 

Covariance -0.375 .601 

R2   

- T1 .144* .063 

- T2 .271*** .068 

- T3 .234*** .055 

- T4 .437* .213 
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Table 19 

Parameter Estimates – Number Reverse LGC Unconditional 

 

 LGC NR S.E. 

Means   

-Intercept 432.69*** 3.72 

-Slope  11.62*** .985 

Variance   

-Intercept 1360.22*** 292.43 

-Slope  16.93 36.89 

E1 5174.77*** 555.45 

E2 755.45*** 130.37 

E3 198.08* 64.13 

E4 263.98* 94.22 

Correlation -1.019       0.695 

Covariance -154.64 .082 

R2   

- T1 .208*** .042 

- T2 .586*** .069 

- T3 .803*** .055 

- T4 .689*** .111 
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Table 20 

Parameter Estimates – Math Achievement LCS Constant Change Models 

 

 LCS Math S.E. 

Means   

-Intercept 31.61*** .819 

-Slope  13.09*** .464 

Variance   

-Intercept 124.73*** 14.13 

-Slope  2.00 1.69 

E1 52.97*** 6.82 

E2 19.81*** 3.43 

E3 19.90*** 5.35 

E4 50.23*** 9.01 

Correlation 1.11* .554 

Covariance 17.57*** 3.26 

R2   

- T1 .702*** .039 

- T2 .891*** .020 

- T3 .911*** .024 

- T4 .832*** .032 
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Table 21 

Parameter Estimates – DCCS LCS Constant Change Models 

 

 LCS DCCS S.E. 

Means   

-Intercept 14.03*** .239 

-Slope  .623*** .094 

Variance   

-Intercept 3.54* 1.58 

-Slope  .178 .350 

E1 20.99*** 2.53 

E2 7.96*** 1.02 

E3 9.01*** 1.55 

E4 3.73* 1.44 

Correlation -0.472 .357 

Covariance -0.375 .601 

R2   

- T1 .144* .063 

- T2 .271*** .068 

- T3 .234*** .055 

- T4 .437* .213 
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Table 22 

Parameter Estimates – Number Reverse LCS Constant Change Models 

 

 LCS NR S.E. 

Means   

-Intercept 432.69*** 3.27 

-Slope  11.62*** .985 

Variance   

-Intercept 1360.22*** 292.43 

-Slope  16.93 36.89 

E1 5174.77*** 555.45 

E2 755.45*** 130.37 

E3 198.08* 64.13 

E4 263.98* 94.22 

Correlation -1.02 .695 

Covariance -154.64 88.92 

R2   

- T1 .208*** .042 

- T2 .586*** .069 

- T3 .803 *** .055 

- T4 .689* .111 
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Table 23 

Parameter Estimates – Math Achievement LCS Proportional Change Models 

 LCS Math E.S. 

Means    

-Intercept 31.30*** (LY1) .866 

Variance   

-Intercept 129.27*** 16.35 

Proportional   

dy2  ly1 .108  .056 

dy3  ly2 .176*** .014 

dy4  ly3 .051 .043 

E1 51.89*** 5.91 

E2 20.33*** 3.41 

E3 17.01* 5.19 

E4 49.21*** 6.7 

R2   

- T1 .714*** .037 

- T2 .886*** .020 

- T3 .928*** .022 

- T4 .831*** .026 
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Table 24 

Parameter Estimates – DCCS LCS Proportional Change Models 

 LCS DCCS S.E. 

Means    

-Intercept 13.6*** (LD1) .327 

Variance   

-Intercept 2.14*** .467 

Proportional   

dd2  ld1 .094* .029 

dd3  ld2 .028 .026 

dd4  ld3 .036 .024 

E1 21.98*** 2.19 

E2 8.22*** .927 

E3 9.04*** 1.56 

E4 3.84*** .628 

R2   

- T1 .089*** .020 

- T2 .237*** .048 

- T3 .230*** .051 

- T4 .430*** .078 
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Table 25 

Parameter Estimates – Number Reverse LCS Proportional Change Models 

 LCS NR S.E. 

Means    

-Intercept 421.4*** (LN1) 5.12 

Variance   

-Intercept 623.77*** 86.84 

Proportional   

dn2  ln1 .060*** .013 

dn3  ln2 .024*** .006 

dn4  ln3 .021*** .005 

E1 5307.19*** 517.07 

E2 938.56*** 124.84 

E3 289.31*** 70.18 

E4 135.26* 47.21 

R2   

- T1 .105*** .016 

- T2 .428*** .055 

- T3 .717*** .056 

- T4 .850*** .050 
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Table 26 

Parameter Estimates – Math Achievement LCS Dual Change Models 

 LCS Math E.S. 

Means   

-Intercept 31.29*** .854 

-Slope  15.17*** 1.71 

Variance   

-Intercept 122.77*** 14.19 

-Slope  4.52 2.97 

Proportional   

dy2  ly1 -0.053 .042 

dy3  ly2 -0.053 .042 

dy4  ly3 -0.053 .042 

E1 53.345*** 6.92 

E2 19.66*** 3.41 

E3 19.47*** 5.29 

E4 50.58*** 8.77 

Correlation 

LY1 with G2 

1.07*** .266 

Covariance 

LY1 with G2 

25.23*** 7.02 

R2   

- T1 .697*** .040 

- T2 .892*** .019 

- T3 .913*** .023 

- T4 .830*** .031 
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Table 27 

Parameter Estimates – DCCS LCS Dual Change Models 

 LCS DCCS E.S. 

Means   

-Intercept 13.62*** .331 

-Slope  7.6* 2.59 

Variance   

-Intercept 3.97 2.42 

-Slope  .576 .491 

Proportional   

dd2  ld1 -0.468* .173 

dd3  ld2 -0.468* .173 

dd4  ld3 -0.468* .173 

E1 20.41*** 3.06 

E2 7.99*** .964 

E3 9.09*** 1.57 

E4 4.05*** .992 

Correlation 

Ld1 with d2 

0.712 .638 

Covariance 

Ld1 with d2 

1.08 .795 

R2   

- T1 .163 .098 

- T2 .262*** .057 

- T3 .223*** .059 

- T4 .388* .141 
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Table 28 

Parameter Estimates – Number Reverse LCS Dual Change Models 

 LCS NR E.S. 

Means   

-Intercept 425.09*** 5.34 

-Slope  159.26*** 57.99 

Variance   

-Intercept 1458.29*** 371.06 

-Slope  49.8 62.43 

Proportional   

dn2  ln1 -0.328* .129 

dn3  ln2 -0.328* .129 

dn4  ln3 -0.328* .129 

E1 4972.98*** 578.69 

E2 788.83*** 127.98 

E3 227.0* 66.87 

E4 216.6* 78.25 

Correlation 

Ln1 with n2 

.803 .467 

Covariance 

Ln1 with n2 

216.45 159.98 

R2   

- T1 .227*** .054 

- T2 .559*** .068 

- T3 .771*** .057 

- T4 .746*** .072 
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Table 29 

Parameter Estimates – Math Achievement and DCCS LCS Bivariate Dual Change 

Models 

 LCS Math & DCCS S.E. 

Means   

-Intercept 32.15*** (LY1) 13.79*** (LD1) .867 .325 

-Slope  14.71*** (G2) 6.31* (D2) 2.05 2.89 

Variance   

-Intercept 118.67*** 5.48* 14.2 2.19 

-Slope  7.53* .695* 3.79 .358 

Math Proportional effects   

dy2  ly1 -0.086 .045 

dy3  ly2 -0.086 .045 

dy4  ly3 -0.086 .045 

DCCS Proportional effects   

dd2  ld1 -0.383* .194  

dd3  ld2 -0.383* .194  

dd4  ld3 -0.383* .194  

Errors   

E1 - Math 50.09*** 7.23 

E2 - Math 20.9*** 4.04 

E3 - Math 25.08*** 6.47 

E4 - Math 51.61*** 9.91 

E1 - DCCS 19.14*** 2.69 

E2 - DCCS 8.05*** .906 

E3 - DCCS 8.89*** 1.49 

E4 - DCCS 3.66*** 1.03 

Correlation   

ly1 with g2 (math constant change) .811*** .172 

ly1 with ld1 .782*** .148 

ly1 with d2 .263 .320 

ld1 with d2 (DCCS constant change) -0.092 .383 

d2 with g2 .909*** .226 

Math T1 with DCCS T1 .404*** .084 

Math T2 with DCCS T2 .272* .096 

Math T3 with DCCS T3 .042 .140 

Math T4 with DCCS T4 .092 .148 
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Covariance   

ly1 with g2 (math constant change) 24.24*** 6.71 

ly1 with ld1 19.94*** 4.29 

ly1 with d2 2.39 3.14 

ld1 with d2 (DCCS constant change) -0.180 .754 

d2 with g2 2.08* .813 

Math T1 with DCCS T1 12.51*** 3.31 

Math T2 with DCCS T2 3.53* 1.43 

Math T3 with DCCS T3 .630 2.10 

Math T4 with DCCS T4 1.27 2.11 

R2   

- Math T1 .703*** .043 

- Math T2 .878*** .023 

- Math T3 .882*** .029 

- Math T4 .815*** .036 

- DCCS T1 .223* .085 

- DCCS T2 .241*** .057 

- DCCS T3 .212*** .055 

- DCCS T4 .442* .151 
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Table 30 

Parameter Estimates – Math Achievement and Number Reverse LCS Bivariate Dual 

Change Models 

 LCS Math & NR S.E. 

Means   

-Intercept 31.99*** 

(LY1) 

426.77*** 

(LN1) 

.877 5.32 

-Slope  10.86*** (G2) 201.60* (N2) 1.78 95.89 

Variance   

-Intercept 134.88*** 1558.69*** 14.85 410.29 

-Slope  2.26 100.99 2.01 96.02 

Math Proportional Effects   

dy2  ly1 0.056 .043 

dy3  ly2 0.056 .043 

dy4  ly3 0.056 .043 

NR Proportional Effects   

dn2  ln1 -0.427* .211 

dn3  ln2 -0.427* .211 

dn4  ln3 -0.427* .211 

Errors   

E1 - Math 49.78*** 6.81 

E2 - Math 20.39*** 3.51 

E3 - Math 21.34*** 5.50 

E4 - Math 42.64*** 8.95 

E1 - NR 4754.67*** 575.34 

E2 - NR 947.96*** 131.91 

E3 - NR 267.49*** 56.14 

E4 - NR 190.23* 58.14 

Correlation   

Ly1 with g2 (math constant 

change) 

.275 .298 

Ly1 with ln1 .822*** .082 

Ly1 with n2 .614* .237 

Ln1 with n2 (NR constant 

change) 

.438 .348 

n2 with g2 .730* .328 

Math T1 with NR T1 .684*** .062 

Math T2 with NR T2 .040 .110 
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Math T3 with NR T3 -0.183 .180 

Math T4 with NR T4 .148 .168 

Covariance   

Ly1 with g2 (math constant 

change) 

4.78 5.69 

Ly1 with ln1 376.87*** 59.87 

Ly1 with n2 71.62 58.29 

Ln1 with n2 (NR constant 

change) 

173.76 203.56 

n2 with g2 10.99 9.23 

Math T1 with NR T1 332.58*** 53.65 

Math T2 with NR T2 5.52 15.59 

Math T3 with NR T3 -13.82 13.16 

Math T4 with NR T4 13.29 16.02 

R2   

- Math T1 .730*** .036 

- Math T2 .889*** .019 

- Math T3 .903*** .024 

- Math T4 .852*** .032 

- DCCS T1 .247*** .061 

- DCCS T2 .461*** .070 

- DCCS T3 .691*** .055 

- DCCS T4 .741*** .079 
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Table 31 

Parameter Estimates - DCCS Changes in Math LCS Bivariate Dual Change 

Unidirectional Coupling Models  

 DCCS Changes in Math S.E. 

Means   

-Intercept 32.13*** (LY1) 14.24*** (LD1) .823 .265 

-Slope  -18.48 (G2) -5.28 (D2) 18.94 7.51 

Variance   

-Intercept 110.33*** 2.64 15.06 1.52 

-Slope  .837 .542 5.53 1.27 

Math Proportional Effects   

dy2  ly1 -0.215* .086 

dy3  ly2 -0.215* .086 

dy4  ly3 -0.215* .086 

DCCS Proportional Effects   

dd2  ld1 .398 .509  

dd3 ld2 .398 .509  

dd4  ld3 .398 .509  
Coupling: DCCS changes in MATH    

dy2  ld1 2.64 1.49 

dy3  ld2 2.64 1.49 

dy4  ld3 2.64 1.49 

Errors   

E1 - Math 58.61*** 7.98 

E2 - Math 18.03*** 4.09 

E3 - Math 25.12*** 6.67 

E4 - Math 52.91*** 10.71 

E1 - DCCS 21.51*** 2.38 

E2 - DCCS 8.39*** 1.09 

E3 - DCCS 9.06*** 1.52 

E4 - DCCS 3.59* 1.69 

Correlation   

ly1 with g2 (math constant change) .906 2.09 

ly1 with ld1 .931*** .211 

ly1 with d2 -0.966 .518 

ld1 with d2 (DCCS constant change) -0.946*** .155 

d2 with g2 -0.186 1.56 

Math T1 with DCCS T1 .500*** .074 

Math T2 with DCCS T2 .293* .116 

Math T3 with DCCS T3 -0.042 .141 
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Math T4 with DCCS T4 .061 .228 

Covariance   

ly1 with g2 (math constant change) 8.71 12.07 

ly1 with ld1 15.89*** 3.25 

ly1 with d2 -7.47 7.92 

ld1 with d2 (DCCS constant change) -1.131 1.56 

d2 with g2  -0.125 .709 

Math T1 with DCCS T1 -17.75*** 3.19 

Math T2 with DCCS T2 3.60* 1.67 

Math T3 with DCCS T3 -0.631 2.11 

Math T4 with DCCS T4 .835 3.33 

R2   

- Math T1 .653*** .051 

- Math T2 .902*** .022 

- Math T3 .892*** .028 

- Math T4 .817*** .039 

- DCCS T1 .109 .062 

- DCCS T2 .232* .081 

- DCCS T3 .222*** .055 

- DCCS T4 .460 .040 
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Table 32 

Parameter Estimates - Math Changes in DCCS LCS Bivariate Dual Change 

Unidirectional Coupling Models  

 Math Changes in DCCS S.E. 

Means   

-Intercept 32.13*** (LY1) 13.85*** (LD1) .865 .339 

-Slope  14.82*** (G2) 8.42* (D2) 2.03 3.49 

Variance   

-Intercept 118.70*** 6.17* 14.23 3.03 

-Slope  7.48* .756 3.77 .412 

Math Proportional Effects   

dy2  ly1 -0.089* .045 

dy3  ly2 -0.089* .045 

dy4  ly3 -0.089* .045 

DCCS Proportional Effects   

dd2  ld1 -0.583* .287 

dd3  ld2 -0.583* .287 

dd4  ld3 -0.583* .287 

Coupling: MATH changes in DCCS   

dd2  ly1 0.019 .022 

dd3  ly2 0.019 .022 

dd4  ly3 0.019 .022 

Errors   

E1 - Math 50.06*** 7.13 

E2 - Math 20.84*** 4.04 

E3 - Math 24.93*** 6.45 

E4 - Math 52.82*** 10.11 

E1 - DCCS 18.64*** 3.33 

E2 - DCCS 8.10*** .879 

E3 - DCCS 8.94*** 1.50 

E4 - DCCS 3.94*** .930 

Correlation   

ly1 with g2 (math constant change) .841*** .180 

ly1 with ld1 .776*** .179 

ly1 with d2 .299 .274 

ld1 with d2 (DCCS constant change) .040 .377 

d2 with g2 .820** .252 

Math T1 with DCCS T1 .388*** .091 

Math T2 with DCCS T2 .287** .096 
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Math T3 with DCCS T3 .023 .143 

Math T4 with DCCS T4 .113 .140 

Covariance   

ly1 with g2 (math constant change) 25.05*** 6.84 

ly1 with ld1 21.01*** 4.78 

ly1 with d2 2.83 2.93 

ld1 with d2 (DCCS constant change) .085 .815 

d2 with g2 1.95* .836 

Math T1 with DCCS T1 11.86** 3.46 

Math T2 with DCCS T2 3.73** 1.44 

Math T3 with DCCS T3 .344 2.14 

Math T4 with DCCS T4 1.64 2.13 

R2   

- Math T1 .703*** .043 

- Math T2 .879*** .023 

- Math T3 .883*** .029 

- Math T4 .812*** .036 

- DCCS T1 .249* .118 

- DCCS T2 .226*** .056 

- DCCS T3 .206*** .056 

- DCCS T4 .405** .129 
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Table 33 

Parameter Estimates - Math Changes in Number Reverse LCS Bivariate Dual Change 

Unidirectional Coupling Models  

 Math Changes in Number Reverse S.E. 

Means   

-Intercept 32.04*** (LY1) 427.34*** (LN1) .861 5.08 

-Slope  10.79*** (G2)  121.11 (N2) 1.54 125.94 

Variance   

-Intercept 133.39*** 1417.22*** 14.47 379.79 

-Slope  2.57 70.13 1.87 36.82 

MATH Proportional Effects   

dy2  ly1 .057 .037 

dy3  ly2 .057 .037 

dy4  ly3 .057 .037 

NR Proportional Effects   

dn2  ln1 -0.234 .326 

dn3  ln2 -0.234 .326 

dn4  ln3 -0.234 .326 

Coupling: NR changes in MATH   

dn2  ly1 -0.096 .505 

dn3  ly2 -0.096 .505 

dn4  ly3 -0.096 .505 

Errors   

E1 - Math 50.90*** 6.74 

E2 - Math 19.78*** 3.35 

E3 - Math 23.43*** 5.49 

E4 - Math 41.03*** 8.93 

E1 - NR 4848.80*** 542.60 

E2 - NR 911.94*** 134.64 

E3 - NR 278.80*** 58.62 

E4 - NR 148.90* 61.58 

Correlation   

ly1 with g2 (math constant change) .281 .266 

ly1 with ln1 .824*** .072 

ly1 with n2 .318 .363 

ln1 with n2 (NR constant change) .030 .539 

n2 with g2 .912** .312 

Math T1 with NR T1 .685*** .058 

Math T2 with NR T2 -0.010 .059 

Math T3 with NR T3 -0.017 .098 

Math T4 with NR T4 -0.017 .101 

Covariance   
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ly1 with g2 (math constant change) 4.97 4.79 

ly1 with ln1 358.24*** 61.86 

ly1 with n2 30.79 40.31 

ln1 with n2 (NR constant change) 9.59 171.21 

n2 with g2 11.72* 5.91 

Math T1 with NR T1 340.55*** 51.78 

Math T2 with NR T2 -1.35 7.87 

Math T3 with NR T3 -1.35 7.87 

Math T4 with NR T4 -1.35 7.87 

R2   

- Math T1 .724*** .036 

- Math T2 .891*** .019 

- Math T3 .895*** .023 

- Math T4 .858*** .032 

- NR T1 .226*** .055 

- NR T2 .485*** .072 

- NR T3 .695*** .058 

- NR T4 .795*** .085 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

147 

 

Table 34 

Parameter Estimates - DCCS & Math LCS Bivariate Dual Change Coupling Models  

 DCCS & Math S.E. 

Means   

-Intercept 36.77*** (LY1) 13.60*** (LD1) 1.19 .327 

-Slope  22.19*** (G2) 14.09*** (D2) 3.57 1.02 

Variance   

-Intercept 201.37*** 17.56*** 21.80 2.40 

-Slope  16.30 1.51* 9.56 .674 
Math Proportional Effects   

dy2  ly1 0.484*** .132 

dy3  ly2 0.484*** .132 

dy4  ly3 0.484*** .132 

DCCS Proportional Effects   

dd2  ld1 -1.09*** .093 

dd3  ld2 -1.09*** .093 

dd4  ld3 -1.09*** .093 
Coupling: MATH changes in DCCS   

dd2  ly1 .061** .020 

dd3  ly2 .061** .020 

dd4  ly3 .061** .020 
Coupling: DCCS changes in MATH   

dy2  ld1 -2.36*** .532 

dy3  ld2 -2.36*** .532 

dy4  ld3 -2.36*** .532 
Errors   

E1 - Math 25.17*** 2.67 

E2 - Math 25.17*** 2.67 

E3 - Math 25.17*** 2.67 

E4 - Math 25.17*** 2.67 

E1 - DCCS 6.82*** .589 

E2 - DCCS 6.82*** .589 

E3 - DCCS 6.82*** .589 

E4 - DCCS 6.82*** .589 

Correlation   

ly1 with g2 (math constant change) -0.536*** .151 

ly1 with ld1 .723*** .047 

ly1 with d2 .385* .179 

ld1 with d2 (DCCS constant change) .357* .151 

d2 with g2 .352 .209 

Math T1 with DCCS T1 .131* .062  

Math T2 with DCCS T2 .131* .062  
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Math T3 with DCCS T3 .131* .062  

Math T4 with DCCS T4 .131* .062  
Covariance   

ly1 with g2 (math constant change) -30.73* 14.69 

ly1 with ld1 42.98*** 5.89 

ly1 with d2 6.71* 3.39 

ld1 with d2 (DCCS constant change) 1.83* .928 

d2 with g2 1.75 1.33 

Math T1 with DCCS T1 1.72* .874 

Math T2 with DCCS T2 1.72* .874 

Math T3 with DCCS T3 1.72* .874 

Math T4 with DCCS T4 1.72* .874 

R2   

- Math T1 .854*** .021 

- Math T2 .868*** .017 

- Math T3 .888*** .014 

- Math T4 .914*** .012 

- DCCS T1 .720*** .036 

- DCCS T2 .257*** .061 

- DCCS T3 .269*** .061 

- DCCS T4 .287*** .060 
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Table 35 

Parameter Estimates - Number Reverse & Math LCS Bivariate Dual Change Coupling 

Models  

 Number Reverse & Math S.E. 

Means   

-Intercept 30.98*** 
(LY1) 

416.58*** 
(LN1) 

.826 3.97 

-Slope  298.26** 

(G2) 

730.33*** 

(N2) 

96.73 111.79 

Variance   

-Intercept 256.35*** 1423.13*** 29.86 251.35 

-Slope  61.12 296.76** 34.62 86.78 
MATH Proportional Effects   

dy2  ly1 1.36** .416 

dy3  ly2 1.36** .416 

dy4  ly3 1.36** .416 
NR Proportional Effects   

dn2  ln1 -1.854*** .310 

dn3  ln2 -1.854*** .310 

dn4  ln3 -1.854*** .310 
Coupling: MATH changes in NR    

dn2  ly1 2.40*** .589 

dn3  ly2 2.40*** .589 

dn4  ly3 2.40*** .589 
Coupling: NR changes in MATH   

dy2  ln1 -0.784** .258 

dy3  ln2 -0.784** .258 

dy4  ln3 -0.784** .258 
Errors   

E1 - Math -83.10** 25.77 

E2 - Math 18.86* 7.47 

E3 - Math 26.97*** 5.53 

E4 - Math 36.55** 13.74 

E1 - NR 4337.39*** 455.88 

E2 - NR 1142.25*** 118.45 

E3 - NR 318.49*** 62.82 

E4 - NR 242.74*** 39.39 

Correlation   

ly1 with g2 (math constant change) -0.283*** .079 

ly1 with ln1 .908*** .029 

ly1 with n2 .094 .151 

ln1 with n2 (NR constant change) .231** .074 
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n2 with g2 .873*** .078 

Math T1 with NR T1 Fixed @1  

Math T2 with NR T2 -0.019 .067 

Math T3 with NR T3 -0.030 .103 

Math T4 with NR T4 -0.029 .105 
Covariance   

ly1 with g2 (math constant change) -35.39* 18.00 

ly1 with ln1 548.21*** 54.94 

ly1 with n2 25.98 39.71 

ln1 with n2 (NR constant change) 149.83** 58.08 

n2 with g2 117.51* 51.23 

Math T1 with NR T1 -2.74 9.61 

Math T2 with NR T2 -2.74 9.61 

Math T3 with NR T3 -2.74 9.61 

Math T4 with NR T4 -2.74 9.61 

R2   

- Math T1 Undefined  

- Math T2 .899*** .041 

- Math T3 .880*** .024 

- Math T4 .878*** .046 

- NR T1 .247*** .037 

- NR T2 .275*** .040 

- NR T3 .599*** .064 

- NR T4 .706*** .045 
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