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Aditya Kumar et al. [144] proposed a model with multi-asperities in contact by 

modifying the Rabinovich model. When an adhering particle interacts with only one 

secondary asperity, then the Rabinovich model is valid (Fig. 7.14(a)). However, if the 

adhering particle comes in contact with the valley portion of primary asperities, then the 

adhering particle interacts with multiple secondary asperities, as shown in Fig. 7.14(c). 

The Rabinovich model will underestimate the adhesion force.  

 

It was already stated that the first and second terms in Eq. 7.3 correspond to the 

adhesion of a particle with secondary and primary asperities, respectively. According to 

the Kumar model [144], when the number of secondary asperities in contact with 

adhering particle is n, then adhesion force will be the first term multiplied by n.  Eq. 7.6 

will replace with Eq. 7.3. In the denominator of the second term, the negative sign comes 

from the interaction of the adhering particle with the valley portion of primary asperities. 

It is extremely difficult to calculate the number of contact points. However, the number 

of secondary asperities in contact lies in between 1 and πR/ λ1 with λ1 >√58Rrms1. It can 

be observed from the proposed relationship and our simulation results shown in Fig. 7.15, 

that the adhesion force is completely dependent on the number of secondary asperities in 

contact.  
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Figure 7.14. (a) Schematic diagram of particle-rough surface interaction (rms1 > R). Particle interaction 

between hilly portion; (b) Schematic diagram of particle-rough surface interaction (rms1 > R). Particle 

interaction between valley portion; (c) Schematic diagram of particle and valley portion of primary asperity 

showing multiple interactions of adhering particle and secondary asperities. Here r is comparable to R; (d) 

Schematic diagram of particle-rough surface interaction (rms1 < R). [144] 

 

Table 7.4 shows the parameters used in the following simulation following the 

Kumar model. It was assumed that a 50 µm particle has three asperities in contact, a 

particle with 5 µm in radius has two asperities in contact, and two particles with 50 nm in 

radius have one and four asperities in contacts, respectively, corresponding to contact at 

the top of a hilly portion and a valley portion of a primary asperity. 
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Table 7.4. Parameters used in simulations using the modified Rabinovich model. 

Parameter Value 

Hamaker constant, AH 10-20 J 

The smallest distance, H0 0.4 nm 

Particle radius, R 50 nm, 5 µm, 50 µm 

Roughness of substrate, rms1 5 µm 

Roughness of substrate, rms2 1 - 15 nm 

Peak-to peak distance, λ1 10 µm 

Peak-to peak distance, λ2 0.1µm 

 

 

Figure 7.15. Adhesion forces for different particles sizes calculated with the modified Rabinovich model 

with different numbers of contacts. 

 

As an example, particles with 0.05 µm in radius may be adhered to the surface 

peaks with only one contact point or to the surface valleys with four contact points 
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(Fig.7.14a and 7.14c). Particles with 50 µm and 5 µm in radius may adhere to the 

location between surface peaks with three contacts (in three dimensions) and two 

contacts(Fig. 7.14d). respectively. From Fig. 7.15, it can be seen that particles of the 

same size with the higher number of asperity contacts have larger adhesion forces. 

Comparing the particle with 0.05 µm radius and four interfacial contacts with the particle 

with 50 µm radius and three interfacial contacts, it was found that the number of contacts 

is dominant in determining the adhesion force with a large surface rms. When the surface 

becomes smooth, particle size is also important when determining the adhesion force. 

 

7.6 Adhesion forces between irregular particles and irregular surfaces 

When adhered particles are not smooth spheres but irregular in shape, then this 

problem becomes very complicated. However, it has been shown in Fig. 7.8 that the 

contact interactions are much larger than the other non-contact interactions. Therefore, 

the total adhesion force can be calculated by considering the number of adherent contacts 

between irregular particles and rough surface. A brief description of interactions between 

irregular particles and irregular surfaces was schematically shown in Fig 7.4. Aside from 

the interlocking case shown in Fig. 7.4(d), which has a large contact area between 

particles and surface, the other cases have multi-contacts. According to the previous 

investigation of multi-contacts between spherical particles and rough surfaces, it has been 

shown that adhesion forces with multi-contacts are larger than those with only one 

contact. 
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Comparison between the Rumpf, Rabinovich, Hamaker, and the modified 

Rabinovich (a new model proposed by Casey Q. LaMarche et al) methods is illustrated in 

Fig. 7.18 with only one adhering contact between the particle and the surface. The black 

dash curve represents adhesion forces between a rough particle and a rough surface 

predicted by the modified Rabinovich model.  Initially, a rapid reduction in the adhesion 

forces between the rough particle and the rough surface can be seen (the dashed line). 

When rms2 > 5 nm, the adhesion forces stabilize. That means when the nanoscale 

roughness of a substrate surface is larger than a critical rms2, here is around 5 nm, rms2 

cannot affect the adhesion forces anymore. Comparing adhesion forces between an 

irregular particle and a flat substrate surface (rms2 = 0 nm) predicted by these four 

models, the modified Rabinovich model predicted the smallest interaction due to the 

rough surface of the irregular particle.  

 

  
Figure 7.18. Comparison between adhesion forces obtained from the Rumpf, Rabinovich, Hamaker, and 

modified Rabinovich models  for an epoxy substrate and a 10 μm epoxy particle separated by Ho equals to 

0.4 nm. Rms4 is 60 nm 
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Fig. 7.19 shows the adhesion forces as a function of the roughness of nano 

asperities (rms4) on irregular particles. For the Rumpf, Rabinovich, and Hamaker models, 

the particles are smooth spheres. Therefore, they produce constant adhesion forces when 

rms4 is increasing. For the modified Rabinovich model, increasing of rms4 leads to the 

reduction of adhesion forces between irregular particles and irregular surfaces.   

 

Figure 7.19. Comparison between adhesion forces obtained from the Rumpf, Rabinovich, Hamaker, and the 

modified Rabinovich models for an epoxy substrate and a 10 μm epoxy particle separated by Ho equals to 

0.4 nm. Rms2 is 60 nm. 

 

Fig. 7.20 shows the predictions for adhesion forces between irregular particles 

and irregular surfaces as a function of nanoscale roughness of particle and substrate 

surfaces. It can be seen that adhesion forces decreased when the nanoscale roughness of 

irregular particles increased from 0 to 80 nm and the nanoscale roughness of irregular 

substrates increased from 0 to 80 nm. If we compare the nano asperity effects of particles 

and substrates on adhesion forces, nanoscale asperities of particles are much more 

influential on adhesion forces than nanoscale asperities of substrates. 
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Figure 7.20. Predictions of adhesive forces using the modified Rabinovich model between irregular 

particles and irregular surfaces as a function of nanoscale rms particle and rms surface. 

 

7.7 Predictions of irregular particle movements on uneven surface caused by moving 

water  

  Considering the facts presented in the sections above, the removal of irregular 

particles from uneven surfaces by slowly moving water (see Chapter 6) can be 

reconsidered. As the previous section stated, adhesion forces between spherical particles 

and nano/micro rough surfaces estimated using the Rumpf and Rabinovich methods are 

dramatically smaller than those calculated following the Hamaker method. The reason is 

that the contact area between particles and substrate surface are decreased by 

nano/microscale rough structures distributed on uneven surfaces eventually leading to a 

reduction in interaction forces. Therefore, the critical size of particles which could be 

removed by viscous shear stresses from rough surfaces should be smaller than from flat 

surfaces. In Fig. 7.21 the critical sizes of particles are presented which could be removed 

by water flow over rough surfaces following the modified Rabinovich model for an 

average viscous shear stress of 1.59 N/m2.  Clearly, the critical sizes of particles that can 
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be removed decreased in all three movements when surface roughness increases. When 

the surface roughness is 5 nm, all of particles smaller than 10.2 µm could be removed by 

individual or combinations of lifting, sliding and rolling movements. Comparing to the 

particles adhered to the flat surface (Fig.6.8), particles adhered to a nanoscale rough 

surface can be clearly removed more easily under the same value of viscous shear stress. 

   

Figure 7.21. Critical sizes of particles which could be removed from different rough surfaces by shear 

stresses from slowly moving water. Modified Rabinovich model. 

 

The simulation results of critical sizes of particles which could be removed by 

lifting (as an example) from rough surfaces with increasing rms2 are shown in Fig. 7.22. 

Corresponding to Fig. 6.8 in chapter 6.5, the critical diameter of the particles was a 

constant equal to about 84.6 um from the Hamaker method and independent of the 

surface roughness. From the Rumpf and Rabinovich methods, the critical diameter is 

non-monotonically and monotonically decreasing, respectively. Both of them exhibit a 
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remarkable decrease in the critical diameter of particles when the surface has nanoscale 

roughness characteristics. The critical diameters predicted using the modified Rabinovich 

model exhibited a rapid reduction when the nanoscale roughness of the substrate surface 

(rms2) is smaller than 1 nm. Then the reduction of the critical diameters becomes less 

significant when rms2 is larger than 1 nm. 

 

Figure 7.22. Critical sizes of particles which could be removed by lifting from different rough surfaces 

subjected to gravitational water flow. Various models. 

 

7.7 Summary     

In this chapter, adhesion forces on nano/micro hierarchical structure surfaces were 

calculated using the Rumpf and Rabinovich models. Simulation results show that 

adhesion forces calculated following the Rumpf model with nano-level asperities on 

substrate surfaces are significantly smaller than the forces on flat epoxy surfaces from the 

JKR and Hamaker models (Chapter.6). According to the simulation results from the 

Rabinovich model, the roughness effect of secondary asperities on adhesion forces is 
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much larger than that of primary asperities. Therefore, regardless of adhering particle 

sizes, the nano surface structures on the top of micro surface structures contribute much 

more to the global adhesive forces than just the micro surface irregularities.  

 

It was also shown in this research that adhesion forces decreased when the 

nanoscale roughness of irregular particles and irregular substrates increased. In addition, 

nanoscale asperities of particles are much more influential on adhesion forces than 

nanoscale asperities of substrates. Removal of irregular particles from uneven surfaces by 

slowly moving water flow was finally reconsidered. The critical size of particles which 

could be removed by water flows from rough surfaces was found to be significantly 

smaller than from flat surfaces. 
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Chapter 8: Conclusions 

 Unidirectional GRP composites develop significantly different degradation 

mechanisms with strong synergistic effects when exposed to individual and cyclic 

UV radiation, water condensation and temperature. The average weight losses 

under cyclic conditions for all six tested GRP composites were found to be about 

100% larger than the weight gains from the simple superposition of the UV and 

condensation environments for the same composites. 

 

 The sums of the individual UV and water condensation aging effects on weight 

changes are positive with weight gains, whereas the weight changes under the 

cyclic combined conditions are negative with weight losses for all six tested GRP 

composites.  

 

 A comparison of degradation by UVA and UVB indicate that UVB caused more 

severe damage and higher degradation rates in the GPR composites.  

 

 Surface yellowing shows that composite degradation caused by UV light only 

occurred in the surface layer of the composites with a thickness around 10 µm. 
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 FTIR analysis shows that photodegradation of VE resin led to a decrease of C-O, 

C-O-C, C-CO-O groups in VE polymer chain. 

 

 In the polymer degradation experiments, it has been shown that all tested pure 

polymers except PVC when exposed to individual and cyclic UV radiation, water 

condensation and temperature do not develop significantly strong synergistic 

degradation.  

 UV degradation of polymeric surfaces is strongly dependent on UV wavelength, 

intensity and exposure time.   

 

 It is also shown that UV intensity and inclinations determine the local degradation 

rates of the material which can be numerically simulated from the global 

degradation rates for a material determined experimentally.  

 

 The initial irregular, sinusoidal surface of the material eventually degraded to a 

flat surface under a long period of exposure to UV radiation regardless of the 

irradiation angle. Although the simulations were performed in the setting of 

sinusoidal surfaces, the methodology is equally applicable to any irregular 

surfaces.  

 

 Surface shape effects show that polymer surfaces with high amplitudes and high 

frequencies degrade faster under UV than the surfaces with low amplitudes and 
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low frequencies. Furthermore, surface frequency affects degradation rates more 

than surface amplitude. 

 

 The UV planarization effect on irregular polymeric surfaces observed numerically 

was finally experimentally verified in this work by the UV testing of neat epoxy 

specimens at elevated temperature. The surface roughness of the specimens was 

reduced by about 12.5% after 1000 hours of UV exposure. 

 

 Hydrodynamic modeling was performed to estimate the viscous shear stresses 

generated by slowly moving water on polymer and GRP surfaces affected by 

synergistic aging by UV and water flows. 

 

 It has been shown that when the surface roughness of the specimens increases, the 

average viscous shear stress decreases negatively affecting the efficiency of 

particle removal. On the other hand, when the inclination of the surface increases, 

the average viscous shear stress increases positively affecting the efficiency of 

particle removal.  

 

 The movement of polymer particles on polymer surfaces strongly depends on 

particle size, water flow rate, surface morphology, and the viscous shear stresses 

caused by the moving water.  

 



 

152 

 It was also shown in this research that depending on particle sizes and magnitudes 

of viscous shear stresses, small particles could be moved by rolling only, and 

large particles could be cleared by a combination of rolling, sliding and lifting.  

 

 The particle removal by water model was verified experimentally by showing that 

the average size of epoxy particles moved by water on a GRP surface increases in 

the direction of the water flow.  

 

 Adhesion forces simulated by the Rumpf model with nanoscale asperities on the 

surface are three orders of magnitude smaller than those on a flat epoxy surface 

either predicted by either the JKR or Hamaker method.  

 

 According to the simulation results using the Rabinovich model, the roughness 

effect of secondary asperities on adhesion forces is much larger than that of 

primary asperities. Therefore, regardless of adhering particles sizes, the nano 

structures on the top of micro structures are more critical in affecting the adhesion 

force than the micro structure in the hierarchical structure.  

 

 

 The investigation of adhesion forces with multiple asperities in contact using 

Kumar’s model indicated that the number of contacts dominates the magnitude of 

the adhesion force with a large nanoscale surface roughness. When the surface 
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becomes smooth, particle sizes rather than the number of contacts affect the 

adhesion forces. 

 

 Comparing adhesion forces of the Rumpf, Rabinovich, Hamaker and the modified 

Rabinovich models, the modified Rabinovich model obtained the smallest 

interaction when substrate surfaces are flat (rms2 = 0 nm) due to the reduction of 

adhesion forces caused by the rough surface of the irregular particles.  

 

 Comparing adhesion forces affected by nano asperities on irregular particles and 

irregular substrates, nanoscale asperities of irregular particles are more important 

in affecting the adhesion forces than the nanoscale asperities of the substrates. 

 

 When both particles and substrate surfaces are irregular, particles adhered to a 

nanoscale rough surface can be cleared is much smaller compared to particles 

adhered to a flat surface by the same value of viscous shear stress.  
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Appendix: Acronyms and symbols 

 

A-glass       Alkali-glass 

AFM   Atomic force microscopy 

C-glass       Chemical-glass 

D-glass       Dielectric-glass 

E-glass         Electrical-glass 

ECR-glass      Electrical Corrosion Resistance-glass 

FTIR  Fourier transforms infrared spectroscopy 

GFRP         Glass fiber reinforced polymer matrix composite 

GPC          Glass fiber-reinforced polymer composite 

L-glass  Low-loss-glass 

MMCs  Metal matrix composites 

M-glass  Modulus-glass 

PMCs   Polymer matrix composites  

PEEK   Polyether ether ketone 

RTV           Room temperature vulcanization silicone 

R-glass       Resistance-glass 

S-glass  Strength-glass  

SEM          Scanning Electron Microscope  

T-glass  Thermal-glass  

UPE   Unsaturated polyesters  

UV  Ultraviolet 
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VE  Vinyl esters  

ZnO            Zinc oxide 

PVC  Polyvinyl chloride 

HDPE             High-density polyethylene 

PC                   Polycarbonate 

UHMWPE      Ultra-high-molecular-weight polyethylene 

PEEK   Polyether ether ketone 

 

  

 


