University of Denver Digital Commons @ DU

Electronic Theses and Dissertations

Graduate Studies

1-1-2019

Paving the Way for Multidisciplinary Smart Campus Infrastructure: Leveraging DU's Unique Campus for the Advancement of Smart Campus Culture

Camerron T. Mismash University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

Part of the Power and Energy Commons

Recommended Citation

Mismash, Camerron T., "Paving the Way for Multidisciplinary Smart Campus Infrastructure: Leveraging DU's Unique Campus for the Advancement of Smart Campus Culture" (2019). *Electronic Theses and Dissertations*. 1677.

https://digitalcommons.du.edu/etd/1677

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

Paving the Way for Multidisciplinary Smart Campus Infrastructure: Leveraging DU's Unique Campus for the Advancement of Smart Campus Culture

Abstract

Institutions are embracing smart technologies to reap their benefits while simultaneously innovating new uses. From localized renewable energy generation to health monitoring and everything in between, academic campuses globally are paving the way for smart technology application. Eight primary categories have been identified in which institutions are applying smart technologies. Energy development is on the forefront of these smart initiatives. The University of Denver has begun its Smart Campus Initiative by implementing a revolving fund to invest in campus improvements related to the offset of carbon. By comparing how institutions are investing in smart campus initiatives and analyzing costs associated with renewable energy development, recommendations are provided on how University of Denver can better apply its resources to become a leader in the global smart campus initiative. Recommendations are given on how the university should invest in additional energy related projects to catalyze its currently implemented projects. Additional recommendations are given on how to achieve an all-encompassing smart campus infrastructure realizing status in each of the eight categories.

Document Type Thesis

Degree Name M.S.

Department Engineering

First Advisor Amin Khodaei, Ph.D.

Keywords

Smart campus, University of Denver, Renewable energy

Subject Categories

Electrical and Computer Engineering | Engineering | Power and Energy

Publication Statement

Copyright is held by the author. User is responsible for all copyright compliance.

Paving the Way for Multidisciplinary Smart Campus Infrastructure: Leveraging DU's

Unique Campus for the Advancement of Smart Campus Culture

A Thesis

Presented to

the Faculty of the Daniel Felix Ritchie School of Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Camerron T. Mismash

November 2019

Dr. Amin Khodaei

Author: Camerron T. Mismash

 Title: Paving the Way for Multidisciplinary Smart Campus Infrastructure: Leveraging DU's Unique Campus for the Advancement of Smart Campus Culture
 Advisor: Dr. Amin Khodaei
 Degree Date: November 2019

Abstract

Institutions are embracing smart technologies to reap their benefits while simultaneously innovating new uses. From localized renewable energy generation to health monitoring and everything in between, academic campuses globally are paving the way for smart technology application. Eight primary categories have been identified in which institutions are applying smart technologies. Energy development is on the forefront of these smart initiatives. The University of Denver has begun its Smart Campus Initiative by implementing a revolving fund to invest in campus improvements related to the offset of carbon. By comparing how institutions are investing in smart campus initiatives and analyzing costs associated with renewable energy development, recommendations are provided on how University of Denver can better apply its resources to become a leader in the global smart campus initiative. Recommendations are given on how the university should invest in additional energy related projects to catalyze its currently implemented projects. Additional recommendations are given on how to achieve an all-encompassing smart campus infrastructure realizing status in each of the eight categories.

Acknowledgements

This work was made possible by the support of multiple departments within the University of Denver including: DU IEEE Student Chapter, Facilities, Sustainability Committee (SUSCOM), and Campus Life & Inclusive Excellence. External support comes from Tri-State Generation & Transmission Association Inc, eGauge, EnergyCAP, Pivot Energy, Canadian Solar, National Renewable Energy Laboratory, ComEd, and Xcel Energy. Special thanks to Dr. Amin Khodaei and Lynn Bailey PE.

Table of Contents

Abs	stract		ii
Ack	nowledgem	ents	iii
Tab	le of Conten	ts	iv
List	of Figures		vi
List	of Tables		vii
_			-
1 D	-	d Research on Current Institutional Microgrids And Other Sma	-
Pro			
		troduction of smart campus initiatives	
		verview of researched smart campus projects	
	1.2.1	Pertaining to Microgrid/Energy/Storage/CO2:	
	1.2.2	Pertaining to Transportation:	
	1.2.3	Pertaining to Waste:	
	1.2.4	Pertaining to Heating/Cooling:	
	1.2.5	Pertaining to Lighting/Light Pollution:	
	1.2.6	Pertaining to Water:	
	1.2.7	Pertaining to Health/Wellness/Social Justice/Education:	
	1.2.8	Pertaining to IoT:	
	1.3 De	etermining the value of indirect consequences	9
2	Current Sta	ate of Energy Diversity on DU Campus	11
2		ate of Energy Diversity on DU Campusalculating Average Monthly Load Profile	
	2.1 Ca	Seeley J. Mudd	
	2.1.1	Olin Hall	
	2.1.2		
	2.1.3	Nagel Hall	
	2.1.4	Daniels College of Business Load Profile Discussion	
		etermining Effectiveness of Demand Reduction	
	2.2.1	Discussion on demand reduction	
	2.2.2	Seeley J Mudd	
	2.2.3	Ritchie Athletic Complex	
	2.2.4	Anderson Academic Commons	
	2.2.5	Driscoll South	
	2.2.6	Shwayder Art Building	
	2.2.7	Boettcher West	
	2.2.8	Sturm Hall	
	2.2.9	Knudson Hall	
	2.2.10	Frontier Hall	
	2.2.11	Ammi Hyde	
	2.2.12	Central Receiving & Purchasing	
	2.2.13	University Technology Services	
	2.2.14	Cherrington (SIE) Complex	
	2.2.15	Fisher Early Learning Center	40

2.3 De	termining Economic Viability of Solar Installations	42
2.3.1	Discussion on energy rates	
2.3.2	Seeley J. Mudd	
2.3.3	Ritchie Athletic Complex	
2.3.4	Anderson Academic Commons	
2.3.5	Driscoll South	
2.3.6	Shwayder Art	47
2.3.7	Boettcher West	
2.3.8	Sturm Hall	50
2.3.9	Knudson Hall	51
2.3.10	Frontier Hall	52
2.3.11	Ammi Hyde	54
2.3.12	Central Receiving & Purchasing	55
2.3.13	University Technology Services	56
2.3.14	Cherrington (SIE) Complex	57
2.3.15	Fisher Early Learning Center	59
2.3.16	Costs Summary	60
2.3.17	Discussion on the savings due to carbon cost and value of lost load	d 61
Campus	on Developing Energy Projects and Other Smart Technology Projec	62
3.1 Ov	erview of the Smart Campus Initiative expansion	62
	panding energy related projects within the Smart Campus Initiative.	
	ategy for the smart campus initiative expansion related to energy	
3.3.1	Pertaining to Microgrid/Energy/Storage/CO2:	
	ategy for the smart campus initiative expansion in other categories	
3.4.1	Pertaining to Transportation:	
3.4.2	Pertaining to Waste:	
3.4.3	Pertaining to Heating/Cooling:	
3.4.4	Pertaining to Lighting/Light Pollution:	
3.4.5	Pertaining to Water:	
3.4.6 3.4.7	Pertaining to Health/Wellness/Social Justice/Education:	
	Pertaining to IoT:	
3.5 Dis 3.5.1	scussion on Cost Savings from Smart Campus Initiative Cost savings related to energy	
3.5.2	Cost savings related to energy	
	ignment to the City of Denver's Smart City Initiative nclusion	
3.7 Co	1101051011	/ð
References		80
Appendix A		85

List of Figures

Figure 1: Smart Campus Initiative Components	3
Figure 2: Mudd average load profile for September 2018	16
Figure 3: Olin average load profile for September 2018	17
Figure 4: Nagel average load profile for September 2018	18
Figure 5: Daniels average load profile for September 2018	19
Figure 6: Seeley J. Mudd average monthly load with applied solar generation	21
Figure 7: Ritchie average monthly load with applied solar generation	23
Figure 8: AAC average monthly load with applied solar generation	24
Figure 9: Driscoll average monthly load with applied solar generation	26
Figure 10: Shwayder average monthly load with applied solar generation	27
Figure 11: Boettcher average monthly load with applied solar generation	29
Figure 12: Sturm average monthly load with applied solar generation	30
Figure 13: Knudson average monthly load with applied solar generation	32
Figure 14: Frontier average monthly load with applied solar generation	33
Figure 15: Ammi Hyde average monthly load with applied solar generation	35
Figure 16: C R/P average monthly load with applied solar generation	36
Figure 17: UTS average monthly load with applied solar generation	38
Figure 18: Cherrington average monthly load with applied solar generation	39
Figure 19: Fisher average monthly load with applied solar generation	41
Figure 20: Installation of Solar Tree on DU Campus	63
Figure 21:Smart Intersection Graphic	64
Figure 22: Illustration of Passive Solar Design	65
Figure 23: Rainwater Collection Process	
Figure 24: City of Denver Smart City Initiative Logo	76

List of Tables

Table 1: Max/Min Ratio and Load-Peak Offset for each building	. 20
Table 2: Seeley J. Mudd solar characteristics and demand reduction	. 22
Table 3: Ritchie solar characteristics and demand reduction	
Table 4: AAC solar characteristics and demand reduction	. 25
Table 5: Driscoll solar characteristics and demand reduction	. 26
Table 6: Shwayder solar characteristics and demand reduction	. 28
Table 7: Boettcher solar characteristics and demand reduction	. 29
Table 8: Sturm solar characteristics and demand reduction	. 31
Table 9: Knudson solar characteristics and demand reduction	. 32
Table 10: Frontier solar characteristics and demand reduction	. 34
Table 11: Ammi Hyde solar characteristics and demand reduction	. 35
Table 12: Central R/P solar characteristics and demand reduction	
Table 13: UTS solar characteristics and demand reduction	. 38
Table 14: Cherrington solar characteristics and demand reduction	. 40
Table 15: Fisher solar characteristics and demand reduction	. 41
Table 16: Mudd Monthly Usage and Demand with Respective Costs	. 43
Table 17: Mudd Monthly Costs with Applied Solar	. 43
Table 18: Ritchie Monthly Usage and Demand with Respective Costs	. 44
Table 19: Ritchie Monthly Costs with Applied Solar	. 44
Table 20: AAC Monthly Usage and Demand with Respective Costs	. 45
Table 21: AAC Monthly Costs with Applied Solar	
Table 22: Driscoll Monthly Usage and Demand with Respective Costs	. 46
Table 23: Driscoll Monthly Costs with Applied Solar	. 47
Table 24: Shwayder Monthly Usage and Demand with Respective Costs	. 47
Table 25: Shwayder Monthly Costs with Applied Solar	. 48
Table 26: Boettcher Monthly Usage and Demand with Respective Costs	. 49
Table 27: Boettcher Monthly Costs with Applied Solar	. 49
Table 28: Sturm Monthly Usage and Demand with Respective Costs	. 50
Table 29: Sturm Monthly Costs with Applied Solar	. 50
Table 30: Knudson Monthly Usage and Demand with Respective Costs	. 51
Table 31: Knudson Monthly Costs with Applied Solar	. 52
Table 32: Frontier Monthly Usage and Demand with Respective Costs	. 52
Table 33: Frontier Monthly Costs with Applied Solar	. 53
Table 34: Ammi Hyde Monthly Usage and Demand with Respective Costs	. 54
Table 35: Ammi Hyde Monthly Costs with Applied Solar	
Table 36: CR/P Monthly Usage and Demand with Respective Costs	. 55
Table 37: CR/P Monthly Costs with Applied Solar	
Table 38: UTS Monthly Usage and Demand with Respective Costs	. 56
Table 39: UTS Monthly Costs with Applied Solar	
Table 40: Cherrington Monthly Usage and Demand with Respective Costs	. 57
Table 41: Cherrington Monthly Costs with Applied Solar	. 58
Table 42: Fisher Monthly Usage and Demand with Respective Costs	. 59

Table 43: Fisher Monthly Costs with	Applied Solar	
Table 44: Summary of Costs Associa	ated with Solar Projects	

1 Background Research on Current Institutional Microgrids And Other Smart Campus Projects

1.1 Introduction of smart campus initiatives

Accelerating rapidly with technology previously unimagined, energy infrastructure within institutional campuses is becoming increasingly complex. Every institution - whether it be academic or not - is grasping every bit of innovation it can. Academic campuses everywhere are embracing many 'smart' technologies that enable them to accomplish various modernistic tasks.

Like many complex infrastructures, pieces of simple technological concepts are combined to create a larger system for solving larger problems. These *grand* problems are high-level challenges requiring large amounts of systematic solutions on a global scale. However, the problem is localized within a smaller footprint such as an academic campus. For example, the amount of carbon dioxide released into the atmosphere as a greenhouse gas is a global problem but can be localized and mitigated by a campus' sustainable energy projects. Across the globe, many institutions are joining the movement of offsetting their carbon footprint and environmental impact.

Institutional projects across the globe have many focuses around implementing modern technology for the betterment of the campus and community in which it resides. Additional to carbon and environment, institutions are addressing several other global challenges. Across several sample countries, 33 academic institutions were studied for their involvement in implementing 'smart campus' projects. The main problem focus of the campus' project was categorized into several global issues present in academic institutions including:

- Microgrid (Energy), CO2, Energy Storage
- Lighting
- Heating/Cooling
- Waste
- Water
- Transportation
- Health, Education
- Other Tech (IoT integration/open access

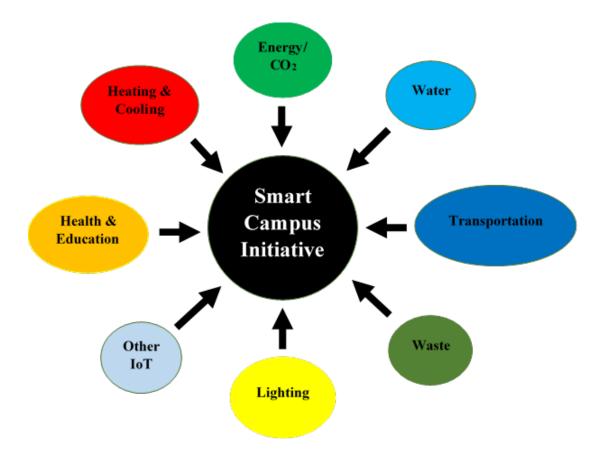


Figure 1: Smart Campus Initiative Components

Microgrid (Energy), CO2, or Energy Storage focused projects are centered around the development and installation of localized energy infrastructure or methods of sequestering CO2 related to energy consumption. Examples of this may include the instillation of rooftop photovoltaic arrays and batteries within campus buildings. Lighting focused projects are centered around the development and installation of smart lighting solutions. Examples of these projects may include installing efficient lights and control systems that reduce output during periods of ideal solar inclination. Heating/Cooling/HVAC centered projects are focused on the development and installation of systems that are efficient and offset energy usage related to

heating/cooling. Examples of these types of projects include heat recovery systems and cold sequestration.

Projects centered around waste are focused on the reduction and prevention of landfill waste. Projects in this category may include zero-waste campaigns and overhaul of all disposable consumables within campus events to be sustainable and compostable. Water is another major project focus. These projects look to reduce the overall consumption of freshwater and recycle rainwater where applicable. Transportation is a very popular project focus among institutions. Transportation projects vary widely but may contain sustainable mobility solutions, parking monitoring, single occupancy vehicle (SOV) incentives.

Social improvements such as education and health are another focus for campus projects. Some of these include healthy activity incentives and rewards for healthy study habits. All these project focuses generally use some sort of modern technology such as cloud services or IoT networks to implement the general concept but some projects using these do not fall into one of the categories and are considered separately in a category alone.

Projects centered around these topics may encompass multiple aspects of a few different focuses. However, none of the academic institution's campus initiatives include integration of smart technologies in *all* topics. As the DU Campus Framework Plan is implemented, smart technologies can be integrated in each category putting DU at the forefront at an all-encompassing 'Smart Campus.'

4

1.2 Overview of researched smart campus projects

1.2.1 Pertaining to Microgrid/Energy/Storage/CO2:

The Illinois Institute of Technology is one of the premier academic campuses with full-scale 'Smart Energy' development. Their 'Microgrid' project includes: smart switching, metering, dynamic building control, localized gas, wind, and photovoltaic (PV) generation with an overall objective of a 'Self-sustaining and technology-ready infrastructure." The project is funded by IIT and the DOE with a total \$12M investment. The projected savings include an annual savings of \$1.3M with an initial savings of \$5M resulting in a simple payback period of 5 years according to the project website. \$3.5M of the total project funding will included research in advanced distribution automation and recovery systems, buried cable fault detection and mitigation, intelligent system controllers, and advanced wireless communication systems [1].

The University of Genoa in Italy incorporates a similar concept of a microgrid with localized generation in their 'Smart Polygeneration Microgrid (SPM)' project with the addition of absorption chillers for increased efficiency of cooling large buildings. The project analysis concluded to have significant annual savings in terms of operating costs, CO₂ emissions, and source of primary energy use [2].

The University of Minnesota Morris integrates simpler approach to the smart technology category in their campus sustainability projects. The majority of their energy, heating, and cooling is derived from renewable energy sources such as installations of wind and biomass generation. Additionally, the campus swimming pool is heated by a solar array installation on the fitness center [3]. Energy diversity and localized microgrids on campus are some of the most substantial ways universities are contributing to the global sustainable energy movement but also providing significant energy security for the campus

1.2.2 Pertaining to Transportation:

The University of Twente in The Netherlands is implementing the use of eBikes on campus to provide sustainable transportation and analyze the transportation used around campus. The bikes are charged via PV charging stations and equipped with GPS for analysis on how they are used [4]. Ohio State university is implementing a similar project on campus [5].

The University of British Columbia has implemented a project to collect data on the usage of parking. The project enables the university to better understand on how parking is used and to better serve the campus community. By using occupancy sensors in over 8000 parking spaces, the university can monitor and adjust parking availability in real time to alert and funnel drivers to other locations across campus [6].

Texas A&M has one of the largest transportation oriented smart campus initiatives that looks to optimize the campus transportation ecosystem, provide greater mobility, improve safety, enhance connectivity, and offer a broader range of services. Some of the project's implementations include: automated vehicles, smart parking, smart intersections, ride sharing incentives, data gathering and analytics [7].

1.2.3 Pertaining to Waste:

The Technical University of Denmark has a few smart technology initiatives including one that focuses on waste service optimization. The project involves the

6

installation of sensors within waste receptacles across campus to determine if collection is necessary earlier or later than normally scheduled [8].

Arizona State University is striving for net zero waste events at their Sun Devil stadium [9].

1.2.4 Pertaining to Heating/Cooling:

Stanford University has implemented a large-scale smart campus initiative. The Stanford Energy System Innovations (SESI) group incorporates several smart technologies with a focus on heating/cooling. Part of the project showcases a heat recovery system which collects waste heat from buildings via chilled water loop to be reused in a centralized energy facility. The project reduces campus heating/cooling emissions by 68% from peak levels [10].

1.2.5 Pertaining to Lighting/Light Pollution:

The Illinois Institute of Technology's smart campus initiative includes an Intelligent Off-grid Street Lighting system. The project utilizes solar powered streetlights connected to a network. The project dramatically reduces energy use related to lighting by the replacement of costly lighting methods with efficient LEDs. Additionally, the network integration allows for the lights to provide feedback to the controller and only illuminated when needed to reduce light pollution [11].

The University of California Davis established the Smart Lighting Initiative to improve the quality and efficiency of both indoor and outdoor lighting on campus. The project includes the installation of over 1500 adaptive network connected lights which reduce the campus energy consumption related to lighting by 60%. Oakland University has implemented a similar project with a focus on research of lighting effectiveness [12].

1.2.6 Pertaining to Water:

Western Kentucky University has implemented a smart initiative focusing on water. Water is collected from rooftops and collected in three large cisterns. The water is used for irrigation of several campus gardens [13].

The University of Minnesota Morris recycles water from their cogeneration project which reduces the overall water consumption by 2M gallons per year [3].

1.2.7 Pertaining to Health/Wellness/Social Justice/Education:

Curtin University in Australia advances their smart campus initiative by installing numerous sensors to gather information on how students travel to campus and how they utilize parking among other goals such as facial recognition for keyless housing and course attendance [14].

Shanghai International Studies University has implemented an exercise promotion/tracking app to promote the health of visitors on campus. Patrons can enroll in an incentive program for exercise tracking and utilization of campus fitness facilities. The facilities are integrated with sensors that participants can "check-in" with and analyze their performance [15].

1.2.8 Pertaining to IoT:

Cornell University Energy Management and Control System (EMCS) collects steam, electricity, and chilled water data from nearly 200 locations around campus. The information is fed into the Utility Data System in order to perform various energy analyses. In addition, operators can interactively adjust more than 8,500 motorized fans, pumps, dampers, and valves at buildings throughout the campus based on optimization [16].

8

Georgia Institute of Technology has implemented a similar project with a living laboratory to collect energy utility systems across campus. Additional sensor networks collect weather data at several points around campus for analysis on energy use affects [17].

1.3 Determining the value of indirect consequences

During periods of electrical disconnect from the energy utility, the DU campus suffers dramatically. Backup generators are needed to supply power to emergency lighting and fire suppression systems. Primary lighting and HVAC systems are reduced or unable to operate. Often class is canceled, and productivity suffers. The most recent occurrence of widespread outage on campus was during the bomb cyclone storm in the spring of 2019. It was estimated that 90% of the campus was experiencing electrical outage at the worst point. The estimated average load for the campus before the outage was approximately 10 MW. The outage lasted for about 4 hours before buildings were being restored. The value of lost load (VOLL) for small commercial customers is estimated to be \$8,000/MWh [18]. Therefore, the estimated value of the loss from the storm is: 90% x 8MW x 4h x \$8,000/MWH = \$230,400. This is a high-level estimation based on indexes and estimated values but provides a good indication on the severity of widespread prolonged outage.

From previous research conducted the social cost of carbon (SCC) which refers to an estimated overall cost of the harmful effects of the emitted pollutant on society is estimated to be \$42 per ton and the abatement cost of carbon (ACC) which refers to an estimate of the expected cost of reducing emissions of a pollutant is roughly \$19 per ton. The average cost is then levelized to be (ACC + SCC)/2 = \$30 per ton. This number is

slightly higher of the widely accepted industry standard of \$22 - \$28 per ton. For purposes of this cost within this research, the best-case and worst-case-scenario will be considered in determining overall cost [19].

As the University enters a new era of modern IoT technology, it has the opportunity to apply this technology to monitor energy usage and dramatically reduce energy costs. By implementing a network that can monitor usage and potentially control the way energy is consumed, the university can reduce the overall cost by over 50% based on short-term and long-term net benefit internally and externally.

2 Current State of Energy Diversity on DU Campus

The University of Denver campus is substantially deficient in the way it self-produces energy as compared to other institutions of its size. The university does not have any localized generation and has only begun energy savings initiatives recently. The University Utility Reserve Fund was established in 2009 to reinvest remaining money from the annual utility budget into projects designed to save money on utility costs. The fund was initially seeded at \$1.9M and has evolved into a broader program today. Between 2009 and 2015 the fund helped implement projects related to system control, lighting, mechanical system, and energy savings upgrades to reduce over 500,000 kWh annually. In 2017 the fund was reassigned and rebranded the "Green Fund" to expand the availability to projects designed to reduce carbon footprint such as waste mitigation. Today the fund's projects are at an average of 2.33-year payback including a \$1.69M contribution to LEED goals for capital projects. Recent projects have produced over \$1M in incentive rebates by Xcel energy. The university has not been able to invest in renewable energy projects until just recently due to several challenges. The DU campus is unique in that most buildings are individually served by the utility and availability to secure funding for projects has been limited. Originally, the opportunities to build renewable generation on the campus involves purchasing the infrastructure outright which was costly. The board of trustees were reluctant to invest in projects with payback periods of less than 10 years. As renewable energy technologies are becoming

increasingly more affordable and more diverse in structure, the university has decided to reconsider renewable energy production on campus. Additionally, student advocacy groups such as Divest DU, helped pressure university executives to consider implementing programs that would terminate the university's dependency on fossil fuels. In negotiation, the university agreed to set sustainability goals as part of the "commitment to pioneering sustainability" in the long-term strategic plan DU IMAPCT 2025.

The university currently receives 100% of its energy through a commercial energy purchase tariff from Xcel Energy – Public Service of Colorado (PSCO). The tariff is standardized and used for rate setting and service agreements. Annually, the university spends over \$3M in electric service. In 2018 the university's electricity service bill was over \$3.9M. The largest electric cost is the Ritchie Athletic complex (\$650k+) which costs nearly three times the next largest load -- Ruffatto Hall (\$240k+). The average annual increase in electricity service cost over the last 10 years was 3.2%. To alleviate energy costs and achieve its sustainability goals, the university is participating in a Solar Photovoltaic (PV) installation with vendor Pivot Energy. The DU campus solar project is an integral part of incorporating renewable energy within the university long term plan. The project was conceived in October 2017 during the request for proposal (RFP) process collaborated with Colorado State University. Much of 2018 was spent reviewing proposals and negotiating final product. In December 2018 the final contract was signed for a 20-year power purchase agreement (PPA). The project consists of installing active photovoltaic panels (PV panels) on existing and currently under construction buildings throughout campus. A total of over 7,000 panels resulting in approximately 2.2 MW of capacity will be installed on 18 rooftops owned by the university. Desirably, the

12

university will have no up-front costs associated with the project¹ and will only be responsible for purchasing the produced output of the panels as described in the PPA. Pivot energy is the PPA provider and manages the ownership, financing, installation, and maintenance of the rooftop solar energy systems over the duration of the contract. It is estimated that the entire project will offset between 7% and 8% of the university's electricity use. Xcel Energy remains the utility service provider and continues to supply the remaining required electricity service. The agreement with Xcel energy does not include any net metering structure. Therefore, no excess energy will be 'sold' back to the utility grid. The university will then purchase the output of the panels, like the energy provided by Xcel. Additionally, the university will own 100% of the resulting renewable energy credits (RECs) generated by the solar system. The anticipated REC production will reduce the university carbon footprint by 3-4%. Producing and maintaining the university's own RECs was a key characteristic desired by the activist group Divest DU and will place the university at the forefront of such an achievement.

Only certain buildings owned and operated by the university were eligible candidates for rooftop solar based on location and engineering constraints. The eighteen buildings selected for the rooftop solar project include:

- Ritchie Athletic Center (Gates Field House & Joy Burns Arena)
- Anderson Academic Commons
- Driscoll South
- Shwayder Art Building

¹ DU Facilities made upgrades to several building roofs to accommodate solar installations

- Boettcher West
- Sturm Hall
- AOB Building
- Hampden Warehouse
- Knudson Hall
- Frontier Hall
- Ammi Hyde
- Central Receiving/Processing
- UTS Building
- Cherrington (SIE) Complex
- Seeley J Mudd Building
- Fisher Early Learning Center
- Diamond Family Residential Village²
- Pioneer Career Achievement Center³

As previously mentioned, the university is a major customer of Xcel Energy and consumes a significant amount of energy when compared to the overall size of the campus. To better monitor the energy usage of campus buildings, a pilot energy monitoring program was implemented which consisted of archiving energy bills in an online database to analyze energy use based on building and load pocket. Additionally, network connected meters were installed to monitor specific buildings' energy usage in

² Under construction to be completed 2020

³ Under construction to be completed 2020

real-time. Unfortunately, the installed real-time meters were sporadic in producing accurate data collection and provided limited insight to the campus energy consumption though they provide a general idea of consumption trends for a few buildings. Four buildings across the spectrum of size and type were analyzed using the meters for energy consumption in real-time: Olin Hall, Nagel Hall, Seely Mudd Science Building, and Daniels College of Business. Only one of these buildings, Seeley J Mudd Hall, will be part of the DU rooftop solar project and was the center of analysis for this project. A campus map illustrating the buildings with rooftop solar installations can be found in Appendix B.

2.1 Calculating Average Monthly Load Profile

2.1.1 Seeley J. Mudd

Seeley Mudd Science Building, 64,770 sq-ft, was constructed in 1982 and consists of classrooms and laboratories for the natural science school. Several months in 2018 of energy use data were extracted from the eGauge meters and compiled. The monthly data was then heat-mapped and analyzed for weekday and weekend/holiday load profile. The data from September 2018 can be found in Appendix A. The peak according to the data was approximately 271kW during the 14:00 hour on a weekday. The cumulative energy usage for the month was approximately 147,228kWh. The average load profile for the month can be found in Figure 1.

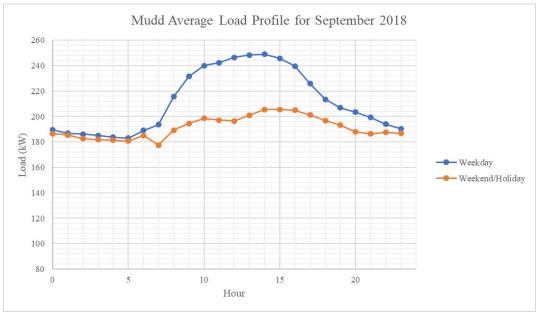


Figure 2: Mudd average load profile for September 2018

Average peak of weekday load is roughly 250kW and weekend load is roughly 205kW

2.1.2 Olin Hall

Olin Hall, 41,000 sq-ft, constructed in 1996 consists of classrooms and laboratories in the natural sciences school. Similarly, several months in 2018 of energy use data were extracted from the eGauge meters and compiled. The monthly data was then heat mapped and analyzed for weekday and weekend/holiday load profile. The data from September 2018 can be found in Appendix A. The peak according to the data was approximately 150kW during the 15:00 hour on a weekday. The cumulative energy usage for the month was approximately 48,320kWh. The average load profile for the month can be found in Figure 2.

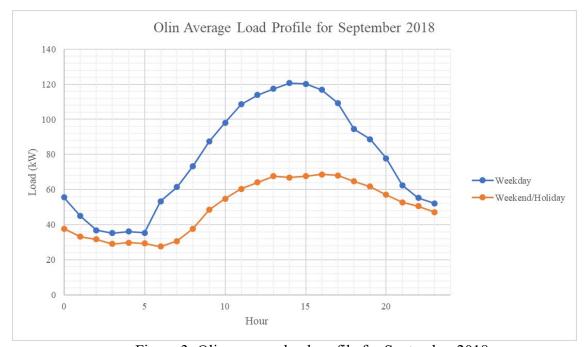


Figure 3: Olin average load profile for September 2018 Average peak of weekday load is roughly 120kW and weekend load is roughly 70kW.

2.1.3 Nagel Hall

Nagel Hall, 149,729 sq-ft, constructed in 2008 consists of housing for students and one of the major dining halls on campus. Nagel Hall is the university's only LEED Gold certified residence hall. Similarly, several months in 2018 of energy use data were extracted from the eGauge meters and compiled. The monthly data was then heat mapped and analyzed for weekday and weekend/holiday load profile. The data from September 2018 can be found in Appendix A. The peak according to the data was approximately 266kW during the 15:00 hour on a weekend. The cumulative energy usage for the month was approximately 172,500kWh. The average load profile for the month can be found in Figure 3.

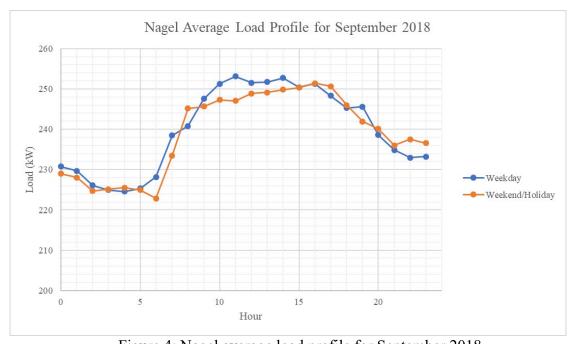


Figure 4: Nagel average load profile for September 2018 Average peak of weekday load is roughly 250kW and weekend load is also roughly

Average peak of weekday load is roughly 250kW and weekend load is also rough 250kW.

2.1.4 Daniels College of Business

Finally, Daniels College of Business, 110,536 sq-ft, constructed in 1999 consists of classrooms and offices for the Daniels College of Business. Similarly, several months in 2018 of energy use data were extracted from the eGauge meters and compiled. The monthly data was then heat mapped and analyzed for weekday and weekend/holiday load profile. The data from September 2018 can be found in Appendix A. The peak according to the data was approximately 370kW during the 17:00 hour on a weekday. The cumulative energy usage for the month was approximately 145,379kWh. The average load profile for the month can be found in Figure 3.

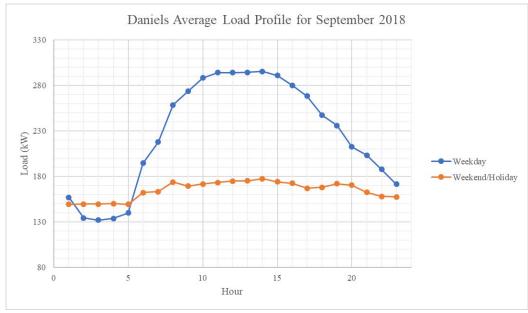


Figure 5: Daniels average load profile for September 2018

Average peak of weekday load is roughly 300kW and weekend load is roughly 175kW

2.1.5 Load Profile Discussion

Each building on campus possesses a unique load graph. Classroom oriented buildings such as Olin Hall have little to no load on weekends and peak in evening hours while others like Nagel Hall, which houses students, has almost the same weekend load as the week and may peak in morning hours. Each of these buildings studied for load profile was used to determine the effectiveness of the rooftop solar instillations on the selected buildings. Due to each building's unique load profile, the building's load profiles were analyzed and used to group the buildings in the solar project by load type.

First, each seasonal category (equinox, summer/winter solstice) load pattern was analyzed for midday load-peak offset and maximum-average load ratio. Midday loadpeak offset is the number of standard deviations represented by hours that the peak load occurs offset from the maximum solar altitude. Maximum/average load ratio is the maximum load divided by the average load for the represented category. Each of these values for the studied buildings can be found in Table 1.

	Olin			Negal			Daniels			Mudd		
	Max/Min Ratio	Max/Avg Ratio	Load-Peak Offset									
June	5.304	1.578	1	1.233	1.034	0	3.170	1.303	0	1.680	1.177	1
Sept	6.584	1.562	2	1.214	1.055	-1	3.062	1.319	0	1.620	1.174	0
Dec	1.930	1.193	-1	1.057	1.011	-2	2.853	1.350	-1	1.447	1.129	-1

Table 1: Max/Average Ratio and Load-Peak Offset for each building

This data was then used in estimating load shape for the buildings involved in the rooftop solar project based on building characteristic similarities.

2.2 Determining Effectiveness of Demand Reduction

2.2.1 Discussion on demand reduction

Actual demand Reduction is difficult to determine without knowing the average load profile for each month of every building due to variability in building characteristics between the applied load profiles.

2.2.2 Seeley J Mudd

Starting with Seeley J. Mudd, Pivot designed a rooftop PV system DC nameplate rated for 91.41 kW and an estimated annual production of 101.6 MWh. Mudd had a June peak of 291 kW during the 14:00 hour on the 27th day. Xcel energy's demand charge was \$22.95 per kW for the month of June resulting in \$6,678.45 of demand charge alone. The maximum PV system output for this hour is approximately 73.18 kW. For a best-case scenario analysis of PV demand reduction, the maximum PV system output is assumed to coincide with the month peak resulting in a theoretical new peak of 217 kW and a demand charge of \$4,987.58. A savings of roughly \$1,690.87 in demand charges alone. However, it is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand and the solar system would have to be outputting at maximum during the entire day to achieve total demand reduction. Therefore, analysis was conducted on the overall demand reduction by PV output based on load profile superimposed with anticipated solar output. The results can be found in Figure 5.

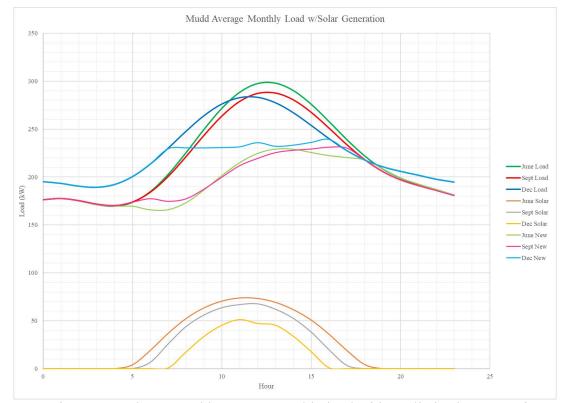


Figure 6: Seeley J. Mudd average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 229 kW. Assuming this will be the new monthly billed demand peak, the savings are only 62 kW instead of 73 kW. This results in a demand reduction ratio of 62/91 or roughly 68%. Demand reduction ratio is not to be confused by demand reduction divided by total billed demand. The same process was conducted for September and December months. In months other than the summer solstice such as September and December, the maximum solar output is reduced.

Therefore, the total demand reduction effectiveness is reduced also. Thus, the total derate was determined which represents the maximum expected solar output derated for the applied month superimposed on the billed demand for that month. The total derate ratio represents the determined demand savings divided by the absolute maximum solar output. The results can be found in Table 2.

Mu	ıdd	Load Shape	Mudd	Module DC Capacity (kW)		Performance Factor	80.6%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	291	173	0	228.991	62.009	84.16%	84.16%
September	281	173	0	231.247	49.753	73.59%	67.53%
December	278	192	-1	239.292	38.708	75.42%	52.54%

Table 2: Seeley J. Mudd solar characteristics and demand reduction

Using the load profile categories found in Table 2. Each rooftop solar building was analyzed using the same process as Mudd.

2.2.3 Ritchie Athletic Complex

Ritchie Athletic Complex has a designed rooftop solar system DC nameplate rated for 748.11 kW and an estimated annual production of 883.664 MWh. Ritchie had a June demand of 1,408 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Nagel to determine estimated demand reduction.

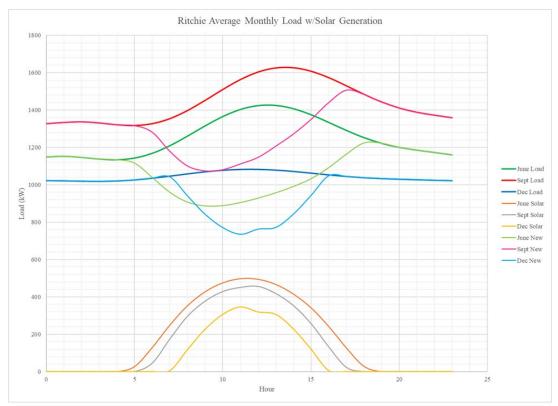


Figure 7: Ritchie average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 1,224 kW. Assuming this will be the new monthly billed demand peak, the savings are 1864 kW. This results in a demand reduction ratio of roughly 37.06%. The same process was conducted for September and December months. The results can be found in Table 3.

Rite	chie	Load Shape	Nagel	Module DC Capacity (kW)		Performance Factor	66.5%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	1408	1142	0	1223.639	184.361	37.06%	37.06%
September	1609	1326	1	1507.207	101.793	22.30%	20.46%
December	1079	1021	-1	1047.800	31.200	9.00%	6.27%

Table 3: Ritchie solar characteristics and demand reduction

2.2.4 Anderson Academic Commons

Anderson Academic Commons has a designed rooftop solar system DC nameplate rated for 189.09 kW and an estimated annual production of 269.0 MWh. Anderson had a June demand of 213 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Daniels to determine estimated demand reduction.

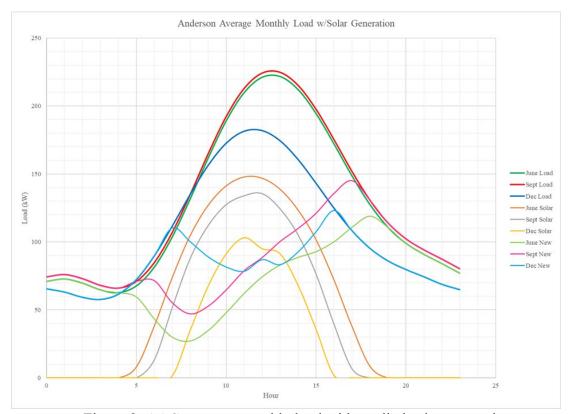


Figure 8: AAC average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 119 kW. Assuming this will be the new monthly billed demand peak, the savings are 94 kW. This results in a demand reduction

ratio of roughly 63.55%. The same process was conducted for September and December months. The results can be found in Table 4.

				Module DC		Performance	
Ande	erson	Load Shape	Daniels	Capacity (kW)	189.09	Factor	78.2%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	213	67	0	119.029	93.971	63.55%	63.55%
September	216	71	0	145.169	70.831	52.20%	47.90%
December	175	61	-1	123.203	51.797	50.28%	35.03%

Table 4: AAC solar characteristics and demand reduction

2.2.5 Driscoll South

Driscoll South has a designed rooftop solar system DC nameplate rated for 109.56 kW and an estimated annual production of 167.1 MWh. Driscoll had a June demand of 109 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Daniels to determine estimated demand reduction.

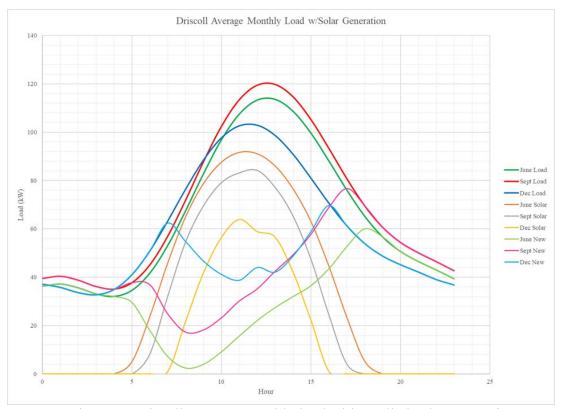


Figure 9: Driscoll average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 60 kW. Assuming this will be the new monthly billed demand peak, the savings are 49 kW. This results in a demand reduction ratio of roughly 53.44%. The same process was conducted for September and December months. The results can be found in Table 5.

				Module DC		Performance	
Dris	coll	Load Shape	Daniels	Capacity (kW)	109.56	Factor	83.7%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	109	34	0	59.991	49.009	53.44%	53.44%
September	115	38	0	76.703	38.297	45.51%	41.76%
December	99	35	-1	69.607	29.393	46.01%	32.05%

Table 5: Driscoll solar characteristics and demand reduction

2.2.6 Shwayder Art Building

Shwayder Art Building has a designed rooftop solar system DC nameplate rated for 54.87 kW and an estimated annual production of 78.5 MWh. Shwayder had a June demand of 53 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Daniels to determine actual demand reduction.

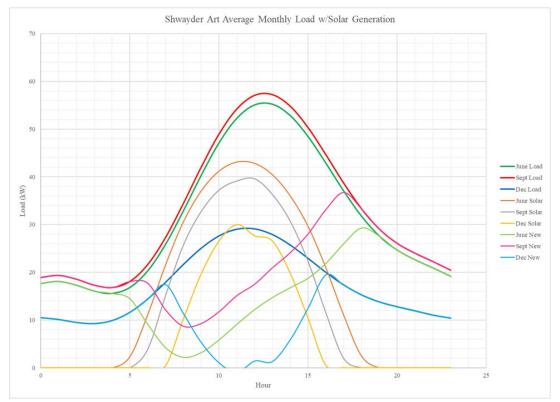


Figure 10: Shwayder average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 29 kW. Assuming this will be the new monthly billed demand peak, the savings are 24 kW. This results in a demand reduction

ratio of roughly 55.06%. The same process was conducted for September and December months. The results can be found in Table 6.

Shway	der Art	Load Shape	Daniels	Module DC Capacity (kW)		Performance Factor	78.6%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	53	17	0	29.254	23.746	55.06%	55.06%
September	55	18	0	36.717	18.283	46.19%	42.39%
December	28	10	-1	19.493	8.507	28.31%	19.72%

Table 6: Shwayder solar characteristics and demand reduction

2.2.7 Boettcher West

Boettcher West has a designed rooftop solar system DC nameplate rated for 154.77 kW and an estimated annual production of 234.1 MWh. Boettcher had a June demand of 130 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Daniels to determine estimated demand reduction.

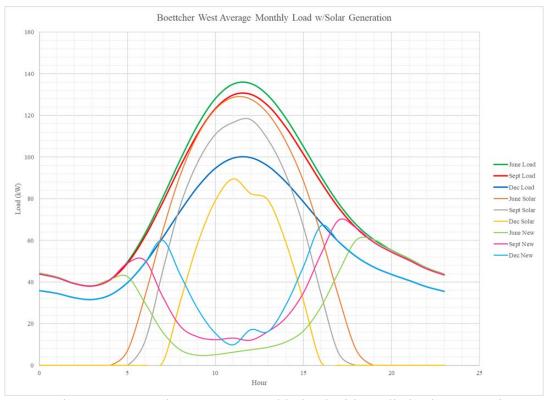


Figure 11: Boettcher average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 60 kW. Assuming this will be the new monthly billed demand peak, the savings are 70 kW. This results in a demand reduction ratio of roughly 54.09%. The same process was conducted for September and December months. The results can be found in Table 7.

				Module DC		Performance	
Boettcher West		Load Shape	Daniels	Capacity (kW)	154.77	Factor	83.1%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	130	41	-1	60.427	69.573	54.09%	54.09%
September	125	41	-1	69.843	55.157	46.73%	42.89%
December	96	34	-1	67.051	28.949	32.31%	22.51%

Table 7: Boettcher solar characteristics and demand reduction

2.2.8 Sturm Hall

Sturm Hall has a designed rooftop solar system DC nameplate rated for 116.16 kW and an estimated annual production of 172.2 MWh. Sturm had a June demand of 151 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Daniels to determine estimated demand reduction.

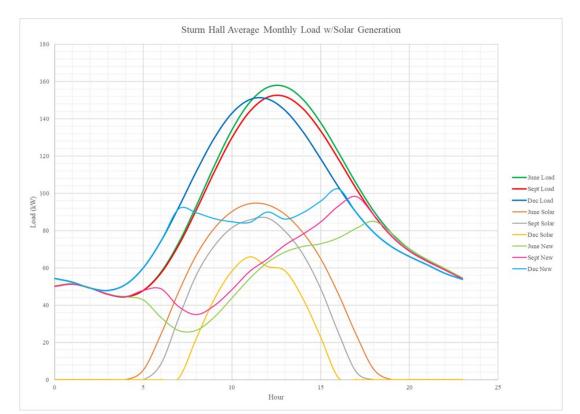


Figure 12: Sturm average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 85 kW. Assuming this will be the new monthly billed demand peak, the savings are 66 kW. This results in a demand reduction

ratio of roughly 69.83%. The same process was conducted for September and December months. The results can be found in Table 8.

Sturm	n Hall	Load Shape	Daniels	Module DC Capacity (kW)		Performance Factor	81.4%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	151	48	0	84.971	66.029	69.83%	69.83%
September	146	48	0	98.367	47.633	54.90%	50.38%
December	145	51	-1	102.397	42.603	64.68%	45.06%

Table 8: Sturm solar characteristics and demand reduction

2.2.9 Knudson Hall

Knudson Hall has a designed rooftop solar system DC nameplate rated for 26.4 kW and an estimated annual production of 40.1 MWh. Knudson had a June demand of 48 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Mudd to determine estimated demand reduction.

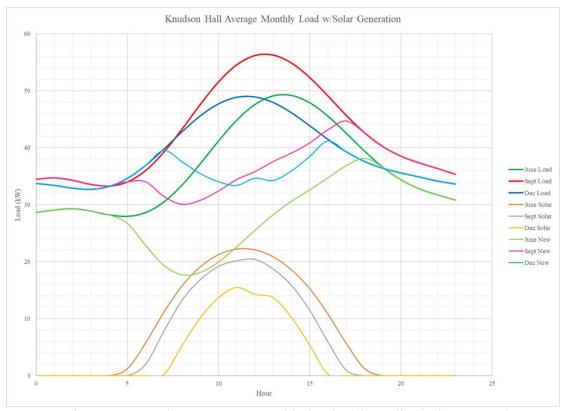


Figure 13: Knudson average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 38 kW. Assuming this will be the new monthly billed demand peak, the savings are 10 kW. This results in a demand reduction ratio of roughly 44.34%. The same process was conducted for September and December months. The results can be found in Table 9.

				Module DC		Performance	
Knuds	o n Hall	Load Shape	Mudd	Capacity (kW)	26.4	Factor	84.1%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	48	29	1	38.156	9.844	44.34%	44.34%
September	55	34	0	44.717	10.283	50.47%	46.31%
December	48	33	-1	41.210	6.790	43.90%	30.58%

Table 9: Knudson solar characteristics and demand reduction

2.2.10 Frontier Hall

Frontier Hall has a designed rooftop solar system DC nameplate rated for 56.76 kW and an estimated annual production of 76.4 MWh. Frontier had a June demand of 115 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Daniels to determine estimated demand reduction.

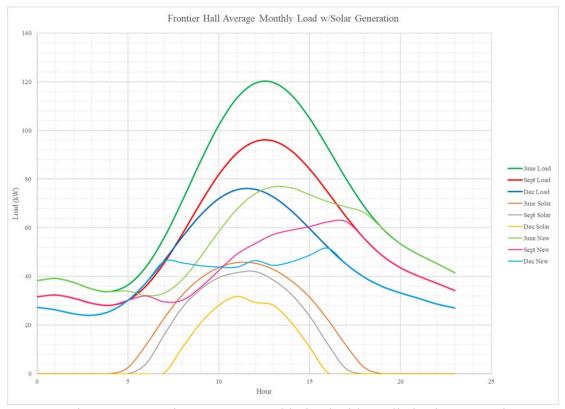


Figure 14: Frontier average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 77 kW. Assuming this will be the new monthly billed demand peak, the savings are 38 kW. This results in a demand reduction

ratio of roughly 83.43%. The same process was conducted for September and December months. The results can be found below.

Fronti	er Hall	Load Shape	Daniels	Module DC Capacity (kW)		Performance Factor	80.6%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	115	36	0	76.834	38.166	83.43%	83.43%
September	92	30	0	62.609	29.391	70.01%	64.24%
. December	73	26	-1	51.572	21.428	67.23%	46.84%

Table 10: Frontier solar characteristics and demand reduction

2.2.11 Ammi Hyde

Ammi Hyde has a designed rooftop solar system DC nameplate rated for 33 kW and an estimated annual production of 49.4 MWh. Ammi had a June demand of 93 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Mudd to determine estimated demand reduction.

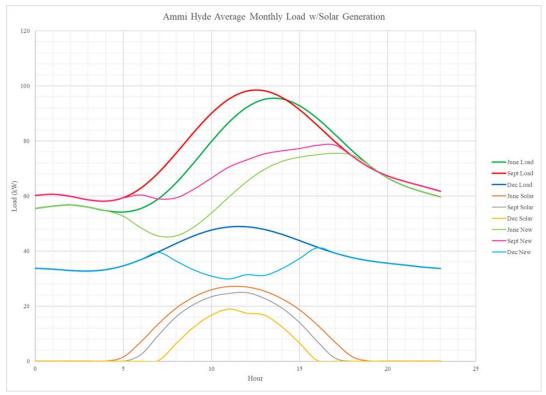


Figure 15: Ammi Hyde average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 76 kW. Assuming this will be the new monthly billed demand peak, the savings are 17 kW. This results in a demand reduction ratio of roughly 64.42%. The same process was conducted for September and December months. The results can be found in Table 11.

A must Hardo				Module DC		Performance	
Ammi Hyde		Load Shape	Mudd	Capacity (kW)	33	Factor	82.3%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	93	55	1	75.504	17.496	64.42%	64.42%
September	96	59	0	78.575	17.425	69.91%	64.16%
December	48	33	-1	41.154	6.846	36.18%	25.21%

Table 11: Ammi Hyde solar characteristics and demand reduction

2.2.12 Central Receiving & Purchasing

Central Receiving & Purchasing has a designed rooftop solar system DC nameplate rated for 26.4 kW and an estimated annual production of 26.4 MWh. Central R/P had a June demand of 24 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Mudd to determine estimated demand reduction.

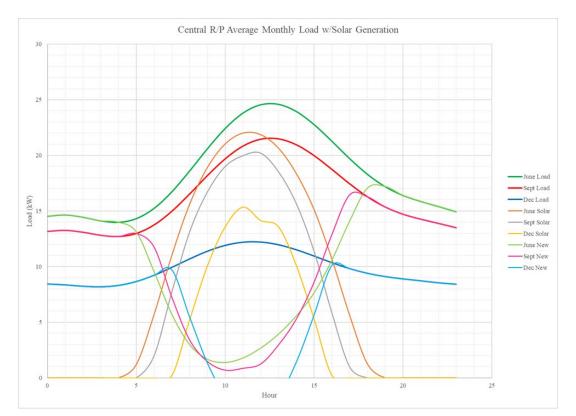


Figure 16: C R/P average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 17 kW. Assuming this will be the new

monthly billed demand peak, the savings are 7 kW. This results in a demand reduction ratio of roughly 30.93%. The same process was conducted for September and December months. The results can be found below.

				Module DC		Performance	
Centra	al R/P	Load Shape	Mudd	Capacity (kW)	26.4	Factor	83.4%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	24	14	0	17.191	6.809	30.93%	30.93%
September	21	13	0	16.463	4.537	22.46%	20.61%
December	12	8	-1	10.117	1.883	12.28%	8.55%

Table 12: Central R/P solar characteristics and demand reduction

2.2.13 University Technology Services

University Technology Services has a designed rooftop solar system DC nameplate rated for 26.4 kW and an estimated annual production of 40.2 MWh. UTS had a June demand of 200 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Nagel to determine estimated demand reduction.

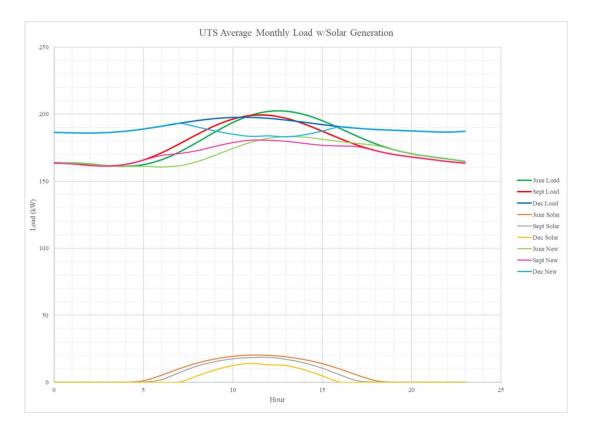


Figure 17: UTS average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 183 kW. Assuming this will be the new monthly billed demand peak, the savings are 17 kW. This results in a demand reduction ratio of roughly 68.77%. The same process was conducted for September and December months. The results can be found below.

				Module DC		Performance	
UTS		Load Shape	Nagel	Capacity (kW)	26.4	Factor	76.5%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	200	162	0	183.332	16.668	82.53%	82.53%
September	197	162	-1	180.644	16.356	88.25%	80.99%
December	197	186	-2	193.086	3.914	27.82%	19.38%

Table 13: UTS solar characteristics and demand reduction

2.2.14 Cherrington (SIE) Complex

Cherrington (SIE) Complex has a designed rooftop solar system DC nameplate rated for 41.25 kW and an estimated annual production of 61.0 MWh. SIE had a June demand of 177 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Mudd to determine estimated demand reduction.

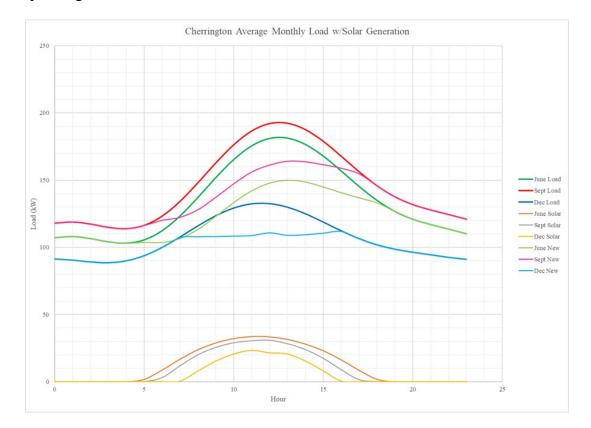


Figure 18: Cherrington average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 150 kW. Assuming this will be the new monthly billed demand peak, the savings are 27 kW. This results in a demand reduction

ratio of roughly 80.93%. The same process was conducted for September and December months. The results can be found below.

Cherr	ington	Load Shape	Mudd	Module DC Capacity (kW)		Performance Factor	81.4%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	177	105	0	149.826	27.174	80.93%	80.93%
September	188	116	0	164.100	23.900	77.56%	71.18%
December	130	90	-1	111.909	18.091	77.34%	53.88%

Table 14: Cherrington solar characteristics and demand reduction

2.2.15 Fisher Early Learning Center

Fisher Early Learning Center has a designed rooftop solar system DC nameplate rated for 19.8 kW and an estimated annual production of 28.6 MWh. Fisher had a June demand of 78 kW. It is unlikely that the PV system will be operating at maximum output during the billed peak monthly demand. Therefore, similar analysis was conducted on the overall demand reduction by superimposing anticipated PV output with estimated load profile shape categorized like Daniels to determine estimated demand reduction.

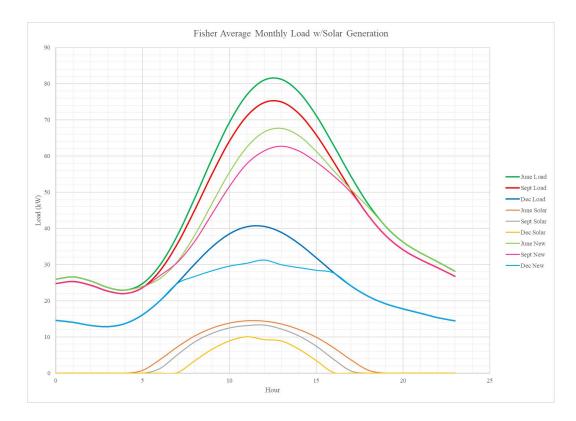


Figure 19: Fisher average monthly load with applied solar generation

Based on the load peak not occurring simultaneously with maximum solar output, the new anticipated peak billed demand is roughly 68 kW. Assuming this will be the new monthly billed demand peak, the savings are 10 kW. This results in a demand reduction ratio of roughly 71.52%. The same process was conducted for September and December months. The results can be found below.

				Module DC		Performance	
Fis	her	Load Shape	Daniels	Capacity (kW)	19.8	Factor	73.1%
	Peak			Peak Load			
	Demand	Minimum	Load-Offset	with Solar	Demand	Load-Offset	Total
	(kW)	Demand (kW)	(Hours)	(kW)	Savings (kW)	Ratio	Derate
June	78	25	0	67.648	10.352	71.52%	71.52%
September	72	24	0	62.755	9.245	69.60%	63.87%
December	39	14	-1	31.238	7.762	76.98%	53.63%

Table 15: Fisher solar characteristics and demand reduction

2.3 Determining Economic Viability of Solar Installations

To analyze the economic benefit of each rooftop solar project. The annual electricity costs were compiled then compared to the cost analysis with the solar instillation.

2.3.1 Discussion on energy rates

The energy produced by the solar project for each building is purchased at \$84.50 per MWh or \$0.0845 per kWh. The energy cost per Xcel Energy's tariff is approximately \$0.03542 per kWh depending on rider charges and quarterly changes. The energy cost for the solar output is thus double the cost of purchasing it from Xcel. However, the tariff also charges for demand where the rate is dependent on summer/wintertime timing and also rider charges and quarterly changes. The summertime demand charge is roughly \$22.95 per kW and occurs June thru September. The wintertime demand charge is roughly \$18.75 and occurs October thru May. In order for the rooftop solar to be economically beneficial, the demand savings must be greater than the increase in usage cost.

First, each PV eligible building's electric service bill of 2018 was compiled to determine monthly cost based on demand and usage. Next, the estimated daily load profile determined by the buildings analyzed with real-time eGauge meters was superimposed with the estimated solar output for each month.

2.3.2 Seeley J. Mudd

			See	ley J Mu	dd Hall			
		Billed						
		Demand	Usage	Demand	Total			Average
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh
Jan-18	147,262	227	\$5,216.02	\$4,256.25	\$10,052.29	\$0.035420	\$18.75	\$0.06826
Feb-18	151,306	274	\$5,359.26	\$5,137.50	\$10,197.10	\$0.035420	\$18.75	\$0.06739
Mar-18	147,764	261	\$5,233.80	\$4,893.75	\$9,856.36	\$0.035420	\$18.75	\$0.06670
Apr-18	136,586	266	\$4,837.88	\$4,987.50	\$9,789.39	\$0.035420	\$18.75	\$0.07167
May-18	147,488	268	\$5,224.02	\$5,025.00	\$10,427.61	\$0.035420	\$18.75	\$0.07070
Jun-18	160,216	291	\$5,674.85	\$6,678.45	\$12,062.63	\$0.035420	\$22.95	\$0.07529
Jul-18	152,163	307	\$5,389.61	\$7,045.65	\$11,796.09	\$0.035420	\$22.95	\$0.07752
Aug-18	149,297	273	\$5,288.10	\$6,265.35	\$10,867.39	\$0.035420	\$22.95	\$0.07279
Sep-18	147,227	281	\$5,214.78	\$6,448.95	\$11,061.44	\$0.035420	\$22.95	\$0.07513
Oct-18	152,122	284	\$5,388.16	\$5,325.00	\$11,067.02	\$0.035420	\$18.75	\$0.07275
Nov-18	151,262	269	\$5,357.70	\$5,043.75	\$10,889.04	\$0.035420	\$18.75	\$0.07199
Dec-18	167,998	278	\$5,950.49	\$5,212.50	\$11,835.31	\$0.035420	\$18.75	\$0.07045
Total	1,810,691	307	\$64,134.68	\$66,319.65	\$129,901.67			\$0.07174

Table 16: Mudd Monthly Usage and Demand with Respective Costs

Seeley J. Mudd had an annual average electricity cost of \$0.07174 per kWh. Though this is lower than the cost of the solar energy, the demand reduction savings exceeded the increase in usage costs resulting in net annual savings.

	Seeley J Mudd Hall with Solar													
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipated	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	7,926	28.16%	20.75	52.54%	38.71	139,336	188	\$669.72	\$4,935.29	\$5,605.01	\$388.99	\$3,530.47	\$725.78	\$336.78
Feb-18	8,586	30.51%	22.48	67.53%	49.75	142,720	224	\$725.53	\$5,055.14	\$5,780.67	\$421.41	\$4,204.64	\$932.86	\$511.45
Mar-18	12,549	44.58%	32.85	67.53%	49.75	135,215	211	\$1,060.40	\$4,789.31	\$5,849.71	\$615.91	\$3,960.89	\$932.86	\$316.96
Apr-18	11,889	42.24%	31.12	67.53%	49.75	124,697	216	\$1,004.59	\$4,416.78	\$5,421.37	\$583.49	\$4,054.64	\$932.86	\$349.37
May-18	14,993	53.27%	39.25	84.16%	62.01	132,495	206	\$1,266.89	\$4,692.98	\$5,959.87	\$735.85	\$3,862.33	\$1,162.67	\$426.83
Jun-18	15,191	44.09%	32.49	84.16%	62.01	145,025	229	\$1,283.64	\$5,136.79	\$6,420.42	\$745.57	\$5,255.34	\$1,423.11	\$677.54
Jul-18	14,530	42.18%	31.07	84.16%	62.01	137,633	245	\$1,227.83	\$4,874.94	\$6,102.77	\$713.16	\$5,622.54	\$1,423.11	\$709.96
Aug-18	13,540	39.30%	28.96	67.53%	49.75	135,757	223	\$1,144.11	\$4,808.52	\$5,952.63	\$664.53	\$5,123.52	\$1,141.83	\$477.29
Sep-18	11,889	34.51%	25.42	67.53%	49.75	135,338	231	\$1,004.59	\$4,793.69	\$5,798.27	\$583.49	\$5,307.12	\$1,141.83	\$558.33
Oct-18	9,907	35.20%	25.93	67.53%	49.75	142,215	234	\$837.15	\$5,037.25	\$5,874.40	\$486.24	\$4,392.14	\$932.86	\$446.62
Nov-18	6,737	23.93%	17.63	52.54%	38.71	144,525	230	\$569.27	\$5,119.08	\$5,688.35	\$330.65	\$4,317.97	\$725.78	\$395.13
Dec-18	6,473	23.00%	16.94	52.54%	38.71	161,525	239	\$546.94	\$5,721.23	\$6,268.17	\$317.68	\$4,486.72	\$725.78	\$408.10
Total	134,209		39		62	1,676,482	245	\$11,340.65	\$59,381.00	\$70,721.65	\$6,586.97	\$54,118.31	\$12,201.34	\$5,614.37

Table 17: Mudd Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 32.49 kW to save enough money to offset the \$745.57 increase in usage charges for the month of June. Due to the primarily daytime load profile, the solar is effective in reducing demand over the entire year resulting in a total annual net savings of

approximately \$5,614.37.

2.3.3 Ritchie Athletic Complex

	Ritchie													
		Billed												
		Demand	Usage	Demand	Total			Average						
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh						
Jan-18	634,606	1,511	\$22,477.74	\$28,331.25	\$51,891.66	\$0.035420	\$18.75	\$0.08177						
Feb-18	658,409	1,508	\$23,320.85	\$28,275.00	\$52,646.22	\$0.035420	\$18.75	\$0.07996						
Mar-18	710,315	1,528	\$25,159.36	\$28,650.00	\$55,188.91	\$0.035420	\$18.75	\$0.07770						
Apr-18	633,271	1,293	\$22,430.46	\$24,243.75	\$48,695.61	\$0.035420	\$18.75	\$0.07690						
May-18	705,489	1,499	\$24,988.42	\$28,106.25	\$56,182.82	\$0.035420	\$18.75	\$0.07964						
Jun-18	813,938	1,408	\$28,829.68	\$32,313.60	\$61,401.22	\$0.035420	\$22.95	\$0.07544						
Jul-18	719,060	1,689	\$25,469.11	\$38,762.55	\$62,721.96	\$0.035420	\$22.95	\$0.08723						
Aug-18	694,949	1,577	\$24,615.09	\$36,192.15	\$59,280.56	\$0.035420	\$22.95	\$0.08530						
Sep-18	678,499	1,609	\$24,032.43	\$36,926.55	\$59,477.25	\$0.035420	\$22.95	\$0.08766						
Oct-18	669,384	1,452	\$23,709.58	\$27,225.00	\$56,002.27	\$0.035420	\$18.75	\$0.08366						
Nov-18	622,762	1,426	\$22,058.23	\$26,737.50	\$53,536.35	\$0.035420	\$18.75	\$0.08597						
Dec-18	630,545	1,079	\$22,333.90	\$20,231.25	\$47,240.22	\$0.035420	\$18.75	\$0.07492						
Total	8,171,227	1,689	\$289,424.86	\$355,994.85	\$664,265.05			\$0.08129						

Table 18: Ritchie Monthly Usage and Demand with Respective Costs

The Ritchie Athletic Complex had an annual average electricity cost of \$0.08129 per kWh. The demand reduction savings do not exceed the increase in usage costs resulting in an anticipated increase in electricity costs.

	$\mathbf{D}^{*}(\mathbf{k}^{*}) = \mathbf{d}^{*}(\mathbf{k}^{*})$													I
	Ritchie with Solar													
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipated	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	53,020	27.90%	138.78	6.27%	31.20	581,586	1,480	\$4,480.18	\$20,599.78	\$25,079.96	\$2,602.21	\$27,746.26	\$584.99	-\$2,017.22
Feb-18	55,671	29.29%	145.72	20.46%	101.79	602,738	1,406	\$4,704.19	\$21,348.99	\$26,053.17	\$2,732.32	\$26,366.39	\$1,908.61	-\$823.71
Mar-18	79,530	41.85%	208.18	20.46%	101.79	630,785	1,426	\$6,720.27	\$22,342.41	\$29,062.68	\$3,903.32	\$26,741.39	\$1,908.61	-\$1,994.71
Apr-18	70,693	37.20%	185.05	20.46%	101.79	562,578	1,191	\$5,973.57	\$19,926.51	\$25,900.08	\$3,469.62	\$22,335.14	\$1,908.61	-\$1,561.01
May-18	94,552	49.75%	247.50	37.06%	184.36	610,937	1,315	\$7,989.65	\$21,639.39	\$29,629.04	\$4,640.61	\$24,649.49	\$3,456.76	-\$1,183.85
Jun-18	97,203	41.78%	207.87	37.06%	184.36	716,735	1,224	\$8,213.66	\$25,386.75	\$33,600.41	\$4,770.73	\$28,082.52	\$4,231.08	-\$539.65
Jul-18	95,436	41.02%	204.10	37.06%	184.36	623,624	1,505	\$8,064.32	\$22,088.77	\$30,153.09	\$4,683.99	\$34,531.47	\$4,231.08	-\$452.91
Aug-18	88,366	37.99%	188.98	20.46%	101.79	606,583	1,475	\$7,466.96	\$21,485.16	\$28,952.12	\$4,337.02	\$33,856.01	\$2,336.14	-\$2,000.88
Sep-18	83,948	36.09%	179.53	20.46%	101.79	594,551	1,507	\$7,093.61	\$21,058.99	\$28,152.61	\$4,120.17	\$34,590.41	\$2,336.14	-\$1,784.03
Oct-18	70,693	37.20%	185.05	20.46%	101.79	598,691	1,350	\$5,973.57	\$21,205.63	\$27,179.20	\$3,469.62	\$25,316.39	\$1,908.61	-\$1,561.01
Nov-18	50,369	26.50%	131.85	6.27%	31.20	572,393	1,395	\$4,256.17	\$20,274.17	\$24,530.33	\$2,472.10	\$26,152.51	\$584.99	-\$1,887.11
Dec-18	44,183	23.25%	115.65	6.27%	31.20	586,362	1,048	\$3,733.48	\$20,768.93	\$24,502.42	\$2,168.51	\$19,646.26	\$584.99	-\$1,583.52
Total	883,664		247		184	7,287,563	1,507	\$74,669.61	\$258,125.48	\$332,795.09	\$43,370.23	\$330,014.22	\$25,980.63	-\$17,389.60

Table 19: Ritchie Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 207.87 kW to save enough money to offset the \$4,770.73 increase in usage charges for the month of June. Due to the anticipated relatively flat load profile, the solar is less effective in reducing demand resulting in a total annual net increase of \$17,389.60.

2.3.4 Anderson Academic Commons

	Anderson Academic Commons													
		Billed												
		Demand	Usage	Demand	Total			Average						
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh						
Jan-18	73,468	200	\$2,602.24	\$3,750.00	\$6,539.65	\$0.035420	\$18.75	\$0.08901						
Feb-18	74,365	194	\$2,634.01	\$3,637.50	\$6,450.64	\$0.035420	\$18.75	\$0.08674						
Mar-18	77,631	192	\$2,749.69	\$3,600.00	\$6,562.70	\$0.035420	\$18.75	\$0.08454						
Apr-18	75,941	191	\$2,689.83	\$3,581.25	\$6,586.45	\$0.035420	\$18.75	\$0.08673						
May-18	90,925	271	\$3,220.56	\$5,081.25	\$8,861.66	\$0.035420	\$18.75	\$0.09746						
Jun-18	93,296	213	\$3,304.54	\$4,888.35	\$8,270.39	\$0.035420	\$22.95	\$0.08865						
Jul-18	86,180	210	\$3,052.50	\$4,819.50	\$7,724.35	\$0.035420	\$22.95	\$0.08963						
Aug-18	86,001	202	\$3,046.16	\$4,635.90	\$7,525.78	\$0.035420	\$22.95	\$0.08751						
Sep-18	81,470	216	\$2,885.67	\$4,957.20	\$7,689.85	\$0.035420	\$22.95	\$0.09439						
Oct-18	76,426	193	\$2,707.01	\$3,618.75	\$6,943.53	\$0.035420	\$18.75	\$0.09085						
Nov-18	72,719	188	\$2,575.71	\$3,525.00	\$6,691.54	\$0.035420	\$18.75	\$0.09202						
Dec-18	72,234	175	\$2,558.53	\$3,281.25	\$6,421.44	\$0.035420	\$18.75	\$0.08890						
Total	960,656	271	\$34,026.44	\$49,375.95	\$86,267.98			\$0.08980						

Table 20: AAC Monthly Usage and Demand with Respective Costs

Anderson Academic Commons had an annual average electricity cost of \$0.0898 per kWh. Fortunately, this is higher than the cost of the solar energy. The demand reduction savings exceeded the increase in usage costs resulting in net annual savings.

Table 21: AAC Monthly	Costs with	n Applied Solar

	Anderson Academic Commons with Solar													
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	14,384	25.46%	37.65	35.03%	51.80	59,084	148	\$1,215.49	\$2,092.74	\$3,308.22	\$705.99	\$2,778.80	\$971.20	\$265.21
Feb-18	15,692	27.78%	41.08	47.90%	70.83	58,673	123	\$1,325.98	\$2,078.19	\$3,404.18	\$770.17	\$2,309.42	\$1,328.08	\$557.91
Mar-18	25,500	45.14%	66.75	47.90%	70.83	52,131	121	\$2,154.72	\$1,846.49	\$4,001.21	\$1,251.52	\$2,271.92	\$1,328.08	\$76.56
Apr-18	23,538	41.67%	61.61	47.90%	70.83	52,403	120	\$1,988.98	\$1,856.11	\$3,845.08	\$1,155.25	\$2,253.17	\$1,328.08	\$172.83
May-18	30,077	53.24%	78.73	63.55%	93.97	60,848	177	\$2,541.47	\$2,155.25	\$4,696.72	\$1,476.16	\$3,319.29	\$1,761.96	\$285.81
Jun-18	32,038	46.34%	68.52	63.55%	93.97	61,258	119	\$2,707.22	\$2,169.76	\$4,876.97	\$1,572.43	\$2,731.71	\$2,156.64	\$584.22
Jul-18	29,684	42.93%	63.48	63.55%	93.97	56,496	116	\$2,508.32	\$2,001.08	\$4,509.40	\$1,456.90	\$2,662.86	\$2,156.64	\$699.74
Aug-18	27,461	39.72%	58.73	47.90%	70.83	58,540	131	\$2,320.47	\$2,073.48	\$4,393.95	\$1,347.80	\$3,010.33	\$1,625.57	\$277.78
Sep-18	24,846	35.93%	53.13	47.90%	70.83	56,624	145	\$2,099.47	\$2,005.63	\$4,105.10	\$1,219.43	\$3,331.63	\$1,625.57	\$406.14
Oct-18	19,615	34.72%	51.34	47.90%	70.83	56,811	122	\$1,657.48	\$2,012.24	\$3,669.72	\$962.71	\$2,290.67	\$1,328.08	\$365.37
Nov-18	13,731	24.31%	35.94	35.03%	51.80	58,988	136	\$1,160.24	\$2,089.37	\$3,249.60	\$673.90	\$2,553.80	\$971.20	\$297.30
Dec-18	12,423	21.99%	32.52	35.03%	51.80	59,811	123	\$1,049.74	\$2,118.51	\$3,168.25	\$609.72	\$2,310.05	\$971.20	\$361.48
Total	268,989		79		94	691,667	177	\$22,729.57	\$24,498.84	\$47,228.42	\$13,201.98	\$31,823.62	\$17,552.33	\$4,350.35

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 68.52 kW to save enough money to offset the \$1,572.43 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is effective in reducing demand over the entire year resulting in a total annual net savings of approximately \$4,350.35.

2.3.5 Driscoll South

	Driscoll South													
		Billed												
		Demand	Usage	Demand	Total			Average						
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh						
Jan-18	32,640	99	\$1,156.11	\$1,856.25	\$3,127.89	\$0.035420	\$18.75	\$0.09583						
Feb-18	35,680	102	\$1,263.79	\$1,912.50	\$3,291.74	\$0.035420	\$18.75	\$0.09226						
Mar-18	36,160	104	\$1,280.79	\$1,950.00	\$3,380.59	\$0.035420	\$18.75	\$0.09349						
Apr-18	38,880	102	\$1,377.13	\$1,912.50	\$3,468.19	\$0.035420	\$18.75	\$0.08920						
May-18	37,440	106	\$1,326.12	\$1,987.50	\$3,647.16	\$0.035420	\$18.75	\$0.09741						
Jun-18	46,080	109	\$1,632.15	\$2,501.55	\$4,153.15	\$0.035420	\$22.95	\$0.09013						
Jul-18	41,600	107	\$1,473.47	\$2,455.65	\$3,876.70	\$0.035420	\$22.95	\$0.09319						
Aug-18	4 0,640	1,144	\$1,439.47	- \$26,254.80	\$27,479.60	\$0.035420	\$22.95	\$0.67617						
Sep-18	46,720	115	\$1,654.82	\$2,639.25	\$4,216.56	\$0.035420	\$22.95	\$0.09025						
Oct-18	37,760	102	\$1,337.46	\$1,912.50	\$3,574.76	\$0.035420	\$18.75	\$0.09467						
Nov-18	38,720	96	\$1,371.46	\$1,800.00	\$3,500.95	\$0.035420	\$18.75	\$0.09042						
Dec-18	38,400	99	\$1,360.13	\$1,856.25	\$3,542.67	\$0.035420	\$18.75	\$0.09226						
Total	476,800	115	\$16,888.26	\$25,423.20	\$43,996.92			\$0.09228						

Table 22: Driscoll Monthly Usage and Demand with Respective Costs

Driscoll South had an annual average electricity cost of \$0.09228 per kWh.

Fortunately, this is higher than the cost of the solar energy. The demand reduction

savings exceeded the increase in usage costs resulting in net annual savings.

	Driscoll South with Solar													
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	9,453	26.98%	24.74	32.05%	29.39	23,187	70	\$798.78	\$821.28	\$1,620.06	\$463.95	\$1,305.13	\$551.12	\$87.17
Feb-18	9,926	28.33%	25.98	41.76%	38.30	25,754	64	\$838.72	\$912.22	\$1,750.94	\$487.15	\$1,194.44	\$718.06	\$230.91
Mar-18	15,125	43.17%	39.59	41.76%	38.30	21,035	66	\$1,278.04	\$745.07	\$2,023.11	\$742.32	\$1,231.94	\$718.06	-\$24.26
Apr-18	14,179	40.47%	37.12	41.76%	38.30	24,701	64	\$1,198.16	\$874.89	\$2,073.06	\$695.93	\$1,194.44	\$718.06	\$22.13
May-18	18,433	52.62%	48.25	53.44%	49.01	19,007	57	\$1,557.61	\$673.22	\$2,230.83	\$904.71	\$1,068.59	\$918.91	\$14.21
Jun-18	19,379	45.19%	41.44	53.44%	49.01	26,701	60	\$1,637.49	\$945.76	\$2,583.26	\$951.10	\$1,376.80	\$1,124.75	\$173.65
Jul-18	18,906	44.09%	40.43	53.44%	49.01	22,694	58	\$1,597.55	\$803.82	\$2,401.38	\$927.90	\$1,330.90	\$1,124.75	\$196.85
Aug-18	18,717	43.65%	40.03	41.76%	38.30	21,923	77	\$1,581.58	\$776.52	\$2,358.09	\$918.63	\$1,760.34	\$878.91	-\$39.72
Sep-18	15,125	35.27%	32.35	41.76%	38.30	31,595	77	\$1,278.04	\$1,119.10	\$2,397.15	\$742.32	\$1,760.34	\$878.91	\$136.59
Oct-18	11,816	33.73%	30.93	41.76%	38.30	25,944	64	\$998.47	\$918.93	\$1,917.40	\$579.94	\$1,194.44	\$718.06	\$138.12
Nov-18	8,508	24.28%	22.27	32.05%	29.39	30,212	67	\$718.90	\$1,070.12	\$1,789.02	\$417.56	\$1,248.88	\$551.12	\$133.56
Dec-18	7,562	21.59%	19.80	32.05%	29.39	30,838	70	\$639.02	\$1,092.27	\$1,731.29	\$371.16	\$1,305.13	\$551.12	\$179.96
Total	167,129		48		49	303,591	77	\$14,122.37	\$10,753.21	\$24,875.58	\$8,202.67	\$15,971.36	\$9,451.84	\$1,249.17

Table 23: Driscoll Monthly	Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 41.44 kW to save enough money to offset the \$951.10 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is effective in reducing demand for most of the year resulting in a total annual net savings of approximately \$1,249.17.

2.3.6 Shwayder Art

	Shwayder Art Building													
		Billed												
		Demand	Usage	Demand	Total			Average						
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh						
Jan-18	7,887	29	\$279.36	\$536.51	\$683.65	\$0.035420	\$18.75	\$0.08668						
Feb-18	8,611	29	\$305.01	\$536.51	\$761.16	\$0.035420	\$18.75	\$0.08839						
Mar-18	9,426	29	\$333.87	\$536.51	\$799.52	\$0.035420	\$18.75	\$0.08482						
Apr-18	11,483	51	\$406.73	\$965.08	\$1,441.93	\$0.035420	\$18.75	\$0.12557						
May-18	16,658	55	\$590.02	\$1,033.48	\$1,730.72	\$0.035420	\$18.75	\$0.10390						
Jun-18	18,118	53	\$641.75	\$1,223.12	\$1,879.16	\$0.035420	\$22.95	\$0.10372						
Jul-18	17,532	53	\$620.97	\$1,219.20	\$1,808.85	\$0.035420	\$22.95	\$0.10318						
Aug-18	15,157	47	\$536.86	\$1,087.07	\$1,596.24	\$0.035420	\$22.95	\$0.10531						
Sep-18	15,012	55	\$531.71	\$1,264.98	\$1,760.33	\$0.035420	\$22.95	\$0.11726						
Oct-18	10,737	46	\$380.30	\$865.69	\$1,335.85	\$0.035420	\$18.75	\$0.12442						
Nov-18	8,267	32	\$292.82	\$608.12	\$973.73	\$0.035420	\$18.75	\$0.11778						
Dec-18	8,119	28	\$287.57	\$517.28	\$721.11	\$0.035420	\$18.75	\$0.08882						
Total	147,006	55	\$5,206.97	\$10,393.55	\$15,492.25			\$0.10538						

Table 24: Shwayder Monthly Usage and Demand with Respective Costs

Shwayder Art had an annual average electricity cost of \$0.10538 per kWh.

Fortunately, this is higher than the cost of the solar energy. The demand reduction savings exceeded the increase in usage costs resulting in net annual savings.

	Shwayder Art Building with Solar													
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	4,454	27.04%	11.66	19.72%	8.51	3,433	20	\$376.40	\$121.59	\$497.98	\$218.62	\$377.01	\$159.50	-\$59.12
Feb-18	4,961	30.11%	12.98	42.39%	18.28	3,651	10	\$419.17	\$129.31	\$548.48	\$243.46	\$193.71	\$342.80	\$99.34
Mar-18	7,491	45.47%	19.61	42.39%	18.28	1,934	10	\$633.03	\$68.52	\$701.55	\$367.68	\$193.71	\$342.80	-\$24.88
Apr-18	6,985	42.40%	18.28	42.39%	18.28	4,498	33	\$590.26	\$159.31	\$749.57	\$342.84	\$622.28	\$342.80	-\$0.03
May-18	8,504	51.61%	22.26	55.06%	23.75	8,154	31	\$718.57	\$288.81	\$1,007.39	\$417.37	\$588.24	\$445.24	\$27.87
Jun-18	9,314	46.18%	19.92	55.06%	23.75	8,805	30	\$787.01	\$311.86	\$1,098.87	\$457.12	\$678.15	\$544.97	\$87.85
Jul-18	8,656	42.92%	18.51	55.06%	23.75	8,876	29	\$731.41	\$314.39	\$1,045.79	\$424.82	\$674.22	\$544.97	\$120.15
Aug-18	7,998	39.66%	17.10	42.39%	18.28	7,159	29	\$675.80	\$253.58	\$929.38	\$392.52	\$667.48	\$419.59	\$27.07
Sep-18	6,884	34.14%	14.72	42.39%	18.28	8,128	37	\$581.70	\$287.88	\$869.58	\$337.87	\$845.39	\$419.59	\$81.72
Oct-18	5,872	35.64%	15.37	42.39%	18.28	4,865	28	\$496.16	\$172.32	\$668.48	\$288.18	\$522.88	\$342.80	\$54.62
Nov-18	3,847	23.35%	10.07	19.72%	8.51	4,420	24	\$325.07	\$156.56	\$481.63	\$188.81	\$448.62	\$159.50	-\$29.31
Dec-18	3,543	21.51%	9.27	19.72%	8.51	4,576	19	\$299.41	\$162.07	\$461.47	\$173.90	\$357.78	\$159.50	-\$14.41
Total	78,509		22		24	68,498	37	\$6,633.98	\$2,426.19	\$9,060.17	\$3,853.20	\$6,169.47	\$4,224.08	\$370.88

Table 25: Shwayder Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 19.92 kW to save enough money to offset the \$457.12 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile during summertime months, the solar is effective in reducing demand enough to offset flatter anticipated wintertime load resulting in a total annual net savings of approximately \$370.88.

2.3.7 Boettcher West

	Boettcher West													
		Billed												
		Demand	Usage	Demand	Total			Average						
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh						
Jan-18	38,480	96	\$1,362.96	\$1,800.00	\$3,304.02	\$0.035420	\$18.75	\$0.08586						
Feb-18	40,400	102	\$1,430.97	\$1,912.50	\$3,429.56	\$0.035420	\$18.75	\$0.08489						
Mar-18	39,040	111	\$1,382.80	\$2,081.25	\$3,657.51	\$0.035420	\$18.75	\$0.09369						
Apr-18	43,360	126	\$1,535.81	\$2,362.50	\$4,142.78	\$0.035420	\$18.75	\$0.09554						
May-18	40,000	124	\$1,416.80	\$2,325.00	\$4,158.75	\$0.035420	\$18.75	\$0.10397						
Jun-18	43,920	130	\$1,555.65	\$2,983.50	\$4,603.02	\$0.035420	\$22.95	\$0.10480						
Jul-18	40,320	125	\$1,428.13	\$2,868.75	\$4,289.37	\$0.035420	\$22.95	\$0.10638						
Aug-18	37,040	126	\$1,311.96	\$2,891.70	\$4,203.85	\$0.035420	\$22.95	\$0.11349						
Sep-18	41,920	125	\$1,484.81	\$2,868.75	\$4,292.66	\$0.035420	\$22.95	\$0.10240						
Oct-18	39,840	99	\$1,411.13	\$1,856.25	\$3,640.11	\$0.035420	\$18.75	\$0.09137						
Nov-18	43,040	91	\$1,524.48	\$1,706.25	\$3,622.83	\$0.035420	\$18.75	\$0.08417						
Dec-18	44,240	96	\$1,566.98	\$1,800.00	\$3,767.05	\$0.035420	\$18.75	\$0.08515						
Total	491,600	130	\$17,412.47	\$27,456.45	\$47,111.51			\$0.09583						

Table 26: Boettcher Monthly Usage and Demand with Respective Costs

Boettcher West had an annual average electricity cost of \$0.09583 per kWh.

Fortunately, this is higher than the cost of the solar energy. The demand reduction

savings exceeded the increase in usage costs resulting in net annual savings.

	Boettcher West with Solar													
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	13,098	26.66%	34.29	22.51%	28.95	25,382	67	\$1,106.81	\$899.02	\$2,005.83	\$642.87	\$1,257.21	\$542.79	-\$100.08
Feb-18	14,146	28.79%	37.03	42.89%	55.16	26,254	47	\$1,195.35	\$929.91	\$2,125.26	\$694.30	\$878.30	\$1,034.20	\$339.91
Mar-18	22,529	45.85%	58.97	42.89%	55.16	16,511	56	\$1,903.71	\$584.81	\$2,488.53	\$1,105.73	\$1,047.05	\$1,034.20	-\$71.53
Apr-18	20,433	41.59%	53.49	42.89%	55.16	22,927	71	\$1,726.62	\$812.06	\$2,538.68	\$1,002.87	\$1,328.30	\$1,034.20	\$31.33
May-18	25,673	52.25%	67.20	54.09%	69.57	14,327	54	\$2,169.35	\$507.47	\$2,676.82	\$1,260.02	\$1,020.50	\$1,304.50	\$44.48
Jun-18	27,140	45.13%	58.04	54.09%	69.57	16,780	60	\$2,293.31	\$594.36	\$2,887.67	\$1,332.02	\$1,386.80	\$1,596.70	\$264.68
Jul-18	25,673	42.69%	54.90	54.09%	69.57	14,647	55	\$2,169.35	\$518.81	\$2,688.15	\$1,260.02	\$1,272.05	\$1,596.70	\$336.69
Aug-18	23,577	39.20%	50.42	42.89%	55.16	13,463	71	\$1,992.26	\$476.86	\$2,469.12	\$1,157.16	\$1,625.84	\$1,265.86	\$108.70
Sep-18	21,481	35.72%	45.94	42.89%	55.16	20,439	70	\$1,815.17	\$723.94	\$2,539.11	\$1,054.30	\$1,602.89	\$1,265.86	\$211.56
Oct-18	17,290	35.19%	45.26	42.89%	55.16	22,550	44	\$1,460.99	\$798.73	\$2,259.72	\$848.58	\$822.05	\$1,034.20	\$185.62
Nov-18	12,050	24.53%	31.54	22.51%	28.95	30,990	62	\$1,018.27	\$1,097.65	\$2,115.91	\$591.44	\$1,163.46	\$542.79	-\$48.65
Dec-18	11,003	22.39%	28.80	22.51%	28.95	33,237	67	\$929.72	\$1,177.27	\$2,106.99	\$540.01	\$1,257.21	\$542.79	\$2.78
Total	234,094		67		70	257,506	71	\$19,780.91	\$9,120.88	\$28,901.78	\$11,489.31	\$14,661.64	\$12,794.81	\$1,305.50

Table 27: Boettcher Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 58.04 kW to save enough money to offset the \$1,332.02 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is effective in reducing demand for most of the year resulting in a total annual net savings of approximately \$1,305.50.

2.3.8 Sturm Hall

				Sturm H	all			
		Billed						
		Demand	Usage	Demand	Total			Average
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh
Jan-18	59,360	156	\$2,102.53	\$2,925.00	\$5,179.18	\$0.035420	\$18.75	\$0.08725
Feb-18	65,760	152	\$2,329.22	\$2,850.00	\$5,318.34	\$0.035420	\$18.75	\$0.08088
Mar-18	64,960	149	\$2,300.88	\$2,793.75	\$5,296.33	\$0.035420	\$18.75	\$0.08153
Apr-18	58,880	157	\$2,085.53	\$2,943.75	\$5,282.11	\$0.035420	\$18.75	\$0.08971
May-18	58,880	146	\$2,085.53	\$2,737.50	\$5,274.18	\$0.035420	\$18.75	\$0.08958
Jun-18	54,240	151	\$1,921.18	\$3,465.45	\$5,411.25	\$0.035420	\$22.95	\$0.09976
Jul-18	51,840	119	\$1,836.17	\$2,731.05	\$4,488.26	\$0.035420	\$22.95	\$0.08658
Aug-18	52,160	143	\$1,847.51	\$3,281.85	\$5,055.13	\$0.035420	\$22.95	\$0.09692
Sep-18	64,800	146	\$2,295.22	\$3,350.70	\$5,543.26	\$0.035420	\$22.95	\$0.08554
Oct-18	60,160	151	\$2,130.87	\$2,831.25	\$5,455.51	\$0.035420	\$18.75	\$0.09068
Nov-18	64,160	139	\$2,272.55	\$2,606.25	\$5,395.78	\$0.035420	\$18.75	\$0.08410
Dec-18	57,600	145	\$2,040.19	\$2,718.75	\$5,230.09	\$0.035420	\$18.75	\$0.09080
Total	712,800	157	\$25,247.38	\$35,235.30	\$62,929.42			\$0.08828

Table 28: Sturm Monthly Usage and Demand with Respective Costs

Sturm Hall had an annual average electricity cost of \$0.08828 per kWh. Fortunately,

this is higher than the cost of the solar energy. The demand reduction savings exceeded

the increase in usage costs resulting in net annual savings.

						Stu	rm Hall wi	th Solar						
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	9,924	27.47%	25.98	45.06%	42.60	49,436	113	\$838.59	\$1,751.02	\$2,589.61	\$487.08	\$2,126.19	\$798.81	\$311.73
Feb-18	10,397	28.78%	27.21	50.38%	47.63	55,363	104	\$878.52	\$1,960.97	\$2,839.49	\$510.27	\$1,956.88	\$893.12	\$382.85
Mar-18	15,595	43.17%	40.82	50.38%	47.63	49,365	101	\$1,317.79	\$1,748.50	\$3,066.29	\$765.41	\$1,900.63	\$893.12	\$127.71
Apr-18	15,123	41.86%	39.58	50.38%	47.63	43,757	109	\$1,277.85	\$1,549.89	\$2,827.74	\$742.21	\$2,050.63	\$893.12	\$150.91
May-18	19,092	52.85%	49.98	69.83%	66.03	39,788	80	\$1,613.29	\$1,409.28	\$3,022.58	\$937.05	\$1,499.46	\$1,238.04	\$300.99
Jun-18	19,848	44.89%	42.45	69.83%	66.03	34,392	85	\$1,677.18	\$1,218.15	\$2,895.34	\$974.16	\$1,950.09	\$1,515.36	\$541.20
Jul-18	18,903	42.75%	40.43	69.83%	66.03	32,937	53	\$1,597.32	\$1,166.62	\$2,763.94	\$927.77	\$1,215.69	\$1,515.36	\$587.59
Aug-18	17,958	40.62%	38.40	50.38%	47.63	34,202	95	\$1,517.45	\$1,211.43	\$2,728.89	\$881.38	\$2,188.67	\$1,093.18	\$211.80
Sep-18	15,595	35.27%	33.35	50.38%	47.63	49,205	98	\$1,317.79	\$1,742.84	\$3,060.62	\$765.41	\$2,257.52	\$1,093.18	\$327.77
Oct-18	12,760	35.32%	33.40	50.38%	47.63	47,400	103	\$1,078.19	\$1,678.92	\$2,757.11	\$626.24	\$1,938.13	\$893.12	\$266.88
Nov-18	8,979	24.86%	23.50	45.06%	42.60	55,181	96	\$758.73	\$1,954.51	\$2,713.24	\$440.69	\$1,807.44	\$798.81	\$358.12
Dec-18	8,034	22.24%	21.03	45.06%	42.60	49,566	102	\$678.86	\$1,755.63	\$2,434.49	\$394.30	\$1,919.94	\$798.81	\$404.51
Total	172,208		50		66	540,592	113	\$14,551.57	\$19,147.77	\$33,699.34	\$8,451.96	\$22,811.27	\$12,424.03	\$3,972.06

Table 29: Sturm Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 42.45 kW to save enough money to offset the \$974.16 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is effective in reducing demand over the entire year resulting in a total annual net savings of approximately \$3,972.06.

2.3.9 Knudson Hall

]	Knudson]	Hall			
		Billed						
		Demand	Usage	Demand	Total			Average
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh
Jan-18	7,600	46	\$269.19	\$862.50	\$863.18	\$0.035420	\$18.75	\$0.11358
Feb-18	8,320	46	\$294.69	\$862.50	\$901.86	\$0.035420	\$18.75	\$0.10840
Mar-18	8,480	87	\$300.36	\$1,631.25	\$2,070.42	\$0.035420	\$18.75	\$0.24415
Apr-18	8,480	86	\$300.36	\$1,612.50	\$2,048.68	\$0.035420	\$18.75	\$0.24159
May-18	9,920	96	\$351.37	\$1,800.00	\$2,439.72	\$0.035420	\$18.75	\$0.24594
Jun-18	11,760	48	\$416.54	\$1,101.60	\$1,520.67	\$0.035420	\$22.95	\$0.12931
Jul-18	10,400	48	\$368.37	\$1,101.60	\$1,472.78	\$0.035420	\$22.95	\$0.14161
Aug-18	9,120	82	\$323.03	\$1,881.90	\$2,239.81	\$0.035420	\$22.95	\$0.24559
Sep-18	8,320	55	\$294.69	\$1,262.25	\$1,524.93	\$0.035420	\$22.95	\$0.18328
Oct-18	5,680	48	\$201.19	\$900.00	\$774.30	\$0.035420	\$18.75	\$0.13632
Nov-18	6,560	48	\$232.36	\$900.00	\$811.47	\$0.035420	\$18.75	\$0.12370
Dec-18	6,720	48	\$238.02	\$900.00	\$817.92	\$0.035420	\$18.75	\$0.12171
Total	101,360	96	\$3,590.17	\$14,816.10	\$17,485.74			\$0.17251

Table 30: Knudson Monthly Usage and Demand with Respective Costs

Knudson Hall had an annual average electricity cost of \$0.172151 per kWh.

Fortunately, this is higher than the cost of the solar energy. The demand reduction

savings exceeded the increase in usage costs resulting in net annual savings.

				-		Knu	dson Hall v	vith Solar						
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	2,222	26.20%	5.82	30.58%	6.79	5,378	39	\$187.78	\$190.48	\$378.26	\$109.07	\$735.19	\$127.31	\$18.25
Feb-18	2,400	28.30%	6.28	46.31%	10.28	5,920	36	\$202.80	\$209.69	\$412.49	\$117.79	\$669.70	\$192.80	\$75.01
Mar-18	3,689	43.49%	9.66	46.31%	10.28	4,791	77	\$311.71	\$169.70	\$481.41	\$181.05	\$1,438.45	\$192.80	\$11.75
Apr-18	3,493	41.19%	9.14	46.31%	10.28	4,987	76	\$295.19	\$176.63	\$471.81	\$171.45	\$1,419.70	\$192.80	\$21.35
May-18	4,444	52.40%	11.63	44.34%	9.84	5,476	86	\$375.56	\$193.94	\$569.50	\$218.13	\$1,615.43	\$184.57	-\$33.57
Jun-18	4,889	47.09%	10.46	44.34%	9.84	6,871	38	\$413.11	\$243.37	\$656.49	\$239.95	\$875.69	\$225.91	-\$14.04
Jul-18	4,533	43.67%	9.69	44.34%	9.84	5,867	38	\$383.07	\$207.80	\$590.86	\$222.50	\$875.69	\$225.91	\$3.41
Aug-18	4,000	38.53%	8.55	46.31%	10.28	5,120	72	\$338.00	\$181.35	\$519.35	\$196.32	\$1,645.91	\$235.99	\$39.67
Sep-18	3,644	35.10%	7.79	46.31%	10.28	4,676	45	\$307.96	\$165.61	\$473.56	\$178.87	\$1,026.26	\$235.99	\$57.12
Oct-18	3,111	36.68%	8.14	46.31%	10.28	2,569	38	\$262.89	\$90.99	\$353.88	\$152.69	\$707.20	\$192.80	\$40.11
Nov-18	2,044	24.10%	5.35	30.58%	6.79	4,516	41	\$172.76	\$159.94	\$332.70	\$100.34	\$772.69	\$127.31	\$26.97
Dec-18	1,911	22.53%	5.00	30.58%	6.79	4,809	41	\$161.49	\$170.33	\$331.82	\$93.80	\$772.69	\$127.31	\$33.52
Total	40,382		12		10	60,978	86	\$3,412.30	\$2,159.83	\$5,572.13	\$1,981.96	\$12,554.58	\$2,261.52	\$279.56

Table 31: Knudson Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 10.46 kW to save enough money to offset the \$239.95 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is effective in reducing demand for most of the year resulting in a total annual net savings of approximately \$279.56.

2.3.10 Frontier Hall

				Frontier I	Hall			
		Billed						
		Demand	Usage	Demand	Total			Average
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh
Jan-18	27,040	83	\$957.76	\$1,556.25	\$2,617.11	\$0.035420	\$18.75	\$0.09679
Feb-18	28,000	80	\$991.76	\$1,500.00	\$2,590.08	\$0.035420	\$18.75	\$0.09250
Mar-18	29,440	81	\$1,042.76	\$1,518.75	\$2,676.46	\$0.035420	\$18.75	\$0.09091
Apr-18	29,280	81	\$1,037.10	\$1,518.75	\$2,707.42	\$0.035420	\$18.75	\$0.09247
May-18	36,000	82	\$1,275.12	\$1,537.50	\$3,029.86	\$0.035420	\$18.75	\$0.08416
Jun-18	36,160	115	\$1,280.79	\$2,639.25	\$3,977.13	\$0.035420	\$22.95	\$0.10999
Jul-18	35,360	108	\$1,252.45	\$2,478.60	\$3,698.66	\$0.035420	\$22.95	\$0.10460
Aug-18	31,520	99	\$1,116.44	\$2,272.05	\$3,361.59	\$0.035420	\$22.95	\$0.10665
Sep-18	31,520	92	\$1,116.44	\$2,111.40	\$3,185.11	\$0.035420	\$22.95	\$0.10105
Oct-18	29,920	82	\$1,059.77	\$1,537.50	\$2,862.21	\$0.035420	\$18.75	\$0.09566
Nov-18	26,240	74	\$929.42	\$1,387.50	\$2,554.17	\$0.035420	\$18.75	\$0.09734
Dec-18	27,520	73	\$974.76	\$1,368.75	\$2,588.36	\$0.035420	\$18.75	\$0.09405
Total	368,000	115	\$13,034.56	\$21,426.30	\$35,848.16			\$0.09741

Table 32: Frontier Monthly Usage and Demand with Respective Costs

Frontier Hall had an annual average electricity cost of \$0.09741 per kWh.

Fortunately, this is higher than the cost of the solar energy. The demand reduction

savings exceeded the increase in usage costs resulting in net annual savings.

	Frontier Hall with Solar													
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	3,316	18.97%	8.68	46.84%	21.43	23,724	62	\$280.23	\$840.29	\$1,120.52	\$162.76	\$1,154.48	\$401.77	\$239.00
Feb-18	3,954	22.62%	10.35	64.24%	29.39	24,046	51	\$334.12	\$851.71	\$1,185.83	\$194.07	\$948.92	\$551.08	\$357.02
Mar-18	6,505	37.22%	17.03	64.24%	29.39	22,935	52	\$549.68	\$812.35	\$1,362.03	\$319.27	\$967.67	\$551.08	\$231.81
Apr-18	6,505	37.22%	17.03	64.24%	29.39	22,775	52	\$549.68	\$806.69	\$1,356.37	\$319.27	\$967.67	\$551.08	\$231.81
May-18	9,439	54.01%	24.71	83.43%	38.17	26,561	44	\$797.57	\$940.80	\$1,738.37	\$463.25	\$821.88	\$715.62	\$252.36
Jun-18	9,566	44.72%	20.46	83.43%	38.17	26,594	77	\$808.35	\$941.95	\$1,750.30	\$469.51	\$1,763.33	\$875.92	\$406.40
Jul-18	9,503	44.42%	20.32	83.43%	38.17	25,857	70	\$802.96	\$915.87	\$1,718.83	\$466.38	\$1,602.68	\$875.92	\$409.53
Aug-18	8,929	41.74%	19.09	64.24%	29.39	22,591	70	\$754.46	\$800.19	\$1,554.65	\$438.21	\$1,597.53	\$674.52	\$236.31
Sep-18	7,398	34.58%	15.82	64.24%	29.39	24,122	63	\$625.13	\$854.40	\$1,479.53	\$363.09	\$1,436.88	\$674.52	\$311.43
Oct-18	4,847	27.73%	12.69	64.24%	29.39	25,073	53	\$409.56	\$888.09	\$1,297.65	\$237.89	\$986.42	\$551.08	\$313.19
Nov-18	3,253	18.61%	8.51	46.84%	21.43	22,987	53	\$274.84	\$814.22	\$1,089.06	\$159.63	\$985.73	\$401.77	\$242.13
Dec-18	3,138	17.95%	8.21	46.84%	21.43	24,382	52	\$265.14	\$863.62	\$1,128.76	\$154.00	\$966.98	\$401.77	\$247.77
Total	76,352		25		38	291,648	77	\$6,451.72	\$10,330.18	\$16,781.90	\$3,747.34	\$14,200.18	\$7,226.12	\$3,478.78

Table 33: Frontier Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 20.46 kW to save enough money to offset the \$469.51 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is effective in reducing demand over the entire year resulting in a total annual net savings of approximately \$3,478.78.

2.3.11 Ammi Hyde

				Ammi Hy	/de			
		Billed						
		Demand	Usage	Demand	Total			Average
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh
Jan-18	14,880	53	\$527.05	\$993.75	\$1,602.59	\$0.035420	\$18.75	\$0.10770
Feb-18	17,440	56	\$617.72	\$1,050.00	\$1,750.04	\$0.035420	\$18.75	\$0.10035
Mar-18	16,160	67	\$572.39	\$1,256.25	\$1,936.86	\$0.035420	\$18.75	\$0.11986
Apr-18	18,240	88	\$646.06	\$1,650.00	\$2,446.06	\$0.035420	\$18.75	\$0.13410
May-18	20,320	81	\$719.73	\$1,518.75	\$2,444.56	\$0.035420	\$18.75	\$0.12030
Jun-18	21,440	93	\$759.40	\$2,134.35	\$2,948.47	\$0.035420	\$22.95	\$0.13752
Jul-18	19,840	94	\$702.73	\$2,157.30	\$2,869.23	\$0.035420	\$22.95	\$0.14462
Aug-18	16,960	79	\$600.72	\$1,813.05	\$2,424.01	\$0.035420	\$22.95	\$0.14293
Sep-18	19,520	96	\$691.40	\$2,203.20	\$2,847.82	\$0.035420	\$22.95	\$0.14589
Oct-18	15,520	65	\$549.72	\$1,218.75	\$1,929.59	\$0.035420	\$18.75	\$0.12433
Nov-18	13,760	48	\$487.38	\$900.00	\$1,546.68	\$0.035420	\$18.75	\$0.11240
Dec-18	12,800	48	\$453.38	\$900.00	\$1,489.91	\$0.035420	\$18.75	\$0.11640
Total	206,880	96	\$7,327.69	\$17,795.40	\$26,235.82			\$0.12682

Table 34: Ammi Hyde Monthly Usage and Demand with Respective Costs

Ammi Hyde had an annual average electricity cost of \$0.12682 per kWh. Fortunately, this is higher than the cost of the solar energy. The demand reduction savings exceeded the increase in usage costs resulting in net annual savings.

	Ammi Hyde with Solar													
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	1
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	1
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	2,696	25.99%	7.06	25.21%	6.85	12,184	46	\$227.85	\$431.54	\$659.39	\$132.34	\$865.39	\$128.36	-\$3.98
Feb-18	3,082	29.70%	8.07	64.16%	17.42	14,358	39	\$260.40	\$508.57	\$768.98	\$151.25	\$723.28	\$326.72	\$175.47
Mar-18	4,623	44.55%	12.10	64.16%	17.42	11,537	50	\$390.61	\$408.66	\$799.26	\$226.88	\$929.53	\$326.72	\$99.84
Apr-18	4,417	42.57%	11.56	64.16%	17.42	13,823	71	\$373.25	\$489.61	\$862.85	\$216.79	\$1,323.28	\$326.72	\$109.92
May-18	5,393	51.98%	14.12	64.42%	17.50	14,927	64	\$455.71	\$528.71	\$984.42	\$264.69	\$1,190.70	\$328.05	\$63.36
Jun-18	5,650	44.49%	12.08	64.42%	17.50	15,790	76	\$477.41	\$559.29	\$1,036.70	\$277.29	\$1,732.82	\$401.53	\$124.24
Jul-18	5,393	42.47%	11.53	64.42%	17.50	14,447	77	\$455.71	\$511.71	\$967.42	\$264.69	\$1,755.77	\$401.53	\$136.84
Aug-18	5,072	39.94%	10.85	64.16%	17.42	11,888	62	\$428.58	\$421.07	\$849.66	\$248.93	\$1,413.15	\$399.90	\$150.97
Sep-18	4,494	35.39%	9.61	64.16%	17.42	15,026	79	\$379.76	\$532.22	\$911.97	\$220.57	\$1,803.30	\$399.90	\$179.33
Oct-18	3,724	35.89%	9.75	64.16%	17.42	11,796	48	\$314.66	\$417.82	\$732.48	\$182.76	\$892.03	\$326.72	\$143.96
Nov-18	2,568	24.75%	6.72	25.21%	6.85	11,192	41	\$217.00	\$396.42	\$613.42	\$126.04	\$771.64	\$128.36	\$2.32
Dec-18	2,311	22.28%	6.05	25.21%	6.85	10,489	41	\$195.30	\$371.51	\$566.81	\$113.44	\$771.64	\$128.36	\$14.92
Total	49,423		14		17	157,457	79	\$4,176.24	\$5,577.13	\$9,753.37	\$2,425.68	\$14,172.55	\$3,622.85	\$1,197.17

Table 35: Ammi Hyde Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 12.08 kW to save enough money to offset the \$277.29 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is effective in reducing demand for most of the year resulting in a total annual net savings

of approximately \$1,197.17.

2.3.12 Central Receiving & Purchasing

			Central R	leceiving d	& Process	ing		
		Billed						
		Demand	Usage	Demand	Total			Average
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh
Jan-18	3,680	12	\$130.35	\$225.00	\$387.45	\$0.035420	\$18.75	\$0.10529
Feb-18	3,520	12	\$124.68	\$225.00	\$367.95	\$0.035420	\$18.75	\$0.10453
Mar-18	2,880	19	\$102.01	\$356.25	\$515.75	\$0.035420	\$18.75	\$0.17908
Apr-18	3,600	13	\$127.51	\$243.75	\$424.98	\$0.035420	\$18.75	\$0.11805
May-18	4,240	22	\$150.18	\$412.50	\$643.78	\$0.035420	\$18.75	\$0.15183
Jun-18	5,360	24	\$189.85	\$550.80	\$780.58	\$0.035420	\$22.95	\$0.14563
Jul-18	5,440	24	\$192.68	\$550.80	\$770.53	\$0.035420	\$22.95	\$0.14164
Aug-18	5,440	23	\$192.68	\$527.85	\$746.55	\$0.035420	\$22.95	\$0.13723
Sep-18	4,640	21	\$164.35	\$481.95	\$662.91	\$0.035420	\$22.95	\$0.14287
Oct-18	3,760	14	\$133.18	\$262.50	\$460.38	\$0.035420	\$18.75	\$0.12244
Nov-18	3,440	14	\$121.84	\$262.50	\$446.86	\$0.035420	\$18.75	\$0.12990
Dec-18	2,720	12	\$96.34	\$225.00	\$338.02	\$0.035420	\$18.75	\$0.12427
Total	48,720	24	\$1,725.66	\$4,323.90	\$6,545.74			\$0.13435

Table 36: CR/P Monthly Usage and Demand with Respective Costs

Central Receiving & Purchasing had an annual average electricity cost of \$0.13435

per kWh. The demand reduction savings do not exceed the increase in usage costs

resulting in an anticipated increase in electricity costs.

Table 37: CR/	P Monthly	Costs with	Applied Solar

					Cent	ral Recei	ving & Pro	cessing wi	ith Solar					
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	1,451	17.25%	3.80	8.55%	1.88	2,229	10	\$122.57	\$78.97	\$201.54	\$71.19	\$189.70	\$35.30	-\$35.89
Feb-18	1,625	19.31%	4.25	20.61%	4.54	1,895	7	\$137.28	\$67.13	\$204.41	\$79.74	\$139.92	\$85.08	\$5.34
Mar-18	2,379	28.28%	6.23	20.61%	4.54	501	14	\$201.02	\$17.75	\$218.77	\$116.76	\$271.17	\$85.08	-\$31.68
Apr-18	2,263	26.90%	5.92	20.61%	4.54	1,337	8	\$191.21	\$47.36	\$238.57	\$111.06	\$158.67	\$85.08	-\$25.99
May-18	2,959	35.18%	7.75	30.93%	6.81	1,281	15	\$250.05	\$45.37	\$295.41	\$145.23	\$284.83	\$127.67	-\$17.56
Jun-18	3,075	29.87%	6.58	30.93%	6.81	2,285	17	\$259.85	\$80.93	\$340.78	\$150.93	\$394.53	\$156.27	\$5.35
Jul-18	2,959	28.74%	6.33	30.93%	6.81	2,481	17	\$250.05	\$87.87	\$337.92	\$145.23	\$394.53	\$156.27	\$11.04
Aug-18	2,628	25.53%	5.62	20.61%	4.54	2,812	18	\$222.10	\$99.59	\$321.69	\$129.00	\$423.72	\$104.13	-\$24.87
Sep-18	2,379	23.11%	5.09	20.61%	4.54	2,261	16	\$201.02	\$80.09	\$281.11	\$116.76	\$377.82	\$104.13	-\$12.62
Oct-18	2,089	24.83%	5.47	20.61%	4.54	1,671	9	\$176.50	\$59.19	\$235.70	\$102.52	\$177.42	\$85.08	-\$17.44
Nov-18	1,335	15.87%	3.49	8.55%	1.88	2,105	12	\$112.77	\$74.58	\$187.34	\$65.50	\$227.20	\$35.30	-\$30.20
Dec-18	1,218	14.49%	3.19	8.55%	1.88	1,502	10	\$102.96	\$53.18	\$156.14	\$59.80	\$189.70	\$35.30	-\$24.50
Total	26,359		8		7	22,361	18	\$2,227.37	\$792.01	\$3,019.38	\$1,293.72	\$3,229.21	\$1,094.69	-\$199.02

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 6.58 kW to save enough money to offset the \$150.93 increase in usage charges for the month of June. Due to the anticipated afternoon load profile, the solar is less effective in reducing demand resulting in a total annual net increase of \$199.02.

2.3.13 University Technology Services

			Universit	y Technol	ogy Servi	ces		
		Billed						
		Demand	Usage	Demand	Total			Average
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh
Jan-18	124,800	226	\$4,420.42	\$4,237.50	\$8,814.57	\$0.035420	\$18.75	\$0.07063
Feb-18	133,600	227	\$4,732.11	\$4,256.25	\$9,135.57	\$0.035420	\$18.75	\$0.06838
Mar-18	124,480	222	\$4,409.08	\$4,162.50	\$8,835.80	\$0.035420	\$18.75	\$0.07098
Apr-18	131,360	211	\$4,652.77	\$3,956.25	\$8,980.52	\$0.035420	\$18.75	\$0.06837
May-18	119,520	205	\$4,233.40	\$3,843.75	\$8,722.38	\$0.035420	\$18.75	\$0.07298
Jun-18	132,960	200	\$4,709.44	\$4,590.00	\$9,250.51	\$0.035420	\$22.95	\$0.06957
Jul-18	112,000	195	\$3,967.04	\$4,475.25	\$8,209.31	\$0.035420	\$22.95	\$0.07330
Aug-18	111,520	190	\$3,950.04	\$4,360.50	\$8,073.26	\$0.035420	\$22.95	\$0.07239
Sep-18	117,760	197	\$4,171.06	\$4,521.15	\$8,569.70	\$0.035420	\$22.95	\$0.07277
Oct-18	108,160	197	\$3,831.03	\$3,693.75	\$8,360.85	\$0.035420	\$18.75	\$0.07730
Nov-18	126,880	202	\$4,494.09	\$3,787.50	\$9,247.29	\$0.035420	\$18.75	\$0.07288
Dec-18	128,160	197	\$4,539.43	\$3,693.75	\$9,202.67	\$0.035420	\$18.75	\$0.07181
Total	1,471,200	227	\$52,109.90	\$49,578.15	\$105,402.43			\$0.07164

Table 38: UTS Monthly Usage and Demand with Respective Costs

University Technology Services had an annual average electricity cost of \$0.07164 per kWh. Though this is lower than the cost of the solar energy, the demand reduction savings exceeded the increase in usage costs resulting in net annual savings.

						•4 75								
			-		Univ	ersity Te	chnology S	ervices wit	th Solar					
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	2,703	35.04%	7.08	19.38%	3.91	122,097	222	\$228.43	\$4,324.67	\$4,553.09	\$132.68	\$4,164.12	\$73.38	-\$59.30
Feb-18	2,761	35.78%	7.23	80.99%	16.36	130,839	211	\$233.29	\$4,634.33	\$4,867.61	\$135.50	\$3,949.57	\$306.68	\$171.18
Mar-18	4,066	52.70%	10.64	80.99%	16.36	120,414	206	\$343.61	\$4,265.05	\$4,608.66	\$199.58	\$3,855.82	\$306.68	\$107.10
Apr-18	3,336	43.24%	8.73	80.99%	16.36	128,024	195	\$281.89	\$4,534.61	\$4,816.50	\$163.73	\$3,649.57	\$306.68	\$142.95
May-18	4,199	54.42%	10.99	82.53%	16.67	115,321	188	\$354.79	\$4,084.68	\$4,439.47	\$206.07	\$3,531.23	\$312.52	\$106.44
Jun-18	4,227	44.76%	9.04	82.53%	16.67	128,733	183	\$357.22	\$4,559.71	\$4,916.93	\$207.48	\$4,207.48	\$382.52	\$175.04
Jul-18	4,199	44.46%	8.98	82.53%	16.67	107,801	178	\$354.79	\$3,818.32	\$4,173.11	\$206.07	\$4,092.73	\$382.52	\$176.45
Aug-18	4,026	42.63%	8.61	80.99%	16.36	107,494	174	\$340.21	\$3,807.43	\$4,147.64	\$197.60	\$3,985.13	\$375.37	\$177.77
Sep-18	3,739	39.59%	8.00	80.99%	16.36	114,021	181	\$315.91	\$4,038.64	\$4,354.55	\$183.49	\$4,145.78	\$375.37	\$191.88
Oct-18	3,163	41.00%	8.28	80.99%	16.36	104,997	181	\$267.31	\$3,718.98	\$3,986.29	\$155.26	\$3,387.07	\$306.68	\$151.42
Nov-18	2,013	26.09%	5.27	19.38%	3.91	124,867	198	\$170.10	\$4,422.79	\$4,592.89	\$98.80	\$3,714.12	\$73.38	-\$25.42
Dec-18	1,725	22.36%	4.52	19.38%	3.91	126,435	193	\$145.80	\$4,478.31	\$4,624.11	\$84.69	\$3,620.37	\$73.38	-\$11.31
Total	40,158		11		17	1,431,042	222	\$3,393.34	\$50,687.51	\$54,080.85	\$1,970.95	\$46,303.02	\$3,275.13	\$1,304.18

Table 39: UTS Mon	nthly Costs	with Applied S	Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 9.04 kW to save enough money to offset the \$207.48 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is effective in reducing demand for most of the year resulting in a total annual net savings of approximately \$1,304.18.

2.3.14 Cherrington (SIE) Complex

	Cherrington (SIE) Complex													
		Billed												
		Demand	Usage	Demand	Total			Average						
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh						
Jan-18	49,920	122	\$1,768.17	\$2,287.50	\$4,177.95	\$0.035420	\$18.75	\$0.08369						
Feb-18	55,680	142	\$1,972.19	\$2,662.50	\$4,774.01	\$0.035420	\$18.75	\$0.08574						
Mar-18	49,600	137	\$1,756.83	\$2,568.75	\$4,507.41	\$0.035420	\$18.75	\$0.09088						
Apr-18	53,920	158	\$1,909.85	\$2,962.50	\$5,127.31	\$0.035420	\$18.75	\$0.09509						
May-18	55,840	176	\$1,977.85	\$3,300.00	\$5,758.81	\$0.035420	\$18.75	\$0.10313						
Jun-18	62,240	177	\$2,204.54	\$4,062.15	\$6,309.35	\$0.035420	\$22.95	\$0.10137						
Jul-18	58,720	192	\$2,079.86	\$4,406.40	\$6,413.58	\$0.035420	\$22.95	\$0.10922						
Aug-18	54,080	179	\$1,915.51	\$4,108.05	\$5,955.75	\$0.035420	\$22.95	\$0.11013						
Sep-18	62,400	188	\$2,210.21	\$4,314.60	\$6,373.03	\$0.035420	\$22.95	\$0.10213						
Oct-18	52,480	163	\$1,858.84	\$3,056.25	\$5,359.68	\$0.035420	\$18.75	\$0.10213						
Nov-18	55,040	137	\$1,949.52	\$2,568.75	\$4,972.23	\$0.035420	\$18.75	\$0.09034						
Dec-18	52,800	130	\$1,870.18	\$2,437.50	\$4,741.80	\$0.035420	\$18.75	\$0.08981						
Total	662,720	192	\$23,473.54	\$38,734.95	\$64,470.91			\$0.09728						

Table 40: Cherrington Monthly Usage and Demand with Respective Costs

Cherrington (SIE) Complex had an annual average electricity cost of \$0.09728 per kWh. Fortunately, this is higher than the cost of the solar energy. The demand reduction savings exceeded the increase in usage costs resulting in net annual savings.

					Ch	erringtor	ı (SIE) Coı	nplex with	Solar					
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	3,410	26.59%	8.93	53.88%	18.09	46,510	104	\$288.18	\$1,647.37	\$1,935.55	\$167.38	\$1,948.29	\$339.21	\$171.82
Feb-18	3,573	27.85%	9.35	71.18%	23.90	52,107	118	\$301.90	\$1,845.64	\$2,147.54	\$175.35	\$2,214.38	\$448.12	\$272.76
Mar-18	5,684	44.31%	14.88	71.18%	23.90	43,916	113	\$480.30	\$1,555.50	\$2,035.81	\$278.97	\$2,120.63	\$448.12	\$169.14
Apr-18	5,278	41.15%	13.82	71.18%	23.90	48,642	134	\$446.00	\$1,722.90	\$2,168.89	\$259.05	\$2,514.38	\$448.12	\$189.07
May-18	6,658	51.91%	17.43	80.93%	27.17	49,182	149	\$562.64	\$1,742.01	\$2,304.65	\$326.80	\$2,790.49	\$509.51	\$182.72
Jun-18	6,821	43.44%	14.59	80.93%	27.17	55,419	150	\$576.36	\$1,962.95	\$2,539.31	\$334.77	\$3,438.51	\$623.64	\$288.88
Jul-18	6,658	42.41%	14.24	80.93%	27.17	52,062	165	\$562.64	\$1,844.02	\$2,406.66	\$326.80	\$3,782.76	\$623.64	\$296.85
Aug-18	6,382	40.65%	13.65	71.18%	23.90	47,698	155	\$539.31	\$1,689.45	\$2,228.76	\$313.25	\$3,559.55	\$548.50	\$235.25
Sep-18	5,603	35.68%	11.98	71.18%	23.90	56,797	164	\$473.44	\$2,011.75	\$2,485.20	\$274.99	\$3,766.10	\$548.50	\$273.51
Oct-18	4,710	36.71%	12.33	71.18%	23.90	47,770	139	\$397.97	\$1,692.03	\$2,089.99	\$231.15	\$2,608.13	\$448.12	\$216.97
Nov-18	3,167	24.69%	8.29	53.88%	18.09	51,873	119	\$267.60	\$1,837.35	\$2,104.94	\$155.43	\$2,229.54	\$339.21	\$183.78
Dec-18	3,086	24.05%	8.08	53.88%	18.09	49,714	112	\$260.74	\$1,760.88	\$2,021.62	\$151.44	\$2,098.29	\$339.21	\$187.77
Total	61,031		17		27	601,689	165	\$5,157.08	\$21,311.84	\$26,468.92	\$2,995.38	\$33,071.06	\$5,663.89	\$2,668.51

Table 41: Cherrington Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 14.59 kW to save enough money to offset the \$334.77 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is effective in reducing demand over the entire year resulting in a total annual net savings of approximately \$2,668.51.

2.3.15 Fisher Early Learning Center

			Fisher E	arly Lear	ning Cent	er		
		Billed						
		Demand	Usage	Demand	Total			Average
Month	Usage (kWh)	(kW)	Charges	Charges	Charges	Cost/kWh	Cost/kW	Cost/kWh
Jan-18	10,320	40	\$365.53	\$750.00	\$1,145.16	\$0.035420	\$18.75	\$0.11097
Feb-18	10,400	40	\$368.37	\$750.00	\$1,161.90	\$0.035420	\$18.75	\$0.11172
Mar-18	9,040	51	\$320.20	\$956.25	\$1,370.39	\$0.035420	\$18.75	\$0.15159
Apr-18	10,320	62	\$365.53	\$1,162.50	\$1,641.40	\$0.035420	\$18.75	\$0.15905
May-18	14,160	72	\$501.55	\$1,350.00	\$2,063.06	\$0.035420	\$18.75	\$0.14570
Jun-18	17,280	78	\$612.06	\$1,790.10	\$2,448.91	\$0.035420	\$22.95	\$0.14172
Jul-18	15,280	71	\$541.22	\$1,629.45	\$2,184.99	\$0.035420	\$22.95	\$0.14300
Aug-18	15,440	69	\$546.88	\$1,583.55	\$2,141.96	\$0.035420	\$22.95	\$0.13873
Sep-18	12,800	72	\$453.38	\$1,652.40	\$2,064.75	\$0.035420	\$22.95	\$0.16131
Oct-18	10,160	46	\$359.87	\$862.50	\$1,340.88	\$0.035420	\$18.75	\$0.13198
Nov-18	10,400	40	\$368.37	\$750.00	\$1,236.63	\$0.035420	\$18.75	\$0.11891
Dec-18	9,520	39	\$337.20	\$731.25	\$1,152.89	\$0.035420	\$18.75	\$0.12110
Total	145,120	78	\$5,140.15	\$13,968.00	\$19,952.92			\$0.13749

Table 42: Fisher Monthly Usage and Demand with Respective Costs

Fisher Early Learning Center had an annual average electricity cost of \$0.13749 per kWh. Fortunately, this is higher than the cost of the solar energy. The demand reduction savings exceeded the increase in usage costs resulting in net annual savings.

					Fis	her Early	Learning	Center witl	h Solar					
	Anticipated	Break-Even	Break-Even	Anticipated	Anticipated									
	Monthly	Demand	Demand	Demand	Demand	Remaining	Remaining		Remaining		Usage	Remaining	Anticipate	
	Production	Reduction	Reduction	Reduction	Reduction	Energy	Demand Req	Solar PPA	Usage	Total Usage	Charge	Demand	d Demand	
Month	(kWh)	Ratio	(kW)	Ratio	(kW)	Req (kWh)	(kW)	Charge	Charge	Charge	Increse	Charge	Savings	Net Savings
Jan-18	2,186	39.54%	5.72	53.63%	7.76	8,134	32	\$184.73	\$288.10	\$472.83	\$107.29	\$604.47	\$145.53	\$38.24
Feb-18	2,124	38.41%	5.56	63.87%	9.24	8,276	31	\$179.45	\$293.15	\$472.60	\$104.23	\$576.66	\$173.34	\$69.11
Mar-18	2,623	47.44%	6.87	63.87%	9.24	6,417	42	\$221.67	\$227.28	\$448.95	\$128.75	\$782.91	\$173.34	\$44.59
Apr-18	2,405	43.49%	6.29	63.87%	9.24	7,915	53	\$203.20	\$280.36	\$483.56	\$118.02	\$989.16	\$173.34	\$55.32
May-18	2,686	48.57%	7.03	71.52%	10.35	11,474	62	\$226.95	\$406.42	\$633.37	\$131.82	\$1,155.90	\$194.10	\$62.28
Jun-18	2,717	40.15%	5.81	71.52%	10.35	14,563	68	\$229.59	\$515.82	\$745.41	\$133.35	\$1,552.52	\$237.58	\$104.23
Jul-18	2,655	39.22%	5.68	71.52%	10.35	12,625	61	\$224.31	\$447.19	\$671.50	\$130.29	\$1,391.87	\$237.58	\$107.30
Aug-18	2,598	38.39%	5.56	63.87%	9.24	12,842	60	\$219.56	\$454.85	\$674.41	\$127.53	\$1,371.38	\$212.17	\$84.64
Sep-18	2,498	36.92%	5.34	63.87%	9.24	10,302	63	\$211.12	\$364.88	\$576.00	\$122.62	\$1,440.23	\$212.17	\$89.55
Oct-18	2,436	44.05%	6.38	63.87%	9.24	7,724	37	\$205.84	\$273.59	\$479.42	\$119.56	\$689.16	\$173.34	\$53.78
Nov-18	1,874	33.89%	4.90	53.63%	7.76	8,526	32	\$158.34	\$302.00	\$460.33	\$91.97	\$604.47	\$145.53	\$53.56
Dec-18	1,843	33.32%	4.82	53.63%	7.76	7,677	31	\$155.70	\$271.93	\$427.63	\$90.43	\$585.72	\$145.53	\$55.10
Total	28,644		7.03		10.35	116,476	67.65	\$2,420.45	\$4,125.57	\$6,546.02	\$1,405.87	\$11,744.43	\$2,223.57	\$817.70

 Table 43: Fisher Monthly Costs with Applied Solar

For the solar instillation to be profitable, the demand reduction savings must breakeven with the increase in usage costs. For example, the demand reduction must be greater than 5.81 kW to save enough money to offset the \$133.35 increase in usage charges for the month of June. Due to the anticipated primarily daytime load profile, the solar is

effective in reducing demand over the entire year resulting in a total annual net savings of

approximately \$817.70.

2.3.16 Costs Summary

Each building was then analyzed for overall savings in respect to the size, in kW, of the installation. The results can be found below.

	Summary													
	Annual	Annual		Estimated	Estimated	Annual Net								
	Anticipated	Demand	Annual Usage	Annual Usage	Annual Demand	Savings	Percent		Savings/Size					
Building	Production	Charge	Charge	Charge w/Solar	Savings w/Solar	w/Solar	Savings	Percent Size	Ratio					
Ritchie	883,664	\$355,994.85	\$289,424.86	\$332,795.09	\$25,980.63	-\$17,389.60	-2.69%	29.45%	-9.15%					
AAC	268,989	\$49,375.95	\$34,026.44	\$47,228.42	\$17,552.33	\$4,350.35	5.22%	54.56%	9.56%					
Driscoll	167,129	\$25,423.20	\$16,888.26	\$24,875.58	\$9,451.84	\$1,249.17	2.95%	79.74%	3.70%					
Shwayder Art	78,509	\$10,393.55	\$5,206.97	\$9,060.17	\$4,224.08	\$370.88	2.38%	78.24%	3.04%					
Boettcher West	234,094	\$27,456.45	\$17,412.47	\$28,901.78	\$12,794.81	\$1,305.50	2.91%	98.93%	2.94%					
Sturm	172,208	\$35,235.30	\$25,247.38	\$33,699.34	\$12,424.03	\$3,972.06	6.57%	60.23%	10.90%					
Knudson	40,382	\$14,816.10	\$3,590.17	\$5,572.13	\$2,261.52	\$279.56	1.52%	23.13%	6.57%					
Frontier	76,352	\$21,426.30	\$13,034.56	\$16,781.90	\$7,226.12	\$3,478.78	10.09%	39.78%	25.38%					
A Hyde	49,423	\$17,795.40	\$7,327.69	\$9,753.37	\$3,622.85	\$1,197.17	4.77%	28.29%	16.84%					
C R/P	26,359	\$4,323.90	\$1,725.66	\$3,019.38	\$1,094.69	-\$199.02	-3.29%	91.74%	-3.59%					
UTS	40,158	\$49,578.15	\$52,109.90	\$54,080.85	\$3,275.13	\$1,304.18	1.28%	8.90%	14.42%					
Mudd	134,209	\$66,319.65	\$64,134.68	\$70,721.65	\$12,201.34	\$5,614.37	4.30%	24.00%	17.93%					
Fisher	28,644	\$13,968.00	\$5,140.15	\$6,546.02	\$2,223.57	\$817.70	4.28%	18.56%	23.06%					
	2,200,119					\$6,351.10								

Table 44: Summary of Costs Associated with Solar Projects

The building with the most anticipated savings is Frontier Hall followed by Fisher Early Leaning Center as the installation with the most savings with respect to the size of the installation. Ritchie Athletic Complex and Central Receiving & Processing are projected to see an annual increase due to the solar output being less effective on demand response. Bound by the PPA agreement, the output of each solar instillation is fixed. Therefore, the annual usage cost increase can be calculated with relatively low uncertainty. Due to only 1 of the 18 buildings with solar installations having real-time meter data, it is difficult to determine the actual effectiveness of the solar output regarding demand reduction. However, based on the contracted output, it will be at least be known the required demand reduction to break-even on the increase in usage costs. As more buildings gain the ability to track real-time load data, the more accurate analysis will be on effectiveness of renewable penetration and other energy related projects. The total savings for the buildings studied is \$6,351.10

2.3.17 Discussion on the savings due to carbon cost and value of lost load

There is indirect savings associated with the production of the renewable energy. By applying the social cost of carbon to the energy produced by the solar instillations, additional benefit can be determined. Xcel energy's generation portfolio averages 1.338 pounds per kWh as billed to commercial tariff customers. Therefore, the amount of CO₂ saved from emission is approximately 1,472 tons. By applying the \$22-28 per ton cost of carbon range. It can be concluded that the rooftop solar project saved between \$32,381 and \$41,213 in social carbon costs annually.

Additionally, there may be value in reducing load lost during an outage. A best-casescenario approach would assume that the solar installation be operational and be able to supply load not requiring connection to the utility grid. In this case, solar output during outage would offset the approximate value of lost load at \$8 per kWh. For example, if Ritchie Athletic Complex experienced an outage lasting 1 hour during the middle of the day in September, the savings would be approximately 450 kWh x \$8/kWh = \$3,600. This is assuming the solar installation at Ritchie is operating at full output during the outage and can be directly applied to load without being supplied by the utility grid. However, this may not be likely because severe weather often causes outage resulting in an inevitable reduction of solar output and building systems usually operate at a minimum load without linear reduction.

3 Discussion on Developing Energy Projects and Other Smart Technology Projects on Campus

3.1 Overview of the Smart Campus Initiative expansion

The DU Rooftop Solar Project is just the beginning of the university's commitment to a more sustainable future. It is evident that there can be cost savings by installing renewable capacity and continuing to reinvest the 'Green Fund' into upgrades within buildings and other campus infrastructure. In Chapter 1, an overview of other campus' projects was presented based on several categories. Each one of these categories provides an opportunity for the university to forward its commitment to a sustainable future. Most projects proposed below are eligible for 'Green Fund' investment.

3.2 Expanding energy related projects within the Smart Campus Initiative

The following projects pertaining to Microgrid/Energy/Storage/CO2

have been identified as priority opportunities for the university:

- Expanded in-network energy with localized renewable generation/energy storage
- Smart metering of all buildings' natural gas and electricity (by sub category)
- Introduction of energy storage
- Introduction of geothermal energy
- Introduction of demand response (load curtailment)
- Increase reliability infrastructure

Figure 20: Installation of Solar Tree on DU Campus⁴

Pertaining to Transportation, the following have been identified as university

priorities:

- Implementation of smart parking infrastructure
- Introduction of eBikes and other mobility devices
- Expansion of ride sharing initiatives
- Implementation of smart intersection infrastructure and traffic tracking

⁴ Photo courtesy of Lynn Bailey

Figure 21:Smart Intersection Graphic⁵

The following have been identified as university priorities pertaining to waste:

• Introducing sensors for waste pickup efficiency to also allow for collection weights and reporting analysis of area behavior

The following have been identified as university priorities pertaining to heating & cooling:

- Expanding heat recovery system networks
- Implementing additional passive solar systems

 $^{^5}$ https://baystateherald.com/2019/07/24/smart-transportation-system-market-development-growing-popularity-emerging-trends-and-status-forecast-2019-2026/

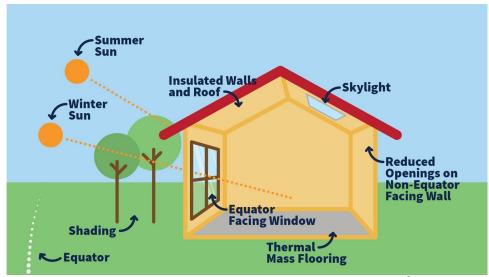


Figure 22: Illustration of Passive Solar Design⁶

The following have been identified as university priorities pertaining to lighting and light pollution:

- Expand efficient lighting upgrades
- Introduce smart campus lighting in both exterior/interior installations

The following have been identified as university priorities pertaining to water:

- Install smart metering to track real-time usage
- Implement grey water recovery
- Implement rainwater collection

⁶ https://carbontrack.com.au/blog/passive-solar-design/

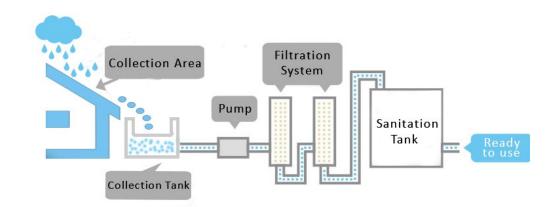


Figure 23: Rainwater Collection Process⁷

The following have been identified as university priorities pertaining to

health/wellness/social justice/education:

- Install air quality sensors
- Install a broader network of weather sensors
- Install facial recognition cameras
- Implement exercise promotion initiatives/active living measurement

The following have been identified as university priorities pertaining to IoT:

- Expand a dynamic wireless network to handle peak demand
- Implement IoT appliance integration for demand response & usage tracking
- Implement Wi-fi tracking for campus utilization analysis

3.3 Strategy for the smart campus initiative expansion related to energy

To achieve these outlined priorities, the university must take a hierarchical approach.

Certain projects will be easier to complete than others while some projects will require

⁷ http://www.neoakruthi.com/blog/rainwater-harvesting-methods.html

the completion of simpler projects before being achievable. The following is a hierarchical approach to achieving the outlined smart campus priorities.

3.3.1 Pertaining to Microgrid/Energy/Storage/CO2:

For a level one approach, the university is already pursuing integration of renewable energy generation on existing buildings. The partnership with Pivot Energy provides the university with localized PV generation on 18 buildings across campus. By continuing this trend, the University should install additional PV generation and other renewable generation capacity, if applicable, on any new structures built as outlined in the framework plan.

Additionally, any new structure built, should be installed with smart metering, broken down by subcategory. For example, a new residence hall should separate electricity, natural gas, and water metering by the service of the building such as, lighting, dining, HVAC etc. and the data be accessible real time for institutional analysis.

For a level two approach the university should implement all suggestions in level one with the addition of energy storage as an important catalyst to maximize the benefits of renewable generation. By installing battery storage, the university can store energy during low-load hours and dramatically reduce the overall energy cost by discharging during peak hours. The amount of energy storage is highly scalable and can me optimized for desired energy savings.

The most significant form of cost savings comes from reducing demand charges. To best reduce demand charges, the university would implement an energy storage scheme alongside any local renewable generation such as the rooftop solar project. Energy storage is scalable and associated cost savings can be tailored to the needs of the application. Additional information on the amount of cost savings can be found in later discussions on cost savings.

For a level three approach the university should implement all suggestions in level one and two with the addition of geothermal energy. Though it may be costly, it is a great way to offset heating costs in the long term. Geothermal may be desirable in new university building developments. Specifically, highways like I-25 hold heat longer than smaller streets, parking lots, and green space. With the close proximity to I-25, the development of the north campus may be able to incorporate heat recovery from the interstate.

Also, advanced electric reliability involves demand response by dynamic load curtailments. Many new smart appliances can be enabled to shut off during high demand times. Alternatively, sections of electric load can be curtailed with smart breakers to potentially prevent outages and reduce overall cost.

3.4 Strategy for the smart campus initiative expansion in other categories

3.4.1 Pertaining to Transportation:

For a level one approach, sensors should be installed to monitor the occupancy of each space as the university builds additional parking structures. By installing smart parking sensors in each parking space, the lot can be monitored for illegal parking and notify patrons of availability.

As a supplement to installing parking sensors, they could monitor how many vehicles coming to campus are single occupancy vehicles (SOV). The university should offer

incentives for not driving to campus and/or encouraging carpooling. Such incentives could be included as discounts in parking fees etc.

For a level two approach, the university should implement all suggestions in level one with the addition of mobility devices. The university used to have the Denver B-Cycle program with was underutilized then went away. Then the university hosted the private 'ofo' bikes which became popular and ultimately evolved into the scooter presence on campus. Mobility devices such as these seems to come in waves but are popular nonetheless. The university could invest in its own mobility devices to serve the campus community and be charged by renewable sources.

For a level three approach, the university should implement all suggestions in levels one and two with the addition of smart intersections. The university's main campus is bordered by a major thruway on the east. Implementing smart intersections that monitor vehicle speeds, the amount of traffic present, any hazards, and adjusts accordingly while analyzing data to communicate in real time to an operator is the premier smart technology package. This implementation offers multiple avenues of achieving smart city objectives.

Additionally, autonomous vehicles and shuttles would be another premier implementation putting the university well ahead of the pack in smart transportation technology on the campus. Initially, simple routs should be a first start then as the technology becomes safer, additional autonomous vehicles serving the perimeter could be implemented also.

3.4.2 Pertaining to Waste:

For a fundamental approach, the university should install sensors on existing and new waste receptacles that sense the amount of refuse they contain. This will allow the university to monitor and optimize refuse pickup. Additionally, the collected refuse should be weighed and reported so the data can be accessed by members of the community for analysis. Additionally, the campus dining should weigh and report their food waste in the open access reporting system.

Based on the analysis obtained from the sensors and the weighing, behavior of students and the campus community can be analyzed and used by interested parties for incentives.

3.4.3 Pertaining to Heating/Cooling:

For a level one approach, Heat recovery should be implemented as it is fundamental in a complete smart campus portfolio. The extent of implementing heat recovery on campus may differentiate between levels of achievement but the base level of implementing heat recovery would be to install a heat recovery in any new buildings, especially residence halls.

For a level two approach, Heat recovery implementation can be expanded to include a waste heat circuit between buildings with heat recovery systems to optimize the efficiency.

For a level three approach, the addition of a central energy processing center and waste heat recovery systems in existing buildings would place the university as a leader in smart heating technology.

3.4.4 Pertaining to Lighting/Light Pollution:

For a level one approach, the university should install efficient LED smart campus lighting in any new developments around campus. By installing lighting that can sense the amount of light required and does so using efficient LEDs, the university would not only achieve smart campus lighting status but also save energy costs due to exterior lighting.

For a level two approach, the university should implement all suggestions in level one with the addition of replacing the existing campus lighting infrastructure with smart efficient lighting to achieve a uniform cost savings initiative. With the entire campus' lighting smart connected, the university will achieve a superior level of smart lighting initiative. The luminosity data collected from the lighting network should be reported in an open access portal, so it can be used for analysis by the campus community.

For a level three approach, the university should implement all suggestions in levels one and two with the addition of smart interior lighting. Motion lighting is already being implemented in most university buildings. By expanding on this concept, the university should implement network connected smart interior lighting in any new building. Network connected lighting provides the ability to change lighting in a building from a remote location as well as obtaining valuable information on how the lighting of a building is used.

3.4.5 Pertaining to Water:

For a level one approach, the university should implement rainwater collection. Fortunately, Colorado is famed for having over 300 days of sunshine a year. However, it still rains in Denver. By collecting rainwater, the university can implement a direct initiative for smart water technology on campus. Network connected sensors should be implemented to monitor collection cistern levels and adjusts the quantity of utility water used during irrigation of campus green space. By implementing rainwater collection and smart monitoring, the university will achieve the implementation of smart water related technology and save water/money.

Additionally, any new building built on campus should have its water smart metered. If the building has multiple water systems i.e. residence hall with dining, then the systems should be sub-metered. This will allow the university to monitor water consumption and use the data for analysis by the campus community.

For a level two approach, the university should implement all suggestions in level one with the addition of expanding installation of smart metering on existing buildings to achieve the next level of water related smart campus technology. With the installation of smart metering across campus, the university can better analyze water usage between zones and identify any potential hot spots or issues.

For a level three approach, the university should implement all suggestions in levels one and two with the addition of grey water recovery. Most grey water produced by a campus is reusable dependent on where it is collected and how it is treated. To achieve the premier level of a water related smart campus initiative, the university should implement grey water recovery system(s). This would dramatically put the university ahead of the smart campus pack and have the potential of saving significant amounts of water.

72

3.4.6 Pertaining to Health/Wellness/Social Justice/Education:

For a level one approach, the university should focus on respiratory health as a significant concern in an urban environment. Denver often issues ozone alerts during summer months and wood burning restrictions in the wintertime. The university can participate in health monitoring by installing smart sensors across campus that monitor weather & air quality to report in an open access network. This would alert the campus community of any potential health risks and indicate healthier sections of the campus. Additionally, the weather sensors will indicate temperature, wind, and solar incidence for example around campus to be analyzed by the campus community.

For a level two approach, the university should implement all technologies in level one with the addition of wellness technology. Wellness is a core value of the university and thus should be promoted. Smart technology should be implemented to monitor campus community members' commitment to an active lifestyle. Community members can opt-in to a fitness initiative and be tracked on the number of times they cross campus for example. Checkpoints around campus can be installed that community members can check-in at to receive points etc.

For a level three approach, the university should implement all technologies in levels one and two with the addition of smart surveillance technology. Facial recognition software is becoming increasingly prevalent in institutions. The university should implement facial recognition technology on campus for purposes of security, health, and analysis. Smart surveillance can offer benefits such as authentication when entering buildings/rooms, identifying wanted persons, and identifying at risk individuals not attending class. The system could also be used to analyze the number of visitors to campus.

3.4.7 Pertaining to IoT:

For a fundamental approach to smart campus technology, wireless networks are the backbone of any smart technology. The university should implement a smart network infrastructure that dynamically handles the traffic through multiple channels. Distributed network control in its own concept is a smart technology. Fundamentally, a strong network would put the university in a position to support all smart technologies for the other categories and adapt additional smart technologies as they become available. See

3.5 Discussion on Cost Savings from Smart Campus Initiative

3.5.1 Cost savings related to energy

Like with the currently implemented rooftop solar project. The university may save money with the installation of additional renewable and local generation. The university may decide to purchase generation infrastructure outright or continue to contract the output using a PPA. In the first scenario, explicit savings would be recovered in the long term as the amount of demand savings *and* usage savings would pay off any initial capital investment costs along with the cost of maintaining the equipment. Through the PPA scenario like with Pivot Energy, explicit savings are only recovered through the demand savings associated with the output *unless* the associated PPA charge for the output is less than that of Xcel's usage charge. Both scenarios, carry the implicit savings as described with VOLL and social cost of carbon. Metering of energy usage is essential for not only energy utility companies but for the end consumer also. Because the university had real time meters installed on a few buildings, this project was made possible. If the university installed accurate meters on all its buildings to monitor energy usage. The data gathered would be used in projects like this for years to come. The inherent cost savings are expressed implicitly in other aspects like localized generation and demand reduction. Metering owned by the university can also help alleviate discrepancies in billing meters and provide redundancy in case of system error.

Energy storage is becoming more economically viable for institutions as technology becomes more advanced and cheaper to produce. According to the National Renewable Energy Laboratory's recent report, the average engineering, procurement, and construction (EPC) cost of utility-scale lithium-ion energy storage is approximately \$500/kWh and \$500/kW of installed capacity for a 1-hour duration system [20]. If the university installed on of these storage schemes on a rooftop solar project building where the load peak occurs offset to the solar output peak, additional cost savings can be realized. For example, AAC's solar installation is estimated to reduce the energy demand in the morning hours beyond the maximum demand occurring later in the day. Therefore, the demand reduction savings is underutilized. If a 50kW 1-hour system was installed at AAC. It would cost roughly \$50,000 EPC according to NREL. The additional demand reduction achieved would be at best 50 kw or approximately \$1,150 and \$940 of demand savings during summer and winter demand months respectively. Thus, the initial costs of the energy storage would recover in approximately 50 months. Accuracy in knowing when to discharge the energy storage would be achieved form the value of installing meters at each building.

3.5.2 Cost savings related to other categories

It is difficult to determine the actual cost savings associated with other smart campus initiatives explicitly. Certain projects will carry more weight in saving costs than others. Implicit value of certain projects such as transportation initiatives and titles associated with achieving smart campus benchmarks first is difficult to quantify proactively. The status achieved by the university as a key campus implementing smart technologies is nearly priceless. Value is also obtained by forming relationships with other agencies implementing similar initiatives like the City of Denver.

3.6 Alignment to the City of Denver's Smart City Initiative

Figure 24: City of Denver Smart City Initiative Logo

Inspired by the U.S. Department of Transportation's Smart City Challenge, the city of Denver has adopted a smart city initiative to think of transformative, multidisciplinary Smart City projects that could improve mobility. Denver's smart city does not stop at increasing mobility but also aims to reduce crime, pollution, and congestion while addressing the city's aging infrastructure. The initiative contains the core values of: access, connection, efficiency, equity, health, inclusion, innovation, partnership, safety, and sustainability. All of these core principles align with the proposed Smart Campus Framework enhancement either directly of subsequently through other avenues.

The city has outlined the plan by 4 categories: Healthy People & Places, Connected Mobility, IoT Platform and Data Management, and Innovative Pilots & Partnerships.

The Healthy People and Places initiative focuses to use real-time hyper-local air quality data to empower communities, families, and schools to limit exposure and reduce pollution through behavior change, advocacy, and community engagement according to the website. The initiative plans to use the rich social community of schools as a vehicle to deliver air quality and respiratory health education. With the implementation of the university's smart technology centered around air quality and weather monitoring, the university can be directly part of Denver's Healthy People & Places initiative.

The Connected Mobility Initiative plans to utilize Intelligent Transportation Systems (ITS) to progressively handle how traffic and mobility are handled such as wireless communications, car navigation, and traffic signal regulation. The university would be helping the city through implementing wireless networks and smart devices that monitor traffic to and around campus. Additionally, autonomous vehicles and mobility devices

implemented by the university would directly relate to the city's approach of transportation automation.

The IoT Platform and Data Management Initiative enables the city to progress the smart city framework through an enterprise data management system (EDM). The EDM system takes data from thousands of different sensors to provide real-time data to city employees. Data comes from resources like the traffic management center, police, bus, rail, road sensors, street lights, weather sensors, and universities. This equips Denver to improve the access and utilization of city services. By collecting the data as outlined in the smart campus framework, the university and the city will strengthen the bond of collaboration.

The Innovative Pilots & Partnerships Initiative directly mentions the University of Denver as a key partner in collaborating for the smart city framework. The Solar Decathlon was part of this initiative. The city's plan also includes an outline of utilizing living labs as a sandbox for emerging technologies. The University, in its researchoriented structure, will be a key partner in furthering the city's living lab approach.

3.7 Conclusion

As institutions embrace rapidly changing technology, energy infrastructure and other campus initiatives will benefit. Academic campuses everywhere are innovating new uses for smart technologies. The University of Denver has the opportunity to be one of these pioneering institutions even though the current number of smart campus initiatives is less than other campuses globally. With the expansion of the "Utility Reinvestment Fund" into the "Green Fund," the university can invest and implement many projects that utilize mart technologies. Projects centered around global topics may encompass multiple aspects of a few different focuses. However, none of the academic institution's campus initiatives include integration of smart technologies in *all* topics. As the DU Campus Framework Plan is expanded, smart technologies can be integrated in each category putting DU at the forefront at an all-encompassing 'Smart Campus.' Explicit savings will be realized by these projects both long-term and short-term, but the main value will reside in implicit status and external effects on innovating additional technologies centered around smart campus infrastructure.

References

- Robert W. Galvin Center for Electricity Innovation, "Microgrid at IIT,"
 2019. [Online]. Available: http://www.iitmicrogrid.net/csmart.aspx. [Accessed 15 January 2018].
- [2] S. Bracco, "Economic and Environmental Performances Qualification of the University of Genoa Smart Polygeneration Microgrid," in 2nd IEEE ENERGYCON Confrence & Exhibition, Florence, 2012.
- University of Minnesota Morris, "Sustainability Goals & Initiatives,"
 Regents of the UNiversity of Minnesota, 2018. [Online]. Available: https://morris.umn.edu/sustainability/sustainability-goals-initiatives. [Accessed 10 9 2018].
- [4] University of Twente, "Solar Powered E-Bikes," 2016. [Online]. Available: https://www.utwente.nl/en/organization/news-agenda/special/2016/livingsmart-campus/2nd-call-projects/solar-e-bikes/. [Accessed 15 6 2018].
- [5] Ohio State University, "eBike Project," [Online]. Available:u.osu.edu/smartcampus/projects/ebike-project/. [Accessed 15 1 2019].
- [6] eleven-X, "eleven-X and University of British Columbia Partner for Smart
 Campus Pilot Project to Monitor Accessible Parking Spaces," Globe Newswire,
 30 October 2017. [Online]. Available: https://www.globenewswire.com/news release/2017/10/30/1160069/0/en/eleven-X-and-University-of-British-

Columbia-Partner-for-Smart-Campus-Pilot-Project-to-Monitor-Accessible-Parking-Spaces.html. [Accessed 9 10 2019].

- [7] Texas A&M University, "Smart Campus Transportation," [Online].
 Available: https://smartcampus.tti.tamu.edu/. [Accessed 9 10 2019].
- [8] Technical University of Denmark, "Smart treash collection," [Online].
 Available: www.smartcampus.dtu.dk/cases/smart-trash-collection. [Accessed 9 10 2019].
- [9] S. Panchanathan and N. O'Connor, "Smart Stadium Initiative/Smart Living,"
 [Online]. Available: www.smartcampus.dtu.dk/cases/smart-trash-collection.
 [Accessed 9 10 2019].
- [10] Stanford University, "Stanford Energy System Innovations (SESI),"
 [Online]. Available: https://sustainable.stanford.edu/campus-action/stanfordenergy-system-innovations-sesi. [Accessed 10 9 2018].
- [11] M. Shahidehpour, "Streetlights are Getting Smarter: Integrating an Intelligent Communications and Control System to the Current Infrustructure," *IEEE Power and Energy Magazine*, vol. 13, no. 3, pp. 67-80, 2015.
- [12] University of California Davis, "UC Davis Smart Lighting Initiative,"
 [Online]. Available: https://cltc.ucdavis.edu/project/uc-davis-smart-lightinginitiative. [Accessed 9 10 2019].
- [13] Western Kentucky University, "WKU Office of Sustainability Campus Rainwater Collection," [Online]. Available:

https://www.wku.edu/sustainability/rainwatercollection.php. [Accessed 9 10 2019].

- T. Bindi, "Curtin University deploying sensors and analytics to create 'smart campus'," CBS, 2019. [Online]. Available: https://www.zdnet.com/article/curtin-university-deploying-sensors-and-analytics-to-create-smart-campus/. [Accessed 15 6 2018].
- [15] W. Sirui and Z. Jiawen, "Universities Develop APP to Rule Morning Exercise," Shanghai International Studies University, [Online]. Available: http://en.shisu.edu.cn/resources/features/smart-campus-exercise-app. [Accessed 15 9 2018].
- [16] Cornell University, "Energy Management Overview," [Online]. Available: https://fcs.cornell.edu/departments/energy-sustainability/energy-managementoverview. [Accessed 9 10 2019].
- [17] Georgia Institute of Technology, "Tech's Campus gets 'smart'," 2015.
 [Online]. Available: https://www.news.gatech.edu/2015/05/26/tech's-campus-gets-'smart'. [Accessed 9 10 2019].
- [18] London Economics International, "Estimating the Value of Lost Load," London Economics, London, 2013.
- [19] D. T. Shindell, "The social cost of atmospheric release," Springer, New York, 2015.

- [20] R. Fu, T. Remo and R. Margolis, "2018 U.S. Utility-Scale Photovoltaics-Plus-Energy Storage System Costs Benchmark," National Renewable Energy Laboratory, Golden, 2018.
- [21] T. Chapman, "A Solution to the Plastics Problem?," 24 January 2019.[Online]. Available: https://www.du.edu/news/solution-plastics-problem.
- [22] T. Ahrens, "DU increases investment in solar power," University of Denver Magazine, vol. Summer 2019, p. 1, 2019.
- [23] D. A. Asaleye and M. D. Murphy, "Monetary savings produced by multiple microgrid controller configurations in a smart grid scenario," IEEE, Cork, 2016.
- [24] J. Xiaoling, "Analysis of Microgrid Comprehensive Benefits and Evaluation of Its Economy," State Grid Energy Research Institute, Beijing, 2014.
- [25] A. A. Adam and A. Badea, "Top-down model for the calculation of energy savings," IEEE, Bucharest, 2015.
- [26] L. Steg, R. Shwom and T. Dietz, "What Drives Energy Consumers?," *IEEE Power & Energy Magazine*, vol. 10, no. 1109, pp. 20-28, 2018.
- [27] J. L. White-Newsome and B. N. Sanchez, "Climate change and health: Indoor heat exposure in vulnerable populations," *Environmental Research*, vol. 1, no. 112, pp. 20-27, 2012.
- [28] D. Hernandez, "Energy Insecurity: A Framework for Understanding Energy, the Built Environment, and Health Among Vulnerable Populations in the

Context of Climate Change," *American Journal of Public Health*, vol. 103, no. 4, pp. 32-36, 2013.

- [29] J. Stonewall, W. Hauang and M. Dorneich, "Energy Use and Weatherization Practices: Applications for Agent-Based Modeling to Support Vulnerable Populations," in *Human Factors and Ergonomics Society General Meeting*, Boston, 2018.
- [30] M. R. Maghami and A. Maghoul, "Hybrid Renewable Energy as Power Supply for Shelter during Natural Disasters," in *IEEE International Conference* on Automatic Control and Intelligent Systems, Shah Alam, 2016.

Appendix A

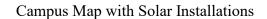
Mudd Heat Map

															MUDD															
Sep-18 l	DAY S	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su
Hour	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	/ 30
23	188.82	187.88959	186.1377	183.563	178.4334	181.1775	185.4105	188.4142	185.8533	183.2479	192.9955	192.3986	211.05	196.955	177.7175	185.9095	194.1813	199.8438	205.0518	175.7408	196.8687	184.1736	196.5867	182.4515	188.9181	193.2265	189.3768	185.8266	184.2005	5 189.8795
22	188.9851	184.7929	192.9964	195.5625		193.91		180.5717	185.258		191.4068	191.4514	206.1615		179.1679				202.5017	194.5464	194.2257	191.4119	201.3794	189.904	192.5582	193.1485	191.1717	188.826		4 187.7116
21	190.882	185.58326	183.5234	191.9865	182.0518			180.0553	184.755	196.1465	198.9835		218.0763	201.775			201.9199			192.3746	195.28	189.4709	188.7312	207.6884	198.0669	195.4259	191.7044			1 188.5037
	184.7132	187.04632	184.1563	191.4412	183.9927	190.5015	197.1409	181.4516	189.4319	203.8911		205.3863		200.1002	100.501		212.4498	223.6		192.3891	211.1007	190.0865	187.8196	209.8043	202.1801	187.0548	205.7605	195.9412	186.8606	5 190.5044
19	184.8315	193.94346	189.6905	197.4763	186.5639	199.0097	191.592	196.8276	197.1726	216.5799	221.8743	210.0151			196.7343				211.4184	175.0710	200.1000	190.3495	191.7253	207.1502	198.608	196.9301	209.2974	200.3568	196.4771	1 189.665
18	193.0181	196.38638	196.9403	206.6735	209.4452	201.6017	202.0067	195.0146	199.0790	217.2406									217.5608			190.0797	170.2072	200.1102	212.9014	207.3544	201.4582	205.4937	205.8121	. 170.0022
17	196.071	193.92446	195.2859	228.3101	218.7798	207.2656	211.539		196.0695				250.4064								232.7985				221.3708					
16	195.9539	192.82852	192.2895	210.0770	3 230.2388																239.8233		204.4572		229.2391					2 206.2824 6 206.1292
		192.66372																									220.5699			
	193.9738	191.15007	202.008		248.8918						252.5358										234.3434									
		171.07101	212.33		242.4323								257.7257								242.8558						235.9765			
		180.37341	200.0000	200.0002	21110100	200000	250.5520	21 110500	201100000	200.0000		202.00	20010210	210.0700	199.1011	200.0700	2.0.0701	200.070			247.5207									1 188.4154
		184.35249			242,9792																232.0288								208.6466	
																					225.7733						224.7966			
	185.0903	193,9335	195.0314																		202.1653						199.4054			
7	174,5994	173.96714	192,4252	178,4977	178.3426	190,5408	176.6055	172,1135	170,7957	187,7903	204.7365	218,5924	197.8901	198,4127	183.9711	171.7131	202.7168	187.3043	201.338	216.609	180.6845	183.8053	167.48	203.1522	186,7757	191,496	188,4318	187.3906	179,4678	8 182.792
6	180,3708	180,77194	196.065	181.1363	177.2151	194,7218	180.3369	182.6881	181.0475	193,6898	187.7288	188,9235	203.3207	199.8305	194.3828	183.9171	182.282	186.5449	189,2744	205.8447	184,1598	188.0534	172,5094	179,1488	185.0966	189,1395	189,2381	192,9754	189.0308	8 188.0529
5	178.2825	175.46786	193.0048	173.4191	174.0853	178.2807	175.6108	178.7417	175.5647	183.74	178.8166	182.7325	195.944	196.0094	184.7576	171.3287	182.8939	178.2791	184.2927	197.7273	176.3796	187.5641	171.6744	174.4608	185.1573	186.7234	186.5262	186.9445	186.3606	6 185.1027
4	179.4015	173.02962	194.3813	173.4542	175.0664	179.0711	177.167	177.0172	171.9496	179.9863	178.9393	183.4107	183.1019	196.1745	185.7915	182.2872	184.9275	188.0012	186.3795	201.5755	176.7466	187.9826	172.846	177.8065	186.457	187.8094	187.7159	186.6751	185.1027	7 186.0872
3	175.4205	172.61205	193.8328	173.9255	175.4771	177.755	175.6493	178.0616	170.0519	182.2974	182.5309	183.9123	185.0324	195.1046	183.2866	192.6311	185.3568	191.9643	202.0058	202.6503	175.9217	188.7744	172.7962	176.3483	185.2087	188.1225	188.3805	187.1159	186.5092	2 186.219
2	174.4894	186.63952	193.4775	174.9021	182.3017	178.4414	175.8939	175.5493	174.2001	181.263	191.1859	195.0715	181.3501	194.9073	183.9448	187.5092	182.817	190.6918	198.3879	203.7595	174.6087	190.5847	173.2425	180.8652	185.3814	187.8005	190.4578	186.7622	185.8772	2 183.876
1	174.8093	190.84858	193.896	175.9166	182.0769	177.7173	176.6019	174.7128	190.4288	181.4251	186.2908	201.3145	199.2405	193.4417	197.7846	187.2189	178.3557	189.9886	196.5477	202.3368	174.178	187.8676	171.0822	181.0666	183.8709	188.6248	191.8348	188.2974	186.6479	184.5457
0	184.8243	190.14397	193.5234	189.2735	181.7676	178.7558	181.7119	174.9307	189.0391	193.0292	182.315	199.4777	197.7437	210.6344	199.1519	184.9192	179.6119	190.3141	191.7992	203.0121	174.8784	194.8347	170.6954	196.8617	182.0618	189.3618	191.1776	189.1652	185.8331	184.9866
Total	4473.012	4481.1893	4699.041	4927.263	4864.29	4910.981	4886.84	4594.854	4602.903	5182.156	5101.844	5292.697	5366.146	5245.239	4693.479	4657.993	5187.88	5298.06	5308.916	5231.341	4973.161	4636.321	4484.618	5004.144	4951.039	5079.336	4942.42	4933.07	4639.059	4578.707

Olin Heat Map

															Olin															
Sep-18	DAY	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su
Hour	1	2	3	4	5	6	7	8	9	10	11	12	13	14	4 15	16	17	18	19	20	21	22	23	24	25	26	27	28	3 29	30
23	38.2441	40.704702	56.93693	64.14031	44.72029	48.40305	31.59369	46.38534	68.321	66.66757	72.18306	63.1043	68.66406	52.1763	8 54.91312	60.42799	71.76172	60.85659	52.99736	49.31313	42.91539	32.91576	50.88332	45.46143	44.91645	41.20248	41.62687	28.41493	25.78401	43.24188
22	43.65026	36.486979	58.44382	58.259	44.14165	53.71611	42.06126	47.49119	72.84002	71.2275	77.99582	66.18201	75.25055	44.8745	3 55.62864	68.1313	74.33029	67.79909	67.15794	57.13515	47.5617	46.00431	59.69079	46.67083	44.94831	41.20256	41.41527	28.166	25.57874	42.21702
21	36.40784	45.536756	60.59127	68.54405	44.4059	56.17411	42.98974	54.43479	68.2418	74.81996	80.8582	72.5072	89.47351	54.04110	58.50737	64.82525	88.20259	74.63464	73.2545	70.44924	76.81706	44.34691	63.93997	58.90757						
20	41.97269	45.183047	62.1162	68.76537	43.46769	59.70943	48.87839	53.77379	72.51868	108.8645	112.1447	83.01787	94.90052	64.67412	2 67.30406	67.6143	92.67541	120.4476	87.81549	90.28696	72.92425	51.31057	68.95995	67.87382	76.94197	67.37487	82.71938	35.69595	55.65028	8 41.51582
19	46.57772	48.163532	62.26263	85.48789	42.36521	49.43256	46.53292	55.43838	82.44257	113.4655	123.3357	92.97743	103.2741	100.681	1 72.19319	72.48665	102.7421	136.0625	103.5513	115.9538	84.4391	53.71674	75.03597	72.28192	90.73254	85.83526	99.43649	36.26999	69.83174	41.14289
18	51.4814	59.548924	52.28256	96.36797	65.19088	44.99123	55.19202	69.23778	76.49317	117.7854	124.3244	133.1466	106.4145	113.518	6 78.59395	76.57346	98.82007	133.2576	98.23045	115.0504	88.48221	66.8485	76.66805	73.75884	81.51347	94.14208			76.84238	
		61.855829									157.0075				9 85.79672					123.3907			15.11/15	101.0102	94.78574	102.7102			85.07307	
16	59.50984	59.454459	56.36288	111.4476	65.08286	79.05417	91.16272								6 90.60085					129.1398						106.8061	115.8012	76.350	5 84.82324	23.33693
1.0	02.2000	59.787154	52.7552	113.1516		80.56668					139.4807					85.53288			144.2923				74.03444						\$ 56.51766	
		56.748165			95.44518	84.10482	99.17683								7 84.85248														3 49.38293	
		55.151345			104.246	89.8453	102.3823	92.92776	73.96467		127.0853	142.6733			3 83.77628				150.0015			/1.15055		114.0583		101.3165	110.8778		43.26198	
		47.717617			107.7479	87.17289	99.46358	00.5707	75.71010		130.3856	100.012			5 75.72398			127.022		117.0500		00.10072	70.91498	100.2021	01.15705	20.00277	107.7050	01.02077		20.0000
	00.12752	45.254661	11.19025		105.1705	07.70011	92.53369	01.05105	68.43335						3 70.51516				122.1235										40.56571	
		36.203066						15.01051	56.70086						2 65.68909				114.7896										48.64141	
		41.552686			83.35212			64.92051				107.0515	100.1100		2 55.12679													57.23028	24.85186	
8	55.36577	55.07 1770			///	57.05515	66.88848		40.96647						5 35.13424								29.27133		54.74144			51.9661		8 24.36543
7		22.667665			68.07935										8 30.36655												44.78448			7 25.13193
		23.122456		60.85138	61.61354	40.25856	69.24699	50.27017	29.23243						8 30.93031												38.30142	38.68725		3 25.5288
5	20.10021	24.924807	2	32.49693	34.64968	31.14719	37.4335		31.08035		51.12447				6 32.88662													31.9326		1 27.00873
4		24.354142					51.5571		30.62813						6 32.73742														27.97583	
3		24.206851													6 31.7781								30.69064			32.01294	31.15427		28.02175	
2	25.39559						38.65627								3 31.78707						28.53117		30.22813		30.08354	52.5525	31.29887			7 26.74552
1	25.02223						44.51484								3 31.47401								30.56421						28.01271	
0		44.848856																												
Total	1188.901	1011.2677	1055.533	1833.049	1549.043	1389.754	1543.513	1351.593	1368.907	2142.939	2365.377	2259.317	2241.761	1959.71	3 1386.733	1489.69	2247.427	2235.515	2069.089	2013.724	1659.006	1171.562	1290.008	1789.727	1493.366	1593.603	1725.308	1148.563	1018.499	9 727.5134

Nagel Heat Map


															Nagel															
Sep-18	B DAY	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su
Hour		1	2 3	4	4 5	6	5 7	8	9	10	11	12	13	14	15	16	5 17	18	8 19	20	21	22	23	24	25	26	27	28	3 29	9 30
2	242.369	5 240.0257	6 246.7409	237.6895	5 222.2079	222.0304	221.8055	241.2152	241.3623	240.1826	247.6534	250.2116	254.4747	244.5443	244.905	240.7898	241.4459	238.369	9 240.1775	221.2711	225.2021	221.2825	237.0674	224.2474	224.2823	225.4439	225.2291	224.7244	224.6204	4 221.8058
22	242.145	3 246.3537	1 232.4051	238.259	9 221.5495	222.4766	5 222.378	249.0085	247.3475	244.2227	245.4159	232.3517	232.7177	251.5957	238.7588	240.0605	237.281	237.7136	6 259.8155	220.9154	239.1835	223.7659	245.7542	223.7802	223.6205	224.2925	224.7955	224.2295	224.6525	5 222.7683
2	242.392	2 231.2872					241.0345	231.0723													4 243.0798				224.8821					8 222.1845
	236.940		3 239.0931				21110010	239.3939																						5 222.2946
-		6 238.1685						247.3905																						7 223.0803
1	3 238.828	4 236.8027																			239.2411									4 222.2608
1'	241.223	/ 211.2950	6 238.3381	210.15		241.1001		262.6267													253.8266									8 225.2565
-	5 240.323		5 237.2968	3 239.084																	2 263.8225				3 228.7063		241.0162			
	236.58		6 237.3632	2 242.490		249.7654		263.3044	263.0381												3 262.0846				225.6205					6 227.6936
-	237.275		8 237.4591		5 252.6655	250.5012	201.010	258.9584	261.631	260.7992									3 258.6789		2 262.7356				225.2801					5 227.5013
1.	3 238.295	6 236.7348		210.071	1 237.3057	2011100.		200.2110							258.8724										225.7412					
12	2 237.94	200.1102	8 237.7241	211.1100	200.0200	256.9773	200.007	201.0201	259.0388												3 260.3313				225.2196					4 226.4419
1		8 236.0070		237.965		258.6664		20110100																						8 225.6866
10	236.23		20000	239.8345		258.3307																			225.8143			226.6022		7 223.8012
-		6 236.5679				222.3742															263.6103							228.1279		2 222.3744
		1 241.4413																												-
		2 246.2763																												8 221.1164
-		6 220.6031													224.5695				2 220.924					228.2821			227.5157			1 221.3878
		4 221.4549 8 220.9021				221.6125		221.8715					245.6663												223.4787		225.8299			7 222.4229
-	224.894			220.1333			219.5498 220.6803																		222.5403					2 223.0044 8 221.6601
	223.356			220.209		220.428:																			222.5891		221.8484			7 222.1262
	223.162		228.8829				221.1218														221.0373					221.954	222.6457			1 222.5557
-	223.403																								223.392	220.0000		224.5673		4 223.7758
T . 1																														
Total	5632.2	7 5631.816	9 5706.015	5625.008	\$ 5549.764	5644.541	5/32.247	5811.391	5876.64	5867.608	5963.194	5968.26	59/3.769	5888.498	5908.162	5993.062	6009.298	5963.783	5 5948.114	5920.363	5765.169	5817.137	5816.1	5688.924	5404.576	5506.193	5557.014	5414.57	5549.215	5 5367.29

Daniels Heat Map

														Γ	Daniels	5														
Sep-18	DAY	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su	Mo	Tu	We	Th	Fr	Sa	Su
Hour	1	2	3	3 4	4 5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
23	147.4163	150.50998	158.8069	179.746	7 169.2423	167.4791	149.4145	145.8096	159.8348	168.8426	167.5925	170.299	177.2228	154.3607	151.6081	166.9323	173.935	188.6137	163.692	173.9827	188.4486	162.624	169.8225	168.6359	171.8736	179.3754	169.4432	173.5672	156.862	161.7295
22	151.8264	153.10922	157.7775	5 192.871:	5 101.0072	183.9829		148.4235		170.1105	17111212	177.7201	107.520	1000000	154.5396	150.7050	172.0311	190.9174	192.3401	195.5755	189.1676	173.5468	164.8491	193.6998	196.4981	194.3688	190.3311	176.1847	165.5261	151.1021
21	154.9048	154.41871	159.3577	195.456	2 186.6428	188.3892	154.4068	150.8099	160.2468	213.3253	206.8121	231.6642	203.1409	164.3164	166.2757	160.4819	218.3369	222.999	226.1929	205.8126	197.6267	182.9041	167.1944	219.8657	225.4666	216.653	206.1445	178.5953	171.1862	159.5084
20	154.3945	154.33982	161.8686	5 199.438	6 192.2758	191.9281	157.3637	157.0899	182.1768	228.6515	218.7947	243.2512	217.2797	167.7473	175.9715	163.6233	233.36	224.3898	240.2735	222.3529	198.1669	183.5904	186.767	230.7986	238.9533	228.5308	223.3423	179.1983	172.6196	179.456
19	149.8167	152.1381	156.4263	3 202.139	1 195.972	194.6373	155.7273	177.0184	177.5703	247.3495	226.9453	266.5146	248.7423	181.8441			274.2056						190.3777	273.839	249.8504	282.7637	254.8267	213.7151	174.355	183.8819
10	148.3441	110.1002		2 195.1893		170.0702	173.2659	101.5557		254.0279							284.8545						177.0100	200.0007	200.7071	286.812	272.1325	210.0177		169.3748
		142.83121			5 231.1896																231.2532					285.8577	288.2235			169.3871
		143.37147		5 249.006	2 2 10.050		222.4873								174.3766								177.2201	271.7037	299.5741	298.52			169.5683	
		143.64475		5 274.071	. 200.0000										172.6181						260.3325					316.0783	20112201			182.0646
					5 284.4679																						294.3448			193.1749
	170.1287		146.6894		5 283.7063	2001.201.0	254.7128	100.2277	101.5701	291.794					177.1644											315.0189			178.9064	
	166.1692		156.2636	261.353	212.1000		247.3184				292.3487	295.1769	501.5577	270.0171	182.3943	110.5277	307.5864	510.0155	296.3015	500.2570	200.1105	200.0070	176.3957	502.000	501.1250	330.7587	309.1904	298.9347	181.0479	
	161.3358		110.5500	259.906	. 200.0722	200.0000	243.4248		101.5155	502.0005	271.0015	299.8974			184.5579						288.58	197.5898	172.1000	515.2727	515.0001	339.8037	296.3586	300.8222	179.3149	
	164.0491		150.3463		7 257.6716											100.0000	310.8455			510.570	270.500	200.5781	172.0002			318.88	292.8197		178.4124	
9					9 237.7763										172.4487														181.3258	
8	166.878		100.0020	207.200.	5 230.4861	211.9910	209.9961			254.4845							278.7117				271.0020				202.0001	267.0262	210.0000		181.1105	
		139.75892			9 194.1669		190.1679								164.161									232.8811			198.5697		172.6499	
6	151.7114	141.37388	144.686;	192.649			166.1825					197.7184			166.4041			199.5795	212.5467	100.1125	227.3674			205.6594	201.6998	170.0772	166.949		178.0736	
5	140.67/1	145.70426	144.7181	1 142.6//	1 147.4829	120.0170	150.0705	149.9037	143.3996	111.5701	141.8968	146.1357	100.0207	100.7220		1 15.1005				142.0009	100.7020	100.2020	100.0207	150.5050		134.3165				144.4143
4	142.2258	147.3552			6 152.5091		144.7073			126.1312																			153.0913	
	139.2175	1 10.0 10 12		102.20	2 151.2499	120.013	143.9239	150.515							152.0919														155.0243	
2	137.5638				8 137.4384																							155.6811	153.6025	
1	137.599	146.24583 148.70342		2 145.785			155.2382			153.9722			156.1132		151.497 153.4848		154.2902						150.0527			161.2969		158.1061	154.7808	
Total	3089.345	3010.0318	3099.33	5 4949.118	8 4990.817	4588.319	451/.356	40/6.93	3812.517	54/3.789	5388.048	5584.763	5557.251	4936.616	4012.26	3859.782	3857.668	5624.773	56/4.247	5/45.6/8	5552.566	4493.058	4104.472	3634.425	5863.387	5708.461	5300.922	5255.215	4053.949	4032.365

Appendix B

Update to System Parameters

2019/2020 Project Completion	kW Size
Ritchie Center	748.11
Hampden Center	229.02
Anderson Academic Commons	189.09
Sturm Hall	116.16
Schwayder Art	54.87
UTS	26.4
Fisher Early Learning Center	19.8
Frontier Hall	56.76
Seeley Mudd	91.41
Boettcher West	154.77
Knudson Hall	26.4
Ammi Hyde	33
Central Receiving	26.4
Cherrington Hall	41.25
AOB	49.83
Driscoll South	109.56
TOTAL	1972.83
2020 Project Completion	
Career Achievement Center	62.7
First Year Residence Hall	65.5
TOTAL	128.2
All Sites	2101.03