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Abstract

Privacy policies notify Internet users about the privacy practices of websites, mo-

bile apps, and other products and services. However, users rarely read them and strug-

gle to understand their contents. Also, the entities that provide these policies are some-

times unmotivated to make them comprehensible. Due to the complicated nature

of these documents, it gets even harder for users to understand and take note of any

changes of interest or concern when these policies are changed or revised.

With recent development of machine learning and natural language processing,

tools that can automatically annotate sentences of policies have been developed. These

annotations can help a user quickly identify and understand relevant parts of the pol-

icy. Similarly a tool can be developed that can help identify changes between different

versions of a policy that can be informative for the user. For example, suppose accord-

ing to the new policy a website will start sharing audio data as well. The proposed tool

can help users to be aware of such important changes. This thesis presents a tool that

takes two different versions of a privacy policy as input, matches the sentences of one

version of a policy to the sentences of another version of the policy based on seman-

tic similarity, and inform the user of key relevant changes between two matched sen-

tences. We discuss different supervised machine learning models that are explored to

develop a method to annotate the sentences of privacy policies according to expert-

identified categories for organization and analysis of the contents. Different word-

embedding and similarity techniques are explored and evaluated to develop a method
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to match the sentences of one version of the policy to another version of a policy. The

annotation of the sentences are used to increase the efficiency of the matching pro-

cess. Methods to detect changes between two matched sentences through analysis of

the structure of sentences are then implemented. We combined the developed meth-

ods for annotation of policies, matching the sentences between two versions of a policy

and detecting change between sentences to realize the proposed tool.

The research work not only shows the potential of machine learning and natural

language processing as an important tool for privacy engineering but also introduces

various techniques that can be utilized for any natural language document.
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1. Introduction

A privacy policy is a statement or a legal document (in privacy law) that discloses

some or all of the ways a party gathers, uses, discloses, and manages a customer or

client’s data. Personal information can be anything that can be used to identify an in-

dividual, not limited to the person’s name, address, date of birth, marital status, contact

information, ID issue, and expiry date, financial records, credit information, medical

history, where one travels, and intentions to acquire goods and services [22]. A privacy

policy explicitly describes whether that information is kept confidential, or is shared

with or sold to third parties. ISO/IEC 29100 provides a high-level framework for the

protection of user information within an organization [14]. ISO/IEC 29100 establishes

11 privacy principles for competent privacy management in an organization. These

principles should be adequately reflected in the respective privacy policy of an organi-

zation. The 11 privacy principles are:

• Consent and choice: User consent should be taken to collect and process their

data. Users should be lucidly informed of their rights and choices. A policy

should explain the implications of granting or withholding consent and provide

mechanisms to the users to exercise their choice.

• Purpose legitimacy and specification: An organization should comply with the

purpose for data collection, and their privacy policy should clearly communicate

that purpose to users with sufficient explanation.

• Collection limitation: The collection of user data should be within bounds of the

applicable law and necessity of the stated purpose.

• Data minimization: Contact with user information should be minimized and

a “need-to-know” principle should be followed. User information should be

deleted periodically.

1



• Use, retention and disclosure limitation: User information should be used only

for the intended purpose and retained only as long as necessary. When the spe-

cific purpose expires, the information should be locked if needed to be retained.

• Accuracy and quality: User information should be collected and processed ac-

curately. Information should be verified and the reliability of the information

should be ensured.

• Openness, transparency and notice: Organizations should clearly and sufficiently

communicate the policies, practices and procedures governing user informa-

tion. The communication should include purpose of information collection, in-

formation disclosure and sharing principles, and retention and disposal princi-

ples. User choices and mechanisms to exercise them should be communicated.

Users should be notified of any changes.

• Individual participation and access: Users should have the ability to access, re-

view, edit and delete their information in a simple, fast and efficient manner.

• Accountability: All the privacy-related policies, procedures and practices should

be documented. Third party accountability should be ensured. A privacy officer

should be assigned to enforce accountability.

• Information security: Organizations should protect the confidentiality, integrity

and availability of user information. The security of the information should be

guaranteed, and compliance with legal requirements and security standards sho-

uld be ensured. Periodic security risk assessment and a cost/benefit analysis

should be conducted. Actions and fail-safes should be implemented for any po-

tential event.

• Privacy compliance: Organizations should ensure their compliance with privacy

principles. Periodic privacy audits and internal compliance check should be

conducted. A privacy risk assessment process should be developed and main-

tained.

Various legal regimes around the world require that website operators, app pub-

lishers, data processors and service providers post a notice on how they gather and

share users’ information [40]. This requirement results in a large number of privacy

policy documents that most users are unlikely to read due to the incomprehensible

2



nature of the documents. As a matter of fact, if users start reading policies for each of

the services they use, it is estimated that it would cost them at least 181 hours per year

[23].

Whenever there is a change in the data collection and use practices followed by a

company, the respective policy is revised and modified to reflect that change. It be-

comes very difficult for users to be informed about the introduced changes. To under-

stand the changes, users will have to read, understand and compare each sentence of

the two versions of the policy, which is a very tedious and complicated task. Hence,

most users remain in the dark whenever a change in the policy is introduced and are

unable to make informed decisions related to their privacy.

1.1 Problem Statement

One of the privacy principles is “openness, transparency and notice”. Organizations

or companies use privacy policies as the primary document to inform users about their

user data governing policies, procedures and practices; any change in them is met with

a change in the privacy policy, producing a different version of the document. A dif-

ferent version of the policy may introduce changes that can play a vital role in a user’s

participation. Suppose, a company decides to start collecting more sensitive informa-

tion about the user. This information will be provided through a change in the privacy

policy. Even if a user is well-versed in that company’s privacy policy (unlikely), it will

still be an extremely difficult task for the user to be aware of the critical change through

perusal. The sheer number of privacy policies (a policy for each of the used websites

or services) further demotivates users to be well informed about any changes in those

policies.

The goal of this research is thus to work towards a tool that facilitates the compari-

son of two versions of a privacy policy with ease, and help users learn about important

changes between the two documents. Using natural language processing and machine

learning, our tool extracts and presents the changes between two versions of a policy

in a comprehensible and useful format. The tool takes two different versions of a pri-

vacy policy as input, match the sentences of one version of a policy to the sentences of

another version of the policy based on semantic similarity, and inform the user of key

relevant changes (addition and deletion) between two matched sentences. Figure 1.1

presents workflow to perform automated change detection in privacy policies. Our
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Previous policy New policy

Sentence classification Sentence classification

Corpus

Sentence matching

Matched sentences
Sentences matched

with NULL

Continuing or
rephrased sentences

Deleted sentences

Detected additions
and deletions

between sentence
pairs

Present users with a
sentence level comparison

of two policies with the
detected changes

Figure 1.1: Flow chart of tasks for automated change detection in privacy policies

research is divided into three tasks:

• Sentence classification: This task uses expert-identified categories of privacy poli-

cies and machine learning to develop tools for classifying sentences in a privacy

policy. The categorized sentences helps in understanding, organizing and ana-

lyzing the contents of a policy.

• Sentence matching: This task maps sentences from one version of a policy to

the next version of the policy. Different permutation and combination of word-

embedding techniques and similarity methods methods are implemented, tested

and evaluated.

• Change detection: This task involves studying the relationship between words

in sentences to devise techniques that can detect addition and deletion changes
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between two sentences.

1.2 Evaluation Overview

We shall evaluate a number of methods for sentence classification, sentence match-

ing and change detection in an attempt to identify suitable candidates for the three

tasks. Our sentence classification experiments shall use a corpus of 115 privacy poli-

cies that have been manually annotated for fine-grained data practices and categories.

Primary evaluation for sentence matching and change detection methods shall be con-

ducted using different revisions of the Facebook, WhatsApp and Twitter privacy poli-

cies during the period of 2005 to 2019. In addition, we shall extend the evaluation

to a total of 79 policy pairs from Facebook, WhatsApp, Twitter, Google, LinkedIn and

Snapchat using the final sequence of chosen algorithms.

1.3 Thesis Contribution

The following summarizes the contributions we make through this thesis.

• We bring together a number of existing methods in machine learning and natural

language processing, and prior work in usable privacy policies, and apply them

to a problem in informed privacy decision making, namely that of automatically

detecting privacy-related changes in an organization’s privacy policy;

• We present a workflow to perform change detection in privacy policies through a

sequence of three filtering tasks (sentence classification, sentence matching and

change detection) in order to prune redundant comparisons;

• We present extensive results on the application of our methodology on 79 poli-

cies taken from six global technology organizations, and bring to light some ob-

servations prevalent in these policies over time; and

• We make a first attempt at creating a web application to visualize privacy policy

changes.
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1.4 Organization of Thesis

This thesis is structured into the following chapters:

• Related Work and Background: The chapter explores existing research and rel-

evant contributions on change detection, and making privacy policies more us-

able for users. It describes basic theoretical foundations. Machine learning, nat-

ural language processing techniques and data science concepts are discussed.

• Data Description: This chapter discusses the description, collection and use of

the data sets used in this research.

• Sentence Classifier: The chapter describes the task and process of developing

methods for sentence classification. Observations and results from the task are

discussed.

• Sentence Matching: The chapter describes the task and process of developing

methods for matching sentences from two versions of a policy. Observations

and results from the task are discussed.

• Change Detection: The chapter describes the task and process of developing

methods for change detection between two sentences. Observations and results

from the task are discussed.

• Extended Evaluation: This chapter discusses an extended evaluation and analy-

sis of our developed methods.

• Conclusion and Future Work: This chapter summarizes the results of this re-

search work and discusses related future work.
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2. Related Work and Background

Natural language privacy policies are the primary medium used by websites to

communicate information addressing user data collection and use, becoming a de

facto standard to address expectations of “notice and choice” on the web [6]. These

notice and choice are, at minimum, insufficient and, in many cases, undesirable [3].

Notifying users about a system’s data practices is supposed to enable users to make in-

formed privacy decisions. Yet, the long and complicated nature of privacy policies, are

often ineffective because they are neither usable nor useful, and are therefore ignored

by users [35]. McDonald et al. contend that the time required to read privacy policies

is equivalent to a form of payment, where users pay with their time to research poli-

cies in order to secure their privacy [23]. Even when users attempt to understand the

practices described in the policies, there is often a disagreement between the actual

meaning and the user’s interpretation [31].

There has been a wealth of research on techniques to make these policies more us-

able and comprehensible for consumers. Vail et al. conducted an empirical study of

different ways of presenting information from privacy policies to consumers, and dis-

cuss some of the trade-offs associated with these different types of presentation [36].

Micheti et al. aim to develop guidelines for constructing privacy policies, with the end

goal of making them so simple that, even children and teens can accurately interpret

them with relative ease [24]. The Platform for Privacy Preferences (P3P) lets websites

convey their privacy policies in a computer-readable format, which can then be used

by browser agents to automatically check the alignment of the policies with a user’s

specified privacy preferences [7].

The Usable Privacy Project took the initiative to leverage natural language process-

ing, privacy preference modeling, crowdsourcing, formal methods, and privacy inter-

faces to develop a practical framework that empowers users to more meaningfully

control their privacy, without requiring additional cooperation from website opera-
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tors [32]. Under the Usable Privacy Policy Project, there are extensive research works

on using natural language processing to understand the content of privacy policies.

Liu et al. presented advances in using supervised learning to automatically annotate

paragraphs and sentences in a policy with expert-identified categories of policy con-

tents [18]. Ramanath et al. approached the annotation of privacy policy segments as an

alignment problem by using hidden markov models [30]. Ammar et al. utilizes logistic

regression to predict the presence or absence of a limited set of practice statements

within a privacy policy [2]. Wilson et al. studied the accuracy of crowd sourced privacy

policy annotations, the levels of granularity in annotations that are feasible for auto-

matic analysis of privacy policies and formulated guidelines that can enhance crowd

worker productivity in annotation tasks [38]. Sathyendra et al. and Habib et al. focuses

on extracting user choices in privacy policies, particularly opt-out choices [34] [10].

Sathyendra et al. explores a query answering approach that would enable users to ask

questions about specific aspects of privacy notices [33]. A similar work is presented by

Harkous et al. describing conversational privacy bots (PriBots) that build on machine

learning techniques to automatically annotate the text of privacy policies [11]. Cherivi-

rala et al. presented a website that facilitates users with a visualization tool for map-

ping text segments onto meaningful categories of data collection and use practices [5].

Zimmeck et al. introduced a scalable system to help predict the compliance of Android

apps’ with privacy requirements by combining machine learning-based privacy policy

analysis with static code analysis of apps [39]. Evans et al. identifies information type

hyponymy in policies to help create an information type ontology [8]. Hosseini et al.

provides empirical methods that can be used to manually create an information type

ontology from policies [12]. Oltramari et al. introduced an ontology of data collection

and use practices that allows one to submit SparQL queries against a corpus of anno-

tated privacy policies [27]. Wilson et al. describes the creation of a dataset of privacy

policies from websites and an annotation scheme desribing the data collection and use

practices of the different sections in a privacy policy [37]. Despite tremendous effort

and research on making privacy policies more usable for users, there has been no work

in detecting changes between revisions of a privacy policy. Most of the current work is

focused on making policies more understandable, through organization of the policy

content and extraction of relevant information.

There are some research that address change detection in other domains, but none

of them are focused on detecting changes in a natural language document. An auto-
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mated change-detection algorithm for HTML documents using changes of data con-

tents with respect to markup structures according to the HTML grammar is presented

by Lim et al. [17]. Chawathe et al. focuses detecting meaningful changes in hierarchi-

cally structured data, such as nested-object data and describing the changes in a se-

mantically more meaningful way [4]. Lim et al. and Chawathe et al. use structural rules

for the data to identify changes, and do not use any learning model [17] [4]. There are

plenty of research in detecting changes in images and using the identified changes to

study a particular area. For example, Mas conceived a large range of methodologies

for identifying environmental changes using change detection in satellite images [21].

Lienhart discusses various methods for detecting video shot boundary using change

detection in pixel data [16].

We conclude that there has been a lack of research using natural language process-

ing and modern machine learning techniques to detect changes in natural language

documents. This implies that the potential for natural language processing in change

detection is still untapped. Through this research, we not only hope to make privacy

policies more “user friendly”, but also show another use case of NLP that can be poten-

tially applied in other domains as well.

Due to the large versatility and enormous number of different applications in NLP

and machine learning, the chapter will only focus on subjects, which are important to

this thesis.

2.1 Natural Language Processing

Natural language processing or NLP is a subfield of artificial intelligence (AI) con-

cerned with computer and human (natural language) interactions. NLP combined

with privacy engineering is the main area of research in this thesis. This section serves

to put natural language processing (NLP) in the context of artificial intelligence (AI)

and discusses components of natural language processing.

2.1.1 NLP in AI

Artificial intelligence is a very broad term generally used to refer to systems that

can in a way think [13]. For this thesis, the interpretation of Hurwitz et al. will be taken

as it defines NLP in relation to AI. AI consists of four main parts, which are machine

learning (ML), reasoning, planning and natural language processing (NLP), as shown
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Figure 2.1: Artificial Intelligence contains NLP and Machine Learning

in Figure 2.1. Reasoning enables a machine to provide suggestions based on data,

whereas planing empowers systems to act autonomously on the interpretation of data.

NLP deals with human and machine interaction using unstructured natural language,

as applied to machine translation, speech recognition, dialog systems, named entity

recognition, information retrieval and text classification.

2.1.2 Components of NLP

The processing of human language is based on understanding the intended mean-

ing of a message. To correctly interpret a message the machine need to take into ac-

count all components of a message such as phonetics, morphology, syntax, semantics

and pragmatics. Phonetics is about the acoustic properties of a sound produced by the

human vocal tract. It examines how sounds are physically constructed. The sound of

a particular human language is studied in phonology. Phonetics and phonology are

important in speech recognition applications where sounds are converted to words by

computers.

Morphology explores the actual root of the word and concerns the meaning and
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architecture of the word. For example the word “flying” is rooted at word “fly”. NLP

concepts like stemming and lemmatizing are based on this component.

Syntax refers to ordering and forming of grammatically correct sentences from the

words. Semantics on the other hand targets the overall intended meaning of the sen-

tences constructed. Pragmatics is used to get the overall context of the situation where

a sentence is used. All the components of natural language are needed to be taken into

account for a machine to use it. The following section describes feature selection and

preprocessing based on these components.

2.2 Feature Selection and Preprocessing

Feature selection is the process where features that contribute most to the desired

output are automatically or manually selected. Preprocessing is the step in which the

data gets transformed or encoded so that it can be easily interpreted by the machine.

Feature selection and preprocessing are significant tasks in artificial intelligence rep-

resenting data preparation. Due to unstructured and arbitary nature of text data, this

task has significant impact on text analysis [1].

2.2.1 Tokenization

While processing text in NLP, it needs to be broken into smaller units called tokens.

Tokenization is used to create these tokens which can be simple words or the whole

sentence itself, and are the smallest independent units of natural languages. A sim-

ple tokenizer can be realized that splits words based on occurrences of space but may

lose useful information like words belonging together semantically e.g bi-grams. Other

ways of tokenization include using regular expressions and language specific rules. To-

kenization is generally the first step in natural language processing.

2.2.2 Stop Word Removal

Most natural languages have words that occur more than others but do not add

much information to the context of the text. In English “the”, “a” , “that” etc. are some

examples of such words. These words are referred to as stop words and removing them

can decrease the size of the raw input in NLP. Stop word removal can be done by simply
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checking against a set of standard stop word list, but this task should be done carefully

in order to not remove words like “no” or “not” that can change the meaning of the text.

2.2.3 Stemming

Stemming is the technique of mapping words to their word stems, making the un-

structured data more accessible for the machine by reducing the input dimensions, e.g.

liking to like or retrieval to retrieve. This helps in representing the text in simpler terms.

The first stemming algorithm developed in 1968 was based on deleting longest suf-

fixes and spelling exceptions [20]. There are two errors that can occur while stemming:

1) overstemming and 2) understemming. Overstemming occurs when two words are

stemmed from the same root, but are of different stems. Understemming occurs when

two words are stemmed from different roots, but are not of different stems.

2.2.4 Lemmatization

Lemmatization is similar to stemming. It maps the words to their dictionary type or

intended originating structure. Verbs are transformed to their infinite form, a noun is

reconstructed to it’s singular representation, and adverbs or adjectives anticipate their

positive format [19], e.g. best to good. The method is based on morphological analysis

and is supported by dictionary entries. Lemmatization like stemming also makes the

input space smaller.

2.2.5 Parts of Speech tagging

Parts of speech tagging or often referred to as pos-tagging is the process of mark-

ing up a word to it’s particular part of speech based on not only it’s definition but also

it’s context. For English language, there are nine major parts of speech: noun, verb,

article, adjective, pronoun, adverb, preposition, conjunction and interjection. There

are many more categories and sub-categories, for example, nouns can be further sub-

categorized as plural, singular and possessive. Pos-tagging is harder than it seems as

some words can represent more than one part of speech at different times. This re-

search uses pos-tagging for lemmatization and also in identifying nouns in detecting

changes in matched sentences.
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2.3 Vector Representation

Word representations should be machine readable and thus, text is often trans-

formed to numerical representations. These representations may only encode the

statistics of the word or may include the word’s context as well. Word embedding is

the collective name for a set of language modeling and feature learning techniques in

natural language processing (NLP), where words or phrases from the vocabulary are

mapped to vectors of real numbers. Conceptually, it involves a mathematical embed-

ding from a space with many dimensions per word to a continuous vector space with

a much lower dimension. It is used in information filtering, information retrieval, in-

dexing and relevancy rankings. Given a set of textual documents, a vocabulary can be

built, using which documents can be transformed to vectors.

The next few sections discusses the vectorizarion methods that are used and ana-

lyzed in this thesis.

2.4 Tf-idf vectorization

As discussed in section 2.3, text documents are transformed into vectors of real

number. Suppose {w11, w12, . . . w1 j } represents the first sentence in a document and

each dimension corresponds to a separate term or word, wi j is the j th word in the i th

sentence. If a word occurs in the sentence, its value in the vector is non-zero. Several

different ways of computing these values, also known as (term) weights, have been

developed. Td-idf is one of these methods of computing these weights.

Tf-idf stands for term frequency-inverse document frequency, and td-idf weight is

often used for feature extraction in text mining. The weight computation is based on a

statistical measure that evaluates how important a word is to a document in a corpus.

The measure is proportional to the number of times the word appears in the document

but is offset by the frequency of the word in the corpus.

2.4.1 Computation

Td-idf weight is composed of two terms: Term Frequency (TF) and Inverse Doc-

ument Frequency (IDF). Term Frequency measure how frequently a term occurs in a

document, normalized by dividing it by the length of the document as it is possible
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that a term may appear more in a longer document than a shorter one.

For a term t , T F (t ) = Number of times term t appears in document

Total number of terms in the document
.

Inverse Document Frequency (IDF) measures the importance of a term in the doc-

ument, given by:

For a term t , I DF (t ) = l n

(
Total number of documents

Number of documents with term ‘t’ in it

)
.

The final weight of the term t will be given by: T F (t )× I DF (t ).

In this thesis, tf-idf is used for feature extraction during sentence classification us-

ing OPP-115 corpus for term weight calculations. Each policy in the OPP-155 corpus is

a document in tf-idf computation. The total number of documents is 115 in OPP-115

corpus.

2.5 Word2vec

Word2vec was created and published in 2013 by Mikolov et al. [25]. Word2vec is a

group of related models that are used to produce word embeddings. These are shallow,

two-layer neural networks that are trained to reconstruct linguistic contexts of words.

Word2vec uses a large corpus as input and produces a vector space of several hun-

dred dimensions. Each unique word in the corpus is assigned a corresponding vector

in space such that words sharing common context are placed close to each other [25].

This captures syntactic and semantic relationships between the words.

2.5.1 Computation

Word2vec is a method to construct an embedding or transform documents to vec-

tors of real number. It can be obtained using two models: skip-gram and common

bag of words (CBOW), both involving a neural network that uses back-propagation to

train. Skip gram works well with small amount of data and is found to represent rare

words well. On the other hand, CBOW is faster and has better representations for more

frequent words.

Consider the following sentences
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S1: “Have a good time”

and

S2: “Have a great time”

If we construct an exhaustive vocabulary, say V , then, V = {Have, a, good, great,

time}. One-hot encoded vectors for each of the word in V will have a length equal

to size of V (=5). One-hot encodings for our example vocabulary will be “Have” =

[1,0,0,0,0], a = [0,1,0,0,0], good = [0,0,1,0,0], great = [0,0,0,1,0] and time = [0,0,0,0,1].

These are vectors of zero except for the element at the index representing the corre-

sponding word in the V .

If we visualize these encodings on a five dimensional space, each of the word will

occupy one of the dimensions and has no projection along other dimensions. This

implies that the words have no similarity among themselves. This means “good” and

“great” are completely different from one another, which is not true.

We introduce some dependence of one word on the other words, words that are in

context of this word will get a greater share of this dependence. Common bag of words

and skip gram models use the context of the words to compute vector representation

that preserve the dependence between words.

2.5.2 Common Bag of Words Model

This method takes the context of each word as the input and tries to predict the

word corresponding to the context. Figure 2.2 is a simple representation of the archi-

tecture with only one word in the context. The input is a one hot encoded vector of

size V . The dimension of our hidden layer and output layer will remain the same. In

figure 2.2, [x1, x2, . . . xv ] is the one hot encoding of the input context word of dimension

1×V . Matrices WV ×N and W ′
N×V are initialized with random small values. [x1, x2, . . . xv ]

is multiplied with a matrix of V ×N dimension (WV ×N ) from input layer to hidden layer,

returning a vector of dimension 1×N . The goal is to produce probabilities for the target

word in the output layer. For the output vector [y1, y2, . . . yv ], yi is the probability that

the word corresponding to index i occurs, when the given input word is present. Con-

sider S1, let the input to the neural network be the word “good” ( [0,0,1,0,0] ), whose

target word is “time” ( [0,0,0,0,1] ). Element y5 in the output vector [y1, y2, . . . yv ] will
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Figure 2.2: Simple CBOW model with only one word in the context

give us the probability P (“time” is present | “good” is present). Vector 1×N from hid-

den layer is multiplied with a matrix of N×V dimension W ′
N×V ) and the resultant (1×V

vector is averaged element-wise to obtain the activation values at the output layer. Ac-

tivation values of output layer neurons are converted to probabilities using the softmax

function, the output of the k th neuron is computed by the following expression:

yk = exp(acti vati on(k))∑V
n=1 exp(acti vati on(k))

In the expression, acti vati on(i ) represents the activation value of the i th output

layer neuron. Given the target vector, the error vector for the output layer is computed

by subtracting the output probability vector from the target vector. Once the error is

known, the weights in the matrices WV ×N and W ′
N×V are updated using backpropaga-

tion. In the process, we learn the vector representation of the target word. The neural

network is trained by presenting different context-target words pair from the corpus.
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This is how CBOW learns relationships between words and in the process develops vec-

tor representations for words in the corpus. Figure 2.3 shows the architecture for mul-

tiple context words. The input is a C ×V matrix, C is the number of context words for a

single target word and input is a C ×V matrix. Each row(xi ) of the matrix( [x1, x2, . . . xC ]

) is the one hot encoding of a context word, where xi is a vector of size V (size of the

vocabulary). Vectors {x1, x2, . . . xC } are averaged together at the hidden layer and the

neural network learns the same way it does for a single context word.

2.5.3 Skip Gram Model

Skip gram model is a flipped CBOW model for multiple context words (figure 2.4).

The target word is given as input to the neural network that produces a vector of prob-

abilities. The result of the output layer, a C ×V dimensional output is a probability

vector of size V for each of the C context words.
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Figure 2.3: CBOW model with multiple words in the context
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Figure 2.4: Skip-gram model for multiple context words
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2.6 GloVe

GloVe stands for global vectors for word representation. It is an unsupervised learn-

ing algorithm for obtaining vector representations for words where training is per-

formed on aggregated global word-word co-occurrence statistics from a corpus. The

resulting representation showcase interesting linear substructures of the word vector

space [29].

2.6.1 Computation

Let Xi j = number of times word j occurs in the context of word i . Thus, the probability

of such an occurrence is given by:

Xi =
∑
k

Xi k (2.1)

Pi j = P ( j | i ) = Xi j

Xi
(2.2)

The ratio of co-occurrence probabilities is then defined as:

F (wi , w j , wk ) = Pi k

P j k
, (2.3)

where wi , w j , wk ∈ Rd are word vectors and function F gives us the correlation of the

probe word wk with word wi and w j . If the ratio is large, the probe word is related to

wi but not w j , thus giving us hints on the relationships between 3 words.

F is reformulated such that it only depends on difference of two target words:

F ((wi −w j ), wk ) = Pi k

P j k
(2.4)

Note that the arguments of F in equation 2.4 are vectors while the right-hand side is a

scalar. Hence, dot product of the arguments is taken, and written as:

F ((wi −w j )ᵀwk ) = Pi k

P j k
(2.5)

F should be symmetric, which require that F be a homomorphism between the groups
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(R,+) and (R>0,×), i.e.

F ((wi −w j )ᵀwk ) = F (wᵀ
i wk )

F (wᵀ
j wk )

(2.6)

From equation 2.5 and 2.6, F (wᵀ
i wk ) = Pi k = Xi k

Xi
. If F is set to be an exponential func-

tion, F (wᵀ
i T wk ) = exp(wᵀ

i wk ), we get:

wᵀ
i wk = log (Xi k )− l og (Xi ) (2.7)

wᵀ
i wk +bi +bk = log (Xi k ) (2.8)

To maintain the symmetrical requirement between the words i and k, two bias terms

bi and bk are added. Thus, word embeddings wi and wk are learned using equation

2.8 as the soft constraint.

In GloVe, the similarity of the hidden factors is measured between words to pre-

dict their co-occurrence count. This not only predicts the co-occurrence words, but

also creates vector representations that can predict their co-occurrence counts in the

corpus too.

2.7 Similarity Measure

One of the major problems addressed in this thesis is devising an efficient method

of mapping sentences from one version of a privacy policy to the sentences of the

successive version of the policy such that paired sentences from the two different po-

lices have the same semantic meaning. A similarity measure takes pairs of embedding

(string data converted into vectors of real numbers) as input and returns a value that

represents the extent of similarity between them. We are using two similarity mea-

sures: 1) cosine similarity and 2) word mover’s distance.

2.7.1 Cosine Similarity

Cosine similarity is a measure of similarity between two non-zero vectors of an in-

ner product space. It is defined as the cosine of the angle between them, which is same

as the inner product of the same vectors normalized to both have unit length. It is a

judgment of orientation and not magnitude: two vectors with the same orientation
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have a cosine similarity of 1, two vectors oriented at 90◦ relative to each other have a

similarity of 0, and two vectors diametrically opposed have a similarity of -1, indepen-

dent of their magnitude. The cosine similarity is particularly used in positive space,

where the outcome is neatly bounded in [0,1]. Given two vectors A and B, the cosine

similarity between them is represented using a dot product and magnitude as

cosi ne_si mi l ar i t y(A,B) = A ·B

||A||||B || (2.9)

Values closer to 1 represent more similarity, while values closer to 0 represent more

dissimilarity.

2.7.2 Word Mover’s Distance

Modi had a chat with
Bear Grylls in Jim

Corbett

The prime minister
met the TV Host in

National Park

Modi

Prime
Minister

met

chat

Corbett

National Park

Bear Grylls

TV Host

Figure 2.5: Example of WMD similarity measure in vector space

Word mover’s distance (WMD) is a measure developed specifically for text simi-

larity. It leverages the results of advanced embedding techniques like word2vec and

glove, which learn semantically meaningful representations for words from local co oc-

currences in sentences. This preserves the semantic relationships between embedded

word vectors. WMD suggests that distance between two embedded word vectors are to

some degree semantically meaningful and utilizes this property to provide a measure

of similarity between them. WMD treats texts as a weighted point cloud of embedded

words and the similarity measure between two text A and B are given by the minimum
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cumulative distance that words from text A needs to travel to match exactly the point

cloud of text B [15]. Refer to figure 2.5, which shows a graphical representation of

WMD measure in vector space between two texts A = “Modi had a chat with Bear Grylls

in Jim Corbett” and B = “The prime minister met the TV Host in National Park”. Even

though there are no common bag of words between the two sentences except the stop

words, WMD incorporates the semantic relationship between the words learnt during

word2vec embedding.

2.8 Machine Learning

There are many definition of Machine Learning (ML); one famous definition is

based on the idea of experience:

“A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T,

as measured by P, improves with experience E.” [26]

Consider a sentiment analyzer that classifies texts into either positive or negative sen-

timent (T ). The analyzer is trained on past data (E) to classify the text and the perfor-

mance is measured by it’s accuracy (P ).

ML is a major subject in AI and used in conjunction with NLP to create intelligent sys-

tems that use natural language as inputs for various tasks. For example: Siri (a virtual

assistant developed by Apple Inc.) takes speech as input (natural language), decipher

it and perform the task assigned by the user using a system based on machine learning

and natural language processing.

There are four subcategories of machine learning as illustrated in figure 2.1. These

are: 1) supervised learning, 2) unsupervised learning, 3) reinforcement learning and 4)

deep learning.

Supervised and unsupervised learning differ in terms of the structure of the train-

ing data used. In a supervised learning model, the algorithm learns on a labeled data

set that provides an answer key that the algorithm can use to evaluate its accuracy on

training data. An unsupervised model, in contrast, provides unlabeled data that the

algorithm tries to make sense of by extracting features and patterns on its own.

Reinforcement learning is the training of machine learning models to make a se-

quence of decisions. The system learns to achieve a goal in an uncertain, potentially
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complex environment. The computer employs trial and error to meet the given objec-

tive. The machine gets either rewards or penalties for the actions it performs with the

goal to maximize the total reward, it is up to the model to figure out how to perform the

task to maximize the reward. This type of learning is often used in games, self driving

cars, robotics etc.

Deep learning (DL) is a method of solving problems by enabling a computer to infer

complex patterns from simpler ones. Deep neural networks(DNN) are the basic parts

of DL [9]. DNN were inspired by information processing and distributed communi-

cation nodes in biological systems. DNN are organised layer-wise, where each layer

learns to transform its input data into a slightly more abstract and composite repre-

sentation. Deep learning has been applied to fields such as computer vision, machine

vision, speech recognition, natural language processing, audio recognition, social net-

work filtering etc.

In summary, the boundaries between AI, NLP and ML are not exactly lucid, and

thus should not be understood individually only. These topics are often used in con-

junction with each other and thus should be studied as such. The next two sections

discuss two machine learning algorithms that are analyzed, used and tested for classi-

fying texts in this research: 1) logistic regression and 2) support vector machine.

2.9 Logistic Regression

Logistic regression is based on a mathematical model that uses probability to clas-

sify data categorically. Due to unbounded nature of linear regression, it is not suitable

for classification task. A threshold is needed based on which classification can be done.

Thus, making linear regression unsuitable for classification problem. This brings logis-

tic regression into picture with prediction value strictly ranging from 0 to 1.

2.9.1 Theory

Logistic regression uses the natural logarithm function to find the relationship be-

tween the variables and uses test data to find the coefficients. The function can then

predict the future results using these coefficients in the logistic equation. Logistic re-

gression uses the theory of odds ratio to calculate the probability of a data point be-

longing to a class.
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The odds of data point x belonging to class y = 1 can be defined as:

Odd s = P (y = 1 | x)

1−P (y = 1 | x)
(2.10)

(2.11)

Logistic regression takes the natural logarithm of the odds to be linear with respect to x

P (y = 1 | x)

1−P (y = 1 | x)
= eax+b (2.12)

P (y = 1 | x) = eax+b

1−eax+b
(2.13)

= 1

1+e−(ax+b)

Equation 2.13 is the sigmoid function, where variable a and b are calculated using the

training set.

2.9.2 Multinomial Logisitic Regression

Multinomial logistic regression is used when the number of categories are more

than two. The fundamentals are based on the same principles as of logisitic regres-

sion. If the multinomial logit is used to model choices, it relies on the assumption of

independence of irrelevant alternatives (IIA), which is not always desirable. This as-

sumption states that the odds of preferring one class over another do not depend on

the presence or absence of other "irrelevant" alternatives. This means that the choice

of K alternatives or classes is modeled as a set of K −1 independent binary choices in

which one class is chosen as "pivot" and other K −1 classes are compared against it.

As our sentence classification task had more than two categories, an implementation

provided by scikit-learn package was used for this research.

2.10 Support Vector Machine

Support vector machine (SVM) is a simple machine learning algorithm with the

potential to classify data points (in our case text) with significant accuracy and less
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computational power. It can be used for both classification and regression tasks, but

most widely used for classification objectives. Support vector machines were originally

designed for binary classification. Several methods have been proposed that realizes a

multi-class by combining several binary classifiers.

2.10.1 Objective and Theory of Binary SVM Classifier

Optimal
Hyperplane

Hyperplane

Support Vector

Class A
Class B

Figure 2.6: Classification of data by support vector machine (SVM)

The objective of a support vector machine algorithm is to find a hyperplane that

separates the data points ( in an N -dimensional space) into two classes, where N is the

number of features. In case of text represented as vectors of real numbers, N will refer
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to the dimension of the vector. To separate the two classes of data points, the objective

is to find a plane that separates data points of both the classes with maximum margin.

Maximizing this margin instills more confidence on the future predictions.

Hyperplanes are the decision boundary supported by the support vectors, which

are data points that are closer to the hyperplane. Support vectors not only influence

the position and orientation of the hyperplane but also helps in maximizing the mar-

gin. In short, support vectors are the points that build a SVM classifier. If the number

of features is 2 i.e N = 2, then the hyperplane is simply a line. If N = 3, then the hyper-

plane becomes a two-dimensional plane.

For simplicity, let us consider all the data points to be two dimensional. Then the

hyperplane is a line and can be written mathematically as:

y = ax +b (2.14)

ax +b − y = 0

Let X = (x, y) and W = (a,−1), then the vector form of the hyperplane is

W ·X +b = 0. (2.15)

For a given point Xi from the training set, if it belongs to one class (say class A)

then it should follow W · Xi +b ≥ 1 . If it belongs to the other class (say class B) then

W ·Xi +b ≤−1 should be followed.

Support vectors are represented as W ·X +b = 1 and W ·X +b =−1. Thus, the mar-

gin 2
||W || , refer figure 2.6. SVM finds the support vectors and hyperplane, or find W and

b, such that 2
||W || is maximized and Yi (W · Xi +b) ≥ 1 where Yi = 1 or -1 representing

each of the two classes (A and B) and i ∈ {1,2, . . .L} with L as the size of the training set.

Even though the discussion above is for two dimensional data, the same theory is ap-

plicable for any N-dimensional data set.

2.10.2 Non-Linearly Separable Data

It is not always the case that raw data is linearly separable. However, adding one

extra dimension can make it separable. Figure 2.7 shows how adding a dimension rep-

resenting the square of magnitude of the data points can make them linearly separa-
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Class A
Class B

Figure 2.7: Example of transforming non-linearly separable data using kernel trick

ble. This is known as Kernel trick. Most implementations of SVM provide the option of

choosing a kernel type. For example, svm.SVC from sklearn have the option of using

‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’ or a ‘precomputed’ kernel.

2.10.3 Multi class SVM

As mentioned before, support vector machines (SVM) were originally designed for

binary classification. The theory discussed above also consider a two class classifica-

tion. But it can be extended to multiple classes using either of these methods : one-

against-all, one-against-one and DAGSVM.

In this research we have used a multi class SVM using an implementation the one-

against-one from scikit-learn 1.
nC l asses × (nC l asses −1)

2
classifiers are constructed,

where nC l asses is the number of classes and each one trains data from two classes.

The multi-class classification is transformed into one binary classification problem per

each pair of classes.

2.11 Technologies

The following section will describe the technologies that are used in this thesis im-

plementation. Python packages and libraries used in this research are described below.

1https://scikit-learn.org/stable/modules/svm.html
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2.11.1 NumPy

NumPy brings the speed of compiled code to Python, with it’s core built on well op-

timized C code. NumPy provides the functionality of creation of N -dimensional arrays

and provides fast versatile array computation methods. It also offers comprehensive

mathematical functions, random number generators, linear algebra routines, Fourier

transforms, and more 2.

2.11.2 Pandas

Pandas is an open source library that provides custom data structures such as data-

Frames and series 3. These structures are indispensable while working with large data,

especially in analysis.

2.11.3 MatplotLib

Matplotlib is a library for making 2D plots of arrays in Python. Although it has its

origins in emulating the MATLAB graphics commands, it is independent of MATLAB,

and can be used with Python in an object oriented way. Matplotlib is written primar-

ily in pure Python and makes heavy use of numpy and other extension code to provide

good performance even for large arrays 4. Matplotlib is used in this thesis for data anal-

ysis and visualization while comparing conceiving tools and techniques for matching

sentences.

2.11.4 NLTK

Natural language toolkit (NLTK) is a leading platform for building Python programs

to work with human language data 5. NLTK libraries are used in this thesis for tok-

enization, stemming, lemmatization, tagging and parsing. Also, NLTK provided cor-

pora such as WordNet and resources like stop word list which are used for processing

text data.
2https://numpy.org/
3https://pandas.pydata.org/about.html
4https://matplotlib.org/3.2.1/users/history.html
5https://www.nltk.org/
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2.11.5 Scikit-learn

Scikit-learn, or often referred to as sklearn, is a Python module integrating a wide

range of state-of-the-art machine learning algorithms for medium-scale supervised

and uns-upervised problems [28]. Sklearn provides flexible and efficient tools for clas-

sification, regression, clustering, dimensionality reduction, preprocessing and model

selection6. For this thesis, label encoder from sklearn is used in preprocessing. It also

provides tfidf vectorizer for feature extraction. Most importantly, sklearn provided tools

for classifiers that are tested, analyzed and used in this research, such as SVM and

multinomial logistic regression. Lastly, all the evaluation metrics used are also pro-

vided by sklearn.

2.11.6 Gensim

Gensim is a language processing toolkit for Python. It is designed to work with large

corpora and provides various scripts for topic modeling. Gensim provides implemen-

tation of word2vec and glove.

2.11.7 spaCy

spaCy is an open-source software library for advanced natural language process-

ing, written in the programming languages Python and Cython 7. It features NER, POS

tagging, dependency parsing, word vectors and more, which are used in this research

for detecting changes between matched sentences.

6https://scikit-learn.org/stable/
7https://spacy.io/
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Tool/Package Purpose
Python Primary programming language

NumPy Data manipulation and arithmetic operations

Pandas Data analysis and representation

MatplotLib Data visualization and analysis

NLTK Text processing

Sklearn Machine learning, data encoding and performance evaluation

Gensim Word2vec and glove encoding

spacy Pos tagging, tree parsing and operation

Table 2.1: List of tools/packages and their application in the research
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3. Data Description

This chapter is dedicated to the description of the data that has been used in our

research. We have used 1) OPP-115 corpus and 2) privacy policies.

3.1 OPP-115 Corpus and Annotation Scheme

The (Online Privacy Policies) OPP-115 corpus is a collection of 115 website privacy

policies with annotations that specify data practices in the text. Each privacy policy

was read and annotated by three graduate students in law [37]. The task of classifying

sentences before matching them requires the sentences to be compliant to categories

that properly represent their semantic. OPP-115 corpus contains detailed annotations

for the data practices described in the collection of website privacy policies. At a high-

level, these annotations fall into one of the ten data practice categories, developed by

a team of legal experts:

1. First Party Collection/Use: how and why a service provider collects user infor-

mation.

2. Third Party Sharing/Collection: how user information may be shared with or col-

lected by third parties.

3. User Choice/Control: choices and control options available to users.

4. User Access, Edit, & Deletion: if and how users can access, edit, or delete their

information.

5. Data Retention: how long user information is stored.

6. Data Security: how user information is protected.
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7. Policy Change: if and how users will be informed about changes to the privacy

policy.

8. Do Not Track: if and how do not track signals for online tracking and advertising

are honored.

9. International & Specific Audiences: practices that pertain only to a specific group

of users (e.g., children, residents of the European Union, or Californians).

10. Other: additional privacy-related information not covered by the above cate-

gories.

In OPP-115 corpus annotations, each policy has an associated CSV file containing

the annotation data for that policy. Each file contains data from all the three workers.

Each row of the CSV file contains the information for a single data practice and have

the following attributes:

1. Annotation ID: a globally unique identifier for the data practice.

2. Batch ID: name of the batch in the annotation tool.

3. Annotator ID: identifies the annotators.

4. Policy ID: identifier for the policy.

5. Segment ID: sequential identifier of the policy segment.

6. Category name: assigned category for the segment.

7. Attribute-value pairs: JSON object containing detailed annotations.

8. Policy URL: source URL for the policy.

9. Date: revision date of the policy.

The attribute-value dictionary, at its highest level, consists of keys (strings that cor-

respond to attribute names) that map to nested dictionaries. The nested dictionaries

have keys that specify the selected text, its location in the segment, and the value as-

sociated with the attribute. For building the classifier, sentence texts were extracted

from the attribute-value pairs under the key selectedText. Corresponding category of

the sentence was retrieved from the category-name attribute.
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3.2 Privacy Policies

The most important data used in this research are privacy policies. OPP-115 corpus

contains only one policy per website. We require multiple versions of a policy. Using

the Wayback Machine archive 1, we collected the available versions of the policy for

six six global technology organizations. For example, Facebook policies from the year

2005 to 2018 were collected. These policies are collected as HTML pages, then pro-

cessed to extract the texts from the pages without any HTML tags. Facebook policy

texts are the primary data used for our research. The revisions month and dates of the

18 Facebook policies are June 2005, February 2006, May 2006, October 2006, May 2007,

September 2007, December 2007, November 2008, December 2009, October 2010, De-

cember 2010, January 2011, September 2011, December 2012, November 2013, January

2015, September 2016 and October 2018. We also collected all versions of policies for

the following organizations: WhatsApp (6 policies from 2009 to 2019), Twitter (14 poli-

cies from 2007 to 2020), Google (27 policies from 1999 to 2017), LinkedIn (5 policies

from 2013 to 2020) and Snapchat (9 policies from 2017 to 2020).

3.3 Other Data

For training the glove and word2vec vectorizers, corpora glove.840B.300d is used 2.

This corpora contains 840 billion tokens, 2.2 million vocabulary and 300 dimensional

cased vectors created using common crawl of the web. This corpora is available under

the Public Domain Dedication and License 3.

1https://archive.org/web/
2http://nlp.stanford.edu/data/wordvecs/glove.840B.300d.zip
3https://opendatacommons.org/licenses/pddl/1-0/
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4. Sentence Classifier

The first task of the research is to build a sentence classifier using the OPP-115 cor-

pus that can be used to automatically annotate the texts of the policies according to

expert defined categories at a sentence level. The final objective of this research is to

present user-relevant changes between two versions of a privacy policy which requires

a sentence classifier. Otherwise during sentence matching, due to sheer volume of

text data, not only comparing one sentence of the previous policy to every other sen-

tence of the next policy becomes computationally expensive but also the chances of

bad match increase. Limiting the match search in the same category is faster and pro-

duces better result. For this task, existing annotations of the OPP-115 corpus is lever-

aged to build a classifier that can automate the process of categorizing the texts. This

part of the research only uses the OPP-115 corpus for training and testing.

4.1 Text to Tokens

As mentioned in chapter 3.1, only sentences (selected texts) and their correspond-

ing classifier attributes are loaded into a pandas dataFrame for building the sentence

classifier. Each sentence is preprocessed and converted into tokens first using Algo-

rithm 1. Algorithm 1 takes the entire column of sentences in the dataFrame as input

and returns a column of list of tokens corresponding to each sentence. The first step

is to drop the row from the dataFrame with empty or null sentences. Then for each

sentence all uppercase characters in the string are converted into lowercase. Using

word_tokenize from nltk.tokenize, sentences are broken down into a list of words or

tokens. These tokens are further preprocessed by removing english stop words and

non alphabetic words. Finally, using WordNetLemmatizer from nltk.stem and part of

speech tagging from nltk, these tokens are lemmantized and added to the final list of

tokens for that sentence. The process is repeated for all the sentences. Refer to 2.11.4
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and 2.2 for more details on nltk and preproccesing tools used.

Algorithm 1: Sentences to tokens
input : sentence List

output: list of tokens

tokenList← [] ;

foreach sentence s of the sentenceList do

if s.l eng th == 0 then

drop corresponding row from dataFrame;

continue;

end

s = s.lower ();

tokens← wor d_tokeni ze(s);

final_tokens← [];

foreach wor d , t ag in tokens do
if wor d not in stopwor d s.wor d s(′eng l i sh′) and wor d .i sal pha()

then

final_tokens.add(W or d NetLemmati zer (wor d , t ag ));

end

end

tokenList.add(final_tokens);

end

4.2 Feature Extraction

The tokens that are created are needed as floating point values for the machine

learning algorithms. Due to the large number of different words in these policies, tf-idf

vectorization is selected for this encoding or feature extraction. After looking at the

frequency distribution of all tokens, max_feature for the tf-idf vectorization is selected

as 5000, which creates a feature matrix of 5000 most frequent words. If this parameter

is selected as none, then the feature matrix will consider the exceptionally rare terms

as well. This would have resulted in high weight assignments to these rare words and

resulted in biased prediction of categories in presence of rare words. TfidfVectorizer

from sklearn.feature_extraction.text was used for this. It was trained on the documents

in OPP-115 corpus. Instead of using a different corpora, the OPP-115 corpus was used
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so that privacy policy related tokens are assigned appropriate weights. Using a differ-

ent corpora for this would have resulted in none weights for policy related words due

to the max_feature parameter and rarity of these terms in general documents. The

trained vectorizer was then used to encode our text data (tokens) into floating point

vectors. Tf-idf is discusssed in details in section 2.4. The trained vectorizer was also

saved for future transformation of the policies used in this research for consistency in

text encoding.

4.3 Prediction and Evaluation

The encoded vectors and their corresponding categories from the OPP-115 corpus

were randomly split into a 70% training set and a 30% testing set. Categories are con-

verted into integer values using sklearn.preprocessing.LabelEncoder, i.e our 10 cate-

gories defined in 3.1 were assigned values from 0 to 9. The training set is used to train

two supervised learning models: logistic regression and support vector machine, eval-

uated using the testing set. This process was repeated 10 times for both models, each

time randomly splitting the training and testing set according to the mentioned ratio.

Predictive models used, were selected based on already established methods [18] for

automated annotations of privacy policies.

For logistic regression sklearn.linear_model.LogisticRegression is used with liblin-

ear solver, which uses one-vs-rest scheme for multinomial classification. Rest of the

parameters were set to default. Logistic regression performed with a precision of 0.59,

recall of 0.77 and F1-score of 0.65. Here, precision is calculated as the sum of true

positives across all classes divided by the sum of true positives and false positives

across all classes. Recall is calculated as the sum of true positives across all classes

divided by the sum of true positives and false negatives across all classes. F1-score is

(2×Precision×Recall) divided by (Precision+Recall).

SVM classifier is realized using sklearn.svm.SVC, an libsvm implementation. The

model was trained with the following parameters: C was set to 1 , thus opting for a

larger margin separating hyperplane at the cost of more potential misclassification;

kernel was set to linear and other parameters were set to default. The SVM classifier

had the precision of 0.74, recall of 0.83 and F1-score of 0.78.

Evaluation of both logistic regression and support vector machine were done with

the OPP-115 corpus. Our observed results of the evaluation were on par with results
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Model Precision Recall F1-score
Logistic Regression 0.59 0.77 0.67
Support Vector Machine 0.74 0.83 0.78

Table 4.1: Evaluation results (precision/recall/F1-score) for logistic regression and sup-
port vector machine

from already established tools using these machine learning models [18] and validates

the proficiency of a SVM classifier and it’s superiority over logistic regression in auto-

mated annotation of privacy policies. Thus, SVM classifier was finalized as the classi-

fication tool to be used for the rest of the work done in this research. The next section

discusses results and observations from using the SVM classifier (trained on OPP-115

corpus) on Facebook privacy policies, which serves as the primary data set for majority

of this research.

4.4 Results and Discussion

The trained SVM model is evaluated using the OPP-115 corpus, but we wanted to

see how it performs for our collected Facebook policies. A ground truth for the Face-

book privacy policies from September 2016 and October 2018 is created by manually

categorizing each sentence of the two policies. Then, using the trained classifier, these

two policies were annotated and the ground truth was used to evaluate the classifier’s

performance. The precision, recall and F1-score for classification of both the policies

are shown in table 4.2. Facebook privacy policy from September 2016 was annotated

with a performance almost consistent to observed values during evaluation of the SVM

model with OPP-115 corpus. But the policy from October 2018 performed poorly in

terms of precision, recall and F1-score, which begged the question why such a drastic

drop in performance for this policy. Creating ground truth for all the different versions

of Facebook policies would have been a very labour intensive task. It was thus decided

that instead of manually annotating each policy and evaluating the classifier on those,

a deeper analysis using the available ground truth of the two policies can also give us

some interesting insight and maybe give us the reason behind the poor annotation of

October 2018 privacy policy. With that idea in mind, confusion matrices for the two

Facebook policies were plotted for further analysis.
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Policy Precision Recall F1-score
Facebook September 2016 0.65 0.85 0.74
Facebook October 2018 0.48 0.58 0.50

Table 4.2: Classification results (precision/recall/F1-score) for sentences from Face-
book privacy policies

4.4.1 Confusion Matrix and Analysis
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Predicted label
Accuracy: 72.83% Misclass: 27.17%

Other

First Party Collection/Use

User Choice/Control

Data Security

Third Party Sharing/Collection

User Access, Edit and Deletion

Data Retention

International and Specific Audiences

Policy Change

Tr
ue
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be

l

0.8235 0.1176 0.0000 0.0000 0.0588 0.0000 0.0000 0.0000 0.0000

0.0714 0.7857 0.0000 0.0000 0.1429 0.0000 0.0000 0.0000 0.0000

0.1000 0.3000 0.3000 0.0000 0.3000 0.0000 0.0000 0.0000 0.0000

0.0000 0.5000 0.0000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.1304 0.0000 0.0000 0.8696 0.0000 0.0000 0.0000 0.0000

0.0000 0.2000 0.2000 0.0000 0.0000 0.6000 0.0000 0.0000 0.0000

0.0000 0.2500 0.0000 0.0000 0.0000 0.2500 0.5000 0.0000 0.0000

0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Figure 4.1: Confusion Matrix for Facebook (September 2016) annotation
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0.1429 0.1429 0.2857 0.0000 0.2857 0.1429 0.0000 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0652 0.2174 0.0000 0.0000 0.7174 0.0000 0.0000 0.0000 0.0000

0.1667 0.1667 0.0000 0.0000 0.1667 0.5000 0.0000 0.0000 0.0000

0.0000 0.3333 0.0000 0.0000 0.1667 0.1667 0.3333 0.0000 0.0000

0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Figure 4.2: Confusion Matrix for Facebook (October 2018) annotation

A more detailed analysis of annotations generated by our SVM classifier was con-

ducted by first plotting confusion matrices of Facebook privacy policies from Septem-

ber 2016 and October 2018 shown in figure 4.1 and figure 4.2 respectively. The confu-

sion matrices showed major misclassification of sentences that should have belonged

to categories “User Choice/Control” and “Data Security” in both policies. Taking ex-

amples from these categories some observations were made.

“We also offer easy-to-use security tools that add an extra layer of security

to your account”
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should have been classified into “Data Security” but was categorized into “First Party

Collection/Use”. After going through similar examples of misclassification, it was ob-

served that presence of certain tokens which have higher association with other cat-

egories creates a bias in classification. In the example mentioned above, presence

of words “we”, “use” and “account” which are commonly observed in sentences be-

longing to“First Party Collection/Use” led to it’s misclassification. Other examples also

showed similar trends where presence of certain tokens have a higher weight towards

a certain category leading to misclassification. Some sentences such as

“We collect information from or about the computers, phones, or other de-

vices where you install or access our Services, depending on the permissions

you have granted”

that can technically belong to more than one category (either “User Choice/Control”

or “First Party Collection/Use” in this case but predicted as “Other”), often get wrongly

classified. This implies that the ambiguity in interpretation of sentences while anno-

tating texts during the creation of OPP-115 corpus, has been reflected in the trained

classifier, leading to a fuzzy-logic-like classification in some cases. The same obser-

Category Frequency
First Party Collection/Use 8,956
Third Party Sharing/Collection 5,230
Other 3,551
User Choice/Control 1,791
Data Security 1,009
International and Specific Audiences 941
User Access, Edit and Deletion 747
Policy Change 550
Data Retention 370
Do Not Track 90

Table 4.3: Frequency of sentences category wise in the OPP-115 Corpus (taken from
[37])

vations were made for sentences belonging to categories other than “User Choice/-

Control” and “Data Security”, which were misclassified. But the rate of such misclas-

sification was considerably less for certain categories like “Other” , “First Party Col-

lection/Use” and “Third Party Sharing/Collection”. As reported in [37] “Other” , “First
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Party Collection/Use” and “Third Party Sharing/Collection” had the highest frequency

of sentences in the corpus, shown in table 4.3. The higher frequency of sentences

or data points belonging to these three categories clearly have played a major role

in a better classification performance for them. Also, no sentence was found in both

September 2016 and October 2018 Facebook policies belonging to the “Do Not Track”

category, reflecting the statistics mentioned in [37] and in table 4.3. These observa-

tions led to further categorical analysis of the collected policies to see if a similar trend

of distribution of sentences categories is observed or not.

4.4.2 Categorical structure

20
05

(Ju
ne

)

20
06

(F
eb

ru
ar

y)

20
06

(M
ay

)

20
06

(O
ct

ob
er

)

20
07

(M
ay

)

20
07

(S
ep

te
m

be
r)

20
07

(D
ec

em
be

r)

20
08

(N
ov

em
be

r)

20
09

(D
ec

em
be

r)

20
10

(O
ct

ob
er

)

20
10

(D
ec

em
be

r)

20
11

(Ja
nu

ar
y)

20
11

(S
ep

te
m

be
r)

20
12

(D
ec

em
be

r)

20
13

(N
ov

em
be

r)

20
15

(Ja
nu

ar
y)

20
16

(S
ep

te
m

be
r)

20
18

(O
ct

ob
er

)

Privacy policy revisions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ra
tio

 o
f c

at
eg

or
ie

s

Other
First Party Collection/Use
Third Party Sharing/Collection
User Choice/Control
Data Security

Data Retention
User Access, Edit and Deletion
International and Specific Audiences
Policy Change
Do Not Track

Figure 4.3: Categorical structure of Facebook privacy policies

One of the observations made during the deeper analysis of Facebook privacy poli-

cies using confusion matrices was the non-uniform distribution of sentences among

all the categories. Categories “Other”, “First Party Collection/Use” and “Third Party

Sharing/Collection” had noticeably higher sentences than the other categories in the

OPP-115 corpus, which not only made the implemented classifier more efficient for

these categories but also gave us some interesting insight into the composition of most
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policies. We wanted to leverage the created sentence classifier and validate whether

the same trend is followed through different revisions of the same policy. To analyze

that, first for each individual version of the policy we categorized the sentences using

our classifier. Then, the ratio of the number of sentences found in a particular category

to the total number of sentences in the policy was computed. This is done for each of

the 10 categories. The same process was repeated for all the versions of a policy. The

computed ratios are then plotted on a graph to observe and analyze the overall trend

of categorical structure in a policy.

We began this analysis by first taking the policies from Facebook. The ratio of each

category throughout each version of the policy is plotted and shown in figure 4.3. It

reflects the same statistics presented in [37], with categories “Other”, “First Party Col-

lection/Use” and “Third Party Sharing/Collection” forming the major portion of each

policy. Most sentences belong to the “First Party Collection/Use”, which was also the

case with the OPP-115 corpus. This shows that privacy policies are mostly focused

on how user data is collected and used by the company. The other two major cate-

gories “Third Party Sharing/Collection” and “Other” interchangeably have the second

and third highest ratio in the documents. How a company shares user data with third

party services or companies have been a major concern for many users, and these high

ratio of sentences for “Third Party Sharing/Collection” show that privacy policies have

tried to address these user-concerns. “Other” category represents sentences which can

not be confidently categorized into other categories due to lack of clear interpretation.

The high frequency of “Other” category sentences both in the Facebook policies and

the OPP-115 corpus shows that how ambiguous and incomprehensible the nature of

these documents can be, which is not only a concern but also a major motivation be-

hind this research.
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Figure 4.4: Categorical structure of WhatsApp privacy policies

We also plotted the same graph for WhatsApp and Twitter privacy policies shown

in figure 4.4 and figure 4.5 respectively, which also followed the same trend of struc-

ture. Categories “User Choice/Control”, “Data Security”, “Data Retention”, “User Ac-

cess, Edit and Deletion”, “International and Specific Audiences”, “Policy Change” and

“Do Not Track” had less than 10 percent contribution each in all the privacy policies of

Facebook, WhatsApp and Twitter. Sentences for the category “Do Not Track” is almost

non-existent. This analysis gave us a deeper insight into the overall structure of these

policies, helping us understand their composition at a categorical level.
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Figure 4.5: Categorical structure of Twitter privacy policies
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5. Sentence Matching

The primary goal of this research is to develop tools for mapping sentences of a

privacy policy to the sentences of the successive version or revision of that policy.

This mapping should generate pairs of sentences such that both sentences have the

same semantics and help detect user-relevant changes between them. We need a good

match, otherwise it won’t make sense to detect changes between a pair of sentences

if they don’t mean the same thing. It is very important that the semantic relationship

between the words is preserved for a good match. Word2vec and gloVe embedding are

potential techniques that we evaluate and analyze to finalize one for this task. On top

of that, the similarity measure used also plays a pivotal role. Hence, both cosine simi-

larity and word mover’s distance are also evaluated in permutation with word2vec and

gloVe. This chapter is dedicated to the study of the above mentioned techniques and fi-

nalizing a method to generate pairs of matched sentences from two different revisions

of a privacy policy. SIF (Smooth Inverse Frequency) embedding on top of word2vec

and glove embedding is also evaluated and discussed in this chapter.

5.1 Similarity Measures

Before evaluation of embedding methods, generic similarity measures are first de-

fined for easier evaluation of embedding models. These methods are: 1) cosine sim-

ilarity and 2) word mover’s distance. Both the methods take two sentences as inputs

and returns a similarity measure between them. Other arguments of the methods are

model which can be either glove or word2vec, and use_stoplist, which is a boolean that

determines whether stop words should be included in the vector word embedding or

not. These methods are designed for easier evaluation of the similarity measures in

combination with the embedding methods.
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5.1.1 Cosine Similarity

Method cosine_sim shown in listing 5.1 is built on top of cosine_similarity from skl-

earn.metrics.pairwise. Cosine similarity is discussed in section 2.7.1. Arguments sent1

and sent2 are the two sentence strings for which similarity measure is being computed.

Argument model can be either glove or word2vec and use_stoplist eliminates the stop

words if set to True. Argument doc_freqs is for a dictionary of tokens and their respec-

tive frequencies, if provided these token frequencies are used to calculate the weights

for np.average (weight for each vector during average computation). Weights are cal-

culated using:

weight(token) = frequency(token)× log

(
N

doc_freqs.frequency(token)
+1

)
(5.1)

frequency(token) = frequency of the token in the input sentence

N = sum of frequency of all the tokens in the doc_freqs

doc_freqs.frequency(token) = frequency of the “token” in the doc_freqs

Equation 5.1 is implemented in lines 22-25 of the Python code in listing 5.1. For

this research, doc_freqs dictionary is created using frequency files found in NLP-town

github repository 1. NLP-town is an online platform that provides resources, consul-

tancy and information on all aspects of natural language processing. After creating

the embedding for the sentences, method cosine_sim returns the cosine similarity be-

tween the two embeddings.

Listing 5.1: Python code for computing cosine similarity between two sentences

1 def cosine_sim(sent1, sent2, model=None, use_stoplist=False, doc_freqs=None):

2 stop_words = set(nltk.corpus.stopwords.words("english"))
3 # N is assigned the sum of frequency of all the tokens in the doc_freqs file

4 if doc_freqs is not None:

5 N = doc_freqs["NUM_DOCS"]

6 tokens1 = [token.lower() for token in nltk.word_tokenize(sent1)]

7 tokens2 = [token.lower() for token in nltk.word_tokenize(sent2)]

8

9 if use_stoplist:

10 tokens1 = [token for token in tokens1 if token not in stop_words]

1https://github.com/nlptown/nlp-notebooks/find/master
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11 tokens2 = [token for token in tokens2 if token not in stop_words]

12

13 tokens1 = [token for token in tokens1 if token in model]

14 tokens2 = [token for token in tokens2 if token in model]

15

16 if len(tokens1) == 0 or len(tokens2) == 0:

17 return 0

18

19 freqs1 = Counter(tokens1)

20 freqs2 = Counter(tokens2)

21

22 wts1 = [freqs1[token] ∗ math.log(N/(doc_freqs.get(token, 0)+1))

23 for token in freqs1] if doc_freqs else None

24 wts2 = [freqs2[token] ∗ math.log(N/(doc_freqs.get(token, 0)+1))

25 for token in freqs2] if doc_freqs else None

26

27 embedding1 = np.average([model[token]

28 for token in tokfreqs1], axis=0, weights=wts1)

29 embedding1 = embedding1.reshape(1, −1)

30 embedding2 = np.average([model[token]

31 for token in tokfreqs2], axis=0, weights=wts2)

32 embedding2 = embedding2.reshape(1, −1)

33

34 sim = cosine_similarity(embedding1, embedding2)[0][0]

35 return sim

5.1.2 Word Mover’s Distance

Method wmd shown in listing 5.2 is similar to cosine_sim, but it doesn’t have the

doc_freqs parameter. Since word mover’s distance leverages the semantic relationship

in the embeddings from word2vec and glove, normalization of word embeddings using

frequency statistics is rhetorical. Both glove and word2vec models from gensim library

provide a word mover’s distance implementation and is used here.

Listing 5.2: Python code for computing word mover’s distance method between two

sentences

48



1 def wmd(sent1, sent2, model, use_stoplist=False):

2 tokens1 = [token.lower() for token in nltk.word_tokenize(sent1)]

3 tokens2 = [token.lower() for token in nltk.word_tokenize(sent2)]

4 stop_words = set(nltk.corpus.stopwords.words("english"))
5 if use_stoplist:

6 tokens1 = [token for token in tokens1 if token not in stop_words]

7 tokens2 = [token for token in tokens2 if token not in stop_words]

8

9 tokens1 = [token for token in tokens1 if token in model]

10 tokens2 = [token for token in tokens2 if token in model]

11

12 return (−model.wmdistance(tokens1, tokens2))

5.1.3 Smooth Inverse Frequency (SIF)

In case of cosine similarity, computing the average of the word embeddings in a

sentence tends to give too much weight to words that are semantically irrelevant, such

as but, just etc. Thus, Smooth Inverse Frequency (SIF) is used to modify the cosine

similarity method presented in listing 5.1. The modified method is presented in list-

ing 5.3. Unlike the previous two methods, sif_similarity takes all the sentences from

two documents as parameters. Like tf-idf, SIF takes the weighted average of the word

embeddings in the sentence. Every word embedding is weighted by
a

(a +p(w))
, where

a is a parameter that is typically set to 0.001 and p(w) is the estimated frequency of

the word in a reference corpus calculated using a token frequency dictionary, provided

by parameter freqs. Next, the principal component of the resulting embeddings for the

set of sentences is computed. It then subtracts from these sentence embeddings their

projections on their first principal component, which remove variations related to fre-

quency and syntax that is semantically less relevant. The method returns a matrix of

similarity measures for each sentence in one document to each sentence of the other

document.

Listing 5.3: Python code for computing cosine similarity with SIF

1 def remove_first_principal_component(X):

2 svd = TruncatedSVD(n_components=1, n_iter=7, random_state=0)

3 svd.fit(X)

4 pc = svd.components_

49



5 XX = X − X.dot(pc.transpose()) ∗ pc

6 return XX

7

8

9 def sif_similarty(sentences1, sentences2, model, freqs={}, a=0.001):

10 total_freq = sum(freqs.values())

11 stop_words = set(nltk.corpus.stopwords.words("english"))
12 embeddings = []

13

14 for (sent1, sent2) in zip(sentences1, sentences2):
15

16 tokens1 = [token.lower() for token in nltk.word_tokenize(sent1)]

17 tokens2 = [token.lower() for token in nltk.word_tokenize(sent2)]

18

19

20 tokens1 = [token for token in tokens1 if token not in stop_words]

21 tokens2 = [token for token in tokens2 if token not in stop_words]

22

23 tokens1 = [token for token in tokens1 if token in model]

24 tokens2 = [token for token in tokens2 if token in model]

25

26 weights1 = [a/(a+freqs.get(token,0)/total_freq) for token in tokens1]

27 weights2 = [a/(a+freqs.get(token,0)/total_freq) for token in tokens2]

28

29 embedding1 = np.average([model[token]

30 for token in tokens1], axis=0, weights=weights1)

31 embedding2 = np.average([model[token]

32 for token in tokens2], axis=0, weights=weights2)

33

34 embeddings.append(embedding1)

35 embeddings.append(embedding2)

36

37 embeddings = remove_first_principal_component(np.array(embeddings))

38 sims = [cosine_similarity(embeddings[idx∗2].reshape(1, −1),

39 embeddings[idx∗2+1].reshape(1, −1))[0][0]

40 for idx in range(int(len(embeddings)/2))]

41
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42 return sims

5.2 Evaluation of Sentence Matching Techniques

As mentioned before, there are two sentence embedding methods that are to be

evaluated in combination with three similarity measure methods. Instead of using a

testing set from a generic corpora for evaluation, we decided to use the privacy poli-

cies from Facebook. This is done to decide on the method that gives the best results

when it comes to privacy policy specific terms. Following sub-sections are dedicated

to each combination of a embedding method and similarity measure. Facebook pri-

vacy policies from September 2016 and October 2018 were chosen for this evaluation

of matching on sentence level. A pair of policies (A, B) for comparison is formed by a

revision A of the policy, and a revision B of the policy, where B was released chronolog-

ically right after A. After manually going through all such pairs of policies of Facebook,

pair (September 2016, October 2018) was considered the best choice for the evalua-

tion of sentence matching. This pair had relevant changes between semantically same

sentences from both the documents, but the overall changes were not so extreme as to

make the whole matching process irrelevant. A ground truth was created from this pair,

by manually pairing up the semantically same sentences from the two policies. Anal-

ysis and evaluations were done by calculating similarity measure of each sentence in

September 2016 to every sentence in October 2018 and using the ground truth, similar-

ity measure should have the highest value for the correct pair of matched sentences.

This value should also have a high margin of difference from similarity measures for

incorrect sentence pairs, which will contribute in minimizing mismatches.

5.2.1 Word2Vec with Cosine Similarity

Cosine similarity using word2vec model for embedding has 4 variations: 1) without

eliminating stopwords and without token frequencies, 2) eliminating stopwords and

without token frequencies, 3) not eliminating stopwords and using token frequencies

and 4) eliminating stopwords and using token frequencies. Each of the four variations

are manually evaluated using September 2016 and October 2018 policies of Facebook.

We use the sentences:
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“We share information globally , both internally within the Facebook Com-

panies, and externally with our partners and with those you connect and

share with around the world in accordance with this policy”

from October 2018, whose corresponding match in September 2016 is

“How our global services operate, Facebook may share information inter-

nally within our family of companies or with third parties for purposes de-

scribed in this policy.”

to serve as an example pair; results and observations from each variation for this ex-

ample comparison are discussed below.

Matched Sentence
Similarity
Measure

How our global services operate, Facebook may
share information internally within our family of
companies or with third parties for purposes de-
scribed in this policy.

0.866997

We receive information about you from companies
that are owned or operated by Facebook, in accor-
dance with their terms and policies.

0.837886

We share information we have about you within the
family of companies that are part of Facebook.

0.833949

Sharing With Third-Party Partners and Customers,
We work with third party companies who help us
provide and improve our Services or who use adver-
tising or related products, which makes it possible
to operate our companies and provide free services
to people around the world.

0.829297

As you review our policy, keep in mind that it applies
to all Facebook brands, products and services that
do not have a separate privacy policy or that link to
this policy, which we call the “Facebook Services” or
“Services.”

0.827557

Table 5.1: Top-five highest matching sentences to an example sentence using word2vec
and cosine similarity with parameters use_stoplist = False and doc_freqs = None
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Highest five cosine similarity measure of our chosen sentence from the October

2018 policy without eliminating stop words and not using frequencies for normaliza-

tion (variation 1) is shown in table 5.1. This variation was successful in assigning the

highest measure to the correct sentence pair, but the margin of difference with simi-

larity measures of incorrect sentence pairs was too low. This low margin could lead to

errors in matching.

Matched Sentence
Similarity

Measure

How our global services operate, Facebook may

share information internally within our family of

companies or with third parties for purposes de-

scribed in this policy.

0.811657

We share information we have about you within the

family of companies that are part of Facebook.
0.716470

We receive information about you from companies

that are owned or operated by Facebook, in accor-

dance with their terms and policies.

0.709647

Sharing With Third-Party Partners and Customers,

We work with third party companies who help us

provide and improve our Services or who use adver-

tising or related products, which makes it possible

to operate our companies and provide free services

to people around the world.

0.700438

As you review our policy, keep in mind that it applies

to all Facebook brands, products and services that

do not have a separate privacy policy or that link to

this policy, which we call the “Facebook Services” or

“Services”.

0.667572

Table 5.2: Top-five highest matching sentences to an example sentence using word2vec

and cosine similarity with parameters use_stoplist = True and doc_freqs = None
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The second variation eliminated the stop words and did not use the token frequen-

cies for normalization. Table 5.2 shows the highest five similarity measures for the

selected example with this variation. The second variation showed much better re-

sults in terms of higher margin in similarity measure between correct sentence pairs

and others.

Matched Sentence
Similarity
Measure

How our global services operate,Facebook may
share information internally within our family of
companies or with third parties for purposes de-
scribed in this policy.

0.858884

Sharing With Third-Party Partners and Customers,
We work with third party companies who help us
provide and improve our Services or who use adver-
tising or related products, which makes it possible
to operate our companies and provide free services
to people around the world.

0.719372

In some cases, people you share and communicate
with may download or re-share this content with
others on and off our Services.

0.715968

As you review our policy, keep in mind that it applies
to all Facebook brands, products and services that
do not have a separate privacy policy or that link to
this policy, which we call the “Facebook Services” or
“Services.”

0.707121

We may provide these partners with information
about the reach and effectiveness of their advertis-
ing without providing information that personally
identifies you, or if we have aggregated the informa-
tion so that it does not personally identify you.

0.702254

Table 5.3: Top-five highest matching sentences to an example sentence using word2vec
and cosine similarity with parameters use_stoplist = False and doc_freqs = doc_fre-
quencies
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Matched Sentence
Similarity

Measure

How our global services operate, Facebook may

share information internally within our family of

companies or with third parties for purposes de-

scribed in this policy.

0.825778

In some cases, people you share and communicate

with may download or re-share this content with

others on and off our Services.

0.642143

Sharing With Third-Party Partners and Customers,

We work with third party companies who help us

provide and improve our Services or who use adver-

tising or related products, which makes it possible

to operate our companies and provide free services

to people around the world.

0.637543

As you review our policy, keep in mind that it applies

to all Facebook brands, products and services that

do not have a separate privacy policy or that link to

this policy, which we call the “Facebook Services” or

“Services”.

0.634121

Public information is any information you share

with a public audience, as well as information in

your Public Profile, or content you share on a Face-

book Page or another public forum.

0.624157

Table 5.4: Top-five highest matching sentences to an example sentence using word2vec

and cosine similarity with parameters use_stoplist = True and doc_freqs = doc_fre-

quencies

The highest five results from the third variation ( without eliminating stop words

but using the token frequencies ) are shown in table 5.3. The margin of difference

was higher than in the first and second variations. The last variation with both stop

words eliminated and normalization with a frequency baseline showed the highest
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margin of difference when compared to results from other variations, shown in ta-

ble 5.4. The same observation was made when the four variations were tested with

different sentences from October 2018. Thus, eliminating stop words and normalizing

the embedding from word2vec with token frequencies produced the best results, when

using word2vec and cosine similarity.

5.2.2 GloVe with Cosine Similarity

Matched Sentence
Similarity
Measure

How our global services operate,Facebook may
share information internally within our family of
companies or with third parties for purposes de-
scribed in this policy.

0.957919

Sharing With Third-Party Partners and Customers,
We work with third party companies who help us
provide and improve our Services or who use adver-
tising or related products, which makes it possible
to operate our companies and provide free services
to people around the world.

0.945504

We receive information about you from companies
that are owned or operated by Facebook, in accor-
dance with their terms and policies.

0.941013

We receive information about you and your activi-
ties on and off Facebook from third-party partners,
such as information from a partner when we jointly
offer services or from an advertiser about your ex-
periences or interactions with them.

0.936749

We may provide these partners with information
about the reach and effectiveness of their advertis-
ing without providing information that personally
identifies you, or if we have aggregated the informa-
tion so that it does not personally identify you.

0.935967

Table 5.5: Top-five highest matching sentences to an example sentence using glove and
cosine similarity with parameters use_stoplist = False and doc_freqs = None
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Matched Sentence
Similarity
Measure

How our global services operate, Facebook may
share information internally within our family of
companies or with third parties for purposes de-
scribed in this policy.

0.924916

Sharing With Third-Party Partners and Customers,
We work with third party companies who help us
provide and improve our Services or who use adver-
tising or related products, which makes it possible
to operate our companies and provide free services
to people around the world.

0.882458

We may provide these partners with information
about the reach and effectiveness of their advertis-
ing without providing information that personally
identifies you, or if we have aggregated the informa-
tion so that it does not personally identify you.

0.874468

We may associate the information we collect from
your different devices, which helps us provide con-
sistent Services across your devices.

0.864663

We receive information about you from companies
that are owned or operated by Facebook, in accor-
dance with their terms and policies.

0.864304

Table 5.6: Top-five highest matching sentences to an example sentence using glove and
cosine similarity with parameters use_stoplist = True and doc_freqs = None

Similar to the preceding section, there are four variations for GloVe with cosine

similarity as well. These variations are : 1) without eliminating stopwords and with-

out token frequencies, 2) eliminating stopwords and without token frequencies, 3) not

eliminating stopwords and using token frequencies and 4) eliminating stopwords and

using token frequencies. The same text from October 2018 is chosen as an example to

explain the evaluation process:

“We share information globally , both internally within the Facebook Com-

panies , and externally with our partners and with those you connect and

share with around the world in accordance with this policy”.
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Matched Sentence
Similarity
Measure

We transfer information to vendors, service
providers, and other partners who globally sup-
port our business, such as providing technical
infrastructure services, analyzing how our Services
are used, measuring the effectiveness of ads and
services, providing customer service, facilitating
payments, or conducting academic research and
surveys.

0.902658

We may provide these partners with information
about the reach and effectiveness of their advertis-
ing without providing information that personally
identifies you, or if we have aggregated the informa-
tion so that it does not personally identify you.

0.901763

Information we receive about you, including finan-
cial transaction data related to purchases made with
Facebook, may be accessed, processed and retained
for an extended period of time when it is the sub-
ject of a legal request or obligation, governmental
investigation, or investigations concerning possible
violations of our terms or policies, or otherwise to
prevent harm.

0.896281

We may associate the information we collect from
your different devices, which helps us provide con-
sistent Services across your devices.

0.894429

Information collected by these apps, websites or in-
tegrated services is subject to their own terms and
policies.

0.892844

Table 5.7: Top-five highest matching sentences to an example sentence using glove and
cosine similarity with parameters use_stoplist = False and doc_freqs = doc_frequencies
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Matched Sentence
Similarity
Measure

We transfer information to vendors, service
providers, and other partners who globally sup-
port our business, such as providing technical
infrastructure services, analyzing how our Services
are used, measuring the effectiveness of ads and
services, providing customer service, facilitating
payments, or conducting academic research and
surveys.

0.894559

Information we receive about you, including finan-
cial transaction data related to purchases made with
Facebook, may be accessed, processed and retained
for an extended period of time when it is the sub-
ject of a legal request or obligation, governmental
investigation, or investigations concerning possible
violations of our terms or policies, or otherwise to
prevent harm.

0.882535

We may provide these partners with information
about the reach and effectiveness of their advertis-
ing without providing information that personally
identifies you, or if we have aggregated the informa-
tion so that it does not personally identify you.

0.872498

Public information is any information you share
with a public audience, as well as information in
your Public Profile, or content you share on a Face-
book Page or another public forum.

0.868693

Information collected by these apps, websites or in-
tegrated services is subject to their own terms and
policies.

0.866990

Table 5.8: Top-five highest matching sentences to an example sentence using glove and
cosine similarity with parameters use_stoplist = True and doc_freqs = doc_frequencies

59



The first variation with neither eliminating stop words nor normalizing the weights

with token frequency, assigned the highest similarity measure to correct pairs but the

margin of difference from other incorrect pairs is very low. This low margin often lead

to mismatch of sentences when tested with other sentences. This can be seen in ta-

ble 5.5, where highest five measures and the corresponding matches are shown. If only

stop words are eliminated (second variation), this margin of difference increases but

not significantly, as seen in table 5.6.

Normalizing the word embeddings obtained from glove with or without stop words

produced even poorer results, as can be seen in table 5.7 and 5.8, where the method

failed to even assign the highest value to the correct sentence pairs and led to mis-

match. Overall results from this evaluation showed that, when using cosine similar-

ity, word2vec is a better choice for sentence matching process. This observation was

further reinforced when glove with cosine similarity was tested with other sentences

from October 2018 policy. Thus, this method was eliminated from the list of potential

matching methods immediately.

5.2.3 Word2vec with SIF

As explained in section 5.1.3, to remove variations related to frequency and syntax

that is less relevant semantically, SIF was applied on word2vec embedding with cosine

similarity. Word2vec was selected as it outperformed glove (discussed in previous sec-

tion). Policies from September 2016 and October 2018 are given as input to the method

in listing 5.3. Table 5.9 shows five of the matched pairs formed when each sentence

of the Facebook privacy policy of September 2016 was matched with a sentence from

Facebook privacy policy of October 2018. The number of mismatches were too high,

most pairs did not have any semantic similarity at all. Overall precision was 0.513 with

this method, which was worse than the results we obtained with a simple cosine simi-

larity with word2vec.
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Text Matched Text
This policy describes what information we collect
and how it is used and shared

New owner

You can find additional tools and information at Pri-
vacy Basics

New owner

As you review our policy, keep in mind that it applies
to all Facebook brands, products and services that
do not have a separate privacy policy or that link to
this policy, which we call the

Promote safety,
integrity and

security

“Facebook Services” or “Services” New owner

What kinds of information do we collect? Depend-
ing on which Services you use, we collect different
kinds of information from or about you

The types of
information we
collect depend
on how you use

our Products

Things you do and information you provide
Things you and
others do and

provide

Table 5.9: Word2vec cosine similarity (SIF normalized) sample matches

5.2.4 Word2vec and GloVe with Word Mover’s Distance

Word Mover’s distance (WMD) captures the semantic relationship between tokens

in terms of distance in the vector space. For our evaluation the performance of word2-

vec and glove are tested with two variations : one with stop words and other with stop

words removed. Unlike cosine similarity, no token frequency is used in this evalua-

tion to normalize the weights of vectors, as the vectors represent the position of the

words in an N-dimensional space assigned by glove or word2vec. The closeness of two

words in this space also determines the semantic closeness of the two words. Word

mover’s distance computes similarity by computing the distance between the tokens

and hence, normalizing this weight will corrupt the semantic information embedded

in the vector.
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Matched Sentence
Similarity
Measure

How our global services operate, Facebook may
share information internally within our family of
companies or with third parties for purposes de-
scribed in this policy.

-1.519366

We share information we have about you within the
family of companies that are part of Facebook.

-1.697253

We receive information about you from companies
that are owned or operated by Facebook, in accor-
dance with their terms and policies.

-1.752882

We make this possible by sharing your information
in the following ways: *People you share and com-
municate with.

-1.780076

In some cases, people you share and communicate
with may download or re-share this content with
others on and off our Services.

-1.854870

Table 5.10: Top-five highest matching sentences to an example sentence using
word2vec and WMD with parameters, use_stoplist = False

We are using the same example sentence pairs:

“We share information globally , both internally within the Facebook Com-

panies , and externally with our partners and with those you connect and

share with around the world in accordance with this policy”

and

“How our global services operate, Facebook may share information inter-

nally within our family of companies or with third parties for purposes de-

scribed in this policy.”

Note that: word mover’s distance represents the distance between the tokens, which

is a positive value. Smaller distance between two sentences implies more similar-

ity. For ease of discussion and comparison with cosine similarity, the resultant word

mover’s distance is made negative by multiplying with -1 so that a higher value will

imply higher similarity.
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Matched Sentence
Similarity
Measure

How our global services operate, Facebook may
share information internally within our family of
companies or with third parties for purposes de-
scribed in this policy.

-1.676917

We share information we have about you within the
family of companies that are part of Facebook.

-2.010831

We receive information about you from companies
that are owned or operated by Facebook, in accor-
dance with their terms and policies.

-2.344054

Public information is any information you share
with a public audience, as well as information in
your Public Profile, or content you share on a Face-
book Page or another public forum.

-2.465501

Sharing On Our Services, People use our Services to
connect and share with others.

-2.516137

Table 5.11: Top-five highest matching sentences to an example sentence using
word2vec and WMD with parameters, use_stoplist = True

Table 5.10 shows the results from word2vec with WMD for our example pair, with-

out eliminating the stop words. Even though this method returned the highest simi-

larity measure for most correct pairs, the margin of difference from other values was

very low. Word mover’s distance with glove and without eliminating the stop words had

similar results, but the margin of difference of a correct pair similarity measure from

the rest was observed to be a little higher, but not significant. Table 5.12 shows the

similarity measures for the chosen example sentences while using glove with WMD,

but without eliminating the stop words.

Eliminating the stop words produced much better results when using WMD, ob-

served both for word2vec (table 5.11) and glove (table 5.13). But glove out performed

word2vec in terms of higher margin and more consistency when the method was tested

using other sentences from the October 2018 policy. Thus, glove with stop words re-

moved was chosen as the ideal candidate for WMD.
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Matched Sentence
Similarity
Measure

How our global services operate, Facebook may
share information internally within our family of
companies or with third parties for purposes de-
scribed in this policy.

-3.452347

We receive information about you from companies
that are owned or operated by Facebook, in accor-
dance with their terms and policies.

-3.651142

We collect information about the people and groups
you are connected to and how you interact with
them, such as the people you communicate with the
most or the groups you like to share with.

-3.709035

In some cases, people you share and communicate
with may download or re-share this content with
others on and off our Services.

-3.727923

We make this possible by sharing your information
in the following ways: People you share and com-
municate with.

-3.769958

Table 5.12: Top-five highest matching sentences to an example sentence using glove
and WMD with parameters, use_stoplist = False
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Matched Sentence
Similarity
Measure

How our global services operate, Facebook may
share information internally within our family of
companies or with third parties for purposes de-
scribed in this policy.

-3.624838

We share information we have about you within the
family of companies that are part of Facebook.

-4.320495

We receive information about you from companies
that are owned or operated by Facebook, in accor-
dance with their terms and policies.

-4.358536

Public information is any information you share
with a public audience, as well as information in
your Public Profile, or content you share on a Face-
book Page or another public forum.

-4.625255

For example, people may share a photo of you,
mention or tag you at a location in a post, or share
information about you that you shared with them.

-4.724469

Table 5.13: Top-five highest matching sentences to an example sentence using glove
and WMD with parameters, use_stoplist = True
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5.2.5 Final Method for Sentence Matching

After the preceding evaluation and analysis, there were two potential methods that

could be used for one-to-one sentence matching from one policy to another: word2vec

embedding with cosine similarity (stop words removed and normalized with frequency

tokens) and glove embedding with word mover’s distance (stop words removed). To

decide on the final method, instead of choosing one sentence from the October 2018

Facebook policy at a time to compare with every other sentence in the September 2016

policy, both the documents were taken as input. All the sentences in October 2018 (n

sentences) and September 2016 (m sentences) were taken to conduct a n ×m com-

parison. The result was a list of m = 92 pairs of sentences where for every sentence of

September 2016, a sentence from the Facebook privacy policy of October 2018 with the

highest similarity measure is selected to form a matched pair. The resultant matched

pairs from both the potential methods are then manually checked against the ground

truth for September 2016 - October 2018 Facebook policy matches. Precision was se-

lected as an evaluation metric for finalizing the method. For word2vec embedding with

cosine similarity, only 47 sentence pairs were correct out of 92 pairs, with a precision of

0.51. But glove embedding with WMD had a precision of 0.73 with a total of 67 correct

pairing. Thus, glove with word mover’s distance was selected as the final method for

sentence matching. Since this evaluation requires manually going through each pair,

we decided not to compute precision of both the methods for each privacy policy pair.

5.2.6 Threshold for Similarity Measure

Matching sentences without having a lower bound on similarity measure leads to

formation of incorrect pairs. For a sentence which should not have a match with any

sentence in the newer version of the policy (no semantically equivalent sentence due

to deletion or a major policy revision), the absence of a threshold in similarity mea-

sures can lead to matching of such sentences with a sentence from the next policy. To

prevent this, a threshold had to be estimated such that if the highest similarity measure

for that sentence is lower than this threshold, then the pair should not be considered

as a valid match and the sentence should remain unpaired. Matching of sentences

without a threshold leads to high recall at the cost of precision (due to increase in false

positive). A precision-recall curve for varying thresholds was plotted using the Septem-

ber 2016 and October 2018 Facebook privacy policy pair and shown in figure 5.1.

66



0 1 2 3 4 5 6
Threshold

0.0

0.2

0.4

0.6

0.8

1.0
P
re

ci
si
on

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Precision
Recall

Figure 5.1: Precission - Recall - Threshold graph of sentence matching between Face-
book privacy policies of September 2016 and October 2018 using glove with WMD

The intersection of precision and recall at a threshold around 4.4 was found to be

an ideal point of acceptable precision and recall. Thus, 4.4 was selected as a threshold

for similarity measures from word mover’s distance to minimize invalid matches. For

computing and plotting this precision-recall graph, a ground truth is necessary for all

the policy pairs. Like the earlier evaluations only the September 2016 and October 2018

Facebook privacy policies are used.

5.2.7 Using a Sentence Classifier

The initial method for creating sentence pairs from two privacy policies was found

to be computationally expensive. Suppose we have two privacy policies (P, N ), where

P is the older version of the policy with a sentences and N is the newer version of the

policy following P with b sentences. The initial method to compute similarity mea-

sure for each sentence in P with each sentence of N and find the pair with the highest

similarity, requires a total of a ×b similarity measure computations.
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To improve the computation speed and make the pairing process more efficient, we

leverage our sentence classifier. We first categorized each sentence of both the docu-

ments using the classifier, then for each sentence of P , we computed the similarity

measures with only those sentences in N that had the same expert-defined-policy-

category as the sentence from P . If two sentences form a correct pair then both of

them should belong to the same category as well. We used this idea to significantly

improve the computation time.

Not only computation speed was improved, but a significant improvement in pre-

cision was also observed. For the same privacy policy pair of September 2016 and Oc-

tober 2018 Facebook policy, the precision improved from 0.73 to 0.83. Thus, sentence

classification was incorporated into sentence matching. Sentence classification also

presents the opportunity for more innovative solutions such as using sentence cate-

gories as keys to divide and distribute sentences among clusters in a parallel comput-

ing architecture for faster sentence matching. We did not implement this approach but

it can serve as a potential future improvement over our current implementation.

5.3 Results and Discussion

We narrowed our choice to the method using word mover’s distance and glove word

embedding that uses a threshold value of 4.4 and sentence classification to improve

precision and computation speed. For the performance evaluation of the developed

method, it was first tested using all the collected Facebook policy pairs. The matched

sentence pairs for each policy pair was then read individually and marked as correct or

incorrect match based on semantic interpretation of the pairs. The whole process was

intensive due to lack of any ground truth and high number of text pairs for each policy

pair, all of which had to be read manually.

Base Policy Next Policy Total Pairs Correct Pairs Precision Null Assigned

June

2005

February

2006
38 33 0.868 6

February

2006

May

2006
70 70 1 0
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May

2006

October

2006
107 105 0.981 0

October

2006

May

2007
140 138 0.986 1

May

2007

September

2007
154 154 1 0

September

2007

December

2007
154 153 0.993 0

December

2007

November

2008
159 159 1 0

November

2008

December

2009
160 102 0.637 28

December

2009

October

2010
267 227 0.85 6

October

2010

December

2010
298 290 0.976 0

December

2010

January

2011
301 301 1 0

January

2011

September

2011
301 165 0.548 63

September

2011T

December

2012
300 285 0.95 4

December

2012

November

2013
379 356 0.939 5
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November

2013

January

2015
367 193 0.525 118

January

2015

September

2016
120 120 1 2

September

2016

October

2018
92 76 0.826 11

Table 5.14: Facebook sentence matching across different policy revisions

Table 5.14 shows the result from the evaluation. Column “Base Policy” is the ver-

sion of the policy that serves as the basis during sentence matching. “Next Policy”

column stores the following version of the policy. The number of total matched sen-

tence pairs will always be equal to the total number of sentences in the “Base Policy”, as

the pairs are formed by finding a suitable sentence in the next version. Column “Total

Pairs” refers to the total number of pairs formed when “Base Policy” and “Next Policy”

is given as input. Again, this value is same as the number of sentences in the “Base

Policy”. “Correct Pairs” stores the number of pairs that are correctly matched among

“Total Pairs”. “Precision” of the matching is simply the ratio “Correct Pairs” : “Total

Pairs”. In correctly matched pairs, there might be sentences of “Base Policy” which are

assigned nothing (empty string or null) due to our use of the threshold. “Null Pairs”

shows the number of pairs with a null assignment.

There are some interesting observations from this evaluation. Most policy pairs

had their sentences matched with very good precision as can be seen in table 5.14.

Taking a sentence pair example from one of these policy pairs, the method matched

sentences:

“This includes your payment information , such as your credit or debit card

number and other card information , and other account and authentication

information , as well as billing , shipping and contact details ”

with

“This includes payment information , such as your credit or debit card num-

ber and other card information ; other account and authentication infor-

mation ; and billing , shipping and contact details .”,
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shows that the method can find and pair sentence, that are present in both the policies

without any difficulty. Another example pair such as

“Depending on which Services you use , we collect different kinds of infor-

mation from or about you ”

and

“The types of information we collect depend on how you use our Products .”

The method’s capability in handling slightly more complex cases where the struc-

ture of both the sentences have changed slightly with addition and deletions of some

tokens (“Services” was replaced with “Products”) can be seen. The method still man-

aged to pair these two semantically same sentences. The same also holds for complex

sentence pairs with a lot of changes between them but still having the same semantics.

For example, in the pair:

“In addition , when you download or use such third - party services , they

can access your Public Profile , which includes your username or user ID ,

your age range and country / language , your list of friends , as well as any

information that you share with them ”

and

“Also , when you download or use such third - party services , they can access

your public profile on Facebook , and any information that you share with

them .”

There has been a significant deletion of words between the two sentences even

though they mean the same thing, the method successfully matches them. Using a

threshold has also prevented some false matches. For the sentence:

“This policy describes what information we collect and how it is used and

shared .”

There does not exist a sentence in the “Next Policy” having the same semantics, and

our threshold made sure that this sentences doesn’t get assigned to any random sen-

tence without any semantic similarity. “Null Assigned” in table 5.14 shows the number
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of such sentences without any corresponding sentence in the “Next Policy” and which

are successfully not matched with any sentence due to the threshold.

As can be seen in table 5.14, for policy pair: November 2008 - December 2009, Jan-

uary 2011 - September 2011 and November 2013 - January 2015 of Facebook, the pre-

cision is significantly low. When each of these policies were examined carefully, it was

found that the revision from one version to the next had some very significant struc-

tural changes. Most sentences for the “Base Policy” in these pairs did not have any se-

mantically equivalent match in the “Next Policy”. Ideally all the deleted sentences from

“Base policy” should not have been assigned any sentence from the next policy. Our

threshold managed to achieve that to some extent as can be seen from the high “Null

Assigned” numbers for these pairs. But this was still not enough to prevent enough

false matches for a better precision. Lowering the threshold would have reduced the

false matches, but it would have prevented the method from matching semantically

same sentences with significant changes, such as

“In addition , when you download or use such third - party services , they

can access your Public Profile , which includes your username or user ID ,

your age range and country / language , your list of friends , as well as any

information that you share with them ”

and

“Also , when you download or use such third - party services , they can access

your public profile on Facebook , and any information that you share with

them .”

Also during our investigation into these policies with lower precision, it was noticed

that the amount of change was so high that comparing them on a sentence level does

not make sense to begin with. Since the purpose of sentence matching is to compare

versions of policy and extract changes between them at a sentence level, a significant

structural and semantic change between the versions make sentence matching a futile

process.

We plotted the precision of all the versions of the Facebook policies in a chrono-

logical order to give a visual representation of such extreme structural and semantic

change during each revision of the policy. Figure 5.2 shows the precision we obtain

from matching sentences of “Base Policy” and “Next Policy”.
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Figure 5.2: Precision of sentence matching across Facebook policies
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Figure 5.3: Precision of sentence matching across Twitter policies

The dips in the graph show major change in the following policy resulting in low

precision. The same precision graph was plotted for the Twitter and WhatsApp poli-

cies, as shown in figure 5.3 and figure 5.4 respectively. Sentence matching in both Twit-

ter and WhatsApp performed better than Facebook for all the versions of the policies.

Even though during analysis and development we used only the Facebook privacy pol-
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Figure 5.4: Precision of sentence matching across Whatsapp policies

icy versions September 2016 and October 2018, this did not lead to deficient sentence

matching for other versions of Facebook privacy policies and also for privacy polices

of other companies. The graph shown in figure 5.3 shows slightly significant changes

for Twitter policies during revision May 2007 to November 2009 and June 2017 to May

2018; the method still matched sentences with a precision not below 0.80, showing

very good performance. For the WhatsApp policies, during the revision from July 2012

to August 2016, the method had a precision of 0.717. The revision of WhatsApp pri-

vacy policy from the July 2012 to August 2016 version was done when Facebook pur-

chased WhatsApp, and on careful study of both the policies, it was found that some

major changes in the policy was introduced during this change of ownership. Despite

that, a precision of 0.717 was observed, with 42 sentences assigned null matches show-

ing that our decided threshold was able to prevent significant number of irrelevant

matches. Another observation here, since our threshold was determined using only

the Facebook privacy policy pair of September 2016 and October 2018, there is a pos-

sibility that the results discussed here could have been improved by using a different

threshold. But the lack of ground truth and the extremely laborious nature of creating

a proper ground truth, makes it impossible for us to determine a globally optimized

threshold.
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Figure 5.5: Precision of sentence matching across categories in Facebook policies

Similar to the analysis discussed towards the end of chapter 4, we wanted to see the

performance of our sentence matcher for each category. Figure 5.5 shows the plot for

precision in each category through all the Facebook policy pairs. As can be seen in the

plot, the category of the sentence has no correlation with the precision of the sentence

matching. In case of major changes, the drop in precision is lowest for categories of

“Other”, ‘’First Party Collection/Use” and “Third Party Sharing/Collection”, but even

that is not always true. The drop in precision for other categories is observed to be

higher; the low number of sentences for these categories is a major factor behind this.

Low number of sentences means even if the number of wrongly matched sentenced

pairs is low, the precision gets more affected.

In summary, evaluation of the sentence matching technique implemented by us,

showed efficient performance and proved to be an applicable technique. We also show-

ed the prevention of false matches using a threshold value which improved the perfor-

mance of sentence matching.
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6. Change Detection

The previous chapter discusses matching sentences of a policy to a semantically

similar sentence in the next version of the policy and using sentence classification to

improve this matching process. The next step after matching two sentences is to de-

tect the changes between the two matched sentences. The change detection process

shall extract the user relevant changes between two matched sentences by identifying

the additions and deletions between them. This identification will help notify users

of informed changes in a more readable and comprehensible way, enabling them to

understand the changes introduced in the newer revision of the policy with more ease.

6.1 Parse Tree

The first approach explored to detect the changes between the two sentences is

to generate a parse tree of the two sentences and compare their structures to detect

changes between them. We decided to identify changes in nouns and verbs describing

the action, state, or occurrence of the said noun. Hence, during tokenization of the

sentences, only noun or verb tokens are kept and tokens with other parts-of-speech

(POS) tags are removed from the list (refer to section 2.2.1 for more details on tokeniza-

tion). Sentences comprising of only nouns and verbs are then chunked into parse trees

using the nltk.chunk parser and the chunk regular expression rule:

Entity:{(<VBP|VBZ|VB><NN|NNS|NNP><NN|NNS|NNP>*)}

Were VB,VBP and VBZ represents nltk library POS tags for verbs, and NN and NNS

are POS tags for nouns and perfect nouns. VB,VBP and VBZ are tags for verb base, non

third person singular present and third person singular present forms respectively.

The chunking returns a tree where the verb token and their corresponding subject

noun tokens are grouped together in the same subtree, as leaf nodes of the subtree.
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Each of these subtrees are labeled as entity and they represent the context of the noun

tokens in the sentence. For sentences:

S1: “Similarly, when you use Messenger or Instagram to communicate with

people or businesses, those people and businesses can see the content you

send”

from Facebook privacy policy of October 2018 and

S2: “Likewise, when you use Messenger, you also choose the people you send

photos to or message”

from Facebook privacy policy of September 2016, their respective parse trees are shown

in figure 6.1 and figure 6.2 respectively.

S

Entity

Instagram
NNP

use
VBP

Entity

Communicate
VB

People
NNS

businesses
NNS

Entity

People
NNS

businesses
NNS

see
VB

content
NN

send
VBP

Figure 6.1: Parse tree for S1

S

use
VBP

Entity

choose
VBP

People
NNS

Entity

send
VBP

photos
NNS

message
VB

Figure 6.2: Parse tree for S2

We tried using additions and deletions of entity subtrees in the parse trees of the

matched sentences, and changes in the structure of entity subtree to extract changes

between two sentences. But there are a few problems with this approach that made

detecting changes difficult. The first problem identified was incorrect tagging of parts

of speech for some tokens. For example, in both sentence, the word “Messenger” was
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not identified as a noun, instead it was tagged as an adjective (nltk tag JJR), leading to

incorrect entity subtree formation for “Messenger”. Ideally the parse tree for S1 should

have had an entity subtree with nodes: “use”, “Instagram” and “Messenger”, and the

second tree should have had an entity subtree with nodes “use” and “Messenger”. The-

oretically, the change could have been detected by comparing the two subtrees from

both sentences; the incorrect tagging of “Messenger” prevented that. Another prob-

lem observed with using a chunk parser is that some of the dependency links get lost.

Dependency links represent the relationship between two tokens in a sentence. For

example, in S1, the dependency link between the verb “send” and it’s subject “content”

was lost due to the unilateral nature of the chunking process. Hence, “send” and “con-

tent” are not in the same entity subtree.

Even though this approach failed, the analysis of it helped in formulating the fi-

nal method for detecting changes. We observed that user-relevant changes can be de-

tected by identifying new or deleted nouns tokens, and using the dependency links of

these tokens to identify the context verb. To implement this approach, we decided to

use a dependency tree.

6.2 Dependency Tree

Dependency tree is a parse tree based on the dependency grammar. Dependency

grammar captures the relationship between words or tokens in a sentence. The notion

behind this is that every word is connected to each other by a direct or an indirect link.

A verb token of the sentence is taken to be the structural center of the dependency tree

and other words are either directly or indirectly connected to this verb token in terms

of the directed links, which are called dependencies. The overall structure of the tree is

determined by the relation between the head token (center verb or root word) and it’s

dependent tokens (other words in the sentence) connected by these links.

Consider the matched sentences

S3: “This information is gathered for all users to the Web Site”

from Facebook privacy policy of June 2005 and

S4: “This information is gathered for all Facebook visitors”
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Figure 6.3: Dependency tree for S3

from Facebook privacy policy of February 2006. Their respective dependency trees

parsed using spacy package and en_core_web_sm are shown in figure 6.3 and figure 6.4

respectively.
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Figure 6.4: Dependency tree for S4

Model en_core_web_sm 1 is an English multitask CNN provided by spacy. It pro-

vides general-purpose pre-trained models to predict named entities, part-of-speech

tags and syntactic dependencies. As seen in figure 6.3 and figure 6.4, dependency

based parse trees provides a better parts-of-speech tagging for the tokens using de-

pendencies between between words rather than using a dictionary for POS tagging. It

provides relationship labels between tokens as well which are used in our algorithm. In

the figures 6.3 and 6.4, labels DET, NOUN, VERB, ADP and PROPN are spacy POS tags

1https:/spacy.io/models
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for determiner, noun, verb, adpositon and proper noun respectively. Edge labels: det

(determiner), nsubjpass (passive nominal subject), auxpass (auxiliary passive), prep

(prepositional modifier), pobj (object of preposition) and compound (compound) rep-

resent the dependency relationships in the figures. The Python code used to extract

the changes between matched sentences using their dependency tree is shown in the

listing 6.1.

Listing 6.1: Python code for extracting changes between two sentences

1 def getTokenContext(tokenList):
2 verbTokens = set()
3 for token in tokenList:

4 tokenTemp = token

5 while (tokenTemp.dep_ != ’ROOT’):

6 if tokenTemp.pos_ == ’VERB’:

7 verbTokens.add(tokenTemp)

8 break
9 tokenTemp = tokenTemp.head

10 return verbTokens

11 def getChanges(text1, text2):
12 dict1 = {}

13 dict2 = {}

14 tree1 = dependencyTree(text1, None)

15 tree2 = dependencyTree(text2, None)

16 for token in tree1:

17 if token.pos_ == ’NOUN’ or token.pos_ == ’PROPN’:

18 tokenTemp = token

19 keyString = token.text

20 while(tokenTemp.dep_ == ’compound’ or tokenTemp.dep == ’amod’):

21 keyString = keyString + ’ ’ + token.head.text

22 tokenTemp = tokenTemp.head

23 if tokenTemp.text == token.text:

24 break
25 dict1[keyString] = token

26 for token in tree2:

27 if token.pos_ == ’NOUN’ or token.pos_ == ’PROPN’:

28 tokenTemp = token

80



29 keyString = token.text

30 while(tokenTemp.dep_ == ’compound’ or tokenTemp.dep == ’amod’):

31 keyString = keyString + ’ ’ + token.head.text

32 if tokenTemp.text == token.text:

33 break
34 dict2[keyString] = token

35 deletionNounTokens = [v for k,v in dict1.items() if k not in dict2]

36 additionNounTokens = [v for k,v in dict2.items() if k not in dict1]

37 verbTokens1 = getTokenContext(deletionNounTokens)

38 verbTokens2 = getTokenContext(additionNounTokens)

The method getChanges takes the two strings (text1 and text2) as input and gener-

ate a dependency tree for each of them. Then, the trees are traversed to identify nouns

and proper nouns, and other tokens having compound or adjective modifier relation-

ship with the identified noun/proper noun tokens. Two dictionaries (dict1 and dict2)

are formed for both the sentences using the identified tokens along with their adjec-

tive modifier and compound tokens as the key and the tokens as the value (lines 12-

34 in listing 6.1). Subtraction between these two dictionaries using the keys gives the

deleted (dict1-dict2) and added (dict2-dict1) noun tokens between two sentences. The

purpose of forming keys in this manner is to eliminate false detection due to different

arrangement of words but implying the same meaning. Using only noun tokens with-

out their adjective modifiers can lead to missing out of some of the important changes

introduced by it. After the new or deleted tokens are identified, method getTokenCon-

text is used to identify the context verbs for a token by traversing from the tokens in the

list (verbTokens1 and verbTokens2) to the root of the tree using the dependency links.

The dependency links ensure that there exists a path to the action verb of the token, if

it exists, thus, identifying the action or state of the token.

Using the above methods, changes between two matched sentences are extracted

in terms of token lists that are then used to appropriately highlight the changes be-

tween the sentences. This provides a comprehensible document that can help users

understand key changes by looking at any two matched sentences.
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6.3 Results and Discussion

We begin our evaluation by inputting matched sentence pairs from Facebook poli-

cies, consisting of different complexities, into our change detection method and ana-

lyzing the returned results. For exactly same sentences in two versions of the policy,

such as

“What kinds of information do we collect ?”,

the method did not highlight any part of the sentence. Redundant detection is pre-

vented by using the similarity measure between the two sentences. For a similarity

measure of 0, the method does not execute the detection algorithm, thus preventing

redundancies. For slightly changed matched sentences, such as

“Depending on which Services you use , we collect different kinds of infor-

mation from or about you.”

and

“The types of information we collect depend on how you use our Products .”,

the method highlighted the following changes (marked with an underline in the exam-

ple and context verbs are italicized):

“Depending on which Services you use

, we collect different kinds of informa-

tion from or about you.”

‘The types of information we collect

depend on how you use our Products

.”

Our method successfully detected the change from “Services” to “Products”. Re-

placement of “different kinds” with “types” is also highlighted. The token “use”, which

defines the action on the changed tokens is also detected. Note that using relationship

links between tokens ensured that “different” and “kinds” are treated as a single entity.

We mark detection efficiency of this form as “All”, where all the relevant changes are

highlighted. The method detected all the changes for some complex matches, which

are also classified under the “All” category. For example:
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“We collect information about the

people and groups you are connected

to and how you interact with them ,

such as the people you communicate

with the most or the groups you like to

share with .”

“We collect information about the

people, Pages, accounts, hashtags and

groups you are connected to and how

you interact with them across our

Products, such as people you commu-

nicate with the most or groups you are

part of .”

Another interesting example, for the pair:

“You can find additional tools and information at Privacy Basics .”

and

“You can find additional tools and information in the Facebook Settings and

Instagram Settings .”,

we observed:

“You can find additional tools and in-

formation at Privacy Basics .”

“You can find additional tools and in-

formation in the Facebook Settings

and Instagram Settings .”

Even though the method highlighted the relevant changes, it should have also high-

lighted “Settings” after “Facebook” in the second sentence. The relationship between

“Facebook” and “Settings” was not captured in the dependency tree and hence, the two

words were not treated as a single entity. We observed similar failure to detect some

of the compound nouns in other examples as well. Detection which missed minute

changes are marked as “Almost all”. For some sentences, the method missed some of

the relevant changes. Consider the example pair:

“When you comment on another person’s post or like their content on Face-

book, that person decides the audience who can see your comment or like.”

and
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“ Also, when you comment on someone else’s post or react to their content,

your comment or reaction is visible to anyone who can see the other person’s

content, and that person can change the audience later.”

We observed:

“When you comment on another per-

son’s post or like their content on

Facebook, that person decides the au-

dience who can see your comment or

like.”

“Also, when you comment on someone

else’s post or react to their content,

your comment or reaction is visible to

anyone who can see the other person’s

content, and that person can change

the audience later.”

In this example, the method did not completely detect the change from “person’s”

to “someone else’s”. Also the subtle change in the language used for audience selection

of the post was missed by our method. This is due to the fact that we are using changes

in noun to derive other changes between the sentences, which sometimes fail to detect

some of the subtle changes. We mark such a detection as “Partial”.

Sometimes our method does not detect any change. We mark a failed detection as

“None”. The failed detection in changes are generally observed to involve numbers or

URLs. For the matched sentences from WhatsApp:

“If WhatsApp learns that personally identifiable information of persons un-

der 18 years of age has been collected on the WhatsApp Sites, then WhatsApp

may deactivate the account and/or make the status submissions inaccessi-

ble.”

and

“If WhatsApp learns that personally identifiable information of persons un-

der 16 years of age has been collected on the WhatsApp Sites, then WhatsApp

may deactivate the account and/or make the status submissions inaccessi-

ble.”,

the only change is “18” to “16” in the sentence. The method fails to capture this as it is

not tuned to detect changes in numerical values. Many times policies have reference to
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section numbers or have links with numbers in them, changes in which are irrelevant

to the user. Trying to capture numerical changes would have resulted in extracting

these irrelevant changes as well. Thus, in changes involving numerical values, such as

age or date, our method fails to capture them.

The last kind of detection we observed are marked as “Redundant”. An example of

a “Redundant” detection is:

“For example, people may share a

photo of you , mention or tag you at a

location in a post, or share information

about you that you shared with them.”

“For example, people can share a

photo of you in a Story, mention or tag

you at a location in a post , or share in-

formation about you in their posts or

messages.”

Here, the method captured the relevant addition of “Story“. But it also made some

false detection like “mention” and “posts”. We have identified some instances where

“Redundant” detection take place. Change in grammatical numbering of a word, pres-

ence of compound nouns, URLs and apostrophes sometimes result in redundancies.

When a single sentence is split into two or more sentences in the next revision or vice-

versa, our sentence matching method may return multiple pairs with the same sen-

tence in it. Each of these pairs will be semantically incomplete and when such pairs

are processed through the change detection method, redundant detection takes place.

Policy Pairs Sentence Pairs None Partial Redundant Almost All All

June 2005

February 2006
27 0 0 1 0 26

February 2006

May 2006
70 0 0 3 0 67

May 2006

October 2006
105 0 0 2 0 103

October 2006

May2007
137 1 0 5 4 127
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May2007

September 2007
154 0 0 0 0 154

September 2007

December 2007
153 0 0 2 0 151

December 2007

November 2008
159 0 0 2 1 156

November 2008

December 2009
74 0 0 4 3 67

December 2009

October 2010
221 1 1 8 4 207

October 2010

December 2010
290 0 1 0 0 289

December 2010

January 2011
301 0 0 0 0 301

January 2011

September 2011
102 2 4 5 0 91

September 2011

December 2012
281 1 0 1 0 279

December 2012

November 2013
351 0 1 14 0 336

November 2013

January 2015
75 1 4 4 3 63

January 2015

September 2016
118 0 0 0 0 118
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September 2016

October 2018
65 0 3 5 11 46

Table 6.1: Change detection across privacy policy pairs of Facebook

After analyzing multiple examples and identifying the categories (or level) of detec-

tion (“None”, “Partial”, “Almost all” and “All”), we manually went through each of the

privacy policy pairs of Facebook and classified detected changes between the paired

sentences into either of these categories. Table 6.1 shows the results from the evalua-

tion of change detection across privacy policy pairs of Facebook. Column “Sentence

Pairs” is the number of correctly matched sentence pairs. This number does not in-

clude the number of null assigned pairs. Columns “None”, “Partial”, “Redundant”, “Al-

most All” and “All” represents the observed detection levels for each pair. As can be

seen, the change detection method captures “All” changes for most sentence pairs. We

plotted the ratio of each detection category in change detection between the privacy

policy pairs of Facebook. The overall precision of the sentence matching between the

policy pairs are also plotted in the same graph.

The plot in figure 6.5 shows that precision of sentence matching between the poli-

cies do not affect the detection between the sentence pairs. The ratio of “All” detection

is in the range of 0.8 to 1.0, except for the Facebook policy pair of September 2016 - Oc-

tober 2018. This also implies that for any correct pair of sentences, our method is most

likely to extract all the relevant changes between them. The same graph was plotted

for Twitter and WhatsApp privacy policies using the manual evaluation results of the

change detection method, shown in figure 6.6 and figure 6.7 respectively. We observed

similar results for policies from both Twitter and WhatsApp, where “All” changes are

detected for most sentence pairs.
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7. Extended Evaluation

Chapters 4, 5 and 6 discussed evaluation of our sentence classifier, sentence match-

ing and change detection methods on policies of Facebook (18 policies), WhatsApp (6

policies) and Twitter (14 policies), which used ground truths of the respective policies.

Additionally, we collected policies of Google (27 policies), LinkedIn (5 policies) and

Snapchat (9 policies) totaling to 79 policies in our data set. We conducted evaluation

and analysis of the performance of our methods and composition of the policies using

this extended data set.

7.1 Execution Time

Execution time plays a vital role in the application of any proposed method. For

each policy in the data set, we measured the execution time for sentence classification,

sentence matching and change detection. We measured the time for each method 10

times for each policy, which was averaged to get the final estimate of the execution

time. The estimated execution times for a policy are plotted against the number of

sentences in that policy, shown in figure 7.1. The system used for the estimation has a

3.9-GHz, six-core Intel Core i7-8750H processor, 16GB of RAM, a 512GB M.2 SSD and

an Nvidia GeForce GTX 1070 Max-Q GPU with 8GB of RAM.

We observed that sentence classification and change detection takes around 0.3

seconds on average. Low constant time execution for classification and detecting chan-

ge between sentence pairs shows that both these methods are efficient and can be

included in a real-time application for policy comparison. Sentence matching is ob-

served as the bottle neck, computation time reaching as high as 10 minutes for a large

policy pair. The O(n2) complexity of generating pairs makes it less efficient. Segregat-

ing sentences categorically slightly improved the performance. This is a one time task

only needed when new policy versions appear.
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Figure 7.1: Execution time of sentence classifier, sentence matching and change de-
tection method

7.2 Sentence Classification

Category Percent composition (%)
Other 18.44
First Party Collection/Use 41.87
Third Party Sharing/Collection 19.16
User Choice/Control 6.56
Data Security 3.34
Data Retention 1.83
User Access, Edit and Deletion 5.07
International and Specific Audiences 1.63
Policy Change 2.07
Do Not Track 0.03

Table 7.1: Distribution of categories across collected policies

We categorized all the 12188 sentences in the 79 privacy policies using the sentence

classifier. The category wise percentage composition of the data set is presented in ta-

ble 7.1. The result shows most of the sentences belong to “First Party Collection/Use”,

followed by “Third Party Sharing/Collection” and “Other”. The result is on par with the
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statistics observed by Wilson et al. [37]. Collection, use and sharing of user data is a

concern for most users. The primary purpose of privacy policies is to address that by

notifying users of ways a party gathers, uses, discloses, and manages user data. High

percentage of “First Party Collection/Use” and “Third Party Sharing/Collection” sup-

ports the primary purpose of the policies, but high number of “Other” category sen-

tences also raises concern on the ambiguity of these documents. Low number of “User

Choice/Control”, “Do Not Track”, “User Access, Edit and Deletion” and “Data Reten-

tion” cumulatively comprising of 13.49 percent of data set, shows how limited con-

trol users have over their own data. Even if the users are provided with the options of

controlling the use and collection of data from them, policies do not provide detailed

explanation or instructions to the users, which is another concern.

7.3 Sentence Matching
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Figure 7.2: Similarity measure histogram

We plotted a histogram for the similarity measures of all the 10249 sentence pairs
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generated for all the policy pairs in the data set, shown in figure 7.2. We have 9 bins

for the similarity measures in the plot (0.0, -0.5), (-0.5, -1.0), (-1.0, -1.5), (-1.5, -2.0),

(-2.0, -2.5), (-2.5, -3.0), (-3.0, -3.5), (-3.5, -4.0) and (-4.0, -4.5). Our threshold is -4.4;

any sentence with highest similarity measure lower than -4.4 is null assigned and the

range of similarity measure in the plot is set from -4.5 to 0. High number of pairs in

the (0, -0.5) bin shows that most sentences are matched with very high confidence.

Reading and checking the correctness of all the sentence pairs is a laborious task, but

this plot gives an estimate of the confidence in our sentence matching method. High

number of sentences pairs with higher similarity measures bolsters our confidence in

the implemented method.

7.4 Change Detection
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Figure 7.3: Distribution of addition tokens between sentence pairs

Using the change detection method, we collected the number of addition and dele-

tion tokens between generated sentence pairs and divided them into bins using the
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similarity measure of the sentence pairs. Distribution of addition and deletion to-

kens between sentence pairs are shown in figure 7.3 and 7.4 respectively. The dis-

tribution shows that as similarity measure decreases, the number of detected changes

increases. This is expected as change between sentence pairs reduces the similarity

measure. This also introduces another potential improvement; through further anal-

ysis and evaluation on detected tokens and similarity measure, we can fine tune the

sentence matching algorithm even further to eliminate more incorrectly matched sen-

tence pairs. High number of detected addition and deleted tokens in the sentence pairs

with low similarity measures shows that a threshold can be computed for number of

detected changes to eliminate false sentence matches. This can be further extended to

identify extreme changes between a policy pair to estimate the applicability of the pro-

posed method for the pair. These extreme changes make comparing the policies using

the proposed methods redundant, as the newer version of the policy can be considered

a new document.
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Figure 7.4: Distribution of deletion tokens between sentence pairs
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7.5 Web Application

Figure 7.5: A Web application for comparing two versions of a privacy policy

We also implemented a web application that allows user to input two versions of

a privacy policy and compare them side by side. Figure 7.5 shows the implemented

application. On hovering over a sentence with the mouse pointer, the category of the

sentence gets highlighted on the top right corner of the application. The respective

match of the sentence in the other version of the policy gets automatically scrolled

into view and it’s background gets highlighted. The detected changes between the

sentences are highlighted with colors. Red shows added tokens, blue shows deleted

tokens and green shows the context of the added and deleted tokens. Currently the

input files are precomputed using the Python implementation of sentence classifica-

tion, sentence matching and change detection methods. Files are input using the drop

down menu in the top left corner of the application. The application can be improved

by implementing proper backend APIs for real time computation of the methods.
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8. Conclusion and Future Work

The process of developing tools for comparing two versions of a privacy policy is

explored in this research. By using natural language processing and machine learning,

we have implemented an application that allows users to compare privacy policies at a

sentence level and identify the relevant changes. This can inform users of data practice

changes introduced by a company or website, without having to go through ambigu-

ous and incomprehensible policy documents. This was realized by first using a sen-

tence classification method to organize policy texts into expert defined policy practice

categories. Sentence classification gave us some interesting insights into privacy pol-

icy structures, confirming our concerns raised by the the nature of these documents.

We observed that even though policies try to inform users about the companies’ data

practice, the complicated nature of the documents beats the purpose. Users are given

very little control over their own data and the instructions are often not clear. Sentence

classification was followed by sentence matching, where we used glove encoding com-

bined with word mover’s distance to match the sentence of a policy to the semanti-

cally most similar sentence in the next version of the policy. This allows the user to

compare the two versions of the policy at a sentence level. We used the sentence cat-

egories to not only improve the performance of sentence matching, but also to inform

users about the sentences. A threshold was also computed through proper analysis

that minimized false sentence matches between two policies. Even though sentence

matching is computationally expensive for real time application, this is a one time task

only needed when a new policy arrives. There is potential for improvements through

modification of the word embedding methods to give more weight to the policy related

important terms. A word embedding method tuned specifically for privacy policies

can significantly improve the sentence matching precision. Lastly, matched sentences

were used as input for our change detection method, which presents the users with

addition and deletion changes between the sentence pairs. The method also informs
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users about the context of the change. There are many potential future improvements

for the change detection method. We only explored the change detection in terms of

nouns and the context, which produced informative results. Exploring other part of

speech tags and dependency relationships may also present some interesting results

in terms of changes. Methods can also be devised that alerts the users of concerning

changes in a policy. The changes can also be classified into severity levels that reflects

the impact it will have on the user’s privacy.

Our developed tool can be improved further. The application should be able to

present relevant results to the users without overwhelming them. The tool can be en-

hanced with a filtering feature that allows the users to view sentences from a partic-

ular category. Users should be provided with an option to set alerts for concerning

classes of changes in the policy. This could be at a user preferred granularity, say, if the

user is interested in addition of newer methods of data collection, or even newer forms

of third party data sharing. The tool should be able to generate results according to

user preference. Providing users preferences in terms of the 11 privacy principles [14]

will be valuable. Through proper back-end implementation, the tool can be given the

ability to monitor the privacy policies of user selected websites. Whenever a policy is

changed, the tool will automatically generate results for the users and notify them.

Future work on identifying contextual changes may introduce significant enhance-

ment for the tool. Suppose, if the policy changes the sentence “We may share your

location information.” to “We will share your location information.”, a user should be

aware of such a change. Change detection method needs to be improved further for

identifying relevant contextual change. Not only that, the tool should have the ability

to estimate the severity of the change and it’s impact on the user’s privacy, and effi-

ciently communicate the same to the user.

Nowadays, mobile phones are commonly used for most user needs. That requires

our tool to be compatible for mobile phones as well, which is a major task in itself.

Migrating the application to mobile phones as a mobile application requires efficient

methods that can run in mobile hardware and also present results to the user in a con-

cise format, suitable for mobile phones. Due to limited screen size, a usable user in-

terface for the mobile version of the tool is of utmost importance. The tool should be

able to monitor the privacy policies of all the installed applications and notify the user

when a change takes place in any of those policies. The same fundamentals can be ex-

tended for web browsers as well. An extension for browsers can be implemented that
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retrieves and caches the privacy policies of the visited websites. Whenever a particu-

lar website is revisited, the privacy policy will be automatically compared to the last

cached policy of the website, and notify the users of any change, if present.

An extensive future work will involve working towards a tool that can compare poli-

cies across different products of the same company. For example, Google has a cornu-

copia of products, “Gmail”, “Google Drive”, “Google Lens” etc.; a tool that compare the

policies across all the products can provide an even more informed assessment. The

work presented here is not only applicable for comparing privacy policies, but can also

be extended for other types of natural language documents such as software documen-

tations, legal documents, published work, etc.
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