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Abstract

The ability to understand human movement is beneficial for deciding

surgical procedures, tracking disease progression over time and helping with

patient rehabilitation. The current gold-standard for collecting human movement

is the use of 3-dimensional marker-based systems. Several studies have presented

the many limitations to the current gold-standard that reduces the number of

people who are able to benefit from a gait analysis. Those limitations in the

current gold-standard include the requirements of large laboratory space, costly

equipment, long instrumentation and collection time, and the potential for

motion artifact from markers being placed on the skin. The purpose of this study

is to create a marker-less motion capture system using the newly–released Kinect

Azure cameras from Microsoft. The study aims to validate the new system

against the gold-standard. A validation of a four Kinect Azure camera system

was conducted with 10 subjects completing over ground walking trials at a

self-selected pace, sit-to-stand, lunge, and step up/down while Kinect and 3D

marker-based data were collected simultaneously. The data was synchronized

and cut to a single activity cycle where joint angles and spatio-temporal measures

were compared between the two systems. Walking speed and stride length were

highly correlated between the two systems with r-values >0.9 and p-values

<0.001. The average difference in maximum knee flexion angle between the two

systems is 2.84�with a r=0.785 and p-value <0.001. A 3D point cloud was
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generated from the four Kinect Azure camera system to generate a surface mesh.

The 3D mesh was used to provide a better understanding of body habitus than

current BMI.
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Chapter 1

Introduction

1.1 Introduction

Gait analysis has been evolving since Aristotle’s first theories on human

movement and continued as new theories emerged along with advances in

technology [1]. Gait analysis is a clinical technique used to assess a person’s

ability to walk and to help identify deficits which could cause detrimental

consequences of energy expenditure and balance [2]. Due to its’ ability to identify

deficits, gait analysis can be used to help diagnose and treat a wide range of

pathologies that result in gait abnormalities.

Currently, there are few diseases or gait pathologies which are treated

using gait clinical analysis due to the limitations of the current gold-standard for

collecting data [3][4]. The current gold-standard for gait analysis is the use a

3-dimensional motion capture camera system with reflective markers attached to

boney landmarks to track how a person is moving through time and space. This

method requires a large experimental laboratory space for capture volume and

expensive equipment. In addition, experienced engineers and clinical personnel

are required to collect and process the data after, long collection times needed to

apply markers to a person that have the potential to alter their natural movement
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[5][6][7][8][9]. The cost and complexity are the main reported limitations of this

system which have led to a translational lack of gait analysis used in the clinic

and reduced the number of people who are able to benefit from gait analysis.

These systems are mainly found in research laboratories and select hospitals. If

the limitations of the current system were addressed, it would increase number of

people who could benefit from a gait analysis. There would be an increase in the

number of diseases and injuries that would benefit from a gait analysis by

allowing treatment to be aided by identifying deficits in human movement.

Neurological diseases, like Parkinson, ataxia, and dementia, could be

detected earlier if a gait analysis were able to be collected in the clinic or in the

field. A gait analysis could also help to track the progression of these diseases by

being collected every time a patient visits the clinic [10]. Additionally, gait

analysis would help in the diagnosis and progression of osteoarthritis (OA).

Currently in the field of hip and knee arthroplasty functional scores are used

widely to assess changes to a patient’s disease progression. However this method

is subjective and there is significant disparity between the patient’s and doctor’s

evaluations. Measured obtained with a gait analysis could be integrated along

with other clinical and instrumental data to help with treatment and diagnosis of

OA [11]. A more compact system could be also used in sports to help decide

when an athlete is ready to return to their sport after an ACL injury or concussion

by determining if there are deficits in the athlete’s movement [12]. It could also be

used to help advance the performance of athletes by optimizing their movement.

There is a need for advancement in gait analysis technology that does not require

markers, has a small capture volume, is easy to use, and cost effective. The aim of

2



this study is to develop a marker-less motion capture system based on the use of

multiple inexpensive depth cameras that could be used to quantify movement

quality in a clinical environment.

1.2 Study Objectives

The research objectives of this thesis are:

1. Develop a synchronized marker-less system based using multiple depth

cameras to be used in a clinic for movement analysis.

2. Validate the system for clinically relevant spatio-temporal and joint

kinematic measures across dynamic activities of daily living.

3. Using synchronized output for multiple depth cameras, develop a

3-dimensional surface mesh for a person performing dynamic activities that

can be used to better understand the relationship between body habitus and

movement.
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Chapter 2

Background & Literature Review

2.1 Introduction

The need for marker-less motion capture is underscored when

examining the current gold-standard for collecting human movement along with

the system’s limitations. This literature review will 1) introduce the history of gait

analysis; 2) present the current gold-standard of marker-based motion capture

and the system’s limitations; 3) present alternative methods for capturing human

movement using inertial measurement units and a fixed-installation camera

system; 4) the benefits of a marker-less motion capture system; and will conclude

with 5) the current systems using Kinect cameras to monitor human movement.

2.2 Background of Gait Analysis for Human Movement

The first theories on human movement began with Aristotle observing

how the head moves as a person progresses through a gait cycle. He understood

the head would not move in a straight line but in a zig-zag pattern [1]. As the

understanding of physics improved, people started to debate whether the

movement of a person was due to gravity or forces within the muscles. As

scientists started to gather evidence for one theory or the other it lead to
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improvements in collecting human movement data. Eventually the first

3-dimensional gait analysis was performed in 1895 by Braune and Fischer [1]. The

first gait analysis used cameras with a continuous exposure to collect images of

the subject who had Geissler tubes attached to their body (Figure 2.1). The

instrumentation time for this system took between 6 to 8 hours due to the

bodysuit requirements needed with the Geissler tubes to ensure the electrical

current would not come into contact with the subject’s body [1].

Figure 2.1: Braune and Fischer’s experimental setup with Geissler tubes attached
to subject’s body

Injuries during the First World War lead to doctors wanting a better

understanding of how to measure rehabilitation of those injured during the war.

The Second World War then lead to the greatest advancement in gait analysis in

the United Stated when Inman and Eberhart founded the first biomechanics lab at

the University of California around 1945 [1]. The initial setbacks of a gait analysis

collected in the lab at the University of California was the time required to

5



manually process the data. As computers advanced and processing time was

reduced through automation, the availability of a gait analysis increased. While

technology has advanced since Braune and Fischer first conducted gait analysis,

the general system and processing remain the same. Currently, multiple infrared

cameras are used to capture the location in space of reflective markers attached to

boney landmarks on a person similar to how the Geissler tubes were used by

Braune and Fischer.

2.3 Gold-standard & limitations

The gold-standard for collecting a gait analysis is using a 3D

marker-based motion capture system [3][4]. The system uses infrared cameras

and reflective markers placed over the whole body at anatomical landmarks to

determine a reconstructed skeleton of the subject that can be used to calculate

kinematic and spatio-temporal measures. In addition to cameras, it is common to

use force plates to determine kinetic quantities. The high-quality cameras and

force plates needed to have a lab where a gait analysis is performed with the

current system is expensive. There is also a long preparation phase due to the

time required to accurately place the markers on a person, along with the number

of markers required to track rigid bones. These are both limitations cited by a

number of researchers of the current system. Studies have additionally cited

requiring skilled technicians to run and process the data, a large capture volume,

soft tissue artifact, and markers influencing normal human movement as

limitations to traditional marker-based motion capture [5][6][7][8][9]. A majority

of these limitations reduce the number of eligible recipients of a gait analysis, as

there are few labs with this system due to the equipment and personnel required.

However, there has been an increase in the demand for analyzing human
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movement to help in the surgical decision process, in diagnosing and monitoring

different diseases like Parkinson’s [2], with rehabilitation either in a clinic or at

home, and to better understand injury and recovery in sports. Due to this increase

in demand, and the limitations of the current method for collecting human

movement not being able to accommodate the demands, researchers have been

trying to determine an alternative method to capture human movement.

2.4 Alternative Methods of Marker-less Motion Capture

2.4.1 IMU

An alternative method to 3D marker-based motion capture to collect

human movement is with wearable inertial measurement units (IMUs). IMUs are

devices with embedded 3D accelerometers, gyroscopes, and magnetometers that

calculate angular velocity and linear acceleration. When the sensors are calibrated

on even surfaces with right angles, the axes of the sensor’s local coordinate

system represent the orthogonal base typically aligned with outer casing of the

sensor. Combining the multiple signals from the IMU there are different fusion

and filtering algorithms that can provide estimates of a sensor’s orientation with

respect to a global fixed coordinate system [13]. This orientation from multiple

sensors placed along limb segments can be used to calculate measures of human

movement. One limitation of IMUs is the presence of magnetic disturbances,

which can limit the accuracy of the orientation estimates [13]. IMUs are attached

to rigid body segments for tracking the location of the thigh, shank, and foot

usually for lower body studies. The leg is a challenging spot to attach a sensor as

it is not an even surface with right angles. Therefore, the local coordinate axes do

not coincide with the joint axis. A transformation is required to align the axes in a
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joint-related coordinate system. Calculating kinematics from IMUs these methods

are only accurate for the primary rotation DOF, and the 2nd and 3rd rotations get

progressively worse in terms of accuracy. However, even with these device

limitations, researchers have still been exploring using IMUs to capture human

movement because they have been able to address some of the current limitations

of 3D marker-based motion capture. The sensors are small, allowing people to

wear them in special clothing or IMUs can be attached to the body with tape or

elastic straps. IMU sensors are low-cost and easy to use [13][14][15] [16]. IMU

sensors can be used as a multi-sensor platform or as a single IMU to collect

movement data. IMUs are wireless and are not confined to a laboratory as they

can be used outside or in a clinic. IMUs are a system that could be used to assist

in the rehabilitation process as patients can use them in their own home. Studies

have evaluated the use of IMUs in detecting gait phases, measuring joint angle,

and estimating stride length.

Spatio-temporal parameters consisting of stride time, stride length,

cadence, and step length are measures used in the clinic to assess how well a

person is moving. These are simple metrics that offer clinical value for diagnosis

and monitoring disease progression by comparing them to patient normals. The

collection of spatio-temporal parameters does not required an expensive gait

analysis. Clinician’s use simple tools like tape measures and stop watches to

collect spatio-temporal parameters, but using a system like IMUs to collect these

parameters would improve inter-rater reliability. Several studies have attempted

to validated IMUs to both the gold-standard system along with the current

clinical methods [16]. IMUs showed excellent validity when measuring speed,

gait cycle time, stride length, and cadence when compared to methods used by
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clinicians. Another study found the mean difference between IMU and an optical

system for stride time, stride length, cadence, and step length to be 0.02 (sec),

-0.04 (m), -2.92 (step/min), and -0.02 (m) respectively [17]. All of spatio-temporal

parameters of interest where within 95% limits of agreement. There is no

significant difference between the current gold-standard and IMUs when

determining spatio-temporal measures. IMUs also showed excellent validity

compared to current methods used in the clinic to determine spatio-temporal

parameters [15][17].

Joint angles from IMUs are calculated by placing an IMU on either side

of the joint of interest. Most work by researchers has focused on determining the

knee joint angle and validating it against the current gold-standard, but the ankle

and hip angles have also been compared. A majority of published work considers

only the flexion and extension angle at the knee reducing the degrees of freedom

at the knee to one. In order to validate IMUs as a method for a gait analysis, joint

angles from both systems are simultaneously recorded. The study design consists

of placing an IMU on the trunk, right and left thigh, shank, and foot. In most

studies, the reflective markers for the optical system are placed on the IMUs. There

are a few studies in which the reflective markers are placed on anatomical locations

instead of the IMU. When validating between the two systems, it is important

to understand what is being compared. If markers are placed on the IMUs, the

study compares the accuracy of the optical system to the inertial system, versus

comparing the results of an optical gait analysis to a inertial gait analysis [13].

Studies that placed markers on anatomical locations reported higher root-mean-

squared error (RMSE) values for joint angles. Studies with markers placed on IMU

sensors report RMSE values around 4�and studies with anatomical markers report

9



RMSE values around 8�[13]. The accuracy of the hip and ankle angle are also of

interest. Watanabe et al. [15] reported, for all walking speeds, the ankle angle

had an RMSE value smaller than 4�. The accuracy of the hip joint angle has been

reported to be greater than that of both the knee and ankle. The hip joint angle has

the same trajectory between the two systems but the magnitude is different [17].

When patients use IMUs at home for rehabilitation there is potential for

the sensor to be incorrectly placed on the body. Leardini et al. [14] investigated

how the malposition of an IMU affected joint angle calculations. In this study, the

IMU sensor was malpositioned in the frontal plane by ±15� and in the

medio-lateral direction by ±7 cm. The sensitivity of the system to malpositioning

of the sensors has a RMSD value less than 4�in either plane of alignment. The

medio-lateral direction was the most sensitive to the malposition with a RMSD

value of 3.1 ± 1.8�. Seel et al. [13] validated the IMU sensors for use in a gait

analysis with a unilateral lower limb amputee and noticed the agreement

between the two systems was better on the prosthetic side than the unaffected

side. From this, researchers concluded that there is still skin and soft tissue

artifact with the IMU sensors being attached to body segments [17].

IMUs address many of the limitations present with the current gold-

standard for collecting data on human movement. IMUs are low-cost, easy to use,

and can be used anywhere. There is no significant difference between IMUs and

the current gold-standard for measuring spatio-temporal parameters [15][16][17].

Additionally the accuracy of measuring joint angles is around 4�. IMUs still have

the limitation of requiring a subject or patient to have sensors attached to their

body.
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2.4.2 Fixed installation camera systems

Another low-cost and portable system some are using for a gait analysis

is a fixed camera system use RGB video cameras. There is increased variability in

fixed cameras systems in relation to the setup and processing of the data. Fixed

RGB video camera system use a variable number of cameras to collect the data.

Yang et al. [18] used a single camera to determine kinematic values at the knee.

The thigh and shank were tracked in time with black and white targets attached

at the joints. The location of the markers were determined using a search area

constraint and an image quality assessment algorithm from an image formation

point of view. Only the knee angle was compared between the fixed camera

system and the gold-standard with a max error of 5�and 9�respectively for

normal and slow walking conditions. Verlekar et al. [19] used a two-camera

system to classify gait impairments. It was an appearance-based system that did

not rely on markers. They had successful acquisition and evaluation of an

individuals’ gait. Krishnan et al. [20] used a webcam and a custom algorithm

processed in Labview to track real-time human movement. They cited a need for

a quantitative, low-cost system for a gait analysis to eliminate the limitations of a

qualitative gait analysis. Qualitative gait analyzes have minimal instrumentation

and are inexpensive but they require a considerable amount of training and

practice to be effective and even then the outcome is still subjective and lacks

reliability [20]. Krishnan et al. [20] validated their marker-less system to the

Lokomat R� system. Lokomat R� is a robotic rehabilitation device that provides

highly repetitive and the most physiological movement training [21]. This device

is used to retrain a person’s gait and can be set to a specific angle or given a

trajectory to match. The kinematic data between the webcam and those of the
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potentiometers on the Lokomat R�were similar. There was a mean absolute error

of less than 2�for all speeds tested. The measures were also repeatable, as data

was collected on two separate days and the mean difference between the two

days was 1.56 ± 0.13�and 2.56 ± 0.53�for the hip and knee, respectively. The

number of strides and the stride duration was the same between the two systems.

This method of measuring real-time human movement with a low-cost webcam is

reliable and accurate. The limitation of the system is the study was only in a

single plane and therefore any movement out of the plane would cause errors in

estimated joint angles. The system also cannot handle occlusions. Fixed

installation camera systems are low cost and are easy to use but some setups still

require markers to track body segments.

2.5 Kinect

The complexity of acquiring accurate 3-dimensional kinematics has

limited the methods for using marker-less motion capture [6]. Technology has

advanced in the recent years creating better options for marker-less motion

capture. A depth–based camera has been researched as a potential method of

marker-less motion capture. One depth based camera many researchers are

considering is the Kinect from Microsoft. Microsoft developed the Kinect for

gaming purposes but due to the inexpensive nature of the device and the

combination of a depth camera and a RGB camera, researchers have been

interested in investigating it as method for marker-less motion capture. Microsoft

has released four different versions of the Kinect. The original version was the

Kinect Xbox 360, released in 2010. It uses an infrared (IR) laser projector

combined with monochrome CMOS sensor to capture 3D data [22]. In 2013 the

next version of the Kinect was released, the Kinect for Xbox One, with a new
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method of capturing depth data with a time-of-flight (TOF) camera. The TOF

increased the accuracy of the depth data and can track visible light using an

active IR sensor. A year later in 2014 the Kinect 2 for Windows was released. This

version of the hardware was similar to the Kinect Xbox One, but also included a

Windows Software Development Kit (SDK) platform to encourage wide use and

development across applications [23]. The Kinect 2 for Window is called Kinect

V2 in many research studies and the Kinect Xbox 360 is called Kinect V1. In 2019

the latest version of the Kinect was released, Kinect Azure, with the intent for the

sensor to be used in research and industry and no longer compatible with the

Xbox. The TOF sensor has been updated and uses a HoloLens 2 [24]. There are

many improvements made to the new Kinect Azure. The Kinect Azure has a

higher resolution RGB camera than the Kinect V2. The greatest improvement of

the Kinect Azure is the multiple resolutions available for collection of depth data.

The Kinect Azure has three depth resolutions at two different collection rates.

Additionally, the Kinect Azure has the capability to sync multiple Kinect Azure

devices together. The Kinect V2 does not have the capability to sync devices

together without external hardware. Finally, the Kinect Azure has a seven

microphone circular array compared to the four microphone linear phased array

of the Kinect V2. A summary of the specification differences between the Kinect

V2 and the Kinect Azure can found in Table 2.1
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Table 2.1: Kinect V2 & Kinect Azure Specification Comparison

Kinect V2 Kinect Azure
RGB Camera 1920 x 1080 px @ 30 fps 3840 x 2160 px @ 30 fps

640 x 576 px @ 30 fps
Depth Camera 512 x 424 px @ 30 fps 512 x 512 px @ 30 fps

1024 x 1024 px @ 15 fps
Synchronization RGB & Depth internal only RGB & Depth internal,

external device-to-device
Audio 4-mic linear phased arrary 7-mic Circular array

Studies have explored validating the Kinect V1 and the Kinect V2 against

the current gold-standard for both spatio-temporal parameters, kinematics, and

kinetics. In the SDKs released with both the Kinect V1 and Kinect V2 there is a

multi-segment skeleton that uses the depth data from the Kinect to determine joint

locations. Most studies use these SDKs to determine joint locations to calculate

spatio-temporal parameters and kinematics.

2.5.1 Method for Collecting Gait Data with Kinect

Studies have used both the Kinect V1 and the Kinect V2 for collecting

human movement to validate with the current gold-standard. A systemic review

by Springer et al. [25] examined the findings of 12 papers using the Kinect for gait

assessment and found 10 of the 12 papers used the Kinect V1 and 2 papers used

the Kinect V2. All but one paper used a single Kinect to collect data for the gait

assessment. Of those 11 papers, 10 had the Kinect placed in front of the subject at

a distance varying between 2 and 8 meters from the subject when the subject was

walking on the ground. Generally, when a treadmill was used in the study, the

Kinect was place 1 meter in front of the treadmill. In one study, the Kinect was
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placed to the subject’s left and at a 45�angle from the treadmill. In another study,

the Kinect was placed in front of the subject but at an off-centered position. From

this review by Springer et al. [25] most studies use a single Kinect since the Kinect

V1 and Kinect V2 are not designed to be synchronized together with multiple

sensors. There are studies with multiple Kinect sensors capturing data, but

external syncs and additional hardware is needed. The Kinect sampling rate was

30 Hz for all the studies reviewed. Most of the studies used the Microsoft Kinect

skeleton tracking algorithm for calculating gait metrics, however two studies

used the raw depth data and one study used the RGB data.

2.5.2 Current Validation Study of Microsoft Kinect

Studies have attempted to validate Kinect V1 and Kinect V2 for

spatio-temporal parameters and kinematic measures with the current

gold-standard. Many studies have validated the Kinect V1 and V2 to be used for

determining spatio-temporal parameters. Clark et al. [26] found excellent

agreement for gait speed, step length, and stride length compared to 3D

marker-based gait analysis with r-values of 0.95, 0.99, and 0.99 respectfully and

p-values all <0.001. Behrens et al. [27] found only moderate agreement for gait

speed between the Kinect and a clinical measured timed walking test. Vernon et

al. [28] showed excellent agreement between a stopwatch and Kinect in

time-up-go (TUG) test. Geerse et al. [29] found good to excellent agreement for

gait speed, cadence, step length, stride length, step time, and stride time with ICC

values of 0.995, 0.974, 0.994, 0.999, 0.888, and 0.962 respectfully. Step width, step
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length, and stride length are parameters that show excellent relative agreement.

These studies showed there is good potential for the Kinect to be used to

determine spatio-temporal parameters.

The systemic review showed a larger variation in the results for

kinematic measures between the Kinect and current gold-standard. Studies

showed some kinematic measures with excellent agreement while some

kinematic measures presented low agreement and large error. The agreement

between the two methods is not consistent enough for the Kinect to be used for a

clinical assessment. When validating kinematic measures, Skals et al. [5] found

the strongest correlation in knee flexion/extension angle (0.81), hip

flexion/extension angle (0.82), and hip abduction/adduction angle (0.81). There

was also strong correlation for the ankle (0.80), knee (0.78), and hip (0.71)

resultant joint reaction forces between the two systems. Pfister et al. [30] found

the Kinect peak angular displacements were smaller than those measured by the

gold-standard (p <0.004) in every case but the right hip. Additionally, they found

the Kinect peak extension measurements to be consistently greater than that of

gold-standard. Anderson et al. [31] found the hip joint angles to have a similar

pattern between the two systems, but the Kinect predicts larger peak values. They

also found the knee joint angle measured by the Kinect to display larger knee

flexion during the first 40% of the gait cycle and slightly delayed peak knee

flexion during swing.

In order to increase the accuracy of tracking human movement with the

Kinect, several studies have explored the effects of using multiple Kinects to

collect data. Studies have used between two and six Kinects to capture a subject

walking. A study by Müller et al. [4] used six Kinects to collect joint position data.
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They used three Kinects on each side of the walkway 2.5 meters from each other

to create a tracking volume 9 meters in length. Müller et al. [4] found that having

two-sided data from the Kinect increases the accuracy of spatio-temporal

measures. They determined the skeleton fitting algorithm of the Kinect depends

heavily on the angle of view from which the camera tracks the body. Therefore,

when the Kinect was located only on the right or left side of the subject there were

self-occlusions that disrupted the skeleton fitting algorithm. The joint positions

are biased towards the surface area that is visible to the respective sensor (i.e.

right side or left side) [4]. Another study used two Kinect sensors to track a

subject walking and linked the sensors using iPi motion capture software [5].

They looked at validating kinematic measures compared to the gold-standard

and found promising results, however these results were not highly correlated

like the spatio-temporal measures in the Müller et al. [4] study.

From the studies conducted in validating the Kinect against the

gold-standard, there have been some errors identified with the Kinect body

tracking SDK. Researchers stated that, if these errors were addressed, it could

help to improve the validation results. Using the Kinect to collect data around the

ankle has been difficult for researchers. Skals et al. [5] provided some of the errors

that currently exist with the Kinect at the ankle. Tracking the ankle could be

compromised because of the light reflected on the ground during data collection.

Light sensitivity has been proposed as a limitation of the Kinect. Additionally,

tracking errors are considerably larger near the edges of the Kinect senor’s field of

view and therefore could cause poor tracking of the feet. The final error Skals et
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al. [5] proposed is due to the feet being in contact with the ground during stance

phase of gait where clear distinction between the feet and ground does not exist

in the depth map. There may be errors when fitting the stick figure to the depth

data.

Researchers have also explored methods for predicting or estimating

ground reaction forces (GRF) without the need for force plates to further extend

the utility of gait analysis outside of the laboratory. Embedded force plates are

common in the current gold-standard system because they yield the GRF data

required to calculate kinetic quantities associated with movement. Kinetic

quantities can be the primary determinants of understanding what is causing gait

dysfunction in some diseases or conditions. For example, with Parkinson’s

Disease, understanding changes in a person’s kinetics can help determine the

reason for an unexplained fall [7]. Force plates are expensive, and for the best

results they need to be embedded in the floor, making them an impractical device

for a clinical setting. Therefore, researchers have been trying to predict GRF data

from a person’s kinematics. Ren et al. [32] has been successful in predicting GRF

data during the single support phase of gait but GRF data cannot be determined

during the double support phase of gait as the problem is closed looped [33]. The

double support phase of gait is valuable for the diagnosing of disease and

assessment of gait. Most attempts at estimating GRF data during double support

phase are limited by the assumptions made about human movement. For

example, one method assumed that the right and left limb were symmetrical but

this is not the case for many people, especially with some diseases. Oh et al. [33]

used a neural network model to predict GRF during double support phase. Their

results for GRF data during double support phase matched magnitude and
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overall patterns compared to measured valves. All the GRF planes had a

correlation coefficient greater than 0.8. They used methods similar to Ren et al.

[32] for determining GRF during the single support phase and combined the two

phase together with a spline. The combined GRF data for all planes had

correlation coefficients greater than 0.84 [33]. Using a neural network to predict

GRF data had significant improvements compared to previous methods and

models.

Using Kinect data to drive musculoskeletal models is another potential

method to estimate GRF data. This method uses artificial muscle-like actuators at

contact points under each foot to calculate GRF data. This leads to a muscle

recruitment problem which must be solved. Eltoukhy et al. [7] and Skals et al. [5]

both used AnyBody modeling software with the GaitFullBody model which was

scaled to a subject’s specific size to estimate GRF from the skeletal joint locations

from the Kinect V2. Eltoukhy et al. [7] solved the muscle recruitment problem

during the double support phase using the Damsgaard et al. [34] method. Skals et

al. [5] used polynomial optimization to solve the muscle recruitment problem

allowing the muscles to only pull. Strong correlations were found between the

gold-standard and the estimated GRF for the vertical GRF. However, peak values

were significantly different and the time of occurrence in the gait cycle deviated

slightly between the two system for the vertical GRF [5]. Eltoukhy et al. [7] found

the calculated propulsive vertical force, braking horizontal force, and propulsive

horizontal force to be significantly greater than that of measured values. The

GRFML and GRFAP agreement ranged from good to excellent between the two

systems. Kinect driven musculoskeletal models showed promise for estimation of
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unilateral GRF components but are highly dependent on the component of force

being evaluated. Using more Kinect cameras could improve the tracking accuracy

and therefore the accuracy of the estimated GRF [7].

Research has shown the Kinect to address the limitations of the current

gold-standard by eliminating the need for markers, reducing the capture volume,

and being cost effective. The Kinect V1 and V2 have been validated for use in

determining spatio-temporal measures but not reliable for kinematic measures

[26][29][30]. There is still more research needed to be able to create a marker-less

motion capture system with the Kinect that can be used in a clinic for

understanding a person’s kinematic and kinetic quantities.
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Chapter 3

Materials & Methods

3.1 Introduction

The methods for this study consisted of creating a configuration of

Kinect Azure cameras, calibrating the Kinect Azure cameras to a global

coordinate system, and collecting human movement to be validated against the

current gold-standard. Additionally, surface model data was generated to allow

for information about a person’s body habitus.

3.2 Experimental Setup

An overview of the workflow for obtaining relevant data from the Kinect

Azure cameras can be seen in Figure 3.2. The following sections explain each step

of the workflow in more detail.
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Figure 3.1: Study Workflow

3.2.1 Calibration

When collecting data with Kinect cameras that were not initially

designed to be used for these purposes, it is important to have an accurate

calibration aligning the output of all the cameras together in a global space. The

Kinect Azure cameras can be time synced together with a pulse sent from the

master camera to all of the other cameras connected in either a daisy-chain or star

configuration. This study used a daisy-chain configuration to sync multiple

cameras. A custom two-phase calibration process was designed to calibrate the

Kinect Azure cameras. The first phase aligned the cameras close to each other in a

global space using a point pair alignment and the second phase used iterative

closest point (ICP) to refine and optimize the alignment. Three square tiles were
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placed vertically spread throughout capture volume with the corners visible to all

the cameras at varying heights and locations in the capture volume, as seen in

Figure 3.3.
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Figure 3.2: Kinect Workflow
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Figure 3.3: Calibration object setup

The corresponding corners are selected in the master camera (global

frame) and in each subordinate camera local reference frame. The 12 corner

points are used to create a transformation for each subordinate camera to the

global reference frame (Figure 3.4). This transformation is the first phase of the

calibration and aligns the two reference frames with each other.
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Figure 3.4: Selecting points in global reference frame (R pts) and subordinate
reference frame (A pts) to be used for creating a transformation between the two
reference frames.

For the second phase of the calibration, the initial transformation was

applied to the point clouds of a subject in a static t-pose. The point cloud of the

front and back of the subject were merged from the first phase transformation.

Then ICP was applied to each of the two point clouds of the side of the subject to

finish aligning the point clouds together. Each ICP generates another

transformation for each of the subordinate cameras, perpendicular to the

direction the subject is walking, into the global reference frame. The second phase

transformation was combined with the first phase transformation to create a

global transformation that is applied to all trials collected with the cameras in the

current configuration. The second phase calibration is done only once per camera

configuration and not completed for each subject collected with that camera

configuration. If the camera(s) are bumped or moved then the two-phase

calibration is repeated for the remain trials. The first phase of this calibration

yields reasonable results of an error of <3mm but the second phase improves the

accuracy due to some of the properties of TOF cameras with an error of <1mm. It
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has been reported that a TOF camera is sensitive to the color and material of an

object when determining depth. For most colors and materials, the farther away

from the camera an object is, the error in the reported depth data is increased [35].

The distance the calibration objects were away from each camera could account

for some of the error due to this effects of TOF. It has also been reported that the

edges of an object in a TOF frame are the nosiest and a place where the greatest

distortion occurs [35]. This demonstrates the need to place the calibration tiles

throughout the capture volume to generate the most robust transformation

possible. The points being used to determine the transformation from each

subordinate camera to the global frame were at the edges of the calibration object

and therefore the point cloud accuracy of the object is reduced with added noise,

making selecting accurate points challenging. Both the color, material, and the

point of interest being at the edge of the calibration object could account for the

RMS errors currently seen when attempting to align the 12 points in each

subordinate camera reference frame relative to the master or global reference

frame. Therefore, the second phase is need to overcome the known issues with

the TOF and improve the accuracy of the calibration. The second phase of the

calibration improves anatomical accuracy for the purpose of collecting human

movement by merging the coronal plane point clouds (i.e. front and back of the

body, Figure 3.5) and applies an ICP to align the merged point cloud with each of

the point clouds from the sagittal plane (i.e. side of the body) one at a time as in

Figure 3.6.
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Figure 3.5: Merged point cloud of the two coronal plane Kinect captures
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Figure 3.6: ICP setup of aligning sagittal plane capture to merged point cloud. Red
is the merged point cloud and yellow is the sagittal plane point cloud
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Once the ICP is complete, there is a new transformation for each Kinect

Azure camera relative to the global frame. The second phase transformation is

multiplied by the first phase transformation to calculate the overall transformation

from the subordinate camera to the master camera equation 3.1 .

TFinal = TSecondPhase ⇤ TFirstPhase (3.1)

The accuracy of the calibration process was determined by calculating the

error between the known length of one of the calibration objects (Figure 3.7 left)

and the corresponding length determined in the point cloud (Figure 3.7 right).

The percent error between the actual length and the length after the point clouds

are transformed into one global coordinate system is 0.396%. The error of only

doing the first phase of the calibration is 1.04%. By adding the ICP for the side

cameras, the accuracy of the calibration is improved and there is a reduction in

the noise of the point clouds. This error after the two phase calibration is within

the acceptable tolerance for our system as the Kinect depth data is measured in

mm. This calibration process is used every time the orientation of the Kinect Azure

cameras changes as well as each time a Kinect Azure camera is bumped.

The accuracy of depth measurement from the Kinect Azure was

determine by comparing the points clouds of phantom of a shank with a high

resolution laser scanner to the transformed Kinect Azure point cloud. Figure 3.8

showed the laser scanner point cloud aligned with the transformed point cloud

from the Kinect Azure. The root-mean-squared error between the laser scan and

the Kinect Azure point cloud is 4.2 mm.
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Figure 3.7: Length of calibration object (left). Transformed point cloud of
calibration object used to measure length (right)

Figure 3.8: Laser scanner point cloud of phantom shank aligned with Kinect Azure
point cloud (blue dots) of phantom shank
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3.2.2 Initial Validation Study

An initial validation study was performed when the Kinect Azure was

first released to determine if kinematic quantities could be measured with greater

accuracy than the previous version. If the results of the small scale study showed

promise, then a larger scale study would be conducted to validate the Kinect Azure

as a method for marker-less motion capture instead of the gold-standard. Due to

interference of reflective markers on the depth data as seen in Figure 3.9 an active

marker system was used as the gold-standard.

Figure 3.9: Altered Depth Data from Reflective 3D Motion Capture Markers
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10 subjects performed a total of 10 over-ground barefoot walking trials

and human movement data was collected simultaneously using a single Kinect

Azure (30Hz) and Optotrak (100Hz) active kinematic tracking system. The

subjects wore everyday clothes as a clinical measurement, and had three rigid

bodies attached on the right thigh, shank, and foot. The experimental setup can

be seen in Figure 3.11. Landmark points were collected on the pelvis, femur,

tibia, and foot to create coordinate systems at the hip, knee, and ankle joints

according to the International Society of Biomechanics (ISB) standard for

calculation of relative joint angles. Table 3.1 shows the probed points for each of

the rigid bodies used to create coordinate systems. The depth data from the

Kinect camera was post-processed using the body tracking SDK to estimate key

points on each subject (Figure 3.10).

The hip, knee, and ankle joint centers were used to determine the relative

knee angle and other metrics during gait. The two systems were synced at initial

heel strike and data was cut to a single gait cycle. The methods for determining

when heel strike occurred can be found in section 3.5.1. Data were normalized to

100 points to represent the gait cycle from 0-100%. The maximum flexion angle

was determined for each subject and compared between the two systems. Clinical

metrics, including stride length, walking speed, and stance time were also

compared.

Table 3.1: Probed points for each body segment

Segment Probe Pts
Thigh LASI, RASI, RKneeLat, RKneeMed, RTRO
Shank RKneeLat, RKneeMed, RAnkleLat, RAnkleMed
Foot RKneeLat, RKneeMed, RHeel, RMET5, RMET1, RToeTip
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Figure 3.10: Microsoft Kinect Azure Body Tracking Joint Labels

The results from the initial system showed promise that the new Kinect

Azure could be used as a method for measuring human movement instead of the

gold-standard. The average difference between the maximum knee flexion angle

between the two systems was 3.8�and r-value of 0.85. The correlation coefficient

for walking speed and stride length were r=0.986 and r=0.982 respectively [36].

Determining Active Gold-standard Experimental Setup

A larger validation study would be conducted with a different setup. It

was determined that using a passive marker system with reflective markers could

be done but with modification to the lab’s normal setup. Smaller reflective markers

were placed on the pelvis landmarks to track the pelvis while a rigid cluster of
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Figure 3.11: Initial data collection setup with single Kinect Azure camera and
Optotrak

three markers was placed on the femur, tibia, and foot to track the respective bones.

The rigid body used smaller markers as well and was placed on the front of the

segment not on the side as usually done. Smaller reflective markers were placed

on the medial and lateral side of the knee and ankle for calibration of the segments

and removed during dynamic trials. The small reflective markers on the pelvis still

create a small amount of interference in the depth data as seen in the left image of

Figure 3.15.

The effect the interference had on the body tracking SDK key point

locations was investigated. The segment lengths of the femur, tibia and foot were

compared between a subject with markers and the same subject without markers

in a static Tpose. The point cloud of each case can be seen in Figure 3.15. The

relative body segments varied on average by about 5 mm for the pose with

markers compared to the pose without markers. The exact values for the
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Figure 3.12: Point Cloud of Subject with Smaller Markers (left). Point Cloud of
Subject without Markers (right)

differences in length of the femur, tibia, and foot are in Table 3.2. The error is not

clinically significant allowing for the smaller markers and rigid bodies to be used

in a larger validation study. The location of the key points from the depth data

with the markers and the depth data without the markers can be seen in Figure

3.13.

Table 3.2: Difference between segment lengths between capture with & without
markers

Thigh Difference Shank Difference Foot Difference
(mm) (mm) (mm)

Left 5.7797 5.5238 2.7048
Right 5.7736 5.5819 5.5819
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Figure 3.13: X represent key point locations when markers are present in the point
cloud. O represent key point location when markers are not present in point cloud.
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3.3 Data Acquisition

Once the Kinect cameras are calibrated, human movement data can be

collected. The Kinect Azure cameras have different settings that allow for

customizing of the configuration to best suit the needs of the user. There are four

different depth modes that can be used to capture data. There are two narrow

fields of view (NFOV) which are beneficial if a farther distance from the camera is

needed and lower point cloud density is acceptable. In addition, there are two

wide fields of view (WFOV) which is beneficial if point cloud density is important

and distance from the camera is not important. Figure 3.14 shows the coverage

difference between the two fields of view.

Figure 3.14: Kinect Azure documentation on coverage of depth fields of view

The WFOV is more appropriate when a comprehensive 3D surface mesh

of the subject is needed because the higher point cloud density reduces the

number of holes present in the surface mesh. NFOV provides the most accurate

quantification of spatio-temporal and kinematics measures due to being able to

collect more steps. The validation study used a four Kinect Azure camera setup in

a configuration as seen in Figure ??. The study attempts to maximize the depth
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mode for obtaining surface data in WFOV with three cameras, while placing the

one frontal view camera in NFOV for obtaining joint tracking by collecting data

from the four camera setup with different depth modes. Three cameras in a

triangular configuration were used to obtain surface data for the subject and were

collect in the WFOV UNBINNED (15Hz) and the frontal camera used for body

tracking was collected with the NFOV UNBINNED (30Hz). Figure ?? displays

the collection configuration. The master, Sub1, and Sub3 camera were used for

generating subject surface point clouds and meshes. Sub2 was used for

generating body tracking. The Kinect Azure cameras were synced together in a

daisy-chain configuration using a 3.5mm mono cable less then 10 m in length as

recommended by the documentation for the Kinect Azure. Each of the Kinect

cameras was mounted on a tripod and set to the same height from the ground.

Two laptops were used to collect the data from the four Kinects. Each laptop

collected the data from two Kinect cameras. Due to the size of the data being

collected, only two Kinects could be connected to a single laptop before there was

a lag in data or even data streams being dropped from collection. Each Kinect was

run through a separate command window to execute the k4arecorder.exe from

Microsoft. The data from each Kinect Azure was output in a Matroska Video file

(mkv). A more detailed step-by-step collection guide can be found in Appendix

A.
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Figure 3.15: Bird-eye view of the Kinect Setup for the validation study (left). Kinect
camera setup for validation study(right)
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3.4 Validation Study

A validation study was conducted using a four Kinect camera setup

synced with a passive marker optical system as the gold-standard. 10 subjects

performed overground walking trials at a self-selected pace, a lunge, a step-up,

and sit-to-stand while data was simultaneously collected from four Kinect

cameras (3 @ 15Hz & 1 @ 30Hz) and 11 Vicon cameras (100 Hz). The Kinect

camera collected at 30 Hz was used to generate the body tracking for determining

spatio-temporal and kinematic measures. The output files from the Kinect camera

were post-processed with a custom program to determine body tracking and

generate surface meshes. The Vicon data was post-processed to create a labeled

skeleton that would be used as an input to OpenSim to determine kinematic

measures. A static trial was collected with both systems to be used to scale a

musculoskeletal model as described in section 3.5.2. A representative trial for

each subject was used to compare kinematic measures of hip and knee angle and

spatio-temporal measures of step length, stance time, and walking speed. For

kinematic measures each trial was cut to a single gait cycle and normalized to 100

points to represent 0-100% of the gait cycle. Maximum knee and hip flexion were

compared between the two systems. The following sections describe in more

detail the post-processing of the data collected.

3.5 Data Post-processing

The .mkv file allows for storage of many separate video files in a single

file. Post processing of the .mkv file is required to access the necessary data to

calculate spatio-temporal measures, kinematics, and generate a surface mesh. A

custom program was created using the sensor API and body tracking API found
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in the Kinect Azure documentation to generate point clouds and joint locations

for each trial. The input for the program is a folder containing all the .mkv files

from the trial (i.e. 4 .mkv file for a 4 Kinect Azure camera capture) and the path to

the calibration text file with the transformation matrix for each subordinate

Kinect Azure camera relative to the global reference frame. More details on the

custom program can be found in Appendix B. Once the point cloud data and

joint locations were known, further post-processing steps were taken in order to

determine the desired gait metrics and body surface models. These steps are

outlined in the following section.

3.5.1 Estimation of Gait Metrics

The program uses the depth data from each time point to determine the

location of each of the joints, according to the Microsoft skeleton template, as seen

in Figure 3.16. The program outputs a JavaScript Object Notation (json) file

which contains all the information from the body tracking capabilities of the

Kinect. The only information from the json file used to estimate gait metrics were

the x,y,z coordinates of the joint centers. Spatio-temporal measures for walking

speed, stride length, and stance time were calculated. Heel strike for each subject

was required to calculate these parameters. Heel strike is defined as a maximum

horizontal distance between the center of the pelvis and the heel [37]. The two

joints used from the Kinect skeleton to determine the horizontal distance were the

pelvis and the ankle on the right and left (Figure 3.16), respectively, for right heel

strike and left heel strike. Toe-off is defined as the minimum horizontal distance

from the pelvis to the toe [37]. The pelvis and foot joints were used from the

Kinect skeleton (Figure 3.16) to calculate the horizontal distance. A threshold
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value around the global maximum and minimum was used to determine all the

heel strikes and toe-offs during a given trial. Once the heel strikes and toe-offs on

the right and left side were known, spatio-temporal measures were calculated.

Stride length was calculated as the horizontal distance from one heel strike to the

following heel strike on the same leg. Stance time was calculated as the time

between heel strike and toe-off on the same leg. Walking speed was calculated as

stride length divided by corresponding time of the stride length. Once the

occurrence of heel strike and toe-off are known other spatio-temporal measured

could be calculated besides the three outlined above.

Figure 3.16: Microsoft Kinect Azure Body Tracking Joint Labels
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3.5.2 Musculoskeletal Mechanics

Along with spatio-temporal measures kinematic measures can also be

calculated from the Kinect and gold-standard data. The initial validation study

performed on the new Kinect Azure focused on knee angles. The relative knee

angle from the gold-standard was determined by creating ISB coordinate systems

for the pelvis, femur, tibia, and foot. Then the data for each rigid body (femur,

tibia, foot) was transform into the global coordinate system. Once all the rigid

bodies were transformed into global space, the knee angle was determined by

solving a system of linear equations. The result of solving the system of linear

equations yields direction cosines. The direction cosines were converted into

direction angles. The knee angle from the Kinect was determined by creating two

vectors one from the knee joint center to the hip joint center, and the second from

the knee joint center to the ankle joint center. The angle between the two vectors

is the relative knee angle. The joint centers at the hip, knee, and ankle were

determined by applying the body tracking SDK to the depth data for the trial.

Another method for determining kinematic quantities is to use a

musculoskeletal modeling software. OpenSim was used in this study to

determine kinematic measures and provide the initial inputs into the larger

musculoskeletal modeling workflow that can be expanded upon in the future.

The process for calculating joint angles in OpenSim started with creating a model

with representative markers based on the experimental setup (Figure 3.17). Two

models were created one with the corresponding Vicon markers and one with the

lower extremity Kinect key points from Figure 3.16. A static trial of a subject

standing in a T-pose was used to scale both models to the size of the subject. Once
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the bones were scaled mass scaling was applied for better kinetic results.

Additionally, for the Vicon model, the rigid bodies were moved to match the

correct location of the subject after the bones were scaled based on markers placed

on boney landmarks. Since the rigid bodies were not placed on boney landmarks,

there was variation between subjects and the model which was corrected to

improve accuracy of tracking kinematics in dynamic trials. Once there was an

appropriately scaled model for the subject, the inverse kinematic tool was used in

OpenSim to determine joint angles. The inverse kinematics tool required input of

a model, a file of the weighting for each marker, and the file with the marker

positions throughout time. OpenSim uses a least squared minimization to solve

to for correct pose at each time step and determine the corresponding joint angles.
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Figure 3.17: Musculoskeletal model with Kinect markers (left) and Vicon markers
(right).
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3.5.3 Subject Surface Geometry

The depth data from three Kinect Azure cameras is used to generate a

3-dimensional surface model. The transformation determined from calibration is

used to transform all four Kinect Azure depth data points into a global reference

frame. The body is isolated from the depth data using a bonding box around the

joint locations from the Kinect that the subject is walking towards. Once the body

is isolated, filtering is applied to the point cloud before a mesh is generated from

the point cloud. A mesh is generated at each time point where depth data exists

for all Kinects in the capture and is animated through time. The point clouds are

used to calculate the circumference of body segments. These measures allow for a

more complete understanding of a person’s body habitus.

Currently BMI is used as a metric for determining the health of a person

by calculating a ratio of a person’s height and weight. However, this a course

metric that can be misleading when describing a patient, and a more detailed

method for understanding a person’s true body shape is needed. With the 3D

surface model circumference measurements can be made at any location and the

full 3D representation is used to better identify their shape. This study looked at

circumference measurements made on the shank about 6 in below the knee, on

the thigh about 8 in above the knee and at the pelvis or waist. Physical

measurements were taken of the subject using a flexible tape measure and

compared to those taken from the 3D surface mesh. The circumference was

calculated in the 3D mesh by isolating a small section of points at the desired

location as shown in Figure 3.18 with the red points isolated from the rest of the

point cloud for the thigh measurement. The pelvis circumference was calculated
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by determining the maximum and minimum value in the isolated point cloud in

the coronal plane to determine the diameter in this direction and then the

maximum and minimum value of the isolated point cloud in the sagittal plane to

determine the diameter in this direction. The pelvis was considered to be an oval

and equation 3.2 was used to calculate the circumference of the pelvis. The thigh

and shank circumference were calculated in a similar way, but used the isolated

point cloud of the thigh and shank to determine the diameter in the coronal and

sagittal directions to be used to equations 3.3 and 3.4 respectively.

Figure 3.18: Points isolated in 3D surface point cloud for calculation of thigh
circumference
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3.5.4 Point Cloud Driven Kinematic Model

A generic model of a thigh and shank were created in MatLab as tapered

cylinders (Figure 3.19). Anthropometric data of a subject was collected to generate

a more accurate model. The circumference of a subject’s ankle, knee, and upper

thigh along with the length of thigh and shank were used to create an equation

of the line for the taper of the cylinder. The cylinder consisted of circles a 0.5 mm

increments from each other to create a point cloud of the thigh and shank. In

the model the shank was rotated about the x-axis (axis of knee flexion/extension

angle) to create a knee angle. Once the shank point cloud was rotated a single

point cloud was created of the thigh and shank by merging them together. The

centroid of the subject specific and model point cloud was determined in order to
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translate the model point cloud to the location of the subject specific point cloud.

This allowed for both point clouds to be in a similar location before ICP and rigid

CPD was perform. An iterative process was used to change the angle of the model

until it aligned with the target pose from the Kinect.

Figure 3.19: Initial alignment of the shank (magenta) and thigh (green)

Four Kinect cameras were used to create a 3D point cloud of the subject.

A custom program was used to create an isolated point cloud of the subject from

the Kinect depth data. From this subject specific point cloud, the right leg was

segmented. Both the model point cloud and the subject specific point cloud were

down sampled in a random fashion to have specified percentage of the original

number of points. An ICP algorithm was used to register the model point cloud

to the subject specific point cloud. The RMSE from the final iteration of ICP was

used to change the knee angle to better align the model pose to the target pose.

The method for changing the angle compared the previous RMSE to the current

RMSE and if the error increased the last step would be subtracted from the angle

and a step in the opposite direction would be taken but if the error was smaller

the step would continue in the current direction. A rigid CPD algorithm was also

used to register the model point cloud to the subject specific point cloud and a

similar method for changing the knee angle based on the RMSE was used. A

convergence tolerance was set to stop the iterative process once the RMS error
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from the ICP or rigid CPD was smaller than the tolerance. Once the target pose

was reached with rigid CPD a deformable CPD was run on the final model point

cloud from the rigid CPD and the subject specific point cloud.

The percentage of down sampling applied to the two point clouds was

varied from 20% to 60% by 10% increments when running rigid CPD. The impact

on rigid CPD to the number of points in each cloud was determine by comparing

the final RMSE and the number of iterations required to reach the desired

tolerance.
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Chapter 4

Results

The results presented here will answer the following study objectives:

• Initial validation of spatio-temporal and kinematic measures for new

Kinect Azure camera

• Use of 3D surface mesh of a person to better understand body habitus

4.1 Initial System Validation

The results from the initial validation study with a single Kinect and the

active maker-based gold-standard found the average difference in maximum

knee angle between the two systems for all subjects to be 3.8�, with an

experimental error of 6.1% between the Optotrak and Kinect systems. The

minimum difference was 2.6�and the maximum difference was 6.0�. The knee

angle overall during gait was similar in trend and magnitude between the two

systems (Figure 4.1), with an average error of 5.1�. Initial stance phase of the gait

cycle (0-20%) had the largest variation between the two systems for most subjects.

The correlation coefficient of the maximum knee angle between the two system is

r=0.85 with a p<0.05 (Figure 4.2). On average, when comparing clinical metrics

for all subjects, the percent error for walking speed, stride length, and stance time
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were 2.13%, 3.1%, and 5.1%, respectively. The correlation coefficient for walking

speed and stride length were r=0.986 and r=0.982 respectively with p<0.05.

Figure 4.3 is a representative trial of the differences in walking speed, stance

time, and stride length between the two systems.

Figure 4.1: Representative knee flexion angle as a function of gait cycle measured
using both systems showing ±2 standard deviations around the mean at each
point in the gait cycle for all subjects
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Figure 4.2: Correlation plot comparing Optotrak and Kinect max knee flexion
angle for each subject

Figure 4.3: Representative trial comparing stance time, stride length, and walking
speed between the two systems
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4.2 Larger Validation Study

When comparing the left and right knee angle between the four Kinect

Azure configuration and the Vicon the RMSE was 6.875� ± 2.8255� and

6.0868� ± 2.8438� respectfully. The average difference between the two systems

for the maximum knee flexion angle was 2.84� with a maximum difference of

5.03� and a minimum difference of 0.245�. Figure 4.4 is a representative trial of

knee angle during a single gait cycle for both the Kinect and the Vicon synced at

heel strike. Stride length and waling speed had excellent correlation between the

Vicon and the Kinect with r-values of 0.974 and 0.999 respectfully. Both stride

length and walking speed had p-values <0.001. Stance time had moderate

correlation with a r-value of 0.591 and p-value of 0.122. A representative trial of

stride length, stance time, and walking speed for the Vicon and Kinect can be seen

in Figure 4.5.

Figure 4.4: Representative subject knee angle for a gait cycle for Kinect and Vicon
data
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Figure 4.5: Representative subject stance time, stride length, and walking speed
for Kinect and Vicon data

The Kinect Azure was also able to identify an asymmetric gait pattern.

Figure 4.6 shows an asymmetric gait pattern on the left and a symmetric gait

pattern on the right.

Figure 4.6: Asymmetric gait pattern (left) and symmetric gait pattern (right) as
identified by Kinect Azure
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4.2.1 Spatio-temporal Measures Compared to Prior Literature

The newer Kinect cameras yielded similar results to previous literature

for determining spatio-temporal measures. There is excellent agreement between

the Kinect and the gold-standard for walking speed and stride length, highlighted

by the low p values (p <0.001) and high correlation coefficients (r >0.97). Clark et

al. [38] found excellent agreement for walking speed and step length. The focused

review of the validity of the Kinect by Springer et al. [25] found the studies to

show good potential for using Kinect to determine spatio-temporal measures.

The agreement between the Kinect and gold-standard can be seen in the bar plot

where stance time, stride length, and walking speed are compared between the

two systems (Figure 4.5).

4.2.2 Kinematic Measures Compared to Prior Literature

When determining kinematic measures with the newer Kinect camera, it

had an average maximum knee flexion angle of 2.84�difference between the two

systems with a correlation of r=0.785 compared to the gold-standard. The RMSE

values for the knee flexion/extension angle were lower than that of Skals et al

[5]. The Kinect Azure had an RMSE of 6.4809� ± 2.8346� and Skals et al. found

and knee angle RMSE of 11.08� ± 3.06�. The Kinect Azure both over-predicted

and under-predicted the knee angle compared to the Vicon. This is in contrast to

what Anderson et al. [31] found as the Kinect always predicted larger values than

the gold-standard. However, the joint angle pattern between the two systems is

similar to that found by Anderson et al. [31].
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4.3 3D Point Cloud & Surface Mesh

The results from the custom program are seen in Figure 4.7 and Figure

4.8. A 3D point cloud of only the body is defined at each frame. An animation of

all the point clouds or surface meshes for each frame allows for a visualization of

the subject walking. Figure 4.8 presents three frames out of many that are used to

create an animation.

Figure 4.7: Frontal (left), side (middle), and posterior (right) view of the result of
the custom program yielding a 3D point cloud from four Kinect Azure cameras
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Figure 4.8: 3D point cloud subject walking at different time points
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The results from the surface mesh generated by the custom program can

be seen in Figure 4.9.

Figure 4.9: 3D surface mesh of subject walking at different time points

The results from determining the circumference from the 3D subject

point cloud and measured circumference for the pelvis, thigh, and shank can be

seen in Table 4.1. The section of where the circumference is measured for the

pelvis, thigh and shank can be seen in Figure 4.10. The percent error in

measuring the circumference of body segments is 1.25%, 2.2%, and 24%

respectively for the pelvis, thigh, and shank. The point cloud estimation is greater

than the measured circumference for both the pelvis and the thigh segments. The

average error in the circumference estimation for the pelvis and thigh is 11.65mm.

This error is not clinically significant and the low percentage errors for the pelvis

and thigh segment lead to suggesting the circumference could be measured from

the 3D point cloud of the subject.
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Table 4.1: Difference between measured and estimated segment circumference for
pelvis, thigh and shank

CPelvis (mm) CThigh (mm) CShank (mm)
Measured 977.9 501.65 349.25

Point Cloud Estimation 999.0625 512.6619 265.2560

Figure 4.10: 3D surface mesh location of circumference measurement of pelvis
(yellow), thigh (red), and shank (green)

61



4.3.1 Kinematic Model

Using ICP alone to align the two point clouds did not yield an accurate

result, as seen in Figure 4.11. CPD was used with a rigid constraint on it in place

of ICP and produced a reasonable RMS error of 17.6 mm and a final angle of 99.8�

(Figure 4.12, right) for a point density of 40%. CPD, with the nonrigid constraint

added, morphed the cylinders to fit the Kinect lower-extremity model better

(Figure 4.12, left) and have a more anatomical appearance.

Figure 4.11: ICP’s attempt at alignment of the two point clouds. Red represents the
Kinect target model pose and green represents the cylindrical model pose.

Figure 4.12: Final CPD result with both rigid and nonrigid CPD implemented (left).
Final iteration of CPD rigid only (right). The red represents the Kinect target model
pose and the blue represents the cylindrical model pose.
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Reducing the point cloud density of both the model and subject specific

meshes generally increase the error of rigid CPD and required more iterations to

converge on the knee angle that best represented the subject specific point cloud.

The results for five different point cloud density can be seen in Table 4.2.

Table 4.2: Effect of point cloud density on CPD results

Point Density Knee Angle (deg) RMSE (mm) # Iterations
20% 111.25 17.3 30
30% 105.52 17.79 30
40% 99.79 17.6 30
50% 111.25 17.14 12
60% 116.98 17.12 11

To increase accuracy of the alignment, it was found that the final position

of the cylinders was dependent upon the initial placement of the cylinders relative

to the Kinect thigh and shank model.
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Chapter 5

Discussion

The current gold-standard for collecting human movement has many

limitations that reduce the number of people who can benefit from understanding

how they are moving and identifying any deficits. There is a need for a

marker-less motion capture system that addresses the current limitations and

expanding the availability of a gait analysis. The new Kinect Azure from

Microsoft can be used to create a marker-less motion capture system. The Kinect

Azure is cost effective, requires no markers, and can be set up in any

environment. Currently, there are no other systems using the newest version of

the Kinect to capture human movement as designed in this study. There is little

development which has occurred for any application with the Kinect Azure

cameras.

The new Kinect Azure cameras were validated in two separate studies

for spatio-temporal and kinematic measures. An initial study with 10 subjects

was performed with a single Kinect Azure. The results showed excellent

agreement for spatio-temporal measures between the two system as seen with the

high correlation values and could be used in a clinical setting. The kinematic

results showed promise but a larger study was needed to be conducted before it

could be used in a clinical setting. Due to the promising results of a single Kinect
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Azure camera a four Kinect Azure camera configuration was created. The results

from the four Kinect Azure camera system also showed excellent agreement

between the two systems for measuring spatio-temporal measures. The RMSE

from the knee angle determined between the two system is lower than previous

literature reports for the older versions of the Kinect. This suggests that the recent

improvements made to the Kinect Azure depth camera can accurately estimate

joint locations and spatio-temporal measures showing a promising alternative to

laboratory-based motion capture for use in a clinical setting without markers or

wearable sensors. Additionally, the Kinect configuration and software developed

can determine clinically-relevant movement metrics, and use of this system in a

clinical setting will aid in patient diagnostics, treatment, and monitoring of

disease or rehabilitation progress.

The system developed used three Kinect Azure cameras to generate 3D

subject data throughout time. A calibration process was designed to create a

global coordinate system for all Kinect Azure cameras. Once the cameras were

calibrated together, human movement could be collected and processed through a

custom program to output transformed point clouds at each frame, surface

meshes at each frame, and a file with joint locations using Microsoft’s SDK for

predicting body tracking. These files can then be post processed further to obtain

relevant information about spatio-temporal measures, kinematic measures, body

habitus information, or be animated through time to allow for dynamic modeling

of the mesh. This is a simple device setup that will aid with the visualization of a

subject’s gait, while still being able to gain exact gait metrics. The 3D point cloud

allows for calculations of body segments to help better inform a subject of their

health than BMI. Calculating the circumference of segments like the waist, thigh,
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and shank give more insight on health than BMI because extra mass in these areas

would be better understood with a circumference calculation than with BMI.

Additionally, the full 3D surface provides additional dimensionality that can be

leverage to measure shape. Being able to extract this information from a static

trial of a gait analysis will be beneficial for patient treatment. There are few

systems available to achieve this end result of gait metrics, visualization of patient

walking as well as health metrics around body habitus and shape modeling.

5.1 Limitations

There are several limitations for this study and the cameras used to

collect human movement. This section will address the current limitations of the

method of determining joint locations, lack of GRF data, using multiple TOF

cameras together, and need for testing in a clinical setting.

The depth camera improvements made in the Kinect Azure camera

improve the quality of the depth data generated with a capture however the body

tracking still has difficulties correctly identifying the ankle and foot joint in

certain situations. As mentioned before, the body tracking has difficulties with

the ankle and foot joint locations when the foot is in contact with the floor. The

poor tracking of the feet leads to errors in calculating kinematics at the ankle and

knee along with errors in identify gait events. There is a need for a more accurate

method for determining joint locations or joint angles from the depth data. A

proposed method by Skals et al. [5] is to explore direct tracking of the depth data.

Skals et al. [5] suggests direct tracking of the depth data by a musculoskeletal

model but there could also be direct tracking using a target pose point cloud with

an iterative method to align the two sets of point clouds together with the angle
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between segments known in the target model as presented in this study.

However, there is a more robust model needed in order to be able to track all

lower body joint angles and not only the knee angle. In addition to the body

tracking having troubles with the ankle and foot joint, there is still the problem of

identifying joints when they are occluded by another part of the body. A method

for determining joints where occlusions are not an issue is needed for a more

robust monitoring system. Using the complete 3D surface data to determine joint

angles could address the issue of occlusion for determining kinematic quantities

but there would still need to be a better method for determining exact joint

locations. As joint locations are important for determining spatio-temporal

measures and detecting gait events.

Another limitation of this study is that it did not consider a method for

predicting GRF data. GRF data is valuable for identifying discrepancies between

limbs during walking and is needed to fully take the gait lab into the field and

transition from a laboratory setting to a clinical setting. The current system

performs the kinematic portion of a traditional gait analysis, adding the GRF

prediction would complete the system. The discrepancies or deficits identified

can be used for disease diagnosis and tracking. In order to have a complete

system that can be used in a clinical setting, a method for determining GRF data

without force plates is necessary. There are a few studies with methods already

proposed for predicting GRF data without force plates, but none of them have

been driven by the kinematic data from the Kinect Azure. There is a need for a

study to explore the best method for determining GRF data when using Kinect
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Azure to collect kinematics. However, the scope of a study to predict GRF from

kinematic data is large and outside the objectives of this study due to the large

amount of data needed.

Along with not considering a method for prediction of GRF data another

limitation to the system is having multiple TOF cameras running simultaneously

that can causes there to be interference in the depth data. The interference can

lead to missing depth data or noisy depth data. There are methods to recover the

lost depth data from having one of the TOF cameras interfering with the signal for

another camera. This study does not account for this interference and therefore

some of the quality of the depth data is reduced. In order to improve the accuracy

of the depth data at every frame, a method for recovering the depth data when

interference occurs is needed.

A final limitation of the study is the data collected was done so in a lab and

not in a clinical setting. The four Kinect Azure camera system used in this study is

also more than what most clinics would use. A two camera system would be better

suited for a clinical setting. Therefore, it would be beneficial to setup a two camera

system and determine the easiest method for calibrating the two cameras into a

global reference frame. Additionally, to eliminate the need for trained personnel

to run the system in a clinical setting the would need to be a user-friendly GUI

to collect and process the data. This study created an initial system that would

generate all the potential data required to better understand human movement

but not all the features would be necessary in every clinical setting. Testing of the

system in a clinic is needed to make sure the same results for human movement

are found as in the lab.
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5.2 Future Work

Future work would include further developing the program created in

order to eliminate the need of multiple different programs, update the whole filling

algorithm used to generate surface meshes, and simplify the calibration process.

The program created for this study to process the output files from the

Kinect Azure could be improved to generate a more complete program. Currently

there are three separate programs needed to collect and process the data. One

program collects the data, another program processes the output from the Kinect

Azure into a usable format, and the final program calculates spatio-temporal

parameters, kinematic parameters, and information about body habitus. In the

future a single program that completed all of the steps would be needed for a

clinical setting. The current program would need to be updated to be able to

collect the data and then process the data into a usable form and the calculations

currently done in MatLab to generate information about gait metrics would need

to be added to create a complete program. This would allow for a report to be

generated by running a single program and not requiring the use of other

programs like MatLab.

Additionally, to generate more realistic surface meshes, a better hole

filling algorithm would be needed. Currently there are holes in the mesh which

are not filled because finding an algorithm to fill only anatomically holes in

challenging. It is difficult for an algorithm to knows if the hole actually exist on

the body or if it is a ”fake” hole like between the side of the body and an arm.
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Due to some holes still being present in the current version of the custom

program, the body is not completely realistic. When the surface mesh is

animated, the holes are visible.

Finally, the calibration process for all the Kinect cameras into a global

space could be improved to reduce the amount of manual steps required to

generate a transformation matrix for each of the subordinate cameras. It would be

beneficial if an automated process was developed for calibrating the Kinect Azure

cameras. This would increase the efficient of the system and has the potential to

allow for the Kinect Azure cameras to be calibrated in a clinic without the need

for a trained personnel.

In conclusion, this study developed a marker-less motion capture system

that could be used in a clinical setting. The Kinect Azure cameras are inexpensive,

have a minimal collection time and allow for movement to be captured anywhere

like in an exam room or hallway. The system developed uses four Kinect Azure

cameras to create a 3D model of a subject walking or performing activities of

daily living throughout time. A validation showed the Kinect Azure can

accurately estimate gait metrics showing promise for a fixed-installation in a

clinical setting without the need for markers or wearables. Additionally, the

access to patient surface geometry will enable body habitus data to be included as

a more comprehensive metric beyond the current use of BMI.
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Appendix A

Kinect Users Guide

The following is a user guide to assist in the setup and data collection of

the Kinect Azure camera(s)

A.1 Hardware requirements

• Kinect Azure Camera(s)

• Power cable(s)

• USB-C data cable(s)

• 3.5mm audio cable(s) (if syncing multiple devices)

• Tripod(s)

• Laptop(s)

A.2 Setting Up Multiple Kinects

1. Connect the Kinect cameras to the tripods and set the height of the tripod to

BLANK

2. Plug the power cable into the Kinect

3. Plug the USB-C data cable into the Kinect

4. Set the tripods with Kinects in the desired spot in the collection space
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5. Decide which camera is going to be the master camera. See Figure A.1 for

how the cameras were setup for this study. Plug one of the audio cables into

the sync out port of the master Kinect. Plug the other end of the audio cable

into the sync in port of the subordinate 1 Kinect.

Figure A.1: Bird-eye view of the Kinect Setup for the validation study.

6. Plug another audio cable into the sync out port of subordinate 1 Kinect and

plug the other end of the audio cable into the sync in port of subordinate 2

Kinect.

7. Plug another audio cable into the sync out port of subordinate 2 Kinect and

plug the other end of the audio cable into the sync in port of subordinate 3

Kinect.

8. Plug the USB-C cable from the master Kinect and subordinate 1 Kinect into

one laptop

9. Plug the USB-C cable from subordinate 2 Kinect and subordinate 3 Kinect

into the other laptop
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A.3 Calibrating Kinects

1. Place the 3 calibration object throughout the capture volume making sure

they are at different height and spread through the entire volume for best

calibration results as in Figure A.2

Figure A.2: Bird-eye view of the Kinect Setup for the validation study.

2. Open the k4aviewer.exe for all Kinect cameras and select

WFOV UNBINNED depth and start the camera.

3. Ensure all corners of the calibration objects are visible in the depth view

(Figure). Those are the 12 points which will be used to calibrate all

subordinate cameras to the master or global reference frame. If all corners

are not visible adjust the angle of the calibration object until they are.

4. Close all the k4a viewers (If a viewer is still open and the Kinect is running
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on it then you wont be able to start it from the command window for data

collection)

5. Open the remote desktop to be able to control both laptops from one laptop.

Any program can be used this study used ”Remote Desktop Connection”

and the following steps layout the process for using ”Remote Desktop

Connection”

(a) For remote desktop you will need the IP address of the other laptop the

following steps describe how to obtain the IP address

(b) Open a command window and type ipconfig then enter

(c) The IPV4 address is the one you will need

(d) Type the IP address into the computer section of the remote desktop

connection window and type PAULRX15\Abby into the username

(e) Then a window will pop up asking for the password of the computer

you are trying to remote into

6. Open a command windows on each laptop

7. Use the command cd PATH to navigate to the folder on the laptop with the

k4arecorder.exe (i.e. cd C:\Users\Abby.Eustace\Desktop\Kinect

Azure\Azure Kinect SDK v1.3.0\tools) Figure A.3

Figure A.3: Example of the command to change the working directory of the
command window
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8. Now the working directory for the command window is the desired folder

9. The k4arecorder executable will be used to collect data from the Kinect

cameras. The following is a list of options for the k4arecorder.exe

• -h, –help Prints list of commands

• –list List the currently connected K4A devices

• –device Specify the device index to use (default: 0)

• -l Limit the recording to N seconds (default: infinite)

• -c Set the color sensor mode (default: 1080p), available

options: 3072p, 2160p, 1536p, 1440p, 1080p, 720p, 720p NV12,

720p YUY2, OFF

• -d Set the depth sensor mode (default: NFOV UNBINNED),

available options: NFOV 2X2BINNED, NFOV UNBINNED,

WFOV 2X2BINNED, WFOV UNBINNED, PASSIVE IR, OFF

• –depth-delay Set the time off-set between color and depth

frames in microseconds (default: 0) A negative value means depth

frames will arrive before color frames. The delay must be less than 1

frame period

• -r Set the camera frame in Frames per Second. Default is the

maximum rate supported by the camera mode. Available options: 30,

15, 5

• –imu Set the IMU recording mode (ON, OFF, default: ON)

• –external-sync Set the external sync mode (Master,

Subordinate, Standalone default: Standalone)
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• –sync-delay Set the external sync delay off the master camera

in microseconds (default: 0) This setting is only valid if the camera is in

Subordinate mode

• -e Set the manual exposure value (-11 to 1) for the RGB

camera (default: 0)

10. The following set of commands are used to trigger two Kinect from a single

command window using bash scripting for calibration

(a) bash RunCameraCal.sh Filename

Figure A.4: Example of the command line argument to run 2 Kinects with bash
scripting for calibration

(b) The command arguments are the same for both laptops.

(c) Make sure to fire the bash command on the laptop with sub2 and sub3

before firing the bash command on the master Kinect. The master Kinect

needs to be fired last to ensure a sync signal is sent to the subordinate

Kinects

If you want to run the Kinects for individual command windows follow

the following steps

11. Open a command window per Kinect plugged into a laptop. (i.e. if 2 Kinects

plugged into a single laptop open 2 command windows)

12. The following set of commands were used to trigger of the devices from the

command window
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(a) Master:k4arecorder.exe –device 0 –external-sync Master

-d WFOV UNBINNED -l 5 Filename.mkv

Figure A.5: Example of the command used to trigger a master Kinect camera

(b) Subordinate:k4arecorder.exe –device 0 –external-sync Subordinate

-d WFOV UNBINNED -l 5 Filename.mkv

Figure A.6: Example of the command used to trigger a subordinate Kinect camera

(c) The device number for each Kinect will depend on which USB port the

device is plugged into. Trigger each Kinect through the command

window to ensure the correct device is running.

(d) Trigger the subordinate cameras in the command window and the

master camera last

(e) If a length of capture is not set in the command window arguments then

use Ctrl-C to end each capture

(f) All the .mkv files will be saved to the working directory folder of the

command window unless a specific folder path is defined

A.4 Running the Kinects for Collection of Human Movement

1. Once the subject is ready for data to be collected start with collecting a static

Tpose.
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2. The bash scripting command for collecting subject trials is the following

(a) bash RunCameraCal.sh Filename

Figure A.7: Example of the command line argument to run 2 Kinects with bash
scripting

(b) The command arguments are the same for both laptops.

(c) Make sure to fire the bash command on the laptop with sub2 and sub3

before firing the bash command on the master Kinect. The master Kinect

needs to be fired last to ensure a sync signal is sent to the subordinate

Kinects

If you are running the collection in separate command windows per Kinect

use the following

3. Command window arguments are the same for as they were for calibration

unless a different depth mode is desired then update the depth mode

argument. Make sure to also change the filename or the calibration file will

be over-written. (i.e. T01 Sub#.mkv or T01 Master.mkv)

4. Depending on the activity the length of the collection time may also need to

be changed. 5 seconds is usually long enough for walking

5. After each trial make sure to update the filename
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Appendix B

Kinect Processing Guide

B.1 Introduction

The Kinect Azure Processor is a software designed to process depth data

from multiple Kinect Azures and output joint data, point clouds, and meshes. It

takes in a set of Kinect captures with depth data, along with a configuration file for

each camera setup. This guide will not cover how to record captures. Instructions

for recording captures with the Kinect Azure can be found here:

https://docs.microsoft.com/en-us/azure/Kinect-dk/record- external-

synchronized-units

B.2 Basics

The source code can be found at

https://github.com/jeremykeller001/Kinect-Azure-Processing

This repository may be marked as private and inaccessible to normal users. For

access issues, please contact Jeremy at jeremykeller001@gmail.com The code must

be built in Visual Studios (2019 version recommended).

System requirements:

• Nvidia CUDA Toolkit 10.2

• Point Cloud Library 1.10.1 (with 3rd party libraries)
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• Azure Kinect Sensor SDK 1.3.0

• Azure Kinect Body Tracking SDK 1.0.1

• CMake 3.15

The Kinect Azure Processor program is run through calling the executable

via the command line. It takes in a series of arguments to determine its behavior.

The full feature set and usage guide will be covered at the end. A usage guide can

also be printed to the console by specifying the –h argument. Once built, it can be

started in the command line from:

“code directory64-Debug.exe”

Output .mkv files for each set of captures must be placed within a folder

designated for that specific group. This program will automatically process all the

mkv files in the folder path it is given, so do not place multiple sets of captures

within the same folder for processing.

Theoretically, any number of cameras are supported, but this program has

only been tested with up to a 4-camera setup. Captures may be in different depth

modes, but must be run at the same frames per second. There is a configuration

file read in that can be configured to align captures using different resolutions and

fields of view. Calibration should be performed once per camera alignment. If any

camera is bumped or moved, the captures should be recalibrated.

B.3 Calibration

For multiple Kinect captures to be processed, they must be calibrated to

the same coordinate system. This is done by applying a 4x4 transformation matrix
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to each capture. The exact method of determining the transformation matrices is

up to the user, but in this guide we will cover a manual point pair alignment based

calibration method.

The software program, CloudCompare, will be used to aid in this

calibration process.

Note: This guide will be performed using an example 4 camera setup. The

naming convention for the captures is Master, Sub1, Sub2, and Sub3. All captures

will be aligned to the master coordinate system.

B.3.1 Capture

Prep the calibration object by placing the calibration object at random

spots throughout the capture space, such that all cameras will have a clear view of

all of them. The goal of this is to generate key points with x, y, and z coordinate

variance. It is recommended to keep calibration objects at least 6” away from each

other so there is a distinct corners when viewing the depth data.

(Sample calibration layout with a single box with markers on it)

Assign a number to each corner. This number will remain the same,

irrespective of different camera perspectives. It is recommended to draw this out

on a piece of paper for reference later.

(Sample marker number assignment based on the calibration image

above)

Obtain a 5 second capture at the desired field of view from each camera,
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running in synchronous mode. It is recommended to use the highest resolution

available so that the markers are captured with as much detail as possible. The

commands for collecting the calibration data can be found in the Kinect User Guide

Appendix A.

Process the captures by running the Kinect Azure Processor in initial

calibration mode. The initial calibration behavior can be triggered by running the

code in calibration mode without a transform file. This can be specified by using

the -c argument.

Usage example:

./KinectAzureProcessor.exe “\\path\\to\\mkv\\capture\\ f older” � c

This will output the 15th group frame processed by default. The first 30

sets of frames from each capture will be used to aid the internal group calibration

process, so they will be skipped over automatically. This corresponds to about 1.5

seconds in for a 30fps capture, or 3 seconds in for a 15fps capture.

If the 15th frame is a bad capture, or maybe not the specific spot in the

capture you want, you may manually select a frame by adding the option to the

command line using the -f argument followed by a frame number. Example to

request frame 20 instead of 15:

-f 20

The output files for this calibration process will be generated in the same

folder as the original .mkv files. They will be raw point cloud dumps from each

individual .mkv file from a single group frame. The file naming convention is:

Unfiltered IndividualPc GroupNumber OriginalFileName.pcd
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B.3.2 Alignment Using CloudCompare

Open up CloudCompare and load all of the generated point clouds from

the captures. There should be one per Kinect camera.

Once all the files are loaded, uncheck all boxes that do not correspond

to the Master and Sub1 clouds. Select both the Master and Sub1 files (the cloud

files, not the enclosing folders). Holding Control + Left Mouse Click allows you to

select multiple files. Once the files are selected, click on the Point Pair Alignment

function in the upper toolbar.

A popup will appear, asking you to designate an alignment cloud. Master

will be the reference, and Sub1 will be the to-align cloud. If only an Align option

is displayed, designate this as the Sub1 capture.

Begin the Point Pair Alignment process by showing the master cloud.

Refer to the drawing you made earlier, with the numbers for each point at
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different perspectives. In order of point number, estimate the top of the marker by

selecting it with a mouse click. If a prompt is displayed about estimation, hit yes.

Keep in mind the distortion of the reflective marker. The top of the marker should

be above and behind this reflective distortion. See imagery below for sample

estimations.

Continue this process for all master points. Copy them to a text file, as

you will need to refer to them later.

Now onto the to-align cloud. Hide the ‘reference’ cloud and show the

‘to-align’ cloud. Estimate the tops of the markers for this capture now. Refer to

the drawing you made earlier, with the numbers of each point at different

perspectives. If you make a mistake, you may delete the point, but ensure you do

not delete the corresponding alignment point as well, or you will have to reselect

points from the ‘reference’ cloud.

Once all points from the two captures are selected, note the ‘Achievable

RMS’ number at the top of the screen. This is the estimated accuracy of the

calibration between the two point clouds. It should be as low as possible, with an

ideal value of < 25.0. You may need to re-attempt this process if this number is

too high.
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Align the points by clicking the checkmark at the bottom. This will

produce a 4x4 transformation matrix in the bottom console, which you can copy

to your clipboard. Keep note of this matrix. This will be the transformation

matrix for converting Sub1 points to the master coordinate system.

Now that you have the 4x4 transformation matrix, select the Sub1 cloud

from the sidebar again. Navigate to [Edit (At the very top of the window bar)

! Apply Transformation], then input the 4x4 matrix that was just calculated and

click ‘OK’. Manually verify the alignment. If if looks off, reload the Sub1 file and

reattempt the point pair alignment process.

This process will need to be completed for all other, non-master captures,

(Sub2 ! Master, Sub3 ! Master, etc.) When performing future point pair

alignments, do not reselect the Master coordinates. Instead, manually enter them

using the ‘Pencil’ option.
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This concludes the initial calibration process using CloudCompare.

Ensure you capture the 4x4 transformations once they are calculated, as they will

be used to create a configuration file, covered in the next section. This calibration

process must be performed for every camera configuration. If a camera is moved,

or even slightly bumped, this process must be performed again. The accuracy of

the calibration will be determined by the point selection precision. It is

recommended to use the RMS calculation displayed for each alignment as a

reference metric for improving your calibration technique.

B.4 Construct a Configuration File

Once the initial calibration is performed, and 4x4 transformation matrices

are obtained for each Kinect capture, a configuration file will need to be created to

relay this information to the program. This is done by creating a new text file and

specifying the transformations to be applied to each capture, as denoted by its file

suffix.

The format is as follows:
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File Suffix.mkv

X X X X

X X X X

X X X X

X X X X

The triple pount/hashtag lets the program know that a transformation

matrix follows. The file suffix with a .mkv extension is used to identify files from

multiple different captures. This allows for captures to receive different file name

identifiers, as long as they contain a common suffix for each calibration setup.

There are a few other options which can be specified in the configuration

file.

Body tracking can be specified in the configuration file. This will enable

captures to be isolated in space by using the Kinect body tracking joint locations

to filter all points out except for the capture subject’s body. A body tracking file

suffix can be specified with a triple forward slash //// followed by a new line

with the file suffix with the .mkv extension. This must match the identifier for the

4x4 transformation if it exists. Example:

///

Body Tracking File Suffix.mkv

Capture space bounds can be specified as well. This will determine what

parts of the capture space are deemed to be valid outputs. If a body tracking file is

specified (see above paragraphs for details), any frame with joint locations
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outside of the defined capture space will not be processed nor output. If body

tracking is not specified, only points within this capture space will be output for

each frame. The capture space bounds can be configured with a triple dash ���

followed by a new line for each coordinate axis which will be bound, along with

the minimum and maximum allowed values for that axis, space separated.

Example:

���

X –9999 9999

Y –9999 9999

Z –9999 9999

Example Transformation File

Master.mkv

1.000000000000 0.000000000000 0.000000000000 0.000000000000

0.000000000000 1.000000000000 0.000000000000 0.000000000000

0.000000000000 0.000000000000 1.000000000000 0.000000000000

0.000000000000 0.000000000000 0.000000000000 1.000000000000

Sub1.mkv

0.024707291275 0.124999701977 -0.991849064827 1669.198242187500

-0.091880299151 0.988236606121 0.122255660594 -82.158508300781

0.995463490486 0.088110782206 0.035901658237 1609.352416992188

0.000000000000 0.000000000000 0.000000000000 1.000000000000

Sub2.mkv

-0.999605357647 -0.027915893123 0.003138161264 520.377258300781
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-0.026642732322 0.977525353432 0.209127455950 -257.568237304688

-0.008905611932 0.208961308002 -0.977883338928 3434.870361328125

0.000000000000 0.000000000000 0.000000000000 1.000000000000

Sub3.mkv

-0.023229138926 -0.125729322433 0.991792619228 -1513.514526367188

0.065307550132 0.989750444889 0.127000033855 -151.239349365234

-0.997594773769 0.067721642554 -0.014779977500 1821.580322265625

0.000000000000 0.000000000000 0.000000000000 1.000000000000

///

Sub2.mkv

���

X -9999 9999

Y -9999 9999

Z -9999 9999

B.5 Secondary Calibration (Optional)

A secondary calibration process using an iterative closest point (ICP)

algorithm can be performed to smooth out user error from the initial calibration

process and ensure a more accurately aligned model. If your initial calibration is

very accurate, this procedure may be skipped.

This procedure will be performed using CloudCompare.

Note: This method has only been tested using a 4 camera setup with 90

degree camera offsets. For other camera setups that do not have a front and back
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capture, it may have to re-adapated, or may not function correctly at all.

Start by obtaining a capture with a human subject in the center of the

capture space in a static pose, arms slightly out to the side.

The secondary calibration pipeline can be triggering by running the

Kinect Azure Processor in calibration mode with a configuration file specified.

This can be done using the –c (calibration) and –t (configuration file specification)

arguments. Example:

./KinectAzureProcessor.exe “\\path\\to\\mkv\\capture\\ f older”

� c–t\path\\to\\con f ig\\ f ile.txt”

The output files for this will be created in the same folder as the original

.mkv files. They will be filtered and transformed point clouds from the .mkv files

for a single group frame (frame 15 if the –f argument is not specified). The file

naming convention will be:

IndividualPc GroupNumber OriginalFileName.pcd

CloudCompare will be used for the rest of the calibration process.

Start up CloudCompare and open up the newly output file

(IndividualPc 15 xxx.pcd). Merge the front and back of the subject (Master and

Sub2 in this example).

A window may popup asking about preserving the original cloud index.

Whichever option you select will not matter, as we will not be preserving this

merged cloud.

If the captures contain a layer of points on the floor, it would be best to
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filter these out. Uncheck the list of captures on the left so only a single is showing

at a time. To filter out the floor, select and display a single capture, then use the

Edit ! Segment option. Select the surrounding floor areas and segment them out.

Hit the green checkbox in the top right once you are finished.

(Removing the floor from the capture)
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Once the point cloud is segmented, it will show two inner options in the

file picker tree, .remaining and .segmented. Click on the .remaining cloud and

delete it, since it contains the floor points we just removed. Continue this process

for each capture.

Next up is applying an ICP algorithm to the sides of the captures so that

they more accurately align with the front and back of the body. Select the merged

front/back capture as well as one of the sides, then hit the ICP logo in the top bar.

Ensure the reference cloud is the merged front/back capture, then go into

the Research tab and increase the random sampling limit to 500,000 and Enable

farthest point removal.
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This will then generate a secondary transform with a calculated RMS. The

RMS during the ICP should be relatively low (<10). A popup of the transform will

appear. You can disregard and close this. A copy of the transformation will appear

in the console which can be copied and pasted.

Continue this process with the other side capture, performing the ICP to

merge it with the front/back capture then copying its transform output.

If extra accuracy is desired, an additional ICP may be applied to the

front/

back capture that is not the master capture. This can be done by reloading both

the front and back captures (and segmenting their floors again if they are
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present), merging all but the non-master front/back capture, then applying an

ICP algorithm with the same parameters as before (extra point sampling, enable

farthest points removal) to align it to the merged capture.

Once this secondary calibration process is finished, you must update the

transformation file so that it takes into account this secondary transform. To

combine this updated transformation with the original, multiply the two matrices

in this order: Updated * Original.

Once this is complete, the calibration process is complete and real capture

processing can be started.
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B.6 Step 4: Depth Data Processing

Supported Features:

The full functionality of the Kinect Azure Processor will transform, merge, filter,

and mesh the depth data of the captures, as well as track and output joint positions

if a body tracking file is specified. Output files will be placed in the same folder as

the original mkv files. The output types are .pcd for point cloud outputs and .obj

for mesh outputs.

For the full processing pipeline, the only arguments required are the

folder of the .mkv files and the configuration file. Example:

./KinectAzureProcessor.exe “\\path\\to\\mkv\\capture\\ f older”

� t\path\\to\\con f ig\\ f ile.txt”

Usage Guide (Command Line Arguments):

For latest usage guide, run

./KinectAzureProcessor.exe

or

./KinectAzureProcessor.exe –help
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