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the differences within unobserved subgroups are likely to be neglected. The Rasch mixture model (RMM), 
a combination of the Rasch model and mixture model, is an alternative for extracting the latent class (LC) 
from summarizing similar identities of underlying latent traits. DIF can be calculated among LCs based on 
the differences among mean item difficulties for each LC. 

The purpose of this study was to examine the robustness of the RMM in detecting DIF through 
manipulating five variables: number of items (i.e., test length, 2 levels), proportion of DIF (3 levels), LC 
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detecting DIF was assessed from two perspectives: latent class structure recovery and parameter 
recovery. One hundred replications per scenario were used for LC structure recovery and 200 replications 
per scenario were used for parameter recovery. 

The main and interactions effects of five manipulated factors on LC structure recovery and parameter 
recovery were examined by conducting factorial analysis of variance (ANOVA). Both AIC and BIC showed 
a conservative pattern on LC structure recovery in which the recovered LCs did not match the true 
structure perfectly or even in the majority of cases. That is, it was rare that the correct latent structure 
was recovered at 100%. For classifier recovery, all five manipulated factors showed effect sizes that were 

medium or larger except DIF type (η2 < 0.06), and there were two medium effect size interactions for 

classifier recovery, and they were number of items by group size interaction (η2 = 0.10) and LC structure 

by group size interaction (η2 = 0.13). There were three main and three interaction effects of the five 

manipulated factors on DIF recovery (η2 > 0.06) and they were effects of number of items, proportion of 
DIF items, LC structure, number of items by LC structure interaction, proportion of DIF items by LC 

structure interaction, and DIF type by LC structure interaction. Among these effects, group size (η2 = 0.45) 

had the strongest effect on classifier recovery and LC structure (η2 = 0.86) had the strongest effect on 
DIF recovery. It is recommended for practitioners to have close group sizes for latent classes, 20% to 40% 
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observed response patterns as the Cressie-Read statistic includes statistical tests rather than using 
likelihood ratios. A practitioner can identify DIF and its direction through calculating the item difficulty 
difference Δb between two latent classes. It can be considered as no item DIF for using the RMM method 
when Δb < 0.3, small DIF when 0.3 ≤ Δb < 0.9, medium DIF when 0.9 ≤ Δb < 1.5, and large DIF when Δb ≥ 
1.5. 

Finding more reliable model selection indices for the RMM on DIF detection, increasing the efficiency of 



simulation, and including a single latent class structure as a comparison are directions for future study. 
The number of replications used in this study is recommended for practitioners who want to conduct 
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Abstract 

Measurement invariance is crucial for an effective and valid measure of a 

construct. Invariance holds when the latent trait varies consistently across subgroups; in 

other words, the mean differences among subgroups are only due to true latent ability 

differences. Differential item functioning (DIF) occurs when measurement invariance is 

violated. There are two kinds of traditional tools for DIF detection: non-parametric 

methods and parametric methods. Mantel Haenszel (MH), SIBTEST, and standardization 

are examples of non-parametric DIF detection methods. The majority of parametric DIF 

detection methods are item response theory (IRT) based. Both non-parametric methods 

and parametric methods compare differences among subgroups categorized by observed 

covariates such as gender and grade. As a result, the differences within unobserved 

subgroups are likely to be neglected. The Rasch mixture model (RMM), a combination of 

the Rasch model and mixture model, is an alternative for extracting the latent class (LC) 

from summarizing similar identities of underlying latent traits. DIF can be calculated 

among LCs based on the differences among mean item difficulties for each LC.  

The purpose of this study was to examine the robustness of the RMM in detecting 

DIF through manipulating five variables: number of items (i.e., test length, 2 levels), 

proportion of DIF (3 levels), LC structure (2 levels), group size (2 levels) and DIF type (2 

levels), which yields 2*3*2*2*2 = 48 scenarios. A sample size of 3,000 was used for 

each replication of each scenario. The robustness of the RMM on detecting DIF was 
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assessed from two perspectives: latent class structure recovery and parameter recovery. 

One hundred replications per scenario were used for LC structure recovery and 200 

replications per scenario were used for parameter recovery.  

The main and interactions effects of five manipulated factors on LC structure 

recovery and parameter recovery were examined by conducting factorial analysis of 

variance (ANOVA).  Both AIC and BIC showed a conservative pattern on LC structure 

recovery in which the recovered LCs did not match the true structure perfectly or even in 

the majority of cases. That is, it was rare that the correct latent structure was recovered at 

100%. For classifier recovery, all five manipulated factors showed effect sizes that were 

medium or larger except DIF type (η2 < 0.06), and there were two medium effect size 

interactions for classifier recovery, and they were number of items by group size 

interaction (η2 = 0.10) and LC structure by group size interaction (η2 = 0.13). There were 

three main and three interaction effects of the five manipulated factors on DIF recovery 

(η2 > 0.06) and they were effects of number of items, proportion of DIF items, LC 

structure, number of items by LC structure interaction, proportion of DIF items by LC 

structure interaction, and DIF type by LC structure interaction. Among these effects, 

group size (η2 = 0.45) had the strongest effect on classifier recovery and LC structure (η2 

= 0.86) had the strongest effect on DIF recovery. It is recommended for practitioners to 

have close group sizes for latent classes, 20% to 40% proportion of DIF items, and a LC 

structure close to a two LC structure, to determine DIF using an RMM. Both AIC and 

BIC are not suggested as model selection methods in DIF detection using the RMM. 

Instead the Cressie-Read statistic can be an option for choosing the correct number of 



 iv 

latent classes from observed response patterns as the Cressie-Read statistic includes 

statistical tests rather than using likelihood ratios. A practitioner can identify DIF and its 

direction through calculating the item difficulty difference !" between two latent classes. 

It can be considered as no item DIF for using the RMM method when !" < 0.3, small 

DIF when 0.3 ≤ !" < 0.9, medium DIF when 0.9 ≤ !" < 1.5, and large DIF when !" ≥ 

1.5. 

Finding more reliable model selection indices for the RMM on DIF detection, 

increasing the efficiency of simulation, and including a single latent class structure as a 

comparison are directions for future study. The number of replications used in this study 

is recommended for practitioners who want to conduct simulation studies using the Rasch 

mixture model.   
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  Chapter One: Introduction and Literature Review 

Introduction 

In social science measurement, invariance or test equivalence is crucial when 

designing scales to measure constructs. Standardized tests and questionnaires support 

decision making across multiple disciplines such as education, business, and medicine. 

But, in order to be useful for making decisions regarding population subgroups, tests and 

questionnaires must consistently reflect the construct for each of those subgroups. 

Measurement invariance is gained when the latent trait underlying a scale varies 

consistently with observed scores across subgroups. If invariance holds at the item level, 

the mean differences across subgroups are due to the true difference in participants’ 

ability to endorse an item, which is usually called the theta (θ) value. In other words, 

invariance holds if the item is functioning similarly for different subgroups. If not, 

differential item functioning (DIF) occurs, which contaminates the validity and reliability 

of a test and calls assessment of group differences into question. At a more fundamental 

level, the existence of DIF jeopardizes fairness in testing. The present study examined 

identification of DIF under diverse factors using one item response theory model, the 

Rasch mixture model. 

Differential functioning at the test level is usually called differential test 

functioning (DTF). It is the combined effect of DIF on all of the items that reflect a 

certain construct. Each individual DIF item may exhibit a different direction of effect on 



2 
 

a test, which may be cancelled out and thus reach an acceptable level of DTF, but it 

makes DTF a questionable metric of measurement invariance.  

It is likely that subgroups of people who are from different cultural backgrounds 

and had different educational opportunities would obtain different mean scores on a 

performance test. However, differences such as knowledge, skills, and developed abilities 

may not be the only source of score differences. Score differences may also be due to 

artificial differences like the testing process or biased items. Maintaining measurement 

invariance is an effort to distinguish true differences on latent variables from differences 

across different subgroups caused by the testing process (Green et al., 1989). 

Measurement invariance can be regarded as the most important preliminary foundation of 

an effective measure. 

As invariance is crucial, considerable attention has been devoted to its appraisal 

under both classical test theory and item response theory. A summary of that literature 

follows. While many methods of DIF identification and statistical tests for DIF 

magnitude have been proposed, one of the more recent approaches is use of the Rasch 

mixture model. It is problematic to treat groups based on manifest variables such as 

gender and ethnicity as homogenous (Samuelsen, 2005). The Rasch mixture model is 

able to identify the distribution for each manifest group or covariate within latent classes 

(Samuelsen, 2005). Preinerstorfer and Formann (2012) examined parameter recovery of 

the Rasch mixture model for different test lengths and sample sizes when there were two 

subgroups of equal size; parameter recovery worked well in their study. Frick et al (2015) 

investigated the influence of different magnitudes of DIF and different ability 
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distributions applying the Rasch mixture model in DIF detection. However, the influence 

of different proportions of DIF items in a test and an uneven size of subgroups have not 

been explored. This study discusses the framework of the Rasch mixture model and 

elements of its usage for DIF detection. A Monte Carlo simulation was proposed to 

investigate the influence of test length, number of latent classes, the proportion of DIF 

items, and magnitude of DIF on parameter recovery in the Rasch mixture model.  

Overview of DIF Methods 

 There are two types of DIF: uniform DIF and nonuniform DIF. Uniform DIF 

means that an item is equally probable to be endorsed by one group compared to another 

group (Sternberg & Thissen, 2006). That is, the DIF is uniform for members of a group 

compared to a reference group across all levels of the trait continuum so the group has a 

consistent advantage/disadvantage on an item. Uniform DIF is independent of the 

common ability level of a group. When the DIF is associated with participants’ ability or 

tendency to endorse an item (θ), it is called nonuniform DIF. With nonuniform DIF, the 

advantage/disadvantage of a person in a group depends on where on the trait continuum 

the person’s trait score falls. At the lower end of the trait continuum, the person in the 

group may be advantaged but at the upper end of the continuum, the person may be 

disadvantaged. Although non-IRT and IRT methods have different forms of detecting 

non-uniform DIF, they ask same question: it the association between manifest groups and 

item functioning homogeneous across all test takers’ scores.  

 There are many methods and criteria for measuring, detecting, and flagging the 

magnitude of DIF. These methods either measure the magnitude of DIF or provide 
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statistical tests for group differences in DIF based on asymptotic properties of 

distributions of effect sizes or parameters. Fundamentally, DIF methods can be 

categorized into two camps: ones with an item response theory (IRT)-based approach and 

ones with a non-IRT-based approach. Non-IRT methods are usually called traditional 

methods for detecting DIF and most of them are for detecting uniform DIF. Mantel 

Haenszel (MH), SIBTEST, and standardization are similar DIF detection methods, and 

they are all based on contingency table statistics (Magis et al., 2010). Several researchers 

have modified MH (Mazor et al., 1994) and SIBTEST (Li & Stout, 1996; Finch & 

French, 2007) for detecting non-uniform DIF, which can be referred as non-uniform 

Mantel Haenszel (NU-MH) and non-uniform SIBTEST (NU-SIBTEST). The logistic 

regression method (Swaminathan & Rogers, 1990) sits between non-IRT and IRT 

methods. It models the logit of the probability of a person endorsing a certain item as the 

dependent variable from a linear combination of several independent variables such as 

group classifier, total test score, and the interaction between group classifier and total 

score. Logistic regression methods can be used to detect both uniform and non-uniform 

DIF. The following section provides an introduction to IRT as a preface to understanding 

how DIF is assessed. 

Item Response Theory 

Comprising a class of models and methods, IRT allows comprehensive analysis of 

responses at the item level of a test or construct (Steinberg & Thissen, 2006). IRT models 

assume that the probability of a correct or desired response is a mathematical function of 

person and item parameters. Often referred to as latent trait models, IRT models capture 
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hypothesized traits, attributes, and constructs which cannot be directly observed from 

inferring manifest discrete responses. Arguably the most often used is unidimensional 

IRT which assumes that observed item responses depend on a single continuous construct 

(Steinberg & Thissen, 2006). IRT requires local independence of items which means (1), 

the probability of the correct or desired option of an item is not related to the rest of items 

on the scale, and (2) responses to each item is each person’s independent decision.  

For a dichotomous item, a 3-parameter (3PL) IRT model can be written as:  

#(%!" = '!"|)! , +" , "" , ,") = ," + (1 − ,")
#!"($%&'")

$%#!"($%&'")
                    (1) 

where '!" is response of subject 1 to item 2, )! is the ability or tendency of subject 1; +", "" 

and ," are parameters for discrimination, difficulty and psudo-guessing of item 2 

respectively. A 2PL IRT model can be obtained from Equation 1 by fixing ," to 0; and by 

also fixing +" to 1 the 1PL model is obtained. The one-parameter model can be written as: 

#(%!" = '!"|)! , "") =
#($%&'")

$%#($%&'")
                                (2) 

Although the Rasch model shares same mathematical form with 1PL IRT model 

as showed in equation (2), it takes an entirely different perspective of conceptualizing the 

relationship between data and theory. Unlike IRT, which emphasizes the primacy of 

fitting a model to observed data, the Rasch model emphasizes superiority of the model; 

thus, misfitting items and persons are eliminated as nonresponsive to the task. The 

differences between an IRT and Rasch paradigm may be puzzling for new researchers 

reading literature and applying IRT in new fields (Andrich, 2004). The term “specific 

objectivity” was used by Rasch (1966; Perline et al., 1979) to describe the characteristic 
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of his model: (1) comparison of two subjects/persons is independent of which instruments 

are used to measure them, (2) comparison of two instruments is independent of the 

subjects on whom they are used. The “specific objectivity” accounts for the Rasch 

model’s most important property of invariance (Andrich, 2004).  

IRT Methods for Uniform DIF Detection 

IRT methods can be used for detecting DIF. Specifically, 1PL only has the 

capacity of detecting uniform DIF but a 2PL and 3PL can be used to detect both uniform 

and non-uniform DIF. It is assumed that if measurement invariance holds across different 

subgroups, then the parameters of IRT models (e.g., item logit position) for subgroups 

should be statistically equivalent; that is, parameters are the same within sampling error. 

Steinberg and Thissen (2006) provide guidelines for reporting DIF effect size based on 

parameter differences across subgroups for both dichotomous and polytomous IRT 

models. One can compare DIF among subgroups by directly subtracting parameters for 

selected subgroups, though they did not cite any statistical significance test of the 

parameter difference (Steinberg & Thissen, 2006). There are three major IRT-based DIF 

detection methods and they are the likelihood ratio test (LRT—Thissen et al., 1988), 

Lord’s chi-square (Lord, 1980), and Raju’s area measure (Raju, 1988).  

Instead of directly comparing the magnitude of DIF in IRT parameters, the LRT 

compares the likelihood of a compact model (in which parameters are constrained to be 

the same across different subgroups) to an augmented model (in which parameters of 

interest are free to vary for different subgroups).  The resulting statistics approximate a 

chi-square distribution with degrees of freedom equal to the difference in the number of 
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parameters estimated in the augmented model compared to that in compact model. If the 

test statistic is statistically significant, then DIF occurs among the parameters of interest 

in the augmented model. LRT is defined as: 

3& = −2ln
'()*+#,)*+,!)-)

'()*+#,!./.+01-02)
∼ 8&                               (3) 

Rather than using a fully constrained-baseline model in traditional LRT, Stark et 

al. (2006) suggest using a free-baseline model in which all parameters are free to vary 

across different subgroups. By constraining parameters of interest one at a time for an 

augmented model, the significance of 3& is tested using Bonferroni corrected critical p 

values. They conclude that a free-baseline model is more effective than a constrained-

baseline model.   

The main idea of Lord’s chi-square test (Lord, 1980) is to equate a vector of IRT 

parameters of focal groups to a vector of IRT parameters of a reference group as the null 

hypothesis. A premise of Lord’s chi-square test is that a common metric must be used to 

scale all tested item parameters (Candell & Drasgow, 1988). Lord’s chi-square method 

has the following form:  

9" = (:". − ;"/)′(∑ −". ∑ )0$"/ (:". − :1.)                                       (4) 

where :". = (+". , "". , ,".) and :"/ = (+"/ , ""/ , ,"/) are, respectively, vectors of the 2>ℎ 

item’s discrimination, difficulty, and pseudo-guessing of the reference group and the 

focal group. ∑".  and ∑"/  are the variance-covariance matrices for corresponding 

parameters. The 9" has an asymptotic chi-square distribution with degrees of freedom 

equal to the number of tested parameters in the model. For the Rasch model, Equation 3 

can be written as:  
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 9! =
(2"302"4)5
34"35 %34"45

                                                                           (5) 

where @A". and @A"/ are, respectively, standard errors for the reference and focal group’s 

2>ℎ item difficulty parameters. 

Raju’s area measure (Raju, 1988) computes the signed area between item 

characteristic curves of the focal and reference groups. If DIF does not exist, the signed 

area should be zero, which accounts for the null hypothesis of Raju’s method. Similar to 

Lord’s chi-square test, parameters of interest should be on a common metric. A crucial 

restriction for Raju’s area measure is that pseudo-guessing parameters for compared 

subgroups should be set equal (Raju, 1988). Specifically, for the Rasch model, the test 

statistic of Raju’s method is identical to the square root of that for Lord’s chi-square, 

given in equation 4:  

B =
2"302"4
534"35 %34"45

                                                                            (6) 

These three IRT-based DIF methods only have test items and a grouping variable 

which is dichotomous as independent variables. However, reality is much more 

complicated and usually DIF may occur due to different covariates which can be 

dichotomous or categorical variables such as gender and ethnicity or continuous variables 

such as age, income, or attitudinal or psychological scales such as motivation. By adding 

multiple covariates, it becomes much harder for researchers to track the proximal cause 

of DIF which can be attributed to demographic variables, attitudinal variables, or 

interactions among them (Tay et al., 2016). Specifically, for a continuous variable, 

normalization of the variable is usually required which turns a continuous variable into a 
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categorical variable—age into age group, for example (Kim, Cohen, & Park, 1995). But 

normalization of a continuous variable is likely to cause loss of information and power 

for identifying DIF. Use of additional covariates has been employed in recent literature to 

predict latent information. For example, Tay et al. (2011) proposed an IRT with 

covariates (IRT-C) model which mimics the process of a multiple-indicators multiple-

causes model (MIMIC; Muthen et al., 1991; Wood et al., 2008) that assesses DIF without 

normalization under a factor analytic framework. The Rasch mixture model (Rost & 

Davier, 1990; Frick et al., 2014) provides a more general perspective of detecting DIF 

and splits responses into latent subgroups even when grouping covariates are continuous 

or unknown. This study aims to assess the robustness of the Rasch mixture model for 

detecting DIF with respect to the impact of test length, number of latent classes, 

magnitude of DIF and proportion of DIF items. Overall model fit including Bayesian 

information criteria (BIC) and Akaike information criteria (AIC) across each scenario are 

presented and used as evidence for calculating power and false alarm rate or type I error. 

The empirical distributions of latent class classifier parameter and item difficulty 

describes their parameter recovery.  

Literature Review 

This section presents a summary of the literature of the Rasch model with 

conditional maximum likelihood estimation which is used in the simulation study of this 

dissertation. The Rasch mixture model function, use of Rasch mixture models, and use of 

Rasch mixture model in DIF detection are reviewed.  
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Rasch Model with Conditional Maximum Likelihood Estimation 

The mixed Rasch model was introduced by Rost (1990, 1995), and combines a 

latent trait approach (Rasch, 1960) and latent class approach (general mixture model) to 

quantitatively model underlying tendency and ability differences. The mixed Rasch 

model is called the Rasch mixture model in recent studies (e.g., Frick et al., 2014), which 

not only highlights its relation to the general mixture model but also avoids confusion 

with mixed effect models. Unlike the LR test, which is a global test for DIF item, Rasch 

mixture model is capable of detecting DIF at item level by assigning individual item 

difficulty parameters to different latent classes. Under a Rasch model framework, 

independence among items is assumed, the probability of observing a vector C! =

(C!$, . . . , C!6)7 of the 1>ℎ subject’s responses to all E items can be written as 

#(F! = C!|)! , ") = ∏ #6%"($%&'%)

$%#($%&'%)
6
"8$                                                          (7) 

The observed total score, which is the sum of total correct items, is well known as 

a sufficient statistic for person parameter θ (Rost, 1990). The total score is denoted as 

H! = ∑ F!"6
"8$ . Hence The probability function in equation 7 can be summarized as a 

product of two components  

#(F! = C!|)! , ") = ℎ(C!|I! , ")J(I!|)! , ")                                             (8) 

in which the first component ℎ is independent of the person ) and thus ) is conditioned 

out from likelihood function. The score distribution J should be employed beforehand if 

the full Rasch likelihood is of interest. Rost and von Davier (1995) suggest employing 

some distributions for the raw score I! with a set of auxiliary parameters @, thus the 

probability density function can be written as 
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K(C!|", @) = ℎ(C!|I! , ")J(I!|@)                                                          (9) 

where @ is the parameter for a raw score distribution. Conditional maximum likelihood 

(CML) can be used for estimating the item difficulty parameter " by maximuming only 

the conditional part of ℎ (Frick et al., 2014). Rost (1990) introduces a saturated 

specification for J which requires (E − 2) individual parameters for each possible score, 

because two extreme scores (r = m and r = 0) were excluded since they contribute 

nothing to the likelihood. Mean-variance specification, as an alternative to saturated 

specification, avoided redundancy of too many parameters, and it assigns for J with only 

two parameters for mean and variance (Rost and van Davier (1995). Frick et al (2014) 

extended their work and compared three different score specifications: saturated 

specification, mean-variance specification, and a newly proposed restricted specification; 

their primary consideration was to reduce the need for too many parameters required by a 

saturated specification. In this study, a saturated specification for score distribution is 

employed since simulated sample size is relatively large for substantial amounts of 

parameters.    

Rasch Mixture Model with Expectation-Maximization Algorithm  

Generally, a mixture model is a mixture of L components of K9(') which can be 

distributions or models but must come from the same family with same form of 

parameters that collectively make a mixture model or distribution K('): 

K(') = ∑ M9:
98$ K9(')                                                               (10) 
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where 0 < M9 < 1 and  ∑ M9:
98$ = 1 because the proportions in different classes should 

add to 1. Given person 1 belonging to class L, the likelihood function of a Rasch mixture 

model with P components are described as 

Q(M$, . . . , M9 , "$, . . . , "9 , @$, . . . , @9) = ∏ ∑ M9:
98$

;
!8$ #(F!"8<%"|L, ", @)         (11) 

An expectation-maximization (EM) algorithm is used to estimate parameters in 

mixture models. Without variables in the data indicating the latent classes to which 

subjects belong to; it is unlikely to apply maximum likelihood estimation (MLE) directly. 

EM iteratively approximates weights M9 for each latent class and then re-estimates 

parameters for Rasch models until convergence is reached. After preliminary estimations 

for the model parameters for all latent classes, in the E-step probability of expected 

pattern within each latent class is calculated. In the M-step, model parameters within each 

latent class are computed by maximum likelihood estimation (MLE). The general 

estimation process is: 

1. Set some initial parameter estimates on the Rasch model. 

2. E-step: calculate posterior probabilities M9 for each subject/observation or, 

in other word, ratio of subject/observation i’s contribution to latent class k between i’s 

total contribution. 

3. M-step: the calculated posterior distribution in E-step is used as weights of 

latent classes to re-calculate model parameters using MLE. 

4. Repeat E-step and M-step until it reaches convergence. 
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Summary of Use of the Rasch Mixture Model 

A key advantage of the mixture model for detecting DIF is that it can identify test 

takers for whom the item functions differently once DIF has been identified (Cohen & 

Bolt, 2005).  The Rasch mixture model can serve as an exploratory method for detecting 

latent classes even when there are no clear covariates such as gender. Compared to a 

cognitive ability test, responses to a personality or noncognitive test are more likely to be 

distorted due to factors such as social desirability or malingering, which are usually 

called faking response style or response distortion. The Rasch mixture model can serve as 

a good approach to capture diversity of faking response styles (Eid & Zickar, 2007).  

The Rasch mixture model has also been applied in assessing dimensionality of 

scales. For example, Schultz-Larsen et al. (2007) assessed Mini-Mental State 

Examination (MMSE) which was widely used for detection of cognitive impairment and 

quantification severity of an individual through a mixed Rasch model item analysis. They 

concluded a two-dimensional structure of MMSE was a more stable measurement than its 

original form. Identical parameter estimate across different subgroups can be taken as a 

criterion for the most important assumption of Rasch model: unidimensionality (Rost et 

al., 1997).  In Rost et al.’s (1997) analysis of two scales of extraversion and 

conscientiousness (NEO-FFI; Costa & McRae, 1992), they found different solutions: a 

four-class solution for the extraversion scale and a two-class solution for the 

conscientiousness scale.    

For many educational and psychological research studies, identifying latent class 

sets the foundation for questioning uses of different cognitive strategies or the tendency 
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to endorse different test items among different latent classes. Both qualitative approaches 

(i.e., interview) and quantitative approaches such as analysis of variance (ANOVA) or 

chi-square tests can used as follow-ups to explore the interaction between latent class and 

manifest variables, including gender and ethnicity. Izsak et al. (2010) assessed 

understanding of rational numbers of middle grades teachers. Two different latent classes 

were detected via use of a Rasch mixture model and interviews were conducted with 

interested subjects for disclosing latent classes’ difference on pedagogical knowledge of 

rational numbers. The Rasch mixture model is also useful for examining time series data. 

Cho et al. (2011) combined latent transition analysis (LTA; Collins & Wugalter, 1992) 

and the Rasch mixture model to analyze cognitive changes over time in the math skill of 

low-achieving adolescents. They researched the effect of enhanced anchored instruction 

(EAI; Bottge et al., 2007) over time by revealing how the patterns of latent class classifier 

changed across different time points. A Rasch mixture model can help reduce the 

subjectivity built into the common practice of standard setting on performance tests. Jiao 

et al. (2011) did a simulation study based on the Rasch mixture model to obtain model-

based cut scores on the subjects’ latent ability scale instead of using a traditional 

subjective judgmental process of setting cut scores.  

There are many applications of the Rasch mixture model across various settings 

other than education, for example, in sport, exercise, and the motor domains. In Busch 

and Strauss’s (2005) study of Roth’s coordination model of movement precision and 

ability of coordination under pressure, two latent classes were detected for mastering time 

pressure tasks and they were referred as two distinct strategies: a speed strategy and a 



15 
 

speed-accuracy strategy. The Rasch mixture model has been used in job analysis. Wyse 

(2018) applied a Rasch mixture model to datasets from multiple professions including 

bone densitometry, quality management, and cardiovascular interventional radiography 

and claimed results were informative for developing credentialing exams.    

The Rasch mixture model can also be viewed as a multivariate Rasch model. A 

multivariate Rasch model has been used for scaling and estimation in large-scale 

educational assessments such as the Programme for International Student Assessment 

(PISA) and the Trends in Mathematics and Science Study (TIMSS). Compared to other 

educational measurement settings in which reliable measurement at the test-taker level is 

the major concern, a fundamental concern in large-scale assessments is to examine 

interested latent variables’ characteristics at population level and relationships among the 

latent variable and other variables (Adams el al., 2007).  The mixed-coefficients 

multinomial logit (MCML, Adams et al., 1997), another example of a multivariate Rasch 

model, has a form which is similar to the Rasch mixture model but with more complexity 

by adding many relationship parameters between θ and item difficulty into the model.   

There are various existing fit indices for determining the number of latent classes 

in a certain Rasch mixture model. Some frequently used measures of fit are Akaike 

information criterion (AIC), Bayes Information criterion (BIC), and the corrected Akaike 

information criterion (CAIC). According to Li et al.’ (2009) simulation study of the 

Rasch mixture model, BIC performs better than the rest of the indices for selecting the 

accurate number of latent classes. In normal practice, various fit indices are provided and 

compared for the same model.  
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Use of the Rasch Mixture Model in DIF Detection 

There is a growing literature on using the Rasch mixture model as a DIF detection 

method. Frederick et al. (2010) proposed a Rasch model-based random item mixture 

model (RIM) with both item difficulty parameters and random person abilities drawn 

from a univariate normal distribution. They compared DIF detection results to traditional 

methods (LRT, MH, and ST-p-DIF) and concluded that RIM performs better. Ayrydoust 

(2015) explored the potential of the Rasch mixture model for detecting DIF with an 

English as a foreign language (EFL) listening test dataset; the researcher used a neural 

network method, specifically a classifier, to confirm latent class detection results from 

fitting a Rasch mixture model and concluded that results were consistent for both 

approaches. For latent class detection, the Rasch mixture model performs better than a 

two-parameter or three-parameter IRT mixture model which may result in latent class 

over-extraction (Alexeev el al., 2011). Time pressure on a performance test could be a 

cause of DIF for items that are located at the end of the test. Bolt et al. (2002) applied an 

ordinal constraint by putting items at the end of the original scale at earlier locations. 

Using a Rasch mixture model, they distinguished two latent classes of test takers: a 

“speeded” class and a “non-speeded” class. In particular, they used a Markov Chain 

Monte Carlo (MCMC) estimation algorithm for fitting the Rasch mixture model instead 

of an EM algorithm.  

In a traditional practice of comparing subgroups, manifest variables—often 

demographic factors such as gender, ethnicity and socio-economic status--are used to 

categorize groups within populations. However, this may be inappropriate for explaining 
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cognitive processes of test takers because manifest variables are chosen according to 

researchers’ conjectures (Cohen & Bolt, 2005). Subgroups which are characterized by 

manifest variables may still be heterogeneous since the variables which cause the within-

group heterogeneity remain unnoticed (Maij-deMeij et al., 2008). A Rasch mixture model 

instead can reveal DIF, but the researcher should be cautious about interpreting the 

characteristics of the identified latent classes. Effects of heterogeneity within latent 

classes has been discussed in Wu and Huang’s (2010) study assessing the Beck 

Depression Inventory-II-Chinese version (BDI-II-C). In their study, 10 items displayed 

uniform DIF when they used a 2-class partial credit model (PCM) to fit the data. They 

claimed that construct validity held because there was no DIF detected within two latent 

classes after DIF items were assigned different parameters value for each latent group.  

Model identification constraints are used when comparing potential latent classes. 

By using a simulation approach to examine parameter recovery and correct model 

detection rate, Wu and Paek (2018) compared a conventional constraint which set the 

ability mean of latent classes to be equal and an anchor item constraint which used class-

invariant items, and concluded that there was high agreement between these two 

constraints across multiple simulated conditions.   

Simulation has been used increasingly in recent literature for assessing robustness 

of the Rasch mixture model for DIF detection. Table 1 summarizes simulation studies of 

DIF detection using the Rasch mixture model. The accuracy of fitting a Rasch mixture 

model is determined by various aspects, which includes proportion of replications that 

recover the true latent structure, parameter recovery of latent class classifier and item 
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difficulty, and proportion of replications that catch true DIF. The most common purpose 

in these literatures was to examine the influence of a covariate which is also commonly 

referred as collateral information or effects of a manifest variable on detecting DIF items 

using a Rasch mixture model (Dai, 2013; DeAyala et al., 2002; Li et al., 2016; 

Samuelsen, 2005). One of the biggest challenges of using a Rasch mixture model for 

detecting DIF is that it is difficult to interpret the qualitative meaning of the identified 

latent groups. One solution is to include an auxiliary variable or covariate such as gender, 

age, or income. For example, Smit, Kelderman, and Flier (1999) found a decrease in 

standard errors and easier assignment of latent subgroups when a covariate was included. 

There are two ways of connecting a covariate in Rasch mixture modeling: (1) 

First, manipulation of a binary covariate (which could be gender, for example, in real 

practice) to overlap with the proportion of latent classes. For instance, a 50/50 covariate 

split overlapped with a 30/70 latent class split, say 50% of sample was male and 50% was 

female, in which 30% of male and 70% of female belonged to a latent class and 70% of 

male and 30% of female went into another latent class. (2) Second, use a covariate to 

predict parameters of the Rasch mixture model. Dai (2013) used logistic regression to 

link a binary covariate and probability of latent group classifier in which the covariate 

was the predictor and the logit of latent group classifier probability was the outcome, and 

thus turned the Rasch mixture model into a hierarchical structure. The author claimed that 

inclusion of a collateral variable helps increase the correct rate of latent structure 

identification. Li et al. (2016) extended Dai’s (2013) work by adding an additional 

continuous covariate to predict latent ability. 
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Markov chain Monte Carlo estimation dominates this area of simulation since the 

majority of existing simulation studies on DIF detection using a Rasch mixture model fell 

into a Bayesian framework. WinBUGS is the most commonly used software, but usage of 

R is growing in more recent literature. The eight simulation studies listed in Table 1 

assessed robustness of the Rasch mixture model for detecting DIF when there were two 

latent classes. Latent ability of latent class came from either an identical standard normal 

distribution or two normal (also known as the Gaussian) distributions with different 

means but the same standard deviation of 1.0. The proportion of latent class classifier was 

another common manipulated factor: an equal size (50% - 50%) or an unequal size of 

latent classes. A 30% - 70% divide of latent class was the most frequent unequal size 

setting. The proportion of DIF items and the DIF size were the most crucial factors in this 

kind of simulation. For item difficulty of the reference latent class, researchers either 

simulated data from a normal distribution or a uniform distribution or used a fixed 

symmetrical array (Frick et al., 2014). Different magnitudes of DIF (i.e., 0.3) were then 

added to certain proportion of reference latent class item difficulties and the rest 

remained the same for both latent classes. In this way, proportion of DIF items and 

magnitude of DIF were manipulated to build several different DIF patterns. In addition to 

the above common manipulated factors, different model settings (Frick et al., 2014; Li et 

al., 2016) and different missing data types (Li et al., 2016) have also been examined but 

still need further research. Simulation conditions varied from study to study. All the eight 

simulation studies listed in Table 1 used dichotomous items. The sample size for each 

replication varied from 500 to 3,000. Each sample per replication was divided into a focal 
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group or reference group if there was a binary covariate (i.e., gender) included. Number 

of replications per scenario ranged from 11 to 500.  
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    Table 1 

    Simulation Studies of Factors affecting Rasch Mixture Model Outcomes 

DeAyala et 

al. (2002) 

1PL mixture 

model with one 

binary covariate 

(authors claimed 

using a 2PL but 

constrained 

discriminant 

parameter to be 1) 

Monte Carlo 

study using 

MULTILOG 

(Thissen, 1991), 

BILOG 

(Mislevy & 

Bock, 1990), 

EQUATE 

(Baker, 1993) 

and IRTDIF 

(KIM & Cohen, 

1992) 

1. Theta: from normal 

distribution N (-1, 1) and N 

(0, 1) 

2. Proportion of latent class: 

17% - 83%, 30% - 70% and 

50% - 50% 

3. DIF items: 0%, 10% and 

30% with two levels of 

DIF: 0.3 and 1.0 

4. Item difficulty for 

reference latent class: from 

normal distribution N (0, 1) 

1. Test length: 30 

dichotomous items 

2. Sample size: 

3,000 (500 for focal 

group and 2,500 for 

reference group) 

3. 50 replications 

each condition 

4. Number of LC: 2 

Rasch mixture 

model accuracy 

increased as 

proportion in latent 

class got closer to 

0.5. 

Samuelsen 

(2005) 

Assessing 

effectiveness of 

Rasch mixture 

model on DIF 

detection when 

latent classes 

overlapped with 

one binary 

covariate 

(manifest group) 

Markov chain 

Monte Carlo 

using WinBUGS 

1. Theta: from normal 

distribution N (0, 1) and N 

(-1, 1) for each latent class 

2. Proportion of latent class: 

equal size (50% - 50%) and 

unequal (20% - 80%), each 

latent class overlap with a 

manifest variable in five 

conditions: 100%, 90%, 

80%, 70% and 60%  

3. DIF items: 2 (10%), 6 

(30%) and 10 (50%) items 

with three levels of DIF: 

0.4, 0.8 and 1.2 

4. Item difficulty of 

reference latent class: from 

1. Test length: 20 

dichotomous items 

2. Sample size: 500 

and 2,000 

3. 100 replications 

per condition 

4. Number of LC: 2 

Accuracy of Rasch 

mixture model 

increased as the 

overlap between 

latent class and the 

manifest variable 

increased. 
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a uniform distribution unif 
(-2, 2) 

Frederickx et 

al. (2010) 

Random Item 

Mixture model 

Markov chain 

Monte Carlo 

using WinBUGS 

1. Theta: identical 

distribution from a normal 

distribution N (0, 1) and 

different normal 

distributions from N (0, 1) 

and N (.5, 1) 

2. Proportion of latent class: 

equal size 

3. DIF item: 0 and 5(with 

item difficulty 

difference: .4, .6, .8, -.8 and 

-1) 

4. Item difficulty of 

reference class: from a unif 
(-1, 1) 

1. Test length: 20 

and 50 dichotomous 

items 

2. Sample size: 500 

and 1,000 

3. 20 replications 

each condition 

4. Number of LC: 2 

RIM is better than 

traditional DIF 

detection methods: 

LRT, MH, and 

STD p-DIF. 

Preinerstorfer 

& Formann 

(2012) 

Parameter 

recovery and 

model selection of 

the Rasch mixture 

model 

Conditional 

maximum 

likelihood 

estimation with 

mRm package in 

R  

1. Theta: from a normal 

distribution N (0, 1) 

2. Proportion of latent class: 

equal size and unequal 

(25% - 75%) 

3. Binary responses were 

simulated from a Bernoulli 

distribution 

4. Item difficulty for 

reference latent class: from 

a unif (-2, 2) 

1. Test length: 10, 

15, 25 and 40 

dichotomous items 

2. Sample size: 500, 

1,000 and 2,500 

3. 200 replications 

each scenario 

4. Number of LC: 1 

and 2 

Parameter estimate 

accuracy of the 

Rasch mixture 

model increased as 

sample size and 

number of items 

increased; 

parameters were 

more precisely 

estimated for 

medium range 
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parameters and in 

homogeneous 

group (1 latent 

class) 

Dai (2013) 

Rasch mixture 

model with one 

binary covariate 

which predicted 

latent class 

classifier 

Markov chain 

Monte Carlo 

using WinBUGS 

and SAS was 

used to generate 

datasets 

1. Theta: identical 

distribution from a normal 

distribution N (0, 1) and 

different normal 

distributions from N (0, 1) 

and N (1, 1); 

2. Proportion of latent class: 

15% - 85%, 30% - 70% and 

50% - 50%; 

3. DIF items: 20% (6) and 

40% (12) 

4. Covariate effect (3 

levels) 

1. Test length: 30 

dichotomous items  

2. Sample size: 

1,000  

3. 11 replications for 

each condition 

4. Number of LC: 2 

Collateral 

information 

(covariate) has 

positive effect on 

detecting latent 

structure. 

Frick et al. 

(2014) 

Assessing three 

Rasch mixture 

model settings on 

detecting DIF: the 

saturated model, 

the mean-variance 

model, and the 

restricted model 

Conditional 

maximum 

likelihood 

estimation via 

EM algorithm 

using psychomix 

package in R 

1. Theta: two latent groups 

from different normal 

distributions N (-x/2, 0.3) 

and N (x/2, 0.3), where x 

from [0, 4] in steps of 0.4 

2. Proportion of latent class: 

equal size (50% - 50%) 

3. DIF item: 2 items with 

DIF of -y and y, where y 

from [0, 4] in steps of 0.2 

4. Item difficulty of 

reference latent class: from 

1. Test length: 20 

dichotomous items 

2. Sample size: 500 

3. 500 replications 

each condition 

4. Number of LC: 2 

Pros and cons of 

different Rasch 

mixture model 

settings were 

discussed across 

various scenarios   
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[-1.9, 1.9] with increments 

of 0.2 

Choi et al. 

(2016) 

Assessing 

performance of 

four information 

criteria (AIC, 

AICC, BIC and 

SABIC) on DIF 

detection using 

Rasch mixture 

model 

Maximum 

likelihood 

parameter 

estimation 

(MLR) using 

Mplus 

1. Theta: fixed (1 level): 

one class from a normal 

distribution N (0, 1) and 

one from N (.5, 1) 

2. Proportion of latent class: 

equal size (50% - 50%) and 

unequal size (70% - 30%) 

3. DIF item: 30% (9), 60% 

(18) and 90% (27) with 4 

levels of DIF: 0.5, 0.75, 1.0 

and 1.5 

4. Three patterns of DIF: 

fully crossing, gradually 

decreasing and fully 

parallel; reference latent 

group item difficulty from a 

normal distribution N (0, 1) 

1.Test length: 30 

dichotomous items 

2. Sample size: 

3,000 

3. 100 replications 

for each condition 

4. Number of LC: 2 

Four information 

criteria should 

combine for 

selecting best 

model. 
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Li et al. 

(2016) 

Rasch mixture 

model with one 

binary covariate 

which predicted 

latent class 

classifier, and a 

continuous 

covariate which 

predicted latent 

ability 

Markov chain 

Monte Carlo 

using 

R2WinBUGS 

package in R 

1. Theta: from a normal 

distribution N (0, 1) for one 

latent class and a normal 

distribution N (1, 1) for the 

other 

2. Proportion of latent class: 

50% - 50% and 30% - 70% 

with binary covariate (30% 

- 70%) 

3. Correlation between the 

continuous covariate and 

latent trait: two levels (0.2 

and 0.8) 

4. DIF items: two levels of 

average DIF (1.5 and 1) 

5. Item difficulty for 

reference latent class: from 

a normal distribution N (0, 

1) 

6. 3 types of missing data 

7. Correlation between 

dichotomous covariate and 

classifier: 2 levels (odds 

ratio = 10 and 1) 

1. Test length: 30 

dichotomous items 

2. Sample size: 

2,000 

3. 25 replications for 

each condition 

4. Number of latent 

classes: 2 

Accuracy of latent 

group 

classification, 

model parameter 

recovery, and 

overall model fit 

were discussed 

across several 

simulated 

conditions 
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Problem and Purpose 

 Measures of constructs, including both cognitive and non-cognitive constructs, 

are associated with making decisions about a person. It is of great importance to ensure 

the differences identified through items reflecting a construct only attribute true 

difference to subgroups, which is referred as measurement invariance. Measurement 

invariance influences reliability and validity of an effective test and it should be 

confronted at both the test level and the item level. Differential item functioning occurs 

when there is difference in the probability of endorsing an item across different 

subgroups and the difference is conditioned on a continuous latent trait. The presence of 

DIF to a large extent threatens fairness and thus incurs bias in a measurement process. 

DIF items should be eliminated or fixed before implementation of a test to the targeted 

population. Various parametric and non-parametric (e.g., MH, LRT) methods have been 

proposed with statistical tests and applications for detecting DIF. Those methods 

commonly use manifest variables or covariates to categorize elements of a population or 

of a collected sample into subgroups for DIF identification. However, it is problematic to 

assume homogeneity within subgroups categorized by observed covariates. Latent class 

analysis, as an alternative approach to observed covariate-based subgroups, may be a 

preferable way to discern homogenous subgroups from a measurement perspective.  

The Rasch mixture model (RMM), which is also known as mixed effect model or 

mixture Rasch model in varied literatures, has the capacity of extracting latent classes and 

detecting DIF item in a test. RMM allocates different item parameters for each identified 

latent class and the difference among each latent class’ item parameters serve as evidence 
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for flagging DIF items. There are numerous studies of the Rasch mixture model from 

applications in various fields to simulation across multiple scenarios. Simulation is a 

powerful tool for assessing the robustness of the Rasch mixture model since it can mimic 

varied possible situations simultaneously by manipulating several factors. To date, most 

of simulation studies of using the Rasch mixture model for detecting DIF focus on a test 

length from 20 items to 30 items or even 50 items (Friderickx et al., 2010). And only one 

(Preinerstorfer & Formann, 2012) of eight simulation studies listed in Table 1 included a 

condition with test length of 10 items, though the primary focus of Preinerstorfer and 

Formann’s research was on parameter recovery instead of DIF. Through both live-testing 

results and simulation, Weiss (1982) indicated that there was no reduction in the quality 

of measurement after reducing test length. Long test length is more likely to incur fatigue 

for the test taker, missing data, and random responses to items at the end of the test. 

Additionally, no simulation study was located on DIF detection using a Rasch mixture 

model examining the condition of three latent classes. Most previous simulation studies 

in this area used Markov chain Monte Carlo from a Bayesian framework perspective.  

Given inadequate information from previous simulation studies on uniform DIF 

detection using the Rasch mixture model, this dissertation addressed: (1) how a three LC 

structure interacts with other manipulated factors including test length, proportion of DIF 

items, and magnitude of DIF, with outcomes of correct model selection and item 

parameter recovery; (2) accuracy of the Rasch mixture model in detecting DIF for a short 

length test; (3) correct model or latent structure classification rate and model parameter 

recovery of the Rasch mixture model using an expectation-maximization algorithm with 
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conditional maximum likelihood estimation; and (4) comparison between a three LC 

structure and a two LC structure in recovery of true DIF effect size using the RMM.    

Glossary of Terms 

Item Response Theory (IRT) 

 Compared to classical test theory which focuses on test level, item response 

theory models test takers’ performance at the individual item level. The core idea of IRT 

is that probability of a correct or desired response of an item is a mathematical function 

of person and item parameters. Those parameters include latent ability/attitude of a test 

taker, item difficulty, item discrimination, and pseudo-guessing.   

1 PL IRT model. IRT model with a person parameter and one item parameter: 

latent ability and item difficulty. Specifically, the 1 PL model is sample independent in 

which the rank of all items is the same for all test takers despite of person ability and the 

rank of person ability is independent of item difficulty. The feature only applies to 1 PL 

IRT model. 

2 PL IRT model. IRT model with a person parameter and two item parameters: 

latent ability, item difficulty and item discrimination. 

3 PL IRT model. IRT model with a person parameter and three item parameters: 

latent ability, item difficulty, item discrimination and pseudo-guessing.   

Rasch Model (RM) 

 Rasch model has same mathematical form as the 1PL IRT model including the 

sample independence or sample-free feature. However, the RM should be viewed as a 

different theory conceptualizing the relation between data and modeling. RM emphasizes 



 

29 
 

the superiority of the model and misfitting items and misfitting persons will be excluded 

from fitting a Rasch model.  

Rasch Mixture Model (RMM) 

 The Rasch mixture model is a combination of the Rasch model and a mixture 

model. In a mixture model, a distribution ! is a mixture of " component distribution of 

!!, !",…	!# if  !(%) = ∑ )#$
#%! !#(%) with )# being the mixing weights, )# > 0, ∑ =# 1. 

A Rasch mixture model is commonly used for identifying latent classes within a targeted 

population.  

Latent Class (LC) 

 A latent class is an unobserved homogenous subgroup which has item parameters 

for some items distinct from those for another latent class. 

Monte Carlo method 

 The Monte Carlo method uses randomness through repeated sampling to solve 

complicated problems which are often difficult or impossible to solve via other 

approaches. Monte Carlo is a practice to draw a large number of samples from a certain 

distribution, then calculate parameters of interest from those samples.   

Item Response Function (IRF) 

 Probability function of correct or desired response to a test item under an IRT 

framework. 

Differential Item Functioning (DIF) 

 Differential item functioning occurs when there is difference in the probability of 

a response to an item for different subgroups, excluding the effect of true differences in 
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latent ability. DIF should be distinguished from true latent ability difference which is 

referred to as impact in the IRT literature. Without a special statement, DIF in this study 

refers to uniform DIF.      

Uniform DIF. Uniform DIF between two subgroups on an item is invariant 

across the latent trait continuum or in other words independent of latent ability.  

Non-uniform DIF. Non-uniform DIF is different probability of response between 

groups at different location on a latent trait continuum.  

Expectation-Maximization (EM) Algorithm  

 Expectation-maximization algorithm is a method to find maximum likelihood 

estimates of parameter of a statistical model which depends unobserved latent variables 

(Dempster et al., 1977).  

Parameter Recovery 

 Parameter recovery is used to describe how the mean of estimated parameters 

after multiple replications comes closer to the true value.   

Akaike Information Criterion (AIC) 

 Akaike information criterion is a model selection for comparing the relative 

quality of models for a given set of data. The lowest AIC is preferred.  

Bayesian Information Criterion (BIC)  

 Bayesian information criterion is also a model selection method which takes 

number of data points into account compared to AIC. The lowest BIC is preferred when 

applying to comparing models for a given dataset.  

  



 

31 
 

 Chapter Two: Method 

Introduction 

 This chapter focuses on mapping the flow of the study which includes listing 

fixed factors and manipulated varying factors, explaining the data generation process, and 

clarifying model performance procedures involving the criteria used in analyzing 

simulation results across various simulation conditions. The goal of setting conditions in 

the simulation was to represent real world measurement scenarios.  

Simulation Design 

 The core idea of this simulation is the combination of variables contributing to 

fitting a Rasch mixture model. Through multiple replications for each condition in this 

Monte Carlo study, various empirical distributions can be generated as evidence of Rasch 

mixture model parameter recovery and power for detecting DIF. Factors are categorized 

into two types: fixed factors and varying factors (also known as manipulated factors in 

most simulation studies). The selection of fixed factors and varying factors is considered 

according to the research interest of this dissertation and to build on past research with 

DIF in a Rasch mixture model. Fixed factors consist of number of replications for each 

condition, the difference between latent ability of latent groups (impact), and sample size 

for each replication. Varying factors are test length, number of latent classes, proportion 

of cases in latent classes, proportion of DIF items, and DIF pattern. Overall, varying 

factors produce 2 (test length) * 2 (number of latent classes) * 2 (proportion of cases in 
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latent classes) * 3 (proportion of DIF items) * 2 (DIF patterns) = 48 different conditions. 

Table 2 shows the summary of all simulated conditions across all manipulated factors. 

There were 100 replications for each scenario on latent structure recovery and 200 

replications for each scenario on parameter recovery.  

Table 2 
Summary of Conditions across Five Factors  

Test Type 

N of 
LC P of LC 

DIF 
Type 

10 
items, 
2 DIF 
items 

10 
items, 
4 DIF 
items 

10 
items, 
6 DIF 
items 

30 
items, 
6 DIF 
items 

30 
items, 
12 DIF 
items 

30 
items, 
18 DIF 
items 

Two 
LC 

N: 1,500, 
1,500 

S 
      

G 
      

N: 2,000, 
1,000 

S 
      

G 
      

Three 
LC 

N: 1,000, 
1,000, 1,000 

S 
      

G 
      

N: 1,500, 
1,000, 500 

S 
      

G 
      

Note. S = symmetric DIF pattern; G = gradient DIF pattern; LC = latent class; N = 
sample size. 

Fixed Factors  

 Number of Replications. A Markov chain Monte Carlo (MCMC) method has 

been commonly used in most of the simulation studies using a Rasch mixture model to 

detect DIF and WinBUGS is the commonly used software for MCMC. WinBUGS is a 

flexible but time-consuming statistical software (Samuelsen, 2005). As a result, the 

number of replications of MCMC studies on this topic was relatively small, usually 

around 30 or even 11 (Dai, 2013). In contrast, simulations studies using conditional 

maximum likelihood estimation with an expectation-maximization (EM) algorithm make 

use of a larger number of replications: Preinerstorfer and Formann (2012) used 200 
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replications for each condition and Frick et al. (2014) employed 500 replications. This 

Monte Carlo simulation employed 100 replications for each manipulated scenario on 

latent structure recovery and 200 replications for each manipulated scenario on parameter 

recovery and uses an EM algorithm for parameter estimation. Datasets for Rasch mixture 

model fitting replications were generated through the mirt package in R. Details for 

generating a dataset for each individual replication are in the following “data generation 

process” section.    

Impact. Impact refers to the true mean difference on the latent trait between two 

latent classes. It has been concluded by several previous studies that larger group 

differences resulted in more accurate model estimation (DeMars & Lau, 2011; Lubke & 

Muthén, 2007; Lu & Jiao, 2009). Since the influence of impact is not the focus of this 

dissertation, a medium level of impact is assumed for better model accuracy. In a two LC 

structure, one group has latent mean of 0 and the other has 1.0; in a three classes latent 

structure, three groups have latent mean of -1.0, 0 and 1.0, respectively.     

 Sample Size. Several studies found that a larger sample size resulted in increased 

Rasch mixture model accuracy, including latent structure recovery and item parameter 

recovery (Dai, 2013; Frick et al., 2014; Preinerstorfer & Formann, 2012; Samuelsen, 

2015). Additionally, a larger sample size increased the speed of RMM convergence 

(Frick et al., 2014) and reduced the confounding influence of sampling leading to 

unstable model parameter estimation (Choi et al., 2016). Samuelsen (2005) and Li et al. 

(2016) included a sample size of 2,000 in their research, and DeAyla et al. (2012) and 

Choi et al. (2016) employed sample sizes of 3,000 for each replication within each 
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individual simulated cell. All of them got relatively high model convergence rates and 

stable parameter recovery. Since the impact of sample size variation is not of interest in 

this dissertation, a sample size of 3,000 for each replication per condition was used to 

ensure stable and accurate model recovery.        

Varying Factors 

 Test Length. What is the proper test length for a scale? The question has received 

extensive study in the past decades. There is no agreement on this issue because it is 

influenced by various factors such as content area, type of scale, and data collection 

processes. From a qualitative perspective, it largely depends on the content area and the 

targeted test taker group. In practice, short scales are effective from the perspective of 

collecting data without respondent fatigue--some are less than 10 items (PHQ-9, 

Kroenke, Spitzer & Williams, 2001) or even just one item such as the net promoter score 

(NPS, Mortimer, 2008) for assessing customer experience. A psychological personality 

identification scale or a performance test is longer, the Beck Depression Inventory (Byrne 

et al, 1994) with 21 items as an example, as the mindset of psychology test takers is quite 

different from that of a customer. Educational assessments, especially for those 

measuring students’ performance, usually have a test length longer than 30 items. For 

example, the Fall 2008 grade 5 Michigan science assessment (Li, Hong, & Lissitz, 2014) 

has 45 items; the ACT mathematics test has 60 items (act.org). However, a longer 

cognitive test is more likely to cause fatigue for the test taker and may yield random 

answers to items at the end of the test. From a quantitative perspective, a longer test 

length benefits speed of Rasch mixture model convergence and accuracy of model 
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estimation (Preinerstorfer & Formann, 2012). This simulation manipulated test length: 10 

items and 30 items, which are close to real research settings for a brief test and a longer 

attitude or personality measure yet shorter than a standardized educational assessment.       

 Proportion of Cases in Latent Classes. There are two types of proportions of 

cases in latent classes: an equal size design and an unequal size design. In the current 

study, for the equal size design, groups in a two LC structure have groups size of 1,500 

and 1,500 and groups in three LC structure have sample sizes of 1,000, 1,000 and 1,000. 

For the unequal size design, groups in a two LC structure have sample size of 1,000 and 

2,000 and groups in three latent structure have sample size of 500, 1,000 and 1,500.   

Number of Latent Classes. Two levels were used: a two LC structure (k = 2) and 

a three classes structure (k = 3). The latent class with latent mean - = 0 was set to be the 

reference latent class	./&. The remaining two latent classes were set to be focus latent 

classes with notations: ./'! and ./'" with - = 1 and - = -1, respectively. The reference 

latent class always has the largest sample size in an unequal sample design.  

Proportion of DIF items. There were three levels of proportions of DIF items: 

20%, 40% and 60%, which account for 2, 4 and 6 items for a 10-item test and 6, 12, 18 

for a 30-item test.  

 DIF ( 0() Pattern. Item difficulty parameters 1)*& for the reference latent class 

./& which has latent mean - = 0 are simulated from a uniform distribution unif	(-1,	1). 

An array of DIF are then added to DIF items in the first focal latent classes ( ./'!) and 

the remaining item difficulties remain the same with a corresponding part of the reference 

latent class: 1)*#! = 1)*$ + 9+. The item parameter for the second focal latent class 
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(./'") is created by adding a double magnitude of 9+: 1)*#" = 1)*$ + 29+. The detailed 

information of 9+ is listed in Table 3. There are two types of DIF patterns in this 

simulation study: symmetric and gradient. A symmetric DIF pattern ensures that the 

overall item difficulty remains the same for each latent group or, in other words, there is 

no differential test functioning (DTF) because each item DIF is set to be cancelled out in 

this design (see Figure 1). The biggest advantage of a symmetric DIF simulates a real 

measurement situation when absence of DTF disguises the presence of item level DIF. 

The second is a gradient DIF pattern. Instead of adding a symmetric array of 9+ it adds 

an array of gradually changed DIF effect sizes which have same positive direction to 

focus latent classes (see Figure 2).  

 Both symmetric and gradient DIF pattern designs can be used to examine 

recovery of a set of different magnitudes through the Rasch mixture model 

simultaneously.  
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Table 3 
List of 9+ for Different Types of Tests 

 DIF Type 

Test Type Symmetric Gradient 

10 items, 2 
DIF items 

(-1.8, 1.8, 0, 0, 0, 0, 0, 0, 0 ,0) (2.0, 1.0, 0, 0, 0, 0, 0, 0, 0 ,0) 

10 items, 4 
DIF items 

(-1.8, -0.9, -0.9, 1.8, 0, 0 ,0, 0, 0, 0) (2.0, 1.5, 1.0, 0.5, 0, 0, 0, 0, 0 ,0) 

10 items, 6 
DIF items 

(-1.8, -1.2, -0.6, 0.6, 1.2 ,1.8, 0, 
0 ,0 ,0) 

(2.0, 1.7, 1.4, 1.1, 0.8, 0.5, 0, 0, 0, 
0) 

30 items, 6 
DIF items 

(-1.8, -1.2, -0.6, 0.6, 1.2 ,1.8, 0, 
0, … 0, 0) 

(2.0, 1.7, 1.4, 1.1, 0.8, 0.5, 0, … 0, 
0, 0) 

30 items, 
12 DIF 
items 

(-1.8, -1.5, -1.2, -0.9, -0.6, -0.3, 
0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 0, 0, ... 0, 
0) 

(2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 
0.4, 0.3, 0.2, 0.1, 0, 0, ... 0, 0) 

30 items, 
18 DIF 
items 

(-1.8, -1.6, -1.4, -1.2, -1.0, -0.8, -
0.6, -0.4, -0.2, 0.2, 0.4, 0.6, 0.8, 
1.0, 1.2, 1.4, 1.6, 1.8, 0, 0, ... 0, 0) 

(1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 
1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 
0.2, 0.1, 0, 0, … 0, 0) 
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Figure 1 
A Symmetrical DIF Pattern 

 

Figure 2 
A Gradient DIF Pattern 
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Data Generation Process  

R, a programming language with strength in simulating data and flexibility, is 

used as a primary tool for data generation and manipulation. Latent ability -)*$ is drawn 

from a standard normal distribution N (0, 1) for the reference latent class ./& based on a 

sample size for a certain condition, and then corresponding sample size of latent ability 

-)*#! for focal latent class ./'! is drawn from a normal distribution with mean of 1 and 

standard deviation of 1: N (1, 1). In the three LC structure, corresponding sample size of 

latent ability -)*#" for the second focal latent class is drawn from N (-1, 1). Item 

difficulty parameters (1)*$) for the reference latent class are drawn from a uniform 

distribution unif (-1, 1), then corresponding 9+ are added to 1)*$ to create 1)*#! and 

1)*#". Binary responses based on generated θ and b	are simulated for each latent class 

through the	mirt	package in R. After this step, the number of datasets equals the number 

of simulated latent classes. In each dataset, a column (i.e., variable) named true_lc is used 

for marking true (i.e., simulated) classifier for each response. A dataset for a replication 

within a certain cell is created through merging datasets for every latent classes. The 

order of responses (i.e., rows in a dataframe) are shuffled. Then the merged and shuffled 

dataset is ready for model fitting using a Rasch mixture model.  

Performance Analysis 

 The purpose of performance analysis is to determine how well generated 

parameters are recovered from analyses of simulated datasets and investigate interactions 

among manipulated varying factors. Model recovery consists of two parts: latent structure 

recovery and parameter recovery. Efficiency of model convergence is an aspect of 



 

40 
 

importance for a simulation study and it is reflected in running time for a model fitting 

cycle. Running time for 200 replications of each manipulated scenario on parameter 

recovery was recorded, which can be serve as an indicator of efficiency of fitting a Rasch 

mixture model via the EM algorithm. Main effects for five manipulated factors (number 

of items, proportion of DIF items, LC structure, group size and DIF patterns) and 

interactions among them on latent structure recovery and DIF recovery were examined by 

four analysis of variance tests.  

Latent Class Structure Recovery  

 Rasch mixture models were used for fitting simulated datasets across manipulated 

situations for parameters of an assumed number of latent classes ? = 1, 2, 3, 4. The best 

fitting model was selected based on which model had minimum values of information 

criteria. The model information criteria used in this simulation are commonly used model 

selection indices: Akaike information criterion (AIC, Equation 12) and Bayesian 

information criterion (BIC, Equation 13). Both AIC and BIC select the more correct 

model by introducing a penalty term for number of parameters in a model. The selected 

Rasch mixture model has a smaller an information criterion value. There are several 

literatures suggesting that BIC is better statistic on DIF detection using the Rasch mixture 

model than AIC (e.g., Li et al., 2009). Latent structure recovery rate is calculated from 

the number of correct selected models divided by number of replications for each 

condition. For example, when fitting a Rasch mixture to a two LC structure using BIC as 

model information criterion, the latent structure recovery rate is calculated as the number 
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of replications in which k = 2 associated with minimum BIC divided by the total number 

of replications in each cell, which is 100 in this study.  

BC/ = −2EF(.G) + 2H                                                             (12) 

where .G is the maximized value of the likelihood of the model and H is the number of 

estimated parameters in the model. 

IC/ = −2EF(.G) + HEF(J)                                                (13) 

N is the number of observations. 

Parameter Recovery 

Parameter recovery contains two parts: recovery of classifier for different latent 

classes and recovery of item difficulty. Classifier parameter indicates proportion of each 

latent class. Mean squared error (MSE, Equation 14) and root mean square error (RMSE, 

Equation 15) are used for assessing overall recovery of different magnitudes of DIF 

among latent classes across 48 different manipulated situations. RMSE is also used to 

examine overall performance classifier parameter recovery using RMM. RMSE is 

squared root result of MSE. A smaller MSE or a smaller RMSE indicates a better 

parameter recovery for a true DIF among latent classes. MSE is used for explaining the 

transformation of RMSE and only RMSEs are used for ANOVAs on LC structure 

recovery and parameter recovery.  

 LMN = ∑ (-%./|-%|)"
2

2
3%!                                                       (14)                 

OLMN = P∑ (-%./|-%|)"
2

2
3%!                                                         (15) 
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where 9+Q is predicted magnitude of DIF for each item of a test, 9+ is corresponding true 

DIF, and n is number of test items for the cell. RMSE of overall DIF for each replication 

and RMSE of overall classifier parameter for each replication are used as dependent 

variable of ANOVAs assessing the main effects and interactions effects for five 

manipulated factors.  

Label Switching Problem 

 Label switching is a quite common and problematic issue when estimating 

parameters from mixture models. In this study label switching means that the empirical 

distribution of parameters from replications is invariant when switching component labels 

(i.e., the label for latent classes). For example, we simulate an item with DIF of -1.8 in a 

dataset with two latent classes. The output order of the two latent classes (i.e., 

components in EM output) is random, thus results in an unknown direction of the DIF 

item. The solution in this study is to take the absolute value for each item difficulty 

difference across latent classes in each replication. The label switching problem happens 

in the classifier parameter R# too. The solution is to extract R# based on relative 

magnitudes among latent classes.   

Number of Replications and Running Time for Each Simulation Scenario 

 The number of replications for latent structure recovery scenarios and number of 

replications for item DIF recovery scenarios are fixed. Since four types of the number of 

latent classes (k = 1 to k = 4) are analyzed, the simulation time for latent structure 

recovery is four times than that for parameter recovery. Thus, the number of replications 

for each latent structure recovery situation was set to be lower than that for the parameter 
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recovery situation: 100 replications for each cell in Table 2 for latent structure recovery 

simulation and 200 replications for each cell in Table 2 for parameter recovery 

simulation. The running time for 200 replications within each individual simulation 

condition was recorded as an evidence of effectiveness of using a Rasch mixture model 

for DIF detection.   

Analysis of Variance (ANOVA)  

 There were four ANOVAs conducted in this study for examining main and 

interaction effects of five manipulated variables: number of items (i.e., test length), 

proportion of DIF, DIF pattern, group size, and LC structure.   

Using RMSE of DIF logit value from each replication as an outcome variable and 

factors as independent variables, an analysis of variance was conducted to explore the 

effects of five factors and interactions among them on overall DIF recovery. To assess 

the main effects and interaction effects of five manipulated factors on classifier parameter 

recovery, RMSE of the classifier parameter from each replication was used as the 

dependent variable for the ANOVA on classifier parameter recovery.  

In order to examine the main effects and interaction effects of five manipulated 

factor on latent structure recovery, another two ANOVA tests were conducted. AIC and 

BIC were normalized by taking natural log of each. One of these two ANOVA tests uses 

ln (AIC) as a dependent variable and the other uses ln (BIC) as a dependent variable. The 

reason for using different ANOVAs for AIC and BIC was the formulation of AIC and 

BIC differs and so both could not be included as DVs in a single analysis. 
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Instead of using statistical significance test for the factor effects, partial eta-

squared (S", see Equation 15) was used as a measure of effect size of main effects and 

interactions for the five manipulated factors. As the sample size was large, statistical 

significance was deemed a less useful assessment than effect size. As suggested by 

Cohen (1988), a rule of thumb was employed to assess S" effect size: small when S" ≤

0.06, medium when 0.06 < S" ≤ 0.14 and large when S" > 0.14. 

S" = MM4''456/MM67689                                                            (15) 

where MM4''456 is the sum of squares for a factor and MM67689 is sum of squares for all 

effects. Only main effect and interaction with effects size S" > 0.01 were regarded as 

interpretable and so small effect sizes were considered interpretable. Comparison of 

means was conducted for different levels of involved factors when interactions had an 

effect size S" > 0.01.  

Software and Packages  

 R (R Core Team, 2019) is the primary tool for simulation and visualization in this 

dissertation. The R package mirt was used for data generation and the R package 

psychomix for fitting Rasch mixture models. Specific codes for whole simulation 

procedure including data generation, visualization, latent class structure recovery and 

parameter recovery can be found in Appendix A. 
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 Chapter Three: Results 

Introduction 

 This chapter describes the simulation results for all 48 designed scenarios. At the 

test level, latent structure recovery using the Rasch mixture model is summarized. At the 

item level, parameter recovery, which includes classifier parameter and DIF, are 

examined. Multiple tables and figures are presented for clarification. Findings are 

synthesized at the conclusion of this chapter.  

 The following naming rule for each simulation condition was used: a four-digit 

name was used to define test length and the number of items with true DIF not equal to 0. 

Lowercase letters s and g followed by a four-digit number indicate whether DIF items are 

in a symmetric DIF pattern or a gradient DIF pattern. Lc2 and lc3 followed by an 

underscore sign describe the true latent structure. Lowercase letters e and u are used to 

describe whether a simulation condition has an equal group or an unequal latent group 

design. For instance, 1002s_lc2_e refers to a 10-item measure with 2 DIF items in a 

symmetric pattern with 2 LC of equal group size, and 3006g_lc3_u refers to a 30-item 

with 6 DIF items in a gradient pattern test which has three LC of unequal group size. 

 Since four Rasch mixture models (k = 1 to k = 4) were used for fitting simulated 

datasets, the workload for latent structure recovery took nearly four times longer than that 

for parameter recovery. From this consideration, 100 replications were used for latent 

structure recovery for each scenario which was lower than the 200 replications for 
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parameter recovery. Although a lower number of replications were used for latent 

structure recovery, it cost about 75 hours to complete compared to 26 hours for parameter 

recovery simulations.   

Latent Structure Recovery 

 Latent structure recovery refers to the rate of accuracy of the Rasch mixture 

model for picking the true LC structure which was two LC and three LC in this study. 

Each of the 48 simulated datasets was fitted by four Rasch mixture models with the 

assumed number of LC K from 1 to 4 and other model settings controlled to be the same. 

The model selection information criterion was used for deciding which of the four 

models performed the best for the simulated dataset. The latent structure recovery rate 

was calculated by the number of selected K divided by the number of replications which 

was 100 for each simulation scenario.  

The Akaike information criterion (AIC, Equation 12) and Bayesian information 

criterion (BIC, equation 13) were used in this study where the lowest value of the 

information criterion indicated the best model fit. Model fit rate results are presented 

across different test types and using different information criteria from Table 4 to Table 

7. Columns headings for the correct structure are marked in bold and italic font in each 

table while the highest recovery rate per condition is bolded within the table.    

Latent structure recovery results for the 10-item test with a two LC structure are 

shown in Table 4. AIC based recovery rates were higher than 0.85 except for 

1002g_lc2_e and 1002g_lc2_u which have AIC based latent structure recovery rates of 

0.62 and 0.37. However, BIC-based model recovery rate was quite low except for 
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1006s_lc2_e and 1006s_lc2_u with rates of 0.92 and 0.79. BIC tended to favor k = 1 

while the true structure was k = 2. For both AIC and BIC, latent structure recovery rate 

for the symmetric DIF pattern was higher than that for the gradient DIF pattern. AIC 

performed similarly between situations with equal group size and unequal group size. 

BIC showed a higher rate for situations with equal group sizes than for situations with 

unequal group sizes. 

Table 4 
10 Item Two LC Structure Recovery Proportions    

Equal Group Size Unequal Group Size 

Test Type DIF Pattern 
 

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

1002 
Symmetric 

AIC 0.00 0.85 0.15 0.00 0.05 0.81 0.13 0.01 
BIC 0.72 0.28 0.00 0.00 0.90 0.10 0.00 0.00 

Gradient 
AIC 0.16 0.62 0.20 0.02 0.47 0.37 0.16 0.00 
BIC 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

1004 
Symmetric 

AIC 0.00 0.91 0.08 0.01 0.00 0.95 0.05 0.00 
BIC 0.31 0.69 0.00 0.00 0.60 0.40 0.00 0.00 

Gradient 
AIC 0.02 0.85 0.13 0.00 0.04 0.87 0.08 0.01 
BIC 0.96 0.04 0.00 0.00 1.00 0.00 0.00 0.00 

1006 
Symmetric 

AIC 0.00 0.89 0.08 0.03 0.00 0.92 0.07 0.01 
BIC 0.08 0.92 0.00 0.00 0.21 0.79 0.00 0.00 

Gradient 
AIC 0.00 0.85 0.12 0.03 0.01 0.86 0.13 0.00 
BIC 0.49 0.50 0.00 0.01 0.86 0.14 0.00 0.00 

Note. k = 2 was the true number of LC. 

Latent structure recovery results for the 30-item test with a two LC structure is 

shown in Table 5. Overall performance using AIC and BIC was lower compared to that 

for the 10-item test with the two LC structure. For AIC, the model recovery rate was 

higher for situations with unequal group sizes than that with an equal group size. For 

BIC, the model recovery rate was still quite low except for 3012s_lc2_e (0.71), 

3018s_lc2_e (0.75) and 3018s_lc2_u (0.75). Similar to that for the 10-item test with two 

LC structure, BIC tended to favor k = 1. But AIC seemed inconclusive between the true 
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LC structure k = 2 and k = 4. BIC was higher than AIC in scenario 3012s_lc2_e (BIC: 

0.71, AIC: 0.37), 3018s_lc2_e (BIC: 0.75, AIC: 0.41), and 3018s_lc2_u (BIC: 0.75, AIC: 

0.52). AIC-based model recovery rates were higher for the situation with unequal group 

size while BIC-based model recovery rates were similar for equal and unequal group 

sizes. Both AIC- and BIC-based LC structure recovery rates were higher for the scenario 

with a symmetric DIF pattern than for that with a gradient DIF pattern.    

Table 5 
30 Item Two LC Structure Recovery Proportions    

Equal Group Size Unequal Group Size 

Test Type DIF Pattern 
 

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

3006 
Symmetric 

AIC 0.00 0.38 0.05 0.57 0.00 0.56 0.05 0.39 
BIC 0.76 0.01 0.02 0.21 0.85 0.00 0.00 0.15 

Gradient 
AIC 0.00 0.25 0.07 0.68 0.02 0.51 0.03 0.44 
BIC 0.65 0.00 0.04 0.31 0.83 0.00 0.00 0.17 

3012 
Symmetric 

AIC 0.00 0.37 0.00 0.63 0.00 0.44 0.05 0.51 
BIC 0.02 0.71 0.02 0.25 0.25 0.48 0.02 0.25 

Gradient 
AIC 0.00 0.22 0.10 0.68 0.01 0.40 0.10 0.49 
BIC 0.54 0.01 0.08 0.37 0.73 0.00 0.05 0.22 

3018 
Symmetric 

AIC 0.00 0.41 0.01 0.58 0.00 0.52 0.08 0.40 
BIC 0.00 0.75 0.02 0.23 0.00 0.75 0.05 0.20 

Gradient 
AIC 0.00 0.20 0.06 0.74 0.00 0.48 0.03 0.49 
BIC 0.19 0.18 0.08 0.55 0.67 0.04 0.03 0.26 

Note. k = 2 was the true number of LC. 

Latent structure recovery results for the 10-item test with a three LC structure is 

shown in Table 6. There is no model recovery rate more than 0.4 for either AIC or BIC 

and BIC is lower than AIC. 1006s_lc3_e (0.4) and 1006s_lc3_u (0.39) showed the 

highest model recovery rate. In this table, AIC and BIC showed some degree of 

agreement on choosing k = 2 when the true LC structure was k = 3. But BIC once again 

was more conservative than AIC, with BIC having some substantial probabilities of 

picking k = 1. AIC was higher than BIC but cannot be used as evidence for finding the 
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correct LC structure since recovery rates were so low. Neither AIC nor BIC are suggested 

as a model selection method for detecting DIF using a Rasch mixture model for the 10-

item test with three LC.  

Table 6 
10 Item Three LC Structure Recovery Proportions    

Equal Group Size Unequal Group Size 
Test 
Type DIF Pattern 

 
k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

1002 
Symmetric 

AIC 0.00 0.91 0.07 0.02 0.01 0.79 0.16 0.04 
BIC 0.19 0.81 0.00 0.00 0.39 0.61 0.00 0.00 

Gradient 
AIC 0.00 0.90 0.08 0.02 0.01 0.81 0.16 0.02 
BIC 0.30 0.70 0.00 0.00 0.80 0.20 0.00 0.00 

1004 
Symmetric 

AIC 0.00 0.69 0.27 0.04 0.00 0.78 0.20 0.02 
BIC 0.01 0.99 0.00 0.00 0.05 0.95 0.00 0.00 

Gradient 
AIC 0.00 0.88 0.09 0.03 0.00 0.83 0.15 0.02 
BIC 0.04 0.96 0.00 0.00 0.21 0.79 0.00 0.00 

1006 
Symmetric 

AIC 0.00 0.52 0.40 0.08 0.00 0.47 0.39 0.14 
BIC 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 

Gradient 
AIC 0.00 0.74 0.23 0.03 0.00 0.85 0.14 0.01 
BIC 0.01 0.98 0.01 0.00 0.04 0.96 0.00 0.00 

Note. k =3 was the true number of LC. 

Latent structure recovery results for the 30-item test with a three LC structure is 

shown in Table 7. Compared to the scenario with the 10-item tests with a two LC 

structure, the AIC-based model recovery rate increased; but BIC still was low with nearly 

all model recovery rates equal to 0.00 for the 3-class structure. There were four AIC-

based LC structure recovery rates exceeding 0.50 and they were 3012s_lc3_e (0.73), 

3012s_lc3_e (0.53), 3018s_lc3_e (0.85) and 3018s_lc3_u (0.81). Both AIC and BIC 

demonstrated a similar conservative model selection pattern as in the simulation 

conditions of 10 items tests with a two LC structure.   
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Table 7 
30 Item Three LC Structure Recovery Proportions    

Equal Group Size Unequal Group Size 

Test Type DIF Pattern 
 

k = 1 k = 2 k = 3 k = 4 k = 1 k = 2 k = 3 k = 4 

3006 
Symmetric 

AIC 0.00 0.77 0.17 0.06 0.00 0.84 0.13 0.03 
BIC 0.00 0.98 0.00 0.02 0.20 0.79 0.00 0.01 

Gradient 
AIC 0.00 0.84 0.11 0.05 0.00 0.74 0.08 0.18 
BIC 0.00 1.00 0.00 0.00 0.08 0.85 0.00 0.07 

3012 
Symmetric 

AIC 0.00 0.11 0.73 0.16 0.00 0.34 0.53 0.13 
BIC 0.00 0.96 0.01 0.03 0.00 0.99 0.00 0.01 

Gradient 
AIC 0.00 0.63 0.11 0.26 0.00 0.61 0.12 0.27 
BIC 0.00 0.98 0.00 0.02 0.00 0.95 0.00 0.05 

3018 
Symmetric 

AIC 0.00 0.01 0.85 0.14 0.00 0.05 0.81 0.14 
BIC 0.00 0.95 0.00 0.05 0.00 0.97 0.00 0.03 

Gradient 
AIC 0.00 0.36 0.24 0.40 0.00 0.41 0.19 0.40 
BIC 0.00 0.89 0.00 0.11 0.00 0.87 0.02 0.11 

Note. k = 3 was the true number of LC. 

Analysis of Variance (ANOVA) on Latent Structure Recovery 

Two analysis of variance tests were run for examining the main effects and 

interactions of five manipulated factors on latent structure recovery rate. ln (AIC) and ln 

(BIC) were used as the dependent variables in the ANOVAs. The natural log form of AIC 

and BIC was used for normalizing AIC and BIC since the relative magnitude of an 

information criterion was of interest for model selection. These five factors were number 

of test items (2 levels), proportion of DIF items (3 levels), DIF pattern (2 levels), group 

size (2 levels), and LC structure (2 levels).   

By comparing the results of the two ANOVAs, both main and interaction effects 

were quite similar in effect size except for the main effect size of LC structure, with η2 = 

0.03 for ln (AIC) as the dependent variable and η2 = 0.01 for ln (BIC) as the dependent 

variable.  
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ANOVA with ln (AIC) as Dependent Variable: The independence and 

normality assumptions of analysis of variance were met. The homogeneity of variance 

assumption was violated (p < 0.01) for number of items, proportion of DIF, DIF type, LC 

structure, and group size, but analysis of variance is robust with respect to violation of 

homogeneity of variance with a balanced design. 

All five main effects were found to have interpretable effect sizes with  S" >

0.01	(Table 8). For number of test items, F (1,4752) = 1,016,082.52, η2 = .995, with a 

lower mean ln (AIC) for 10-item tests (mean = 10.43, SD < 0.01) than that for 30-item 

tests (mean = 11.49, SD < 0.01). This result was expected since AIC value depends on 

the number of items, with lower values for shorter tests. For DIF type, F (1,4752) = 

249.64, η2 = 0.05, with a lower mean ln (AIC) for gradient pattern tests (mean = 10.95, 

SD < 0.01) than that for symmetric pattern tests (mean = 10.97, SD < 0.01). For LC 

structure, F (1,4752) = 125.28, η2 = 0.03, with a lower mean ln (AIC) for three LC 

structure (mean = 10.96, SD < 0.01) than that for two LC structure (mean = 10.97, SD < 

0.01). For group size, F (1,4752) = 593.80, η2 = 0.03, with a lower mean ln (AIC) for 

equal group size (mean = 10.95, SD < 0.01) than that for unequal group size (10.97). For 

proportion of DIF items, F (2,4752) = 106.79, η2 = 0.04, Tukey’s HSD was used to 

assess the group differences for proportion of DIF and all three pairs of group differences 

were found to be statistically significant. Mean ln (AIC) for 60% DIF was 10.95 with SD 

< 0.01, for 40% DIF 10.96 with SD < 0.01, and for 20% DIF 10.97 with SD < 0.01.  
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Table 8 
Summary Table for Effects of Five Manipulated Factors on ln (AIC) 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

n_of_items 1332.667 1 1332.667 1016082.520 <.001 .995 

p_of_DIF .280 2 .140 106.788 <.001 .043 

DIF_type .327 1 .327 249.642 <.001 .050 

LC_structure .164 1 .164 125.280 <.001 .026 

group_size .779 1 .779 593.795 <.001 .111 

n_of_items * p_of_DIF .002 2 .001 .823 .439 < .001 

n_of_items * DIF_type .025 1 .025 19.079 <.001 .004 

n_of_items * LC_structure .001 1 .001 .529 .467 < .001 

n_of_items * group_size .001 1 .001 1.020 .313 < .001 

p_of_DIF * DIF_type .062 2 .031 23.698 <.001 .010 

p_of_DIF * LC_structure .021 2 .010 7.957 <.001 .003 

p_of_DIF * group_size .010 2 .005 3.956 .019 .002 

DIF_type * LC_structure .099 1 .099 75.597 <.001 .016 

DIF_type * group_size .001 1 .001 .877 .349 < .001 

LC_structure * group_size .001 1 .001 .928 .335 < .001 

n_of_items * p_of_DIF * 

DIF_type 

.013 2 .006 4.942 .007 .002 

n_of_items * p_of_DIF * 

LC_structure 

.002 2 .001 .637 .529 < .001 

n_of_items * p_of_DIF * 

group_size 

8.241E-

006 

2 4.120E-

006 

.003 .997 < .001 

n_of_items * DIF_type * 

LC_structure 

.009 1 .009 6.693 .010 .001 

n_of_items * DIF_type * 

group_size 

< .001 1 < .001 < .001 .995 < .001 

n_of_items * LC_structure 

* group_size 

< .001 1 < .001 .300 .584 < .001 

p_of_DIF * DIF_type * 

LC_structure 

.008 2 .004 3.186 .041 .001 

p_of_DIF * DIF_type * 

group_size 

.007 2 .003 2.604 .074 .001 

p_of_DIF * LC_structure * 

group_size 

.002 2 .001 .609 .544 < .001 
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DIF_type * LC_structure * 

group_size 

.027 1 .027 20.207 < .001 .004 

n_of_items * p_of_DIF * 

DIF_type * LC_structure 

.004 2 .002 1.644 .193 .001 

n_of_items * p_of_DIF * 

DIF_type * group_size 

.005 2 .003 1.928 .146 .001 

n_of_items * p_of_DIF * 

LC_structure * group_size 

.003 2 .001 1.030 .357 < .001 

n_of_items * DIF_type * 

LC_structure * group_size 

.002 1 .002 1.563 .211 < .001 

p_of_DIF * DIF_type * 

LC_structure * group_size 

.003 2 .002 1.262 .283 .001 

n_of_items * p_of_DIF * 

DIF_type * LC_structure * 

group_size 

.006 2 .003 2.264 .104 .001 

Error 6.233 4752 .001    

Total 1340.765 4799     

 

Only the interaction between DIF type and LC structure was found to be 

interpretable with η2 = 0.02. Simple effects analyses were used to examine difference 

between two levels of DIF type at each level of LC structure. Figure 3 shows that the ln 

(AIC) difference between two LC structure and three LC structure is larger at symmetric 

DIF level than at gradient DIF level. The means and SDs of DIF pattern by LC structure 

are shown in Table 9.   

Symmetric tests with two LC structure had the lowest mean ln (AIC) = 10.98 (SD 

< 0.01). Gradient tests with two LC structure had mean ln (AIC) = 10.95 (SD < 0.01). 

Symmetric tests with three LC structure had mean ln (AIC) = 10.96 (SD < 0.01). 

Gradient tests with three LC structure had mean ln (AIC) = 10.95 (SD < 0.01).   
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Figure 3 
Plot for Mean Difference of ln (AIC) for DIF Type by LC Structure Interaction 
 

 
 
Table 9 
Means and SDs of ln (AIC) for DIF Type by LC Structure Interaction 

DIF Type LC Structure Mean SD 

Symmetric 
Two LC  10.98 .001 

Three LC  10.96 .001 

Gradient 
Two LC  10.95 .001 

Three LC  10.95 .001 
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ANOVA with ln (BIC) as Dependent Variable: Independence and normality 

assumptions of analysis of variance were met. The homogeneity of variance assumption 

was violated (p < 0.01) for number of items, proportion of DIF, DIF type, LC structure 

and group size, but analysis of variance is robust with respect to violation of homogeneity 

of variance with a balanced design. 

All five main effects were found to have interpretable effect sizes with  S" >

0.01. For number of test items, F (1,4752) = 1034694.768, η2 = .995, with a lower mean 

ln (BIC) for 10-item tests (10.44) than that for 30-item tests (11.50). For DIF type, F 

(1,4752) = 250.78, η2 = 0.05, with a lower mean ln (BIC) for gradient pattern tests 

(10.95) than that for symmetric pattern tests (10.97). For LC structure, F (1,4752) = 

63.49, η2 = 0.01, with a lower mean ln (BIC) for the three LC structure (10.96) than that 

for the two LC structure (10.97). For group size, F (1,4752) = 593.70, η2 = 0.11, with a 

lower mean ln (BIC) for equal group size (10.96) than that for unequal group size 

(10.98). For proportion of DIF items, F (2,4752) = 106.74, η2 = 0.04, Tukey’s HSD was 

used to assess the group differences for proportion of DIF and all three pairs of group 

differences were found to be statistically significant. Mean ln (BIC) for 60% DIF was 

10.96, for 40% DIF 10.97, and for 20% DIF 10.98.  
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Table 10 
Summary Table for Effects of Five Manipulated Factors on ln (BIC) 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F P η2 

n_of_items 1334.959 1 1334.959 1034694.768 < .001 .995 

p_of_DIF .275 2 .138 106.738 < .001 .043 

DIF_type .324 1 .324 250.779 < .001 .050 

LC_structure .082 1 .082 63.491 < .001 .013 

group_size .766 1 .766 593.701 < .001 .111 

n_of_items * p_of_DIF .002 2 .001 .812 .444 < .001 

n_of_items * DIF_type .025 1 .025 19.192 < .001 .004 

n_of_items * LC_structure < .001 1 < .001 .282 .595 < .001 

n_of_items * group_size .001 1 .001 1.036 .309 < .001 

p_of_DIF * DIF_type .061 2 .031 23.791 < .001 .010 

p_of_DIF * LC_structure .020 2 .010 7.867 < .001 .003 

p_of_DIF * group_size .010 2 .005 3.955 .019 .002 

DIF_type * LC_structure .098 1 .098 75.924 < .001 .016 

DIF_type * group_size .001 1 .001 .854 .355 < .001 

LC_structure * group_size .001 1 .001 .841 .359 < .001 

n_of_items * p_of_DIF * 

DIF_type 

.013 2 .006 4.963 .007 .002 

n_of_items * p_of_DIF * 

LC_structure 

.002 2 .001 .637 .529 < .001 

n_of_items * p_of_DIF * 

group_size 

8.685E-

006 

2 4.342E-

006 

.003 .997 < .001 

n_of_items * DIF_type * 

LC_structure 

.009 1 .009 6.626 .010 .001 

n_of_items * DIF_type * 

group_size 

1.731E-

007 

1 1.731E-

007 

< .001 .991 < .001 

n_of_items * LC_structure 

* group_size 

< .001 1 < .001 .297 .586 < .001 

p_of_DIF * DIF_type * 

LC_structure 

.008 2 .004 3.208 .041 .001 

p_of_DIF * DIF_type * 

group_size 

.007 2 .003 2.594 .075 .001 

p_of_DIF * LC_structure * 

group_size 

.002 2 .001 .613 .542 < .001 
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DIF_type * LC_structure * 

group_size 

.026 1 .026 20.164 < .001 .004 

n_of_items * p_of_DIF * 

DIF_type * LC_structure 

.004 2 .002 1.641 .194 .001 

n_of_items * p_of_DIF * 

DIF_type * group_size 

.005 2 .002 1.931 .145 .001 

n_of_items * p_of_DIF * 

LC_structure * group_size 

.003 2 .001 1.029 .357 < .001 

n_of_items * DIF_type * 

LC_structure * group_size 

.002 1 .002 1.549 .213 < .001 

p_of_DIF * DIF_type * 

LC_structure * group_size 

.003 2 .002 1.254 .285 .001 

n_of_items * p_of_DIF * 

DIF_type * LC_structure * 

group_size 

.006 2 .003 2.270 .103 .001 

Error 6.131 4752 .001    

Total 1342.846 4799     

 

Only the interaction between DIF type and LC structure was found to be 

interpretable with η2 = 0.02. Simple effects analyses were used to examine difference 

between two levels of DIF type at each level of LC structure. Figure 4 shows that mean ln 

(BIC) is larger for the two LC structure than three LC structure at symmetric DIF level 

while it is smaller for the two LC structure than three LC structure at gradient DIF level. 

The means and SDs of DIF pattern by LC structure are showed in Table 11.   

Symmetric tests with two LC structure got lowest mean ln (BIC) = 10.99 (SD < 

0.01). Gradient tests with two LC structure had mean ln (BIC) = 10.96 (SD < 0.01). 

Symmetric tests with three LC structure had mean ln (BIC) = 10.97 (SD < 0.01). 

Gradient tests with three LC structure had mean ln (BIC) = 10.96 (SD < 0.01).   
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Figure 4 
Plot for Mean Difference of ln (BIC) for DIF Type by LC Structure Interaction 
 

 

Table 11 
Means and SDs of ln (BIC) for DIF Type by LC Structure Interaction 

DIF Type LC Structure Mean SD 

Symmetric 
Two LC 10.99 .001 

Three LC  10.97 .001 

Gradient 
Two LC  10.96 .001 

Three LC  10.96 .001 
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Parameter Recovery 

 Parameter recovery consists of two parts: classifier (i.e., LC indicator parameter) 

recovery R# and item level DIF recovery 9+. Comparisons were conducted based on 

manipulated factors: test length, proportion of DIF, types of DIF pattern, and type of 

latent structure which included a different number of LC and a different size of LC. Total 

parameter recovery simulations for 48 situations took 26 hours. Layouts of tables and 

figures are organized to reflect comparisons’ logic across different manipulated factors.  

Classifier Parameter Recovery 

 There are 12 figures with the same layout for classifier parameter recovery in this 

section, and an ANOVA is conducted afterwards to assess the main effects and 

interactions effects of the five manipulated factors on classifier parameter recovery. Each 

figure describes classifier parameter recovery for a test type which includes four kinds of 

LC group sizes. The top two plots of each figure are for simulated datasets which have 

two LC in which the left one has LC of equal size (1,500 and 1,500) while the right plot 

has LC of unequal size (2,000 and 1,000). The lower two plots of each figure are for 

simulated datasets which have a three LC structure. The lower left plot is for the 

simulated dataset with three LC of equal size (1,000, 1,000 and 1,000) and the lower right 

plot is for the simulated dataset with three LC of unequal size (1,500, 1,000, and 500).  

 Uppercase P refers to the classifier parameter R#; the true probability for each LC 

is indicated in the title of each plot. Mean P refers to the mean probability of the LC with 

200 replications. Points of probabilities of the classifier for each scenario are connected 

into lines in order to show fluctuations of the classifier parameters for the replications. 
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For the two LC structure, a green horizontal line is added to mark the true proportion of 

LC and a red horizontal line marks the mean of the classifier parameter across 200 

replications. For the three LC structure, the green solid line and green dotted line, 

respectively, indicate the LC with largest true proportion and smallest true proportion 

among three LC; the red solid line and red dotted line indicate the mean of the largest 

proportion and the mean of the smallest proportion among three LC respectively.   

 Classifier parameter recovery for test 1002s: for the 1002s_lc2_e scenario, the 

mean probability of the LC with a larger proportion was 0.52 (SD = 0.02), which nearly 

overlapped with the true proportion. For 1002s_lc2_u, the mean was 0.52 with SD 0.03, 

but it failed to recover the true probability of 0.67. 

 For 1002s_lc3_e, the mean for the LC with the largest proportion was 0.40 (SD = 

0.04) and the mean for the LC with the smallest proportion was 0.28 (SD = 0.03). For 

1002s_lc3_u, the mean for the LC with the largest proportion was 0.39 (SD = 0.04) and 

the mean for the LC with the smallest proportion was 0.29 (SD = 0.03).  



 

61 
 

 

Figure 5 
Classifier Parameter Recovery for Test 1002s 
 

Classifier parameter recovery for test 1002g: for the 1002g_lc2_e scenario, the 

mean probability of the LC with the larger proportion was 0.52 (SD = 0.02), which nearly 

overlapped with the true proportion. For 1002g_lc2_u, the mean was 0.52 with SD 0.01, 

which failed to recover the true probability of 0.67. 

 For 1002g_lc3_e, the mean for the LC with the largest proportion was 0.40 (SD = 

0.04) and the mean for the LC with the smallest proportion was 0.28 (SD = 0.03). For 

1002g_lc3_u, the mean for the LC with the largest proportion was 0.38 (SD = 0.04) and 

the mean for the LC with the smallest proportion was 0.29 (SD = 0.03).  

 There was nearly no difference between the 1002s and 1002g test type. For both 

test types, there were acceptable classifier recoveries in situations with the equal group 
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design. However, classifier recoveries in situations with unequal LC sizes were much 

worse.  

 

Figure 6 
Classifier Parameter Recovery for Test 1002g 

Classifier parameter recovery for test 1004s: the mean of the classifier 

parameter for 1004s_lc2_e was 0.52 (SD = 0.03) and the mean of the classifier parameter 

for 1004s_lc2_u was 0.55 (SD = 0.06) which was slightly higher than 1004s_lc2_e. For 

the three LC structure with an equal group design, the mean of the classifier parameter 

for the LC with the larger proportion was 0.41 (SD = 0.05) and for the LC with the 

smaller proportion was 0.27 (SD = 0.03). For the three LC structure with unequal size 

design (1004s_lc3_e), the mean of the classifier parameter for the LC with the larger 

proportion was 0.39 (SD = 0.05) and for that with the smaller proportion was 0.28 (SD = 
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0.04). Although the true proportions were quite different between the two LC3 situations, 

classifier parameter recoveries were quite similar.   

 

Figure 7 
Classifier Parameter Recovery for Test 1004s 

Classifier parameter recovery for test 1004g: the mean of the classifier 

parameter for 1004g_lc2_e was 0.52 (SD = 0.02) and the mean of the classifier parameter 

for 1004g_lc2_u was 0.52 (SD = 0.02). For the three LC structure with an equal group 

design (1004g_lc3_e), the mean of the classifier parameter for the LC with the larger 

proportion was 0.40 (SD = 0.05) and for the LC with the smaller proportion was 0.28 (SD 

= 0.04). For the three LC structure with an unequal size design (1004g_lc3_u), the mean 

of the classifier parameter for the LC with the larger proportion was 0.39 (SD = 0.04) and 

for that with the smaller proportion was 0.28 (SD = 0.04).  
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Although the true proportions were quite different between the LC2 and LC3 

designs, the classifier parameter recoveries were quite similar for test type 1004g. 

 

Figure 8 
Classifier Parameter Recovery for Test 1004g 

Classifier parameter recovery for test 1006s: the mean of the classifier for 

1006s_lc2_e was 0.52 with SD of 0.02 and the mean of the classifier for 1006s_lc2_u 

was 0.58 with SD of 0.06. The classifier parameter recovery showed some higher value 

for the unequal group design in the LC2 structure, but it was still far from the true 

proportion (0.67). As for the LC3 structure, the mean of the classifier for the larger 

proportion in 1006s_lc3_e was 0.4 (SD = 0.04) and for the smaller proportion was 0.28 

(SD = 0.03). The mean of the classifier for the larger proportion in 1006s_lc3_u was 0.4 

(SD = 0.05) and for the smaller proportion was 0.28 (SD = 0.04).  
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Figure 9 
Classifier Parameter Recovery for Test 1006s 

Classifier parameter recovery for test 1006g: the mean of the classifier for 

1006s_lc2_e was 0.52 with a SD of 0.02 and the mean of classifier for 1006s_lc2_u was 

0.54 with a SD of 0.04. The classifier parameter recovery showed some increase for the 

unequal group design in an LC2 structure, but it was still far from the true proportion 

(0.67). As for the LC3 structure, mean of the classifier for the larger proportion in 

1006s_lc3_e was 0.4 (SD = 0.05) and for the smaller proportion was 0.27 (SD = 0.04). 

The mean of the classifier for the larger proportion in 1006s_lc3_u was 0.40 (SD = 0.05) 

and for the smaller proportion was 0.28 (SD = 0.04).  

There was little difference in performance of classifier parameter recovery 

between 1006s and 1006g. The Rasch mixture model failed to distinguish LC size 

differences in the unequal design.  
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Figure 10 
Classifier Parameter Recovery for Test 1006s 

Classifier parameter recovery for test 3006s: the mean of the classifier 

parameter for 3006s_lc2_e was 0.52 with SD 0.01 and the mean of the classifier 

parameter for 3006s_lc2_u was 0.57 with SD 0.05. The mean of the classifier parameter 

for the largest proportion LC and smallest proportion LC in 3006s_lc3_e was 0.41 (SD = 

0.05) and 0.26 (SD = 0.04), respectively. The mean of the classifier parameter for the 

largest proportion LC and smallest proportion LC in 3006s_lc3_u was 0.42 (SD = 0.06) 

and 0.26 (SD = 0.05). 
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Figure 11 
Classifier Parameter Recovery for Test 3006s 

Classifier parameter recovery for test 3006g: the mean of the classifier 

parameter for 3006g_lc2_e was 0.52 with SD 0.02 and the mean of the classifier 

parameter for 3006g_lc2_u was 0.54 with SD 0.04. The mean of the classifier parameter 

for the largest proportion LC and smallest proportion LC in 3006g_lc3_e was 0.44 (SD = 

0.05) and 0.24 (SD = 0.04) respectively. The mean of the classifier parameter for the 

largest proportion LC and the smallest proportion LC in 3006s_lc3_u was 0.41 (SD = 

0.06) and 0.27 (SD = 0.05). 

Classifier parameter recoveries were acceptable for the dataset with equal LC 

sizes in both 3006s and 3006g. As tests with the same proportion (20%) of DIF items but 

larger test length, 3006s and 3006g had slightly better classifier parameter recovery than 
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tests with the same proportion (20%) of DIF items but shorter test length 1002s and 

1002g. 

 

Figure 12 
Classifier Parameter Recovery for Test 3006g 

Classifier parameter recovery for test 3012s: the mean of the classifier 

parameter for 3012s_lc2_e was 0.52 with SD 0.01 and the mean of the classifier 

parameter for 3012s_lc2_u was 0.63 with SD 0.04. The mean of the classifier parameter 

for the largest proportion LC and the smallest proportion LC in 3012s_lc3_e was 0.38 

(SD = 0.03) and 0.29 (SD = 0.03), respectively. The mean of the classifier parameter for 

the largest proportion LC and smallest proportion LC in 3012s_lc3_u was 0.43 (SD = 

0.05) and 0.25 (SD = 0.04). 
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Figure 13 
Classifier Parameter Recovery for Test 3012s 

Classifier parameter recovery for test 3012g: the mean of the classifier 

parameter for 3012g_lc2_e was 0.52 with SD 0.02 and the mean of the classifier 

parameter for 3012g_lc2_u was 0.58 with SD 0.05. The mean of the classifier parameter 

for the largest proportion LC and smallest proportion LC in 3012g_lc3_e was 0.43 (SD = 

0.05) and 0.25 (SD = 0.05), respectively. The mean of the classifier parameter for the 

largest proportion LC and the smallest proportion LC in 3012g_lc3_u was 0.40 (SD = 

0.06) and 0.27 (SD = 0.04). 

 As the mean of the simulated proportions got closer to true proportions, classifier 

parameter recoveries for test 3012 were better than those for test 3006. For test type 

3012, the classifier recovery for the test with symmetric DIF pattern 3012s was better 

than that for the test with gradient DIF 3012g across all four LC size situations. Once 



 

70 
 

again, with the same proportion (40%) of DIF items, the test with longer test length 

(3012) showed better performance on classifier recovery than the test with shorter test 

length (1012).  

 

Figure 14 
Classifier Parameter Recovery for Test 3012g 

Classifier parameter recovery for test 3018s: the mean of the classifier 

parameter for 3018s_lc2_e was 0.51 with SD < 0.01 and the mean of the classifier 

parameter for 3018s_lc2_u was 0.65 with SD 0.02. The mean of the classifier parameter 

for the largest proportion LC and the smallest proportion LC in 3018s_lc3_e was 0.36 

(SD = 0.02) and 0.31 (SD = 0.02), respectively. The mean of the classifier parameter for 

the largest proportion LC and the smallest proportion LC in 3018s_lc3_u was 0.46 (SD = 

0.04) and 0.21 (SD = 0.04). 
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Classifier recovery for test 3018s was nearly perfect as all means of classifier 

parameters nearly overlapped with the true proportions, and there were small fluctuations 

across all four kinds of group size designs, which indicated stable performance of the 

Rasch mixture model.  

 

Figure 15 
Classifier Parameter Recovery for Test 3018s  

Classifier parameter recovery for test 3018g: The mean of the classifier 

parameter for 3018g_lc2_e was 0.52 with SD 0.01 and the mean of the classifier 

parameter for 3018g_lc2_u was 0.61 with SD 0.04. The mean of the classifier parameter 

for the largest proportion LC and the smallest proportion LC in 3018g_lc3_e was 0.4 (SD 

= 0.04) and 0.28 (SD = 0.03), respectively. The mean of the classifier parameter for the 

largest proportion LC and the smallest proportion LC in 3018g_lc3_u was 0.41 (SD = 

0.05) and 0.26 (SD = 0.04). 
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 Classifier recovery was better for test for 3018s than that for test 3018g. For tests 

with 60% of DIF items, tests with longer length (3018s and 3018g) had better classifier 

recovery than tests with shorter length (1006s and 1006g).   

 

Figure 16 
Classifier Parameter Recovery for Test 3018g 

ANOVA on Classifier Parameter Recovery  

An ANOVA was conducted to summarize effects of manipulated factors and 

interactions among them on classifier parameter recovery by using RMSE of classifier 

parameter as the dependent variable (Table 12). While the independence and normality 

assumptions of analysis of variance were met, a statistically significant (p < .01) violation 

of homogeneity was found for number of items, proportion of DIF, DIF type, LC 

structure and group size. However, analysis of variance is robust with respect to violation 

of homogeneity of variance with a balanced design.  
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  Number of items was found to have a medium effect size, F (1,9552) = 943.88, 

S" = 0.09, with lower mean RMSE for 30-item tests (0.09, SD < 0.01) than for 10-item 

tests (0.12, SD < 0.01). Main effect of DIF type was found to have a small effect size, F 

(1,9552) = 544.10, S" = 0.05, with higher mean RMSE for tests with gradient DIF (0.11, 

SD < 0.01) than for tests with symmetric DIF (0.09, SD < 0.01). The main effect of LC 

structure was found to have a medium effect size, F (1,9552) = 908.58, S" = 0.09, with a 

higher mean RMSE for the three LC structure (0.12, SD < 0.01) than for the two LC 

structure (0.09, SD < 0.01). A medium effect size was found for the proportion of DIF, F 

(2,9552) = 417.80, S" = 0.08. Tukey’s HSD post hoc test was used to examine 

differences for proportion of DIF. At the p < 0.05 level, significant differences were 

found between 20% DIF tests and 40% DIF tests, 20% DIF tests and 60% DIF tests, and 

40% DIF tests and 60% DIF tests. Mean RMSE for 20% DIF tests, 40% DIF tests and 

60% DIF tests were 0.12, 0.10 and 0.09, respectively. As proportion of DIF increased, 

RMSE decreased, which indicated an increase of RMM model fit from the perspective of 

classifier parameter recovery.      
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Table 12 
Summary Table for Effects of Five Manipulated Factors on RMSE of Classifier Recovery  

Source 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

n_of_items 2.090 1 2.090 943.879 < 0.001 .090 

p_of_DIF 1.851 2 .925 417.795 < 0.001 .080 

DIF_type 1.205 1 1.205 544.100 < 0.001 .054 

LC_structure 2.012 1 2.012 908.576 < 0.001 .087 

group_size 17.055 1 17.055 7700.865 < 0.001 .446 

n_of_items * p_of_DIF .577 2 .288 130.238 < 0.001 .027 

n_of_items * DIF_type .554 1 .554 250.099 < 0.001 .026 

n_of_items * LC_structure .501 1 .501 226.015 < 0.001 .023 

n_of_items * group_size 2.263 1 2.263 1021.778 < 0.001 .097 

p_of_DIF * DIF_type .128 2 .064 28.971 < 0.001 .006 

p_of_DIF * LC_structure .085 2 .042 19.164 < 0.001 .004 

p_of_DIF * group_size .415 2 .207 93.593 < 0.001 .019 

DIF_type * LC_structure .001 1 .001 .362 .548 < 

0.001 

DIF_type * group_size .179 1 .179 80.621 < 0.001 .008 

LC_structure * group_size 3.033 1 3.033 1369.319 < 0.001 .125 

n_of_items * p_of_DIF * 

DIF_type 

.023 2 .011 5.096 .006 .001 

n_of_items * p_of_DIF * 

LC_structure 

.051 2 .025 11.445 < 0.001 .002 

n_of_items * p_of_DIF * 

group_size 

.006 2 .003 1.377 .252 < 

0.001 

n_of_items * DIF_type * 

LC_structure 

.119 1 .119 53.516 < 0.001 .006 

n_of_items * DIF_type * 

group_size 

< 0.001 1 < 

0.001 

.071 .790 < 

0.001 

n_of_items * LC_structure * 

group_size 

.171 1 .171 77.172 < 0.001 .008 

p_of_DIF * DIF_type * 

LC_structure 

.009 2 .005 2.061 .127 < 

0.001 

p_of_DIF * DIF_type * 

group_size 

.044 2 .022 9.981 < 0.001 .002 

p_of_DIF * LC_structure * 

group_size 

.512 2 .256 115.697 < 0.001 .024 
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DIF_type * LC_structure * 

group_size 

.269 1 .269 121.328 < 0.001 .013 

n_of_items * p_of_DIF * 

DIF_type * LC_structure 

.075 2 .037 16.865 < 0.001 .004 

n_of_items * p_of_DIF * 

DIF_type * group_size 

.014 2 .007 3.083 .046 .001 

n_of_items * p_of_DIF * 

LC_structure * group_size 

.253 2 .127 57.131 < 0.001 .012 

n_of_items * DIF_type * 

LC_structure * group_size 

.043 1 .043 19.370 < 0.001 .002 

p_of_DIF * DIF_type * 

LC_structure * group_size 

.039 2 .020 8.834 < 0.001 .002 

n_of_items * p_of_DIF * 

DIF_type * LC_structure * 

group_size 

.045 2 .023 10.253 < 0.001 .002 

Error 21.154 9552 .002    

Total 156.149 9600     

 

There were six two-way interactions found to have interpretable effect sizes (S" > 

0.01) and they were: number of items by proportion of DIF, F (2,9552) = 130.24, S" = 

0.03, number of items by DIF type, F (1,9552) = 250.10, S" = 0.03, number of items by 

LC structure, F (1,9552) = 226.02, S" = 0.02, number of items by group  size, F (1,9552) 

= 1021.70, S" = 0.10, proportion of DIF by group size, F (2,9552) = 93.59, S" = 0.02, 

and LC structure by group size, F (1,9552), S" = 0.13. There were two three-way 

interpretable interactions which were proportion of DIF by LC structure by group size, F 

(2,9552) = 115.70, S" = 0.02, and DIF type by LC structure by group size, F (1,9553) = 

121.33, S" = 0.01. There was one four-way interpretable interaction which was number 

of items by proportion of DIF by LC structure by group size, F (2,9552) = 57.13, S" = 

0.01.  



 

76 
 

Figure 17 displays the group mean RMSEs for the number of items by proportion 

of DIF interaction. When controlling the number of items to be the same, tests with a 

larger proportion of DIF items had a lower mean RMSEs of classifier recovery. As the 

number of items increased from 10 items to 30 items, RMSE decreased for all levels of 

proportion of DIF but larger proportion of DIF had a larger RMSE decrease. Means and 

SDs of RMSE of classifier recovery for every level of number of items at each level of 

proportion of DIF are shown in Table 13.      

 

Figure 17 
Plot for RMSE of Classifier Recovery for Number of Items by Proportion of DIF 
Interaction 
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Table 13 
Means and SDs of RMSE of Classifier Recovery for Number of Items by Proportion of 
DIF Interaction 

N of Items P of DIF Mean SD 

10 

20% .12 .001 

40% .12 .001 

60% .11 .001 

30 

20% .12 .001 

40% .09 .001 

60% .06 .001 

 

Figure 18 displays the group mean RMSEs for the number of items by DIF Type 

Interaction. When controlling the number of items, tests with a symmetric DIF pattern 

had a lower mean RMSEs of classifier recovery than tests with gradient DIF. As the 

number of items increased from 10 items to 30 items, RMSE decreased for both levels of 

DIF types but tests with symmetric DIF got larger RMSE decrease. Means and SDs of 

RMSE of classifier recovery for every level of number of items at each level of DIF type 

are shown in Table 14.     
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Figure 18 
Plot for RMSE of Classifier Recovery for Number of Items by DIF Type Interaction 

 

 

Table 14 
Means and SDs of RMSE of Classifier Recovery for Number of Items by DIF Type 
Interaction 

N of Items DIF Type Mean SD 

10 
Symmetric .11 .001 

Gradient .12 .001 

30 
Symmetric .07 .001 

Gradient .11 .001 
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Figure 19 displays the group mean RMSEs for the number of items by LC 

structure interaction. When controlling the number of items, tests with the two LC 

structure had a lower mean RMSEs of classifier recovery than tests with the three LC 

structure. As the number of items increased from 10 items to 30 items, RMSE decreased 

for all levels of proportion of DIF but tests with a three LC structure showed a larger 

RMSE decrease. Means and SDs of RMSE of classifier recovery for every level of 

number of items at each level of LC structure are shown in Table 15.      

 

Figure 19 
Plot for RMSE of Classifier Recovery for Number of Items by LC Structure Interaction 
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Table 15 
Means and SDs of RMSE of Classifier Recovery for Number of Items by LC Structure 
Interaction 

N of Items LC Structure Mean SD 

10 
Two LC  .11 .001 

Three LC .13 .001 

30 
Two LC .07 .001 

Three LC  .11 .001 

 

Figure 20 displays the group mean RMSEs for the number of items by group size 

interaction. When controlling the number of items, tests with an equal group size had a 

lower mean RMSE of classifier recovery than tests with an unequal group size. As the 

number of items increased from 10 items to 30 items, RMSE decreased for tests with an 

unequal group size but remained consistent for tests with two LC structure. Means and 

SDs of RMSE of classifier recovery for every level of number of items at each level of 

group size are shown in Table 16.      
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Figure 20 
Plot for RMSE of Classifier Recovery for Number of Items by Group Size Interaction 
 

 

 

Table 16 
Means and SDs of RMSE of Classifier Recovery for Number of Items by Group Size 
Interaction 

N of Items Group Size Mean SD 

10 
Equal .06 .001 

Unequal .18 .001 

30 
Equal .06 .001 

Unequal .12 .001 
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Figure 21 displays the group mean RMSE for the proportion of DIF by group size 

interaction. When controlling the proportion of DIF, tests with an equal group size had a 

lower mean RMSEs of classifier recovery than tests with an unequal group size. As the 

proportion of DIF increased, RMSE decreased for both levels of group size but tests with 

the unequal group size had a larger RMSE decrease. Additionally, the trends of RMSE 

decreases for both levels of group size were consistent against the proportion of DIF. 

Means and SDs of RMSE of classifier recovery for every level of proportion of DIF at 

each level of group size are shown in Table 17.      

 

Figure 21 
Plot for RMSE of Classifier Recovery for Proportion of DIF by Group Size Interaction 
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Table 17 
Means and SDs of RMSE of Classifier Recovery for Proportion of DIF by Group Size 
Interaction 

P of DIF Group Size Mean SD 

20% 
Equal .07 .001 

Unequal  .17 .001 

40% 
Equal  .06 .001 

Unequal .15 .001 

60% 
Equal  .05 .001 

Unequal  .12 .001 

 

Figure 22 displays the group mean RMSE for the LC structure by group size 

interaction. When controlling LC structure, tests with equal size had a lower mean 

RMSEs of classifier recovery than tests with unequal size. Means and SDs of RMSE of 

classifier recovery for every level of LC structure at each level of group size are shown in 

Table 18. The two LC structure with equal group size had a mean RMSE of 0.03 (SD < 

0.01), the three LC structure with equal group size had a mean RMSE of 0.09 (SD < 

0.01), the two LC structure with unequal group size had a mean RMSE of 0.15 (SD < 

0.01), and the three LC structure with unequal group size had a mean RMSE of 0.14 (SD 

< 0.01). Means and SDs of RMSE of classifier recovery for every level of LC structure at 

each level of group size are shown in Table 18.      
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Figure 22 
Plot for RMSE of Classifier Recovery for LC Structure by Group Size Interaction 
 
 
 
 
Table 18 
Means and SDs of RMSE of Classifier Recovery for LC Structure by Group Size 
Interaction 

LC Structure Group Size Mean SD 

Two LC 
Equal  .03 .001 

Unequal .15 .001 

Three LC 
Equal  .09 .001 

Unequal  .14 .001 
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There was a small effect size (S" = 0.02) for the three-way interaction of 

proportion of DIF by LC structure by group size. Figure 23 shows this three-way 

interaction through splitting plots by group size. For equal group size tests, the interaction 

between LC structure and proportion of DIF was similar to the above two-way LC 

structure by proportion of DIF interaction. For unequal group size tests, at 20% DIF 

level, the two LC structure tests had larger RMSEs of (mean = 0.19, SD < 0.01) than the 

three LC structure tests (mean = 0.15, SD < 0.01); at 40% DIF level, the two LC structure 

tests had the same RMSEs of (mean =  0.15, SD < 0.01) as the three LC structure tests 

(mean = 0.15, SD < 0.01); at 60% DIF level, the two LC structure tests had lower RMSEs 

of (mean =  0.11, SD < 0.01) than the three LC structure tests (mean = 0.13, SD < 0.01). 

Means and SDs of RMSE of classifier recovery for every level of proportion of DIF at 

each level of LC structure at each level of group size are shown in Table 19.      

 
 

Figure 23 
Plot for RMSE of Classifier Recovery for Proportion of DIF by LC Structure by Group 
Size Interaction  
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Table 19 
Means and SDs of RMSE of Classifier Recovery for Proportion of DIF by LC Structure 
by Group Size Interaction 

 P of DIF LC Structure Group Size Mean SD 

20% 

Two LC  
Equal  .03 .002 

Unequal  .19 .002 

Three LC  
Equal  .11 .002 

Unequal  .15 .002 

40% 

Two LC  
Equal  .03 .002 

Unequal  .14 .002 

Three LC  
Equal  .10 .002 

Unequal  .15 .002 

60% 

Two LC  
Equal  .03 .002 

Unequal  .11 .002 

Three LC  
Equal  .08 .002 

Unequal  .13 .002 
 

There was a small effect size (S" = 0.01) for the three-way interaction of DIF type 

by LC structure by group size. Figure 24 shows this three-way interaction through 

splitting plots by group size. For equal group size tests, the interaction between DIF type 

and proportion of DIF was similar to the above two-way DIF type by proportion of DIF 

interaction. For unequal group size, at the symmetric DIF level, the two LC structure tests 

had lower RMSEs of (mean = 0.13, SD < 0.01) than the three LC structure tests (mean = 

0.13, SD < 0.01); at gradient DIF level, the two LC structure tests had larger RMSEs 

(mean =  0.17, SD < 0.01) than the three LC structure tests (mean = 0.15, SD < 0.01. 

Means and SDs of RMSE of classifier recovery for every level of DIF type at each level 

of LC structure at each level of group size are shown in Table 20.      
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Figure 24 
Plot for RMSE of Classifier Recovery for DIF Type by LC Structure by Group Size 
Interaction 
 
Table 20 
Means and SDs of RMSE of Classifier Recovery for DIF Type by LC Structure by Group 
Size Interaction 

DIF Type LC Structure Group Size Mean SD 

Symmetric 

Two LC  
Equal  .03 .001 

Unequal  .13 .001 

Three LC  
Equal  .08 .001 

Unequal  .13 .001 

Gradient 

Two LC  
Equal  .03 .001 

Unequal  .17 .001 

Three LC 
Equal  .11 .001 

Unequal  .15 .001 

 

There was a small effect size (S" = 0.01) for the only four-way interaction of 

number of items by DIF type by LC structure by group size interaction. Means and SDs 
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of RMSE of classifier recovery for every level of number of items at each level of DIF 

type at each level of LC structure at each level of group size are shown in Table 21.      

Table 21 
Means and SDs of RMSE of Classifier Recovery for Number of Items by Proportion of 
DIF by LC Structure by Group Size Interaction 

N of Items P of DIF LC Structure Group Size Mean SD 

10 

20% 

Two LC  
Equal .03 .002 

Unequal .21 .002 

Three LC  
Equal .08 .002 

Unequal .17 .002 

40% 

Two LC  
Equal .03 .002 

Unequal .19 .002 

Three LC  
Equal .09 .002 

Unequal .16 .002 

60% 

Two LC  
Equal .03 .002 

Unequal .16 .002 

Three LC  
Equal .09 .002 

Unequal .15 .002 

30 

20% 

Two LC  
Equal .03 .002 

Unequal .16 .002 

Three LC  
Equal .13 .002 

Unequal .14 .002 

40% 

Two LC  
Equal .03 .002 

Unequal .10 .002 

Three LC  
Equal .10 .002 

Unequal .13 .002 

60% 

Two LC  
Equal .02 .002 

Unequal .06 .002 

Three LC  
Equal .06 .002 

Unequal .10 .002 
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DIF Recovery 

 This section summarizes performance of the Rasch mixture model on detecting 

DIF from an overall perspective and individual item level across 48 simulation 

conditions. In order to avoid a label switching problem, DIF values generated from 

simulations were transformed into their absolute values. Correspondingly, when 

calculating MSE and RMSE, true DIF values were transformed into their absolute values.  

 For the two LC structure, DIF values for all items of a test including items with 

true DIF of 0.0 were calculated between two LC and then transformed to their absolute 

values. DIF recovery for the three LC structure had two parts: DIF (9+) between the 

reference LC (θ = 0) which is 1)*#! − 1)*$ and LC with θ = 1, and DIF (2 9+) between 

the reference LC and LC with θ = -1 which equals to 1)*#" − 1)*$. For instance, 

1002s_lc3_e_1 refers to DIF between the reference LC and LC with θ = 1 for an equal 

size 10-item test with 20% of DIF in a symmetric pattern, and 3012g_lc3_u_2 refers to 

DIF between the reference LC and LC with θ = -1 for an unequal size designed 30-item 

test with 40% of DIF in a gradient pattern. 

 Overall Performance of the Rasch Mixture Model on Detecting DIF: Detailed 

MSE and RMSE values are shown in Table 22. A lower MSE and a lower RMSE suggest 

a better model fit. MSE and RMSE were larger for the three LC simulations than for the 

two LC simulations. However, it would be arbitrary to conclude that the Rasch mixture 

model had better DIF recovery for a two LC structure than for a three LC structure, 

because both MSE and RMSE took the number of items on the test into account. Both 
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MSE and RMSE were reported in this study, but only RMSE would be adequate in the 

future study.  

 Tests with DIF in a symmetric DIF pattern had lower MSE and RMSE than those 

with DIF in a gradient DIF pattern after controlling for other factors, which indicated a 

better DIF recovery of the symmetric pattern. For tests with the same test length, as the 

proportion of DIF increased, MSE and RMSE decreased indicating an increasing DIF 

recovery. When controlling other factors, MSE and RMSE were smaller for simulations 

with equal LC design than for those with unequal LC design.    
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Table 22 
MSE and RMSE for 48 Simulated Conditions 

Test 
Type DIF Index Two LC  Three LC  

   
Equal Size Unequal Size Equal Size Unequal Size 

1002 S MSE  0.32 0.56 6.74 6.89 
RMSE 0.57 0.75 2.60 2.62 

G MSE  2.17 2.76 9.73 8.75 
RMSE 1.47 1.66 3.12 2.96 

1004 S MSE  0.14 0.30 6.30 6.57 
RMSE 0.37 0.55 2.51 2.56 

G MSE  2.47 2.83 14.86 15.18 
RMSE 1.57 1.68 3.85 3.90 

1006 S MSE  0.08 0.17 8.10 8.56 
RMSE 0.28 0.42 2.85 2.93 

G MSE  4.95 5.29 25.88 25.52 
RMSE 2.22 2.30 5.09 5.05 

3006 S MSE  0.42 0.62 9.56 11.69 
RMSE 0.65 0.79 3.09 3.42 

G MSE  1.99 2.65 16.56 16.80 
RMSE 1.41 1.63 4.07 4.10 

3012 S MSE  0.20 0.28 9.28 13.65 
RMSE 0.45 0.53 3.05 3.69 

G MSE  3.93 4.13 26.83 26.23 
RMSE 1.98 2.03 5.18 5.12 

3018 S MSE  0.11 0.14 16.62 15.84 
RMSE 0.34 0.38 4.08 3.98 

G MSE  8.34 8.46 47.93 48.27 
RMSE 2.89 2.91 6.92 6.95 

 

 Item Level DIF Recovery: Detailed item level DIF recovery logit mean 

differences are shown from Table 23 to Table 32 based on test type. In each of tables, M 

refers to mean of DIF values from 200 replications for the corresponding item. SD is the 

standard deviation of DIF values for a certain item. Detailed DIF recovery logit mean 

differences for each simulated scenario can be found in Appendix B.  
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 DIF recovery logit mean differences for 10-item tests with 20% of DIF items (i.e., 

1002) for s and g are shown in Table 23 and Table 24. For DIF items in 1002s, DIF 

recoveries were good for the two LC structure with equal group size and unequal group 

size except for item 2 DIF (M = 1.28, SD = 0.54) in 1002s_lc_u. But for the three LC 

structure, overall DIF recovery logit mean difference was not good except for 

1002s_lc3_u_1 and all four types of three LC DIF recovery logit mean differences 

showed high standard deviations (SD > 1) except for item 1 (SD = 0.86) in 

1002s_lc3_u_1.  

 For DIF items in 1002g, all DIF recoveries were poor except for 1002g_lc3_u_1. 

DIF recovery logit mean differences were less than half the size for items with true DIF = 

2.00 in both two LC structures. For items with larger DIF (true DIF = 2.00), SD were 

bigger than those with smaller DIF (true DIF = 1.00). The Rasch mixture model failed to 

capture the true DIF between the reference LC (θ = 0) and LC with θ = -1 

(1002g_lc3_e_2 and 1002g_lc3_u_2). All non-DIF items (true DIF = 0.00) had DIF 

recovery logit mean differences < 0.45.      
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Table 23 
DIF Recovery Logit Mean Differences for 1002s   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 -1.80 1.91 0.31 1.74 0.39 2.26 1.47 1.57 0.86 2.20 1.42 1.92 1.13 
item 2 1.80 1.60 0.69 1.28 0.54 3.02 1.77 2.23 1.42 2.86 1.72 2.41 1.43 
item 3 0.00 0.20 0.16 0.17 0.15 0.42 0.36 0.38 0.34 0.40 0.31 0.38 0.34 
item 4 0.00 0.18 0.16 0.18 0.16 0.41 0.42 0.39 0.33 0.42 0.50 0.37 0.33 
item 5 0.00 0.19 0.14 0.17 0.16 0.40 0.36 0.39 0.34 0.40 0.35 0.38 0.30 
item 6 0.00 0.18 0.14 0.20 0.16 0.43 0.39 0.40 0.34 0.39 0.34 0.39 0.42 
item 7 0.00 0.17 0.16 0.20 0.18 0.41 0.33 0.40 0.34 0.41 0.38 0.39 0.34 
item 8 0.00 0.17 0.15 0.18 0.15 0.40 0.33 0.42 0.66 0.36 0.36 0.36 0.33 
item 9 0.00 0.18 0.16 0.21 0.19 0.38 0.32 0.44 0.39 0.42 0.34 0.39 0.40 
item 10 0.00 0.19 0.17 0.21 0.16 0.35 0.32 0.39 0.39 0.36 0.31 0.36 0.31 

 

Table 24 
DIF Recovery Logit Mean Differences for 1002g   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 2.00 0.96 0.78 0.73 0.56 3.02 1.78 2.21 1.43 2.67 1.89 2.29 1.60 
item 2 1.00 0.82 0.73 0.68 0.55 1.20 0.65 1.12 0.83 1.20 0.73 1.16 0.85 
item 3 0.00 0.38 0.24 0.36 0.26 0.67 0.45 0.53 0.34 0.61 0.52 0.56 0.37 
item 4 0.00 0.35 0.26 0.37 0.26 0.60 0.38 0.57 0.37 0.63 0.40 0.56 0.37 
item 5 0.00 0.35 0.26 0.37 0.30 0.61 0.37 0.52 0.34 0.59 0.39 0.55 0.35 
item 6 0.00 0.38 0.28 0.37 0.36 0.63 0.50 0.54 0.34 0.61 0.40 0.55 0.36 
item 7 0.00 0.37 0.30 0.38 0.26 0.61 0.39 0.58 0.40 0.58 0.37 0.57 0.40 
item 8 0.00 0.36 0.26 0.35 0.25 0.69 0.41 0.56 0.39 0.67 0.53 0.57 0.39 
item 9 0.00 0.34 0.27 0.36 0.28 0.60 0.37 0.58 0.38 0.61 0.39 0.60 0.37 
item 10 0.00 0.37 0.28 0.33 0.27 0.64 0.42 0.57 0.43 0.63 0.40 0.60 0.43 
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DIF recovery logit differences for 10-item tests with 40% of DIF items (i.e., 

1004) are shown in Table 25 and Table 26. DIF patterns (i.e., symmetric and gradient) 

were recovered for 12 situations of test 1004s. For 1004s, the two LC structures received 

good DIF parameter recoveries; parameter recovery had larger fluctuations for items with 

larger true DIF. 1004s_lc3_e_2 and 1004s_lc3_u_2 had mean DIF much less than desired 

DIF (2*True DIF). Similar to the two LC structure, SD of DIF got larger as DIF 

increased.  

For 1004g, overall DIF recovery logit mean difference was lower than that in 

1004s, particularly for the two LC structure in which DIF items only recovered about half 

of the true DIF. There were nearly no differences between 1004g_lc3_e_1, 

1004g_lc3_e_2, 1004g_lc3_u_1 and 1004g_lc3_u_2. The Rasch mixture model failed to 

distinguish DIF for 1004g_lc3_e_2 and 1004g_lc3_u_2.   
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Table 25 
DIF Recovery Logit Mean Differences for 1004s   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 -1.80 1.80 0.22 1.73 0.33 2.40 1.41 1.87 0.98 2.32 1.52 1.94 0.93 
item 2 -0.90 0.90 0.18 0.85 0.18 1.22 0.70 1.04 0.56 1.29 0.72 1.13 0.63 
item 3 0.90 0.95 0.28 0.90 0.41 1.30 0.73 1.11 0.65 1.28 0.79 1.21 0.62 
item 4 1.80 1.73 0.44 1.42 0.45 2.93 1.76 2.33 1.46 2.79 1.81 2.54 1.45 
item 5 0.00 0.16 0.12 0.15 0.12 0.33 0.33 0.35 0.33 0.37 0.36 0.34 0.31 
item 6 0.00 0.14 0.14 0.16 0.14 0.35 0.33 0.37 0.35 0.36 0.37 0.36 0.34 
item 7 0.00 0.14 0.12 0.16 0.12 0.39 0.34 0.36 0.32 0.37 0.38 0.35 0.31 
item 8 0.00 0.15 0.11 0.15 0.12 0.40 0.42 0.38 0.37 0.37 0.39 0.34 0.33 
item 9 0.00 0.14 0.11 0.16 0.13 0.36 0.39 0.41 0.41 0.34 0.31 0.38 0.42 
item 10 0.00 0.15 0.12 0.17 0.13 0.36 0.27 0.32 0.29 0.35 0.31 0.36 0.33 

 

Table 26 
DIF Recovery Logit Mean Differences for 1004g   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 2.00 1.38 0.55 1.07 0.50 2.45 1.77 2.15 1.45 2.45 1.45 2.16 1.47 
item 2 1.50 1.02 0.42 0.85 0.47 1.58 1.10 1.42 0.87 1.49 1.13 1.43 1.02 
item 3 1.00 0.55 0.28 0.46 0.28 0.78 0.49 0.74 0.44 0.89 0.77 0.77 0.49 
item 4 0.50 0.17 0.16 0.20 0.26 0.41 0.38 0.41 0.41 0.41 0.40 0.45 0.60 
item 5 0.00 0.48 0.16 0.45 0.24 0.86 0.60 0.78 0.46 0.77 0.46 0.80 0.47 
item 6 0.00 0.51 0.19 0.42 0.19 0.88 0.54 0.75 0.38 0.84 0.52 0.78 0.46 
item 7 0.00 0.52 0.18 0.45 0.20 0.80 0.45 0.81 0.46 0.82 0.49 0.77 0.47 
item 8 0.00 0.53 0.18 0.45 0.19 0.81 0.44 0.80 0.46 0.82 0.49 0.78 0.47 
item 9 0.00 0.50 0.16 0.44 0.20 0.83 0.47 0.77 0.43 0.83 0.50 0.81 0.50 
item 10 0.00 0.50 0.20 0.43 0.20 0.85 0.52 0.78 0.52 0.88 0.54 0.79 0.47 
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DIF recovery logit mean differences for 10-item tests with 60% of DIF items (i.e., 

1006) are shown in Table 27 and Table 28. Symmetric and gradient DIF patterns were 

tested across all 12 situations of test type 1006s. Standard deviation of recovered DIF 

increased as item true DIF increased. DIF recovery logit mean differences of 

1006s_lc2_e and DIF recovery logit mean differences of 1006s_lc2_u almost overlapped 

with correspondingly true DIF. There was no difference on DIF recovery logit mean 

differences among 1006s_lc3_e_1, 1006s_lc3_e_2, 1006s_lc3_u_1 and 1006s_lc3_u_2.  

However, RMM failed to recover the magnitude of true DIF for 1006g_lc2_e and 

1006g_lc2_u. For the three LC structure of 1006g, there was no difference among 

1006g_lc3_e_1, 1006g_lc3_e_2, 1006g_lc3_u_1 and 1006g_lc3_u_2. For test 1006 with 

a gradient DIF pattern, there was an increase of recovered DIF magnitude on non-DIF 

items compared to test 1006s, especially for 1006g_lc3 in which means of DIF for non-

DIF items were greater than 1.    
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Table 27 
DIF Recovery Logit Mean Differences for 1006s   

Two LC Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 -1.80 1.82 0.2 1.68 0.24 2.52 1.29 2.07 1.08 2.29 1.47 1.95 1.05 
item 2 -1.20 1.21 0.16 1.14 0.18 1.84 1.00 1.43 0.75 1.60 0.94 1.36 0.69 
item 3 -0.60 0.59 0.17 0.56 0.16 1.00 0.57 0.88 0.59 0.85 0.53 0.81 0.44 
item 4 0.60 0.63 0.23 0.6 0.22 0.88 0.48 0.74 0.44 0.88 0.48 0.72 0.42 
item 5 1.20 1.22 0.29 1.10 0.26 1.87 0.82 1.57 0.93 1.63 0.80 1.43 0.83 
item 6 1.80 1.74 0.41 1.55 0.47 2.99 1.52 2.53 1.53 2.59 1.41 2.34 1.38 
item 7 0.00 0.13 0.11 0.14 0.11 0.33 0.34 0.38 0.36 0.34 0.35 0.37 0.36 
item 8 0.00 0.13 0.11 0.14 0.12 0.32 0.34 0.30 0.30 0.35 0.37 0.33 0.32 
item 9 0.00 0.14 0.13 0.14 0.12 0.31 0.53 0.34 0.32 0.31 0.31 0.32 0.30 
item 10 0.00 0.14 0.12 0.15 0.12 0.34 0.37 0.33 0.29 0.32 0.32 0.38 0.46 

 

Table 28 
DIF Recovery Logit Mean Differences for 1006g   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 2.00 1.25 0.41 1.00 0.39 2.17 1.43 1.95 1.59 2.04 1.46 2.06 1.54 
item 2 1.70 0.98 0.36 0.78 0.34 1.50 1.22 1.31 1.30 1.58 1.64 1.49 0.88 
item 3 1.40 0.67 0.30 0.58 0.28 1.01 0.73 0.92 0.78 0.96 0.60 1.00 0.78 
item 4 1.10 0.38 0.25 0.35 0.21 0.62 0.45 0.53 0.36 0.61 0.40 0.59 0.43 
item 5 0.80 0.17 0.14 0.18 0.15 0.43 0.56 0.43 0.52 0.42 0.44 0.44 0.55 
item 6 0.50 0.28 0.16 0.24 0.15 0.53 0.36 0.60 0.39 0.55 0.42 0.57 0.42 
item 7 0.00 0.77 0.18 0.65 0.18 1.17 0.65 1.05 0.56 1.10 0.61 1.11 0.54 
item 8 0.00 0.78 0.14 0.67 0.20 1.18 0.59 1.09 0.60 1.18 0.57 1.12 0.55 
item 9 0.00 0.76 0.17 0.67 0.22 1.15 0.60 1.07 0.58 1.15 0.61 1.15 0.64 
item 10 0.00 0.77 0.17 0.66 0.24 1.15 0.59 1.08 0.56 1.14 0.61 1.22 0.79 
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DIF recovery logit mean differences for 30-item tests with 20% of DIF items (i.e., 

3006) are shown in Table 29 and Table 30. DIF patterns were restored (i.e., the recovered 

logit mean differences had same trends with true DIF patterns) for 12 DIF recovery 

situations for test type 3006. DIF magnitude for 3006s_lc2_e, 3006s_lc2_u, 

3006s_lc3_e_1, 3006s_lc3_u_1, 3006g_lc3_e_1 and 3006g_lc3_u_1 was well captured. 

There was some shrinkage of recovered DIF for 3006g_lc2_e and 3006g_lc2_u. But 

3006s_lc3_e_2, 3006s_lc3_u_2, 3006g_lc3_e_2 and 3006g_lc3_u_2 only achieved half 

of the true DIF.  

Non-DIF items were well recovered with all means of recovered DIF below 0.30 

for 3006s and below 0.50 for 3006g. There was only a small amount of variation of logit 

differences in non-DIF items as their SDs <= 0.35.   
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Table 29 
DIF Recovery Logit Mean Differences for 3006s   

Two LC Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 -1.80 1.86 0.17 1.74 0.20 2.22 1.21 1.83 0.85 2.06 1.15 1.72 0.83 
item 2 -1.20 1.21 0.14 1.15 0.17 1.44 0.66 1.26 0.61 1.39 0.68 1.24 0.63 
item 3 -0.60 0.58 0.13 0.58 0.15 0.85 0.43 0.75 0.40 0.78 0.41 0.72 0.38 
item 4 0.60 0.63 0.21 0.56 0.20 0.85 0.42 0.73 0.41 0.79 0.40 0.74 0.41 
item 5 1.20 1.19 0.27 1.09 0.30 1.68 0.75 1.68 0.85 1.66 0.79 1.51 0.85 
item 6 1.80 1.68 0.34 1.49 0.44 2.87 2.08 2.62 1.67 2.81 1.66 2.43 1.62 
item 7 0.00 0.13 0.12 0.15 0.11 0.24 0.22 0.26 0.21 0.25 0.22 0.27 0.43 
item 8 0.00 0.12 0.09 0.14 0.11 0.24 0.21 0.23 0.20 0.24 0.21 0.26 0.23 
item 9 0.00 0.12 0.10 0.14 0.12 0.27 0.26 0.25 0.24 0.27 0.24 0.24 0.22 
item 10 0.00 0.13 0.10 0.14 0.10 0.26 0.23 0.29 0.26 0.24 0.20 0.26 0.22 
item 11 0.00 0.14 0.11 0.15 0.11 0.22 0.19 0.27 0.23 0.23 0.22 0.25 0.23 
item 12 0.00 0.13 0.09 0.16 0.12 0.26 0.21 0.25 0.19 0.25 0.20 0.27 0.19 
item 13 0.00 0.14 0.11 0.15 0.11 0.25 0.22 0.26 0.26 0.24 0.24 0.30 0.28 
item 14 0.00 0.13 0.11 0.16 0.12 0.24 0.27 0.24 0.20 0.25 0.24 0.28 0.25 
item 15 0.00 0.13 0.10 0.15 0.12 0.22 0.19 0.25 0.23 0.27 0.24 0.24 0.20 
item 16 0.00 0.13 0.09 0.14 0.10 0.22 0.18 0.27 0.24 0.23 0.19 0.27 0.23 
item 17 0.00 0.13 0.11 0.14 0.12 0.25 0.20 0.25 0.18 0.24 0.22 0.28 0.22 
item 18 0.00 0.12 0.09 0.15 0.12 0.26 0.24 0.26 0.22 0.24 0.20 0.27 0.24 
item 19 0.00 0.13 0.11 0.13 0.11 0.25 0.21 0.25 0.24 0.26 0.23 0.26 0.25 
item 20 0.00 0.13 0.11 0.13 0.12 0.28 0.35 0.25 0.27 0.27 0.31 0.27 0.26 
item 21 0.00 0.13 0.11 0.14 0.11 0.25 0.21 0.26 0.22 0.25 0.20 0.27 0.20 
item 22 0.00 0.13 0.11 0.16 0.12 0.24 0.25 0.26 0.20 0.24 0.22 0.25 0.21 
item 23 0.00 0.13 0.11 0.16 0.15 0.26 0.23 0.24 0.25 0.25 0.21 0.28 0.24 
item 24 0.00 0.13 0.10 0.14 0.11 0.25 0.26 0.25 0.21 0.25 0.24 0.26 0.22 
item 25 0.00 0.13 0.11 0.14 0.11 0.22 0.17 0.28 0.25 0.24 0.19 0.26 0.20 
item 26 0.00 0.14 0.11 0.15 0.12 0.24 0.21 0.23 0.20 0.25 0.24 0.26 0.23 
item 27 0.00 0.13 0.10 0.14 0.12 0.25 0.25 0.28 0.26 0.24 0.26 0.29 0.29 
item 28 0.00 0.13 0.10 0.14 0.13 0.23 0.21 0.25 0.19 0.24 0.23 0.23 0.21 
item 29 0.00 0.13 0.09 0.14 0.12 0.25 0.23 0.28 0.25 0.26 0.25 0.28 0.27 
item 30 0.00 0.12 0.10 0.14 0.11 0.22 0.20 0.27 0.23 0.24 0.20 0.25 0.23 
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Table 30 
DIF Recovery Logit Mean Differences for 3006g   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 2.00 1.65 0.40 1.29 0.46 2.44 1.25 2.32 1.61 2.54 1.37 2.51 1.58 
item 2 1.70 1.45 0.34 1.16 0.46 2.03 1.05 1.88 1.06 2.14 1.06 1.96 1.12 
item 3 1.40 1.17 0.26 0.97 0.31 1.75 1.58 1.43 0.84 1.62 0.75 1.55 0.86 
item 4 1.10 0.85 0.24 0.74 0.28 1.16 0.6 1.10 0.63 1.14 0.57 1.14 0.63 
item 5 0.80 0.59 0.19 0.50 0.24 0.81 0.68 0.68 0.41 0.82 0.57 0.80 0.42 
item 6 0.50 0.27 0.18 0.28 0.20 0.45 0.34 0.38 0.26 0.44 0.60 0.39 0.22 
item 7 0.00 0.28 0.14 0.24 0.15 0.45 0.25 0.46 0.30 0.45 0.29 0.41 0.26 
item 8 0.00 0.24 0.14 0.23 0.17 0.41 0.28 0.43 0.27 0.45 0.28 0.44 0.26 
item 9 0.00 0.27 0.14 0.23 0.15 0.46 0.28 0.41 0.28 0.42 0.29 0.41 0.24 
item 10 0.00 0.26 0.13 0.24 0.15 0.43 0.28 0.39 0.27 0.44 0.27 0.44 0.27 
item 11 0.00 0.25 0.14 0.24 0.16 0.46 0.28 0.44 0.28 0.45 0.29 0.43 0.25 
item 12 0.00 0.27 0.13 0.23 0.16 0.45 0.26 0.44 0.26 0.43 0.26 0.42 0.25 
item 13 0.00 0.25 0.14 0.26 0.16 0.43 0.27 0.42 0.26 0.43 0.25 0.44 0.28 
item 14 0.00 0.26 0.14 0.25 0.17 0.42 0.28 0.42 0.28 0.43 0.27 0.44 0.25 
item 15 0.00 0.26 0.12 0.25 0.16 0.42 0.28 0.41 0.25 0.45 0.28 0.42 0.25 
item 16 0.00 0.28 0.14 0.24 0.14 0.42 0.24 0.42 0.25 0.45 0.25 0.42 0.24 
item 17 0.00 0.24 0.13 0.23 0.16 0.46 0.28 0.40 0.28 0.44 0.29 0.44 0.25 
item 18 0.00 0.26 0.13 0.25 0.15 0.44 0.26 0.41 0.26 0.42 0.25 0.42 0.25 
item 19 0.00 0.26 0.13 0.24 0.15 0.45 0.31 0.39 0.25 0.43 0.27 0.44 0.27 
item 20 0.00 0.24 0.14 0.24 0.17 0.41 0.27 0.38 0.27 0.43 0.25 0.42 0.28 
item 21 0.00 0.24 0.14 0.24 0.14 0.44 0.28 0.42 0.26 0.43 0.25 0.43 0.25 
item 22 0.00 0.25 0.14 0.24 0.15 0.46 0.31 0.42 0.28 0.42 0.29 0.46 0.28 
item 23 0.00 0.27 0.14 0.24 0.14 0.43 0.26 0.44 0.28 0.42 0.27 0.42 0.27 
item 24 0.00 0.26 0.14 0.25 0.15 0.40 0.24 0.44 0.29 0.43 0.27 0.45 0.27 
item 25 0.00 0.27 0.14 0.23 0.14 0.42 0.26 0.45 0.26 0.44 0.28 0.42 0.27 
item 26 0.00 0.27 0.14 0.25 0.15 0.44 0.28 0.43 0.31 0.45 0.28 0.43 0.26 
item 27 0.00 0.26 0.14 0.25 0.15 0.42 0.27 0.41 0.29 0.45 0.30 0.45 0.25 
item 28 0.00 0.25 0.13 0.24 0.15 0.41 0.25 0.43 0.27 0.43 0.27 0.42 0.26 
item 29 0.00 0.24 0.14 0.25 0.14 0.43 0.24 0.40 0.27 0.40 0.25 0.44 0.28 
item 30 0.00 0.25 0.13 0.24 0.15 0.39 0.25 0.37 0.25 0.44 0.27 0.44 0.25 
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DIF recovery logit mean differences for 30-item tests with 40% of DIF items (i.e., 

3012) are shown in Table 31 and Table 32. Both DIF patterns were well recovered for all 

12 situations of test 3012. Variations for DIF recovery logit differences were low except 

for items (SD > 1.00) in the three LC structure with a more than medium level of DIF 

(DIF >= 1.50). 3012s_lc2_e and 3012s_lc2_u showed small DIF recovery logit mean 

differences but 3012g_lc2_e and 3012g_lc2_u demonstrated logit mean differences lower 

than true DIF. Once again, there was an increase in non-DIF items’ DIF for 3012g 

compared to 3012s. DIF recovery logit mean differences for scenarios with equal group 

designs were better than those with unequal group designs. The Rasch mixture model still 

failed to distinguish true DIF between reference group (θ = 0) and LC with θ = -1.   
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Table 31 
DIF Recovery Logit Mean Differences for 3012s   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 -1.80 1.80 0.13 1.76 0.15 2.33 1.21 2.09 1.19 2.44 1.21 1.96 1.23 
item 2 -1.50 1.52 0.13 1.47 0.12 1.95 0.87 1.69 0.85 2.07 1.04 1.60 0.74 
item 3 -1.20 1.21 0.13 1.18 0.13 1.61 0.86 1.38 0.64 1.62 0.66 1.39 0.80 
item 4 -0.90 0.92 0.13 0.88 0.14 1.16 0.52 1.06 0.51 1.20 0.54 1.07 0.55 
item 5 -0.60 0.59 0.12 0.58 0.13 0.84 0.40 0.75 0.39 0.84 0.39 0.73 0.40 
item 6 -0.30 0.32 0.12 0.27 0.14 0.44 0.24 0.44 0.27 0.43 0.24 0.44 0.28 
item 7 0.30 0.32 0.16 0.30 0.15 0.43 0.24 0.40 0.26 0.43 0.24 0.42 0.26 
item 8 0.60 0.60 0.15 0.59 0.19 0.79 0.37 0.78 0.63 0.81 0.39 0.75 0.64 
item 9 0.90 0.92 0.18 0.88 0.20 1.24 0.54 1.09 0.54 1.25 0.56 1.11 0.56 
item 10 1.20 1.21 0.20 1.15 0.26 1.63 0.70 1.53 0.69 1.65 0.68 1.45 0.76 
item 11 1.50 1.50 0.22 1.45 0.26 2.04 0.86 1.98 0.97 2.08 0.88 1.89 1.07 
item 12 1.80 1.82 0.26 1.68 0.28 2.52 1.29 2.56 1.61 2.61 1.00 2.38 1.51 
item 13 0.00 0.10 0.08 0.11 0.09 0.16 0.16 0.24 0.61 0.16 0.14 0.26 0.63 
item 14 0.00 0.11 0.10 0.13 0.10 0.17 0.15 0.20 0.17 0.16 0.14 0.22 0.20 
item 15 0.00 0.11 0.08 0.13 0.10 0.16 0.15 0.22 0.21 0.16 0.14 0.22 0.21 
item 16 0.00 0.10 0.08 0.12 0.10 0.19 0.16 0.23 0.20 0.17 0.15 0.22 0.20 
item 17 0.00 0.11 0.08 0.11 0.08 0.18 0.18 0.18 0.13 0.16 0.18 0.19 0.16 
item 18 0.00 0.10 0.08 0.11 0.08 0.20 0.19 0.21 0.16 0.18 0.16 0.19 0.16 
item 19 0.00 0.11 0.09 0.11 0.09 0.18 0.16 0.23 0.20 0.17 0.13 0.24 0.20 
item 20 0.00 0.11 0.08 0.12 0.09 0.19 0.18 0.21 0.18 0.17 0.16 0.23 0.22 
item 21 0.00 0.10 0.09 0.12 0.09 0.16 0.14 0.22 0.25 0.16 0.14 0.21 0.19 
item 22 0.00 0.10 0.08 0.12 0.10 0.17 0.21 0.22 0.21 0.16 0.14 0.20 0.23 
item 23 0.00 0.11 0.10 0.13 0.10 0.17 0.15 0.22 0.18 0.16 0.14 0.22 0.20 
item 24 0.00 0.10 0.08 0.11 0.09 0.19 0.18 0.21 0.19 0.17 0.17 0.22 0.20 
item 25 0.00 0.10 0.07 0.14 0.10 0.18 0.17 0.19 0.18 0.18 0.16 0.19 0.16 
item 26 0.00 0.10 0.08 0.11 0.09 0.17 0.15 0.20 0.17 0.16 0.15 0.23 0.20 
item 27 0.00 0.10 0.07 0.12 0.10 0.19 0.16 0.20 0.18 0.18 0.16 0.19 0.18 
item 28 0.00 0.10 0.08 0.12 0.09 0.18 0.21 0.21 0.19 0.18 0.19 0.22 0.21 
item 29 0.00 0.11 0.11 0.11 0.09 0.18 0.15 0.23 0.23 0.18 0.15 0.21 0.26 
item 30 0.00 0.11 0.08 0.11 0.09 0.17 0.16 0.22 0.23 0.16 0.14 0.21 0.22 
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Table 32 
DIF Recovery Logit Mean Differences for 3012g   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 2.00 1.57 0.28 1.35 0.35 2.35 1.14 2.16 1.26 2.32 1.31 2.32 1.23 
item 2 1.80 1.41 0.30 1.24 0.35 2.11 0.97 1.77 0.98 2.00 1.21 2.03 1.17 
item 3 1.60 1.25 0.34 1.11 0.31 1.77 0.97 1.55 0.81 1.72 0.88 1.67 0.84 
item 4 1.40 1.06 0.23 0.92 0.25 1.43 0.63 1.28 0.68 1.37 0.68 1.38 0.66 
item 5 1.20 0.84 0.20 0.79 0.24 1.19 0.54 1.02 0.57 1.13 0.51 1.12 0.55 
item 6 1.00 0.61 0.18 0.60 0.22 0.85 0.41 0.78 0.47 0.88 0.43 0.87 0.42 
item 7 0.80 0.42 0.18 0.40 0.20 0.64 0.33 0.55 0.30 0.64 0.35 0.59 0.33 
item 8 0.60 0.22 0.15 0.23 0.16 0.37 0.25 0.35 0.24 0.39 0.24 0.36 0.22 
item 9 0.40 0.12 0.10 0.15 0.30 0.21 0.20 0.22 0.20 0.22 0.21 0.21 0.17 
item 10 0.30 0.12 0.09 0.14 0.11 0.25 0.24 0.27 0.20 0.25 0.21 0.28 0.18 
item 11 0.20 0.19 0.12 0.18 0.12 0.35 0.21 0.39 0.26 0.36 0.24 0.37 0.22 
item 12 0.10 0.26 0.13 0.26 0.13 0.47 0.29 0.42 0.25 0.47 0.30 0.45 0.25 
item 13 0.00 0.39 0.13 0.36 0.16 0.58 0.29 0.53 0.29 0.54 0.31 0.57 0.30 
item 14 0.00 0.37 0.13 0.35 0.14 0.55 0.28 0.59 0.47 0.57 0.30 0.58 0.33 
item 15 0.00 0.38 0.13 0.33 0.14 0.59 0.29 0.57 0.30 0.55 0.31 0.55 0.29 
item 16 0.00 0.39 0.14 0.36 0.15 0.60 0.31 0.53 0.31 0.57 0.30 0.57 0.32 
item 17 0.00 0.37 0.15 0.33 0.16 0.55 0.30 0.51 0.29 0.57 0.31 0.56 0.27 
item 18 0.00 0.37 0.14 0.36 0.15 0.57 0.31 0.54 0.30 0.56 0.30 0.56 0.29 
item 19 0.00 0.39 0.13 0.37 0.14 0.57 0.26 0.53 0.33 0.54 0.29 0.55 0.30 
item 20 0.00 0.39 0.12 0.36 0.16 0.55 0.29 0.51 0.30 0.55 0.28 0.58 0.28 
item 21 0.00 0.37 0.14 0.35 0.15 0.57 0.27 0.55 0.31 0.55 0.30 0.56 0.29 
item 22 0.00 0.38 0.12 0.36 0.14 0.59 0.31 0.54 0.30 0.57 0.31 0.58 0.29 
item 23 0.00 0.40 0.15 0.33 0.15 0.61 0.32 0.57 0.33 0.56 0.33 0.56 0.37 
item 24 0.00 0.39 0.15 0.33 0.15 0.57 0.29 0.52 0.31 0.56 0.29 0.58 0.30 
item 25 0.00 0.39 0.15 0.37 0.14 0.59 0.30 0.54 0.30 0.57 0.31 0.59 0.31 
item 26 0.00 0.39 0.13 0.34 0.14 0.58 0.37 0.51 0.31 0.57 0.33 0.58 0.30 
item 27 0.00 0.37 0.14 0.36 0.16 0.59 0.29 0.52 0.31 0.57 0.32 0.57 0.33 
item 28 0.00 0.40 0.14 0.32 0.15 0.59 0.29 0.54 0.33 0.57 0.38 0.56 0.31 
item 29 0.00 0.38 0.13 0.35 0.16 0.60 0.31 0.52 0.32 0.53 0.29 0.60 0.29 
item 30 0.00 0.38 0.13 0.33 0.15 0.60 0.29 0.54 0.30 0.56 0.29 0.56 0.30 
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DIF recovery logit mean differences for 30-item tests with 60% of DIF items (i.e., 

3018) are shown in Table 33 and Table 34. DIF magnitudes were recovered well for the 

two LC structure, especially for 3018_lc2_e and 3018_lc2_u. DIF patterns were well 

restored except for the three LC structure with a gradient DIF pattern in which items 

(item 14 – item 18) with small true DIF (< 0.5) showed an opposite trend against the 

gradient pattern, and non-DIF items among these conditions received means of DIF 

around 0.76.  

For the 30-item test, as proportion of DIF items increased from 20% to 60%, 

overall performance of the Rasch mixture model on DIF recovery logit mean differences 

decreased for the gradient DIF pattern and the means of DIF for non-DIF items increased.  
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Table 33 
DIF Recovery Logit Mean Differences for 3018s   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 -1.80 1.82 0.12 1.77 0.13 2.60 1.23 2.30 1.41 2.36 1.28 2.19 0.96 
item 2 -1.60 1.61 0.11 1.58 0.11 2.30 1.03 2.06 1.29 1.98 0.79 1.97 1.15 
item 3 -1.40 1.40 0.11 1.40 0.12 1.93 0.78 1.89 1.33 1.74 0.75 1.66 0.83 
item 4 -1.20 1.20 0.11 1.18 0.12 1.64 0.65 1.56 0.88 1.51 0.55 1.53 0.76 
item 5 -1.00 1.01 0.11 0.98 0.13 1.42 0.61 1.29 0.61 1.28 0.49 1.24 0.59 
item 6 -0.80 0.81 0.11 0.79 0.13 1.12 0.45 1.05 0.52 1.04 0.43 1.03 0.48 
item 7 -0.60 0.60 0.11 0.59 0.13 0.83 0.36 0.85 0.44 0.76 0.35 0.81 0.41 
item 8 -0.40 0.41 0.11 0.40 0.13 0.57 0.26 0.58 0.31 0.52 0.27 0.52 0.29 
item 9 -0.20 0.19 0.11 0.20 0.12 0.31 0.18 0.33 0.21 0.26 0.18 0.31 0.24 
item 10 0.20 0.21 0.12 0.21 0.12 0.30 0.18 0.29 0.19 0.29 0.18 0.28 0.20 
item 11 0.40 0.39 0.13 0.39 0.14 0.59 0.26 0.53 0.28 0.49 0.27 0.50 0.27 
item 12 0.60 0.60 0.14 0.59 0.14 0.84 0.35 0.77 0.38 0.77 0.34 0.73 0.33 
item 13 0.80 0.79 0.15 0.79 0.18 1.15 0.43 1.05 0.49 1.01 0.41 1.00 0.42 
item 14 1.00 1.02 0.16 1.01 0.19 1.43 0.52 1.29 0.60 1.28 0.52 1.27 0.50 
item 15 1.20 1.22 0.16 1.19 0.21 1.79 1.31 1.59 0.70 1.64 1.48 1.54 0.64 
item 16 1.40 1.43 0.19 1.38 0.20 1.98 0.73 1.88 0.81 1.76 0.69 1.83 0.75 
item 17 1.60 1.60 0.18 1.59 0.28 2.30 0.84 2.22 1.18 2.06 0.78 2.07 0.84 
item 18 1.80 1.80 0.22 1.75 0.28 2.63 0.97 2.48 1.12 2.31 1.09 2.30 1.01 
item 19 0.00 0.10 0.08 0.10 0.08 0.15 0.12 0.18 0.15 0.15 0.14 0.18 0.15 
item 20 0.00 0.09 0.07 0.11 0.08 0.13 0.12 0.18 0.16 0.15 0.12 0.17 0.15 
item 21 0.00 0.10 0.08 0.11 0.10 0.13 0.11 0.19 0.17 0.15 0.12 0.18 0.16 
item 22 0.00 0.09 0.07 0.10 0.08 0.15 0.13 0.17 0.17 0.15 0.14 0.17 0.16 
item 23 0.00 0.10 0.08 0.10 0.08 0.14 0.14 0.18 0.17 0.15 0.14 0.17 0.17 
item 24 0.00 0.09 0.07 0.11 0.09 0.15 0.15 0.18 0.16 0.15 0.15 0.16 0.14 
item 25 0.00 0.09 0.07 0.11 0.09 0.13 0.11 0.23 0.25 0.14 0.12 0.20 0.17 
item 26 0.00 0.09 0.07 0.11 0.09 0.15 0.13 0.18 0.15 0.14 0.14 0.15 0.13 
item 27 0.00 0.11 0.08 0.11 0.10 0.15 0.13 0.20 0.18 0.15 0.14 0.19 0.16 
item 28 0.00 0.09 0.07 0.11 0.08 0.14 0.15 0.16 0.14 0.15 0.16 0.15 0.13 
item 29 0.00 0.09 0.07 0.10 0.08 0.15 0.14 0.18 0.15 0.17 0.15 0.18 0.17 
item 30 0.00 0.10 0.08 0.10 0.08 0.15 0.13 0.18 0.21 0.16 0.14 0.18 0.18 
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Table 34 
DIF Recovery Logit Mean Differences for 3018g   

Two LC  Three LC  
  

Equal Size Unequal Size Equal Size Unequal Size Equal Size Unequal Size 
  

|"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!" − "!"#| |"!"!$ − "!"#| |"!"!$ − "!"#|  
True DIF M SD M SD M SD M SD M SD M SD 

item 1 1.80 1.21 0.24 1.12 0.30 1.68 0.74 1.62 0.86 1.67 0.72 1.75 0.92 
item 2 1.70 1.14 0.27 1.04 0.25 1.54 0.68 1.49 0.79 1.57 0.98 1.54 0.77 
item 3 1.60 1.00 0.22 0.94 0.27 1.37 0.60 1.32 0.66 1.41 0.62 1.40 0.70 
item 4 1.50 0.93 0.21 0.88 0.30 1.25 0.61 1.20 0.62 1.32 0.65 1.22 0.64 
item 5 1.40 0.84 0.21 0.76 0.23 1.13 0.66 1.08 0.57 1.12 0.53 1.06 0.53 
item 6 1.30 0.74 0.20 0.70 0.21 0.99 0.50 0.95 0.50 0.98 0.47 0.96 0.51 
item 7 1.20 0.63 0.19 0.61 0.20 0.90 0.69 0.79 0.46 0.86 0.42 0.85 0.43 
item 8 1.10 0.55 0.17 0.53 0.19 0.71 0.37 0.70 0.47 0.75 0.38 0.72 0.43 
item 9 1.00 0.44 0.18 0.39 0.18 0.59 0.35 0.58 0.32 0.57 0.31 0.58 0.30 
item 10 0.90 0.35 0.16 0.33 0.19 0.48 0.27 0.48 0.27 0.49 0.27 0.46 0.27 
item 11 0.80 0.24 0.13 0.25 0.17 0.38 0.22 0.32 0.20 0.37 0.24 0.35 0.24 
item 12 0.70 0.17 0.12 0.18 0.15 0.27 0.22 0.29 0.25 0.26 0.20 0.26 0.20 
item 13 0.60 0.12 0.09 0.14 0.12 0.20 0.18 0.25 0.22 0.22 0.19 0.24 0.25 
item 14 0.50 0.12 0.10 0.15 0.11 0.25 0.21 0.24 0.22 0.24 0.19 0.25 0.20 
item 15 0.40 0.18 0.12 0.18 0.12 0.30 0.22 0.36 0.28 0.31 0.21 0.37 0.29 
item 16 0.30 0.27 0.14 0.26 0.14 0.41 0.23 0.45 0.28 0.39 0.24 0.45 0.25 
item 17 0.20 0.37 0.13 0.35 0.14 0.52 0.31 0.54 0.26 0.54 0.28 0.53 0.32 
item 18 0.10 0.48 0.14 0.44 0.15 0.62 0.31 0.64 0.34 0.65 0.31 0.67 0.35 
item 19 0.00 0.58 0.12 0.56 0.14 0.80 0.39 0.75 0.39 0.77 0.39 0.76 0.37 
item 20 0.00 0.58 0.13 0.54 0.14 0.80 0.37 0.75 0.40 0.76 0.36 0.76 0.39 
item 21 0.00 0.56 0.13 0.55 0.15 0.76 0.39 0.76 0.34 0.76 0.36 0.76 0.38 
item 22 0.00 0.57 0.15 0.54 0.14 0.78 0.40 0.73 0.39 0.78 0.37 0.76 0.38 
item 23 0.00 0.58 0.13 0.54 0.14 0.78 0.36 0.77 0.36 0.79 0.38 0.78 0.40 
item 24 0.00 0.56 0.14 0.53 0.14 0.76 0.36 0.76 0.38 0.76 0.36 0.77 0.36 
item 25 0.00 0.57 0.14 0.54 0.14 0.75 0.36 0.75 0.38 0.81 0.38 0.76 0.39 
item 26 0.00 0.57 0.13 0.54 0.17 0.78 0.36 0.76 0.37 0.78 0.40 0.79 0.38 
item 27 0.00 0.57 0.13 0.54 0.16 0.76 0.36 0.77 0.40 0.80 0.37 0.79 0.41 
item 28 0.00 0.57 0.13 0.54 0.16 0.76 0.38 0.74 0.40 0.78 0.35 0.78 0.36 
item 29 0.00 0.59 0.13 0.53 0.15 0.76 0.36 0.76 0.36 0.75 0.37 0.74 0.36 
item 30 0.00 0.57 0.13 0.54 0.15 0.76 0.36 0.78 0.39 0.79 0.4 0.73 0.41 
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ANOVA on DIF Recovery 

 An ANOVA was conducted to summarize effects of manipulated factors and 

interactions on DIF recovery by using RMSE as the dependent variable (Table 35). While 

the independence and normality assumptions of analysis of variance were met, a 

statistically significant (p < .01) violation of homogeneity was found for number of items, 

proportion of DIF, DIF type, LC structure, and group size. However, analysis of variance 

is robust with respect to violation of homogeneity of variance with a balanced design.  

  Number of items was found to have a medium-large effect size, F (1,9552) = 

1887.92, S" = 0.17, with a higher mean RMSE for 30-item tests (4.17) than for 10-item 

tests (3.36). The main effect of DIF type was found to have a small effect size, F (1,9552) 

= 498.56, S" = 0.05, with higher mean RMSE for tests with gradient DIF (3.97) than for 

tests with symmetric DIF (3.55). The main effect of LC structure was found to have a 

large effect size, F (1,9552) = 56766.93, S" = 0.86, with a higher mean RMSE for the 

three LC structure (6.00) than for the two LC structure (1.52). A large effect size was 

found for proportion of DIF, F (2,9552) = 1208.02, S" = 0.20 Tukey’s HSD post hoc test 

was used to examine differences for proportion of DIF. At the p < 0.05 level, significant 

differences were found between 20% DIF tests and 40% DIF tests, 20% DIF tests and 

60% DIF tests, and 40% DIF tests and 60% DIF tests. Mean RMSE for 20% DIF tests, 

40% DIF tests and 60% DIF tests were 3.25, 3.67 and 4.37, respectively.    

 
 
 
 
 



 

108 
 

Table 35 
Summary Table for Effects of Five Manipulated Factors on RMSE of DIF Recovery  

Source 
Sum of 
Squares 

df 
Mean 

Square 
F p η2 

n_of_items 1601.921 1 1601.921 1887.923 < .001 .165 

p_of_DIF 2050.028 2 1025.014 1208.017 < .001 .202 

DIF_type 423.031 1 423.031 498.558 < .001 .050 

LC_structure 48167.289 1 48167.289 56766.933 < .001 .856 

group_size 8.160 1 8.160 9.617 .002 .001 

n_of_items * p_of_DIF 120.167 2 60.084 70.811 < .001 .015 

n_of_items * DIF_type 1.157 1 1.157 1.364 .243 < .001 

n_of_items * LC_structure 902.037 1 902.037 1063.084 < .001 .100 

n_of_items * group_size .134 1 .134 .158 .691 < .001 

p_of_DIF * DIF_type 215.646 2 107.823 127.073 < .001 .026 

p_of_DIF * LC_structure 1086.146 2 543.073 640.032 < .001 .118 

p_of_DIF * group_size .281 2 .140 .165 .848 < .001 

DIF_type * LC_structure 2060.886 1 2060.886 2428.830 < .001 .203 

DIF_type * group_size .100 1 .100 .118 .731 < .001 

LC_structure * group_size 8.160 1 8.160 9.617 .002 .001 

n_of_items * p_of_DIF * 

DIF_type 

1.503 2 .751 .886 .412 < .001 

n_of_items * p_of_DIF * 

LC_structure 

14.591 2 7.296 8.598 < .001 .002 

n_of_items * p_of_DIF * 

group_size 

.633 2 .316 .373 .689 < .001 

n_of_items * DIF_type * 

LC_structure 

50.315 1 50.315 59.298 < .001 .006 

n_of_items * DIF_type * 

group_size 

.061 1 .061 .071 .789 < .001 

n_of_items * LC_structure 

* group_size 

.134 1 .134 .158 .691 < .001 

p_of_DIF * DIF_type * 

LC_structure 

79.452 2 39.726 46.819 < .001 .010 

p_of_DIF * DIF_type * 

group_size 

.095 2 .048 .056 .945 < .001 

p_of_DIF * LC_structure * 

group_size 

.281 2 .140 .165 .848 < .001 
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DIF_type * LC_structure * 

group_size 

.100 1 .100 .118 .731 < .001 

n_of_items * p_of_DIF * 

DIF_type * LC_structure 

39.133 2 19.567 23.060 < .001 .005 

n_of_items * p_of_DIF * 

DIF_type * group_size 

.067 2 .033 .039 .961 < .001 

n_of_items * p_of_DIF * 

LC_structure * group_size 

.633 2 .316 .373 .689 < .001 

n_of_items * DIF_type * 

LC_structure * group_size 

.061 1 .061 .071 .789 < .001 

p_of_DIF * DIF_type * 

LC_structure * group_size 

.095 2 .048 .056 .945 < .001 

n_of_items * p_of_DIF * 

DIF_type * LC_structure * 

group_size 

.067 2 .033 .039 .961 < .001 

Error 8104.964 9552 .849    

Total 64937.326 9599     

 

There were five interactions found to have interpretable effect sizes (S" > 0.01) 

and they were: number of items by proportion of DIF (F (2,9552) = 70.81, S" = 0.02), 

number of items by LC structure (F (1,9552) = 1063.08, S" = 0.10), proportion of DIF by 

DIF type (F (2,9552) = 127.07, S" = 0.03), proportion of DIF by LC structure (F (2,9552) 

= 640.0, S" = 0.12), DIF type by LC structure (F (1,9552) = 2428.83, S" = 0.20).  

Tests with a higher proportion of DIF items had higher mean RMSE for both the 

gradient DIF pattern and the symmetric pattern (Figure 25). As the test length increased 

from 10 items to 30 items, mean RMSE increased for all three levels of proportion of DIF 

variable and tests with a larger proportion of DIF had a higher mean RMSE increase. 

Mean RMSEs and their SDs for every level of number of items at each level proportion 

of DIF are shown in Table 36.   
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Figure 25 
Plot for RMSE of DIF Recovery for Proportion of DIF by Number of Items Interaction 

Table 36 
Means and SDs of RMSE of DIF Recovery for Proportion of DIF by Number of Items 
Interaction 

N of Items P of DIF Mean SD 

10 

20% 2.98 .023 

40% 3.26 .023 

60% 3.83 .023 

30 

20% 3.52 .023 

40% 4.08 .023 

60% 4.92 .023 

 

 Tests with the three LC structure had a higher mean RMSE compared to those 

with the two LC structure for both levels of number of items. Figure 26 displays of 
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number of items by LC structure interaction. As number of items increased from 10 items 

to 30 items, both mean RMSEs of two levels of LC structure variable increased and the 

three LC structure level showed larger increased mean RMSE. Means and SDs of RMSE 

for every level of number of items at each level of LC structure are shown in Table 37.  

 

 

 

Figure 26 
Plot for RMSE of DIF Recovery for Number of Items by LC Structure Interaction 
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Table 37 
Means and SDs of RMSE of DIF Recovery for Number of Items by LC Structure 
Interaction 

N of Items LC Structure Mean SD 

10 
Two LC 1.42 .019 

Three LC 5.29 .019 

30 
Two LC 1.63 .019 

Three LC 6.72 .019 

 

 Tests with a symmetric DIF pattern had higher mean RMSEs for every level of 

proportion of DIF (Figure 27). As the proportion of DIF increased, the mean RMSE 

increased for both the symmetric level and the gradient level of DIF type. Specifically, 

the increased mean RMSE for symmetric level was approximately equal between from 

20% to 40% and from 40% to 60%, but the increased mean RMSE for the gradient level 

was larger from 40% to 60% than from 20% to 40%. Means and SDs of RMSE for every 

level of proportion of DIF at each level of DIF type are shown in Table 38.   
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Figure 27 
Plot for RMSE of DIF Recovery for DIF Type by Proportion of DIF Interaction 

Table 38 
Means and SDs of RMSE of DIF Recovery for DIF Type by Proportion of DIF 
Interaction 

P of DIF DIF Type Mean SD 

20% 
Symmetric 3.18 .023 

Gradient 3.32 .023 

40% 
Symmetric 3.53 .023 

Gradient 3.81 .023 

60% 
Symmetric 3.95 .023 

Gradient 4.79 .023 

 

 Tests with a three LC structure had higher mean RMSEs than those with a three 

LC structure (Figure 28). At the two LC structure level, mean RMSE increased as the 

proportion of DIF increased. In contrast, at the three LC structure level, mean RMSE 

remained relatively consistent as the proportion of DIF increased from 20% to 60%. 
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Means and SDs of RMSE for every level of proportion of DIF at each level of DIF 

structure are shown in Table 39. 

 

 
Figure 28 
Plot for RMSE of DIF Recovery for Proportion of DIF by LC Structure Interaction 
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Table 39 
Means and SDs of RMSE of DIF Recovery for Proportion of DIF by LC Structure 
Interaction 

P of DIF LC Structure Mean SD 

20% 
Two LC 1.43 .023 

Three LC 5.07 .023 

40% 
Two LC 1.42 .023 

Three LC 5.92 .023 

60% 
Two LC 1.72 .023 

Three LC 7.02 .023 

 

 Tests with a three LC structure had larger mean RMSEs than those with a two LC 

structure (Figure 29). Symmetric tests with two LC structure had the lowest mean RMSE 

= 0.85 (SD = 0.02). Gradient tests with a two LC structure had mean RMSE = 2.20 (SD = 

0.02). Symmetric tests with a three LC structure had mean RMSE = 6.26 (SD = 0.02). 

Gradient tests with a three LC structure had mean RMSE = 5.75 (SD = 0.02). Means and 

SDs of RMSE for every level of DIF type at each level of LC structure are shown in 

Table 40.  
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Figure 29 
Plot for RMSE of DIF Recovery for DIF type by LC Structure Interaction 

Table 40 
Means and SDs of RMSE of DIF Recovery for DIF type by LC Structure Interaction 

DIF Type LC Structure Mean SD 

Symmetric 
Two LC .85 .019 

Three LC 6.26 .019 

Gradient 
Two LC 2.20 .019 

Three LC 5.75 .019 

 

Simulation Running Time for Each Scenario  

 Total running time for 200 replications on parameter recovery of each scenario 

was recorded (Table 41). There were 101 hours computation time spent for the whole 

simulation process in which 75 hours were for classifier parameter recovery and 26 hours 

were for DIF recovery. Simulations ran in a PC with Intel Core i7-7700HQ CPU @ 

2.8GHz with 16 GB RAM.  
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30-item tests which had more computational complexity due to more items had 

longer running time than 10-item tests. Tests with a symmetric DIF pattern had shorter 

running times compared to corresponding tests with a gradient DIF. Tests dealing with a 

three LC structure had longer running times than their two LC structure counterparts. For 

10-item tests, there was nearly no difference in running time between tests with an equal 

group design and tests with an unequal design. 30-item tests with the three LC structure 

were the most time consuming and each of them cost about an hour.  

 
Table 41 
Running Time for Each Scenario on DIF Recovery in Second 

Test Type DIF Pattern Two LC Three LC   
Equal Size Unequal Size Equal Size Unequal Size 

1002 
S 464.14 442.83 1270.36 1147.28 

G 641.39 631.11 1081.89 1144.39 

1004 
S 365.01 474.41 1048.95 1067.76 

G 555.63 570.23 1047.03 1077.50 

1006 
S 293.38 503.09 1041.81 1032.85 

G 465.27 515.36 1073.80 1061.47 

3006 
S 1086.67 1622.21 3319.58 3235.00 

G 1575.59 1978.75 3618.64 3242.73 

3012 
S 811.49 1509.25 2781.60 3357.55 

G 1211.56 1903.32 3488.00 3345.07 

3018 
S 654.92 1215.33 2234.82 3855.42 

G 1054.73 1833.37 3385.49 3753.18 
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Summary of Results 

Two ANOVAs were conducted to assess effects of five manipulated factors on 

latent structure recovery. One of them used ln (AIC) as the dependent variable and the 

other one used ln (BIC) as the dependent variable. The natural log was used to normalize 

AIC and BIC. Lower ln (AIC) and lower ln (BIC) indicate better latent structure 

recovery. The results for the two ANOVAs were very similar. There were interpretable 

main effect sizes (η2 > 0.01) for all five manipulated factors: 10-items tests had better 

latent structure recovery than 30-item tests; as the proportion of DIF increased, latent 

structure recovery got better; tests with gradient DIF had better latent structure recovery 

than those with symmetric DIF; three LC structure tests had better latent structure 

recovery than two LC structure; tests with equal group size showed better latent structure 

recovery than those with unequal group size.  

There was one similar interpretable interaction for both latent structure recovery 

ANOVAs, which was LC structure by DIF type. At the symmetric level of DIF type, 

three LC structure tests showed better latent structure recovery, but when it came to 

gradient level of DIF type, three LC structure tests and two LC structure tests showed 

similar latent structure recovery.   

Two ANOVAs were conducted to examine the effects of manipulated factors on 

parameter recovery. One ANOVA was for classifier parameter recovery using RMSE as 

the dependent variable which was calculated from predicted proportion of LC and true 

proportion of LC. The other ANOVA was for DIF recovery using RMSE as the 

dependent variable and the RMSE was calculated based on predicted DIF and true DIF. 
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Lower RMSE indicates better parameter prediction (i.e., parameter recovery). All five 

manipulated factors showed interpretable main effect size (η2 > 0.01) on classifier 

recovery. However, for DIF recovery, all factors except group size showed interpretable 

main effect sizes (η2 > 0.01). The directions of interpretable main effects varied for the 

number of items factor and the proportion of DIF: for the former, as number of items 

increased from 10 items to 30 items, RMSE of classifier recovery decreased, but for DIF 

recovery, as number of items increased from 10 items to 30 items RMSE of DIF recovery 

increased; for the latter, as proportion of DIF items increased RMSE of classifier 

recovery decreased, but as proportion of DIF items increased RMSE of DIF recovery 

increased. Directions of main effects of DIF type and LC structure were consistent from 

classifier recovery to DIF recovery: tests with symmetric DIF showed lower RMSE than 

tests with gradient DIF, two LC structure tests showed lower RMSE than three LC 

structure. Group size showed a strong effect size (η2 = 0.45) on classifier recovery with 

lower RMSE for equal group size tests than unequal group size tests, but there was no 

interpretable effect size of group size on DIF recovery.  

There were nine interactions for classifier recovery: six two-way interactions, two 

three-way interactions and one four-way interaction. Seven of the interpretable 

interactions for classifier showed a small effect size (0.01 < η2 ≤ 0.06). Two 

interpretable interactions for DIF recovery showed small-medium effect sizes (0.06 < η2 

≤ 0.14) and they were number of items by group size interaction (η2 = 0.10) and LC 

structure by group size (η2 = 0.13).   
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There were five interpretable interactions for DIF recovery and all of them were 

two-way interactions. Two interpretable interactions for DIF recovery had small effect 

sizes (0.01 < η2 ≤ 0.06) and they were number of items by proportion of DIF interaction 

(η2 = 0.12) and proportion of DIF by DIF type (η2 = 0.03). There were two interpretable 

interactions for DIF recovery with small-medium effect sizes (0.06 < η2 ≤ 0.14) and they 

were number of items by LC structure interaction (η2 = 0.10) and proportion of DIF by 

LC structure (η2 = 0.12). There was one interpretable interaction for DIF recovery with a 

large effect size (η2 > 0.14) and it was DIF type by LC structure interaction. (There were 

two interpretable interaction for DIF recovery with medium effect size (η2 = 0.20).  
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Chapter Four: Discussion  

It is crucial to ensure that the measure of a construct is invariant between the 

underlying latent trait and observed scores across subgroups; this is referred to as 

measurement invariance. Measurement invariance is a premise for an effective and 

impartial scale. Differential item functioning (DIF) occurs when measurement invariance 

is violated at the item level, which refers to the mean difference of test scores (non-

parametric approaches) or different parameter scores (parametric approaches) among test 

taker groups after conditioning on the true mean differences among subgroups. 

Traditional methods of detecting DIF rely on observed covariates such as gender and 

income level to split subgroups thus ignore the difference within subgroups. The Rasch 

mixture model (RMM) as an alternative for detecting DIF has the advantage of 

identifying latent classes (LC) and extracting DIF among LCs. 

This study assessed the robustness of the RMM in detecting DIF from two 

perspectives: latent structure recovery and parameter recovery by fitting RMMs to 

various simulated datasets of 48 scenarios. The 48 (2*3*2*2*2) scenarios were formed 

by manipulating five factors: number of items (i.e., test length, 2 levels), proportion of 

DIF items (2 levels), LC structure (2 levels), group size (2 levels) and DIF type (2 levels).  

While prior research suggested use of BIC over AIC in model selection (e.g., 

Choi et al, 2016; Li et al., 2016), the present study found that when using AIC and BIC to 

recover the correct latent structure, both information criteria showed a conservative 
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pattern in which the recovered LCs did not match the true structure perfectly or even in 

the majority of cases. That is, it was rare that the correct latent structure was recovered at 

100%.  Specifically, BIC was more conservative than AIC as BIC includes a penalty for a 

large sample size, which was 3,000 in the current study. Results from the current study 

contradict those of Li et al (2016) in which they suggested that either BIC or AIC was a 

reliable statistic in model selection using the Rasch mixture model. However, this study 

recommends that neither AIC nor BIC should be used as the single decision criterion for 

determining the true latent structure using a Rasch mixture model. AIC and BIC could be 

combined with other information criteria such as the Cressie-Read statistic (Read & 

Cressie, 1988). Unlike AIC and BIC which directly take likelihood ratio into account, the 

Cressie-Read statistic is based on a constrained minimization of a given function of 

observations’ multinomial probabilities and a nonparametric maximum likelihood 

estimator, which results in a family of asymptotic test statistics with distributions falling 

into a family of Y" distributions (Bravo, 2002). The Cressie-Read statistic is not available 

with the current version of the mirt package and pyschomix on R, but it is available with 

Winmira software.  

Although there were numerous main and interaction effects of the five 

manipulated factors with small effect sizes (η2 < 0.06), their impacts on both LC structure 

recovery and parameter recovery were limited. As a result, those main and interaction 

effects with medium to large effect size (0.06 < η2 < 0.14) and large effect sizes (η2 > 

0.14) are the focus of this chapter. In concert with prior research (e.g., DeAyala et al., 

2002; Samuelsen, 2005), this study found that group size had an effect ( η2 = 0.11) on LC 
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structure recovery, with the RMM reaching a higher correct LC structure recovery rate 

for equal group size tests than for unequal group size tests. Number of items (i.e., test 

length) had a large effect on LC structure recovery and longer tests with 30 items had 

larger AIC and BIC than shorter tests with 10 items. This was predetermined since both 

AIC and BIC take number of items into account and so 10- and 30- item tests are not 

nested models.  

RMSEs were used as goodness of model fit indices for both classifier recovery 

and DIF recovery, and lower RMSE indicated better model fit. For classifier recovery, all 

five manipulated factors showed effect sizes that were medium or larger except DIF type 

(η2 < 0.06). Longer tests with 30 items had better (i.e., lower RMSE) classifier recovery 

than shorter tests with 10 items. As the proportion of DIF items increased, the 

performance of the RMM on recovering true classifier increased. Classifiers of two LC 

structure tests were better recovered via the RMM than those of three LC structure. Tests 

with equal group size had better classifier recovery than tests with unequal group size, 

which is consistent with findings of DeAyala et al. (2002) and Preinerstorfer and 

Formann (2012). There were two medium effect size interactions for classifier recovery, 

and they were number of items by group size interaction (η2 = 0.10) and LC structure by 

group size interaction (η2 = 0.13). When controlling the test length, the performance of 

the RMM on classifier recovery was better for equal group size tests than unequal group 

size tests; as number of items increased from 10 items to 30 items, the performance of the 

RMM on classifier recovery for unequal group size tests improved while it remained 

constant for equal group size tests. When controlling the LC structure, the performance of 
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the RMM on classifier recovery was better for equal group size tests than unequal group 

size tests; as LC structure increased from two LC structure to three LC structure, the 

performance of the RMM on classifier recovery for unequal group size tests improved 

while it decreased for equal group size tests. Group size was the only large effect (η2 = 

0.45) for classifier recovery though the interpretation of the effects of group size was 

complicated by interactions with number of items (η2 = 0.10) and LC structure (η2 = 

0.13). As the only large main effect and the only factor involving in both medium 

interactions, group size plays a significant role in classifier recovery. In other words, 

whether detected latent classes have equivalent group size or not casts an important 

impact upon classifier recovery. Equal group sizes for detected LCs favor the overall 

performance of the RMM on classifier recovery. Practitioners can think about adding 

more items (i.e., test length) to a test to improve the performance of classifier recovery 

using the RMM to detect DIF. Although, equal size of LCs is desired for better overall 

classifier recovery, the opposite direction of group size by LC structure interaction 

direction suggests that unequal group size of LCs to some extent is likely to help improve 

classifier recovery when there are more than two LCs. The RMM is recommended if the 

research objective is to explore the number of latent classes from the perspective of 

classifier recovery, even if the data analyst knows in advance there are unequal group 

sizes.  

There were three main and three interaction medium to large effects of the five 

manipulated factors on DIF recovery (η2 > 0.06) and they were effects of number of 

items, proportion of DIF items, LC structure, number of items by LC structure 
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interaction, proportion of DIF items by LC structure interaction, and DIF type by LC 

structure interaction. Compare to that in classifier recovery, group size had no 

interpretable effect size on DIF recovery, which is consistent with findings from study 

conducted by Choi et al (2016) and Li et al (2016). The RMM had better performance on 

recovering DIF for shorter tests with 10 items than tests with 30 items. As the proportion 

of DIF items increased, the performance of the RMM on DIF recovery decreased, an 

opposite direction as with classifier recovery. In concert with classifier recovery, DIF 

arrays of tests with two LC structure were better recovered than those with three LC 

structure. As number of items increased from 10 items to 30 items, performance of the 

RMM on DIF recovery of two LC structure tests remained similar, but that on DIF 

recovery of three LC structure decreased. As proportion of DIF items increased, 

performance of the RMM on DIF recovery of two LC structure remained similar, but that 

on DIF recovery of three LC structure decreased at a constant rate. For symmetric DIF 

tests, the performance of the RMM on DIF recovery was better for the two LC structure, 

but for the gradient DIF test, the performance of the RMM on DIF recovery was better 

for the three LC structure. For every scenario with true DIF of symmetric pattern, means 

of recovered DIF array of each scenario well restored the symmetric pattern. However, as 

the proportion of DIF items reached 60%, for tests with gradient DIF, there was a 

phenomenon of inflation (i.e., the recovered DIFs were consistently larger than true 

DIFs) of recovered DIF for items with true DIF < 0.3. LC structure had the strongest 

effect (η2 = 0.86) on DIF recovery. Additionally, LC structure was involved in multiple 
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interactions--with number of items (η2 = 0.10), proportion of DIF (η2 = 0.12), and DIF 

type (η2 = 0.20).  

So, while group size (η2 = 0.45) had the strongest effect on classifier recovery 

with LC structure (η2 = 0.08) having a medium effect, for DIF recovery LC structure (η2 = 

0.86) had by far the strongest effect while group size (η2 = 0.001) had no interpretable 

effect. Group size and LC structure (i.e., number of latent classes) define the 

characteristics of latent classes from observed response patterns of a measurement 

construct. This implies that accuracy of detected proportion of latent classes is strongly 

influenced by true latent class size and its interaction with number of latent classes, but 

the accuracy of DIF detection using the RMM is influenced by number of latent classes 

and has nearly no relation with group size of each latent class.  

Taking everything into account, some conclusions are provided from this study 

for practitioners when using the Rasch mixture model in detecting differential item 

functioning. The RMM is more likely to obtain the best recovery of classifier parameters 

or, in other words, identify the closest proportion array to the true proportion array, when 

LCs are close to each other in group size. However, group size has little influence on 

performance of the RMM on detecting true DIF among LCs. Instead, number of items of 

a test, proportion of DIF items, and LC structure of observations play important roles on 

DIF recovery using the RMSE. Specifically, LC structure had by far the strongest effect 

on DIF recovery. The optimal scenario for obtaining recovered DIF closer to true DIF is 

for, tests with number of items close to 10, proportion of DIF close to 20%, and likely to 
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have a two LC structure. DIF type was found to have only a small main effect size for 

both classifier recovery (η2 = 0.06) and DIF recovery (η2 = 0.05).  

However, DIF type by LC structure in DIF recovery was the only large interaction 

effect (η2 = 0.20) among all the interpretable interaction effects. The principal difference 

between a gradient DIF pattern and a symmetric is the former has zero DTF while the 

latter has non-zero DTF. Gradient DIF pattern improved the performance of the RMM on 

DIF recovery of three LC structure tests compared to that of two LC structure. In 

contrast, symmetric DIF pattern improves the performance of the RMM on DIF recovery 

of two LC structure tests compare to that of three LC structure.   

When using an RMM to determine DIF, it is recommended to have close group 

sizes for latent classes, 20% to 40% proportion of DIF items and a LC structure close to a 

two LC structure. Since the AIC and BIC are not suggested in this study, the Cressie-

Read statistic, as an alternative, can be used as a model selection tool for picking the 

model with correct number of latent classes. This study suggests trusting detected group 

size if the ratio of group size between two latent classes is larger than 0.5 but smaller than 

2, which is considered as a close group size. The interpretation of LCs is critical for using 

the RMM to detect DIF, especially when there are multiple LCs. It is recommended to 

associate detected LCs and covariates of interest and examine the overlap and 

intersectionality between LCs and covariates. The more LCs a covariate (e.g., gender) 

involves, the more intra-group differentiation there is based on the observed response 

pattern. A practitioner can identify DIF and its direction through calculating the item 

difficulty difference 91 between two latent classes. It can be considered as no item DIF 
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for using the RMM method when 91 < 0.3, small DIF when 0.3 ≤ 91 < 0.9, medium DIF 

when 0.9 ≤ 91 < 1.5, and large DIF when 91 ≥ 1.5.  

Based on the functionality and mechanism of the RMM, a suggested analytic path 

for using the RMM to detect LCs and DIF among LCs will be (1) check the 

unidimensionality assumption of the RMM, (2) fit several RMMs with a different number 

of possible LCs (e.g., k = 1, 2, 3), (3) pick the best fitting model based on certain model 

selection information criteria (e.g., Cressie-Read), (4) calculate DIF among detected LCs 

and summarize the magnitude of DIF according to above DIF cutoffs, (5) interpret the 

meaning of LCs combining the overlap between the LC and covariates (e.g., gender, 

education level, training) and (6) interpret any DIF that is relevant to answer the research 

question. If the result of using the RMM to detect LCs and DIF was unsatisfactory or 

unclear, practitioners are encouraged to refer to another LC detection tools such as 2PL 

mixture model or Gaussian mixture model.    

Limitations 

Although it performed well on two LC structure tests, the Rasch mixture model’s 

performance on DIF recovery of three LC structure tests was far from ideal. This study 

used fixed latent ability (θ) differences (i.e., impact = 1) among LCs to afford quick 

convergence of the model, as was supported by the previous literature. For a two LC 

structure, latent traits of reference LC and focal LC were from N (0, 1) and N (1, 1) 

respectively, and for a three LC structure, the latent trait of reference LC and focal LCs 

were from N(0, 1),  N (1, 1), and N (-1, 1). However, it is unclear whether there is a 

difference between zero-impact settings, which mean the latent trait of LCs come from 
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the same normal distribution with mean of 0 and SD of 1, and current settings on latent 

structure recovery and parameter recovery via the Rasch mixture model.  

Additionally, because this study only included a two LC structure and a three LC 

structure, the power of generalization of the RMM on detecting DIF is limited to those 

two conditions. There are multiple other factors worth investigating that have not been 

included in this study such as item type (e.g., polynomial item). The computation time for 

replications in this study was relatively long, about four days in this study, thus it is likely 

to be interrupted by random factors such as power outage and overheating of the CPU. 

Because computation time was lengthy, especially for LC structure recovery, this study 

used 100 replications for each scenario of LC structure recovery but used 200 replications 

for each scenario of DIF recovery. Both AIC and BIC are likely to be inadequate indices 

for structure recovery using the RMM on DIF detection.  

Tests with 10 items or 30 items which were examined in the current study are 

relatively short from an educational assessment perspective. Results from the current 

study may not apply to typical educational assessments with much longer test lengths. 

Furthermore, as the test length increases, fatigue of test taker is likely to grow which can 

cause random response and affect validity of corresponding construct.  

Future Research 

Future research could include a one LC structure as a baseline for examining the 

effectiveness of the Rasch mixture model on detecting LC structure and recovering DIF. 

Similar to positing a unidimensional model underlying an item set, comparison to the 

simplest structure of a single latent class seems warranted and is more in concert with the 
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Rasch idea of a “ruler” for measurement that applies universally. Additionally, this 

complies with a rule of parsimony as including more latent classes result in estimating 

more parameters for fitting a Rasch mixture model. The findings of this study could also 

provide direction for a psychometrician who is interested in creating a new measure. She 

or he should be aware of within covariate-based subgroup difference which denote the 

existence of latent classes and cautiously design the covariate data being collected based 

on targeted participants and research objectives. That is, psychometricians may posit the 

existence of multiple latent classes in some circumstances and deliberately include 

targeted covariates in the data collection plan to ensure the ability to interpret the latent 

classes if they are found. 

Finding more effective information indices for the Rasch mixture model on DIF 

detection is a topic for future study. Information criteria that directly use likelihood ratios 

such as BIC and AIC proved to be ineffective in extracting the correct LC structure in 

this study. Both AIC and BIC are likely to underestimate the true number of latent 

classes. Future study could modify the current AIC or BIC formulas to accommodate the 

usage of the Rach mixture model to detecting the latent class structure from a set of 

responses. Additionally, the Cressie-Read statistic seems a possible alternative as it 

incorporates a statistical test through transforming model fit indices. Future study could 

compare the Cressie-Read statistic and information criteria which directly use a 

likelihood ratio on the accuracy of detecting latent classes using the Rasch mixture 

model.        
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Future study can look into tests with much longer test length than 30 items 

because those tests are very common for educational assessment. Fatigue of test takers is 

a crucial issue, especially for tests with long lengths, and it is a problem which is difficult 

to quantify. So, a mixed method approach combining both qualitative and quantitative 

methods can be an option for researching the robustness of the Rasch mixture model to 

detect DIF on typical educational assessments having more than 30 items. Latent classes 

formed with measures of perseverance or distractibility may be useful in helping to 

determine whether fatigue is a crucial problem. 

Advanced computation tools such as parallel computing could be used to increase 

the efficiency of conducting simulation via the EM algorithm. The current data 

generation and simulation codes using R are very time-consuming and thus rely on the 

availability of computation power. Future study could explore the potential algorithm of 

the Rasch mixture model simulation with a more efficient programming language such as 

C++.    

The number of replications used for LC structure recovery and parameter 

recovery used in this study (100 and 200) are recommended for future study on a similar 

topic, because the model fitting reached convergence with relative stable RMSE. 

Compared to other IRT based DIF detection methods such as LRT and Lord’s Y", the 

Rasch mixture model would be suggested to detect LC structure and find DIF among 

latent classes when there are likely to be only two or three latent classes.  

Nearly all IRT based DIF detection methods including the Rasch mixture model 

use parameter differences among subgroups as the effect size of DIF. However, whether 
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this is a reliable measure of DIF was not addressed by the current study and is a topic for 

future study. Further, future research may address other ways of calculating DIF and 

compare those results to the current approach.   
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Appendices 

Appendix A Codes for Latent Class Structure Recovery and Parameter Recovery 

```{r, warning = FALSE} 
library(mirt) 
library(psychomix) 
``` 
### Generating Datasets 
## Generating Parameters 
```{r} 
# List delta_b for symmetric DIF patterns 
d_b_1002s <- c(-1.8, 1.8, 0, 0, 0, 0, 0, 0, 0 ,0) 
d_b_1004s <- c(-1.8, -0.9, 0.9, 1.8, 0, 0 ,0, 0, 0, 0) 
d_b_1006s <- c(-1.8, -1.2, -0.6, 0.6, 1.2 ,1.8, 0, 0 ,0 ,0) 
d_b_3006s <- c(-1.8, -1.2, -0.6, 0.6, 1.2 ,1.8, 0, 0 ,0 ,0, 0, 0 ,0 ,0, 0, 0 ,0 ,0, 0, 0 ,0 ,0, 0, 
0 ,0 ,0, 0, 0 ,0 ,0) 
d_b_3012s <- c(-1.8, -1.5, -1.2, -0.9, -0.6, -0.3, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8,0, 0, 0 ,0 ,0, 0, 0, 
0 ,0 ,0 ,0, 0, 0 ,0 ,0 ,0, 0, 0) 
d_b_3018s <- c(-1.8, -1.6, -1.4, -1.2, -1.0, -0.8, -0.6, -0.4, -0.2, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 
1.4, 1.6, 1.8, 0, 0 ,0 ,0, 0, 0 ,0 ,0, 0, 0 ,0 ,0)    
 
# list delta_b for gradient DIF patterns 
d_b_1002g <- c(2.0, 1.0, 0, 0, 0, 0, 0, 0, 0 ,0) 
d_b_1004g <- c(2.0, 1.5, 1.0, 0.5, 0, 0, 0, 0, 0 ,0) 
d_b_1006g <- c(2.0, 1.7, 1.4, 1.1, 0.8, 0.5, 0, 0, 0, 0) 
d_b_3006g <- c(2.0, 1.7, 1.4, 1.1, 0.8, 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0) 
d_b_3012g <- c(2.0, 1.8, 1.6, 1.4, 1.2, 1.0, 0.8, 0.6, 0.4, 0.3, 0.2, 0.1, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
d_b_3018g <- c(1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 
0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) 
 
# Create 4 variables to store DIF patterns 
s_dif_10items <- cbind(d_b_1002s, d_b_1004s, d_b_1006s) 
s_dif_30items <- cbind(d_b_3006s, d_b_3012s, d_b_3018s) 
 
g_dif_10items <- cbind(d_b_1002g, d_b_1004g, d_b_1006g) 
g_dif_30items <- cbind(d_b_3006g, d_b_3012g, d_b_3018g) 
``` 
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## Responses Generating Function  
```{r} 
gen_response <- function(n_item, size, dif){  
  b_0 <- matrix(rnorm(n_item, 0, 1)) 
  sigma <- matrix(1) 
  type <- rep('dich', n_item) 
  a <- matrix(rep(1, n_item)) 
  df = '' 
  n_lc = length(size) 
  if (n_lc == 2){ 
    df_lcr = simdata(a = a, d = b_0, itemtype = type, N = size[1], mu = 0, sigma = sigma) 
    b_lc1 = b_0 + dif 
    df_lcf1 = simdata(a = a, d = b_lc1, itemtype = type, N = size[2], mu = 1, sigma = sigma) 
    #combine reference lc and focal lc datasets 
    df = as.data.frame(rbind(df_lcr, df_lcf1)) 
    #add identifiers for each row/observation 
    df$lc = c(rep('lc_r', size[1]), rep('lc_f1', size[2])) 
  } else{ 
    df_lcr = simdata(a = a, d = b_0, itemtype = type, N = size[1], mu = 0, sigma = sigma) 
    b_lc1 = b_0 + dif 
    b_lc2 = b_0 + 2*dif 
    df_lcf1 = simdata(a = a, d = b_lc1, itemtype = type, N = size[2], mu = 1, sigma = sigma) 
    df_lcf2 = simdata(a = a, d = b_lc2, itemtype = type, N = size[3], mu = -1, sigma = sigma) 
    #combine lc_r and lc_f1 and lc_f2 
    df = as.data.frame(rbind(df_lcr, df_lcf1, df_lcf2)) 
    #add identifiers 
    df$lc = c(rep('lc_r', size[1]), rep('lc_f1', size[2]), rep('lc_f2', size[3])) 
  } 
return(df) 
} 
 
``` 
 
 
## Parameter Recovery Simulation Function 
```{r} 
par_reco_sim <- function(dif, size_of_lc){ 
   
  set.seed(123) 
   
  # Set number of replications 
  n_rep = 200 
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  # Set number of items 
  n_item = length(dif) 
  # Number of latent classes 
  n_lc = length(size_of_lc) 
  # Create a matrix to store item difficulty parameters for every replication 
  dif_matrix = matrix(NA, n_rep, n_item) 
  # Matrix for 2*dif for third latent class 
  dif_matrix_2 = matrix(NA, n_rep, n_item) 
  # Create a matrix to store proportion of latent classes 
  p_matrix = matrix(NA, n_rep, n_lc)   
 
########################################################################
##### 
 
  if (n_lc == 2){ 
    # Simulation Loop 
    for (rep in 1: n_rep){ 
      test = gen_response(n_item, size_of_lc, dif) 
      m <- raschmix(as.matrix(test[, 1:n_item]), k = n_lc, scores = "saturated", nrep = 1) 
      results = worth(m) 
      for(j in 1:n_item){ 
        dif_matrix[rep, j] = abs(results[j, 2] - results[j, 1])   # Get DIF after a replication 
      } 
      p_matrix[rep, 1] = parameters(m, which = 'concomitant')[1] # Record proportion of 
latent classes 
      p_matrix[rep, 2] = parameters(m, which = 'concomitant')[2] # Record proportion of 
latent classes 
    } 
    # Stop the clock and sotre runtime in rt 
    rt = (proc.time() - ptm)[1:3] 
    outcome = cbind(dif_matrix, p_matrix) 
    return(outcome) 
  } 
  else{ 
    for (rep in 1: n_rep){ 
      test = gen_response(n_item, size_of_lc, dif) 
      m <- raschmix(as.matrix(test[, 1:n_item]), k = n_lc, scores = "saturated", nrep = 1) 
      results = worth(m) 
      for(j in 1:n_item){ 
        dif_matrix[rep, j] = abs(results[j, 2] - results[j, 1])   # Get DIF after a replication 
        dif_matrix_2[rep, j] = abs(results[j, 3] - results[j, 1]) # Get 2*DIF between third 
latent class and referenc latent class 
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      } 
      p_matrix[rep, 1] = parameters(m, which = 'concomitant')[1] # Record proportion of 
latent classes 
      p_matrix[rep, 2] = parameters(m, which = 'concomitant')[2] # Record proportion of 
latent classes 
      p_matrix[rep, 3] = parameters(m, which = 'concomitant')[3] # Record proportion of 
latent classes 
    } 
    outcome = cbind(dif_matrix, dif_matrix_2, p_matrix) 
    return(outcome) 
  }     
} 
``` 
 
  
## DIF Visualization Function 
```{r} 
dif_viz <- function (dif, dif_sim_matrix){ 
  # Number of DIF item 
  n_dif = length(which(dif != 0)) # only graph DIF items 
   
  if (n_dif %% 6 == 0){ 
    if (n_dif==18){ 
      par(mfrow=c(3, 3)) 
    } else { 
    par(mfrow=c(2, 3)) 
    }   
  } else { 
    if (n_dif==2){ 
      par(mfrow=c(1, 2)) 
    } else { 
      par(mfrow=c(2, 2)) 
    } 
  } 
  for(i in 1: n_dif){ 
    true_dif = abs(dif[i]) 
     
    plot(c(1:nrow(dif_sim_matrix)), dif_sim_matrix[, i], type = 'l', ylim = c(0,5), xlab = 
'Replication', ylab = 'Recovered DIF', main = paste('Item', toString(i),'True 
DIF:',toString(true_dif)), cex.lab=1.2, cex.main=1.2, font.main=7) 
     
    # Add a red horizotal line marking mean of DIF from replications 
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    abline(h = mean(dif_sim_matrix[,i]), col = 'red') 
   
    # Add a green horizontal line marking true DIF 
    abline(h = true_dif, col = 'green') 
     
    # Add lengend 
    legend('top', legend = c('Mean DIF','True DIF'), lty = 1, col = c('red', 'green'), lwd=2, 
cex=1, y.intersp=0.5, x.intersp = 0.12, horiz = TRUE, bty="n") 
  } 
} 
``` 
 
 
## Classifier Parameter Visualization Function 
```{r} 
p_viz <- function (p_matrix, size){ 
  if (length(size) == 2){ 
    # True proportion 
    true_p <- round(size[1]/sum(size), 3) 
    p_prior <- apply(p_matrix, 1, max) 
    plot(x = c(1:nrow(p_matrix)),y = p_prior, type = "l", ylim = c(0, 1), xlab = "Replication", 
ylab = 'Proporiton of Latent Class', main = paste('Two Latent Classes, True Proportion:', 
toString(true_p))) 
    abline(h = true_p, col = 'green') 
    abline(h = mean(p_prior), col = 'red') 
    legend('topright', legend = c('Mean Proportion','True Proportion'), lty = 1, col = c('red', 
'green'))   
  } 
  else{ 
    true_p <- c(round(size[1]/sum(size), 2), round(size[3]/sum(size), 2)) 
    p_prior <- cbind( max_p = apply(p_matrix, 1, max), min_p = apply(p_matrix, 1, min)) 
    plot(x = c(1:nrow(p_matrix)),y = p_prior[,1], type = "l", ylim = c(0, 1), xlab = 
"Replication", ylab = 'Proporiton of Latent Class', main = paste('Three Latent Classes, 
True Proportion:', toString(true_p[1]), toString(true_p[2]))) 
    points(x = c(1:nrow(p_matrix)),y = p_prior[,2], type = "l") 
    abline(h = true_p[1], col = 'green', lty = 1) 
    abline(h = true_p[2], col = 'green', lty = 2) 
    abline(h = mean(p_prior[,1]), col = 'red', lty = 1) 
    abline(h = mean(p_prior[,2]), col = 'red', lty = 2) 
    legend('top', legend = c('Ture Max Proportion','True Min Prorpotion', 'Mean Max 
Proportion', 'Mean Min Proportion'), col = c('green', 'green', 'red', 'red'), lty = c(1, 2, 1, 
2))   
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  } 
} 
``` 
 
 
 
 
########################################################################
###### 
##############                Latent Class Structure Recovery         
########################### 
########################################################################
###### 
 
 
############## Set number of replications for LC structure recovery below 
############### 
```{r} 
n_rep = 100 
``` 
 
 
## Function for calculating latent structure recovery rate from generated results 
dataframe 
```{r} 
get_structure_reco_rate <- function (df, lc_Structure) { 
   
  ## update index to have logical order 
  row.names(df) = seq(1, nrow(df)) 
 
  n = length(lc_Structure) 
  count_AIC = 0 
  count_BIC = 0 
   
  aic_and_bic <- matrix(rep(0, 4), nrow=2, ncol=4) 
  colnames(aic_and_bic) <- c(1:4) 
  rownames(aic_and_bic) <- c("AIC", "BIC") 
   
  for (i in seq(1, nrow(df), 4)) { 
    start = i 
    end = i + 3 
    temp_df = df[start:end,] 



 

147 
 

     
    k_temp = temp_df$k[which.min(temp_df$AIC)] 
    as.character(k_temp) 
    aic_and_bic["AIC", k_temp] = aic_and_bic["AIC", k_temp] + 1 
     
    k_temp = temp_df$k[which.min(temp_df$BIC)] 
    as.character(k_temp) 
    aic_and_bic["BIC", k_temp] = aic_and_bic["BIC", k_temp] + 1 
       
  } 
 
  aic_and_bic = aic_and_bic/n_rep 
   
  return (aic_and_bic)  
} 
``` 
 
 
########## TWO LATENT CLASSES STRUCTURE 
##################################### 
 
 
######## Model Recovery - Symmetric Pattern - Two Latent Classes - Equal Size 
########### 
 
 
## Model Recovery 10 Items 2 DIF Symmetric Pattern: 1002s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_1002s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1002s_e = list() 
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for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1002s_e = rbind(mf_lc2_1002s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1002s_lc2_e = get_structure_reco_rate(mf_lc2_1002s_e, size_of_lc) 
 
``` 
 
 
## Model Recovery 10 Items 4 DIF Symmetric Pattern: 1004s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_1004s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1004s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1004s_e = rbind(mf_lc2_1004s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1004s_lc2_e = get_structure_reco_rate(mf_lc2_1004s_e, size_of_lc) 
 
``` 
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## Model Recovery 10 Items 6 DIF Symmetric Pattern: 1006s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_1006s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1006s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1006s_e = rbind(mf_lc2_1006s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1006s_lc2_e = get_structure_reco_rate(mf_lc2_1006s_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 6 DIF Symmetric Pattern: 3006s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_3006s 
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# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3006s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3006s_e = rbind(mf_lc2_3006s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3006s_lc2_e = get_structure_reco_rate(mf_lc2_3006s_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 12 DIF Symmetric Pattern: 3012s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_3012s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3012s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3012s_e = rbind(mf_lc2_3012s_e, show(m2))   
} 
 
## calculate recovery rate 
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lcReco_3012s_lc2_e = get_structure_reco_rate(mf_lc2_3012s_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 18 DIF Symmetric Pattern: 3018s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 30 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_3018s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3018s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3018s_e = rbind(mf_lc2_3018s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3018s_lc2_e = get_structure_reco_rate(mf_lc2_3018s_e, size_of_lc) 
 
``` 
 
#### Model Recovery - Symmetric Pattern - Two Latent Classes - Unequal Size 
############## 
 
 
## Model Recovery 10 Items 2 DIF Symmetric Pattern: 1002s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
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#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_1002s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1002s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1002s_u = rbind(mf_lc2_1002s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1002s_lc2_u = get_structure_reco_rate(mf_lc2_1002s_u, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 4 DIF Symmetric Pattern: 1004s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_1004s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1004s_u = list() 
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for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1004s_u = rbind(mf_lc2_1004s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1004s_lc2_u = get_structure_reco_rate(mf_lc2_1004s_u, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 6 DIF Symmetric Pattern: 1006s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_1006s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1006s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1006s_u = rbind(mf_lc2_1006s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1006s_lc2_u = get_structure_reco_rate(mf_lc2_1006s_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 6 DIF Symmetric Pattern: 3006s - unequal size 
```{r} 
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set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_3006s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3006s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3006s_u = rbind(mf_lc2_3006s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3006s_lc2_u = get_structure_reco_rate(mf_lc2_3006s_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 12 DIF Symmetric Pattern: 3012s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 3 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_3012s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
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mf_lc2_3012s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3012s_u = rbind(mf_lc2_3012s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3012s_lc2_u = get_structure_reco_rate(mf_lc2_3012s_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 18 DIF Symmetric Pattern: 3018s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 3 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_3018s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3018s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3018s_u = rbind(mf_lc2_3018s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3018s_lc2_u = get_structure_reco_rate(mf_lc2_3018s_u, size_of_lc) 
 
``` 
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########### Model Recovery - Gradient Pattern - Two Latent Classes - Equal Size 
########### 
 
 
## Model Recovery 10 Items 2 DIF Gradient Pattern: 1002g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_1002g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1002g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1002g_e = rbind(mf_lc2_1002g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1002g_lc2_e = get_structure_reco_rate(mf_lc2_1002g_e, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 4 DIF Gradient Pattern: 1004g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
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n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_1004g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1004g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1004g_e = rbind(mf_lc2_1004g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1004g_lc2_e = get_structure_reco_rate(mf_lc2_1004g_e, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 6 DIF Gradient Pattern: 1006g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_1006g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1006g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
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  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1006g_e = rbind(mf_lc2_1006g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1006g_lc2_e = get_structure_reco_rate(mf_lc2_1006g_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 6 DIF Gradient Pattern: 3006g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_3006g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3006g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3006g_e = rbind(mf_lc2_3006g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3006g_lc2_e = get_structure_reco_rate(mf_lc2_3006g_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 12 DIF Gradient Pattern: 3012g - equal size 
```{r} 
set.seed(12345) 
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# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_3012g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3012g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3012g_e = rbind(mf_lc2_3012g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3012g_lc2_e = get_structure_reco_rate(mf_lc2_3012g_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 18 DIF Gradient Pattern: 3018g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 30 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1500) 
# Set DIF type 
dif_array = d_b_3018g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3018g_e = list() 
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for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3018g_e = rbind(mf_lc2_3018g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3018g_lc2_e = get_structure_reco_rate(mf_lc2_3018g_e, size_of_lc) 
 
``` 
 
######### Model Recovery - Gradient Pattern - Two Latent Classes - Unequal Size 
########## 
 
 
## Model Recovery 10 Items 2 DIF Gradient Pattern: 1002g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_1002g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1002g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1002g_u = rbind(mf_lc2_1002g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1002g_lc2_u = get_structure_reco_rate(mf_lc2_1002g_u, size_of_lc) 
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``` 
 
## Model Recovery 10 Items 4 DIF Gradient Pattern: 1004g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_1004g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1004g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1004g_u = rbind(mf_lc2_1004g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1004g_lc2_u = get_structure_reco_rate(mf_lc2_1004g_u, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 6 DIF Gradient Pattern: 1006g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(2000, 1000) 
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# Set DIF type 
dif_array = d_b_1006g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_1006g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_1006g_u = rbind(mf_lc2_1006g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1006g_lc2_u = get_structure_reco_rate(mf_lc2_1006g_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 6 DIF Gradient Pattern: 3006g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_3006g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3006g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3006g_u = rbind(mf_lc2_3006g_u, show(m2))   
} 
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## calculate recovery rate 
lcReco_3006g_lc2_u = get_structure_reco_rate(mf_lc2_3006g_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 12 DIF Gradient Pattern: 3012g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 10 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_3012g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3012g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3012g_u = rbind(mf_lc2_3012g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3012g_lc2_u = get_structure_reco_rate(mf_lc2_3012g_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 18 DIF Gradient Pattern: 3018g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 10 
# Set number of items 
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n_item = 30 
# Set sample size 
size_of_lc = c(2000, 1000) 
# Set DIF type 
dif_array = d_b_3018g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc2_3018g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc2_3018g_u = rbind(mf_lc2_3018g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3018g_lc2_u = get_structure_reco_rate(mf_lc2_3018g_u, size_of_lc) 
 
``` 
 
 
############# THREE LATENT CLASSES STRUCTURE 
################################### 
 
###### Model Recovery - Symmetric Pattern - Three Latent Classes - Equal Size 
############# 
 
## Model Recovery 10 Items 2 DIF Symmetric Pattern: 1002s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 10 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_1002s 
# Set number of latent classes 
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n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1002s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1002s_e = rbind(mf_lc3_1002s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1002s_lc3_e = get_structure_reco_rate(mf_lc3_1002s_e, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 4 DIF Symmetric Pattern: 1004s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 10 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_1004s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1004s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1004s_e = rbind(mf_lc3_1004s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1004s_lc3_e = get_structure_reco_rate(mf_lc3_1004s_e, size_of_lc) 
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``` 
 
## Model Recovery 10 Items 6 DIF Symmetric Pattern: 1006s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 10 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_1006s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1006s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1006s_e = rbind(mf_lc3_1006s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1006s_lc3_e = get_structure_reco_rate(mf_lc3_1006s_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 6 DIF Symmetric Pattern: 3006s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 10 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 



 

167 
 

# Set DIF type 
dif_array = d_b_3006s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3006s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3006s_e = rbind(mf_lc3_3006s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3006s_lc3_e = get_structure_reco_rate(mf_lc3_3006s_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 12 DIF Symmetric Pattern: 3012s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 10 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_3012s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3012s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3012s_e = rbind(mf_lc3_3012s_e, show(m2))   
} 
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## calculate recovery rate 
lcReco_3012s_lc3_e = get_structure_reco_rate(mf_lc3_3012s_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 18 DIF Symmetric Pattern: 3018s - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 6 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_3018s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3018s_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3018s_e = rbind(mf_lc3_3018s_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3018s_lc3_e = get_structure_reco_rate(mf_lc3_3018s_e, size_of_lc) 
 
``` 
 
###### Model Recovery - Symmetric Pattern - Three Latent Classes - Unequal Size 
########### 
 
 
## Model Recovery 10 Items 2 DIF Symmetric Pattern: 1002s - unequal size 
```{r} 
set.seed(12345) 
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# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_1002s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1002s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1002s_u = rbind(mf_lc3_1002s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1002s_lc3_u = get_structure_reco_rate(mf_lc3_1002s_u, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 4 DIF Symmetric Pattern: 1004s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_1004s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1004s_u = list() 
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for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1004s_u = rbind(mf_lc3_1004s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1004s_lc3_u = get_structure_reco_rate(mf_lc3_1004s_u, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 6 DIF Symmetric Pattern: 1006s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_1006s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1006s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1006s_u = rbind(mf_lc3_1006s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1006s_lc3_u = get_structure_reco_rate(mf_lc3_1006s_u, size_of_lc) 
 
``` 
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## Model Recovery 30 Items 6 DIF Symmetric Pattern: 3006s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_3006s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3006s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3006s_u = rbind(mf_lc3_3006s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3006s_lc3_u = get_structure_reco_rate(mf_lc3_3006s_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 12 DIF Symmetric Pattern: 3012s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 3 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_3012s 
# Set number of latent classes 
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n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3012s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3012s_u = rbind(mf_lc3_3012s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3012s_lc3_u = get_structure_reco_rate(mf_lc3_3012s_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 18 DIF Symmetric Pattern: 3018s - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 3 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_3018s 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3018s_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3018s_u = rbind(mf_lc3_3018s_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3018s_lc3_u = get_structure_reco_rate(mf_lc3_3018s_u, size_of_lc) 
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``` 
 
 
########### Model Recovery - Gradient Pattern - Three Latent Classes - Equal Size 
########## 
 
 
## Model Recovery 10 Items 2 DIF Gradient Pattern: 1002g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_1002g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1002g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1002g_e = rbind(mf_lc3_1002g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1002g_lc3_e = get_structure_reco_rate(mf_lc3_1002g_e, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 4 DIF Gradient Pattern: 1004g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 



 

174 
 

#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_1004g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1004g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1004g_e = rbind(mf_lc3_1004g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1004g_lc3_e = get_structure_reco_rate(mf_lc3_1004g_e, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 6 DIF Gradient Pattern: 1006g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_1006g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1006g_e = list() 
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for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1006g_e = rbind(mf_lc3_1006g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1006g_lc3_e = get_structure_reco_rate(mf_lc3_1006g_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 6 DIF Gradient Pattern: 3006g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_3006g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3006g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3006g_e = rbind(mf_lc3_3006g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3006g_lc3_e = get_structure_reco_rate(mf_lc3_3006g_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 12 DIF Gradient Pattern: 3012g - equal size 
```{r} 
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set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_3012g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3012g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3012g_e = rbind(mf_lc3_3012g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3012g_lc3_e = get_structure_reco_rate(mf_lc3_3012g_e, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 18 DIF Gradient Pattern: 3018g - equal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 30 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1000, 1000, 1000) 
# Set DIF type 
dif_array = d_b_3018g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
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mf_lc3_3018g_e = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3018g_e = rbind(mf_lc3_3018g_e, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3018g_lc3_e = get_structure_reco_rate(mf_lc3_3018g_e, size_of_lc) 
 
``` 
 
######### Model Recovery - Gradient Pattern - Three Latent Classes - Unequal Size 
######### 
 
 
## Model Recovery 10 Items 2 DIF Gradient Pattern: 1002g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_1002g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1002g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1002g_u = rbind(mf_lc3_1002g_u, show(m2))   
} 
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## calculate recovery rate 
lcReco_1002g_lc3_u = get_structure_reco_rate(mf_lc3_1002g_u, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 4 DIF Gradient Pattern: 1004g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_1004g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1004g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1004g_u = rbind(mf_lc3_1004g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1004g_lc3_u = get_structure_reco_rate(mf_lc3_1004g_u, size_of_lc) 
 
``` 
 
## Model Recovery 10 Items 6 DIF Gradient Pattern: 1006g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 10 
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# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_1006g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_1006g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_1006g_u = rbind(mf_lc3_1006g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_1006g_lc3_u = get_structure_reco_rate(mf_lc3_1006g_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 6 DIF Gradient Pattern: 3006g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_3006g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3006g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
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  mf_lc3_3006g_u = rbind(mf_lc3_3006g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3006g_lc3_u = get_structure_reco_rate(mf_lc3_3006g_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 12 DIF Gradient Pattern: 3012g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
#n_rep = 10 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_3012g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3012g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3012g_u = rbind(mf_lc3_3012g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3012g_lc3_u = get_structure_reco_rate(mf_lc3_3012g_u, size_of_lc) 
 
``` 
 
## Model Recovery 30 Items 18 DIF Gradient Pattern: 3018g - unequal size 
```{r} 
set.seed(12345) 
 
# Set number of replications 
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#n_rep = 1 
# Set number of items 
n_item = 30 
# Set sample size 
size_of_lc = c(1500, 1000, 500) 
# Set DIF type 
dif_array = d_b_3018g 
# Set number of latent classes 
n_lc = length(size_of_lc) 
# Create list to store model fit data 
mf_lc3_3018g_u = list() 
 
 
for(i in 1:n_rep){ 
  test = gen_response(n_item, size_of_lc, dif_array) 
  m2 = raschmix(as.matrix(test[, 1:n_item]), k = 1:4, scores = "saturated", nrep = 1) 
  mf_lc3_3018g_u = rbind(mf_lc3_3018g_u, show(m2))   
} 
 
## calculate recovery rate 
lcReco_3018g_lc3_u = get_structure_reco_rate(mf_lc3_3018g_u, size_of_lc) 
 
``` 
 
 
# Merge Tables and Save to .csv 
```{r} 
lcReco_lc2_table <- rbind(cbind(lcReco_1002s_lc2_e, lcReco_1002s_lc2_u), 
                          cbind(lcReco_1002g_lc2_e, lcReco_1002g_lc2_u), 
                          cbind(lcReco_1004s_lc2_e, lcReco_1004s_lc2_u), 
                          cbind(lcReco_1004g_lc2_e, lcReco_1004g_lc2_u), 
                          cbind(lcReco_1006s_lc2_e, lcReco_1006s_lc2_u), 
                          cbind(lcReco_1006g_lc2_e, lcReco_1006g_lc2_u), 
                          cbind(lcReco_3006s_lc2_e, lcReco_3006s_lc2_u), 
                          cbind(lcReco_3006g_lc2_e, lcReco_3006g_lc2_u), 
                          cbind(lcReco_3012s_lc2_e, lcReco_3012s_lc2_u), 
                          cbind(lcReco_3012g_lc2_e, lcReco_3012g_lc2_u), 
                          cbind(lcReco_3018s_lc2_e, lcReco_3018s_lc2_u), 
                          cbind(lcReco_3018g_lc2_e, lcReco_3018g_lc2_u)) 
 
 
lcReco_lc3_table <- rbind(cbind(lcReco_1002s_lc3_e, lcReco_1002s_lc3_u), 
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                          cbind(lcReco_1002g_lc3_e, lcReco_1002g_lc3_u), 
                          cbind(lcReco_1004s_lc3_e, lcReco_1004s_lc3_u), 
                          cbind(lcReco_1004g_lc3_e, lcReco_1004g_lc3_u), 
                          cbind(lcReco_1006s_lc3_e, lcReco_1006s_lc3_u), 
                          cbind(lcReco_1006g_lc3_e, lcReco_1006g_lc3_u), 
                          cbind(lcReco_3006s_lc3_e, lcReco_3006s_lc3_u), 
                          cbind(lcReco_3006g_lc3_e, lcReco_3006g_lc3_u), 
                          cbind(lcReco_3012s_lc3_e, lcReco_3012s_lc3_u), 
                          cbind(lcReco_3012g_lc3_e, lcReco_3012g_lc3_u), 
                          cbind(lcReco_3018s_lc3_e, lcReco_3018s_lc3_u), 
                          cbind(lcReco_3018g_lc3_e, lcReco_3018g_lc3_u)) 
 
``` 
 
 
## Generate DIF Descriptive Statistics Table 
```{r} 
gen_dif_table <- function(df1, df2, df3, df4, df5, df6) { 
  table = list() 
  m1 = apply(df1, 2, mean) 
  sd1 = apply(df1, 2, sd) 
  m2 = apply(df2, 2, mean) 
  sd2 = apply(df2, 2, sd) 
  m3 = apply(df3, 2, mean) 
  sd3 = apply(df3, 2, sd) 
  m4 = apply(df4, 2, mean) 
  sd4 = apply(df4, 2, sd) 
  m5 = apply(df5, 2, mean) 
  sd5 = apply(df5, 2, sd) 
  m6 = apply(df6, 2, mean) 
  sd6 = apply(df6, 2, sd) 
   
  table = rbind(m1, sd1, m2, sd2, m3, sd3, m4, sd4, m5, sd5, m6, sd6) 
  table = as.matrix(table) 
  table = t(table) 
  return (table) 
} 
``` 
 
########################################################################
###### 
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#########################           Parameter Recovery          
########################### 
########################################################################
###### 
 
 
#############   Parameter Recovery - Two Latent Classes 
#############################      
 
### Fit Rasch Mixture Models 
 
######### Parameter Recovery - Equal Size - Two Latent Classes - Symmetric DIF 
########### 
 
## 10 items 2 dif items: 1002S - two latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1002s 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_1002s_lc2_e <- sim[,1:10] 
p_1002s_lc2_e <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1002s_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1002s, dif_1002s_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_1002s_lc2_e, c(1500,1500)) 
``` 
 
## 10 items 4 dif items: 1004S - two latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1004s 
size <- c(1500, 1500) 
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sim <- par_reco_sim(dif, size) 
dif_1004s_lc2_e <- sim[,1:10] 
p_1004s_lc2_e <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1004s_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1004s, dif_1004s_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_1004s_lc2_e, c(1500, 1500)) 
``` 
 
## 10 items 6 dif items: 1006S - two latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1006s 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_1006s_lc2_e <- sim[,1:10] 
p_1006s_lc2_e <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1006s_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1006s, dif_1006s_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_1006s_lc2_e, size) 
``` 
 
## 30 items 6 dif items: 3006S - two latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
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dif <- d_b_3006s 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_3006s_lc2_e <- sim[,1:30] 
p_3006s_lc2_e <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3006s_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3006s, dif_3006s_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_3006s_lc2_e, size) 
 
``` 
 
## 30 items 12 dif items: 3012S - two latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3012s 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_3012s_lc2_e <- sim[,1:30] 
p_3012s_lc2_e <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3012s_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3012s, dif_3012s_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_3012s_lc2_e, size) 
``` 
 
## 30 items 18 dif items: 3018S - two latent classes - equal size design 
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```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3018s 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_3018s_lc2_e <- sim[,1:30] 
p_3018s_lc2_e <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3018s_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3018s, dif_3018s_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_3018s_lc2_e, size) 
``` 
 
 
###### Parameter Recovery - Unequal Size - Two Latent Classes - Symmetric 
DIF############ 
 
## 10 items 2 dif items: 1002S - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1002s 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1002s_lc2_u <- sim[,1:10] 
p_1002s_lc2_u <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1002s_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1002s, dif_1002s_lc2_u) 



 

187 
 

 
# classifier parameter recovery 
p_viz(p_1002s_lc2_u, size) 
``` 
 
## 10 items 4 dif items: 1004S - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1004s 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1004s_lc2_u <- sim[,1:10] 
p_1004s_lc2_u <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1004s_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1004s, dif_1004s_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_1004s_lc2_u, size) 
``` 
 
## 10 items 6 dif items: 1006S - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1006s 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1006s_lc2_u <- sim[,1:10] 
p_1006s_lc2_u <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1006s_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
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# dif recovery 
dif_viz(d_b_1006s, dif_1006s_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_1006s_lc2_u, size) 
``` 
 
## 30 items 6 dif items: 3006S - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3006s 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3006s_lc2_u <- sim[,1:30] 
p_3006s_lc2_u <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3006s_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3006s, dif_3006s_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_3006s_lc2_u, size) 
 
``` 
 
## 30 items 12 dif items: 3012S - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3012s 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3012s_lc2_u <- sim[,1:30] 
p_3012s_lc2_u <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
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rt_3012s_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3012s, dif_3012s_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_3012s_lc2_u, size) 
``` 
 
## 30 items 18 dif items: 3018S - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3018s 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3018s_lc2_u <- sim[,1:30] 
p_3018s_lc2_u <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3018s_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3018s, dif_3018s_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_3018s_lc2_u, size) 
``` 
 
 
########## Parameter Recovery - Equal Size - Two Latent Classes - Gradient DIF 
############ 
 
## 10 items 2 dif items: 1002g - two latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1002g 
size <- c(1500, 1500) 
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sim <- par_reco_sim(dif, size) 
dif_1002g_lc2_e <- sim[,1:10] 
p_1002g_lc2_e <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1002g_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1002g, dif_1002g_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_1002g_lc2_e, size) 
``` 
 
## 10 items 4 dif items: 1004g - two latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1004g 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_1004g_lc2_e <- sim[,1:10] 
p_1004g_lc2_e <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1004g_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1004g, dif_1004g_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_1004g_lc2_e, size) 
``` 
 
## 10 items 6 dif items: 1006g - two latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
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dif <- d_b_1006g 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_1006g_lc2_e <- sim[,1:10] 
p_1006g_lc2_e <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1006g_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1006g, dif_1006g_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_1006g_lc2_e, size) 
``` 
 
## 30 items 6 dif items: 3006g - two latent classes - equal size design 
```{r, warning = False} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3006g 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_3006g_lc2_e <- sim[,1:30] 
p_3006g_lc2_e <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3006g_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3006g, dif_3006g_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_3006g_lc2_e, size) 
``` 
 
## 30 items 12 dif items: 3012g - two latent classes - equal size design 
```{r} 
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# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3012g 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_3012g_lc2_e <- sim[,1:30] 
p_3012g_lc2_e <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3012g_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3012g, dif_3012g_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_3012g_lc2_e, size) 
``` 
 
## 30 items 18 dif items: 3018g - two latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3018g 
size <- c(1500, 1500) 
 
sim <- par_reco_sim(dif, size) 
dif_3018g_lc2_e <- sim[,1:30] 
p_3018g_lc2_e <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3018g_lc2_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3018g, dif_3018g_lc2_e) 
 
# classifier parameter recovery 
p_viz(p_3018g_lc2_e, size) 
``` 
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###### Parameter Recovery - Unequal Size - Two Latent Classes - Gradient DIF 
############## 
 
## 10 items 2 dif items: 1002g - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1002g 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1002g_lc2_u <- sim[,1:10] 
p_1002g_lc2_u <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1002g_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1002g, dif_1002g_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_1002g_lc2_u, size) 
``` 
 
## 10 items 4 dif items: 1004g - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1004g 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1004g_lc2_u <- sim[,1:10] 
p_1004g_lc2_u <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1004g_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 



 

194 
 

dif_viz(d_b_1004g, dif_1004g_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_1004g_lc2_u, size) 
``` 
 
## 10 items 6 dif items: 1006g - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1006g 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1006g_lc2_u <- sim[,1:10] 
p_1006g_lc2_u <- sim[,11:12] 
 
# Stop the clock and sotre runtime in rt 
rt_1006g_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_1006g, dif_1006g_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_1006g_lc2_u, size) 
``` 
 
## 30 items 6 dif items: 3006g - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3006g 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3006g_lc2_u <- sim[,1:30] 
p_3006g_lc2_u <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3006g_lc2_u = (proc.time() - ptm)[1:3] 
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# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3006g, dif_3006g_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_3006g_lc2_u, size) 
 
``` 
 
## 30 items 12 dif items: 3012g - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3012g 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3012g_lc2_u <- sim[,1:30] 
p_3012g_lc2_u <- sim[,31:32] 
 
# Stop the clock and sotre runtime in rt 
rt_3012g_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3012g, dif_3012g_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_3012g_lc2_u, size) 
``` 
 
## 30 items 18 dif items: 3018g - two latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3018g 
size <- c(2000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3018g_lc2_u <- sim[,1:30] 
p_3018g_lc2_u <- sim[,31:32] 
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# Stop the clock and sotre runtime in rt 
rt_3018g_lc2_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(d_b_3018g, dif_3018g_lc2_u) 
 
# classifier parameter recovery 
p_viz(p_3018g_lc2_u, size) 
``` 
 
 
#################   Parameter Recovery - Three Latent Classes 
########################       
 
### Fit Rasch Mixture Models 
 
######### Parameter Recovery - Equal Size - Three Latent Classes - Symmetric DIF 
########## 
 
## 10 items 2 dif items: 1002S - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1002s 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1002s_lc3_e_1 <- sim[, 1:10] 
dif_1002s_lc3_e_2 <- sim[, 11:20] 
p_1002s_lc3_e <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1002s_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1002s_lc3_e_1) 
dif_viz(dif_2, dif_1002s_lc3_e_2) 
 
# classifier parameter recovery 
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p_viz(p_1002s_lc3_e, size) 
 
``` 
 
## 10 items 4 dif items: 1004S - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1004s 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1004s_lc3_e_1 <- sim[, 1:10] 
dif_1004s_lc3_e_2 <- sim[, 11:20] 
p_1004s_lc3_e <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1004s_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1004s_lc3_e_1) 
dif_viz(dif_2, dif_1004s_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_1004s_lc3_e, size) 
 
``` 
 
## 10 items 6 dif items: 1006S - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1006s 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1006s_lc3_e_1 <- sim[,1:10] 
dif_1006s_lc3_e_2 <- sim[,11:20] 
p_1006s_lc3_e <- sim[,21:23] 
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# Stop the clock and sotre runtime in rt 
rt_1006s_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1006s_lc3_e_1) 
dif_viz(dif_2, dif_1006s_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_1006s_lc3_e, size) 
 
``` 
 
## 30 items 6 dif items: 3006S - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3006s 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3006s_lc3_e_1 <- sim[,1:30] 
dif_3006s_lc3_e_2 <- sim[,31:60] 
p_3006s_lc3_e <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3006s_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3006s_lc3_e_1) 
dif_viz(dif_2, dif_3006s_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_3006s_lc3_e, size) 
 
``` 
 
## 30 items 12 dif items: 3012S - three latent classes - equal size design 
```{r} 
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# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3012s 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3012s_lc3_e_1 <- sim[,1:30] 
dif_3012s_lc3_e_2 <- sim[,31:60] 
p_3012s_lc3_e <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3012s_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3012s_lc3_e_1) 
dif_viz(dif_2, dif_3012s_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_3012s_lc3_e, size) 
 
``` 
 
## 30 items 18 dif items: 3018S - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3018s 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3018s_lc3_e_1 <- sim[,1:30] 
dif_3018s_lc3_e_2 <- sim[,31:60] 
p_3018s_lc3_e <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3018s_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
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dif_viz(dif, dif_3018s_lc3_e_1) 
dif_viz(dif_2, dif_3018s_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_3018s_lc3_e, size) 
 
``` 
 
 
######### Parameter Recovery - Unequal Size - Three Latent Classes - Symmetric DIF 
######## 
 
## 10 items 2 dif items: 1002S - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1002s 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_1002s_lc3_u_1 <- sim[,1:10] 
dif_1002s_lc3_u_2 <- sim[,11:20] 
p_1002s_lc3_u <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1002s_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1002s_lc3_u_1) 
dif_viz(dif_2, dif_1002s_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_1002s_lc3_u, size) 
 
``` 
 
## 10 items 4 dif items: 1004S - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 



 

201 
 

dif <- d_b_1004s 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_1004s_lc3_u_1 <- sim[,1:10] 
dif_1004s_lc3_u_2 <- sim[,11:20] 
p_1004s_lc3_u <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1004s_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1004s_lc3_u_1) 
dif_viz(dif_2, dif_1004s_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_1004s_lc3_u, size) 
 
``` 
 
## 10 items 6 dif items: 1006S - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1006s 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_1006s_lc3_u_1 <- sim[,1:10] 
dif_1006s_lc3_u_2 <- sim[,11:20] 
p_1006s_lc3_u <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1006s_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1006s_lc3_u_1) 
dif_viz(dif_2, dif_1006s_lc3_u_2) 
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# classifier parameter recovery 
p_viz(p_1006s_lc3_u, size) 
 
``` 
 
## 30 items 6 dif items: 3006S - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3006s 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_3006s_lc3_u_1 <- sim[,1:30] 
dif_3006s_lc3_u_2 <- sim[,31:60] 
p_3006s_lc3_u <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3006s_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3006s_lc3_u_1) 
dif_viz(dif_2, dif_3006s_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_3006s_lc3_u, size) 
 
``` 
 
## 30 items 12 dif items: 3012S - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3012s 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_3012s_lc3_u_1 <- sim[,1:30] 
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dif_3012s_lc3_u_2 <- sim[,31:60] 
p_3012s_lc3_u <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3012s_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3012s_lc3_u_1) 
dif_viz(dif_2, dif_3012s_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_3012s_lc3_u, size) 
 
``` 
 
## 30 items 18 dif items: 3018S - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3018s 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_3018s_lc3_u_1 <- sim[,1:30] 
dif_3018s_lc3_u_2 <- sim[,31:60] 
p_3018s_lc3_u <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3018s_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3018s_lc3_u_1) 
dif_viz(dif_2, dif_3018s_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_3018s_lc3_u, size) 
 
``` 
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########### Parameter Recovery - Equal Size - Three Latent Classes - Gradient DIF 
########## 
 
## 10 items 2 dif items: 1002g - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1002g 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1002g_lc3_e_1 <- sim[,1:10] 
dif_1002g_lc3_e_2 <- sim[,11:20] 
p_1002g_lc3_e <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1002g_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1002g_lc3_e_1) 
dif_viz(dif_2, dif_1002g_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_1002g_lc3_e, size) 
 
``` 
 
## 10 items 4 dif items: 1004g - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1004g 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1004g_lc3_e_1 <- sim[,1:10] 
dif_1004g_lc3_e_2 <- sim[,11:20] 
p_1004g_lc3_e <- sim[,21:23] 
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# Stop the clock and sotre runtime in rt 
rt_1004g_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1004g_lc3_e_1) 
dif_viz(dif_2, dif_1004g_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_1004g_lc3_e, size) 
 
``` 
 
## 10 items 6 dif items: 1006g - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1006g 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_1006g_lc3_e_1 <- sim[,1:10] 
dif_1006g_lc3_e_2 <- sim[,11:20] 
p_1006g_lc3_e <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1006g_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1006g_lc3_e_1) 
dif_viz(dif_2, dif_1006g_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_1006g_lc3_e, size) 
 
``` 
 
## 30 items 6 dif items: 3006g - three latent classes - equal size design 
```{r, warning = False} 
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# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3006g 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3006g_lc3_e_1 <- sim[,1:30] 
dif_3006g_lc3_e_2 <- sim[,31:60] 
p_3006g_lc3_e <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3006g_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3006g_lc3_e_1) 
dif_viz(dif_2, dif_3006g_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_3006g_lc3_e, size) 
 
``` 
 
## 30 items 12 dif items: 3012g - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3012g 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3012g_lc3_e_1 <- sim[,1:30] 
dif_3012g_lc3_e_2 <- sim[,31:60] 
p_3012g_lc3_e <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3012g_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 



 

207 
 

dif_viz(dif, dif_3012g_lc3_e_1) 
dif_viz(dif_2, dif_3012g_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_3012g_lc3_e, size) 
 
``` 
 
## 30 items 18 dif items: 3018g - three latent classes - equal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3018g 
dif_2 <- dif*2 
size <- c(1000, 1000, 1000) 
 
sim <- par_reco_sim(dif, size) 
dif_3018g_lc3_e_1 <- sim[,1:30] 
dif_3018g_lc3_e_2 <- sim[,31:60] 
p_3018g_lc3_e <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3018g_lc3_e = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3018g_lc3_e_1) 
dif_viz(dif_2, dif_3018g_lc3_e_2) 
 
# classifier parameter recovery 
p_viz(p_3018g_lc3_e, size) 
 
``` 
 
 
######## Parameter Recovery - Unequal Size - Three Latent Classes - Gradient DIF 
########## 
 
## 10 items 2 dif items: 1002g - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
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dif <- d_b_1002g 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_1002g_lc3_u_1 <- sim[,1:10] 
dif_1002g_lc3_u_2 <- sim[,11:20] 
p_1002g_lc3_u <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1002g_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1002g_lc3_u_1) 
dif_viz(dif_2, dif_1002g_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_1002g_lc3_u, size) 
 
``` 
 
## 10 items 4 dif items: 1004g - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1004g 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_1004g_lc3_u_1 <- sim[,1:10] 
dif_1004g_lc3_u_2 <- sim[,11:20] 
p_1004g_lc3_u <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1004g_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1004g_lc3_u_1) 
dif_viz(dif_2, dif_1004g_lc3_u_2) 
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# classifier parameter recovery 
p_viz(p_1004g_lc3_u, size) 
 
``` 
 
## 10 items 6 dif items: 1006g - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_1006g 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_1006g_lc3_u_1 <- sim[,1:10] 
dif_1006g_lc3_u_2 <- sim[,11:20] 
p_1006g_lc3_u <- sim[,21:23] 
 
# Stop the clock and sotre runtime in rt 
rt_1006g_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_1006g_lc3_u_1) 
dif_viz(dif_2, dif_1006g_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_1006g_lc3_u, size) 
 
``` 
 
## 30 items 6 dif items: 3006g - three latent classes - unequal size design 
```{r, warning = False} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3006g 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_3006g_lc3_u_1 <- sim[,1:30] 
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dif_3006g_lc3_u_2 <- sim[,31:60] 
p_3006g_lc3_u <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3006g_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3006g_lc3_u_1) 
dif_viz(dif_2, dif_3006g_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_3006g_lc3_u, size) 
 
``` 
 
## 30 items 12 dif items: 3012g - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3012g 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_3012g_lc3_u_1 <- sim[,1:30] 
dif_3012g_lc3_u_2 <- sim[,31:60] 
p_3012g_lc3_u <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3012g_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3012g_lc3_u_1) 
dif_viz(dif_2, dif_3012g_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_3012g_lc3_u, size) 
 
``` 
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## 30 items 18 dif items: 3018g - three latent classes - unequal size design 
```{r} 
# Add time recorder: start the clock 
ptm <- proc.time() 
dif <- d_b_3018g 
dif_2 <- dif*2 
size <- c(1500, 1000, 500) 
 
sim <- par_reco_sim(dif, size) 
dif_3018g_lc3_u_1 <- sim[,1:30] 
dif_3018g_lc3_u_2 <- sim[,31:60] 
p_3018g_lc3_u <- sim[,61:63] 
 
# Stop the clock and sotre runtime in rt 
rt_3018g_lc3_u = (proc.time() - ptm)[1:3] 
 
# Visualize parameter recovery 
# dif recovery 
dif_viz(dif, dif_3018g_lc3_u_1) 
dif_viz(dif_2, dif_3018g_lc3_u_2) 
 
# classifier parameter recovery 
p_viz(p_3018g_lc3_u, size) 
 
``` 
 
 
## Create descriptive statistics table for each test type 
```{r} 
table_1002s = gen_dif_table(dif_1002s_lc2_e, dif_1002s_lc2_u, dif_1002s_lc3_e_1, 
dif_1002s_lc3_u_1, dif_1002s_lc3_e_2, dif_1002s_lc3_u_2) 
 
table_1004s = gen_dif_table(dif_1004s_lc2_e, dif_1004s_lc2_u, dif_1004s_lc3_e_1, 
dif_1004s_lc3_u_1, dif_1004s_lc3_e_2, dif_1004s_lc3_u_2) 
 
table_1006s = gen_dif_table(dif_1006s_lc2_e, dif_1006s_lc2_u, dif_1006s_lc3_e_1, 
dif_1006s_lc3_u_1, dif_1006s_lc3_e_2, dif_1006s_lc3_u_2) 
 
table_3006s = gen_dif_table(dif_3006s_lc2_e, dif_3006s_lc2_u, dif_3006s_lc3_e_1, 
dif_3006s_lc3_u_1, dif_3006s_lc3_e_2, dif_3006s_lc3_u_2) 
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table_3012s = gen_dif_table(dif_3012s_lc2_e, dif_3012s_lc2_u, dif_3012s_lc3_e_1, 
dif_3012s_lc3_u_1, dif_3012s_lc3_e_2, dif_3012s_lc3_u_2) 
 
table_3018s = gen_dif_table(dif_3018s_lc2_e, dif_3018s_lc2_u, dif_3018s_lc3_e_1, 
dif_3018s_lc3_u_1, dif_3018s_lc3_e_2, dif_3018s_lc3_u_2) 
 
table_1002g = gen_dif_table(dif_1002g_lc2_e, dif_1002g_lc2_u, dif_1002g_lc3_e_1, 
dif_1002g_lc3_u_1, dif_1002g_lc3_e_2, dif_1002g_lc3_u_2) 
 
table_1004g = gen_dif_table(dif_1004g_lc2_e, dif_1004g_lc2_u, dif_1004g_lc3_e_1, 
dif_1004g_lc3_u_1, dif_1004g_lc3_e_2, dif_1004g_lc3_u_2) 
 
table_1006g = gen_dif_table(dif_1006g_lc2_e, dif_1006g_lc2_u, dif_1006g_lc3_e_1, 
dif_1006g_lc3_u_1, dif_1006g_lc3_e_2, dif_1006g_lc3_u_2) 
 
table_3006g = gen_dif_table(dif_3006g_lc2_e, dif_3006g_lc2_u, dif_3006g_lc3_e_1, 
dif_3006g_lc3_u_1, dif_3006g_lc3_e_2, dif_3006g_lc3_u_2) 
 
table_3012g = gen_dif_table(dif_3012g_lc2_e, dif_3012g_lc2_u, dif_3012g_lc3_e_1, 
dif_3012g_lc3_u_1, dif_3012g_lc3_e_2, dif_3012g_lc3_u_2) 
 
table_3018g = gen_dif_table(dif_3018g_lc2_e, dif_3018g_lc2_u, dif_3018g_lc3_e_1, 
dif_3018g_lc3_u_1, dif_3018g_lc3_e_2, dif_3018g_lc3_u_2) 
 
# Write tables to csv files for future editing 
write.csv(table_1002s, "table_1002s.csv") 
write.csv(table_1004s, "table_1004s.csv") 
write.csv(table_1006s, "table_1006s.csv") 
 
write.csv(table_1002g, "table_1002g.csv") 
write.csv(table_1004g, "table_1004g.csv") 
write.csv(table_1006g, "table_1006g.csv") 
 
write.csv(table_3006s, "table_3006s.csv") 
write.csv(table_3012s, "table_3012s.csv") 
write.csv(table_3018s, "table_3018s.csv") 
 
write.csv(table_3006g, "table_3006g.csv") 
write.csv(table_3012g, "table_3012g.csv") 
write.csv(table_3018g, "table_3018g.csv") 
 
``` 
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# Output classifier parameter recovery plots in a combined way. 
```{r} 
par(mfrow=c(2, 2)) 
p_viz(p_1002s_lc2_e, c(1500, 1500)) 
p_viz(p_1002s_lc2_u, c(2000, 1000)) 
p_viz(p_1002s_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_1002s_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_1002g_lc2_e, c(1500, 1500)) 
p_viz(p_1002g_lc2_u, c(2000, 1000)) 
p_viz(p_1002g_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_1002g_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_1004s_lc2_e, c(1500, 1500)) 
p_viz(p_1004s_lc2_u, c(2000, 1000)) 
p_viz(p_1004s_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_1004s_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_1004g_lc2_e, c(1500, 1500)) 
p_viz(p_1004g_lc2_u, c(2000, 1000)) 
p_viz(p_1004g_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_1004g_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_1006s_lc2_e, c(1500, 1500)) 
p_viz(p_1006s_lc2_u, c(2000, 1000)) 
p_viz(p_1006s_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_1006s_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_1006g_lc2_e, c(1500, 1500)) 
p_viz(p_1006g_lc2_u, c(2000, 1000)) 
p_viz(p_1006g_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_1006g_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_3006s_lc2_e, c(1500, 1500)) 
p_viz(p_3006s_lc2_u, c(2000, 1000)) 
p_viz(p_3006s_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_3006s_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_3006g_lc2_e, c(1500, 1500)) 
p_viz(p_3006g_lc2_u, c(2000, 1000)) 
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p_viz(p_3006g_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_3006g_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_3012s_lc2_e, c(1500, 1500)) 
p_viz(p_3012s_lc2_u, c(2000, 1000)) 
p_viz(p_3012s_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_3012s_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_3012g_lc2_e, c(1500, 1500)) 
p_viz(p_3012g_lc2_u, c(2000, 1000)) 
p_viz(p_3012g_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_3012g_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_3018s_lc2_e, c(1500, 1500)) 
p_viz(p_3018s_lc2_u, c(2000, 1000)) 
p_viz(p_3018s_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_3018s_lc3_u, c(1500, 1000, 500)) 
 
p_viz(p_3018g_lc2_e, c(1500, 1500)) 
p_viz(p_3018g_lc2_u, c(2000, 1000)) 
p_viz(p_3018g_lc3_e, c(1000, 1000, 1000)) 
p_viz(p_3018g_lc3_u, c(1500, 1000, 500)) 
 
``` 
 
 
```{r} 
rt_table <- rbind(rt_1002s_lc2_e, rt_1002s_lc2_u, rt_1002s_lc3_e, rt_1002s_lc3_u, 
                  rt_1002g_lc2_e, rt_1002g_lc2_u, rt_1002g_lc3_e, rt_1002g_lc3_u, 
                  rt_1004s_lc2_e, rt_1004s_lc2_u, rt_1004s_lc3_e, rt_1004s_lc3_u, 
                  rt_1004g_lc2_e, rt_1004g_lc2_u, rt_1004g_lc3_e, rt_1004g_lc3_u, 
                  rt_1006s_lc2_e, rt_1006s_lc2_u, rt_1006s_lc3_e, rt_1006s_lc3_u, 
                  rt_1006g_lc2_e, rt_1006g_lc2_u, rt_1006g_lc3_e, rt_1006g_lc3_u, 
                  rt_3006s_lc2_e, rt_3006s_lc2_u, rt_3006s_lc3_e, rt_3006s_lc3_u, 
                  rt_3006g_lc2_e, rt_3006g_lc2_u, rt_3006g_lc3_e, rt_3006g_lc3_u, 
                  rt_3012s_lc2_e, rt_3012s_lc2_u, rt_3012s_lc3_e, rt_3012s_lc3_u, 
                  rt_3012g_lc2_e, rt_3012g_lc2_u, rt_3012g_lc3_e, rt_3012g_lc3_u, 
                  rt_3018s_lc2_e, rt_3018s_lc2_u, rt_3018s_lc3_e, rt_3018s_lc3_u, 
                  rt_3018g_lc2_e, rt_3018g_lc2_u, rt_3018g_lc3_e, rt_3018g_lc3_u) 
write.csv(rt_table, "Runtime Table.csv") 
``` 
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Appendix B Figures for Item Level DIF Recovery 

Figure 1 
1002s_lc2_e Item DIF Recovery   

 
 
 
Figure 2 
1004_lc2_e Item DIF Recovery
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Figure 3 
1006s_lc2_e Item DIF Recovery 

 
 
 
 
Figure 4 
3006s_lc2_e Item DIF Recovery 
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Figure 5 
3012s_lc2_e Item DIF Recovery 
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Figure 6 
3018s_lc2_e Item DIF Recovery 
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Figure 7 
1002s_lc2_u Item DIF Recovery 

 
 
Figure 8 
1004s_lc2_u Item DIF Recovery 
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Figure 9 
1006s_lc2_u Item DIF Recovery 

 
 
 
Figure 10 
3006s_lc2_u Item DIF Recovery 
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Figure 11 
3012s_lc2_u Item DIF Recovery 
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Figure 12 
3018s_lc2_u Item DIF Recovery 
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Figure 13 
1002g_lc2_e Item DIF Recovery 

 
 
 
Figure 14 
1004g_lc2_e Item DIF Recovery 
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Figure 15 
1006g_lc2_e Item DIF Recovery 

 
 
 
Figure 16 
3006g_lc2_e Item DIF Recovery 
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Figure 17 
3012g_lc2_e Item DIF Recovery 
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Figure 18 
3018g_lc2_e Item DIF Recovery 
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Figure 19 
1002g_lc2_u Item DIF Recovery 

 
 
 
Figure 20 
1004g_lc2_u Item DIF Recovery 
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Figure 21 
1006g_lc2_u Item DIF Recovery 

 
 
 
Figure 22 
3006g_lc2_u Item DIF Recovery 
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Figure 23 
3012g_lc2_u Item DIF Recovery 

 
 
 
 
 
 



 

230 
 

Figure 24 
3018g_lc2_u Item DIF Recovery 
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Figure 25a  
1002s_lc3_e Item DIF Recovery  

 
 
 
Figure 25b  
1002s_lc3_e Item DIF Recovery  
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Figure 26a 
1004s_lc3_e Item DIF Recovery  

 
 
 
Figure 26b 
1004s_lc3_e Item DIF Recovery  
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Figure 27a  
1006s_lc3_e Item DIF Recovery  

 
 
 
Figure 27b  
1006s_lc3_e Item DIF Recovery  
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Figure 28a  
3006s_lc3_e Item DIF Recovery  

 
 
 
Figure 28b  
3006s_lc3_e Item DIF Recovery  
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Figure 29a  
3012s_lc3_e Item DIF Recovery 
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Figure 29b  
3012s_lc3_e Item DIF Recovery 
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Figure 30a  
3018s_lc3_e Item DIF Recovery 
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Figure 30b  
3018s_lc3_e Item DIF Recovery 
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Figure 31a  
1002s_lc3_u Item DIF Recovery 

 
 
 
Figure 31b  
1002s_lc3_u Item DIF Recovery 
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Figure 32a  
1004s_lc3_u Item DIF Recovery 

 
 
 
Figure 32b  
1004s_lc3_u Item DIF Recovery 
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Figure 33a  
1006s_lc3_u Item DIF Recovery 

 
 
 
Figure 33b  
1006s_lc3_u Item DIF Recovery 
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Figure 34a  
3006s_lc3_u Item DIF Recovery 

 
 
 
Figure 34b  
3006s_lc3_u Item DIF Recovery 
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Figure 35a  
3012s_lc3_u Item DIF Recovery 
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Figure 35b  
3012s_lc3_u Item DIF Recovery 
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Figure 36a  
3018s_lc3_u Item DIF Recovery 
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Figure 36b  
3018s_lc3_u Item DIF Recovery 
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Figure 37a  
1002g_lc3_e Item DIF Recovery 

 
 
 
Figure 37b  
1002g_lc3_e Item DIF Recovery 
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Figure 38a  
1004g_lc3_e Item DIF Recovery 

 
 
 
Figure 38b  
1004g_lc3_e Item DIF Recovery 
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Figure 39a  
1006g_lc3_e Item DIF Recovery 

 
 
 
Figure 39b  
1006g_lc3_e Item DIF Recovery 
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Figure 30a  
3006g_lc3_e Item DIF Recovery 

 
 
 
Figure 30b  
3006g_lc3_e Item DIF Recovery 
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Figure 41a  
3012g_lc3_e Item DIF Recovery 
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Figure 41b  
3012g_lc3_e Item DIF Recovery 
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Figure 42a  
3018g_lc3_e Item DIF Recovery 
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Figure 42b  
3018g_lc3_e Item DIF Recovery 
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Figure 43a  
1002g_lc3_u Item DIF Recovery 

 
 
 
Figure 43b  
1002g_lc3_u Item DIF Recovery 

 
 



 

256 
 

Figure 44a  
1004g_lc3_u Item DIF Recovery 

 
 
 
Figure 44b  
1004g_lc3_u Item DIF Recovery 
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Figure 45a  
1006g_lc3_u Item DIF Recovery 

 
 
 
Figure 45b  
1006g_lc3_u Item DIF Recovery 
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Figure 46a  
3006g_lc3_u Item DIF Recovery 

 
 
 
Figure 46b  
3006g_lc3_u Item DIF Recovery 
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Figure 47a  
3012g_lc3_u Item DIF Recovery 
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Figure 47b  
3012g_lc3_u Item DIF Recovery 
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Figure 48a  
3018g_lc3_u Item DIF Recovery 
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Figure 48b  
3018g_lc3_u Item DIF Recovery 
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