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Abstract 
 

Purines are a class of nitrogenous bases and are essential small molecules to life. 

Purines are used within the cell as genetic information carriers, energy currency, 

signaling molecules, and cofactors for multiple processes. They are formed through de 

novo and salvage pathways found in cells across the phylogenetic tree. The substrates of 

enzymes within de novo purine synthesis are known to influence other processes within 

the cell, such as energy homeostasis. In humans, de novo purine synthesis disorders are 

rare, with around 100 people identified. These patients exhibit a range of phenotypes, 

with varying degrees of mental retardation, seizure activity, facial and body dysmorphic 

features, autistic features, respiratory failure, and congenital blindness. To date, the 

explanation of phenotypes associated with these disorders remains elusive and as such, 

no effective therapeutic has been identified. Rare disorders are often caused by a single 

genetic mutation and studying rare disorders can providing key insight into processes 

regulated by that specific enzyme. In this body of work, I use transcriptomic profiling 

techniques to provide cellular and organismal process characterization of a novel cellular 

model of de novo purine deficiency in three CRISPR generated HeLa cell lines. I 

examine the de novo purine synthesis enzymes ADSL, GART, and ATIC. Processes 

identified influenced by de novo purine dysregulation identified are focused around 

neural, embryonic, organ, and placental development, epithelial to mesenchymal 

transition, fatty acid and inflammatory response, muscle function, tumorigenesis, 
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oxidative stress responses, as well as TGFβ/SMAD signaling among others. Metabolomic 

profiling was employed to bolster transcriptomic findings, with aberrations of metabolic 

pathways involved in energy production, vitamin B6 and B5 metabolism, oxidative stress 

responses, lipids, amino acids, among others. My findings highlight areas in which de 

novo purine synthesis enzymes influence cellular processes responsible for cellular and 

organismal function and represent novel avenues of continued research. 
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Chapter One: Introduction 

Overview 
 

Purines are a class of nitrogenous bases and are vital to cellular and organismal 

functions. Defects in purine synthesis have clinical implications in patients and are 

extremely rare; the processes by which they affect patients are not well understood. There 

is known relevance of DNPS in energy homeostasis, developmental, and tumor biology. 

The study of rare disorders often reveals vital information of biological significance. In 

this dissertation, I explore the potential processes that are affected by purine synthesis 

dysregulation and metabolite intermediate accumulation. 

Nitrogenous bases and their nucleoside and nucleotide conjugates 

Nitrogenous bases are essential small molecules to life. These nitrogenous bases 

can be conjugated with a pentose sugar to form a nucleoside, and further conjugated with 

one to three phosphate groups to form nucleotides (Figure 1.1A). Nucleotides can then be 

polymerized into nucleic acids, in the form of deoxy- and ribonucleic acid (DNA and 

RNA respectively). There are five common identities of nitrogenous bases, grouped into 

one of two classes. These two classes of nitrogenous bases are purines and pyrimidines. 

The pyrimidine class is comprised of cytosine, uracil, and thymine while purine class is 

comprised of adenine and guanine (Figure 1.1B) (Figure 1.1A, B adapted from (Watson 

et al. 2008)). Nitrogenous bases can be made via two types of pathways, de novo and 

salvage. Salvage pathways typically use degradation products of nucleic acid catabolism 
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as an input to generate nucleotides with 

minimal steps while the de novo synthesis 

pathways use small molecule precursors 

from other biochemical pathways over 

many steps to form purines and pyrimidines 

(Roy et al. 2016; Moffatt and Ashihara 

2002). 

Purine metabolism 
 

Purines are a class of nitrogenous 

bases containing a six-atom ring bound to a 

five-carbon ring with one of two side group 

identities dependent on it being adenine or 

guanine base (Figure 1.1A). The two types 

of pathways capable of generating purines are the salvage and de novo. De novo purine 

synthesis (DNPS) uses the small molecule phosphoribosyl pyrophosphate (PRPP) and 

generates inosine monophosphate (IMP) via ten or eleven steps (Jinnah, Sabina, and Van 

Den Berghe 2013; Kappock, Ealick, and Stubbe 2000) (Figure 1.2A). DNPS, the focus of 

this doctoral work, utilizes six enzymes in higher eukaryotes, a singular trifunctional 

enzyme, two bifunctional, and three monofunctional. Salvage synthesis (Figure 1.2B) 

commonly utilizes the small molecules adenine (Ade), guanine (Gua), or hypoxanthine 

(Hx) and within one step can be synthesized into AMP, GMP, or IMP, depending on the 

precursor molecule. IMP is converted into AMP or GMP, each requiring two more 

sequential steps. Typically, salvage synthesis relies on the small molecule input from 

Figure 1.1: Chemical structure of nitrogenous 
bases and their classes. Nitrogenous bases can 
be further conjugated into nucleosides and 
nucleotides. Adenosine triphosphate with 
nitrogenous base, nucleoside, and nucleotide 
(triphosphate) conjugation identified (A). 
Chemical structures of nitrogenous bases 
composing the two major classes, purines and 
pyrimidines. Dark red boxes on purine and 
pyrimidines indicate site of sugar conjugation 
making nucleosides from nitrogenous bases (B). 
Chemical structure accessed from Molecular 
Biology of the Gene 6th edition and skeletal 
drawings made using PubChem Sketcher 2.4 
(PubChem). 
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purine catabolism of nucleic acids and diet. The commonly used salvage inputs are Gua, 

Ade, and Hx as previously mentioned. For DNPS dysregulation, Ade is a unique salvage 

input. Ade is able to be synthesized into AMP directly, and subsequently converted to 

IMP by AMP deaminase, which may then be further processed to generate GMP. Hx is 

converted directly into IMP and then able to be synthesized into either GMP or AMP, 

however in the conversion of IMP to AMP, the DNPS enzyme ADSL is bifunctional and 

required to convert SAMP to AMP. Gua is synthesized into GMP, but there is no 

mechanism in mammalian cells to convert GMP to IMP. Purine catabolism is essential 

for normal cellular function and breaks down purines to their eventual product of uric 

acid in humans, which may then be secreted by the body (Figure 1.2C) (Jinnah, Sabina, 

and Van Den Berghe 2013). Figure adapted from (Jinnah, Sabina, and Van Den Berghe 

2013). 
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Figure 1.2: Purine synthesis pathways and catabolism. Purines can be synthesized via de novo and 
salvage pathways. DNPS uses the small molecule PRPP as input through ten sequential steps to IMP. 
Certain steps require other substrates as identified. IMP may then be synthesized into AMP or GMP and 
phosphorylated to ATP or GTP, these steps are not within DNPS (A). Salvage purine synthesis utilizes the 
small molecules (among others) adenine, guanine, and hypoxanthine to directly make AMP, IMP, or GMP 
in one single step. Adenine and hypoxanthine are the only salvage inputs capable of making AMP and 
GMP (A). Purine catabolism breaks AMP, IMP, and GMP into uric acid in humans for secretion (C). Small 
molecules/metabolites/intermediates are found as black text, enzymes are pink, functional domains of 
multifunctional proteins are purple with green lines indicating which steps the multifunctional enzymes 
catalyze. Figure adapted from Jinnah 2013. Abbreviation list as follows: 
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Small molecule/Metabolite/Intermediate (Black): 
ZMP (AICAR): aminoimidazolecarboxamide ribotide 
ADP: adenosine diphosphate 
AMP: adenosine monophosphate 
ATP: adenosine triphosphate 
GDP: guanosine diphosphate 
GMP: guanosine monophosphate 
GTP: guanosine triphosphate 
IMP: inosine monophosphate 
PRPP: phosphoribosylpyrophosphate 
SAICAR: succinyl- aminoimidazolecarboxamide ribotide 
SAMP: succinyl-AMP or adenylosuccinate 
XMP: xanthine monophosphate 
PRPP: phosphoribosyl pyrophosphate 
5-PRA: phosphoribosylamine 
GAR: glycineamide ribonucleotide 
FGAR: phosphoribosyl-N-formylglycineamide 
FGAM: 5’-phosphoribosyl formylglycinamidine 
AIR: 5’-phosphoribosyl-5-aminoimidazole 
CAIR: 5’phosphoribosyl-4-carboxy-5-aminoimidazole 
FAICAR: 5-formamidoimidazole-4-carboxamide ribotide 
Asp: aspartate 
10fTHF: 10-formyltetrahydrofolate 
Gly: glycine 
Gln: glutamine 
Ade: adenine 
Gua: guanine 
Hx: hypoxanthine 
 
Enzyme (Pink): 
5′NT: 5′-nucleotidase 
PRAT: Phosphoribosyl amidotransferase 
GART: Phosphoribosylglycinamide Formyltransferase/Phosphoribosylglycinamide Synthetase/Phosphoribosylaminoimidazole 
Synthetase 
FGAMS: phosphoribosyl formylglycinamidine synthase  
PAICS: Phosphoribosylaminoimidazole Carboxylase/Phosphoribosylaminoimidazolesuccinocarboxamide Synthase 
ADSL: adenylosuccinate lyase  
ATIC: 5-Aminoimidazole-4-Carboxamide Ribonucleotide Formyltransferase/IMP Cyclohydrolase 
ADA: adenosine deaminase 
AK: adenosine kinase 
ADSL: adenylosuccinate lyase 
AMPD: adenylate deaminase 
PRAT: amidophosphoribosyltransferase 
APRT: adenine phosphoribosyltransferase 
ADSS: adenylosuccinate synthetase 
ATIC: AICAR-transformylase/IMP-cyclohydrolase 
GA: guanase 
GS: GMP-synthase 
HPRT: hypoxanthine-guanine phosphoribosyltransferase 
IDH: IMP-dehydrogenase 
NDK: nucleoside diphosphate kinase 
NMK: nucleoside mono-phosphate kinase 
XOR: xanthine oxidoreductase 
 
Enzyme domains (purple): 
GARS: phosphoribosylglycinamide synthetase  
GART: phosphoribosylglycinamide formyltransferase  
AIRS: phosphoribosylaminoimidazole synthetase  
CAIRS: phosphoribosylaminoimidazole carboxylase  
SAICARS: phosphoribosylaminoimidazolesuccinocarboxamide synthetase  
AICARFT: 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase  
IMPCH: IMP cyclohydrolase  
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De novo purine synthesis requires small molecule inputs from multiple connected 

pathways and processes 

In order to understand the implications of DNPS, we must first understand the 

interconnectedness of multiple biochemical pathways resulting in IMP generation. 

Glucose is transformed into pyruvate via ten steps. The glycolytic intermediates glucose-

6-phosphate (G6P), fructose-6-phosphate (F6P), and glyceraldehyde-3-phosphate (G3P), 

can be funneled into the pentose phosphate pathway, generating ribose-5-phosphate 

(R5P). R5P is converted into PRPP via phosphoribosyl pyrophosphate synthase (Dayton, 

Jacks, and Vander Heiden 2016). Once PRPP is synthesized, it may then be utilized for 

DNPS. The six enzymes necessary to complete the ten sequential steps in DNPS to 

convert PRPP to IMP in higher eukaryotes require other substrates to contribute atoms in 

the generation of the inosine moiety (Figure 1.3). DNPS utilizes atom donor substrates in 

various steps of the pathway to incorporate atoms and moieties into its final IMP 

structure. These substrates are glycine, glutamine, aspartate, and 10-

formyltetrahydrofolate (Figure 1.2A). 

Amino acid synthesis/transport 

processes, glutathione-gammaglutamyl 

amino acid cycle and the folate cycle 

are all therefore critical for the 

synthesis of IMP via DNPS (Figure 

1.4). Adenosine monophosphate 

(AMP) or guanosine monophosphate 

(GMP) are then generated via two 

N

N
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N

N
H

Gly

10fTHF

Gln
Gln

10fTHF

Asp

CO2

ribose 5’-phosphate

Figure 1.3: Inosine ring substrate 
contributions. Inosine is synthesized via 
contributions of substrates within DNPS, each 
contributing atom is highlighted in red boxes 
with their respective contributing substrate.  
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additional steps from IMP (Figure 1.2A). AMP and GMP can then be further processed 

into products based on cellular need, such as via phosphorylation to generate adenosine 

triphosphate (ATP) or guanosine triphosphate (GTP).  

 

DNPS evolution 
 

Evolution is classically thought as the gain of favorable adaptative features in a 

species population to the surrounding environment over time through the process of 

natural selection, and that all life shares an ancient common ancestor (Darwin 1859). This 

idea has been implemented in myriad subfields of biology, prompting the idea of enzyme 

evolution and metabolic pathway evolution (Caetano-Anolles, Kim, and Mittenthal 2007; 

Caetano-Anollés et al. 2009). Enzyme evolution occurs from processes such as gene 

duplication (Ohno 1970), rearrangement of gene fragments (Vogel et al. 2004), or 

horizontal gene transfer (Pál, Papp, and Lercher 2005). The DNPS pathway is highly 

conserved, found across all three cellular domains, Bacteria, Archaea, and Eukarya 

PRPP

de novo Purine Synthesis

IMP

Pentose phosophate shunt

R-5-P

Amino acid
Synthesis/transport

Asp Gly Gln

Folate cycle

10fTHFGlucose

Glycolytic intermediates

Pyruvate

Glycolysis

Figure 1.4: DNPS requires input derived from multiple pathways. Glucose is funneled 
through the Glycolytic metabolic pathway. Certain glycolytic intermediates are then used 
within the Pentose phosphate shunt pathway which generates R-5-P. R-5-P is then 
converted into PRPP which is the initial small molecule input for DNPS. Molecules from 
amino acid synthesis and transport as well as the folate cycle are used as substrates within 
DNPS. 
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(Armenta-Medina, Segovia, and Perez-Rueda 2014). In microorganisms, such as bacteria, 

DNPS enzymes are monofunctional (Kappock, Ealick, and Stubbe 2000). Moving higher 

in cell and organism complexity, some DNPS enzymes adopt multifunctionality within 

the pathway, with higher eukaryotes (e.g. humans) utilizing six enzymes to complete the 

ten steps (Pedley and Benkovic 2017). Interestingly, the DNPS enzyme ADSL was found 

to have a conserved evolutionary characteristic as recent as the transition from 

Neanderthal to modern humans, with a single nucleotide point mutation that resulted in 

decreased ADSL stability in modern humans (Stepanova et al. 2020). The ubiquity of 

DNPS in living organisms across the phylogenetic tree highlights the importance of a 

functioning pathway necessary for the maintenance of life.  

Purines fulfill multiple roles in cellular and organismal functions 

Purines fulfill many roles within the cell. As previously stated, nucleotides can be 

polymerized into genetic information material in the form of RNA and DNA. The 

monomeric form of ATP is used as a major energy currency. Purines are also critical as 

primary and secondary signaling molecules. Purines are also used as cofactors for various 

cellular processes (Pedley and Benkovic 2017). 

Extracellular signaling activities have been identified for purines. Purinergic 

signaling has been implicated in cell proliferation, migration, cellular differentiation, 

embryonic death, wound healing, inflammation, and others (Burnstock 2009). Indeed, 

ATP has long since been proposed to act as a neurotransmitter (Burnstock, Dumsday, and 

Smythe 1972) and myriad functions in nervous system have been found, such as 

neuroprotection, control over autonomic function, neural-glial interaction, pain and 

mechanosensory transduction, and physiology of senses (Burnstock 2006). 



 9 

Cyclic AMP (cAMP) is a classic example of a secondary messenger, employed as 

such in organisms ranging from amoebas, plants, to humans (Hofer and Lefkimmiatis 

2007) mediating processes such as memory, metabolism, gene regulation, and immune 

function (Beavo and Brunton 2002). Upon cellular signal, ATP will be converted to 

cAMP, which in turn mediates response (Serezani et al. 2008).  

Adenine base nucleotides are components of many coenzymes such as 

nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, flavin 

adenine dinucleotide, and coenzyme A (Roy et al. 2016; Pedley and Benkovic 2017). The 

nicotinamide and flavin adenine dinucleotides are essential for the tricarboxylic acid 

cycle (TCA cycle, commonly known as Krebs or Citric acid cycle) and are used for redox 

reactions between oxidative phosphorylation and the TCA cycle, in the generation of 

energy in the form of ADP to ATP conversion (Martínez-Reyes and Chandel 2020). 

Coenzyme A and its derivatives have myriad cellular roles, such as use in synthesis and 

oxidation of fatty acids, synthesis of acetylcholine, acetylation of histones (Martinez, 

Tsuchiya, and Gout 2014), as well as oxidation of pyruvate for TCA cycle input 

(Martínez-Reyes and Chandel 2020).  

Guanine base nucleotides are most notable for their role in G protein-coupled 

receptors, expressed across most life forms, mediating a majority of cellular responses to 

external stimuli (Weis and Kobilka 2018). G protein couple receptors utilize guanosine 

nucleotides, binding and exchanging between GDP and GTP to recognize and incorporate 

extracellular signals (Weis and Kobilka 2018; Hanlon and Andrew 2015).  
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DNPS pathway intermediates have roles outside of DNPS 
 

DNPS intermediates are small molecule products and substrates of the enzymes 

found in the DNPS pathway. Some intermediates found in the pathway are relatively 

short-lived under cellular conditions. Notably, 5-PRA, the first substrate for the 

trifunctional enzyme GART, is broken down under cellular conditions within 5 seconds 

(Rudolph and Stubbe 1995). However, SAICAR and ZMP, the first substrates for the 

enzymes ADSL and ATIC respectively have been shown to regulate processes outside of 

DNPS. SAICAR has been recently shown as a binding partner of the glycolytic pathway 

enzyme PKM2 and is of keen interest for cancer research. ZMP is a known and well 

characterized activator AMPK, the master regulator of energy homeostasis and mTOR 

activity. (Figure 1.5) 

Glycolysis is a ten sequential step pathway taking glucose and forming pyruvate, 

directly forming two ATP and two reduced nicotinamide adenine dinucleotide molecules 

per glucose input. The last step catalyzes phosphoenol pyruvate into pyruvate through the 

pyruvate kinase (PK) enzyme family and is irreversible. There are four isoforms of PKs, 

PRPP 5-PRA
GART ADSL ATIC

DNPS intermediate effects

PRPP

SAICAR ZMP IMP

dPKM2 tPKM2 AMPK pAMPKno known e!ect

glycolysis mTOR
ATP anabolism

pyruvate

nNFκB cNFκB
ATP catabolism

lactate

crGART crADSL crATIC

Figure 1.5: DNPS intermediate effects. Multiple intermediates found within the DNPS pathway have 
off pathway effects. SAICAR was found to tetramerize PKM2 which increases glycolysis and may 
moonlight as a protein kinase. ZMP is a well characterized to phosphorylate AMPK, which inhibits the 
mTOR pathway, altering ATP metabolism, and remove nuclear translocation of NFkB. The 
intermediate 5-PRA is short lived under cellular conditions and has no known off pathway effect.  



 11 

PKL, PKR, PKM1, and PKM2 (Dayton, Jacks, and Vander Heiden 2016), however we 

will only be discussing PKM2 as this isoform plays an important role in regulation of 

transcription and protein phosphorylation in addition to its role in metabolism. Normal 

aerobic cellular energy production relies slightly on glycolysis to produce pyruvate and 

form acetyl-CoA in the cytosol, which is then translocated into the mitochondria to 

produce high energy electrons in the form of nicotinamide and flavin adenine 

dinucleotide (NADH and FADH, the reduced forms) through the TCA cycle. These high 

energy electron carriers are then used in oxidative phosphorylation, using oxygen as the 

electron acceptor in the electron transport chain (ETC) which phosphorylates ADP to 

ATP creating vast amounts of usable energy per unit input. Anaerobic energy production 

is used during exposure to oxygen poor environments, unable to support proper ETC 

function and thus favoring glycolysis. Here pyruvate is shunted to lactic acid formation 

using the enzyme lactate dehydrogenase and nicotinamide adenine dinucleotide as an 

electron donor, generating small amounts of energy per unit input in the form of ATP.  

When cells become tumorigenic, a change in metabolism and energy production 

usually occurs. The Warburg Effect is based in an observation that most solid tumors 

produce lactic acid in an oxygen rich environment (Warburg and Minami 1923). This 

finding was rather curious, as lactic acid was typically thought solely as a byproduct of 

glycolytic metabolism in oxygen deficient environments. As these tumors were 

producing lactic acid in an oxygen rich environment, the Warburg effect became known 

as aerobic glycolysis. Tumor cells bypass checkpoints in the cell cycle designed to induce 

a vegetative state after division and as such, are uncontrollably dividing. The Warburg 

effect hypothesis speculates that due to tumor cells unchecked proliferation, an elevated 
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need exists for nucleotide bases; as the glycolytic intermediates can be funneled into the 

pentose phosphate pathway to make PRPP, necessary for the formation of purines and 

pyrimidines. The cell can therefore synthesize a large pool of necessary nitrogenous 

bases and therefore DNA and RNA for division events. PKM2 is the most easily 

manipulatable of the PK isoforms, with multiple regulators molecules and proteins 

commonly found in proliferating cells, permitting or halting its pyruvate kinase activity 

(Dayton, Jacks, and Vander Heiden 2016). This control allows selective signaling for 

glycolytic intermediates to build up for nucleotide synthesis or allowing pyruvate to form 

for lactate-based energy production. Tumor cells also utilize glutaminolysis pathway for 

energy production, providing an alternative input for TCA cycle (Zahra et al. 2020). It 

has been found that most tumors selectively express PKM2 over other isoforms of PKs 

giving credence to this hypothesis (Mazurek 2011).  

PKM2 exists as an active homotetramer (tPKM2), inactive homodimer (dPKM2), 

or and monomer (Dayton, Jacks, and Vander Heiden 2016) and is typically expressed in 

fat tissue, lung, pancreas, as well as highly proliferative cell types such as embryonic 

cells and tumors (Mazurek 2011). As previously stated, multiple avenues exist to 

modulate PKM2 activity, typically achieved through stabilizing or destabilizing its 

tetramer (Dayton, Jacks, and Vander Heiden 2016). The glycolytic intermediates 

phosphoenol pyruvate (PEP) and fructose-1,6-bisphosphate (FBP) as well as serine 

activates PKM2, while alanine, thyroid hormone T3, and ATP, deactivate PKM2 (Zhang 

et al. 2019). PKM2 activity is also influenced by protein-based regulators such as by 

ERK1/2 signaling, tyrosine kinases FGFR1, and 0-GlcNAcetylation (Zhang et al. 2019). 

SAICAR was recently found to bind PKM2, possibly stabilizing its tetramer (Figure 1.5, 
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tPKM2) (Keller, Tan, and Lee 2012), and possibly allowing an aberrant moonlighting 

function by adopting a protein kinase activity (Keller et al. 2014). Although the potential 

protein kinase activity of PKM2 has been questioned (Hosios et al. 2015), the 

preponderance of data suggests that the protein kinase moonlighting activity of PKM2 is 

real (Zhang et al. 2019). The findings that suggest SAICAR has a role in modulating 

PKM2 activity presents a novel research area in tumor biology, and therefore 

accumulation of SAICAR in within the cell may be used to study PKM2 activity.  

SAICAR however, cannot be fed to cells directly as mechanisms have not been found 

and it is difficult to synthesize, so more circuitous methods need to be applied. 

Researchers have employed glucose starvation methods (Keller et al. 2014) as well as 

siRNA against ADSL (Keller, Tan, and Lee 2012). Sugar starvation is less than ideal, 

owing to the potential total cellular metabolism effects of energy deprivation as well as 

pyruvate kinase activity directly being affected by the starvation. Stable transfection of 

anti-ADSL shRNA in HeLa cells have shown ~80% reduction of cellular ADSL protein 

and permitting SAICAR accumulation (Keller, Tan, and Lee 2012) but still allowing low 

levels of ADSL and DNPS activity.  

ZMP is also a small molecule of particular interest as it is a known AMP mimetic 

(Hardie 2011; Garcia and Shaw 2017; Douillet et al. 2019). AMP is a known allosteric 

effector of multiple enzymes, notably the cellular metabolism master regulator protein 

AMP-activated protein kinase (AMPK). AMPK is a heterotrimer, composed of an α, β, 

and γ subunit. AMPK senses the AMP/ATP ratio, upon increase in this ratio, AMP binds 

AMPK and promotes the phosphorylation of AMPK α subunit at Thr172 (pAMPK), 

activating AMPK activity (Hardie 2011). Activation of AMPK promotes ATP anabolism 
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and hamstrings ATP catabolism. ZMP is shown to be a potent AMPK activator using the 

same mechanisms of AMP, specifically it promotes AMPK phosphorylation (Hawley et 

al. 1995), inhibition of AMPK dephosphorylation (Davies et al. 1995), and allosteric 

activation of phosphorylated AMPK (Corton et al. 1995). pAMPK is a known effector of 

the mammalian target of rapamycin complex 1 and 2 (mTORC1 and mTORC2) (Saxton 

and Sabatini 2017; Huang et al. 2008). The mTOR pathways regulate vital cellular 

metabolic processes involved in lipid synthesis, glycolysis, mitochondrial and lysosomal 

biosynthesis, apoptosis, glucose metabolism, cytoskeletal rearrangement, and cell 

migration (Linke et al. 2017; Saxton and Sabatini 2017). pAMPK inhibits mTORC1 

pathway via phosphorylation of its regulatory protein component Raptor and indirectly 

via activation by phosphorylation of tuberous sclerosis complex 1/2, a GTPase complex 

that generates an inhibitor of mTORC1 (Inoki, Kim, and Guan 2012). pAMPK has been 

shown to affect processes seemingly outside of cellular metabolism. It can reverse the 

nuclear translocation of the proinflammatory transcription factor, NFκB, in response to 

inflammatory stimuli (Xiang et al. 2019), regulates inflammatory suppression (Jeon 

2016), and restriction of interferon-γ signaling (Meares et al. 2013). In addition to AMPK 

interactions, ZMP was shown to have 74 different enzyme interacting partners in yeast 

(Douillet et al. 2019), highlighting that ZMP effects within the cell are multiple and 

complex.  

Previous work used AICAriboside (the dephosphorylated form of ZMP) to 

promote phosphorylation of pAMPK. In these experiments, AICAriboside is 

administered in cell culture via media supplementation (Corton et al. 1995) or in animal 

models via injection (Xiang et al. 2019). Upon cellular import, AICAriboside becomes 
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phosphorylated via adenyl kinase (AK) into its active ZMP form and can then induce 

phosphorylation of AMPK (Hardie 2011). ATIC is a homodimer and is active only in its 

dimeric state (Spurr et al. 2012). The drug Compound 14 was recently discovered, 

blocking the dimerization of ATIC which allows the accumulation directly of the active 

form of ZMP without relying on cellular import and phosphorylation events (Spurr et al. 

2012).  

Clinical relevance of DNPS dysregulation 
 

DNPS is highly conserved and critical for cellular and organismal development. 

To date, only three enzymes are found to have mutations that result in decreased activity 

within the DNPS pathway in H. sapiens. These enzymes are ADSL, ATIC, and PAICS 

and deficiency is extremely rare. 

ADSL deficiency is the most common of DNPS defects. Currently, less than 100 

patients have been identified having this disorder (Jurecka et al. 2015). These patients are 

grouped into three classes depending on phenotype, neo-natal fatal, Type I severe, and 

Type II mild to moderate. The phenotype is a continuum, with degrees of psychomotor 

retardation, seizures, visual impairment, speech impairment, and craniofacial dysmorphic 

features (Jurecka et al. 2015). Multiple mutations have been identified leading to a 

mutation dependent decrease in ADSL enzymatic activity (Zikanova et al. 2010).  

PAICS deficiency is the second most common, with two patients (siblings from 

two separate pregnancies) identified in the Faroe Islands. The deficiency stems from an 

amino acid point mutation resulting in Lys53Arg leading to a 75% reduction in enzyme 

activity. These patients presented with multiple phenotypes such as small body, 
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brachycephaly, lung malformation, craniofacial dysmorphism, vertebral malformations, 

among others. Both infants died within three days of birth (Pelet et al. 2019). 

AICAribosiduria, also known as ATIC deficiency, has only been identified in a 

single patient. The patient was found to have one allele with a frameshift in exon two 

which resulted in unstable mRNA, and a point mutation of Lys426Arg. This mutation 

showed no detectable AICAR-TF activity and a 60% reduction in IMPCH activity of the 

ATIC enzyme (the first and second reaction mediated by ATIC respectively). This patient 

presented with profound mental retardation, epilepsy, brachycephaly, congenital 

blindness, and facial dysmorphic features, among others. Last available record of record 

patient check-up was performed at 4 years of age and no treatment was reported directly 

for AICAribosiduria (Marie et al. 2004). 

So far, all patients with defective DNPS have residual enzyme activity. It may be 

that complete lack of activity is lethal in embryos. Evidence for this includes the 

difficulty in generating mouse knockouts, to date, a singular mouse line has been made 

lacking a DNPS enzyme, FGAMS (“C57BL/6NJ-Pfasem1(IMPC)J/Mmjax” n.d.). Our 

laboratory in fact obtained mice with a heterozygous knockout of ADSL. Breeding and 

genotyping of several hundred matings of these mice never resulted in a homozygous 

ADSL knockout mouse. 

GART is implicated in Down syndrome (DS), however not due to a deficiency in 

enzymatic activity. DS is an aneuploidy caused by a triplication in Hsa21. The GART 

gene is located on 21q22 (Patterson 1987) and is therefore triplicated in DS. The DS 

phenotype is characterized by cognitive deficits in the form of intellectual and learning 

disabilities, hypotonia, craniofacial abnormalities, and cardiac malformations (Brodsky et 
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al. 1997). DS accounts for approximately 1 in 700 live births in the United States (Mai et 

al. 2019). DS shows unique spatiotemporal expression of the GART enzyme with one 

study showing cerebellar GART levels precipitously drop post-partum in control while in 

DS patients showed detectable levels as long as 49 days post-partum (Brodsky et al. 

1997). Two laboratories, ours and that of John Gearhart, produced mice transgenic for 

human GART and therefore triplicated for GART (two mouse copies and one human). 

These mice showed no detectable phenotype, with the possible exception of a slight 

hearing deficit (Knox 2006). 

It is therefore clear that any disorder affecting DNPS presents as developmental 

disorder. These clinical phenotypes show the importance for well controlled DNPS in 

embryogenesis. This is perhaps unsurprising as DNPS is critical for rapidly dividing 

cells, a feature of embryogenesis. Purinergic components have been of recent interest for 

pharmacological intervention for congenital neurological defects (Fumagalli et al. 2017). 

Taken together, full characterization of DNPS dysregulation is of particular importance to 

understanding embryogenesis as well as neurological defects.  

-omics 
 

The central dogma of molecular biology is that DNA is transcribed into RNA, 

which is then translated into protein. Proteins can then go on to perform countless cellular 

functions, from anchoring the cell to the extracellular matrix, importing or exporting 

cargo, trafficking, metabolizing small molecules, modifying the activity of other proteins, 

acting as a transcription factor, among myriad others. DNA is read and synthesized into 

RNA via transcription, while RNA is read and made into protein sequences through 

translation. Proteins may or may not directly alter metabolites, which are typically 
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thought of as small molecules under 1 kDa in size. The entire DNA sequence is known as 

the genome, while total RNA is known as the transcriptome, the entire protein content is 

known as the proteome, and all metabolites are known as the metabolome (Figure 1.6). 

Each of these “-omes” presents a novel set of data with their advantages and 

disadvantages. As such, integration of multiple -omics techniques may be required to 

gain a complete picture of response to stimuli or stress (Riekeberg and Powers 2017). 

  

The genome comprises information about the DNA sequences found within the 

cell, comprising of coding (gene) and non-coding stretches. Through probing genomics, 

information can be attained about the root or underlying cause in disease (International 

Human Genome Sequencing Consortium 2004). However, as cells multiply, errors in 

genomic replication can occur. Population based genetic drift and inheritance can also 

allow errors to occur and propagate. These errors manifest in various ways such as single 

nucleotide variations and can cause cells to function aberrantly. Single nucleotide 

variations in coding regions may alter protein sequence or in non-coding regions may 

influence gene expression or splicing (Metzker 2010). Genomics can inform a direct root 

cause of a disorder, however, gives scant information on how a cell is responding to that 

root cause or a stimulus. Due to this issue, genomic profiling is ineffective for 

DNA RNA Protein

Genome Transcriptome Proteome

Small Molecules

Metabolome

Figure 1.6: Schema of molecular biology dogma. DNA is transcribed to make RNA, which is 
translated to protein, some proteins can synthesize small molecules. The collective DNA, RNA, 
protein, or small molecules within a sample represent the genome, transcriptome, proteome, or 
metabolome respectively. 



 19 

understanding cellular responses. Nucleic acids present a major advantage in -omics 

research however, as minute amounts of DNA can be amplified and read/analyzed 

through polymerization reactions.  

The transcriptome represents all RNA in the cell, including any exon splice 

variations and coding single nucleotide polymorphism within the genome. 

Transcriptomics is a technique where cellular RNA is sequenced to gain information into 

what gene product is to be made as well as the RNA sequences quantified. This 

information taken together can explain differential expression of specific genes. When 

cells are exposed to a stimulus, a specific gene or groups of genes can be differentially 

expressed when compared to control conditions. Owing to the identity and concentration 

gathering component to transcriptomics, this technique can prove quite powerful. 

However, there are a few drawbacks. Transcriptomics, while representing what the cell is 

trying to accomplish in response to a stimulus, does not always track with its respective 

proteome (Schwanhäusser et al. 2011). This is to say that levels of transcript of a certain 

gene are not always in agreement with expression levels of that protein. This could be 

attributed to myriad reasons ranging from RNA and protein stability issues to post 

translational modifications. Transcriptomics has a similar benefit to genomics in that 

RNA sequences are able to be amplified using PCR based techniques. This allows trace 

amounts of RNA to be read and quantified giving an accurate snapshot of cellular 

response. Transcriptomic data can be generated through a process called RNA 

sequencing (RNA-seq). 

Proteomics is the study of the entire set of proteins within the sample and is rife 

with problems. The large barrier to entry is the excessively high level of complexity in 
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proteomics. While genomics and transcriptomics utilize a four nucleotide code with three 

nucleotide per codon system, proteomics utilize a code of 20 amino acids with over 200 

(Deribe, Pawson, and Dikic 2010) potential post translational modifications (e.g. 

phosphorylation, glycosylation, malonation, lipidation, acetylation, acylation, etc.) with 

each of these post translational modifications representing a potential change in function 

for each protein (Duan and Walther 2015). Examples of post translational modification 

altering protein activity are AMPK activates upon phosphorylation at the single residue 

Thr172 (Hardie 2011) while the protein CRMP2 is host to 4 nearly sequential 

phosphorylation sites with altered activity based on not only quantity of sites 

phosphorylated, but also order in which they are phosphorylated (J. Yu et al. 2019; 

Yamashita et al. 2012). In addition, cellular localization can confer protein activity. 

NFκB is a transcription factor typically sequestered in the cytoplasm, signaling induces 

release from sequestration and can translocated to the nucleus initiating transcriptional 

activity (Papa 2004). Alternative splicing as well as multimerization can alter protein 

function as well. There are scalability issues with proteomics owing to the fact that more 

protein cannot be made similar to that used in transcriptomics and genomics. A popular 

technique used for to proteomics is mass spectrometry (MS), which poses additional 

problems. MS data is biased towards peptide sequences with higher concentration, is 

susceptible to fragmentation differences, and contamination issues. Incomplete databases 

stemming from data complexity also pose an inherent issue when studying the proteome. 

As such, protein studies at the true -omics scale currently cannot be performed (Manzoni 

et al. 2018).   
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Metabolomics is the study of the entire set of small molecules produced by 

biological reactions within a sample. Metabolite changes represent the combination of 

genetics as well as environmental exposures (Manzoni et al. 2018), as such a 

metabolomic approach is an advantageous diagnostic tool as well as relevant to 

understanding molecular pathway aberrations related to specific disorders or stimuli. 

Metabolomic data can be generated, for example, via LC-MS techniques. MS fingerprints 

are then probed against databases assigning identity and concentration. Metabolomics is 

not without its drawbacks. Metabolome reference databases show no homogeny in their 

metabolite accession numbers and metabolites identified by their database, causing 

difficulty in probing multiple databases. Reference metabolomes are incomplete, in 

addition the biological role is not always clearly understood for all detectable 

metabolites. Metabolites also have a variety of functions, for example ATP is used as an 

energy currency as well as signaling molecule. Detection limitations also dictate total 

metabolites identified in metabolomic studies, which are often a fraction of the cellular 

metabolic profile. For these reasons, metabolomics is also currently incompatible with a 

true -omics scale (Riekeberg and Powers 2017; Manzoni et al. 2018; Min Yan and Xu 

2018). 

Transcriptomic data generation and file conversion 
 

For RNA applications TriReagent can be used to extract total cellular RNA from 

multiple types of samples. This approach yields high quality RNA for downstream 

applications such as RNA-seq. Considerations must be made for sample replicates. 

Current industry standards for cell culture applications, generally speaking, dictate a 

replicate of three with diminishing return above six replicates. 
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RNA-seq allows comprehensive, broad discovery studies and provides 

information on how stimulus or genotype based gene expression patterns, gaining insight 

into the dynamics of cellular processes and its potential influence in health and disease 

(Manzoni et al. 2018). 

Dependent on the answer looking for, there are multiple RNA-seq methodologies. 

We will only be exploring one of these applications relevant to this dissertation. Coding 

gene RNA-seq requires total RNA to be enriched for messenger RNA (mRNA) and 

subsequent cDNA library preparation. For coding RNA-seq, total RNA is subjected to 

poly(A) tail enrichment, a typical feature found in mature mRNA and then fragmented. 

Modern sequencing instrumentation has sequence size limitation and therefore must be 

fragmented; due to simplicity, this step is typically applied to the enriched mRNA 

although the necessary cDNA libraries can be prepared using full length mRNA and then 

fragmented. cDNA is generated off of fragmented mRNA using random and oligo d(T) 

primers through first and second strand synthesis steps, ensuring total sequence coverage, 

generating the necessary cDNA required for sequencing. Blunt ends are created and then 

adapters are ligated. These adapters contain functional elements necessary for sequencing 

and can contain a barcode region, a specific sequence within the adapter that allows the 

cDNA library prepared to have a portion with the same sequence within each preparation, 

increasing RNA-seq workflow and efficiency by allowing multiplexing of various 

samples of prepared cDNA libraries within the same sequencing run. The adapted and 

barcoded cDNA is then amplified and is now ready for sequencing (Figure 1.7A, B) 

Figures from (“Universal Plus MRNA-Seq with NuQuant User Guide” 2019; Corney 



 23 

2013). Sequencing conditions must be considered and includes end reads, sequence 

length, as well as sequencing depth. 

Sequencing of prepared cDNA can be done via single or paired end reads. For 

differential gene expression profiling, users can employ single end reads with appropriate 

read lengths of 50-75 base pairs; this minimizes reading across gene splice junctions 

while still allowing counting of all mRNAs from the sample. Identification of novel 

A B 

Figure 1.7: Schema of basic RNA-seq workflow for mRNA coding sequencing. mRNA is enriched 
from total RNA by polyA tail capturing. mRNA is fragmented and then cDNA is synthesized using 
primer and adapters and cDNA template is prepared for sequencing. representation of workflow, figure 
from NuQuant Illumina guide (A). Visual representation of workflow figure from Corney 2013 (B). 
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sequences/splice variants is facilitated by paired end reads with 75 base pairs, allowing 

more complete coverage of the transcripts with information from 5’ and 3’ ends. 

Sequencing depth is a necessary metric for RNA-seq applications, understood as the total 

number of reads within a sample typically from 5-200 million reads. These read depths 

are adjusted based upon abundance of transcript and type of RNA-seq desired (i.e. low 

abundance transcript requires more read depth as to ensure validity of results). These read 

quantities are targets and are rarely met exactly leading to considerations for downstream 

processing.  

Sequencer output files are converted from raw format into FASTQ format. The 

FASTQ is an inherently simple format, adapting the FASTA file format and assigning a 

numeric quality score to each nucleotide in a sequence; and thus has emerged as a 

standard file format for sequencing information (Cock et al. 2010). FASTQ files are used 

as direct input for downstream processing applications. Multiple routes exist to process 

these FASTQ files such as the TopHat-Cufflinks (Trapnell et al. 2012) or Salmon-

DeSeq2 (Love, Huber, and Anders 2014) workflows.  

Typically, for mRNA coding gene analysis, sequences from FASTQ files are 

processed to form gene counts for expression quantification and compared amongst all 

samples processed giving a normalized count. In large datasets, counts of individual 

identities are valuable to understand changes in abundance from between samples and 

conditions. These changes in abundance can be represented by a few terms. Fragments 

per kilobase of transcript per million mapped reads (FPKM) is a normalized estimation of 

gene expression. Since longer transcripts are expected to generate more reads than shorter 

ones (due to having more fragments) as well as differences in sequencing depth between 
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samples, the FPKM value accounts for these discrepancies and normalizes the counts. 

FPKM must be further processed to make it ideal for DEG analysis, which is accounted 

for in the CuffLinks processing suite (Trapnell et al. 2012). This total workflow makes 

FPKM a good metric for understanding differential gene expression indicating a relative 

concentration of specific gene transcript comparing control to experimental conditions. 

Normalization of counts through the DESeq2 processing suite utilizes a median-of-ratios 

methodology for generating DEGs. This is based upon modeling the read counts to a 

geometric mean value per gene scaled by a program calculated normalization factor and 

is unbiased by factors such as GC content and allowing DEG analysis (Love, Huber, and 

Anders 2014). 

Changes in abundance for RNA-seq applications are typically displayed as ratios 

or log(2) fold change. Log(2) values evenly represents the change between 

samples/conditions of each specific gene reflected over zero on a number line (i.e. if a 

gene transcript is twice as abundant in one condition, but another gene transcript is half as 

abundant, the log(2)fold change will be 1 and -1 for the first and second gene transcript 

respectively, rather than 2 and. 0.5). These are now known as a differentially expressed 

gene, or DEG. Significance is then calculated between the comparison groups. For 

software analysis, gene accession numbers offer ease of use, however for downstream 

application such as Gene Ontology analysis, accession numbers are translated into gene 

symbols. Applying cutoffs is common practice, used to remove low statistical count 

anomalies in genes associated with normalized gene count. The final list is now prepared 

for downstream applications. 
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Transcriptomic data interpretation through database probing 
 

Once lists of DEGs are generated, multiple databases exist to probe significance 

from them. In this study, Gene Ontology and Reactome were employed.  

Gene Ontology is a manually and digitally curated database sorting genes into 

three families, biological process, cellular component, and molecular function. Each of 

these families seeks to group genes into more specific terms upon specific criteria: 

biological process includes genes that contribute to completion of a biological objective, 

cellular component refers to gene product localization, while molecular function refers to 

the biochemical activity of the product. Not only are genes in GO grouped into three 

large families, GO families are also formed as functional hierarchies of terms, with 

increasing specificity of function/location/activity of term with each higher level (Figure 

1.8) Figure adapted from (Bindea and Mlecnik 2019). Terms at every level have 

associated genes (Ashburner et al. 2000).  
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Reactome Knowledgebase is a large list of manually curated genes falling into 

two main categories, Pathways and Reactions (Fabregat et al. 2018). Our system employs 

the use of enzyme knockouts (KO) of the DNPS therefore of genes involved in 

biochemical pathways, responsible for the reactions involved in purine synthesis, 

therefore Reactome provides a suitable complement to the GO families. 

Database probing programs exist, each one functioning slightly differently but 

overall concept remains constant. In essence, DEG lists are entered into the program, 

database choice is selected, then significant terms associated with the gene list are 

generated. Two versions of gene inputs typically exist, weighted and unweighted. In a 

weighted gene list, fold change of FPKM are taken into account while unweighted only 

Heirarchy level
1

15

Term speci!city
Global

Detailed

Genes per term

Few

Many

Figure 1.8: Example Gene Ontology Term hierarchy. Gene Ontology terms are broken down by 
levels, with higher level values representing increased specificity. Higher levels are grouped into lower 
levels based upon relationships. Figure adapted from Bindea 2012. 
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utilizes the gene identity. Overrepresentation is a popular method for unweighted analysis 

that requires a preselected differentially expressed gene list (Rahmatallah, Emmert-

Streib, and Glazko 2014). In overrepresentation, hypergeometric analysis reveals how 

many genes are predicted to have their expression randomly changed per term. If there 

are more genes in the DEG list belonging to a specific term than what is predicted to have 

randomly changed, the term is therefore important for the analysis and p-values are 

calculated based on the difference between observed and predicted (Mlecnik, Galon, and 

Bindea 2018; Maere, Heymans, and Kuiper 2005). For exploratory analysis, the 

overrepresentation unweighted analysis system is ideal as large amounts of data can be 

generated with a relatively simple yet powerful analysis. The terms generated through 

overrepresentation analysis can be grouped into larger categories based on hierarchal 

overlap to be explored more in depth through targeted experimentation.  

ClueGO is an example of a database probing program (Mlecnik, Galon, and 

Bindea 2018). ClueGO can draw off multiple databases and is designed for smaller lists 

of DEGs. This is accomplished by applying cut offs based on log2(normalized fold 

change) between experimental and control conditions, using as input the most positive 

and negative changed genes. A large benefit of the ClueGO programing is the ability to 

probe different tiers of levels in the GO databases.  

ClueGO can probe GO levels 1-15 (least to most specific terms) based upon user 

defined parameters. Lower level probing yields terms due to the high amount of genes 

found within those terms, terms are essentially meaningless due to generality (e.g. 

Developmental Process GO:0032502), while high level terms presents a similar problem 

in reverse, that is to say terms are hyper-specific with very limited number of genes 
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comprising the term making it unlikely to show any enrichment in DEG lists. In order to 

obtain results, users must balance the rate of term return (as seen in low level probing) 

and term usefulness (as seen in high level probing). For initial assessment, mid-hierarchy 

assessment is incredibly useful as it allows for terms to be identified and for large 

groupings of terms to be assessed. That is to say if multiple terms are found within the 

lower level hierarchal group, it could be posited that this grand theme is affected by the 

experimental condition (Figure 1.8). 

Selection of specific KOs and cell line 
 

Owing to the points previously outlined, the effects related to the three enzymes 

(GART, ADSL, and ATIC) are a beneficial starting point to understanding generalized 

DNPS deficiency, congenital disorders of known enzyme deficiency, and metabolic 

intermediate accumulant effects. Murine models are not ideal for this type of study due to 

the difficulty of inducing mutations in DNPS enzymes for viable mouse models.  

This laboratory pioneered the study of the genetics of DNPS using Chinese 

hamster ovary (CHO) cells. This included isolation of mutants in each gene of the DNPS 

pathway including GART, ADSL, and ATIC. In particular, we collaborated with the 

laboratory of Dr. Stanislav Kmoch (Charles University, Prague, Czech Republic) to 

characterize the AdeI ADSL deficient mutant as a possible cell culture model of ADSL 

deficiency (Duval et al. 2013). However, this model has the obvious weakness that it is 

not a human model. 

The HeLa cell line was derived from cervical cancer in a patient in 1951 (Scherer, 

Syverton, and Gey 1953) and has been in culture since. It has been widely used 
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experimentally. There are over 107,000 manuscripts listed in PubMed using HeLa cells. 

Therefore, a great deal is known about essentially all aspects of HeLa cell biology.  

The immortalized HeLa cells have several key advantages. First, they are 

immortal and robust, being able to withstand and show proliferative growth in a wide 

range of conditions. The immortality of the cell line bypasses ethical issues with animal 

or patient tissue primary cell culture (Kaur and Dufour 2012) although the HeLa cell line 

specifically is rife with controversy (Beskow 2016). However, immortal lines suffer from 

not always replicating the behavior of their derived tissue (Kaur and Dufour 2012). In -

omics based experiments, this may perhaps be an advantage. Gross processes identified 

can be implemented and assessed for their veracity in tissue specific processes. Primary 

cell lines that reveal enrichment in processes in no way associated with the derived tissue 

would be received as suspect.  

The HeLa line has been used extensively in the search for the purinosome. Due to 

the fast catabolism of early pathway intermediates, the idea of a functional proteinaceous 

superstructure was therefore attractive (Smith et al. 1980). In 2009, the first images of 

cellular compartmentalization, wherein transfected HeLa cells expressing DNPS enzymes 

tagged to eGFP were shown to aggregate upon purine starvation and disassemble upon 

purine supplementation (An et al. 2008). Multiple reports have since been published by 

the Benkovic lab characterizing this cellular structure (Deng et al. 2012; Chan et al. 2015; 

Zhao et al. 2013; 2015).  
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CRISPR is a recently developed genomic editing technique that provides greater 

efficiency and specificity over previous techniques (Ran et al. 2013). One of the most 

basic forms of CRISPR techniques is knocking out a gene via non-homologous end 

joining (NHEJ). CRISPR utilizes a guide RNA sequence linked to a Cas9 endonuclease, 

the guide RNA targets the complex to specific sequences within the genome while the 

Cas9 is capable of breaking DNA. After the break in DNA is induced, native DNA repair 

mechanisms repair the break and can create 

insertions and deletions of nucleotides into the 

genome at the break site generating a frameshift 

mutation (Figure 1.9). Figure from (“CRISPR 

Guide” n.d.). When an early exon of the gene is 

targeted, the resultant frame shift mutations 

generated by insertion/deletion errors creates 

non-sense coding and likely introduces an early 

stop codon (Ran et al. 2013). Subcloning is 

performed to isolate cells of a specific 

break/repair lineage and screening is done to 

understand the mutation and efficacy of the 

knock-out. This process results in the genomic 

knock out and null expression of a targeted, 

specific gene.  

In 2016, our collaborators produced 

CRISPR-Cas9 generated knock outs of DNPS 

Figure 1.9: Schema of CRISPR based 
NHEJ mutations. Guide RNA and Cas9 
form a complex which targets sequence 
specific genomic DNA inducing a double 
strand break which may be repaired with 
insertions and deletions of nucleotides 
resulting in a frameshift mutation and 
subsequent silencing of the targeted gene. 
Image from addgene.org/guides/crispr/  
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enzymes in the HeLa cell line, they have termed crXXXX, where XXXX is the enzyme 

that is knocked out (Baresova et al. 2016). They have characterized the cell lines using 

immunoblotting, qPCR, as well as MS techniques (Mádrová et al. 2018). With exception 

of the crADSL line, all show no transcript or immunoreactivity for their knocked-out 

enzyme. crADSL, shows only 1.7% activity compared to WT (Baresova et al. 2016). The 

Kmoch laboratory has graciously provided our laboratory with the crGART, crADSL, 

and crATIC HeLa cell mutants. We continue to collaborate with this group to the present.  

I chose to explore the HeLa cell based DNPS KOs crGART, crADSL, and 

crATIC. As previously described, substrates of both ATIC and ADSL have off-target 

effects, and both proteins have clinical significance as enzyme deficiency were identified 

in patients (Marie et al. 2004; Jurecka et al. 2015). GART does not accumulate any 

substrate (Mádrová et al. 2018) and no GART deficient patients have been identified to 

date, therefore the crGART cell line likely represents effects of generalized DNPS 

deficiency. GART is also found on Hsa21 and is therefore triplicated in DS and could 

provide insight into GART involvement in the DS phenotype.  

Hypotheses and aims 
 

DNPS deficits have clinical implications, although are uncommonly rare. The 

phenotypes of DNPS deficiency are not well understood, highlighting the dearth in our 

current knowledgebase of the cellular and organismal ramifications of DNPS 

dysregulation. Rare disorders are oft overlooked, however their study many times leads to 

discoveries of important biological roles. The intermediates of DNPS were previously 

shown to have roles outside of DNPS in energy homeostasis as well as tumor biology.  
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Targeted therapeutics show little to no efficacy in DNPS dysregulated patients. 

These therapies have all been based on sound hypotheses however have shown no 

success. This implies that the phenotype for these disorders and therefore processes 

affected by DNPS dysregulation are largely unknown. In purine auxotroph cell lines, we 

are able to rescue the survival/proliferation phenotype by supplying an exogenous source 

of purine usually in the form of adenine. This intervention is similar to therapies tried for 

ADSL deficiency, in which some have been aimed at using salvage pathways or ramping 

up DNPS to overcome the decreased enzyme activity; these patients did not improve. 

Therefore, an untargeted approach must be employed to identify and characterize these 

disorders and processes influenced by DNPS.  

A broad scale, transcriptomic and metabolomic analysis of the DNPS-KO HeLa 

cell lines of crGART, crATIC, and crADSL represents a first step in understanding how 

DNPS affects cellular and organismal activity. DNPS has long been thought influential in 

embryonic and nervous system development, however the identification of processes and 

genes directly involved remained unclear. The processes elucidated will inform future 

experimentation in specific aspects of biological function and form under the influence of 

DNPS. 
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Chapter Two: Transcriptomic Characterization of crGART 

Introduction 
 

De novo purine biosynthesis (DNPS) is one of the oldest and most fundamental 

biochemical pathways (Caetano-Anollés et al. 2009). In mammals, starting with 

phosphoribosyl pyrophosphate (PRPP), the six enzyme, ten step pathway produces 

inosine monophosphate (IMP), which is subsequently converted to guanosine 

monophosphate (GMP) or adenosine monophosphate (AMP) via two more enzymatic 

reactions. Purines are critical as building blocks and carriers of genetic information in the 

form of RNA and DNA, intra and intercellular signaling molecules, energy currency, and 

substrates and co-enzymes. While salvage pathways can produce purine nucleoside 

monophosphates from free purine bases and PRPP, ultimately, all purines are produced 

by DNPS. DNPS is upregulated at the G1/S phase (Zhao et al. 2015; Chan et al. 2015) 

and is critical during cellular division (Fridman et al. 2013), most likely to supply purines 

for DNA replication and elevated RNA transcription. Given its importance in cellular 

division, and that supply/transport of free purine bases across placental membranes is 

inefficient, DNPS is critical in mammalian development, including embryonic 

development. In mammals, the trifunctional GART enzyme catalyzes steps 2, 3, and 5 of 

DNPS (Figure 2.1). The human gene is located on Hsa21 and is therefore present in three 

copies in Down syndrome (DS, Trisomy 21), the most common genetic cause of 

intellectual disability in humans. Triplication of the GART gene has been hypothesized to 
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be related to the pathology associated with DS (Brodsky et al. 1997). Characterization of 

the crGART transcriptome should allow identification of pathways in which GART plays 

a regulatory role. These would then be logical candidates to investigate for relevance to 

DS. 

Functional mutations in DNPS genes are extremely rare in humans. To date, 

fewer than 100 patients have been identified with adenylosuccinate lyase (ADSL) 

deficiency, one patient has been identified with AICA-ribosiduria (ATIC deficiency), and 

two patients (siblings) have been identified with PAICS deficiency (Pelet et al. 2019). 

ADSL deficiency is a spectrum disorder with three generalized classes: neonatal fatal, 

severe, or mild to moderate. Features of ADSL deficiency include seizures, psychomotor 

retardation, respiratory failure, and craniofacial abnormalities (Jurecka et al. 2015). 

AICAribosiduria is characterized by mental retardation, blindness, epilepsy, and 

craniofacial and body dysmorphic features (Marie et al. 2004). The siblings identified 

with PAICS deficiency died within three days of birth and exhibited craniofacial 

abnormalities and body 

dysmorphic features (Pelet 

et al. 2019). The vast 

majority of these 

mutations are amino acid 

point mutations resulting 

in decreased enzymatic 

activity. Thus far, no 

functional mutations in 

Figure 2.1. De novo purine synthesis pathway. DNPS mediates 
the conversion of PRPP to IMP. IMP is subsequently converted 
to AMP or GMP. The HeLa GART KO, crGART, is indicated. 
Figure generated by Dr. Guido Vacano. 
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GART have been reported. Taken together, these data suggest that defects in DNPS are 

usually embryonic fatal.  

DNPS nulls for ADSL, ATIC, and GART were recently generated in HeLa cells 

via CRISPR-Cas9 induced mutagenesis (Baresova et al. 2016). The ADSL and ATIC 

mutants (crADSL and crATIC) accumulate DNPS pathway intermediates when cultured 

in purine free media. These intermediates, SAICAR and ZMP respectively, are regulators 

of transcription, and we have presented evidence for transcriptional regulation via DNPS 

deficiency and intermediate accumulation (Mazzarino et al. 2019; 2020). We were unable 

to detect intermediate accumulation in the GART mutant (crGART). This is expected 

since the initial substrate for GART is phosphoribosylamine (5-PRA), which is extremely 

unstable under physiological conditions. We hypothesize that changes in transcription 

due to GART knockout in this cell line are due to the deficit in DNPS, and not 

intermediate accumulation. To evaluate the crGART transcriptome, we employed RNA-

seq to compare the crGART and HeLa transcriptomes in adenine-supplemented and 

adenine-depleted conditions. Our results indicate that GART may have an important role 

in embryogenesis, neural development, and perhaps special relevance to Alzheimer’s 

disease and Down syndrome. 

Materials and Methods 
 

Methods were performed according to (Mazzarino et al. 2019), differences are 

outlined. 

Data processing 

RNA-seq sequence (FASTQ format by the Genomics and Microarray Core 

Facility at the University of Colorado, Denver) was aligned to the Ensembl 
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Homo_sapiens.GRCh38.98 transcriptome using salmon version 1.0.0, then differential 

gene expression analysis was performed using DESeq2 version 1.26.0 (and R version 

3.5.3). 

ClueGO analysis 

The Cytoscape (version 3.7.2) app ClueGO (version 2.5.5) was employed for 

ontology and pathway analysis of lists of differentially expressed genes (DEGs). A list of 

300 DEGs with the top 150 most positive log2 and 150 most negative log2 values was 

used to query gene ontology (GO) databases (UniProt-GOA_08.01.2020 for Biological 

process, Cellular component, and Molecular function) and Reactome databases 

(Pathway_08.01.2020 and Reactions_08.01.2020).  

Panther analysis 

Panther Overrepresentation Test analysis via the Gene Ontology Consortium 

portal (https://www.geneontology.com) was performed to confirm and augment the 

ClueGO results. Unlike ClueGO, Panther is capable of using large gene lists. The 

complete list of significant DEGs was used to query Gene Ontology biological process, 

cellular component, and molecular function. The “Test Type” option was set for “Fisher’s 

Exact” and “Correction” was set to “Calculate False Discovery Rate”. The GO ontology 

database release date was 2020-02-21.  

Results 

Adenine is required for proliferative growth of crGART 

Given that GART catalyzes three of the ten steps in the DNPS pathway, we 

hypothesized that crGART cells would exhibit proliferative arrest in adenine-deprived 

conditions. HeLa and crGART cells were cultured in complete-serum media overnight 
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and then subsequently cultured in media 

supplemented with dialyzed-serum (FCM) with 

or without supplemental adenine. HeLa cells 

showed proliferative growth in both media 

conditions while crGART showed proliferative 

growth in only adenine-supplemented 

conditions (Figure 2.2). 

GART substrate was not detected in adenine 

starved crGART cells 

Next, we assessed whether the GART 

substrate 5-PRA accumulates in the crGART 

cell line. We demonstrated previously that crADSL and crATIC cells accumulate 

substrate when cultured in adenine free media (Mazzarino et al. 2019; 2020). crGART 

cells were cultured as previously described and metabolites extracted. HPLC-EC analysis 

did not indicate accumulation of 5-PRA (data not shown). This is consistent with 

previous work (Mádrová et al. 2018) as 5-PRA is highly unstable and breaks down in 

approximately five seconds under cellular conditions (Rudolph and Stubbe 1995). Since 

it apparently does not accumulate substrate, this suggests that crGART is likely useful as 

a model of general DNPS deficiency.  

Figure 2.2: Adenine is required for 
proliferative growth of crGART cell 
line. WT HeLa cells (A, C) and crGART 
HeLa (B, D) were cultured in DMEM 
supplemented with 10% FCM with (A, B) 
or without (C, D) 100 μM adenine then 
fixed and stained with crystal violet. 
Entire cell growth area was imaged. 

Purine plus Purine minus

WT HeLa

crGART

A B

C D
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Transcriptome analysis of crGART versus HeLa identified differentially expressed genes 

To investigate the effect of GART KO on the transcriptome, we compared the 

crGART and HeLa transcriptomes after culture in adenine-supplemented and adenine-

depleted conditions. 4218 genes were 

significantly differentially expressed by cell 

type. This represents a log(2)counts fold 

change range of 10.93 to -13.94 (Figure 

2.3A). In order to assess what processes or 

pathways are affected, we performed GO and 

Reactome functional analysis of DEGs. For 

ClueGO analysis the top 300 most DEG list 

used represents a log(2)counts fold change 

range of -13.74 to -7.67 and 5.83 to 10.93 

(Figure 2.3B). Positive values represent 

enrichment in crGART and negative log2 

values represent enrichment in 

HeLa. Principal component 

analysis shows clustering by cell 

type and supplementation 

(Figure 2.4). 

 

Figure 2.3: log(2) fold change of DEGs 
in cell lines under experimental 
conditions. All DEGs that satisfy cutoff 
constraints between crGART and HeLa 
(A). 150 most positively and 150 most 
negatively changed DEGs between 
crGART to HeLa (B). 
 

Top 300 DEG crGART to HeLa log2(fold change)
15

10

5

0

-5

-10

-15

crGART to HeLa log2(fold change)
15

10

5

0

-5

-10

-15

A 

B 

Figure 2.4: Principle component analysis of 
crGART and HeLa replicates. PCA shows a robust 
difference by cell type. Figure generated by Dr. Guido 
Vacano. 
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ClueGO analysis: Functional enrichment analysis employing Gene Ontology and 

Reactome databases 

We queried the Gene Ontology database (Biological process, Cellular component, 

and Molecular function) as well as the Reactome knowledgebase (Pathways and 

Reactions) for this analysis. We obtained a large number of terms but will focus only on 

terms centered around special interest to our laboratory (Figure 2.5).  All ontology 

network maps, term, and grouping visualization figures are located after the text of this 

chapter.  

 

For the GO terms associated with Biological process, 70 GO groups were 

identified with 548 GO terms (Figures 2.8-2.12). Related GO groups were organized into 

neural function, development, muscle function, fatty acids, cardiac function, G-protein 

coupled activity, oxides, and lipids categories. Within neural function, associated terms 

include neuron migration, dendrites, axon, hippocampus, neuroblast proliferation, 

synapse, GABA, and catecholamines. DNPS is known to be important for neural function 

and diseases associated with DNPS exhibit strong neurological phenotypes. Interestingly, 

another category identified was development. Development includes disparate terms, 

ranging from organ morphogenesis related terms such as renal, pancreas, and prostate 

development, to mesenchyme morphogenesis, stem cell differentiation, alkaline 

Figure 2.5: Prominent GO groups from ClueGO 
analysis 
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phosphatase activity, blood vessel morphogenesis, epithelial cell differentiation, bone 

development, endoderm, etc. Placental development included labyrinthine development 

and female pregnancy. For muscle function terms, we obtained smooth muscle function, 

myotubes and sarcomere organization, vasoconstriction, actin filament movement, and 

striated and smooth muscle contraction. Cardiac function was also enriched, including 

sinoatrial and atrioventricular node function terms, as well as atria and ventricle 

development. Oxidation related terms such as nitric oxide and superoxide metabolism 

were found. Lipid terms included fatty acids, phospholipase activity, phosphatidyl 

metabolic process, PI3K, and inflammatory response centered around IL-1 and TNFα. 

Given the importance of purines in development and neurobiology, the observed 

enrichment in related terms was expected. However, enrichment in cardiac terms 

involving electrical conduction was unexpected and may suggest a novel line of inquiry. 

The gene enrichment for formation of primary germ layer (GO:0001704) and placental 

development terms (GO:0001890) (Figures 2.6, 2.7) was also unexpected and suggests a 

purine requirement early in development and that DNPS may play an important role in 

blastocyst formation. 

For the GO terms associated with Cellular component, 12 groups were identified 

with 26 terms (Figures 2.13, 2.14). Terms include voltage gated potassium channels, I-

band and intercalated disc, gap junction, GABA synapse and various other synaptic 

membrane terms.  
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For the GO terms associated with 

Molecular function, 25 groups were 

identified with 54 terms (Figures 2.15, 

2.16). Term categories included neuronal 

and ion transmembrane function, 

development, phospholipid activity, 

cytokine, etc. In the neuronal category, 

neuropeptide, acetylcholine receptor, 

potassium ion gate channels, 

neurotransmitter transmembrane transporter 

terms were prominent. For phospholipids, 

notable terms included lipase activity, 

phospholipase (A2, 1, and C) activity, 

phosphatidylcholine acylhydrolase activity, 

phosphatidylinositol 3 kinase, and nitric 

oxide synthase. Enrichment for Syndecan 

protein binding and G-protein coupled 

Figure 2.6: Gene expression heat map of Gene 
Ontology Primary Germ Layer. Genes identified 
differentially expressed in our data set that map to 
the Gene Ontology term Formation of Primary 
Germ Layer (GO:0001704) by log(2)fold change. 
Cell types are defined as “WT” for HeLa and 
“GART” for crGART, “1-4” for adenine 
supplemented and “A-D” for adenine deficient. 
Heat map dendrogram shows robust groupings 
along cell type. Adenine supplementation shows 
little effect. Genes not satisfying previously define 
threshold counts are removed. Figure generated by 
Dr. Guido Vacano. 
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peptide receptor terms is consistent with the G-protein 

coupled activity category in the Biological process results 

above.  

Reactome Pathways knowledgebase showed 14 

groupings of 29 terms (Figures 2.17, 2.18). Categories 

include diseases associated with O-glycosylation of 

proteins, peptide hormone metabolism, rhodopsin-like 

receptors, TFAP-2, and GPCR and G-alpha signaling. 

Neuronal and development terms were identified, as well 

as TFAP-2 which is heavily involved in neural-crest 

development. Consistent with the GABA terms we 

obtained in Biological process, we identified GABA 

receptor and GABA B receptor terms. This suggests that 

neural deficits associated with DNPS or GART 

deficiency may be associated with alteration of 

GABAergic signaling.  

Reactome Reactions knowledgebase showed 10 

groupings of 24 terms (Figures 2.19, 2.20). Term 
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Figure 2.7: Gene expression heat map of Gene Ontology Placenta 
Development. Genes identified differentially expressed in our data 
set that map to the Gene Ontology term Placenta Development (GO: 
0001890) by log(2)fold change. Cell types are defined as “WT” for 
HeLa and “GART” for crGART, “1-4” for adenine supplemented and 
“A-D” for adenine deficient. Heat map dendrogram shows robust 
groupings along cell type. Adenine supplementation shows little 
effect. Genes not satisfying previously define threshold counts are 
removed. Figure generated by Dr. Guido Vacano. 
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categories included proteoglycans and GPI anchors, GPCR, GEF, and Gi activated 

ligands. Keratin filaments was also noted.  

Corroboration of Gene Ontology analysis via PANTHER analysis 

PANTHER analysis with the complete list of significant DEGs was consistent 

with the ClueGO results and revealed new ontology terms such as DNA and RNA 

binding, polymerase, and transcription regulation.   

Comparison of crATIC, crADSL and crGART DEGs 

To get a better sense of which DEGs are due to DNPS deficiency rather than 

intermediate accumulation, we identified the significant DEGs unique to the crGART vs 

HeLa comparison. There were 1282 genes that changed significantly in the crGART vs 

HeLa comparison but did not change in the crADSL vs HeLa and crATIC vs HeLa 

comparisons (Mazzarino et al. 2019; 2020). The list of genes was used to query 

PANTHER via the Gene Ontology web portal (www.geneontology.org). We obtained 

Biological process ontologies related to RNA splicing and mitochondrion organization. It 

is unclear why these genes are significantly changed only in the crGART cell line. It is 

possible that the CRISPR Cas9 mutagenesis mediated an off-target change in the 

genome. Or, the absence of GART may have an effect unrelated, or peripherally related, 

to DNPS that affects the transcription of these genes. 

There are 7745 genes that change significantly in all the mutants vs HeLa. These 

are likely due to deficient DNPS rather than accumulation of metabolic intermediates. 

PANTHER functional enrichment analysis returned numerous Biological process 

ontologies, including regulation of protein localization to plasma membrane, regulation 

of osteoblast differentiation, positive regulation of I-kappaB kinase/NF-kappaB signaling, 
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heart morphogenesis, establishment of vesicle localization, Ras protein signal 

transduction, embryonic organ morphogenesis, and many others. This result illustrates 

the importance of DNPS in multiple aspects of cell development and function. 

Discussion 
 

In this study, we evaluated the purine dietary requirement for crGART and 

performed HPLC-EC to detect accumulation of metabolites during purine starvation. We 

compared the crGART and HeLa transcriptomes via RNA-seq analysis in adenine-

supplemented and adenine-depleted conditions.  

One of the purposes of adenine supplementation is to shut down DNPS. Adenine 

phosphoribosyltransferase (APRT) catalyzes the conversion of adenine and 

phosphoribosyl pyrophosphate (PRPP) to AMP and pyrophosphate (PPi). APRT is 

present in all mammalian tissues and is uniquely responsible for metabolic adenine 

salvage from dietary sources (Silva et al. 2008). Adenine supplementation effectively 

shuts down DNPS (Holmes et al. 1973; Tu and Patterson 1978). Finally, AMP can be 

converted to IMP by AMP deaminase, and then converted to GMP by IMP 

dehydrogenase (IMPDH, converts IMP into XMP) and GMP synthase (converts XMP 

into GMP) (Watts 1974). 

GART catalyzes three non-sequential reactions in DNPS, steps 2, 3, and 5. The 

conversion of 5-PRA to GAR is the first reaction catalyzed by GART [specifically the 

GARS domain of the trifunctional protein (Knox 2006). As discussed previously, 5-PRA 

is extremely unstable under physiological conditions, and is unlikely to accumulate. Our 

results show that crGART requires purine (adenine) supplementation for proliferative 

growth, but apparently does not accumulate pathway intermediates during purine 
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starvation. In the crADSL and crATIC DNPS-KO models, metabolic substrates 

(SAICAR and ZMP respectively) readily accumulate during purine starvation. There is 

strong evidence that both SAICAR and ZMP alter cellular processes (Keller, Tan, and 

Lee 2012; Corton et al. 1995; Meares et al. 2013). Since the crGART line does not 

accumulate detectable metabolic intermediates of DNPS during purine starvation, it is 

likely a useful model of DNPS deficiency in the absence of substrate accumulation. 

While the GART gene encodes a trifunctional protein, it also encodes a 

monofunctional GARS protein via alternative transcription. This alternative transcript 

includes an intronic polyadenylation signal located in the intron separating the last GARS 

exon from the first AIRS exon. In human, mouse and Drosophila, this transcript has an 

in-frame TAA stop codon which is part of the 5′ donor splice site. The transcript encodes 

a GARS protein with sequence identical to the GARS domain in the trifunctional protein. 

The biological significance of the monofunctional protein has not yet been elucidated. It 

is possible that GARS overexpression may play a role in elevated purine levels in DS. 

Monofunctional GARS protein may have a role in release of metabolites from the purine 

pathway (or purinosome) so they can be used in other metabolic pathways. Or, it may 

interact directly with PRAT, the first enzyme in the de novo pathway, to facilitate transfer 

and prevent degradation of (highly unstable) 5-PRA (Brodsky et al. 1997). The crGART 

cell line should be invaluable for investigating the role of the monofunctional GARS 

protein. 

We considered the possibility of using a PRAT KO cell line as an alternative 

model of DNPS deficiency. However, to our knowledge, a PRAT KO HeLa cell line is 

not currently available: the DNPS null HeLa cell lines include knocked-out GART, PFAS 
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(aka FGAMS), PAICS, ADSL and ATIC. Even if a PRAT KO cell line was available, 

there are other caveats that would render it an inappropriate model for DNPS deficiency. 

In humans, the PRAT gene is upstream of the PAICS gene and separated from it by less 

than 150 nucleotides [based on the coordinates of PPAT (ENSG00000128059) and 

PAICS (ENSG00000128050), Ensembl release GRCh38.p13]. This suggests that 

CRISPR-Cas9 mediated mutagenesis of PRAT would likely disrupt transcriptional 

regulation of the PAICS gene. The substrate for PRAT is PRPP, which participates in 

several enzymatic reactions, including phosphorylation of nucleosides in purine salvage, 

pyrimidine synthesis, histidine and tryptophan biosynthesis, NAD biosynthesis, and 

others (Hove-Jensen et al. 2017). PRAT KO would remove one pathway for catalysis of 

PRPP and would therefore likely disrupt substrate levels for the other enzymatic reactions 

involving PRPP. We had previously isolated and reported on a mutant that does not 

complement PRAT or FGARAT (aka FGAMS) mutants, and still produces 5-PRA using 

NH4Cl instead of glutamine as nitrogen donor (Oates, Vannais, and Patterson 1980). This 

suggests that PRAT KO might be rescued by a compensatory mutation or enzyme 

activity. Finally, PRAT enzyme activity is reduced by increased AMP concentration 

(Holmes et al. 1973). Increased AMP favors the (inactive) dimer form of the enzyme 

rather than the (active) tetramer form (Holmes, Wyngaarden, and Kelley 1973). 

Our RNA-seq analysis led to identification of numerous DEGs and gene 

ontologies from ClueGO functional enrichment analysis. Many of these were consistent 

with our previous analyses of the crADSL and crATIC mutants and are likely to be due to 

DNPS deficiency. These results support the hypothesis that DNPS is essential in 

development and that alterations in DNPS and intermediate metabolite accumulation both 
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regulate the transcriptome. This is consistent with previous work demonstrating that 

DNPS is upregulated in the G1/S phase cell cycle interface (Zhao et al. 2015; Chan et al. 

2015), is critical in embryogenesis which is marked by rapid cellular division, and that 

purines are essential in development (Fumagalli et al. 2017) especially in neural 

development (Rodrigues, Marques, and Cunha 2019). It is possible that inborn errors of 

metabolism due to mutation in ADSL, ATIC, and PAICS resulting in decreased 

enzymatic activity may cause in utero defects that lead to cognitive or body dysmorphic 

phenotypes. 

During the course of our analysis, we noted DEGs and gene ontologies potentially 

relevant to DS. This is perhaps unsurprising given that 1) the GART gene is located on 

Hsa21 and is triplicated in DS, 2) GART expression is dysregulated in DS and 3) purine 

levels are also dysregulated in DS. In addition, although GART is triplicated in DS and 

the current work involves a GART null model, it is likely that pathways affected by 

absence of GART greatly overlap those affected by increased GART. These ontologies 

include terms relevant to placental development, neural development and cognition, 

cardiac development, and Alzheimer disease. We further discuss prominent DEGs and 

gene ontologies below. 

People with DS are at elevated risk for developmental as well as aging related 

disorders. In addition to intellectual disability, common disorders include hypotonia (Lott 

2012a), congenital heart malformation, disease of pulmonary circulation, cardiac arrest, 

hypotension, infantile spasm, epilepsy, OSA (sleeping disorders), intellectual disabilities, 

dementia, hypothyroidism, and obesity (Alexander et al. 2016). Our transcriptomic 

analysis revealed multiple terms potentially relating GART and DNPS to these disorders. 
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Ontological groupings show enrichment in terms associated with organismal 

development, cardiac electrophysiology, neural function/transmission and GABA, 

placenta, alkaline phosphatase activity, phospholipase activity, Amyloid β, and muscle 

function.  

The placenta is the first and largest fetal organ (Turco and Moffett 2019), is 

derived from fetal and maternal components, and is essential for in utero development 

(Burton and Jauniaux 2015). It is responsible for hormone signaling and transfer of 

nutrients, gases, and waste between the embryo and the mother, supporting normal fetal 

growth and development (Gude et al. 2004).  Placental malformations are common in 

embryonic lethal mouse lines, which exhibit abnormalities in cardiac, neural, and 

vascular systems, indicating a strong link between placentation and cardiac and neural 

development (Perez-Garcia et al. 2018). 

In trisomy 21 placenta, villus abnormalities, hypovascularity and placental 

hypoplasia (Debieve 2001; Qureshi et al. 1997) have been observed. Labyrinth layers in 

trisomy 21 placenta were noted to weigh less and exhibit signs of delayed development 

(Adams, Guedj, and Bianchi 2020). About half of newborns with DS typically exhibit 

congenital heart defects (CHD). These CHDs typically manifest as impaired septum 

fusion, causing leakage between cardiac chambers (Freeman et al. 2008). This may be 

due to impaired placentation (Ramachandran et al. 2015; Radhakrishna et al. 2019). 

Owing to the term enrichment associated with placental formation and function, GART 

poses a potential lens to investigate an embryonic contribution to neurological and 

cardiac defects associated with DS. 
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DS is most commonly associated with intellectual disability (Alexander et al. 

2016). Previous work has demonstrated that defects in purine metabolism and/or purine 

concentration in the developing brain are related to intellectual disabilities (Brodsky et al. 

1997; Fumagalli et al. 2017). DS brains show decreased neuronal density by mass and 

volume in various brain regions (e.g. cortex, hippocampus, cerebellum), which occurs 

during development, possibly during gestation (Contestabile, Magara, and Cancedda 

2017). Purinergic signaling regulates axon guidance and growth as well as establishment 

of correct synaptic contacts (Fumagalli et al. 2017) and is crucial for CNS development 

(Jinnah, Sabina, and Van Den Berghe 2013). The GART enzyme exhibits altered 

spatiotemporal expression in the developing nervous system in DS. Typically, levels of 

GART are highly expressed in the developing cerebellum and decrease precipitously 

post-partum. However, in DS, GART levels persist and decrease later in development 

(Brodsky et al. 1997).  

Our ClueGO results include terms related to alkaline phosphatase function, 

specifically through differential expression of ALPP, ALPI, ALPG, and ALPL. ALPP, 

ALPI, and ALPG show elevated expression in crGART. ALPL, which encodes tissue 

non-specific alkaline phosphatase (TNAP), is elevated in HeLa. TNAP is a membrane 

bound, extracellular enzyme present in mineralizing bones, renal tissue, and the central 

nervous system (CNS) (Sebastián-Serrano et al. 2015). In studies of murine CNS 

development, TNAP was found to be associated with the neural tube (Narisawa et al. 

1994) and is highest in early embryonic development associating with neural precursor 

and progenitor cells (Langer et al. 2007). TNAP expression has also been observed 

during synaptic formation and maturation (Fonta et al. 2005), promoting axonal growth 
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(Díez-Zaera et al. 2011). A non-canonical role of TNAP is hydrolysis of extracellular 

nucleotides (Fumagalli et al. 2017; Zimmermann, Zebisch, and Sträter 2012). 

Extracellular ATP was found to induce migration of neural progenitor cells (Striedinger, 

Meda, and Scemes 2007), indicating that TNAP may play a role in regulating 

extracellular ATP pools for migratory events. Another TNAP function is found in the 

metabolism of the Vitamin B6, which is a cofactor for enzymes involved in 

neurotransmitter (e.g. GABA) synthesis (Calderón‐Ospina and Nava‐Mesa 2020). Not 

much is known about the direct role of TNAP in proliferation and differentiation. 

However, given the function and spatiotemporal expression of TNAP, it is likely that 

TNAP is directly involved in purinergic signaling or regulation of the extracellular purine 

pool. Hence, altered TNAP levels may potentially be deleterious during CNS 

development.  

Gamma-amino butyric acid (GABA) is the main inhibitory neurotransmitter in 

healthy adult brains and has been of particular interest in DS (Contestabile, Magara, and 

Cancedda 2017; Deidda, Bozarth, and Cancedda 2014). Analysis of fetal brain tissue has 

shown a smaller hippocampus and decreased GABA neurotransmitters in DS which 

suggests impaired neurogenesis or migration of GABAergic interneurons (Huo et al. 

2018). DS patients exhibit an increased incidence of epileptic seizures (Lott and Dierssen 

2010), children exhibit sleep disturbances (Carter et al. 2009) and hyperactivity 

(Pueschel, Bernier, and Pezzullo 1991): these conditions may be partially due to 

abnormal GABA signaling. Studies employing DS murine models have shown that 

altered GABA signaling results in synaptic excitatory/inhibitory signal imbalance, 

impaired synaptic plasticity (Contestabile, Magara, and Cancedda 2017; Deidda, Bozarth, 
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and Cancedda 2014; Begenisic et al. 2014), and learning and memory deficits (Costa and 

Grybko 2005; Kleschevnikov 2004). The enrichment for GABA-related terms within our 

analysis suggests that GART and DNPS may play a role in these processes.  

Alzheimer’s disease (AD) is a form of dementia characterized by accumulation of 

neural amyloid β plaques, Tau neurofibrillary tangles, and chronic neural inflammation. 

Recent work supports the hypothesis that inflammation plays a critical role in AD, and 

therapeutic intervention designed to reduce neural inflammation shows promise. 

Inflammation is typically mediated by cytokine and chemokine secretion as well as fatty 

acid metabolism (L. Chen et al. 2018). Chemokines and cytokines (such as IL-1β and 

TNFɑ) are secreted in response to injury and act as proinflammatory signals, resulting in 

clearance cell recruitment to the damaged tissue (L. Chen et al. 2018). Fatty acid 

derivatives, specifically lipoxins (derived from ω-6 via phospholipaseA2 and 

lipoxygenase catalysis of arachidonic acid) (Sugimoto et al. 2016) and ω-3 metabolites 

such as maresins, resolvins, and protectins (Serhan et al. 2015) are all potent anti-

inflammation mediators. ω-6 fatty acid is typically stored in the phospholipid bilayer as 

arachidonic acid, which is then cleaved by phospholipase activity and then metabolized 

via secondary enzymes to eicosanoids and lipoxins (Hanna and Hafez 2018). 

Coincidentally, extracellular ATP signaling plays a crucial role in inflammation through 

the purinergic P2 and P1 receptors (Kominsky, Campbell, and Colgan 2010). DNPS and 

GART levels may play important roles in these processes.  

In conclusion, our results indicate that DNPS deficiency affects the cellular 

transcriptome, significantly altering the expression of over 4000 genes. Our functional 

enrichment analysis identified ontologies and pathways related to placental development, 
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neural development, cardiac function and inflammation. Many of these ontologies are 

relevant to DS and AD. This is perhaps unsurprising, since the GART gene is trisomic in 

DS, and purine levels are significantly altered in DS. We believe that the crGART cell 

line is an attractive model for DNPS deficiency in the absence of substrate accumulation 

and will be a valuable tool for investigating the role of DNPS dysregulation in DS and 

other disorders. 
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Figure 2.14: ClueGO Cellular Component terms and groupings. Percent genes 
returned per total genes per term (A). Percent representation of total terms found within 
representative parent group (B). Colors represent associated parent group 
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Chapter Three: Transcriptomic Characterization of crADSL 

Introduction 
 
 Defects in de novo purine synthesis (DNPS) can cause inborn errors of 

metabolism. Of particular interest, adenylosuccinate lyase (ADSL) deficiency, an 

autosomal recessive inborn error of metabolism, has been observed in approximately 80 

individuals to date (Jurecka et al. 2015) and is typically diagnosed by SAICA-riboside 

accumulation in biofluids (Donti et al. 2016). With advances in genomic sequencing and 

reduction in cost, it is likely that the number of diagnosed ADSL deficient patients will 

increase in the future. The phenotype of ADSL deficiency is variable and affects multiple 

systems, presenting as fatal neonatal, severe, or mild to moderate forms including 

features such as seizures, autistic traits, psychomotor retardation, respiratory failure, and 

microcephaly. This implies that there are significant alterations in gene expression in 

ADSL deficiency. The ADSL enzyme is a homotetramer and mutations in ADSL can 

result in altered tetramer stability or active site disruption resulting in reduced levels of 

enzyme activity (Zikanova et al. 2010). In the most severe cases, enzyme activity may be 

reduced by as much as 75%. 

 DNPS is one of the most ancient biochemical pathways (Caetano-Anollés et al. 

2009). In mammalian DNPS, phosphoribosyl pyrophosphate (PRPP) is converted to 

inosine monophosphate (IMP) in ten enzymatic steps by six different enzymes. IMP is 

converted to either adenosine monophosphate (AMP) or guanosine monophosphate 
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(GMP) via two additional enzymatic steps (Figure 3.1). ADSL is a bifunctional 

homotetrameric enzyme that catalyzes the eighth step, forming aminoimidazole 

carboxamide ribonucleotide (AICAR) from 

phosphoribosylaminoimidazolesuccinocarboxamide (SAICAR). It is also responsible for 

the final step in the conversion of 

IMP to AMP, specifically cleaving 

succinyladenosine monophosphate 

(SAMP) into AMP (Figure 3.1). 

ADSL is thought to be an enzyme 

with straightforward and defined 

functions, however recent evidence 

suggests a more complicated cellular 

role.  

The DNPS intermediates and products have multiple functions within the cell 

including energy production/regulation via ATP, GTP, and cAMP, cellular signaling, 

growth, and regulation of other pathways. Recently, the intermediate SAICAR was found 

to allosterically bind pyruvate kinase M isoform 2 (PKM2) (Keller, Tan, and Lee 2012), 

the dominant isoform present in tumors. PKM2 catalyzes the last and only irreversible 

step of glycolysis, forming pyruvate from phosphoenol pyruvate. The dominance of this 

isoform in tumors is thought to be the root of the Warburg Effect: the production of lactic 

acid and consequent metabolic reprogramming via aerobic glycolysis in tumor cells 

(Yang and Lu 2013). PKM2 was also found to act as a co-regulator of transcription 

(Keller et al. 2014) by binding transcription factors. SAICAR binding to PKM2 is 

Figure 3.1: de novo purine synthetic pathway 
(DNPS). PRPP is the input small molecule and 
is converted by six enzymes in ten steps to IMP 
and is further processed to either AMP or GMP 
via two additional steps. ADSL is responsible 
for SAICAR to AICAR and SAMP to AMP. 
crADSL is the CRISPR generated HeLa cell line 
used in this study that lacks ADSL enzyme. 
Figure generated by Dr. Guido Vacano.  
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thought to activate a “moonlighting” PKM2 protein kinase activity that acts to directly 

alter transcription (Keller et al. 2014). However, this hypothesis is controversial (Hosios 

et al. 2015). SAICAR was also shown to bind both the dimeric and tetrameric forms of 

PKM2 (Ming Yan et al. 2016) although recent work suggests that the binding of 

SAICAR to the dimer promotes its pyruvate kinase activity (Ming Yan et al. 2016). 

PKM2 was found to induce the hypoxia inducible factor 1 subunit alpha (HIF1α) protein 

upon nuclear translocation of PKM2 (Luo et al. 2011) which initiates angiogenic and 

tumorigenic-related events in the cell. SAICAR also accumulates in glucose starved 

conditions (Keller et al. 2014) although the mechanism for this is not well understood. 

Recently, CRISPR-Cas9 was used to generate knock-outs of the enzymes 

involved in DNPS including ADSL (designated crADSL) (Baresova et al. 2016). The 

crADSL cells have approximately 1.7% ADSL activity compared to wild type cells 

(Baresova et al. 2016), accumulate SAICAR (Mádrová et al. 2018) and fail to grow in the 

absence of adenine (Baresova et al. 2016). To investigate the utility of crADSL as a 

model for ADSL deficiency, RNA-seq was employed to determine transcriptome 

differences between crADSL and wild type HeLa (WT) cells cultured for 10 hours in the 

presence/absence of adenine. RNA-seq is a tool that can provide a snapshot of global 

transcriptional activity and can aid in characterizing cellular response to mutations, 

nutrients, stressors, etc. Changes in gene transcription can be rapidly identified and 

parsed into various groupings, such as gene ontologies or characterized pathways and 

reactions. As an initial step in understanding alterations in gene expression in ADSL 

deficiency, we used RNA-seq to compare gene expression in wt HeLa and crADSL cells 

in the presence and absence of SAICAR accumulation. 
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Materials and methods 
 
Cell Culture 

crADSL was constructed as described previously (Baresova et al. 2016). HeLa 

cells (CCL-2) were purchased from ATCC (Manassass, Virginia, USA). Cells were 

grown on 60 mm TPP plates (Techno Plastic Products, AG, Switzerland) with regularly 

refreshed Dulbecco’s Modified Eagle Medium (DMEM, Gibco) supplemented with 10% 

fetal calf serum (FCS), 30 µM adenine, and normocin (Invivogen). For purine deprivation 

experiments (hereafter referred to as starvation), complete media with 30 µM adenine 

was exchanged two days and one day before starvation. Adenine is used as a nutritional 

supplement for DNPS experiments as it can be converted to AMP and GMP via enzymes 

not affected by DNPS knockouts (Kondo et al. 2000). Ten to twelve hours prior to 

starvation, media were exchanged to DMEM 10% FCS with 100 µM adenine, a 

concentration of adenine that completely inhibits DNPS (Tu and Patterson 1978). To 

induce starvation or control conditions, once plates reached ~50-70% confluence, 

medium was changed to DMEM supplemented with 10% FCM (fetal calf macroserum is 

FCS dialyzed against saline using a 3.5 kDa barrier), normocin, with or without 100 μM 

adenine. For cell colony staining experiments, cells were plated in complete growth 

media and then media were exchanged for DMEM 10% FCM, normocin, with or without 

30 μM adenine. Cells were fixed in 10% ethanol / 3.5% acetic acid solution then stained 

using 0.1% crystal violet solution.  

HPLC analysis of SAICAR metabolite accumulation 

At each time point, cell culture media was aspirated and cells were washed once 

with 1 ml cold (4 ºC) 1X PBS and then extracted with 500 µl cold (-20 ºC) 80% EtOH. 
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Plates were then thoroughly scraped and the cell material was transferred to microfuge 

tubes and centrifuged at 14,000 x g for 15 minutes at 4 ºC. The supernatant was collected 

and stored at -80 ºC. Samples were dried using a Speedvac, then resuspended in 300 µl 

freshly prepared mobile phase (50 mM lithium acetate, 5 mM tetra butyl ammonium 

phosphate, 2% acetonitrile, pH 4.1). Cellular debris was pelleted by two rounds of 

centrifugation at 14,000 x g for 20 minutes. Supernatant was frozen at -20 °C until 

analysis. Samples were transferred to HPLC vials and loaded in an autosampler kept at 

10 °C over the course of the runs. Separation of SAICAR was achieved by HPLC–EC 

analysis similar to our previously described method (Duval et al. 2013). Briefly, 

separation was obtained using reverse phase HPLC–EC with a TSKgel ODS-80Tm C-18 

column (250 mm × 4.6 mm ID, 5 μM) protected by Tosoh Bioscience TSKgel guard 

cartridge. A column temperature of 33 °C was maintained throughout the analysis. 

Mobile phase was delivered at a flow rate of 0.7 ml/min. Sample extracts and standards 

were kept at 10 °C and a 30 μl aliquot of each sample was injected using an ESA 

autosampler (model 542) using a 30 μl partial loop. After injection and separation, 

analytes were detected using a CoulArray HPLC system (model 5600A, ESA) with three 

electrochemical detector modules (four flow-through coulometric detectors in series per 

module for a total of twelve detectors). EC channels were set to a range of potentials 

from 0 to 900 mV in 100 mV increments, then 1200 mV and 0 mV to oxidize and detect 

SAICAR. Autosampler temperature was kept at 10 ºC over the course of runs. Sum of 

primary peaks area was used to measure analyte accumulation.  
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RNA-seq 

Cells were plated on the same day into 60 mm TPP dishes. Four biological 

replicates were cultured in purine rich or purine free (starvation) media conditions for 10 

hours as previously described in 2.1, and total RNA was extracted using TRIzol reagent 

(Sigma) according to the manufacturer’s protocol. Final purification was performed via 

spin columns following the manufacturer’s protocol (Machery Nagel), with 50 μl total 

volume DEPC treated water (Sigma). RNA was quantified by NanoDrop One (Thermo 

Scientific) and frozen at -80° C. RNA quality assessment and RNA-seq was performed 

by The Genomics and Microarray Core Facility at the University of Colorado, Denver. 

mRNA libraries were constructed using the Nugen Universal Plus mRNA-Seq + UDI kit 

(cat # 9144-96), and 50 bp single read sequencing was performed employing the Illumina 

HiSEQ4000. Conversion of .bcl to FASTQ files was done using CASAVA 2.0.  

Processing 

Computation was done on a Dell Precision T1700 computer with an Intel Core i7-

4790 3.60 GHz CPU and 32 GB RAM running Linux Mint. The RNA-seq sequences, 

provided in FASTQ format by the Genomics and Microarray Core Facility at the 

University of Colorado, Denver, were aligned using hisat2 version 2.1.0 to the 

“genome_snp_tran” indexed human genome [H. sapiens, GRCh38 

(ftp://ftp.ccb.jhu.edu/pub/infphilo/hisat2/data/grch38_snp_tran.tar.gz)]. Samtools 1.6 (Li 

et al. 2009) was used to sort entries in the sam file output from hisat2 and convert to bam 

format. The bam files were processed using the Cufflinks suite version 2.2.1 (Trapnell et 

al. 2013) with the “advanced” Cufflinks workflow: Cufflinks → Cuffmerge → Cuffquant 

→ Cuffdiff. The Cuffdiff output was processed using CummeRbund 2.24.0 and various R 



 73 

and bash scripts. For each mutant vs. WT comparison, the gene_exp.diff file was filtered 

for significant entries where FPKM values were FPKM ≥ 1 and log2 fold change values 

were log2 ≥ 1 or log2 ≤ -1 (i.e., 2-fold or greater). The 100 DEGs with the highest 

absolute log2 values (positive and negative) were combined to generate lists of 200 genes 

for subsequent ClueGO analyses. Comparisons of crADSL to WT in conditions lacking 

adenine (MM, or “minus to minus” comparison) and in adenine supplemented conditions 

(PP, or “plus to plus” comparison) were performed. 

ClueGO analysis 

ClueGO is a Cytoscape app that extracts representative functional biological 

information for large lists of genes or proteins (Mlecnik, Galon, and Bindea 2018). 

ClueGO analyses were performed using Cytoscape version 3.7.0 and ClueGO 2.5.2. The 

GO and Reactome releases were Homo Sapiens_GO-EBI-UniProt-GOA_17.12.2018 and 

Homo Sapiens_REACTOME_17.12.2018. Data sets were run pairwise using the crADSL 

plus adenine vs. WT plus adenine comparison (PP) and the crADSL minus adenine vs. 

WT minus adenine comparison (MM) with the DEG lists described above. Analyses were 

performed using default settings: the evidence code was set to “all”, and network 

specificity was set to “representative” with a 3 gene/term cut off, approximating GO 

levels 3-11. Terms and groups were divided into three categories (MM, PP, or Shared) 

based on whether most genes defining a term or group were enriched in the MM or PP 

comparisons, or an equal number of significant genes was obtained from both groups 

(Shared). Further, “slightly enriched” denotes enrichment by one gene, while “heavily 

enriched” denotes enrichment by two or more genes.  
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BiNGO analysis 

BiNGO 3.0.3 is a Cytoscape app that analyzes a total gene list and performs GO 

term enrichment (Biological Process, Cellular Component, and Molecular Function) 

(Maere, Heymans, and Kuiper 2005). Gene lists were analyzed, and ontologies evaluated 

by False Discovery Rate (FDR). Nodes are colored according to their associated p-value.  

qPCR validation of DEGs 

qPCR was performed to validate the reliability of the RNA-seq analysis. Total 

RNA was prepared as described above and concentrations obtained by NanoDrop 

(ThermoFisher). cDNA was prepared using iScript cDNA synthesis kit (BioRad 

#1708890) using 500 ng total RNA per reaction according to the manufacturer’s protocol. 

Candidate genes were selected and primers ordered from IDT using PrimeTime service. 

The primers are TGFβI (Hs.PT.58.40018323), ALPP (Hs.PT.56a.38602874.g), Twist1 

(Hs.PT.58.18940950), IQGAP2 (Hs.PT.58.28018594), GATA3 (Hs.PT.58.19431110), β-

Actin (Hs.PT.39a.22214847), OASL (Hs.PT.58.50426392), TUSC3 (Hs.PT.58.3740957), 

and DPYSL3 (Hs.PT.58.39796068). qPCR was performed on IQ5 (BioRad) with 1 μl of 

cDNA using IQ Sybr Green Supermix (BioRad #170-8880) and the program: 95 °C for 5 

minutes followed by 45 cycles of 95 °C for 10 seconds and 60 °C elongation. Samples 

were read 30 seconds. Ct values were obtained, normalized to β-Actin, and used for 

further analysis. 

Results 
 
crADSL requires adenine for proliferative growth 

Cell growth and purine requirement were assessed for crADSL and WT HeLa 

cells. When starved long term for purines, crADSL cells showed detachment from the 
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plate and cell death in adenine depleted (purine 

free) media. In adenine supplemented media, we 

observed that crADSL takes more time to attach 

after re-plating and grows more slowly than WT 

HeLa. WT HeLa showed proliferative growth in 

both adenine-supplemented and non-supplemented 

media (Figure 3.2). These results confirm a 

requirement for purine supplementation for 

crADSL for proliferative growth.  

SAICAR accumulates in crADSL but not WT HeLa cells. 

HPLC-EC analysis of metabolites from starved crADSL and WT cells was 

performed to characterize SAICAR accumulation (Figure 3.3). In crADSL, the ADSL 

substrate SAICAR eluted at 50.1 minutes (Figure 3.4) with detectable accumulation at 6 

hours in starvation medium, but not in adenine supplemented medium, and continued 

until 10 hours, the last time point 

measured. The ADSL product 

AICAR, which elutes at 24 

minutes, was not observed and 

SAMP, the second substrate of 

ADSL, was not observed. This 

result is consistent with the DNPS 

pathway block due to ADSL 

inactivation.  

Figure 3.2: Adenine is required 
for proliferative growth of 
crADSL line. WT HeLa cells (A, 
B) and crADSL HeLa (C, D) were 
in DMEM supplemented with 10% 
FCM with (A, C) or without (B, D) 
100 μM adenine then fixed and 
stained with crystal violet. 

Figure 3.3: SAICAR accumulates in crADSL cells in 
starvation conditions without adenine. crADSL cells 
were cultured in 100 μM adenine supplemented (blue) or 
adenine-free (orange) DMEM with 10% FCM for 10 hours. 
Metabolites were analyzed on HPLC-EC. The plot indicates 
the sum of the primary peaks. 
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S. Figure 1: HPLC-EC traces of crADSL cells. Cells starved in FCM supplemented media with adenine (left traces) and without 
adenine (right traces) in two hour increments. Red square indicates elution time of SAICAR. Primary peak in channel 3 (300mV)

Figure 3.4: HPLC-EC traces of crADSL cells. Cells starved in FCM 
supplemented media with adenine (left traces) and without adenine (right 
traces) in two-hour increments. Red square indicates elution time of SAICAR. 
Primary peak in channel 3 (300mV). 
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crADSL and WT show DEGs in both adenine rich and depleted conditions 

In the experiments described below, purine deprived cells are labeled M and cells 

in supplemented media are labeled P. RNA-seq analysis was performed to detect 

transcriptome changes by cell type and adenine supplementation. Entries with FPKM 

(fragments per kilobase of exon per million reads mapped) values less than 1 were 

dropped (which removes low count statistical anomalies), and only ≥ 2-fold FPKM 

changes (log2 ≥ 1 or log2 ≤ -1) were retained with a p-value cut off of 0.05 using 

Benjamini-Hochberg correction in Cufflinks (Trapnell et al. 2013). Comparison of 

crADSL to WT in conditions lacking adenine (MM, or “minus to minus” comparison) 

returns 1659 DEGs. A list of the 100 most positive and 100 most negative DEG log2 

values was prepared and encompasses log2 value ranges of 8.823 to 2.311 and -2.593 to -

8.788, respectively. Comparison of crADSL to WT in adenine supplemented conditions 

(PP, or “plus to plus” comparison) returns 1426 DEGs. A list of 100 most positive and 

100 most negative DEG log2 values was 

prepared and encompasses log2 value ranges 

of 8.577 to 2.266 and -2.526 to -8.289, 

respectively (Figure 3.5). For our generated 

full list of DEGs, there were 1144 shared 

genes and 282 (19.8%) and 515 (31.6%) 

unique identified genes respectively from the 

PP and MM comparisons. When the list was 

reduced to the top 200 DEGs used for further 

analysis, 153 genes were shared between the 

Figure 3.5: log(2) fold change of DEGs in 
cell lines under experimental conditions. A 
and B: all DEGs that satisfy cutoff constraints 
between PP comparison (A) and MM 
comparison (B). C and D: 100 most positively 
and 100 most negatively changed DEGs in PP 
comparison (C) and MM comparison (D). 
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two comparison groups and 47 unique genes for 

each PP and MM comparison (Table 3.1). Our 

analysis was limited to genes from the lists 

derived from each MM and PP comparison. 

crADSL and WT HeLa DEGs: enrichment in 

ontology terms and groupings in supplemented 

and starvation conditions 

Gene Ontologies (GO) are divided into three categories: biological process, 

cellular component, and molecular function. Each category has a specific aim: biological 

process includes genes that contribute to completion of a biological objective, cellular 

component refers to gene product localization, and molecular function refers to the 

biochemical activity of gene products (Ashburner et al. 2000). The Reactome 

knowledgebase systematically maps gene products into pathway and reaction networks 

(or metabolic maps) (Fabregat et al. 2018). In our discussion of ontology and Reactome 

enrichment in the gene sets, term will be used for a singular ontology or Reactome 

annotation that shows enrichment due to genes associated with that specific component, 

pathway, process, reaction, or function. It is important to note that terms may be enriched 

in a single comparison; that however does not indicate that the term was not significant in 

the other comparison. All ontology network maps, term, and grouping visualization 

figures are located after the text of this chapter. Notable findings are compiled (Figure 

3.6).  
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Table 3.1: Shared and unique DEGs 
between comparison groups. Total 
gene counts that satisfied previously 
defined cutoffs in the total gene list in 
the top 200 genes that were used for 
ClueGO analysis parsed into the PP and 
MM comparison or shared between the 
two comparison groups.  
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In GO Biological Process, DEGs mapped to 95 shared terms in 27 groups 

(Figures 3.8, 3.9) The most notable among these are epithelial to mesenchymal transition 

with 29.65% of terms related to this group, amyloid fibril formation with 12.06% of 

terms associated, and actin nucleation at 7.04%. Other notable shared terms involve 

processes such as smooth muscle cell and heart structure development, neuron or brain 

associated function/development, bone mineralization, hormone processing, as well as 

interleukins, Wnt signaling, and tumor necrosis factor. In the PP comparisons, we see 

many overlaps within the shared groupings, however it should be noted that exit from 

mitosis, and transcription regulatory region DNA binding were heavily enriched terms. 

For the MM comparisons, we see mass overlap of terms associated with larger parent 

groups in the shared list, however Glycosaminoglycan catabolic process as well as some 

actin/myosin-based terms were heavily enriched while terms associated with TGFβ were 

mildly enriched. 

The Cellular Component ontology produced 6 shared terms in 4 groups (Figures 

3.10, 3.11). Extracellular matrix, platelet alpha granule, as well as peroxisomal 

Figure 3.6: Notable findings from RNA-seq/GO analysis. 
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membrane were shared. Mild enrichment was noted in the PP comparison lamellipodium 

membrane and filopodium, while for the MM comparison with 4 terms in 4 groups 

centered around plasma membrane, golgi, and photoreceptors. 

Molecular Function ontology showed 9 shared terms in 8 groups (Figures 3.12, 

3.13) in RNA binding at 22.22%, integrin binding at 11.11% Cell-cell adhesion, Laminin 

binding, and protein self-association type groupings. Mild enrichment in the PP showed 3 

terms in 3 groups in Histone acetyltransferase activity, HMG box domain binding, and R-

SMAD binding activity while MM has term enrichment in Aβ and TGFβ binding and 

lipoprotein particle receptor binding. 

The Reactome Pathway results showed 10 shared terms in 4 groups (Figures 3.14, 

3.15) involved with kinase activity as well as antiviral mechanism by IFN-stimulated 

genes at 7.41% gene term association term and complement cascades. Collagen type 

terms were also strongly enriched in shared pairings due to COL15A1, COL25A1, 

COL3A1, and COL4A4 being present in both lists analyzed. There were no strong 

preferential associations in the PP list with 5 terms in 4 groups, however slight 

enrichment in the PP terms were seen in scavenger receptor ligands, EPH-ephrin 

repulsion, and signaling by PDGF. Immune system terms OAS antiviral response and 

IFNG response (with 33.33% and 5.43% gene term association respectively) were seen in 

the PP comparison. The MM comparison showed more interesting enrichment with 19 

terms in 6 groups. Due to the TMOD1 and TNNT1 gene differential expression, striated 

muscle contraction was heavily enriched. HS-GAG metabolism and other terms 

associated with GAG were heavily enriched in the MM comparison due to differential 

expression of GPC5 and HSPG2. For genes slightly enriched in the MM comparison over 
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the PP comparison, collagen related terms such as integrin, ECM proteoglycans, and 

NCAM, CRMPs and semaphorin, as well as post-translational modification were also 

slightly enriched in the MM comparison. Various interferon and antiviral terms were 

slightly enriched in the MM comparison.  

The Reactome Reactions results showed similar patterns as Pathways, with strong 

enrichment in the MM comparison over the PP comparison. Twenty terms in three groups 

were shared (Figures 3.16, 3.17) and centered around collagen with 90.0% term 

enrichment, granule membrane proteins, and platelet alpha granule with 5.0% each. The 

singular enriched PP term associated with IFNG was only slightly enriched. MM 

comparison revealed 17 terms in 6 groups. Heavily enriched terms in the MM 

comparison were associated with muscle contraction due to the TMOD1 and TNNT1 

gene. GAG based tetrasaccharide linker terms were heavily enriched due to the presence 

of GPC5 and HSPG2. For terms that were slightly enriched in the MM comparison, we 

see once again interferon and immune-based terms as well as phosphorylation of CRMPs 

related terms due to the presence of DPYSL3 (CRMP4) in the MM gene list. 

crADSL and WT HeLa showed similar enrichment patterns using BiNGO analysis 

To validate our ClueGO findings, we chose to analyze gene sets using the BiNGO 

app in Cytoscape. Network maps, term and grouping visualizations are shown at end of 

text for this chapter (Figures 3.18-3.23). While there are new terms that appear in our 

data sets such as Response to Endoplasmic Reticulum Stress, on the whole this secondary 

analysis system complements our ClueGO findings.  
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Validation of gene expression patterns by qRT-PCR 

Candidate gene transcripts were selected that showed robust expression patterns 

and qPCR was performed to assess whether the expression pattern was maintained using 

a different analysis system. Primers for DPYSL3 (CRMP4), Twist1, TUSC3, TGFβI, 

IQGAP2, GATA3, ALPP, and OASL showed ΔCt values in similar expression patterns to 

the RNA-seq data log2 values (Figure 3.7), demonstrating the validity of our RNA-seq 

data set in both P and M conditions.  

 

Discussion 
 

In this study, we evaluated the dietary requirements and metabolite accumulation 

during purine starvation for crADSL, and we performed RNA-seq to compare the 

crADSL and WT HeLa transcriptomes in purine supplemented and starved conditions. 

Further, we performed qPCR to verify our RNA-seq results. Our results demonstrate that 

crADSL requires purine (adenine) supplementation for proliferative growth, SAICAR 
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accumulates over a time course of ten hours during purine starvation, and we obtain 

many DEGs both by cell type and adenine supplementation.  

Previous results (Keller et al. 2014) support the hypothesis that SAICAR 

accumulation should produce robust transcriptome changes via the “moonlighting” 

PKM2 protein kinase activity. It is important to note that their methods are limited to 

gene chip experiments and not evaluation of viable cells in culture. We observed changes 

in both PP and MM (SAICAR accumulating) conditions, which suggests that SAICAR 

accumulation and general ADSL deficiency both mediate transcriptome alteration. Our 

results show a greater number of DEGs in the MM versus PP comparison, which suggests 

that SAICAR may be regulating transcription activity, either by a PKM2-SAICAR co-

regulation activity or some other mechanism. If PKM2 does act as a co-regulator of 

transcription, the PKM2-SAICAR complex may potentially activate a select subset of 

targets for this activity. Our current experiments suggest a SAICAR derived effect on 

transcription.  

In GO Biological Process, we obtained a robust group of terms including and 

related to epithelial to mesenchymal transition (EMT) and transforming growth factor 

beta (TGFβ). EMT refers to the process by which polar epithelial cells undergo 

biochemical changes that convert them to mesenchymal cells, which exhibit increased 

resistance to apoptosis and enhanced migratory and invasiveness properties (Kalluri 

2009). EMT is important in embryogenesis, specifically during primitive streak formation 

as well as during neural crest formation. EMT in embryogenesis is orchestrated by the 

Wnt signaling pathway (Kalluri 2009). Consistent with the EMT related terms, we also 

observed Wnt signaling pathway in our shared comparison. Disruption in EMT might 
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play an important role in the developmental and neurological phenotypes associated with 

ADSL deficiency (discussed below). EMT is also important in inflammation and cell 

migration. Upon trauma to basement membranes, epithelial cells can undergo EMT in 

response to inflammation from injury (Kalluri and Weinberg 2009). Our results show 

changes in genes in inflammation/interferon pathways, such as interferon signaling, and 

IL-1β secretion. Terms associated with interferon, inflammation, and immunity were 

present in the MM comparison, which suggests that these transcriptional changes are the 

result of SAICAR accumulation and supports the tentative hypothesis that ADSL 

deficiency may be an immunological disorder. It also suggests that ADSL deficiency 

and/or DNPS deficiency may play an important role in immune dysfunction in cancer. 

In our GO and Reactome analyses, many shared terms mapped to development 

associated groups. Since ADSL deficiency is a developmental disorder with phenotypes 

including dysmorphic features, cognitive deficits, seizures, and psychomotor retardation, 

it is possible that these terms may be relevant to a plausible explanation of phenotype. In 

addition, we observed an interesting enrichment in many muscle and movement type 

terms and groups. This is consistent with the high level of expression of ADSL in muscle 

cells (Van Den Berghe and Jaeken 1986; Brand and Lowenstein 1978) and may be 

informative to the psychomotor retardation phenotype observed in ADSL deficiency. Our 

GO and Reactome results indicate that disruption to DNPS (and ADSL specifically) 

alters energy production and energy levels and sensing needs, which affect force 

generation in muscle cells. 

Cancer is characterized, among other features, by constitutive cellular division, 

alterations in cellular metabolism (Warburg Effect) (Liberti and Locasale 2016), collagen 
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network restructuring (Fang et al. 2014), metastasis and infiltration, and changes in 

immune function (Iommarini et al. 2017; Krzywinska and Stockmann 2018). Our results 

show enrichment for these and related terms, which suggests important roles for DNPS 

deficiency and/or SAICAR accumulation in these cancer-related processes. In addition to 

the collagen, integrin, EMT, actin, and ECM terms, our GO cellular component analysis 

showed enrichment for lamellipodia and filopodia. Filopodia employ integrins to produce 

finger-like protrusions preparatory to cellular migration. Filopodia formation is an 

important mechanism for cell migration and infiltration during tumor cell metastasis 

(Arjonen, Kaukonen, and Ivaska 2011). Recently, the role of ADSL in certain cancer 

types was probed suggesting a potential link in aggressive phenotypes (Park et al. 2018). 

While the scope of this manuscript is focused on the ontologies associated with 

DNPS and ADSL knockout, several individual genes were identified as of specific 

interest. Aberrations in ALPP, a placental alkaline phosphatase, have been implicated in 

spontaneous abortions (Vatin et al. 2014), and in some forms of cancers (Fishman et al. 

1968; Fishman 1987). Twist1 is a transcription factor important for craniofacial and 

organ development during embryogenesis, most likely from mesoderm derived tissues, 

and has been identified in multiple types of tumors and involved in cancer metastasis, 

resistance to chemotherapy, and it can over-ride oncogene induced apoptosis (Qin et al. 

2012). TUSC3 (tumor suppressor candidate 3) is associated with multiple functions 

including Mg2+ uptake, glycosylation and embryonic development, in addition to its 

tumor suppression function (X. Yu et al. 2017). IQGAP2 integrates Rho GTPase and 

Ca2+/calmodulin signals for cellular adhesion and cytoskeleton reorganization and was 

recently found to act as a tumor suppressor (Xie et al. 2012). DPYSL3 (CRMP4) is 
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primarily a neuronal protein expressed during development and adult stages and is 

responsible for various tasks including cell migration, differentiation, neurite extension, 

and axonal regeneration (Alabed et al. 2007). It also has been found to play a role in 

some non-neuronal cancers in migration and metastasis, although the exact role is still 

being investigated (Matsunuma et al. 2018). GATA3 is a transcription factor and 

regulator of numerous developmental pathways and has been found heavily associated 

with breast cancer (Chou, Provot, and Werb 2010). OASL is a gene associated with viral 

response and immunity, with activation carried out by interferons (Choi et al. 2015). 

TGFβI is a ubiquitously secreted ECM protein with plausible participation in 

morphogenic, embryonic developmental, adhesive/migratory, tumorigenic, wound 

healing, and inflammatory processes (Thapa, Lee, and Kim 2007). It is apparent with 

ontologies and gene variability that DNPS and ADSL provide an important context for 

the study of developmental and cancer biology.  

Individuals with ADSL deficiency have a mutated form of ADSL with reduced 

enzymatic activity. This implies reduced (but not halted) conversion of SAICAR to 

AICAR and is consistent with results from patient studies (Jurecka et al. 2015; Zikanova 

et al. 2010). Due to a reduced rate of conversion of SAICAR to AICAR, we would expect 

transcriptome alteration due to persistent elevation in SAICAR and a reduction in the rate 

of DNPS. Here we present results detailing transcriptome changes in crADSL due to 

elimination of ADSL enzyme activity. Future studies will investigate differences between 

mutant forms of ADSL, and may employ specific cell lines to assess the effects of ADSL 

dysregulation in developmental, tumor, vascular and muscle biology. These cells and 
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cells transfected with mutant forms of ADSL should provide an invaluable cellular model 

of ADSL deficiency.  

. 
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Chapter Four: Transcriptomic Characterization of crATIC 

Introduction  

De novo purine synthesis (DNPS) is essential for cellular function. Purines are 

critical as 1) components of DNA and RNA: the information carrying molecules of cells, 

2) intra and intercellular signaling molecules, for example G (guanine) protein coupled 

receptors, 3) as the major source of energy currency in the form of ATP and 4) substrates 

and co-enzymes for many cellular functions. In humans and other animals DNPS is 

accomplished via ten sequential enzymatic reactions resulting in conversion of 

phosphoribosyl pyrophosphate 

(PRPP) to inosine 

monophosphate (IMP) mediated 

by six enzymes (seven of the ten 

reactions are catalyzed by three 

multifunctional enzymes). IMP 

can then be converted through 

two reactions to either AMP or 

GMP (Figure 4.1).   

AMP-activated protein kinase (AMPK) is a major regulator of cellular 

metabolism. AMPK regulates the mammalian Target of Rapamycin (mTOR) pathway. 

AMPK activation shuts down mTOR signaling directly via phosphorylation of Raptor 

Figure 4.1: De novo purine synthesis pathway. DNPS is 
accomplished via the conversion of PRPP to IMP which is 
subsequently converted to AMP or GMP. The HeLa ATIC KO, 
crATIC, is indicated. Figure generated by Dr. Guido Vacano. 
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(Saxton and Sabatini 2017) and indirectly via activation and phosphorylation of Tuberous 

Sclerosis Complex 1 and 2 (TSC1 and TSC2). mTOR regulates vital cellular anabolic and 

catabolic processes involved in lipid synthesis, glycolysis, mitochondrial and lysosomal 

biosynthesis, apoptosis, glucose metabolism, cytoskeletal rearrangement, and cell 

migration (Saxton and Sabatini 2017). Recently, AMPK activation has been implicated in 

different cellular processes such as inflammation suppression (Jeon 2016), and 

suppression of several IFN-γ-induced cytokines and chemokines in primary astrocytes 

and microglia via its restriction of IFN-γ signaling (Meares et al. 2013).  

AMP is an allosteric effector of AMPK, and AMPK responds to increases in the 

AMP:ATP ratio by inhibiting ATP catabolism and promoting ATP anabolism (Garcia 

and Shaw 2017; Hardie 2011). AMPK can activate these processes in response to ATP 

depletion produced via fasting, exercise (Cantó et al. 2010) or other means. Generally 

speaking, AMP has three roles in AMPK control: promotion of AMPK phosphorylation 

(Hawley et al. 1995), inhibition of AMPK dephosphorylation (Davies et al. 1995), and 

allosteric activation of phosphorylated AMPK (Corton et al. 1995).  

ZMP is an AMP mimetic and a potent AMPK agonist. While AMPK has garnered 

the most attention as the best characterized effector of ZMP accumulation, several studies 

have shown that ZMP has multiple cellular targets (Hawley et al. 1995; Douillet et al. 

2019; Kirchner, Brüne, and Namgaladze 2018). This supports the hypothesis that ZMP 

can allosterically regulate enzymes ordinarily regulated by AMP. In multiple studies 

analyzing ZMP function, cells were fed AICA riboside (AICAr, the dephosphorylated 

form of ZMP) which is converted to ZMP within the cell. This approach involves 

adenosine transporters and adenosine kinases to ensure ZMP production and 
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accumulation in the cell (Garcia and Shaw 2017), however, once ZMP is formed, cells 

with active ATIC enzyme will catalyze it via DNPS. Recent work indicates that AICAr 

itself affects cell metabolism independently of its role as substrate for ZMP synthesis. For 

example, AICAr administration induces a potentially deleterious intracellular ATP 

depletion in hepatocytes (Guigas et al. 2006). Drug intervention inhibiting ATIC dimer 

formation has been shown to be efficacious in reducing tumor cell proliferation (Spurr et 

al. 2012), but can produce off target effects. Therefore, cell models that accumulate ZMP 

without exogenous AICAr should be advantageous for investigating optimal ZMP dosage 

levels in cells to produce beneficial effects.  

The bifunctional enzyme 5-aminoimidazole-4-carboxamide ribonucleotide 

formyltransferase (2.1.2.3) / inosine monophosphate cyclohydrolase (3.5.4.10) (ATIC) 

catalyzes the final two reactions of IMP synthesis, converting ZMP to FAICAR and then 

FAICAR to IMP (Figure 4.1). It is a homodimer, and dimerization is required for activity 

(Asby et al. 2015). Under some conditions ATIC may be a rate limiting step of the DNPS 

pathway (Marie et al. 2004; Baresova et al. 2016). So far, a single human with ATIC 

deficiency (AICA-ribosiduria) (Marie et al. 2004) has been identified and the mutations 

characterized: a mis-sense mutation in one allele resulting in K426R (transformylase 

region) and a frameshift in the other allele. This individual presented with profound 

developmental delay. It is likely that most mutations in ATIC are embryonic lethals, 

consistent with its critical role in DNPS and metabolism. Since ZMP is the substrate for 

ATIC, ATIC deficiency is likely to activate AMPK and have major consequences for 

cellular metabolism. DNPS nulls were recently generated in HeLa cells via CRISPR-

Cas9 (Baresova et al. 2016). The crATIC cell line (Baresova et al. 2016), which has no 
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ATIC activity and accumulates ZMP, will allow detailed study of the consequences of 

mutations in ATIC. For example, given that adenine supplementation effectively shuts 

down DNPS (Holmes et al. 1973; Tu and Patterson 1978), analysis of crATIC in adenine 

depleted growth media will allow detailed assessment of the effect of ZMP accumulation 

on transcription, translation, and metabolism. Transfection of crATIC with ATIC clones 

containing various mutations will allow cellular analysis of specific amino acid 

substitutions on ATIC structure and function. As an initial approach to these studies we 

present an analysis of the crATIC and HeLa cells in the presence or absence of adenine.  

Materials and Methods  

Cell Culture  

crATIC cells were described previously (Baresova et al. 2016). HeLa cells were 

purchased from ATCC (Manassas VA USA). Cells were grown on 60 mm TPP (Techno 

Plastic Products, AG, Switzerland) plates using DMEM with 10% fetal calf serum (FCS), 

30 μM adenine, and Normocin (InvivoGen). For purine depletion experiments (starvation 

conditions) cells were incubated in similar medium but using fetal calf macroserum 

(FCM: serum dialyzed against a 3.5 kDa barrier) with or without 100 μM adenine. 

Complete media was regularly refreshed, and ten to twelve hours before experiments, 

was replaced with adenine-depleted or 100 μM adenine-supplemented media. Cells were 

subjected to starvation conditions for ten hours. For histological staining, 10,000 cells 

were plated overnight in complete growth media (DMEM 10%FCS with 30 μM adenine 

and Normocin), media was replaced with starvation conditions (DMEM 10% FCM, 

Normocin, with or without 100 μM adenine) and after six days were fixed using 10% 
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ethanol / 3.5% acetic acid solution and stained using 0.1% crystal violet. Entire culture 

areas were imaged.  

HPLC analysis of ZMP metabolite accumulation  

At two-hour intervals for ten hours, cells were washed once with cold 1x PBS and 

extracted with 500 μl ice cold 80% ethanol. Plates were scraped and the extract was 

centrifuged twice at 14,000 x g. Supernatant was collected and dried using a Speedvac 

then resuspended in 300 μl freshly prepared mobile phase. Samples were cleared twice by 

centrifugation at 14,000 x g and stored at -20 °C until analysis. HPLC-EC separation of 

ZMP was as previously described (Mazzarino et al. 2019). Analytes were detected using 

a CoulArray HPLC system (model 5600A, ESA) with EC channel potentials set from 0 to 

900 mV in 100 mV increments, then 1200 mV, and 0 mV to oxidize and detect ZMP. The 

autosampler was kept at 10 °C over the course of the runs. Sum of primary peak area was 

used to assess analyte accumulation.  

RNA-seq  

Cells were cultured as described above. RNA-seq was performed as previously 

described (Mazzarino et al. 2019). Four replicates (a single culture was split into four 

plates) of crATIC and HeLa were cultured in adenine-supplemented or adenine-depleted 

(starvation) media for 10 hours. Total RNA was extracted using Tri-reagent (Sigma) 

according to the manufacturer’s protocol, followed by spin columns (Machery Nagel) and 

elution with 50 μl DEPC treated water (Sigma). RNA purity and concentration were 

assessed using a NanoDrop One (Thermo Scientific). RNA was stored at -80 °C. RNA 

quality assessment and RNA-seq was performed by The Genomics and Microarray Core 

Facility at the University of Colorado, Denver. mRNA libraries were constructed using 
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the Nugen Universal Plus mRNA-Seq + UDI kit (cat # 9144–96), and 50 bp single read 

sequencing was performed employing the Illumina HiSEQ4000. The sequencing quality 

Q score was >38 for all reads. Conversion of .bcl to FASTQ files was done using 

CASAVA 2.0.  

Data Processing  

Computation was performed as previously described (Mazzarino et al. 2019). For 

each comparison group, the gene_exp.diff file (Cufflinks output) was filtered for 

significant entries where FPKM values ≥ 1 and log2 fold change values were log2 ≥ 1 or 

log2 ≤ -1. In each comparison group the 100 differentially expressed genes (DEGs) with 

the highest absolute log2 values (both 100 most positive and 100 most negative) were 

combined for ClueGO analysis. Total gene lists from our cutoffs were used for BiNGO 

analysis. Comparisons of crATIC to HeLa in adenine-depleted conditions are labeled as 

MM (minus to minus) or in adenine-supplemented conditions labeled as PP (plus to plus).  

Gene Ontology analysis  

Cytoscape (version 3.7.0) apps ClueGO (version 2.5.2) and BiNGO (version 

3.0.3) were used to provide representative biological information from the lists of 

differentially expressed genes (DEGs). ClueGO using the top 100 most positive and 100 

most negative DEGs was run using pairwise comparisons: HeLa plus adenine vs crATIC 

plus adenine (PP) and HeLa minus adenine vs crATIC minus adenine (MM). BiNGO is 

capable of utilizing our complete DEG lists but cannot run pairwise comparisons. The 

BiNGO analysis was limited to running one list of DEGs as a supplement to ClueGO 

results. The ClueGO analysis included biological process, cellular component, and 

molecular function gene ontologies as well as Reactome pathway and reactions, while 
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BiNGO was only run with biological process, cellular component, and molecular 

function gene ontologies.  

qPCR validation of DEGs  

qPCR was performed to validate the RNA-seq analysis. Total RNA was isolated 

as described above with cDNA prepared using the iScript cDNA synthesis kit (Bio-Rad 

#1708890) and qPCR conditions previously described (Mazzarino et al. 2019). Candidate 

gene primers were purchased from IDT PrimeTime service: TGFβI 

(Hs.PT.58.40018323), ALPP (Hs.PT.56a.38602874.g), Twist1 (Hs.PT.58.18940950), 

IQGAP2 (Hs.PT.58.28018594), GATA3 (Hs.PT.58.19431110), β-Actin 

(Hs.PT.39a.22214847), OASL (Hs.PT.58.50426392), TUSC3 (Hs.PT.58.3740957), and 

DPYSL3 (Hs.PT.58.39796068). Ct values were normalized to β-Actin.  

Results 

crATIC requires adenine for proliferative growth  

HeLa and crATIC cells were cultured in 

complete media then subsequently cultured in 

DMEM supplemented with dialyzed fetal calf 

macroserum with or without adenine. HeLa cells 

showed proliferative growth in both media conditions 

while crATIC cells only showed proliferative growth 

in adenine- supplemented conditions (Figure 4.2).  

Figure 4.2: crATIC requires 
adenine for proliferative 
growth. HeLa (A,B) and crATIC 
(C,D) cells were plated and 
cultured in adenine-supplemented 
(A,C) or adenine-depleted (B,D) 
media. Plates were stained with 
crystal violet. 

A

DB

C
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crATIC cells accumulate ZMP in adenine-depleted but not adenine- supplemented 

growth conditions  

crATIC cells were cultured in adenine- depleted and adenine-supplemented 

media. Metabolites were ethanol extracted from cells in culture every two hours for ten 

hours. In samples from adenine-depleted (starved) cells, a ZMP peak was observed at the 

first time point in HPLC-EC traces (24.0 mins) and this peak increased linearly until the 

last time point measured (Figures 4.3, 4.4). A ZMP peak was not observed in samples 

from adenine- supplemented cells, which is consistent with previous results (Mazzarino 

et al. 2019).  

  

Figure 4.3: ZMP accumulates in crATIC. crATIC was grown in media with or without 
supplemental adenine. Accumulation of ZMP was measured by HPLC-EC and was 
observed only in cells grown in adenine-depleted media. 
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6XSSOHPHQWDU\�)LJXUH 1: HPLC-EC traces of metabolites from 
crATIC cells. Cells were cultured in FCM supplemented with 
adenine (A) and without adenine (B) for two-hour increments. The 
red rectangle indicates the elution time of ZMP with primary peak 
in channel 4 (300mV). C: Aligned and cropped t2 chromatogram: 
supplemented (plus), unsupplemented (minus) or unsupplemented 
and spiked (minus spike). The dashed line indicates the primary 
channel peak height (note starved sample and starved sample with 
ZMP spike).

Figure 4.4: HPLC-EC traces of metabolites from crATIC 
cells. Cells were cultured in media supplemented FCM with (A) 
or without (B) adenine and metabolites extracted in two-hour 
increments. The red rectangle indicates elution time of ZMP with 
primary peak in channel 4 (300mV). Aligned and cropped two-
hour chromatogram, purine supplemented (plus), purine deficient 
(minus), and purine deficient with ZMP spike. Dashed line 
indicates primary channel peak height in deficient and deficient 
with spike sample (C).   
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crATIC shows differentially expressed genes compared to HeLa in adenine- depleted and 

adenine-supplemented conditions  

The crATIC and HeLa cell transcriptomes were compared after culture in adenine 

supplemented (PP) and adenine-depleted (MM) conditions. In both comparison groups, 

DEGs were limited by cutoffs (see Materials and Methods). In the PP comparison, we 

obtained 1311 DEGs while in the MM comparison, we obtained 1662 DEGs. This 

suggests that adenine supplementation corrects for many of the differences in gene 

transcription in the two cell types. The DEGs with the top 100 (positive) and bottom 100 

(negative) log2 values were selected for further 

analysis. In the PP comparison, these represent 

log(2)fold ranges of -8.60573 to -2.31272 and 

2.26702 to 8.20331. In the MM comparison, the 

DEGs with the top 100 positive and bottom 100 

negative log2 values represent log(2)fold ranges 

of 8.39229 to 2.31793 and -8.87985 to -

2.41031. These 200 gene lists were used 

for ClueGO analysis (Figure 4.5). 

Comparing the MM and PP groups, 

228 genes were unique to the PP group 

while 579 genes were unique to the MM 

group. 1083 genes were common to both 

groups. When comparing DEGs with the 

Figure 4.5: log(2) fold change of DEGs in cell 
lines under experimental conditions. A and B: 
DEGs in PP (A) and MM (B) conditions. C and D: 
100 most positively and 100 most negatively 
changed DEGs in PP (C) and MM (D) conditions. 

PP Total DEGs

-9

-6

-3

0

3

6

9

lo
g(

2)
fo

ld
 c

ha
ng

e

MM Total DEGs

-9

-6

-3

0

3

6

9

PP Top 200 DEGs

-9

-6

-3

0

3

6

9

MM Top 200 DEGs

-9

-6

-3

0

3

6

9

A B

C D

lo
g(

2)
fo

ld
 c

ha
ng

e


��������� 
�����������
	���� ��	� ���

��������� ��	 ��
��������� ��
 ��

Table 4.1: Shared and unique DEGs 
between comparison groups. Total 
gene counts that satisfied previously 
defined cutoffs in the total gene list in 
the top 200 genes that were used for 
ClueGO analysis parsed into the PP and 
MM comparison or shared between the 
two comparison groups.  
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100 most positive and 100 most negative log2 

values (200 total), 44 genes were found unique to 

each group, and 156 genes were shared between 

the two groups (Table 4.1). Principle component 

analysis showed tight clustering by cell type and 

media supplementation (Figure 4.6).  

DEGs showed enrichment in ClueGO Gene 

Ontology and Reactome database analysis  

RNA-seq experiments can provide 

important data bearing on global cellular changes in response to stressors and changes in 

environment.  

The lists of 200 DEGs described above were used as input for ClueGO, a 

Cytoscape application that extracts representative functional biological information for 

large lists of genes or proteins (Mlecnik, Galon, and Bindea 2018; Shannon et al. 2003).  

We queried Gene Ontology (GO, biological process, cellular component, and molecular 

function) (Ashburner et al. 2000) and the Reactome Knowledgebase (pathways and 

reactions) (Fabregat et al. 2018) to identify significant terms from comparison of the 

crADSL and HeLa transcriptomes. Although we identified many GO and Reactome 

terms, we focused on a subset of specific terms implicated in Alzheimer’s disease and 

Figure 4.6: Principle component 
analysis of crATIC and HeLa 
experimental groups. PCA shows robust 
differences by cell type. Figure generated 
by Dr. Guido Vacano. 
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cellular aging. All ontology network maps, term, and grouping visualization figures are 

located after the text of this chapter. Prominent findings are highlighted (Figure 4.7). 

 

For Biological Process GO ontologies, we obtained 55 groups: 34 associated with 

shared terms, 33 associated with the PP comparison, and 23 associated with the MM 

comparison. Notable shared terms included inflammation / immune response terms such 

as IL-1β secretion, t-cell activation involved in immune response, eicosanoid metabolic 

process, prostanoid metabolic process, prostaglandin metabolic process, negative 

regulation of TNF product, response to amyloid beta, glutamine family biosynthetic 

process, and long chain fatty acid biosynthetic process and transport. Regulation of 

pathway-restricted SMAD protein phosphorylation and transforming growth factor beta 

terms were also in the list. For the PP comparison group there was enrichment of fatty 

acid terms, including arachidonic acid metabolic process, and the cyclooxygenase 

pathway. Other terms included neuron cellular homeostasis and neuron migration, 

midbrain development, and neurotransmitter metabolic process. Regulation of cellular 

response to TGFβ stimulus, response to hyperoxia, negative regulation of embryonic 

Figure 4.7: Notable GO groups from ClueGO analysis. 
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development, and negative regulation of G1/S transition of mitotic cell cycle were also 

enriched terms. For the MM comparison, neuroinflammatory response, regulation of 

epithelial to mesenchymal transition, negative regulation of erk1/2 cascade, cellular 

response to fatty acid, and cellular response to prostaglandin stimulus were obtained in 

the analysis (Figures 4.9, 4.10).  

For Cellular Component ontologies, we obtained 10 groups. Five groups were 

from shared comparisons, 2 from PP and 5 from MM. Shared terms included golgi 

lumen, melanosome, and complex of collagen trimers. Terms enriched in the PP 

comparison included dystrophin-associated glycoprotein complex and brush border. 

Terms associated with the MM comparison included extracellular matrix component, cell 

division site, and actomyosin (Figures 4.11, 4.12).  

In the Molecular Function ontologies, 14 groups of terms were identified with 5 

groups from shared, 6 groups from the PP comparison, and 3 from the MM comparison. 

Terms found within the shared groupings were collagen binding, proteoglycan binding, 

neuropeptide receptor binding, and amino acid binding. In the PP comparison, terms of 

note include steroid hormone receptor activity, adenylyl transferase activity, cell-cell 

adhesion mediator activity, and lysophospholipase activity. In the MM comparison, terms 

such as Aβ binding and l-amino acid transmembrane transporter activity were found 

(Figures 4.13, 4.14).  

In the results from querying the Reactome Knowledgebase, we obtained 10 

groups in Pathways, 5 shared, 6 from the PP comparison, and 2 from the MM 

comparison. Within the shared groupings, we obtained terms such as signaling by retinoic 

acid, amyloid fiber formation, signaling by NOTCH1, arachidonic acid metabolism, and 
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collagen formation. In the PP comparison we obtained nuclear receptor transcription 

pathway, TP53 regulates transcription of cell cycle genes, transcriptional regulation of 

the AP-2 (TFAP2) family of transcription factors, IL-4 and IL-13 signaling, and synthesis 

of prostaglandins (PG) and thromboxanes (TX). In the MM comparison we obtained IL-

10 signaling, ECM proteoglycans, and diseases associated with glycosaminoglycan 

metabolism (Figures 4.15, 4.16).  

In Reactome Reactions, we obtained 7 groups of terms with 4 groups shared, 3 

groups from the PP comparison, and no groups from the MM comparison. Shared groups 

included expression of IFNγ-stimulated genes, exocytosis of specific granule membrane 

proteins, and terms associated with collagen. In the PP comparison we obtained 

formation of NR-MED1 coactivator complex, keratin filaments bind cell-cell adhesion 

complexes, and binding of AP1 transcriptional activator complexes to CCND1 promoter 

(Figures 4.17, 4.18).  

Corroboration of ClueGO results via BiNGO analysis  

To validate our ClueGO results, we performed enrichment analysis using the 

BiNGO application in Cytoscape (Maere, Heymans, and Kuiper 2005) and the complete 

significant DEG lists. While we obtained some new terms, on the whole this analysis 

produced term enrichment closely similar to that from our ClueGO analysis (Figures 

4.19-4.24).  

Validation of RNA-seq by qPCR of candidate genes  

To assess the validity of our RNA-seq results, we employed qPCR to confirm 

transcript levels for select genes. The results for these genes showed similar transcript 
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levels and trends based on Ct value comparison with the log(2)fold values from our 

RNA-seq results (Figure 4.8).  

 

Discussion  

In the present study, we evaluated dietary requirements for crATIC and 

metabolite accumulation during purine starvation.  

In addition to its role in rescuing the DNPS KO phenotype, adenine 

supplementation shuts down DNPS (Holmes et al. 1973; Tu and Patterson 1978) and 

prevents ZMP accumulation in crATIC. Adenine phosphoribosyltransferase (APRT) 

mediates conversion of adenine and phosphoribosyl pyrophosphate (PRPP) to AMP and 

pyrophosphate (PPi) and is present in all mammalian tissues. APRT is uniquely 

responsible for metabolic adenine salvage from dietary sources (Silva et al. 2008). 

Adenine supplementation also provides a source for synthesis of GMP. AMP can be 

converted to IMP by AMP deaminase, and then converted to GMP by IMP 

Figure 4.8: Candidate gene verification by qPCR. Gene transcription in PP and MM 
conditions measured by log(2)fold change of FPKM values from RNA-seq (A) and Ct 
values from qPCR (B). Values were normalized to β-Actin. 
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dehydrogenase [IMPDH, converts IMP into xanthine monophosphate (XMP)] and GMP 

synthase (converts XMP into GMP) (Watts 1974).  

We employed RNA-seq to compare the crATIC and HeLa transcriptomes in 

adenine supplemented and adenine-depleted conditions, and we performed qPCR to 

verify these results. We established a 10-hour starvation (cell culture in adenine-depleted 

media). At the end of this time course, ZMP levels were still increasing in crATIC cells, 

and we have not yet established a time point at which ZMP levels plateau. It is possible 

ZMP accumulation during this period may not have been adequate for full AMPK 

activation. As discussed above, ZMP is an AMP mimetic and likely has multiple 

enzymatic targets. The crATIC HeLa system can be employed to identify these targets.  

Our results demonstrate that crATIC requires purine (adenine) supplementation 

for proliferative growth, and that ZMP accumulates linearly over a time course of ten 

hours during purine starvation. After analysis of the RNA-seq data, we obtained many 

DEGs both by cell type and adenine supplementation.  

Although DEGs mapped to numerous gene ontologies, we focused our discussion 

on terms of specific interest. AMPK sensitivity is decreased in aged models (Reznick et 

al. 2007), however in Alzheimer’s disease (AD), an aging related disorder, pAMPK is 

abnormally elevated in tangle and pre-tangle bearing neurons (Vingtdeux et al. 2011). 

Data also suggest that insulin resistance seen in AD reduces the astrocytic energy supply 

via inhibition of AMPK, contributing significantly to the neurodegeneration observed in 

AD (Erol 2008). AMPK has a major role in Tau protein phosphorylation, as well as 

mTOR and autophagy pathways, which are dysfunctional in AD (Cai et al. 2012). Energy 

homeostasis in Alzheimer’s disease is also dysregulated possibly via an AMPK related 
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mechanism (Caberlotto et al. 2013), illustrating the need to understand energetic 

processes in dementia. Our results suggest a role for ZMP or ATIC in AD and possibly 

other amyloid or tau-based dementias. AD is a progressive, age related, dementia 

characterized by amyloid-β plaques, tau fibril formation, and extensive neuronal 

degradation in the brain. One feature of AD is chronic neural inflammation (Kinney et al. 

2018). Typically, inflammation is caused by a cellular response to stimuli and is normally 

terminated by a process called resolution. Arachidonic acid (AA) may play an important 

role in the inflammatory response in AD (Olivier 2016), especially in initiation of 

resolution (Wang et al. 2015; Whittington, Planel, and Terrando 2017; Serhan et al. 

2015). Chronic inflammation in AD is marked by a dysregulation of resolution in which 

the inflammatory response persists (Wang et al. 2015) .  

Normally, AA is a constituent of phospholipids. The circulating form is rare, as 

AA is rapidly scavenged and bound to albumin. Free AA can be cleaved from 

phospholipids by phospholipase (PLA) and is typically produced in response to injury or 

other stimuli. Free AA is metabolized rapidly through enzymatic pathways based on PLA 

protein- protein interactions with cyclooxygenase (COX), lipoxygenase (LOX), 

cytochrome P450 (CYP), fatty acid amide hydrolase (FAAH), or non-enzymatic lipid 

peroxidation and oxidative stress. FAAH is a concentration-dependent reversible 

reaction, producing anandamide (a neurotransmitter) from AA and ethanolamine, and AA 

release can be stimulated by anandamide (Scala et al. 2018; Ritter 2016). AA metabolic 

products have roles in processes such as platelet aggregation, vasoconstriction and 

dilation, toxic shock based organ dysfunction, inflammatory response, female fertility, 

fever mediation, Alzheimer’s and Parkinson’s disease neurodegeneration, mediation of 
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cAMP, suppression of excitatory neuronal signals via endocannabinoids, and smooth 

muscle response (Hanna and Hafez 2018).  

Cytosolic phospholipase A2 (cPLA2) is expressed in higher levels in brain tissue 

from AD patients (Stephenson et al. 1996) and eicosanoids, a product of AA COX and 

LOX based metabolism, act as mediators of neuroinflammation. In AD, COX2 is 

overexpressed, and this overexpression has been correlated with AD progression (Ho et 

al. 2001). In addition, the COX1 splice variant, COX3, has been found in AD brain (J.-G. 

Cui et al. 2004). The prostaglandin metabolite, PGD2, is overproduced in glial cells 

surrounding amyloid plaques (Mohri et al. 2007). However, NSAIDs which act as COX2 

inhibitors have so far been ineffective at mitigating the AD- associated inflammation 

(McGeer and McGeer 2007). Interestingly, LXA4, a metabolite produced via the LOX 

pathways from AA, has been implicated in reduction of reactive oxygen species (Y. Wu 

et al. 2012), inhibition of interleukin expression (Decker, McBean, and Godson 2009) 

and reduction of Aβ levels (Medeiros et al. 2013). LXA4 is also implicated in resolution 

of inflammation (Zhu et al. 2016). In cerebrospinal fluid and brain tissue from AD 

patients, LXA4 levels are lower than from control groups, while 15-LOX-2, the enzyme 

that catalyzes production of LXA4, was elevated in glial cells from AD patients (Wang et 

al. 2015). These results suggest that AA metabolism is differentially regulated in AD. 

Our results suggest that ZMP, ATIC, and DNPS may have important roles in AA 

metabolism and may be attractive targets for further investigation and development of 

new therapies.  

Microglial cells respond to diverse cues from injured neurons by becoming 

activated and inducing phagocytosis to initiate clearance of apoptotic cells or extruded 
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proteins (e.g., Aβ). Activation is accompanied by release of cytokines such as IL-1β and 

TNFα (Kettenmann et al. 2011) and regulatory cytokines (Carniglia et al. 2017). There 

are inherent differences between aged, chronically activated microglia compared to 

young microglia (Koellhoffer, McCullough, and Ritzel 2017). In young microglia, cells 

are sensitive to TGFβ signaling which leads to a reduction in cytokine release 

(Paglinawan et al. 2003), neuroprotection (Lieb 2003), and promotion of phagocytosis 

(Wyss-Coray et al. 2001). However, in chronically activated microglia, there is decreased 

phagocytosis (Ritzel et al. 2015), and a reduced response to TGFβ signaling, resulting in 

increased neurotoxicity and reduced uptake of Aβ (Ramírez, Rey, and von Bernhardi 

2008; von Bernhardi et al. 2007). This diminished response is largely attributed to 

reduced TGFβ-Smad coupling, the canonical pathway of TGFβ signaling, that occurs in 

AD (Colangelo et al. 2002) and aging (Tichauer et al. 2014). In non-canonical pathways, 

TGFβ activates MAPK, PI3K, and JNK: each are linked under certain situations to a pro-

inflammatory response (Derynck and Zhang 2003). In canonical TGFβ signaling, 

activation of the TGFβ-Smad pathway induces glial cells to transcribe MAPK 

phosphatase (MKP), a serine-threonine phosphatase responsible for negative regulation 

of inflammation that results in decreased TNFα production and reduced Aβ– mediated 

activation of MAPK and NFκB signaling (Flores and von Bernhardi 2012). However, in 

cases of chronic microglial inflammation observed in aging and AD, the TGFβ-Smad 

pathway is inhibited, resulting in reduced amelioration of inflammation. Our 

identification of ATIC and DNPS involvement in TGFβ signaling coupled with FA based 

inflammatory regulation provides a novel avenue for continued AD research.  
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During embryogenesis and fetal development, purines have an important role as 

signaling molecules (Massé and Dale 2012), particularly in neuronal development 

(Zimmermann 2011; Fumagalli et al. 2017; Rodrigues, Marques, and Cunha 2019). 

DNPS has been found upregulated at the G1/S cell cycle transition (Chan et al. 2015; 

Zhao et al. 2015). So far, mutations that cause reduction in PAICS, ADSL, or ATIC 

activity in humans all lead to significant developmental delay. These findings indicate the 

importance of the pathway for producing purines for DNA and RNA synthesis in 

embryogenesis and development. Consistent with these roles, in our comparison of the 

crATIC and HeLa transcriptomes, we identified many DEGs that mapped to ontology 

terms concerned with development and neuronal function as well as ontology terms 

associated with rapid cellular proliferation, such as tumorigenesis and cancer. Multiple 

terms also mapped to cell cycle checkpoints and terms associated with the G1/S phase 

interface.  

Previously, we characterized the crADSL cell line transcriptome (Mazzarino et al. 

2019). Common ontology terms from the crADSL and crATIC transcriptome analyses 

are likely related to general DNPS function rather than the specific mutated DNPS 

enzyme or accumulated intermediates. Common terms include transforming growth 

factor beta, collagen/ECM, glycosaminoglycan metabolism, interferons, and embryonic 

development. Terms specific to the crATIC analysis include G1/S checkpoint transition, 

dystrophin associated glycoprotein complex, retinoic acid response, arachidonic acid 

metabolism, and prostaglandin and thromboxane. Of note, phospholipase activity was 

common to both crADSL and crATIC while lysophospholipase was found only in the 

crATIC analysis.  
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As discussed above, the crATIC cell line is advantageous in that ZMP 

accumulation is achieved via cellular metabolism, not conversion of exogenous AICAr in 

the media. The crATIC cells and crATIC cells transfected with identified patient allele 

and other mutant forms of ATIC should provide important cellular models of DNPS, 

AICA-ribosiduria, and ZMP accumulation. The results reported here are an important 

first step in establishing this model, and for further investigation of ZMP’s role as an 

AMP mimetic.  
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response to fatty acid 18.48% **

negative regulation of ossification 9.95% **

cell adhesion mediated by integrin 7.58% **

regulation of macrophage derived foam cell differentiation
6.64%

regulation of smooth muscle cell proliferation 5.69% **

sensory perception of taste 0.47%
negative regulation of ERK1 and ERK2 cascade 0.47% **
neuroinflammatory response 0.47%
cell-matrix adhesion 0.47% **
response to lithium ion 0.47%
telomere capping 0.95%
fibroblast growth factor production 0.95% **
embryonic forelimb morphogenesis 1.42% *
glycosaminoglycan catabolic process 1.42%
positive regulation of reactive oxygen species metabolic

process 1.42% *
endothelial cell development 1.42%
regulation of epithelial to mesenchymal transition 1.9%
chondrocyte differentiation 1.9% *
circadian behavior 1.9% *
aorta development 1.9%
ventricular septum development 2.37% **
biomineral tissue development 2.84% *
ventricular septum morphogenesis 3.79% *
acid secretion 4.27%
long-chain fatty acid metabolic process 4.74% **
transforming growth factor beta receptor signaling

pathway 5.21% **
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L-amino acid transport 5.69% *
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chondrocyte development 2.63% **
response to fluid shear stress 3.51% *
negative regulation of tumor necrosis factor superfamily

cytokine production 3.95%
prostanoid metabolic process 4.39% **
regulation of pathway-restricted SMAD protein

phosphorylation 4.82% **
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6XSSOHPHQWDU\�)LJXUH 3: ClueGO Biological process terms and groups. Pie charts show the proportion of the terms associated with the groups for Shared (A), PP (B), and 
MM (C).�Histograms indicate number of genes found per term for PP (D) and MM (E) comparisons.Figure 4.10: ClueGO Biological process terms and groups. Pie charts show the proportion of the 

terms associated with the groups for Shared (A), PP (B), and MM (C) comparison groups. 
Histograms indicated number of genes found per term for PP (D), and MM (E) comparison groups.  
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Shared cellular component terms/group

melanosome membrane 37.5% **

specific granule membrane 12.5% *

Golgi lumen 12.5% **

microvillus membrane 12.5% **

complex of collagen trimers 25.0% **
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cluster of actin-based cell projections
75.0% **

collagen-containing extracellular
matrix 6.25% **
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extracellular matrix component 12.5%
**
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70.59% **

basement membrane 5.88% **

collagen-containing extracellular
matrix 5.88% **

lamellipodium membrane 5.88% *

extracellular matrix component
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6XSSOHPHQWDU\�)LJXUH 5: ClueGO Cellular component terms and groups. Pie charts show the proportion of the terms associated with the groups for Shared (A), PP (B), and 
MM (C).�Histograms indicate number of genes found per term for PP (D) and MM (E) comparisons.Figure 4.12: ClueGO Cellular component terms and groups. Pie charts show the proportion of 

the terms associated with the groups for Shared (A), PP (B), and MM (C) comparison groups. 
Histograms indicated number of genes found per term for PP (D), and MM (E) comparison groups.  
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Shared molecular function terms/group

glutamate binding 37.5% .

collagen binding 12.5% *

hydrolase activity, acting on carbon-
nitrogen (but not peptide) bonds, in

cyclic amidines 12.5% *

laminin binding 12.5% .

proteoglycan binding 25.0% *
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phospholipase activity 22.22% *

cell-cell adhesion mediator activity
22.22% *

steroid hormone receptor activity
11.11% .

integrin binding 11.11% **

growth factor binding 11.11% .

protein self-association 11.11% *

adenylyltransferase activity 11.11% .
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L-amino acid transmembrane
transporter activity 37.5% .

amyloid-beta binding 12.5% .

integrin binding 12.5% **

extracellular matrix structural
constituent conferring compression

resistance 12.5% .

phospholipase activity 25.0% *
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E

6XSSOHPHQWDU\�)LJXUH 7: ClueGO Molecular function terms and groups. Pie charts show the proportion of the terms associated with the groups for Shared (A), PP (B), and 
MM (C).�Histograms indicate number of genes found per term for PP (D) and MM (E) comparisons.

Figure 4.14: ClueGO Molecular function terms and groups. Pie charts show the proportion of 
the terms associated with the groups for Shared (A), PP (B), and MM (C) comparison groups. 
Histograms indicated number of genes found per term for PP (D), and MM (E) comparison groups.  
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Nuclear Receptor transcription pathway
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Shared reactome pathways terms/group

Collagen degradation 61.54% *

Signaling by Retinoic Acid 7.69% .

Amyloid fiber formation 7.69% *

Signaling by NOTCH1 7.69% .

Arachidonic acid metabolism 15.38% .

A

PP reactome pathways terms/group

Synthesis of Prostaglandins (PG) and
Thromboxanes (TX) 25.0% .

Interleukin-4 and Interleukin-13
signaling 25.0% .

Nuclear Receptor transcription
pathway 12.5% .

TP53 Regulates Transcription of Cell
Cycle Genes 12.5%

Transcriptional regulation by the AP-2
(TFAP2) family of transcription factors

12.5% .

Formation of the beta-catenin:TCF
transactivating complex 12.5% .

B

MM reactome pathways terms/group

Diseases associated with
glycosaminoglycan metabolism 80.0%

*

Interleukin-10 signaling 20.0% .

C

D

E

6XSSOHPHQWDU\�)LJXUH 9: ClueGO Reactome pathways terms and groups. Pie charts show the proportion of the terms associated with the groups for Shared (A), PP (B), and 
MM (C).�Histograms indicate number of genes found per term for PP (D) and MM (E) comparisons.Figure 4.16: ClueGO Reactome pathways terms and groups. Pie charts show the proportion of 

the terms associated with the groups for Shared (A), PP (B), and MM (C) comparison groups. 
Histograms indicated number of genes found per term for PP (D), and MM (E) comparison groups.  
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Shared reactome reactions terms/group

Prolyl 4-hydroxylase converts
collagen prolines to 4-

hydroxyprolines 80.95% *

Expression of IFNG-stimulated genes
4.76% .

GPLD1 hydrolyses GPI-anchors from
proteins 4.76%

Exocytosis of specific granule
membrane proteins 9.52% .

PP reactome reactions terms/group

Fillagrin and keratin intermediate
filaments polymerise forming a

network 50.0%

Formation of NR-MED1 Coactivator
Complex 8.33%

SET1 complex trimethylates H3K4 at
the MYC gene 41.67% .

A

B

0 1 2 3 4 5 6
PP reactome reactions genes/term

Formation of NR-MED1 Coactivator Complex
SET1 complex trimethylates H3K4 at the MYC gene

KAT5 HAT complex acetylates TCF4 gene at histone H4
FOXA1 and GATA3 bind to CCND1 promoter

Binding of AP1 transcriptional activator complexes ...
Estrogen-responsive CCND1 gene expression

Keratin filaments bind cell-cell adhesion complexes
Fillagrin and keratin intermediate filaments polymeri...

Lamellar bodies bind the early cornified envelope
Reinforcement of the Cornified Envelope

CDSN binds the cornified envelope
Filaggrin binds Keratin tonofilament:Desmosome
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C

6XSSOHPHQWDU\�)LJXUH 11: ClueGO Reactome reactions terms and groups. Pie charts show the proportion of the terms associated with the groups for Shared (A) and 
PP (B).�Histograms indicate number of genes found per term for the PP (C) comparison. No terms were enriched in the MM comparison.

Figure 4.18: ClueGO Reactome reactions terms and groups. Pie charts show the proportion 
of the terms associated with the groups for Shared (A) and PP (B) comparison groups. Histogram 
indicated number of genes found per term unique to PP (C). No terms were found selectively 
enriched for the MM comparison group 
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Chapter Five: Metabolomic Characterization of crGART 

Introduction 

Purines are essential small molecules for cellular and organismal survival and 

function. Purines function as genomic bases in RNA and DNA, intra and intercellular 

signaling molecules, energy currency, substrates, and co-enzymes. De novo purine 

synthesis (DNPS) is among the first evolved and most fundamental biochemical 

pathways (Caetano-Anollés et al. 2009). In mammals, inosine monophosphate (IMP) is 

produced via a six-enzyme, ten-reaction pathway starting with phosphoribosyl 

pyrophosphate (PRPP) (Figure 5.1). The first step in the pathway, conversion of PRPP to 

5-PRA catalyzed by PRAT, is the first irreversible step in DNPS. In humans, the enzyme 

GART is trifunctional, catalyzing steps 2, 3, and 5 in DNPS and is encoded by the GART 

gene, located on Hsa21. 5-PRA is the first substrate for GART and is rapidly broken 

down to ribose-5-phosphate (Rudolph and Stubbe 1995). Adenine and PRPP are 

converted to AMP and PPi by adenine phosphoribosyl transferase (APRT), and AMP can 

then be converted to IMP + NH4 via AMP-deaminase (AMPD) (Jinnah, Sabina, and Van 

Den Berghe 2013). IMP can subsequently be used to produce GMP, hence, adenine 

supplementation successfully rescues deficits in DNPS (Figure 5.1).  
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Metabolomic profiles reflect a combination of genetic and environmental 

influences and can therefore be critical for diagnosis and for understanding biochemical 

pathway alterations associated with disease and environmental insults (Alonso, Marsal, 

and JuliÃ 2015). Deficiencies in DNPS have been identified and are rare. Most involve 

ADSL deficiency and fewer than 100 individuals exhibiting ADSL deficiency have been 

identified (Jurecka et al. 2015). Two individuals (siblings) have been identified with 

PAICS deficiency (Pelet et al. 2019), and only one patient has been identified with 

AICAribosiduria (ATIC deficiency) (Marie et al. 2004). The vast majority of these cases 

have genomic mutations which manifest as point mutations in the amino acid sequence, 

resulting in decreased enzymatic activity. AICAribosiduria and ADSL deficiency can be 

rapidly screened using the inexpensive Bratton-Marshall assay of body fluids to detect, 

respectively, AICAriboside (the dephosphorylated form of ATIC’s substrate, ZMP) or 

SAICAR. More recently, genomic sequencing has been used for definitive diagnosis. 

Figure 5.1: De novo purine synthesis pathway. DNPS mediates the conversion of PRPP to 
IMP. IMP is subsequently converted to AMP or GMP. The HeLa GART KO, crGART, is 
indicated. Figure generated by Dr. Guido Vacano. 
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PAICS deficiency was diagnosed via exome sequencing (Pelet et al. 2019). To date, no 

cases of GART deficiency have been identified.  

DNPS nulls for ADSL, ATIC, GART, PAICS and PFAS were recently produced 

in HeLa cells via CRISPR-Cas9 induced mutagenesis (Baresova et al. 2016) and 

characterized. The GART null, crGART, has no measurable GART protein or activity 

(Baresova et al. 2016; Mádrová et al. 2018). 

In purine free media, the crADSL (ADSL null) and crATIC (ATIC null) cell lines 

accumulate the intermediates ZMP and SAICAR, respectively (Baresova et al. 2016). 

Adenine supplementation inhibits DNPS (and therefore intermediate accumulation). 

However, RNA-seq analysis of crADSL, crATIC, and crGART versus HeLa revealed 

robust transcriptome differences by cell type, many of which were not affected by 

adenine supplementation [versus 10 hours of purine starvation (Mazzarino et al. 2019; 

2020). These results suggest that adenine supplementation, which is necessary for 

proliferative growth of the KO cell lines, does not completely correct the transcriptome 

phenotype of these cell lines.  

CRISPR based techniques are more specific than their previous iterations of 

genomic manipulation however off-target Cas9 activity has been noted (Newton et al. 

2019; X. Wu, Kriz, and Sharp 2014). To ensure that differences seen in metabolic 

profiles are solely due to the GART-KO instead of CRISPR artefacts, we compared 

crGART-KO (designated KO) with crGART stably transfected with pCMV-GART-K1 

(designated pGART). Our results show that pGART has a notably different metabolomic 

profile versus crGART in purine-supplemented and purine starved media. 
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Methods 

Cell culture 

Cells were grown and starved for purines as previously described (Mazzarino et 

al. 2019). Cells were prepared for metabolite profiling as per Metabolon instructions. 

Briefly, cells were lifted using Detachin (Genlantis) and pelleted and washed in 1xPBS 

then aspirated and stored at -80°C. For purine auxotrophy assessment, 1,000 cells were 

seeded into 6-well plates (TechnoPlasticProducts AG Switzerland) and allowed to grow 

for 1-2 days. Media was exchanged for DMEM high glucose with l-glutamine, 10% 

FCM, 100 μg/mL normocin (Invivogen), with or without 30 μM adenine and allowed to 

grow for 7-10 days. FCM is fetal calf serum dialyzed against a 3.5kDa barrier to remove 

endogenous purines. 1,000 cells were plated, starved, fixed, and stained using crystal 

violet as previously described (Mazzarino et al. 2019).  

Cloning K1-GART CHO-K1 into pTarget 

The CHO-K1 GART cDNA (NCBI accession number EU622913.1) was cloned 

into the CMV promoted pTarget vector (Promega) (Knox et al. 2009). pTarget CHO-K1-

GART was amplified in Stellar Competent Cells (Clontech) E.coli then prepared using 

NucleoBond Maxi kit as per manufacturers protocol (Machery Nagel). Cloned inserts in 

pTarget vectors were sequenced using T7, pTarget-seq, or SP6 primers and gene-specific 

primers (GART_K1_711_F and GART_K1_957_F) by premixed DNA/primer samples 

(Eurofins Genomics).  

crGART transfections with K1-GART-pTarget plasmid 

crGART HeLa cells were transfected with K1-GART-pTarget. Cells were grown 

continuously in high glucose DMEM (Thermo Fisher Scientific), 10% FCS (Hyclone 
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FetalClone II Serum (US), Thermo Fisher Scientific), supplemented with Normocin 

(InvivoGen), Geneticin (Thermo Fisher Scientific), and Adenine (30 μM) (Millipore 

Sigma).  Transfections were performed using Lipofectamine 2000 as per manufacturer 

protocol (Invitrogen). Stable transfections were selected by Geneticin (Invivogen) and 

adenine starvation. 

Metabolomic profiling 

Cell pellets were sent to Metabolon for metabolic profiling using ultra high-

perfomance liquid chromatography/tandem accurate mass spectrometry 

(UHPLC/MS/MS). Peak detection, determination of relative concentrations, and database 

mapping was performed. Statistical analysis and interpretation were provided by 

Metabolon. DRM significance was determined by Welsh’s two-sample t-test for p values 

and False Discovery Rate for q-values (Storey and Tibshirani 2003), while effect 

groupings were determined by Two-Way ANOVA. 

Results 

Transfection of crGART with pCMV-GART-K1 

We will be referring to the pCMV-GART-K1 GART transfected cell line as 

pGART and the non-transfected cell line as KO.  

The pGART and KO cell lines were first assessed for purine auxotrophy. We 

previously demonstrated that pCMV-GART-K1 rescued the purine deficit the CHO 

GART-KO cell line AdeC (Knox et al. 2009). Given that human and CHO GART protein 

sequences exhibit 86% homology and 93% similarity (Knox et al. 2009), we expected 

that transfection of this plasmid into the crGART HeLa cell line would likely rescue the 

purine deficient phenotype. Crystal violet staining shows that pGART are capable of 
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proliferative growth in adenine 

supplemented and unsupplemented 

media while KO cells are purine 

auxotrophs and require supplemental 

adenine for proliferative growth 

(Figure 5.2).  

MS analysis reveals differentially 

regulated metabolites  

Fold change analysis use 

comparison groups to produce ratios 

of differentially regulated metabolites 

(DRMs), significance is then 

calculated between experimental conditions and DRMs are sorted into genotype and 

treatment effects. For our analysis, the term “genotype effect” refers to DRMs that 

change significantly by cell type (KO versus pGART) while “treatment effect” refers to 

DRMs that change significantly by adenine supplementation. Significance and 

assignment of each effect per individual metabolite are calculated by Metabolon. A total 

of 505 metabolites were identified. 377 metabolites were found attributed to genotype 

effect while 157 metabolites were found attributed with treatment effect. 

Pathway enrichment groups individual metabolites by functional association. 

Metabolon provides a calculated pathway enrichment value based upon their subpathway 

groupings each DRMs assigned to are (such as TCA cycle, Glutathione metabolism, etc.) 

and a subpathway enrichment value is calculated (Figure 5.3). Enrichment value is a 

Figure 5.2: Adenine is required for proliferative 
growth of KO but not pGART. Transfected pGART 
cells (A, B) and KO HeLa (C, D) were cultured in 
DMEM supplemented with 10% FCM with (A, C) or 
without (B, D) 100 μM adenine then fixed and stained 
with crystal violet. Entire cell growth area was 
imaged. Transfection, growth, and staining performed 
by Terry Wilkinson II.  
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calculated number based solely on the number of DRMs found between experimental 

comparison groups and does not represent a directional change of metabolites or their 

respective pathways. This primary analysis aides in identification of subpathways that 

show large groupings of DRMs. Full output of subpathway enrichment analysis is given 

(Table 5.1). Heat maps of DRMs in prominent subpathways are given (Figures 5.4). 

  
 

𝐸𝑛𝑟𝑖𝑐ℎ𝑚𝑒𝑛𝑡	𝑉𝑎𝑙𝑢𝑒 =
𝑘
𝑚

𝑛 − 𝑘
𝑁 −𝑚

 

 
Figure 5.3: Enrichment Value calculation. m is 
number of metabolites in the subpathway identified, k 
is number of significant metabolites identified in the 
subpathway, n is the total number of significant 
metabolites per effect, and N is total number of 
metabolites identified. 



 148 
 

������� 
 � � � ���	������
�( *'*$� *#��., -/ /$��$/ !+('.) � � ��� � 	��

�)'*+.0% -��$/ !+('.) � � ��� � 	�	

�."+-! /$� *#��(# - /$��$/ !+('.) 	 	 ��� � 	���

� "/$-' (��0*% ( � 	 ��� � �����

�$*4+ /$��$/ !+('.) 	 � ��� � ���

� -*'/'*$��$/ !+('.) 
 
 ��� � 	���

�$- )'#$���. 	 	 ��� � 	���

�$- )'#$.  � ��� � ����

�&$)'" ( �  ��� � 	���

�-$ /'*$��$/ !+('.) 
 
 ��� � 	���

�' "3(%(3"$-+( � � ��� � 	��

�'&3#-+"$- )'#$. 	 	 ��� � 	���

�'&3#-+.,&'*%+)3$('*.   ��� � 	���

�',$,/'#$ � � ��� � ����

�-0%����*/'!'+/'" � 	 ��� � �����

�*#+" ** !'*+'# � � ��� � ����

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���+*%��& '*�� /0- /$#� �  ��� � 	���

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���$#'0)��& '*� � 
 ��� � �����

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���+*+0*. /0- /$#� 	 � ��� � ���

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���+(30*. /0- /$#� � 	 ��� � �����

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���&+-/��& '*� 	 	 ��� � 	���

� //3��"'#��$/ !+('.)���"3(��&+('*$�   ��� � 	���

� //3��"'#��$/ !+('.)�� (.+�������$/ !+('.)� � � ��� � 	���

� //3��"'#��3*/&$.'. � 	 ��� � �����

� //3��"'#���- *"&$# 	 � ��� � ���

� //3��"'#���'" -!+23( /$ 	 � ��� � ����

� //3��"'#���'&3#-+23 	 	 ��� � 	���

� //3��"'#���+*+&3#-+23 
 � ��� � ����

�+( /$��$/ !+('.) 
 
 ��� � 	���

�++#��+),+*$*/��( */ � � ��� � ����

�-0"/+.$��� **+.$� *#�� ( "/+.$��$/ !+('.)   ��� � 	���

� ( "/+.3(��(3"$-+(','#. 	 	 ��� � 	���

� )) �%(0/ )3(��)'*+��"'# 	� 	� ��� � 	�


�(0/ ) /$��$/ !+('.) � 	� ��� � ����

�(0/ /&'+*$��$/ !+('.) 		 		 ��� � 	��

�(3"$-+(','#��$/ !+('.)� � � ��� � 	���

�(3"'*$���$-'*$� *#��&-$+*'*$��$/ !+('.) � � ��� � ����

�(3"+(3.'.���(0"+*$+%$*$.'.�� *#��3-01 /$��$/ !+('.) � � ��� � 	�	�

�0 *'#'*+� *#��"$/ )'#+��$/ !+('.) 	 	 ��� � 	���

�$2+.3("$- )'#$.������� � � ��� � 	���

�'./'#'*$��$/ !+('.) 
 � ��� � ����

����
�	�������


�014-51.��)5%&1.-4/ 	 	 ��� � 	���

�%'514:.')3%/-()4������� � � ��� � 	���

�)6'-0)���41.)6'-0)�%0(�#%.-0)��)5%&1.-4/ 		 	� ��� � ����

�10+��,%-0��101604%563%5)(��%55:��'-( � � ��� � 	�	

�10+��,%-0��1.:604%563%5)(��%55:��'-(��0��%0(�0�� � � ��� � ���

�10+��,%-0� %563%5)(��%55:��'-( 
 � ��� � ����

�:4-0)��)5%&1.-4/ � 		 ��� � ����

�:412,142,1.-2-( 	� 

 ��� � 	�	�

�:412.%4/%.1+)0 � � ��� � 	���

�)(-6/��,%-0��%55:��'-( 	 � ��� � ����

�)5,-10-0)���:45)-0)�� ���%0(�!%63-0)��)5%&1.-4/ 	� 	� ��� � 	�		

�)7%.10%5)��)5%&1.-4/ � 	 ��� � �����

�101%':.+.:')31. � � ��� � 	��

�)63153%04/-55)3 � 	 ��� � �����

�-'15-0%5)�%0(��-'15-0%/-()��)5%&1.-4/  � ��� � 	�	


�6'.)15-()� 6+%3 � � ��� � ����

�9-(%5-7)��,142,13:.%5-10 
 
 ��� � 	���

�%0515,)0%5)�%0(��1���)5%&1.-4/   ��� � 	���

�%35-%..:��,%3%'5)3-;)(��1.)'6.)4 � 
 ��� � �����

�)0514)��)5%&1.-4/� � � ��� � 	�	�

�)0514)��,142,%5)��%5,8%: 	 	 ��� � 	���

�,)0:.%.%0-0)��)5%&1.-4/ 	 � ��� � ����

�,142,%5-(:.',1.-0)����� 	 
� ��� � 	���

�,142,%5-(:.)5,%01.%/-0)����� 	� 		 ��� � 	�



�,142,%5-(:.+.:')31.����� 
 
 ��� � 	���

�,142,%5-(:.-014-51.����� � � ��� � 	�	

�,142,%5-(:.4)3-0)��� � 	 	 ��� � 	���

�,142,1.-2-(��)5%&1.-4/ � � ��� � 	���

�.%4/%.1+)0 � 	� ��� � 	���

�1.:%/-0)��)5%&1.-4/ � � ��� � 	�	

�3-/%3:��-.)��'-(��)5%&1.-4/ 
 
 ��� � 	���

�5)3-0��)5%&1.-4/ � 	 ��� � �����

�63-0)�%0(��:3-/-(-0)��)5%&1.-4/ 	 	 ��� � 	���

�63-0)��)5%&1.-4/����:21�$%05,-0)��014-0)�'105%-0-0+  � ��� � ����

�63-0)��)5%&1.-4/���()0-0)�'105%-0-0+ � 	� ��� � 	�
	

�63-0)��)5%&1.-4/���6%0-0)�'105%-0-0+ � � ��� � 	�	

�:3-/-(-0)��)5%&1.-4/���:5-(-0)�'105%-0-0+ 
  ��� � ���

�:3-/-(-0)��)5%&1.-4/���315%5)�'105%-0-0+ 
 
 ��� � 	���

�:3-/-(-0)��)5%&1.-4/��!,:/-0)�'105%-0-0+ 
 � ��� � ����

�:3-/-(-0)��)5%&1.-4/��"3%'-.�'105%-0-0+ � 		 ��� � 	�	�

�-&1*.%7-0��)5%&1.-4/ 
 � ��� � ����

 )'10(%3:��-.)��'-(��)5%&1.-4/ 	 
 ��� � ����

 2,-0+1.-2-(� :05,)4-4 	 � ��� � ���

 2,-0+1/:).-04 	� 
 ��� � ����

 2,-0+14-0)4 	 
 ��� � ����

�'�%# � � ��� 	�	 ���

�����(� �� � � ��� 	�	 ����

����!�"����'��# �&! � � ��� 	�	 ����

�#�#$��%# ���'��# �&! � � ��� 	�	 �����

�%($'#$��"���'��# �&! � � ��� 	�	 ���	

�(%#&�"����'��# �&! � 
 ��� 	�	 ���

�%����(� ����%��"�"���"���%# �"����'��# �&! �� �� ��� 	�	 ����

��'�!�"�����'��# �&! � � ��� 	�	 �����

��'�!�"��
���'��# �&! � 	 ��� 	�	 ����

�014-51.��)5%&1.-4/ � 	 	� � �����

�%'514:.')3%/-()4������� � � 	� � �����

�)6'-0)���41.)6'-0)�%0(�#%.-0)��)5%&1.-4/ � 	� 	� � ����

�10+��,%-0��101604%563%5)(��%55:��'-( � � 	� � �����

�10+��,%-0��1.:604%563%5)(��%55:��'-(��0��%0(�0�� 	 � 	� � ���

�10+��,%-0� %563%5)(��%55:��'-( � � 	� � �����

�:4-0)��)5%&1.-4/ � 		 	� � 	���

�:412,142,1.-2-( � 

 	� � ����

�:412.%4/%.1+)0 � � 	� � �����

�)(-6/��,%-0��%55:��'-( � � 	� � �����

�)5,-10-0)���:45)-0)�� ���%0(�!%63-0)��)5%&1.-4/ � 	� 	� � 	��

�)7%.10%5)��)5%&1.-4/ 	 	 	� � ��
�

�101%':.+.:')31. � � 	� � �����

�)63153%04/-55)3 	 	 	� � ��
�

�-'15-0%5)�%0(��-'15-0%/-()��)5%&1.-4/ � � 	� � 
�	�

�6'.)15-()� 6+%3 � � 	� � 
�	�

�9-(%5-7)��,142,13:.%5-10 	 
 	� � 	��	

�%0515,)0%5)�%0(��1���)5%&1.-4/ �  	� � 
��	

�%35-%..:��,%3%'5)3-;)(��1.)'6.)4 � 
 	� � �����

�)0514)��)5%&1.-4/� � � 	� � 	��


�)0514)��,142,%5)��%5,8%: 	 	 	� � ��
�

�,)0:.%.%0-0)��)5%&1.-4/ 	 � 	� � ����

�,142,%5-(:.',1.-0)����� � 
� 	� � �����

�,142,%5-(:.)5,%01.%/-0)����� � 		 	� � �����

�,142,%5-(:.+.:')31.����� � 
 	� � �����

�,142,%5-(:.-014-51.����� � � 	� � �����

�,142,%5-(:.4)3-0)��� � � 	 	� � �����

�,142,1.-2-(��)5%&1.-4/ 	 � 	� � ����

�.%4/%.1+)0 � 	� 	� � �����

�1.:%/-0)��)5%&1.-4/ 
 � 	� � ���


�3-/%3:��-.)��'-(��)5%&1.-4/ � 
 	� � �����

�5)3-0��)5%&1.-4/ 	 	 	� � ��
�

�63-0)�%0(��:3-/-(-0)��)5%&1.-4/ 	 	 	� � ��
�

�63-0)��)5%&1.-4/����:21�$%05,-0)��014-0)�'105%-0-0+  � 	� � 
���

�63-0)��)5%&1.-4/���()0-0)�'105%-0-0+  	� 	� � 	���

�63-0)��)5%&1.-4/���6%0-0)�'105%-0-0+  � 	� � 
���

�:3-/-(-0)��)5%&1.-4/���:5-(-0)�'105%-0-0+ 
  	� � 	�
�

�:3-/-(-0)��)5%&1.-4/���315%5)�'105%-0-0+ 
 
 	� � ��


�:3-/-(-0)��)5%&1.-4/��!,:/-0)�'105%-0-0+ 
 � 	� � 
�	�

�:3-/-(-0)��)5%&1.-4/��"3%'-.�'105%-0-0+ � 		 	� � 
�	�

�-&1*.%7-0��)5%&1.-4/ 	 � 	� � 	���

 )'10(%3:��-.)��'-(��)5%&1.-4/ 	 
 	� � 	��	

 2,-0+1.-2-(� :05,)4-4 	 � 	� � 	���

 2,-0+1/:).-04 
 
 	� � ��


 2,-0+14-0)4 
 
 	� � ��


�&�$"� � � ��
 ��� ���


�����'���� � � ��
 ��� ����

���� �!����&��"��% � � ��
 ��� �����

�"�"#��$"����&��"��% � � ��
 ��� �����

�$'#&"#��!���&��"��% � � ��
 ��� �����

�'$"%�!����&��"��% � 	 ��
 ��� ��	�

�$����'�����$��!�!���!���$"��!����&��"��% � �� ��
 ��� ���


��&� �!�����&��"��% � � ��
 ��� ����

��&� �!��	���&��"��% � � ��
 ��� ����

������� 
 � � � ���	������
�( *'*$� *#��., -/ /$��$/ !+('.) � � 	� � �����

�)'*+.0% -��$/ !+('.) � � 	� � 	���

�."+-! /$� *#��(# - /$��$/ !+('.) � 	 	� � �����

� "/$-' (��0*% ( � 	 	� � �����

�$*4+ /$��$/ !+('.) 	 � 	� � 	���

� -*'/'*$��$/ !+('.) 	 
 	� � 	��	

�$- )'#$���. � 	 	� � �����

�$- )'#$. 
 � 	� � ���


�&$)'" ( 
  	� � 	�
�

�-$ /'*$��$/ !+('.) � 
 	� � �����

�' "3(%(3"$-+( � � 	� � �����

�'&3#-+"$- )'#$. 	 	 	� � ��
�

�'&3#-+.,&'*%+)3$('*. �  	� � �����

�',$,/'#$ 
 � 	� � 	���

�-0%����*/'!'+/'" � 	 	� � �����

�*#+" ** !'*+'# 	 � 	� � ����

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���+*%��& '*�� /0- /$#� �  	� � 	��

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���$#'0)��& '*� � 
 	� � �����

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���+*+0*. /0- /$#� 	 � 	� � 	���

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���+(30*. /0- /$#� � 	 	� � �����

� //3��"'#��$/ !+('.)���"3(�� -*'/'*$���&+-/��& '*� 	 	 	� � ��
�

� //3��"'#��$/ !+('.)���"3(��&+('*$�   	� � ��
�

� //3��"'#��$/ !+('.)�� (.+�������$/ !+('.)� 
 � 	� � 
�	�

� //3��"'#��3*/&$.'. � 	 	� � �����

� //3��"'#���- *"&$# � � 	� � �����

� //3��"'#���'" -!+23( /$ � � 	� � �����

� //3��"'#���'&3#-+23 	 	 	� � ��
�

� //3��"'#���+*+&3#-+23 � � 	� � �����

�+( /$��$/ !+('.) 	 
 	� � 	��	

�++#��+),+*$*/��( */ 	 � 	� � ���

�-0"/+.$��� **+.$� *#�� ( "/+.$��$/ !+('.) �  	� � 	��

� ( "/+.3(��(3"$-+(','#. � 	 	� � �����

� )) �%(0/ )3(��)'*+��"'#  	� 	� � 	�	

�(0/ ) /$��$/ !+('.)  	� 	� � 	���

�(0/ /&'+*$��$/ !+('.) � 		 	� � 	�	�

�(3"$-+(','#��$/ !+('.)� 
 � 	� � 
�	�

�(3"'*$���$-'*$� *#��&-$+*'*$��$/ !+('.)  � 	� � 
���

�(3"+(3.'.���(0"+*$+%$*$.'.�� *#��3-01 /$��$/ !+('.) � � 	� � 
���

�0 *'#'*+� *#��"$/ )'#+��$/ !+('.) � 	 	� � �����

�$2+.3("$- )'#$.������� � � 	� � �����

�'./'#'*$��$/ !+('.) 	 � 	� � ����

�
�����	��������

Table 5.1: Subpathway Enrichment Value. Metabolites are grouped into respective subpathway 
category and enrichment value is calculated based on significant changes metabolites in genotype or 
treatment effect groupings. Highlighted subpathways have a calculated enrichment value above 1 and 
are therefore of interest for further investigation. 
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Figure 5.4: Heatmaps of select subpathway metabolites. The γ-glutamyl amino acid (A), 
glutathione metabolism (B), and TCA cycle (C) subpathways showed enrichment by 
genotype comparison but not by treatment. This is visualized by upper dendrogram. KO and 
pGART showed groupings. Metabolites were preferentially enriched in pGART samples. 
Sample labels are coded “ade” for adenine supplemented conditions and “none” for adenine 
deficient conditions. “A-D” denotes sample condition replicate. 

TCA

Glutathione

gamma glutamyl

KO
 n

on
e 

A

KO
 n

on
e 

B

KO
 n

on
e 

C

KO
 n

on
e 

D

KO
 a

de
 B

KO
 a

de
 A

KO
 a

de
 D

KO
 a

de
 C

pG
AR

T 
ad

e 
A

pG
AR

T 
ad

e 
D

pG
AR

T 
no

ne
 D

pG
AR

T 
no

ne
 A

pG
AR

T 
no

ne
 C

pG
AR

T 
no

ne
 B

pG
AR

T 
ad

e 
C

pG
AR

T 
ad

e 
B

CoA-glutathione*
4-hydroxy-nonenal-glutathione
S-(1,2-dicarboxyethyl)glutathione
3'-dephospho-CoA-glutathione*
cysteine-glutathione disulfide
S-methylglutathione
cyclic dGSH
cysteinylglycine
glutathione, oxidized (GSSG)
glutathione, reduced (GSH)
5-oxoproline

aconitate [cis or trans]
succinylcarnitine (C4-DC)
њ-ketoglutarate
succinate
citrate
2-methylcitrate/homocitrate
malate
fumarate

KO
 a

de
 A

KO
 a

de
 B

KO
 a

de
 D

KO
 a

de
 C

KO
 n

on
e 

A

KO
 n

on
e 

C

KO
 n

on
e 

D

KO
 n

on
e 

B

pG
AR

T 
ad

e 
A

pG
AR

T 
no

ne
 C

pG
AR

T 
no

ne
 D

pG
AR

T 
ad

e 
D

pG
AR

T 
no

ne
 A

pG
AR

T 
ad

e 
C

pG
AR

T 
no

ne
 B

pG
AR

T 
ad

e 
B

Row Z-Score

Color Key

-2 -1 0 21

ќ-glutamylglutamine
ќ-glutamylserine

ќ-glutamylcysteine
ќ-glutamyl-epsilon-lysine
ќ-glutamylmethionine
ќ-glutamylphenylalanine
ќ-glutamylglycine
ќ-glutamyl-alpha-lysine
ќ-glutamylhistidine
ќ-glutamylglutamate
ќ-glutamylthreonine

ќ-glutamylisoleucine*
ќ-glutamylvaline
ќ-glutamylleucine

KO
 n

on
e 

C

KO
 n

on
e 

B

KO
 n

on
e 

A

KO
 n

on
e 

D

KO
 a

de
 A

KO
 a

de
 C

KO
 a

de
 D

KO
 a

de
 B

pG
AR

T 
no

ne
 D

pG
AR

T 
ad

e 
A

pG
AR

T 
ad

e 
D

pG
AR

T 
no

ne
 C

pG
AR

T 
no

ne
 B

pG
AR

T 
no

ne
 A

pG
AR

T 
ad

e 
C

pG
AR

T 
ad

e 
B

A 

B 

C 



 150 

Genotype analysis shows enrichment in subpathways 

Enrichment analysis of genotype effect reveals DRMs are clustered within 

multiple subpathways (Table 5.1). Of particular interest to our laboratory were gamma-

glutamyl amino acid, TCA cycle, glycolysis gluconeogenesis and pyruvate metabolism, 

glutathione, fatty acid metabolism, phosphatidylethanolamine and inositol, panothenate 

and CoA metabolism, and urea cycle; arginine and proline metabolism.  

Selective subpathways associated with purine and pyrimidine metabolism were 

enriched. Curiously, (hypo)xanthine/inosine containing was below the enrichment 

analysis equation threshold for highlighting a pathway of interest. These terms are 

directly related to purine catabolism where nucleotides are broken down through inosine, 

hypoxanthine, xanthine, and then to uric acid in humans. However, hypoxanthine is 

utilized as a salvage input, directly converted to IMP in a single step (Figure 5.1). It was 

expected that salvage synthesis is upregulated in DNPS-KOs and would result in 

decreased catabolic products, however these data may contradict this expectation. These 

data suggest that purine catabolism is unaffected by DNPS dysregulation. Subpathways 

are focused around energy, and energy production/maintenance type pathways. These 

involve glycolysis, gluconeogenesis, pyruvate, creatine, and the TCA cycle (Table 5.1). 

This is perhaps to be expected as adenine containing nucleobase production, the 

fundamental base of the major cellular energy currency ATP, is compromised in DNPS 

defects. Enrichment analysis unveiled urea cycle in genotype comparison. The urea cycle 

is closely tied to nucleotide synthesis and TCA cycle. Gamma-glutamyl amino acid terms 

were almost all selectively enriched in genotype analysis.  



 151 

Treatment analysis shows enrichment in DRM subpathways 

Enrichment analysis of treatment effect reveals DRMs are clustered within 

multiple subpathways. Of interest, are aminosugar metabolism, dipeptide, fatty acid 

metabolism, gamma-glutamyl amino acid, glutamate metabolism, glutathione 

metabolism, pantothenate and CoA metabolism, and vitamin B6 metabolism (Table 5.1). 

Unsurprisingly, adenine supplementation showed robust enrichment in all terms 

identified associated with purine and pyrimidine metabolic subpathways such as purine 

metabolism, pyrimidine metabolism, nucleotide sugar, nicotinate and nicotinamide 

metabolism, and pentose metabolism. The (hypo)xanthine/inosine containing subpathway 

showed selective enrichment in the KO treatment effect group, with the large majority of 

metabolites elevated in purine supplemented cells. This is unsurprising as these 

metabolites are involved in salvage synthesis of purines. These data suggest that catabolic 

output of purine synthesis in DNPS dysregulation is reliant on salvage input products. 

Treatment effect also showed term enrichment in amino acid metabolism, specifically 

through lysine, glycine, serine, threonine, glutamate, and tyrosine metabolism. Amino 

acids are used as functional building blocks of proteins as well as cofactors in various 

metabolic processes. Amino acids are used as substrates in DNPS pathway, specifically, 

glutamine is used in the conversion of PRPP to 5-PRA and FGAR to FGAM, glycine is 

used in the conversion of 5-PRA to GAR, and aspartate is used in the conversion of 

CAIR to SAICAR. Amino acid metabolism may be differentially regulated to account for 

the reliance on DNPS synthesis or other metabolic processes influenced by DNPS 

dysregulation. 
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DNPS requires glycine, glutamine, and aspartate for synthesis of a singular IMP 

molecule. AMP is an inhibitor of PRAT, the first enzyme of the DNPS pathway. Adenine 

is directly converted into AMP and it stands to reason that adenine treatment will inhibit 

DNPS and therefore pathways associated with amino acid synthesis. 

Discussion 

In this study, we evaluated the purine dietary requirement for the crGART KO 

and generated pGART cell lines. We generated metabolic profiles of each cell line in 

adenine-supplemented and adenine depleted conditions and analyzed the metabolite 

profiles to functional pathways.  

Adenine supplementation inhibits DNPS via formation of AMP through salvage 

synthesis as AMP inhibits PRAT, the first enzyme of DNPS. AMP can be converted into 

IMP via AMP-deaminase and subsequently synthesized into GMP (Figure 5.1) (Jinnah, 

Sabina, and Van Den Berghe 2013). We have previously reported that adenine 

supplementation is effective at inhibiting DNPS (Mazzarino et al. 2019; 2020).  

GART catalyzes three non-sequential reactions in DNPS, the first of which is the 

conversion of 5-PRA to GAR. 5-PRA is highly unstable, breaking down with 

approximately 5 seconds under cellular conditions (Rudolph and Stubbe 1995). This 

makes GART attractive as a model of generalized DNPS deficiency, as other DNPS-KOs 

accumulate substrates that alter cellular processes outside of DNPS (Corton et al. 1995; 

Keller, Tan, and Lee 2012). Here, we report on metabolic alterations as a function of 

adenine starvation and supplementation as a function of the DNPS enzyme, GART. Our 

results have uncovered DRMs as a function of adenine treatment as well as cell type.   
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During our analysis, we noted many subpathways and connections to the Down’s 

syndrome (DS) phenotype. GART is located on Hsa21 and is therefore triplicated in DS. 

Expression of GART as well as purine levels in DS are dysregulated (Patterson 2009). 

Our system was only evaluated for purine auxotrophy and therefore no conclusions can 

be directly drawn about gene dosage effects. However, our analysis highlights pathways 

that GART or DNPS influence, and therefore is likely to inform the involvement of 

GART in the DS phenotype. I have compiled these notable findings together with 

transcriptomic data to highlight potential cellular processes and pathways of interest and 

how they relate (Figure 5.5). 
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Increased oxidative damage and reactive oxygen species load is a well-

documented phenomenon in DS (Lott 2012b; Arbuzova, Hutchin, and Cuckle 2002), 

aging (H. Cui, Kong, and Zhang 2012), and Alzheimer’s disease (Lott 2012b). In DS, 

multiple gene families involved in regulating cellular oxidative stress are found altered, 

including SOD, APP, PPAR, among others (Izzo et al. 2017; 2018). Superoxide 

Dismutase 1 (SOD1) is a major protein antioxidant responsible for conversion of free 

radical oxygen to hydrogen peroxide (Perluigi and Butterfield 2012). Glutathione (γ-

glutamyl cysteinylglycine) is another primary redox buffer in mammalian cells, directly 

scavenge oxidizing species as well as through glutathione peroxidase activity and 

hydrogen peroxide generated by SOD (G. Wu et al. 2004). Glutathione levels are 

decreased in DS (Pogribna et al. 2001), as well as an increased in the activity ratio of 

SOD:Glutathione peroxidase (Pastore et al. 2003) all leading to increased hydrogen 

peroxide levels and oxidative stress. γ-glutamyl amino acids and glutathione are linked in 

mammalian cells by either the γ-glutamyl amino acid cycle or glutathione cycle(Orlowski 

and Meister 1970; Bachhawat and Yadav 2018). In either model, γ-glutamyl amino acids 

are used as a reservoir for γ-glutamyl groups for glutathione synthesis in mammals. In a 

recent metabolomic study, an abundance of γ-glutamyl amino acids are differentially 

regulated in the amniotic fluid of second trimester DS fetuses (X. Liu et al. 2020). DNPS 

and GART are directly involved in folate and one-carbon donor metabolism (Perluigi and 

Butterfield 2012). DS is characterized by hyperuricemia, or an excess uric acid build up 

which a product of purine catabolism. Hyperuricemia can be caused by an imbalance in 

the native antioxidant defense mechanisms (Perluigi and Butterfield 2012; Zana, Janka, 

and Kálmán 2007). An overwhelming majority of γ-glutamyl amino acids and glutathione 
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metabolites identified are selectively enriched in the genotype comparison, specifically 

enriched in the crGART-CDK line, with adenine treatment showing a minimal effect. 

This observation bolsters our position that correct dosage of the DNPS enzyme GART is 

necessary in antioxidant response. 

Hypotonia is displayed in nearly all children diagnosed with DS and is among the 

most common phenotypes (Dey et al. 2013). This phenotype is not well understood. 

Hypotonia is characterized by excessive joint flexibility and inadequate muscle tone and 

strength, resulting in hyper flexibility, poor motor ability, and control (Lauteslager, 

Vermeer, and Helders 1998) and can be improved with physical therapy intervention 

(Maïano et al. 2019). As hypotonia in DS can be rescued to a degree, a portion of the 

hypotonia phenotype may be overcome by increasing muscle mass. Children with DS 

exhibit hypotonic phenotypes at a young age, with inability to crawl and standing 

behavior delayed compared to disomic counterparts (Lauteslager, Vermeer, and Helders 

1998). These behaviors could be seen as strength training at a young age allowing muscle 

building for processive developmental milestones. Decreased muscle function could 

contribute to this delay in muscle development seen in DS. Mitochondrial dysfunction is 

a phenotype in DS (Arbuzova, Hutchin, and Cuckle 2002) including decreased ATP 

production (Izzo et al. 2017) and altered gene expression patterns, among other 

mitochondrial phenotypes (Izzo et al. 2018). There is evidence that links these altered 

mitochondrial states to the peroxisome proliferator activated receptor gamma (PPARγ) 

(Izzo et al. 2018). Mitochondrial function and proper ATP production are critical for 

muscle growth via strength training. Here, the enrichment of metabolic subpathway terms 

also associated with energy production, such as TCA cycle which generates high energy 
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electrons in the form of the adenine base FADH and NADH, creatine metabolism which 

acts as an ATP storage for muscle, as well as glycolysis and gluconeogenesis enriched 

purely along genotype comparison group lines suggests that GART is linked to these 

processes. The previously reported transcriptomic profiling of the crGART-KO cell line 

showed differences enriched in muscle structure and function terms as well as locomotor 

behavior (Chapter 2). This data, taken in tandem with our current metabolic profiling of 

the crGART-KO cell line, indicates a potential link between GART or DNPS and muscle 

structure and function relating to the hypotonia phenotype. 

B class vitamins are essential micronutrients with a variety of cellular functions 

and must be taken in via diet. Our data show an enrichment of DRMs assigned to B5 

(found in data as pantothenate) and B6 metabolism in genotype comparison. B5 

metabolites also showed DRM enrichment in adenine treated and untreated KO 

comparison. Vitamin B5 is used as a cofactor in the TCA cycle, the electron transport 

chain, as well as in the synthesis of coenzyme A, and is therefore critical for cellular 

energy homeostasis (Kennedy 2016). Vitamin B6 is involved as a cofactor in the 

synthesis of folates, has been found essential for nervous system (Kennedy 2016), 

mitochondrial function (Janssen et al. 2019), glutathione metabolism, and amino acid 

metabolism (Dalto and Matte 2017). B6 has been shown to activate PPARγ via weak 

agonism (Yanaka et al. 2011). The folate cycle produces one carbon donors, necessary 

small molecules for pathways such as purine (one of three GART reactions requires a 

folate derivative) and pyrimidine synthesis (Moffatt and Ashihara 2002). Transsulfuration 

of homocysteine to cysteine is B6 dependent and accounts for approximately half of the 

cysteine used in glutathione synthesis for intracellular pools (Mosharov, Cranford, and 
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Banerjee 2000). B6 in the nervous system acts as a cofactor for synthesis of multiple 

neurotransmitters such as γ-amino-butyric acid (GABA), serotonin, and dopamine 

(Calderón‐Ospina and Nava‐Mesa 2020). B6 administration has shown efficacious in 

mitigating chronic seizure activity (Spinneker et al. 2007; Tong 2014) as well as 

attenuating excitotoxic effects of neurotoxin exposure (Dakshinamurti, Sharma, and 

Geiger 2003), mediated possibly through its involvement in GABA synthesis. Regarding 

DS, differences in GABA (Contestabile, Magara, and Cancedda 2017) as well as an 

increased rate of seizures have been noted (Lott and Dierssen 2010). Studies have also 

found B6 metabolic abnormalities in DS children (McCoy, Colombini, and Ebadi 1969) 

and amniotic fluid (Baggot et al. 2008), although supplementation has shown ineffective 

(Kleijnen and Knipschild 1991). We have previously reported that the transcript levels of 

the ALPL gene is drastically reduced in GART-KO compared to WT HeLa (Chapter 2). 

ALPL encodes the tissue-non-specific alkaline phosphatase enzyme, an ectoenzyme 

capable of dephosphorylating circulatory, extracellular B6 (Whyte et al. 1985) thus 

allowing membrane permeability and its function to be exerted on the cell. 

Unsurprisingly, GABA ontological terms were enriched in our analysis (Chapter 2).  

Our analysis has uncovered only a small subset of differentially regulated lipid 

metabolites and owing to the difficulties associated with lipidomics we will be analyzing 

lipid metabolites with broad strokes. Lysophospholipids are single tailed lipid chains 

found typically as a byproduct of phospholipase activity. This lipid category is involved 

in PPARγ regulation (Tsukahara, Matsuda, and Haniu 2017) and has implications in 

immune response and inflammatory signaling mediated through GPCR coupling (Gräler 

2002), lipid droplet protein expression and formation (Guilherme et al. 2008), and 
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response to low-density lipoprotein (McIntyre et al. 2003). Our data presented here 

indicates that GART or DNPS deficiency decreases lysophospholipids and is not 

attenuated by adenine supplementation, suggesting a possible relation to PPARγ 

regulatory element or immune response. Diacylglycerols act as building blocks for 

glycerophospholipids and as lipid second messengers (Eichmann and Lass 2015). 

Ceramides, including lactosyl- and hexosylceramide, are involved in sphingolipid 

synthesis, and with regulation potential in cellular events including signal transduction, 

cell growth, differentiation, apoptosis, as well as protein kinase C activity, immune 

response, and insulin sensitivity (Young et al. 2012; Sofi et al. 2017; Alarcon-Barrera et 

al. 2020; Nakamura et al. 2013; Pralhada Rao et al. 2013). The data presented suggests 

that GART or DNPS deficiency increases lactosyl- and hexosylceramide metabolites and 

is not rescued by adenine supplementation. Sphingomyelins account for approximately 

10% of mammalian cellular lipids and is a part of the phosphosphingolipid family and is 

critical to myelination of neurons, insulin response, cholesterol association, cellular 

signaling (Slotte 2013), and but also are found as constituent in atherosclerotic plaques 

(Boini et al. 2018).  

Interestingly, PPARγ activity is found linked within myriad metabolic pathways 

examined in this study, and acts as a transcription factor, with myriad genes under its 

control (Kroker and Bruning 2015). PPARγ controls genes related to lipid metabolism, 

glucose and energy metabolism, inflammation, apoptosis, cell proliferation, and insulin 

sensitivity (Kroker and Bruning 2015; Janani and Ranjitha Kumari 2015). Additionally, 

PPARγ transcript levels are enriched in the crGART cell line over WT HeLa of log2(fold 

change) 4.48. The scavenger receptor CD36 is excessively expressed in the crGART line, 
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with a log2(fold change) 8.52. Both PPARγ and CD36 transcript levels are near zero for 

WT HeLa cells. A feedback loop exists between CD36 and PPARg, where activation of 

CD36 induces PPARγ transcription factor activity, where transcript identity synthesized 

is CD36-ligand specific (Maréchal et al. 2018). For example, oxidized low density 

lipoprotein will activate CD36 and in turn induces PPARγ transcription activity causing 

CD36 transcript synthesis, however the synthetic growth hormone releasing peptide 

hexarelin can activate CD36 and subsequently PPARγ transcription activity but the CD36 

gene is not transcribed (Maréchal et al. 2018). Indeed, PPARγ is sensitive to activation by 

phosphorylation or agonist outside of CD36, with different subsets of genes transcribed 

based upon activation signal type (Kroker and Bruning 2015). PPARγ in adipocytes was 

found activated by the B6 vitamer, pyroxidal-5’-phosphate, via a probable agonist 

mechanism, although partial or weak agonism is suspected (Yanaka et al. 2011). The 

neurotransmitter serotonin, in which B6 is directly involved in synthesis of as a cofactor, 

was also found to be a potent agonist of PPARγ (Waku et al. 2010). The involvement of 

PPARγ activity with influence in metabolic pathways uncovered here, as well as the 

heavily elevated CD36 and PPARγ transcript levels found with in DNPS-KOs, suggests 

that PPARγ or the CD36-PPARγ axis is in some way under the influence of DNPS.  
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Chapter Six: Summary, Discussion, and Future Directions 

Summary and Discussion 

The work presented here is not without the vital input from others. The Genomic 

sequencing core was responsible for the processing of RNA and RNA-seq FASTQ file 

generation. Dr. Guido Vacano performed the FASTQ to DEG lists and was instrumental 

in assisting me with the start-up of the ontological analysis. Dr. Vacano also generated 

heatmaps found in Chapter 2 as well as Chapter 5. Terry Wilkinson II performed the 

transfection and generation of the stable CMV promoted CHO-K1 GART crGART cell 

line as well as plating and staining the cells for purine auxotroph analysis. Metabolon 

processed and initially analyzed the metabolomic data for DRM significance.  

Purines are essential molecules for sustaining life in the form of cellular signaling 

events, genetic information, and energy production/regulation. DNPS is critical in 

embryonic development as DNPS is upregulated in replicating cells. Previous work 

robustly indicates the need for tight regulation of DNPS. DNPS deficits in patients, 

although rare, manifest as congenital defects, with phenotypes ranging from mild to 

severe mental retardation, physical dysmorphic features, seizures, and shortened life 

expectancy or embryonic death. DNPS metabolic intermediates have known effects 

outside of purine synthesis that include alteration of activity of PKM2, a kinase thought 

to be the root of the metabolic shift seen in tumors, as well as AMPK, a master regulator 
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of cellular metabolism. DNPS dysregulation is therefore critical to study for 

understanding widespread effects related to cellular and organismal function.  

The work described here is a characterization of the crADSL, crATIC, and 

crGART cell lines, probing the many cellular and organismal processes which are 

affected by DNPS dysregulation and outlining future research queries. I have shown that 

the cell lines used require exogenous purine supplementation in the form of adenine for 

proliferative growth, and that adenine supplementation inhibits DNPS, as there is no 

detectable SAICAR or ZMP found within the crADSL and crATIC cell lines 

respectively. I have generated a library of processes attributed to DNPS dysfunction. The 

novel CRISPR generated DNPS-KO cell lines represent a new cellular model to 

understand the wide-spread effects seen in patients as well as DNPS contribution into 

processes such as TGFβ/SMAD signaling, placentation, vitamin B6 metabolism, 

embryonic development, muscle function, tumorigenesis, and inflammation as uncovered 

in the work presented here.  

Replicate considerations for RNA-seq and other -omic experiments are critical. 

Two forms of replicates are used, biological and technical. Technical replicates have the 

biological material used from the same source where biological replicates consist of 

biological samples from different sources. The questions we sought to answer were 

between differences in the transcriptome seen between two distinct biological samples. 

Therefore, technical replicates of each biological sample were necessary to ensure 

accuracy of measurements between the distinct cell line populations. 

Purine starvation in DNPS-KOs cell lines investigated results in eventual cell 

death (Figures 2.2, 3.2, 4.2, 5.2), although the kinetics have not been explored 
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extensively. crATIC and HeLa cells were evenly plated in normal growth media then 

exchanged for adenine supplemented or deficient media and allowed to proliferate for 6 

days. In 24 hour time intervals, plates were fixed and stained using crystal violet, a 

general histological stain for adherent cells. HeLa cells showed proliferative growth for 

the full 6 days in both adenine supplemented and deficient conditions. As the HeLa cells 

have a functional DNPS pathway, this result is unsurprising. crATIC only showed 

proliferative growth in adenine supplemented conditions for the full 6 days. crATIC in 

adenine deficient conditions appear to arrest proliferation within 1-2 days, with a notable 

unhealthy morphology by day 3 progressively worsening through the sixth day (data not 

shown). It is unknown if these cells undergo a quiescent or senescent phase, nor the 

temporal scale for induction and the time a vegetative state would persist before eventual 

cell death. Ten hours was chosen as a time point for these experiments to balance the 

accumulation of intermediates and potential transcriptomic alterations for vegetative or 

death signaling cascades. Ten hours also represents approximately 40% of the average 

replicative cycle for WT HeLa cells of 24-25hours. Previous transcriptomic 

experimentation on Chinese Hamster Ovary cell based DNPS-KOs were purine starved 

for six hours, with an average WT-CHO replicative cycle of 14 hours, representing 40%. 

As DNPS is upregulated for cellular replication, this 40% of replicative cycle is likely 

ideal to minimize off target effects related to inability to replicate the genome during the 

S phase of the cell cycle. 

Purine supplementation supporting proliferative growth in these cell lines were 

achieved through the use of adenine and has been shown to be efficacious for all cell 

lines used for these studies (Figure 2.2, 3.2, 4.2, 5.2). Adenine is a salvage input and is 
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converted by adenine phosphoribosyltransferase directly into AMP, which is capable of 

being metabolized into IMP via AMP deaminase and subsequently made into GMP. 

Hypoxanthine is a salvage input capable of making IMP directly through hypoxanthine 

phosphoribosyl transferase and into GMP or AMP (Figure 6.1). Therefore, crATIC and 

crGART should proliferate using hypoxanthine as a purine source but not crADSL, as the 

ADSL enzyme is required to in the conversion of IMP to AMP. 

Consistent with previously reported CHO cell line based DNPS-KOs, we have 

shown that Hela crADSL and crATIC accumulate their substrates, SAICAR and ZMP 

respectively, upon removal of an exogenous purine source. I used HPLC-electrochemical 

detection methods for substrate identification (Duval et al. 2013), which functions by the 

redox potential of the metabolites analyzed and is considered an extremely sensitive 

technique with detection limits in the 1-10 picogram range dependent on analyte (Kristal 

et al. 2007). SAICAR and ZMP are detected in this system by oxidation with 

Figure 6.1: DNPS pathway with salvage inputs. DNPS converts PRPP to IMP via ten 
sequential steps using six enzymes. Salvage synthesis utilizes adenine (ade), hypoxanthine (Hx), 
or Guanine (Gua) and through one step will synthesize AMP, IMP, or GMP respectively. AMP 
can be converted into IMP through AMP deaminase (AMPD) and subsequently synthesized into 
GMP. The enzyme ADSL catalyzes SAICAR to ZMP and SAMP to AMP. AMP inhibits the first 
step of DNPS. Figure base generated by Dr. Guido Vacano. 
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electrochemical channels set at 0, 100, 200, 300, 400, 500, 600, 700, 800, 900, and 

1200mV. Primary peaks were seen in the 300mV channel for SAICAR and ZMP (Figures 

3.4, 4.4). Cells were supplied exogenous adenine and can therefore synthesize purine 

nucleotides necessary for sustaining proliferative growth. It was expected that exogenous 

adenine supplementation would halt the DNPS pathway as AMP is an inhibitor of the 

enzyme PRAT, the first step in DNPS. This expectation was met, as SAICAR and ZMP 

were not detected in the crADSL and crATIC cell lines (respectively) when subjected to 

adenine supplementation (Figures 3.3, 3.4, 4.3, 4.4). It was hypothesized that upon 

removal of exogenous adenine and inducing a starvation state, DNPS would begin and 

metabolic intermediates would accumulate linearly. Indeed, this is the case with crATIC 

as the ZMP accumulation curve is relatively linear (Figure 4.3). However, crADSL 

exhibited a lag phase, with no detectable SAICAR from zero to four hours in purine 

starvation until measurable accumulation began (Figure 3.3). This result has been rather 

puzzling, although understanding this phenomenon was not within the scope of the 

experiments presented here. SAICAR can be dephosphorylated and exist as 

SAICAriboside which is excreted by the cell. It is not known if SAICAriboside is 

electrochemically active and therefore detectable in our HPLC-EC generated spectra. It is 

possible that the lag phase is due to an equilibrium that exists between SAICAR to 

SAICAriboside conversion or SAICAriboside excretion. SAICAriboside may also elute 

at retention times not covered in our methodologies.  Alternatively, metabolite extraction 

methodology was performed as previously published (Duval et al. 2013) and may explain 

the lag phase. In short, cells were washed with phosphate buffered saline and then 

metabolites were extracted with ice-cold 80% ethanol solution. Alcohol based solutions 
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promote entropic collapse of proteins and as PKM2 is a binding partner of SAICAR, it is 

possible that SAICAR remains bound to PKM2 upon alcohol exposure and therefore 

unmeasurable due to protein sequestration. Neither of these hypotheses are particularly 

attractive. ZMP also exists in equilibrium with its dephosphorylated form AICAriboside 

(Vincent, Bontemps, and den Berghe 1996) which can be similarly excreted. ZMP is also 

an allosteric effector of AMPK and has been shown to have myriad binding partners 

(Douillet et al. 2019), although not much has been explored for binding affinities and 

sites of these other protein partners. However, the AMPK-ZMP interaction has been 

characterized; ZMP induces phosphorylation of Thr172 as well as direct allosteric 

activation of phosphorylated AMPK (Hardie 2011). The mechanism of action for the 

SAICAR-PKM2 interaction is still being elucidated. However, evidence suggests that it 

binds dimeric PKM2 and may induce tetramerization (Dayton, Jacks, and Vander Heiden 

2016) or produce activity directly in the dimeric form (Ming Yan et al. 2016) and it is 

plausible that SAICAR only influences PKM2 activity when bound (i.e. binding does not 

induce a post translational modification). This would give credence to the protein-

metabolite sequestration hypothesis posited. Debris pellet after ethanol extraction could 

be solubilized with ammonium and metabolites released to assess this possibility. 

SAICAriboside excretion can be assessed via measuring media concentration of 

SAICAriboside by the cheap, sensitive, and simple Bratton Marshall assay (Jurecka et al. 

2015).  

ADSL was found to have a single nucleotide polymorphism that resulted in a 

single amino acid point mutation in Neanderthals compared to modern day humans. This 

amino acid change from Neanderthals to modern day humans is found across the species 
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and is not attributed to genetic variation within the species. The mutation in ADSL from 

Neanderthal to modern human manifests as decreased stability of the ADSL protein 

structure in humans, as monitored by circular dichroism spectra (Stepanova et al. 2020). 

This result is incorporated into a manuscript that is currently submitted to eLife. This 

work is an insight into DNPS evolution and refinement of protein sequences for optimal 

purine synthesis. 

Immortalized cell lines, especially the HeLa line, are known to drift and have 

variability over time and passage count. The cells used within this study are variable from 

the start. Within chapters 2, 3, and 4, the CRISPR DNPS-KO cells were gifts from our 

collaborators, Drs. Veronika Barešová and Marie Zikánová from The Charles University 

in Prague, Czech Republic. These cells were made from an ATCC sourced, CCL2 HeLa 

line. The WT HeLa cell line were purchased from ATCC by our own lab. The 

comparisons drawn, from a HeLa cell line in culture in the Czech Republic to our own 

HeLa cell line could likely produce artefacts in the analysis. In 2019, a manuscript was 

published comparing 14 HeLa strains in culture from 13 independent labs across the 

globe. They employed multi omics analysis to understand the differences seen across all 

of the lines. There are three common HeLa cell lines, CCL2 (original HeLa), S3 (third 

clone isolated from the CCL2 line), and Kyoto; the study mainly centered around the 

CCL2 and Kyoto lines. PCA analysis of copy number variation, mRNA, protein, and kloss 

(a measure of protein turn-over rate) reveals two distinct clusters, Kyoto and CCL2 lines. 

The plots show that while intra cell line variation was notable, there is indeed clustering 

(Y. Liu et al. 2019). These results indicate that our experimental design, while not ideal, 

is with merit. Indeed, CD36 gene transcript was found robustly expressed in all of our 
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DNPS-KO cell lines, was also highly expressed in an analogous experiment performed in 

the CHO cell lines. qPCR was also performed almost a year later with freshly harvested 

RNA. These results bolster my position of the validity of the experimental parameters. 

In the crADSL and crATIC analyses, transcriptomic terms were returned that are 

consistent with the phenotype, such as neural development and function, muscle function, 

embryonic development, and energy functions. The consistency of these terms to the 

phenotype indicates that we are indeed on the correct path to identify the underlying 

issues resulting from DNPS deficiency and processes likely influenced by DNPS. 

Future Directions 

Commonalities within DNPS HeLa-KOs: The CD36-PPARγ axis 

The data presented in this dissertation 

show similarities and differences in 

transcriptomic expression. These similarities 

are likely due to generalized DNPS 

deficiency and can provide key insight to 

processes likely affected by DNPS 

dysregulation. 

A common theme amongst the 

transcriptomics data set is the vast increase 

within the transcript count for the scavenger 

receptor gene Cluster of Differentiation 36 

(CD36), also known as fatty acid translocase 

seen in all genetic knockouts (Figure 6.2); 

Figure 6.2: CD36 gene count in HeLa and 
DNPS-KO mutant cell lines. Box plot of 
CD36 transcript counts of replicates by cell 
type and purine supplementation. WT HeLa 
cells, with fully functioning DNPS pathway, 
show negligible levels of CD36 transcript 
while all DNPS-KO mutants show elevated 
transcript levels, purine supplementation in 
the form of adenine shows negligible effect 
on transcript levels. Figure generated by Dr. 
Guido Vacano. 
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CD36 was one of the most differentially regulated genes, transcript level does not appear 

to be augmented by adenine supplementation (Figure 6.2). CD36 has been found linked 

to a wide range of seemingly unrelated cellular processes and pathologies. CD36 is 

involved in fatty acid uptake and metabolism (Pepino et al. 2014), inflammation cascade 

(Kuda et al. 2011), angiogenesis, apoptosis, thrombosis, atherosclerosis, Alzheimer’s 

disease, and insulin resistance (Silverstein and Febbraio 2009). Unsaturated fatty acids 

such as ω3 and ω6 class were found to alter CD36 mRNA expression with increase or 

decrease dependent on cell type (Vallvé et al. 2002; Pietsch et al. 1995). 

Peroxisome proliferator activated receptor gamma (PPARγ) transcript was also 

found elevated within all DNPS-KO cell 

lines, however gene expression does appear 

to decrease slightly with adenine 

supplementation (Figure 6.3). PPARγ is an 

inducible transcription factor and is 

considered a master regulator in lipid 

metabolism, with roles in fat, carbohydrate, 

and general energy metabolism, insulin 

sensitivity, cell proliferation and 

differentiation, inflammation, and cancer 

(Kroker and Bruning 2015). PPARγ and 

CD36 are interrelated, where CD36 

incorporates a signal and activates PPARγ 

transcription activity. PPARγ transcription 
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Figure 6.3: PPARγ gene count in HeLa 
and DNPS-KO mutant cell lines. Box plot 
of PPARγ transcript counts of replicates by 
cell type and purine supplementation. WT 
HeLa cells, with fully functioning DNPS 
pathway, show negligible levels of PPARγ 
transcript while all DNPS-KO mutants 
show elevated transcript levels, purine 
supplementation in the form of adenine 
slightly decreases mean transcript levels in 
DNPS-KOs negligible effect on transcript 
levels. Figure generated by Dr. Guido 
Vacano. 
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activity appears to be signal source specific, as agonist binding and ligand induced 

phosphorylation cause different subsets of PPARγ regulated genes to be expressed 

(Kroker and Bruning 2015). Curiously, CD36 is a target gene of agonist based PPARγ 

transcriptional activity (Kroker and Bruning 2015). The CD36- PPARγ axis has shown 

involvement in modulating fatty acid storage, triglyceride synthesis, glucose uptake, 

regulating fatty acid metabolism (Maréchal et al. 2018). It is unclear as to why DNPS-

KOs would be robustly expressing transcript for these genes.  

The ontologies elucidated suggest that inflammatory signaling and fatty acid 

processing are systems of interest, due to the control of CD36-PPARγ within these, we 

hypothesize that DNPS plays a role in mediating a chronic inflammatory cascade, as a 

complete rewiring of cells not native to expressing both PPARγ and CD36 are not likely 

to generate a new process for acute inflammation, and would instead rely on other means. 

Another plausible explanation is a defect in energy homeostasis. This idea is supported 

by the metabolomics data set, due to the large enrichment of differentially regulated 

metabolites as a function of GART enzyme KO suggesting an altered cellular energy 

landscape. DNPS-KOs may be more reliant on 

fatty acid hydrolysis, a process that can be 

regulated by CD36-PPARγ axis, for the 

generation of high energy elections for 

oxidative phosphorylation. Work has begun to 

i) identify if the increased transcript correlates 

to protein levels (Figure 6.4) and ii) to 

understand the DNPS-CD36-PPARγ 
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Figure 6.4: Preliminary Western Blot of 
cellular lysate, CD36. HeLa, crATIC, CHO-
K1, and AdeF cells were grown and purine 
starved as previously described, lysed in 
RIPA buffer, and 30μg total protein was 
separated on 10% TG gel. Gel was transferred 
to a NC membrane and processed using 
1:1000 αCD36. crATIC shows elevated levels 
of CD36 protein over HeLa. A+/- denotes 
with or without supplemental adenine 
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phenomenon through probing fatty acid oxidation and glycolytic flux as well as altering 

pro- and anti-inflammatory fatty acid signaling. 

These transcript regulation findings are likely not an artefact of our methodology.  

Indeed, our laboratory performed RNA-seq on analogous DNPS-KO mutants to those 

presented here in the Chinese Hamster Ovary (CHO) cell line and showed increases of 

CD36 and PPARγ transcript over their WT CHO-K1 counterpart (Data not shown). 

These CHO mutants were made over three decades ago with vastly different techniques 

than CRISPR (Patterson 1975; 1976; Oates and Patterson 1977).  

crADSL may provide insight for epithelial to mesenchymal transition 

Transcriptomic analysis of the crADSL cell line uncovered potential research 

targets in epithelial to mesenchymal transition (EMT). EMT is a process by which polar, 

adherent epithelial cells undergo changes and become unattached and freely motile 

mesenchymal cells. EMT is strongly associated development, however the processes able 

to reactivate after development in certain instances like wound healing and cancer. 

Mesenchymal cells have increased resistance to apoptosis and are highly migratory and 

invasive (Kalluri 2009; Kalluri and Weinberg 2009). Loss of proper EMT control can 

result in deleterious processes such as tumor metastasis (Thiery 2002) and is therefore 

extensively studied in cancer biology. The ADSL substrate, SAICAR, is a known PKM2 

activator, an enzyme directly related to cancer metabolism as well as metastasis (Fan et 

al. 2014; Hamabe et al. 2014).  

The crADSL line presents a novel approach to understanding EMT. DNPS is 

critical for proper embryonic development and its substrate, SAICAR, is an effector of 

PKM2, an enzyme thought to be the center of the Warburg effect, altering most tumor’s 
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energy production pathways. EMT can be initially assessed via addition of TGFβ or with 

EMT Induction Supplement and screened for biomarker proteins such as e-cadherin and 

fibronectin (Tang et al. 2013).  Migration and infiltration experiments can also be 

assessed using similar methodology in a three-dimensional cell culture. The crADSL cell 

line can be used for understanding the role of DNPS as well as SAICAR in the EMT 

process, showing benefit for developmental and tumor biology. 

ADSL deficiency has clinical relevance, manifest as a developmental disorder. 

Deficiency is typically diagnosed via identification of the dephosphorylated substrates of 

ADSL, SAICAR and SAMP (Figure 6.1) (dephosphorylated forms known as 

SAICAriboside and SAdo) in biofluids, although with the recent advent of the affordable 

and rapid Next Gen whole genome sequencing (Metzker 2010; Dunn et al. 2018) we 

expect more patients to be identified by genomic means. Generally speaking, severity of 

phenotype is correlated to the SAdo:SAICAriboside ratio, with values above 2 are mild 

with values closer to 1 present as severe (Jurecka et al. 2015). The variability in the 

phenotype is striking, ranging from fatal neonatal encephalopathy with hypokinesia, to 

developmental delay compatible with life at least to the teenage years (Gitiaux et al. 

2009; Mouchegh et al. 2007). A heterozygous patient with two missense mutations in or 

near the catalytic active site, E80D and D87E, presented with a mild phenotype, although 

no reference data on substrate accumulation is known. It is not known if the patient is 

expressing both transcripts or if both mutant forms of ADSL proteins are present. Most 

studies of ADSL mutations have been performed using cell free extracts or purified 

proteins. The ADSL mutations, E80D and D87E, were identified in a single patient. Our 

lab were collaborators on the intital biochemical characterization of these mutants 
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(Sivendran et al. 2004). Previous work on the E80D and D87E ADSL mutants reveal 

increased stability and large amounts of aggregate formation of the D87E mutant while 

E80D show slightly decreased levels stability and slightly elevated aggregate formation 

over WT (Ray 2013). Currently, transfection of WT, E80D, and D87E mutant enzymes 

into the crADSL cell line show proliferative growth in adenine with WT and E80D 

ADSL, but not the D87E mutant. The aggregation characteristics of D87E may lead to 

sequestration or increased proteolytic clearance of this isoform in cells. We therefore 

hypothesize that only E80D ADSL protein is made in the cell, and will use this system to 

gain insight into isoform selection of this heterozygous patient. These two phenomena 

would likely explain the crADSL mutant isoform purine requirement differences.  

crATIC and ZMP accumulation provides insight into energy production and 

inflammatory effects 

The ZMP metabolite that accumulates in the crATIC cell line is a known AMP 

mimetic and activator of AMPK, a master regulator of cellular metabolism. AMPK 

sensitivity is diminished with age (Reznick et al. 2007) and shows aberrant 

hyperactivation in Alzheimer’s disease neurons (Vingtdeux et al. 2011). Alzheimer’s 

disease is characterized by neural extracellular amyloid β plaques and tau fibrils, as well 

as low grade chronic peripheral and neural inflammation (Kinney et al. 2018). Within the 

brain, mitochondrial function is diminished, tissue becomes insensitive to insulin 

signaling, and there are general aberrations in cellular energy homeostasis (Yin et al. 

2016). AMPK is not only an effector of cellular energy metabolism, but also has been 

implicated in regulating inflammation (X. Chen et al. 2018). In an animal model of 

induced rheumatoid arthritis (a known model of chronic inflammation), pro-inflammation 
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signaling induced by complete Freund’s adjuvant was mitigated by administration with 

AICAriboside (Xiang et al. 2019). The crATIC HeLa cell line represents an endogenous 

source of ZMP, non-reliant on drug interactions, gene silencing RNA, or exogenous 

AICAriboside. Therefore, the utilization of crATIC represents a novel means of 

understanding energy homeostasis and fatty acid processing in inflammatory disorders. 

Fatty acids in inflammatory cascades are processed via enzymatic activity, with the 

resultant molecule producing a pro- or anti-inflammatory effect. Arachidonic acid is an 

ω-6 fatty acid, with potential to be processed into the largely pro-inflammatory molecules 

prostaglandins and thromboxanes (Hanna and Hafez 2018). The ω-3 fatty acids 

eicosapentaenoic acid and docosahexaenoic acid are typically processed into potent anti-

inflammatory specialized proresolving mediators such as maresins and resolvins (Calder 

2012). Given the energetic dysregulation and chronic inflammation characterized by 

Alzheimer’s disease, a cellular model capable of accumulating ZMP to regulate AMPK 

activation and therefore temper inflammation as well as energy metabolic processes is 

attractive. In this model, I would achieve insight into energy signaling roles seen in 

chronic inflammatory disorders such as AD. Within these experiments, I propose to 

induce an inflammatory response with lipopolysaccharide or Amyloid β (Zhu et al. 2016) 

at various time points of ZMP accumulation. Mass spectrometry is a beneficial tool 

capable of identifying and, in certain cases, quantifying metabolite profiles. I would 

employ lipidomic MS techniques to identify free fatty acid composition and 

concentration ratios to understand pro- or anti-inflammatory signaling cascades as a 

function of AMPK activation and energy homeostasis derived fatty acid processing.  
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crGART reveals neural and placentation embryonic development defects 

A theory for the root cause of Down syndrome (DS) is the Gene Dosage 

hypothesis. This postulates that the phenotype of DS is the result of the cumulative effect 

related to the triplication and overexpression of the genes located on chromosome 21 

(Gardiner 2004). Here, I have outlined possible cellular processes influenced by the 

Hsa21 chromosome GART.  

Alkaline phosphates are a class of four membrane bound exoenzymes, in humans, 

responsible for the hydrolysis of phosphate esters (Štefková, Procházková, and Pacherník 

2015). Our results have shown that, in the crGART cell line, three alkaline phosphatase 

enzymes had elevated transcript levels whereas tissue non-specific alkaline phosphatase 

(TNAP) showed heavily decreased transcript levels compared to WT HeLa. Curiously, 

the three elevated genes are ALPP, ALPI, and ALPG are located together on 

chromosome 2, while the decreased gene, ALPL, is located on chromosome 1 (NCBI, 

GeneCards). TNAP is encoded by the alkaline phosphatase liver/bone/kidney (ALPL) 

gene and is abundant in these tissues although expression has been shown fairly 

ubiquitous (Sebastián-Serrano et al. 2015; Štefková, Procházková, and Pacherník 2015). 

TNAP activity is observed during neural developement (Langer et al. 2007), with 

expression promoting axonal growth (Díez-Zaera et al. 2011). The altered regulation of 

alkaline phosphatases, especially TNAP, may provide novel insight to mechanisms 

associated with DNPS dysfunction, axonal growth/synapse formation, and associated 

cognitive defects.  

Our transcriptomic analysis of crGART revealed perturbations in gene expression 

related to placental development, with emphasis related to the labyrinthine layer. As 
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DNPS is heavily relied upon for development, this finding is unsurprising. The placenta 

is the first and largest embryonic organ, responsible for hormone signaling as well as gas 

and nutrient exchange between the mother and embryo (Turco and Moffett 2019; Gude et 

al. 2004). The trophoectoderm forms in a pre-implantation embryo with interaction 

between the trophoectoderm and the uterine wall driving successful embryonic 

implantation (Pillai et al. 2019; Knöfler et al. 2019) and begins to gain complexity and 

structure upon implantation deriving the trophoblast lineage and proper placentation 

begins (Knöfler et al. 2019). Analysis of morphology of over 100 embryonic lethal 

mouse models have revealed that a majority of these lines exhibit placental 

malformations, with fetal phenotype commonalities of abnormalities in cardiac, neural, 

and vascular systems (Perez-Garcia et al. 2018). The labyrinthine layer is a heavily 

vascularized embryonic derived structure. Mouse embryonic stem cells lacking or 

triplicated GART would be beneficial for understanding the early phases of pre-

implantation trophoectoderm differentiation. While a true living mouse model lacking 

GART would be ideal for understanding placentation as a function of DNPS 

dysregulation, this is not feasible as DNPS is necessary for embryonic development and 

the embryo would likely not survive, in fact so far it has not been possible to isolate 

GART null mice. Transgenic mice expressing human GART under its own regulatory 

elements have been made in two laboratories, Dr. David Patterson’s laboratory and the 

laboratory of John Gearhardt at Johns Hopkins. In both cases there was minimal if any 

alteration in phenotype. Nonetheless, the crGART mutant could be used to make 

transfected cell lines expressing different levels of GART activity. Comparison of the 
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transcriptomes of these lines should allow precise definition of which transcript changes 

are actually due to alterations in GART levels. 

Metabolic effects for Vitamin B6 and DNPS dysregulation 

Clinical manifestation of DNPS dysregulation as well as DS are characterized by 

seizure activity (Marie et al. 2004; Jurecka et al. 2015; Lott and Dierssen 2010). Seizure 

activity was not identified in PAICS deficient patients, however the only two patients 

identified died within three days postpartum (Pelet et al. 2019) making observation 

unlikely. Metabolomic analysis of the crGART line showed differential regulation of 

small molecules related to myriad processes, among them was Vitamin B6 metabolism. 

B6 is a vitamer involved as a cofactor for folate synthesis (Kennedy 2016), 

neurotransmitter synthesis (Calderón‐Ospina and Nava‐Mesa 2020), mitochondrial 

function (Janssen et al. 2019), and amino acid and glutathione metabolism (Dalto and 

Matte 2017). In neurotransmitter synthesis, B6 acts as a cofactor in the formation of 

serotonin, dopamine, as well as GABA (Kennedy 2016; Calderón‐Ospina and Nava‐Mesa 

2020). GABA, largely known as the main inhibitor neurotransmitter (Contestabile, 

Magara, and Cancedda 2017) and is synthesized from the precursor glutamate, an 

excitatory neurotransmitter (Deidda, Bozarth, and Cancedda 2014). Dysregulation of B6 

can lead to GABA deficiency and excess glutamate, creating an imbalance between 

synaptic excitation and inhibition potential manifesting as seizures (Wilson et al. 2019). 

Indeed, B6 supplementation has been shown beneficial in mitigating chronic seizure 

activity (Spinneker et al. 2007; Ohtahara, Yamatogi, and Ohtsuka 2011) as well as 

efficacious in mitigating neurotoxin induced seizures (Dakshinamurti, Sharma, and 

Geiger 2003).  
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Seizure activity in individuals with DNPS deficiencies may stem from a B6 

metabolic deficits or improper dosage of TNAP, a regulator of B6. B6 exists as an active, 

but non-cell permeable phosphorylated form and a cell permeable dephosphorylated 

inactive form. B6 is ingested in its phosphorylated form and able to circulate freely. 

TNAP dephosphorylates B6, crossing cellular membranes or the blood brain barrier, and 

subsequently rephosphorylated, trapping it inside the cell (Calderón‐Ospina and Nava‐

Mesa 2020). To probe this, DNPS-KO or knock-down neuronal cells would be generated, 

targeting GART first, and assessed for TNAP transcript and protein activity in culture 

(Díez-Zaera et al. 2011) as well as modulating vitamin B6 media levels. Understanding 

excitatory and inhibitor neurotransmitter load as a function of DNPS will yield insights 

into neurotransmitter synthesis and processing. Quantification of neurotransmitter load 

will also be assessed under purine starved and rich conditions, as well as by GART 

activity level via MS techniques to understand if conversion from glutamate to GABA is 

occurring. 

  



 179 

 

 

References  

Adams, April D., Faycal Guedj, and Diana W. Bianchi. 2020. “Placental Development 

and Function in Trisomy 21 and Mouse Models of Down Syndrome: Clues for 

Studying Mechanisms Underlying Atypical Development.” Placenta 89 

(January): 58–66. https://doi.org/10.1016/j.placenta.2019.10.002. 

Alabed, Yazan Z., Madeline Pool, Stephan Ong Tone, and Alyson E. Fournier. 2007. 

“Identification of CRMP4 as a Convergent Regulator of Axon Outgrowth 

Inhibition.” The Journal of Neuroscience 27 (7): 1702. 

https://doi.org/10.1523/JNEUROSCI.5055-06.2007. 

Alarcon-Barrera, Juan Carlos, Johannes H. von Hegedus, Hilde Brouwers, Evelyne 

Steenvoorden, Andreea Ioan-Facsinay, Oleg A. Mayboroda, Alejandro Ondo-

Mendez, and Martin Giera. 2020. “Lipid Metabolism of Leukocytes in the 

Unstimulated and Activated States.” Analytical and Bioanalytical Chemistry 412 

(10): 2353–63. https://doi.org/10.1007/s00216-020-02460-8. 

Alexander, Myriam, Hans Petri, Yingjie Ding, Christoph Wandel, Omar Khwaja, and 

Nadia Foskett. 2016. “Morbidity and Medication in a Large Population of 

Individuals with Down Syndrome Compared to the General Population.” 

Developmental Medicine & Child Neurology 58 (3): 246–54. 

https://doi.org/10.1111/dmcn.12868. 



 180 

Alonso, Arnald, Sara Marsal, and Antonio JuliÃ. 2015. “Analytical Methods in 

Untargeted Metabolomics: State of the Art in 2015.” Frontiers in Bioengineering 

and Biotechnology 3 (March). https://doi.org/10.3389/fbioe.2015.00023. 

An, S., R. Kumar, E. D. Sheets, and S. J. Benkovic. 2008. “Reversible 

Compartmentalization of de Novo Purine Biosynthetic Complexes in Living 

Cells.” Science 320 (5872): 103–6. https://doi.org/10.1126/science.1152241. 

Arbuzova, Svetlana, Tim Hutchin, and Howard Cuckle. 2002. “Mitochondrial 

Dysfunction and Down’s Syndrome.” BioEssays 24 (8): 681–84. 

https://doi.org/10.1002/bies.10138. 

Arjonen, Antti, Riina Kaukonen, and Johanna Ivaska. 2011. “Filopodia and Adhesion in 

Cancer Cell Motility.” Cell Adhesion & Migration 5 (5): 421–30. 

https://doi.org/10.4161/cam.5.5.17723. 

Armenta-Medina, Dagoberto, Lorenzo Segovia, and Ernesto Perez-Rueda. 2014. 

“Comparative Genomics of Nucleotide Metabolism: A Tour to the Past of the 

Three Cellular Domains of Life.” BMC Genomics 15 (1): 800. 

https://doi.org/10.1186/1471-2164-15-800. 

Asby, Daniel J., Francesco Cuda, Maxime Beyaert, Franchesca D. Houghton, Felino R. 

Cagampang, and Ali Tavassoli. 2015. “AMPK Activation via Modulation of De 

Novo Purine Biosynthesis with an Inhibitor of ATIC Homodimerization.” 

Chemistry & Biology 22 (7): 838–48. 

https://doi.org/10.1016/j.chembiol.2015.06.008. 

Ashburner, Michael, Catherine A. Ball, Judith A. Blake, David Botstein, Heather Butler, 

J. Michael Cherry, Allan P. Davis, et al. 2000. “Gene Ontology: Tool for the 



 181 

Unification of Biology.” Nature Genetics 25 (1): 25–29. 

https://doi.org/10.1038/75556. 

Bachhawat, Anand Kumar, and Shambhu Yadav. 2018. “The Glutathione Cycle: 

Glutathione Metabolism beyond the γ-Glutamyl Cycle: Glutathione Metabolism 

Beyond the γ-Glutamyl Cycle.” IUBMB Life 70 (7): 585–92. 

https://doi.org/10.1002/iub.1756. 

Baggot, Paddy Jim, Anna Jane Y. Eliseo, Nathaniel G. DeNicola, Jeremy A. 

Kalamarides, and James D. Shoemaker. 2008. “Pyridoxine-Related Metabolite 

Concentrations in Normal and Down Syndrome Amniotic Fluid.” Fetal Diagnosis 

and Therapy 23 (4): 254–57. https://doi.org/10.1159/000123610. 

Baresova, Veronika, Matyas Krijt, Vaclava Skopova, Olga Souckova, Stanislav Kmoch, 

and Marie Zikanova. 2016. “CRISPR-Cas9 Induced Mutations along de Novo 

Purine Synthesis in HeLa Cells Result in Accumulation of Individual Enzyme 

Substrates and Affect Purinosome Formation.” Molecular Genetics and 

Metabolism 119 (3): 270–77. https://doi.org/10.1016/j.ymgme.2016.08.004. 

Beavo, Joseph A., and Laurence L. Brunton. 2002. “Cyclic Nucleotide Research — Still 

Expanding after Half a Century.” Nature Reviews Molecular Cell Biology 3 (9): 

710–17. https://doi.org/10.1038/nrm911. 

Begenisic, Tatjana, Laura Baroncelli, Gabriele Sansevero, Marco Milanese, Tiziana 

Bonifacino, Giambattista Bonanno, Giovanni Cioni, Lamberto Maffei, and 

Alessandro Sale. 2014. “Fluoxetine in Adulthood Normalizes GABA Release and 

Rescues Hippocampal Synaptic Plasticity and Spatial Memory in a Mouse Model 



 182 

of Down Syndrome.” Neurobiology of Disease 63 (March): 12–19. 

https://doi.org/10.1016/j.nbd.2013.11.010. 

Bernhardi, Rommy von, Gigliola Ramírez, Rodrigo Toro, and Jaime Eugenín. 2007. 

“Pro-Inflammatory Conditions Promote Neuronal Damage Mediated by Amyloid 

Precursor Protein and Decrease Its Phagocytosis and Degradation by Microglial 

Cells in Culture.” Neurobiology of Disease 26 (1): 153–64. 

https://doi.org/10.1016/j.nbd.2006.12.006. 

Beskow, Laura M. 2016. “Lessons from HeLa Cells: The Ethics and Policy of 

Biospecimens.” Annual Review of Genomics and Human Genetics 17 (1): 395–

417. https://doi.org/10.1146/annurev-genom-083115-022536. 

Bindea, Gabriela, and Bernhard Mlecnik. 2019. “ClueGO Documentation.” 

http://www.ici.upmc.fr/cluego/ClueGODocumentation2019.pdf. 

Boini, Krishna M, Saisudha Koka, Min Xia, Joseph K Ritter, Todd W Gehr, and Pin-Lan 

Li. 2018. “Sphingolipids in Obesity and Related Complications.” Front Biosci, 

30. 

Brand, L M, and J M Lowenstein. 1978. “Effect of Diet on Adenylosuccinase Activity in 

Various Organs of Rat and Chicken.” Journal of Biological Chemistry 253 (19): 

6872–78. 

Brodsky, Gary, Tristan Barnes, John Bleskan, Laurence Becker, Marlin Cox, and David 

Patterson. 1997. “The Human GARS-AIRS-GART Gene Encodes Two Proteins 

Which Are Differentially Expressed during Human Brain Development and 

Temporally Overexpressed in Cerebellum of Individuals with Down Dyndrome.” 



 183 

Human Molecular Genetics 6 (12): 2043–50. 

https://doi.org/10.1093/hmg/6.12.2043. 

Burnstock, G., B. Dumsday, and A. Smythe. 1972. “Atropine Resistant Excitation of the 

Urinary Bladder: The Possibility of Transmission via Nerves Releasing a Purine 

Nucleotide.” British Journal of Pharmacology 44 (3): 451–61. 

https://doi.org/10.1111/j.1476-5381.1972.tb07283.x. 

Burnstock, Geoffrey. 2006. “Historical Review: ATP as a Neurotransmitter.” Trends in 

Pharmacological Sciences 27 (3): 166–76. 

https://doi.org/10.1016/j.tips.2006.01.005. 

———. 2009. “Purinergic Signalling: Purinergic Signalling.” British Journal of 

Pharmacology 147 (S1): S172–81. https://doi.org/10.1038/sj.bjp.0706429. 

Burton, Graham J., and Eric Jauniaux. 2015. “What Is the Placenta?” American Journal 

of Obstetrics and Gynecology 213 (4): S6.e1-S6.e4. 

https://doi.org/10.1016/j.ajog.2015.07.050. 

“C57BL/6NJ-Pfasem1(IMPC)J/Mmjax.” n.d. The Jackson Laboratory. Accessed May 2, 

2020. https://www.jax.org/strain/033863. 

Caberlotto, Laura, Mario Lauria, Thanh-Phuong Nguyen, and Marco Scotti. 2013. “The 

Central Role of AMP-Kinase and Energy Homeostasis Impairment in 

Alzheimer’s Disease: A Multifactor Network Analysis.” Edited by Peter 

Csermely. PLoS ONE 8 (11): e78919. 

https://doi.org/10.1371/journal.pone.0078919. 

Caetano-Anolles, G., H. S. Kim, and J. E. Mittenthal. 2007. “The Origin of Modern 

Metabolic Networks Inferred from Phylogenomic Analysis of Protein 



 184 

Architecture.” Proceedings of the National Academy of Sciences 104 (22): 9358–

63. https://doi.org/10.1073/pnas.0701214104. 

Caetano-Anollés, Gustavo, Liudmila S. Yafremava, Hannah Gee, Derek Caetano-

Anollés, Hee Shin Kim, and Jay E. Mittenthal. 2009. “The Origin and Evolution 

of Modern Metabolism.” The International Journal of Biochemistry & Cell 

Biology 41 (2): 285–97. https://doi.org/10.1016/j.biocel.2008.08.022. 

Cai, Zhiyou, Liang-Jun Yan, Keshen Li, Sohel H. Quazi, and Bin Zhao. 2012. “Roles of 

AMP-Activated Protein Kinase in Alzheimer’s Disease.” NeuroMolecular 

Medicine 14 (1): 1–14. https://doi.org/10.1007/s12017-012-8173-2. 

Calder, Philip C. 2012. “Mechanisms of Action of (n-3) Fatty Acids.” The Journal of 

Nutrition 142 (3): 592S-599S. https://doi.org/10.3945/jn.111.155259. 

Calderón‐Ospina, Carlos Alberto, and Mauricio Orlando Nava‐Mesa. 2020. “B Vitamins 

in the Nervous System: Current Knowledge of the Biochemical Modes of Action 

and Synergies of Thiamine, Pyridoxine, and Cobalamin.” CNS Neuroscience & 

Therapeutics 26 (1): 5–13. https://doi.org/10.1111/cns.13207. 

Cantó, Carles, Lake Q. Jiang, Atul S. Deshmukh, Chikage Mataki, Agnes Coste, Marie 

Lagouge, Juleen R. Zierath, and Johan Auwerx. 2010. “Interdependence of 

AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal 

Muscle.” Cell Metabolism 11 (3): 213–19. 

https://doi.org/10.1016/j.cmet.2010.02.006. 

Carniglia, Lila, Delia Ramírez, Daniela Durand, Julieta Saba, Juan Turati, Carla Caruso, 

Teresa N. Scimonelli, and Mercedes Lasaga. 2017. “Neuropeptides and 



 185 

Microglial Activation in Inflammation, Pain, and Neurodegenerative Diseases.” 

Mediators of Inflammation 2017: 1–23. https://doi.org/10.1155/2017/5048616. 

Carter, M, E McCaughey, D Annaz, and C M Hill. 2009. “Sleep Problems in a Down 

Syndrome Population.” Archives of Disease in Childhood 94 (4): 308. 

https://doi.org/10.1136/adc.2008.146845. 

Chan, Chung Yu, Hong Zhao, Raymond J. Pugh, Anthony M. Pedley, Jarrod French, 

Sara A. Jones, Xiaowei Zhuang, Hyder Jinnah, Tony Jun Huang, and Stephen J. 

Benkovic. 2015. “Purinosome Formation as a Function of the Cell Cycle.” 

Proceedings of the National Academy of Sciences 112 (5): 1368–73. 

https://doi.org/10.1073/pnas.1423009112. 

Chen, Linlin, Huidan Deng, Hengmin Cui, Jing Fang, Zhicai Zuo, Junliang Deng, 

Yinglun Li, Xun Wang, and Ling Zhao. 2018. “Inflammatory Responses and 

Inflammation-Associated Diseases in Organs.” Oncotarget 9 (6): 7204–18. 

https://doi.org/10.18632/oncotarget.23208. 

Chen, Xu, Xuan Li, Wenyan Zhang, Jie He, Bo Xu, Bin Lei, Zhenhua Wang, Courtney 

Cates, Thomas Rousselle, and Ji Li. 2018. “Activation of AMPK Inhibits 

Inflammatory Response during Hypoxia and Reoxygenation through Modulating 

JNK-Mediated NF-ΚB Pathway.” Metabolism 83 (June): 256–70. 

https://doi.org/10.1016/j.metabol.2018.03.004. 

Choi, Un Yung, Ji-Seon Kang, Yune Sahng Hwang, and Young-Joon Kim. 2015. 

“Oligoadenylate Synthase-like (OASL) Proteins: Dual Functions and 

Associations with Diseases.” Experimental & Molecular Medicine 47 (3): e144–

e144. https://doi.org/10.1038/emm.2014.110. 



 186 

Chou, Jonathan, Sylvain Provot, and Zena Werb. 2010. “GATA3 in Development and 

Cancer Differentiation: Cells GATA Have It!” Journal of Cellular Physiology 

222 (1): 42–49. https://doi.org/10.1002/jcp.21943. 

Cock, Peter J. A., Christopher J. Fields, Naohisa Goto, Michael L. Heuer, and Peter M. 

Rice. 2010. “The Sanger FASTQ File Format for Sequences with Quality Scores, 

and the Solexa/Illumina FASTQ Variants.” Nucleic Acids Research 38 (6): 1767–

71. https://doi.org/10.1093/nar/gkp1137. 

Colangelo, Vittorio, Jill Schurr, Melvyn J. Ball, Ricardo Palacios Pelaez, Nicolas G. 

Bazan, and Walter J. Lukiw. 2002. “Gene Expression Profiling of 12633 Genes in 

Alzheimer Hippocampal CA1: Transcription and Neurotrophic Factor down-

Regulation and up-Regulation of Apoptotic and pro-Inflammatory Signaling.” 

Journal of Neuroscience Research 70 (3): 462–73. 

https://doi.org/10.1002/jnr.10351. 

Contestabile, Andrea, Salvatore Magara, and Laura Cancedda. 2017. “The GABAergic 

Hypothesis for Cognitive Disabilities in Down Syndrome.” Frontiers in Cellular 

Neuroscience 11 (March). https://doi.org/10.3389/fncel.2017.00054. 

Corney, David C. 2013. “RNA-Seq Using Next Generation Sequencing.” Materials and 

Methods 3 (August). https://doi.org/10.13070/mm.en.3.203. 

Corton, Julia M., John G. Gillespie, Simon A. Hawley, and D. Grahame Hardie. 1995. 

“5-Aminoimidazole-4-Carboxamide Ribonucleoside. A Specific Method for 

Activating AMP-Activated Protein Kinase in Intact Cells?” European Journal of 

Biochemistry 229 (2): 558–65. https://doi.org/10.1111/j.1432-

1033.1995.tb20498.x. 



 187 

Costa, Alberto C.S., and Michael J. Grybko. 2005. “Deficits in Hippocampal CA1 LTP 

Induced by TBS but Not HFS in the Ts65Dn Mouse: A Model of Down 

Syndrome.” Neuroscience Letters 382 (3): 317–22. 

https://doi.org/10.1016/j.neulet.2005.03.031. 

“CRISPR Guide.” n.d. Addgene. Accessed May 1, 2020. addgene.org/guides/crispr/. 

Cui, Hang, Yahui Kong, and Hong Zhang. 2012. “Oxidative Stress, Mitochondrial 

Dysfunction, and Aging.” Journal of Signal Transduction 2012: 1–13. 

https://doi.org/10.1155/2012/646354. 

Cui, Jian-Guo, Hitoshi Kuroda, N. Vishvanath Chandrasekharan, Ricardo Palacios 

Pelaez, Daniel L. Simmons, Nicolas G. Bazan, and Walter J. Lukiw. 2004. 

“Cyclooxygenase-3 Gene Expression in Alzheimer Hippocampus and in Stressed 

Human Neural Cells.” Neurochemical Research 29 (9): 1731–37. 

https://doi.org/10.1023/B:NERE.0000035809.70905.8a. 

Dakshinamurti, Krishnamurti, S.K. Sharma, and Jonathan D. Geiger. 2003. 

“Neuroprotective Actions of Pyridoxine.” Biochimica et Biophysica Acta (BBA) - 

Proteins and Proteomics 1647 (1–2): 225–29. https://doi.org/10.1016/S1570-

9639(03)00054-2. 

Dalto, Danyel, and Jean-Jacques Matte. 2017. “Pyridoxine (Vitamin B6) and the 

Glutathione Peroxidase System; a Link between One-Carbon Metabolism and 

Antioxidation.” Nutrients 9 (3): 189. https://doi.org/10.3390/nu9030189. 

Darwin, Charles. 1859. On the Origin of Species by Means of Natural Selection, or, The 

Preservation of Favoured Races in the Struggle for Life /. Vol. 1859. London : 

John Murray,. https://www.biodiversitylibrary.org/item/135954. 



 188 

Davies, Stephen, Nicholas Helps, Patricia Cohen, and Grahame Hardie. 1995. “5′-AMP 

Inhibits Dephosphorylation, as Well as Promoting Phosphorylation, of the AMP-

Activated Protein Kinase. Studies Using Bacterially Expressed Human Protein 

Phosphatase-2C α and Native Bovine Protein Phosphatase-2A c.” FEBS Letters 

377 (3): 421–25. https://doi.org/10.1016/0014-5793(95)01368-7. 

Dayton, Talya L, Tyler Jacks, and Matthew G Vander Heiden. 2016. “PKM 2, Cancer 

Metabolism, and the Road Ahead.” EMBO Reports 17 (12): 1721–30. 

https://doi.org/10.15252/embr.201643300. 

Debieve, F. 2001. “Vascular Endothelial Growth Factor and Placenta Growth Factor 

Concentrations in Down’s Syndrome and Control Pregnancies.” Molecular 

Human Reproduction 7 (8): 765–70. https://doi.org/10.1093/molehr/7.8.765. 

Decker, Yann, Gethin McBean, and Catherine Godson. 2009. “Lipoxin A 4 Inhibits IL-

1β-Induced IL-8 and ICAM-1 Expression in 1321N1 Human Astrocytoma Cells.” 

American Journal of Physiology-Cell Physiology 296 (6): C1420–27. 

https://doi.org/10.1152/ajpcell.00380.2008. 

Deidda, Gabriele, Ignacio F. Bozarth, and Laura Cancedda. 2014. “Modulation of 

GABAergic Transmission in Development and Neurodevelopmental Disorders: 

Investigating Physiology and Pathology to Gain Therapeutic Perspectives.” 

Frontiers in Cellular Neuroscience 8 (May). 

https://doi.org/10.3389/fncel.2014.00119. 

Deng, Yijun, Jongsik Gam, Jarrod B. French, Hong Zhao, Songon An, and Stephen J. 

Benkovic. 2012. “Mapping Protein-Protein Proximity in the Purinosome.” 



 189 

Journal of Biological Chemistry 287 (43): 36201–7. 

https://doi.org/10.1074/jbc.M112.407056. 

Deribe, Yonathan Lissanu, Tony Pawson, and Ivan Dikic. 2010. “Post-Translational 

Modifications in Signal Integration.” Nature Structural & Molecular Biology 17 

(6): 666–72. https://doi.org/10.1038/nsmb.1842. 

Derynck, Rik, and Ying E Zhang. 2003. “Smad-Dependent and Smad-Independent 

Pathways in TGF-b Family Signalling” 425: 8. 

Dey, Arpita, Krishnendu Bhowmik, Arpita Chatterjee, Pit Baran Chakrabarty, Swagata 

Sinha, and Kanchan Mukhopadhyay. 2013. “Down Syndrome Related Muscle 

Hypotonia: Association with COL6A3 Functional SNP Rs2270669.” Frontiers in 

Genetics 4. https://doi.org/10.3389/fgene.2013.00057. 

Díez-Zaera, M., J. I. Díaz-Hernández, E. Hernández-Álvarez, H. Zimmermann, M. Díaz-

Hernández, and M. T. Miras-Portugal. 2011. “Tissue-Nonspecific Alkaline 

Phosphatase Promotes Axonal Growth of Hippocampal Neurons.” Edited by 

Kozo Kaibuchi. Molecular Biology of the Cell 22 (7): 1014–24. 

https://doi.org/10.1091/mbc.e10-09-0740. 

Donti, Taraka R., Gerarda Cappuccio, Leroy Hubert, Juanita Neira, Paldeep S. Atwal, 

Marcus J. Miller, Aaron L. Cardon, et al. 2016. “Diagnosis of Adenylosuccinate 

Lyase Deficiency by Metabolomic Profiling in Plasma Reveals a Phenotypic 

Spectrum.” Molecular Genetics and Metabolism Reports 8 (September): 61–66. 

https://doi.org/10.1016/j.ymgmr.2016.07.007. 

Douillet, Delphine C., Benoît Pinson, Johanna Ceschin, Hans C. Hürlimann, Christelle 

Saint-Marc, Damien Laporte, Stéphane Claverol, Manfred Konrad, Marc Bonneu, 



 190 

and Bertrand Daignan-Fornier. 2019. “Metabolomics and Proteomics Identify the 

Toxic Form and the Associated Cellular Binding Targets of the Anti-Proliferative 

Drug AICAR.” Journal of Biological Chemistry 294 (3): 805–15. 

https://doi.org/10.1074/jbc.RA118.004964. 

Duan, Guangyou, and Dirk Walther. 2015. “The Roles of Post-Translational 

Modifications in the Context of Protein Interaction Networks.” Edited by Predrag 

Radivojac. PLOS Computational Biology 11 (2): e1004049. 

https://doi.org/10.1371/journal.pcbi.1004049. 

Dunn, Paul, Cassie L. Albury, Neven Maksemous, Miles C. Benton, Heidi G. Sutherland, 

Robert A. Smith, Larisa M. Haupt, and Lyn R. Griffiths. 2018. “Next Generation 

Sequencing Methods for Diagnosis of Epilepsy Syndromes.” Frontiers in 

Genetics 9 (February): 20. https://doi.org/10.3389/fgene.2018.00020. 

Duval, Nathan, Kyleen Luhrs, Terry G. Wilkinson, Veronika Baresova, Vaclava 

Skopova, Stanislav Kmoch, Guido N. Vacano, Marie Zikanova, and David 

Patterson. 2013. “Genetic and Metabolomic Analysis of AdeD and AdeI Mutants 

of de Novo Purine Biosynthesis: Cellular Models of de Novo Purine Biosynthesis 

Deficiency Disorders.” Molecular Genetics and Metabolism 108 (3): 178–89. 

https://doi.org/10.1016/j.ymgme.2013.01.002. 

Eichmann, Thomas Oliver, and Achim Lass. 2015. “DAG Tales: The Multiple Faces of 

Diacylglycerol—Stereochemistry, Metabolism, and Signaling.” Cellular and 

Molecular Life Sciences 72 (20): 3931–52. https://doi.org/10.1007/s00018-015-

1982-3. 



 191 

Erol, Adnan. 2008. “An Integrated and Unifying Hypothesis for the Metabolic Basis of 

Sporadic Alzheimer’s Disease.” Journal of Alzheimer’s Disease 13 (3): 241–53. 

https://doi.org/10.3233/JAD-2008-13302. 

Fabregat, Antonio, Steven Jupe, Lisa Matthews, Konstantinos Sidiropoulos, Marc 

Gillespie, Phani Garapati, Robin Haw, et al. 2018. “The Reactome Pathway 

Knowledgebase.” Nucleic Acids Research 46 (D1): D649–55. 

https://doi.org/10.1093/nar/gkx1132. 

Fan, Fang-Tian, Cun-Si Shen, Li Tao, Chao Tian, Zhao-Guo Liu, Zhi-Jie Zhu, Yu-Ping 

Liu, et al. 2014. “PKM2 Regulates Hepatocellular Carcinoma Cell Epithelial-

Mesenchymal Transition and Migration upon EGFR Activation.” Asian Pacific 

Journal of Cancer Prevention 15 (5): 1961–70. 

https://doi.org/10.7314/APJCP.2014.15.5.1961. 

Fang, Min, Jingping Yuan, Chunwei Peng, and Yan Li. 2014. “Collagen as a Double-

Edged Sword in Tumor Progression.” Tumor Biology 35 (4): 2871–82. 

https://doi.org/10.1007/s13277-013-1511-7. 

Fishman, William H. 1987. “Clinical and Biological Significance of an Isozyme Tumor 

Marker—PLAP.” Clinical Biochemistry 20 (6): 387–92. 

https://doi.org/10.1016/0009-9120(87)90003-8. 

Fishman, William H., Norma R. Inglis, Sidney Green, Claire L. Anstiss, Nimai K. Gosh, 

Arnold E. Reif, Robert Rustigain, Melvin J. Krant, and Leo L. Stolbach. 1968. 

“Immunology and Biochemistry of Regan Isoenzyme of Alkaline Phosphatase in 

Human Cancer.” Nature 219 (5155): 697–99. https://doi.org/10.1038/219697a0. 



 192 

Flores, Betsi, and Rommy von Bernhardi. 2012. “Transforming Growth Factor Β1 

Modulates Amyloid β-Induced Glial Activation through the Smad3-Dependent 

Induction of MAPK Phosphatase-1.” Journal of Alzheimer’s Disease 32 (2): 417–

29. https://doi.org/10.3233/JAD-2012-120721. 

Fonta, Caroline, Laszlo Negyessy, Luc Renaud, and Pascal Barone. 2005. “Postnatal 

Development of Alkaline Phosphatase Activity Correlates with the Maturation of 

Neurotransmission in the Cerebral Cortex.” The Journal of Comparative 

Neurology 486 (2): 179–96. https://doi.org/10.1002/cne.20524. 

Freeman, Sallie B, Lora H Bean, Emily G Allen, Stuart W Tinker, Adam E Locke, 

Charlotte Druschel, Charlotte A Hobbs, et al. 2008. “Ethnicity, Sex, and the 

Incidence of Congenital Heart Defects: A Report from the National Down 

Syndrome Project.” Genetics in Medicine 10 (3): 173–80. 

https://doi.org/10.1097/GIM.0b013e3181634867. 

Fridman, Alla, Arindam Saha, Adriano Chan, Darren E. Casteel, Renate B. Pilz, and 

Gerry R. Boss. 2013. “Cell Cycle Regulation of Purine Synthesis by 

Phosphoribosyl Pyrophosphate and Inorganic Phosphate.” Biochemical Journal 

454 (1): 91–99. https://doi.org/10.1042/BJ20130153. 

Fumagalli, Marta, Davide Lecca, Maria P. Abbracchio, and Stefania Ceruti. 2017. 

“Pathophysiological Role of Purines and Pyrimidines in Neurodevelopment: 

Unveiling New Pharmacological Approaches to Congenital Brain Diseases.” 

Frontiers in Pharmacology 8 (December): 941. 

https://doi.org/10.3389/fphar.2017.00941. 



 193 

Garcia, Daniel, and Reuben J. Shaw. 2017. “AMPK: Mechanisms of Cellular Energy 

Sensing and Restoration of Metabolic Balance.” Molecular Cell 66 (6): 789–800. 

https://doi.org/10.1016/j.molcel.2017.05.032. 

Gardiner, Katheleen. 2004. “Gene-Dosage Effects in Down Syndrome and Trisomic 

Mouse Models.” Genome Biology 5 (10): 244–244. https://doi.org/10.1186/gb-

2004-5-10-244. 

Gitiaux, Cyril, Irène Ceballos-Picot, Sandrine Marie, Vassili Valayannopoulos, Marlène 

Rio, Séverine Verrieres, Jean François Benoist, Marie Françoise Vincent, Isabelle 

Desguerre, and Nadia Bahi-Buisson. 2009. “Misleading Behavioural Phenotype 

with Adenylosuccinate Lyase Deficiency.” European Journal of Human Genetics 

17 (1): 133–36. https://doi.org/10.1038/ejhg.2008.174. 

Gräler, M. 2002. “Lysophospholipids and Their G Protein-Coupled Receptors in 

Inflammation and Immunity.” Biochimica et Biophysica Acta (BBA) - Molecular 

and Cell Biology of Lipids 1582 (1–3): 168–74. https://doi.org/10.1016/S1388-

1981(02)00152-X. 

Gude, Neil M., Claire T. Roberts, Bill Kalionis, and Roger G. King. 2004. “Growth and 

Function of the Normal Human Placenta.” Thrombosis Research 114 (5–6): 397–

407. https://doi.org/10.1016/j.thromres.2004.06.038. 

Guigas, B., L. Bertrand, N. Taleux, M. Foretz, N. Wiernsperger, D. Vertommen, F. 

Andreelli, B. Viollet, and L. Hue. 2006. “5-Aminoimidazole-4-Carboxamide-1- -

D-Ribofuranoside and Metformin Inhibit Hepatic Glucose Phosphorylation by an 

AMP-Activated Protein Kinase-Independent Effect on Glucokinase 



 194 

Translocation.” Diabetes 55 (4): 865–74. 

https://doi.org/10.2337/diabetes.55.04.06.db05-1178. 

Guilherme, Adilson, Joseph V. Virbasius, Vishwajeet Puri, and Michael P. Czech. 2008. 

“Adipocyte Dysfunctions Linking Obesity to Insulin Resistance and Type 2 

Diabetes.” Nature Reviews Molecular Cell Biology 9 (5): 367–77. 

https://doi.org/10.1038/nrm2391. 

Hamabe, A., M. Konno, N. Tanuma, H. Shima, K. Tsunekuni, K. Kawamoto, N. Nishida, 

et al. 2014. “Role of Pyruvate Kinase M2 in Transcriptional Regulation Leading 

to Epithelial-Mesenchymal Transition.” Proceedings of the National Academy of 

Sciences 111 (43): 15526–31. https://doi.org/10.1073/pnas.1407717111. 

Hanlon, C. D., and D. J. Andrew. 2015. “Outside-in Signaling - a Brief Review of GPCR 

Signaling with a Focus on the Drosophila GPCR Family.” Journal of Cell Science 

128 (19): 3533–42. https://doi.org/10.1242/jcs.175158. 

Hanna, Violette Said, and Ebtisam Abdel Aziz Hafez. 2018. “Synopsis of Arachidonic 

Acid Metabolism: A Review.” Journal of Advanced Research 11 (May): 23–32. 

https://doi.org/10.1016/j.jare.2018.03.005. 

Hardie, D. G. 2011. “AMP-Activated Protein Kinase--an Energy Sensor That Regulates 

All Aspects of Cell Function.” Genes & Development 25 (18): 1895–1908. 

https://doi.org/10.1101/gad.17420111. 

Hawley, Simon A., Michele A. Selbert, Elaine G. Goldstein, Arthur M. Edelman, David 

Carling, and D. Grahame Hardie. 1995. “5′-AMP Activates the AMP-Activated 

Protein Kinase Cascade, and Ca 2+ /Calmodulin Activates the Calmodulin-

Dependent Protein Kinase I Cascade, via Three Independent Mechanisms.” 



 195 

Journal of Biological Chemistry 270 (45): 27186–91. 

https://doi.org/10.1074/jbc.270.45.27186. 

Ho, Lap, Dushyant Purohit, Vahram Haroutunian, James D. Luterman, Fitzroy Willis, Jan 

Naslund, Joseph D. Buxbaum, Richard C. Mohs, Paul S. Aisen, and Giulio Maria 

Pasinetti. 2001. “Neuronal Cyclooxygenase 2 Expression in the Hippocampal 

Formation as a Function of the Clinical Progression of Alzheimer Disease.” 

Archives of Neurology 58 (3). https://doi.org/10.1001/archneur.58.3.487. 

Hofer, Aldebaran M., and Konstantinos Lefkimmiatis. 2007. “Extracellular Calcium and 

CAMP: Second Messengers as ‘Third Messengers’?” Physiology 22 (5): 320–27. 

https://doi.org/10.1152/physiol.00019.2007. 

Holmes, Edward W., John A. McDonald, Joe M. McCord, James B. Wyngaarden, and 

William N. Kelley. 1973. “Human Glutamine Phosphoribosylpyrophosphate 

Amidotransferase: Kinetic and Regulatory Properties.” Journal of Biological 

Chemistry 248 (1): 144–50. 

Holmes, Edward W., James B. Wyngaarden, and William N. Kelley. 1973. “Human 

Glutamine Phosphoribosylpyrophosphate Amidotransferase: Two Molecular 

Forms Interconvertable by Purine Ribonucleotides and 

Phosphoribosylpyrophosphate.” Journal of Biological Chemistry 248 (17): 6035–

40. 

Hosios, Aaron M., Brian P. Fiske, Dan Y. Gui, and Matthew G. Vander Heiden. 2015. 

“Lack of Evidence for PKM2 Protein Kinase Activity.” Molecular Cell 59 (5): 

850–57. https://doi.org/10.1016/j.molcel.2015.07.013. 



 196 

Hove-Jensen, Bjarne, Kasper R. Andersen, Mogens Kilstrup, Jan Martinussen, Robert L. 

Switzer, and Martin Willemoës. 2017. “Phosphoribosyl Diphosphate (PRPP): 

Biosynthesis, Enzymology, Utilization, and Metabolic Significance.” 

Microbiology and Molecular Biology Reviews 81 (1): e00040-16, e00040-16. 

https://doi.org/10.1128/MMBR.00040-16. 

Huang, Jingxiang, Christian C. Dibble, Mika Matsuzaki, and Brendan D. Manning. 2008. 

“The TSC1-TSC2 Complex Is Required for Proper Activation of MTOR Complex 

2.” Molecular and Cellular Biology 28 (12): 4104–15. 

https://doi.org/10.1128/MCB.00289-08. 

Huo, Hai-Qin, Zhuang-Yin Qu, Fang Yuan, Lixiang Ma, Lin Yao, Min Xu, Yao Hu, et al. 

2018. “Modeling Down Syndrome with Patient IPSCs Reveals Cellular and 

Migration Deficits of GABAergic Neurons.” Stem Cell Reports 10 (4): 1251–66. 

https://doi.org/10.1016/j.stemcr.2018.02.001. 

Inoki, Ken, Joungmok Kim, and Kun-Liang Guan. 2012. “AMPK and MTOR in Cellular 

Energy Homeostasis and Drug Targets.” Annual Review of Pharmacology and 

Toxicology 52 (1): 381–400. https://doi.org/10.1146/annurev-pharmtox-010611-

134537. 

International Human Genome Sequencing Consortium. 2004. “Finishing the Euchromatic 

Sequence of the Human Genome.” Nature 431 (7011): 931–45. 

https://doi.org/10.1038/nature03001. 

Iommarini, Luisa, Anna Ghelli, Giuseppe Gasparre, and Anna Maria Porcelli. 2017. 

“Mitochondrial Metabolism and Energy Sensing in Tumor Progression.” 



 197 

Mitochondria in Cancer 1858 (8): 582–90. 

https://doi.org/10.1016/j.bbabio.2017.02.006. 

Izzo, Antonella, Nunzia Mollo, Maria Nitti, Simona Paladino, Gaetano Calì, Rita 

Genesio, Ferdinando Bonfiglio, et al. 2018. “Mitochondrial Dysfunction in down 

Syndrome: Molecular Mechanisms and Therapeutic Targets.” Molecular 

Medicine 24 (1): 2. https://doi.org/10.1186/s10020-018-0004-y. 

Izzo, Antonella, Maria Nitti, Nunzia Mollo, Simona Paladino, Claudio Procaccini, 

Deriggio Faicchia, Gaetano Calì, et al. 2017. “Metformin Restores the 

Mitochondrial Network and Reverses Mitochondrial Dysfunction in Down 

Syndrome Cells.” Human Molecular Genetics, January, ddx016. 

https://doi.org/10.1093/hmg/ddx016. 

Janani, C., and B.D. Ranjitha Kumari. 2015. “PPAR Gamma Gene – A Review.” 

Diabetes & Metabolic Syndrome: Clinical Research & Reviews 9 (1): 46–50. 

https://doi.org/10.1016/j.dsx.2014.09.015. 

Janssen, Joëlle J. E., Sander Grefte, Jaap Keijer, and Vincent C. J. de Boer. 2019. “Mito-

Nuclear Communication by Mitochondrial Metabolites and Its Regulation by B-

Vitamins.” Frontiers in Physiology 10 (February): 78. 

https://doi.org/10.3389/fphys.2019.00078. 

Jeon, Sang-Min. 2016. “Regulation and Function of AMPK in Physiology and Diseases.” 

Experimental & Molecular Medicine 48 (7): e245–e245. 

https://doi.org/10.1038/emm.2016.81. 

Jinnah, H.A., Richard l. Sabina, and Georges Van Den Berghe. 2013. “Metabolic 

Disorders of Purine Metabolism Affecting the Nervous System.” In Handbook of 



 198 

Clinical Neurology, 113:1827–36. Elsevier. https://doi.org/10.1016/B978-0-444-

59565-2.00052-6. 

Jurecka, Agnieszka, Marie Zikanova, Stanislav Kmoch, and Anna Tylki-Szymańska. 

2015. “Adenylosuccinate Lyase Deficiency.” Journal of Inherited Metabolic 

Disease 38 (2): 231–42. https://doi.org/10.1007/s10545-014-9755-y. 

Kalluri, Raghu. 2009. “EMT: When Epithelial Cells Decide to Become Mesenchymal-

like Cells.” The Journal of Clinical Investigation 119 (6): 1417–19. 

https://doi.org/10.1172/JCI39675. 

Kalluri, Raghu, and Robert A. Weinberg. 2009. “The Basics of Epithelial-Mesenchymal 

Transition.” Journal of Clinical Investigation 119 (6): 1420–28. 

https://doi.org/10.1172/JCI39104. 

Kappock, T Joseph, Steven E Ealick, and JoAnne Stubbe. 2000. “Modular Evolution of 

the Purine Biosynthetic Pathway.” Current Opinion in Chemical Biology 4 (5): 

567–72. https://doi.org/10.1016/S1367-5931(00)00133-2. 

Kaur, Gurvinder, and Jannette M. Dufour. 2012. “Cell Lines: Valuable Tools or Useless 

Artifacts.” Spermatogenesis 2 (1): 1–5. https://doi.org/10.4161/spmg.19885. 

Keller, K. E., I. S. Tan, and Y.-S. Lee. 2012. “SAICAR Stimulates Pyruvate Kinase 

Isoform M2 and Promotes Cancer Cell Survival in Glucose-Limited Conditions.” 

Science 338 (6110): 1069–72. https://doi.org/10.1126/science.1224409. 

Keller, Kirstie, Zainab Doctor, Zachary Dwyer, and Y.-S. Lee. 2014. “SAICAR Induces 

Protein Kinase Activity of PKM2 That Is Necessary for Sustained Proliferative 

Signaling of Cancer Cells.” Molecular Cell 53 (5): 700–709. 

https://doi.org/10.1016/j.molcel.2014.02.015. 



 199 

Kennedy, David. 2016. “B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A 

Review.” Nutrients 8 (2): 68. https://doi.org/10.3390/nu8020068. 

Kettenmann, Helmut, Uwe-Karsten Hanisch, Mami Noda, and Alexei Verkhratsky. 2011. 

“Physiology of Microglia.” Physiological Reviews 91 (2): 461–553. 

https://doi.org/10.1152/physrev.00011.2010. 

Kinney, Jefferson W., Shane M. Bemiller, Andrew S. Murtishaw, Amanda M. Leisgang, 

Arnold M. Salazar, and Bruce T. Lamb. 2018. “Inflammation as a Central 

Mechanism in Alzheimer’s Disease.” Alzheimer’s & Dementia: Translational 

Research & Clinical Interventions 4 (1): 575–90. 

https://doi.org/10.1016/j.trci.2018.06.014. 

Kirchner, Johannes, Bernhard Brüne, and Dmitry Namgaladze. 2018. “AICAR Inhibits 

NFκB DNA Binding Independently of AMPK to Attenuate LPS-Triggered 

Inflammatory Responses in Human Macrophages.” Scientific Reports 8 (1): 7801. 

https://doi.org/10.1038/s41598-018-26102-3. 

Kleijnen, Jos, and Paul Knipschild. 1991. “Niacin and Vitamin B6 in Mental 

Functioning: A Review of Controlled Trials in Humans.” Biological Psychiatry 

29 (9): 931–41. https://doi.org/10.1016/0006-3223(91)90060-Y. 

Kleschevnikov, A. M. 2004. “Hippocampal Long-Term Potentiation Suppressed by 

Increased Inhibition in the Ts65Dn Mouse, a Genetic Model of Down Syndrome.” 

Journal of Neuroscience 24 (37): 8153–60. 

https://doi.org/10.1523/JNEUROSCI.1766-04.2004. 

Knöfler, Martin, Sandra Haider, Leila Saleh, Jürgen Pollheimer, Teena K. J. B. Gamage, 

and Joanna James. 2019. “Human Placenta and Trophoblast Development: Key 



 200 

Molecular Mechanisms and Model Systems.” Cellular and Molecular Life 

Sciences 76 (18): 3479–96. https://doi.org/10.1007/s00018-019-03104-6. 

Knox, Aaron J. 2007. “The GART Gene of Purine Biosynthesis: Assessment of 

Functional Sites through Mutagenesis in CHO Cells and Analysis of Behavioral 

Phenotypes in Transgenic Mice.” Dissertation, Denver, CO: University of 

Colorado. ProQuest Dissertations and Theses. 

Knox, Aaron J., Christine Graham, John Bleskan, Gary Brodsky, and David Patterson. 

2009. “Mutations in the Chinese Hamster Ovary Cell GART Gene of de Novo 

Purine Synthesis.” Gene 429 (1–2): 23–30. 

https://doi.org/10.1016/j.gene.2008.10.007. 

Koellhoffer, Edward, Louise McCullough, and Rodney Ritzel. 2017. “Old Maids: Aging 

and Its Impact on Microglia Function.” International Journal of Molecular 

Sciences 18 (4): 769. https://doi.org/10.3390/ijms18040769. 

Kominsky, Douglas J., Eric L. Campbell, and Sean P. Colgan. 2010. “Metabolic Shifts in 

Immunity and Inflammation.” The Journal of Immunology 184 (8): 4062–68. 

https://doi.org/10.4049/jimmunol.0903002. 

Kondo, Maki, Takashi Yamaoka, Soichi Honda, Yoshihiro Miwa, Rumi Katashima, Maki 

Moritani, Katsuhiko Yoshimoto, Yoshio Hayashi, and Mitsuo Itakura. 2000. “The 

Rate of Cell Growth Is Regulated by Purine Biosynthesis via ATP Production and 

G1 to S Phase Transition1.” The Journal of Biochemistry 128 (1): 57–64. 

https://doi.org/10.1093/oxfordjournals.jbchem.a022730. 

Kristal, Bruce S., Yevgeniya I. Shurubor, Rima Kaddurah-Daouk, and Wayne R. Matson. 

2007. “High-Performance Liquid Chromatography Separations Coupled With 



 201 

Coulometric Electrode Array Detectors.” In Metabolomics: Methods and 

Protocols, edited by Wolfram Weckwerth, 159–74. Totowa, NJ: Humana Press. 

https://doi.org/10.1007/978-1-59745-244-1_10. 

Kroker, Alice J., and John B. Bruning. 2015. “Review of the Structural and Dynamic 

Mechanisms of PPAR γ Partial Agonism.” PPAR Research 2015: 1–15. 

https://doi.org/10.1155/2015/816856. 

Krzywinska, Ewelina, and Christian Stockmann. 2018. “Hypoxia, Metabolism and 

Immune Cell Function.” Biomedicines 6 (2): 56. 

https://doi.org/10.3390/biomedicines6020056. 

Kuda, Ondrej, Christopher M. Jenkins, James R. Skinner, Sung Ho Moon, Xiong Su, 

Richard W. Gross, and Nada A. Abumrad. 2011. “CD36 Protein Is Involved in 

Store-Operated Calcium Flux, Phospholipase A2 Activation, and Production of 

Prostaglandin E2.” Journal of Biological Chemistry 286 (20): 17785–95. 

https://doi.org/10.1074/jbc.M111.232975. 

Langer, D., Y. Ikehara, H. Takebayashi, R. Hawkes, and H. Zimmermann. 2007. “The 

Ectonucleotidases Alkaline Phosphatase and Nucleoside Triphosphate 

Diphosphohydrolase 2 Are Associated with Subsets of Progenitor Cell 

Populations in the Mouse Embryonic, Postnatal and Adult Neurogenic Zones.” 

Neuroscience 150 (4): 863–79. 

https://doi.org/10.1016/j.neuroscience.2007.07.064. 

Lauteslager, Pem, A Vermeer, and Pjm Helders. 1998. “Disturbances in the Motor 

Behaviour of Children with Down’s Syndrome: The Need for a Theoretical 



 202 

Framework.” Physiotherapy 84 (1): 5–13. https://doi.org/10.1016/S0031-

9406(05)65896-8. 

Li, Heng, Bob Handsaker, Alec Wysoker, Tim Fennell, Jue Ruan, Nils Homer, Gabor 

Marth, Goncalo Abecasis, Richard Durbin, and 1000 Genome Project Data 

Processing Subgroup. 2009. “The Sequence Alignment/Map Format and 

SAMtools.” Bioinformatics (Oxford, England) 25 (16): 2078–79. 

https://doi.org/10.1093/bioinformatics/btp352. 

Liberti, Maria V, and Jason W Locasale. 2016. “The Warburg Effect: How Does It 

Benefit Cancer Cells?” Trends in Biochemical Sciences 41 (3): 211–18. 

https://doi.org/10.1016/j.tibs.2015.12.001. 

Lieb, K. 2003. “Inhibition of LPS-Induced INOS and NO Synthesis in Primary Rat 

Microglial Cells.” Neurochemistry International 42 (2): 131–37. 

https://doi.org/10.1016/S0197-0186(02)00076-1. 

Linke, Monika, Stephanie Deborah Fritsch, Nyamdelger Sukhbaatar, Markus 

Hengstschläger, and Thomas Weichhart. 2017. “MTORC1 and MTORC2 as 

Regulators of Cell Metabolism in Immunity.” FEBS Letters 591 (19): 3089–3103. 

https://doi.org/10.1002/1873-3468.12711. 

Liu, Xiaoting, Sheng Quan, Yurong Fu, Weiwei Wang, Wenling Zhang, Xiaofei Wang, 

Chenxi Zhang, Daijun Xiang, Liwen Zhang, and Chengbin Wang. 2020. “Study 

on Amniotic Fluid Metabolism in the Second Trimester of Trisomy 21.” Journal 

of Clinical Laboratory Analysis 34 (3). https://doi.org/10.1002/jcla.23089. 

Liu, Yansheng, Yang Mi, Torsten Mueller, Saskia Kreibich, Evan G. Williams, Audrey 

Van Drogen, Christelle Borel, et al. 2019. “Multi-Omic Measurements of 



 203 

Heterogeneity in HeLa Cells across Laboratories.” Nature Biotechnology 37 (3): 

314–22. https://doi.org/10.1038/s41587-019-0037-y. 

Lott, Ira T. 2012a. “Neurological Phenotypes for Down Syndrome across the Life Span.” 

Progress in Brain Research 197: 101–21. https://doi.org/10.1016/B978-0-444-

54299-1.00006-6. 

Lott, Ira T. 2012b. “Antioxidants in Down Syndrome.” Biochimica et Biophysica Acta 

(BBA) - Molecular Basis of Disease 1822 (5): 657–63. 

https://doi.org/10.1016/j.bbadis.2011.12.010. 

Lott, Ira T, and Mara Dierssen. 2010. “Cognitive Deficits and Associated Neurological 

Complications in Individuals with Down’s Syndrome.” The Lancet Neurology 9 

(6): 623–33. https://doi.org/10.1016/S1474-4422(10)70112-5. 

Love, Michael I, Wolfgang Huber, and Simon Anders. 2014. “Moderated Estimation of 

Fold Change and Dispersion for RNA-Seq Data with DESeq2.” Genome Biology 

15 (12): 550–550. https://doi.org/10.1186/s13059-014-0550-8. 

Luo, Weibo, Hongxia Hu, Ryan Chang, Jun Zhong, Matthew Knabel, Robert O’Meally, 

Robert N. Cole, Akhilesh Pandey, and Gregg L. Semenza. 2011. “Pyruvate 

Kinase M2 Is a PHD3-Stimulated Coactivator for Hypoxia-Inducible Factor 1.” 

Cell 145 (5): 732–44. https://doi.org/10.1016/j.cell.2011.03.054. 

Mádrová, Lucie, Matyáš Krijt, Veronika Barešová, Jan Václavík, David Friedecký, Dana 

Dobešová, Olga Součková, Václava Škopová, Tomáš Adam, and Marie Zikánová. 

2018. “Mass Spectrometric Analysis of Purine de Novo Biosynthesis 

Intermediates.” Edited by Timothy James Garrett. PLOS ONE 13 (12): e0208947. 

https://doi.org/10.1371/journal.pone.0208947. 



 204 

Maere, Steven, Karel Heymans, and Martin Kuiper. 2005. “BiNGO: A Cytoscape Plugin 

to Assess Overrepresentation of Gene Ontology Categories in Biological 

Networks.” Bioinformatics 21 (16): 3448–49. 

https://doi.org/10.1093/bioinformatics/bti551. 

Mai, Cara T., Jennifer L. Isenburg, Mark A. Canfield, Robert E. Meyer, Adolfo Correa, 

Clinton J. Alverson, Philip J. Lupo, et al. 2019. “National Population‐based 

Estimates for Major Birth Defects, 2010–2014.” Birth Defects Research 111 (18): 

1420–35. https://doi.org/10.1002/bdr2.1589. 

Maïano, Christophe, Olivier Hue, Geneviève Lepage, Alexandre J S Morin, Danielle 

Tracey, and Grégory Moullec. 2019. “Do Exercise Interventions Improve Balance 

for Children and Adolescents With Down Syndrome? A Systematic Review.” 

Physical Therapy 99 (5): 507–18. https://doi.org/10.1093/ptj/pzz012. 

Manzoni, Claudia, Demis A Kia, Jana Vandrovcova, John Hardy, Nicholas W Wood, 

Patrick A Lewis, and Raffaele Ferrari. 2018. “Genome, Transcriptome and 

Proteome: The Rise of Omics Data and Their Integration in Biomedical 

Sciences.” Briefings in Bioinformatics 19 (2): 286–302. 

https://doi.org/10.1093/bib/bbw114. 

Maréchal, Loïze, Maximilien Laviolette, Amélie Rodrigue-Way, Baly Sow, Michèle 

Brochu, Véronique Caron, and André Tremblay. 2018. “The CD36-PPARγ 

Pathway in Metabolic Disorders.” International Journal of Molecular Sciences 19 

(5): 1529. https://doi.org/10.3390/ijms19051529. 

Marie, Sandrine, Bénédicte Heron, Pierre Bitoun, Thérèse Timmerman, Georges Van den 

Berghe, and Marie-Françoise Vincent. 2004. “AICA-Ribosiduria: A Novel, 



 205 

Neurologically Devastating Inborn Error of Purine Biosynthesis Caused by 

Mutation of ATIC.” The American Journal of Human Genetics 74 (6): 1276–81. 

https://doi.org/10.1086/421475. 

Martinez, David Lopez, Yugo Tsuchiya, and Ivan Gout. 2014. “Coenzyme A 

Biosynthetic Machinery in Mammalian Cells.” Biochemical Society Transactions 

42 (4): 1112–17. https://doi.org/10.1042/BST20140124. 

Martínez-Reyes, Inmaculada, and Navdeep S. Chandel. 2020. “Mitochondrial TCA Cycle 

Metabolites Control Physiology and Disease.” Nature Communications 11 (1): 

102. https://doi.org/10.1038/s41467-019-13668-3. 

Massé, Karine, and Nicholas Dale. 2012. “Purines as Potential Morphogens during 

Embryonic Development.” Purinergic Signalling 8 (3): 503–21. 

https://doi.org/10.1007/s11302-012-9290-y. 

Matsunuma, Ryoichi, Doug W. Chan, Beom-Jun Kim, Purba Singh, Airi Han, Alexander 

B. Saltzman, Chonghui Cheng, et al. 2018. “DPYSL3 Modulates Mitosis, 

Migration, and Epithelial-to-Mesenchymal Transition in Claudin-Low Breast 

Cancer.” Proceedings of the National Academy of Sciences 115 (51): E11978. 

https://doi.org/10.1073/pnas.1810598115. 

Mazurek, Sybille. 2011. “Pyruvate Kinase Type M2: A Key Regulator of the Metabolic 

Budget System in Tumor Cells.” The International Journal of Biochemistry & 

Cell Biology 43 (7): 969–80. https://doi.org/10.1016/j.biocel.2010.02.005. 

Mazzarino, Randall C., Veronika Baresova, Marie Zikánová, Nathan Duval, Terry G. 

Wilkinson, David Patterson, and Guido N. Vacano. 2019. “The CRISPR-Cas9 

CrADSL HeLa Transcriptome: A First Step in Establishing a Model for ADSL 



 206 

Deficiency and SAICAR Accumulation.” Molecular Genetics and Metabolism 

Reports 21 (December): 100512. https://doi.org/10.1016/j.ymgmr.2019.100512. 

Mazzarino, Randall C, Veronika Baresova, Marie Zikánová, Nathan Duval, Terry G. 

Wilkinson, David Patterson, and Guido N. Vacano. 2020. “The CRISPR-Cas9 

CrATIC HeLa Transcriptome: Characterization of a Novel Cellular Model for 

ATIC Deficiency and ZMP Accumulation.” Preprint. Cell Biology. 

https://doi.org/10.1101/2020.04.28.067066. 

McCoy, Ernest E., Carlo Colombini, and Manuchair Ebadi. 1969. “The Metabolism of 

Vitamin B6 in Down’s Syndrome.” Annals of the New York Academy of Sciences 

166 (1): 116–25. https://doi.org/10.1111/j.1749-6632.1969.tb54262.x. 

McGeer, Patrick L., and Edith G. McGeer. 2007. “NSAIDs and Alzheimer Disease: 

Epidemiological, Animal Model and Clinical Studies.” Neurobiology of Aging 28 

(5): 639–47. https://doi.org/10.1016/j.neurobiolaging.2006.03.013. 

McIntyre, T. M., A. V. Pontsler, A. R. Silva, A. St. Hilaire, Y. Xu, J. C. Hinshaw, G. A. 

Zimmerman, et al. 2003. “Identification of an Intracellular Receptor for 

Lysophosphatidic Acid (LPA): LPA Is a Transcellular PPAR Agonist.” 

Proceedings of the National Academy of Sciences 100 (1): 131–36. 

https://doi.org/10.1073/pnas.0135855100. 

Meares, Gordon P., Hongwei Qin, Yudong Liu, Andrew T. Holdbrooks, and Etty N. 

Benveniste. 2013. “AMP-Activated Protein Kinase Restricts IFN-γ Signaling.” 

The Journal of Immunology 190 (1): 372–80. 

https://doi.org/10.4049/jimmunol.1202390. 



 207 

Medeiros, Rodrigo, Masashi Kitazawa, Giselle F. Passos, David Baglietto-Vargas, David 

Cheng, David H. Cribbs, and Frank M. LaFerla. 2013. “Aspirin-Triggered 

Lipoxin A4 Stimulates Alternative Activation of Microglia and Reduces 

Alzheimer Disease–Like Pathology in Mice.” The American Journal of Pathology 

182 (5): 1780–89. https://doi.org/10.1016/j.ajpath.2013.01.051. 

Metzker, Michael L. 2010. “Sequencing Technologies — the next Generation.” Nature 

Reviews Genetics 11 (1): 31–46. https://doi.org/10.1038/nrg2626. 

Mlecnik, Bernhard, Jérôme Galon, and Gabriela Bindea. 2018. “Comprehensive 

Functional Analysis of Large Lists of Genes and Proteins.” Journal of Proteomics 

171 (January): 2–10. https://doi.org/10.1016/j.jprot.2017.03.016. 

Moffatt, Barbara A., and Hiroshi Ashihara. 2002. “Purine and Pyrimidine Nucleotide 

Synthesis and Metabolism.” The Arabidopsis Book 1 (January): e0018. 

https://doi.org/10.1199/tab.0018. 

Mohri, Ikuko, Keiichi Kadoyama, Takahisa Kanekiyo, Yo Sato, Kuriko Kagitani-

Shimono, Yuko Saito, Kinuko Suzuki, et al. 2007. “Hematopoietic Prostaglandin 

D Synthase and DP1 Receptor Are Selectively Upregulated in Microglia and 

Astrocytes Within Senile Plaques From Human Patients and in a Mouse Model of 

Alzheimer Disease:” Journal of Neuropathology and Experimental Neurology 66 

(6): 469–80. https://doi.org/10.1097/01.jnen.0000240472.43038.27. 

Mosharov, Eugene, Matthew R. Cranford, and Ruma Banerjee. 2000. “The Quantitatively 

Important Relationship between Homocysteine Metabolism and Glutathione 

Synthesis by the Transsulfuration Pathway and Its Regulation by Redox Changes 

†.” Biochemistry 39 (42): 13005–11. https://doi.org/10.1021/bi001088w. 



 208 

Mouchegh, Katharina, Marie Zikánová, Georg F. Hoffmann, Benno Kretzschmar, 

Thomas Kühn, Eva Mildenberger, Gisela Stoltenburg-Didinger, et al. 2007. 

“Lethal Fetal and Early Neonatal Presentation of Adenylosuccinate Lyase 

Deficiency: Observation of 6 Patients in 4 Families.” The Journal of Pediatrics 

150 (1): 57-61.e2. https://doi.org/10.1016/j.jpeds.2006.09.027. 

Nakamura, Hiroyuki, Yuta Moriyama, Tomohiko Makiyama, Shunsuke Emori, Hisahiro 

Yamashita, Risa Yamazaki, and Toshihiko Murayama. 2013. “Lactosylceramide 

Interacts with and Activates Cytosolic Phospholipase A 2 α.” Journal of 

Biological Chemistry 288 (32): 23264–72. 

https://doi.org/10.1074/jbc.M113.491431. 

Narisawa, Sonoko, Hideaki Hasegawa, Keiichi Watanabe, and José Luis Millán. 1994. 

“Stage-Specific Expression of Alkaline Phosphatase during Neural Development 

in the Mouse.” Developmental Dynamics 201 (3): 227–35. 

https://doi.org/10.1002/aja.1002010306. 

Newton, Matthew D., Benjamin J. Taylor, Rosalie P. C. Driessen, Leonie Roos, Nevena 

Cvetesic, Shenaz Allyjaun, Boris Lenhard, Maria Emanuela Cuomo, and David S. 

Rueda. 2019. “DNA Stretching Induces Cas9 Off-Target Activity.” Nature 

Structural & Molecular Biology 26 (3): 185–92. https://doi.org/10.1038/s41594-

019-0188-z. 

Oates, Dale C., and David Patterson. 1977. “Biochemical Genetics of Chinese Hamster 

Cell Mutants with Deviant Purine Metabolism: Characterization of Chinese 

Hamster Cell Mutants Defective in Phosphoribosylpyrophosphate 

Amidotransferase and Phosphoribosylglycinamide Synthetase and an 



 209 

Examination of Alternatives to the First Step of Purine Biosynthesis.” Somatic 

Cell Genetics 3 (6): 561–77. https://doi.org/10.1007/BF01539066. 

Oates, Dale C., Diane Vannais, and David Patterson. 1980. “A Mutant of CHO-K1 Cells 

Deficient in Two Nonsequential Steps of de Novo Purine Biosynthesis.” Cell 20 

(3): 797–805. https://doi.org/10.1016/0092-8674(80)90326-8. 

Ohno, Susumu. 1970. Evolution by Gene Duplication. 1st ed. Springer, Berlin, 

Heidelberg. https://doi.org/10.1007/978-3-642-86659-3. 

Ohtahara, Shunsuke, Yasuko Yamatogi, and Yoko Ohtsuka. 2011. “Vitamin B6 

Treatment of Intractable Seizures.” Brain and Development 33 (9): 783–89. 

https://doi.org/10.1016/j.braindev.2011.01.010. 

Olivier, Jean-Luc. 2016. “Arachidonic Acid in Alzheimer’s Disease.” Journal of 

Neurology and Neuromedicine 1 (9): 1–6. 

https://doi.org/10.29245/2572.942X/2016/9.1086. 

Orlowski, Marian, and Alton Meister. 1970. “The γ-Glutamyl Cycle: A Possible 

Transport System for Amino Acids.” Proceedings of the National Academy of 

Sciences 67 (3): 1248. https://doi.org/10.1073/pnas.67.3.1248. 

Paglinawan, Rey, Ursula Malipiero, Ralph Schlapbach, Karl Frei, Walter Reith, and 

Adriano Fontana. 2003. “TGF? Directs Gene Expression of Activated Microglia 

to an Anti-Inflammatory Phenotype Strongly Focusing on Chemokine Genes and 

Cell Migratory Genes.” Glia 44 (3): 219–31. https://doi.org/10.1002/glia.10286. 

Pál, Csaba, Balázs Papp, and Martin J Lercher. 2005. “Adaptive Evolution of Bacterial 

Metabolic Networks by Horizontal Gene Transfer.” Nature Genetics 37 (12): 

1372–75. https://doi.org/10.1038/ng1686. 



 210 

Papa, S. 2004. “Linking JNK Signaling to NF- B: A Key to Survival.” Journal of Cell 

Science 117 (22): 5197–5208. https://doi.org/10.1242/jcs.01483. 

Park, Haengki, Kenji Ohshima, Satoshi Nojima, Shinichiro Tahara, Masako Kurashige, 

Yumiko Hori, Daisuke Okuzaki, Naoki Wada, Jun-ichiro Ikeda, and Eiichi Morii. 

2018. “Adenylosuccinate Lyase Enhances Aggressiveness of Endometrial Cancer 

by Increasing Killer Cell Lectin-like Receptor C3 Expression by Fumarate.” 

Laboratory Investigation 98 (4): 449–61. https://doi.org/10.1038/s41374-017-

0017-0. 

Pastore, Anna, Giulia Tozzi, Laura Maria Gaeta, Aldo Giannotti, Enrico Bertini, Giorgio 

Federici, Maria Cristina Digilio, and Fiorella Piemonte. 2003. “Glutathione 

Metabolism and Antioxidant Enzymes in Children with down Syndrome.” The 

Journal of Pediatrics 142 (5): 583–85. https://doi.org/10.1067/mpd.2003.203. 

Patterson, David. 1975. “Biochemical Genetics of Chinese Hamster Cell Mutants with 

Deviant Purine Metabolism: Biochemical Analysis of Eight Mutants.” Somatic 

Cell Genetics 1 (1): 91–110. https://doi.org/10.1007/BF01538734. 

———. 1976. “Biochemical Genetics of Chinese Hamster Cell Mutants with Deviant 

Purine Metabolism. IV. Isolation of a Mutant Which Accumulates 

Adenylosuccinic Acid and Succinylaminoimidazole Carboxamide Ribotide.” 

Somatic Cell Genetics 2 (3): 189–203. https://doi.org/10.1007/BF01538958. 

———. 1987. “The Causes of Down Syndrome.” Scientific American 257 (2): 52–60. 

https://doi.org/10.1038/scientificamerican0887-52. 

———. 2009. “Molecular Genetic Analysis of Down Syndrome.” Human Genetics 126 

(1): 195–214. https://doi.org/10.1007/s00439-009-0696-8. 



 211 

Pedley, Anthony M., and Stephen J. Benkovic. 2017. “A New View into the Regulation 

of Purine Metabolism: The Purinosome.” Trends in Biochemical Sciences 42 (2): 

141–54. https://doi.org/10.1016/j.tibs.2016.09.009. 

Pelet, Anna, Vaclava Skopova, Ulrike Steuerwald, Veronika Baresova, Mohammed 

Zarhrate, Jean-Marc Plaza, Ales Hnizda, et al. 2019. “PAICS Deficiency, a New 

Defect of de Novo Purine Synthesis Resulting in Multiple Congenital Anomalies 

and Fatal Outcome.” Human Molecular Genetics 28 (22): 3805–14. 

https://doi.org/10.1093/hmg/ddz237. 

Pepino, Marta Yanina, Ondrej Kuda, Dmitri Samovski, and Nada A. Abumrad. 2014. 

“Structure-Function of CD36 and Importance of Fatty Acid Signal Transduction 

in Fat Metabolism.” Annual Review of Nutrition 34 (1): 281–303. 

https://doi.org/10.1146/annurev-nutr-071812-161220. 

Perez-Garcia, Vicente, Elena Fineberg, Robert Wilson, Alexander Murray, Cecilia Icoresi 

Mazzeo, Catherine Tudor, Arnold Sienerth, et al. 2018. “Placentation Defects Are 

Highly Prevalent in Embryonic Lethal Mouse Mutants.” Nature 555 (7697): 463–

68. https://doi.org/10.1038/nature26002. 

Perluigi, Marzia, and D. Allan Butterfield. 2012. “Oxidative Stress and Down Syndrome: 

A Route toward Alzheimer-Like Dementia.” Current Gerontology and Geriatrics 

Research 2012: 1–10. https://doi.org/10.1155/2012/724904. 

Pietsch, A., C. Weber, M. Goretzki, P. C. Weber, and R. L. Lorenz. 1995. “N-3 but Not 

N-6 Fatty Acids Reduce the Expression of the Combined Adhesion and 

Scavenger Receptor CD36 in Human Monocytic Cells.” Cell Biochemistry and 

Function 13 (3): 211–16. https://doi.org/10.1002/cbf.290130312. 



 212 

Pillai, Viju Vijayan, Luiz G. Siqueira, Moubani Das, Tiffany G. Kei, Lan N. Tu, Anthony 

W. Herren, Brett S. Phinney, Soon Hon Cheong, Peter J. Hansen, and Vimal 

Selvaraj. 2019. “Physiological Profile of Undifferentiated Bovine Blastocyst-

Derived Trophoblasts.” Biology Open 8 (5): bio037937. 

https://doi.org/10.1242/bio.037937. 

Pogribna, Marta, Stepan Melnyk, Igor Pogribny, Abalo Chango, Ping Yi, and S. Jill 

James. 2001. “Homocysteine Metabolism in Children with Down Syndrome: In 

Vitro Modulation.” The American Journal of Human Genetics 69 (1): 88–95. 

https://doi.org/10.1086/321262. 

Pralhada Rao, Raghavendra, Nanditha Vaidyanathan, Mathiyazhagan Rengasamy, Anup 

Mammen Oommen, Neeti Somaiya, and M. R. Jagannath. 2013. “Sphingolipid 

Metabolic Pathway: An Overview of Major Roles Played in Human Diseases.” 

Journal of Lipids 2013: 1–12. https://doi.org/10.1155/2013/178910. 

Pueschel, S. M., J. C. Bernier, and J. C. Pezzullo. 1991. “Behavioural Observations in 

Children with Down’s Syndrome.” Journal of Intellectual Disability Research 35 

(6): 502–11. https://doi.org/10.1111/j.1365-2788.1991.tb00447.x. 

Qin, Qian, Young Xu, Tao He, Chunlin Qin, and Jianming Xu. 2012. “Normal and 

Disease-Related Biological Functions of Twist1 and Underlying Molecular 

Mechanisms.” Cell Research 22 (1): 90–106. https://doi.org/10.1038/cr.2011.144. 

Qureshi, F., S.M. Jacques, M.P. Johnson, Jr. Hume R.F., R.L. Kramer, Y. Yaron, and 

M.I. Evans. 1997. “Trisomy 21 Placentas: Histopathological and 

Immunohistochemical Findings Using Proliferating Cell Nuclear Antigen.” Fetal 

Diagnosis and Therapy 12 (4): 210–15. https://doi.org/10.1159/000264470. 



 213 

Radhakrishna, Uppala, Samet Albayrak, Rita Zafra, Alosh Baraa, Sangeetha 

Vishweswaraiah, Avinash M. Veerappa, Deepthi Mahishi, et al. 2019. “Placental 

Epigenetics for Evaluation of Fetal Congenital Heart Defects: Ventricular Septal 

Defect (VSD).” Edited by Nathaniel A. Hathaway. PLOS ONE 14 (3): e0200229. 

https://doi.org/10.1371/journal.pone.0200229. 

Rahmatallah, Yasir, Frank Emmert-Streib, and Galina Glazko. 2014. “Comparative 

Evaluation of Gene Set Analysis Approaches for RNA-Seq Data.” BMC 

Bioinformatics 15 (1): 397. https://doi.org/10.1186/s12859-014-0397-8. 

Ramachandran, Dhanya, Zhen Zeng, Adam E. Locke, Jennifer G. Mulle, Lora J.H. Bean, 

Tracie C. Rosser, Kenneth J. Dooley, et al. 2015. “Genome-Wide Association 

Study of Down Syndrome-Associated Atrioventricular Septal Defects.” 

G3&amp;#58; Genes|Genomes|Genetics 5 (10): 1961–71. 

https://doi.org/10.1534/g3.115.019943. 

Ramírez, Gigliola, Sergio Rey, and Rommy von Bernhardi. 2008. “Proinflammatory 

Stimuli Are Needed for Induction of Microglial Cell-Mediated AβPP 244–C and 

Aβ-Neurotoxicity in Hippocampal Cultures.” Journal of Alzheimer’s Disease 15 

(1): 45–59. https://doi.org/10.3233/JAD-2008-15104. 

Ran, F Ann, Patrick D Hsu, Jason Wright, Vineeta Agarwala, David A Scott, and Feng 

Zhang. 2013. “Genome Engineering Using the CRISPR-Cas9 System.” Nature 

Protocols 8 (11): 2281–2308. https://doi.org/10.1038/nprot.2013.143. 

Ray, Stephen P. 2013. “Biophysical Approaches to Human Genetic Disease: ADSL 

Deficiency as a Model.” Dissertation, Denver, CO: University of Denver. 

ProQuest Dissertations and theses`. 



 214 

Reznick, Richard M, Haihong Zong, Ji Li, Katsutaro Morino, Irene K Moore, Hannah J 

Yu, Zhen-Xiang Liu, et al. 2007. “Aging-Associated Reductions in AMP-

Activated Protein Kinase Activity and Mitochondrial Biogenesis.” Cell 

Metabolism 5 (2): 151–56. https://doi.org/10.1016/j.cmet.2007.01.008. 

Riekeberg, Eli, and Robert Powers. 2017. “New Frontiers in Metabolomics: From 

Measurement to Insight.” F1000Research 6 (July): 1148. 

https://doi.org/10.12688/f1000research.11495.1. 

Ritter, Joseph K. 2016. “Anandamide and Its Metabolites What Are Their Roles in the 

Kidney.” Frontiers in Bioscience 8 (2): 264–77. https://doi.org/10.2741/s461. 

Ritzel, Rodney M., Anita R. Patel, Sarah Pan, Joshua Crapser, Matt Hammond, Evan 

Jellison, and Louise D. McCullough. 2015. “Age- and Location-Related Changes 

in Microglial Function.” Neurobiology of Aging 36 (6): 2153–63. 

https://doi.org/10.1016/j.neurobiolaging.2015.02.016. 

Rodrigues, Ricardo J., Joana M. Marques, and Rodrigo A. Cunha. 2019. “Purinergic 

Signalling and Brain Development.” Seminars in Cell & Developmental Biology 

95 (November): 34–41. https://doi.org/10.1016/j.semcdb.2018.12.001. 

Roy, Béatrice, Anaïs Depaix, Christian Périgaud, and Suzanne Peyrottes. 2016. “Recent 

Trends in Nucleotide Synthesis.” Chemical Reviews 116 (14): 7854–97. 

https://doi.org/10.1021/acs.chemrev.6b00174. 

Rudolph, J., and J. Stubbe. 1995. “Investigation of the Mechanism of 

Phosphoribosylamine Transfer from Glutamine Phosphoribosylpyrophosphate 

Amidotransferase to Glycinamide Ribonucleotide Synthetase.” Biochemistry 34 

(7): 2241–50. https://doi.org/10.1021/bi00007a019. 



 215 

Saxton, Robert A., and David M. Sabatini. 2017. “MTOR Signaling in Growth, 

Metabolism, and Disease.” Cell 168 (6): 960–76. 

https://doi.org/10.1016/j.cell.2017.02.004. 

Scala, Coralie, Jacques Fantini, Nouara Yahi, Francisco Barrantes, and Henri Chahinian. 

2018. “Anandamide Revisited: How Cholesterol and Ceramides Control 

Receptor-Dependent and Receptor-Independent Signal Transmission Pathways of 

a Lipid Neurotransmitter.” Biomolecules 8 (2): 31. 

https://doi.org/10.3390/biom8020031. 

Scherer, W F, J T Syverton, and G O Gey. 1953. “Studies on the Propagation in Vitro of 

Poliomyelitis Viruses. IV. Viral Multiplication in a Stable Strain of Human 

Malignant Epithelial Cells (Strain HeLa) Derived from an Epidermoid Carcinoma 

of the Cervix.” The Journal of Experimental Medicine 97 (5): 695–710. 

https://doi.org/10.1084/jem.97.5.695. 

Schwanhäusser, Björn, Dorothea Busse, Na Li, Gunnar Dittmar, Johannes Schuchhardt, 

Jana Wolf, Wei Chen, and Matthias Selbach. 2011. “Global Quantification of 

Mammalian Gene Expression Control.” Nature 473 (7347): 337–42. 

https://doi.org/10.1038/nature10098. 

Sebastián-Serrano, Álvaro, Laura de Diego-García, Carlos Martínez-Frailes, Jesús Ávila, 

Herbert Zimmermann, José Luis Millán, María Teresa Miras-Portugal, and 

Miguel Díaz-Hernández. 2015. “Tissue-Nonspecific Alkaline Phosphatase 

Regulates Purinergic Transmission in the Central Nervous System During 

Development and Disease.” Computational and Structural Biotechnology Journal 

13: 95–100. https://doi.org/10.1016/j.csbj.2014.12.004. 



 216 

Serezani, Carlos H., Megan N. Ballinger, David M. Aronoff, and Marc Peters-Golden. 

2008. “Cyclic AMP: Master Regulator of Innate Immune Cell Function.” 

American Journal of Respiratory Cell and Molecular Biology 39 (2): 127–32. 

https://doi.org/10.1165/rcmb.2008-0091TR. 

Serhan, Charles N., Nan Chiang, Jesmond Dalli, and Bruce D. Levy. 2015. “Lipid 

Mediators in the Resolution of Inflammation.” Cold Spring Harbor Perspectives 

in Biology 7 (2): a016311. https://doi.org/10.1101/cshperspect.a016311. 

Shannon, Paul, Andrew Markiel, Owen Ozier, Nitin S Baliga, Jonathan T Wang, Daniel 

Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. 2003. “Cytoscape: A 

Software Environment for Integrated Models of Biomolecular Interaction 

Networks.” Genome Research 13 (11): 2498–2504. 

https://doi.org/10.1101/gr.1239303. 

Silva, Carlos   H. T. P., Marcio Silva, Jorge Iulek, and Otavio H. Thiemann. 2008. 

“Structural Complexes of Human Adenine Phosphoribosyltransferase Reveal 

Novel Features of the APRT Catalytic Mechanism.” Journal of Biomolecular 

Structure and Dynamics 25 (6): 589–97. 

https://doi.org/10.1080/07391102.2008.10507205. 

Silverstein, R. L., and M. Febbraio. 2009. “CD36, a Scavenger Receptor Involved in 

Immunity, Metabolism, Angiogenesis, and Behavior.” Science Signaling 2 (72): 

re3–re3. https://doi.org/10.1126/scisignal.272re3. 

Sivendran, Sharmila, David Patterson, Erin Spiegel, Ivan McGown, David Cowley, and 

Roberta F. Colman. 2004. “Two Novel Mutant Human Adenylosuccinate Lyases 

(ASLs) Associated with Autism and Characterization of the Equivalent Mutant 



 217 

Bacillus Subtilis ASL.” Journal of Biological Chemistry 279 (51): 53789–97. 

https://doi.org/10.1074/jbc.M409974200. 

Slotte, J. Peter. 2013. “Biological Functions of Sphingomyelins.” Progress in Lipid 

Research 52 (4): 424–37. https://doi.org/10.1016/j.plipres.2013.05.001. 

Smith, Gary K., W. Thomas Mueller, Gail Folena Wasserman, William D. Taylor, and 

Stephen J. Benkovic. 1980. “Characterization of the Enzyme Complex Involving 

the Folate-Requiring Enzymes of de Novo Purine Biosynthesis.” Biochemistry 19 

(18): 4313–21. https://doi.org/10.1021/bi00559a026. 

Sofi, M. Hanief, Jessica Heinrichs, Mohammed Dany, Hung Nguyen, Min Dai, David 

Bastian, Steven Schutt, et al. 2017. “Ceramide Synthesis Regulates T Cell 

Activity and GVHD Development.” JCI Insight 2 (10): e91701. 

https://doi.org/10.1172/jci.insight.91701. 

Spinneker, A, R Sola, V Lemmen, MJ Castillo, K Pietrzik, and M Gonzalez-Gross. 2007. 

“Vitamin B6 Status, Deficiency and Its Consequences-an Overview.” Nutricion 

Hospitalaria 22 (1): 7–24. 

Spurr, Ian B., Charles N. Birts, Francesco Cuda, Stephen J. Benkovic, Jeremy P. Blaydes, 

and Ali Tavassoli. 2012. “Targeting Tumour Proliferation with a Small-Molecule 

Inhibitor of AICAR Transformylase Homodimerization.” ChemBioChem 13 (11): 

1628–34. https://doi.org/10.1002/cbic.201200279. 

Štefková, Kateřina, Jiřina Procházková, and Jiří Pacherník. 2015. “Alkaline Phosphatase 

in Stem Cells.” Stem Cells International 2015: 1–11. 

https://doi.org/10.1155/2015/628368. 



 218 

Stepanova, Vita, Kaja Ewa Moczulska, Guido N. Vacano, Xiang-chun Ju, Stephan 

Riesenberg, Dominik Macak, Tomislav Maricic, et al. 2020. “Reduced Purine 

Biosynthesis in Humans after Their Divergence from Neandertals.” BioRxiv, 

January, 2020.05.11.087338. https://doi.org/10.1101/2020.05.11.087338. 

Stephenson, Diane T., Cynthia A. Lemere, Dennis J. Selkoe, and James A. Clemens. 

1996. “Cytosolic Phospholipase A2(CPLA2) Immunoreactivity Is Elevated in 

Alzheimer’s Disease Brain.” Neurobiology of Disease 3 (1): 51–63. 

https://doi.org/10.1006/nbdi.1996.0005. 

Storey, John D., and Robert Tibshirani. 2003. “Statistical Significance for Genomewide 

Studies.” Proceedings of the National Academy of Sciences 100 (16): 9440. 

https://doi.org/10.1073/pnas.1530509100. 

Striedinger, Katharine, Paolo Meda, and Eliana Scemes. 2007. “Exocytosis of ATP from 

Astrocyte Progenitors Modulates Spontaneous Ca 2+ Oscillations and Cell 

Migration.” Glia 55 (6): 652–62. https://doi.org/10.1002/glia.20494. 

Sugimoto, Michelle A., Lirlândia P. Sousa, Vanessa Pinho, Mauro Perretti, and Mauro 

M. Teixeira. 2016. “Resolution of Inflammation: What Controls Its Onset?” 

Frontiers in Immunology 7 (April). https://doi.org/10.3389/fimmu.2016.00160. 

Tang, Yixin, Greg Herr, Wade Johnson, Ernesto Resnik, and Joy Aho. 2013. “Induction 

and Analysis of Epithelial to Mesenchymal Transition.” Journal of Visualized 

Experiments, no. 78 (August): 50478. https://doi.org/10.3791/50478. 

Thapa, Narendra, Byung-Heon Lee, and In-San Kim. 2007. “TGFBIp/Betaig-H3 Protein: 

A Versatile Matrix Molecule Induced by TGF-Beta.” The International Journal of 



 219 

Biochemistry & Cell Biology 39 (12): 2183–94. 

https://doi.org/10.1016/j.biocel.2007.06.004. 

Thiery, Jean Paul. 2002. “Epithelial–Mesenchymal Transitions in Tumour Progression.” 

Nature Reviews Cancer 2 (6): 442–54. https://doi.org/10.1038/nrc822. 

Tichauer, Juan E., Betsi Flores, Bernardita Soler, Laura Eugenín-von Bernhardi, Gigliola 

Ramírez, and Rommy von Bernhardi. 2014. “Age-Dependent Changes on TGFβ1 

Smad3 Pathway Modify the Pattern of Microglial Cell Activation.” Brain, 

Behavior, and Immunity 37 (March): 187–96. 

https://doi.org/10.1016/j.bbi.2013.12.018. 

Tong, Yisha. 2014. “Seizures Caused by Pyridoxine (Vitamin B6) Deficiency in Adults: 

A Case Report and Literature Review.” Intractable & Rare Diseases Research 3 

(2): 52–56. https://doi.org/10.5582/irdr.2014.01005. 

Trapnell, Cole, David G Hendrickson, Martin Sauvageau, Loyal Goff, John L Rinn, and 

Lior Pachter. 2013. “Differential Analysis of Gene Regulation at Transcript 

Resolution with RNA-Seq.” Nature Biotechnology 31 (1): 46–53. 

https://doi.org/10.1038/nbt.2450. 

Trapnell, Cole, Adam Roberts, Loyal Goff, Geo Pertea, Daehwan Kim, David R Kelley, 

Harold Pimentel, Steven L Salzberg, John L Rinn, and Lior Pachter. 2012. 

“Differential Gene and Transcript Expression Analysis of RNA-Seq Experiments 

with TopHat and Cufflinks.” Nature Protocols 7 (3): 562–78. 

https://doi.org/10.1038/nprot.2012.016. 



 220 

Tsukahara, Tamotsu, Yoshikazu Matsuda, and Hisao Haniu. 2017. “Lysophospholipid-

Related Diseases and PPARγ Signaling Pathway.” International Journal of 

Molecular Sciences 18 (12): 2730. https://doi.org/10.3390/ijms18122730. 

Tu, Alice S., and David Patterson. 1978. “Characterization of a Guanine-Sensitive 

Mutant Defective in Adenylo-Succinate Synthetase Activity.” Journal of Cellular 

Physiology 96 (1): 123–32. https://doi.org/10.1002/jcp.1040960115. 

Turco, Margherita Y., and Ashley Moffett. 2019. “Development of the Human Placenta.” 

Development 146 (22): dev163428. https://doi.org/10.1242/dev.163428. 

“Universal Plus MRNA-Seq with NuQuant User Guide V5.” 2019. Tecan Genomics, Inc. 

https://www.nugen.com/sites/default/files/M01485_v5_User_Guide%3A_Univers

al_Plus_mRNA-Seq_with_NuQuant_5323.pdf. 

Vallvé, Joan-Carles, Katia Uliaque, Josefa Girona, Anna Cabré, Josep Ribalta, Mercedes 

Heras, and Lluı́s Masana. 2002. “Unsaturated Fatty Acids and Their Oxidation 

Products Stimulate CD36 Gene Expression in Human Macrophages.” 

Atherosclerosis 164 (1): 45–56. https://doi.org/10.1016/S0021-9150(02)00046-1. 

Van Den Berghe, Georges, and Jaeken, J. 1986. “Adenylosuccinase Deficiency” 195: 27–

33. https://doi.org/10.1007/978-1-4684-5104-7_4. 

Vatin, Magalie, Sylvie Bouvier, Linda Bellazi, Xavier Montagutelli, Paul Laissue, 

Ahmed Ziyyat, Catherine Serres, et al. 2014. “Polymorphisms of Human 

Placental Alkaline Phosphatase Are Associated with in Vitro Fertilization Success 

and Recurrent Pregnancy Loss.” The American Journal of Pathology 184 (2): 

362–68. https://doi.org/10.1016/j.ajpath.2013.10.024. 



 221 

Vincent, M.Françoise, Françoise Bontemps, and Georges Van den Berghe. 1996. 

“Substrate Cycling between 5-Amino-4-Imidazolecarboxamide Riboside and Its 

Monophosphate in Isolated Rat Hepatocytes.” Biochemical Pharmacology 52 (7): 

999–1006. https://doi.org/10.1016/0006-2952(96)00413-3. 

Vingtdeux, Valérie, Peter Davies, Dennis W. Dickson, and Philippe Marambaud. 2011. 

“AMPK Is Abnormally Activated in Tangle- and Pre-Tangle-Bearing Neurons in 

Alzheimer’s Disease and Other Tauopathies.” Acta Neuropathologica 121 (3): 

337–49. https://doi.org/10.1007/s00401-010-0759-x. 

Vogel, Christine, Matthew Bashton, Nicola D Kerrison, Cyrus Chothia, and Sarah A 

Teichmann. 2004. “Structure, Function and Evolution of Multidomain Proteins.” 

Current Opinion in Structural Biology 14 (2): 208–16. 

https://doi.org/10.1016/j.sbi.2004.03.011. 

Waku, Tsuyoshi, Takuma Shiraki, Takuji Oyama, Kanako Maebara, Rinna Nakamori, 

and Kosuke Morikawa. 2010. “The Nuclear Receptor PPARγ Individually 

Responds to Serotonin- and Fatty Acid-Metabolites.” The EMBO Journal 29 (19): 

3395–3407. https://doi.org/10.1038/emboj.2010.197. 

Wang, Xiuzhe, Mingqin Zhu, Erik Hjorth, Veronica Cortés-Toro, Helga Eyjolfsdottir, 

Caroline Graff, Inger Nennesmo, et al. 2015. “Resolution of Inflammation Is 

Altered in Alzheimer’s Disease.” Alzheimer’s & Dementia 11 (1): 40-50.e2. 

https://doi.org/10.1016/j.jalz.2013.12.024. 

Warburg, Otto, and Seigo Minami. 1923. “Versuche an Überlebendem Carcinom-

Gewebe.” Klinische Wochenschrift 2 (17): 776–77. 

https://doi.org/10.1007/BF01712130. 



 222 

Watson, James, Tania Baker, Stephanie Bell, Alexander Gann, Michael Levine, and 

Richard Losick. 2008. Molecular Biology of the Gene. 6th ed. Cold Spring Harbor 

Laboratory Press, Cold Spring Harbor New York. 

Watts, R W. 1974. “Molecular Variation in Relation to Purine Metabolism.” Journal of 

Clinical Pathology. Supplement (Royal College of Pathologists) 8: 48–63. 

Weis, William I., and Brian K. Kobilka. 2018. “The Molecular Basis of G Protein–

Coupled Receptor Activation.” Annual Review of Biochemistry 87 (1): 897–919. 

https://doi.org/10.1146/annurev-biochem-060614-033910. 

Whittington, Robert A., Emmanuel Planel, and Niccolò Terrando. 2017. “Impaired 

Resolution of Inflammation in Alzheimer’s Disease: A Review.” Frontiers in 

Immunology 8 (November): 1464. https://doi.org/10.3389/fimmu.2017.01464. 

Whyte, M P, J D Mahuren, L A Vrabel, and S P Coburn. 1985. “Markedly Increased 

Circulating Pyridoxal-5’-Phosphate Levels in Hypophosphatasia. Alkaline 

Phosphatase Acts in Vitamin B6 Metabolism.” Journal of Clinical Investigation 

76 (2): 752–56. https://doi.org/10.1172/JCI112031. 

Wilson, Matthew P., Barbara Plecko, Philippa B. Mills, and Peter T. Clayton. 2019. 

“Disorders Affecting Vitamin B 6 Metabolism.” Journal of Inherited Metabolic 

Disease, March, jimd.12060. https://doi.org/10.1002/jimd.12060. 

Wu, Guoyao, Yun-Zhong Fang, Sheng Yang, Joanne R. Lupton, and Nancy D. Turner. 

2004. “Glutathione Metabolism and Its Implications for Health.” The Journal of 

Nutrition 134 (3): 489–92. https://doi.org/10.1093/jn/134.3.489. 



 223 

Wu, Xuebing, Andrea J. Kriz, and Phillip A. Sharp. 2014. “Target Specificity of the 

CRISPR-Cas9 System.” Quantitative Biology 2 (2): 59–70. 

https://doi.org/10.1007/s40484-014-0030-x. 

Wu, Yan, Heng Zhai, Yanping Wang, Longyan Li, Jing Wu, Fang Wang, Shenggang 

Sun, Shanglong Yao, and You Shang. 2012. “Aspirin-Triggered Lipoxin A4 

Attenuates Lipopolysaccharide-Induced Intracellular ROS in BV2 Microglia Cells 

by Inhibiting the Function of NADPH Oxidase.” Neurochemical Research 37 (8): 

1690–96. https://doi.org/10.1007/s11064-012-0776-3. 

Wyss-Coray, Tony, Carol Lin, Fengrong Yan, Gui-Qiu Yu, Michelle Rohde, Lisa 

McConlogue, Eliezer Masliah, and Lennart Mucke. 2001. “TGF-Β1 Promotes 

Microglial Amyloid-β Clearance and Reduces Plaque Burden in Transgenic 

Mice.” Nature Medicine 7 (5): 612–18. https://doi.org/10.1038/87945. 

Xiang, Hong-Chun, Li-Xue Lin, Xue-Fei Hu, He Zhu, Hong-Ping Li, Ru-Yue Zhang, 

Liang Hu, et al. 2019. “AMPK Activation Attenuates Inflammatory Pain through 

Inhibiting NF-ΚB Activation and IL-1β Expression.” Journal of 

Neuroinflammation 16 (1): 34. https://doi.org/10.1186/s12974-019-1411-x. 

Xie, Yanyun, Judy Yan, Jean-Claude Cutz, Adrian P. Rybak, Lizhi He, Fengxiang Wei, 

Anil Kapoor, Valentina A. Schmidt, Lijian Tao, and Damu Tang. 2012. 

“IQGAP2, A Candidate Tumour Suppressor of Prostate Tumorigenesis.” 

Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1822 (6): 

875–84. https://doi.org/10.1016/j.bbadis.2012.02.019. 

Yamashita, N., T. Ohshima, F. Nakamura, P. Kolattukudy, J. Honnorat, K. Mikoshiba, 

and Y. Goshima. 2012. “Phosphorylation of CRMP2 (Collapsin Response 



 224 

Mediator Protein 2) Is Involved in Proper Dendritic Field Organization.” Journal 

of Neuroscience 32 (4): 1360–65. https://doi.org/10.1523/JNEUROSCI.5563-

11.2012. 

Yan, Min, and Guowang Xu. 2018. “Current and Future Perspectives of Functional 

Metabolomics in Disease Studies–A Review.” Analytica Chimica Acta 1037 

(December): 41–54. https://doi.org/10.1016/j.aca.2018.04.006. 

Yan, Ming, Srinivas Chakravarthy, Joshua M. Tokuda, Lois Pollack, Gregory D. 

Bowman, and Young-Sam Lee. 2016. “Succinyl-5-Aminoimidazole-4-

Carboxamide-1-Ribose 5′-Phosphate (SAICAR) Activates Pyruvate Kinase 

Isoform M2 (PKM2) in Its Dimeric Form.” Biochemistry 55 (33): 4731–36. 

https://doi.org/10.1021/acs.biochem.6b00658. 

Yanaka, Noriyuki, Mayumi Kanda, Keigo Toya, Haruna Suehiro, and Norihisa Kato. 

2011. “Vitamin B6 Regulates MRNA Expression of Peroxisome Proliferator-

Activated Receptor-γ Target Genes.” Experimental and Therapeutic Medicine 2 

(3): 419–24. https://doi.org/10.3892/etm.2011.238. 

Yang, Weiwei, and Zhimin Lu. 2013. “Nuclear PKM2 Regulates the Warburg Effect.” 

Cell Cycle (Georgetown, Tex.) 12 (19): 3154–58. 

https://doi.org/10.4161/cc.26182. 

Yin, Fei, Harsh Sancheti, Ishan Patil, and Enrique Cadenas. 2016. “Energy Metabolism 

and Inflammation in Brain Aging and Alzheimer’s Disease.” Free Radical 

Biology and Medicine 100 (November): 108–22. 

https://doi.org/10.1016/j.freeradbiomed.2016.04.200. 



 225 

Young, Simon A., John G. Mina, Paul W. Denny, and Terry K. Smith. 2012. 

“Sphingolipid and Ceramide Homeostasis: Potential Therapeutic Targets.” 

Biochemistry Research International 2012: 1–12. 

https://doi.org/10.1155/2012/248135. 

Yu, Jie, Aubin Moutal, Angie Dorame, Shreya S. Bellampalli, Aude Chefdeville, Iori 

Kanazawa, Nancy Y. N. Pham, Ki Duk Park, Jill M. Weimer, and Rajesh Khanna. 

2019. “Phosphorylated CRMP2 Regulates Spinal Nociceptive 

Neurotransmission.” Molecular Neurobiology 56 (7): 5241–55. 

https://doi.org/10.1007/s12035-018-1445-6. 

Yu, Xinshuang, Chunjuan Zhai, Yujun Fan, Jiandong Zhang, Ning Liang, Fengjun Liu, 

Lili Cao, Jia Wang, and Juan Du. 2017. “TUSC3: A Novel Tumour Suppressor 

Gene and Its Functional Implications.” Journal of Cellular and Molecular 

Medicine 21 (9): 1711–18. https://doi.org/10.1111/jcmm.13128. 

Zahra, Kulsoom, Tulika Dey, Ashish, Surendra Pratap Mishra, and Uma Pandey. 2020. 

“Pyruvate Kinase M2 and Cancer: The Role of PKM2 in Promoting 

Tumorigenesis.” Frontiers in Oncology 10 (March): 159. 

https://doi.org/10.3389/fonc.2020.00159. 

Zana, Marianna, Zoltán Janka, and János Kálmán. 2007. “Oxidative Stress: A Bridge 

between Down’s Syndrome and Alzheimer’s Disease.” Neurobiology of Aging 28 

(5): 648–76. https://doi.org/10.1016/j.neurobiolaging.2006.03.008. 

Zhang, Ze, Xinyue Deng, Yuanda Liu, Yahui Liu, Liankun Sun, and Fangfang Chen. 

2019. “PKM2, Function and Expression and Regulation.” Cell & Bioscience 9 

(1): 52. https://doi.org/10.1186/s13578-019-0317-8. 



 226 

Zhao, Hong, Christopher R. Chiaro, Limin Zhang, Philip B. Smith, Chung Yu Chan, 

Anthony M. Pedley, Raymond J. Pugh, Jarrod B. French, Andrew D. Patterson, 

and Stephen J. Benkovic. 2015. “Quantitative Analysis of Purine Nucleotides 

Indicates That Purinosomes Increase de Novo Purine Biosynthesis.” Journal of 

Biological Chemistry 290 (11): 6705–13. 

https://doi.org/10.1074/jbc.M114.628701. 

Zhao, Hong, Jarrod B. French, Ye Fang, and Stephen J. Benkovic. 2013. “The 

Purinosome, a Multi-Protein Complex Involved in the de Novo Biosynthesis of 

Purines in Humans.” Chemical Communications 49 (40): 4444. 

https://doi.org/10.1039/c3cc41437j. 

Zhu, Mingqin, Xiuzhe Wang, Erik Hjorth, Romain A. Colas, Lisa Schroeder, Ann-

Charlotte Granholm, Charles N. Serhan, and Marianne Schultzberg. 2016. “Pro-

Resolving Lipid Mediators Improve Neuronal Survival and Increase Aβ42 

Phagocytosis.” Molecular Neurobiology 53 (4): 2733–49. 

https://doi.org/10.1007/s12035-015-9544-0. 

Zikanova, Marie, Vaclava Skopova, Ales Hnizda, Jakub Krijt, and Stanislav Kmoch. 

2010. “Biochemical and Structural Analysis of 14 Mutant Adsl Enzyme 

Complexes and Correlation to Phenotypic Heterogeneity of Adenylosuccinate 

Lyase Deficiency.” Human Mutation 31 (4): 445–55. 

https://doi.org/10.1002/humu.21212. 

Zimmermann, Herbert. 2011. “Purinergic Signaling in Neural Development.” Seminars 

in Cell & Developmental Biology 22 (2): 194–204. 

https://doi.org/10.1016/j.semcdb.2011.02.007. 



 227 

Zimmermann, Herbert, Matthias Zebisch, and Norbert Sträter. 2012. “Cellular Function 

and Molecular Structure of Ecto-Nucleotidases.” Purinergic Signalling 8 (3): 

437–502. https://doi.org/10.1007/s11302-012-9309-4. 

 

 


	Cellular and Organismal Ramifications of de novo Purine Synthesis Dysregulation
	Recommended Citation

	Cellular and Organismal Ramifications of de novo Purine Synthesis Dysregulation
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	Microsoft Word - RM dissertation.docx

