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uniform pressure distribution. This pressure distribution causes uneven friction which 

leads to uneven heating of each surface in contact. Further, thermal expansion of these 

parts cause non-uniform deformation and the uneven surfaces therefore hold different 

pressures, temperatures, and deform differently than the surrounding material [5]. Figure 

2 displays antisymmetric hotspots on a clutch pressure plate from an experiment, 

showing support for TEI theory. 

 

Figure 2. A clutch pressure plate after a single engagement reveals visual evidence of 
antisymmetric hotspots. Photo taken from [6]. 

 “If the sliding speed is sufficiently high, the thermal mechanical feedback process is 

unstable, leading eventually to the localization of the load in a small region of the 

nominal contact area of the sliding surfaces” [3]. This localized thermal mechanical load 

can lead to increased vibration, localized material yielding, fatigue crack nucleation, and 

premature part failure which may not be accounted for using traditional failure theories 

[7], [8], [9]. 

The phenomenon was first rigorously investigated by Barber  [5], however according 

to [10] it had been reportedly observed in railroad brakes and wheels even earlier than 

that. Since then, many analytical approaches to generalized cases of increasing 
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complexity have been investigated, from generalized half planes [11] to geometric length 

scales relevant for disk brake analysis [12]. However, limitations to the complexity of the 

problems arise with closed form analytical solutions leading to a time consuming and less 

than ideal method to understand if TEI could occur for any given design [13]. For 

example, an engineering designer may only consider a simplified geometry such as the 

diameter and thickness of the brake rotor when finding the analytical solution to the TEI 

problem, but when the final part is manufactured there may be intricacies unaccounted 

for in the analytical solution such as a rotor hat and cooling fins. Therefore, the analytical 

solution to the TEI problem is at best a time intensive approximation which suits a single 

simplified geometry. 

An obvious alternative to the closed form analytical solution is to use the finite 

element method [14]. According to [15] “it is often necessary to obtain approximate 

numerical solutions for complex industrial problems, in which exact closed-form 

solutions are difficult to obtain”. Therefore, the use of the Finite Element Analysis (FEA) 

in either two or three dimensions to quickly analyze a complex design for vulnerabilities 

to TEI is a valid method. Currently no options exist to analyze TEI in the form of native 

or plug in applications for major FEA packages such as Abaqus or Ansys. There is a 

commercially available software package, Hotspotter, which evaluates brake, clutch, and 

other frictional sliding designs for susceptibility to thermoelastic instabilities.  

Hotspotter uses an eigenvalue method to determine the growth rate of eigenmodes of 

the system for discrete sliding speeds. First, linear perturbations on the temperature field 

arising due to micro scale surface asperities are considered, at a discrete sliding speed, 
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which vary exponentially with time. In the governing equations and boundary conditions 

for thermoelasticity and heat-conduction, time cancels out leading to a complex linear 

eigenvalue problem for 𝑏, the growth rate, for discrete values of 𝑛, the wave number, and 

the sliding speed, 𝑉 [6], [16]. The eigenvalue has both real and imaginary parts. The real 

part corresponds to the growth rate of the perturbation, and the imaginary part 

corresponds to the migration speed of the perturbation [14]. The problem is simplified 

further by the assumption that a real eigenvalue corresponds to instability because an 

eigenvalue of zero governs the stability boundary [14]. Essentially an eigenvalue of zero 

means that a steady state solution has been found, while an eigenvalue with a real number 

corresponds to instability. Once the growth rate of the eigenmodes is determined for a set 

of speeds, the critical speed is found by searching for the lowest speed corresponding to a 

positive growth rate in the eigenmode [17]. The eigenvalue method used by Hotspotter is 

complex and is covered in depth in [18], [14], [19], [20].  

There are two versions of the Hotspotter code, classic and full 3D. The classic version 

of Hotspotter, as shown in Figure 3, uses a cross section of an axisymmetric system to be 

analyzed such as clutches and seals, it is not suitable for non-axisymmetric geometries 

such as automotive disk brake systems which have a non-axisymmetric brake pad. The 

classic version discretizes the cross section into first-order fully integrated quadrilateral 

elements and solves for critical speeds in two dimensions, then uses a Fourier series to 

solve for the hot spots along the circumferential dimension of the part.  
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Figure 3. Hotspotter classic analyzes strictly axisymmetric geometries such as automotive 
clutches and airplane brakes. Image taken from [17]. 

The full 3D version of Hotspotter is suitable for both non-axisymmetric and 

axisymmetric geometries. The model is represented in three dimensions, shown by Figure 

4, by first-order hexahedral finite elements, also called ‘hex’ or ‘brick’ elements, and 

solves for critical speeds throughout the geometry simultaneously [17]. 

 

Figure 4. Hotspotter full 3D has capabilities to analyze complex non-axisymmetric geometry 
in three dimensions such as automotive and railroad brake systems. Image taken from [17]. 

1.2 Objectives 

The objectives of this work are to develop triangular and tetrahedral finite elements 

appropriate for TEI analysis which may be incorporated into the Hotspotter software. 

This reduces the burden placed on the designer by making an easier model and mesh 
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transition from stress analysis in industry standard FEA software’s such as Abaqus and 

Ansys to TEI analysis in Hotspotter software. Typically, users will mesh their parts and 

assemblies using triangular or tetrahedral elements in two dimensional or three 

dimensional space respectively for stress analysis in commercial FEA software’s. 

Hotspotter currently has the capability to use quadrilateral or hexahedral elements in two 

dimensional or three dimensional analysis respectively for TEI analysis. Therefore, if a 

user wants to determine the critical velocity at which hotspots would occur in the design, 

a re-mesh of the geometries and further mesh convergence studies would have to be 

conducted due to the mis-match of element types when moving between software’s.  

Hotspotter was developed using quad and hex elements due to the computational 

efficiency of those elements and availability of computers capable of running such an 

analysis at the time. The efficiency is realized because quad and hex elements require less 

elements to obtain an accurate result when compared to triangular and tetrahedral 

elements. A simple solution might be to use quadrilateral and hexahedral elements when 

doing the stress analysis. However, the limitation to using first-order quad and hex 

elements is that they may exhibit a shear locking behavior or be overly stiff when the 

model has complicated geometry, is loaded in bending, or contact is present, which is a 

requirement in sliding friction system analysis. 

Computational advances within the last 20 years have made it feasible to run large 

analysis on a fine mesh discretization using triangular or tetrahedral elements with 

reasonable solution times. Therefore, it is preferred to use a first-order linear triangular or 

tetrahedral element in the stress analysis to avoid such complications from meshing 
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intricate geometries with quad or hex elements. Also, the use of tri and tet elements 

allows for auto meshing and similar adaptive mesh refinement in zones of high stress 

[21]. Literature presents some conflicting information regarding use of first or second 

order triangular and tetrahedral elements in contact problems. For example, according to 

literature, a linear triangular element is susceptible to shear locking behavior while higher 

order elements such as a 4-noded or 10-noded tetrahedron are preferred for stress analysis 

[22]. And on the other hand, due to the high nonlinearity of TEI analysis, a first-order 

element may be able to handle the contact and solution nonlinearities better than a second 

order element can due to the lack of mid side nodes. Therefore, in an attempt to keep 

computational cost low, this investigation will examine the feasibility of using first-order 

elements. If it is found to be not within acceptable error margins, a further study will need 

to be conducted which investigates the use of second order elements in Hotspotter. If 

such first-order element types are found to be sufficient, this investigation will provide 

users the ability to import the same mesh from commercial FEA packages to Hotspotter 

and reduce the time burden of remeshing while giving sufficiently accurate results.  
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CHAPTER 2 ELEMENT DEVELOPMENT FOR THERMAL AND STRESS 

ANALYSIS 

2.1 FEA introduction 

In the pursuit of modelling complex systems, defining the governing equations and 

physics of a problem may not be overly difficult. However, solving those equations by 

analytical methods is often rigorous and time consuming, or impossible [23]. The 

difficulty of solving the closed form analytical solution arises from irregularities and 

arbitrary features or geometries [15]. A simpler more flexible method of simulating real 

phenomenon has been developed within the last three decades which allows engineers to 

solve very difficult and practical problems [23]. This method which uses numerical 

simulation instead of closed form analytical solutions is called the Finite Element Method 

or Finite Element Analysis (FEM/FEA). The FEM uses many small interconnected 

elements and produces a “piece-wise” numerical approximation to the governing 

equations of the problem [15]. Instead of attempting to directly solve the complex partial 

differential equations governing the problem, the FEM reduces those equations to a set of 

simultaneous equations which can be solved with the use of most personal computers 

[15]. 

Most modern engineering problems are concerned with complex geometries, 

materials, loads, motion, boundary conditions, and may or may not be involved in the 

time domain. As such the study and use of FEA is of great interest to design engineers 
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looking for solutions to a wide array of variables regarding their systems performance. 

Having the ability to simulate such complex systems reduces the engineers overall time 

and computational resources required to understand how a system will perform in the 

field. It should be stated that use of the finite element method should not be a 

replacement to good understanding of the theory behind the problem. 

A typical process for FEA involves five steps. Firstly, pre-processing the system 

which involves subdividing the problem domain into finite elements. Secondly, 

formulation of the elements, element definitions, and governing equations. Thirdly, 

assembling the elements into a mesh and element equations into a global matrix. 

Fourthly, solving the set of equations which represent the system for a field variable. 

Lastly, post-processing of the results such as stress, strain, displacement, and visual 

representations of the system. 

The FEM uses traditional variational methods to approximate the governing equations 

over a series of subdomains which make up the entire domain [23]. This is done because 

it is easier to approximate a geometry with a series of polynomials than to find the 

equation which represents the domain exactly. When the domain is highly discretized, the 

solution to the governing equations approach exact solutions. 

When discretizing the domain of the system, analysts use “finite elements” which can 

be a variety of shapes including bar, truss, triangular, quadrilateral, etc. in two 

dimensions and tetrahedral, hexahedral, etc. in three dimensions. Elements are connected 

by nodes at each corner. In structural stress analysis, each element is governed by 

Hooke’s law in the elastic region: 
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 𝐹 = 𝐾𝑥 (2.1) 

where an external force 𝐹 acts on the element, causing a displacement 𝑥 governed by 

the spring constant 𝐾.  

In structural mechanics each element has a stiffness matrix which relates nodal 

displacements to nodal forces through: 

 [𝐾𝑒]{𝐷𝑒} = {𝑅𝑒} (2.2) 

where [𝐾𝑒] is the elemental stiffness matrix, {𝐷𝑒} is the elemental displacement 

vector, and {𝑅𝑒} is the elemental reaction force vector. This step is carried out for every 

element in the domain and assembled into a global set of matrices and vectors.  

 

Figure 5. A simple two bar FEA system, single DOF per node, with elements (e) and nodes 
(n). 

For a simple two bar element system with three elements who have one degree of 

freedom (DOF) each shown in Figure 5, the math model is represented by: 

 
൥

𝐾1 −𝐾1 0
−𝐾1 𝐾1 + 𝐾2 −𝐾2

0 −𝐾2 𝐾2
൩ ൥

𝐷1
𝐷2
𝐷3

൩ = ൥
𝑅1
𝑅2
𝑅3

൩ 
(2.3) 

Some of the quantities of the system are known such as a zero displacement at a fixed 

boundary condition as well as force input into the system. Known forces are represented 

in a force vector 𝑅. Applying boundary conditions to the system, rearrangement of these 

equations to include zeros where zero displacement occurs, results in a sparser stiffness 

matrix, displacement vector, and force vector which are all used to solve for the unknown 
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displacements. This system of equations can be solved using numerical techniques such 

as Gauss Elimination or LU decomposition. The solution to this numerical method is the 

column vector 𝐷 which holds the displacements for each node in each DOF.  

From displacements, it is possible to post process the model to extrapolate 

meaningful information from the analysis. Such results can include strain which is 

defined for a bar element as: 

 
𝜀 =

Δ𝐿

𝐿
 

(2.4) 

Or stress which is defined for a bar element as: 

 𝛿 = 𝐸𝜀 (2.5) 

where E is Young’s modulus.  

Further, visual representation of the system is common to visualize deformations, 

stress concentrations, etc. such as in Figure 6 which shows von Mises stress in three 

dimensions of geometry representative of an aircraft stator subject to a uniform 

temperature increase with a fixed inner diameter.  
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Figure 6. A visual Representation of von Mises stress of a simplified aircraft brake stator 
subject to uniform temperature increase. 

2.2 First-order triangular element 

Hotspotter currently uses an isoparametric representation of numerically integrated 

first-order 4-noded quadrilateral elements [17]. The first step in this investigation is to 

develop a program which uses iso-parametric element definition of numerically 

integrated first-order 3-noded triangular elements, colloquially referred to as the Constant 

Strain Triangle (CST). The CST has a linear displacement across the element and strain is 

therefore constant. A requirement for implementation to Hotspotter is that the elements 

may not use any symbolic math in Matlab. Reasoning for avoiding symbolic math is that 

Hotspotter does not have access these symbolic math libraries which are embedded in 

Matlab. Also, using symbolic math functions in FEA analysis greatly increases the 

computational cost required for a given simulation. 

Development of the CST element in Matlab starts with writing code to define a single 

element and its corresponding global stiffness matrix. Then building a one element 

program in Abaqus using the CST element and comparing the stiffness matrices to ensure 

the element definition and integration scheme is functioning properly.  
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Figure 7. The Constant Strain Triangle (CST) element has three nodes, with two degrees of 
freedom each, leading to an element with six degrees of freedom total and a six by six stiffness 
matrix. 

First, nodes and elements are defined in Cartesian coordinates. Then material 

properties required for the problem are defined, such as 𝐸, 𝜐, & 𝑡. This analysis is an 

isotropic plane stress analysis meaning that stress in the z direction is equal to zero: 

 ൫𝜎௭ = 𝜏௬௭ = 𝜏௭௫ = 0൯ (2.6) 

Therefore, the constitutive matrix, 𝐶𝑀, is defined from young’s modulus, 𝐸, and 

Poisson’s ratio, 𝜐, as: 

 

𝐶𝑀 =
𝐸

1 − 𝜐ଶ
൦

1 𝜐 0
𝜐 1 0

0 0
(1 − 𝜐)

2

൪ 

(2.7) 

Lagrange interpolating polynomials, also known as shape functions, are implemented 

to define the displacement potential for each node. In a two dimensional problem, such as 

one involving the CST element, two displacement variables, 𝑢 & 𝑣, are introduced into 

the interpolating polynomial [22]. For example, the CST uses the following interpolating 

polynomials to define its displacement: 
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 𝑢 = 𝑎ଵ + 𝑎ଶ𝑥 + 𝑎ଷ𝑦 (2.8) 

 𝑣 = 𝑎ସ + 𝑎ହ𝑥 + 𝑎଺𝑦 (2.9) 

This definition of interpolating polynomial shows a linear displacement field which 

further reinforces the constant value of strain across the element based on the definition 

of two dimensional strain: 

 
𝜀௫ =

𝜕௨

𝜕௫
 

(2.10) 

 
𝜀௬ =

𝜕௩

𝜕௬
 

(2.11) 

 
𝛾௫௬ =

𝜕௨

𝜕௬
+

𝜕௩

𝜕௫
 

(2.12) 

From the interpolating polynomial it is possible to define shape functions knowing 

that they are all polynomials of the same degree, the shape function is equal to one at its 

corresponding node, equal to zero at all other nodes, and varies linearly everywhere [24]. 

This shape function definition gives a value of 1 at the corresponding node and 0 at all 

other nodes as shown in Figure 8. 

 

Figure 8. Isoparametric mapping of the CST element requires natural coordinates and shape 
functions which equal 1 at the corresponding node and 0 at all other nodes.  
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For example, in Figure 9, the 𝑁ଵshape function for a CST is 𝜁ଵ in a triangular natural 

coordinate system.  

 

 

Figure 9. Isoparametric mapping of the CST element requires natural coordinates and shape 
functions which equal 1 at the corresponding node and 0 at all other nodes. 

To conduct an analysis with many CST elements, all of which may be arbitrarily 

oriented and configured, it is important to use an isoparametric element definition. 

Isoparametric means the field variables (𝑢, 𝑣) and shape of the element are defined by the 

same interpolating polynomial or shape function [22]: 

 𝑥 =  ෍ 𝑁௜ 

௜

𝑥௜ 
(2.13) 

 𝑦 =  ෍ 𝑁௜ 

௜

𝑦௜ 
(2.14) 

 𝑢 =  ෍ 𝑁௜ 

௜

𝑢௜ 
(2.15) 

 𝑣 = ෍ 𝑁௜ 

௜

v௜ 
(2.16) 

where 𝑖 is the range of nodes in the element.  
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In a classic structural analysis, the CST element has two spatial degrees of freedom 

corresponding to 𝑥 & 𝑦 displacement. However, because this element development is 

intended to be incorporated into Hotspotter, there needs to be a third degree of freedom in 

each node which represents the temperature at that node. This element type is called a 

Fourier element. Fourier elements are beneficial in this analysis because a three 

dimensional domain can be represented by a two dimensional cross section while 

retaining the third degree of freedom, T. This element definition allows three dimensional 

analysis to be meshed on a two dimensional cross section, which is a more 

computationally efficient process. The circumferentially periodic temperature field is 

defined by [6]  

 T  =   ෍ 𝑁௜  θ௜ cos nθ (2.17) 

where n is a wavenumber, i.e. number of hotspots along the circumference of the part. 

See also [25] for an application using the Fourier reduction method. 

Each element has a set of Cartesian coordinates in two dimensions, 𝑥 & 𝑦, which are 

assigned during the meshing step. In an isoparametric element definition, each CST 

element also contains a set of triangular natural coordinates, 𝜁, which stay with the 

element and maintain their position relative to it, even when the element deforms or 

otherwise changes position with respect to the Cartesian coordinate system [22].  
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Figure 10. Isoparametric mapping allows a master element defined in natural or triangular 
coordinates to be mapped into a global Cartesian coordinate system. 

The main task in defining an element stiffness matrix is establishing its strain-

displacement matrix, [𝐵], which provides gradients in terms of each nodes DOF (𝑢, 𝑣, 𝑇). 

This strain-displacement matrix is the mapping or transformation between the natural and 

Cartesian coordinate system and is developed by differentiating the shape functions in 

Cartesian coordinates: 

 
[𝐵] = ൥

𝜕𝑁௜/𝜕𝑥 0
0 𝜕𝑁௜/𝜕𝑦

𝜕𝑁௜/𝜕𝑦 𝜕𝑁௜/𝜕𝑥
൩ 

(2.18) 

According to [6] solutions to the frictional thermoelastic stability problem in 

axisymmetric geometries are most efficiently found using a Fourier reduction method. 

While many commercial FEA codes allow a user to transform the results into a 

cylindrical coordinate system, element definition is typically performed in Cartesian 

coordinates [26]. 

Hotspotter on the other hand uses a Fourier reduction, numerical perturbation method 

to solve for the critical sliding speed of the system. The critical sliding speed is the 

threshold of relative velocity of the sliding components such that thermal instability is 

excited. Hotspotter uses a Fourier reduction method because to solve the FEA solution to 



 

18 

the coupled transient thermoelastic contact problem, such as in [27], the computational 

resources required are too large and a numerical approach is able to approximate the 

solutions to a sufficiently acceptable level of accuracy according to [6]. Further, the 

inclusion of convective terms can be avoided in systems of geometric symmetry [28].  

According to [29] and [6], the displacement and temperature fields of a Fourier 

element are defined as: 

 
𝑢௥ = ෍ 𝑁௜

ே

௜ୀଵ

𝑈௥
௜ cos 𝑛𝜃 

(2.19) 

 
𝑢ఏ = ෍ 𝑁௜

ே

௜ୀଵ

𝑈ఏ
௜ sin 𝑛𝜃 

(2.20) 

 
𝑇 = ෍ 𝑁௜

ே

௜ୀଵ

Θ௥
௜ cos 𝑛𝜃 

(2.21) 

where 𝑁௜(𝑟, 𝜙) are the shape functions defined in the two dimensional cylindrical 

domain, Ω, and 𝑢௥ & 𝑢ఏ are components of the nodal displacement vector. The strain-

displacement relationship for the Fourier element is defined by: 

 𝜀 = ෍ 𝐵௜ 𝑈௜ 
(2.22) 

For a Fourier element in cylindrical coordinates, as is the most common coordinate 

system according to [6], the strain-displacement matrix is defined in cylindrical 

coordinates as: 

 

[𝐵] = ൦

(𝜕𝑁௜/𝜕𝑟) cos 𝑛𝜃 0

(𝑁௜/𝑟) cos 𝑛𝜃 (𝑛𝑁௜/𝑟) cos 𝑛𝜃

−(𝑛𝑁௜/2𝑟) sin 𝑛𝜃
1

2
(𝜕𝑁௜/𝜕𝑟 − 𝑁௜/𝑟) sin 𝑛𝜃

൪ 

(2.23) 
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A similar method can be used to define the Fourier element strain-displacement 

matrix in Cartesian coordinates as well [6]. The transformation between cylindrical and 

Cartesian coordinates is defined by [30] and [31]: 

 𝑥 = 𝑟 cos 𝜃 (2.24) 

 𝑦 = 𝑟 sin 𝜃 (2.25) 

Regardless of the element type used throughout this investigation, the strain-

displacement matrix remains the same. That is, it may be defined in Cartesian or 

cylindrical coordinates, and according to [32] defining a finite element in cylindrical 

coordinates for the solution of heat transfer is not well defined in literature. Regardless of 

how the element is defined, the values contained within the matrix are congruent from 

one element definition to another. The reason for defining the strain-displacement matrix 

in cylindrical coordinates is to allow the Hotspotter software to use values from the [𝐵] 

matrix at various times throughout the analysis and have compatible coordinate 

definitions from one element to another without the need for a coordinate transform.  

In Cartesian coordinates, an issue arises when attempting to differentiate the shape 

functions because they are expressed in the natural coordinates of the volume element. 

The derivatives with respect to 𝑥 & 𝑦 are not available directly, therefore the derivatives 

with respect to natural coordinates are taken first [22]. To derive the terms in the [𝐵] 

matrix use the chain rule to expand: 

 𝜕𝑁௜/𝜕𝑥 = 𝜕𝑁௜/𝜕𝜁ଵ ∗ 𝜕𝜁ଵ/𝜕𝑥 + 𝜕𝑁௜/𝜕𝜁ଶ ∗ 𝜕𝜁ଶ/𝜕𝑥 + 𝜕𝑁௜/𝜕𝜁ଷ ∗ 𝜕𝜁ଷ/𝜕𝑥 (2.26) 

 𝜕𝑁௜/𝜕𝑦 = 𝜕𝑁௜/𝜕𝜁ଵ ∗ 𝜕𝜁ଵ/𝜕𝑦 + 𝜕𝑁௜/𝜕𝜁ଶ ∗ 𝜕𝜁ଶ/𝜕𝑦 + 𝜕𝑁௜/𝜕𝜁ଷ ∗ 𝜕𝜁ଷ/𝜕𝑦 (2.27) 


