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Abstract 

The objective of the work presented in this thesis is to develop first-order triangular 

and tetrahedral elements for solutions to Thermoelastic Instabilities (TEI) regarding 

sliding friction systems in Hotspotter. 

Hotspotter software uses a finite element method and an eigenvalue method and is an 

important tool because currently no other commercial software exists which solves the 

TEI problem for critical velocities and wave numbers of a system. Hotspotter currently 

uses quadrilateral and hexahedral elements for two and three dimensional analysis, 

respectively. Typically, tri and tet elements are used in industry when doing static and 

dynamic stress analysis. Therefore, the Hotspotter user is currently required to re-mesh 

the system using quad or hex based elements before importing the mesh into Hotspotter, 

a time consuming and dispensable process. Development of triangular and tetrahedral 

elements for TEI analysis will eliminate the re-meshing burden on the Hotspotter user 

without sacrificing accuracy of results. 

Presented in this investigation is the mathematical development of such tri and tet 

elements. Then, verification of those elements by comparing trial cases against 

theoretical and Abaqus results. Finally, validation by incorporating the tri elements into 

Hotspotter and comparing to the quad elements. Results indicate accuracy within 1 

percent of the legacy elements which have been validated against experimental data. 



 

iii 
 

Acknowledgements 

I would like to thank my advisor, Dr. Yun-Bo Yi, you have been a great source of 

knowledge, guidance, and inspiration. I would like to thank you for providing exceptional 

counsel during my master’s studies and research. Your thoughtful advice and calmness 

fostered lasting peace during inherently stressful times. Thank you for providing me with 

support when needed and the freedoms to explore and develop individually as a 

researcher. 

To my classmates who have helped me grow as a scholar and individual, thank you. 

Your devotion to curiosity, learning, integrity, and unwavering friendship have been 

imperative to my successes at the University of Denver. 

Lastly to my family who have been there for me throughout the hurdles of my 

academic career. Thank you for always believing in me and providing encouragement. I 

couldn’t have accomplished this milestone without your continuous support and 

understanding. 



 

iv 

Table of Contents 

CHAPTER 1 INTRODUCTION ........................................................................................ 1  
1.1 Motivation ........................................................................................................... 1 
1.2 Objectives ........................................................................................................... 5  

CHAPTER 2 ELEMENT DEVELOPMENT FOR THERMAL AND STRESS 
ANALYSIS ......................................................................................................................... 8 

2.1 FEA introduction ................................................................................................ 8 
2.2 First-order triangular element ........................................................................... 12 
2.3 First-order tetrahedral element .......................................................................... 29 

CHAPTER 3 VERIFICATION & VALIDATION .......................................................... 39 
3.1 Element verification .......................................................................................... 39 

3.1.1 First-order triangular element .................................................................... 39 
3.1.1.1 Verify element in bending only .......................................................... 39 
3.1.1.2 Verify element by adding thermal load .............................................. 47 

3.1.1.2.1 Fixed-free beam (fixed in X direction only) ................................ 47 
3.1.1.2.2 Fixed-fixed beam (fixed in X direction only) .............................. 51 
3.1.1.2.3 Fixed-fixed beam (fixed in X & Y) ............................................. 56 
3.1.1.2.4 2D generalized disk ..................................................................... 59 

3.1.2 First-order tetrahedral element ................................................................... 66 
3.1.2.1 Verify 3D generalized disk ................................................................. 66 

3.2 Element validation against legacy Hotspotter elements ................................... 70 
3.2.1 Triangular element validation .................................................................... 70 

3.2.1.1 Quadrilateral pad and rotor model ...................................................... 70 
3.2.1.2 Triangular pad and rotor model .......................................................... 72 
3.2.1.3 Quad pad, tri rotor model .................................................................... 74 
3.2.1.4 Tri pad, quad rotor model ................................................................... 76 
3.2.1.5 Comparing all models ......................................................................... 78 
3.2.1.6 Validation mesh refinement and convergence study .......................... 81 

3.2.2 First-order tetrahedral element ................................................................... 84 

CHAPTER 4 CONCLUSION AND FUTURE WORK ................................................... 85 
4.1 Conclusion ........................................................................................................ 85 
4.2 Future work ....................................................................................................... 86  

References ......................................................................................................................... 89  
 

  



 

v 

List of Figures 

Figure 1. A Boeing 787 aircraft brake system .................................................................... 1 
Figure 2. A clutch pressure plate ........................................................................................ 2 
Figure 3. Hotspotter classic................................................................................................. 5  
Figure 4. Hotspotter full 3D ................................................................................................ 5  
 

Figure 5. A simple two bar FEA system ........................................................................... 10 
Figure 6. A visual Representation of von Mises stress ..................................................... 12 
Figure 7. The Constant Strain Triangle (CST) element .................................................... 13 
Figure 8. Isoparametric mapping of the CST element ...................................................... 14 
Figure 9. Isoparametric mapping of the CST element ...................................................... 15 
Figure 10. Isoparametric mapping .................................................................................... 17 
Figure 11. A cantilever beam meshed using CST elements ............................................. 25 
Figure 12. The 4-noded tetrahedral (tet4) element ........................................................... 30 
Figure 13. Isoparametric mapping .................................................................................... 32 
 

Figure 14. Initial geometry of a 2D beam ......................................................................... 40 
Figure 15. Initial (gray) and deformed (blue) geometry of a 2D beam ............................ 41 
Figure 16. Abaqus volumetric integration rough mesh .................................................... 42 
Figure 17. Matlab volumetric integration rough mesh ..................................................... 42 
Figure 18. Matlab numerical integration rough mesh ....................................................... 43 
Figure 19. Abaqus volumetric integration fine mesh ........................................................ 45 
Figure 20. Matlab numerical integration fine mesh .......................................................... 45 
Figure 21. Initial geometry of a 2D beam fixed in only the x direction on the left end ... 48 
Figure 22. Initial (gray) and deformed (blue) geometry of a 2D beam fixed in only the x 
direction on the left end .................................................................................................... 48 
Figure 23. Abaqus fixed-free beam .................................................................................. 49 
Figure 24. Matlab fixed-free beam ................................................................................... 49 
Figure 25. Initial geometry of a 2D beam fixed in only the x direction on both ends . .... 51 
Figure 26. Initial (gray) and deformed (blue) geometry of a 2D beam, fixed in only the x 
direction on both ends ....................................................................................................... 52 
Figure 27. Abaqus fixed-fixed beam ................................................................................ 53 
Figure 28. Matlab fixed-fixed beam ................................................................................. 53 
Figure 29. Fixed-fixed beam node numbering .................................................................. 55 
Figure 30. Initial (gray) and deformed (blue) geometry of a 2D beam fixed in both 
directions on both ends ..................................................................................................... 56 
Figure 31. Abaqus fixed u1 & v1 beam ............................................................................ 57 
Figure 32. Matlab fixed u1 & v1 beam ............................................................................. 57 
Figure 33. Element numbering and minimum in-plane principal strain values ................ 59 
Figure 34. Initial geometry of a 2D disk ........................................................................... 60  
Figure 35. Initial (gray) and deformed (blue) geometry of a 2D disk .............................. 61 



 

vi 

Figure 36. Analytical results for fixed inner diameter disk .............................................. 63 
Figure 37. Abaqus fixed u1 & v1 inner diameter disk ...................................................... 63  
Figure 38. Fixed u1 & v1 inner diameter Matlab disk ...................................................... 64 
Figure 39. Initial (gray) and deformed (green) geometries ............................................... 67 
Figure 40. Abaqus analysis for a fixed u1 & v1 inner diameter disk ............................... 67 
Figure 41. Matlab analysis for a fixed u1 & v1 inner diameter disk ................................ 68 
Figure 42. Mesh of an axisymmetric disk pad and rotor model using all quadrilateral 
elements ............................................................................................................................ 71  
Figure 43. First mode shape results of an axisymmetric disk pad and rotor model using all 
quadrilateral elements ....................................................................................................... 71  
Figure 44. Mesh of an axisymmetric disk pad and rotor model using all triangular 
elements ............................................................................................................................ 73  
Figure 45. First mode shape results of an axisymmetric disk pad and rotor model using all 
triangular elements ............................................................................................................ 73  
Figure 46. Mesh of an axisymmetric disk pad and rotor model using quadrilateral and 
triangular elements ............................................................................................................ 75  
Figure 47. First mode shape results of an axisymmetric disk pad and rotor model using 
quadrilateral and triangular elements ................................................................................ 75  
Figure 48. Mesh of an axisymmetric disk pad and rotor model using triangular and 
quadrilateral elements ....................................................................................................... 77  
Figure 49. First mode shape results of an axisymmetric disk pad and rotor model using 
triangular and quadrilateral elements ................................................................................ 77 
Figure 50. Critical velocity vs. wave number ................................................................... 80  
Figure 51. Refined mesh of an axisymmetric disk pad and rotor model using all 
quadrilateral elements ....................................................................................................... 81  
Figure 52. Refined mesh of an axisymmetric disk pad and rotor model using all triangular 
elements ............................................................................................................................ 81  
Figure 53. Refined mesh of an axisymmetric disk pad and rotor model using quadrilateral 
and triangular elements ..................................................................................................... 82 
Figure 54. Refined mesh of an axisymmetric disk pad and rotor model using triangular 
and quadrilateral elements ................................................................................................ 82 
Figure 55. Refined mesh critical velocity vs. wave number ............................................. 83 

 

  



 

vii 

List of Tables 

Table 1. A single CST element stiffness matrix output from Abaqus. ............................. 23 
Table 2. A single CST element stiffness matrix output from Matlab. .............................. 24 

 

Table 3. Numerical vs. volumetric integration results ...................................................... 44 
Table 4. Numerical vs. volumetric integration results ...................................................... 46 
Table 5. Fixed-free results ................................................................................................ 50 
Table 6. Fixed-fixed results .............................................................................................. 54 
Table 7. Fixed u1 & v1 results .......................................................................................... 58  
Table 8. Fixed u1 & v1 inner diameter results.................................................................. 65 
Table 9. Results for a fixed u1 & v1 inner diameter three dimensional disk ................... 69 

 

Table 10. Wave number and critical speed results of an axisymmetric disk using all 
quadrilateral elements ....................................................................................................... 72  
Table 11. Wave number and critical speed results of an axisymmetric disk using all 
triangular elements ............................................................................................................ 74  
Table 12. Wave number and critical speed results of an axisymmetric disk using 
quadrilateral and triangular elements ................................................................................ 76  
Table 13. Wave  number and critical speed results of an axisymmetric disk using 
triangular and quadrilateral elements ................................................................................ 78 
Table 14 Wave number and lowest critical speed results of all element types................. 80 
Table 15. Mesh refinement results for wave number and lowest critical speed results of 
all element types. .............................................................................................................. 83  



 

1 

CHAPTER 1 INTRODUCTION 

1.1 Motivation 

When designing a sliding friction system such as aircraft brakes or automotive 

clutches, the engineer must consider a great deal of design elements. An example of such 

a system is outlined in Figure 1 [1]. 

 

Figure 1. A Boeing 787 aircraft brake system uses many parts and involves complex 
geometries. 

One design consideration regarding geometry and material selection is the 

phenomenon of thermoelastic instability (TEI) [2]. TEI is a form of thermal instability 

which regards two or more sliding bodies in frictional contact [3], [4]. When the bodies 

are contacting one another over a large area, small scale surface asperities cause a non-
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uniform pressure distribution. This pressure distribution causes uneven friction which 

leads to uneven heating of each surface in contact. Further, thermal expansion of these 

parts cause non-uniform deformation and the uneven surfaces therefore hold different 

pressures, temperatures, and deform differently than the surrounding material [5]. Figure 

2 displays antisymmetric hotspots on a clutch pressure plate from an experiment, 

showing support for TEI theory. 

 

Figure 2. A clutch pressure plate after a single engagement reveals visual evidence of 
antisymmetric hotspots. Photo taken from [6]. 

 “If the sliding speed is sufficiently high, the thermal mechanical feedback process is 

unstable, leading eventually to the localization of the load in a small region of the 

nominal contact area of the sliding surfaces” [3]. This localized thermal mechanical load 

can lead to increased vibration, localized material yielding, fatigue crack nucleation, and 

premature part failure which may not be accounted for using traditional failure theories 

[7], [8], [9]. 

The phenomenon was first rigorously investigated by Barber  [5], however according 

to [10] it had been reportedly observed in railroad brakes and wheels even earlier than 

that. Since then, many analytical approaches to generalized cases of increasing 
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complexity have been investigated, from generalized half planes [11] to geometric length 

scales relevant for disk brake analysis [12]. However, limitations to the complexity of the 

problems arise with closed form analytical solutions leading to a time consuming and less 

than ideal method to understand if TEI could occur for any given design [13]. For 

example, an engineering designer may only consider a simplified geometry such as the 

diameter and thickness of the brake rotor when finding the analytical solution to the TEI 

problem, but when the final part is manufactured there may be intricacies unaccounted 

for in the analytical solution such as a rotor hat and cooling fins. Therefore, the analytical 

solution to the TEI problem is at best a time intensive approximation which suits a single 

simplified geometry. 

An obvious alternative to the closed form analytical solution is to use the finite 

element method [14]. According to [15] “it is often necessary to obtain approximate 

numerical solutions for complex industrial problems, in which exact closed-form 

solutions are difficult to obtain”. Therefore, the use of the Finite Element Analysis (FEA) 

in either two or three dimensions to quickly analyze a complex design for vulnerabilities 

to TEI is a valid method. Currently no options exist to analyze TEI in the form of native 

or plug in applications for major FEA packages such as Abaqus or Ansys. There is a 

commercially available software package, Hotspotter, which evaluates brake, clutch, and 

other frictional sliding designs for susceptibility to thermoelastic instabilities.  

Hotspotter uses an eigenvalue method to determine the growth rate of eigenmodes of 

the system for discrete sliding speeds. First, linear perturbations on the temperature field 

arising due to micro scale surface asperities are considered, at a discrete sliding speed, 



 

4 

which vary exponentially with time. In the governing equations and boundary conditions 

for thermoelasticity and heat-conduction, time cancels out leading to a complex linear 

eigenvalue problem for 𝑏, the growth rate, for discrete values of 𝑛, the wave number, and 

the sliding speed, 𝑉 [6], [16]. The eigenvalue has both real and imaginary parts. The real 

part corresponds to the growth rate of the perturbation, and the imaginary part 

corresponds to the migration speed of the perturbation [14]. The problem is simplified 

further by the assumption that a real eigenvalue corresponds to instability because an 

eigenvalue of zero governs the stability boundary [14]. Essentially an eigenvalue of zero 

means that a steady state solution has been found, while an eigenvalue with a real number 

corresponds to instability. Once the growth rate of the eigenmodes is determined for a set 

of speeds, the critical speed is found by searching for the lowest speed corresponding to a 

positive growth rate in the eigenmode [17]. The eigenvalue method used by Hotspotter is 

complex and is covered in depth in [18], [14], [19], [20].  

There are two versions of the Hotspotter code, classic and full 3D. The classic version 

of Hotspotter, as shown in Figure 3, uses a cross section of an axisymmetric system to be 

analyzed such as clutches and seals, it is not suitable for non-axisymmetric geometries 

such as automotive disk brake systems which have a non-axisymmetric brake pad. The 

classic version discretizes the cross section into first-order fully integrated quadrilateral 

elements and solves for critical speeds in two dimensions, then uses a Fourier series to 

solve for the hot spots along the circumferential dimension of the part.  
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Figure 3. Hotspotter classic analyzes strictly axisymmetric geometries such as automotive 
clutches and airplane brakes. Image taken from [17]. 

The full 3D version of Hotspotter is suitable for both non-axisymmetric and 

axisymmetric geometries. The model is represented in three dimensions, shown by Figure 

4, by first-order hexahedral finite elements, also called ‘hex’ or ‘brick’ elements, and 

solves for critical speeds throughout the geometry simultaneously [17]. 

 

Figure 4. Hotspotter full 3D has capabilities to analyze complex non-axisymmetric geometry 
in three dimensions such as automotive and railroad brake systems. Image taken from [17]. 

1.2 Objectives 

The objectives of this work are to develop triangular and tetrahedral finite elements 

appropriate for TEI analysis which may be incorporated into the Hotspotter software. 

This reduces the burden placed on the designer by making an easier model and mesh 
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transition from stress analysis in industry standard FEA software’s such as Abaqus and 

Ansys to TEI analysis in Hotspotter software. Typically, users will mesh their parts and 

assemblies using triangular or tetrahedral elements in two dimensional or three 

dimensional space respectively for stress analysis in commercial FEA software’s. 

Hotspotter currently has the capability to use quadrilateral or hexahedral elements in two 

dimensional or three dimensional analysis respectively for TEI analysis. Therefore, if a 

user wants to determine the critical velocity at which hotspots would occur in the design, 

a re-mesh of the geometries and further mesh convergence studies would have to be 

conducted due to the mis-match of element types when moving between software’s.  

Hotspotter was developed using quad and hex elements due to the computational 

efficiency of those elements and availability of computers capable of running such an 

analysis at the time. The efficiency is realized because quad and hex elements require less 

elements to obtain an accurate result when compared to triangular and tetrahedral 

elements. A simple solution might be to use quadrilateral and hexahedral elements when 

doing the stress analysis. However, the limitation to using first-order quad and hex 

elements is that they may exhibit a shear locking behavior or be overly stiff when the 

model has complicated geometry, is loaded in bending, or contact is present, which is a 

requirement in sliding friction system analysis. 

Computational advances within the last 20 years have made it feasible to run large 

analysis on a fine mesh discretization using triangular or tetrahedral elements with 

reasonable solution times. Therefore, it is preferred to use a first-order linear triangular or 

tetrahedral element in the stress analysis to avoid such complications from meshing 
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intricate geometries with quad or hex elements. Also, the use of tri and tet elements 

allows for auto meshing and similar adaptive mesh refinement in zones of high stress 

[21]. Literature presents some conflicting information regarding use of first or second 

order triangular and tetrahedral elements in contact problems. For example, according to 

literature, a linear triangular element is susceptible to shear locking behavior while higher 

order elements such as a 4-noded or 10-noded tetrahedron are preferred for stress analysis 

[22]. And on the other hand, due to the high nonlinearity of TEI analysis, a first-order 

element may be able to handle the contact and solution nonlinearities better than a second 

order element can due to the lack of mid side nodes. Therefore, in an attempt to keep 

computational cost low, this investigation will examine the feasibility of using first-order 

elements. If it is found to be not within acceptable error margins, a further study will need 

to be conducted which investigates the use of second order elements in Hotspotter. If 

such first-order element types are found to be sufficient, this investigation will provide 

users the ability to import the same mesh from commercial FEA packages to Hotspotter 

and reduce the time burden of remeshing while giving sufficiently accurate results.  
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CHAPTER 2 ELEMENT DEVELOPMENT FOR THERMAL AND STRESS 

ANALYSIS 

2.1 FEA introduction 

In the pursuit of modelling complex systems, defining the governing equations and 

physics of a problem may not be overly difficult. However, solving those equations by 

analytical methods is often rigorous and time consuming, or impossible [23]. The 

difficulty of solving the closed form analytical solution arises from irregularities and 

arbitrary features or geometries [15]. A simpler more flexible method of simulating real 

phenomenon has been developed within the last three decades which allows engineers to 

solve very difficult and practical problems [23]. This method which uses numerical 

simulation instead of closed form analytical solutions is called the Finite Element Method 

or Finite Element Analysis (FEM/FEA). The FEM uses many small interconnected 

elements and produces a “piece-wise” numerical approximation to the governing 

equations of the problem [15]. Instead of attempting to directly solve the complex partial 

differential equations governing the problem, the FEM reduces those equations to a set of 

simultaneous equations which can be solved with the use of most personal computers 

[15]. 

Most modern engineering problems are concerned with complex geometries, 

materials, loads, motion, boundary conditions, and may or may not be involved in the 

time domain. As such the study and use of FEA is of great interest to design engineers 
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looking for solutions to a wide array of variables regarding their systems performance. 

Having the ability to simulate such complex systems reduces the engineers overall time 

and computational resources required to understand how a system will perform in the 

field. It should be stated that use of the finite element method should not be a 

replacement to good understanding of the theory behind the problem. 

A typical process for FEA involves five steps. Firstly, pre-processing the system 

which involves subdividing the problem domain into finite elements. Secondly, 

formulation of the elements, element definitions, and governing equations. Thirdly, 

assembling the elements into a mesh and element equations into a global matrix. 

Fourthly, solving the set of equations which represent the system for a field variable. 

Lastly, post-processing of the results such as stress, strain, displacement, and visual 

representations of the system. 

The FEM uses traditional variational methods to approximate the governing equations 

over a series of subdomains which make up the entire domain [23]. This is done because 

it is easier to approximate a geometry with a series of polynomials than to find the 

equation which represents the domain exactly. When the domain is highly discretized, the 

solution to the governing equations approach exact solutions. 

When discretizing the domain of the system, analysts use “finite elements” which can 

be a variety of shapes including bar, truss, triangular, quadrilateral, etc. in two 

dimensions and tetrahedral, hexahedral, etc. in three dimensions. Elements are connected 

by nodes at each corner. In structural stress analysis, each element is governed by 

Hooke’s law in the elastic region: 
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 𝐹 = 𝐾𝑥 (2.1) 

where an external force 𝐹 acts on the element, causing a displacement 𝑥 governed by 

the spring constant 𝐾.  

In structural mechanics each element has a stiffness matrix which relates nodal 

displacements to nodal forces through: 

 [𝐾𝑒]{𝐷𝑒} = {𝑅𝑒} (2.2) 

where [𝐾𝑒] is the elemental stiffness matrix, {𝐷𝑒} is the elemental displacement 

vector, and {𝑅𝑒} is the elemental reaction force vector. This step is carried out for every 

element in the domain and assembled into a global set of matrices and vectors.  

 

Figure 5. A simple two bar FEA system, single DOF per node, with elements (e) and nodes 
(n). 

For a simple two bar element system with three elements who have one degree of 

freedom (DOF) each shown in Figure 5, the math model is represented by: 

 
൥

𝐾1 −𝐾1 0
−𝐾1 𝐾1 + 𝐾2 −𝐾2

0 −𝐾2 𝐾2
൩ ൥

𝐷1
𝐷2
𝐷3

൩ = ൥
𝑅1
𝑅2
𝑅3

൩ 
(2.3) 

Some of the quantities of the system are known such as a zero displacement at a fixed 

boundary condition as well as force input into the system. Known forces are represented 

in a force vector 𝑅. Applying boundary conditions to the system, rearrangement of these 

equations to include zeros where zero displacement occurs, results in a sparser stiffness 

matrix, displacement vector, and force vector which are all used to solve for the unknown 
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displacements. This system of equations can be solved using numerical techniques such 

as Gauss Elimination or LU decomposition. The solution to this numerical method is the 

column vector 𝐷 which holds the displacements for each node in each DOF.  

From displacements, it is possible to post process the model to extrapolate 

meaningful information from the analysis. Such results can include strain which is 

defined for a bar element as: 

 
𝜀 =

Δ𝐿

𝐿
 

(2.4) 

Or stress which is defined for a bar element as: 

 𝛿 = 𝐸𝜀 (2.5) 

where E is Young’s modulus.  

Further, visual representation of the system is common to visualize deformations, 

stress concentrations, etc. such as in Figure 6 which shows von Mises stress in three 

dimensions of geometry representative of an aircraft stator subject to a uniform 

temperature increase with a fixed inner diameter.  
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Figure 6. A visual Representation of von Mises stress of a simplified aircraft brake stator 
subject to uniform temperature increase. 

2.2 First-order triangular element 

Hotspotter currently uses an isoparametric representation of numerically integrated 

first-order 4-noded quadrilateral elements [17]. The first step in this investigation is to 

develop a program which uses iso-parametric element definition of numerically 

integrated first-order 3-noded triangular elements, colloquially referred to as the Constant 

Strain Triangle (CST). The CST has a linear displacement across the element and strain is 

therefore constant. A requirement for implementation to Hotspotter is that the elements 

may not use any symbolic math in Matlab. Reasoning for avoiding symbolic math is that 

Hotspotter does not have access these symbolic math libraries which are embedded in 

Matlab. Also, using symbolic math functions in FEA analysis greatly increases the 

computational cost required for a given simulation. 

Development of the CST element in Matlab starts with writing code to define a single 

element and its corresponding global stiffness matrix. Then building a one element 

program in Abaqus using the CST element and comparing the stiffness matrices to ensure 

the element definition and integration scheme is functioning properly.  
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Figure 7. The Constant Strain Triangle (CST) element has three nodes, with two degrees of 
freedom each, leading to an element with six degrees of freedom total and a six by six stiffness 
matrix. 

First, nodes and elements are defined in Cartesian coordinates. Then material 

properties required for the problem are defined, such as 𝐸, 𝜐, & 𝑡. This analysis is an 

isotropic plane stress analysis meaning that stress in the z direction is equal to zero: 

 ൫𝜎௭ = 𝜏௬௭ = 𝜏௭௫ = 0൯ (2.6) 

Therefore, the constitutive matrix, 𝐶𝑀, is defined from young’s modulus, 𝐸, and 

Poisson’s ratio, 𝜐, as: 

 

𝐶𝑀 =
𝐸

1 − 𝜐ଶ
൦

1 𝜐 0
𝜐 1 0

0 0
(1 − 𝜐)

2

൪ 

(2.7) 

Lagrange interpolating polynomials, also known as shape functions, are implemented 

to define the displacement potential for each node. In a two dimensional problem, such as 

one involving the CST element, two displacement variables, 𝑢 & 𝑣, are introduced into 

the interpolating polynomial [22]. For example, the CST uses the following interpolating 

polynomials to define its displacement: 
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 𝑢 = 𝑎ଵ + 𝑎ଶ𝑥 + 𝑎ଷ𝑦 (2.8) 

 𝑣 = 𝑎ସ + 𝑎ହ𝑥 + 𝑎଺𝑦 (2.9) 

This definition of interpolating polynomial shows a linear displacement field which 

further reinforces the constant value of strain across the element based on the definition 

of two dimensional strain: 

 
𝜀௫ =

𝜕௨

𝜕௫
 

(2.10) 

 
𝜀௬ =

𝜕௩

𝜕௬
 

(2.11) 

 
𝛾௫௬ =

𝜕௨

𝜕௬
+

𝜕௩

𝜕௫
 

(2.12) 

From the interpolating polynomial it is possible to define shape functions knowing 

that they are all polynomials of the same degree, the shape function is equal to one at its 

corresponding node, equal to zero at all other nodes, and varies linearly everywhere [24]. 

This shape function definition gives a value of 1 at the corresponding node and 0 at all 

other nodes as shown in Figure 8. 

 

Figure 8. Isoparametric mapping of the CST element requires natural coordinates and shape 
functions which equal 1 at the corresponding node and 0 at all other nodes.  
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For example, in Figure 9, the 𝑁ଵshape function for a CST is 𝜁ଵ in a triangular natural 

coordinate system.  

 

 

Figure 9. Isoparametric mapping of the CST element requires natural coordinates and shape 
functions which equal 1 at the corresponding node and 0 at all other nodes. 

To conduct an analysis with many CST elements, all of which may be arbitrarily 

oriented and configured, it is important to use an isoparametric element definition. 

Isoparametric means the field variables (𝑢, 𝑣) and shape of the element are defined by the 

same interpolating polynomial or shape function [22]: 

 𝑥 =  ෍ 𝑁௜ 

௜

𝑥௜ 
(2.13) 

 𝑦 =  ෍ 𝑁௜ 

௜

𝑦௜ 
(2.14) 

 𝑢 =  ෍ 𝑁௜ 

௜

𝑢௜ 
(2.15) 

 𝑣 = ෍ 𝑁௜ 

௜

v௜ 
(2.16) 

where 𝑖 is the range of nodes in the element.  
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In a classic structural analysis, the CST element has two spatial degrees of freedom 

corresponding to 𝑥 & 𝑦 displacement. However, because this element development is 

intended to be incorporated into Hotspotter, there needs to be a third degree of freedom in 

each node which represents the temperature at that node. This element type is called a 

Fourier element. Fourier elements are beneficial in this analysis because a three 

dimensional domain can be represented by a two dimensional cross section while 

retaining the third degree of freedom, T. This element definition allows three dimensional 

analysis to be meshed on a two dimensional cross section, which is a more 

computationally efficient process. The circumferentially periodic temperature field is 

defined by [6]  

 T  =   ෍ 𝑁௜  θ௜ cos nθ (2.17) 

where n is a wavenumber, i.e. number of hotspots along the circumference of the part. 

See also [25] for an application using the Fourier reduction method. 

Each element has a set of Cartesian coordinates in two dimensions, 𝑥 & 𝑦, which are 

assigned during the meshing step. In an isoparametric element definition, each CST 

element also contains a set of triangular natural coordinates, 𝜁, which stay with the 

element and maintain their position relative to it, even when the element deforms or 

otherwise changes position with respect to the Cartesian coordinate system [22].  
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Figure 10. Isoparametric mapping allows a master element defined in natural or triangular 
coordinates to be mapped into a global Cartesian coordinate system. 

The main task in defining an element stiffness matrix is establishing its strain-

displacement matrix, [𝐵], which provides gradients in terms of each nodes DOF (𝑢, 𝑣, 𝑇). 

This strain-displacement matrix is the mapping or transformation between the natural and 

Cartesian coordinate system and is developed by differentiating the shape functions in 

Cartesian coordinates: 

 
[𝐵] = ൥

𝜕𝑁௜/𝜕𝑥 0
0 𝜕𝑁௜/𝜕𝑦

𝜕𝑁௜/𝜕𝑦 𝜕𝑁௜/𝜕𝑥
൩ 

(2.18) 

According to [6] solutions to the frictional thermoelastic stability problem in 

axisymmetric geometries are most efficiently found using a Fourier reduction method. 

While many commercial FEA codes allow a user to transform the results into a 

cylindrical coordinate system, element definition is typically performed in Cartesian 

coordinates [26]. 

Hotspotter on the other hand uses a Fourier reduction, numerical perturbation method 

to solve for the critical sliding speed of the system. The critical sliding speed is the 

threshold of relative velocity of the sliding components such that thermal instability is 

excited. Hotspotter uses a Fourier reduction method because to solve the FEA solution to 
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the coupled transient thermoelastic contact problem, such as in [27], the computational 

resources required are too large and a numerical approach is able to approximate the 

solutions to a sufficiently acceptable level of accuracy according to [6]. Further, the 

inclusion of convective terms can be avoided in systems of geometric symmetry [28].  

According to [29] and [6], the displacement and temperature fields of a Fourier 

element are defined as: 

 
𝑢௥ = ෍ 𝑁௜

ே

௜ୀଵ

𝑈௥
௜ cos 𝑛𝜃 

(2.19) 

 
𝑢ఏ = ෍ 𝑁௜

ே

௜ୀଵ

𝑈ఏ
௜ sin 𝑛𝜃 

(2.20) 

 
𝑇 = ෍ 𝑁௜

ே

௜ୀଵ

Θ௥
௜ cos 𝑛𝜃 

(2.21) 

where 𝑁௜(𝑟, 𝜙) are the shape functions defined in the two dimensional cylindrical 

domain, Ω, and 𝑢௥ & 𝑢ఏ are components of the nodal displacement vector. The strain-

displacement relationship for the Fourier element is defined by: 

 𝜀 = ෍ 𝐵௜ 𝑈௜ 
(2.22) 

For a Fourier element in cylindrical coordinates, as is the most common coordinate 

system according to [6], the strain-displacement matrix is defined in cylindrical 

coordinates as: 

 

[𝐵] = ൦

(𝜕𝑁௜/𝜕𝑟) cos 𝑛𝜃 0

(𝑁௜/𝑟) cos 𝑛𝜃 (𝑛𝑁௜/𝑟) cos 𝑛𝜃

−(𝑛𝑁௜/2𝑟) sin 𝑛𝜃
1

2
(𝜕𝑁௜/𝜕𝑟 − 𝑁௜/𝑟) sin 𝑛𝜃

൪ 

(2.23) 
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A similar method can be used to define the Fourier element strain-displacement 

matrix in Cartesian coordinates as well [6]. The transformation between cylindrical and 

Cartesian coordinates is defined by [30] and [31]: 

 𝑥 = 𝑟 cos 𝜃 (2.24) 

 𝑦 = 𝑟 sin 𝜃 (2.25) 

Regardless of the element type used throughout this investigation, the strain-

displacement matrix remains the same. That is, it may be defined in Cartesian or 

cylindrical coordinates, and according to [32] defining a finite element in cylindrical 

coordinates for the solution of heat transfer is not well defined in literature. Regardless of 

how the element is defined, the values contained within the matrix are congruent from 

one element definition to another. The reason for defining the strain-displacement matrix 

in cylindrical coordinates is to allow the Hotspotter software to use values from the [𝐵] 

matrix at various times throughout the analysis and have compatible coordinate 

definitions from one element to another without the need for a coordinate transform.  

In Cartesian coordinates, an issue arises when attempting to differentiate the shape 

functions because they are expressed in the natural coordinates of the volume element. 

The derivatives with respect to 𝑥 & 𝑦 are not available directly, therefore the derivatives 

with respect to natural coordinates are taken first [22]. To derive the terms in the [𝐵] 

matrix use the chain rule to expand: 

 𝜕𝑁௜/𝜕𝑥 = 𝜕𝑁௜/𝜕𝜁ଵ ∗ 𝜕𝜁ଵ/𝜕𝑥 + 𝜕𝑁௜/𝜕𝜁ଶ ∗ 𝜕𝜁ଶ/𝜕𝑥 + 𝜕𝑁௜/𝜕𝜁ଷ ∗ 𝜕𝜁ଷ/𝜕𝑥 (2.26) 

 𝜕𝑁௜/𝜕𝑦 = 𝜕𝑁௜/𝜕𝜁ଵ ∗ 𝜕𝜁ଵ/𝜕𝑦 + 𝜕𝑁௜/𝜕𝜁ଶ ∗ 𝜕𝜁ଶ/𝜕𝑦 + 𝜕𝑁௜/𝜕𝜁ଷ ∗ 𝜕𝜁ଷ/𝜕𝑦 (2.27) 
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The next step in the transformation is to determine the remaining unknown terms by 

forming the Jacobian. Rearranging into the form: 

 [𝐽][𝑃] = [𝑅] (2.28) 

 
[𝐽] = ൥

1 1 1
(𝜕𝑁௜/𝜕𝜁ଵ)𝑥 (𝜕𝑁௜/𝜕𝜁ଶ)𝑥 (𝜕𝑁௜/𝜕𝜁ଷ)𝑥
(𝜕𝑁௜/𝜕𝜁ଵ)𝑦 (𝜕𝑁௜/𝜕𝜁ଶ)𝑦 (𝜕𝑁௜/𝜕𝜁ଷ)𝑦

൩ 
(2.29) 

 
[𝑃] = ൥

𝜕𝜁ଵ/𝜕𝑥 𝜕𝜁ଵ/𝜕𝑦
𝜕𝜁ଶ/𝜕𝑥 𝜕𝜁ଶ/𝜕𝑦
𝜕𝜁ଷ/𝜕𝑥 𝜕𝜁ଷ/𝜕𝑦

൩ 
(2.30) 

 
[𝑅] = ൥

𝜕1/𝜕𝑥 𝜕1/𝜕𝑦
𝜕𝑥/𝜕𝑥 𝜕𝑥/𝜕𝑦
𝜕𝑦/𝜕𝑥 𝜕𝑦/𝜕𝑦

൩ = ൥
0 0
1 0
0 1

൩ 
(2.31) 

It is clear that the matrix [𝑃] includes the missing terms required to solve for 𝜕𝑁௜/𝜕𝑥, 

and 𝜕𝑁௜/𝜕𝑦 when using the chain rule. Solve for the [𝑃] matrix by taking the inverse of 

the Jacobian [𝐽] matrix and multiplying it by the [𝑅] matrix: 

 [𝑃] = [𝐽]ିଵ[𝑅] (2.32) 

However, a more robust way to solve this system of equations in Matlab would be to 

use the backslash operator: 

 [𝑃] = [𝐽]\[𝑅] (2.33) 

This Matlab function takes advantage of any symmetries and simplifications available 

then applies an appropriate linear systems algorithm such as LU decomposition or similar 

[33]. 

The resulting values contained in the [𝑃] matrix can then be substituted into the 

equations to form the [𝐵] matrix which include partials of the shape functions with 

respect to Cartesian coordinates as a function of natural coordinates: 
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[𝐵] = ൥

𝜕𝑁ଵ/𝜕𝑥 0 𝜕𝑁ଶ/𝜕𝑥 0 𝜕𝑁ଷ/𝜕𝑥 0
0 𝜕𝑁ଵ/𝜕𝑦 0 𝜕𝑁ଶ/𝜕𝑦 0 𝜕𝑁ଷ/𝜕𝑦

𝜕𝑁ଵ/𝜕𝑦 𝜕𝑁ଵ/𝜕𝑥 𝜕𝑁ଶ/𝜕𝑦 𝜕𝑁ଶ/𝜕𝑥 𝜕𝑁ଷ/𝜕𝑦 𝜕𝑁ଷ/𝜕𝑥
൩ 

(2.34) 

All of the components for building the individual element stiffness matrix are now 

available. Traditionally the CST element is integrated volumetrically due to the less 

complex nature of the element, number of nodes, the area can be easily calculated, and 

thickness remains constant throughout the element. The equation for volumetric 

integration is: 

 
[k] = න[B]୘[CM][B]tdA 

(2.35) 

However, the intent of this code is to function as a plugin for the Hotspotter software, 

which requires isoparametric element definition and numerical integration. Therefore, it 

is required to formulate the integral for numerical integration over the element at one 

integration point. Gaussian quadrature for a CST uses the one point rule which has a 

single integration point located at the center of the element. The natural coordinates of 

the integration point are (1/3, 1/3, 1/3). Using a one point Gauss quadrature rule the 

equation for numerical integration of the CST is: 

 
[k] = න 1.125[B]୘[CM][B]|𝐽|t dA 

(2.36) 

where 𝑡 is the thickness of the plain stress element, |𝐽| is the determinant of the 

Jacobian matrix, [𝐵] is the strain-displacement matrix, and [𝐶𝑀] is the constitutive 

matrix.  

Up to this point, the method covered is for a standard isoparametric 3-noded 

triangular element which is useful for structural analysis. For Hotspotter to function, the 
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elements used must be capable of handling coupled thermal stresses and strains. 

Therefore, it is required to incorporate additional terms for the analysis. The equation 

which will be assembled is: 

 [𝑘]{𝑇}  =  {𝑓 } (2.37) 

where [𝑘] is the stiffness matrix of the element, {𝑇} is the temperature vector for each 

node, and {𝑓 } is the force vector due to thermal expansion at each node.  

To couple the force due to thermal expansion to the structural analysis, first a thermal 

force vector containing the temperature distribution of the mesh is assembled for each 

node using the same Gaussian integration scheme as assembling the stiffness matrix over 

the element: 

 
{𝑓 } = න 1.125[𝐵]்[𝐶𝑀]{𝜀்}|𝐽|t dA 

(2.38) 

where {𝜀்} is the thermal strain vector: 

 {𝜀்} = {𝛼𝑇, 𝛼𝑇, 0} (2.39) 

where 𝛼 is the coefficient of thermal expansion for the material. The last column 

corresponds to shear strain. The value is imposed as 0 because there is no shear strain in 

an isotropic material due to a temperature gradient. If an anisotropic material needs to be 

considered, the constitutive matrix, [𝐶𝑀], as well as the thermal strain vector, {𝜀்}, need 

to be updated accordingly.  

Once these components have been integrated over each element, the global stiffness 

matrix, [𝐾], can be assembled based on each node’s global degree of freedom. The first 

check point in development must happen here to ensure the stiffness matrix from Abaqus 

and Matlab code agree. Typically, during development, a single element is developed 
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first rather than an entire mesh to compare the stiffness matrices more easily from 

Abaqus and Matlab. For example, during this investigation, a single element was 

developed with nodal locations at {0, 0; 2, 0; 0, 2}, a Young’s modulus of 2 𝑥 10ଵଵ Pa, 

unity thickness, and a 0.33 value for Poisson’s ratio. The single element’s stiffness matrix 

from Abaqus and Matlab are given below.  

Table 1. A single CST element stiffness matrix output from Abaqus. 

1.0e+11  U1 V1 U2 V2 U3 V3 

U1 1.4981 0.7462 -1.1222 -0.3759 -0.3759 -0.3703 

V1 0.7462 1.4981 -0.3703 -0.3759 -0.3759 -1.1222 

U2 -1.1222 -0.3703 1.1222 0.0000 0.0000 0.3703 

V2 -0.3759 -0.3759 0.0000 0.3759 0.3759 0.0000 

U3 -0.3759 -0.3759 0.0000 0.3759 0.3759 0.0000 

V3 -0.3703 -1.1222 0.3703 0.0000 0.0000 1.1222 
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Table 2. A single CST element stiffness matrix output from Matlab. 

1.0e+11  U1 V1 U2 V2 U3 V3 

U1 1.4981 0.7463 -1.1222 -0.3759 -0.3759 -0.3703 

V1 0.7463 1.4981 -0.3703 -0.3759 -0.3759 -1.1222 

U2 -1.1222 -0.3703 1.1222 0.0000 0.0000 0.3703 

V2 -0.3759 -0.3759 0.0000 0.3759 0.3759 0.0000 

U3 -0.3759 -0.3759 0.0000 0.3759 0.3759 0.0000 

V3 -0.3703 -1.1222 0.3703 0.0000 0.0000 1.1222 

 

Developing the Matlab code this way greatly reduces the time required to debug or 

find problems with the code, if any are encountered. Comparing single element stiffness 

matrices effectively gates any code problems to pre element definition or post element 

definition.  

Once the stiffness matrices agree for a single element, the next step is to assemble the 

global stiffness matrix, [𝐾], global force vector, {𝐹}, and global displacement vector, 

{𝑋}. The simplest method for global assembly is using the single element code repeated 

in a for loop for each element in the domain. These vectors and matrices are assembled 

into a global scheme based on the global degree of freedom for each node. This allows 

the entire system of equations to be represented by one stiffness matrix, one force vector, 

and one displacement vector. For example, node number 22 in Figure 11 corresponds to 

degrees of freedom 43 and 44 for the global 𝑥 & 𝑦 directions respectively. Therefore, 
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node 22’s stiffness, force, and displacement values will be located in rows and columns 

43 and 44 for the analysis.  

 

Figure 11. A cantilever beam meshed using CST elements, fixed at the left end in both x and y 
directions. This beam is ready to have a mechanical, thermal, or combined load imposed.  

Once the system is represented in a global sense, the mechanical force vector can be 

assembled based on where the force is applied. If node 105, in Figure 11, has a 

mechanical force of 10 Newtons applied in the downward 𝑦 direction, a force of -10 N 

will be imposed into row 210 in the Matlab force vector. If no external mechanical force 

is present in the system, and the resultant forces are due to a uniform temperature 

increase, such as in the use case in Hotspotter, the mechanical force vector will contain 

0’s. The previously integrated thermal force vector will include terms based on the 

temperature change and coefficient of thermal expansion.  

Next is the application of boundary conditions. Applying boundary conditions after 

the assembly into global components is essential to the analysis to accurately represent 

the physical system. The simplest method for controlling the field variable, typically 

displacement, is to impose a 0 to each fixed global degree of freedom. Then, imposing a 

1 in the global stiffness matrix where the row and column of the same degree of freedom 

intersect. For example, if node 22 was to be a fixed boundary condition in both x and y 
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directions, the stiffness matrix would be assigned 0’s on rows and columns 43 and 44. 

Then at the intersection of row 43 and column 43 a 1 would be imposed, as well as the 

intersection of row 44 and column 44. Moving to the mechanical force vector, a 0 would 

be imposed on rows 43 and 44, implying no external force on node 22. This will lead to 

the displacement solution, {𝑋}, having 0 displacement at node 22, effectively creating a 

fixed boundary condition. Typically, the stiffness matrix without boundary conditions is 

set aside for use in calculating the reaction forces and the sparse boundary condition 

stiffness matrix is renamed to [𝐾஻஼]. 

Once the mechanical boundary conditions have been accounted for, the thermal force 

vector and mechanical force vector can be added together to create one coupled force 

vector: 

 {𝐹} = {𝑓௠} + {𝑓 } (2.40) 

where {𝑓௠} is the mechanical force vector with appropriate boundary conditions 

applied, and {𝑓 } is the thermal force vector. The reason no boundary conditions are 

imposed on the thermal force vector is due to the entire mesh being subjected to the 

uniform temperature increase. If, for example there was a known temperature, material 

change, or a thermal boundary condition then the thermal force vector would need to be 

changed to represent those boundary conditions. However, for the analysis in Hotspotter 

it is known that those thermal boundary conditions do not exist, so they are not taken into 

consideration here.  
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After all of the prior steps are functioning correctly, and the code can create the [𝐾], 

{𝐹}, and {𝑋} components, the analysis is ready to run. As mentioned in Chapter 1, the 

equation which will be solved is: 

 {𝐹} = [𝐾஻஼]{𝑋} (2.41) 

where {𝐹} is the coupled thermal and mechanical force vectors, [𝐾஻஼] is the global 

stiffness matrix representing the material stiffness of the physical part, and {𝑋} is the 

unknown displacement at each node which occur due to the applied force. To solve this 

system of equations, it is necessary to use a numerical method appropriate for back 

substitution such as Gauss elimination, LU decomposition, or similar: 

 {𝑋} = [𝐾஻஼]ିଵ{𝐹} (2.42) 

The most efficient way of solving this system in Matlab is to take advantage of the 

backslash function: 

 {𝑋} = [𝐾஻஼]\{𝐹} (2.43) 

Using this function is the most efficient method because Matlab calls a built in 

algorithm to select the best solver for the given problem set [33].  

As previously discussed, the output from this operation is a vector with nodal 

displacement values in the x and y directions and can be located via their global degrees 

of freedom. For example, in Figure 11, node 21 will have a displacement with 𝑥 & 𝑦 

components located in the {𝑋} vector in rows 41 and 42 respectively. 

If the engineer is interested in reaction forces, it is a trivial calculation at this point 

because all of the components are in place: 

 {𝐹ோ} = [𝐾]{𝑋} (2.44) 
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where [𝐾] is the stiffness matrix before any boundary conditions imposed, and {𝑋} is 

the solution to: 

 {𝑋} = [𝐾஻஼]\{𝐹} (2.45) 

As previously calculated. 

The last step in the FEM analysis is to post-process the results for further analysis or 

decision making regarding the design of the system. Typically, in structural analysis a 

designer is interested in stress, strain, displacement, and reaction forces.  

To calculate stress and strain values for a given mesh, the [𝐵] matrix must be called 

again for each element. Stress is defined as: 

 {𝛿} = [𝐵]{𝑋} (2.46) 

Strain is defined as: 

 {𝜀} = [𝐶𝑀]([𝐵]{𝑋} − {𝜀௧}) (2.47) 

An interesting way to visualize the results are to see the magnitude of displacement 

which needs to be calculated from the nodal 𝑥 & 𝑦 components of displacement: 

 {𝐷} = ඥ𝑥ଶ + 𝑦ଶ (2.48) 

The last check to perform when developing and FEA code in Matlab is to ensure the 

displacement, stress, and strain values correlate well with a commercial code and hand 

calculations of the analytical solution, if one exists. For the case of a simply supported 

beam, this is a simple comparison. However, for more advanced and coupled simulations, 

such as the case with this study, the analytical solution may take a long time to develop or 

may not be possible to develop at all. In these cases, it is important that the commercial 

code and development code are in close agreement. If they are not, a mesh refinement 
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study may show whether or not the solutions are converging or diverging. These checks 

for this analysis are performed and reported on in Chapter 3.  

2.3 First-order tetrahedral element 

For three dimensional and non-axisymmetric problems, Hotspotter currently uses an 

isoparametric representation of numerically integrated first-order 8-noded hexahedral 

elements.  

The next step in this investigation is to develop a program which uses iso-parametric 

element definition of numerically integrated first-order 4-noded tetrahedral elements, 

colloquially referred to as the tet4.The tet4, much like the CST, has a linear displacement 

across the element and strain is therefore constant. 

Just as with the CST, development of the tet4 element in Matlab starts with writing 

code to define a single element and its corresponding global stiffness matrix. Then 

building a one element program in Abaqus using the tet4 element and comparing the 

stiffness matrices to ensure the element definition and integration scheme is functioning 

properly.  
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Figure 12. The 4-noded tetrahedral (tet4) element has four nodes, with three degrees of 
freedom each, leading to an element with twelve degrees of freedom total and a twelve by twelve 
stiffness matrix.  

The constitutive matrix is expanded into three dimensions to: 

 

𝐶𝑀 =
𝐸

(1 − 𝜐)(1 − 2𝜐)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 − 𝜐 𝜐 𝜐 0 0 0

𝜐 1 − 𝜐 𝜐 0 0 0
𝜐 𝜐 1 − 𝜐 0 0 0

0 0 0
1

2
− 𝜐 0 0

0 0 0 0
1

2
− 𝜐 0

0 0 0 0 0
1

2
− 𝜐⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(2.49) 

The Lagrange interpolating polynomial for a tet4 is expanded to include the 𝑧 

dimension and uses the following equations to define its displacement: 

 u = 𝑎ଵ + 𝑎ଶx + 𝑎ଷy + 𝑎ସz (2.50) 

 v = 𝑎ହ + 𝑎଺x + 𝑎଻y + 𝑎଼z (2.51) 

 w = 𝑎ଽ + 𝑎ଵ଴x + 𝑎ଵଵy + 𝑎ଵଶz (2.52) 

Next the strain values are defined in three dimensions as: 
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𝜀௫ =

𝜕௨

𝜕௫
 

(2.53) 

 
𝜀௬ =

𝜕௩

𝜕௬
 

(2.54) 

 
𝜀௭ =

𝜕௪

𝜕௭
 

(2.55) 

 
𝛾௫௬ =

𝜕௩

𝜕௫
+

𝜕௨

𝜕௬
 

(2.56) 

 
𝛾௬௭ =

𝜕௪

𝜕௬
+

𝜕௩

𝜕௭
 

(2.57) 

 
𝛾௫௭ =

𝜕௪

𝜕௫
+

𝜕௨

𝜕௭
 

(2.58) 

When using a tet4 element, it remains important to use an isoparametric element 

definition so the mesh may contain arbitrarily oriented and sized elements. The shape 

functions and isoparametric mapping definitions are also expanded to three dimensions: 

 𝑥 =  ෍ 𝑁௜ 

௜

𝑥௜ 
(2.59) 

 𝑦 =  ෍ 𝑁௜ 

௜

𝑦௜ 
(2.60) 

 z =   ෍ 𝑁௜ 

௜

𝑧௜ 
(2.61) 

 𝑢 =  ෍ 𝑁௜ 

௜

𝑢௜ 
(2.62) 

 𝑣 = ෍ 𝑁௜ 

௜

𝑣௜ 
(2.63) 
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 w = ෍ 𝑁௜ 

௜

w௜ 
(2.64) 

where 𝑖 is the range of nodes in the element.  

The temperature field in a Fourier element is described by the same equation for 

temperature as in the CST element: 

 T  =   ෍ 𝑁௜  θ௜ cos nθ (2.65) 

where n is a wavenumber. 

In an isoparametric element definition, each tet4 element also contains a set of 

triangular natural coordinates, 𝜁, which stay with the element and maintain their position 

relative to it, even when the element deforms or otherwise changes position with respect 

to the Cartesian coordinate system [22]. This is true for the CST element and tet4 

elements, but the tet4 element has a fourth natural coordinate 𝜁ସ as shown in Figure 13.  

 

Figure 13. Isoparametric mapping allows a master element defined in natural or triangular 
coordinates to be mapped into a global Cartesian coordinate system. 

Establishing and defining the strain-displacement matrix for a tet4 element remains 

crucial in utilizing an isoparametric element definition. Therefore the [𝐵] matrix is 

expanded to three dimensions: 
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[𝐵] =

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑁௜/𝜕𝑥 0 0

0 𝜕𝑁௜/𝜕𝑦 0
0 0 𝜕𝑁௜/𝜕𝑧

𝜕𝑁௜/𝜕𝑦 𝜕𝑁௜/𝜕𝑥 0
0 𝜕𝑁௜/𝜕𝑧 𝜕𝑁௜/𝜕𝑦

𝜕𝑁௜/𝜕𝑧 0 𝜕𝑁௜/𝜕𝑥⎦
⎥
⎥
⎥
⎥
⎤

 

(2.66) 

Defining the Fourier element in three dimensions is accomplished using the same 

method as for the CST but expanded to include the third dimension. The temperature and 

displacement fields of the Fourier tet4 element are defined as: 

 
𝑢௥ = ෍ 𝑁௜

ே

௜ୀଵ

𝑈௥
௜ cos 𝑛𝜃 

(2.67) 

 
𝑢ఏ = ෍ 𝑁௜

ே

௜ୀଵ

𝑈ఏ
௜ sin 𝑛𝜃 

(2.68) 

 
𝑢௭ = ෍ 𝑁௜

ே

௜ୀଵ

𝑈௭
௜ sin 𝑛θ 

(2.69) 

 
𝑇 = ෍ 𝑁௜

ே

௜ୀଵ

Θ௥
௜ cos 𝑛𝜃 

(2.70) 

where 𝑁௜(𝑟, 𝜃, 𝑧) are the shape functions defined in the three dimensional cylindrical 

domain, Ω, and 𝑢௥, 𝑢ఏ, & 𝑢௭ are components of the nodal displacement vector. The 

strain-displacement relationship for the Fourier element is defined by: 

 𝜀 = ෍ 𝐵௜ 𝑈௜ 
(2.71) 

Therefore, the strain-displacement matrix for a Fourier element in three dimensions 

is: 
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[𝐵]

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

(𝜕𝑁௜/𝜕𝑟) cos 𝑛𝜃 0 0

(𝑁௜/𝑟) cos 𝑛𝜃 (𝑛𝑁௜/𝑟) cos 𝑛𝜃 0
0 0 (𝜕𝑁௜/𝜕𝑧) cos 𝑛𝜃

−(𝑛𝑁௜/2𝑟) sin 𝑛𝜃
1

2
(𝜕𝑁௜/𝜕𝑟 − 𝑁௜/𝑟) sin 𝑛𝜃 0

0
1

2
(𝜕𝑁௜/𝜕𝑧) sin 𝑛𝜃 −(𝑛𝑁௜/2𝑟) sin 𝑛𝜃

1

2
(𝜕𝑁௜/𝜕𝑧) cos 𝑛𝜃 0

1

2
(𝜕𝑁௜/𝜕𝑟) cos 𝑛𝜃⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

(2.72) 

In Cartesian coordinates, the same issue arises when attempting to differentiate the 

shape functions because they are again expressed in the natural coordinates of the volume 

element. The derivatives are found using the chain rule by taking the derivatives with 

respect to the natural coordinates first. To find these terms in the [𝐵] matrix use the chain 

rule to expand: 

 𝜕𝑁௜/𝜕𝑥 = 𝜕𝑁௜/𝜕𝜁ଵ ∗ 𝜕𝜁ଵ/𝜕𝑥 + 𝜕𝑁௜/𝜕𝜁ଶ ∗ 𝜕𝜁ଶ/𝜕𝑥 + 𝜕𝑁௜/𝜕𝜁ଷ ∗ 𝜕𝜁ଷ/𝜕𝑥

+ +𝜕𝑁௜/𝜕𝜁ସ ∗ 𝜕𝜁ସ/𝜕𝑥 

(2.73) 

 𝜕𝑁௜/𝜕𝑦 = 𝜕𝑁௜/𝜕𝜁ଵ ∗ 𝜕𝜁ଵ/𝜕𝑦 + 𝜕𝑁௜/𝜕𝜁ଶ ∗ 𝜕𝜁ଶ/𝜕𝑦 + 𝜕𝑁௜/𝜕𝜁ଷ ∗ 𝜕𝜁ଷ/𝜕𝑦

+ +𝜕𝑁௜/𝜕𝜁ସ ∗ 𝜕𝜁ସ/𝜕𝑦 

(2.74) 

 𝜕𝑁௜/𝜕𝑧 = 𝜕𝑁௜/𝜕𝜁ଵ ∗ 𝜕𝜁ଵ/𝜕𝑧 + 𝜕𝑁௜/𝜕𝜁ଶ ∗ 𝜕𝜁ଶ/𝜕𝑧 + 𝜕𝑁௜/𝜕𝜁ଷ ∗ 𝜕𝜁ଷ/𝜕𝑧

+ +𝜕𝑁௜/𝜕𝜁ସ ∗ 𝜕𝜁ସ/𝜕𝑧 

(2.75) 

In the next step, the same procedure is applied to the tet4 element to form the 

Jacobian and then rearrange into the form: 

 [𝐽][𝑃] = [𝑅] (2.76) 
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[𝐽] = ൦

1 1 1 1
(𝜕𝑁௜/𝜕𝜁ଵ)𝑥 (𝜕𝑁௜/𝜕𝜁ଶ)𝑥 (𝜕𝑁௜/𝜕𝜁ଷ)𝑥 (𝜕𝑁௜/𝜕𝜁ସ)𝑥
(𝜕𝑁௜/𝜕𝜁ଵ)𝑦 (𝜕𝑁௜/𝜕𝜁ଶ)𝑦 (𝜕𝑁௜/𝜕𝜁ଷ)𝑦 (𝜕𝑁௜/𝜕𝜁ସ)𝑦
(𝜕𝑁௜/𝜕𝜁ଵ)𝑧 (𝜕𝑁௜/𝜕𝜁ଶ)𝑧 (𝜕𝑁௜/𝜕𝜁ଷ)𝑧 (𝜕𝑁௜/𝜕𝜁ସ)𝑧

൪ 

(2.77) 

 

[𝑃] = ൦

𝜕𝜁ଵ/𝜕𝑥 𝜕𝜁ଵ/𝜕𝑦 𝜕𝜁ଵ/𝜕𝑧
𝜕𝜁ଶ/𝜕𝑥 𝜕𝜁ଶ/𝜕𝑦 𝜕𝜁ଶ/𝜕𝑧
𝜕𝜁ଷ/𝜕𝑥 𝜕𝜁ଷ/𝜕𝑦 𝜕𝜁ଷ/𝜕𝑧
𝜕𝜁ସ/𝜕𝑥 𝜕𝜁ସ/𝜕𝑦 𝜕𝜁ସ/𝜕𝑧

൪ 

(2.78) 

 

[𝑅] = ൦

𝜕1/𝜕𝑥 𝜕1/𝜕𝑦 𝜕1/𝜕𝑧
𝜕𝑥/𝜕𝑥 𝜕𝑥/𝜕𝑦 𝜕𝑥/𝜕𝑧
𝜕𝑦/𝜕𝑥 𝜕𝑦/𝜕𝑦 𝜕𝑦/𝜕𝑧
𝜕𝑧/𝜕𝑥 𝜕𝑧/𝜕𝑦 𝜕𝑧/𝜕𝑧

൪ = ൦

0 0 0
1 0 0
0 1 0
0 0 1

൪ 

(2.79) 

Once again, the [𝑃] matrix includes the missing terms required to solve for 𝜕𝑁௜/𝜕𝑥, 

𝜕𝑁௜/𝜕𝑦, and 𝜕𝑁௜/𝜕𝑧 when using the chain rule 

Solve for the [𝑃] matrix by taking the inverse of the Jacobian [𝐽] matrix and 

multiplying it by the [𝑅] matrix. In Matlab it is recommended to take advantage of the 

backslash operator: 

 [𝑃] = [𝐽]\[𝑅] (2.80) 

After the [𝑃] matrix has been solved for, the values can be substituted into the 

equations to form the [𝐵] matrix: 

 

[𝐵] =

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑁௜/𝜕𝑥 0 0

0 𝜕𝑁௜/𝜕𝑦 0
0 0 𝜕𝑁௜/𝜕𝑧

𝜕𝑁௜/𝜕𝑦 𝜕𝑁௜/𝜕𝑥 0
0 𝜕𝑁௜/𝜕𝑧 𝜕𝑁௜/𝜕𝑦

𝜕𝑁௜/𝜕𝑧 0 𝜕𝑁௜/𝜕𝑥⎦
⎥
⎥
⎥
⎥
⎤

 

(2.81) 

Once the [𝐵] matrix is fully assembled, all of the components are available to 

integrate the individual element stiffness matrix. The tet4 element is numerically 

integrated using Gaussian quadrature which uses a one point rule which has a single 
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integration point located at the center of the element. The natural coordinates of the 

integration point are (1/3, 1/3, 1/3,1/3). Using a one point Gauss quadrature rule the 

equation for numerical integration of the tet4 is: 

 
[k] = න 1.125[B]୘[CM][B]|𝐽| dA 

(2.82) 

where |𝐽| is the determinant of the Jacobian matrix, [𝐵] is the strain-displacement 

matrix, and [𝐶𝑀] is the constitutive matrix.  

The next step is to incorporate the additional terms required to run the coupled 

thermal stress analysis required for incorporation into Hotspotter. First the thermal force 

vector is integrated using the same Gaussian integration scheme as assembling the 

stiffness matrix over the element: 

 
{𝑓 } = න 1.125[𝐵]்[𝐶𝑀]{𝜀்}|𝐽|t dA 

(2.83) 

where {𝜀்} is the thermal strain vector: 

 {𝜀்} = {𝛼𝑇, 𝛼𝑇, 𝛼𝑇, 0, 0, 0} (2.84) 

Once these components have been integrated over each element, the global stiffness 

matrix, [𝐾], can be assembled based on each node’s global degree of freedom. Just as 

with the CST element, the tet4 will be developed using a single element before an entire 

mesh so that the stiffness matrices may be compared more easily to one another to ensure 

the element definitions are the same.  

Once the stiffness matrices agree for a single element, the next step is to assemble the 

global stiffness matrix, [𝐾], global force vector, {𝐹}, and global displacement vector, 
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{𝑋}. The simplest method for global assembly is using the single element code repeated 

in a for loop for each element in the domain. 

Once the system is represented in a global sense, the mechanical force vector can be 

assembled based on where the force is applied in three dimensions. 

Next is the application of boundary conditions in the same manner as the CST, but 

expanded to three dimensions. Then the stiffness matrix is renamed to [𝐾஻஼], and the pre-

boundary conditions stiffness matrix is set aside for use later in calculating reaction 

forces.  

Once the mechanical boundary conditions have been accounted for, the thermal force 

vector and mechanical force vector can be added together to create one coupled force 

vector: 

 {𝐹} = {𝑓௠} + {𝑓 } (2.85) 

After all of the prior steps are functioning correctly, and the code can create the [𝐾], 

{𝐹}, and {𝑋} components, the analysis is ready to run. As mentioned in Chapter 1, the 

equation which will be solved is: 

 {𝐹} = [𝐾஻஼]{𝑋} (2.86) 

To solve this system of equations, it is necessary to use a numerical method 

appropriate for back substitution such as Gauss elimination, LU decomposition, 

backslash operator in Matlab, or similar: 

 {𝑋} = [𝐾஻஼]\{𝐹} (2.87) 
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As with the CST the output from this operation is a vector with nodal displacement 

values in the 𝑥, 𝑦, and 𝑧 directions and can be located via their global degrees of 

freedom. 

Any post processing of results including stresses, strains, displacement magnitudes, 

and reaction forces are the same equations for the tet4 as for the CST. 

As with any FEA code in Matlab, the last check to perform is to ensure the 

displacement, stress, and strain values correlate well with a commercial code and hand 

calculations of the analytical solution, if one exists. These checks for this analysis are 

performed and reported on in Chapter 3.  

Once the element types have been developed and compared against commercial code 

and where possible, theoretical calculations, they must be implemented into Hotspotter 

for analysis of TEI. The constitutive law, loading, and boundary conditions are the same 

in Hotspotter as in classical FEM analysis. The only further consideration for adapting 

Matlab code to Hotspotter is ensuring the strain-displacement and stiffness matrices are 

compatible. As previously discussed, the strain-displacement matrix and stiffness matrix 

are developed using a Fourier reduction method. 

Further, to run a Hotspotter analysis with the new element types, the 3D version of 

Hotspotter is used which requires an input file much like that of an Abaqus input file. The 

definition of the new element type is called by the input file, but the calculation of the 

new strain-displacement and stiffness matrices is computed in the main Hotspotter 

algorithm which is in the form of an executable program. 
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CHAPTER 3 VERIFICATION & VALIDATION 

3.1 Element verification 

Element verification must be performed prior to implementing new code into 

Hotspotter to ensure the elements are robust. Verification is performed on simplified 

geometry and loading to prove the new elements give sufficiently accurate results when 

compared with results from a commercial code such as Abaqus as well as any attainable 

analytical results. The verification cases start out overly simplified in attempt to 

compartmentalize any potential problems which may occur with increased complexity. 

With each subsequent verification case, the analysis becomes more and more generalized, 

ending in a three dimensional analysis of geometry representative of an aircraft stator 

with a fixed inner diameter subject to a uniform temperature increase. 

Material properties for the following element verification analyses are: 

 E = 2 x 10ଵଵ Pa (3.1) 

 𝜈 = 0.33 (3.2) 

 𝛼 = 1.15 𝑥 10ି଺ ⋅ °𝐶ିଵ (3.3) 

 Δ𝑇 =  1000 °𝐶 (3.4) 

3.1.1 First-order triangular element 

3.1.1.1 Verify element in bending only 

The first case to compare analytical, Abaqus, and Matlab results is a simple cantilever 

beam with a fixed end subject to a 100 N mechanical load at the free end; no thermal load 



 

40 

was added to this analysis. The beam is fixed in both the 𝑥 & 𝑦 directions to prevent rigid 

body translations. This comparison verifies that the CST code is functioning when a 

mechanical load is present. Because the element integration schemes are different from 

the Matlab code to Abaqus, it is important to compare these results to ensure the code is 

accurate when compared to a traditional volumetrically integrated element. Figure 14 

shows the geometry used in the analysis and Figure 15 shows the anticipated deformed 

shape once the load has been applied. Initial geometric values for the beam are given by: 

 𝐿௢ = 10 𝑚 (3.5) 

 ℎ = 2 𝑚 (3.6) 

 𝑡 = 1 𝑚 (3.7) 

 

Figure 14. Initial geometry of a 2D beam fixed in both directions on the left end. 



 

41 

 

Figure 15. Initial (gray) and deformed (blue) geometry of a 2D beam fixed in both directions 
on the left end allowing deformation along the beam subject to a mechanical load of 100 N. 

The maximum stress in the beam is defined by: 

 
𝜎 =

𝑀𝑦

𝐼
 

(3.8) 

 𝑀 = 𝐹𝐿௢ (3.9) 

 
𝐼 =

𝑡ℎ௢
ଷ

12
 

(3.10) 

The maximum strain in the beam is defined by: 

 𝐸 =
𝜎

𝜀
 (3.11) 

Therefore: 

 𝜀 =
𝜎

𝐸
 (3.12) 

The maximum deformation in the beam is defined by: 

 
𝛿 =

𝐹𝐿ଷ

3𝐸𝐼
 

(3.13) 

 
𝐼 =

𝑡ℎ௢
ଷ

12
 

(3.14) 
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The first case is a rough mesh where both Matlab and Abaqus use a volumetric 

integration scheme as shown in Figure 16 and Figure 17. These results are then compared 

to a numerically integrated CST element in Matlab, Figure 18, to ensure all three cases 

are sufficiently close to one another. All three results are then compared to the analytical 

solution in Table 3. 

 

Figure 16. Abaqus volumetric integration rough mesh beam results for stress in the x 
direction. 

 

Figure 17. Matlab volumetric integration rough mesh beam results for stress in the x 
direction. 
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Figure 18. Matlab numerical integration rough mesh beam results for stress in the x 
direction. 
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Table 3. Numerical vs. volumetric integration results for mechanically loaded rough mesh 
beam. 

Value  Volumetric Integration Numerical 

Integration 

Theory Abaqus Matlab Matlab 

Max Stress 

(Pa) 

1500 398.9780 398.9780 398.9780 

Location 

(element) 

 13 13 13 

Min Stress (Pa) -1500 -398.9780 -398.9780 -398.9780 

Location 

(element) 

 14 14 14 

Max Strain 7.5 x 10-9 1.7776 x 10-9 1.7776 x 10-9 1.7776 x 10-9 

Location 

(element) 

 13 13 13 

Min Strain -7.5 x 10-9 -1.8081 x 10-9 -1.8081 x 10-9 -1.8081 x 10-9 

Location 

(element) 

 14 14 14 

Max Disp. (m) 2.5 x 10-7 0.7081 x 10-7 0.7081 x 10-7 0.7081 x 10-7 

Location 

(node) 

 1 1 1 

 

As is evident in Table 3, the results from all three FEA codes match each other well, 

therefore, it is safe to say the numerically integrated CST element is sufficiently close to 

the volumetrically integrated CST element and will be used throughout this investigation 

moving forward. 
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Also as is evident in Table 3, the FEA results are not reasonably close to the analytical 

solution, therefore, it is required to perform a mesh refinement to ensure the results from 

the FEA code are converging on the analytical solution. Below in Figure 19 and Figure 

20, a more finely discretized model has been analyzed. In Table 4 the results of the mesh 

refinement are compared to the analytical solution.  

 

Figure 19. Abaqus volumetric integration fine mesh beam results for stress in the x direction. 

 

Figure 20. Matlab numerical integration fine mesh beam results for stress in the x direction. 
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Table 4. Numerical vs. volumetric integration results for mechanically loaded fine mesh 
beam. 

Value  Volumetric 

Integration 

Numerical 

Integration 

Theory Abaqus Matlab 

Max Stress 

(Pa) 

1500 1455.92 1455.9244 

Location 

(element) 

 39 39 

Min Stress (Pa) -1500 -1374.61 -1374.6134 

Location 

(element) 

 400 400 

Max Strain 7.5 x 10-9 6.4868 x 10-9 6.4868 x 10-9 

Location 

(element) 

 39 39 

Min Strain -7.5 x 10-9 -6.7550 x 10-9 -6.7550 x 10-9 

Location 

(element) 

 400 400 

Max Disp. (m) 2.5 x 10-7 2.3759 x 10-7 2.3759 x 10-7 

Location 

(node) 

 1 1 

 

The results in Table 4 show that the mesh refinement provided results much closer to 

that of the analytical results. It is safe to say that the numerically integrated CST element 

code is converging towards the analytical solution and is sufficiently close to Abaqus and 

the analytical solution such that the investigation will move forward with verification of 

thermal stress and strain in the CST element formulation.  



 

47 

3.1.1.2 Verify element by adding thermal load 

3.1.1.2.1 Fixed-free beam (fixed in X direction only) 

The next case to compare analytical, Abaqus, and Matlab results is an eigenstrain 

problem using a simple cantilever beam with a fixed end subject to a uniform 1000 °𝐶 

thermal load. The beam is fixed in the 𝑥 direction only and is allowed to expand in the 𝑦 

direction on both top and bottom of the beam. To eliminate any rigid body translations, a 

single node in the middle of the beam at the left end has also been fixed in the y direction. 

This comparison ensures that the CST code is functioning when a thermal load is present, 

and strains are developed throughout the beam. However, due to the boundary conditions, 

no stresses are present. Figure 21 shows the geometry used in the analysis and Figure 22 

shows the anticipated deformed shape once the load has been applied. Initial geometric 

values for the beam are given by: 

 𝐿௢ = 10 𝑚 (3.15) 

 ℎ = 2 𝑚 (3.16) 

 𝑡 = 1 𝑚 (3.17) 
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Figure 21. Initial geometry of a 2D beam fixed in only the x direction on the left end, 
allowing expansion in both the x and y directions. 

 

Figure 22. Initial (gray) and deformed (blue) geometry of a 2D beam fixed in only the x 
direction on the left end, subject to a uniform temperature increase of 1000 °𝐶. 

The change in length for the beam is defined by: 

 
ε =

Δ𝐿௫

𝐿௢
 

(3.18) 

 ε = αΔT (3.19) 

Therefore: 

 Δ𝐿௫ = αΔT𝐿௢ (3.20) 
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Figure 23. Abaqus fixed-free beam with uniformly distributed thermal load results for 
displacement in the x direction. 

 

Figure 24. Matlab fixed-free beam with uniformly distributed thermal load results for 
displacement in the x direction. 
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Table 5. Fixed-free results for uniformly distributed thermal load fine mesh beam. 

Value Theory Abaqus Matlab 

Max Stress 

(Pa) 

0 8.4195 x 10-7 4.6 x 10-5 

Location 

(element) 

 119 122 

Min Stress (Pa) 0 -9.7238 x 10-7 -9.4 x 10-5 

Location 

(element) 

 39 1 

Max Strain 0.0115 0.0115 0.0115 

Location 

(element) 

 160 122 

Min Strain 0.0115 0.0115 0.0115 

Location 

(element) 

 160 1 

Max Disp. (m) 0.115 0.1168 0.1155 

Location 

(node) 

 21 21 

 

As is evident in Table 5, the results from both FEA codes match each other well, and 

also match the analytical solution closely. Stress values (maximum and minimum) are 

effectively zero and the discrepancies in element location between Matlab and Abaqus 

results are due to differences in numerical noise arising from many elements having the 

same value.  
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3.1.1.2.2 Fixed-fixed beam (fixed in X direction only) 

The next case to compare analytical, Abaqus, and Matlab results is a beam with both 

ends fixed subject to a uniform 1000 °𝐶 thermal load. The beam is fixed in the 𝑥 direction 

only and is allowed to expand in the 𝑦 direction on both top and bottom of the beam. This 

comparison ensures that the CST code is functioning when a thermal load is present, and 

stresses and strains are developed due to the boundary conditions. Figure 25 shows the 

geometry used in the analysis and Figure 26 shows the anticipated deformed shape once 

the load has been applied. Initial geometric values for the beam are given by: 

 𝐿௢ = 10 𝑚 (3.21) 

 ℎ = 2 𝑚 (3.22) 

 𝑡 = 1 𝑚 (3.23) 

 

Figure 25. Initial geometry of a 2D beam fixed in only the x direction on both ends . 



 

52 

 

Figure 26. Initial (gray) and deformed (blue) geometry of a 2D beam, fixed in only the x 
direction on both ends, subject to a uniform temperature increase of 1000 °𝐶. 

The stress developed in the beam due to being restricted in the 𝑥 direction is defined 

by: 

 𝜎 = 𝐸𝜀 (3.24) 

 
𝜎 = 𝐸

Δ𝐿௫

𝐿௢
 

(3.25) 

 Δ𝐿௫ = αΔT𝐿௢ (3.26) 

where Δ𝐿௫ is the change in length the beam would undergo if it weren’t restricted in 

the 𝑥 direction. Therefore: 

 𝜎 = 𝐸αΔT (3.27) 

The change in height for the beam is defined by: 

 
ε =

Δℎ௬

ℎ௢
 

(3.28) 

 ε = αΔT (3.29) 
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therefore: 

 Δℎ௬ = αΔTℎ௢ (3.30) 

 

Figure 27. Abaqus fixed-fixed beam with uniformly distributed thermal load results for 
displacement in the y direction. 

 

Figure 28. Matlab fixed-fixed beam with uniformly distributed thermal load results for 
displacement in the y direction. 
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Table 6. Fixed-fixed results for uniformly distributed thermal load fine mesh beam. 

Value Theory Abaqus Matlab 

Max Stress 

(Pa) 

-2.3 x 109 -2.3 x 109 -2.299 x 109 

Location 

(element) 

 160 39 

Min Stress (Pa) -2.3 x 109 -2.3 x 109 -2.3 x 109 

Location 

(element) 

 160 126 

Max Strain 0.0115 0.0152 0.0152 

Location 

(element) 

 160 110 

Min Strain 0.0115 0.0152 0.0152 

Location 

(element) 

 160 79 

Max Disp. (m) 0.0115 0.0154 0.0152 

Location 

(node) 

 105 97 

Maximum displacement happens in the Y-direction along the top and bottom of the 

beam, and is equal to 0.0115 m. As is evident in Figure 29 (node numbering in black) the 

location of node 105 and node 97 are both on the top edge of the beam and have 

effectively the same displacement. Node numbering is congruent from Abaqus to Matlab 

and in this analysis the stress and strain gradients are both zero, therefore the differences 

between nodes of  max & min: displacement, stress, and strain are due to differences in 

numerical noise.  
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Figure 29. Fixed-fixed beam node numbering shows equivalent displacements along the top 
edge. 

The FEA displacement results are very close, but not exact when compared to 

theoretical calculations which is due to a lack of elements through the height of the beam, 

a known issue with beam geometries in FEA. However, the stress values from Abaqus, 

Matlab, and analytical solutions are sufficiently close to move on to verification using 

more generalized cases. 
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3.1.1.2.3 Fixed-fixed beam (fixed in X & Y) 

The next case to compare analytical, Abaqus, and Matlab results is a beam with both 

ends fixed subject to a uniform 1000 °𝐶 thermal load. The beam is fixed in the 𝑥 & 𝑦 

directions. This comparison ensures that the CST code is functioning when a thermal load 

is present, and stresses and strains are developed due to the boundary conditions. Figure 

25 shows the geometry used in the analysis and Figure 30 shows the anticipated 

deformed shape once the load has been applied. Initial geometric values for the beam are 

given by: 

 𝐿௢ = 10 𝑚 (3.31) 

 ℎ = 2 𝑚 (3.32) 

 𝑡 = 1 𝑚 (3.33) 

 

Figure 30. Initial (gray) and deformed (blue) geometry of a 2D beam fixed in both directions 
on both ends, subject to a uniform temperature increase of 1000 °𝐶. 
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Figure 31. Abaqus fixed u1 & v1 beam with uniformly distributed thermal load results for 
displacement in the y direction. 

 

Figure 32. Matlab fixed u1 & v1 beam with uniformly distributed thermal load results for 
displacement in the y direction. 
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Table 7. Fixed u1 & v1 results for uniformly distributed thermal load fine mesh beam. 

Value Abaqus Matlab 

Max Mises 

Stress (Pa) 

4.22959 x 109 4.22959 x 109 

Location 

(element) 

122 122 

Min Mises 

Stress (Pa) 

1.4818 x 109 1.4818 x 109 

Location 

(element) 

81 80 

Max Strain 0.0156 0.0156 

Location 

(element) 

90 74 

Min Strain 0 0 

Location 

(element) 

39 122 

Max Disp. (m) 0.0166 0.0166 

Location 

(node) 

100 100 

 

As shown in Table 7, Abaqus and Matlab code are in close agreement for a true 

fixed-fixed beam geometry and boundary conditions. The discrepancies in element 

location between Abaqus and Matlab are shown in Figure 33 with element numbering in 

white. The stress, strain, and displacement values have symmetry which explains why 

element 39 and 122 are given as minimum strain locations but have the same value, for 

example.  
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Figure 33. Element numbering and minimum in-plane principal strain values show the lines 
of symmetry for a fixed-fixed beam subject to a uniform thermal load. 

The next verification is to use this code to analyze a generalized case such as a disk 

with a fixed inner diameter subject to a uniform temperature increase . Then compare the 

results with Abaqus and theoretical calculations. 

3.1.1.2.4 2D generalized disk 

The two dimensional generalized case to compare analytical, Abaqus, and Matlab 

results is a disk with a fixed inner diameter subject to a 1000 °𝐶 uniform temperature 

increase. The disk is fixed in both the 𝑥 & 𝑦 directions to prevent rigid body translations. 

This comparison verifies that the CST code is functioning when a thermal load is present 

in a generalized, non-orthogonal mesh. Figure 34 shows the geometry used in the 

analysis and Figure 35 shows the anticipated deformed shape once the load has been 

applied. Initial geometric values for the disk are given by: 

 𝑟ଵ = 2.5 𝑚 (3.34) 

 𝑟ଶ = 5 𝑚 (3.35) 

 𝑡 = 1 𝑚 (3.36) 
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Figure 34. Initial geometry of a 2D disk fixed in both directions on the inner diameter. 
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Figure 35. Initial (gray) and deformed (blue) geometry of a 2D disk fixed in both directions 
on the inner diameter, subject to a uniform temperature increase of 1000 °𝐶. 

The two dimensional analysis of this geometry is considered plane stress because the 

disk is very short in the z direction (𝑡 = 1) and the surfaces in the z direction are traction 

free [34]. Therefore: 

 𝜎௭௭ = 0 (3.37) 

The radial stress values are defined by: 

 
𝜎௥௥ = −

𝐸𝛼

𝑟ଶ
න 𝑟𝑇 𝑑𝑟 + 𝐴 +

𝐵

𝑟ଶ
 

(3.38) 

The circumferential stress values are defined by: 
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𝜎ఏఏ =

𝐸𝛼

𝑟ଶ
න 𝑟𝑇 𝑑𝑟 − 𝐸𝛼𝑇 + 𝐴 −

𝐵

𝑟ଶ
 

(3.39) 

The radial strain values are defined by: 

 𝜀௥௥ =
𝜎௥௥

𝐸
−

𝜐𝜎௥௥

𝐸
+ 𝛼Δ𝑇 (3.40) 

The circumferential strain values are defined by: 

 𝜀ఏఏ =
𝜎ఏఏ

𝐸
−

𝜈𝜎௥௥

𝐸
+ 𝛼Δ𝑇 (3.41) 

The radial displacement values are defined by: 

 
𝑢௥ =

𝛼(1 + 𝜈)

𝑟
න 𝑇𝑟 𝑑𝑟 +

𝐴(1 − 𝜈)𝑟

𝐸
−

(1 + 𝜈)𝐵

𝐸𝑟
 

(3.42) 

And circumferential displacement is considered to be zero.  

𝐴 & 𝐵 are constants of integration and are typically found using known conditions at 

an inner or outer radii of the disk [34]. To find 𝐴 & 𝐵, use the known boundary 

conditions to solve for 𝐴 & 𝐵 simultaneously. 

 𝜎௥௥(𝑟 = 5) = 0 (3.43) 

 𝑢௥(𝑟 = 2.5) = 0 (3.44) 

Then substitute both 𝐴 & 𝐵 into either stress equation to solve for unknown stress 

values. 

A Matlab code was developed to solve the analytical solutions using discrete radial 

values with a step size of: 

 
∆𝑟 =  

𝑟ଵ + 𝑟ଶ

50
 

(3.45) 

Results are shown in Figure 36 which display stress, strain, and displacement values 

along the entire radius of the disk. 
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Figure 36. Analytical results for fixed inner diameter disk subject to uniformly distributed 
thermal load. 

 

Figure 37. Abaqus fixed u1 & v1 inner diameter disk with uniformly distributed thermal load 
showing results for displacement in the x direction. 
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Figure 38. Fixed u1 & v1 inner diameter Matlab disk with uniformly distributed thermal load 
showing results for displacement in the x direction. 
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Table 8. Fixed u1 & v1 inner diameter results for uniformly distributed thermal load.
Value Theory Abaqus Matlab 

Max Radial 

Stress (Pa) 

1.1519 x 109 1.1735 x 109 1.1735 x 109 

Location  

(element) 

 51 51 

Min Radial 

Stress (Pa) 

0 -2.0615 x 109 -2.0615 x 109 

Location  

(element) 

 107 107 

Max Radial 

Strain 

0.01535 0.01967 0.01967 

Location  

(element) 

 202 202 

Min Radial 

Strain 

0.0115 0.01291 0.01291 

Location  

(element) 

 137 137 

Max Disp. (m) 0.0383 0.0383 0.0383 

Location  

(node) 

 68 68 

 

As displayed in Table 8, Abaqus, Matlab, and Theory are all in close agreement for a 

generalized non-orthogonal mesh representative of an aircraft stator which has fixed 

inner diameter and is subject to a uniform thermal load. Because the CST element 

verification was successful in all of the previously discussed cases, the investigation will 

continue on with expanding the CST element to three dimensions to verify a tet4 element. 

Once element verification has been completed and sufficiently accurate results have been 
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documented using both element types, the investigation will move to implementing the 

new element definitions in Hotspotter and validating a few trial cases against the legacy 

Hotspotter elements.  

3.1.2 First-order tetrahedral element 

3.1.2.1 Verify 3D generalized disk 

The three dimensional analysis considers the case of a disk with a fixed inner 

diameter (fixed in 𝑥 & 𝑦 directions), where the 𝑧 direction is allowed to expand due to 

the plane stress assumption. The three dimensional analysis of this geometry is 

considered plane stress because the disk is very short in the 𝑧 direction (𝑡 = 1) and the 

surfaces in the 𝑧 direction are traction free [34]. Therefore, the analytical method and 

solutions to the two dimensional analysis are the same for three dimensional case here as 

well. 

Figure 39 displays the initial geometry (gray) and deformed geometry (green) in 

Abaqus and Figure 40 shows the von Mises stress in each element for the Abaqus 

analysis in Cartesian coordinates.  
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Figure 39. Initial (gray) and deformed (green) geometries of a fixed u1 & v1 inner diameter 
disk subject to uniform thermal load. 

 

Figure 40. Abaqus analysis for a fixed u1 & v1 inner diameter disk in Cartesian coordinates 
subject to uniform thermal load showing results for von Mises stress. 
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Figure 41 shows the von Mises stress when using the Matlab code tet4 element in 

Cartesian coordinates and Table 9 displays the results of all three analysis methods.  

 

Figure 41. Matlab analysis for a fixed u1 & v1 inner diameter disk in Cartesian coordinates 
subject to uniform thermal load showing results for von Mises stress. 
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Table 9. Results for a fixed u1 & v1 inner diameter three dimensional disk with uniformly 
distributed thermal load. 

Value Theory Abaqus Matlab 

Max Radial 

Stress (Pa) 

1.1519 x 109 1.2849 x 109 1.2849 x 109 

Location 

(element) 

 2117 2117 

Min Radial 

Stress (Pa) 

0 -2.1559 x 109 -2.1559 x 109 

Location 

(element) 

 2664 2664 

Max Radial 

Strain 

0.01535 0.02009 0.02009 

Location 

(element) 

 2117 2117 

Min Radial 

Strain 

0.0115 2.3162 x 10-6 2.3162 x 10-6 

Location 

(element) 

 1640 1640 

Max Disp. (m) 0.0383 0.0403 0.0403 

Location 

(node) 

 140 140 

 

Abaqus and Matlab are in reasonably close agreement to each other, as well as to the 

analytical solution. The investigation will continue on to element incorporation into 

Hotspotter and further validation against legacy Hotspotter elements.  
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3.2 Element validation against legacy Hotspotter elements 

As simulation across many fields of engineering is growing, model verification and 

validation are becoming increasingly more important [35]. One question on the mind of 

every simulation user is whether or not the model adequately depicts reality [36]. Model 

validation is the essential process of determining how closely a model represents the real 

world from the perspective of the user [35]. According to [37], it is relatively easy to 

develop a numerical model, but validation that the model is an accurate representation of 

the problem and is useful for real world problem solving is more difficult. The legacy hex 

and quad elements in Hotspotter have been validated and shown to be sufficiently close 

to real world data. Therefore, the next step in this investigation is to compare the newly 

developed triangular and tetrahedral elements to the validated legacy quad and hex 

elements in Hotspotter.  

3.2.1 Triangular element validation 

All of the following simulations use the same stopping criteria in Hotspotter. 

Stopping criteria used in the bisection search method employed by Hotspotter is specified 

in the input file; and for this investigation is set at 0.5 percent. The stopping criteria in a 

bisection search method dictates how close to a solution the algorithm must be before 

stopping. This means that the reported results for critical velocity are within 0.5 percent 

of the actual result from the function being numerically estimated. 

3.2.1.1 Quadrilateral pad and rotor model 

This model validation run uses quadrilateral elements for the pad and the rotor. This 

model has been validated with real world experiments and data. Mesh and TEI mode 
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shapes are shown in Figure 42 and Figure 43, respectively. Wave number, i.e. number of 

hotspots, and critical speed results are shown in Table 10. 

 

Figure 42. Mesh of an axisymmetric disk pad and rotor model using all quadrilateral 
elements in Hotspotter 3D. 

 

Figure 43. First mode shape results of an axisymmetric disk pad and rotor model using all 
quadrilateral elements in Hotspotter 3D. 

The visual representation of the mode shapes, output by Hotspotter and shown in 

Figure 43, Figure 45, Figure 47, & Figure 49, are contour plots of the eigenmode with the 

largest growth rate of the analysis [17]. In an eigenvalue analysis, relative values or 

eigenvectors are important instead of absolute values and therefore a legend is not 

required on the output plots. The eigenvector shows the direction in which instability 

occurs and the eigenvalue is the factor by which the eigenvector is scaled. With this in 

mind, the plots in Figure 43, Figure 45, Figure 47, & Figure 49 are relative values 

representing the first mode shape of the system. Mode shapes are important as they show 

how a system responds to inputs. In the case of Hotspotter, the mode shapes show the 

systems spatial distribution of the dominant eigenmode in the cross-sectional plane of the 

geometry [17]; the colors represent relative perturbation temperature distribution. 
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Table 10. Wave number and critical speed results of an axisymmetric disk using all 
quadrilateral elements in Hotspotter 3D. 

Wave Number Critical Speed (radians/second) 

0 351.6 

2 693.4 

4 580.1 

6 311.5 

8 205.1 

10 168.9 

12 167.5 

14 188.0 

16 224.6 

18 272.5 

20 331.1 

22 404.3 

24 505.9 

 

3.2.1.2 Triangular pad and rotor model  

This model validation run uses CST elements for the pad and the rotor. Mesh and TEI 

mode shapes are shown in Figure 44 and Figure 45, respectively. Wave number and 

critical speed results are shown in Table 11. 
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Figure 44. Mesh of an axisymmetric disk pad and rotor model using all triangular elements 
in Hotspotter 3D. 

 

Figure 45. First mode shape results of an axisymmetric disk pad and rotor model using all 
triangular elements in Hotspotter 3D. 
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Table 11. Wave number and critical speed results of an axisymmetric disk using all 
triangular elements in Hotspotter 3D. 

Wave Number Critical Speed (radians/second) 

0 494.1 

2 953.1 

4 662.1 

6 320.3 

8 204.1 

10 167.0 

12 165.5 

14 186.0 

16 225.6 

18 282.2 

20 354.5 

22 437.5 

24 533.2 

 

3.2.1.3 Quad pad, tri rotor model  

This model validation run uses quadrilateral elements for the pad and CST elements 

for the rotor. Mesh and TEI mode shapes are shown in Figure 46 and Figure 47, 

respectively. Wave number and critical speed results are shown in Table 12. 
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Figure 46. Mesh of an axisymmetric disk pad and rotor model using quadrilateral and 
triangular elements, respectively, in Hotspotter 3D. 

 

Figure 47. First mode shape results of an axisymmetric disk pad and rotor model using 
quadrilateral and triangular elements, respectively, in Hotspotter 3D. 
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Table 12. Wave number and critical speed results of an axisymmetric disk using quadrilateral 
and triangular elements, respectively, in Hotspotter 3D. 

Wave Number Critical Speed (radians/second) 

0 634.8 

2 1422.0 

4 693.4 

6 323.2 

8 204.1 

10 167.0 

12 166.0 

14 187.0 

16 224.6 

18 274.4 

20 335.0 

22 412.1 

24 515.6 

 

3.2.1.4 Tri pad, quad rotor model  

This model validation run uses CST elements for the pad and quadrilateral elements 

for the rotor. Mesh and TEI mode shapes are shown in Figure 48 and Figure 49, 

respectively. Wave number and critical speed results are shown in Table 13. 
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Figure 48. Mesh of an axisymmetric disk pad and rotor model using triangular and 
quadrilateral elements, respectively, in Hotspotter 3D. 

 

Figure 49. First mode shape results of an axisymmetric disk pad and rotor model using 
triangular and quadrilateral elements, respectively, in Hotspotter 3D. 
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Table 13. Wave  number and critical speed results of an axisymmetric disk using triangular 
and quadrilateral elements, respectively, in Hotspotter 3D. 

 Wave Number Critical Speed (radians/second) 

0 265.6 

2 464.8 

4 488.3 

6 304.7 

8 205.1 

10 169.4 

12 168.0 

14 185.5 

16 216.8 

18 259.8 

20 314.5 

22 388.7 

24 509.8 

 

3.2.1.5 Comparing all models 

Lowest critical speed, associated wave number, and percent error are reported in 

Table 14. In designing a system, engineers are primarily concerned with the lowest 

critical sliding speed. Concern only for the lowest critical speed is because regardless of 

other faster critical speeds, TEI has been excited at the lowest critical speed during 

normal operation of the system. Therefore, comparison of different wave numbers is not 
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typically performed. The results of all validation simulations indicate that TEI will be 

excited for this geometry around a velocity of 167.5 radians per second, corresponding to 

a mode which presents 12 periodic hot spots around the circumference of the disk. For 

this design, an engineer would need to consider the speed at which the system may 

operate. If the system is likely to see such speeds, then the design needs to be rebuilt in 

such a way as to increase the critical velocity of the system. However, if the system is not 

likely to see such speeds during use, then the design process may move on to subsequent 

steps. 

Percent error in the result compared to the validated result (all quad model) is 

calculated using: 

 
𝛿 = ฬ

𝜈஺ − 𝜈ா

𝜈ா
ฬ ∗ 100 (3.46) 

where 𝜈ா is the expected value, i.e. the result when using all quad elements, 𝜈஺ is the 

result obtained from the new simulation using tri elements, and 𝛿 is the percent error in 

the critical velocities. Percent error as reported in Table 14 compares the differences 

between each simulation and the expected result from the all quad model. This percent 

error is different than the stopping criteria used in each simulation. 

Results show that no matter the element choice, singular or in combination, and 

selection of elements relative to each part, stator or rotor, the results for lowest critical 

sliding speed and wave number are within 1.5 percent of the expected value.  

  



 

80 

Table 14 Wave number and lowest critical speed results of all element types.
Model Dominant Mode 

Wave Number 

Lowest Critical Speed 

(rad/sec) 

Percent Error 

(%) 

All quad model 12 167.5 0.00 

All tri model 12 165.5 1.19 

Quad pad, tri rotor 

model 

12 166.0 .895 

Tri pad, quad rotor 

model 

12 168.0 .298 

 

Figure 50. Critical velocity vs. wave number results for element validation simulations. 

Figure 50 displays the critical velocity versus the wave number of all the models used 

in validation. It is clear from the graph that at lower critical velocities the results 

converge on the expected value, and as the critical velocity increases the results diverge 

from the expected results with larger divergence happening at lower wave numbers. A 
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mesh refinement is required to understand if convergence on the expected value will 

happen at lower wave numbers.  

3.2.1.6 Validation mesh refinement and convergence study 

All of the models from section 3.2.1.5 were re-meshed to increase the number of 

nodes and elements through the entire model in an attempt to understand if convergence 

on the expected results from Table 14 would occur.  

The all quadrilateral model increased the number of elements from 36 to 180, and 

increased the number of nodes from 55 to 220. The refined mesh is shown in Figure 51. 

 

Figure 51. Refined mesh of an axisymmetric disk pad and rotor model using all quadrilateral 
elements in Hotspotter 3D. 

The all triangular model increased the number of elements from 72 to 360, and 

increased the number of nodes from 55 to 220. The refined mesh is shown in Figure 52. 

 

Figure 52. Refined mesh of an axisymmetric disk pad and rotor model using all triangular 
elements in Hotspotter 3D. 

The quad pad, tri rotor model increased the number of elements from 48 to 234, and 

increased the number of nodes from 55 to 220. The refined mesh is shown in Figure 53. 
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Figure 53. Refined mesh of an axisymmetric disk pad and rotor model using quadrilateral 
and triangular elements, respectively, in Hotspotter 3D. 

The tri pad, quad rotor model increased the number of elements from 60 to 306, and 

increased the number of nodes from 55 to 220. The refined mesh is shown in Figure 54. 

 

Figure 54. Refined mesh of an axisymmetric disk pad and rotor model using triangular and 
quadrilateral elements, respectively, in Hotspotter 3D. 

Results in Table 15 show that no matter the element choice, singular or in 

combination, and selection of elements relative to each part, stator or rotor, the results for 

lowest critical sliding speed and wave number are within 0.85 percent of the expected 

value.  
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Table 15. Mesh refinement results for wave number and lowest critical speed results of all 
element types.

Model Dominant Mode 

Wave Number 

Lowest Critical Speed 

(rad/sec) 

Percent Error 

(%) 

All quad model 12 177.7 0.00 

All tri model 12 178.2 .281 

Quad pad, tri rotor 

model 

12 179.2 .844 

Tri pad, quad rotor 

model 

12 178.2 .281 

 

Figure 55. Refined mesh critical velocity vs. wave number results for element validation 
simulations. 

In comparison to the results from the rough meshes used in the previous section, 

displayed in Figure 50, the results of the more finely meshed models are much closer to 

the expected value, as shown in Figure 55Figure 55. Refined mesh critical velocity vs. 

wave number. Therefore, because the lowest critical velocity results are within 0.85 
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percent error of the expected value and occurs at the same wave number, it can be 

concluded that the CST element, used in any configuration in Hotspotter, is a validated 

element.  

Further, because the all quad model has been validated against real world 

experimental data and because the CST element models match the critical speed of the all 

quad model within 0.85 percent error, it is reasonable to consider the CST element also 

validated against that same experimental data. 

3.2.2 First-order tetrahedral element 

Due to the difficulties and time commitment in developing the tetrahedral element in 

three dimensional Cartesian space and verifying its proper working order via comparison 

to Abaqus and analytical solutions, the tetrahedral element has yet to be incorporated into 

Hotspotter software. The element has been verified to be functional and sufficiently 

accurate, but needs to be defined in cylindrical coordinates before it can be implemented 

into Hotspotter for validation. However, this is a source of ongoing work and will be 

incorporated into Hotspotter in the future. 
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CHAPTER 4 CONCLUSION AND FUTURE WORK  

4.1 Conclusion 

While developing a system vulnerable to thermoelastic instabilities, an engineer must 

consider many factors. From the type of materials and material properties to be used, 

geometric restrictions imposed by other connected systems, to mechanical and thermal 

stresses which may develop in the system from normal use. When dealing with thermal 

and structural analysis of the system, special attention must be placed on regions of high 

stress concentrations, thermal loads, and temperature gradients. The designer and analyst 

spend a considerable amount of time meshing the system accurately enough such that the 

results from any finite element analysis is sufficiently close to real world results. 

Therefore, the time taken to re-mesh that system for compatibility with Hotspotter is time 

that could have been spent further developing the design or moving along in the design 

process. 

Development and implementation of triangular and tetrahedral elements into 

Hotspotter has been performed and shown to be a worthwhile endeavor for reducing a 

user’s redundancies in remeshing a system from commercial code to Hotspotter. 

Triangular (CST) and tetrahedral (tet4) elements have been developed with regard to 

compatibility with Hotspotter. Element verification based on a few trial cases of 

increasing complexity, with accompanying analytical solutions, has been performed and 

shown to provide sufficiently accurate results when compared to commercial code and 
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analytical solutions. In a few cases, mesh refinements were performed and provided 

convergence toward the analytical solution. In all the element verification cases the 

results from a commercial code, Abaqus, and the results of the elements developed for 

Hotspotter agreed closely. Such results provided the basis to move onto element 

implementation into Hotspotter and validation based on legacy elements.  

Implementation of the triangular elements into Hotspotter occurred and results of a 

few trial validation cases were presented. As discussed previously, the Hotspotter user 

now has the ability to use the elements developed here along with any legacy elements, 

individually or in any combination, and remain confident that the results are sufficiently 

accurate. To prove this, the trial cases compared all tri elements and all possible 

combinations of element types to the legacy all quadrilateral elements in Hotspotter, and 

showed results within 0.85 percent error.  

Because of the element verification with commercial code and analytical solution, 

paired with the element validation in Hotspotter, comparison to legacy solutions, and 

convergence study, it is safe to say the Hotspotter user may no longer be required to re-

mesh a system from commercial code to Hotspotter software. The user may import an 

existing mesh using triangular, quadrilateral, tetrahedral, or hexahedral elements while 

remaining confident that results for TEI analysis are accurate.  

4.2 Future work 

Further convergence studies in Hotspotter should be considered to understand if the 

values reported have reached a plateau. For example, the mesh refinement in section 

3.2.1.6 indicate that the results for the finely discretized mesh using quad elements is 
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different than the results using a rough mesh. To ensure the model is fully converged, one 

or two more rounds of mesh refinement may be required to see where the critical velocity 

values cease to change. This investigation determined that the new element types would 

give sufficiently accurate results compared to legacy elements, but further work needs to 

be done to ensure the legacy elements are truly converged. 

The tetrahedral element implementation into Hotspotter is a source of ongoing work. 

As developed here, the tet4 code was defined and verified using Cartesian coordinates. 

Compatibility with Hotspotter requires the element definition take place in cylindrical 

coordinates so some intermediate values such as relative velocity may be calculated from 

the strain-displacement matrix. Therefore, the work to develop the tet4 element in 

cylindrical coordinates is currently ongoing and will take place as the next step after this 

investigation. 

While developing the Matlab code and implementing into Hotspotter, some 

difficulties arose in the form of incorrect, and confusing solutions. It was thought that 

perhaps a first-order element definition was insufficient in capturing the levels of 

nonlinearity in the problem. While it was proven here that in fact first-order elements are 

sufficient, it is still a source of curiosity and unanswered questions as to whether or not 

second order and higher element definitions may be a better fit for this type of analysis. 

Therefore, the intent is to continue this work and develop and implement second order 

triangular and tetrahedral elements for use in Hotspotter. It is anticipated from literature 

that these element types will perform better in nonlinear analysis where contact is 

present. 
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Further it is the intent of the author to continue research in the area of FEA, TEI, and 

wear phenomenon. In regard to TEI, it was discovered during the course of this 

investigation that there is no viable solution for or commercially available software which 

analyses TEI in wet clutches, limit slip differentials, or any sliding friction system 

coupled with a fluid or lubricant. According to literature, recent developments in 

manufacturing and electronic controls have made widespread adoption of wet clutches 

and limited slip differentials possible [38]. The work in [39] could be expanded to further 

solve for thermoelastic instabilities similar to [40]. In such systems, development of 

similar design tools to Hotspotter or a plug-in code for Hotspotter could be developed to 

consider sliding friction systems with a fluid present. 

Also, the effects of wear in relation to TEI have been investigated by [41], [10], [42], 

and [43] among others and has yet to be rigorously investigated for realistic geometries. 

There is no commercially available software which models wear in relation to TEI. 

However, such tools could be developed to consider the interactions between all or a 

combination of TEI, wear, and thermal fluids to further simplify the design process.  
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