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Abstract

Prediction of software defects has been the focus of many researchers in em-

pirical software engineering and software maintenance because of its significance in

providing quality estimates from the project management perspective for an evolv-

ing legacy system. Software Reliability Growth Models (SRGM) have been used to

predict future defects in a software release. Modern software engineering databases

contain Change Requests (CR), which include both defects and other maintenance

requests. Our goal is to use defect prediction methods to help predict CRs in an

evolving legacy system.

Limited research has been done in defect prediction using curve-fitting methods

evolving software systems, with one or more change-points. Curve-fitting approaches

have been successfully used to select a fitted reliability model among candidate

models for defect prediction. This work demonstrates the use of curve-fitting defect

prediction methods to predict CRs. It focuses on providing a curve-fit solution that

deals with evolutionary software changes but yet considers long-term prediction

of data in the full release. We compare three curve-fit solutions in terms of their

ability to predict CRs. Our data show that the Time Transformation approach (TT)

provides more accurate CR predictions and fewer under-predicted Change Requests

than the other curve-fitting methods.
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In addition to CR prediction, we investigated the possibility of estimating effort

as well. We found Lines of Code (added, deleted, modified, and auto-generated)

associated with CRs do not necessarily predict the actual effort spent on CR reso-

lution.
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Chapter 1

Introduction

1.1 Problem Statement

Software systems provide numerous functionalities and innovative features to

businesses and organizations. As the level of competition in businesses increases, the

demand for rapid changes in software requirements and functionalities also become

more frequent. Thus, the size and complexity of software grow as well, affecting the

cost of system deployment and failures.

In situations where maintenance and evolution are based on predefined, compet-

itive contracts, accurate effort (and cost) estimation is crucial, since overestimating

will reduce the competitiveness of a bid while underestimating risks losing the orga-

nization money. Some of these systems are decades old and represent major assets.

Legacy systems are software systems that are vital to an organization but due

to their age may have used outdated techniques. Some of these systems are over

40 years old and are most likely written in an older third generation programming

language (FORTRAN, ALGOL, COBOL, C, etc.). Most legacy systems require

frequent updates and maintenance to cope with changes in business [21]. The Y2K

problem raised significant awareness of legacy systems and caused many governments
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and major corporations worldwide to be concerned about the cost and magnitude of

modifying their software systems’ date format. They had to perform major system

updates to change the two digit year representation into four digits in order to avoid

system failures before the start of the new millennium.

To maintain the reliability of a legacy software system, management focuses on

three main characteristics: quality, schedule and cost. Software quality influences

whether and how fast new or modified features can be added, i.e. schedule, and

how much it will cost to maintain and evolve legacy software. Software reliability

is a key indicator of software quality. Software reliability is defined as “The proba-

bility of failure-free software operation for a specified period of time in a specified

environment” according to ANSI [90]. Software Reliability Growth Models (SRGM)

are used to assess the reliability of software systems by estimating the parameters

of the model using existing failure data.

Software evolution refers to the process of repeatedly updating software systems

and includes requirement changes or integration of parts during development. Re-

quirement changes could be an enhancement of features, adaption of a system to

changing hardware or software, or performance improvements [98]. Change-point is

a term used to refer to change in the failure rate of a defect data set.

Our motive is to be able to use analytical methods to predict Change Requests

(CRs) in an evolving aerospace legacy system. Analytical methods such as Software

Reliability Growth Models (SRGM), have been used in defect prediction which does

not consider system enhancement requests.

When applying reliability models to legacy systems, there are issues with the un-

derlying assumptions of SRGM models. Many times these assumptions are violated

such as assuming that when defects are fixed no new code was added, or assum-

ing that a given operational profile does not change. This can cause unexpected
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changes to the defect rate in a system. Additionally, this can also affect the qual-

ity of the defect prediction that could add additional cost for system maintenance

and evolution. Stringfellow and Andrews [128] successfully used analytical models

in their defect prediction. They propose a selection process to find a candidate

model among several analytical models to be used in defect prediction. The use of

analytical models has been effective in many systems but the predictions are less

accurate in legacy systems that undergo periodic changes due to corrective, perfec-

tive or adaptive maintenance and enhancements. When changes occur they affect

the defect rate and intensity, therefore the accuracy of the model used for defect

prediction decreases.

Currently, reliability models are evaluated based on their sample fitting or short-

term predictions, but we will also focus on long-term prediction. Long-term pre-

diction is useful for project managers to take necessary action related to staffing,

budgeting, and resource allocation to maintain software quality.

This thesis contributes in novel ways to use defect prediction methods to help

predict Change Requests (CR) in an evolving legacy system. CRs include both

corrective and perfective requests with a stronger emphasis on enhancements. We

also apply a heterogeneous Time Transformation (TT) approach to provide CR

prediction and compare it to other curve-fitting CR prediction approaches. We also

investigate the ability to estimate effort in order to assist managers in estimating

the maintenance costs of evolving software products.

1.2 Research Questions

In order to identify our scope, we developed a number of research questions to

be further expanded in our thesis into sub-questions and ultimately answered as we
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go along. The following research questions are established to formalize the main

objectives of this thesis and define the scope of our work:

• RQ1: Can we predict CRs in an evolving legacy system?

– RQ1.1: What research exists for failure and defect prediction in evolving

software systems?

– RQ1.2: What are the existing research gaps related to defect prediction

during evolution and change?

– RQ1.3: Can we estimate change-points in an evolving legacy system?

– RQ1.4: What approaches can we use in CR predictions during evolution

and change in legacy systems?

– RQ1.5: How do these approaches compare?

• RQ2: Can we estimate effort in our legacy systems?

– RQ2.1: What research exists related to effort estimation during mainte-

nance in evolving software systems?

– RQ2.2: What are the existing research gaps related to effort estimation

during maintenance?

– RQ2.3: What approaches can be used in effort estimation?

• RQ3: Can we validate the approaches on multiple releases of an actual legacy

system?

These research questions are answered throughout the dissertation according to

the research agenda below.
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1.3 Research Agenda and Contribution

To answer the research questions we conduct the following:

• For RQ1.1 and RQ1.2: We conduct a mapping study of the existing body of

literature concerned with failure and defect prediction when software evolves.

(Chapter 2)

• For RQ1.3: We provide a practical and efficient method to estimate and detect

change-point in a cumulative CR data.(Chapter 4)

• RQ1.4: We analyze data of the aerospace legacy system. (Chapter 3). We then

use three curve-fitting approaches for CR prediction in an evolving software

system considering change-points. (Chapter 5)

• RQ1.5: We compare an approach that uses Time Transformation (TT) to

other existing curve-fitting approaches in terms of effectiveness and accuracy,

by comparing their predictive ability (Chapter 5)

• RQ2.1 and 2.2: We describe existing work in effort estimation. (Chapter 2)

• RQ2.3: We investigate the use of two approaches: the COCOMO model and

cumulative effort prediction. (Chapter 8)

• RQ3: Validation of generalization of change-point estimation, CR prediction,

and effort estimation is applied to releases 1, 2 and 3. (Chapters 4, 7 and 8)

This document is organized as follows: Chapter 2 Covers existing work in failure

and defect estimation methods, a systematic mapping study of software reliability

growth models that consider evolution and change-points, change-point estimation
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Publication Type Venue Publisher Status Chapter
A systematic mapping
study on software re-
liability growth models
that consider evolution.
[7]

Conf. CSCI’19 World
Comp.

Published Ch. 2

Software Reliability
Growth Models that
Consider Software Evo-
lution: A Systematic
Mapping Study

Chapter Advances in
Computers

Elsevier Submitted Ch. 2

Estimating change-
points based on defect
data. [10]

Conf. CSCI’18 IEEE Published Ch. 4

Change Request Pre-
diction in an Evolving
Legacy System: A Com-
parison [9]

Conf. CSCE’20
+ Springer
Nature:
Book Series

Springer Published Ch. 5

Trade-offs between early
software defect predic-
tion versus prediction
accuracy. [8]

Conf. CSCI’19 IEEE Published Ch. 6

Table (1.1) Publications

methods, and effort estimation. Chapter 3 explains our case study including sys-

tem specification and data analysis. Estimating change-points based on CR data

is presented in Chapter 4. Then CR prediction approach for evolving systems is

presented in Chapter 5, followed by the trade-offs between early defect prediction

vs. accuracy of prediction in Chapter 6. Chapter 7 expands the application of the

CR prediction approaches to multiple releases and compares the results. Chapter

8 investigates a couple of methods for effort estimation using the COCOMO model

and using cumulative effort data and discusses the results of each method. Future

work is presented in Chapter 9 and finally conclusions are drawn in Chapter 10.

Table 1.1 shows the list of submitted and published papers and their location in this

document.
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Chapter 2

Background

Software reliability is key in measuring software quality. Software Reliability

Growth Models (SRGM), are widely used to predict growth in defect data. Changes

due to major fixes or upgrades that cause change in the failure distribution, are called

change-points. In an evolving legacy system, change-points could affect the quality

of defect prediction using SRGMs. Therefore, it is key to find effective approaches

to predict defects during evolution and change.

In this chapter we explain SRGMs, and how they are used in failure and defect

prediction. We then explain software evolution and change-point estimation meth-

ods. Afterwards, we conduct a systematic mapping study on software reliability

growth models that consider evolution. We conduct this mapping study to find and

compare solutions in literature for reliability prediction for evolving systems, by col-

lecting and analyzing publications in the field to identify available solutions, gaps

and possible future work. Finally, we then highlight how SRGM is used in defect

prediction in an evolving legacy system.
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2.1 Software Reliability Growth Models (SRGM)

Software reliability research has recently hit the 52 year mark. It was first studied

by Hudson in 1967 [61], which provided the basis of reliability engineering in software

systems. Software reliability engineering consists of tools, methods and measures

to track and predict software reliability [33]. Utilization of Software Reliability

Growth Models (SRGM) started in 1972 with the work of Jelinski and Moranda

[71]. By the late 1970s and early 1980’s many researchers presented theories for

predictive reliability practices. Software Reliability Growth Models (SRGM), are

widely used in predicting future failures from cumulative failures data in software

systems. Some of the commonly used models are the Musa model or the Goel-

Okumoto (G-O) exponential model proposed by Goel and Okumoto [45] and Musa

et al.[98], the Delayed S-shaped model [141], the Yamada Exponential model [142],

and the Gompertz model [84].

To expand more on the history on software reliability engineering, we refer to

a recently published survey by Cusick [33]. He demonstrated the progression of

software reliability engineering in the past 50 years. He went through the devel-

opment history and improvement of software reliability engineering including novel

techniques and models, significant publications, related journals and venues, main

tools, and notable companies who remain active in Software Reliability Engineer-

ing (SRE). This survey focused on the historical timeline of software reliability and

basic events but lacks information regarding software reliability when evolution and

change occur.

Stringfellow and Andrews [128] addressed the use of SRGMs for data from a

defect database rather than failures. They proposed an empirical method for select-

ing SRGMs to help test managers in a software organization make release decisions
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Model Equation Curve Shape
G-O µ(t) = a(1− e(−bt)) a ≥ 0, b > 0 Concave
Delayed S-Shape µ(t) = a(1− (1 + bt)e(−bt)) a ≥ 0, b > 0 S-shaped
Gompertz µ(t) = a(b(c

t)) a ≥ 0, 1 > b > 0, c > 0 S-shaped
Modified Gompertz µ(t) = d+ a(b(c

t)) a ≥ 0, 1 > b > 0, c > 0, d > 0 S-shaped
Yamada Exponential µ(t) = a(1− e(−bc((1−e

(−dt))))) a ≥ 0, bc > 0, d > 0 Concave

Table (2.1) SRGMs

based on predicting the number of defects after release. This work was then repli-

cated by Andersson [14]. Andrews and Lucente used SRGMs for predicting help

desk incidents [15]. ABB Inc. used software reliability modeling as well for risk

management. Their purpose was to compare reliability models and select the most

appropriate one to predict field defects in order to establish accurate maintenance

planning [85]. These models assume that no major changes in the software occur

which could alter the failure process (usually by altering the failure rate). Such

events are referred to as change-points which can affect the accuracy of reliability

model’s predictions.

2.2 Evolution and Change in Software Systems

When project managers and decision makers are dealing with software systems,

changes are expected either in the form of upgrades or fixes. Changes in the system

cause changes in the predicted number of defects, affecting system reliability. To

increase managers’ and consumers’ confidence in a software system, project man-

agers should be able to predict the effect of change in their system in order to plan

ahead in terms of staffing, time management, or even preparation of back up sys-

tems. The problem with SRGM is that they do not account for changes in the defect

rate. When a change-point occurs, a change in the selected model is required. A

change-point is defined as "the point at which fault detection/introduction rate is
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changed."[70]. Changes in a legacy system may occur due to corrective or perfective

measures.

To define change-points formally, let a sequence of failures, ζ1, ζ2, ..., ζn be where

n is the number of cumulative failures. A change-point τ , exists if ζ1, ζ2, ..., ζτ has

a failure distribution of F , and ζτ , ζτ + 1, ..., ζn has a failure distribution G, where

F 6= G and the two sequences of failure data are statistically independent.

2.2.1 Reliability Modeling with the Existence of Change-points

When dealing with evolving systems there are a few ways to handle change-

points. Musa eta al. [98] and Lyu [90] gave three main approaches to handle system

evolution:

1. Ignore change, by selecting a model that fits the available defect data then

assuming that this model is appropriate for predicting defect for the remaining

part of the release. This approach is used when the total number and volume

of changes is small.

2. Apply changes to the model after a change-point by dividing the defect dataset

into stages. When a change occurs the dataset after change is considered a

new stage and it is considered a separate dataset where reliability modeling

is performed separately. This approach is suitable when changes are large

in amount but low in frequency. This method considers each stage as an

independent sub-release.

3. Apply failure times adjustment. It is most appropriately used when a software

is rapidly changing and if it cannot be divided into separate sub-releases.
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2.2.2 Change-point Estimation

While change-point estimation methods are widely discussed in many fields of

research such as statistics, psychology and mathematics, research in the field of soft-

ware reliability modeling is limited ([148] [55] [151][41][64]). A few studies focused

on change-point estimation rather than reliability modeling with change-point ex-

istence. In the field of change-point estimation using statistical methods, studies

discussed the use of control charts for change-point diagnosis ([148][55]). Amiri and

Allahyari [12] proposed an overview of control charts in a literature review. They

presented different variations of control charts and their underlying techniques. Zhao

et al. [148] applied control charts following the idea presented in Huang and Huang

[55] with some modifications to the criteria of defining a data point as a change-

point candidate. Additionally, Zhao et al. [148], used a progressive adjustment

step. When a fix is applied to a change-point, the remaining change-points are

re-estimated. Other studies ([151] [41][64]) use the difference in the mean value

detected in a regression model or a reliability growth model before and after the

change. Zou [151] proposed a change-point estimator likelihood ratio method by

comparing defect density among a sequence of time intervals of cumulative defects.

The time interval that causes a change in the statistical model used to predict fail-

ures is marked as a change-point. This method assumes the existence of a single

change-point. Galeano’s method [41] estimates multiple change-points. Like Zou

[151], he proposed a method comparing failure density of cumulative failure sums of

different time intervals. The mean value of the time interval with the highest change

is normalized and centered to be then considered as a change-point. He uses a binary

segmentation procedure that continues to split data after detecting a change until

all change-points are detected [41]. Inoue et al. used arithmetic means factor along
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with Laplace factors for detecting change-points [64]. Change-point estimation will

be investigated further in Section 4.

2.3 Reliability using SRGM Considering Evolution

When applying the reliability models to legacy systems, there are issues with

the underlying assumptions of SRGM models. Many times these assumptions are

violated such as assuming that when defects are fixed no new code was added, or as-

suming that a given operational profile does not change. This can cause unexpected

changes to the failure rate in a system. Additionally, this can also affect the quality

of the reliability prediction that could add additional cost for system restoration or

business compensation. Febrero et al. [40] conducted a systematic mapping study

of software reliability modeling in general. A total of 972 works were obtained that

focus on software reliability in general.

Our goal is to conduct a more focused work to study emerging solutions that

deal with change and evolution in legacy systems. Our objective is to map the

body of research in the area and compare solutions. We explore publications in

industry and academia, find research affiliations and identify contributions through

different venues. We then classify the papers according to solution extent, proposed

method and research type, and finally discuss focus and gaps. We selected 63

papers from 1/1/1986 to 5/1/2021 and summarized trends with respect to year,

research organizations, publication venues and academia versus industry. Papers are

classified according to solution extent, proposed method, and research type. This

mapping study is an updated and expanded version of a mapping study published

by Alhazzaa and Andrews in 2019 [7]. The previous study was shorter and included
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Figure (2.1) Research method work flow

papers until 2018. This version of the study is an expanded version with more details

on focus and gaps, and includes papers until 5/1/2021 as well.

We begin by first describing the research method in Section 2.3.1, followed by the

study classification scheme in Section 2.3.2. This scheme is applied to the selected

papers to present the actual mapping of the field in Section 2.3.3. A discussion of

the gaps and the focus is in Section 2.3.4. Section 2.3.5 covers threats to validity.

Conclusive remarks are in Section 2.3.6.

2.3.1 Research method

Following the main guidelines by Peterson et al. [106], we propose our systematic

mapping going through the following four steps (see Figure 2.1) similar to [17]:

Definition of research questions, identification of search string and source selection,

study selection criteria and data mapping. Each step is explained in greater detail

in the following subsections.
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2.3.1.1 Definition of research questions

The overall objective of this study is to investigate and analyze the available body

of work that is concerned with failure prediction using software reliability models in

legacy systems during evolution and change. Our main goal is to find and classify

articles about using software reliability growth models during evolution, understand

the methods and models used and the most active research area in the field. We are

also concerned with the number of publications and their venues. The research ques-

tions below focus on finding available solutions in existing publications, categorizing

them according to their source and the year of publication, and finding research

gaps to understand what areas of solutions have not been presented thoroughly:

• RQ1: What are the publication trends for reliability models used during

change and evolution?

– RQ1.1: What is the annual number of publications in the field?

– RQ1.2: What are the main venues of publication in the field?

– RQ1.3: Which publications are affiliated with academia and which are of

an industrial affiliation?

– RQ1.4: What institutes are the most active in the field according to the

number of publications published?

• RQ2: What are the existing research gaps related to solutions of evolution

and change in failure prediction using SRGMs?

– RQ2.1: What solutions have been proposed?

– RQ2.2: What are the methods used to apply proposed solutions?

– RQ2.3: What types of contributions have been proposed?
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– RQ2.4: What types of research are conducted in the area?

By looking first into research trends we can explore emerging and abandoned

trends, the progression of research activity during a specific time span or through a

specific research group. The second set of questions covers the most important solu-

tions and approaches presented along with the gaps and underrepresented methods.

In addition, we analyze their contributions and their research method.

2.3.1.2 Identification of search string and source selection

In order to find reliable peer reviewed articles we selected articles from the fol-

lowing sources:

• IEEE

• ACM Digital Library

• Elsevier

• Springer

• Wiley

We used search engines in the libraries above in addition to searching for papers

using:

• Web of Knowledge

• Google Scholar

Many of the papers we reviewed focused on reliability models but not evolution

and change. In addition, evolution and change is referred to using different phrases

such as change-point, multi-up gradation, or multiple change-points. Consequently,

we used the following search string:
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• (Failure prediction OR failure estimation) AND (software reliability models

OR SRGM OR software reliability growth models) AND (evolution OR change

OR change-point OR multiple change-points OR multi up-gradation)

After performing the search, papers were selected according to the study selection

process explained in the following section.

2.3.1.3 Study selection criteria

Criteria Type Criteria List

Inclusion Criteria

• Journal, conference and workshop papers
• Peer reviewed
• English language only
• Software systems
• Published papers available electronically
• Statistical methods
• Failure prediction using SRGMs
• Solve issues of evolution and change

Exclusion Criteria

• Books
• Papers that are not peer reviewed
• Papers written in languages other than English
• Hardware systems
• Papers not published/available electronically
• Architecture-based or AI-based methods
• Change-point estimation techniques
• Fields other than software engineering

Table (2.2) Inclusion and exclusion criteria for the mapping study

This step involves selecting relevant studies from the search results. First, inclu-

sion and exclusion criteria are defined (see Table 2.2). For this study, all papers that

were considered were peer reviewed, published, available electronically, and written

in English. Books are excluded as they provide basic knowledge and not novel work
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Figure (2.2) Study selection process

and developments in the field. The references would have to address failure pre-

diction in a software system since it is the focus of this work, this means that any

hardware related approaches are excluded. Solutions must provide failure prediction

during evolution and change. The solutions investigated here are statistical meth-

ods and not AI or architecture based solutions, since these methods are irrelevant

to our focus area. All research must be in the field of software engineering. Figure

2.2 summarizes the steps in the paper selection. They are explained as follows:

1. We collected references using the search string (mentioned in Section 2.3.1.2).

This resulted in 2,885 papers. The results of the research were not bound by

dates, so we included all references up to 5/1/2021.

2. We applied inclusion and exclusion criteria as given in Table 2.2. For each

included reference, a supplemental search using snowballing was performed in

order to find more relevant papers. This resulted in 476 papers.
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3. After reading the Abstracts, the papers were then classified into three cate-

gories: relevant, irrelevant, and not clear. The relevant papers were papers in

the field of software engineering and focused on reliability models with fail-

ure prediction and estimation using analytical models or statistical methods.

The irrelevant papers on the other hand, were papers in a field other than

software engineering, or papers discussing methods that are using artificial in-

telligence techniques or architecture-based techniques. Papers that exclusively

dealt with change-point estimation were also excluded. Some papers did not

fall clearly in either the relevant or irrelevant categories at this stage, so we

labeled them as "not clear". This left 251 references which were either relevant

or not clear.

4. At this point two individuals double checked the papers and performed a

consensus vote. The voting was based on the relevance of the paper labeled as

"not clear" and whether it follows the inclusion and exclusion criteria stated

above. Papers were discussed until a consensus occurred. At the end of this

step we were left with 141 relevant references.

5. The remaining papers were skimmed and references of those papers were in-

vestigated. This step provided more clarification and understanding of the

relevance of the paper. Additional papers were excluded at this point and we

were left with 63 papers.

2.3.1.4 Data Mapping

The 63 papers chosen covered the time period of 1/1/1986 – 5/1/2021. Since

most SRGM models were introduced between 1983-1987, we find the earliest pub-

lication related to our research is 1986. We performed data mapping using four
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Figure (2.3) Data mapping

categorizations: Solution Extent, Proposed Method, Contribution Type, and Re-

search Type.

Each relevant paper is reviewed by two reviewers and each reviewer suggests

the proper categorization of the paper. If they both agree, the paper is assigned

to the agreed upon category; if there is no agreement, we skim the text. In some

cases, skimming text resulted in the paper being declared not relevant, and therefore

discarded (Figure 2.3).

2.3.2 Study Classification Scheme

The study classification is divided into two main categories. The first category

is related to the publication trends which highlights the years of publications, the

venues, active research organizations and affiliations. These trends answer the first

set of research questions in Section 2.3.1.1. The second category is concerned more
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with the research content and possible research gaps which are: Solution Extent,

Proposed Method, Contribution Type, and Research Type. Detailed descriptions

are given below.

2.3.2.1 Solution Extent

Solution Extent discusses what solution is proposed according to the type of

evolution and other factors affecting evolution. The focus here is on papers aimed

towards failure prediction and estimation using reliability models in legacy systems

where changes are expected. The classification of the papers fall into three categories

as follows:

• Single change-point: Change-points here refers to the change that happens

to the cumulative rate of failures as a result of code addition, deletion, or

modification. This change affects the estimation of failures after that point.

Many reliability models won’t fit the failure rate curve following a change in

the same way that it fit before. The papers in this category provide solutions

to reliability models that are aimed at systems with only a single change-point

throughout the curve of cumulative failures in the dataset. These solutions

usually provide a change in the model attribute or change type of model se-

lected whenever a change-point occurs that alters the shape of the curve so

that it no longer fits the originally selected model nor its attributes.

• Multiple change-points: This provides a solution to a reliability model that is

aimed at systems with multiple change-points in the cumulative failure curve.

The major difference here from the single change-point is that the change in

model selection and attributes occurs several times as changes happen to the

cumulative failure count.
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• Multi up-gradation: Multi up-gradation refers to multiple upgrades at desig-

nated points throughout the system’s lifetime. These changes are scheduled

and known previously, but they have the same effect as any change-point. The

failure rate is expected to change after each software maintenance task or up-

grade and solutions to estimate failure density during evolution are provided

accordingly.

2.3.2.2 Proposed Method

The proposed methods refers to the method of selecting the proper reliability

model for the proposed solution. They can be of two types:

• Analytical methods: They derive a solution analytically by providing assump-

tions for the failure and defect removal process, as well as usage profile for the

software and developing a model based on these assumptions.

• Curve-fit methods: They make little or no assumptions. They entirely rely on

statistical curve-fit methods for one or more types of functions and select the

one that fits the best.

2.3.2.3 Contribution Type

Each research paper makes a specific contribution to the field of software relia-

bility estimation for evolving systems, that fall under one or both of thse categories:

• Build a new method or model: This category includes papers that present a

new method or a new model for reliability estimation for evolving systems.

• Evaluation of a new or an existing method or model: This category includes

papers that evaluate or validate either new or existing methods or models for
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reliability estimation for evolving systems. These papers offer an empirical

evaluation of a method or model.

2.3.2.4 Research Type

Specifying the research type provides more understanding of the maturity of the

proposed work. If a method proposed is validated or evaluated empirically, this

produces more confidence in the provided solution. Research type would fall under

one of these two major categories:

• Empirical research: This type of research provides direct or indirect observa-

tion of an experience. In empirical research an application of a given method

or model is demonstrated and results are derived through a formal experience

such as a case study, an experiment or a survey.

• Non-empirical research: This is a more theoretical research that provides in-

formation without empirical evidence.

For the empirical type of research, the work is evaluated according to empirical

study evaluation criteria as proposed by [11]. This required that we look deeper

into the following aspects:

• Objectives and hypothesis:

– Check if software systems are defined (what is assessed and compared).

– Check if a statistical hypothesis is stated, either one-tailed or two-tailed,

the conclusion has to clarify if the hypotheses is rejected, or not, as well

as the interpretation of the resulting p-value.
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• Targeted application domain(s): The application domain should be mentioned.

Some software is used in several domains while other software only considers

a single domain.

• Subject system specification: Systems used in a specific domain should be

mentioned in terms of size, language used, system specifications, time periods

that the defects were collected, number of defects, etc.

• Parameter setting: This evaluates whether and how parameters are set. Many

studies use techniques like Maximum Likelihood Estimation (MLE) or Least

Square Estimation (LSE). Some specify the use of tools that use one of these

methods to do the estimation automatically, such as SPSS statistical software

or R. Specifying the details of how parameters are set makes the case study of

a higher quality for interested readers.

• Measures of cost and effectiveness:

– Measuring the effectiveness is measuring the goodness-of-fit of the pro-

posed method and how well it performs. Many measurements can be used

to measure effectiveness, some papers use one measure and some use more

than one measure. This will be later used as a base of comparison.

– A cost measure is crucial for any organization to decide if they will adopt

a method. Cost is usually measured according to an organization’s need,

but many define an optimal release policy that takes into consideration

several cost attributes such as cost of testing, cost of assets, cost of main-

tenance, etc.

• Baseline for comparison:

23



– Comparing effectiveness of methods, i.e. the number and quality of mea-

sures used to evaluate the results. This includes checking whether they

are comparing only goodness of fit or if they are evaluating the effective-

ness of future predictions. Goodness-of-fit measures the closeness of the

proposed model curve against the actual data. Additionally, for effec-

tiveness, predictive validity which is the ability to predict the number of

failures from present and past failure behavior, should be used to evaluate

the accuracy of the proposed model.

– Comparing cost of development, testing-effort and maintenance before

and after releases in order to assist management in decision making.

• Data analysis:

– Here we assess whether an empirical study is presenting descriptive statis-

tics, results of hypothesis testing, and whether the actual significance of

the results is explained.

• Validity threats:

– Ideally, papers should address internal validity threats, external validity

threats, construct validity threats, and conclusion validity threats.

– A study is evaluated in terms of presenting these validity threats as fol-

lows:

∗ No mention: If no threats or validity limitations are mentioned.

∗ Some of the validity threats are mentioned in a formal or informal

way such as included in one of the sections without specifying them

explicitly.

∗ Mentioned: If they are explicitly and clearly presented.
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• Quality of data: This refers to the data used in the case study. Is data collected

from a reliable source? Does it accommodate the purpose of the study? How

recent is the data? In our evaluation, we consider data as recent if the time

span between the research publication and the data collected does not exceed

15 years.

2.3.3 Study Synthesis and Mapping

In this section we provide our synthesis of the relative studies we collected. In

the following section we present the trends and the potential gaps among the 63

publications of the time period covering 1/1/1986-5/1/2021.

2.3.3.1 Publication Trends between 1986 and 2019

In this section, publications trends are analyzed in terms of distribution over the

span of years covered. The main venues of publications are then highlighted, as well

as the contributions of academia and industry in the field of study. We then look

into the most active research organizations in academia or industry.

Distribution of Publications

Publications between 1986-2021 have increased in the last decade in general.

There are some years that had major spikes in the total number of publications

in the field, such as in 2010, 2011 and 2015 as shown in Figure 2.4. In 2010, a

major interest was given to a new area: Multi up-gradation in software reliability

estimation by a group of researchers in schools in India, such as Amity University

and University of Delhi. These publications continued through 2011 and the years

after. In 2017, many of the publications in the field of multi up-gradation were

published, looking into multiple releases and multi-version systems, in addition to
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Figure (2.4) Annual distribution of publications

focusing on other systems such as Open Source Software (OSS). Efforts were also

made on finding curve-fit solutions between the years of (2017 -2019). The number

of publications decreases in 2021. This does not mean that there was less interest,

but it could have been that many of those publications are not yet available online

and may be difficult to find currently. Publishing is continuous since 2003, which

means that researchers are still interested in the field.

Main Publication Venues

Table 2.3 lists the top five venues where papers were published. The rank refers

to the quantity of publications for each venue. The venue ranked No.1 is the IEEE

International Conference on Industrial Engineering and Engineering Management

(IEEM), which has the most publications in the field (seven). These publications

have been published throughout different years of the conference. Next comes In-

ternational Journal of System Assurance Engineering and Management and IEEE

Transactions on Reliability. These two journals each published four of the papers

of interest. Journal of Systems and Software and IEEE Transactions on Software

Engineering, each published three related publications. In total, the primary stud-
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Rank Type Venue No. of Articles
1 Conference IEEE International Confer-

ence on Industrial Engineer-
ing and Engineering Man-
agement (IEEM)

7

2 Journal International Journal of
System Assurance Engi-
neering and Management

4

2 Journal IEEE Transactions on Reli-
ability

4

3 Journal Journal of Systems and
Software

3

3 Journal IEEE Transactions on Soft-
ware Engineering

3

Table (2.3) Top five publications venues

Figure (2.5) Distribution of publications over different publishers
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Figure (2.6) Distribution of publications in academia, industry, and both

ies were published in 43 different venues. 33 of the publications were published in

journals, 28 were conference papers, and 2 were published in workshops.

Figure 2.5 shows the sponsors of those venues. It shows that 59 percent of the

publications were published in IEEE venues, which encompasses the majority of the

body of work. Springer published almost 25 percent of the publications, Elsevier

nine percent. Finally, Wiley and ACM are five and two percent of the publications

respectively.

Academia and Industry Representation

This section concentrates on the affiliation of the authors. If all authors of a

paper work in an academic organization, then the paper falls under the Academia

classification. If authors were affiliated with an industrial organization then it falls

under Industry. In some papers, authors come from both academia and industry so

they have both affiliations. Figure 2.6 shows that the vast majority of the work is

purely a production of research in academia (78 percent). On the other hand, only

6 percent of the work is purely industrial research and 16 percent reflects a joint

effort between academia and industry.
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Rank Institution Number of Articles
1 University of Delhi, India 14
2 National Tsing Hua University, Taiwan 13
3 Amity University, India 10
4 Tottori University, Japan 6
5 Islamic Azad University, Iran 3
5 Rutgers, The State University of New

Jersey, NJ, USA
3

5 The French National Center for Scien-
tific Research, France

3

Table (2.4) Most active research organizations

This shows the high interest of academia in the subject, while industry alone has

very limited efforts although it would be of great benefit to industry. The amount of

joint work demonstrates that industry could use academic efforts or results to find

practical solutions.

Active Research Organization

A total of 51 research organizations are interested in research in this area. Ta-

ble 2.4 shows that University of Delhi in India contributed with 14 publications.

National Tsing Hua University in Taiwan contributed 13 publications. Amity Uni-

versity in India contributed 10 publications. Tottori University in Japan contributed

6 publications. The Islamic Azad University in Iran, Rutgers, The State University

of New Jersey, NJ, USA and The French National Center for Scientific Research,

France each contributed three publications. Some schools and organizations have

joint efforts. Many organizations in India, Taiwan, China, Japan and the USA are

interested in this research area.

Figure 2.7 shows the distribution of research groups interested in this area of

research around the globe.
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Figure (2.7) Distribution of organizations interested in research of interest

2.3.3.2 Focus and Potential Gaps

A major purpose of this study is to provide a map of publications in the field

of failure predictions using reliability models when evolution and change exists, and

identifying the gaps in this field in order to determine what research areas could be

emphasized more and to suggest potential future work.

The following sections demonstrate the focus of the existing body of work in

terms of the solution extent discussed, proposed methods, contribution type, and

research type and quality.

Solution Extent

After analyzing the available body of work and looking into the core solution

extents discussed in each paper, we concluded our classification to two groups, each

of which has three sub-groups as discussed in Section 2.3.2.1 which are: Single

change-point, multiple change-points, multi up-gradation. We find that 46% of the

publications focus on solutions for multiple change-points, since it provides more
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Figure (2.8) Distribution of publications over proposed solutions extents

Solution Extent Single CP Multiple CP Multi UG
Fault Severity [49] [131] [44] [122]

[123] [121]
Testing Effort [66] [54] [42]

[124]
[83] [89] [86]
[88][82]

[78] [79]

Environmental &
learning effects

[147] [31] [32] [122] [80]

Testing Compression
Factor (TCF)

[87] [58]

Fault Reduction Fac-
tor (FRF)

[79] [2]

Code complexity [125]
Testing coverage [124]
Queueing model [145] [56]
Hazard Rate [69] [65] [64]
Weighted means [60] [59] [57]
Other [38] [68] [76]

[151] [67] [100]
[93] [13] [19]

[129] [29] [30]
[55] [126] [137]
[18] [91] [75]
[101] [94] [144]
[143]

[103] [77] [81]
[43] [149] [50]
[53] [4]

Table (2.5) Solution extent
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Figure (2.9) Distribution of publications over proposed method

generic and applicable solutions than just single change-point solutions, which con-

tribute 25% to the body of work. Multi up-gradation gained a great deal of interest

and represents 29% of the papers in the field.

Some solutions incorporate an additional aspect or dimension into the proposed

model, such as testing effort or code complexity. Some add an additional dimension

to have two dimensional models such as including testing effort and fault reduction

in Kapur et al.[79]. Table 2.5 classifies the research in the field based on solution

extent and additional model extensions. More explanation regarding the proposed

solutions are explained in Section 2.3.4.1.

Proposed Method

We defined the two types of proposed methods, analytical method and curve-fit

method. Analytical methods represent almost 94 percent of the research contribu-

tions, while curve-fit methods represent about 6 percent, as shown in Figure 2.9.

In the analytical methods presented, change-points are identified and the failure

curve is divided into segments. Then the proposed model is applied with different

parameters to fit each segment accordingly. Variations of equations and consider-
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Figure (2.10) Distribution of publications over contribution type

ations were incorporated in the presented papers in order to provide an effective

reliability model.

Curve-fitting was mostly presented in works related to reliability models that do

not discuss the existence of a change-point. Some earlier works utilized reliability

models using curve-fit methods such as the work presented by [128]. In these works

different SRGM models were estimated against a given data set and then predictions

were made using the best model in terms of accuracy. Li et al. [85] performed

curve-fit as part of a quantitative risk management method. Curve-fitting was used

for several releases in order to select the best model that fit the dataset. The

publications that discusses curve-fit methods [137] [38] [30] [19] focus on finding

trends, detecting changes in the cumulative failure curve and fit the best available

model after each change occurrence. These efforts are valuable in the study but they

are very limited. They merely adjust parameters or choose a new model after each

change-point and discard old data, but they do not consider the combined effect of

old and new systems on system reliability.
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Contribution Type

Papers can make different contributions, such as proposing a new method or

model, or validation of a new or existing method or model. Articles could have one

or more of those contributions, since an author could propose a new method and

evaluate the proposed method in the same article, for instance. Figure 2.10 shows

that almost 5 percent of the publications propose a new method or model, another

5 percent validate an existing method or model and 90 percent are papers with a

newly proposed method or model along with validation through a case study.

Research Type

Research type is either empirical or non-empirical. As shown in Figure 2.11,

almost 95 percent of papers represent empirical research, and only 5 percent are

non-empirical. We noticed that the empirical work we found are mostly case studies,

and there was a notable lack of experiments. This finding is to be expected, since

one cannot expect to produce multiple versions of evolving software simultaneously.

This would simply not be financially viable.

Looking into the 60 empirical studies, we evaluated their quality on the basis of

[11], with some modifications as discussed in Section 2.3.2.4.

• In terms of the objectives and hypotheses, we found that of 60 publications

stated hypotheses or objectives.

• 33 studies give explicit application domain details, where in others we assume

that their solutions are generic and would fit most application domains. 13

percent of the publications were for Open Source Systems (OSS), 3 percent

were for software based on agile development. 30 percent of the publications

discussed multiple releases, multiple version or multiple sprints, while the re-

mainder discussed their methods for a single release.
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Figure (2.11) Distribution of publications over research type

Evaluation criteria Number of publications
Objectives and hypotheses 60
Target application domain 33
Subject system specification 51
Parameter Setting Specification 52
Measuring cost and effectives: Cost 12
Measuring cost and effectiveness: Effectiveness 57
Baseline for comparison: Goodness-of-fit 56
Baseline for comparison: Predictive Validity 25
Baseline for comparison: Cost 12
Data Analysis 58
Validity threats 4
Quality of Data 10

Table (2.6) A Summary of quality assessment for the available case studies
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• Details of subject system specifications such as language used, system specifi-

cations, time periods when defects were collected, number of defects, etc., are

mentioned in 51 of the studies.

• Parameter settings regarding the method, or the tool used in parameter set-

tings are mentioned in 52 of the studies. These are important for researchers

since different tools and methodologies may give different values in estimat-

ing parameters; so if a case study were replicated, we could use the same

parameters to obtain similar results.

• Among the 60 empirical studies, 57 measured the effectiveness of the proposed

method while only 12 proposed a model that also estimates the cost.

• For effectiveness, 56 studies used goodness-of-fit measurement, and 25 of those

studies also considered predictive validity. For goodness-of-fit several measure-

ments are used such as Mean Square Error (MSE) and R-square (Coefficient

of Multiple Determination), to measure the closeness of failure data to the

fitted regression line. In some papers they also measured predictive validity

by measuring Relative Error (RE) and Root Mean Square Prediction Error

(RMSPE). In addition cost was measured by proposing an Optimal Release

Policy for cost, which is evaluated by major release costs such as: cost of

development, cost of testing, and cost of maintenance before and after release.

• In terms of data analysis, the majority of the available work presented a de-

cent description of descriptive statistics, results of the case study, and actual

significance of the results. Some papers had a minimal description. In many

cases this occurred in a short version of the case study in a conference paper

which was followed with a more detailed version in a journal paper. All papers
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Quality of Data Used Number of publications
Old data 48
New data 8
Both old data and new data 2
Unknown 2

Table (2.7) A Summary of quality of data in the available case studies

provided different variations of descriptive statistics. 58 out of the 60 papers

reported the statistical significance of the results. None of the papers provided

results of hypothesis testing in their data analysis or discussion section.

• Out of all the publications, only one of them presented a thorough explanation

of the validity threats [82]. A total of four of the studies highlighted validity

threats in general.

• Data in the studies available are of a decent quality, i.e. they all come from

reliable sources (benchmarks) and no major problems are mentioned regarding

the quality of the data collected. The only problem with some publications

is that they use old data that may not reflect the accuracy of the model for

current software technology. A study published in 2007 using data from a

source published in 1980, may not provide realistic outcomes, since techniques

evolve over the years causing changes in failure processes. Table 2.7 shows

that 80 percent of the publications use old data, 14 percent use new data, 3

percent use two sets of data (old and new) and 3 percent use unknown data,

i.e. the source of the data is not reported. The data is considered new if it

was published or available within the last decade (2010-2020), otherwise it is

considered old.

Relationship between Research Type, Research Contribution, Solution Extent,

and Proposed Method
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Solution Extent Analytical Curve-fit
Single Change-point 15 1
Multiple Change-points 23 3
Multi up-gradation 18 0

Table (2.8) Number of publications per proposed method and solution extent

Solution Extent New
method
/ model

Validate
method /
model

Both

Single Change-point 0 2 15
Multiple Change-points 1 1 26
Multi up-gradation 2 0 16

Table (2.9) Number of publications per contribution type and solution extent

In Table 2.8, we can see that curve-fit papers cover single change-point and

multiple change-point solutions. The lack of curve-fit papers leaves a huge gap in

available methods of this type.

Table 2.9, shows the papers by solution extent and how many of them provide

a new method or validate methods. It appears that the majority of papers provide

a new model or method and validates it. Two of the single change-point papers

provide a validation of a method/model only. Two of the multi up-gradation papers

discuss a new method without validation, possibly due to the novelty of the idea.

Two papers dealing with multiple change-points propose a new method only and

another only validates a method.

In Table 2.10, we can see that most papers provide some empirical study to val-

idate their methods. There are very few papers that use non-empirical validation,

only for single and multiple change-points. This shows most of the work presented is

empirically validated. Table 2.11 shows that the non-empirical research are strictly

for analytical methods. Table 2.12 shows that most publications provide both pro-
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Solution Extent Empirical Non-empirical
Single Change-point 30 1
Multiple Change-points 17 3
Multi up-gradation 12 0

Table (2.10) Number of publications per research type and solution extent

Proposed Method Empirical Non-empirical
Analytical 56 3
Curve-fit 4 0

Table (2.11) Number of publications per research type and proposed method

posal of a new model or method and as well as validation. The exception is a paper

that describes a curve-fit approach that validates a multi-stage method [19].

2.3.4 Discussion

2.3.4.1 Focus

Looking at the progression of research over the years, we find that there is an

increased interest in the subject for both academia and industry, but academia has

the most contributions. Some of the top organizations conduct cohesive research

in specific subjects, which is shown in the progress of research timeline (Fig. 2.12).

Notice that the Timeline chart has letter references next to each contribution in

square brackets, these are labels that refer to a list of references in Table 2.13.

Contribution Type Analytical Curve-fit
New method/model 3 0
Validate method/-
model

2 1

Both 54 3

Table (2.12) Number of publications per contribution type and proposed method
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Early efforts focused on dividing datasets into smaller sets and performing es-

timates on a smaller scale ([129][137][29][151]). The French National Center for

Scientific Research sponsored research focused on trend analysis to detect change,

dividing the failure dataset at the point of the change then applying SRGM to each

partition ([75][76][91]). Between 2005 and 2014, National Tsing Hua University in

Taiwan provided a body of work by C.Y. Huang. and C.T. Lin. Their focus was

on providing a unified theory for SRGM by adding weights of means to the model.

They also incorporated testing effort into their models and a Testing Compression

Factor (TCF). TCF provides a ratio of change in fault detection between the testing

phase and the operational phase ([59][89][54][57][87][88][58][60][83][82]). Huang et al.

Investigated the use of queueing model for latent fault correction during software

development. They applied the method on software with multiple change-points

[56][55]. This work was later carried on by Yao and Zhang [145] by using only finite

serving queueing model with various distributions and change-points for defect pre-

diction. Between 2008 and 2014, Tottori University in Japan, Inoue and Yamada,

conducted research regarding hazard rate modeling, proposing 2-dimensional mod-

els using time and effort and other environmental factors ([65][66][68][67][64][69]).

Meanwhile, efforts were made to consider fault severity, learning effects and other

environmental factors in the SRGM ([147][49][18][38][53][50][31][32]).

From 2010 until 2019, a remarkable research effort was conducted by researchers

at the University of Delhi and Amity University in India in addition to members

from Islamic Azad University, Iran and Rutgers, The State University of New Jersey,

NJ, USA. They defined the term of multi up-gradation, referring to change due to

updates in software systems. They incorporated several factors in their models such

as fault severity, testing effort, environmental functions. They also applied their

methods to Open Source Systems (OSS) and to multi-release environments. ([77]
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[81] [44] [124] [80] [123] [131] [103] [122] [121] [43] [78] [79] [4] [2] [42] [125][149][93]).

In addition, they applied fault detection models on agile software environment,

where evolution comes for the changing user requirements and Sprints are treated

like releases [94] [126]. Most recently, Anand et al. [13] used upgrades and updates

from previous releases for defect prediction, in an attempt to enhance predictability

of failures. Until 2018, the focus in literature was concerned with predicting failures

based on past failure data. The first attempt to look into upgrades besides failures

in order to predict system reliability is in the recently published paper by Anand et

al. [13].

The most recent works focused on testing previously proposed methods. Na-

garaju et al.[101] published a case study to validate the model they proposed in

[100]. While Barraza [19] provided a case study applying the multi-stage curve-fit

model proposed in [30] on multiple projects. And finally, Yang et al. [144][143]

Proposed a reliability model with multiple change-points using Open source masked

failure data. Masking failure data is used when the failure cause is unknown. Ex-

pectation Maximization (EM) algorithm was used to solve the likelihood function

complicated problem in parameter estimation of the models.

2.3.4.2 Gaps

Legacy systems are valuable systems that are costly to maintain but cost more

to replace. Having a reliable model to predict the effect of change on a software

system’s reliability is crucial. With available work focused on analytical methods,

it is important to get a better understanding of how robust they are when specific

assumptions they make are violated. For example, for a model that assumes perfect

debugging, what degree of imperfect debugging will not cause inaccurate results?

While some of this information exists for systems without change-points, engineering
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Reference Label Corresponding References
A [129][137]
B [29]
C [151]
D [147]
E [49]
F [18]
G [38]
H [53]
I [50]
J [32][31]
K [101][100]
L [19][30]
M [13]
N [75][76][91]
O [59][57][60]
P [86][89][54][87][88][58][83][82]
Q [56][55][145]
R [65][64][69]
S [66]
T [68][67]
U [77][81][43][4][103][42][94][149]
V [80][44][124][123][122][121][131][78][79][2][125]
W [126][93]
X [144][143]

Table (2.13) Reference list of contributions highlighted in the timeline labels figure
2.12
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guidelines still have to be developed for evolving and legacy systems. We believe that

more effort should be made to use curve-fitting methods for evolving systems as they

do not require assumptions. In addition, most of the work focuses on measuring how

well the proposed model fits. While predictive ability of a model is briefly discussed

in some papers, we would like to see how far can a model predict into the future

before losing accuracy. How long can the same model be used and when do I need

to use a different model or update its parameters? Moreover, we find that there is

a need of high quality empirical work that uses current data and meets all aspects

of case study methodology provided by [111] and [11].

While academia has the most contributions, an industrial point of view or more

collaborative work between academia and industry would be a rich contribution.

These collaborative efforts and recommendations will provide decision makers with

better tools to make their systems evolve in a healthy and predictable manner.

We also found that simple single-change point or multiple change-point tech-

niques are of major interest, and discussed in a broad spectrum of organizations.

Multi up-gradation was proposed by a more limited number of researchers groups

in a specific organization, in fact, the term, multi up-gradation, is exclusively used

by them. Overall, looking into the progression of the body of work, it shows that

this field is gaining interest and the quality of the proposed work keeps improving.

Finally, we find that current literature focuses on failure or defect prediction and

using failure or defect data in evolving software systems. The existing studies do

not use databases of Change Requests (CR) which include defects and maintenance

requests. Modern software engineering databases contain Change Requests (CR),

where prediction ability should be studied in an evolving legacy system.
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2.3.5 Threats to Validity

Although we followed a systematic way to map studies in the field, there are

some threats to the validity of our study.

The major threat is the possibility of missing important papers due to several

restrictions explained in our inclusion and exclusion criteria in Section 2.3.1.3. Ex-

cluding papers that are written in languages other than English could have affected

our study by not including important information in some of those papers. We

could have also missed out on articles not published online since we are restricting

our search to articles only available online. In addition, source selection of where

papers are published would put this study at risk of leaving out valuable papers

that weren’t published by the sources selected here. There is also the restriction of

excluding papers in fields other than software engineering which may exclude the

efforts performed in this area of work that could potentially be applied to software

systems. Having papers from other fields would make it more difficult to categorize

and focus our efforts in producing a clear mapping study.

The choice of keywords and search strings was made systematically, but if some

keywords or terms were missing this would have prevented us from reaching some

sources. Forward and backward tracking of references was performed for further

assurance that the maximum number of studies get recognized and included.

Finally, there is a possibility of excluding a valuable paper in the review by

excluding a paper before skimming. This would be possible if the title or abstract

was misleading or incomplete, or by voting to exclude the paper by the group of

reviewers before fully skimming the paper. On the other hand, having more than

one reviewer reduces the chance of discarding papers that are relevant.
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2.3.6 Conclusion and Future Work

As the demand increases on businesses to grow, legacy systems are expected to

continue to evolve accordingly. Evolution, updates, and changes get more complex;

so it is more likely to find a sudden increase in failure intensity. The challenge then

is to find a reliable method to predict system reliability and estimate future failures.

The main objective of this study is to obtain a holistic view of the existing

studies in designing, validating and evaluating reliability models for evolving legacy

software systems. Throughout this mapping study we identified 60 papers covering

a spectrum of approaches of reliability models. These approaches are different in

solution extent, techniques, and methods. In proposed methods, papers fell into

one of the two main categories, analytical or curve-fit. We found that there is a

high focus in the field of analytical methods in software reliability model with evo-

lution, while curve-fit methods are limited although recent work has been published,

([30] [137][38][19]). Solution extent covered single-change point evolution, multiple

change-point evolution or multi up-gradation. There is an increase of interest in

multi up-gradation. The research in the field provides empirical work. A large pro-

portion of case studies were of a high or a decent quality but some used low quality

data, which affected the strength of their outcomes. We then conclude our work with

some recommended areas for potential researchers to investigate: (1)Looking into

more curve-fit solutions, (2) providing better quality empirical studies, (3) greater

involvement of industry, (4) Use SRGMs in predicting change requests in general

that include both failures and enhancements in databases to predict future change

requests.
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2.4 Effort Estimation using CR data

In order for software managers to succeed in managing their software projects

they need to effectively control the cost. The accuracy of cost estimation is affected

by the accuracy of effort estimation. It is reported that 60% to 80% of projects

in industry encounter effort overruns according to a review of surveys conducted

by Molokken and Jorgensen [95]. A main cause of the overruns is over-optimistic

estimates. Optimistic estimates of effort gives a false sense of security about a

project’s cost which can turn disastrous for the project budget.

Sehra et al. [114] conducted a systematic mapping study on software effort esti-

mation patterns and research trends for the time period 1996-2016. They concluded

that twelve core research areas have been studied, these areas include using size

metrics, machine learning techniques, estimation by analogy and others in order to

estimate effort. The study lacks any references to studies that used SRGM from

defect data to predict effort is not found on the study. In fact, most research uses

effort to build a better reliability model to predict failures not the other way around.

To meet our objective, we ask the following research questions:

• RQ1: What are the publication trends for effort estimation in maintenance

software systems?

• RQ2: Is CR data used in effort estimation?

To select relevant studies we defined inclusion and exclusion criteria as shown in

Table 2.14.

Andrews et al.[16] used SRGM models to predict incidents for help desk oper-

ations. Using historical labor data to resolve these incidents, they estimate effort
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Criteria Type Criteria List

Inclusion Criteria

• Journal and conference papers
• Peer reviewed
• English language only
• Software systems
• Published papers available electronically
• Statistical methods
• Effort Estimation for maintenance software systems

Exclusion Criteria

• Books
• Papers that are not peer reviewed
• Papers written in languages other than English
• Hardware systems
• Papers not published/available electronically
• Architecture-based or AI-based methods
• Fields other than software engineering

Table (2.14) Inclusion and exclusion criteria for effort estimation literature

required. In our case, we deal with CRs instead of help desk cases. We predict CRs

using reliability models, so we try to use CR data in effort estimation.

2.4.1 Change Request Prediction

According to the mapping study in Section 2.3, literature shows many studies are

concerned with finding solutions in terms of goodness-of-fit. The predictive ability

for the proposed solutions are measured for short-term predictions, i.e. looking

into one or two time units into the future. Rana et al. [109] and Park et al [104]

highlighted the issue of limited long-term prediction in research. Andrews et al. [16]

used a month-by-month interval to evaluate prediction capabilities of their proposed

system. Since long-term prediction is of major concern on this work to provide

managers with better tools for release planning, we apply long-term CR predictions

in our work.
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2.4.2 Effort Estimation

Over the past two decades there has been considerable activity in the area of

effort prediction with most approaches being typified as being algorithmic in nature.

Well known examples include COCOMO [25] and function points [5]. Albrecht

[5][6] has developed a methodology to use function points, which is a weighted

sum of the numbers of inputs, outputs, master files, and software inquiries. His

work suggested the use of a two-step work-effort validation procedure by estimating

SLOC using function points and then using SLOC to estimate the work-effort. In

1997, Niessink and Van Vliet [102] used Function Points in effort prediction as well.

Their experiment indicated that the performance of this method gave poor results

compared to other effort estimation methods like expert estimation. Recently, Shah

and Kama [115] suggested a new Software Change Effort Estimation (SCEE) model

that uses a combination of Change Impact Analysis technique (CIA) together with

Function Point Analysis (FPA). This work lacks empirical results to estimate the

accuracy rate of the new model compared to the existing FPA method.

Evanco [39] used both external and internal measures of maintainability to pre-

dict effort. A statistical analysis of fault correction effort was conducted based on

those factors: fault locality in the software architecture, software characteristics of

the defective components associated with the fault, and cumulative changes made

to the software (i.e.,fault correction, enhancement, and adaptation).

Analogy based effort estimation uses similar projects to estimate effort. Simi-

larity is defined as Euclidean distance. The key activities for estimating by analogy

are the identification of a problem as a new case, the retrieval of similar cases from

a repository, the reuse of knowledge derived from previous cases and the suggestion

of a solution for the new case. The method is validated on nine different industrial
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datasets by Shepperd and Schofield [116], a total of 275 projects. In cases analogy

outperforms algorithmic models based upon stepwise regression. Jorgensen et al.

[74] added an adjustment to the analogy based estimation. When a project has

an unusual high or low productivity then the estimate is adjusted towards the val-

ues of more average projects. AbdelMoez et al. [1] on the other hand dealt with

outliers by excluding them to improve their prediction model. Weiss et al. [135]

used the same analogy approach to predict bug fixing. Similarity between bugs is

compared using the bug description. They combine reported effort for similar bugs

as a prediction for the new similar bug. Hassouna and Tahvildari [51] proposed four

enhancements to Weiss’s method [135]: Data Enrichment, Majority Voting, Adap-

tive Threshold and Binary Clustering. Data Enrichment infuses additional issue

information into the similarity-scoring procedure, aiming to increase the accuracy

of similarity scores. Majority Voting exploits the fact that many of the similar his-

torical issues have repeating effort values, which are close to the actual. An adaptive

Threshold automatically adjusts the similarity threshold. Binary Clustering is used

if the similarity scores are very low, which might result in misleading predictions.

Numerical results are presented showing a noticeable improvement over the method

proposed in Weiss et al. [135]. Dehghan et al. [37] proposed an approach to create

a hybrid model based on selected individual predictors to achieve more accurate

and stable results in early prediction of task completion effort and to make sure the

model is not bounded to some attributes and consequently is adoptable to a larger

number of tasks. The hybrid effort model uses three independent attribute sets:

early metadata based attributes, title and description of software tasks. For this

study two commercial projects of IBM were analyzed, called RQM and RTC. Better

effort estimation results were shown. From the historical bug-fixing data, Zhang et

al. [146] proposed an empirical distribution of bug-fixing time using Monte Carlo
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Simulation to estimate the total amount of time required. They used a k-Nearest

Neighbors (kNN) based method for classifying the bug-fixing time, which can im-

prove the accuracy of existing methods

Calzolari et al. [27] estimated testing effort in CPU time using a predator/prey

non-linear dynamic model. Defects in the software are considered prey and pro-

grammers solving defects are the predators. At the beginning of a new release a

high number of defects will result in a good efficiency in bug detection and removal.

However, as the number of defects decreases the effort required to discover any

remaining defect increases. The phenomenon starts again with any new software

release. The classical predator/prey model was introduced in 1972 by Shimazu et

al. [119] to study ecological systems. The proposed model estimates the effort spent

in maintenance and testing activities. Results show that prediction error did not

exceed 30%.

De Lucia et al. [34] [35][36] used a model that takes size of components in

LOC and number of tasks into determining the effort formula. Shihab et al. [118]

concluded that using a combination of complexity, size and churn metrics are a

better measure of effort than using LOC alone. Using LOC under-estimates the

amount of effort required compared to their best effort predictor by approximately

66%. Thung [130] fucosed on code churn size to estimate bug fixing effort.

Jorgensen proposed an extensive review of studies related to expert estimation

of software development effort [72]. He then compared the use of expert judgement,

formal models, and a combination of these two approaches when estimating software

development work effort. Sixteen relevant studies were identified and reviewed. The

review found that the average accuracy of expert judgement-based effort estimates

was higher than the average accuracy of the models in ten of the sixteen studies.

Four of the reviewed studies evaluated effort estimates based on a combination of
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expert judgement and models. The mean estimation accuracy of the combination-

based methods was similar to the best of that of the other estimation methods

[73].

Gokhale and Mullen [47] [46] observed the software defect repair times by observ-

ing several factors: Defect characteristics, the assigned personnel, and the resources

used for the maintenance. These factors were used to model software defect repair

times, and they are characterized by the Laplace Transform of the rate distribution

(LTLN). Their results confirm that the LTLN distribution provides a statistically

better fit to the observed repair times than either of the two most widely used repair

time distributions, the lognormal and the exponential distribution.

Whigham et al. [136] proposed an automatically transformed linear model(ATLM)

as a suitable baseline model for comparison against Software Effort Estimation meth-

ods. ATLM is simple yet performs well over a range of different project types. ATLM

may be used with mixed numeric and categorical data and requires no parameter

tuning. Sarro and Petrozziello [112] use linear programming to find a baseline for

software effort estimation as well. The results of the study confirm the need to

benchmark every other proposal against accurate and robust baselines.

To better estimate the attributes that contribute more in effort estimation Shukla

and Misra [120] applied Principal Component Analysis (PCA) to two sets of data

for two large sized software systems. Since effort estimation relies on several factors,

PCA was used to reduce the data and predict the variance in software maintenance

effort. Hayes et al. [52] on the other hand derived a model for estimating adaptive

software maintenance effort using correlation analysis.

Several surveys and reviews have been conducted related to the body of research

in effort analysis in software systems. In 2014, Rastogi et al. [110] published a survey

on software effort estimation techniques. In this paper, a review of general techniques
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and models regarding effort estimation has been done. After analyzing 25 papers,

they conclude that there is no single technique that can lead to unambiguous results.

None of the technique can perform exceptionally well when deployed alone. Hybrid

approaches perform better than single approaches. Idri et al. [63] then conducted

a systematic literature review of ensemble effort estimation in 2016. An ensemble

effort estimation (EEE) technique combines several of the single/classical models

found in the Software development effort estimation literature. They performed a

systematic review of EEE studies published between 2000 and 2016, and selected

24 studies. They found that EEE methods achieve acceptable results, with mean

MMRE ranging from 17.56% to 62.29%. In the same year Usharani et al. [134]

also proposed a short survey on software effort estimation. They evaluated fifteen

journal papers related to algorithmic methods and prediction methods of software

effort estimation. In 2017, Sehra et al. [114] investigated research patterns and

trends in software effort estimation during the period 1996 to 2016. Research was

classified into twelve core research areas and sixty research trends. The research

topics were: application specific estimation, estimation for web applications, project

data selection, machine learning techniques, ensemble models, reviews and mapping

studies, expert judgement, factors affecting estimation, size metrics and estimation

by analogy.

We find that many papers use software metrics and characteristics such as LOC,

function points, defect description, etc., to compare project similarity or estimate

by analogy. The COCOMO model uses LOC data for effort estimation that has

been widely used in industry. Some of the releases of our case study provide this

information Effort estimation is further discussed and investigated in Chapter 8.
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Chapter 3

Case Study

To perform our case study, we need to understand the subject system and the

data we are working with. Since we are dealing with a legacy system, it is important

to learn how the system evolved and changed through the years. We are also eager

to learn more about the available attributes and data. The main objective of this

work is to be able to predict effort and Change Requests (CRs) in a release using

historic data from the same release. Therefore, we set our research questions to

analyze CR data from a release and use them to predict future CR and effort. The

research questions are as follows:

• RQ1: What does the data in the system look like?

• RQ2: Are there any possible relationships among different attributes that

could help with CR and effort prediction?

To answer these questions we start by with brief description of the system in

Section 3.1. We then describe and analyze data in Section 3.2. Analysis tools are

specified in Section 3.3.
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3.1 Subject System Specification

We use data of four releases of an aerospace system. It is a legacy system that has

been around for three decades. It consists of over 1.2 million of lines of code, with

most of the code written in C, C++, Java, and scripted code. There are over 850

components in 23 subsystems. The subsystems are organized by the functionality

they provide and are referred as Computer System Configuration Items (CSCI).

The subject system was first developed using the Waterfall process, then after a few

years of operation, the Spiral development process was adopted. In each release, new

requirements are addressed and new functionalities added. Maintenance included

corrective maintenance, adaptations (e.g. to new hardware), perfective maintenance

(e.g. performance improvements) and enhancements. Most of the maintenance effort

was adaptive and corrective while less effort was preventive or perfective. One of the

major enhancements of the system occurred when it was upgraded to a new hardware

and operating system and code was converted to an object oriented programming

language. Therefore, each release consists of changes that were made to add new

functionality as well as to correct defects found throughout the development lifecycle

including defects found during operation.

CR related metrics generated by Change Requests (CR) are the main focus of

this study. Each CR is written to report a problem and is recorded in a CR tracking

system (ClearQuest).b The CR tracking system provides work-flow management

and CR life-cycle traceability. Software configuration management, version control,

and workspace management are provided by ClearCase. While ClearQuest provides

CR metrics, ClearCase contains the repository of the actual source code versions

driven by CRs. Due to the unavailability of prior historical CR data, this study was

based on CR data from four releases.
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3.2 Data

3.2.1 Available Data

ClearQuest is a CR tracking system that provides the workflow process of a

software Change Request (CR). Each CR has several attributes included in its state

within the workflow cycle such as submitted, pending, rejected, approved, closed,

etc. CR attributes are recorded in ClearQuest. This provides a detailed description

of each CR. A CR is a data record that contains the following attributes which may

or may not have been filled in:

1. CR ID: System generated identifier.

2. Request Type: Discrepancy or Enhancement.

• Enhancement for a changing requirement or customer directed enhance-

ment. Also used for perfective, preventive, and adaptive efforts. The

enhancement falls into one of three categories:

– ANOM: Anomaly during development until integration test is com-

plete.

– SCR: Software Change Request initiated in the development phase

before release.

– STR: Software Change Request is an operational test request during

the customer testing phase.

• Discrepancy for corrective maintenance. It is referred to as DR.

3. Functional Area: Records the functional area that is affected by this change

request.
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4. Customer Priority: Indicates when the CR should be delivered. CRs are

divided into two categories: CAT I for CRs to be fixed in the current release

and CAT II, for CRs to be fixed in the next release. Within each category

CRs are sub-categorized based on impact and severity:

• C1E – CAT I Emergency, if not incorporated severe consequences may

result. Needs to be fixed immediately

• C1U – CAT I Urgent, impact less severe than C1E, but needs to be

incorporated immediately.

• C1R – CAT I Routine. No mission critical impact, correction can be

implemented alongside a scheduled maintenance effort.

• C2E – CAT II Emergency, if needs to be fixed in the next release with

no work around.

• C2U – CAT II Urgent, impact is less severe that C2E, however has rea-

sonable workaround that minimizes impact.

• C2R – CAT II Routine. No mission critical impact, correction can be

implemented in the next release.

5. SLOC Fields: Provides information about the changed code base:

• SLOC Added: The total lines of added code.

• SLOC Deleted: The total lines of deleted code.

• SLOC Generated: The total lines of autogenerated code.

• SLOC Modified: The total lines of modified code.

6. Actual Effort: Hours spent on the CR.
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CR Database Fields Release 1 Release 2 Release 3 Release 4
ID Number Y Y Y Y
Change Type / Enhancement Y Y Y N
Change Type / Discrepancy Y Y Y Y
Priority Y Y Y Y
Functional Area N N N Y
Submit Date Y Y Y Y
Actual Completion Date Y M M Y
Actual Effort M M M M
SLOC Added N M M Y
SLOC Modified N M M Y
SLOC Generated N M M Y
SLOC Deleted N M M Y

Table (3.1) Attributes available for each release

7. Submission Date: The Date the CR was submitted.

8. Actual Completion Date: The Date the CR was closed.

3.2.2 Data Preparation

3.2.2.1 Data Imputation

After data extraction and definition, data is then prepared for analysis. In our

dataset we needed to handle missing data. Dealing with missing data is a sensitive

matter in order to not distort a dataset by creating noise or biases. Many factors

contribute to the decision of how to handle missing data such as how much data

is missing? What type of data is missing? Can we derive missing data values or

not? Are there data patterns? In some cases attributes with missing data can be

ignored or removed, usually when the amount of missing data is relatively low, i.e.

less than 5% as suggested by Pyle [107]. In other cases, missing data is replaced

with an estimated value of the data point such as mean or mode. The process of

substituting missing data with an estimated value is called data imputation.
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In our database we had to deal with missing data in each of the four releases.

Table 3.1 summarizes the attributes available for each data record in each release,

these attributes are explained in Section 3.2.1. An attribute set without missing

data is marked as "Y". If the attribute set has no data, we marked it with "N". If

the attribute is available but with missing data we marked it "M". As we can see

that Release 1, 2 and 3 "Functional Area" as attribute. Release 4 has no "Change

Type" info available. In addition, the first release has no SLOC attributes.

We handled missing data in each release differently. "Actual Effort" and "Actual

Completion Date" and "SLOC" fields" are the field we found missing data. We

handled each situation as explained below:

• Actual Completion Date has values missing in release 2 and release 3. The

missing data in release 2 is about 1% of the data. Since the percentage of

missing data is so small and we don’t consider completion date has any contri-

bution in determining the actual effort, we ignore those values. All data fields

with missing completion date have actual effort and submission data available.

In release 3 the percentage of missing completion date is almost 14%. For the

fields with missing actual completion date in this release has no data regard-

ing actual effort or even SLOC. When asking the data providers about them

they said that "Some completion dates are blank due to CR (s) returned to a

“Pending” or “Rejection” states". Therefore, the CRs with missing completion

date along with actual effort and SLOC are ignored when performing CR and

effort analysis.

• Actual effort in all releases had some unrealistic values such as (0) or (-1).

These values were later reported to be human errors caused by manual entry

of values by staff. We treated these values as missing data. Although they
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were less than 5%, we replaced them with the mean values of actual effort in

each release. We found that ignoring the value of hours spent will affect the

effort rate so we decided that the mean value would cause less distortion of

the data.

• SLOC values were recorded for release 2, 3 and 4. The second release has

most of the SLOC values missing. In fact, SLOC data is available for less

than 20% of the total CRs. Therefore, imputation of this type of data will not

reflect realistic data. Consequentially we decided to not use the SLOC data

for release 2. In release 3, SLOC values are missing for up to 28% of the fields.

When ignoring the SLOC values for the ignored cases due to missing actual

effort and actual completion date (as mentioned in the point 1 of this list),

then we are left with almost 13% of SLOC data missing. Since in most cases

SLOC is filled for the field that has been updated and the other fields are left

such as updating SLOC added with 10 hours and leaving other SLOC as blank

means that no work has been done in deletion or modification. In addition,

SLOC values have very small number of extreme outliers that could distort

the data a lot while they do not represent the mass majority of the data

population. So we use the median value of CRs with similar actual effort,

or with the closest actual effort and calculate the median of Added SLOC,

Modified SLOC, Deleted SLOC and Auto-generated SLOC, to replace missing

values.

3.2.2.2 Data Trends

Data trends are patterns of data which changes gradually over time. Outliers

represent a few values that lie far from the mainstream data. If data values range
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Release CRs Weeks SLOC A SLOC M SLOC G SLOC D
Release 1 486 554 N/A N/A N/A N/A
Release 2 898 433 10417 4079 233794 3818
Release 3 401 472 64627 68423 2096970 14398
Release 4 211 398 69789 113931 1586299 4071

Table (3.2) Number of CRs, Total Number of Weeks and Size of Change per Re-
lease

between two boundary values, outliers usually are values that are out of the normal

range. In some cases, outlier values create noise, so they are treated like missing

values in terms of replacement or leaving them out. In other cases we need outlier

values to provide better analysis of a dataset. Box plots are useful graphical repre-

sentation for describing data behavior. They the median and the lower quartile Q1

and upper quartile Q3 which represents the 25th and 75th percentiles. the differ-

ence (Q3 - Q1) is called the interquartile range or IQR. A box plot is constructed by

drawing a box between the upper and lower quartiles with a solid line drawn across

the box to locate the median. A point that resides beyond these lines is an outlier.

Highlighting these terms are essential in describing our data in Section 3.2.3.

3.2.2.3 Data Visualization and Modeling

In order to look for trends, outliers or any relationships among data-points we

worked on data visualization and analysis. Data visualization is presenting data and

relationships in a graphical format using charts or tables. When data is visualized

it is easier to observe trends, to discover noise and outliers and to model data and

then find better solutions for the system. We used Microsoft Excel to visualize our

data using graphs and charts as demonstrated in Section 3.2.3.
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3.2.3 Data Analysis

Exploratory data analysis (EDA) is the first step in processing data. It is an

approach to summarize and identify the main characteristics of a dataset, usually

with visual methods. John W. Tukey [133], introduced the phrase exploratory data

analysis (EDA) as

Procedures for analyzing data, techniques for interpreting the results
of such procedures, ways of planning the gathering of data to make its
analysis easier, more precise or more accurate, and all the machinery
and results of (mathematical) statistics which apply to analyzing data.

EDA is beneficial in extracting important variables, detecting outliers, under-

stand underlying structure of a dataset, finding trends, and developing models. In

this section, we demonstrate our data analysis for each release by demonstrating

some basic statistics and highlighting our observations on the areas that needs to

be further investigated.

3.2.3.1 Change Requests

For this system we have CR data for four releases. Each release contains hundreds

of CRs, and each CR is identified by a CR identifier. A CR contains a record of CR

data as explained in Section 3.2.1. Table 3.2 shows the number of CRs collected

per release and the total number of weeks for each release. The first release has a

total of 486 CRs in 554 weeks. The second release has more CRs, 898 CRs in 433

weeks. Release 3 has a total of 401 CRs in 472 weeks. Release 4 has of 211 CRs in

398 weeks.

The cumulative number of CRs were collected and grouped on a weekly basis

to show the pattern of growth in CRs per release. Figure 3.1 shows the cumulative
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(a) Cumulative No. of CRs for Release 1 (b) Cumulative No. of CRs for Release 2

(c) Cumulative No. of CRs for Release 3 (d) Cumulative No. of CRs for Release 4
Figure (3.1) Cumulative Number of CRs for all four releases collected weekly
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Figure (3.2) Actual Effort per release in hours

number of CRs collected for each release. Looking at the patterns we can observe

some changes in the growth rate of CRs in all four releases. These changes cause

changing CR patterns throughout the release. We identify these changes as change-

points, which will be discussed later in Chapter 4.

3.2.3.2 Effort

Effort is represented by an integer number of the number of hours for CR reso-

lution. Effort does not reflect calendar-time in our case but man-hours. We refer to

effort and number of hours interchangeably in this document. Figure 3.2 shows a

boxplot chart of actual number of hours per release. The median effort for Release 1

and Release 2 is 8 hours, the median effort for Release 3 is 15 hours and for Release

4 is 16 hours. The extreme outliers made the chart less clear in terms of effort per
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Figure (3.3) Actual Effort per release in hours, excluding extreme outliers above
400 hours
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(a) Cumulative Effort for Release 1 (b) Cumulative Effort for Release 2

(c) Cumulative Effort for Release 3 (d) Cumulative Effort for Release 4
Figure (3.4) Cumulative Number of CRs for all four releases collected weekly

release, therefore we attempt to exclude extreme outliers. Extreme outliers are any

data values which lie more than 3 times the interquartile range below the first quar-

tile or above the third quartile, i.e. extreme outliers are data points that are more

extreme than Q1 - (3 * IQR) or Q3 + (3 * IQR). Following this process we found

that we have 57 outlier values. For better visibility of the boxplots we excluded

the extreme top outliers which have a value of 400 hours or greater in Figure 3.3.

The removed outliers are of priority C2R (Category 2 Routine) in Release 4, and

of type SCR in the first three releases, SCR is a Change Request initiated in the

development phase before release for the first three releases.

We collected cumulative effort on a weekly basis to observe the growth of effort

in each release. Figure 3.4 shows different trends of cumulative effort growth among

releases. We can see a change in growth rate of cumulative effort for each release.

These changes are due to changes in the CR rate. In fact looking at the growth

66



Figure (3.5) Cumulative effort vs. cumulative number of CRs for Release 1

rate of cumulative effort reminds us of the pattern we saw earlier in the CR rate,

see Figure 3.1.

To compare the growth of cumulative number of CRs to the cumulative effort

we combined them in Figure 3.5 for Release 1, Figure 3.6 for Release 2, Figure 3.7

for release 3, and Figure 3.8 for release 4. We find similarities in the growth rate of

cumulative CRs and cumulative effort growth patterns. There are some weeks when

the effort curves deviate from the CR curve but in general they follow patterns that

are similar in most of the weeks. We can see that the patterns of Release 1 in Figure

3.5 and Release 4 in Figure 3.8 show very similar growth rates of cumulative CRs

and cumulative effort, sharing the same change-points in weeks were change-points

occur. Release 2 and Release 3 shown in Figures 3.6 and 3.7 relatively, also share

similarities between cumulative effort growth and cumulative growth of CRs but

with some different change-points.
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Figure (3.6) Cumulative effort vs. cumulative number of CRs for Release 2

Figure (3.7) Cumulative effort vs. cumulative number of defects for Release 3
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Figure (3.8) Cumulative effort vs. cumulative number of CRs for Release 4

3.2.3.3 Customer Priority

When looking into the data of customer priority, we investigate the data with

two questions:

• Q1: Can we find special patterns in customer priority in relation to CRs?

• Q2: Can we find special patterns in customer priority in relation to Effort?

In terms of CRs, there are six levels of priorities for each CR as explained in

Section 3.2.1. Table 3.3 shows the total number of CRs found of each specific priority.

We find that the highest number of CRs among all releases are of the lowest priority

to be resolved in the next release C2R. The lowest number of CRs are of priority

C1E, in fact some releases have no CR of this priority, such as Release 3 and Release

4. All four releases have more CRs with C1U priority than C1E CRs. CRs of C1U

are about 5% of the CRs in Release 1 and Release 2. They make of only 1.4% of CRs

in Release 3 and 2.3% of CRs in release 4. For priority C1R, Release 1 has none,
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Customer Priority Release 1 Release 2 Release 3 Release 4
C1E 15 6 0 0
C1U 27 43 6 5
C1R 0 14 13 11
C2E 68 88 11 6
C2U 32 62 20 14
C2R 344 685 351 175
Total No. of CRs 486 898 401 211

Table (3.3) Number of Cases per each Customer Priority

Release 2 has 1.5% of its CRs of this priority, Release 3 has about 3% and Release 4

has about 5%. The CRs that need to be fixed in the same release are less than 9%

of total CRs in each release. The highest number of CRs are CRs that need to be

fixed in the next release. The C2E CRs are 14%, 10%, 5% and 3% for the releases

1, 2, 3 and 4 relatively. C2U makes about 7% of the CRs in all the releases except

the third release where it is about 5% of the CRs. The highest number of CRs are

of a C2R priority which ranges between 71% - 88% of the CRs among the releases.

This shows that the majority of CRs are of the lowest priority CRs and the lowest

level of urgency, which are most likely to be maintenance requests. Thus any future

CR is most likely a C2R, but this does not provide enough information to assist in

CR prediction.

In terms of effort, we want to know if priority has an effect on effort. To visualize

the effort spent on each CR according to their priority we demonstrated them in a

box plot, see Figures 3.9, 3.10, 3.11 and 3.12.

In the boxplot Figure 3.9 we find that the minimum number of hours is 1 for

all priorities and the maximum is 80 for C1E, C1U and C2U. C2E has a maximum

of 50 and C2R has a maximum of 400, which is an extreme outlier. The median

number of hours shows that C1E and C2E consume the most amount of effort, 10
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Figure (3.9) Effort per Priority for Release 1

Figure (3.10) Effort per Priority for Release 2
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Figure (3.11) Effort per Priority for Release 3

Figure (3.12) Effort per Priority for Release 4
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hours, C1U has a median of 4, C2U has a median of 8 and C2R has a median of 6.5

hours.

Figure 3.10 shows the efforts in Release 2. C1E and C1U CRs has a median of 5

hours. C1R, C2E and C2R has a median of 8 hours and finally C2U has a median

of 10 hours. The C2 cases has extreme outlier of hundreds and thousands of hours

while C1 cases has maximum values that range between 30 and 40 hours.

In Release 3, C2 CRs medians are slightly higher than C1 CRs. With medians

around 15 hours for C2 CRs and 9 for C1U and 13 for C1R we find that is no

big difference in the number of hours. We also notice that the outliers for C2 CRs

consume hundreds of hours which is extremely high compared to C1 CRs which are

between 38 and 80 hours.

Finally, we observe the efforts in the fourth release Figure 3.12. The medians of

C1U and C2R are 40 hours and the medians of C1R and C2E are 20 hours. The

median of C2U is 48. The maximum values of hours in C1U, C1R and C2E are

between 60 and 75, while C2U and C2R are 200 and 400 relatively.

When observing the effort required for CRs among different priorities we find

that the extreme outliers of hours are higher in C2 CRs than C1 CRs. But when

looking into the medians of hours spent on a CR we do not find a clear pattern. As

the number of hours grow when priorities get lower in Release 3 we find the opposite

happening in Release 4, while the other two releases have no specific pattern. We

could not conclude any major observation regarding the relationship between CR

priority and effort required per each priority that could assist us in effort prediction.

3.2.3.4 Functional Area

There are twenty different functional areas in the system affected by CRs. Func-

tional areas were specified for CRs only for the fourth release. Table 3.4 shows the
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Functional Area No. of CRs Total Effort (Hrs) Average Effort
FA1 20 277 14
FA2 4 106 27
FA3 1 32 32
FA4 10 504 50
FA5 10 365 37
FA6 1 50 50
FA7 7 32 5
FA8 2 231 116
FA9 1 30 30
FA10 12 392 33
FA11 35 1037 30
FA12 1 10 10
FA13 74 2447 33
FA14 21 374 18
FA15 4 352 88
FA16 2 38 19
FA17 1 1 1
FA18 1 40 40
FA19 1 400 400
FA20 3 64 21

Table (3.4) Number of CRs, Total Effort and Average Effort per Functional Area

distribution of the number of CRs per functional area, the total effort per functional

area and the average effort used to fix CRs for each functional area. Due to confi-

dentiality requirements, the functional areas were coded as FA+Number code (FA1

to FA20). Like customer priority we look into the functional area data with two

questions:

• Q1: Can we find patterns in functional areas with regard to the number of

CRs that might make prediction possible?

• Q2: Can we find patterns in functional areas with regard to effort that might

make prediction possible?
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To answer the questions we look into the number of CRs per functional area.

FA13 area has the highest amount of CRs with 74 CRs. FA11 comes next with 35

CRs. The remaining functional areas have fewer than 22 CRs per release. While

some functional areas have a very high number of CRs, this is not true for the

average effort in those functional areas. In fact, functional areas with the smallest

number of CRs have the highest average efforts. For instance, FA19 has an average

effort for its single CR of 400 hours. This CR is a Discrepancy request (DR) of

priority of C2R, which is routine maintenance.

Figure 3.13 shows the amount of effort in each functional area as a series of

boxplots. We excluded the functional areas that contain only one or two CRs. We

find extreme outliers in FA11, FA13, FA14, FA7 and FA1. These CRs are all of type

C2R, two of them are Discrepancies. The priorities of the CRs in different functional

areas, especially the functional areas with many CRs, vary by type. We find some

functional areas such as FA15, FA10 and FA4 have higher median values while other

functional areas have very low medians such as the median in FA1, FA7 and FA14.

When trying to use a functional area to predict effort we find that most functional

areas have low CRs. The highest number of CRs are in FA13 and FA11, which have

74 and 35 CRs respectively. All other functional areas show no more than 20 CRs.

Functional areas with a higher number of CRs do not necessarily have the highest

effort. As we mentioned earlier, FA19 has the highest average effort, 400. FA8 has

the second highest average effort (116), but with only two CRs. There is no obvious

relationship between the density of CRs and the average effort per functional area,

therefore we will not likely to be able to predict effort by using functional areas.
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Release Change DR No. of CRs Total Effort Avg. Effort

Release 1

SCR DR 8 385 48
41 1609 39

STR DR 4 10 3
70 779 11

ANOM DR 2 6 3
361 5155 14

Release 2

SCR DR 30 2409 80
89 3808 43

STR DR 5 284 57
58 1062 18

ANOM DR 1 1 1
715 13239 19

Release 3

SCR DR 5 641 128
80 4454 56

STR DR 2 172 86
23 1038 45

ANOM DR 2 81 41
289 7560 26

Release 4 DR 15 1199 80
197 5583 28

Table (3.5) Number of CRs, Total Effort and Average Effort per Change Type

Figure (3.14) Number of CRs per Change Type for Release 1
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Figure (3.15) Number of CRs per Change Type for Release 2

Figure (3.16) Number of CRs per Change Type for Release 3

Figure (3.17) Number of CRs per Change Type for Release 4
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3.2.3.5 Change Type

As explained in Section 3.2.1 a change type of a request type can be an Enhance-

ment under one of the following: ANOM, SCR or STR. Some of these enhancements

may or may not be Discrepancies (DR). Like customer priority and functional area

we analyze change type in terms of these two questions:

• Q1: Can we find patterns for CRs based on the change type?

• Q2: Can we find patterns for CRs with regard to effort for specific change

types?

Table 3.5 summarizes the CRs and efforts according to their change type. For

each release, we present the number of CRs, total effort and average effort. Figures

3.14, 3.15, 3.16 and 3.17 demonstrates the number of CRs per change type for each

release. We find that the highest number of CRs are anomalies in the first three

releases, which is about 75% of the CRs. SCR comes next, which is Change Request

initiated in the development phase before release, and then STR, which are Change

Requests during the customer testing phase. A very small portion of these CRs are

DRs. Figure 3.17 shows the number of DRs vs. all other CRs. DRs are about 8%

of the total number of CRs in Release 4. We do not have any information about

Enhancement types for this release. We find that most CRs are anomalies and

non-discrepancies.

Effort varies from release to release. In the first release, (Figure 3.18) we find

that SCR accounts for the highest effort, next is ANOM and finally STR. In the

second release (Figure 3.19), SCR has the highest median while ANOM has the

lowest median. On the other hand ANOM has the highest outlier value. In the

third release, STR has the highest median but the lowest value of extreme outlier
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Figure (3.18) Boxplot of effort per Change Type for Release 1

Figure (3.19) Boxplot of effort per Change Type for Release 2
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Figure (3.20) Boxplot of effort per Change Type for Release 3

among the other change types, while ANOM has the lowest median while having a

relatively high outlier. STR has the highest outlier value, see Figure 3.20.

We then compare the effort spent on DR CRs vs. non-DR CRs for the four

releases. Figures 3.21, 3.22, 3.23, and 3.24 show that DR CRs require more effort

than other CRs. This observation is consistent for every release. The averages of

effort also vary depending on the work required for a CR but there is no clear pattern

in Table 3.5 that could lead us to a conclusion in regard to effort estimation.

3.2.3.6 Lines of Code

For each CR, lines of Code represent the number of lines of code that are added

to the code, modified in the code, were deleted from the code or added using auto-

generation tools. As mentioned earlier, the lines of code values were reported for

the third and fourth release only. We also investigate if SLOC can be used in CR

and effort prediction, so we ask:

• Q1: Can we find patterns in SLOC data?
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Figure (3.21) Boxplot of effort for DR CRs (Release 1)

Figure (3.22) Boxplot of effort for DR CRs (Release 2)
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Figure (3.23) Boxplot of effort for DR CRs (Release 3)

Figure (3.24) Boxplot of effort for DR CRs (Release 4)
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Figure (3.25) Boxplot of the number of SLOC Added, SLOC Modified, SLOC
Deleted and SLOC Auto-generated (Release 3)

(a) SLOCA vs. Effort (Actual Hours) (b) SLOCM vs. Effort (Actual Hours)

(c) SLOCG vs. Effort (Actual Hours) (d) SLOCD vs. Effort (Actual Hours4)
Figure (3.26) Scatter plot of SLOCs vs. Effort (Actual Hours) for Release 3
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• Q2: How do SLOC data, CR data and effort compare?

We first check the SLOC statistics in Release 3. Figure 3.25 shows boxplot

of SLOC for Release 3, (SLOC A) is for added LOC, (SLOC M) is for modified

LOC, (SLOC G) is for auto-generated LOC and (SLOC D) is for deleted LOC. The

outliers on the charts distort the presentation of the data, so the small values are not

shown clearly. Notice the extreme outliers of SLOC Generated. This is because the

auto-generated code consists of a large number of SLOC for GUIs. SLOC Modified

are driven by merges when a baseline version is updated. We demonstrate the

relation between effort and each type of SLOC using scatter plots in Figures 3.26

and 3.27. Figure 3.26 shows that in the third release most CRs report SLOCM

and SLOCG that are close to zero regardless of effort. This also applies to SLOCA

and SLOCD but with more points that are scattered. The four figures do not show

that the plotted points could fit a regression function which makes the possibility

of estimating effort using any of the SLOCs unlikely. Figure 3.27 shows the scatter

plot of SLOCA, SLOCM, SLOCG and SLOCD vs. effort for the fourth release.

The spread of the points are closer to zero in SLOCA, SLOCM and SLOCG, while

SLOCD points appear to be more spread. These plots do not show patterns that

may lead to a regression model that can be used to predict effort using any of the

SLOC data.

To compare changes in Lines of Code with CR rate we compare cumulative CR

rate to cumulative SLOC in a collection of figures, in Figure 3.28. We analyze the

cumulative number of Added SLOC, Modified SLOC, Auto-generated SLOC and

Deleted SLOC separately and combined. Figure 3.28a shows the growth of CRs

along with the growth of added SLOC. We can see that there is a large increase

of Added SLOC towards the end of the release. The number of SLOC increases
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(a) SLOCA vs. Effort (Actual Hours) (b) SLOCM vs. Effort (Actual Hours)

(c) SLOCG vs. Effort (Actual Hours) (d) SLOCD vs. Effort (Actual Hours4)
Figure (3.27) Scatter plot of SLOCs vs. Effort (Actual Hours) for Release 4

dramatically around week 400. There is another jump between week 420 and 430.

Also, cumulative Modified SLOC jumps between week 400 and 420 (Figure 3.28b).

Auto-generated SLOC increases at a faster pace around week 370 and continues to

gradually increase until after week 420 where a large increase occurs (Figure 3.28c).

Cumulative deleted SLOC also starts increasing at a faster pace around week 370

and continues to grow until the end of the release (Figure 3.28d). When looking at

the total SLOC we find that in general SLOC modifications increased after week

370. When adding all SLOCs, the highest total amount of change was performed

around week 430 (Figure 3.28e) and (Figure 3.28f). Note that we excluded the

auto-generated code in Figure 3.31f, since its nature is different than the nature of

the other SLOC. Since it is auto-generated, the time required to generate the code

is different than the human effort in producing or modifying code and usually the
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(a) Cumulative No. of CRs vs. Cumulative
SLOC Added

(b) Cumulative No. of CRs vs. Cumulative
SLOC Modified

(c) Cumulative No. of CRs vs. Cumulative
SLOC Autogenerated

(d) Cumulative No. of CRs vs. Cumulative
SLOC Deleted

(e) Cumulative No. of CRs vs. Cumulative
Total of SLOCs

(f) Cumulative No. of CRs vs. Cumulative
total of SLOC Added, Modified and Deleted

Figure (3.28) Cumulative Number of CRs vs. Cumulative SLOC for Release 3
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amount of auto-generated code is much higher than the other values, therefore we

wanted to examine changes of code including and excluding auto-generated code.

This observation could indicate that there was a maintenance request that took place

at around that time that might have caused an increase in CRs and accompanying

code change.

When comparing the cumulative SLOC values to the cumulative effort, we look

for possible relationships between the number of SLOC and effort spent on CRs.

Figure 3.29 demonstrates the growth of effort compared to the growth of SLOC.

We find that there is a slight increase in effort between weeks 420 and 430 where

SLOC Added, Modified and Autogenerated increase as well. This increase is also

reflected in the total SLOC, both for including and excluding the auto-generated

SLOC. Cumulative deleted SLOC also increases. This change in SLOC and the

change in effort could assist in predicting effort. When looking into the cumulative

effort curve we find other change-points, around week 370 and around week 300.

In week 370, we noticed that the total SLOC rates started increasing faster than

before, which indicates that more effort has to be expended towards these changes.

Also, by week 300, we find that there is a slight increase in SLOC Added, which

could be associated with the change in effort.

We then move to the fourth release. The boxplots for SLOC Added, Deleted,

Modified and Auto-generated are shown in Figure 3.30. We find that the auto-

generated LOC has the biggest outliers but most of the values are zeros. Figure

3.30 shows the maximum outlier as 54,616 for added SLOC, 103960 for modified

SLOC, 577,984 SLOC and deleted SLOC is 415.

To compare changes in Lines of Code with CRs, we compare cumulative CR

rate to cumulative SLOC in a collection of figures (Figure 3.31). We notice that a

high number of SLOC is added in week 265 where there is a change in the CR rate
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(a) Cumulative Effort vs. Cumulative SLOC
Added

(b) Cumulative Effort vs. Cumulative SLOC
Modified

(c) Cumulative Effort vs. Cumulative SLOC
Autogenerated

(d) Cumulative Effort vs. Cumulative SLOC
Deleted

(e) Cumulative Effort vs. Cumulative Total
SLOCs

(f) Cumulative Effort vs. Cumulative Total
of SLOC Added, Modified and Deleted

Figure (3.29) Cumulative Effort vs. Cumulative SLOC for Release 3
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Figure (3.30) Boxplot of the number of SLOC Added, SLOC Modified, SLOC
Deleted and SLOC Auto-generated (Release 4)

(Figure 3.31a). SLOC modified has a spike around week 245 just before a change

point in the CR curve (Figure 3.31b). Auto-generated code has two major spikes,

around weeks 245 and 350 (Figure 3.31c). For SLOC deleted we find that it grows

along the cumulative CR curve with changes at times around the changes in CR rate

such as the increase around weeks 190, 265 and 340 (Figure 3.31d). When looking

at the totals of cumulative SLOC in Figures 3.31e and 3.31f we find that major code

change occurred in weeks 245, 265, and 340.

To compare cumulative effort to cumulative SLOC for the fourth release we

consider Figure 3.32. When looking into the times where SLOC growth was major

around weeks 245, 265 and 340, we find that effort has change-points in those weeks

as well. In Figure 3.32a we find a change in week 265, the same week we see a high

increase in SLOC added and SLOC Generated. We also see an increase in week

340 where a lot of auto-generated code was added (Figure 3.32c). The change in

modified SLOC shows a slight change in effort in Figure 3.32f. For cumulative CRs,
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(a) Cumulative No. of CRs vs. Cumulative
SLOC Added

(b) Cumulative No. of CRs vs. Cumulative
SLOC Modified

(c) Cumulative No. of CRs vs. Cumulative
SLOC Autogenerated

(d) Cumulative No. of CRs vs. Cumulative
SLOC Deleted

(e) Cumulative No. of CRs vs. Cumulative
Total of SLOCs

(f) Cumulative No. of CRs vs. Cumulative
total of SLOC Added, Modified and Deleted

Figure (3.31) Cumulative Number of CRs vs. Cumulative SLOC for Release 4
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(a) Cumulative Effort vs. Cumulative SLOC
Added

(b) Cumulative Effort vs. Cumulative SLOC
Modified

(c) Cumulative Effort vs. Cumulative SLOC
Autogenerated

(d) Cumulative Effort vs. Cumulative SLOC
Deleted

(e) Cumulative Effort vs. Cumulative Total
SLOCs

(f) Cumulative Effort vs. Cumulative Total
of SLOC Added, Modified and Deleted

Figure (3.32) Cumulative Effort vs. Cumulative SLOC for Release 4
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we see similarities in the growth between cumulative effort and SLOC deleted (Figure

3.32d). We find a lot of similarities between cumulative SLOCs and cumulative effort

and cumulative SLOC and cumulative CRs. From our observation we conclude that

we can find changes in cumulative CRs and effort by knowing the amount of change

in SLOC. SLOC might not be useful in predicting the exact number of CRs or

their effort in the future, but it gives a clear indication that change-points can be

identified using changes in SLOC. We will investigate this more in Chapter 4.

3.2.3.7 Summary of Data Analysis

At the beginning of this chapter we defined our system and presented relevant

data. We also wanted to understand the data in the system so we set up two research

questions:

• RQ1: What does the data in the system look like?

• RQ2: Are there any possible relationships among different attributes?

To answer the first question we took the attributes of CRs among four releases of the

system and we visualized the ranges and values that these attributes could be in. We

then tried to find different relationships among the attributes with having a main

goal of finding attributes that assist us in effort estimation. We were looking for

relationships between effort and other elements such as customer priority, functional

area and change type. For customer priority, we found CRs of certain priorities

require more effort than other CRs within a release, but this is not consistent among

different releases, for example C1U in Release 3 requires the least amount of effort in

comparing with other CRs in release 3, but in Release 4, CRs of type CIU require the

most effort compared to other types of CRs in Release 4. We also have information

about the amount of CRs of every priority in each release, for example a CR is more
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likely to be of priority C2R in any of the releases since most CRs are of this type.

In terms of predicting the number of CRs or effort using customer priority, there

is no clear indication that predictions can be made using customer priority. These

results are similar, when we investigated the use of Change Type. The effort related

to different change types have different median values but they are not consistent

over different releases. For example STR has the lowest median value in Release

1, while it has the highest median in Release 3. We also found that most CRs are

anomalies, not DRs which makes the majority of them to be enhancement requests

rather than fixes. By looking to functional areas in Release 4 we find that some of

the functional areas with the highest effort have the lowest number of CRs. Many

functional areas have very few CRs, (less than 3). Most of the functional areas

have less than 20 CRs in total. Generally speaking, there is no indication that some

functional areas require more effort than others, there is too much variation. We

also explored if we can find any patterns or relationships between the number of

CRs and the number of lines of code that were added, deleted, modified and auto-

generated. We found that in places where cumulative CRs reflect major change, one

or more of the SLOC data has an extremely high value, which indicates that big

changes in code are reflected in the number of CRs. When SLOC and effort were

compared there was no specific pattern to link the two. But when cumulative CRs

where compared to cumulative effort these follow similar growth patterns. Figures

3.5, 3.6, 3.7 and 3.8 show that cumulative effort growth and changes along with

cumulative CRs behave similarly. In fact, many of the points where cumulative CR

rate changes, cumulative effort changes around the same time. This shows that it is

possible to estimate and predict cumulative effort in the same way cumulative CR

is estimated and predicted. For further analysis in an attempt to find correlations

between our attributes, we perform a Principal Component Analysis next.
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Att. ID Description Data Type Range Role
A1 Customer Priority Ordinal 1=C2R, 2=C2U, 3=C2E,

4=C1R, 5=C1U, 6=C1E.
Input

A2 DR Binary 0=False, 1=True Input
A3 actual effort Numerical 0, 1, ...∞ Output
A4 SLOC Added Numerical 0, 1, ...∞ Output
A5 SLOC Modified Numerical 0, 1, ...∞ Output
A6 SLOC Generated Numerical 0, 1, ...∞ Output
A7 SLOC Deleted Numerical 0, 1, ...∞ Output
A8 Elapsed Time =

(Completion Date -
Submission Date)

Numerical 0, 1, ...∞ Output

Table (3.6) Description of CR Attributes

3.2.4 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical procedure that uses an

orthogonal transformation to convert a set of observations of possibly correlated

variables into a set of values of linearly uncorrelated variables called principal com-

ponents. It is a useful multivariate method commonly used to reduce the data to

avoid multicollinearity. It can help in reducing the number of variables, and it can

also provide support in identifying variables that vary together.

PCA was first invented by Pearson in 1901 [105]. It is mostly used as a tool in

exploratory data analysis and for building predictive models. PCA groups correlated

variables into a number of factors where each factor accounts for the maximum

possible amount of variance for the variables being analyzed. The number of factors

extracted may vary depending on the data set and the method chosen for extraction.

In this data set, we have 12 attributes available, but we only use eight attributes

in the PCA analysis as shown in Table 3.6. We excluded Change Type/Enhance-

ment, ID Number and Functional Area since they contain text values, not quan-

titative values. We replaced the Submit Date and Actual Completion Date with
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Figure (3.33) PCA eigenvalues for Release 3 and Release 4

Elapsed time. Therefore we end up with eight attributes. We investigate the ability

of applying PCA to each release according to the available data.

• The first and second releases only have A1, A2, A3 and A9 available. There-

fore PCA is not preformed since it has a small number of attributes and no

reduction is useful.

• The third and the fourth releases have all attributes in Table 3.6. PCA was

performed for these two releases.

A principal components analysis was conducted using JMP 14 software. Figure

3.33 shows that there are two principal components or factors with eigenvalues

greater than 1. The cumulative percentage of variance explained by the two factors

for Release 3 is 46.4% and for Release 4 is 38.9 %. According to this result, two

components should be retained when performing PCA for the third and fourth

release.

Table 3.7 shows the results from the analysis for Release 3. The highest loadings

that are above 0.5 are written in boldface. The other loadings with values less than
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Attribute Description Factor 1 Factor 2
A1 Customer Priority -0.002716 -0.256239
A2 DR -0.091123 0.724709
A3 Actual Effort 0.358475 0.554335
A4 SLOC Added 0.919374 0.100707
A5 SLOC Modified 0.756570 -0.044395
A6 SLOC Generate 0.184611 0.262517
A7 SLOC Deleted 0.711486 0.022626
A8 Elapsed Time -0.067765 0.798463

Table (3.7) PCA for Release 3 with two factors

Attribute Description Factor 1 Factor 2
A1 Customer Priority -0.016738 -0.299683
A2 DR -0.077985 0.630785
A3 Actual Effort 0.269208 0.722308
A4 SLOC Added 0.761009 -0.202650
A5 SLOC Modified 0.020457 -0.107772
A6 SLOC Generate 0.405228 0.140050
A7 SLOC Deleted 0.881312 0.060560
A8 Elapsed Time 0.127752 0.643290

Table (3.8) PCA for Release 4 with two factors

0.5 are written in gray. Higher loading means higher influence on PCA. For Release

3, we find that A4, A5 and A7 are in one factor and A2, A3 and A8 are under

another factor. This says that there is a correlation between SLOC Added, SLOC

Deleted and SLOC Modified and another correlation between, DR, actual effort and

Elapsed time. There is no indication of correlation between effort in actual effort

and Lines of code.

Table 3.8 also shows correlations between A2, A3 and A8, and another correlation

between SLOC Added and SLOC Deleted. The results of the analysis do not indicate

any correlation between effort and lines of code. The only correlation we can find

is that Discrepancy requires higher effort. From the number of actual effort we can

predict if a CR is a discrepancy, but we cannot predict number of actual effort if a
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CR is a discrepancy. This result does not help in predicting effort. The results of

the PCA confirms our conclusion from our previous analysis that the data available

is not useful for effort prediction, except for the relationship between cumulative

CRs, SLOC types and cumulative effort.

3.3 Analysis Tools

For data analysis and visualization, we used MS Excel spreadsheets [92] and

some of the available MS Excel spreadsheets templates to calculate and present

boxplots by Vertex42 [138] that is specialized in creating professionally designed

spreadsheet templates for business, personal, home, and educational use. We also

used another MS Excel template to calculate Control Charts developed by the

American Society for Quality [127].

In addition, other statistical and curve fitting tools were used at several points

in our research:

• IBM SPSS Statistics package used to estimate parameters and curve-fit dif-

ferent models [62].

• JMP14 is a statistical software tool used to perform PCA from SAS [113].

• R packages were used for detecting change-points such as the cpts pack-

age [108].

• MyCurveFit was used. It is an open source curve-fitting online tool [99].

.
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Chapter 4

Estimating Change-Points for Change Requests

4.1 Problem Statement

In research, several approaches were proposed to deal with change-points and

provide better failure prediction [148] [55] [151][41][64]. We attempt to use reliabil-

ity growth models on data from a Change Request (CR) database. Unlike the work

proposed by [148] [55] [151][41][64], we are attempting to predict future CRs based on

CRs in a CR database. This database also contains information on code changes,

such as lines of code added, deleted, modified or auto-generated. Ultimately, we

would like to provide a project manager with an approach to estimate future CRs

for various planning cycles (weekly, monthly, etc.). Since software changes dur-

ing maintenance, be it corrective, adaptive or dealing with enhancements, any CR

prediction model needs to deal with change-points.

Software Reliability Growth Models (SRGM) are used to predict growth in de-

fect data. Changes due to major fixes or upgrades that cause changes in the failure

distribution, are called change-points. The number and locations of change-points

affect reliability modeling. We examine the different change-point estimation meth-

ods used in software reliability modeling and compare them to the underlying change
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data that caused the change in CR distribution. The results show that data anal-

ysis of change in lines of code provides a credible indication of the existence of

change-points.

More formally, let a sequence of failures, ζ1, ζ2, ..., ζn be where n is the number of

cumulative failures. A change-point τ , exists if ζ1, ζ2, ..., ζτ has a failure distribution

of F , and ζτ , ζτ + 1, ..., ζn has a failure distribution G, where F 6= G and the two

sequences of failure data are statistically independent. In this context we investigate

the following research questions:

• RQ1: What methods are used to estimate a change-point in a cumulative

failure curve for reliability prediction?

• RQ2: Can we use them to predict change-points for CR data from a CR

database?

• RQ3: How do these methods compare to change-points identified by code

change in the CR database?

Estimating the locations and number of change-points is a key objective of our work.

The results of this work would be used to predict future CRs from a CR database

with change-points.

Section 4.2 provides a background on change-points and the change-point esti-

mation methods used. Section 4.2.3 defines our proposed approach by using Lines of

Code (LOC) in change-point estimation. Results of applying the existing approaches

are in Section 4.3. Discussion is next, Section 4.4. Method validation among the

remaining release is in Section 4.5. Validity threats in Section 4.6 followed by the

conclusion in Section 4.7.
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Figure (4.1) Control Charts

4.2 Change-point Estimation Methods

4.2.1 Control Charts

Control charts were first proposed by Dr. Shewhart in 1924 [117]. They are

quality control tool that was used to monitor software processes. It has been widely

used in many applications including finding change-points in failure data. To explain

how control charts work, we first define the basic elements of a control chart. It

contains a centerline which represents the average value of data points and upper and

lower control lines. On each side of the centerline there are three control lines which

are multiples of the standard deviation (σ). They reside respectively as ±σ, ±2σ and

±3σ (Figure 4.1). Out-of-control data refers to data outside of the assigned control

limits, which may indicate a potential change-point. When change is detected, the

cause should then be investigated. For example a data point that is above the upper

control line +3σ is an out of control point. To specify out of control data points and
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eventually consider it as a change-point, we follow the criteria presented by Zhao et

al.[148]:

• Two out of three successive values are on the same side of the centerline and

more than two standard deviations from centerline.

• Four out of five successive values are on the same side of the centerline and

more than one standard deviation from centerline.

• At least eight successive values are on the same side of centerline.

4.2.2 Likelihood Ratio Test

A cumulative sum statistic is used to estimate a single change-point. The number

and positions of change-points are detected according to the changes in the mean

value. Having failure data over a specific time period [0, n], the mean θ is constant.

Using the log-likelihood ratio test, changes in the mean are detected and the location

of the change is defined as a change-point.

Mathematically, let failure data points ζ1, ζ2, ... ζn. If a change-point τ exists

then the mean of ζ1, ζ2, ... ζτ is different than the mean of ζτ + 1, ζτ + 2, ... ζn The

log-likelihood test (LR) for single change-point estimation is

LR = maxτ{`(ζ1:τ ) + `(ζτ+1:n)− `(ζ1:n)} (4.1)

Where ` represents the reliability model that fits the failure curve. The position of

the change-point is estimated as:

τ = argmax{`(ζ1:τ ) + `(ζτ+1:n)− `(ζ1:n)} (4.2)
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argmax is an abbreviation of arguments of the maxima. This attains the function’s

largest value which could be an empty set in case of no change-points or one change-

point’s position or more than one position for several change-points. If we have m

number of change-points τ = (τ0, τ1, ..., τm−1) where τ0 = 1 and τm−1 = n the

likelihood ratio will be:

minm,τ{
m∑
i=1

[−`(ζ(τi−1:τi))] + λm} (4.3)

Where λ is a constant.

Time is split into successive intervals and the likelihood ratio is computed for each

interval. The interval with the highest change in predicted detection of parameters

has a change-point. After the first change-point is defined, binary segmentation is

used for each time segment, before the change-point and after the change-point to

detect multiple change-points until a minimal threshold is reached.

4.2.3 Proposed Approach

Change-point estimation methods that were highlighted so far use their obser-

vation of changes in the cumulative CR curve. Instead of relying on the number of

CRs we look further into the underlying reason behind the change. By analyzing

the number of altered Lines of Code (LOC) in resolving a CR in the system we can

predict upcoming change. We start by looking into the outliers in a box plot chart of

the lines of code added, deleted, auto-generated and modified as candidate change-

points. We then define a threshold for acceptable change in LOC. By analyzing

data and measuring the amount of LOC added, deleted, modified or auto-generated

in resolving CRs we can then decide if a major change has occurred in the system

which indicates a potential change in CR density.
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This would then indicate candidate points that are considered potential change-

points.

LOCi > Threshold (4.4)

Where i reflects the time when LOC changes where made for the period of time

[0, n]. i ∈ {1, 2, ..., n}. This method requires data analysis rather than statistics.

4.3 Results: Release 4

We apply the change-point estimation methods to actual CR data for the fourth

release. There are 211 CRs in 398 weeks.

4.3.1 Applying Control Charts

Using CR data for Release 4, results in the control chart are shown in Fig.4.2.

We then follow the criteria for change-point estimation mentioned in Section 4.2.1

for the cumulative CRs. The number of estimated change-points is high, looking

at the later weeks of the release alone, we observe 22 estimated change-points and

change-ranges. The set of changes-points and change ranges by week are {[204-206],

208, [214, 220], [222,226], 245, 266, 268, [270, 271], [290, 295], 303, [311, 312], [318,

326], 328, 332, [334, 335], 339, 343, 345, [349, 350], [356, 357], [370, 377], 393}.

4.3.2 Applying the Likelihood Ratio Test

Using the R changepoint package we estimated multiple change-points. The

package performed the calculations and then highlighted the estimates for weeks 201,

239, 265 and 341. (Fig. 4.6) The vertical lines in the cumulative CR curve represent

the change-point estimates. The results show four estimated change-points. We can
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Figure (4.2) Change-point estimation using Control Charts after 200 weeks

Figure (4.3) Estimated change-points using segmentation comparison (Release 4)
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consider these points as times where major changes occur since the CR distribution

and increase rate changes after the existence of these change-points.

4.3.3 Estimating Change-points using LOC

Investigating the CR data of the fourth release can also be used to identify

candidate change-points. We observed extreme changes in Lines of Code according

to the outliers of a box plot representing the LOC. We define our thresholds for added

and modified LOC as 10,000 LOC. Auto-generated LOC has a higher threshold

since the auto-generated code usually generates thousands and tens of thousands of

LOC. The threshold of auto-generated code is 100,000 LOC. The deleted LOC have

no extreme outliers. The maximum number of deleted LOC is 415. Using those

threshold values we identify 4 change-points as follows:

• In week 265 SLOC Added = 54616. In the same week SLOC Deleted also was

high when it reached its maximum value = 415.

• In week 247 SLOC Modified = 103960.

• In week 243 SLOC Generated = 437244.

• In week 348 SLOC Generated = 577984.

4.4 Discussion

Our results show that using control charts detected a high number of change-

points in our release, more than 20 change-points in 200 weeks. This could be useful

for some applications but not for reliability modeling. Having too many change-

points that are adjacent cannot provide us with enough data to fit a model in a
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time-series. As a rule of thumb one should have at least 50 data points before starting

to model.[26] According to our objectives of finding change-points, control charts

over-estimate the number of change-points found. Zhao et al.[148] had suggested

performing "progressive adjustments", i.e. after fixing each estimated change-point,

control charts are used to estimate remaining change-points. The adjustment could

reduce the number of remaining change-points as we progress but it requires a large

amount of processing, up to O(n2).

On the other hand using the likelihood ratio estimation method provides fewer

estimations where change-points occur. These results could be used in reliability

modeling. The disadvantage of this method is that it requires rigorous computation

to find the changes in means. Additional effort could be required to curve-fit models

prior to change-point estimation which increases the overhead of computation. With

binary segmentation the time could be reduced to O(nlogn)

Our proposed method using change in LOC gives an estimate of four change-

points as well. This method requires minimal computations prior change-point

identification and highlights change-points that are reflective of the actual change

in the system. This method requires some data analysis and definition of thresholds

which determines when LOC is considered high. It is a beneficial approach in

change-point estimation for decision makers, since they could expect beforehand

when change-points are going to occur. This could take O(n) of processing time to

search for values that exceed the threshold.

We find that the likelihood estimation method and estimating change-points

using LOC method both provided results that are very close in number and in

locations. They both provided us with four change-points and three of the four

locations where close in time, i.e. within seven weeks. Since the change-point

values are "estimates", we cannot accurately verify if a certain change-point is the
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correct location, but by simply looking into the results in terms of comparing change-

points estimated against the growth of cumulative CRs, we find that the likelihood

method estimated change where there are actual changes in the cumulative CR

curve (Fig.4.3). This is also true when we use LOC changes. In fact we can use

both methods to cross-validate each another, since one detects changes using CR

data and the other estimates changes from potential causes of change. This case

study was published by Alhazzaa and Andrews [10].

4.5 Validation

To validate the change-point estimation method we extend our use of it to the

remaining releases of the software system. Unfortunately, we only have one more

release where LOC data is available to apply the LOC approach to, which is Release

3. This method is not applicable to the first two releases, since they do not report

LOC changes. We identify change-points for Release 1 and Release 2 using the

Likelihood Ratio Test only.

4.5.1 Release 3

For the third release, we can estimate change-points by investigating the high

spikes of SLOC Added, Modified, Deleted and Auto-generated, (Figure 3.28). We

apply the same measures applied to the fourth release in defining change-points and

we find the following:

• In week 420 SLOC Added = 10019. In the same week SLOC Modified =

52103.

• In week 429 SLOC Generated = 829171
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Figure (4.4) Estimated change-points using segmentation comparison (Release 3)

• In week 367 SLOC Generated = 115737.

• In week 387 SLOC Generated = 89751.

According to SLOC Added, SLOCModified and SLOC Generated we understand

that major changes in the code have occurred in weeks 420 and 429. Since the

weeks are less than 10 weeks apart, we consider 420 to be the change-point, since

it was the time where the first major change occurred. The second greatest outlier

value for SLOC Generated is in week 367, which could indicate that it is a point

where major change occurred. We apply the likelihood ratio method to the third

release to see if we get similar results. Figure 4.4 shows the cumulative number of

CRs for the third release on a weekly basis, with red vertical lines that show the

estimated change-points. According to this method we find that 5 change-points

were estimated in weeks 291, 326, 370, 384 and 422. We find that week 422 is close
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to the 420 selected as a change-point using SLOC. Week 370 is also close to week

367 where major SLOC Generated code has occurred. When investigating the three

remaining points we find that week 384 is a candidate change-point and around that

week SLOC Generated has a value of 89751 which is the third highest amount for

generated code in this release. This means that in those weeks major change in

the CR rate occurred. We did not include that point earlier since it was under the

threshold value we’ve chosen earlier but it still is a good candidate for a change-

point, therefore we choose the earlier point (week 384). The two change-points in

weeks 291 and 326 were not estimated according to the LOC method. When we

analyzed the LOC data for those weeks we found that the values of LOC were all

zeros, which means that they were imputed because the data was missing for these

weeks or the values registered by developers were all zeros. As discussed in Section

3.2.2.1 this release has more missing SLOC data than Release 4. It also has lots of

inaccurate data especially in the earlier weeks, since many CRs reported non-zero

effort value while the SLOC added, deleted modified and auto-generated for that

CR were all zeros. This was a pattern found in the earlier weeks of Release 3, and

that pattern makes us question the quality of these data. Therefore, since these

change-points were not detected or estimated due to lack of SLOC values we use

the results of the segmentation method to assign two additional change-points for

weeks 291 and 326 in addition to the change-points we found previously. So our

final set of change-points is [291, 326, 370, 420].

4.5.2 Release 2

Release 2 is different than the two other releases discussed earlier. It lacks SLOC

data since it was mostly missing so it was discarded. Therefore we can estimate
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Figure (4.5) Estimated change-points using segmentation comparison (Release 2)

change-points using the likelihood ratio test and the results are shown in Figure 4.5.

The estimated change-points are: 225, 247, 280, and 300.

4.5.3 Release 1

The first release is the oldest release in the system. Back then SLOC data was

not reported. We used the likelihood ratio test to find change-points. Figure 4.6

shows four change-points: 129, 149, 176, and 193. These change-points are not the

actual values, in fact they are shifted. In this release the first CR was recorded in

1999 and the second was recorded in 2005. These 266 weeks made a huge gap in

the growth of the CRs, which made the highlighted change-points not clear in the

graph. Therefore we kept 5 weeks at the beginning of the release unchanged, and

we removed 261 weeks. When estimating change-points according to the modified
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Figure (4.6) Estimated change-points using segmentation comparison (Release 1)

chart it gives the following weeks: 129, 149, 176, and 193. When shifting the weeks

back to their original positions, these change-points are going to be as follows: 390,

410, 437 and 454 1.

4.6 Validity Threats

We address threats to validity in our work according to the criteria described by

Wohlin et al.[139]. External validity is concerned with generalization of the findings.

While we applied our case study to an actual evolving large software system, other

evolving software may not show the same cumulative CR behavior. This depends

partly on the types of changes such as code change patterns, stability, frequency,

1R gave a warning message that the accuracy of estimating these change-points might be com-
promised if we used the original data.
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size, and inherent quality. Therefore we do not claim that our results are gener-

alizable. Construct validity according to Wohlin et al. [139] refers to the relation

between theory and observation. Construct validity is concerned with the extent

of operational measures that reflect what the researcher had in mind such as the

nature and the quality of the CR database including reporting of change duplicates,

accuracy of reporting, etc. In situations where safety-certification requires re-auto-

generation of all auto-generated code, amount of change effecting CR behavior may

be artificially inflated. However, since we re-estimate CR rate for reliability predic-

tion purposes, we correct any threats related to that. Obviously, the CR data for

the older releases had more issues. But there are also some questions of missing

data and incorrectly reported data (see Chapter 3).

4.7 Conclusion

In our work, we examine methods proposed in previous research for change-point

estimation for the purpose of CR prediction using reliability models. These methods

rely on cumulative CR data to predict change. We suggested using changes in LOC

to estimate change-points. We found that we could use this method to provide a

reliable prediction of change-points in a software release, while it requires less com-

putation than the other two methods. The likelihood ratio method provides results

that are close to the results of our proposed approach in terms of the number of

change-points and their locations, but it requires more computation than our ap-

proach. The control charts method on the other hand over-estimates the number of

change-points. Having a large number of change-points is not useful when using re-

liability models, since models will keep changing according to the change-points and

this will affect model fitting and the ability of the fitted model to predict CRs accu-

113



rately. In addition, it requires more computation to perform estimations with fewer

change-points. Using information about changes in Lines of Code provides a good

and practically intuitive indication of change-point locations. Other characteristics

of CRs such as CR priority or type of incident, may impact failure rate or density

and they could be analyzed as well. The results of our estimated change-points is

used in the following chapters for defect prediction when change-points exist in CR

data.
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Chapter 5

Change Request Prediction: A Comparison

5.1 Problem Statement

Software Reliability Growth Models (SRGM) are used for failure prediction.

Curve-fitting approaches have been successfully used to select a fitted reliability

model among candidate models for defect prediction. Limited research has been

done in CR prediction using curve-fitting methods on evolving software systems,

with one or more change-points. Change-points are changes due to major fixes or

upgrades that cause a change in the failure distribution. Previous approaches mostly

focus on sample-fitting and short-term predictions. We focus on providing a curve-fit

solution that deals with change-points but yet considers long-term prediction of data

for a software release. We use a heterogeneous method that selects models before

and after change-points and then performs Time Transformation (TT) to account

for change. We then compare our solution to existing curve-fitting solutions in terms

of their predictive ability. Our data show that the TT approach provides better CR

predictions than other existing curve-fitting approaches.

Many studies and empirical studies were performed using SRGM analytical

methods to estimate failures in software systems. Using analytical methods is based
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on a number of assumptions about operational profile, defect fixes, perfect or imper-

fect debugging, etc. Many of these assumptions are violated when legacy systems

undergo frequent evolution. Our goal is to benefit from the use of SRGM in CR

prediction rather than failure prediction, without using any prior assumptions. The

number of failures does not necessarily represent the number of CRs. One CR may

include one or more failures. Some "CR" databases also include change information

due to enhancements, and these really are more like "change" databases.

Stringfellow and Andrews [128] were successful in using a selection method for

SRGMs on defect data from a defect database during system testing to make release

decisions. But when applying SRGM to predict CRs in legacy systems they fail to

provide long-term CR prediction, especially as the CR rate changes due to evolution.

Their approach is one of the few studies which uses curve-fitting to select reliability

models. Curve-fit methods perform a regression and evaluate the applicability of a

set of candidate models with few or no assumptions about operational profile, CR

fixes, etc.

We apply a multi-stage curve-fitting approach using Time Transformation (TT),

first introduced by Musa [98]. By splitting a data set into several stages based on

change-points and then curve-fitting each stage, we use TT to account for changes

as if they had occurred at the beginning of the release. TT adjusts parameters of

the model chosen after change behavior as if a change was accounted for since the

beginning of the release.

We compare the curve-fitting methods using a Goodness-of-fit evaluation of the

model and its predictive ability. Although a number of solutions have been pro-

posed for reliability modeling with change-points, the predictive ability assessment

is mostly limited to short-term predictions (i.e. a next step prediction). This is not

practical in regard to practices in industry. Project managers hope for these models
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Domain Analytical Curve-fit
No Change-points Many solutions starting with

model inventors [96] [142][141]
[48]

Stringfellow and Andrews
[128]

Change-points [129] [29] [151] [147] [49] [18]
[53] [50] [32] [31] [101] [100]
[13] [75] [76] [91] [59] [57] [60]
[86] [89] [54] [87] [88] [58] [83]
[56] [55] [145] [65] [64] [69] [66]
[68] [67] [77] [81] [43] [4] [103]
[42] [94] [150] [80] [44] [124]
[123] [122] [121] [131] [78] [79]
[2] [125] [126] [93]

[137] [38] [30][19]

Change-points using
TT

Musa [98] Our work

Table (5.1) Research areas and gaps

to assist them in predicting CRs further into the future to assist them in resource

planning. Therefore, we provide longer-term predictions in comparing the models

we use in the case study.

• RQ1: Can we predict CRs in an evolving legacy system using curve-fitting

approaches?

• RQ2: What curve-fitting approaches can we use in CR predictions during

evolution and change in legacy systems?

• RQ3: How do these approaches compare?

We use SRGMmethods that are used for failure prediction to predict future CRs.

We use real CR data to compare the performance of different curve-fit methods in CR

prediction. We incorporate the idea of TT into the curve-fitting approach to provide

more accurate long-term CR predictions. Table 5.1 highlights the contribution of

our work compared to other contributions in the field of software reliability and CR

prediction. This work has been published in [9].
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The remainder of the Chapter is organized as follows: Section 5.2 describes

existing failure and CR modeling and prediction methods in the presence of change-

points. Section 5.3 defines our proposed approach. We then compare predictive

abilities of the approaches in Section 5.4 , followed by the threats to validity in

Section 5.5.

5.2 CR Modeling and Prediction

We can divide modeling approaches into analytical approaches and curve-fit ap-

proaches. An analytical approach derives a solution analytically by providing as-

sumptions regarding failures, failure repair and software use and then developing

a model based on these assumptions. A curve-fit approach selects a model based

on the best curve-fit with few or no assumptions. This approach relies entirely

on empirical curve-fitting using one or more types of functions. Both approaches

are seen in the literature for software reliability. One of the major contributions

for curve-fitting methods is by Stringfellow and Andrews [128]. They performed a

curve-fitting approach on defect data. This method was not concerned with evolving

systems though and no change-point considerations were considered. Chi et al.[30]

proposed a multi-stage model that segregates release times based on change-points.

Whenever a change in failure rate is detected, a new modeling phase is applied

as if the data after the change-point was isolated from the old data. The most

recent model selected is the one used for prediction. This does not work in the

case of frequent change-points, as not enough data is available to determine model

parameters.

In the mapping study (Section 2.3) literature shows many studies are concerned

with finding solutions in terms of goodness-of-fit. The predictive ability for the
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proposed solutions are measured for short-term predictions, i.e. looking into one or

two time units into the future. Rana et al. [109] and Park et al [104] highlighted

the issue of limited long-term prediction in research. Andrews et al. [16] used

a month-by-month interval to evaluate prediction capabilities for future incident

prediction for a help desk rather than defect prediction for software. Since long-

term prediction is a major concern in this work, we will try to adopt this method

in our future forecasts.

5.3 Proposed Approach

We are looking into three curve-fitting approaches to predict defects when change-

points exist. Our purpose is to find the approach that provides the most accurate

predictions with the least amount of under-predicted values. Under-prediction is

risky for management, when more CRs occur than they predicted, as they may have

failed to plan for adequate resources. We describe three curve-fit approaches for

SRGM estimation. We will then use these three approaches in our case study for

CR prediction and compare their predictive ability.

5.3.1 Approach 1: Curve-fitting approach

This approach uses a cumulative number of CRs over a time period to find a

fitted model among several SRGM candidates. When a model is selected it is then

used to predict CRs for the remainder of the release. This process was first proposed

by Stringfellow and Andrews [128]. Using the SRGM in Table 2.1, we select a model

that best fits the CR data. When a model are estimated, it is evaluated as follows:
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Figure (5.1) Model selection and CR estimation using Approach 1 [128]
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• Goodness-Of-Fit (GOF) usingR2. The threshold according to Stringfellow and

Andrews [128] for R2 is 0.90 or above. Only models that meet the threshold

will be considered in the prediction stage.

• Prediction Stability by checking the stability of the prediction for a certain

week compared to a previous week. The estimated value for a week should be

within 10% of the estimated value for the previous week. This is percentage

is subjectively chosen as a rule of thumb by Wood [140].

• Prediction ability by checking the relative error1 in prediction. Error is calcu-

lated as follows:

Error = (Estimated− Actual) (5.1)

while

RelativeError = (Error/Actual) (5.2)

To apply the curve-fitting method to our system we use the process shown in

Figure 5.1. After collecting cumulative CRs in each week t, the curve-fit program

estimates model parameters by attempting to fit the model to the data. If a fit

cannot be performed, due to the model’s not being appropriate for the data or due

to insufficient data, the model is rejected. A sufficient number of data points is

determined subjectively. Most curve-fitting tools require at least five data-points

for the tool to start estimating model parameters and fitting them to the existing

data.

If a model's predictions for expected number of total CRs are lower than the

actual number of CRs already found and have been consistently so in prior weeks,

1relative error value is calculated using the absolute value of an error over the actual value. In
our case we need to keep track of negative values (under-predictions). Therefore we calculated the
relative error with the real error value instead.
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the model chosen is inappropriate for the data and should not be used in future

weeks. If used, it would underestimate the number of remaining CRs and give a

false sense of security. If there is at least one stable model, then the model with the

highest R2 value is chosen for CR prediction.

This approach does not take into consideration the existence of change-points,

which can affect the quality of the predictions. Changes in a software system can

change the rate of CRs occurring which affects estimation of future CRs.

5.3.2 Approach 2: Multi-stage approach

The multi-stage approach was applied by Chi et al. [30] to defect data. Although

the effectiveness of the predictions has not been discussed thoroughly in their work,

we find the solution to be interesting to apply to our CR data in order to avoid poor

predictions when change-points occur.

For the multi-stage approach we use the same curve-fitting approach in Section

5.3.1 after each change-point. i.e if a model is selected to perform predictions and a

change-point occurs, we are required to fit a new model. After each change-point,

we use the curve fitting approach in Figure 5.1 to estimate a new model as if the

data after change was in a separate release. This method assumes that a dataset is

divided into stages. Each stage has its own fitted model for CR prediction.

Let S be a dataset of the cumulative number of CRs in a release over time.

This dataset has a number of change-points n. Change-points divide the dataset

into n + 1 stages, where each stage is referred to as si, and 1 ≤ i ≤ n + 1 . A

change-point exists at time Ti, where the total number of CRs for the ith stage is

Di. For each stage si, a reliability model is selected µi(t). When a change-point is

found at time Ti , a new model is estimated for the next stage. Once model µi+1(t)
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Figure (5.2) Multi-stage model transformation.

is selected then it will be then used starting at si+1 for CR prediction. The process

repeats for each stage until the end of the release (see Figure 5.3).

This method overcomes the issues of selecting a single model in the curve-fitting

method in Section 5.3.1 [128]. A disadvantage of this method that it does not

consider each stage as a part of a whole release. This might affect the accuracy of

the CR predictions. When stages are short, there may not be enough data to select

a model and determine parameters according to the selection criteria in Figure 5.1.

5.3.3 Approach 3: Multi-stage approach with Time Trans-

formation

To overcome the issue with the multi-stage approach presented in Section 5.3.2,

we apply a Time Transformation (TT) technique. The idea of time transformation
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Figure (5.3) Model selection and CR estimation using Approach 2
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Figure (5.4) Model selection and CR estimation using Approach 3
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was introduced by Musa et al. [98] to transform into failure times rather than times

between failure occurrences before the change-point into new times consistent with

the model applied after the change point. Failure time adjustment transforms the

data to account for code changes. The problem in evolution is that when a significant

amount of code is changed, the rate of cumulative CR growth changes. In the multi-

stage method proposed by Chi et al.[30], we would discard any CR data before the

change and we would start all over again after a change-point as if it was a separate

release. Approach 3 accounts for code change. Before a change-point, the growth

rate of cumulative number of CR is different than the growth rate afterwards. TT

calculates a model using the new transformed time, which is calculated using the

cumulative CR rate using the parameters of the model before the change-point and

the parameters of the model after the change. Typically adding a significant amount

of code should increase the CR rate.

When the idea of time transformation was proposed by Musa et al. [98] it was

proposed on an analytical model using the same model type before and after change.

We plan to build a heterogeneous curve-fit approach that can use a combination of

different models to provide the current TT model. In addition, Musa et al. [98] used

the model on failure data, we use TT on CR data which is different than failures.

To introduce our approach we explain the process as shown in Figure 5.4. The

approach starts similar to Approach 1, with the addition of time transformation

after a change point is detected. When a model is selected after a change-point,

time transformation is performed and new parameters are determined for the new

model before using it for CR prediction.

Our goal is to transform µi(t) to µ(t) , where µ(t) is the curve after TT, see Figure

5.2. Let µi(t) be the model selected initially using the curve-fitting approach. At Ti

changes in code are applied and the CR detection rate changes. Ti is the change-
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point for stage si, where i is the number of change-points, 1 ≤ i ≤ n , and n is the

total number of stages.

• s1 represents the stage before the first change-point T1

• s2 represents the stage after the first change-point T1 and before the second

change point T2.

• s(n+1) represents the last stage after the last change-point.

To perform time transformation on µi(t) to produce the TT model µ(t) we

calculate transformation time t∗ for each time unit j in the timeline, 1 ≤ j ≤ m, m

the total number of weeks in the software release. For each stage let Di represent

the total number of cumulative CRs in stage i that occurred at time Ti. Stage 1

has D1 cumulative CRs which were found by week T1, while stage 2 has D2 − D1

cumulative CRs which were found in weeks T1 + 1 to T2.

To perform the time transformation on the data up to T2, let µ1(t) be the model

selected until T1 and let µ2(t) be the model selected after the first change-point

according to approach 2. We need to transform the time according to µ1(t) and

derive a transformed version of µ2(t), to obtain the model µ(t). Let:

µ1(t) = λ(t) (5.3)

µ2(t) = α(t) (5.4)

We calculate translated time for CRs before the change t̂j for µ2(t). We assign

µ2(t) to µ1(t) to get the value of the translated time

t̂j = α−1(λ(tj)) (5.5)
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We then calculate the expected amount of time τ it would have taken to detect

D1 CRs if the new code was part of the original code. By assigning

D1 = µ2(τ) (5.6)

D1 = α(τ) (5.7)

τ = α−1(D1) (5.8)

To calculate translated time for CRs observed after the insertion of the new code,

we start by asking the question how much time is required for the new model to

observe D1 CRs? Then all CR times between T1 and T2 are transformed using the

equation below:

t∗ = t̂− (T1 − τ) (5.9)

The value of τ is less than T1. For times t > T1, the transformed data consist

of the observed CR counts at the translated times. Finally, the new curve µ(t) is

calculated using the new, transformed data.

Let us illustrate this with an example. Assume that the change point T1 occurs

in week 264, where the cumulative CRs D1 is 66. Assume that, before the change-

point the Modified Gompertz model was selected as

M1(t) = d1 + a1(b
(ct1)
1 ) (5.10)

Assume that after the change-point the Gompetz model is selected

M2(t) = a2(b
(ct2)
2 ) (5.11)
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Assume that we use each model to find predictions for a week after the change-

point we find that in week 267, M1(t) estimates 66 CRs while M2(t) estimates 84

CRs.

When performing TT, we calculate t̂j using the following equation:

a2 ∗ (b
(c
t̂j
2 )

2 ) = d1 + a1 ∗ (b
(c
tj
1 )

1 ) (5.12)

a2 ∗ (b
(c
t̂j
2 )

2 ) = 66 (5.13)

Therefore, t̂j = 224. Using the number of CRs D1, we calculate τ . The value of

τ = 223, when calculated as follows :

a2 ∗ (b
(cτ2 )
2 ) = 66 (5.14)

We finally calculate the new time as

t∗j = 224− (264− 223) (5.15)

The new t∗j used forM(t) is 183 with 55 cumulative CRs. Fitting the Gompertz

model creates a prediction of 75. Using this example, M1(t) estimated the number

of CRs to be 66 which is lower than the actual number of CRs 74. M2(t) estimated

the number of CRs to be 84 which is higher than the actual number of CRs. After

TT, the estimated number of CRs is 75, which is higher than the actual but with a

smaller error.
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Week
No.

No. of
CRs

G-O DSS Gompertz Yamada M Gompertz

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

140 5 3 0.66 4 0.5 4 0.81 3 0.65 5 0.86
141 5 3 0.67 4 0.53 4 0.82 3 0.66 5 0.87
142 5 3 0.67 4 0.56 4 0.83 3 0.67 5 0.88
143 5 4 0.68 4 0.59 4 0.83 3 0.67 5 0.89
144 5 4 0.69 5 0.61 4 0.84 4 0.68 5 0.89
145 5 4 0.69 5 0.63 4 0.85 4 0.69 5 0.9

Table (5.2) Estimation using SRGM and the GOF value

Week
No.

No. of
CRs

G-O DSS Gompertz Yamada M Gompertz

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

247 48 47 0.44 47 0.74 48 0.94 N/A N/A 47 0.57

Table (5.3) Full re-stimation using SRGM and the GOF value for stage 2

5.4 Results: Release 4

After collecting and organizing data for Release 4, we used each curve-fitting

approach and recorded our results. Tables 5.2, 5.3, 5.4 and 5.5 demonstrates the

estimated value of each SRGM for each stage. The table shows a number that

represents the week of Release 4, Number of cumulative CRs for each week, and

Week
No.

No. of
CRs

G-O DSS Gompertz Yamada M Gompertz

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

268 80 72 0.14 73 0.27 74 0.58 72 0.14 76 0.73
269 81 74 0.15 75 0.29 77 0.61 74 0.15 78 0.77
270 83 76 0.16 76 0.31 79 0.67 76 0.16 81 0.81
271 86 77 0.17 78 0.33 81 0.69 77 0.71 83 0.83
272 86 78 0.19 80 0.35 83 0.72 78 0.18 85 0.86
273 87 80 0.2 81 0.38 85 0.76 80 0.2 87 0.88
274 88 81 0.21 82 0.4 86 0.74 81 0.21 89 0.89
275 89 82 0.23 83 0.43 88 0.8 82 0.22 91 0.9

Table (5.4) Full re-stimation using SRGM and the GOF value for stage 3

130



Week
No.

No. of
CRs

G-O DSS Gompertz Yamada M Gompertz

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

354 154 150 0.34 152 0.6 156 0.88 N/A N/A 155 0.89
355 154 151 0.37 153 0.65 157 0.8 N/A N/A 156 0.86
356 159 153 0.37 154 0.65 160 0.87 N/A N/A 158 0.9
357 165 154 0.33 156 0.59 162 0.9 N/A N/A 162 0.91
358 166 156 0.33 158 0.58 165 0.93 N/A N/A 165 0.93
359 167 157 0.33 160 0.59 167 0.94 N/A N/A 167 0.94

Table (5.5) Full re-estimation using SRGM and the GOF value for stage 4

the estimated number of CRs, the column headed "Est." and the R2 value of the

five models used in this case study Goel-Okumoto model (G-O), Delayed S-Shaped

model (DSS), Yamada Model, Gompertz Model and Modified Gompertz Model (M

Gompertz).

5.4.1 Applying the Curve-fit Approach

We apply curve-fitting according to Approach 1 to the CR database of the case

study using the MyCurveF it tool. Table 5.2 shows the weeks were models started

fitting data. In week 140, the number of actual CRs is 5. The G-O model estimated

only 3 CRs and the R2 value is only 0.66, which is beneath our threshold, so this

model is rejected at this stage. The Delayed S-shaped model estimates only 4 CRs

and the R2 value is only 0.5. The Gomperz model estimates 4 CRs and the R2 value

is 0.81. The Yamada model estimates 3 CRs and the R2 value is 0.65. And finally

the Modified Gompertz estimates 5 CRs which is equal to the actual number of CRs

but the R2 value is only 0.86 which is less than 0.9. The process proceeds to collect

data for another week, 141. It rejects all the models as well according to their low

R2 values, which means that more data is collected until week 145. By week 145

the Modified Gompertz model is selected because its R2 value meets the minimum
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threshold requirement of 0.9, the number of estimated CRs is equal to the number

of actual CRs and prediction stability is within range since the estimated value for

week 145 is within 10% of the value of the previous week. By selecting the Modified

Gompertz model we then use it to predict CR in future weeks. Notice that some

of the R2 values gradually change due to adding additional data points. The CR

predictions throughout all the stages is shown in Table 5.6 and it will be further

explained in Section 5.4.4.

5.4.2 Applying the Multi-stage Method Curve-fit Approach

for Change-points

Using this method, we use the same curve-fitting method we used in Section

5.3.2 to predict CRs for the first stage. We refer to the period before the existence

of any change-points as "Stage 1". When a change-point exists, we start estimating

a new curve after the change and the new curve is used then for CR prediction in

the future. This method considers the time period after change as "Stage 2". This

applies for multiple change-points, and each time a change-point occurs a new stage

is declared. Using the multi-stage method Modified Gompertz is selected for Stage

1 according to Table 5.2. In week 243, a change in the CR rate occurs. We apply

the curve-fitting method for the new stage starting from week 243. The minimum

number of data points we need to collect to start fitting using our curve-fitting tool

is 5 data points. Therefore, we start our first curve-fitting in week 247. In week 247,

the Gompertz model has an R2 value of 0.94 and an estimated value of 48 which

matches the actual value, see Table 5.3. We use this model for CR predictions from

this point forward until a change occurs.
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After the second change-point in week 265 a Modified Gompertz model is selected

until week 275, see Table 5.4. After the third change-point in week 357, the R2 value

of both the Gompertz model and Modified Gompertz model is within the acceptable

threshold. But these models are rejected due to having the estimated value less than

the actual value of cumulative number of CRs. By week 359 all three conditions for

selecting a model apply for both Gompertz and modified Gompertz. For this stage

the Gompertz model is selected since the d value of the modified Gompetz is equal

to zero which makes it a Gompertz model. See Table 5.5.

5.4.3 Applying the Multi-stage Method Curve-fit Approach

with Time Transformation for Change-points

This approach starts like the previous curve-fitting approach until a change-point

occurs. Then a new curve-fitting is performed to select a new model for the CR data

after change. When the new model is selected Time Transformation is performed to

adjust the parameters of the final model. After the first change-point, a Gompertz

model was selected in a way similar to the multi-stage approach in Section 5.4.2.

Time-transformation is then applied to the parameters of the Gompertz model to

adjust the parameter of the Gompertz model. The new Gompetz model has an R2

value of 0.94, so it is used to perform predictions of CRs. Likewise after the change-

point in week 264, Time transformation is applied to the Modified Gompertz because

R2 = 0.97. Finally after the third change-point the Gompertz model is used after

Time Transformation with R2 = 0.93. The resulting model is then used for CR

prediction.
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Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

145 5 CRs 6 7 7 8 9 10
RE 0.00 0.00 -0.13 -0.11 0.00 0.11

247 48 CRs 94 104 115 128 141 155
RE 0.92 0.89 0.92 0.94 0.91 0.80

275 89 CRs 188 207 228 250 275 301
RE 1.04 1.16 1.33 1.55 1.81 1.95

359 167 CRs 943 1023 1108 1199 1296 1401
RE 5.83 6.06 6.39 6.73 7.13 7.64

Table (5.6) CR Predictions and Relative Errors for six months into the future using
Approach 1

Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

145 5 CRs 6 7 7 8 9 10
RE 0.00 0.00 -0.13 -0.11 0.00 0.11

247 48 CRs 51 54 57 61 64 68
RE 0.04 -0.02 -0.05 -0.08 -0.16 -0.26

275 89 CRs 100 110 120 131 143 155
RE 0.08 0.13 0.18 0.25 0.31 0.34

359 167 CRs 177 187 198 209 221 234
RE 0.03 0.04 0.06 0.09 0.12 0.17

Table (5.7) CR Predictions and Relative Errors for six months into the future using
Approach 2

Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

145 5 CRs 6 7 7 8 9 10
RE 0.00 0.00 -0.13 -0.11 0.00 0.11

247 48 CRs 51 55 58 62 66 71
RE 0.04 0.00 -0.03 -0.06 -0.12 -0.21

275 89 CRs 99 108 118 129 140 153
RE 0.07 0.11 0.17 0.24 0.30 0.33

359 167 CRs 174 183 192 201 211 221
RE 0.01 0.02 0.03 0.04 0.07 0.10

Table (5.8) CR Predictions and Relative Errors for six months into the future using
Approach 3
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5.4.4 Comparing Predictive Ability

We compare the number of cumulative CRs for every month for a period of six

months after a model was selected. Approach 1 does not consider change-points

[128], approach 2 starts curve-fitting at each change-point [30], and approach 3 uses

TT at each change-point. In every stage, after model selection, the model is then

used for a longer term (six months) CR prediction. We show the results in Tables

5.6,5.7 and 5.8. They are structured as follows: The first column of the table shows

the last week before prediction. We used week 145 where the model was estimated

for the first stage and the weeks after are the weeks where estimation stopped for

each of the stages. The second column represents the number of CRs of that specific

week. The next column gives the number of predicted CRs after each month, for

up to six months, i.e. (+1 mo.) means predictions after the first month, (+2 mo.)

is after two months. The last columns record the relative error value. When the

relative error equals zero that means that the predicted number of CRs matches the

actual number of CRs. When it is negative, it means that the predicted number of

CRs is less than the actual number of CRs, which indicates that the model under-

predicted the number of CRs and is rejected.

In Table 5.6 the first row shows week 145, which is the week where the Modified

Gompertz model was selected as a model to provide CR predictions. The first two

months have a relative error of zero, which means predictions are accurate. After-

wards, the relative error ranges from (-0.13) to (0.11). We then test the predictions

of the model after each change-point for six months ahead. We find that the range of

the relative error varies and can reach a value of 7.64, which is very high compared

to the other approaches.
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In Table 5.7, we show the relative error before the first change-point in week

145, which is the same for Approach 1, since no changes in model selection have

been made yet. Week 247 is the week where a model was selected for the second

stage and prediction started. The model has a relative error value of 0.04. The

relative error in the following months range from (-0.05 to -0.26). As the we get

further in time, the relative error increases, showing less accurate predictions. After

week 275, relative error is 0.8 after one month and 0.34 for a six month prediction.

Finally after the last change-point, the relative error starts with 0.03 after one

month to 0.17 after six months. In Table 5.7 we see that the predictions in general

have low relative error values compared to approach 1, especially when performing

predictions after change-points. This represents an improvement over Approach 1

results. Table 5.8 shows the predictions and relative errors after performing TT. We

also found that the relative error is relatively low compared to Approach 1 as well.

In comparison with Approach 2, TT improves the relative error values. In week 247,

the relative error value after two months is zero rather than the negative error value

if Approach 2 had been applied. We then notice a decrease of relative error values for

every month, which makes this method an improvement in terms of finding better

predictions. Looking into the predictions after week 275 and week 359 all show an

improvement of relative error values. We highlighted the relative error values of the

monthly prediction in Table 5.7 in comparison with the relative error in Table 5.8.

The approach that provides worse relative error value among the two approaches,

Approach 2 and Approach 3, is highlighted in red and the approach with the better

relative error is highlighted in green. We excluded Approach 1 from this comparison

because the relative error values are higher than the other two approaches, so the

results are not comparable.
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We revisit our research questions stated in the introduction:

• RQ1: Can we predict CRs in an evolving legacy system using curve-fitting

approaches?

From our case study we find that we can use curve-fitting defect prediction

approaches in CR prediction. The results are promising in predicting CR

similar to predicting defects.

• RQ2: What curve-fitting approaches can we use in CR predictions during

evolution and change in legacy systems?

Musa et al. [98] provided general guidelines on how to deal with evolution.

We considered those guidelines together with adapting them. We enhanced

Stringfellow and Andrews’ [128] curve-fitting method that was successful in

defect prediction by enhancing it to consider change-points. Chi et al.[30]

provided a case study that used a multi-staged method that would re-estimate

a new model after each change-point. Musa et al. [98][97] proposed the idea

of considering change-points and time transformation to consider the whole

release. We found that the enhanced curve-fitting method provides prediction

with low error.

• RQ3: How do these approaches compare?

When change-points are ignored, CR prediction error increases dramatically

as shown in Table 5.6. Dividing the release into stages and applying the curve-

fitting approach provides more accurate results and lower error especially after

change-points. The issue with this method is that it discards old data and

starts modeling over with new data points. This gives fewer data points to use

in curve-fitting, which affects the quality and reliability of the results. Adding

a TT step to the existing curve-fitting approach accounts for all the data in
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the release, and uses curves before and after change to find a third curve that

accounts for change as if it had existed from the beginning of the release. By

comparing the TT method to the multi-stage curve-fitting method in Tables

5.7 and 5.8 we find that the relative error is smaller when TT is applied in

all the months except for the third month after week 247 where the multi-

stage method provide a smaller relative error. In general we find relative error

values are more likely to stabilize or decreases over time when multi-stage or

TT approaches are applied compared to the first approach. We also find that

the TT approach is superior to the multi-stage approach in providing lower

relative error values.

In trying to find what is the best solution, there is no straightforward answer. Each

approach is suitable for a specific type of data. If a release has minimal changes that

do not affect the CR rate, then Approach 1 would be a suitable approach. When

evolution exists the choice is between Approach 2 and Approach 3. Approach 2

provides a simple solution that re-estimates models as required. This is beneficial

if at each stage there are enough data-points to perform the curve-fitting. It is

not recommended to use when change-points are frequent. The problem with this

approach is that under-estimating of CRs is likely to occur due to over-fitting. In

addition, sometimes a model is selected early in a particular stage based on very few

data points. This could lead the curve-fitting tool to settle on a model that poorly

predicts future CRs. Approach 3, using TT overcomes the issues in Approach 2.

After a change-point, when a model is selected, TT includes data from the beginning

of the release to estimate the new model parameters and this overcomes the risk of

curve-fitting with too little data. TT also reduces the risk of over-fitting models and

causing under-estimation. In CR prediction, a model that frequently underestimate
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CRs is not desirable and introduces the risk of management not being prepared for

the number of CRs in the future. So we find that TT is a good fit in an evolving

release to provide both short-term and longer term CR prediction. In industry there

are many systems that evolve during a release for a variety of reasons. Our aerospace

system is one of them.

5.5 Validity Threats

We follow the guidelines by Runeson et al.[111] in defining our validity threats.

An external validity threat is concerned with the generalization of our results. Al-

though we used approaches on an evolving system we do not claim that it will

produce similar outcomes for all other software systems. We claim that our so-

lution works best for evolving systems. The amount of change and the frequency

of changes play a key role in defining change-points and how much these methods

are of improvement. Our data was collected by a third party which means the re-

searchers have less control over the quality of the data, which is a threat to internal

validity. Construct validity refers to the relation between theory and observation.

We observed that some models fit data better than others. This may be affected

by the number of data-points used for model estimation and selection. If the size of

data used is too small we may be at risk of selecting a model that does not predict

very well.

5.6 Conclusion

In this case study, we investigate the use of three different curve-fitting ap-

proaches that have been used in defect prediction for predicting Change Requests
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(CR) instead. We tested their ability to predict future CRs using a CR database

of an evolving aerospace legacy system. We then compared the predictive ability of

each of the curve-fitting approaches for Release 4 in an effort to find the approach

with the most accurate prediction of CRs. The predictions were performed monthly

for up to six months after a model was selected. We applied the curve-fitting ap-

proach [128] that does not account for change-points. The predictions showed a

low relative error at first, but as soon as the release evolved, the predicted number

of CRs were much higher than the actual number of CRs. The second approach

applied was a multi-stage approach that segments the dataset whenever a change-

point is found. The multi-stage model based on the work presented by Chi et al.

[30] had proven to give lower relative error in the predicted values but often future

CRs are underestimated. Underestimation of the number of CRs puts an organi-

zation at risk for not being prepared for the volume of work. Finally, the use of

Time Transformation (TT) first proposed by Musa et al. [98] [97] along with the

curve-fit approach has shown predictions with lower relative error than both of the

other approaches and with fewer under-predicted CRs. The idea of TT has not been

widely used in literature. Before our work, it was demonstrated only with analytical,

homogeneous models. The assumptions upon which these models are based on are

not met when CRs are considered. For industrial databases that contain CRs for

both defects and enhancements, curve-fit methods are more realistic since they only

select an appropriate model according to the given dataset without the assumptions

made by analytic models. This chapter used only one release (Release 4). We will

provide further validation by applying these approaches and comparing the results

for the remaining releases in Chapter 7.
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Chapter 6

Early Prediction Versus Accuracy

6.1 Problem Statement

After release, managers also need to predict future CRs to gauge software qual-

ity and adjust staffing levels for maintenance and evolution. They should be able

to predict CRs early on. In the literature, researchers focus on model estimation

techniques and prediction capability, but not much attention was concentrated on

when to predict? During system testing, a rule of thumb states that 60% of the test

plan should have been executed before starting to apply reliability models, which

refers to 60% of the percent of calendar test time [140]. When the system is released,

it is unclear what would constitute the right point to start predicting further CRs,

especially when the software also evolves. In the field of statistics, Bentler and Chou

[23] provided an oversimplified guideline based on previous work from Bentler [22]

to serve as a rule of thumb for the number of observations per parameters estimated

in a model. They mentioned that a sample size could go as low as 5 observations

but sees the use of at least 10 observations is more appropriate. Aguinis and Harden

[3] suggest that a minimum of 10 observations is recommended for obtaining trust-

worthy estimates of parameters. In statistics this rule of thumb is a benchmark on
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adequacy of dataset size in terms of number of observations required in regression

models. Specifically, this rule suggests having a minimum of 10 observations per

predictor variable1 [132]. An observation is a value of something of interest counted

for a study such as a person’s height, a bank account value at a certain point in

time, or number of defects in a certain month. For example: the balance of a bank

account in each month is an observation, the following are four observations:

• January = 1000 Dollars

• February = 1300 Dollars

• March = 800 Dollars

• April = 1100 Dollars

Since we are dealing with cumulative CRs over week time units, we consider the

cumulative CRs per time unit (week) to be the observation that we are discussing

in this chapter.

Therefore, we set up our research questions as follows:

• RQ1: When do we start predicting CRs during operation?

• RQ2: How does the number of observations affect the prediction accuracy of

CR prediction model?

We use Release 4 of our case study to evaluate the quality of early predictions.

We discuss different scenarios of performing early predictions vs. predicting CRs

later in a release. We then provide some recommendations for software project

managers to assist them CR predictions. The remainder of the chapter discusses

1Predictor variable is the independent variable used in regression analyses, which is time in this
case measured by weeks
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our approach in section 6.2. Then we discuss our results in section 6.3 and validity

threats in Section 6.4. Finally, we draw conclusions in Section 6.5.

6.2 Approach

6.2.1 Data Collection

Our data represents number cumulative number of CRs per week, which are

our observations. Since the least number of observations to perform regression is

5 observations we require that five weeks of cumulative CRs are collected before

estimating any model. We also require that collected data has at least 5 unique

CRs, which is the minimum number of CRs to start applying any model. In some

cases we have several weeks with no additional CRs that will cause the cumulative

CRs function to be linear. Knowing that the models we are dealing with are non-

linear we require five unique CRs to be collected before starting to model. This case

occurs at the beginning of each release where one CR is found in one week then a

few weeks later another CR is added. Therefore, we require five unique CRs at the

beginning of each release before estimating a model.

6.2.2 Model Estimation

Once enough data is collected, we use them in model estimation. We follow

the multi-stage curve-fitting approach explained in Section 5.3.2. Curve-fitting is

performed for cumulative CRs until an SRGM is selected to be used for future

CR prediction. When a change-point occurs another curve-fitting is performed to

find a new SRGM that fits the new dataset after the change-point. Change-points

occur when changes in cumulative CR growth rate take place due to a system fix or
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Figure (6.1) Repeated model selection process from 5 weeks of unique CRs up to
60% of the weeks of a stage

maintenance. Change-points were previously defined and discussed in more detail

in Chapter 4.

6.2.3 Predicting CRs

After model estimation, a model is selected to be used in CR prediction based on

the method in Section 6.2.2. We apply the same process after collecting data for one

more week and we measure the accuracy of prediction then. This process is repeated

for 60% of the weeks of every stage as shown in Figure 6.1 and the Algorithm 1.
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Algorithm 1 Repeated model selection process from 5 weeks of unique CRs up to
60% of the weeks of a stage
Result: Find relative Error of selected models starting from collecting the first 5

weeks of unique CRs up to 60% of a stage in a release in order to compare
their prediction ability and conclude the optimum amount of data collected
to estimate more accurate models

Data: Collect at least 10 weeks of unique 5 CRs or more from the current stage
1: while less than 60% of the weeks of the stage collected do
2: Estimate a model using one of the model estimation approaches
3: Record the week when a model was selected
4: Use model for CR prediction for six months
5: Calculate relative error of every month
6: end while=0

6.3 Results

For this case study we apply curve-fitting to data in the CR database of Release

4 for SRGM selection. Then we use the selected model for long-term prediction of

CRs. This process is applied at the beginning of the release until a model is selected

for prediction and after the existence of a change-point. Since we have three change-

points in weeks (243, 265, 348), we applied model selection four times, (see Chapter

4). Afterwards, we compare the predictive ability of each selected model. Model

Selection was performed using a multi-stage approach that has been described in

Section 5.3.2.

When the first 5 CRs were collected, the multi-stage model is applied according

to the process in Figure 6.1. The results of model estimation and prediction of each

stage is explained below:
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Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

145 5 CRs 6 7 7 8 9 10
RE 0.00 0.00 -0.13 -0.11 0.00 0.11

Table (6.1) CR Predictions and Relative Errors of the Modified Gompertz model
for Stage 1

Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

247 48 CRs 51 54 57 61 64 68
RE 0.04 -0.02 -0.05 -0.08 -0.16 -0.26

256 56 CRs 59 64 68 73 78 83
RE -0.06 -0.03 -0.15 -0.15 -0.12 -0.11

Table (6.2) CR Predictions and Relative Errors of two Gompertz models for Stage
2

6.3.1 Stage 1

For stage 1, after collecting 5 unique CRs we apply the curve-fitting process.

The first model selected was the Modified Gompertz in week 145. By this time 60%

of the weeks in the stage time has been used for model estimation. Table 6.1 shows

the long-term prediction by month of this selected model. For the first two months

the relative error is zero. Afterwards, the relative error is negative which means

that the model is under predicting. For this stage we cannot test the predictive

ability of the 5 rule-of-thumb or 10 rule-of-thumb or compare it with the results of

the selected model, since it was not applicable due to the limited number of unique

CRs early in the stage.

6.3.2 Stage 2

In Stage 2, we applied the process in Figure 6.1 and we selected the Gompertz

model in week 247. This stage started in week 243, data was collected for five weeks

(243, 244, 245, 246, 247). This model used five weeks of cumulative CRs. The next
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Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

275 89 CRs 100 110 120 131 143 155
RE 0.08 0.13 0.18 0.25 0.31 0.34

Table (6.3) CR Predictions and Relative Errors of the Modified Gompertz model
for Stage 3

model selected was in week 256, (after 13 CRs were collected). This happened when

66% of the time in Stage 2 has elapsed. The first model represents the 5 rule-of-

thumb and the second model is a little over 10 weeks, which can be considered as

10 rule-of-thumb and it is at a point where 66% of the stage weeks are included.

Table 6.2 shows that the RE in predictions for the two Gompertz model, the

first was selected in week 247 and the other is in week 256. We find that the relative

error for early prediction is better for the first model but then the RE is negative.

In general we see that the second model provides better predictions in later months

which indicates that it provides better long term predictions. In general we find

that this stage is short. A change-point occurs in week 265, which makes prediction

values to be poor.

6.3.3 Stage 3

Table 6.3 shows the predictions of the Modified Gompertz model that was se-

lected after the second change-point in week 275. When this model was selected

on;y 8% of the weeks were used for model estimation, (13 weeks). No other model

was later selected for this stage. In general we find that the RE values are positive

ranging from 0.08 to 0.34.
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Week Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

359 0.03 0.04 0.06 0.09 0.13 0.17
360 0.03 0.05 0.07 0.09 0.14 0.19
361 0.04 0.05 0.07 0.1 0.14 0.19
362 0.03 0.05 0.08 0.11 0.15 0.19
363 0.03 0.05 0.07 0.1 0.15 0.18
364 0.03 0.05 0.07 0.1 0.15 0.17
365 0.03 0.04 0.06 0.1 0.14 0.17
366 0.03 0.04 0.07 0.09 0.13 0.17
367 0.03 0.04 0.07 0.1 0.13 0.17
368 0.03 0.04 0.07 0.11 0.13 0.17
369 0.03 0.04 0.07 0.11 0.13 0.18
370 0.03 0.05 0.07 0.1 0.14 0.17
371 0.03 0.05 0.08 0.1 0.14 0.18
372 0.03 0.06 0.09 0.1 0.14 0.18
373 0.03 0.05 0.08 0.11 0.15 0.18
374 0.04 0.06 0.08 0.11 0.14 0.18
375 0.03 0.06 0.08 0.12 0.15
376 0.04 0.07 0.08 0.12 0.16
377 0.04 0.07 0.09 0.13 0.16
378 0.04 0.07 0.1 0.12 0.16
Table (6.4) CR Predictions and Relative Errors of Gompertz models for Stage 4
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6.3.4 Stage 4

According to the process in Figure 6.1, the first model was selected in week 359,

the Gompertz model. Since the process keeps collecting data by week and estimating

models, we found a fitted model in every week for at least 60% of the stage. We

collected the data from week 359, which is the 11th week in the stage until week

377 which as at 60% of the total weeks in that stage. To better demonstrate the

results we show the RE value of month-by-month predictions for six months for each

of these models except for the last three models. We cannot apply predictions of

a sixth month for the models selected in weeks 376, 377 and 378 since the end of

the stage occurs before six months. Table 6.4 shows the RE values of each model

selected in a specific week. We find that over the weeks the RE values of predictions

after each month are very close. In fact comparing the RE values of week 11 to the

RE values of week 30, we find that the RE values in week 11 are better. This shows

that with only 11 data points a prediction can perform as well as or sometimes

better than a model that is selected later on.

6.3.5 Discussion

In this section we discuss the results and revisit the research questions stated in

the introduction of this paper.

6.3.5.1 RQ1: When can we predict CRs during operation?

This question has no definitive answer. A small set of data can introduce the risk

of giving false predictions or under-estimating future CRs. Predicting future CRs

also depends on how early a model is selected based on the data. We found that in
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Figure (6.2) Modified model selection And CR Estimation using Approach 1
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Figure (6.3) Modified model selection And CR Estimation using Approach 2
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Figure (6.4) Modified model selection And CR Estimation using Approach 3
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some stages, models were selected as early as 5 weeks and in others we needed 145

weeks to fit a model. When a model is selected, it can be used for predictions.

6.3.5.2 RQ2: How does the number of data-points affect the prediction

accuracy of a CR prediction model?

We are looking for a trade-off to find a point where we can find accurate predic-

tions as early as possible. For this case study we applied our approach described in

Figure 6.1.

In Stage 1, we find that the model selected at 60% has small REs in the first two

months. The RE values of the next two months are low as well but negative. Then

they become positive and low for the next two months. In Stage 2, a model was

selected based on only 5 observations (CRs), but looking at the predictions in the

future we find that it fails to provide reliable predictions after the first month. The

model that was selected later on did not perform well also, but looking into the long

term predictions we find that the model selected at 60% provides better RE values.

For his specific stage, we find that it is a short stage (under six months) so the six

months predictions are mostly negative due to having a change-point before after

about four months. In stage 3, the model is selected at 13 weeks which is about 24%

into the stage. It has positive RE values which range from 0.08 to 0.34. Finally, we

find that stage 4 has RE values that are small and positive when a model is selected

after 11 weeks and better than the RE values after 60% of the data was collected.

We find that it is possible to find a model that fits a data-set with only 5 data-

points, however, the accuracy of the model in predicting future CRs is questionable.

On the other hand, we find that some models that used 11 or 13 weeks provided more

reliable predictions than a model that used 145 weeks. Comparing the prediction

accuracy of these four models, one was selected after 60% of the stage was collected,
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one was selected after five weeks of collection and two were selected after a little over

10 weeks of data, we find that the quality of prediction of the models selected after

at least 10 weeks are better than the models selected by 5 weeks and comparable

to the models selected at 60%. Managers need to weigh the risk of not being able

to predict CRs for long periods of time before deciding that "enough data had been

collected" against the risk of having predictions that are less accurate. Therefore,

we modify the three approaches of models estimation in Figures (5.1, 5.3 and 5.4)

to include a minimum of 10 weeks of of observations before modeling with at least

5 collected CRs. Figures (6.2, 6.3, and 6.4) show the three approaches of model

estimation after applying the suggested the modification.

6.4 Threats to Validity

We address these threats according to the criteria described by Wohlin et al.[139].

External validity is concerned with generalization of the findings. While we applied

our approach to the evolving large software system described in Chapter 3, other

evolving software may not show the same CR behavior. Model selection and pa-

rameter estimation depend solely on the specifics of the CR data and existence of

change-points. Therefore we do not claim that our results can be generalized. How-

ever, we applied our method repeatedly to data that has different CRs patterns to

confirm that the results were consistent. Conclusion validity focuses on how sure we

can be that the treatment we used in an experiment really is related to the actual

outcome we observed. We don’t claim that there is a linear relationship between the

amount of data used for model selection and the accuracy of prediction. We pro-

vide guidelines that a researcher might find useful with the consideration of varying

results.
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6.5 Conclusion

Early planning is key for managers of the operational software. We find that

early model selection runs the risk of poor long-term predictions but in general they

give managers an idea of how their systems are performing, which assist them in

planning. From our case study we found that selecting a model based on ten weeks

rule-of-thumb provides more accurate CR predictions than five weeks rule-of-thumb.

This observation was applied to the model selection approaches described in Chapter

5 to produce the models in Figures (6.2, 6.3, and 6.4), which will be used in them

following Chapter 6.
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Chapter 7

Multi-release Change Request Prediction

7.1 Introduction

When software products are released they are mostly not developed with the full

set of functionalities. Some requirements and further enhancements are developed

in the later releases. Therefore, most large software experience multiple release.

The aerospace system in our case study is no exception to that. In Chapter 3 we

described the system which has four releases. Each of these releases has cumula-

tive CR data over time. Each release has change-points which were estimated in

Chapter 4. On Chapter 5 we applied three curve-fitting approaches explained in

Section 5.3.1, Section 5.3.2 and Section 5.3.3 to Release 4 and compared the three

approaches according to their predictive ability. We found that the TT approach has

a lower relative error than the other curve-fitting approaches. We wish to expand

our observations and apply the three approaches to the remaining releases. So our

research questions for this chapter are:

• RQ1: Can we generalize the use to the three approaches for curve-fitting to

other releases?
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• RQ2: Can we generalize our findings that TT approach performs better than

the other curve-fitting approaches to other releases?

To answer these questions we use the same methodology of applying model estima-

tion and CR prediction to the three remaining releases: Release 1, Release 2 and

Release 3. We then compare the prediction ability for the three approaches within

each release and finally we compare and discuss the results among the releases.

7.2 Release 3

This release is a long release that spans 472 weeks and shows 401 CRs. When ap-

plying the change-point estimation we found that four change-points were estimated

in weeks 291, 326, 370 and 420. We can then divide this release into 5 stages:

• Stage 1: From week 1 to week 289

• Stage 2: From week 291 to week 325

• Stage 3: From week 326 to week 369

• Stage 4: From week 370 to week 419

• Stage 5: From week 420 to week 472

On each stage we start with 10 weeks of collected data before estimating a model

for the stage. This is due to our recommended finding of having at least 10 weeks of

data to get more reliable results in Chapter 6, so the 10 observations rule-of thumb

is applied on the number of weeks collected for SRGM estimation. Whenever we

find a fitted model then we use that model for future CR prediction from that point

forward. We compare the predictive ability of each model by calculating the relative
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error of month-to-month prediction for six months into the future. Notice that for

a model to fit CRs, there should be at least 5 cumulative CRs collected, which is

the minimal five observations rule-of-thumb to select a model.

7.2.1 Model Estimation

7.2.1.1 Approach 1

For this approach we do not consider change-point data. The main concern here

is to fit an SRGM model on the cumulative CRs for this release starting from the

first week. Once a model is selected we use it for future CR predictions. Table

7.1 shows the progression of fitting the five SRGMs to the data once 5 CRs were

collected. By week 271, The Modified Gompertz model has an R2 of 0.90 and an

estimated value that is greater than or equal the actual value. Therefore, this model

is used for CR prediction using this approach.

7.2.1.2 Approach 2

The Modified Gompertz model selected in Approach 1 is used in CR predic-

tion using this approach as well but that selection changes after the occurrence of

change-points. We call this time period, Stage 1. Therefore, when a change-point is

estimated for the week of 291, a new SRGM selection process takes place to select a

model that would be used for CR predictions until the following change-point, and

this will be our second stage.

From the week of 291 we collect ten more weeks of cumulative CRs then we

apply the SRGM selection process weekly until we find a fit model. From week 300

we start examining the Goodness-of-fit and of each model. If no model fits then we

collect CRs for another week and then we try to fit the models again until we find the
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Week
No.

No. of
CRs

G-O DSS M Gompertz Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

255 6 2 0.27 3 0.2 4 0.88 4 0.88 3 0.51
256 6 2 0.29 3 0.25 4 0.88 4 0.88 3 0.52
257 6 2 0.3 3 0.29 5 0.88 5 0.88 3 0.52
258 8 3 0.31 3 0.32 5 0.86 5 0.86 3 0.51
259 8 3 0.31 3 0.35 5 0.85 5 0.85 4 0.51
260 8 3 0.31 4 0.38 5 0.85 5 0.85 4 0.52
261 9 3 0.31 4 0.39 6 0.84 6 0.84 4 0.53
262 9 3 0.31 4 0.41 6 0.83 6 0.83 4 0.54
263 9 3 0.32 4 0.42 6 0.85 6 0.85 5 0.56
264 9 3 0.32 4 0.43 7 0.85 7 0.85 5 0.57
265 9 3 0.32 4 0.44 7 0.84 7 0.84 5 0.59
266 9 3 0.33 4 0.46 7 0.87 7 0.87 6 0.61
267 9 3 0.33 4 0.47 8 0.87 8 0.87 6 0.63
268 9 3 0.34 5 0.48 8 0.87 7 0.87 6 0.65
269 9 3 0.34 5 0.49 8 0.87 8 0.85 6 0.66
270 9 3 0.35 5 0.5 8 0.88 8 0.86 6 0.67
271 9 4 0.35 5 0.51 9 0.9 8 0.86 7 0.69

Table (7.1) SRGM Estimation for Stage 1 the GOF value for Release 3: Approach
1
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Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

300 17 17 0.22 17 0.35 17 0.59 18 0.59 17 0.54
301 17 17 0.23 17 0.36 18 0.55 18 0.55 18 0.56
302 17 17 0.25 17 0.37 18 0.51 18 0.52 18 0.53
303 18 17 0.28 17 0.43 18 0.59 18 0.59 18 0.6
304 18 17 0.3 17 0.47 18 0.64 18 0.64 18 0.65
305 18 17 0.33 17 0.51 18 0.67 18 0.67 18 0.68
306 19 17 0.34 18 0.54 19 0.73 19 0.73 16 0.73
307 19 18 0.35 18 0.57 19 0.77 19 0.77 16 0.77
308 19 18 0.36 18 0.59 19 0.8 19 0.8 16 0.8
309 19 18 0.38 18 0.61 19 0.81 19 0.81 17 0.82
310 19 18 0.39 18 0.64 19 0.82 19 0.83 19 0.84
311 19 18 0.41 18 0.66 20 0.83 19 0.83 19 0.85
312 20 18 0.41 19 0.67 20 0.85 20 0.86 20 0.87
313 21 18 0.4 19 0.66 20 0.87 20 0.87 20 0.87
314 24 19 0.33 19 0.56 21 0.81 22 0.82 21 0.81
315 25 19 0.28 20 0.5 22 0.79 23 0.81 22 0.79
316 26 19 0.26 20 0.47 23 0.8 23 0.8 23 0.8
317 27 20 0.24 20 0.44 24 0.81 24 0.81 24 0.81
318 28 20 0.23 21 0.43 25 0.82 25 0.83 25 0.83
319 29 20 0.22 21 0.41 26 0.84 27 0.84 26 0.85
320 30 21 0.22 22 0.4 27 0.86 27 0.86 27 0.86
321 31 21 0.21 22 0.39 29 0.87 28 0.87 29 0.88
322 31 22 0.21 23 0.39 30 0.88 29 0.88 30 0.89
323 31 22 0.21 23 0.4 30 0.9 30 0.89 30 0.9
324 32 22 0.21 24 0.4 31 0.91 31 0.9 31 0.91
325 34 23 0.21 24 0.4 32 0.92 31 0.92 32 0.92

Table (7.2) SRGM Estimation for Stage 2 the GOF value for Release 3: Approach
2
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Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

335 45 41 0.19 42 0.35 45 0.89 45 0.87 44 0.73
336 46 42 0.2 42 0.37 46 0.9 46 0.9 44 0.76

Table (7.3) SRGM Estimation for Stage 3 the GOF value for Release 3: Approach
2

Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

379 148 132 0.16 134 0.31 146 0.85 143 0.87 147 0.95
380 148 134 0.17 136 0.32 149 0.87 146 0.89 149 0.95

Table (7.4) SRGM Estimation for Stage 4 the GOF value for Release 3: Approach
2

most fit model. In week 323 in Table 7.2, we see that both Gompertz and Yamada

model meet the minimum threshold value of R2 = 0.9, but it estimates 30 CRs less

than the actual value of 31 CRs. Next, the process proceeds by collecting more data

to find the same issue in week 324, where Yamada and Gompertz have estimated

CRs that are less than the values of the actual CRs. This also continues for week

325 (the last week of this stage). This means that no SRGM model was selected for

this stage since none of the models were good enough. Therefore, we continue using

the Modified Gompertz model selected in the Stage 1 for CR predictions.

For stage 3, we find that in week 336 both the Gompertz model and the Modified

Gompertz have an R2 value of 0.9 and an estimated number of CRs that is equal

to the actual, 46. This is also within 10% from the previous value. Any of these

models can be selected and for this stage, the Gompertz model was selected, (Table

7.3).

In Stage 4, the R2 value of the Yamada model by week 379 is 0.95 which makes

it a candidate to be selected for this stage but the estimated CRs is lower than the
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Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

429 277 270 0.43 273 0.73 278 0.947 278 0.94 278 0.94

Table (7.5) SRGM Estimation for Stage 5 the GOF value for Release 3: Approach
2

actual number of CRs. Since no other model meets the the criteria, we continue

to collect more CR data for another week. The Yamada model still maintains an

acceptable R2 and the estimated CR value is greater than the actual CR values, in

addition to having the estimated number of CRs within 10% from the previous one.

Therefore, the Yamada model is selected for this stage, (see Table 7.4).

Table 7.5 shows the SRGM estimates for week 429, which is the tenth week after

the fourth change-point. Since we needed 10 weeks to collect data before running

the model estimation process, we found that by this week we already have three

candidate SRGMs. The Gompertz, the modified Gompertz and the Yamada all

have an R2 value of 0.94 and an estimated value that is greater than the actual

value. For this stage the Gompertz model was selected.

So for this release we have selected four different SRGMs for Stages 1, 3, 4 and

5. Stage 2 continues to use the SRGM used in Stage 1 since no new SRGM was

selected.

7.2.1.3 Approach 3

Approach 3 uses the selected model for each stage after a change-point occurrence

and applies Time Transformation (TT) calculations to calculate a new time which

presumably would have been the time of the CRs if changes were accounted for since

the beginning of the release.
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(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
326 34 33 37 322 36
327 36 33 38 323 36
328 38 34 38 324 37
329 39 35 39 325 38
330 41 36 40 326 39
331 42 37 41 327 40
332 43 37 42 328 41
333 44 38 43 329 43
334 44 39 44 330 44
335 45 40 45 331 45
336 46 41 46 332 46

Table (7.6) CR estimation with TT for Stage 3 of Release 3

For the first and second stage no TT is required, since they are using the SRGM

of the first stage and no new SRGM is selected after change. For the third stage,

M1(t) is the Modified Gompertz model selected for the first stage and M2(t) is the

Gompertz model selected for the third stage. Table 7.6 shows the values of the

estimated CRs using M1(t) and M2(t) and then the value of CRs for M(t) using the

new time after transformation (TT), notice that the time here is the week number.

In week 326, the actual number of CRs is 34, M1(t) predicts that the number of

CRs is 33 and M2(t) estimates 37 CRs. Using these two models we calculate a

time after Time Transformation (TT), as explained in Section 5.3.3. Using the

newly transformed values of the weeks we estimate CR values using M(t) which is

a newer version of M2(t) with new times and parameters. M(t) is then used for CR

prediction until the next stage, Stage 4. When Stage 4 begins we use M(t) from

Stage 3 as M1(t) and the Yamada model selected for Stage 4 as M2(t). We use

M1(t) and M2(t) in calculating TT, which is then used to estimate CRs in M(t),

(see Table 7.7). Finally, M(t) from the previous stage is used as M1(t) and the

Gompertz model is in M2(t) to calculate TT to be used by M(t) for the final stage,

(Table 7.8).
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(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
370 114 104 117 369 117
371 116 106 119 370 120
372 121 109 122 371 123
373 124 111 126 372 126
374 128 114 129 373 129
375 128 116 132 374 132
376 137 119 135 375 135
377 144 122 139 376 139
378 144 125 142 377 142
379 148 127 145 378 145
380 148 130 149 379 149

Table (7.7) CR estimation with TT for Stage 4 of Release 3

(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
420 254 371 256 409 256
421 259 379 259 410 259
422 260 387 261 411 261
423 264 396 263 412 263
424 268 404 266 413 266
425 271 413 268 414 268
426 272 422 271 415 270
427 273 431 273 416 273
428 273 441 276 417 275
429 277 450 278 418 278

Table (7.8) CR estimation with TT for Stage 5 of Release 3

These estimated models are then used to provide CR predictions in the future.

In the following section we demonstrate and compare the results of predictions using

the three approaches we applied.

7.2.2 CR Prediction

To compare the predictive ability of the three approaches we compare their ability

to predict CRs on a monthly basis after an SRGM selection. Table 7.9 shows the

predictive ability of the selected models. The first column shows the week in which

a model was selected for each stage, the next column shows the actual number of

CRs in that week. The "Prediction" column specifies if the row shows the predicted

number of CRs or the Relative Error (RE) of the prediction in that month. The
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Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

271 9 CRs 10 11 12 13 14 16
RE 0.11 0.22 0.20 0.00 0.00 -0.06

336 46 CRs 44 48 53 57 62 67
RE -0.21 -0.17 -0.23 -0.27 -0.23 -0.26

380 148 CRs 107 115 124 133 143 153
RE -0.36 -0.35 -0.34 -0.32 -0.31 -0.29

429 277 CRs 246 261 278 295 313 332
RE -0.16 -0.15 -0.13 -0.10 -0.09 -0.07

Table (7.9) CR Predictions and Relative Errors for six months into the Future
using Approach 1 for Release 3

last column has six sub-columns. Each column shows the number of predicted CRs

and the RE value for the specific month.

The Modified Gompertz model was selected in week 271. After one month of the

model selection we find that the model provides a prediction with a Relative Error

(RE) of 0.11. After two months, the RE value doubles to 0.22. After three months

the RE value decreases to 0.2. After four months and five months the RE is zero,

which means that the actual matches the predicted value. After six months of the

model selection the model begins to under-predict CR values, and RE is -0.06.

The following rows in the table show CR prediction of this model after each

change-point in the weeks where different models were selected using the multi-stage

model. We included these predictions in those weeks in this table for comparison

purposes. We would like to analyze and compare the performance of Approach

1 compared to the other two approaches. In general, we find that the RE value

becomes more and more negative, an indicator that the prediction is poor as time

keeps progressing in Stage 3 and Stage 4. By Stage 5, RE values range from -0.07

to -0.16.

When we look at the predicted values for Approach 2 in Table 7.10 we find that

the prediction ability of the models is much better than the previous approach. In
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Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

271 9 CRs 10 11 12 13 14 16
RE 0.11 0.22 0.20 0.00 0.00 -0.06

336 46 CRs 50 54 69 78 81 90
RE -0.11 -0.07 -0.14 -0.18 -0.15 -0.17

380 148 CRs 164 181 199 218 240 263
RE -0.02 0.02 0.05 0.11 0.17 0.22

429 277 CRs 288 298 309 320 331 343
RE -0.02 -0.03 -0.03 -0.03 -0.04 -0.04

Table (7.10) CR Predictions and Relative Errors for six months into the Future
using Approach 2 for Release 3

Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

271 9 CRs 10 11 12 13 14 16
RE 0.11 0.22 0.20 0.00 0.00 -0.06

336 46 CRs 51 56 62 68 75 82
RE -0.09 -0.03 -0.10 -0.13 -0.07 -0.09

380 148 CRs 160 175 193 211 232 254
RE -0.04 0.00 0.04 0.07 0.16 0.19

429 277 CRs 288 298 309 320 332 344
RE -0.02 -0.03 -0.03 -0.03 -0.03 -0.03

Table (7.11) CR Predictions and Relative Errors for six months into the Future
using Approach 3 for Release 3
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week 336, the Gompertz model was selected to predict CRs in the future. Although

this model the REs are negative, which means that the model under-predicts CRs,

the RE is lower than for Approach 1 and closer to the actual values. In week 380, the

Yamada model was selected. Looking at the predictions and RE values of this model

compared to the same weeks using Approach 1, we find that this model performs a

lot better. In fact this model stops under-prediction from the second month on. This

is also true for the fourth model selected for the last stage, where the RE value are

even smaller and closer to the actual values, although they tend to under-predict CR

numbers. These values provide an improvement in prediction ability compared to

the predictions of Approach 1, which seems to diverge drastically as time progresses.

Table 7.11 shows the month-to-month predictions for Approach 3 application.

The first row is the same as Approach 1 for the first stage. After week 336 the

RE values range from-0.03 to -013. Comparing the the RE values for this stage of

Approach 2 vs. Approach 3 we find that RE values of Approach 3 has lower RE

values. A month after week 380 we find that the RE value for Approach 3, (-0.04),

is worse than RE value in Approach 2, (-0.02). Unlike the first month RE values

of this release, Approach 3 for the remaining months are better than Approach 2.

After week 277 we find the month-to-month predictions for both approaches are

equal until +4 months, the RE values of Approach 3 are better than Approach 2

for the predictions after five months and after six months.

Notice that we highlight Table 7.10 and Table 7.11 with green when the RE value

of an approach is better than the RE value of the other approach and highlighted

them with red if the RE value is worse and were left without highlight when they are

equal. This color scheme only highlights RE tables for Approach 2 and 3 since their

results are comparable. The RE values in Table 7.9 for Approach 1 are highlighted

since they are always greater than the RE values of the other approaches.
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Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

114 5 5 0.88 6 0.54 5 0.89 5 0.89 5 0.89
115 5 5 0.88 6 0.55 5 0.91 5 0.91 5 0.89

Table (7.12) SRGM Estimation for Stage 1 the GOF value for Release 2: Approach
1

7.3 Release 2

This release is 433 weeks long with 898 CRs. When applying the change-point

estimation we found that four change-points were estimated in weeks 225, 247, 280,

and 300. We can then divide this release into 5 stages:

• Stage 1: From week 1 to week 224

• Stage 2: From week 225 to week 246

• Stage 3: From week 247 to week 279

• Stage 4: From week 280 to week 299

• Stage 5: From week 300 to week 433

As we did before start SRGM selection after 10 weeks of CRs. Whenever we find a

fitted model we use that model for future CR prediction from that point forward.

We compare the predictive ability of each model by calculating the RE of month-

to-month prediction for six months into the future.

168



Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

235 132 108 0.15 110 0.28 127 0.887 127 0.87 117 0.6
236 136 111 0.16 113 0.29 132 0.9 132 0.89 122 0.63
237 140 113 0.16 113 0.3 138 0.92 137 0.91 126 0.65
238 142 116 0.17 117 0.31 143 0.93 143 0.93 130 0.68

Table (7.13) SRGM Estimation for Stage 2 the GOF value for Release 2: Approach
2

7.3.1 Model Estimation

7.3.1.1 Approach 1

For this approach we do not consider change-point data. Table 7.12 shows the

progression of fitting the five SRGMs to the data once 5 CRs were collected. By

week 115, The Gompertz model and the Modified Gompertz model has an R2 of

0.91 and an estimated value of CRs that is greater than or equal the actual number

of CRs. In this case, both models are the same since the parameter d in the modified

Gompertz model is zero, reducing it to the Gompertz model.

7.3.1.2 Approach 2

After the first change-point occurrence we need to start fitting a different SRGM

that fits the new stage. From week 255 on more cumulative CR data is collected

and then model fitting is performed. Table 7.13 shows that the Gompertz model

has an R2 that meets the minimum threshold since week 236 but it does not meet

the full criteria to be selected as a model until week 238, when the estimated value

is greater than or equal the actual value. This is true for the Modified Gompertz

as well, since in week 237 the Modified Gompertz has an acceptable R2 value but

the estimated number of CRs is less than the actual value. By week 238, both the
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Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

257 259 229 0.24 233 0.46 258 0.98 257 0.98 254 0.97
258 268 233 0.24 238 0.45 266 0.99 264 0.99 262 0.97
259 275 237 0.24 243 0.45 273 0.99 272 0.99 269 0.97
260 277 241 0.25 247 0.46 281 0.99 279 0.99 276 0.98

Table (7.14) SRGM Estimation for Stage 3 the GOF value for Release 2: Approach
2

Gompertz and the Modified Gompertz are suitable for selection. The Gompertz

model was selected for this stage.

Starting in week 257, the R2 values are 0.98 for the Gompertz and the Modified

Gompertz and 0.97 for the Yamada model for Stage 3, as shown in Table 7.13.

But the estimated numbers of CRs were all less than the actual number of CRs for

that week. Therefore these models are not selected and more data is collected. By

week 260, both the Gompertz model and the modified Gompertz model meets the

acceptance criteria. The Gompertz model was then selected for predicting future

CRs for this stage.

In Stage 4, the Gompertz model and the Yamada model meet the acceptance

criteria in week 290. They both have an R2 value of 0.98 and the estimated number

of CRs is greater than or equal to the actual number of CRs, (see Table 7.15).

Selecting either of them is suitable. The Yamada model was selected for this stage.

For the final stage, we find that all models except the G-O model meet the

acceptance criteria. Table 7.16 shows that by week 310 the R2 of four of the SRGMs

exceeds the threshold of 0.9, and the estimated number of CRs is greater than or

equal to the actual number of CRs. The Gompertz model was selected for CR

prediction.
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Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

290 596 553 0.29 563 0.54 599 0.98 588 0.98 601 0.98

Table (7.15) SRGM Estimation for Stage 4 the GOF value for Release 2: Approach
2

Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

310 693 691 0.85 697 0.96 697 0.96 697 0.96 696 0.95

Table (7.16) SRGM Estimation for Stage 5 the GOF value for Release 2: Approach
2

For this release curve-fitting was successful for every stage, so we were able to

fit five different models for the five stages.

7.3.1.3 Approach 3

Using Approach 2, SRGMs are selected for each stage. Approach 3 uses the

selected model for each stage after a change-point occurrence and applies TT cal-

culations to find a model using a new version of the time.

We start applying TT from the second stage of the release. Using the models

chosen for the first stage we calculate a newly transformed time value in weeks then

we use this new time in the new SRGM selected for the current stage. For the

second stage, M1(t) is the Gompertz model selected for the first stage and M2(t)

is the Gompertz model selected for the second stage. Table 7.17 shows the values

of the estimated CRs using M1(t) and M2(t) and then the value of CRs for M(t)

using the new time after transformation (TT) for stage 2. Table 7.18 shows the TT

values and the estimates of the new model for Stage 3. Table 7.19 shows the TT
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(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
225 75 21 87 221 91
226 79 21 90 222 95
227 85 21 94 223 99
228 98 21 98 224 103
229 105 22 101 225 107
230 108 22 105 226 111
231 113 22 110 227 116
232 116 22 114 228 120
233 116 23 118 229 125
234 130 23 123 230 130
235 132 23 128 231 135
236 136 23 133 232 141
237 140 24 138 233 146
238 142 24 143 234 152

Table (7.17) CR estimation with TT for Stage 2 of Release 2

(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
247 191 213 192 247 197
248 198 220 198 248 203
249 204 229 204 249 209
250 208 237 211 250 216
251 217 246 217 251 222
252 226 255 223 252 228
253 233 264 230 253 235
254 238 274 237 254 242
255 242 284 244 255 249
256 248 294 251 256 256
257 259 304 259 257 264
258 268 315 266 258 271
259 275 326 274 259 279
260 277 338 282 260 287

Table (7.18) CR estimation with TT for Stage 3 of Release 2

values and the estimates of the new model for Stage 4. Table 7.18 shows the TT

values and the estimates of the new model for Stage 5.

7.3.2 CR Prediction

To compare the predictive ability of the three approaches we compare their

ability to predict CRs on a monthly basis after model selection. Table 7.21 shows

the predictive ability of the Gompertz model month-to-month after the model was

selected in week 122. The predicted number of CRs matches the actual number after

a month of selecting the model, since the relative error value (RE) is zero. After two
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(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
280 486 494 490 280 500
281 496 507 500 281 510
282 510 521 510 282 519
283 523 534 521 283 528
284 530 548 532 284 538
285 536 563 543 285 548
286 557 577 554 286 557
287 566 592 566 287 567
288 587 608 577 288 578
289 590 623 589 289 588
290 596 639 601 290 598
291 602 656 613 291 609

Table (7.19) CR estimation with TT for Stage 4 of Release 2

(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
300 662 711 664 299 669
301 665 723 667 300 672
302 669 735 670 301 675
303 675 748 674 302 679
304 679 760 677 303 682
305 681 773 680 304 685
306 686 786 684 305 688
307 689 799 687 306 692
308 692 812 690 307 695
309 692 826 694 308 698
310 693 839 697 309 701

Table (7.20) CR estimation with TT for Stage 5 of Release 2
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months the model under-predicts the number of CRs where RE is -0.14. The model

continues to give accurate predictions after three months and after four months of

selection, since RE is zero. After change-points, we find that the RE value for the

months following the weeks of 238, 260, 290 and 310 keeps decreasing. In fact the

predicted number of CRs is smaller than the actual number of CRs. This shows

that the quality of the prediction gets worse as time progresses in the release.

Table 7.22, shows the RE values of predictions using Approach 2. The RE

values highlighted in green are lower than the RE values of the same month when

Approach 3 is applied. The RE values highlighted in red, are the months where

Approach 2 predictions where worse than Approach 3, this also applies to Table

7.11. We find that the prediction ability of the models is much better than the

prediction of Approach 1. In week 238, the Gompertz model was selected to predict

CRs in the future. We find that model to have RE values ranging from 0.08 to

0.15. These RE values provide more accurate predictions than the model after TT

in Approach 3, Table 7.11. In Stage 3, the Gompertz model provides predictions

with lower RE values after 1 month and after 2 months of prediction than the model

after TT. After TT, the model has smaller RE values for the remaining months. In

fact the model before TT shows under-predicted CRs unlike the predictions of the

model after TT was performed. After week 290, we find that the Yamada model

provides better predictions using TT in general. Finally, the last stage predictions

for both approaches are mostly equal or have minor differences. This comparison

between the RE values of Approach 2 in Table 7.22 and Approach 3 in Table 7.23

shows that there is not one approach that is always superior to the other in terms

of prediction ability.

We then look into the results of CR prediction for this release using approach

3, Table 7.34. The first row is not different than the model selected for Approach 1
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Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

122 6 CRs 6 6 7 7 7 8
RE 0.00 -0.14 0.00 0.00 -0.13 0.00

238 142 CRs 27 28 29 31 32 34
RE -0.82 -0.84 -0.86 -0.87 -0.88 -0.88

260 277 CRs 35 36 38 40 42 44
RE -0.88 -0.90 -0.90 -0.91 -0.91 -0.92

290 596 CRs 49 51 54 56 59 62
RE -0.92 -0.92 -0.92 -0.92 -0.91 -0.91

310 693 CRs 62 64 67 70 74 77
RE -0.91 -0.91 -0.90 -0.90 -0.90 -0.89

Table (7.21) CR Predictions and Relative Errors for six months into the Future
using Approach 1 for Release 2

Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

122 6 CRs 6 6 7 7 7 8
RE 0.00 -0.14 0.00 0.00 -0.13 0.00

238 142 CRs 165 191 220 252 289 329
RE 0.08 0.07 0.06 0.06 0.08 0.15

260 277 CRs 309 344 381 421 465 512
RE 0.03 0.00 -0.02 -0.01 -0.04 -0.03

290 596 CRs 651 705 762 822 887 955
RE 0.03 0.08 0.14 0.20 0.28 0.38

310 693 CRs 711 725 739 753 768 783
RE 0.03 0.04 0.05 0.07 0.08 0.09

Table (7.22) CR Predictions and Relative Errors for six months into the Future
using Approach 2 for Release 2

Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

122 6 CRs 6 6 7 7 7 8
RE 0.00 -0.14 0.00 0.00 -0.13 0.00

238 142 CRs 177 205 237 274 315 362
RE 0.16 0.15 0.14 0.15 0.18 0.27

260 277 CRs 321 358 399 445 494 548
RE 0.07 0.04 0.03 0.05 0.02 0.03

290 596 CRs 653 699 748 799 853 910
RE 0.03 0.06 0.11 0.16 0.23 0.31

310 693 CRs 715 728 742 756 770 785
RE 0.03 0.04 0.06 0.07 0.08 0.10

Table (7.23) CR Predictions and Relative Errors for six months into the Future
using Approach 3 for Release 2
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and 2 for the first stage, therefore there are no differences to be discussed. After the

following two stages we find that the RE values for Approach 3 are much better than

RE for the same months of Approach 1 but worse than the RE values of Approach 2.

To better compare Approach 2 and Approach 3 since their results are comparable we

highlighted the weeks when one of these approaches performed better in green and

the approach that performed poorly with red. We find that Approach 3 performed

worse than Approach 2 in two stages after change-points and the two approaches

performed equally well for the last stage. Therefore, we can say that the results of

Approach 2 were better than Approach 3 for this release.

7.4 Release 1

This release covers 554 weeks with 486 CRs. When applying the change-point

estimation we found that four change-points were estimated in weeks 390, 410, 437

and 454. We can then divide this release into 5 stages:

• Stage 1: From week 1 to week 389

• Stage 2: From week 390 to week 409

• Stage 3: From week 410 to week 436

• Stage 4: From week 437 to week 453

• Stage 5: From week 454 to week 554
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Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

332 5 2 0.24 3 0.09 3 0.52 4 0.92 3 0.51
333 5 2 0.25 3 0.14 3 0.52 4 0.92 3 0.52
334 5 2 0.27 3 0.18 3 0.53 4 0.92 3 0.52
335 5 2 0.28 3 0.21 3 0.53 5 0.93 3 0.53

Table (7.24) SRGM Estimation for Stage 1 the GOF value for Release 1: Approach
1

7.4.1 Model Estimation

7.4.1.1 Approach 1

Table 7.24 shows the progression of fitting the five SRGMs to the data once 5

CRs were collected. By week 335, the Modified Gompertz model has an R2 of 0.93

and an estimated number of CRs that is greater than or equal the actual number of

CRs. Therefore, this model is used for CR prediction using this approach.

7.4.1.2 Approach 2

After the first change-point occurrence in week 390 we collect data for ten more

weeks of cumulative CRs then we apply the SRGM selection process weekly until

we find a fit model. From week 399 we start examining the Goodness-of-fit and of

each model, as shown in Table 7.25. In Stage 2 we kept repeating the process of

collecting data and trying to fit a model until we reached the end of the stage, where

a new change-point is introduced. No SRGM was selected for this stage.

For stage 3, we find that the Gompertz model has the highest R2 value since

week 419 but the estimated number of cumulative CRs is smaller than the actual

number of cumulative CRs. This continues until week 424 where the estimated value

is equal to the actual value (Table 7.26).
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Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

399 69 60 0.12 61 0.23 66 0.81 66 0.81 64 0.63
400 70 61 0.13 62 0.25 68 0.85 68 0.84 66 0.67
401 74 62 0.13 63 0.25 70 0.86 70 0.8 68 0.69
402 80 64 0.12 65 0.24 73 0.8 73 0.85 70 0.67
403 83 66 0.12 67 0.24 76 0.86 76 0.86 72 0.66
404 94 68 0.11 69 0.21 79 0.81 79 0.8 75 0.6
405 98 70 0.1 71 0.2 83 0.79 83 0.79 78 0.6
406 108 72 0.09 74 0.19 87 0.76 87 0.75 82 0.57
407 114 75 0.09 77 0.18 91 0.74 91 0.74 86 0.55
408 122 78 0.09 80 0.17 96 0.73 96 0.73 89 0.54
409 128 80 0.08 83 0.17 101 0.72 101 0.72 94 0.53

Table (7.25) SRGM Estimation for Stage 2 the GOF value for Release 1: Approach
2

Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

419 180 159 0.15 161 0.3 174 0.94 171 0.88 166 0.66
420 192 162 0.14 164 0.27 180 0.91 177 0.83 171 0.61
421 194 165 0.14 168 0.27 185 0.91 181 0.83 175 0.61
422 194 168 0.14 171 0.28 190 0.92 190 0.92 178 0.62
423 198 171 0.15 173 0.29 195 0.94 195 0.93 182 0.64
424 199 173 0.15 176 0.3 199 0.94 194 0.88 185 0.66

Table (7.26) SRGM Estimation for Stage 3 the GOF value for Release 1: Approach
2

Week
No.

No. of
CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

446 416 387 0.2 391 0.37 413 0.94 414 0.95 400 0.69
447 417 391 0.21 395 0.39 420 0.95 420 0.95 405 0.71

Table (7.27) SRGM Estimation for Stage 4 the GOF value for Release 1: Approach
2
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Table (7.28) SRGM Estimation for Stage 5 the GOF value for Release 1: Approach
2

Week

No.

No.

of

CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

463 426 427 0.39 427 0.39 427 0.38 427 0.39 427 0.38

464 426 427 0.36 427 0.36 427 0.35 427 0.36 427 0.35

465 426 427 0.33 427 0.33 427 0.32 427 0.34 427 0.32

466 426 427 0.31 427 0.31 427 0.3 427 0.32 427 0.3

467 426 427 0.29 427 0.29 427 0.28 426 0.3 427 0.28

468 426 427 0.27 427 0.27 427 0.26 427 0.28 427 0.26

469 426 426 0.26 426 0.26 426 0.25 426 0.27 426 0.25

470 434 428 0.32 428 0.32 428 0.32 428 0.32 428 0.32

471 435 430 0.42 430 0.41 430 0.42 430 0.42 430 0.42

472 435 431 0.5 431 0.5 431 0.51 431 0.51 432 0.5

473 436 432 0.57 432 0.57 432 0.58 432 0.58 432 0.58

474 436 433 0.63 433 0.63 433 0.63 433 0.63 434 0.63

475 437 434 0.68 434 0.67 435 0.68 435 0.68 435 0.68

476 437 435 0.71 435 0.71 435 0.72 435 0.72 436 0.72

477 437 436 0.74 436 0.74 436 0.75 437 0.77 436 0.75

478 437 437 0.77 437 0.76 437 0.77 437 0.79 437 0.77

479 439 438 0.79 438 0.79 438 0.8 438 0.81 438 0.79

480 439 438 0.81 438 0.81 438 0.82 439 0.83 438 0.82

Continued on next page
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Table 7.28 – continued from previous page

Week

No.

No.

of

CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

481 439 439 0.83 439 0.83 439 0.83 440 0.85 439 0.83

482 439 440 0.84 439 0.84 440 0.84 440 0.85 440 0.84

483 440 440 0.85 440 0.85 440 0.76 441 0.86 440 0.86

484 440 441 0.86 441 0.86 441 0.86 441 0.87 441 0.86

485 441 441 0.87 441 0.87 441 0.87 442 0.88 442 0.87

486 443 442 0.88 442 0.87 442 0.89 443 0.88 442 0.89

487 449 443 0.88 443 0.88 443 0.88 444 0.89 444 0.88

488 451 445 0.88 445 0.87 445 0.88 440 0.89 445 0.88

489 452 446 0.88 446 0.88 446 0.88 434 0.9 446 0.88

490 454 448 0.88 447 0.88 448 0.88 449 0.9 448 0.88

491 454 449 0.88 449 0.88 449 0.89 450 0.91 449 0.89

492 455 450 0.89 450 0.88 451 0.9 452 0.91 450 0.9

493 455 451 0.9 451 0.89 452 0.9 453 0.92 452 0.9

494 457 453 0.9 453 0.9 454 0.91 454 0.93 453 0.91

495 463 454 0.9 454 0.9 455 0.9 456 0.93 455 0.9

496 464 456 0.9 456 0.9 458 0.9 458 0.93 456 0.9

497 473 458 0.88 458 0.88 460 0.89 461 0.92 459 0.89

498 473 459 0.88 460 0.87 461 0.88 463 0.91 461 0.88

499 475 461 0.87 462 0.87 463 0.88 465 0.91 463 0.88

Continued on next page
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Table 7.28 – continued from previous page

Week

No.

No.

of

CRs

G-O DSS Gompertz M Gompertz Yamada

Est. R2 Est. R2 Est. R2 Est. R2 Est. R2

500 475 462 0.87 465 0.87 465 0.89 467 0.92 465 0.89

501 475 463 0.87 466 0.88 468 0.89 469 0.92 467 0.89

502 475 464 0.87 468 0.89 469 0.9 471 0.93 469 0.9

503 475 465 0.87 470 0.89 471 0.9 473 0.93 470 0.9

504 475 466 0.88 471 0.9 472 0.91 474 0.94 472 0.91

505 475 468 0.88 472 0.9 473 0.91 476 0.94 473 0.91

In Stage 4, both Gompertz and Modified Gompertz had an R2 value of 0.95 and

an estimated value of 420 (see Table 7.27). Since both models were equal, we can

selecting either of them. The Gompertz model was selected for this stage.

Table 7.28 shows that by week 505, four of the SRGMs show an R2 that exceeds

the threshold of 0.9, but only the Modified Gompertz model has an estimated num-

ber of CRs that is greater than or equal to the actual number of CRs. Therefore,

for this release four SRGMs were selected for the first, third, fourth and fifth stage.

The selection process failed to find a fit SRGM for Stage 2.

7.4.1.3 Approach 3

Using Approach 2, SRGMs were selected for each stage while Approach 3 uses

the selected model for each stage and applies Time Transformation calculations. For
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(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
410 139 26 143 409 145
411 141 26 147 410 148
412 145 27 150 411 151
413 148 27 154 412 155
414 157 28 158 413 158
415 160 29 162 414 161
416 162 29 165 415 165
417 166 30 169 416 168
418 173 30 173 417 172
419 180 31 177 418 176
420 192 32 182 419 180
421 194 33 186 420 183
422 194 33 190 421 187
423 198 34 195 422 191
424 199 35 199 423 195

Table (7.29) CR estimation with TT for Stage 3 of Release 1

(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
437 342 255 354 435 352
438 356 260 360 436 358
439 366 266 367 437 365
440 374 271 373 438 372
441 378 277 379 439 378
442 385 282 386 440 385
443 396 288 392 441 393
444 407 294 399 442 400
445 411 300 406 443 407
446 416 306 413 444 415
447 417 312 420 445 422

Table (7.30) CR estimation with TT for Stage 4 of Release 1

the first and second stage no TT is required, since they are using the SRGM of the

first stage and no new SRGM is selected after the change. Using the models chosen

for the first two stages, we calculate a newly transformed time value in weeks then

we use this new time in the new SRGM selected for the current stage. For the third

stage, Table 7.29 shows the values of the estimated CRs using M1(t) and M2(t) and

then the value of CRs forM(t) using the new time after transformation (TT). Table

7.30 shows estimated values for Stage 4 and Table 7.31 shows estimated values of

Stage 5.
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(Actual Week Actual CRs M1(t) Estimation M2(t) Estimation Week after TT M(t) Estimation
496 464 976 463 501 463
497 473 992 464 502 464
498 473 1008 466 503 465
499 475 1025 467 504 467
500 475 1041 468 505 468
501 475 1058 470 506 470
502 475 1075 471 507 471
503 475 1092 473 508 473
504 475 1110 474 509 474
505 475 1127 476 510 476

Table (7.31) CR estimation with TT for Stage 5 of Release 1

7.4.2 CR Prediction

To compare the predictive ability of the three approaches we compare their

ability to predict CRs on a monthly basis after model selection. Table 7.32 shows

the predictive ability of the Modified Gompertz model month-to-month after the

model was selected in week 335. The predicted number of CRs matches the actual

number after a month of selecting the model, since the relative error value (RE) is

zero. After two months the model under-predicts the number of CRs where RE is

-0.17. The model continues to give accurate predictions after 3 months and after

four months of selection since RE is zero. The prediction ability decreases after 5

months when RE is -0.22 and is worse with an RE of -0.33 by the sixth month. The

next rows in Table 7.32 show CR predictions after each change-point. We included

these predictions on those weeks on this table for comparison purposes. We would

like to analyze and compare the performance of Approach 1 compared to the other

two approaches. In general, we find that the RE value keeps getting worse and the

quality of the prediction is poor as time keeps progressing.

When we look at the predicted number of CRs for Approach 2 in Table 7.33

we find that the prediction ability of the models is much better than the previous

approach. In week 424, the Gompertz model was selected to predict CRs in the
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future. Although this model has a negative RE, which means that it keeps under-

predicting CRs, the error rate is lower than RE in Approach 1 and closer to the actual

values. In week 447, the Gompertz model was selected. Looking at the predictions

and RE values of this model compared to the same weeks using Approach 1, we find

that this model performs a lot better. The predicted values are closer to the actual

values and the RE values are lower. This is also true for the fourth model selected

for the last stage, where the RE values are even smaller and closer to the actual

values. These values provide great improvement in prediction ability compared to

the predictions of Approach 1, which seems to diverge drastically as time progresses.

We then look into the results of CR prediction for this release using approach 3,

Table 7.34. The first row is not different than the model selected for Approach 1 and

2 for the first stage, therefore there are no differences to be discussed. Afterwards we

find that the RE values for Approach 3 are much better than RE for the same months

of Approach 1 but worse than the RE values of Approach 2. To better compare

Approach 2 and Approach 3 since their results are comparable we highlighted the

weeks when one of these approaches performed better in green and the approach

that performed poorly with red. We find that Approach 3 performed worse than

Approach 2 in two stages after change-points and the two approaches performed

equally on the last stage. Therefore, we can say that the results of Approach 2 were

better than Approach 3 for this release.

7.5 Discussion

When we applied the SRGM estimation using a curve-fitting method and CR

prediction on a single release back in Chapter 5, we had the chance to observe and

compare prediction results for a single release. Although the initial results concluded
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Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

335 5 CRs 5 5 6 7 7 8
RE 0.00 -0.17 0.00 0.00 -0.22 -0.33

424 199 CRs 38 41 45 49 53 58
RE -0.83 -0.84 -0.86 -0.87 -0.87 -0.86

447 417 CRs 62 67 73 79 86 93
RE -0.85 -0.84 -0.83 -0.81 -0.80 -0.79

507 476 CRs 191 205 220 236 253 271
RE -0.60 -0.57 -0.54 -0.51 -0.48 -0.44

Table (7.32) CR Predictions and Relative Errors for six months into the Future
using Approach 1 for Release 1

Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

335 5 CRs 5 5 6 7 7 8
RE 0.00 -0.17 0.00 0.00 -0.22 -0.33

424 199 CRs 218 239 262 286 312 340
RE -0.02 -0.09 -0.20 -0.24 -0.23 -0.19

447 417 CRs 449 480 513 547 584 623
RE 0.07 0.13 0.20 0.28 0.37 0.43

507 476 CRs 482 489 496 503 511 519
RE 0.01 0.02 0.03 0.05 0.06 0.07

Table (7.33) CR Predictions and Relative Errors for six months into the Future
using Approach 2 for Release 1

Week Actual CRs Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

335 5 CRs 5 5 6 7 7 8
RE 0.00 -0.17 0.00 0.00 -0.22 -0.33

424 199 CRs 212 231 250 271 294 318
RE -0.05 -0.12 -0.23 -0.28 -0.28 -0.24

447 417 CRs 454 487 523 561 602 644
RE 0.08 0.15 0.23 0.32 0.41 0.48

507 476 CRs 487 492 498 504 513 521
RE 0.01 0.02 0.03 0.05 0.06 0.07

Table (7.34) CR Predictions and Relative Errors for six months into the Future
using Approach 3 for Release 1
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that Approach 3 performs better than Approaches 1 and 2 in CR prediction, we could

not generalize our findings without applying those approaches to several releases.

Therefore we applied the three approaches to the three remaining releases of the

system. We applied all three curve-fitting approaches described in Sections 5.3.1,

5.3.2 and 5.3.3 to select models, and then used the selected models to predict future

CRs. To answer the the research questions asked at the beginning of the chapter:

• RQ1: Can we generalize the use to the three approaches for curve-fitting on

other releases in a multi-release system?

Regarding Approach 1, which is the curve-fitting approach that does not con-

sider change: what we have observed in the four releases, it is applicable and

provides CR predictions with low RE in many cases for up to six months to

the future see Tables 7.32, 7.21 and 7.9. This approach performs well if no

change-points were introduced. After the change-points, and as the time of

the release progresses, this model starts to provide poor predictions. In many

cases, the model diverges from the actual cumulative CR curve.

The second approach, the multi-stage model, selects different models after the

introduction of each change-point. This approach has an advantage over Ap-

proach 1, as it provides better accuracy of cumulative CR prediction especially

after change-points. On the other hand, we noticed that this approach failed

several times to find a suitable model for a certain stage after change, which

reduces our chances of making any predictions for that stage. This happened

in the second stage of Release 1 and the second stage of Release 3. When

we are not able to make predictions for these stages, it deprives us from un-

derstanding our system’s behavior for a period of time. When using the first

approach we would have used the initial model selected regardless of the stage
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even if these predictions carry a higher error rate. If approach 3 had been

used, it would still use the model before change until a new model is selected

to be later processed. Notice that these problems occurred in stages where

change-points happened close together. In the first release the two change-

points were 20 weeks apart, while in Release 3 the two change-points where

35 weeks apart.

• RQ2: Can we generalize our findings that the TT approach performs better

than the other curve-fitting approaches?

To make a generalization regarding an approach’s prediction ability, we need

to find a pattern of repeated behavior to make a conclusive statement. When

Approach 1 is applied to an evolving system we find that it has relatively low

RE values before evolution occurs. The ranges of RE per release for the first

month-to-month predictions are:

– Release 1: -0.33 to zero

– Release 2: -0.14 to zero

– Release 3: -0.06 to 0.22

– Release 4: -0.13 to 0.11

These RE values increase or decrease dramatically after change-points. In all

four releases we find that Approach 1 has higher RE values than both Approach

2 and Approach 3 after change-points. Regarding Approach 2, we find that

the predictive ability of this approach is higher than Approach 1, since the RE

values is usually lower. It also provides predictions with smaller RE values in

many stages than the RE values of predictions provided by Approach 3, such as

for the second stage of Release 2 or predictions for the second and third stages
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of Release 1. On the other hand, Approach 3 provided prediction with better

RE values in some other cases. Approach 3 was better than Approach 2 for

most of the predictions for Releases 3 and 4. It also provided better month-to-

month predictions for Release 2. But for Release 1 we found that in some stages

Approach 3 predictions had equal RE values to Approach 2 or even worse

than Approach 2. Therefore, it is difficult to generalize findings regarding the

superiority of one approach over the other with regards to Approach 2 and

Approach 3.

Using Time Transformation (TT) should provide an improvement to the predic-

tion by adjusting the time of the model. When TT was applied to the third release,

it provided great improvement to CR prediction by reducing the RE. Figure 7.1

shows how M(t) is closer to the actual CRs for Stage 3 from M1(t) which is the

model selected for the first stage using Approach 1 and M2(t) which is the curve

selected for Stage 3 using Approach 2. In Stages 4 and 5, the M(t) provides very

slight improvement over M2(t) with being closer to the actual curve.

For the second release (Figure 7.2), we find that in general M(t) and M2(t)

provide very predicted values that are very close. The charts do not show one

model providing great improvement over the other.

Figure 7.3 shows the TT models for Release 1. We can see that in Figure 7.3a

M(t) is close toM2(t) but is slightly shifted under the curve for the actual cumulative

CRs. This causes the model to underestimate future CRs. This is due to the effect

of using both M1(t) and M2(t) which cause M(t) to be between the two models.

M1(t) is the model selected by Approach 1, which eventually fell below the CR curve

after the change-point. In the following stage, the models were closer to the curve
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(a) M1(t), M2(t) and M(t) in Stage 3

(b) M1(t), M2(t) and M(t) in Stage 4

(c) M1(t), M2(t) and M(t) in Stage 5
Figure (7.1) TT models per stage for Release 3
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(a) M1(t), M2(t) and M(t) in Stage 2 (b) M1(t), M2(t) and M(t) in Stage 4

(c) M1(t), M2(t) and M(t) in Stage 4 (d) M1(t), M2(t) and M(t) in Stage 5
Figure (7.2) TT models per stage for Release 2

for the actual cumulative CRs, which brings M(t) closer to it and provides more

accurate predictions.

This demonstrates that although Approach 3 sometimes provides improvements

for cumulative CR predictions, the quality of those predictions are affected by the

quality of the selected models prior to performing TT. Therefore, it is clear that

there is no straightforward answer that applies to any dataset. Each approach is

suitable for a specific type of data. If a release has minimal changes that do not affect

the CR rate, then Approach 1 would be a suitable approach. When evolution exist,

the choice is between Approach 2 and Approach 3. Approach 2 provides a simple

solution that re-estimates models as required. This is beneficial if at each stage

there are enough data-points to perform the curve-fitting. It is not recommended

when change-points are frequent. The problem with this approach is that under-
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(a) M1(t), M2(t) and M(t) in Stage 3

(b) M1(t), M2(t) and M(t) in Stage 4

(c) M1(t), M2(t) and M(t) in Stage 5
Figure (7.3) TT models per stage for Release 1
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estimating of CRs is likely to occur due to over-fitting. In addition, frequent changes

might lead us to not having enough data to fit a model and those cases happened in

Releases 1 and 3. Approach 3, using TT overcomes this issue in Approach 2. After

a change-point, when a model is selected, TT includes data from the beginning

of the release to estimate the new model parameters and this overcomes the risk of

curve-fitting with too little data. TT also reduces the risk of over-fitting models and

causing under-estimation. But there is still a risk of under-estimation or providing

poor predictions depending on the behavior of the models selected prior to TT.

7.5.1 Validity Threats

We still cannot claim that this approach is generalizable, which is an external

validity threat. Although we used our method on several releases of an evolving

system, the outcomes of these releases don’t follow the same pattern. There is a

general outcome that we claim it improves predictions but this is solely dependent on

the behavior of the release in terms of cumulative CRs and on the selected models.

We try to overcome this threat by repeating the process of modeling among multiple

releases to provide more confidence in the results. We also do not claim that it

will produce similar outcomes for other software systems. This is an aerospace

system with a CR database that has many more enhancement requests than defect

resolution requests. Other systems in different disciplines might not have the same

type of data. Therefore, we cannot guarantee that similar findings are going to be

found. This also can be a Construct threat to validity, which refers to the relation

between theory and observation. Depending on the type of the collected data and

the density of data other systems models might fit differently.
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Chapter 8

Effort Estimation

8.1 Problem Statement

Effort estimation is key in any software development organization. Estimating

effort is essential to software managers to determine the cost of software development

and maintenance. This helps them in making informed decisions regarding staffing,

future maintenance decisions, and overall business related decisions. As critical as it

is choosing the right method for estimating software effort, it is challenging to find

the right method that suits a specific project. Software projects are very diverse in

the amount and type of effort they consume. Our case study has data regarding

the number of CRs, CR priority, type of change, functional area (for release 4 only),

Lines of Code, effort, submission date, and completion date, (see Section 3.2.1). To

examine the most suitable effort estimation method for our system we first address

the following research questions:

• RQ1: Can we use one of the existing methods for software effort estimation?

• RQ2: How accurately do the existing effort estimation methods predict effort

for an evolving system?
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• RQ3: Are there any alternative approaches that provide better estimation of

effort?

According to the background conducted in Section 2.4.2, we find that most common

algorithmic software effort estimation methods used in literature basically use a

COCOMO based method [25], Function Point Analysis (FPA) based method [5] or

estimation by analogy based method [116]. We lack information regarding function

points in our data. We don’t know if a CR is analogous to any other CRs because

CR description is not available. Therefore, the COCOMO model is the only model

that is potentially applicable to our case study.

We identify and explore the use of the COCOMO model in Section 8.2. Next,

we discuss cumulative effort prediction in Section 8.3. The research questions are

answered in Section 8.4, followed by threats to validity in Section 8.5. Finally we

draw conclusions in Section 8.6

8.2 Effort Estimation Using COCOMO

The COCOMO model uses SLOC data to estimate effort. The Basic COCOMO

equation takes the form of :

E = aSb (8.1)

Where E is effort, S refers to the lines of code, a is a coefficient and b is an exponent.

COCOMO model is widely used in different forms. The three forms of COCOMO

models are: basic, intermediate and detailed. The basic model uses Lines of code to

estimate effort. The intermediate model takes more cost drivers into account. These

drivers are attributes of the product, the hardware, the project and the personnel.

These values are used to calculate the Effort Adjustment Factor (EAF), which is then
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multiplied with the formula for the basic model to estimate effort. This equation is

calculated as follows:

E = (aSb) ∗ EAF (8.2)

The detailed model incorporates the characteristics of the intermediate model with

an assessment of the cost drivers for each step of the software engineering process.

These include planning and requirements, system design, detailed design, module

code and test, etc.[24][20].

While the advanced versions of the COCOMO model that include project at-

tributes could enhance the accuracy of its results, none of this information is avail-

able in our case study. Each entry in the CR database reports Added SLOC

(SLOCA), Modified SLOC (SLOCM), autogenerated SLOC (SLOCG) and Deleted

SLOC (SLOCD). Thus S = SLOCA + SLOCM + SLOCG + SLOCD. This lead

to the following equation:

E = a ∗ ((SLOCA+ SLOCM + SLOCG+ SLOCD)b) (8.3)

If we assume that the effort for completing a CR is the sum of the effort for adding

code, modifying code, deleting code and auto-generating code, plus some effort to

analyze the task, then we have the following equation:

E = a0 + a1SLOCA
b1 + a2SLOCM

b2 + a3SLOCG
b3 + a4SLOCD

b4 (8.4)

We use these two regression equations to find the most appropriate model for ef-

fort estimation. To measure the effectiveness of the regression model we use the

Goodness-of-Fit measure, R2. We require R2 to be greater than 0.9 for an acceptable

model. Beside the equations above we also apply the model with SLOCA, SLOCM
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Figure (8.1) Case Study Design

and SLOCD only in some cases to test the fit without the influence of SLOCG.

The reason behind that is that auto-generated SLOC values are much higher than

SLOCA, SLOCM and SLOCD. SLOCG is auto-generated code and may not track

well with human effort. This lead to the following alternative equations:

E = a ∗ ((SLOCA+ SLOCM + SLOCD)b) (8.5)

and

E = a0 + a1SLOCA
b1 + a2SLOCM

b2 + a4SLOCD
b4 (8.6)

We analyze Release 4 and Release 3. Both releases contain SLOC Added, SLOC

Modified, SLOC Deleted and SLOC Generated in addition to Effort data. The first

and second releases do not report SLOC data.

8.2.1 Case Study Design

This case study is designed based on the standard design for experiments by

Wolin et al. [139]. We use different sets of data as independent variables to be

processed using different equations to estimate effort and calculate the R2 value.

The results of the process are then analysed and discussed. These independent

variables are called factors and the equations are treatments. We want to compare
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the four equations in Section 8.2 against each others with having a combination of

different factors.

8.2.2 Results: Part 1

We divided case study into two parts. The first part has two factors and four

treatments are classified as the following:

• Factor A: Data

– A1: Include all Data

– A2: Include only valid data

• Factor B: Outliers

– B1: Outliers included

– B2: Outliers Excluded

• Treatments (T): Equations

– T1: Equation 8.3

– T2: Equation 8.5

– T3: Equation 8.4

– T4: Equation 8.6

The different combinations of factors and treatments are applied as shown in

Table 8.1
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Case No. Factor A Factor B Treatment
1 A1 B1 T1
2 A2 B1 T1
3 A1 B2 T1
4 A2 B2 T1
5 A1 B1 T2
6 A2 B1 T2
7 A1 B2 T2
8 A2 B2 T2
9 A1 B1 T3
10 A2 B1 T3
11 A1 B2 T3
12 A2 B2 T3
13 A1 B1 T4
14 A2 B1 T4
15 A1 B2 T4
16 A2 B2 T4

Table (8.1) Factor and Treatment combinations for Release 4

8.2.2.1 Release 4

Release 4 is 398 weeks long and has 211 CRs. We used effort data and SLOCA,

SLOCM, SLOCG and SLOCD data to fit the four models represented in the equa-

tions 8.3-8.6. When applying the case study we exclude the factor A2, because

we don’t have to exclude invalid data for this release. The data are all valid and

included, therefore, we apply cases: 1, 3, 5, 7, 9, 11, 13, and 15 from Table 8.1.

Table 8.2 shows the R2 values after applying these cases: 1, 3, 5, 7, 9, 11, 13,

and 15 from Table 8.1 to Release 4 CR data.

We find that applying model 8.3 has an R2 of 0.115 when using the full CR

dataset and an R2 of 0.11 when outliers were excluded. Using model 8.5 results in

an R2 of 0.098 and 0.174 when outliers are excluded. Applying model 8.4 gives an

R2 of is 0.172 for the full CR dataset and R2 of 0.495 when outliers are excluded.

Using the model based on the equation 8.6 results in an R2 of 0.141 for the full
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Case No. Variable R2

1 a=18.356, b=0.123 0.115
3 a=17.849, b= 0.131 0.11
5 a=19.009, b=0.157 0.098
7 a=11.027, b=0.289 0.174
9 a0 = 28.55, a1= 23.982, a2= -22.335, a3=4.261,

a4= 16.589, b1=0.125, b2=-0.331, b3=0.221,
b4=-0.174

0.172

11 a0 = 28.302, a1= 0.812, a2= 0.12, a3=4.164,
a4= 0.65, b1=0.481, b2=0.863, b3=-8.278e-10,
b4=0.349

0.495

13 a0 =20.223, a1=16.953, a2= 3.705, a4= 9.342,
b1=0.143, b2=-3.885e-7, b4=0.2

0.141

15 a0 = 11.66 , a1= 9.019 , a2= -0.011, a4= -6.877,
b1=0.37, b2=1.184, b4=-7.317

0.21

Table (8.2) The results of using different Factors and Treatments (Release 4)

CR dataset and R2 of 0.21 when outliers are excluded. In general, we find that all

four models have R2 values that are much lower than the threshold for acceptable

models.

8.2.2.2 Release 3

We apply the case study to Release 3. In Release 3, we noticed that this release

has a number of CRs where effort is greater than one hour, but the values of SLOCA,

SLOCM, SLOCG and SLOCD are all zero or missing (had to be imputed according

to Section 3.2.2.1). Almost 13% of CRs had missing SLOC data and 9% of CRs

reported SLOC values of all zeros. This means 22% of CRs are invalid for proper

effort estimation. We excluded these CRs and applied the models to the remaining

311 CRs. Therefore We apply the case study to all 16 cases.

199



Case No. Variable R2

1 a=33.369, b=-1.009e-8 0.215
3 a= 18.25, b=0.147 0.059
5 a= 27.59, b=-4.478e-9 0.2
7 a= 9.197, b=0.342 0.185
9 a0 = 1.017, a1=9.477, a2=4.348, a3=6.957,

a4 =7.296, b1=0.324, b2=-1.935, b3=0.07,
b4=0.158

0.349

11 a0 =19.248, a1=3.172, a2=-2.35, a3=3.846,
a4=6.307, b1=0.474, b2=-0.597, b3=-1.006e-6,
b4=0.227

0.601

13 a0 =9.327 , a1=9.251 , a2= -6.401, a4=7.394,
b1=0.331, b2=0.157, b4=0.152

0.242

15 a0 =239.882, a1=3.491, a2=-232.463,
a4=5.857, b1=0.476, b2=-0.009, b4=0.192

0.355

Table (8.3) The results of using different Factors and Treatments (Release 3) with
all data (Factor A1)

Case No. Variable R2

2 a=17.366, b=0.158 0.173
4 a= 18.335, b=0.147 0.139
6 a= 13.434, b=0.268 0.282
8 a= 10.058, b=0.323 0.296
10 a0 = 5.768, a1=6.137, a2=2.336, a3=-1.32e-14,

a4 =11.501, b1=0.373, b2=-7.039, b3=2.459,
b4=-0.22

0.407

12 a0 =5.062, a1=6.478, a2=1.003, a3=14.111,
a4=7.039, b1=0.357, b2=-2.637, b3=-5.123e-8,
b4=0.179

0.228

14 a0 =42.776 , a1=7.604 , a2= -39.764, a4=-
0.001, b1=0.367, b2=-0.119, b4=1.518

0.347

16 a0 =279.595, a1=6.512, a2=-275.26, a4=6.001,
b1=0.38, b2=-0.007, b4=0.164

0.338

Table (8.4) The results of using different Factors and Treatments (Release 3) with
only valid effort data (Factor A2)
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Table 8.3 shows the results of applying cases 1, 3, 5, 7, 9, 11, 13, and 15 Where

Factor A includes all data, both valid and invalid (Factor A1). The results show

that R2 values are below the acceptable threshold, ranging from 0.059 to 0.60.

Table 8.4 shows the results of applying the remaining cases where only data

with valid effort data is included (Factor A2). R2 values range from 0.139 to 0.407.

Therefore, this attempt did not succeed in providing an acceptable model either.

8.2.3 Results: Part 2

Since the results of Part 1 in Section 8.2.2 did not provide us with fitted models

we investigate the ability to apply these models on subsets of the data. We apply

the case study with different combinations of factors and treatments according to

the data available for each release.

8.2.3.1 Release 4

We investigate if effort estimation by type of CR is more successful. Therefore,

looked into Priority, Functional Areas and Duration of a CR if they could be used

as factors along with the two basic models that include all SLOC data. i.e. we have

one factor and two treatments applied each time.

We collected CRs that are in the top 5 maintenance prone areas (FA1 - FA10 -

FA11 - FA13 - FA14), these are areas with more than 10 CRs. There are 163 CRs

in the top five maintenance prone Functional Areas. The remaining 48 CRs are in

the remaining Functional Areas. This top maintenance prone areas are processed

alone as one factor. We also divide the CR data into groups based on their priority.

The reasoning behind that is that CRs that share the same priority for instance

may require a certain effort that is different than for CRs from other priorities.
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We found that about 83% of the CRs are of priority C2R (routine maintenance).

Therefore, we divided the CRs into two factors, one with priority of C2R and the

other containing CRs of the remaining priorities. The second group has only 36

CRs. Lastly, we investigated whether there was a common effort pattern based on

how long a CR was open. Some of the CRs were resolved within a year and some

took longer than that. We divided the dataset into two factors, one has CRs that

were resolved within a year (177 CRs), and the other group that took more than a

year, (34 CRs).

To summarize, the factors and treatments for Release 4 for this part are:

• Factor A: Data

– A1: CRs for the top 5 Functional Areas

– A2: CRs for all Priorities except "C2R"

– A3: CRs with Priority "C2R" only

– A4: CRs with duration of more than one year

– A5: CRs with duration of within a year

• Treatments (T): Equations

– T1: Equation 8.3

– T2: Equation 8.4

The results of applying the different combinations of factors and treatments are

shown in Table 8.5

Table 8.5 shows that fitting the model based on equation 8.3 to the top 5 mainte-

nance prone areas has an R2 of 0.287 only, while fitting the model based on equation

8.4 has an R2 of 0.147. It also reports a very low R2 for both sets of priorities (less
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Factors and
Treatments

Variable R2

A1 T1 a = 13.964, b = 0.132 0.287
A1 T2 a0=23.642, a1=0.002, a2=1.61e-5, a3=7.96e-5,

a4=0.153, b1=136, b2=0.452, b3=0.398, b4=-
3.519e-8

0.147

A2 T1 a=22.122, b=0.107 0.123
A2 T2 a0=-122.582, a1=137.085, a2=123.582,

a3=281.089, a4=0.98, b1=-5856.142,
b2=33138.147, b3=0.008, b4=2.734

0.484

A3 T1 a=17.603, b=0.126 0.116
A3 T2 a0=2354.765, a1=335.006, a2=8.539, a3=-

2329.19, a4=-0.355, b1=196649.463, b2=677,
b3=-2.625e-9, b4=1.362

0.85

A4 T1 a1=34.704, b1=0.114 0.122
A4 T2 a0=32.106 , a1=0, a2=-4.896r-10, a3=-18.531,

a4=20.857, b1=2.698, b2=4.383, b3=822276.133,
b4=-46.647

0.51

A5 T1 a=15.828, b=0.113 0.123
A5 T2 a0=2 , a1=16.5, a2=-2.248, a3=10.703, a4=3.248,

b1=-2066781.355, b2=190707.082, b3=28851.005,
b4=-49.157

0.32

Table (8.5) The results of Part 2 of factors and treatment combinations (Release
4)
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than 0.2). The value of R2 is much higher when the model is based on equation 8.4.

R2 for routine maintenance (C2R) is 0.85. This is almost good enough to accept

the model. However, for other groups of CRs this model shows only very small R2

values. For equation 8.3 the results are (R2 is 0.122 and 0.123, respectively). Using

the model based on equation 8.4 improves the fit somewhat (R2 is 0.51 and 0.32,

respectively). Neither has a good enough fit.

8.2.3.2 Release 3

We also investigate if effort estimation by type of CR provides better results.

Therefore, looked into Change Type, Priority, and Duration of a CR if they could

be used as factors along with the two basic models that include all SLOC data. i.e.

we have one factor and two treatments applied each time.

CR data are divided according the Change Type. Notice that Change Type data

is available for CRs of Release 3 but not Release 4, while Functional Area is available

for Release 4 only. The reasoning behind that grouping is that CRs that share the

same Change Type may require similar effort. We found that about 73% of the CRs

are Anomalies which are CRs collected during development until integration test,

while SCR and STR are CRs collected afterwards. Therefore, we divided the CRs

into two subgroups, one with Anomalies (291 CRs), and the other with both SCR

and STR (110 CRs). When dividing the dataset according to priority we find that

87% of CRs are of C2R priority, (351 CRS), and the remaining CRs are of other

priorities, (50 CRs). Dividing the CRs according to duration shows 355 CRs that

were open for a year or less, and 46 CRs for longer than one year.

To summarize, the factors and treatments for Release 3 for this part are:

• Factor A: Data

204



– A1: CRs for Anomalies

– A2: CRs for SCRs and STRs

– A3: CRs for all Priorities except "C2R"

– A4: CRs with Priority "C2R" only

– A5: CRs with duration of more than one year

– A6: CRs with duration of within a year

• Treatments (T): Equations

– T1: Equation 8.3

– T2: Equation 8.4

The results of applying the different combinations of factors and treatments are

shown in Table 8.6. CRs of C2R priority has an R2 of 0.393 when model based on

equation 8.4 is applied, and 0.213 for the remaining priorities, while it has an R2

of 0.191 when equation 8.3 is applied for C2R and 0.97 for the remaining priorities.

Based on equation 8.3 to Anomalies and non-anomalies. The R2 values are 0.125

and 0.263, respectively and 0.321 and 0.262 when equation 8.4 is applied. The

results for the remaining factors regarding the duration are not better, R2 values

range from 0.156 to 0.479. This highlights that regardless of the releases and the

types of CRs, these models cannot be used for effort estimation. All R2 values are

far below the threshold of 0.9.

This investigation was performed in an effort to find out if the different versions

of COCOMO type models can be used in effort estimation. Obviously from the R2

values, the models were not a success in terms of fitting data for any release. Model

8.4 has better R2 values than model 8.3, but in general the R2 value is less than the
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threshold. Therefore, we cannot use these models in effort estimation and we need

to find an alternative approach.

8.3 Cumulative Effort Prediction

In Chapter 5, we were able to predict the number of cumulative CRs in a release

based on SRGMs fit to cumulative CR data. This method only requires the avail-

ability of number of CRs over time. Since we noticed that cumulative effort follows

similar growth pattern to CR growth with the existence of change-point (Figures

3.5,3.6,3.6, 3.8), we would like to investigate the ability to use cumulative effort in

predicting future effort. This method would include all four releases since it does

not depend on the availability of any other attributes such as SLOC, which makes

it more applicable and generalizable.

To predict cumulative effort with the existence of change-points we would apply a

multi-stage model that uses regression to find a fit model, and then uses the selected

model to predict effort until a change-point occurs.

Figure 8.2 shows the process of cumulative effort prediction which is loosely

based on the CR prediction process in Chapter 5. Like cumulative CRs we should

have a minimum of 5 CRs to start model estimation and after each change-point

we need at least 10 weeks to start prediction. After collecting effort data we check

if any regression model fits the data. For a model to be considered fit, we need

to measure the Goodness-of-fit of R2 of 0.9 or greater. Also, the estimated effort

should be greater than or equal the actual effort. If a model was found to be fit

then it is used for future effort prediction, otherwise more data should be collected.

The model is used for prediction until a change-point is found, where the whole

model estimation process restarts. This whole process continues until the end of the
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Factors and
Treatments

Variable R2

A1 T1 a=15.302, b=0.146 0.125
A1 T2 a0=16.065, a1=1.931, a2=0.147, a3=-0.001,

a4=0.107, b1=0.518, b2=0.147, b3=1.009,
b4=0.522

0.321

A2 T1 a=27.883, b=0.139 0.263
A2 T2 a0=45.644, a1=-17.953, a2=-14.074, a3=-

26.01, a4=1.294, b1=-36.438, b2=-448.952,
b3=4385.306, b4=1.172

0.262

A3 T1 a=17.734, b=0.144 0.097
A3 T2 a0=822.097, a1=4.689e-165, a2=-820.091,

a3=0.121, a4=1.247, b1=4.969, b2=-0.014,
b3=0.511, b4=0.565

0.213

A4 T1 a=17.531, b=0.157 0.191
A4 T2 a0=-303.446, a1=10.413, a2=307.523, a3=3.019e-

24, a4=10.623, b1=0.32, b2=-0.004, b3=4.304,
b4=0.131

0.393

A5 T1 a1=0.065, b1=0 0.208
A5 T2 a0=-3.369 , a1=16.315, a2=15, a3=64.158, a4=-

6.337, b1=0.291, b2=-1545.214, b3=1874.871,
b4=2111054.639

0.244

A6 T1 a=17.727, b=0.148 0.156
A6 T2 a0=26.084 , a1=0.101, a2=0.013, a3=0.117,

a4=-0.007, b1=0.448, b2=-3.949, b3=-7.61e-8,
b4=0.542

0.479

Table (8.6) The results of Part 2 of factors and treatment combinations (Release
3)
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Figure (8.2) Cumulative effort prediction process
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release. To apply this process we do three major steps, first we estimate change-

points for each release, then we apply model estimation and prediction and finally

we compare prediction ability of these models among the four releases.

8.3.1 Change-point Estimation

Since not all releases have SLOC data to use in identifying change-points we

apply the likelihood ratio test explained in Section 4.2.3 using cpts package in

R [108] to identify change-points in the four releases.

Four change-points were estimated for Release 4, (see Figure 8.3). These change-

points are in weeks 136, 201, 255, and 338. The first change-point was estimated

after only 4 CRs. Fitting a model for fewer than 4 CRs is not practical if non-linear

regression is used. It is too early to predict the behavior of the cumulative effort

in order to make an acceptable prediction. Therefore, we do not consider 136 a

change-point, so our list of change-points for Release 4 is: 201, 255 and 338.

Release 3 has four estimated change-points as well (see Figure 8.4), these are in

weeks 327, 337, 369 and 406. Weeks 327 and 337 are just 10 weeks apart which is the

minimum number of weeks needed to start predicting. Due to these change-points

being very close together we will use only the first as a change-point in our study.

Therefore, the list of change-points for Release 3 are 327, 369 and 406.

Release 2 has four estimated change-points as shown in Figure 8.5. These change-

points are in weeks 212, 236, 262 and 282.

Figure 8.6 shows the estimated change-points for Release 1. Four change-points

were estimated in weeks 349, 383, 396 and 423.

209



Figure (8.3) Estimated change-points in cumulative effort for Release 4

Figure (8.4) Estimated change-points in cumulative effort for Release 3

210



Figure (8.5) Estimated change-points in cumulative effort for Release 2
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Figure (8.6) Estimated change-points in cumulative effort for Release 1
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8.3.2 Model Estimation

After estimating change-points in each release, we then apply the process of

model estimation and effort prediction, (Figure 8.2). For model estimation we use

the Curve Estimation command in IBM SPSS [62]. This is one of the regression

commands that takes time in weeks as an independent variable and uses previous

cumulative effort data to predict a fit model among 11 different models which are:

linear, logarithmic, inverse, quadratic, cubic, power, compound, S, logistic, growth

and exponential. Each of these models are described in IBM SPSS Statistics V24.0

documentation [28].

8.3.2.1 Release 4

This release was divided into four stages, based on the estimated change-points

(Section 8.3.1), these stages are as follows:

• Stage 1: From week 1 to week 200.

• Stage 2: From week 201 to week 254.

• Stage 3: From week 255 to week 337.

• Stage 4: From week 338 to week 398.

From the beginning of this release cumulative effort data was collected for weeks

with CRs. Model estimation was performed and tested if any model has an R2 of

0.9 or greater. We also require the estimated values to be greater than or equal to

the actual value for a fit model. If none of the models were found to be fit, more

data was collected then model estimation was performed again until either a model

was found fit or we reach the next change-point or the end of the release.
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Table 8.7 shows the results of model estimation. "Week" shows the week when

the model was selected and "Actual" shows the actual cumulative effort of that

week. For each model we show the R2 value and the estimated cumulative effort

for that week. The R2 value and estimated value highlighted in cyan identify the

selected model.

For Stage 1, by week 153, the Cubic model had an R2 of 0.9 and an estimated

value of 693, which is greater than the actual values. The model was selected for

cumulative effort prediction starting from week 154 until the next change-point. In

week 247, the linear, the cubic and the quadratic models all had a valid R2, but the

linear model had an estimated value that is less than the actual value, so it is not

a good fit. Both the quadratic model and the cubic models are good candidates, so

we chose the cubic for Stage 2. For stage 3, the models had an R2 of 0.96 by week

264 and all of the estimated values are greater than the actual cumulative effort,

the Inverse model was chosen. Similarly, for Stage 4, by week 352 all models were

viable and we chose the quadratic model.

8.3.2.2 Release 3

This release was divided into four stages as follows:

• Stage 1: From week 1 to week 326.

• Stage 2: From week 327 to week 368.

• Stage 3: From week 369 to week 405.

• Stage 4: From week 406 to week 472.

Table 8.8 shows the results of model estimation for each stage. By week 310, the

Cubic model was selected, since this model has an R2 of 0.9, which is the highest
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value among the other models and the estimated cumulative effort is 1112 which is

greater than the actual cumulative effort. In Stage 2, the linear, the logarithmic,

the inverse, the quadratic and the cubic models all have the highest R2 values.

The inverse model has an estimated cumulative effort that is lower than the actual,

so it is excluded. From the four remaining candidates, the logarithmic model was

selected. In week 378, The inverse model was selected for Stage 3 and in week 415,

Stage 4, the inverse model was selected.

8.3.2.3 Release 2

Release 2 has the most stages:

• Stage 1: From week 1 to week 211.

• Stage 2: From week 212 to week 235.

• Stage 3: From week 236 to week 261.

• Stage 4: From week 262 to week 281.

• Stage 5: From week 282 to week 433.

Table 8.9 highlights results for model estimation. By week 160, a few candidate

models are acceptable, and we chose the exponential model, which had an R2 of

0.9 and an estimate of 1326. For the second stage, some models have an acceptable

R2 but the estimated cumulative effort is less than the actual, except for the cubic

model. The cubic model was selected for the third stage as well. since it had the

highest R2 value of 0.97 and an estimated cumulative effort of 6368. By week 271,

all models fit the data for stage 4, we selected the Inverse model. In week 291, the

model for the final stage was selected to be the S model among all the other models

which are all fit.
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8.3.2.4 Release 1

This release was divided into four stages:

• Stage 1: From week 1 to week 348.

• Stage 2: From week 349 to week 382.

• Stage 3: From week 383 to week 395.

• Stage 4: From week 396 to week 422.

• Stage 5: From week 423 to week 554.

For this first stage data was collected until the end of the stage and no model was

selected. For Stage 1 Table 8.10 shows model estimation of the last week (348). We

find that the only model that has an R2 of 0.9 or above is the cubic model, but the

estimated cumulative effort (798) is less than the actual (839). Therefore, model

selection for this stage was not successful. By contrast, the remaining stages each

had several models that meet the requirement of accepted models. In week 359, the

linear model was selected. For Stage 3, the Inverse model was selected on week 395.

The cubic model was selected for Stage 4 in week 411, and for Stage 5 in week 432.

8.3.3 Effort Prediction

After selecting a model for each stage, these models are used for predicting

effort for the future. To measure the predictive ability for each model we observed

future predictions from the week the model was selected for up to 6 months into the

future. We compared the predicted values for each month to the actual cumulative
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Week Actual Effort Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

153 680 Effort 768 848 935 1027 1126 1232
RE 0.05 0.00 0.10 0.21 0.32 0.45

247 2694 Effort 3103 3469 3908 4427 5033 5735
RE 0.14 0.21 0.31 0.39 0.49 0.55

264 3179 Effort 3359 3501 3639 3773 3903 4029
RE -0.06 -0.05 -0.04 -0.03 0.00 0.03

352 5331 Effort 5589 5818 6049 6284 6520 6760
RE 0.02 -0.02 -0.01 0.02 0.02 0.03

Table (8.11) Effort Predictions and Relative Errors for six months into the Future
for Release 4

effort. Then we calculated the relative error. Relative error (RE) is calculated as

RelativeError = ((estimated− actual)/actual). 1

Table 8.11 shows four main columns, the first column shows the week when a

model was selected in the fourth release. The second column shows the actual effort

by that week, the third column shows the predicted effort on a month-to-month

basis for six months, and the fourth column shows the RE value of each prediction

month-by-month. After week 153, the RE value is very small in the first three

months, i.e. less than or equal 0.1. After the third month RE starts increasing to

0.21 then 0.32 and 0.45. The model is applicable for the 6 months and it does not

show that it under-predicts effort. After week 247, the cubic model has a positive

error that is larger than 0.1 which increases gradually into the future. The error rates

are acceptable since they are relatively small (less than 1) and positive. After week

254, the inverse model has a very small error value but it under-predicts the actual

cumulative effort sometimes. Likewise, the last stage shows small RE but some of

them are negative. In general, REs are small for up to six months of prediction,

which makes effort prediction accuracy high.

1Relative error value is calculated using the absolute value of an error over the actual value. In
our case we need to keep track of negative values, therefore we calculated the relative error with
the real error value instead.
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Week Actual Effort Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

310 984 Effort 1170 1230 1292 1357 1423 1492
RE -0.14 -0.35 -0.34 -0.42 -0.49 -0.48

348 3417 Effort 3567 3714 3859 4003 4145 4286
RE -0.02 0.01 0.01 -0.03 -0.03 -0.15

378 5766 Effort 6526 7140 7741 8330 8907 9472
RE -0.03 -0.03 0.00 0.07 0.07 0.07

415 9794 Effort 10200 10525 10843 11155 11462 11763
RE 0.01 0.02 0.03 -0.04 -0.03 -0.04

Table (8.12) Effort Predictions and Relative Errors for six months into the Future
for Release 3

Table 8.12 shows the predictions of cumulative effort for Release 3. By observing

the RE values of each stage, we find that in some months these models tend to have

negative RE values, but in general the RE values are very small. After week 310, the

cubic model was selected, but it did not perform well compared to the other models

in this release, (the inverse model and the logarithmic model). The month-to-month

prediction shows that all values were under-predicted and the RE is higher than the

other models.

For Release 2, Table 8.13 shows the month-to-month predictions of every stage.

The selection of the exponential model for the first stage gave predictions with RE

values ranging from 0.35 to 0.78. In week 323 the cubic model was selected. The

RE ranges from 0.29 to 2.68 for predictions. After week 245, the cubic model gave

predictions with relatively high RE values that were 0.29 and 0.7 in the first two

month and increased to values greater than one starting in the third month. The

RE values of this model are the highest in this release. For the third stage, a cubic

model was also selected, the RE values started small in the first couple of months

but increased to 2.4 by the sixth month. The inverse model selected for the fourth

stage has very low error rates. RE values range between -0.03 to 0.03, the lowest

RE values among the other models in this release. The S model has relatively low
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Week Actual Effort Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

160 1035 Effort 1444 1571 1708 1857 2017 2191
RE 0.35 0.46 0.59 0.73 0.88 0.78

232 5248 Effort 6961 9581 13603 19345 27126 37262
RE 0.29 0.70 1.17 1.92 1.89 2.68

245 6356 Effort 7809 10481 14845 21348 30437 42556
RE 0.16 0.10 0.45 0.96 1.57 2.40

271 12910 Effort 13717 14455 15173 15871 16550 17210
RE 0.00 -0.01 -0.03 -0.01 0.01 0.03

291 16424 Effort 17066 17595 18125 18656 19189 19723
RE 0.02 0.04 0.06 0.08 0.11 0.14

Table (8.13) Effort Predictions and Relative Errors for six months into the Future
for Release 2

RE when predictions were made after week 291, ranging from 0.02 after one month

and gradually increasing to reach an RE of 0.14.

Finally, Table 8.14 shows the RE values of models selected for Release 1. The

linear model selected after week 359 has RE values ranging from 0.12 to 0.25. The

inverse model used to predict effort after week 395 (Stage 2) has a lower range of

RE, (-0.10 to 0.01), but it mostly under-predicts effort. The cubic model selected

after week 411 which has a low RE value after a month then this RE value increases

dramatically. In fact, by month 5 and month 6 we find that the RE value is high

and the predicted values are negative due to the shape of the cubic curve. These

predicted values are invalid for cumulative effort. After week 432 has a zero RE

value after one month and it gradually increases by month until it reaches 0.56 after

six months. In general, the selected models show acceptable predictive ability with

small RE values, but some performs poorly as time progresses.

In some cases, no model is selected due to failing to find a good fit model or

because of not having enough data to start fitting a new model in a certain stage.

In this case we continue using a model selected from a previous stage. We also

want to maintain having a low RE value to have accurate prediction. Therefore, we
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Week Actual Effort Prediction Month
+1 mo. +2 mo. +3 mo. +4 mo. +5 mo. +6 mo.

359 1157 Effort 1294 1424 1554 1684 1814 1944
RE 0.12 0.18 0.25 0.10 0.18 0.24

395 2295 Effort 2559 2783 3003 3218 3430 36372
RE 0.01 -0.01 -0.10 -0.10 -0.09 -0.10

411 3559 Effort 3796 3645 3011 1749 -288 -3247
RE 0.01 -0.10 -0.33 -0.63 -1.06 -1.55

432 5338 Effort 6055 6922 7908 8978 10099 11237
RE 0.00 0.04 0.13 0.27 0.42 0.56

Table (8.14) Effort Predictions and Relative Errors for six months into the Future
for Release 1

propose Algorithm 2 to maintain having the best fitted model as much as possible.

In case no model was fitted for a stage then we use a previously selected model.

To maintain the accuracy of the model, a threshold should be defined to what is

considered as a change-point and another threshold for acceptable range of RE.

Algorithm 2 Maintaining the accuracy effort estimation throughout a release
1: Model selected on Week (Wi) for effort prediction
2: repeat
3: Check for changes on Week (Wi+1)
4: if change > threshold then
5: Apply change-point algorithm after collecting CRs for at least 10 more

weeks after change-point and 5 unique CRs (in the meantime use old model
for prediction);

6: else
7: Apply selected model for next month and check relative error (RE);
8: if RE > threshold AND RE < 0 then
9: re-estimate model;

10: end if
11: end if
12: until End of Release =0

This algorithm can be applied to CR prediction as well to maintain better pre-

dictions of future CRs.
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8.4 Discussion

For this aerospace system, we can only apply the basic COCOMO model due

to lack of cost driver data. The data we used was SLOCA, SLOCD, SLOCM and

SLOCG. To incorporate all these pieces of data regarding SLOC we interpreted the

COCOMO model two different ways, Eq. 8.3 and Eq. 8.4. These two models were

tested for Release 3 and Release 4.

To discuss the results we revisit the research questions stated at the beginning

of this chapter.

• RQ1: Can we use one of the existing methods for software effort estimation?

The existing models can be used and have been widely used in research and

industry for estimating effort. In our case study we applied two versions of

the basic COCOMO model to our system data in order to predict effort. We

tried to perform a regression of the model on the available SLOC data from

Releases 3 and 4, The Goodness-of-fit shows that the models poorly fits the

existing data. For both releases we tried the model on the full set of CRs

and their attributes. Then we excluded SLOG from the equation. This did

not improve Goodness-of-fit. Then we excluded the outliers in an effort to

reduce distortion. These different scenarios did not change the fact that the

models poorly fit the data. We applied the models on different portions of the

data by splitting the dataset based on priority, change type, elapsed time and

functional area. Fitting the model was not successful for any of these data

groupings. Therefore, applying COCOMO was unsuccessful.

• RQ2: How accurately do the existing effort estimation methods predict effort

for an evolving system?

223



When using COCOMO, we are not detecting or estimating change-points, so

evolution points are not clear and the model does not address evolution in

effort estimation. We dealt with the issue of evolution in previous chapters

(4 and 5), when predicting the number of cumulative CRs in a release. We

highlighted the weeks that a change-point was likely to occur and used that to

apply CR prediction in a multi-stage release. Inspired by success in predicting

CRs we apply a multi-stage approach to predict cumulative effort in a release

where change-points are identified and models are selected in each stage to

predict effort.

• RQ3: Are there any alternative approaches that provides better estimation of

effort?

We find that the multi-stage approach that has been used to predict cumulative

effort has promising results. First it does not require any additional data

other than dates of CR submission and effort data, which makes it a more

generalizable approach. We had success in identifying change-points using the

likelihood ratio test that has used previously for CR change-point estimation,

(Section 4.2.3). We then used a similar approach to the multi-stage approach

described in Section 5.3.2 to estimate fit models. These models are different

than the models used for CRs, SRGMs. Here we used general linear and

non-linear models such as cubic, logarithmic and exponential models to find

a fitted model to make predictions of the amount of effort in the future. As

shown in Section 8.3.3, the majority of the models provided prediction for up

to six months with relatively low RE values. These results are comparable

to the results of CR predictions. This method provided us with models that

provides with high quality prediction of cumulative effort.
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Cumulative multi-stage effort prediction provides a novel way to predict effort

using past effort data. It identifies change-points so it can change the selected model

according to changing growth rates of cumulative effort data. It allows us to examine

the fit among several models and find the most fit model.

8.5 Validity Threats

The results of this study may not be generalizable. This means that the success

of prediction using a specific model does not guarantee that the model would be

successful on different sets of data. In fact, we have seen that the cubic model make

predictions with minimal RE in one part of a release, but big RE values in another

part of a release, i.e. predictions of the cubic model in Stage 1 of Release 4 versus

predictions of the cubic model for Stage 1 of Release 3. We failed to use COCOMO

successfully in effort estimation. This was due to the lack of data. This does not

mean COCOMO is not a good effort estimation model. This model has been used

widely and successfully over the years. Perhaps by applying the more advanced

COCOMO models, we could have seen different results, but the issue we have is

that the dataset that is available to us did not have these attributes. Our data was

collected by a third party which means the researchers have less control over the

quality of the data, which is a threat to internal validity. Construct validity which is

concerned with the relation between theory and observation can be compromised by

selecting a model among several fit models that might not perform well in predicting

effort.
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8.6 Conclusion

Effort (cost) estimation is essential to any organization. It is key for manage-

ment to help in budget planning, including hiring staff, managing resources, etc.

The COCOMO model is one of the widely used models that relies mainly on the

availability of effort data and Lines of Code. We tried a number of ways to use the

basic COCOMO model, but they all failed to provide good fit. Therefore, we did

not use this model for effort estimation.

Since we saw a resemblance between cumulative effort growth and CR growth

in Section 3.2.3.2, we thought of applying a similar method to how we predicted

cumulative CRs for cumulative effort estimation. First, we estimated change-points.

Then we divided each release into stages based on changes in cumulative effort

growth. Then we applied a multi-stage approach in fitting a model to the existing

effort data. Finally, a model is being selected and used for effort prediction. This

approach shows predicted effort for up to six months into the future with relatively

low RE values. Some models perform better than other models but in general effort

prediction has been successful.
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Chapter 9

Future Work

This dissertation proposes contributions in two major subjects, CR prediction

and effort estimation. We applied our approaches to four releases of a case study and

discussed findings. These findings raised more questions that could be addressed in

future work.

In future work we would like to extend our research as follows: (1) Applying

our curve-fitting methods in CR prediction to various case studies. (2) Investigate

generalizability of our effort estimation approach in an evolving software system

using more case studies. (3) Improving the quality of SRGM selection approach.

9.1 Application and Comparison of CR Prediction

Regarding CR prediction, we have demonstrated our results for an aerospace

software system that has a database of Change Requests (CR) where most CRs are

enhancement requests and only a small proportion of CRs are discrepancies. This

case study covered model estimation and CR prediction for four releases. It showed

an improvement when using a multi-stage approach, specifically the Multi-stage

approach with TT over the original curve-fitting approach proposed by Stringfellow
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and Andrews [128]. The TT approach was superior to the other approaches in two

releases, Release 3 and Release 4. Its performance was equal to the multi-stage

approach in Release 2 and it performed worse than the multi-stage approach in

Release 1. Therefore, more case studies should be performed to understand the

benefits of each approach and the environments where these approaches perform at

their best. In addition, the model selection method should be improved to have a

more intelligent selection method to select the most fit model. We will elaborate

more on these ideas:

9.1.1 Case Study Objectives

This case study could be expanded to test the generalizability of the approaches

and the results. In addition to reevaluating the model selection process to improve

the predictive ability of these curve-fitting approaches. These approaches are based

Stringfellow and Andrews [128] curve-fitting approach.

9.1.2 Case Study Research Question

The research questions derived from the case study objectives and are as follows:

• RQ1: Can CR prediction approaches be used to various CR databases from

different systems and application domains?

• RQ2: How accurate are these curve-fitting approaches in predicting CRs for

various systems and application domains?

• RQ3: How can we improve the predictive ability of these approaches?
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9.1.3 Case Study General Descriptions & Rationale

Various case studies with multiple domains, sizes, multiple software development

methodologies and infrastructures should be performed. CR databases from multiple

companies with different standards, different business domains and environments

should be studied. Different systems have different behaviors in terms of the number

of CRs, the frequency of CR submission, the type of changes and the frequency of

evolution and change. These case studies should measure and compare the relative

error in long-term CR prediction, and the quality of predicted CRs. CR prediction

should have a positive relative error to avoid under-estimation of CRs. In fact, the

long-term prediction could be extended to provide a year-long prediction instead

of only six months to test the effectiveness of the selected models. In fact, from

these case studies methodology guidelines could be built for each type of system

depending on the system’s characteristics.

On the other hand we found that many fit models perform poor prediction

although they have a high R2 value and an estimated cumulative number of CRs

that is at least as high as the actual. This could be caused by the early selection of

a model when the growth of the model was not clear and this requires more data

for the model to be useful. Sometimes more than one model meets the acceptance

criteria. In the current approach one of these models was selected randomly. This

random selection is risky when a model that performs poorly was chosen instead of

another model that might have better performance in the future. As future work, the

approaches should be modified to deal better with model selection in case there was

more than a candidate model. Perhaps the two models could be used for predictions

and the model that performs better as time progresses is the model to be used. This

reduces the risk of discarding a fitted model that provides good predictions when
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more than one model are candidates to be selected. In addition, the approach could

be improved to allow re-estimation once the model performs poorly.

9.2 Effort estimation

In terms of effort estimation our preliminary finding shows CR prediction using

COCOMO model was not promising, (Chapter 8). The early attempts to predict

effort show that we were using the whole data set for the selected model or parts

of the data according to its priority, functional area and time. We then discovered

using PCA and correlation analysis that none of the data is strongly correlated to

effort, which explains why our early attempts to estimate effort using different sets

divided according to their priorities, change type, functional areas and duration

were not successful. When analyzing the data in Section 3.2.3.2 we found that there

are similarities between the cumulative CR data curve and the cumulative effort

curve for all releases. They both have change-points that are similar in some weeks.

We applied a multi-stage approach for cumulative effort prediction analogous to the

multi-stage CR prediction. We were able to predict effort for up to six months into

the future.

9.2.1 Case Study Objectives

Since the results of using the basic COCOMO model were not promising we

would like to expand on applying more advance version of COCOMO Effort Adjust-

ment Factors (EAF) which requires change information to be available. In addition,

since the multi-stage model was successfully applied, we would like to investigate

the applicability and the performance of using the TT approach and how it will this

affect the results.
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9.2.2 Case Study Research Question

The research questions derived from the case study objectives and are as follows:

• RQ1: Can COCOMO model provide better effort estimation when more detail

data is available so we can use the intermediate or advanced COCOMOmodel?

• RQ2: How can we improve the predictive ability of the multi-stage cumulative

effort prediction approach?

• RQ3: Can we apply the TT method to cumulative effort prediction?

9.2.3 Case Study General Descriptions & Rationale

When estimating effort we should look for what data should be available vs.

what is commonly available COCOMO has several versions and more factors could

be incorporated. If more data was available we can apply the more detailed CO-

COMO models and hopefully obtain more successful results. Effort estimation using

methods for function points instead of SLOC is possible, if editing and change data

is available. Effort estimation by analogy is possible if information is available re-

lated to similarity of CRs. This data can be found in change information in Clear

Case. We currently have attribute data from Clear Quest only.

Predictive ability of using the multi-stage model were promising but sometimes

several models meet the acceptance criteria for a certain week to be used for future

prediction. The choice of selecting the best of the candidates is random. As future

work, a more intelligent choice should be performed. This reduces the risk of select-

ing a model with poor predictions. In addition to improving the model estimation

approach to allow re-estimation when the model performs poorly.
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In addition, the applicability of using the multi-stage approach with Time Trans-

formation (TT) could be investigated and compared to the performance of the cur-

rent multi-stage model used in effort prediction. These case studies could provide

improvement over the current prediction results.

232



Chapter 10

Conclusion

Estimating effort or cost is crucial to any software organization. A reliable

prediction system with long-term prediction ability is valuable to management who

are concerned with planning budget, staffing and so on. To estimate effort we first

need to predict the number of CRs. Software Reliability Growth Models (SRGM)

have been used to predict future defects in a software release. Modern software

engineering databases contain Change Requests (CR), which include both defects

and other maintenance requests. Our goal is to use defect prediction methods to

help predict CRs in an evolving legacy system. In situations where maintenance

and evolution are based on predefined, competitive contracts, accurate effort (and

cost) estimation is crucial, since overestimating will reduce competitiveness of a bid

while underestimating risks loses the organization money. Some of these systems

are decades old and represent major assets.

This work demonstrates the use of curve-fitting defect prediction methods to

predict CRs. It focuses on providing a curve-fit solution that deals with evolutionary

software changes but yet considers long-term prediction of data in the full release.

We then compare three curve-fit solutions in terms of their predictive ability of

CRs. Our data show that the Time Transformation approach (TT) provides more
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accurate CR predictions and less under-predicted Change Requests than the other

curve-fitting methods. In addition to CR prediction, we investigated the possibility

of estimating effort as well. We found that changes in Lines of Code of CRs do not

necessarily predict the actual effort spent on CR resolution.

First, we propose a method that uses SLOC data in estimating points of evolu-

tion, change-points. We validate that method along with other methods proposed

in previous research for change-point estimation for the purpose of defect or CR

prediction using reliability models. These methods rely on cumulative CR data to

predict change. We found that using SLOC for change-point estimation provides

reliable predictions of change-points in several software releases, while it requires

less computation overhead than the other two methods, the likelihood ratio method

and the control charts method.

Then, we investigate the use of three different curve-fitting approaches that have

been used in defect prediction for predicting Change Requests (CR). We applied

the first approach [128], which is a curve-fitting approach that does not account

for change-points. The predictions showed a low Relative Error (RE) at first, but

RE increases dramatically which makes the predictions unreliable in the long term.

The multi-stage model based on the work presented by Chi et al. [30] uses change-

points to split the release into stages and fit each stage with a different SRGM

that is used for CR prediction. This approach had proven to give lower relative

error in the predicted values but many times the values are underestimated. The

Time Transformation method (TT) [98] [97] uses a multi-stage approach but with

changes in the time of CR occurrence as if changes were known since the beginning

of the release. This method shows predictions with lower RE than both of the other

approaches in two of the four releases and is close to the predictive ability to the
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multi-staged model in one release, and worse than the multi-staged model in one

release. The two later approaches provide low Relative Error (RE) in general.

Afterwards we investigated the most suitable approach for effort estimation. The

basic COCOMO model uses Lines of Code to estimate effort. The model did not

fit the data very well, it did not meet the minimum threshold for a model to be

considered fit according to our threshold. Therefore, we did not use this model for

effort estimation.

We then used cumulative effort to predict future cumulative effort similar to the

methods used in CR prediction. First, we estimated change-points, then we divided

each release into stages based on changes in effort growth. Then we applied a multi-

stage approach in fitting a model to the existing effort data. Finally, a model is being

selected and used for effort prediction. This approach shows predicted effort for up

to six months into the future with relatively low RE values. Some models perform

better than other models but in general effort prediction has been successful.

Finally, we emphasize the importance of early planning for managers of opera-

tional software. We find that early model selection risks poor long-term predictions

but in general they give managers an idea of how their systems are performing,

which assists them in planning. From our case study we found that five data-points

(weeks) are enough to model but having at least 10 data-points (weeks) makes CR

predictions much more reliable. For further investigation we find that besides having

a minimum number of weeks to select a model, there should be a controlled method

to select the best among several fit models to perform the best predictions of either

cumulative CRs or cumulative effort.
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