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Abstract Abstract 
Protein mass spectrometry (MS) has emerged as a technique to supplant traditional serological tests for 
body fluid identification. It was hypothesized that proteomic techniques would surpass the sensitivity and 
specificity of traditional serological techniques. An automated workflow coupled with protein MS has 
been developed for the confirmatory identification of five biological fluids. A developmental validation 
was completed, assessing parameters such as reproducibility, sensitivity, ion suppression, and limit of 
detection. Implementation was determined through tandem sample processing by MS, traditional 
serological tests, and standard DNA profiling methods. The MS approach offered superior detection limits 
while also providing true confirmatory results, producing an unambiguous identification of body fluids to 
the point where the technology can be considered comparable to DNA profiling. 

An extensive study was conducted to evaluate the effects of personal lubricants on biomarker detection 
in sexual assault evidence. Lubricants have the potential to inhibit protease activity, displace hydrophobic 
markers during solid phase extraction, and suppress ion detection during MS analysis. Three studies were 
performed: (1) determination of vaginal fluid biomarker detection from vaginal swabs fortified with 
lubricant; (2) the effect of lubricant formula on seminal fluid and saliva biomarker detection was 
established; and (3) the detection of biomarkers condoms. Data was interpreted by the overall peak area 
response (PAR) of the target biomarker, biomarker PAR in relation to internal standard, and PAR of 
digestion control protein. 

Multi-stage workflows associated with proteomic analysis remain a major hurdle towards the adoption of 
the technique in caseworking laboratories. A streamlined sample-to-results workflow has been developed 
using peptidomic analysis, allowing for straightforward preparation versus bottom up methodologies. 
Low molecular weight proteins were extracted and data was acquired using an orbitrap-quadrupole 
HRMS. Numerous protein biomarkers have been characterized in human seminal fluid, saliva, and vaginal 
fluid. 

In conclusion, the implementation of the protein MS approach offers an advantageous relationship 
between a positive identification and downstream DNA testing, including the capacity to deliver 
confirmatory contextual information in a criminal investigation. Furthermore, lubricant type does affect 
the ability to accurate identify protein biomarkers. And lastly, the research presented will demonstrate the 
use of peptidomic analysis for the confirmatory identification of biological fluids in SA type evidence. 
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ABSTRACT 

Protein mass spectrometry (MS) has emerged as a technique to supplant traditional 

serological tests for body fluid identification. It was hypothesized that proteomic techniques would 

surpass the sensitivity and specificity of traditional serological techniques. An automated workflow 

coupled with protein MS has been developed for the confirmatory identification of five biological 

fluids. A developmental validation was completed, assessing parameters such as reproducibility, 

sensitivity, ion suppression, and limit of detection. Implementation was determined through tandem 

sample processing by MS, traditional serological tests, and standard DNA profiling methods. The 

MS approach offered superior detection limits while also providing true confirmatory results, 

producing an unambiguous identification of body fluids to the point where the technology can be 

considered comparable to DNA profiling.  

An extensive study was conducted to evaluate the effects of personal lubricants on 

biomarker detection in sexual assault evidence. Lubricants have the potential to inhibit protease 

activity, displace hydrophobic markers during solid phase extraction, and suppress ion detection 

during MS analysis. Three studies were performed: (1) determination of vaginal fluid biomarker 

detection from vaginal swabs fortified with lubricant; (2) the effect of lubricant formula on seminal 

fluid and saliva biomarker detection was established; and (3) the detection of biomarkers condoms. 

Data was interpreted by the overall peak area response (PAR) of the target biomarker, biomarker 

PAR in relation to internal standard, and PAR of digestion control protein. 

Multi-stage workflows associated with proteomic analysis remain a major hurdle towards 

the adoption of the technique in caseworking laboratories. A streamlined sample-to-results 

workflow has been developed using peptidomic analysis, allowing for straightforward preparation 

versus bottom up methodologies. Low molecular weight proteins were extracted and data was 
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acquired using an orbitrap-quadrupole HRMS. Numerous protein biomarkers have been 

characterized in human seminal fluid, saliva, and vaginal fluid.  

In conclusion, the implementation of the protein MS approach offers an advantageous 

relationship between a positive identification and downstream DNA testing, including the capacity 

to deliver confirmatory contextual information in a criminal investigation. Furthermore, lubricant type 

does affect the ability to accurate identify protein biomarkers. And lastly, the research presented 

will demonstrate the use of peptidomic analysis for the confirmatory identification of biological fluids 

in SA type evidence. 
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CHAPTER 1: INTRODUCTION 

1 Introduction 

Forensic science is the application of scientific testing to criminal and civil law. The 

overarching goal of forensic testing is to establish an association between a piece of physical 

evidence and an individual, whether a victim or suspect of a crime. By exploiting the transfer of 

evidence, as stated by Edmond Locard [1], analysts seek to identify, compare, and associate 

physical evidence in an effort to provide information to a court of law to assist the trier of fact in 

determining the probative value and weight of forensic evidence. The probative value of physical 

evidence stems from the ability to determine an object’s uniqueness. The capabilities of forensic 

testing to narrow down the range of possibilities as to what an item of evidence may be, such as a 

biological stain, or to whom biological evidence may belong, can help to focus an investigation. 

Forensic biology is a subdiscipline within the field of forensic science that seeks to identify 

and individualize the source of biological stains through serological and genetic testing. Forensic 

serology describes the identification of biological fluids, such as blood, semen, and saliva, through 

the use of biochemical techniques to associate an item of evidence with a victim or suspect. 

Common types of crimes that utilize forensic biology testing include homicide, assault, and rape. 

Prior to the advent of DNA analysis, forensic biologists depended heavily on antigen and protein 

polymorphisms as a means of discriminatory identification. For example, the identification system 

of ABO blood type groups was developed during the early 20th century. The frequency and 

inheritance of A and B antigens present on the surface of erythrocytes were mapped and used as 

the first form of human identification apart from fingerprint analysis. While this discovery lead to a 

more advanced classification system, the use of erythrocyte antigen characterization was primarily 

utilized for exclusionary purposes.  
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1.1 Modern Genetic Typing for Forensic Identification 

It was not until the late 20th century that DNA polymorphisms, in the form of variable number 

tandem repeats, were applied to forensic evidence successfully. This novel technique 

demonstrated greater individual variability than protein polymorphic markers, with DNA profiling not 

only capable of identifying a true perpetrator but excluding innocent suspects. With the 

simultaneous development of the polymerase chain reaction (PCR), the use of DNA polymorphisms 

quickly surpassed that of more established techniques. Rapid advancements in PCR chemistries, 

polymorphism fragment length, and automation have led to genetic typing being crowned the gold 

standard within the field of forensic biology. For example, the National DNA Index System (NDIS), 

launched in October 1998, contains 1,096,398 forensic profiles and over 14,492,991 offender 

profiles (i.e., convicted offender, detainee, and legal profiles) to date [2]. Forensic uses of DNA 

typing expand beyond the capability of identifying potential suspects and include the identification 

of mass catastrophe victims, missing persons, and endangered or protected species. 

The process of genetic testing follows five central procedural steps: extraction, quantitation, 

amplification, separation, and interpretation. It is estimated that the human genome shares 99.7% 

sequence homology between individuals, limiting forensic researchers to target the remaining 0.3% 

for discriminatory analyses. Short tandem repeat (STR) regions, a type of microsatellite, are 

currently targeted for forensic genetic typing as they are small in size (approximately 2 to 7 base 

pairs in length) and the number of repeats at a given location is highly variable among individuals. 

Simply, they describe a pattern of nucleotides that are repeated directly adjacent to each other, 

with the number of consecutive repeats varying between individuals. STR regions can be further 

classified as simple, non-consensus, compound, or complex repeats based on their incremental 

repeat patterns. Twenty STR locations are accepted into the Combined DNA Index System 

(CODIS), with the number increased from the original thirteen locations in the year 2017. As interest 

in the analysis of highly degraded evidence continued to push the lower sensitivity limits of genetic 

typing, the use of single nucleotide polymorphism (SNP) markers emerged to supplement STR 

typing. SNPs are single base pair sequence variations at a particular point in the genome that arise 
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due to spontaneous mutation. These mutations can be present in coding, regulatory, and intronic 

sequences within genes or in intergenic regions. SNP markers are attractive for forensic 

investigations given their short amplicon size, lack of stutter artifact formation during amplification, 

and their ability to predict ethnicity and phenotypic characterizations.  

Common practice for DNA size fractionation traditionally involves the use of capillary 

electrophoresis. However, crime laboratories have begun implementing next generation 

sequencing (NGS) methodologies for challenging casework. NGS, also referred to as massively 

parallel sequencing (MPS), allows for the simultaneous sequencing of many DNA samples, instead 

of one sample at a time as with capillary electrophoretic separation. The benefits of this type of 

analysis allow for an influx of data that is not normally obtained with traditional sequencing, such 

as the discovery of different types of genomic features in a single sequencing run (e.g., SNPs, copy 

number variants, structural variants). In regard to forensic genetic applications, NGS can be used 

for a variety of analyses such as STR identification for relationship testing, SNP identification for 

phenotypic characterization, and mitochondrial genome sequencing. NGS is currently used for 

investigative lead generation and genetic genealogy practices, seen in cases such as the Golden 

State Killer [3] or the identification and conviction of W.M. Talbot in Washington state for the 1987 

murders of Jay Cook and Tonya Van Cuylenborg [4].  

Modern genetic testing procedures have rapidly exceeded the anticipated sensitivity limits 

to the extent that trace DNA can be identified from an individual that had prior interaction with a 

person but was not involved in criminal activity. The concept of indirect transfer of genetic material 

describes the deposition of one’s DNA onto an object or person and subsequently having their DNA 

relocated to a secondary object or person without physical contact. This phenomenon has been 

rigorously evaluated within the forensic community in an attempt to provide reason in the event of 

explaining alternate transfer propositions [5–8]. This limitation has prompted forensic investigators 

to question not what evidence to collect for DNA analysis, but where to collect on an item of 

evidence to obtain accurate results. For example, given the case scenario of a drug facilitated 

sexual assault, a victim that was unconscious during sexual activity would not have recollection of 
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where the offender may have removed an article of clothing or the extent of sexual acts performed. 

In a recent study, simulated digital sexual assault scenarios were conducted in a controlled 

laboratory setting and revealed that the amount of offender DNA deposited on undergarments is 

highly variable. Furthermore, although not an original aim of the study, the DNA of a colleague or 

cohabitating partner was identified in several instances [9].  

The principles of DNA transfer, persistence, prevalence, and recovery are taken into 

consideration during data interpretation to provide insight into activity level reporting and generating 

descriptive probability estimates [10]. It is important to understand these variables as they relate to 

DNA transfer versus contamination or true instances of multiple contributors. As genetic testing 

methodologies have gotten more sensitive and can generate informative results from poor quality 

and lesser quantities of input DNA, the types of DNA profiles obtained have become exceedingly 

more challenging to interpret, particularly in samples with multiple low level contributors. 

Practitioners within the field have responded by shifting to the use of more advanced probabilistic 

modeling. The need for innovative interpretation strategies for low template DNA was reported two 

decades ago [11], and since, various types of semi-continuous and continuous probabilistic 

genotyping models are accepted in the forensic community [12]. In short, probabilistic genotyping 

has unlocked potential for deciphering challenging DNA profiles that would have otherwise been 

deemed uninterpretable with the use of traditional binary methods, such as combined probability of 

inclusion (CPI) calculations.  

DNA profiling and interpretation methodologies have grown very rapidly over the past 25 

years. The lack of consistency in reporting language of advanced probabilistic genotyping 

calculations remains a topic of debate within the greater forensic biology community. Furthermore, 

the proprietary source code of interpretation software, such as TrueAllele® by Cybergenetics, has 

received criticism within the legal community as defendants are unable to visualize how software 

forms decisions [13,14]. In essence, the scientific methodology behind DNA profiling has been well-

demonstrated and is concrete, with limitations arising from the interpretation of generated profiles. 
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On the contrary, the scientific methodology for modern serological testing has not received the 

same attention.   

1.2 Test Classifications for Traditional Body Fluid Identification 

In contrast to the evolution and occasional transilience of modern genetic testing, the 

identification of biological stains remains rooted in historical biochemical analyses. Traditional 

serological procedures rely on detecting the presence or activity of macromolecules that display a 

level of specificity within a biological fluid. Historically, proteins are the macromolecule of interest. 

Proteins are composed of amino acid monomers that have been bound together through 

polypeptide covalent bonds. Amino acids are simple monomer subunits that contain an amine and 

a carboxyl functional group, providing the monomer with directionality. Amino acids are categorized 

according to their side chain, which extends as a substituent from the backbone structure. There 

are twenty unique side chains, and therefore twenty unique amino acids. Given the combination of 

amino acids within a protein, a nearly endless array of protein sequences can be achieved. It is the 

amino acid side chains, or combination of side chains, that provide a protein with specific chemical 

properties such as polarity and charge state. The primary structure of a protein is defined as the 

sequence of amino acids or unfolded polypeptide chain. The polypeptide chain begins to adopt a 

three-dimensional structure as amino acid side chains initiate new interactions in the form of 

hydrogen bonds and functional group interactions. The orientation and unique combination of 

amino acids at the primary level dictate the interactions formed at the secondary level. Interactions 

become stronger and the protein obtains its true three-dimensional shape at the tertiary level, 

where characteristic folds initiate a protein’s function. When two or more polypeptide subunits are 

joined, a quaternary structure is achieved.  

Protein form and function have remained a primary target for serological assays. A majority 

of historical serological techniques rely on detecting the presence or activity of proteins consistent 

with a target body fluid. Body fluids are rich in protein material, however, the challenge for forensic 

testing is to identify specific targets and not necessarily the most abundant targets. Achieving a 

desirable balance between sensitivity and specificity has proven difficult, with cross-reactivity and 
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false positive identifications fairly common. In general, evidence that is received in the laboratory 

for forensic biology testing will first be screened for the presence of biological stains. This is 

conducted through visualizing stains that may not be evident to the naked eye and conducting 

presumptive testing to narrow down the possible stain origin. For sexual assault evidence, 

confirmatory testing can also be performed to further discriminate the presence of biological stains. 

Once the origin of a stain is revealed, small cuttings or scrapings are acquired, and genetic material 

is extracted for analysis. Together, results from serological and genetic testing deliver associative 

support for a connection between an individual and a biological stain on an item of evidence. 

However, modern genetic testing procedures are more sensitive than their serology counterpart, 

and thus DNA results often take precedence in a criminal investigation.  

The identification of biological fluids on forensic evidence provides important contextual 

information to an investigation. While genetic testing provides individualization to a biological stain, 

serological testing can indicate where the biological stain originated. In this section, the traditional 

techniques used for presumptive and confirmatory identification of biological fluids will be 

summarized. Screening procedures are classified according to their mechanism of action or sample 

preparation procedure and are characterized below into one of the following groups: alternative 

light source, colorimetric assays, enzymatic assays, microscopic visualization, and antibody-based 

assays. Although many techniques exist for each, a select grouping of procedures were chosen to 

exemplify each classification, with the discussion herein not designed to present an exhaustive list 

of historical techniques.  

1.2.1 Alternate Light Source for Body Fluid Identification 

A crime scene investigator or forensic analyst will rely heavily on the use of an alternative 

light source (ALS) for the screening of large surface areas, such as a wall or a mattress. This 

screening technique visually enhances biological stains that may not be visible to the naked eye 

and can be employed for assistance with collection, documentation, and processing of biological 

evidence [15]. The theory behind this investigative tool relies on emission and excitation 

wavelengths. Excitation wavelengths, generally in the visible range of the electromagnetic 
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spectrum, are absorbed by fluorophores within a stain or substrate. The fluorophore absorbs the 

excitation wavelength and transitions the energy to a more excited state, emitting excess energy. 

This excess, or emission wavelength, is detected as fluorescence. Barrier filters or colored goggles 

are necessary for visualization of fluorescence, as the excitation wavelength will otherwise 

overpower the emission wavelength. Colored goggles selectively filter light and allow the emission 

wavelength to pass through and be detected by the eye. ALS is utilized for gunshot residue [16], 

fiber [17], and fingerprint evidence [18], and within forensic biology, is a prevalent tool for localizing 

biological stains, such as semen, saliva, and urine.  

For seminal fluid visualization, flavins and choline contribute to the fluorescence of semen 

as well as any bacterial growth. When irradiated, semen stains will appear bluish-white when 

deposited on dark materials or, in contrast, may appear as dark spots when deposited on white 

fabrics due to high background fluorescence. Similarly, saliva detection is indicated by a bluish-

white illumination and is more difficult to visualize in comparison with other fluids given its simple 

composition [19]. Generally, wavelengths between 450 nm and 495 nm (blue light) are used in 

combination with orange filter goggles for fluorescence visualization. Benefits of ALS include the 

ability to scan larger items of evidence, such as a bed sheet, for trace amount of biological material. 

However, background interferences are common, and are attributed to substrate color and 

presence of whiteners or other substances applied during the manufacturing process. It is accepted 

practice to use ALS as a screening tool prior to further examination of forensic evidence.  

1.2.2 Colorimetric Assays for Body Fluid Identification 

Colorimetric assays utilize the conjugation of electrons across an indicator compound to 

cause a shift in the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-

LUMO) gap to produce a wavelength of light within the visible spectrum. Blood is most frequently 

detected using colorimetric tests that exploit the peroxidase-like activity of the protein hemoglobin. 

The non-protein heme group present within hemoglobin catalyzes oxidation-reduction reactions, 

where colorless indicators are oxidized and cause a color change. The oxidation of a molecule 

describes the loss of an electron whereas the reduction of a molecule describes the gain of an 
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electron. Colorimetric tests for blood detection can be further separated into one-phase and two-

phase procedures [19]. For one-phase procedures, a suspected stain is subjected to hydrogen 

peroxide and an indicator compound, such as tetramethylbenzidine (TMB), simultaneously. 

Although rapid to perform and fairly sensitive, one-phase procedures display a wide variety of false 

positives ranging from plant, animal, and bacterial sources that exhibit strong chemical 

oxidant/reductant properties or peroxidase-like activity [20]. In contrast, two-phase procedures 

subject a suspected stain first to an indicator compound followed by a separate addition of 

hydrogen peroxide. Positive reactions that occur prior to the addition of hydrogen peroxide are 

ruled negative. An example of a two-phase procedure is the phenolphthalein test, also referred to 

as Kastle-Meyer test [21].  

Unlike TMB or phenolphthalein, oxidation-reduction reactions can produce 

chemiluminescence or fluorescence instead of a color change. Luminol test (3-

aminophthalhydrazide) is commonly employed during crime scene investigation for the detection 

of minute traces of blood, even traces that have been wiped clean from surfaces. 

Chemiluminescence is visualized as a blue glow. This test has demonstrated unparalleled 

sensitivity, with a reporting limit of 5,000,000-fold blood dilution detected [22]; however, commercial 

bleach is a false positive [23]. Given its use on large items of evidence such as carpets, walls, and 

flooring, it has been demonstrated that luminol will not negatively affect polymerase chain reaction 

for DNA analysis [24].  

1.2.3 Microscopic and Histological Analysis for Body Fluid Identification 

Microscopic crystal tests were historically performed for the identification of blood but have 

been replaced in favor of catalytic tests and antibody-binding assays. An example of a crystal test 

is the Takayama test [25]. The heme group is dissociated from the hemoglobin protein unit and 

pyridine binds to the fifth and sixth orbital positions on the iron atom, resulting in the compound 

hemochromogen. Under alkaline conditions and in the presence of glucose, hemochromogen is 

pushed out of solution and creates rhomboid-shaped crystals (Figure 1.1A). Although once 

considered confirmatory, it was determined that crystal formation was selective for the iron 
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protoporphyrin ring structure within heme and not the protein itself. Furthermore, crystal growth is 

contingent on creating an ideal environment, which is time consuming and difficult to reproduce.  

In comparison with the visualization of crystal formation, the histological staining and 

visualization of cells is used for semen identification and vaginal fluid detection. The detection of 

vaginal fluid is not common practice in operational laboratories, as the histological staining described 

herein is not discriminatory for vaginal epithelia. Three historical staining techniques include Periodic 

Acid-Schiff (PAS) reagent, Lugol’s iodine, and Dane’s stain. PAS is used to visualize 

polysaccharides present in cells, commonly glycogen and glycoproteins. This staining technique is 

commonly used by pathologists during routine renal biopsy evaluation and determination of alveolar 

sarcoma [26]; however, this stain has been retired from forensic testing of vaginal epithelia, having 

exhibited no differentiating power between vaginal and rectal epithelial cell types [27]. Lugol’s iodine 

stain to detect glycogenated epithelial cells was once considered a reliable indicator of vaginal fluid. 

This was based on the belief that vaginal epithelial cells had a significantly higher glycogen content 

than other epithelial cell types [28,29]. Iodine present in the stain reacts with intra-cellular glycogen, 

producing a dark brown color [29] (Figure 1.1B). Further research revealed that (1) glycogen content 

varies widely during the menstrual cycle [30] and (2) epithelial cells from swabs of the glans penis 

and male urethral secretions contain similar glycogen levels [28,29]. As a result, Lugol’s test is no 

longer common practice for forensic analysis as the value of this technique has diminished. Dane’s 

stain (haematoxylin-phloxine-alcian) uses three dyes that preferentially stain mucopolysaccharides 

from prekeratin and keratin [31]. This technique differs from PAS and Lugol’s iodine in that it can 

distinguish skin epithelial cells, appearing bright red upon microscopic visualization, from 

vaginal/buccal cells which stain orange, based on the high presence of keratin found in skin. Using 

a modified Dane’s stain with methanol fixation, vaginal epithelia were able to be differentiated from 

buccal epithelia [32]. Although a promising solution to challenges encountered with PAS and Lugol’s 

iodine, limitations arise with the analysis of mixed sample types commonly encountered in sexual 

assault evidence.   
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The only accepted confirmatory test within forensic biology is the microscopic visualization 

of spermatozoa in semen. Spermatozoa are unique to semen and exhibit a distinct morphology in 

relation to other cell types, especially epithelial cells. Specifically, the head region contains nuclear 

DNA and is protected by the acrosomal cap, the location of digestive enzymes that break down the 

zona pellucida and assist in penetration of the female ovum. The midpiece connects the head region 

to the tail and contains numerous mitochondria. The most defining characteristic of spermatozoa is 

the tail region. The flagellated cell contains a microfilament that runs the length of the tail region, 

creating rhythmic contractions and forward motion. The histological staining of head and tail regions, 

in addition to the overall morphology of the cell, attribute to the confirmatory nature of this technique.  

The most commonly used histological stain is Kernechtrot-Picroindigocarmine (KPIC), also 

referred to as Christmas tree stain. KPIC uses a series of stains to differentially identify sperm cells 

from epithelial cells. Nuclear fast red dye stains the nuclear material of the head region and picric 

acid-indigocarmine stains the membrane and tail regions a blue-green color [33] (Figure 1.1C). 

Limitations to this technique arise due to the lack of standardization among interpretation guidelines 

within agencies. While there is a generally accepted scale for sperm scoring, subjectivity is 

introduced in the manner in which an analyst interprets the ratio of spermatozoa to epithelial cells. 

In addition, the major challenge faced by most examiners is not the judgement of whether a cell is a 

spermatozoon but rather to locate an intact cell. The severing of the head region from the tail region 

of the spermatozoa is not uncommon and is caused by many factors, such as analyst handling, 

spermicidal lubricants, and extreme temperatures. There are varying opinions in the field on whether 

a spermatozoon needs to be intact to prompt a positive identification. Furthermore, absence of 

spermatozoa in the male ejaculate can be due to hereditary, pathologic, or surgical reasons.  

The product Sperm Hy-Liter™ (Independent Forensics) utilizes a fluorescently labeled, 

human specific, monoclonal antibody that binds to sperm head proteins and further assists with the 

visualization of spermatozoa. Specifically, this commercial kit contains two separate fluorescent 

dyes. The first, 4’,6-diamidino-2-phenylindole (DAPI) stain is incorporated into nuclear material and 

is visualized with a DAPI compatible fluorescent filter. The second dye, green fluorescein 
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isothiocyanate (Alexa 488), is bound to a monoclonal antibody that targets protein antigen in the 

sperm nuclear membrane. With selective filters, dye components can be visualized separately 

(Figures 1.1D and 1.1E) or overlayed (Figure 1.1F), allowing for visualization of sperm cells in a 

dense vaginal epithelial sample. Due to the preferential binding of the antibody, this method is more 

sensitive and specific than traditional histological staining techniques [34]; however, a limitation to 

this method is the breakdown of sperm cells over time [35]. The reporting of a positive result is based 

on the occurrence of a binding event between the paratope of the antibody and the epitope of the 

sperm head proteins. Within the Sperm Hy-Liter™ procedure, the reducing agent dithiothreitol (DTT) 

is applied to the sample and functions to make the spermatozoon cell membrane more permeable 

to staining. As spermatozoa degrade, the specific epitope present on the cell surface may undergo 

a conformational change an impede antibody binding. This lack of binding poses as a limitation to 

basing a confirmatory technique off of the detection of cellular components alone. Furthermore, 

depending upon the severity of degradation, the DTT can potentially lyse cell membranes instead 

of increasing permeability. 

In summary, this classification of serological testing contains the only accepted confirmatory 

technique for body fluid identification. Furthermore, in regard to semen identification, histological 

staining of cellular material is not applicable in instances for suspects that have undergone a 

vasectomy surgical procedure or those that suffer from aspermia. Histological staining has historical 

significance within the field of forensic biology but has largely been replaced by enzymatic and 

antibody based assays.   
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Figure 1.1. Histological stains and microscopic visualization for body fluid identification. (A) 
Takayama crystal formation of peripheral blood. (B) Lugol’s iodine stain of a vaginal smear. (C) 
Kernechtrot-Picroindigocarmine stain of a vaginal swab containing spermatozoa. Spermatozoa 
visualized using Sperm Hy-Liter™ with fluorescent microscopy and the (D) DAPI filter displaying 
sperm and epithelial cells, (E) FTIC filter displaying spermatozoa, and (F) filter overlay displaying 
sperm and epithelia nuclei. © 2021 by Catherine Brown.  

1.2.4 Enzymatic Assays for Body Fluid Identification 

Enzymatic assays rely on protein form and function to remain intact in order for the test to 

be carried out successfully. In general, protein enzymes within a biological fluid are mixed with a 

cognate substrate. Through the chemical modification of the substrate, an applied dye compound 

will bind to the modified substrate, resulting in a visible color change. Perhaps the most widely 

accepted presumptive test within the enzymatic classification is the acid phosphatase test for the 

detection of seminal fluid, which was proposed in the early 1950s [36]. Prostatic acid phosphatase 

is produced in the prostate and is currently evaluated as a diagnostic marker for prostate cancer. 

Its physiological function is to cleave the protein semenogelin, resulting in the liquefaction of semen 

and creating a more conducive environment for sperm motility within the female reproductive tract. 

Referred to as the AP Spot Test, a seminal fluid stain is subjected to a reagent containing alpha 

naphthyl phosphate. The acid phosphatase protein cleaves the phosphate functional group of alpha 

naphthyl phosphate, resulting in alpha naphthol. A diazonium salt, such as o-dianiside (Fast Blue 

B), is applied and binds to alpha naphthol, producing a purple color change. This mechanism 
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occurs rapidly, with samples presumptively positive for seminal fluid within 60 seconds of reagent 

application. However, isoforms of acid phosphatase are present in vaginal secretions [37] and 

serum [15] (Figure 1.2). Although the number of false positives is relatively high, the use of AP 

Spot Test has historically been presumptive in nature [38] and is often performed as a quick screen 

for sexual assault evidence prior to sperm scoring.  

 

Figure 1.2. Positive experimental results of AP Spot Test on a (A) positive control swab containing 
semen diluted 2-fold measured at 10 seconds, (B) a vaginal swab containing semen diluted 1,000-
fold measured at 45 seconds, and (C) a semen-free vaginal swab measured at 45 seconds. © 2021 
by Catherine Brown. 

Similarly, saliva identification relies heavily on the detection of amylase. Three classes of 

amylase have been characterized, with alpha amylase being of interest to forensic investigations. 

The isoenzyme salivary alpha amylase is produced in the parotid and submandibular glands and 

is responsible for the breakdown of long-chain carbohydrates. Examples of enzymatic assays for 

saliva detection are the starch iodine diffusion gel and commercial assays such as SALIgAE® 

(Abacus Diagnostics) and Phadebas® Amylase Test (Phadebas®). For starch iodine diffusion gels, 

agarose gel is embedded with starch molecules which are subsequently cleaved by amylase 

present in a sample. When stained with iodine, intact starch will turn blue, showing amylase enzyme 

activity by the absence of blue color (Figure 1.3). Similarly, SALIgAE® and Phadebas® use dye-

labeled starch molecules, and when cleaved by amylase, the dye is released, and a color change 

is observed. The specificity of these tests is poor, as they will react with any type amylase, such as 

pancreatic alpha amylase or beta amylase in bacteria, producing a high false positive rate. For 

example, RSID™-Saliva (an antibody-based assay discussed in the next section) and SALIgAE® 

have been shown to cross-react with urine, breast milk, and feces [39]. A comparison of the three 
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enzymatic methods was performed, with a modified starch iodine test that incorporated 

centrifugation in absence of agarose gel. The sensitivity and specificity of the three methods was 

assessed in addition to a series of mixed source samples and casework-type samples. It was 

concluded that Phadebas® Amylase Test performed with the greatest sensitivity, detecting down to 

a 200-fold dilution of human saliva [40].  

Enzymatic assays rely largely on color-based interpretation of results. Although it may be 

fairly obvious with concentrated samples, the ability to visualize a color change with trace samples 

is less than straightforward. Furthermore, with the testing of mixed source samples, the presence 

of a non-target matrix such as blood can impede the visualization of the necessary color to interpret 

a positive result. For example, the SALIgAE® assay is interpreted based on the change of the 

reagent from clear to yellow. Even with dilute blood samples containing saliva, the positive color 

change can appear more orange in nature.   

 

Figure 1.3. Experimental results of a starch diffusion gel depicting (C1) neat saliva, (C2) negative 
control, (B1) saliva diluted 10-fold, (B2) probiotic yogurt, (B3) triple hop India pale ale style beer, 
and (A4) human breast milk. © 2021 by Catherine Brown. 

1.2.5 Antibody Assays for Body Fluid Identification 

The most widely employed type of test system in operational laboratories are the antibody-

based assays. There is a multitude of commercially available assays on the market, many of which 

achieve greater specificity in comparison with the colorimetric and enzymatic assays described 
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above. The theory behind these commercial assays is centered upon the binding events that occur 

between an antibody and its complementary antigen [15].  

The production of antibodies begins with introducing a foreign antigen to a host organism, 

such as a rabbit, to stimulate an adaptive immune response. The foreign antigen serves as the 

target of the immunological response. The host organism begins producing antibody-forming cells, 

which can be isolated and cultured. As cells begin to divide and increase antibody production, the 

antibodies can be subsequently isolated for use in exogenous assays [41]. Antibodies that are 

capable of binding to a multivalent antigen are referred to as polyclonal antibodies. In comparison, 

antibodies that bind to a single epitope are defined as monoclonal antibodies. Polyclonal antibodies 

display stronger activity because several epitopes can be recognized for a single binding event. 

However, monoclonal antibodies are more specific.  

Antibody-based assays, either in the form of an enzyme-linked immunosorbent assay 

(ELISA) or an immunochromatographic assay, employ a series of dye-labeled mono- or polyclonal 

antibodies. For ELISA tests, antigen is introduced to wells coated with antibody. Once bound, dye-

labeled antibody conjugate is added to create a sandwich complex. Reagents are then added to 

cause a color change in wells containing dye-labeled antibody in the sandwich complex, which is 

read by a spectrophotometer. ELISA testing has largely been replaced with the use of 

immunochromatographic assays, also referred to as lateral flow assays. Simply, a liquid sample is 

introduced to the sample well of a cassette, where dye-labeled antibody present will bind target 

antigen in the fluid sample. As the sample migrates down the membrane, immobilized antibody in 

the test region of the cassette will bind, creating the sandwich complex similar to that of an ELISA. 

Sample well antibodies will continue migrating to the control region of the membrane and interact 

with immobilized antiglobulin. The control zone will exhibit a positive line because the antiglobulin 

will bind to the dye-labeled antibody that originated in the sample well whether antigen is present 

or not [15] (Figure 1.4). A positive identification is made by the presence of a colored line in the 

test zone and the control zone of the viewing window. A negative result is recorded when only a 
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colored line is observed at the control zone. An invalid result entails the absence of a colored line 

in the control zone, indicating the test should be repeated.  

Commercial assays from various manufacturers, such as Independent Forensics of Illinois 

[42–44], Abacus Diagnostics [45,46], and Seratec [47–49], are currently on the market for the 

detection of peripheral blood, menstrual blood, saliva, semen, and urine. Regardless of 

manufacturer, a similar construction to the lateral flow assay is employed, but they vary in target 

antigen and antibody. For example, RSID™-Semen (Independent Forensics of Illinois) targets the 

protein semenogelin for seminal fluid identification, whereas ABAcard® p30 (Abacus Diagnostics) 

and PSA Semiquant (Seratec®) both target the protein prostate specific antigen. In general, dye-

labeled monoclonal antibodies will be present in the sample well and unlabeled monoclonal 

antibodies will be immobilized in the test zone. Manufacturers have opted for the use of monoclonal 

antibodies to increase the specificity of the assay.  

Lateral flow assays have proven rapid and simple to perform for screening purposes; 

however, they have a limited sensitivity range. False negative results can occur if too much target 

antigen is introduced into the sample well. This phenomenon, referred to as the high-dose hook 

effect, results when excess target antigen migrates along the membrane, resulting in competitive 

binding with bound antibody-antigen complexes at the test zone. The excess antigen binds to the 

immobilized antibody, preventing the formation of a sandwich complex. To avoid the high-dose 

hook effect, the sample should be diluted to reduce the amount of antigen applied to the membrane. 

Conversely, the lower sensitivity limit of lateral flow assays has been well documented. For 

example, a validation study of RSID™-Semen reports a sensitivity limit of 2.5 nL of semen [50], with 

a similar study reporting 50 nL of saliva as a lower limit of detection for RSID™-Saliva [51]. 

Similar to enzyme-based tests, antibody-based assays are categorized as presumptive 

because the binding specificity and avidity are not absolute, even with monoclonal antibodies. The 

reading and reporting of results create instances of analyst subjectivity when interpreting color 

change, particularly with low-level samples. Although these assays are marketed as confirmatory 

tests, they are prone to high false positive rates. For example, an internal assessment of lateral 
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flow assays for seminal fluid identification was previously performed. Semen-free vaginal swabs 

were tested using RSID™-Semen, ABAcard® p30, and PSA Semiquant. Of the 100 samples tested, 

RSID™-Semen returned a false positive rate for 6% and both ABAcard® p30 and PSA Semiquant 

demonstrated a false positive rate for 17% [52]. False positive reactions have also been reported 

for extracts recovered from condoms when evaluated with PSA Semiquant [53] and extracts 

subjected to topical lubricants with ABAcard® p30 [54]. Furthermore, when evaluated in absence 

of body fluid, immunochromatographic assays have been shown to display false positives in the 

presence of organic acids, lending insight into the mechanism behind which dyes are bound to 

sample well antibodies [55]. Therefore, reliance on antibody-binding as a confirmatory assay is not 

supported by the literature and forensic analysts should use caution in reporting of results.  

In summary, traditional techniques for body fluid identification lend value to forensic 

investigations but suffer from numerous limitations that have suppressed the progression of the 

field as a whole. Regardless of test classification selected for serological screening, perhaps the 

greatest limitation is the lack of multiplex testing. All of the previously described classifications are 

single-plex assays. Furthermore, there is an obvious lack of confirmatory tests available for target 

fluids or lack of tests in general for fluids such as vaginal/menstrual fluid. It is for these reasons that 

operational laboratories have shifted to a “direct to DNA” workflow, where serological screening is 

omitted in favor of more sensitive genetic typing chemistries. For more than two decades, the 

forensic community has focused on improving the sensitivity and robustness of DNA profiling. While 

advances have made it possible to individualize biological traces on challenging types of 

evidentiary material, DNA alone does not readily indicate the body fluid source from which it was 

extracted. Serological testing to identify the body fluid from which a DNA profile has been 

generated, however, can provide vital contextual information to facilitate a successful prosecution. 

While this approach has a number of advantages, serological testing is especially important when 

the item of evidence in question (e.g., a towel or bedding) does not readily lend itself to an 

interpretation of likely contact to the same degree as an intimate swab or underwear where the 

mere presence of suspect’s DNA may be sufficient. 
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Figure 1.4. Schematic of a lateral flow assay, depicting a (A) positive identification, (B) negative 
identification, and (C) invalid test. Blue diamond represents target antigen. © 2021 by Catherine 
Brown. 

1.3 Next Generation Techniques for Body Fluid Identification 

Serology testing, at one point in time, was heavily regarded as a means of not only 

identifying a sample but individualizing a biological stain. With the advent of PCR amplification and 

DNA profiling, the novelty of serology screening began to fade. Practitioners, researchers, and 

academics have exponentially grown the capabilities of genetic typing since its first use in a criminal 

investigation in the mid-1980s. DNA profiling was propelled into the public eye and swiftly exceeded 

expectations as to the information attainable. However, this rapid change in the field of forensic 

biology left advancements in serology testing as an afterthought. With the ability to deconvolute 

profiles originating from multiple contributors, generate partial profiles from DNA quantities less 

than those present in a single cell nucleus, or elucidate phenotypic characteristics from SNP 

locations, the sensitivity limits of modern genetic typing have remained unchallenged. Given the 

substantial limitations characteristic of traditional serological procedures, several next generation 

approaches have been proposed and evaluated by researchers. DNA methylation, RNA assays, 
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Raman spectroscopy, and proteomic techniques seek to advance serological testing to sensitivity 

and specificity levels currently achievable with modern genetic typing chemistries.  

1.3.1 DNA Methylation Assays for Body Fluid Identification 

Epigenetics is the study of changes in gene expression that result from modifications other 

than those made to the DNA sequence. These changes can be categorized as those made to DNA 

nitrogenous bases or those made to histone proteins after the process of translation [56]. For the 

purposes of this section, DNA base modifications will be discussed, specifically cytosine/5’-CpG-3’ 

methylation or CpG sites. There are approximately 30,000 CpG sites within the human genome 

[57]. At these locations, methyl groups are added to the 5’ carbon position on cytosine rings and 

are adjacently followed by a guanine base pair. In vivo, this process is carried out by the enzyme 

methyltransferase. Modifications occur largely in promotor regions upstream of target gene 

sequences. In the event a promoter region becomes methylated, the region becomes  less 

accessible by transcription factors and gene transcription is reduced or halted. Therefore, the 

mapping of DNA methylation regions can provide useful information, not only for human disease, 

but for forensic purposes. Targeting specific gene regions and mapping the presence or absence 

of DNA methylation has the ability to generate a methylation fingerprint for body fluid identification.  

 The most commonly employed method for determining DNA methylation patterns is with 

the use of bisulfite conversion, a chemical modification made to unmethylated cytosine residues 

[58]. With the addition of bisulfite, all unmethylated cytosine residues are replaced with uracil. When 

amplified using PCR, resulting amplicons will vary depending on the presence or absence of 

methylation. This change in sequence is analyzed and compared among fluids and tissues to 

determine methylation regions suitable for identification. Methylation sequences can be analyzed 

using a variety of techniques such as methylation-sensitive single-base extension assay 

(SNaPshot™), pyrosequencing, methylation specific PCR, and high resolution melt (HRM) 

analysis. Tissue-associated differences in the form of hypo- and hypermethylated regions are 

mapped and compared between target fluids for determination of methylation-specific patterns.  
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The first use of DNA methylation as a strategy for body fluid identification was reported a 

decade ago [59]. Restriction enzyme PCR targeting methylation regions for blood, semen, saliva, 

and skin identification was performed. Original research has focused on evaluating a single fluid or 

amplifying a single target with the use of pyrosequencing. This procedure describes a sequence 

by synthesis technique. Simply, a chemiluminescent signal is produced after the addition of each 

nucleotide during sequencing. Therefore, the signal measured is proportional to the number of 

nucleotide bases added [60]. Using this technique, procedures for the identification of blood, 

semen, saliva, and skin have been developed and validated [58,61]. The robustness of epigenetic 

profiling was illustrated by the analysis of samples with low input DNA, the presence of amplification 

inhibitors, and aged/degraded samples. More recently, with the use of microarray technology, 150 

candidate markers for blood, saliva, semen, vaginal fluid, and menstrual blood identification have 

been described. Through more rigorous experimentation, a total of nine markers were validated for 

use and assay sensitivity rivaled that of contemporary STR genetic analyses [62]. In a similar study 

that utilized restriction enzyme PCR, eight CpG markers were identified and evaluated 

simultaneously with two control regions [63]. To date, a multiplex assay for blood, semen, saliva, 

and vaginal fluid has been developed with a single PCR procedure [64]. Upon comparison with 

previously developed single-plex assays, the multiplex assay produced comparable methylation 

trends.  

Perhaps one of the most promising aspects of epigenetic analysis is the potential 

differentiation between peripheral and menstrual blood sources. The embryonal fyn-associated 

substrate (EFS) gene, which encodes for a scaffolding protein linked to immune function, was 

demonstrated with bisulfite pyrosequencing to have specific methylation patterns for peripheral 

blood when evaluated in a large population [65]. In a similar analysis of 11 CpG sites, the marker 

BLU2 encoded by the gene C16orf54, was identified as a discriminatory marker between peripheral 

and menstrual blood [66]. In regard to assay sensitivity, an original study that employed 

pyrosequencing illustrated promising results for blood, semen, and saliva; however, an input of 10 

ng of DNA was necessary to execute the procedure [67]. The same research group continued 
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refining the procedure, opting for HRM analysis, citing 1 ng of DNA input to be sufficient for 

successful analysis [61].  

Advantages to exploring DNA methylation expression patterns for serological identification 

include its ability to multiplex target fluids, its high sensitivity and specificity, and its compatibility 

with existing DNA-based methods. Nevertheless, DNA methylation patterns exhibit high rates of 

variability between sexes, individuals, and populations. Furthermore, forensic evidence is more 

often than not in some form of degraded state upon the start of analysis, with DNA loss or 

fragmentation being of concern for the optimization and validation of assays for body fluid 

identification. Additional advancements in assay sensitivity and analysis of authentic samples 

would be beneficial for future implementation in operational laboratories.  

1.3.2 RNA Assays for Body Fluid Identification 

In a similar fashion to differentially methylated regions of DNA typed for epigenetic 

identification, gene expression patterns have been targeted for messenger RNA (mRNA) and micro 

RNA (miRNA) assays for body fluid identification. Both forms of RNA assay seek to detect gene 

transcripts that display specificity to a cell or tissue type. RNA serves as the molecular intermediate 

for the translation of DNA into protein and is formed during the process of transcription. This 

process is catalyzed by RNA polymerase, the enzyme responsible for reading the DNA template 

and matching complementary nucleotides to form mRNA and other small RNAs. The transcription 

unit, or the stretch of DNA template that spans from the promoter region to the terminator sequence, 

produces a single RNA molecule. Post-transcription, the process of alternative splicing removes 

interfering introns and pieces together the desired exons for the generation of a unique RNA 

transcript fit for translation.  

1.3.2.1 Messenger RNA Profiling 

mRNA profiling is performed by analyzing terminally differentiated cells, where gene 

expression is developmentally regulated. By observing transcriptionally silent cells versus actively 

transcribed cells, a pattern of gene expression unique to a group of cells is established. With body 

fluids containing a mosaic of cell mixtures and secretions, multiple gene expression patterns and 
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associated mRNA markers can be exploited for the detection and identification of such fluids. The 

use of mRNA profiling for body fluid identification purposes was first reported in 2003, with a proof 

of concept study developed and candidate genes proposed for saliva identification [68]. It was 

demonstrated that sufficient quantities of total RNA could be isolated from cells, especially dried 

stains that had been solubilized, with mRNA measured through the detection of housekeeping 

genes such as GAPDH. This original work was further developed into a multiplex assay for the 

identification of blood, semen, saliva, and vaginal fluid, with each fluid characterized by two genes 

[69]. Gene transcripts for menstrual blood were subsequently added and an interpretation strategy 

was proposed to illustrate the specificity of each mRNA marker [70]].  

With the promising results of this methodology, a series of collaborative studies organized 

by the European DNA Profiling Group (EDNAP) was initiated to further demonstrate the robustness, 

reliability, and sensitivity of the technique. For each study, participating laboratories could perform 

either an RNA extraction or an RNA/DNA co-extraction on neat stains, diluted stains, and mock 

casework samples of human and nonhuman origin. All of the mRNA panels described herein were 

simultaneously evaluated with markers for housekeeping genes. The first study focused on blood 

identification and employed two mRNA multiplexes: a duplex targeting genes for hemoglobin alpha 

and hemoglobin beta, and a pentaplex targeting genes for ALAS2, CD3G, ANK1, SPTB, and PBGD 

[71]. The following study tested the methodology for the identification of saliva and semen [72]. A 

saliva triplex included genes for histatin-3, statherin, and mucin-7. A semen pentaplex included 

genes for protamine 1 and 2, prostate specific antigen, semenogelin 1, and transglutaminase 4. 

Continuous collaborations then focused on vaginal secretions and menstrual blood [73]. Two triplex 

panels were selected for menstrual blood: the first containing genes for matrix metalloproteinase 

7, 10, and 11, and the second triplex targeting Msh homobox 1, LEFTY2, and SFRP4. Vaginal fluid 

identification was based on two triplexes. The first targeting mucin-4, myozenin-1, and CYP2B7P. 

Interestingly, the second triplex targeted genes of Lactobacillus bacteria (Ljen, Lcris, and Lgas), 

the most abundant vaginal bacteria in the female reproductive tract. A similar panel of matrix 

metalloproteinases was evaluated over the course of the female uterine cycle, confirming the lack 
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of specificity needed to discriminate with vaginal fluid and that target abundance changes over a 

typical menstrual cycle [74]. The final collaborative study demonstrated the use of mRNA profiling 

for the detection of skin and contact traces [75]. Of the eight gene markers evaluated, two genes 

were consistently identified. The inconsistency of detection is likely attributed to the low quantities 

of genetic material deposited by shed skin cells.   

Original research utilized reverse transcription-polymerase chain reaction (RT-PCR) 

procedures for method development [68–70]. Alternative methods using Real-Time PCR [76,77] 

and high resolution melt (HRM) analysis [78] were also proposed during early stages of method 

development. More recently, a digital gene expression method utilizing solution hybridization of 

NanoString® probes was explored [79]. Although RT-PCR is capable of producing informative 

quantitative data, assays are limited to the number of targets that can be assessed. Digital gene 

expression methods have the ability to count the number of individual transcripts for each sample 

and mimics the use of next generation sequencing for genetic analysis. This methodology was 

developed to assess the ability of predicting activity level of a perpetrator based on the quantity of 

sample present through the use of likelihood ratio statistical calculations. A custom set of genes 

was created: 23 gene targets for the identification of blood, menstrual blood, saliva, semen, skin, 

and vaginal secretions as well as an additional 10 targets for housekeeping genes. Authors note 

that saliva biomarkers exhibited poor specificity in relation to previously conducted work, but the 

remainder of targets performed as expected and exhibited high specificity and sensitivity. This 

method development preceded the use of massively parallel sequencing [80] and SNP 

characterization [81]. Reported read counts of mRNA markers for target and non-target fluids 

provided additional insight into the specificity of biomarkers selected in previous studies. Additional 

future directions for this methodology comprise the inclusion of other RNA products, such as 

circular RNAs [82], into multiplex panels to further investigate the sensitivity and specificity 

achieved with mRNA typing.  

In summary, the use of mRNA profiling for forensic purposes has been well developed and 

evaluated. Opposition to implementing this technology in operational laboratories remain from the 
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fear of mRNA stability, particularly in challenging sample types. However, the quality and quantity 

of RNA has been demonstrated in both aged samples and samples subjected to environmental 

insult [83,84].    

1.3.2.2 Micro RNA Profiling 

Comparably, miRNA are the small non-coding RNA sequences that attenuate protein 

translation and have been targeted as viable biomarkers for body fluid identification, but to a lesser 

extent than mRNA profiling. Given their inherent size (approximately 20-25 bases in length), 

miRNAs emerged as an attractive marker for the identification of highly degraded body fluids. A 

majority of miRNA transcripts were selected based on their function within a specific tissue. 

However, these markers proved challenging to type using traditional primer binding strategies given 

their shortened length. Overall, three categories of methods are prevalent in the literature: 

microarray hybridization methods, quantitative reverse transcription PCR, and RNA sequencing. 

The combination of these techniques for miRNA profiling has led to a series of inconsistent results 

reported among research groups [85].  

Original research into their use for forensic purposes was reported in 2009, with nine 

candidate miRNAs for blood, semen, saliva, vaginal secretions, and menstrual blood identified from 

a pool of 452 markers through the use of RT-PCR [86]. When evaluated against 21 tissue types, 

the panel exhibited high specificity and potential for future method development. A similar study, 

utilizing quantitative PCR, confirmed miRNA markers for peripheral blood and semen but described 

a lack of support for candidate markers for saliva, vaginal fluid, and menstrual blood [87]. 

Conversely, a separate research group identified and validated a proof of concept triplex of markers 

for both blood and saliva detection [88].  

Research data presented for mRNA followed a natural evolution and build in regard to 

achievements and application. The same cannot be said for miRNA profiling. Original 

methodologies present conflicting data on the ability to characterize forensically relevant body 

fluids, and with large amounts of miRNA markers to evaluate and multiple methodologies 

performed for analysis, this area lacks a clear direction. In order to elucidate a more reliable path 
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forward, researchers turned to statistical modeling of data. A linear regression model for the 

identification of menstrual blood was generated [89]. Although trained and tested with a limited 

sample set, the model produced accurate identifications. But perhaps the most interesting result of 

this study was the reported limit of detection. The total RNA quantity for the proposed methodology 

was measured to be 50 pg for menstrual blood analysis, whereas comparative mRNA research 

performed at this time, reported an input of 5 ng of total RNA [89]. Apart from the first use of miRNA 

profiling [86], a full panel of biomarkers underwent rigorous experimentation prior to presenting 

candidate selections. From a pool of 1,700 miRNAs, a preliminary panel of 203 markers were 

selected for use in a microarray against blood, semen, saliva, and vaginal fluid. Once the 

preliminary panel was paired down, a set of eight miRNA targets were proposed as candidates: 

miR-484 and miR-182 for blood, miR-223 and miR-145 for saliva, miR-2392 and miR-3197 for 

semen, and miR-1260b and miR-654-5p for vaginal secretions [90].  

More recently, statistical decision making has been continuously applied on validated 

panels of miRNA markers and additional interpretation strategies in normalizing data to 

housekeeping genes has been proposed [91–94]. Using these strategies, the greatest amount of 

body fluid matrices (blood, semen, saliva, vaginal fluid, menstrual blood, urine, feces, and sweat) 

have been successfully sequenced at quantities consistent with low-level forensic evidence [92], 

with authors noting interference in sequence annotations due to bacterial presence in certain fluids. 

A notable benefit of miRNA profiling is the ability to identify markers from DNA extracts, an attractive 

quality for caseworking laboratories seeking to streamline sample preparation procedures from 

commercially available DNA extraction kits [95].  

Although research strongly supports the use of miRNA profiling for the identification of 

blood and semen, there is a lack of evidence encouraging its use for vaginal secretions and 

menstrual blood. There is conflicted data presented on the consistency of saliva miRNA marker 

specificity. In regard to data analysis, miRNA profiling does not lend to straightforward interpretation 

[93]. Furthermore, the stability of miRNA markers is affected by a myriad of factors, such as 

temperature, changes in pH, and radiation [85]. Disease state and the function of miRNA in 
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proliferation and inflammation have been well documented [96,97], illustrating that miRNA 

expression is not static within the human body. In conclusion, miRNA profiling requires 

supplementary research to provide a clear and convincing model for use as an alternative means 

for serological screening. 

1.3.3 Raman Spectroscopy for Body Fluid Identification  

Spectroscopy is a technique that measures the interaction between matter and radiation 

to elucidate physical structure at the molecular or atomic level. There are many different types of 

spectroscopy, each with a unique application and can be distinguished based on the interactions 

that take place. This section will focus specifically on Raman spectroscopy. This type of 

spectroscopy stems from inelastic Raman scattering which occurs when the matrix of interest is 

excited with a high-powered laser, causing the vibrational and rotational energies of the molecules 

to shift [98]. A photon beam is used to excite a molecule into a virtual energy state. The photon 

emitted from the excited molecule will be measured at a higher or lower energy state than the 

photon used to initiate excitement. This light scattering event results in different rotational and 

vibrational states of the atoms and molecules present. The emitted photon, therefore, shifts to a 

different frequency. The vibrational signature, or the specific change in energy, of the molecules 

present is recorded and used to identify the material. This technique requires minimal to no sample 

preparation and is nondestructive in nature; however, the target matrix must be concentrated in 

order to produce a strong vibrational spectrum. 

 In the field of forensic science, Raman spectroscopy has longstanding use for applications 

in drug chemistry [99,100], paint and ink analysis [101,102], and the examination of trace evidence 

[103,104]. For serological purposes, this next generation technique demonstrates gains in 

specificity when considered alongside traditional colorimetric, enzymatic, and antibody-based 

assays. The Raman spectra produced for forensically relevant body fluids is determined by the 

entire molecular composition of the specific fluid. Original research initiatives focused on using 

Raman spectroscopy to generate vibrational signatures of single source body fluids. It was 

hypothesized that the spectra produced would reflect the unique composition and complexity of 
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each fluid and serve as a novel tool with greater discriminatory power than historical techniques. 

Promising results were obtained from preliminary studies containing limited sample sizes, with 

experiments performed under highly controlled laboratory conditions. With the successful 

characterization of molecular components consistent with human semen, blood, saliva, vaginal fluid 

and sweat, researchers saw promise in the use of Raman spectroscopy for more challenging 

sample types and envisioned robust reporting with advanced statistical calculations [105,106]. 

When focusing specifically on human blood characterization, early studies reported the ability to 

make a positive identification of human blood that had been diluted 250-fold; however, the Raman 

signatures produced varied among individuals and even within samples supplied by a single 

individual [107].  

 More recent advancements have been illustrated through the analysis of samples that 

more closely resemble those collected from a crime scene. Although capable of detecting 

components of human blood and semen from various substrates, sensitivity was shown to 

decrease in relation to previous studies, with human blood detected at a 100-fold dilution. Raman 

spectroscopic techniques were unable to identify signatures of human blood from laundered 

substrates but were demonstrated to be unaffected by evidence treated with luminol [108]. 

 Raman signatures for human blood have produced consistent spectral components of 

hemoglobin, heme, and tryptophan, with multiple studies demonstrating the ability to discriminate 

human and nonhuman blood sources [109–111]. Components used for semen identification have 

been reported to display vibrational signatures consistent with acid phosphatase, citric and lactic 

acid, urea, and zinc [112,113]. The use of non-specific signatures, such as those of lactic acid, 

decrease the confidence of an identification, based on endogenous levels of non-specific 

signatures in various fluids and tissues. However, a more recent study was successful in detection 

signatures indicative of prostate specific antigen. This protein is found in high concentrations in 

semen, with low concentrations in serum and male urine, both of which have the potential to 

produce a false positive result. It was successfully demonstrated that the detection of prostate 

specific antigen using Raman spectroscopy can eliminate a false positive detection from male urine 
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when simultaneously assessed with dilute semen samples [114]. Characteristic components of 

vaginal fluid, saliva, and sweat have been reported [113], but limited research as to the extent of 

substrate interference and contamination on the ability to form an accurate identification of these 

fluids has been conducted.  

With the development of portable Raman systems, the use of this technology directly at a 

crime scene allows for rapid sample analysis. Traditional screening techniques for suspected blood 

stains, such as the use of leucomalachite green, can damage genetic material [115]. Advantages 

of screening with Raman spectroscopy are the technique is nondestructive and it maintains the 

integrity of the evidence for additional testing. The success of portable Raman spectroscopic 

analysis has been demonstrated for both human and nonhuman blood samples, in addition to 

positively characterizing a 3 month old stain [109].  

 Perhaps the most alluring attribute for the use of Raman spectroscopy for body fluid 

identification is the ability to use advanced data analysis tools to estimate error rates. The field of 

forensic science has been scrutinized on multiple accounts in regard to the accuracy and reliability 

of testing performed. As such, to determine if a methodology is valid in federal court, the procedure 

must not only have been tested, but potential error rates should be stated [116]. Chemometrics 

applies statistical theories to large and complex data sets [117]. For example, it was demonstrated 

that differentiation of five body fluids can be achieved with the use of interval partial least squares 

discriminant analysis (iPLSDA) [113]. An important aspect of this study involved the separation of 

datasets into those used for calibration and those used for validation. Similar practices are utilized 

for determining type I and type II error rates for genetic typing method validation in operational 

laboratories. More recently, a detection algorithm was successfully applied to the characterization 

of semen in the presence of substrate interferences [118]. This study sought to address one of the 

main limitations of Raman spectroscopy for body fluid identification. Substrates can cause 

interference signatures during evaluation, but given trace level sample analysis, signatures can be 

sufficiently more intense and mask those of the fluid components.  
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As such, limitations to Raman spectroscopic analysis of body fluid evidence stem from the 

inability to completely remove background interferences caused by substrates and sensitivity 

constraints caused by low-level samples. Furthermore, given the inherent complexity of biological 

matrices, advanced understanding of statistical theories is needed for deconvoluting components 

in a mixed source sample. Although the current research is supportive of this next generation 

technique, a majority of studies focus on human blood and semen identification, with a limited 

number of studies reporting on vaginal fluid [119], saliva [120], and sweat [121]. Nevertheless, this 

technique has been explored additionally for sex and race determination of forensic samples [122].  

 In summary, research into the use of Raman spectroscopy for body fluid identification has 

demonstrated a refined technique that is nondestructive, rapid, and confirmatory in nature. With 

the advent of portable instrumentation, this technique is an attractive tool for screening of biological 

material at a crime scene.    

1.3.4 Proteomic Assays for Body Fluid Identification 

 The final next generation serological technique is the use of proteomic assays and will be 

the focus of research disseminated in later chapters. Proteomics is the large-scale study of the 

proteome and protein expression. It describes not just a single technique, but a family of scientific 

approaches that exploit protein structure and function for the purpose of further elucidating the 

enigma that is the human proteome. Simply, proteins are an attractive diagnostic marker because 

they represent intermediate phenotypes for disease and illustrate the effect of non-genetic risk 

factors on cellular function [123]. This concept is adopted for use in forensic biology. Forensic 

proteomics uses advanced analytical techniques, such as liquid chromatography and mass 

spectrometry, in combination with bioinformatics to analyze biological evidence. In addition to 

applications for historical and archeological investigations, proteomic techniques have been 

developed for use in the greater forensic biology workflow for the identification of body fluids, such 

as in cases of sexual assault and rape.  

Biological evidence is, more often than not, subjected to unfavorable conditions. These 

conditions can include both environmental in the literal sense, such as extended UV degradation 
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or excessive heat, or environmental in the biological sense. In regard to the latter, natural protein 

function within biological systems can result in endogenous degradation of other protein material. 

For example, the protein prostate specific antigen in seminal fluid functions by cleaving 

semenogelin isoforms, resulting in the seminal fluid matrix to lose its gel-like structure. Both 

prostate specific antigen and semenogelin are attractive protein targets for seminal fluid 

identification. However, certain serological screening assays rely on protein activity, and therefore 

a protein’s confirmational structure, for testing purposes. It would be prudent for serological 

identification to rely on protein presence more heavily, especially for degraded evidence. 

Proteomics is an attractive alternative to chemical and enzymatic assays because it can detect 

protein presence. Furthermore, with the inherent sensitivity of analytical techniques, proteomics 

has the ability to confirm protein presence based on molecular weight.  

As previously discussed, proteins are highly abundant within the human body and exhibit 

an immense variety of functions. Therefore, proteins and their peptide fragments were a natural 

target for advancing serological testing strategies from traditional activity-based and ligand binding 

assays. One of the main challenges of proteomics is correctly determining the amino acid sequence 

of a protein target, as many proteins can be composed of the same amino acids but in a different 

order, ultimately lending to their unique properties. Liquid chromatography-mass spectrometry 

provides the necessary structural and molecular weight information needed for accurate 

identifications.  

1.3.4.1 Theory of Modern Proteomic Techniques 

1.3.4.1.1 Protein Digestion and Sample Preparation 

 Intact protein identification is challenging given the inherent size of protein molecules. For 

example, prostate specific antigen in seminal fluid has a mass of 28,741 Daltons. In comparison to 

small molecule mass spectrometry utilized for alternative forensic applications, proteins can have 

a molecular weight one hundred times greater than that of a single drug molecule. In addition, 

proteins exhibit variable charge states, sequence variants, and post translational modifications that 

complicate mass spectral analysis. By cleaving large protein molecules into peptide fragments, 
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charge state variations can be controlled, and sequence specific information can be obtained 

through the use of bioinformatics. Ideal peptide targets can range between 8 to 25 amino acids in 

length. As opposed to intact protein identification, peptides ionize well, fragment in a predicable 

manner, and produce good chromatography.  

Protein digestion is comprised of 4 simple steps: denaturation, reduction, alkylation, and 

cleavage [124]. Denaturing agents can be used to compromise the quaternary, tertiary, and 

secondary structure of proteins, causing them to lose their native three-dimensional structure and 

expose amino acid side chains by breaking molecular interactions. Commonly utilized detergents, 

such as SDS, are not compatible with mass spectrometers. However, denaturing agents such as 

urea, trifluoroethanol, or guanidine thiocyanate compete for hydrogen bonding within the complex 

protein folds, resulting in exposure of amino acid side chains and subsequent linearization. While 

the protein is being denatured, bonds are simultaneously being reduced. A commonly utilized 

hydrophilic reducing agent is tris(2-carboxyethyl)phosphine (TCEP), selected for its solubility and 

stability in aqueous solutions at both acidic and alkaline pH. An SN2 nucleophilic substitution 

reaction occurs when TCEP is introduced to the sample. Denaturation and reduction of protein 

targets is necessary in order to ensure complete exposure for enzymatic digestion. Alkylation is 

performed in order to cap exposed and reactive cysteine thiol groups, preventing reformation of 

disulfide bonds or other non-specific reactions. Iodoacetamide is an irreversible alkylating agent 

commonly utilized during protein digestion processes. This compound causes rapid 

carboxymethylation of reduced cysteine residues preventing disulfide bond formation. The peptide 

sequence is then ready for cleavage, producing more manageable peptide fragments for analysis. 

Protease enzymes exhibit specificity with regard to amino acid cleavage sites. For example, the 

serine protease trypsin cleaves at the carboxylic junction of arginine and lysine residues, yielding 

predictable and specific peptide sequences. 

Following digestion, denaturation agents, salts, and unwanted matrix components are 

removed prior to analysis via liquid chromatography-mass spectrometry.  During peptide cleanup, 

solid phase extraction (SPE) employs a sorbent material that preferentially separates and removes 
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any unwanted compounds (Figure 1.5). A sorbent material made up of hydrocarbon chains is 

packed into cartridges. Simply, the sorbent is primed with an acidic organic solvent, which activates 

the functional groups present and removes any trapped air. The cartridge is then equilibrated using 

acidified water in order to maximize the sorbent’s interaction with the sample matrix. Next, the 

digested sample material is applied to the cartridge. Slowly, the sample passes over the sorbent 

material which retains target peptides. Then, the cartridge is washed to remove any unbound 

material from the sorbent, including residual reagents from digestion processes. Lastly, peptides 

are eluted from the sorbent bed with acidified organic solvents. The eluant can be directly injected 

into the liquid chromatograph to begin analysis or lyophilized for storage or concentration.   

 

Figure 1.5. Schematic depicting a solid phase extraction procedure for post-digestion cleanup. © 
2021 by Catherine Brown.   

1.3.4.1.2 Chromatographic Separation and Ionization 

Biological samples are subjected to separation through the use of liquid chromatography. 

Simply, liquid chromatography is the use of a liquid mobile phase to carry target species through a 

column containing a stationary phase (Figure 1.6). The target species will interact with the 

stationary phase differently than interferents or other target species. As mobile phase conditions 

change, the target species elute from the column based on preferential interactions. Liquid 

chromatography is the ideal separation method for proteins because it can analyze samples that 

span a wide range of analyte polarity in addition to capabilities of analyzing large molecular weight 
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species. In general, the mobile phase is continuously pumped through the liquid chromatograph. 

Pre-programmed mobile phase conditions, referred to as the mobile phase gradient, change over 

the course of a sample run time. For example, mobile phase starting conditions more closely 

resemble a high aqueous solvent, such as a 2% acetonitrile in water. Separation and elution from 

the analytical column occur as mobile phase conditions change, with a majority of protein material 

eluting at approximately 30% acetonitrile in water. Protein material that is not as strongly retained 

by interactions with the stationary phase of the analytical column will be carried out of the 

chromatograph by the mobile phase. Eluted material can either be directly detected or further 

fragmented in a mass spectrometer. The resulting chromatogram displays the elution sequence 

and amount of material present. Retention time is plotted on the x-axis and represents the time in 

which a specific analyte eluted from the analytical column. Intensity is represented on the y-axis. If 

a reference sample is available, retention time for compounds should occur within a designated 

amount of time.  

 

Figure 1.6. Schematic of a liquid chromatograph containing (A) mobile phase components, (B) 
mobile phase pumps and mixing chamber, (C) autosampler, (D) analytical column containing 
stationary phase, (E) detector, and (F) resulting chromatogram. © 2021 by Catherine Brown. 
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Multiple variables can be modified to optimize chromatographic separation. For example, 

mobile phase flow rate, solvent composition and pH modifiers, stationary phase composition, and 

column temperature are just a few factors that influence peak resolution, retention time and 

selectivity. Reverse phase liquid chromatography is well suited for protein separation. This mode 

of chromatography employs a water-based mobile phase and hydrocarbon stationary phase, such 

as octadecylsilyl (C18) or octylsilyl (C8) moieties. These moieties are bound to a silica support and 

intrude into the negative space of the analytical column to interact with analytes carried by the 

mobile phase. The column chemistry that ensues is fitting for the separation of compounds that are 

neutral, weakly acidic, and weakly basic. The retention of analytes to the stationary phase is 

dependent on the analyte’s hydrophobicity, and by extension, an analyte’s ionization state. Mobile 

phase is commonly supplemented with an ion pairing agent to control the retention of ionic analytes, 

as retention time is affected by the ionization state of an analyte.  

With continuing structural elucidation using mass spectrometry, eluted analytes must first 

be desolvated and ionized prior to entering the mass analyzer. The process of electrospray 

ionization (ESI) is commonly used to transfer eluate from the chromatograph into gas phase ions 

suitable for mass spectrometric analysis [125] (Figure 1.7). A transfer line carries chromatograph 

eluate into the ESI source, where the eluate is sprayed from a charged capillary as a fine aerosol 

mist into a heated chamber. Nebulization occurs as solvent is readily evaporated and droplets are 

formed. The potential difference applied to the capillary allows the droplets to reduce in size. As 

the radius of the drop decreases, the droplet charge remains constant and repulsion forces within 

the droplet increase. Eventually, the repulsion stress must be released, and droplets undergo 

droplet jet fission to produce small, charged particles. ESI is commonly employed in proteomics 

research because of its ability to produce multiply-charge ions. This inherent characteristic allows 

additional mass-to-charge ratio measurements to be made even with a mass analyzer that have a 

limited mass range [126]. Instrumental parameters that can be modified to reach optimal ionization 

include drying gas temperature and flow rate, nebulizer pressure, and capillary voltage. 
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Figure 1.7. Schematic depicting electrospray ionization and the interface between the liquid 
chromatograph and the mass spectrometer. Green arrows represent the drying gas. Blue circles 
represent the charged droplets as they reduce in size due to drying and jet fission forces. © 2021 
by Catherine Brown. 

1.3.4.1.3 Mass Spectrometry Instrumentation and Interpretation 

Within the last two decades, significant advances in mass spectrometry-based 

methodologies have expanded the capabilities and possibilities of scientific achievements. 

Parameters such as increased dynamic range and quantitative accuracy presented attractive 

qualities to disciplines such as clinical diagnostics and forensic science. Mass spectrometry as it 

applies to proteomics has assumed many forms based on the type of analyses conducted.  

In a broad sense, mass analysis is the separation and filtration of ions, from which the 

chemical form of a species, such as its structure and ionization potential, can be elucidated. This 

chemical form is represented by a mass spectrum or a plot that graphs signal abundance against 

mass-to-charge ratio (m/z). Three qualities are evaluated when selecting a specific mass analyzer: 

mass resolution, mass accuracy, and mass range. Mass resolution describes the ability of a mass 

analyzer to separate two adjacent masses and becomes an important property when coelution of 

target ions may exist. Mass accuracy illustrates the mass measurement recorded to that of the true 

mass of the target. And lastly, mass range defines the difference between the highest and lowest 

measurable m/z. There are several types of mass analyzers that exhibit fundamental differences, 

each with a desirable application in regard to proteomics.  
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Quadrupole mass analyzers, which are commonly selected for targeted proteomic 

analysis, function by filtering ions using electrostatic potentials and selecting ions based on m/z. 

The quadrupole is constructed out of four poles that are oriented to create a central channel down 

which charged ions can travel, where they are separated and filtered by electrostatic potentials 

applied to the four poles. An ion will carry a stable trajectory down the central channel if it oscillates 

within a narrow radius. On the contrary, a collisional trajectory occurs when an ion oscillates outside 

of the narrow radius, resulting in collision with the poles and ejection from the central channel. 

Quadrupole mass analyzers are popular given their low cost and uniform performance across a 

wide mass range; however, quadrupole mass analyzers have relatively poor mass resolution and, 

in relation to other mass analyzers, demonstrate a slower speed for scanning travelling ions.  

Time of flight mass analyzers exploit differences in kinetic energy to map flight paths and 

predict ion separation. This type of mass analyzer is attractive for discovery proteomics. Ion clusters 

are subjected to an accelerating voltage, where they are propelled into the flight tube. The time of 

flight for each ion cluster is measured from the onset of the accelerating voltage until clusters reach 

the detector at the end of the flight tube. The speed at which ions clusters travel through the flight 

tube is dependent on the m/z of the ion [127]. Although instrument calibration is more complex than 

a quadrupole mass analyzer, time of flight analyzers have the greatest mass range and fast ion 

scanning speeds.  

And lastly, ion trap mass analyzers rely on applied voltages to further group ions with a 

specific m/z. Ions that do not favor the applied voltage do not cluster and are propelled from the ion 

trap. In addition, because the ion trap is filled with an inert gas, additional fragmentation of selected 

ions can occur [128]. Because of this property, the use of ion trap mass analyzers is popular for 

top down proteomics. These types of mass analyzers display excellent mass resolution and 

sensitivity; however, they are easily saturated and produce unusual spectra if parameters are not 

properly configured.  

Mass analyzers can be combined in unique ways to increase ion filtration and improve 

qualities such as mass range and mass resolution. The goal of using multiple mass analyzers in a 
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single instrument is to gain additional structural information, achieve selectivity, and maximize 

sensitivity for quantitative analyses. Typical examples of mass analyzer combinations are triple 

quadrupole (i.e., two quadrupole analyzers separated by a collision cell) (Figure 1.8) and 

quadrupole time of flight. The use of multiple mass analyzers lends to the process of tandem mass 

spectrometry.   

 

Figure 1.8. Schematic of a triple quadrupole mass spectrometer for the detection of semenogelin 
2 peptide DVSQSSISFQIEK precursor and product ions. © 2021 by Catherine Brown. 

1.3.4.1.4 Proteomic Methodologies 

Once protein targets have been separated, it is important to consider the type of 

information desired from mass spectrometric analysis. Two main next generation proteomic 

methodologies include bottom up proteomics and top down proteomics. Bottom up proteomics 

describes the detection and identification of proteins that are first enzymatically digested into 

predictable peptide fragments. Protein material is subjected to a series of chemical modifications 

prior to identification. Denaturation, reduction, and proteolytic cleavage, with an enzyme such as 

trypsin, break complex protein domains into predictable peptide fragments suitable for mapping 

and targeted analysis. The retention of ionic species is achieved through the addition of ion pairing 

reagents, such as formic acid, into the mobile phase. 

Bottom up proteomics can be further divided into discovery or shotgun proteomics and 

targeted analysis [129]. Discovery proteomics is utilized for the unbiased scanning of peptide ions, 

with specific search parameters applied after data acquisition. This proteomic application earned 

its title from its use in discovering protein and peptide signatures and is often performed to generate 

a targeted ion selection list [130]. But in order to create a targeted list, a vast amount of data must 

first be collected and analyzed. The two most commonly used mass analyzer combinations for data 
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collection are quadrupole time of flight and ion trap mass analyzers. Quadrupole time of flight 

(QTOF) mass spectrometry is a popular analytical platform for discovery proteomics, given its mass 

accuracy and wide dynamic range (Figure 1.9). However, in comparison with other analytical 

platforms, the QTOF system lacks desirable resolution. To address the limitations of QTOF mass 

spectrometry, the Orbitrap analyzer was introduced. Similar to QTOF, the Orbitrap has a wide mass 

range, but also provides high mass resolution. A benefit of bottom up discovery proteomics is the 

limited amount of prior knowledge necessary for data interpretation. By scanning for and measuring 

the masses of precursor and subsequent product ions, a roadmap of related transitions can be 

generated.  

 

Figure 1.9. Schematic of a proteomic workflow with identification via QTOF. © 2021 by Catherine 
Brown. 

Targeted proteomics seeks to identify an analyte or multiple analytes through the use of a 

selective ion list [131,132]. Although sample preparation procedures are shared between shotgun 

and targeted proteomics, the analytical instrumentation differs. A triple quadrupole mass analyzer 

is commonly selected for targeted analysis. The first quadrupole is set up to selectively scan for a 

given precursor mass. In the second quadrupole, or collision cell, the precursor mass is subjected 
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to a charged gas, resulting in further fragmentation. The third quadrupole selectively scans for a 

specific product ion. Single reaction monitoring (SRM) or multiple reaction monitoring (MRM) are 

common targeted proteomic methods for determining the absolute and relative quantification of 

target analytes in a given sample. Isotopically-labeled peptide standards can be simultaneously 

assessed [133,134]. By comparing peak area responses of endogenous peptide fragments with 

those of peptide standards, a relative quantitation can be calculated [135].  

In comparison with bottom up proteomics, which identifies proteins that have been 

subjected to enzymatic cleavage, top down proteomics forgoes enzymatic cleavage [136,137]. This 

category of proteomics can be further classified by conducting intact protein analysis or peptidomic 

analysis, which describes the identification of low molecular weight proteins, naturally derived 

peptides, and truncated amino acid sequences of larger proteins [138]. With this type of proteomic 

analysis, full characterization of proteins can be achieved with increased sequence coverage 

because analysis is not limited to cleavage products. The eliminated laborious digestion procedures 

during sample preparation makes for streamlined and expedited sample analysis. Furthermore, 

post-translational modifications (PTMs) can remain intact and enrich data analysis.  

Similar to shotgun proteomics, Orbitrap analytical platforms are a popular selection for top 

down proteomic analyses. The fundamental construction of the ion trap mass analyzer provides 

the means for intrinsic fragmentation to occur. Although tryptic peptide analysis provides immense 

amounts of information from complex samples, the information remains limited to cleavage sites 

and the length of peptide fragments produced, resulting in some information to be ignored due to 

lack of unambiguous identification. This becomes mitigated with top down procedures and the 

migration from peptide-centered to a protein-centered interpretation.  

Regardless of methodology selected, peptides will fragment in a consistent manner once 

in a mass analyzer due to their repetitive monomer assembly. Peptides become protonated as they 

enter the ESI interface and are selected as precursor ions. Precursor ions are then fragmented into 

a variety of product ions as polypeptide backbone bonds are cleaved. Peptides are sequenced 

according to the bond cleavages that occur as they provide important structural information [139]. 
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The cleavage of peptide bonds between the carboxylic acid and amine functional groups of two 

adjacent amino acids generates product ions that are the sum of their amino acid composition 

residue masses. With this type of breakage, product ions will contain at least one proton that will 

mobilize on either terminus group or any of the amide nitrogens within the fragment. To form 

multiply-charged ions, the analyte must have more than one location that can undergo ionization. 

Typically for peptide sequencing, basic amino acid side chains, such as those of lysine, arginine, 

and histidine, serve as excellent proton acceptors. By determining the number of protons present 

in a mass spectrum, the molecular mass, and ultimately the peptide sequence, can be determined.   

1.3.4.2 Proteomics in Forensic Biology 

Forensic proteomics has been well-defined for the characterization of microbial traces 

[140,141], species identification [142], and protein toxin detection [143,144]. However, only within 

the last two decades has proteomics been proposed as an alternative strategy for forensic serology 

applications. Research initiatives sought to address the sensitivity, specificity, and reliability of 

existing traditional screening techniques in addition to providing a means of identification for fluids 

which lack an existing technique (i.e., vaginal/menstrual fluid).   

Original research conducted employed discovery proteomics for the characterization of 

presumptive and confirmatory peptide signatures for proteins consistent with blood, semen, saliva, 

vaginal fluid, and menstrual blood. Protein material was cleaved into known peptide fragments, and 

because each protein contains a unique amino acid sequence, the mass measurements of each 

fragment can be read and converted into an amino acid alphabet. Perhaps the greatest attribute of 

proteomic analysis is the ability to selectively target characteristic biomarkers, a quality shared with 

RNA and methylation assay but lacking in Raman spectroscopy techniques. Body fluids are rich in 

protein material, a majority of which is shared among cell and tissue types. For example, 

immunoglobulins are expressed in blood, saliva, and vaginal fluid, given their immune function to 

neutralize pathogens. Although shared protein material is important, targeting fluid-specific proteins 

was of interest to forensic researchers. Original candidate biomarkers were selected based on their 

uniqueness or level of enrichment within a target fluid. Studies described candidate markers 
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consistent with blood identification as hemoglobin beta and alpha-spectrin; with semen 

identification as semenogelin-1 and semenogelin-2, prostate specific antigen, and progestogen-

associated endometrial protein; and saliva identification as alpha-amylase 1, cystatin SA, and 

histatin-1 [145,146]. Comparable and additional biomarkers, such as submaxillary gland androgen-

regulated protein 3B for saliva and hemopexin for blood, were characterized in a similar study [130]. 

Tissue specificity of characterized proteins were cross-referenced with existing protein databases 

to demonstrate the specificity of the developed methodology. In addition, the latter study evaluated 

reproducibility by fractionation, an important technique to ensure maximum coverage of the human 

proteome during discovery [130].  

In order to further understand the expression patterns among individuals, candidate 

biomarkers were verified through population studies. With limited sample sizes utilized for 

biomarker characterization, it was critical to evaluate protein levels in a more diverse sample 

population. A population of 50 human body fluids were correctly identified by the presence of one 

or more candidate markers [147]. Authors make a compelling argument that, in comparison with 

STR markers currently targeted for genetic typing, proteins exhibit greater interindividual 

expression variability. Although highly specific targets may be characterized in limited samples, 

they may not be consistently detected or serve as the most robust biomarkers for future method 

development.  

A majority of research aims have included the analysis of forensic-type samples, such as 

complex mixtures, aged stains, and stains on various substrates [145]. In regard to sexual assault 

and rape, evidence commonly contains fluids of mixed source. For example, a vaginal swab taken 

from a rape victim will inherently contain vaginal fluid, but semen and saliva may also be present. 

It is important to have assays sensitive and specific enough to discriminate a mixed-source sample 

in order to provide essential information for investigative purposes. When evaluating 2-component 

mixtures, proteomic techniques were successful in identifying both components, with matrix 

interferences observed for saliva in peripheral blood [147]. Protein material is innately separated 

from genetic material during solubilization of forensic evidence, with the cell pellets reserved for 
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genetic typing and the supernatant used for serological screening. The compatibility of proteomic 

techniques within a DNA-focused forensic biology workflow have been demonstrated by 

researchers [52,146]. One study reports the analysis of authentic crime scene samples, illustrating 

the successful characterization of blood in addition to producing a genetic profile with one seamless 

sample preparation protocol [148]. The sensitivity limits achieved with this analytical 

instrumentation are continuously challenged. It has been shown that laboratory-prepared 

laundered fabrics containing whole blood can be characterized with proteomic techniques [149]. 

Challenging sample type analysis will only continue to illustrate the effectiveness of proteomic 

analyses for body fluid identification, especially as analytical methods become more refined.  

More recent studies have employed quantitative proteomic techniques to detect peptide 

signatures. It was originally hypothesized that semi-quantitation of biomarkers could be used to 

determine the amount of body fluid present in the original stain. Although biomarker concentrations 

were calculated, it was concluded stain amounts could not be inferred due to sufficient expression 

variability among individuals [150]. Similarly, external standards have been employed to monitor 

trypsin processivity, ionization efficiency, and matrix interferences [147]. Currently, protein mass 

spectrometry technology has not been implemented into operational crime laboratories for body 

fluid source determination application.  

A main challenge of proteomic characterization is achieving a sample preparation protocol 

that is successful in extracting and purifying biomarker targets. Given the inherent complexity of 

protein material, differences in polarity and size can hinder the use of a common protocol. The 

conventional procedure for bottom-up targeted proteomics is time intensive to ensure adequate 

cleavage and recovery of protein material prior to analysis. A majority of protocols describe an 

overnight incubation as well as lyophilization steps; however, more recent studies explored 

expedited sample preparation [150,151]. In addition, as seen with other next generation techniques, 

the differentiation of vaginal fluid and menstrual blood remains a challenge. One area of 

improvement necessary for advancement of proteomic techniques is the dissemination of extensive 

interpretation guidelines and reporting language. Because vaginal fluid and menstrual blood 
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originate from the same cavity, guidelines in reporting protein biomarkers is essential to forming 

accurate result statements.    

Benefits of proteomic techniques for body fluid identification include its ability to conduct 

multiplex analyses, its sensitivity range, and potential use for correlation to genetic typing success 

[52]. In comparison with traditional screening techniques, proteomic research has demonstrated 

the ability to consistently characterize five body fluids within a single assay, unlike chemical, 

enzymatic, and antibody-based assays which each target a single fluid. Furthermore, antibody-

based assays have a limited working range, with concentrated samples producing a false negative 

result. Although emphasis is placed on trace level sample analysis within forensic biology, the 

ability to accurately characterize concentrated samples remains valuable for investigation. The 

inherent relationship between protein and DNA expression, characterized by the Central Dogma, 

illustrates the ability to utilize quantitative proteomic results as a means of predicting the quality of 

a genetic profile from a single stain. This relationship has been illustrated outside the realm of body 

fluid identification through the characterization of genetically variant peptides (GVP) and single 

nucleotide polymorphisms (SNP) in bone [152] and hair [153]. The strength of proteomic techniques 

in forensic biology are centered in its selectivity and ability to provide complimentary data to genetic 

testing.  

1.4 Research Objectives 

 This dissertation research was designed to develop and rigorously validate a high-

specificity forensic serology assay. The assay was designed for the simultaneous identification of 

five forensically-relevant body fluids: peripheral blood, seminal fluid, saliva, vaginal fluid, and 

menstrual blood. To achieve this, two well-established technologies, ultra-performance liquid 

chromatography and triple quadrupole mass spectrometry (UPLC-QQQ), were selected in 

combination with automated sample preparation to produce an integrated system well-suited with 

forensic casework needs. A previously developed prototype assay served as the model for further 

method development and validation. Validation procedures were conducted in accordance with the 

Federal Bureau of Investigation’s Quality Assurance Standard for Forensic DNA Testing 
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Laboratories as well as guidelines published by the Scientific Working Group on DNA Analysis 

Methods (SWGDAM). In addition, given the analytical instrumentation employed, appropriate 

guidelines from the Organization of Scientific Area Committees for Forensic Science (OSAC) 

Chemistry: Seized Drug and Toxicology Scientific Area Committee were also considered. The final 

deliverable presents a fully validated analytical assay that demonstrates sensitivity and specificity 

gains over traditional serological screening techniques and is compatible with downstream genetic 

testing.  

 Additional assessments were formulated to better understand and mitigate the deleterious 

effects of personal lubricants and spermicidal products on the ability to accurately identify seminal 

fluid and saliva in cases of sexual assault. Supplementary measures were incorporated into the 

sample processing procedure to diminish competitive binding during sample purification and 

remove the interferents prior to proceeding with protein digestion. The multiplex assay was then 

used as a foundation for the development of a top down peptidomic methodology for the 

assessment of sexual assault evidence. With the prevalence of sexual assault evidence, an 

expedited sample processing workflow that is capable of generating comparable results was 

identified as an area that needed further attention. It was demonstrated that same-day sample 

preparation could be used for the identification of seminal fluid, saliva, and vaginal fluid.  

The successful completion of these objectives has important implications for advancing the 

field of forensic serology by providing alternative means to confirming the presence of body fluids, 

especially in the event of sexual assault or rape.  

1.5 Hypotheses 

 The overarching hypothesis that was tested in the course of this dissertation research is 

that proteomic techniques in the form of bottom up and top down methodologies will surpass the 

sensitivity and specificity capable of traditional serological screening techniques. The specific 

hypotheses that were at the core of this research therefore are: 

1. The transferring of a multiplex mass spectrometry-based assay from a nanoflow to high 

performance chromatographic system will sufficiently increase sample throughput. 



45 
 

2. An automated sample processing procedure will mitigate sources of human error and 

contribute to increased sample throughput without a loss in peptide intensity. 

3. A multiplex mass spectrometry-based assay can undergo rigorous validation and 

comparison to illustrate its performance and compatibility with existing forensic biology 

workflows. 

4. Body fluid identification of samples subjected to personal lubricants can be achieved 

through specific sample preparation procedures and detection of protein signatures using 

the validated mass spectrometry-based assay. 

5. An expedited proteomic analysis of body fluids consistent with sexual assault evidence can 

be developed using peptidomic techniques.  

1.6 Dissertation Structure 

 Each chapter within this dissertation will contain an introduction to provide the essential 

background content of the research conducted and present scientific reasoning behind the 

experimental design. Experimental methods and a comprehensive presentation of results will be 

detailed. The significance of research findings will be discussed, including any caveats to the 

developed methodology.  

 Chapter 2 details the transfer of a previously developed prototype LC-MS/MS technique to 

a more sensitive analytical platform. In addition, the optimization and automation of the sample 

processing method will be discussed. Chapter 3 focuses on the full developmental validation of the 

LC-MS/MS technique for the identification of five forensically relevant body fluids. Chapter 4 

evaluates the validated LC-MS/MS method in relation to currently utilized serological screening 

techniques. In addition, the compatibility of the developed LC-MS/MS methodology with 

downstream genetic testing protocols was assessed. Chapter 5 presents the effects of personal 

lubricants on the ability to accurate identify body fluids consistent with sexual assault analysis. And 

lastly, Chapter 6 focuses on a streamlined proteomic approach to biomarker screening for sexual 

assault evidence analysis. 
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CHAPTER 2: METHOD TRANSFER AND DEVELOPMENT OF AN AUTOMATED SAMPLE 

PROCESSING WORKFLOW 

2 Introduction 

 Through previous research initiatives in the Danielson laboratory ([130,147] and 

unpublished research), it has been demonstrated that a targeted mass spectrometry-based 

multiplex assay allows for the unambiguous identification of body fluids in a forensic context. 

Furthermore, the sensitivity and specificity gains achieved with the developed research grade 

assay illustrated the significant advantages of proteomic techniques when compared with reporting 

limits of existing serological screening tests. However, additional areas of interest required further 

development to reach the readiness level expected for implementation into an operational 

laboratory. Areas of interest included decreasing analytical run time without sacrificing sensitivity 

gains, automation of preparation procedures, a direct comparison with existing serological tests, 

and extending the boundaries for high throughput analyses. 

 The research grade assay was developed on an Agilent 6430 mass spectrometer coupled 

to a liquid chromatograph fitted with a 1100 series nanoflow pump. Although this system was a 

triple quadrupole mass spectrometer capable of advanced sensitivity and specificity in comparison 

with other high resolution mass spectrometers, the limitation of the initial assay was the nanoflow 

liquid chromatograph system. While originally chosen for increased sensitivity, to ensure complete 

peptide biomarker separation, and reduce the likelihood of coelution, nanoflow chromatography 

requires inherently small flow rates to achieve greater ionization. A 30-minute analytical run time at 

a 400 nL/min flow rate was necessary to achieve adequate separation of biomarkers on the 

nanoflow system. Furthermore, a manual tryptic digestion and sample cleanup was employed, 

limiting the number of samples processed in a given batch. These processes incorporated multiple 

sample handling steps and incubation times in addition to centrifugation and lyophilization steps. 
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In summary, the research grade assay was limited to 12 samples per batch, which required a full 

day of preparation and an additional full day to acquire data.  

Under this portion of the project, the previously developed research grade assay was 

transferred from the nanoflow chromatography system to an ultra-performance liquid 

chromatography tandem mass spectrometry (LC-MS/MS) platform. Specifically, an Agilent 6495 

mass spectrometer coupled to a 1290 series liquid chromatograph was utilized. With the transfer 

of the analytical method, instrument and chromatography parameters required optimization prior to 

validation. During this portion of the study, synthetic peptide standards were synthesized, an 

internal positive control was selected and tested, and analytical operating parameters were 

determined.  

 This chapter seeks to report and establish a refined protein biomarker panel for the 

identification of peripheral blood, seminal fluid, saliva, and vaginal/menstrual fluid in addition to 

developing an automated sample processing protocol for increased sample throughput. This 

research was completed under three main scientific aims. The first research aim addressed the 

need to transfer the research grade assay to a high resolution analytical platform. The second 

research aim established an automated sample processing procedure and evaluated techniques 

for accurate protein quantification. The final research aim compared the automated processing 

procedure with the existing manual processing procedure for accuracy in the identification of 

selected biomarkers. The results outlined herein provide an optimized sample processing 

procedure and analytical method equipped for a full developmental validation.  

2.1 Methods and Materials 

2.1.1 Body Fluid Collection 

 All research conducted under this phase of the project was reviewed and approved by the 

University of Denver Institutional Review Board (IRB) for research involving human subjects. 

Sample collection and research was conducted in full accordance with the U.S. federal policy for 

the protection of human subjects. In total, 60 subjects were recruited from the graduate population 

at Arcadia University (Glenside, PA) and staff members employed at The Center for Forensic 
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Science Research & Education (Willow Grove, PA). All volunteers agreed and signed a letter of 

consent acknowledging that they had received, read, and understood all protocols involved in 

sample collection. Furthermore, all collected samples were assigned a random unique identifier to 

protect confidentiality.  

 Peripheral blood samples were collected through venipuncture under previous IRB 

approval. Additional blood specimens were purchased from Innovative Research, Inc. (Novi, MI).  

Semen was self-collected from consenting donors. The donor deposited the semen sample 

into a sterile collection cup and was asked to refrigerate the sample until transport to the lab. Upon 

receipt, semen samples were allowed to liquify at room temperature for 30 minutes. Collection cups 

were vortexed and 200 µL single use aliquots were prepared and stored at -80 °C until use.  

 Saliva was collected from consenting volunteers who refrained from eating or drinking for 

1 hour prior to collection. Salivette® collection tubes (Sarstedt, Nümbrecht, Germany) were utilized. 

Donors were instructed to remove the absorbent pad from the Salivette® tube and place the pad in 

their mouth. To stimulate saliva production, donors were instructed to gently chew on the absorbent 

pad. After 45 seconds, the donor placed the absorbent pad back into the Salivette® tube. The 

Salivette® tube was centrifuged for 10 minutes at 1,000 x g and saliva flowthrough was collected. 

200 µL single use aliquots were prepared and stored at -80 °C until use. 

 Vaginal secretions were self-collected by consenting donors. Female participants were 

asked to refrain from unprotected sexual intercourse for 12 days prior to the collection of vaginal 

fluid. The hypoallergenic, over the counter Softdisc™ collection cup (The Flex Company, Venice, 

CA) was utilized. Donors inserted the collection cup into the vagina following manufacturer’s 

instructions. It was requested the cup remain in the vagina for a minimum of 1 hour but could be 

left in for a period up to 12 hours. The entire Softdisc™ was placed into a sterile collection cup and 

transported to the laboratory. The liquid contents were placed into the collection cup and the 

Softdisc™ was repeatedly washed with 1 mL of ultra-pure water to remove mucous-like secretions. 

The liquid contents and mucous secretions were pooled and thoroughly vortexed to create a 

homogenous sample. 200 µL single use aliquots were prepared and stored at -80 °C until use. In 
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addition to vaginal secretions collected with the Softdisc™, female participants were asked to 

provide self-collected vaginal swabs. Consenting volunteers were provided with sterile cotton-

tipped swabs. A single swab was inserted into the vaginal cavity, similar to inserting a tampon. The 

swab was rotated in a circular manner for 15 seconds and gently removed. Swabs were placed into 

sterile manila collection envelopes for transport to the laboratory. Upon receipt, swabs were dried 

at room temperature where the cotton tip was removed from the wooden handle and placed in a 

clean microcentrifuge tube. Swabs were stored at -80 °C until use.  

 Menstrual blood samples were self-collected by consenting donors. Female participants 

were asked to refrain from unprotected sexual intercourse for 12 days prior to the collection of 

menstrual blood. The hypoallergenic, over the counter DivaCup™ (Diva International, Inc., Ontario, 

Canada) was utilized. Donors inserted the DivaCup™ in accordance with manufacturer’s guidelines 

during menses. It was requested the cup remain in the vagina for a minimum of 1 hour but could 

be left in for a period up to 12 hours. The entire DivaCup™ was placed into a sterile collection cup 

for transport to the laboratory. Upon receipt, the liquid contents were poured into the collection cup 

and thoroughly vortexed. 200 µL single use aliquots were prepared and stored at -80 °C until use. 

2.1.2 Method Transfer and Biomarker Selection 

2.1.2.1 Confirmation of Body Fluid-Specific Targets 

 Previously acquired data on candidate target protein and peptide sequences was reviewed 

in tandem with analysis of peptide standards in fluid matrix to reevaluate optimal transitions. In 

total, 26 peptide signatures from previously acquired data were carried over for additional analysis 

[130,147]. Under these previous research efforts, crude (70% purity) peptide standards were 

purchased, and product ions were selected via fragmentation analysis using Quadrupole Time-of-

Flight (QTOF) mass spectrometry. Authentic body fluids were quantitated (Section 2.1.3.1), 

manually digested and purified (Section 2.1.3.3) for analysis with the target inclusion list.   

2.1.2.2 Mass Spectrometer Instrument Parameters 

 Synthetic peptide standards prepared in Section 2.1.2.1 were combined to create a protein 

master mix containing peptide standards at equal concentration. Each protein master mix was 
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directly infused into the Agilent Jet Stream source of the 6495 mass spectrometer. Using the Agilent 

Source and iFunnel Optimizer software (v. B.08.00), starting values of source parameters were 

evaluated in a step-wise fashion. Parameters assessed included sheath gas temperature and flow 

rate, nozzle voltage, nebulizer pressure, drying gas temperature and flow rate, and capillary 

voltage. Resulting data was analyzed in MassHunter Qualitative software (v.B.04.01) for greatest 

peak intensities and peak shape.  

 Collision energy for individual peptides was determined using crude (70% purity) peptide 

standards prepared in Section 2.1.2.1. Skyline Proteomics Environmental software v. 20.1.0.155 

(MacCoss Labs, University of Washington) was used to establish predictive in silico collision energy 

values for each peptide of interest. Values were incrementally increased and decreased around 

the predicted value to determine the maximum signal of each ion transition. Resulting data was 

analyzed using MassHunter Qualitative software.  

2.1.2.3 Chromatographic Optimization 

2.1.2.3.1 Preliminary Assessment 

 Synthetic peptide standards prepared in Section 2.1.2.1 were utilized to assess the effect 

of mobile phase gradient, analytical column internal diameter, and flow rate on chromatographic 

peak separation and signal intensity. Two analytical columns were evaluated: an Agilent Poroshell 

120 EC-C18 3 mm x 100 mm column and an Agilent Poroshell 120 EC-C18 2.1 mm x 100 mm 

column. Flow rates assessed include 0.4 mL/min, 0.5 mL/min, and 1.0 mL/min. Due to the 

construction of the 2.1 mm x 100 mm column, the 1.0 mL/min flow rate could not be assessed on 

this column due to pressure limitations. Run times evaluated include 10, 13, and 15 minutes, each 

with a 3-minute post run to allow for equilibration. Two final analytical methods were selected for 

further analysis: a 10-minute (3.1 mm x 100 mm) method using a 1.0 mL/min flow rate and a 13-

minute (2.1 mm x 100 mm) method using a 0.5 mL/min flow rate. Body fluid samples from five 

donors were pooled, enzymatically digested, and extracted using the AssayMAP Bravo liquid 

handling platform protocol (discussed in Section 2.1.3.2) and analyzed, in addition to prepared 
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peptide standards, on both analytical methods to ensure peak-to-peak resolution remained 

desirable.  

2.1.2.3.2 Sensitivity Assessment 

 Human serum albumin (HSA) peptide (Agilent Technologies, Santa Clara, CA) was diluted 

using 30% ACN with 0.1% FA to the following concentrations: 100 fmol/µL, 10 fmol/µL, 1 fmol/µL, 

0.5 fmol/µL, and 0.1 fmol/µL. A series of seminal fluid and vaginal fluid mixtures were created from 

pooled fluid from five donors. Vaginal fluid was held at a constant 100 µL while 10 µL, 1 µL, 0.1 µL, 

and 0.01 µL of semen were added into the vaginal fluid sample (i.e., a vaginal fluid to semen ratio 

of 1:10 to 1:10,000). Each concentration was prepared and analyzed in triplicate between the 13-

minute (2.1 mm x 100 mm) method and the 10-minute (3 mm x 100 mm) method. Samples were 

digested and extracted using the AssayMAP Bravo liquid handling platform (discussed in Section 

2.1.3.2) and 1 µL of sample was analyzed via LC-MS/MS.  

2.1.2.4 Internal Positive Control 

 Intact Bos taurus myelin basic protein was purchased at a concentration of 1 mg/mL 

(Millipore Sigma, Darmstadt, Germany). Upon receipt, intact myelin was diluted with 50 mM 

ammonium bicarbonate (ABC) to a final concentration of 10 ng/µL. Isotopically-labeled Bos taurus 

myelin basic protein peptide DTGILDSLGR was purchased (New England Peptide) at a 

concentration of 1 mg/mL and diluted in 30% ACN 0.1% FA for a final concentration of 0.5 mg/mL. 

Single use aliquots of both the intact and labeled internal positive control (IPC) were stored at -80 

°C. Upon use, aliquots were thawed at room temperature for 30 minutes, vortexed, and pulse spun. 

Isotopically-labeled IPC stock solution was further diluted with 30% ACN and 0.1% FA in deionized 

water to a concentration of 1 pmol/µL. 

 Seminal fluid and peripheral blood were used for IPC concentration analysis as they are 

the most protein rich fluids analyzed within this assay. A series of four 2-fold dilutions were prepared 

by mixing 100 µg of body fluid matrix pooled from 5 donors with either 200 ng, 100 ng, 50 ng, or 25 

ng of a 1:1 molar ratio of intact myelin basic protein and isotopically-labeled peptide standard. 

Samples were digested and extracted using the AssayMAP Bravo liquid handling platform 
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(discussed in Section 2.1.3.2) and 1 µL of sample was analyzed via LC-MS/MS. Intact IPC was 

added to samples prior to tryptic digestion and isotopically-labeled myelin IPC was added prior to 

solid phase extraction cleanup.  

2.1.3 Sample Preparation Optimization 

2.1.3.1 Protein Quantitation 

 A comparison of two protein quantitation techniques was conducted. A previously 

optimized protocol for the bicinchoninic acid (BCA) assay was selected (Thermo Fisher Scientific, 

Waltham, MA). Assay standards were prepared by diluting concentrated bovine serum albumin 

(BSA) in 100 mM tris-hydrochloride (tris-HCl) to the following concentrations: 1,500 µg/mL; 1,000 

µg/mL; 750 µg/mL; 500 µg/mL; 250 µg/mL; 125 µg/mL; and 25 µg/mL. To a 96-well flat bottom 

plate, 25 µL of standard or sample was added in duplicate. Samples and standards were treated 

with 200 µL of working reagent containing 200 µL of Reagent A and 50 µL of Reagent B per sample. 

The plate was incubated at 37 °C for 30 minutes followed by 10 minutes at room temperature. 

Samples were read using a spectrophotometer at 652 nm wavelength. The second quantitation 

technique utilized a Nanodrop™ One Microvolume UV-Vis spectrophotometer (Thermo Fisher 

Scientific). To operate, 1 µL of sample or standard was applied to the stage. Two quantitation 

functions on the Nandrop™ were selected for evaluation: the 280 nm absorbance assay and the 

built-in BCA application.  

 For comparison, single use body fluid aliquots were thawed at room temperature for 30 

minutes then centrifuged for 10 minutes at 10,000 x g. Supernatant was transferred to a clean 

microcentrifuge tube and cell pellets were discarded. Single-fluid and mixture samples were 

prepared. Single-fluid samples were analyzed neat and diluted 10-fold, 100-fold, and 1,000-fold in 

50 mM ammonium bicarbonate. Two-fluid mixture samples were prepared by combining 50 µL of 

each fluid for 1:1 volume mixtures. Mixture samples were thoroughly vortexed and pulse spun prior 

to analysis. All samples were evaluated in triplicate. Descriptive statistics were calculated and 

comparisons were performed through observation of average protein concentration and standard 

error.  
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2.1.3.2 Automation Procedure Development 

 A previously developed manual tryptic digestion was modified and transferred to the 

AssayMAP Bravo liquid handling platform (Agilent Technologies). A denaturant solution of 8 M urea 

and 5 mM tris(2-carboxyethyl)phosphine (TCEP) was prepared in 100 mM tris-HCl. Upon 

procedure development, varying volumes of 40 µL, 55 µL, and 90 µL denaturant solution were 

added to samples for evaluation. Alkylation solution was prepared as 100 mM iodoacetamide in 

deionized water. 100 mM tris-HCl was utilized as diluent prior to the addition of 0.25 µg/µL 

sequencing grade modified trypsin (Promega Corporation, Madison, WI). With the exception of the 

sample load volume, the default peptide cleanup parameters on the AssayMAP Bravo software 

were utilized for removal of residual digestion solutions.  

2.1.3.3 Workflow Testing and Optimization 

A comparative assessment between the manual and automated processing procedures 

was conducted. For the manual tryptic digestion, lyophilized sample was reconstituted in 15 µL of 

50 mM ABC, vortexed for 10 seconds, and pulse spun. Protein was denatured with 15 µL of 

trifluoroethanol (TFE) and reduced with 1 µL of 200 mM TCEP for 30 minutes at 55 °C. After 

incubation, 2 µL of 200 mM iodoacetamide (IAA) was added and samples were vortexed and pulse 

spun. Samples were incubated for 30 minutes in the dark at room temperature. Samples were 

diluted with 250 µL 50 mM ABC for a final concentration of 5mM TCEP and 10 mM IAA. Samples 

were treated with 10 µL of 0.25 µg/µL sequencing grade modified trypsin and incubated at 37 °C 

for 15 hours. Digestion was stopped with the addition of 10 µL of 10% trifluoroacetic acid (TFA). 

Pierce® C18 Spin Columns (Thermo Fisher Scientific) were primed with 300 µL of 50% ACN in 

deionized water and centrifuged at 1.4 x g for 1 minute. Cartridges were equilibrated with 300 µL 

of 0.1% formic acid (FA) in deionized water and centrifuged at 1.4 x g for 1 minute. Total sample 

volume (266 µL) was loaded into the spin column and centrifuged for 1 minute at 1.4 x g. Columns 

were washed with 300 µL of 0.1% FA in deionized water and centrifuged at 1.4 x g for 1 minute, 

for a total of 3 wash steps. Samples were eluted with 2 passes of 20 µL of 70% ACN with 0.1% FA 

in deionized water by centrifuging for 1 minute at 1.4 x g, for a total of 40 µL of eluate. Eluate was 
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lyophilized to dryness. The automated procedures were conducted as described below (Section 

2.4.1). Samples were fortified with 100 ng intact IPC prior to digestion and a final concentration of 

50 fmol/µL isotopically-labelled IPC prior to solid phase extraction (SPE) cleanup. Descriptive 

statistics were calculated and comparisons were performed through observation of peak area 

response and standard error.  

Various consumables were evaluated to provide optimum biomarker recovery. Three 

sample plates were compared: a Non Binding Surface treated 96-well U-bottom plate (Corning®, 

Corning, NY), Lo-Bind treated plate (Eppendorf, Hamburg, Germany), and a non-treated U-bottom 

96-well plate (Greiner, Monroe, NC).  

2.1.4 Final Protocol for Sample Preparation 

 Samples were quantitated using the BCA assay. Standards and working reagent were 

prepared as described above (Section 2.1.3.1). If necessary, samples were diluted with 100 mM 

tris-HCL. Samples were fortified with 20 µL of 0.5 mg/mL intact myelin protein and lyophilized to 

dryness.  

Lyophilized sample was reconstituted and digested using the AssayMAP Bravo liquid 

handling platform. Samples were denatured in 55 µL of denaturant solution (8 M urea, 5 mM TCEP 

in 100 mM tris-HCl) for 45 minutes at 25 °C. 6 µL of 100 mM IAA was added and samples were 

incubated for 30 minutes at 25 °C with a lid on the plate. After 30 minutes, 170 µL of 100 mM tris-

HCl was added. Samples were treated with 10 µL of 0.25 µg/µL trypsin. The sample plate was 

sealed and shaken for 5 minutes prior to incubating at 37 °C for 15 hours.  

 The tryptic reaction was stopped with the addition of 10 µL of 25% TFA. Digested samples 

were manually fortified with 10 µL of 1 µg/mL isotopically-labeled IPC stock solution. The sample 

plate was placed back on the AssayMAP Bravo deck for SPE cleanup. C18 microextraction 

cartridges (Agilent Technologies) were primed with 100 µL 50% ACN 0.5% TFA at a flow rate of 

300 µL/min. Cartridges were equilibrated with 50 µL of 0.5% TFA in deionized water at 10 µL/min. 

200 µL of digested sample was passed over the cartridge at a flow rate of 15 µL/min. Cartridges 

were washed with 50 µL of 0.5% TFA in deionized water at a rate of 10 µL/min. Sample material 
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was eluted from the sorbent in 25 µL of 70% ACN 0.1% FA at 5 µL/min. Eluate was lyophilized to 

dryness and prepared for LC-MS/MS analysis. 

 Lyophilized samples were reconstituted in 100 µL of 2% ACN with 0.1% FA in deionized 

water. Acquisition was performed using 10 µL of sample per injection on an Agilent 6495 mass 

spectrometer coupled to a 1290 series liquid chromatograph. An Agilent Poroshell 120 EC-C18 3 

mm x 100 mm analytical column was used for separation. Mobile phase A consisted of water with 

0.1% FA and mobile phase B consisted of ACN with 0.1% FA. Separation initiated at 5% B followed 

by a linear 8-32% B gradient over 8.5 minutes, a 1-minute hold at 80% B, followed by a 3-minute 

re-equilibration at a 1.0 mL/min flow rate and column temperature of 50 °C. Data was analyzed 

using Skyline Proteomics Environmental software v. 20.1.0.155.  

2.2 Results and Discussion 

 The objective of this phase of the research was the design and optimization of the LC-

MS/MS method utilized for the remainder of the project. Specifically, human body fluid-specific 

biomarkers were selected; peptide standards were synthesized; an internal positive control was 

designated; and the Agilent 6495 LC-MS/MS operating parameters were determined. Furthermore, 

experimentation was conducted to determine if sample processing procedures were amenable to 

automation. It should be noted that all preliminary target selection included the analysis of 

biomarkers consistent with the identification of urine (in addition to peripheral blood, seminal fluid, 

saliva, and vaginal/menstrual fluids). Upon development of the sample preparation procedures 

outlined in Section 2.1 and in consultation with senior practitioners, the identification of urine was 

dropped from the analytical method to allow for consistency in sample processing and preparation. 

However, preliminary results for urine identification are included within portions of this chapter to 

demonstrate the inconsistencies of preparation chemistries at accurately identifying peptide 

signatures consistent with urine.    
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2.2.1 Method Transfer and Biomarker Selection 

2.2.1.1 Confirmation of Body Fluid-Specific Targets 

 To maximize the sensitivity and specificity of the assay, an extensive evaluation of protein, 

peptide, and peptide fragment ions were identified during method development. Preliminary peptide 

fragments were selected from the most abundant proteins present in the target body fluids (i.e., 

peripheral blood, seminal fluid, saliva, vaginal/menstrual fluids) through review of previously 

acquired data from prior research initiatives [130,147]. Proteins were reassessed using proteomic 

databases (i.e., UniProt, NCBI gene) for species- and fluid-specificity. Selected targets were 

evaluated experimentally to ensure the targets were abundant and not effected by endogenous 

matrix interferences, and top fragmentation products were selected for inclusion in the remainder 

of the study. Whole proteins, peptide sequences, or ion transitions were eliminated based on signal 

intensity, retention time, and fragmentation observed via LC-MS/MS. High purity isotopically-

labeled peptide standards were custom synthesized for the final biomarker target list and used in 

the remainder of the study.  

 Product ion transition selection was carried out using QTOF analysis of synthetic peptide 

standards. Figure 2.1 provides an illustrative example of peripheral blood protein alpha 1 

antitrypsin peptide LSITGTYDLK peak area response, fragmentation spectra, and product ion 

detection and selection. The peptide precursor m/z ratio of 555.80 was fragmented and the four 

most abundant product ions (i.e., m/z 997.5201, 910.4880, 797.4040, 696.3563) were selected for 

inclusion. This process was repeated for all protein/peptide pairings prior to being transferred to 

the Agilent 6495 LC-MS/MS platform. The preliminary inclusion list contained 30 protein targets 

characterized by 136 peptides (including markers for urine identification).   

 The inclusion list was drastically paired down during the remainder of this portion of the 

study. This was performed to increase the sensitivity and specificity of the analytical method by 

limiting the likelihood of coelution of peptide signatures. Such a large transition list results in 

decreased dwell times, which in turn limits the amount of time the mass spectrometer scans for the 

target compound, therefore preventing informative data points from being obtained. Furthermore, 
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as instances of fluid cross-reactivity or interference were observed, candidate protein and peptide 

markers were subsequently eliminated in favor of more specific protein targets. In summary, a total 

of 21 proteins were selected for the final inclusion list, characterized by 45 amino acid sequences 

and 132 unique ion transitions. Figures 2.2-2.6 illustrate the chromatographic separation of the 

final peptide inclusion list for each body fluid.  A complete list of protein, peptide, and transition 

targets is detailed in Appendix A. Although representative of fluid-specific and abundant targets, 

the diversity in protein composition of the inclusion list presented further analytical challenges for 

method optimization. Peptide targets exhibited a wide range of physical properties including 

hydrophobicity/hydrophilicity and molecular weight.  
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Figure 2.1. Analysis of alpha 1 antitrypsin peptide LSITGTYDLK by QTOF and LC-MS/MS. Top 
image represents the precursor ion response. Middle figure represents the fragmentation spectra 
of the precursor ion. Bottom figure represents the product ion distribution. The product ions 
exhibiting the greatest abundance were selected for inclusion in the targeted LC-MS/MS assay.  
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Figure 2.2. Assay results for the detection of human peripheral blood. Peaks represent selected 
peptides consistent with proteins (A) hemopexin, alpha 1 antitrypsin, apolipoprotein, 
serotransferrin, and (B) hemoglobin. 
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Figure 2.3. Assay results for the detection of human menstrual blood. Peaks represent selected 
peptides consistent with proteins (A) hemopexin, alpha 1 antitrypsin, apolipoprotein, 
serotransferrin, cornulin, neutrophil gelatinase, Ly6/PLAUR, suprabasin, periplakin, involucrin, 
small proline rich protein 3, and (B) hemoglobin. 

 

Figure 2.4. Assay results for the detection of human seminal fluid. Peaks represent selected 
peptides consistent with proteins semenogelin 1, semenogelin 2, prostate specific antigen, 
prostatic acid phosphatase, and epididymal secretory protein.  
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Figure 2.5. Assay results for the detection of human saliva. Peaks represent selected peptides 
consistent with proteins (A) submaxillary gland androgen-regulated protein 3B, cystatin SA, 
statherin, and (B) alpha amylase. (C) Alpha amylase peptides on a smaller retention time scale to 
illustrate peak resolution.  
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Figure 2.6. Assay results for the detection of human vaginal fluid. Peaks represent selected 
peptides consistent with proteins (A) neutrophil gelatinase, Ly6/PLAUR, suprabasin, periplakin, 
involucrin, (B) cornulin, and small proline rich protein 3. 

2.2.1.2 Mass Spectrometer Instrument Parameters 

 Given the formation of a targeted list of target protein and peptide biomarkers, additional 

instrument parameters were optimized for each target to ensure optimal detection and 

identification. In order to optimize ionization efficiency, Agilent mass spectrometer Jet Stream 

source conditions were adjusted (Figure 2.7). The source conditions modified for maximum peak 

area response included nebulizing gas flow rate and temperature, sheath gas flow rate and 

temperature, capillary voltage, nebulizer pressure, and nozzle voltage. Conditions were optimized 

by injecting peptide standards and manually modifying the aforementioned parameters until a 

maximum peptide response signal was observed. Finalized source condition parameters are 

detailed in Table 2.1.  

While source parameters were established based on response signal of the biomarker 

panel as a whole, the optimal collision energy was determined for each individual peptide transition. 
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Collision energy optimization is necessary to achieve maximum ion transmission and fragmentation 

within the mass spectrometer. Similar to source parameter conditions, collision energy was 

incrementally modified until a maximum peptide response signal was observed. Using Skyline 

Proteomics Environment Software, in silico predictions of optimal collision energy for each target 

peptide sequence were generated. Using synthetic peptide standards, the collision energy was 

modified in a stepwise manner both above and below the predicted value. A complete list of final 

collision energy values for target peptide sequences is detailed in Appendix A. For example, 

semenogelin 2 peptide DVSQSSISFQIEK had a predicted collision energy value of 23.8 V. The 

positive addition collision energies are shown in Figure 2.8, with 25.8 V producing the greatest 

peak intensity of those tested. 

 

Figure 2.7. Agilent Jet Stream source schematic. Reprinted from Agilent Jet Stream Thermal 
Gradient Focusing Technology (p. 1) by A. Mordehai and J. Fjeldsted. Publication number 5990 
3494. Copyright 2009 by Agilent Technologies.  
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Table 2.1. Optimized Agilent Jet Stream source parameters on the Agilent 6495 mass 
spectrometer.  

  

 

Figure 2.8. Collision energy optimization of semenogelin 2 peptide DVSQSSISFQIEK. Retention 
time is depicted on the x-axis and peak intensity on the y-axis. Colored peaks represent peak area 
intensity of the peptide at a given collision energy. The collision energy that produced the greatest 
peak intensity (i.e., 25.8 V in tan) was selected.  

2.2.1.3 Chromatographic Optimization 

 An area of interest that was identified for assay development in relation to the previous 

research grade assay was decreasing analytical run time in order to increase sample throughput. 

In addition to automated sample preparation (discussed in section 2.2.2.2), increasing sample 

throughput is an attractive quality for consideration in operational laboratories. One of the main 

challenges associated with a decrease in analytical run time is the loss of resolution between target 
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compounds due to coelution and potential ion suppression. Run time optimization and 

chromatographic separation were evaluated during this portion of the project using synthetic 

peptide standards and challenging sample types. During analysis, the LC-MS/MS mobile phase 

gradient, specifically for the acetonitrile organic solvent, was monitored and adjusted to prevent co-

elution of peptide targets. 

2.2.1.3.1 Preliminary Assessment 

 The starting analytical gradient was set for a 15-minute run time with a 3-minute post time 

at a 0.4 mL/min flow rate, for a total run time of 18 minutes. With the implementation of robotic 

sample preparation, the analysis of a 96-well sample plate would take approximately 30 hours. This 

was determined to be unsuitable for an operational environment faced with quick turn-around times, 

given that a single 96-well plate could not be analyzed within a single day. Therefore, two additional 

chromatographic run times were evaluated: a 13-minute run time and a 10-minute run time, both 

with a 3-minute post time (Table 2.2). To account for the analysis of such a large number of target 

compounds and the speed of analysis, two analytical columns were also assessed. The 13-minute 

gradient was developed using a 2.1 mm x 100 mm AdvanceBio Peptide Map column with a flow 

rate of 0.5 mL/min. The 10-minute gradient was developed using a 3 mm x 100 mm AdvanceBio 

Peptide Map column and a flow rate of 1.0 mL/min, with both columns containing a 2.7-micron pore 

size (Table 2.2). The increase in internal diameter of the analytical column, from 2.1 mm to 3 mm, 

allowed for increased flow rate due to the larger bore column. However, as flow rate is increased, 

peak-to-peak resolution will compress, generating potential challenges in maintaining assay 

sensitivity. A preliminary assessment of the analytical methods included the analysis of digested 

protein material from the target body fluids. While some compression was expected, no loss in 

resolution was observed with the 10-minute method for any of the body fluids. For example, Figure 

2.9 depicts chromatographic separation and resolution of a seminal fluid peptide targets for both 

the 13-minute (2.1 mm x 100 mm) and 10-minute (3 mm x 100 mm) methods. No consequential 

loss in peak resolution was observed while three minutes of instrument run time was spared per 

sample assayed.  
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Table 2.2. Chromatographic parameters for the three analytical gradients evaluated.  

 

 

Figure 2.9. Normalized chromatographic separation of seminal fluid peptide DVSQSSISFQIEK 
across the three developed gradients (15-minute run time, orange; 13-minute run time, light green; 
10-minute run time, dark green).  

2.2.1.3.2 Sensitivity Assessment 

 A serial dilution of human serum albumin (HSA) was prepared and analyzed on the 13-

minute and 10-minute analytical methods. A slightly greater (i.e., <2%) peak area was observed in 
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favor of the 13-minute analytical method (Figure 2.10). It was determined that the 10-minute 1.0 

mL/min flow rate did not negatively impact the ability of low-level sample detection and 

identification. Following these results, all body fluids were analyzed using the 13- and 10-minute 

methods to observe any consequential loss in peak-to-peak resolution due to compressed 

chromatographic separation. While peak compression was expected, no loss in resolution was 

observed with the 10-minute method for any of the fluids. For example, chromatographic separation 

for saliva is depicted in Figure 2.11. A change in elution order was observed for the two alpha-

amylase peptides IAEYMNHLIDIGVAGFR and LSGLLDLALGK (green and pink peaks). The 

LSGLLDLALGK peptide eluted first on the 13-minute method and second on the 10-minute method. 

Other than compression of peak elution, no other changes in elution order were observed for the 

remaining body fluids.  

To simulate sexual assault type samples, a series of semen dilutions in vaginal fluid were 

prepared. Of the four dilutions prepared, results for two are illustrated, with the 0.01 µL representing 

the lowest dilution point assessed. A marginal loss in peak area was observed for semenogelin 2 

on the 10-minute method; however, greater peak responses for prostate specific antigen were 

observed on the same method (Figure 2.12). Based on the data obtained, the tradeoff between 

peptide response and sample throughput favors the faster 10-minute (3 mm x 100 mm) run time. 

In conclusion, the 10-minute chromatographic method was selected for the remainder of the study. 
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Figure 2.10. Peak area comparison between the 13-minute (purple) and 10-minute (blue) analytical 
methods for human serum albumin peptide (A) YLYEIAR and (B) AAFTECCQAADK. Error bars 
represent standard error. The amount of protein material on column (in femtomoles) is represented 
on the x-axis. Peak area response is represented on the y-axis.  

 

Figure 2.11. Chromatographic resolution comparison between saliva biomarker peptides on the (A) 
13-minute and (B) 10-minute analytical methods.  
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Figure 2.12. Peak area response comparison for low-level seminal fluid in a vaginal fluid matrix 
between the 10-minute and 13-minute analytical methods. Semenogelin 2 peptide GSISIQTEEK 
at the 10-minute (orange) and 13-minute (red) retention times. Prostate specific antigen peptide 
FMLCAGR at the 10-minute (green) and 13-minute (grey) retention times. Peak area response is 
represented on the y-axis.  

2.2.1.4 Internal Positive Control 

 In order to monitor inhibition of proteolytic digestion due to the presence of sample-specific 

contaminants or inhibitors, an internal positive control (IPC) was designed. Two versions of the IPC 

were acquired: an intact protein to evaluate digestion efficiency and a heavy isotope-labeled 

peptide from the same protein to monitor purification and chromatographic analysis. Inhibition in 

protein cleavage efficiency was indicated by a reduction in the signal intensity of the control intact 

protein in comparison with the heavy-labeled peptide sequence of the same protein. Bovine myelin 

basic protein, both an intact protein version and an isotopically-labeled peptide sequence, were 

selected for use as the IPC (Figure 2.13). This protein had been used as an IPC in previous 
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research studies and was selected for it’s conserved amino acid sequence. Using seminal fluid and 

peripheral blood sample matrices, a dilution series of a 1:1 molar ratio of intact myelin and labeled 

peptide standard were evaluated. The theory behind selecting only seminal fluid and peripheral 

blood for IPC evaluation rests in the inherent matrix effects and protein concentration of these two 

fluids. 

 As expected, the heavy peptide standard to digested myelin response ratios did not reach 

the theoretical 1:1 ratio maximum for any protein cleavage reaction in tested authentic body fluids. 

The ratio that was obtained, however, was constant for both the seminal fluid and peripheral blood 

matrices over the full range of concentrations tested. Figure 2.14 shows the peak response for the 

digested myelin protein and heavy peptide standard for a 100 ng assessment in seminal fluid and 

peripheral blood. Both fluid matrices have matching peak heights, retention times, and a stable 

ratio of heavy peptide standard to digested myelin. The experiment was repeated across all body 

fluids using the same 1:1 molar ratio of intact myelin to labeled peptide standard, created in 100 µg 

of fluid matrix. Similar to results observed previous, the theoretical ratio of 1:1 was not illustrated. 

However, among the dilutions of each fluid matrix, the response ratios obtained had coefficients of 

variation (CV) values of 2% or less (Table 2.3). Therefore, the 100 ng quantity of intact IPC was 

selected for use in developmental validation studies.  

 The discordance in obtaining the theoretical 1:1 response ratio is best described by the 

relationship between enzymatic digestion of intact protein and monitoring of surrogate peptides that 

is characteristic of bottom up proteomic analyses [154]. The relative quantitation of surrogate 

peptides relies on the catalytic activity of trypsin. A 1:1 response ratio would assume a catalytic 

activity that displays 100% accuracy in cleaving at each arginine and lysine residue. 
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Figure 2.13. Protein sequences for myelin basic protein in (A) Bos taurus and (B) Homo sapiens. 
The Bos taurus specific peptide (DTGILDSLGR, pink) and Homo sapiens specific peptide 
(DTGILDSIGR, purple) lack 100% sequence identity, making it possible to discriminate between 
bovine-based IPC and endogenous human myelin basic protein.  

 

Figure 2.14. Detection of myelin bovine albumin peptide DTGILDSLGR in peripheral blood (left) 
and seminal fluid (right). Digested internal positive control is depicted in red (m/z 523.7775++). 
Heavy isotope labeled internal positive control is depicted in blue (m/z 528.7816++).  
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Table 2.3. Detection of IPC at 100 ng quantities. Response ratio was calculated by dividing the 
peak area response of the heavy peptide standard by the peak area response of the natural (intact) 
protein.  

 

2.2.2 Sample Preparation Optimization 

 The purpose of this portion of the study was to develop an automated and expedited 

sample preparation protocol aside from initial swabbing or cutting of evidentiary material. This 

protocol was determined through the completion of three objectives. First, through evaluating two 

techniques for total protein quantitation. Second, development of an automated processing 

workflow. And lastly, comparing the automated workflow with a previously developed manual 

procedure.  

2.2.2.1 Protein Quantitation 

 Accurate determination of protein quantitation is vital for biochemical experimentation, 

specifically for enzymatic digestion of protein material. A multitude of quantitation techniques are 

available [155], with two UV absorbance techniques chosen for comparison. The bicinchoninic acid 

assay (BCA) is a standard technique for the reliable and specific quantitation of protein content. 

While analytically reliable and conservative with regard to consumption of evidentiary material, 

newer instrumentation employing micro spectrophotometry have been promoted by some 

practitioners within the field. The NanoDrop™ One Microvolume UV-Vis spectrophotometer (herein 

referred to as NanoDrop™) was acquired and compared to a previously optimized BCA assay. It 
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was hypothesized that the NanoDrop™ would provide a faster alternative to obtaining protein 

concentration data while consuming as little as 1 µL of extract.  

 Three experiments were designed to compare the two quantitation procedures. Single 

source and mixed source body fluids were prepared for the BCA assay and NanoDrop™ method at 

280 nm absorbance. The NanoDrop™ produced greater protein concentrations in comparison to 

the BCA reaction when assessing single source fluids (Figure 2.15). However, any notation of 

improvement between the two assays was highly inconsistent across fluids. For example, the 

NanoDrop™ indicated an average protein concentration for semen that was 50% greater than that 

obtained using the BCA assay. Moreover, this irregularity was observed across 15 samples that 

contained 1:1 mixtures of the target body fluids (Figure 2.16). The greatest discrepancy in 

quantitation results for both single source and mixture samples were produced by samples 

containing urine. Urine is primarily composed of water and non-protein compounds such as uric 

acid and creatinine. Both of these compounds have the ability to absorb 280 nm wavelength UV 

light [156].  

Ultimately, the protein quantitation estimates provided by the NanoDrop™ with the 280 nm 

absorbance mode were determined to be inconsistent and unreliable. This was attributed to the 

presence of non-protein matrix components that absorb light in the 280 nm range. Measuring 

protein absorbance at 280 nm is routinely conducted in biological procedures given that 

measurements can be quickly taken and are highly reproducible when using purified sample 

material. It has been reported that aromatic amino acids, such as tyrosine and tryptophan, strongly 

absorb UV light at the 280 nm wavelength [157]. However, other aromatic ring containing 

structures, such as enzymatic cofactors, can also absorb UV light at the 280 nm wavelength. 

Furthermore, UV absorbance can be affected by protein structure, peptide sequence, and pH 

environment.  

 The NanoDrop™ had a built-in BCA application, which was run in parallel with the manual 

BCA assay to evaluate the inconsistent results observed with single and mixed source samples. 

This was conducted with only peripheral blood, seminal fluid, and saliva matrices. For this 
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experiment, all samples were treated with the Bradford reagent and samples were analyzed in 

parallel with the manual BCA assay and NanoDrop™ system. Protein concentrations were 

consistent between the two analyses; however, the standard spectrophotometer proved to be the 

faster of the two methods (Figure 2.17). 

 Due to the inconsistent results observed with the 280 nm quantitation approach, it was 

determined that all samples would require quantitation with the BCA assay. In addition, pipetting 

individual samples onto the NanoDrop™ system introduced more analyst hands-on time and sample 

handling than with the standard BCA analysis. The discrepancies in urine quantitation values were 

an underlying source of concern and attributed to the removal of urine form the target inclusion list. 

In conclusion, the manual BCA assay using a standard spectrophotometer was selected as the 

protein quantitation method for the remainder of the study.  
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Figure 2.15. Single source body fluid comparison using the NanoDrop™ 280 nm (blue) and BCA 
assay (purple). Representative dilution samples are represented on the x-axis. Average protein 
concentration is represented on the y-axis. Error bars represent standard error.  
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Figure 2.16. Mixture sample comparison using the NanoDrop™ 280 nm (blue) and BCA assay 
(purple). Mixture samples were prepared as a 1:1 ratio and are represented on the x-axis. Samples 
were diluted prior to analysis with quantitation methods. Average concentration is represented on 
the y-axis. Error bars represent standard error.  
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Figure 2.17. Comparison of the NanoDrop™ BCA function (blue) and manual BCA assay (purple) 
using peripheral blood, seminal fluid, and saliva. Average concentration is represented on the y-
axis. Error bars represent standard error.  

2.2.2.2 Automation Procedure Development 

 A previously developed tryptic digestion and SPE cleanup were reformatted to be 

conducted on the AssayMAP Bravo liquid handling platform. The reagent volumes and robotic 

processes were developed using an existing protocol [158]. Parameters such as liquid flow rates 

and reagent transfer volumes were evaluated to ensure optimal digestion efficiency and retention 

of target protein material during extraction. Specific handling parameters and deck layouts for 

tryptic digestion and SPE cleanup are depicted in Figures 2.18 and 2.19, respectively.  

 To demonstrate the consistency of results obtained by the automated procedure, six 

seminal fluid samples were prepared in duplicate and digested, desalted, and purified on the 

AssayMAP Bravo liquid handling platform. Representative results for the semenogelin 2 peptide 

GSISIQTEEK are depicted in Figure 2.20 and Table 2.4. Resulting peak area responses for the 

quantifier ion (m/z 834.4203+) were reproducible across all 12 samples using the AssayMAP Bravo 

liquid handling platform, with a calculated coefficient of variation less than 15%. The same 
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preparation was conducted for the remaining body fluid matrices, with similar results observed as 

those described above (Figure 2.21).  

 Digestion variability was observed when large volumes of fluid were processed using the 

AssayMAP Bravo system. For example, when digesting diluted seminal fluid and saliva, lyophilized 

residue deposited on the side of the microplate wells was not consistently solubilized with the 

addition of denaturant reagent. To address this, varying volumes of denaturant (default 40 µL, 55 

µL, and 90 µL) were added to wells containing lyophilized seminal fluid sample. In addition, a gentle 

mixing step was added to the digestion protocol. It was determined that a 15 µL increase over the 

default application volume produced the most consistent results (Table 2.5). Furthermore, the 

larger amount of denaturant volume (90 µL) may have inhibited trypsin activity, resulting in less 

consistent digestion efficiency.  

 In summary, the developed automation procedure for the digestion and purification of 

protein material was successful. Overall, the procedure was designed with respect to simplicity and 

speed of processing. Reagent preparation and procedure parameters were streamlined into a 

seamless protocol that was further evaluated in the next section.  

 

Figure 2.18. Sample process setting and deck layout for automated tryptic digestion in a 96-well 
plate format on the AssayMAP Bravo liquid handling platform. 
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Figure 2.19. Sample process setting and deck layout for automated solid phase extraction cleanup 
in a 96-well plate format on the AssayMAP Bravo liquid handling platform.  



80 
 

 

Figure 2.20. Reproducibility results for six seminal fluid samples (prepared in duplicate) processed 
using the automated procedure. Illustrated is protein semenogelin 2 peptide GSISIQTEEK. (A) 
Chromatograph of sample 7-r001, depicting retention time on the x-axis and peak area response 
on the y-axis. (B) Reproducibility of retention time, depicting minor drifts among the 12 replicates. 
(C) Reproducibility of peak area response among the 12 replicates. 
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Table 2.4. Peak area reproducibility for seminal fluid protein semenogelin 2 peptide GSISIQTEEK.  
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Figure 2.21. Chromatography for (A) peripheral blood, (B) menstrual blood, (C) seminal fluid, (D) 
saliva, and (E) vaginal fluid, illustrating successful processing with the automated procedure.  
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Table 2.5. Calculated CV (as a percent) for representative peptide biomarkers of seminal fluid 
proteins at three denaturant volumes evaluated for digestion on the AssayMAP Bravo liquid 
handling platform.  

 

2.2.2.3 Workflow Testing and Optimization 

 A comparison between the manual and automated preparation protocols was conducted 

to serve as the final assessment of the performance parameters for each approach. This 

experimentation was carried out with three single-source samples of each body fluid that had been 

fortified with internal standard. Digestion efficiency was determined by calculating the ratio of 

digested peptide in relation to the response of the internal standard. For example, two 

chromatograms depicting peak area responses consistent with saliva are depicted in Figure 2.22. 

As expected, the greatest peak intensity is representative of alpha-amylase peptide 

LSGLLDLALGK; however, peak intensity for the manual preparation was almost twice as much as 

that of the automated preparation. Similar results were observed for saliva protein submaxillary 

gland androgen-regulated protein 3B (Figure 2.23). This particular peptide target is more 

hydrophobic than a majority of the peptide sequences within the multiplex assay. Endogenous peak 

areas across three replicates were greater for the manual preparation in comparison with the 

automated platform (red bars). Internal standard (blue bars) showed greater consistency between 

the two preparation methods, with slightly lower peak area response for the manual preparation.  
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 The small loss in response with the liquid handling platform that was depicted for saliva 

was consistent across all fluids tested (Figure 2.24). It was hypothesized that this loss in response 

could be contributed to the quality of plastic labware utilized between the two preparation methods. 

The manual digestion was performed using coated low-retention microcentrifuge tubes; however, 

the same coating was not utilized for preliminary experimentation on the AssayMAP Bravo liquid 

handling platform. To address this, 96-well microplates containing the same or similar low-retention 

coatings were acquired and evaluated. Eppendorf Lo-Bind and Corning® Non Binding Surface 

treated plates were evaluated, with untreated Grenier U-bottom serving as a control. Single source 

fluids were prepared and processed using each plate type, with the optimal plate selected based 

on peak intensity of peptide targets. For example, peak intensities of seminal fluid peptide 

DIFSTQDELLVYNK on each plate are depicted in Figure 2.25. The greatest peak area intensity is 

illustrated by the Corning® Non Binding Surface plate. Similar results were observed across peptide 

markers of the remaining target fluids. 

 Furthermore, with the manual preparation, the entire sample volume is transferred onto 

sorbent material during SPE cleanup and purification. With the automated platform, however, a 

minimum sample volume (20 µL of the 250 µL digestion product) must remain in each well to ensure 

that no air is injected into the micro cartridges during SPE cleanup. In summary, despite the lower 

peak area responses, the automated sample processing procedure was selected for use for the 

remainder of the study. The automated liquid handling platform deposits purified tryptic peptides 

directly into the 96-well autosampler plate, further streamlining the processing procedure.  
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Figure 2.22. Digestion and purification of saliva via the (A) automated procedure and (B) manual 
procedure. Peak area response for alpha-amylase peptide LSGLLDLALGK is illustrated in pink. 

 

Figure 2.23. Digest and purification comparison of saliva protein submaxillary gland androgen-
regulated protein 3B peptide GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR. Endogenous 
peptide peak area response (red) and internal standard peptide peak area response (blue) 
illustrated for three replicates processed on the automated platform and with the manual procedure. 
(A) Representative chromatography on the AssayMAP Bravo system. (B) Consistency in peak area 
response.  
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Figure 2.24. Single source body fluids processed on the AssayMAP Bravo liquid handling platform 
(blue) and manual procedure (purple). Representative proteins for each fluid evaluated are 
depicted on the x-axis (HBB, hemoglobin; SEMG2, semenogelin 2; SMR3B, submaxillary gland 
androgen-regulated protein 3B; CRNN, cornulin; NGAL, neutrophil gelatinase). Average relative 
response ratio is represented on the y-axis. Error bars represent standard error.  

 

Figure 2.25. 96-well microplate comparison for use in automated digestion and purification. Three 
microplates were evaluated for greatest peak area intensity, depicted on the y-axis. Shown is a 
chromatogram for semenogelin 1 peptide DIFSTQDELLVYNK.  

2.3 Concluding Remarks 

 In summary, the results detailed herein demonstrate the ability to automate sample 

processing and expedite analysis of the research grade multiplex assay without loss of sensitivity. 

Previously identified protein and peptide biomarker targets were subjected to further scrutiny for 

inclusion in the high throughput LC-MS/MS assay. With the creation of a targeted analytical 

method, individual parameters were sufficiently established for optimal target detection and 
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identification. The final biomarker target list includes both presumptive and confirmatory proteins 

consistent with peripheral blood, seminal fluid, saliva, and vaginal/menstrual fluid.  

Implementation of an automated sample processing protocol not only sufficiently increased 

the number of samples amenable to preparation in a given batch but mitigated preventable sources 

of human error during digestion and cleanup procedures. Where small batches averaging fifteen 

samples were prepared for analysis using the research grade assay, the optimized protocol was 

constrained only to the capacity of a 96-well plate. Furthermore, by limiting the amount of sample 

handling time by the analyst, the automated protocol promotes efficiency of additional laboratory 

resources in regard to analysts’ time. The benefits of automation and high throughput screening 

are advantageous to generating interest among practitioners for implementation of a novel 

technique into operational laboratories.  

The following two chapters detail a full developmental validation and comparison 

assessment of the optimized LC-MS/MS assay and sample processing protocol described within 

this chapter. With a verified protein biomarker panel and preparation protocol, the analytical 

boundaries and limitations of the LC-MS/MS needed identifying. Therefore, a full developmental 

validation was conducted in accordance with standard guidelines within forensic biology and 

toxicology. Additionally, compatibility of the LC-MS/MS assay within the greater forensic biology 

workflow was demonstrated.  
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CHAPTER 3: DEVELOPMENTAL VALIDATION OF AN AUTOMATED MULTIPLEX 

ASSAY FOR THE IDENTIFICATION OF BIOLOGICAL FLUIDS 

3 Introduction 

 The objective of this phase of the research was to validate the developed and optimized 

multiplex serological assay. Validation is the final phase of the proteomic workflow, allowing for 

efficacy and reliability of the analytical method to be established as acceptable prior to 

implementation into an operational environment. The experimentation performed during this phase 

was designed in accordance with the Quality Assurance Standards set forth by the Federal Bureau 

of Investigation (FBI) and recommended guidelines published by the Scientific Working Group on 

DNA Analysis Methods (SWGDAM) and the Scientific Working Group on Forensic Toxicology 

(SWGTOX). Due to the hybrid nature of experimentation and data analysis described, it was 

determined that both toxicological and serological guidelines were to be consulted and exercised 

for validation purposes. Specifically, with the use of liquid chromatography-tandem mass 

spectrometry (LC-MS/MS), validation guidelines were referenced via SWGTOX publications for 

experimental procedures such as ion suppression and enhancement, repeatability, reproducibility, 

and limit of detection.  

 This chapter reports the validation results of the previously described proteomic assay for 

the identification of peripheral blood, seminal fluid, saliva, and vaginal/menstrual fluid. Body fluid 

specific protein markers were previously selected under prior funding, where they underwent 

rigorous discovery and verification of the candidate markers within a greater population. The 

selected markers were reconfirmed as described in Chapter Two, with each protein marker and 

subsequent peptide targets assessed both in vitro with analytical identification and in silico using 

bioinformatics software. The successful operation of the method at each level described herein 



89 
 

identified working conditions and associated limitations that were acknowledged to estimate the 

true performance of the analytical method.

3.1 Methods and Materials 

 All research conducted under this phase of the project was reviewed and approved by the 

University of Denver Institutional Review Board (IRB) for research involving human subjects as 

described under section 2.1.1.   

3.1.1 Repeatability and Reproducibility Sample Preparation 

 The research scientist prepared all body fluid aliquots for sample preparation following 

protocols outlined in section 2.1.1. Aliquots were stored at -80 ˚C until use. For the remainder of 

the study, both the research scientist and laboratory advisor performed sample processing 

procedures on the prepared aliquots simultaneously, including total protein quantitation, reagent 

preparation, plate loading for digestion and cleanup, and sample reconstitution for instrumental 

analysis. Protocols outlined in section 2.1.4 were followed during this portion of the study on all five 

target body fluids. Procedures were performed over the course of three days. 

 Repeatability was recorded as the variation in precision for results obtained by a single 

analyst. Reproducibility was recorded as the variation in accuracy obtained between analysts 

conducting identical protocols. Coefficient of variation (CV) of total protein quantitation in addition 

to the variation in internal standard were calculated for each individual and between individuals.  

3.1.2 Sensitivity Sample Preparation 

 Target body fluid from five individuals was prepared according to parameters outlined in 

section 2.1.1. A serial dilution of pooled fluid was created in deionized water. For seminal fluid, 

saliva, and vaginal fluid, dilutions were started at 2-fold. Knowing a priori peripheral and menstrual 

blood exhibit concentrated protein material, dilutions were started at 100-fold. Dilutions were not 

quantitated for total protein amount. 200 µL of each dilution was lyophilized and digested followed 

by SPE cleanup using protocols detailed in section 2.1.4. Sample dilutions were prepared in 

triplicate, with 20 µL of sample injected on column. A select set of sample dilutions were prepared 
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and analyzed given laboratory resources. Table 3.1 below details dilutions analyzed via LC-MS/MS 

per target body fluid.  

Table 3.1. Dilutions analyzed for the sensitivity study of the multiplex assay validation.  

 

3.1.3 Stability Sample Preparation 

3.1.3.1 Freeze Thaw Stability 

 Target body fluid from five individuals was pooled and prepared in three batches containing 

triplicate samples according to parameters outline in section 2.1.4. The first batch of samples (Day 

1) were processed and analyzed, with 2.5 µg of protein material injected on column. Remaining 

sample batches (Day 2 and Day 3) were stored at -80 ˚C until future use. Day 2 of Freeze Thaw 

Stability started by completely thawing all prepared material to room temperature and continuing 

with the sample processing procedure for batch two (Day 2). Batch three material was again frozen 

at -80 ˚C until future use. Day 3 of Freeze Thaw Stability was conducted in the same manner, 

allowing the final batch to thaw completely prior to sample processing. Vaginal fluid samples were 

analyzed for 2.5 µg and 10 µg on column, to adequately assess any loss of lower abundant target 

peptides.  

3.1.3.2 Autosampler Stability 

 Target body fluid from five individuals was prepared according to parameters outlined in 

section 2.1.4. Samples were analyzed via LC-MS/MS over the course of 3 days, with the microplate 
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containing processed sample remaining in the autosampler kept at 8 ˚C for the duration of the 

study. 2.5 µg of material was analyzed on column. Samples were reinjected 24 hours (Day 2) and 

48 hours (Day 3) after original sample preparation.  

3.1.4 Mixtures Sample Preparation 

 Target body fluid from five individuals was pooled, filtered, and quantitated according to 

parameters outlined in section 2.1.1. Mixtures in a 1:1 ratio of 50 µg total protein per fluid were 

generated, for a total of 100 µg protein material. All possible combinations of two-fluid mixtures 

were created: vaginal fluid (VF) and saliva (SA); VF and seminal fluid (SE); VF and peripheral blood 

(PB); VF and menstrual blood (MB); MB and PB; MB and SE; SA and MB; SA and PB; SA and SE; 

SE and PB. Mixture samples underwent digestion and SPE procedures outlined in section 2.1.4. 

10 µg of material was analyzed on column.  

3.1.5 Specificity Sample Preparation 

 Whole blood samples from 11 different species (Rhesus monkey, horse, pig, chicken, cow, 

beagle, mouse, black bear, coyote, white-tailed deer, river otter) and saliva samples from 2 species 

(cow, Rhesus monkey) were purchased from Innovative Research™ (Novi, MI). Blood samples 

were treated with potassium ethylenediamine tetraacetic acid anticoagulant. In addition, oral swabs 

from 2 species (alpaca, tortoise) were obtained by the research scientist. 

 Oral swabs were resuspended in 500 µL of deionized water and allowed to solubilize for 

30 minutes at room temperature with frequent vortexing. All samples (blood, saliva, oral swabs) 

were microcentrifuged at 12,000 x g for 10 minutes. Supernatant was filtered using Costar® Spin-

X® centrifugal filters (Corning®, Corning, NY) at 10,000 x g for 2 minutes. The remaining sample 

preparation follows procedures outlined in section 2.1.4. 2.5 µg of material was analyzed on 

column.  

3.1.6 Casework Type Sample Preparation 

 A compilation of all casework samples prepared is detailed in Appendix C.  
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3.1.6.1 Substrate Samples 

Substrates tested include cotton, denim, leather, carpet, drywall, plastic beverage bottle, 

aluminum beverage can, and feminine hygiene menstrual pad. Substrates were cut into 

approximately 2 cm x 2 cm squares upon which 50 µL of single source body fluid was applied. 

Samples were dried at room temperature overnight. Substrates were solubilized in 1 mL deionized 

water for 30 minutes with frequent vortexing. Substrates were placed in a centrifugal basket and 

centrifuged at 10,000 x g for 10 minutes. Supernatant was transferred for analysis following 

procedures outlined in section 2.1.4 and cell pellets were discarded.  

3.1.6.2 Environmental Contaminant Samples 

 Environmental contaminants tested include dirt slurry, rust slurry, 10% bleach in water 

solution, chewing tobacco, cigarette butt, lubricated condom with spermicide additive, and water-

based personal lubricant. Dirt slurry was prepared by mixing 1 gram weather-conditioned soil with 

1 mL tap water. In a similar manner, the rust slurry was prepared by mixing 500 µg rust with 500 

µL of tap water. Rust was obtained by scarping the external surface of a weather-conditioned chain 

link fence. Neat bleach was diluted 10-fold with deionized water for a final concentration of 10% 

bleach. Chewing tobacco expellant was obtained from a volunteer that actively engages in using 

smokeless tobacco products. Water-based personal lubricant containing glycerin was purchased 

(CVS Pharmacy™, Woonsocket, RI).  

 Liquid matrix contaminants (i.e., dirt slurry, rust slurry, 10% bleach solution, chewing 

tobacco, and water-based lubricant) were thoroughly mixed in a 1:1 v/v ratio with corresponding 

target body fluid. A 100 µL volume of the resulting mixture was applied to a full cotton swab and 

allowed to dry at room temperature overnight. Solid matrix contaminants (i.e., cigarette butt, 

spermicide lubricated condom, menstrual pad) were cut into a 2 cm x 2 cm square prior to applying 

50 µL target body fluid. Prepared samples were dried at room temperature overnight. Full swabs 

and 2 cm x 2 cm contaminant samples were extracted in 1 mL deionized water for 30 minutes with 

frequent vortexing. Substrates were placed in a centrifugal basket centrifuged at 10,000 x g for 10 



93 
 

minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4 

and cell pellets were discarded.  

3.1.6.3 Mixtures Samples 

 Mixture samples were prepared using single source body fluid from consenting donors. A 

50-fold two-component mixture solution was created by thoroughly vortexing 10 µL of neat body 

fluid serving as a minor contributor with 500 µL neat body fluid serving as the major contributor. 

100 µL of mixture solution was applied to a cotton-tipped swab and allowed to dry at room 

temperature overnight. Full swabs were extracted in 1 mL deionized water for 30 minutes with 

frequent vortexing. Substrates were placed in a centrifugal basket and centrifuged at 10,000 x g for 

10 minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4 

and cell pellets were reserved for genetic testing, described in Chapter 4.  

 Five two-component mixture samples were prepared for this portion of the project: (1) 

vaginal fluid in urine, (2) saliva in vaginal fluid, (3) seminal fluid in vaginal fluid, (4) saliva in 

menstrual blood, (5) seminal fluid in menstrual blood.  

3.1.6.4 Sexual Assault Samples 

3.1.6.4.1 Simulated Sexual Assault Samples 

 Simulated sexual assault samples were prepared by thoroughly mixing 10 µL neat semen 

with 1 mL neat vaginal fluid, both fluids being from a single donor. This was repeated for a total of 

seven samples. The semen and vaginal fluid utilized for all seven samples were donated by the 

same individuals to prevent inconsistency in protein expression. Samples were incubated at 37 ˚C 

for one day, three days, five days, seven days, nine days, and eleven days, with time zero samples 

immediately stored for future processing. When the designated time point was reach, samples were 

removed from the incubator and frozen at -80 ˚C until analysis. Samples were prepared and 

analyzed following procedures outlined in section 2.1.4. 

3.1.6.4.2 Mock Sexual Assault Kit Samples 

 Vaginal, oral, and rectal swabs were obtained from a single, consenting female individual. 

Immediately after sampling, neat semen from a single donor was applied in order to most accurately 



94 
 

simulate an authentic sample collection. Semen was diluted 100-fold with deionized water prior to 

application. 10 µL of diluted semen was applied, for a volume equivalent of 0.1 µL semen applied 

to each swab. Samples were prepared in duplicate and allowed to dry at room temperature 

overnight. Full swabs were extracted in 1 mL deionized water for 30 minutes with frequent 

vortexing. Substrates were placed in a centrifugal basket and centrifuged at 10,000 x g for 10 

minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4 

and cell pellets were reserved for genetic testing, described in Chapter 4. This preparation protocol 

was duplicated using semen provided by a vasectomized male individual, for a total of 12 mock 

sexual assault kit samples (6 non-vasectomized and 6 vasectomized male donors).  

3.1.6.4.3 Digital Swab Samples 

 Three types of digital swab samples were prepared for this portion of the study: vaginal 

swabs, menstrual blood swabs, and saliva swabs. One consenting female donor was utilized. The 

volunteer thoroughly washed their hands prior to self-penetration. In the comfort of the individual’s 

home, the volunteer was instructed to digitally penetrate the vagina both during menses and in the 

absence of menses using the index finger for 20 seconds. The volunteer removed their finger and 

allowed the deposited material to dry for approximately 5 minutes. Self-collection using a dry cotton-

tipped swab was performed, with the entire area of the finger swabbed for collection. Collection 

was repeated in duplicate for each form of penetration, with each sample taken on a separate day. 

Upon receipt at the laboratory, swabs were dried at room temperature overnight to ensure 

consistency. Full swabs were extracted in 1 mL deionized water for 30 minutes with frequent 

vortexing. Substrates were placed in a centrifugal basket and centrifuged at 10,000 x g for 10 

minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4 

and cell pellets were reserved for genetic testing, described in Chapter 4. 

3.1.6.5 Degradation Samples 

 Degradation samples simulating laundered items of evidence were generated for this 

portion of the study. Peripheral blood and semen were the selected target body fluids. To a cotton 

bath towel and to denim jeans, 1 mL of single-source peripheral blood was applied to the substrate, 
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outlined with permanent marker, and allowed to dry at room temperature overnight. In addition, a 

control region to which no body fluid was applied approximately 20 cm from the stain region was 

marked for analysis. To a cotton-blend bed sheet and a cotton pair of women’s underwear, 1 mL 

of single-source semen was applied to the substrate, outlined with permanent marker, and allowed 

to dry at room temperature overnight. In addition, a control region to which no body fluid was applied 

approximately 20 cm from the stain region (bed sheet) or 8 cm from the stain region (underwear) 

was marked for analysis. Target body fluid was applied to simulate stained items of evidence that 

are commonly received in caseworking laboratories. 

 Substrates were washed individually with 1.5 fl. oz. commercially available laundry 

detergent (Seventh Generation™ Free and Clear, Burlington, VT) in cold water for a 15-minute wash 

cycle using a household grade washing machine. Substrates were individually dried in a heated 

commercial dryer for approximately 40 minutes. 2 cm x 2 cm cuttings of the stain and control region 

were excised from the substrate. Cuttings were solubilized in 1 mL deionized water for 30 minutes 

with frequent vortexing. Substrates were placed in a centrifugal basket centrifuged at 10,000 x g 

for 10 minutes. Supernatant was transferred for analysis following procedures outlined in section 

2.1.4 and cell pellets were reserved for genetic testing, described in Chapter 4. 

3.1.6.6 Aged Samples 

 Aged swabs were prepared by spotting 50 µL of neat, single-source peripheral blood, 

menstrual blood, saliva, semen, or vaginal fluid on a full cotton swab. An additional set of samples 

were prepared using 150 µL of neat, single-source vaginal fluid. Swabs were allowed to incubate 

at room temperature for 35 days, with collections at time zero, Day 1, Day 3, Day 7, and Day 35. 

Upon collection, full swabs were frozen at -80 °C until analysis. All time points were prepared in 

duplicate. Samples were prepared according to procedures outlined in section 2.1.4. 

3.1.6.7 Sensitivity Samples 

 Sensitivity samples were prepared by diluting single-source, neat body fluid in deionized 

water in a serial manner to cover a range of final concentrations. Dilutions prepared are detailed in 

Table 3.2. 150 µL of each dilution was spotted on a full cotton swab and allowed to dry at room 
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temperature. Full swabs were solubilized in 1 mL deionized water for 30 minutes with frequent 

vortexing. Substrates were placed in a centrifugal basket and centrifuged at 10,000 x g for 10 

minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4 

and cell pellets were reserved for genetic testing, described in Chapter 4.  

Table 3.2. Dilutions analyzed for the sensitivity study within casework sample analysis.   

 

3.1.7 Limit of Detection Sample Preparation 

 Isotopically-labeled peptide internal standards (AQUA) were purchased (New England 

Peptide, Inc., Gardner, MA) for each selected peptide marker, with the exception of proteins 

statherin and submaxillary gland androgen-regulated protein 3B. AQUA were received as 1 nmol 

of material, lyophilized to dryness. Material was reconstituted in 200 µL of 30% ACN with 0.1% FA 

in LC-MS grade water. Standards were pooled and brought up to volume in 30% ACN with 0.1% 

FA for a final concentration of 100 pmol/mL. 20 pmol aliquots (200 µL) were prepared, lyophilized, 

and stored at -80 ⁰C. Upon use, 20 pmol aliquots were resuspended in 40 µL of 30% ACN with 

0.1% FA for a 0.5 pmol/µL stock solution.  

 Blank matrix was prepared by pooling target body fluid from five individuals. 100 µg total 

protein underwent tryptic digestion and SPE cleanup prior to AQUA fortification. The 0.5 pmol/µL 

stock solution was further diluted with 30% ACN with 0.1% FA to 50 fmol/µL and 5 fmol/µL 

substocks, used for creation of the serial dilution. Matrix was fortified with AQUA material following 
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volumes and target concentrations listed in Table 3.3. Samples were analyzed following 

parameters outlined in section 2.1.4.  

Table 3.3. Volumes and concentrations of internal standard used during the limit of detection 
experimentation.   

 

3.1.8 Ion Suppression Sample Preparation 

 Target body fluid from five individuals was prepared and pooled for ion suppression and 

enhancement analysis. 100 µg of total protein was targeted for digestion. AQUA stock solution was 

prepared in the same manner as detail in section 3.1.7. Two sample sets were prepared for this 

portion of the study. First, 20 µL of 0.5 pmol/µL AQUA stock solution was analyzed independently 

(i.e., in the absence of blank matrix). Second, pooled body fluid was fortified with 20 µL of 0.5 

pmol/µL AQUA stock for a target amount of 10 pmol, with all samples prepared in triplicate. 

Samples were prepared according to procedures outlined in section 2.1.4. 2.5 µg of sample was 

analyzed per injection.  

3.1.9 Carryover Sample Preparation 

  Samples were prepared in triplicate for a preliminary carryover study by pooling fluid from 

five different individuals and digesting 100 µg of total protein. Following tryptic digestion and SPE 

cleanup parameters outlined in section 2.1.4, samples were reconstituted in 100 µL of 2% ACN 

with 0.1% FA. 10 µg, 20 µg, and 30 µg of processed sample were injected on column, with each 

injection followed by a blank mobile phase injection (0.1% FA in water) of the same volume. 

Carryover was assessed by the presence of compounds within the subsequent blank injection.  

 A second set of samples targeting smaller quantities of total protein were prepared in 

triplicate and analyzed. Following the same procedure as described above, 0.5 µg, 1 µg, 2.5 µg, 
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and 5 µg quantities of digested protein were evaluated per body fluid. A blank mobile phase sample 

(0.1% FA in water) of the same volume was injected directly after each sample.  

3.1.10 Blind Sample Analysis 

 A series of 50 blind samples were received from the grant agency for analysis. No 

information was supplied with the samples received. Samples consisted of pre-halved fiber-tipped 

swabs, swatches of cloth, and condoms. Exhibits were taken according to a pre-defined laboratory 

sampling protocol. Swab samples received were cut in half (i.e., approximately ¼ of a full swab), 

reserving the remain section for additional testing, if necessary. Cuttings measuring 2 cm x 2 cm 

were taken from cloth swatch samples received, reserving the remaining cloth for additional testing, 

if necessary. The inside and outside of condom samples were double swabbed using a sterile 

cotton swab wetted with 2% sodium dodecyl sulfate (SDS) followed by a dry cotton swab. Condom 

swabs were dried at room temperature for at least 2 hours. Wet and dry swabs were combined and 

processed as a single sub-exhibit. Sub-exhibits were solubilized in 500 µL of deionized water for 

30 minutes with frequent vortexing. Substrates were placed in a centrifugal basket and centrifuged 

at 10,000 x g for 10 minutes. Supernatant was transferred for analysis following procedures outlined 

in section 2.1.4 and cell pellets were discarded. 

3.2 Results and Discussion 

3.2.1 Repeatability and Reproducibility 

 Reproducibility was assessed to ensure robust results could be obtained over a period of 

multiple analysis batches prepared by a single individual. Repeatability was evaluated to ensure 

reliable results could be obtained between individual analysts across a period of multiple analysis 

batches. For this portion of the validation, reproducibility and repeatability were assessed in tandem 

through the preparation, analysis, and data acquisition of samples by two analysts over the course 

of a three-day period. This entailed BCA quantitation, robotic digestion, SPE cleanup, and analysis 

via LC-MS/MS.  

 Body fluid samples were received and prepared for testing by a single individual within the 

laboratory. Pooled fluid was aliquoted into single use tubes to ensure consistency of the samples 
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being processed for this portion of the validation. On each day of preparation, analysts performed 

a BCA quantitation on a single use aliquot for each target body fluid to determine the total protein 

concentration prior to tryptic digestion. The necessary reagents for robotic digestion and SPE 

cleanup were prepared individually by the analysts. Data presented in this section is representative 

of the variation observed for the BCA total protein quantitation in addition to the mass spectrometry 

results obtained including signal response, retention time, and qualitative response ratios. 

Furthermore, the performance of the internal positive control between analysts and across the 

three-day period was evaluated for reliability and robustness. 

3.2.1.1 BCA Quantitation 

 BCA quantitation is required prior to tryptic digestion in order to normalize the amount of 

total protein input into the robotic preparation process. This is to ensure that the proper ratio of 

digestion enzyme to protein substrate is met, in addition to monitoring the amount loaded onto the 

SPE cleanup cartridges and LC-MS/MS system. The average protein concentration, as well as the 

measured combined and individual variability of the BCA quantitation assay for each body fluid, is 

detailed in Table 3.4. Coefficient of variation (CV) values both within and between analysts was 

less than 10% across this portion of the validation.  

Table 3.4. Calculated CV (as a percent) of average protein concentration between analysts and 
combined for each fluid assayed. 

 

3.2.1.2 Signal Response 

 The peak area of each peptide in the assay was assessed for all replicates as well as 

across the replicates for the two analysts individually. Of the 46 peptides included in the assay, 41 

showed CV values less than 25%, with the majority of these targets showing less than 10% 
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variation. Data for this portion of the study can be found in Appendix D, with results for seminal 

fluid depicted in Table 3.5.  

 As previously stated, a small fraction of peptides did display higher degrees of peak area 

variability. High CV values were associated with either small hydrophilic (i.e., eluting early during 

chromatographic separation) or large hydrophobic (i.e., eluting late during chromatographic 

separation) peptides. For example, semenogelin 2 peptide GSISIQTEEK is one of the first eluting 

peptides in the assay, with a retention time of 1.9 minutes, and had a combined peak area CV of 

51.764%. It is hypothesized that this specific peptide target is not captured efficiently during the 

SPE cleanup, resulting in more variable recovery across replicates. Likewise, it is hypothesized 

that more hydrophobic peptide markers will be bound, essentially irreversibly, to plastics during 

tryptic digestion and to the sorbent material of SPE cartridges. In addition, there may be reduced 

resolubilization issues after any lyophilization step. At the onset of peptide target selection, it was 

expected that some peptides would display more variability in recovery, solubility, and nonspecific 

absorption than others, simply due to the specific chemistries associated with each amino acid 

sequence. As a counter to this potential challenge, the ability to target multiple proteins per fluid 

and multiple peptides for each protein (i.e., a fundamental concept underlying the design of the 

assay), helped to ensure that there are reliable peptide biomarkers which can be consistently 

detected for identification of each fluid. For example, other semenogelin 2 peptides (e.g., 

DVSQSSISFQIEK) show consistent CV values of approximately 8%, albeit at lower overall peak 

areas.  
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Table 3.5. Calculated CV (as a percent) for peak area response of seminal fluid peptide markers 
between analysts and combined. 

 

3.2.1.3 Retention Time 

 The retention time of each peptide biomarker in the assay was assessed for all replicates 

as well as across the three replicates for the two analysts. Retention time averages for each analyst 

were used to calculate the variability. Percent CV values for this dataset were all below 0.5%. An 

illustrative example of results for seminal fluid is shown in Table 3.6. The remainder of the data are 

presented in Appendix E.  

Table 3.6. Calculated CV (as a percent) for retention time of seminal fluid peptide markers between 
analysts and combined. 

 

3.2.1.4 Qualitative Response Ratios 

 The ion ratio for each peptide biomarker was assessed by dividing the peak area response 

of the quantifier ion (i.e., more abundant transitions observed during target selection) by the peak 

area response of the qualifier ion(s) (i.e., lower abundant transitions observed during peptide 
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selection). Ion ratios were assessed for all replicates as well as across the two analysts. The ion 

ratios for all peptides were found to be highly consistent, with a majority of calculations showing 

CV values less than 5%. An illustrative example of results for seminal fluid is shown in Table 3.7. 

Epididymal secretory protein peptide DCGSVDGVIK exhibited a higher CV value but was 

consistent between the two analysts, demonstrating a high rate of precision both within-run and 

between-run. The remainder of the data are presented in detail in Appendix F. Only neutrophil 

gelatinase protein in menstrual blood exhibited higher variability in the qualitative response ratio. 

In this case, the proteins were of very low abundance in the pooled sample being assessed.  

Table 3.7. Calculated CV (as a percent) for ion ratios of seminal fluid peptide markers between 
analysts and combined.  

 

3.2.1.5 Internal Positive Control 

 The performance of the internal positive control (IPC) was assessed by comparing the 

response ratio of the digested myelin basic protein to that of an isotopically-labeled internal 

standard added to the sample being analyzed. The response ratio was found to be highly consistent 

across all body fluids. The variability observed both among different samples of individual body 

fluid and between different body fluids consistently displayed CV values less than 8% (Table 3.8 

and Figure 3.1). Samples evaluated for this portion of the validation displayed and average peak 

area response ratio of 13.7±0.999.  
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Table 3.8. Combined calculated CV (as a percent) for the internal positive control peak area 
response ratio for the duration of repeatability and reproducibility experimentation. 

 

 

Figure 3.1. Internal positive control response ratio for the duration of repeatability and 
reproducibility experimentation.   

3.2.2 Sensitivity 

 A series of dilutions were prepared for each body fluid using pooled material from multiple 

individuals. These samples were assayed in order to establish the minimal protein quantity in which 

reliable results can be obtained. Based on data acquired under previous phases of this research 

and the sensitivity limits observed under previously completed research (NIJ awards 2009-DN-BX-

K165; 2012-DN-BX-K035) the lower end of the dilution series was considerably extended from prior 

studies in order to evaluate lower limits of the assay. For peripheral blood and menstrual blood, a 

2-fold dilution series was made, from a 1:100 dilution to a 1:6,533,600 dilution. For seminal fluid, a 

2-fold dilution series from 1:2 through 1:524,288 was made. And lastly, for saliva and vaginal fluid, 

a 2-fold dilution series from 1:2 to 1:65,536 was generated. Not all created dilutions were analyzed 

via LC-MS/MS.  

 Data for each body fluid is summarized in Tables 3.9-3.13. Results were evaluated for 

retention time consistency, chromatographic peak shape, peak area response, as well as 

calculated ion ratios. Overall, peripheral blood was confidently identified at a 1:6,533,600 dilution 

(Table 3.9) and menstrual blood at 1:6,400 dilution (Table 3.10). Although both peptide targets for 

hemoglobin were accurately detected at the lowest dilution in the peripheral blood matrix, a majority 
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of the remaining protein markers exhibited dropout at the 1:204,800 dilution. Similar results were 

observed for peripheral blood protein markers in menstrual blood; however, vaginal fluid markers 

in menstrual blood were shown to exhibit less sensitivity. Four protein targets failed to be detected 

within the menstrual blood matrix (Ly6 PLAUR, suprabasin, periplakin, and involucrin), with 

remaining biomarkers exhibiting dropout at the protein level after the 6,400-fold dilution. Small 

proline rich protein 3 was detected in each dilution assessed, however, peptide peak areas did not 

display negative linearity as the dilution series decreased. Peak area intensities for peptide 

VPEPGCTK remained consistent between the 25,600-fold dilution and the 6,533,600-fold dilution 

(Figure 3.2). Therefore, this marker was not considered when characterizing menstrual blood for 

biomarker sensitivity. Strong instances of peptide and protein dropout, particularly for the vaginal 

fluid biomarkers in this matrix, may be attributed to expression variability during the menstruation 

cycle.  

 Seminal fluid was accurately detected at the lowest dilution assessed, with three peptides 

identified at the 524,288-fold dilution (Table 3.11). All peptide targets were correctly detected at 

the 16,389-fold dilution, with linear peptide and protein dropout displayed as the dilution series 

decreased. Semenogelin 1, semenogelin 2, and acid phosphatase peptide targets met all 

acceptance criteria at the lowest dilution sample.  

 Saliva was characterized at the lowest dilution tested, with a single alpha amylase peptide 

detected at the 65,536-fold dilution (Table 3.12). All peptide markers were detected through the 

256-fold dilution, and similar to seminal fluid, exhibited linear protein and peptide dropout as the 

dilution series decreased. With the exception of alpha amylase, remaining protein markers 

displayed complete dropout at the 8,192-fold dilution tested.  

 Vaginal fluid was identified in a two-tiered manner. Because the target biomarkers exhibit 

a wide range of specificity for vaginal fluid, the confidence level of accurately detecting and 

identifying vaginal fluid fluctuates. For this data set, vaginal fluid was confidently identified down to 

the 2,048-fold dilution by the presence of cornulin and neutrophil gelatinase, both of which exhibit 

strong specificity for vaginal fluid (Table 3.13). However, small proline rich protein 3 was detected 
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at the 32,768-fold dilution. Given the known cross-reactivity this protein exhibits, vaginal fluid 

detection was made with less confidence at this lower range. The use of this protein as a 

presumptive biomarker has been thoroughly detailed in interpretation guidelines.  

Table 3.9. Observed sensitivity limit of peripheral blood. Proteins that were positively identified by 
all of their respective peptide markers are shown in dark green. Light green indicates where at least 
one peptide marker for the respective protein dropped out. White indicates complete protein 
dropout.  

 

Table 3.10. Observed sensitivity limit of menstrual blood. Proteins that were positively identified 
by all of their respective peptide markers are shown in dark green. Light green indicates where at 
least one peptide marker for the respective protein dropped out. White indicates complete protein 
dropout. 

 

Table 3.11. Observed sensitivity limit of seminal fluid. Proteins that were positively identified by all 
of their respective peptide markers are shown in dark green. Light green indicates where at least 
one peptide marker for the respective protein dropped out. White indicates complete protein 
dropout. 

 

Table 3.12. Observed sensitivity limit of saliva. Proteins that were positively identified by all of their 
respective peptide markers are shown in dark green. Light green indicates where at least one 
peptide marker for the respective protein dropped out. White indicates complete protein dropout. 
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Table 3.13. Observed sensitivity limit of vaginal fluid. Proteins that were positively identified by all 
of their respective peptide markers are shown in dark green. Light green indicates where at least 
one peptide marker for the respective protein dropped out. White indicates complete protein 
dropout. 

 

 

Figure 3.2. Small proline rich protein 3 peptide VPEPGCTK peak area response. (A) Peak area 
intensity at a 25,600-fold dilution. (B) Peak area intensity at a 6,553,600-fold dilution. (C) Peak area 
response across all replicates evaluated, progressing from 1,600-fold to 6,553,600-fold dilution.  

3.2.3 Stability 

 Stability was evaluated to ensure that samples remain viable if an instrumentation error or 

power outage were to occur that causes samples either: (1) to remain in the autosampler overnight 

without being processed or (2) to be subjected to additional freeze-thaw cycles. This portion of the 
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validation assessed two aspects of a sample’s stability. First, freeze thaw stability was evaluated 

using aliquots of pooled samples. Three samples were assayed immediately and served as 

baseline peak area response. The remaining six samples were stored at -80 ˚C. All six remaining 

aliquots were thawed the following day. Three of the thawed samples were analyzed on the second 

day and the remaining three were refrozen for subsequent thawing and analysis on day three. The 

second form of stability assessed, autosampler stability, was evaluated by storing processed 

samples in the chilled autosampler and analyzing them over a period of 3 days.  

3.2.3.1 Freeze Thaw Stability 

 Single use aliquots of pooled body fluid were evaluated over two freeze thaw cycles to 

evaluate if storage would have a negative effect on the detection of a particular fluid (Tables 3.14 

and 3.15). A significant reduction in signal intensity would indicate that samples are degrading 

during the freeze-thaw process and would require re-extraction, digestion, and cleanup prior to 

reliable analysis. Overall, only one vaginal fluid peptide was affected by repeated freeze thaw 

cycles (Table 3.15). Suprabasin peptide FGQGVHHGLSEGWK was detected in Day 1 samples 

but was absent after the first freeze thaw cycle (Figure 3.3). Because FGQGVHHGLSEGWK is a 

low abundant target, even minor degradation of the sample appears to have deleterious effects. In 

addition to the one suprabasin peptide in vaginal fluid, several markers (e.g., suprabasin, periplakin, 

etc.) in menstrual blood were not detected during this portion of the study. These results may be 

attributed to the low abundance of these markers in the menstrual blood matrix, which is consistent 

with results observed under subsequent aims. Furthermore, given that protein dropout was 

observed on Day 1 of the study, it is more likely due to low abundance in comparison with protein 

biomarker degradation due to instability. Finally, performance of the IPC was assessed to ensure 

complete sample preparation over the course of this study (Figure 3.4). Although a negative trend 

pattern is visible when plotting the IPC response ratio over time, all calculated ratios fell within 

acceptance criteria.  
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Table 3.14. Freeze thaw stability results for peripheral blood, saliva, and seminal fluid. Peptide 
markers that were positively identified are shown in dark green. No peptide or protein dropout was 
observed.  
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Table 3.15. Freeze thaw stability for vaginal fluid and menstrual blood. Peptide markers that were 
positively identified are shown in dark green. White indicates peptide dropout.  

 



110 
 

 

Figure 3.3. Suprabasin peptide FGQGVHHGLSEGWK peak area response in vaginal fluid. (A) 
Peak area intensity on Day 1. (B) Peak area intensity on Day 2. (C) Peak area response on Day 3. 
(D) Peak area response across all triplicates evaluated, progressing from Day 1 to Day 3.  

 

Figure 3.4. Internal positive control response ratio for the duration of freeze thaw stability 
experimentation.   

3.2.3.2 Autosampler Stability 

 Three replicates of the five target body fluids were processed and evaluated over a period 

of 3 days. Samples were analyzed on Day 1 (i.e., 0 hours) and stored on the liquid chromatograph’s 
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chilled autosampler set at 8 ˚C. The same samples were then reinjected 24 hours (Day 2) and 

again at 48 hours (Day 3) after original processing to assess fluctuations in detection signal. A 

significant drop in signal strength or quality would indicate that any samples stored in excess of 24 

hours on the autosampler would need to be re-extracted, digested, and cleaned up. Fortunately, 

the resulting data confirms that no such problems occurred. There was no sufficient drop in peak 

area response for any target peptide in the assay. On the contrary, a slight increase in peak area 

response was often observed. This was evident across all fluids; however, this increase is not 

sufficient. This was attributed to sample evaporation and concentration of target peptides that 

occurred after the 96-well sample plate cover was punctured for initial injection, resulting in 

evaporation of reconstitution solvent. Detailed results for this portion of the study are outlined in 

Appendix G. In addition, IPC ion ratios across the three days were calculated, with no significant 

difference between ion ratios for 0 and 24 hours (ts=0.404, df=58, P>0.05) or for 0 and 48 hours 

(ts=1.084, df=58, P>0.05). Percent CV value for the IPC are listed in Table 3.16. Overall, these 

results indicate that samples plated on the autosampler can be analyzed within two days of being 

processed without significant change in signal strength.  

Table 3.16. Calculated CV (as a percent) for the internal positive control for the duration of the 
autosampler stability study.  

 

3.2.4 Mixtures Study 

 Pooled samples from five individuals were prepared in triplicate as 1:1 v/v mixtures among 

each of the five target fluids. The primary purpose of this mixture study was to identify potential 

cross-fluid interference and ion suppression that could produce a false negative or false positive 

result. The pairwise matrix of five body fluids includes all possible combinations of fluid interactions. 

Typical of toxicological assays, this study was designed to mimic interference studies performed 

as part of LC-MS/MS validations in operational toxicology laboratories. It is important to emphasize 

that the objective of this study is fundamentally different from mixture studies performed in forensic 
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DNA testing. In the context of DNA assay validation, the goal of a mixture study is typically to detect 

and resolve major and minor contributors.  

 In several cases, cross-fluid interferences were detected, potentially leading to difficulties 

in the interpretation of results. These have been identified, and using an abundance of caution, the 

interfering transition was either removed or replaced. For example, a major interference peak was 

detected with prostatic acid phosphatase peptide FVTLFR when seminal fluid was mixed with 

peripheral blood (Figure 3.5). In this case, the transition m/z 534.3398+ (purple peak) generates 

the interference peak. By replacing transition m/z 534.3398+ with transition m/z 247.1441+, the 

problem was readily eliminated in all subsequent analyses.  

 

Figure 3.5. Prostatic acid phosphatase peptide FVTLFR peak area response in (A) neat seminal 
fluid and (B) seminal fluid and peripheral blood mixture. The m/z 534.3398+ transition (purple peak 
denoted with arrow) was removed and replaced.  

3.2.5 Specificity Samples 

 The amino acid sequences of each biomarker were previously screened against protein 

databases to assess the possibility of obtaining positive results from non-human proteins. To 

remain in concordance with governing validation guidelines, additional in vitro experimentations 

was conducted to demonstrate species specificity. The data presented in this section demonstrates 

this empirically, through the analysis of domestic pet and livestock body fluid samples. Seven 

peripheral blood samples (Rhesus monkey, pig, horse, chicken, cow, mouse, and dog) were 

purchased and four peripheral blood samples (coyote, white-tailed deer, black bear, and river otter) 
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were acquired from previous projects. In addition, four saliva samples (cow, Rhesus monkey, 

tortoise, and alpaca) were procured.  

 The results of this study are outlined in Table 3.17. It was previously determined through 

investigation of database entries that the selected hemoglobin peptide sequences were not human 

specific. It is well known that the hemoglobin amino acid sequence is highly conserved across 

mammals, particularly in higher order primates (Figure 3.6). As hypothesized, hemoglobin was 

identified across most of the species assayed. In addition, there were two instances of trace vaginal 

fluid biomarkers, neutrophil gelatinase and Ly6 PLAUR, detected in cow and Rhesus monkey saliva 

(Figure 3.7). Trace levels of acid phosphatase and epididymal secretory protein were detected in 

cow and Rhesus monkey peripheral blood samples as well.  

Table 3.17. Species specificity of protein biomarkers within the multiplex assay. Light green is 
indicative of at least one peptide marker identification for the respective protein. White indicates no 
protein marker was detected.   
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Figure 3.6. Hemoglobin peptide LLVVYPWTQR peak area response in (A) Rhesus monkey and 
(B) human peripheral blood.  

 

Figure 3.7. Peak area response of vaginal fluid markers in saliva samples. Ly6/PLAUR peptide 
GCVQDEFCTR peak area intensity in (A) bovine saliva, (B) Rhesus saliva, and (C) human vaginal 
fluid control samples. Neutrophil gelatinase peptide MYATIYELK peak area intensity in (D) Rhesus 
saliva and (E) human vaginal fluid control samples. 
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 There were no instances of cross reactivity with the established assay for peripheral blood 

from chicken, coyote, or dog in addition to alpaca saliva (Figure 3.8). A more comprehensive 

assessment with the inclusion of additional target fluids from various species could present further 

chromatographic interferences. Overall, the results of this experimentation stress the importance 

of clear interpretation guidelines, particularly when examining potential trace amounts of body fluid 

when only one biomarker is present.  

 

Figure 3.8. Peak area response of species specificity samples evaluated. (A) alpaca saliva sample 
protein cystatin peptide ALHFVISEYNK, (B) alpaca saliva sample protein amylase peptide 
LSGLLDLALGK, (C) hemoglobin peptide LLVVYPWTQR across all blood sample obtained.  

3.2.6 Casework Type Samples 

 Laboratory simulated forensic casework type samples were evaluated to identify additional 

performance limitations, particularly with the analysis of trace level samples, and to aid in the 

generation of finalized Standard Operating Procedures and interpretation guidelines.  
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3.2.6.1 Substrate Samples 

 Various substrate compositions were analyzed to ensure chemical products (i.e., indigo 

dye) or extraction efficiency off different materials (i.e., cotton versus leather) would not interfere 

with the detection of protein biomarkers. Single source body fluids were evaluated on the following 

substrates: cotton, leather, denim, carpet, drywall, plastic bottle, aluminum bottle, and feminine 

hygiene menstrual pad. Results from this study are detailed in Table 3.18.  

 Peripheral blood was applied to cotton, denim, carpet, leather, and drywall. Upon 

processing, all peripheral blood peptide markers were detected and identified for each substrate 

type. No indication of suppression due to substrate composition was observed during analysis. 

Saliva was applied to plastic bottle and aluminum bottle cuttings. Analysis of the substrates showed 

that all saliva peptide markers were accurately identified. Similar to peripheral blood results, 

biomarkers were not suppressed due to substrate composition. Seminal fluid was applied to cotton 

and leather. All seminal fluid peptide markers were detected during analysis, indicating substrate 

composition did not affect the ability to accurately identify seminal fluid.  

 Vaginal fluid was applied to cotton, denim, and leather. Instances of vaginal fluid peptide 

dropout were observed during evaluation. For the cotton sample analyzed, all peptide markers with 

the exception of suprabasin peptide FGQGVHHGLSEGWK were detected. Similarly, peptide 

dropout for suprabasin peptide FGQGVHHGLSEGWK and involucrin peptide 

HLVQQEGQLEQQER were observed during analysis of vaginal fluid recovered from leather. The 

greatest instance of peptide dropout was observed with the analysis of vaginal fluid when applied 

to denim. Five vaginal fluid proteins, neutrophil gelatinase, Ly6/PLAUR, suprabasin, periplakin, and 

involucrin were incompletely detected, with dropout of at least one peptide per protein.  

 Similar vaginal fluid biomarker dropout was evident during menstrual blood analysis. 

Menstrual blood was applied to cotton, denim, and a feminine hygiene menstrual pad. Although all 

peripheral blood markers were positively detected, instances of vaginal fluid peptide dropout and 

complete protein dropout were observed. Across all substrates tested, three proteins exhibited 

complete dropout: suprabasin, involucrin, and Ly6/PLAUR. Furthermore, peptide dropout for 
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proteins cornulin and periplakin was also observed, leaving proteins neutrophil gelatinase and small 

proline-rich protein 3 as the only vaginal fluid markers completely identified. 

Although suppression from substrate composition is a possible explanation as to the 

dropout of vaginal fluid peptide markers for both the analysis of vaginal fluid and menstrual blood 

matrices, the endogenous low-level abundance of these proteins must be taken into consideration. 

The dilution of protein material during extraction is a more probable explanation, causing the protein 

markers to be below the limit of detection. Furthermore, because the protein biomarker dropout 

during menstrual blood analysis was not dictated by the substrate on which the fluid was applied, 

the consistency across substrate type further substantiates the lower abundance of vaginal markers 

to protein absence during analysis. In conclusion, the composition of common substrates 

encountered during forensic analysis do not affect the ability for protein biomarkers to be identified 

using the developed workflow.  

Table 3.18. Detection of body fluid markers in substrate samples. Proteins that were positively 
identified by all of their respective peptide markers are shown in dark green. Light green indicates 
where at least one peptide marker for the respective protein dropped out. Red indicates complete 
protein dropout. White indicates not tested.  

 

3.2.6.2 Environmental Contaminant Samples 

 A variety of environmental contaminants were selected and tested to evaluate potential 

concerns with enzymatic digestion, peptide cleanup, or to detect any instances of unanticipated 
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interferences during instrumental analysis. Single source body fluids were tested with the following 

environmental contaminants: dirt, rust, 10% bleach solution, chewing tobacco, cigarette butt, 

spermicide lubricated condom, and water-based personal lubricant. Results from this study are 

detailed in Table 3.19.  

 Peripheral blood was applied and mixed with dirt, rust, and a 10% bleach solution. All 

peripheral blood peptide markers met acceptance criteria and were positively identified during 

analysis. Similarly, saliva was applied and mixed with chewing tobacco and a cigarette butt. All 

saliva peptide biomarkers met acceptance criteria and were positively identified. Seminal fluid was 

applied and mixed with water-based personal lubricant, spermicide lubricated condom, and 10% 

bleach solution. With the exception of the 10% bleach solution, all seminal fluid peptide markers 

were positively identified. Epididymal secretory protein E1 peptide SGINCPIQK was not detected 

in 10% bleach solution.  

 Vaginal fluid was applied or mixed with water-based personal lubricant and a spermicide 

lubricated condom. This study was repeated with menstrual blood following equivalent sample 

preparation parameters. Detection of vaginal fluid peptide markers within these two matrices was 

determined to be specific for the environmental contaminant being assessed. Beginning with the 

vaginal fluid matrix, no instances of protein dropout were observed when analyzed from a 

spermicide lubricated condom. However, peptide and protein dropout were exhibited with the 

introduction of water-based personal lubricant. Complete protein dropout of suprabasin, 

Ly6/PLAUR, periplakin, small proline rich protein 3, and involucrin in addition to peptide dropout of 

protein cornulin were observed. The lack of detection when subjected to lubricant is likely due to 

two separate chemical interactions. First, lubricant is composed of long, lipophilic hydrocarbons 

that act as a competitive species during SPE cleanup. Lubricant hydrocarbons are preferentially 

bound to sorbent material during SPE as a result of their chemical structure. Although a simple 

addition of sodium dodecyl sulfate (SDS) would eliminate this interference, SDS is not compatible 

with mass spectrometry analysis.  
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Second, the specific type of personal lubricant utilized during this study contained glycerol 

(propane-1,2,3-triol), a compound produced from the hydrolysis of triglycerides that increases the 

solubility of proteins when in matrix. At concentrations greater than 10%, glycerol causes inaccurate 

protein quantitation [159]. Diluting the sample to decrease the interference caused by this 

ingredient is not suitable for analysis as the vaginal fluid peptide markers exist endogenously in low 

abundance, resulting in a misleading quantitation value.  

 Similar with menstrual blood containing samples, protein and peptide dropout was 

exhibited. Vaginal fluid protein biomarkers Ly6/PLAUR, suprabasin, and involucrin were not 

detected and peptide marker dropout was exhibited for proteins cornulin and periplakin. However, 

there was consistency in protein dropout observed between contaminant sample types, indicating 

that the natural low-level abundance of vaginal fluid markers attributes to the lack of detection. 

Furthermore, the protein detection for these sample types is equivalent to that reported during the 

substrate interference study in section 3.2.6.1.  
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Table 3.19. Detection of body fluid markers in samples subjected to environmental contaminants. 
Proteins that were positively identified by all of their respective peptide markers are shown in dark 
green. Light green indicates where at least one peptide marker for the respective protein dropped 
out. Red indicates complete protein dropout. White indicates not tested. 

 

3.2.6.3 Mixtures 

 The purpose of this study was to evaluate the performance of the optimized assay when 

analyzing mixed samples with a major and minor component. Five two-fluid mixtures were 

prepared, with pairings selected based on sample types routinely tested for in operational forensic 

laboratories. For example, a seminal fluid minor contributor in a vaginal fluid major contributor was 

prepared to simulate a sexual assault type sample. Results from this study are summarized in 

Table 3.20.  

 With the exception of urine, for which protein biomarkers are not included within the 

developed assay, all major and minor body fluid contributors were correctly identified. Beginning 

with the vaginal fluid minor contributor in a urine major contributor, high rates of vaginal fluid protein 

marker dropout were observed. Fluid identification was made from the presence of small proline 

rich protein 3 and cornulin. The urine matrix predictably diluted the vaginal fluid markers past the 

limit of detection of the assay. In addition, although the average urea composition (9.5 g/L) in urine 
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is below the concentration incompatible with the BCA protein quantitation assay [159], the presence 

of urea and additional salts endogenous to urine may have negatively affected the ability to produce 

a reliable protein quantitation value. Therefore, if the total protein quantitation was underestimated, 

less then optimal protein amounts would have been utilized for testing.  

 The saliva minor contributor was confirmed present in a vaginal fluid major contributor 

based on the presence of alpha amylase and submaxillary gland androgen-regulated protein 3B. 

Furthermore, all vaginal fluid protein markers were accurately identified. 

 The third two-component mixture tested was a seminal fluid minor contributor in a vaginal 

fluid major contributor. Only one instance of peptide dropout was observed, with seminal fluid 

protein prostate specific antigen peptide FLRPGDDSSHDLMLLR being undetected. The remaining 

protein markers were positively identified, particularly confirmatory markers semenogelin 1 and 

semenogelin 2. As expected, the vaginal fluid major contributor was also positively identified by all 

protein biomarkers consistent with vaginal fluid. 

 The seminal fluid minor contributor was positively confirmed in a menstrual blood major 

contributor, with all protein biomarkers accurately detected and identified. However, as seen with 

other casework type samples, instances of peptide and protein dropout were observed for 

menstrual blood characterization. Although vaginal fluid proteins cornulin, neutrophil gelatinase, 

and small proline rich protein 3 were present, in addition to peptides consistent with periplakin and 

involucrin, protein dropout of Ly6/PLAUR and suprabasin was exhibited. This dropout is consistent 

with results obtained during Substrate and Environment Contaminant studies (sections 3.2.6.1 and 

3.2.6.2, respectively), with endogenous low-level abundance negatively affecting the ability to 

detect these proteins in a complex matrix such as menstrual blood.  

 The last two-component mixture analyzed was a saliva minor contributor in a menstrual 

blood major contributor. The saliva contributor was identified based on the sole presence of protein 

alpha amylase. Because this protein has demonstrated cross-expression in other body fluids and 

tissues, the presence of saliva in this particular sample cannot be reported as confirmatory. 
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Furthermore, as observed with the seminal fluid in menstrual blood mixture previously described, 

there was consistent vaginal fluid protein biomarker dropout exhibited in this sample.  

Table 3.20. Detection of body fluid markers in mixture samples. Proteins that were positively 
identified by all of their respective peptide markers are shown in dark green. Light green indicates 
where at least one peptide marker for the respective protein dropped out. Red indicates complete 
protein dropout. White indicates not tested. 

 

3.2.6.4 Sexual Assault Samples 

3.2.6.4.1 Simulated Sexual Assault Samples 

 Prepared samples were allowed to incubate at 37 ˚C for up to and including eleven days 

after preparation. At time zero, proteins semenogelin 1, semenogelin 2, and epididymal secretory 

protein were positively identified (Table 3.21). The complete panel of seminal fluid peptide markers 

was not detected in full during any timepoints evaluated during this study. Only epididymal 

secretory protein was consistently detected over the course of the eleven-day incubation study. 

Furthermore, a single peptide for both semenogelin 1 and 2 were consistently identified over the 

course of the study (Figure 3.9). Peptide dropout for proteins prostatic acid phosphatase and 
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prostate specific antigen was observed at time zero, with complete protein dropout of prostate 

specific antigen observed for the remainder of the study. Prostatic acid phosphatase exhibited 

protein dropout after day seven.  

 This study demonstrates the robustness of the seminal fluid peptide markers selected for 

inclusion within the larger multiplex panel. For example, prostate specific antigen’s inherent function 

is to cleave semenogelin proteins in order to liquify ejaculated semen. With the ability to detect 

semenogelin proteins after incubation for eleven days further exemplifies that the selected peptide 

markers do not fall within amino acid cleavage sites. Furthermore, the inherent hostile environment 

of vaginal fluid in terms of acidic pH and endogenous proteases, did not negatively affect the ability 

to positively characterize “invasive” seminal fluid proteins to an extent as great as originally 

hypothesized.    

Table 3.21. Detection of body fluid markers in simulated sexual assault samples. Proteins that were 
positively identified by all of their respective peptide markers are shown in dark green. Light green 
indicates where at least one peptide marker for the respective protein dropped out. White indicates 
complete protein dropout. 
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Figure 3.9. Peak area response of seminal fluid biomarkers in simulated sexual assault samples. 
Semenogelin 1 peptide QITIPSQEQEHSQK peak area intensity (A) at Day Eleven and (B) over the 
entirety of the incubation study. Semenogelin 2 peptide GSISIQTEEK peak area intensity (C) at 
Day Eleven and (D) over the entirety of the incubation study.  

3.2.6.4.2 Mock Sexual Assault Kit Samples 

 Mock sexual assault kit samples were prepared in duplicate using semen provided by a 

vasectomized and a non-vasectomized male individual (Table 3.22). For sexual assault swabs 

prepared with semen from a non-vasectomized donor, seminal fluid was positively identified 

through the detection of the following protein fingerprints. Beginning with vaginal swab samples, 

two occurrences of seminal fluid protein dropout were recorded for a single sample (SA01_01.2). 

Prostate specific antigen and epididymal secretory protein were not positively identified; however, 

prostatic acid phosphatase, semenogelin 1, and semenogelin 2 were completely characterized. In 

addition, given the sample type, vaginal fluid protein markers were successfully detected and 

identified for both samples being assessed. Similar results were recorded for the oral swab sample 

types. All seminal fluid biomarkers were detected, with the exception of epididymal secretory 

protein, which exhibited complete dropout. Furthermore, given the sample type, all saliva 

biomarkers were accurately detected with no protein dropout exhibited. Rectal swab samples were 

shown to exhibit protein inhibition, with occurrences of seminal fluid protein dropout for both sample 

collections. Prostate specific antigen and epididymal secretory protein were not detected, in 
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addition to peptide dropout observed for prostatic acid phosphatase and semenogelin 2 (Figure 

3.10).  

 Similar results were observed for samples prepared with semen from a vasectomized 

donor. Vaginal swab samples produced positive detection of prostatic acid phosphatase and 

semenogelin 1 seminal fluid proteins, in addition to vaginal fluid biomarkers. However, for both 

samples being analyzed, prostate specific antigen was not detected. Furthermore, semenogelin 2 

exhibited peptide dropout. Second, oral swab samples were confirmed to contain seminal fluid due 

to the identification of semenogelin 1 and 2. The first swab analyzed (SA02_02.1) exhibited protein 

dropout for prostate specific antigen and epididymal secretory protein. The second oral swab 

(SA02_02.2) was only lacking epididymal secretory protein. Lastly, comparable with the non-

vasectomized samples, the rectal swabs containing displayed occurrences of protein inhibition. For 

both sample collections, prostate specific antigen and epididymal secretory protein were not 

detected. Furthermore, peptide dropout of proteins prostatic acid phosphatase and semenogelin 2 

were reported, with instances of semenogelin 1 peptide dropout for sample SA02_03.1 (Figure 

3.11).  

 In summary, the LC-MS/MS assay was able to accurately identify trace amounts of seminal 

fluid from both non-vasectomized and vasectomized male individuals. Moreover, the protein 

inhibition reported from rectal swab sample analysis can be attributed to the increased presence of 

bacteria common for this sample type [160]. Bacteria of the human gut microbiome contain serine 

protease inhibitors, which may negatively affect the function of trypsin during protein digestion 

processes.   
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Table 3.22. Detection of body fluid markers in sexual assault kit samples. Proteins that were 
positively identified by all of their respective peptide markers are shown in dark green. Light green 
indicates where at least one peptide marker for the respective protein dropped out. White indicates 
complete protein dropout. 
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Figure 3.10. Peak area response of seminal fluid biomarkers in mock sexual assault kit samples 
containing semen from a non-vasectomized donor. Prostate specific antigen peptide 
LSEPAELTDAVK peak area intensity in (A) vaginal swab (B) oral swab (C) rectal swab. 
Semenogelin 2 peptide GSISIQTEEK peak area intensity (D) across vaginal, oral, and rectal swab 
sample replicates. Semenogelin 1 peptide QITIPSQEQEHSQK peak area intensity (E) across 
vaginal, oral, and rectal swab sample replicates. 
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Figure 3.11. Peak area response of seminal fluid biomarkers in mock sexual assault kit samples 
containing semen from a vasectomized donor. Prostate specific antigen peptide LSEPAELTDAVK 
peak area intensity in (A) vaginal swab (B) oral swab (C) rectal swab. Semenogelin 2 peptide 
GSISIQTEEK peak area intensity (D) across vaginal, oral, and rectal swab sample replicates. 
Semenogelin 1 peptide QITIPSQEQEHSQK peak area intensity (E) across vaginal, oral, and rectal 
swab sample replicates. 

3.2.6.4.3 Digital Swabs  

 Digital swab samples were collected on separate days for a total of two swab types, with 

each sample serving as a distinct sample collection. A summary of results is outlined in Table 3.23. 

Beginning with the oral penetration digital swabs, all saliva protein biomarkers were positively 

identified for both sample collections. The first sample evaluated was positive for alpha amylase 

and submaxillary gland androgen-regulated protein 3B, with peptide dropout observed for proteins 

statherin and cystatin SA. The second sample analyzed was positive for submaxillary gland 

androgen-regulated protein 3B and cystatin SA, with peptide dropout exhibited for alpha amylase 

and statherin. There were no instances of complete protein dropout observed for oral penetration 

digital swabs. Although inconsistencies were observed for alpha amylase detection between the 
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two samples received, the identification of submaxillary gland androgen-regulated protein 3B was 

encouraging, as this protein exhibits saliva specificity.  

 Vaginal penetration digital swabs were accurately identified by the presence of at least one 

peptide marker for all vaginal fluid markers within the assay. For the first sample analyzed, peptide 

dropout was observed for proteins cornulin, Ly6/PLAUR, periplakin, involucrin, and small proline 

rich protein 3; however, identification was made due to the presence of neutrophil gelatinase and 

suprabasin. Similarly, the second sample evaluated exhibited peptide dropout for proteins cornulin, 

periplakin, involucrin, and small proline rich protein 3. It should be noted that epididymal secretory 

protein, a presumptive seminal fluid protein biomarker, was detected for both vaginal penetration 

digital swabs. 

 Vaginal penetration during menses swabs were taken at both the beginning and the end 

of menstruation, creating two unique samples. The first digital swab was taken at the beginning of 

menstruation and was positively identified by both vaginal fluid and peripheral blood protein 

markers. Although protein dropout was observed for protein cornulin, three vaginal fluid markers 

were completely identified (neutrophil gelatinase, suprabasin, and involucrin). Furthermore, all 

peripheral blood proteins were detected, with high abundance of protein hemoglobin and alpha-1 

antitrypsin reported. The second sample analyzed was collected at the end of menstruation, 

causing the sample to more closely resemble a vaginal swab than a menstrual swab. No instances 

of vaginal fluid biomarker dropout were observed. In addition, as expected, signal intensities for 

peripheral blood protein markers were less intense than those of the first swab evaluated.  
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Table 3.23. Detection of body fluid markers in digital swab samples. Proteins that were positively 
identified by all of their respective peptide markers are shown in dark green. Light green indicates 
where at least one peptide marker for the respective protein dropped out. White indicates complete 
protein dropout. 

 

3.2.6.5 Degraded Samples 

 Substrates were prepared to simulate authentic items of evidence that have been 

laundered. Upon analysis, both the stain region and the control (non-stain region) of the same 

substrate were processed concurrently. A complete summary of results is depicted in Table 3.24. 

Peripheral blood containing samples (cotton bath towel, denim) yielded positive identifications for 

all target peripheral blood biomarkers. For the towel sample, peptide dropout for apolipoprotein and 

serotransferrin was observed. The denim sample containing peripheral blood did not exhibit any 

instances of peptide or protein dropout. Both the towel and denim control regions were negative for 

all peripheral blood protein targets.  



131 
 

 Seminal fluid was accurately identified on both substrates evaluated (cotton-blend bed 

sheet, cotton underwear). All protein markers were positively detected for the underwear stain 

region, with one instance of peptide dropout exhibited for prostate specific antigen. The control 

region for this substrate was negative for all biomarkers. The bed sheet sample had a single 

occurrence of protein dropout for epididymal secretory protein, with peptide dropout exhibited by 

prostatic acid phosphatase and prostate specific antigen. The control region for this substrate was 

also negative for all protein markers. 

 It was originally hypothesized that the use of laundry detergent may severely inhibit 

biomarker detection, given that detergent is commonly used to lyse cell membranes and denature 

protein, but have additional deleterious effects on SPE chemistries. Furthermore, detergent is 

generally incompatible with mass spectrometer functionality. However, laundering of the stain 

regions did not inhibit the ability to accurately identify target biomarkers within the validated assay. 

Additional studies into the effect of different detergent formulations would be of interest. A detergent 

marketed as “natural” was selected for this subset of samples, however, it is hypothesized that 

formulations containing other chemical ingredients may change the observed outcomes.   
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Table 3.24. Detection of body fluid markers in degraded samples. Proteins that were positively 
identified by all of their respective peptide markers are shown in dark green. Light green indicates 
where at least one peptide marker for the respective protein dropped out. White indicates complete 
protein dropout. 

 

3.2.6.6 Aged Samples 

 Aged body fluid swabs were prepared to assess the degradation of target protein markers 

in addition to extraction efficiency when target body fluids were not stored under ideal conditions. 

Protein identification results for all aged samples are outlined in Table 3.25. Peripheral blood 

biomarkers were detected at all time points collected. No instances of protein degradation were 

observed, with all peak intensities remaining consistent over the course of the study. Similar results 

regarding peripheral blood markers in menstrual blood were obtained; however, vaginal fluid 

marker dropout was observed. Proteins Ly6/PLAUR, suprabasin, and involucrin were not detected 

during this study. All other vaginal fluid markers did exhibit stability for the time points collected, 

with no additional protein or peptide dropout exhibited. 
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 Seminal fluid and saliva behaved similar to peripheral blood. All target protein markers 

were correctly identified during each time point collected, with no instances of protein or peptide 

dropout over the course of the study. The amount of material present for vaginal fluid (i.e., 50 µL 

vs. 150 µL) effected the positive identification of specific markers, as originally hypothesized. 

Peptide dropout was observed for protein periplakin during the study, with inconsistent peptide 

dropout exhibited by protein suprabasin. This suggests that the selected peptide marker 

AQSLQSAK for suprabasin does not exhibit the same high degree of robustness when compared 

with remaining vaginal fluid markers.   

Table 3.25. Detection of body fluid markers in aged samples. Proteins that were positively identified 
by all of their respective peptide markers are shown in dark green. Light green indicates where at 
least one peptide marker for the respective protein dropped out. White indicates complete protein 
dropout. 
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3.2.6.7 Sensitivity Samples 

 Sensitivity samples were prepared by extracting a serial dilution of target body fluid from 

cotton swabs. These samples differ from those prepared under section 3.2.2 by diluting target body 

fluid and recovering from a substrate, in comparison with evaluating diluted target fluid directly in a 

test tube. A summary of results is detailed in Tables 3.26-3.28. Beginning with peripheral blood 

detection, all protein markers were successfully identified for neat, 1:2, 1:10, and 1:100 dilution 

samples (Table 3.26). Hemopexin dropout was observed at the 1:1,000 dilution, with additional 

protein dropout of alpha-1 antitrypsin and serotransferrin peptide dropout at the 1:2,000 dilution. 

From this dilution, the only protein marker consistently detected was hemoglobin, with peptide or 

protein dropout reported for all other markers at the 1:5,000, 1:10,000 and 1:20,000 dilutions 

(Figure 3.12). No peripheral blood biomarkers were detected at the 40,000-fold dilution. 

 Similar results were exhibited by menstrual blood sensitivity analysis (Table 3.26). All 

peripheral blood markers were accurately detected through the 100-fold dilution, with peptide 

dropout for serotransferrin and apolipoprotein at the 1:1,000 dilution. Peripheral blood marker 

dropout of hemopexin and alpha-1 antitrypsin was observed at the 1:2,000 dilution, with all proteins 

except hemoglobin not detected at the 1:5,000 dilution. Hemoglobin was detected in all menstrual 

blood dilution samples analyzed. As hypothesized, vaginal fluid protein markers did not exhibit the 

same level of sensitivity as the peripheral blood markers in menstrual blood. Protein dropout for 

involucrin, Ly6/PLAUR, and suprabasin was observed for all samples evaluated. Furthermore, 

peptide dropout for cornulin and periplakin was exhibited for all samples. These results remained 

consistent up to and including the 100-fold dilution sample. Additional protein dropout of periplakin 

and neutrophil gelatinase was reported at the 1,000-fold dilution sample. Further dilutions exhibited 

inconsistent protein and peptide detection. Small proline rich protein 3 was detected at the 1:10,000 

and 1:20,000 dilutions (Figure 3.12); however, exhibited peptide dropout at the 1:5,000 and 

1:40,000 dilutions. As with other casework type samples analyzed, the endogenous low 

abundances of target vaginal fluid protein markers attributes to the lack of detection at lower dilution 

samples.  
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 Robust detection of seminal fluid biomarkers over the course of the dilution study was 

observed (Table 3.26). All protein targets were identified in the neat, 1:2, and 1:10 dilutions, with 

two instances of peptide dropout for proteins prostatic acid phosphatase and prostate specific 

antigen at the 1:100 dilution. Prostate specific antigen and epididymal secretory protein were not 

detected at the 1:1,000 dilution, with additional prostatic acid phosphatase dropout at the 2,000-

fold dilution. Although peptide dropout was exhibited, semenogelin 1 and 2 were positively identified 

at the 1:5,000, 1:10,000, and 1:20,000 dilution samples. Furthermore, semenogelin 1 peptide 

QITIPSQEQEHSQK was accurately detected at 40,000-fold dilution extract (Figure 3.12).  

 Saliva dilution samples, as hypothesized, did not demonstrate the same degree of 

sensitivity as semen and peripheral blood based on the lower endogenous levels of protein quantity 

(Table 3.27). All protein markers were positively identified at the neat, 1:2, and 1:10 dilution 

extracts, with complete dropout of cystatin SA at 1:100. From this point, inconsistencies in 

biomarker detection were observed. Beginning with protein alpha amylase, peptide dropout was 

exhibited at the 500-fold dilution but was completely detected at the 1,000-fold dilution sample 

(Figure 3.12). Similarly, submaxillary gland androgen-regulated protein 3B demonstrated protein 

dropout at 1:500, with a single peptide detected at 1:1,000. The remaining samples analyzed 

(1:2,000; 1:5,000; 1:10,000) were negative for all target protein markers consistent with saliva. 

 Lastly, vaginal fluid sensitivity was evaluated (Table 3.28). Three instances of peptide 

dropout were observed at the initial 10-fold dilution analyzed: periplakin, Ly6/PLAUR, and 

involucrin. After this dilution, almost complete protein dropout was exhibited at 1:100, with only two 

peptides being accurately detected for small proline rich protein 3 and periplakin. From this point, 

only a single small proline rich protein 3 peptide was detected for the remainder of the samples 

analyzed (Figure 3.12). It should be restated that the dilution evaluated was initially applied to a 

cotton swab and subsequently extracted in 1 mL of deionized water, further diluting any protein 

material that was originally present. The large extraction volume was necessary to produce enough 

material for additional studies conducted during subsequent aim of this project, as described in 

Chapter 4. This decrease in recovery contributed to poor sensitivity in comparison with the 
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sensitivity study conducted in section 3.2.2. However, in common forensic biology laboratory 

protocols, swabs are extracted in sufficient liquid to ensure saturation, further concentrating present 

targets prior to analysis.  

Table 3.26. Detection of body fluid markers in casework sensitivity samples for peripheral blood, 
menstrual blood, and seminal fluid. Proteins that were positively identified by all of their respective 
peptide markers are shown in dark green. Light green indicates where at least one peptide marker 
for the respective protein dropped out. White indicates complete protein dropout.  

 

Table 3.27. Detection of body fluid markers in casework sensitivity samples for saliva. Proteins that 
were positively identified by all of their respective peptide markers are shown in dark green. Light 
green indicates where at least one peptide marker for the respective protein dropped out. White 
indicates complete protein dropout. 

 

Table 3.28. Detection of body fluid markers in casework sensitivity samples for vaginal fluid. 
Proteins that were positively identified by all of their respective peptide markers are shown in dark 
green. Light green indicates where at least one peptide marker for the respective protein dropped 
out. White indicates complete protein dropout.  
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Figure 3.12. Peak area response of peptide biomarker at lowest detected sensitivity sample. (A) 
seminal fluid protein semenogelin 1 peptide QITIPSQEQEHSQK at 40,000-fold dilution, (B) 
peripheral blood protein hemoglobin peptide LLVVYPWTQR at 20,000-fold dilution, (C) saliva 
protein amylase peptide IAEYMNHLIDIGVAGFR at 1,000-fold dilution, (D) menstrual blood protein 
hemoglobin peptide LLVVYPWTQR at 40,000-fold dilution, (E) menstrual blood protein small 
proline rich protein 3 peptide VPEPGCTK at 20,000-fold dilution, and (F) vaginal fluid protein small 
proline rich proline 3 peptide VPEPGCTK at 20,000-fold dilution.   

3.2.7 Limit of Detection 

 This study was performed to determine the detection limit for individual target peptides 

contained within their cognate body fluid. This aim was carried out by generating a dilution series 

of isotopically-labeled peptide standards, ranging from 50 femtomoles (fmol) to 500 attomoles 

(amol) per injection. Samples were prepared in triplicate in digested body fluid matrix. In general, 

the limit of detection (LOD) is described as the lowest concentration an analyte can be differentiated 

from analytical noise. The LOD was determined according to acceptable signal peak area 

response, signal to noise ratio, retention time, and qualitative response ratio between each 

transition.  

 A summary of results obtained are detailed in Tables 3.29 and 3.30. Overall, the LOD 

values for target peptide markers ranged from 1.0 to 25 femtomoles per individual peptide. 

Beginning with peripheral blood, the LOD for target peptide markers ranged from 2.5 fmol to 10 
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fmol per injection analyzed (Table 3.29). Hemoglobin peptides SAVTALWGK and LLVVYPWTQR 

were found to have a higher LOD of 10 fmol due to observed peak area fluctuations of qualifier 

ions. Furthermore, this higher LOD is beneficial for analysis because, as discussed later in section 

3.2.9, both hemoglobin peptides were found to have high instances of carryover between sample 

injections.  

 Seminal fluid peptide marker LOD values ranged from 1.0 fmol to 25 fmol (Table 3.29). 

Similar to hemoglobin, semenogelin 1 peptide DIFSTQDELLVYNK exhibited an LOD of 25 fmol, a 

higher value than those observed for remaining targets, and was found to have greater instances 

of carryover (section 3.2.9). On the contrary, LOD values for proteins prostatic acid phosphatase 

and prostate specific antigen were on the lower end of the range, with peptide FVTLVFR exhibiting 

an LOD of 1.0 fmol.  

 Derived LOD values for vaginal fluid ranged from 1.0 fmol to 25 fmol, with two instances of 

target isotopically-labeled peptide standard dropout (Table 3.30). Cornulin peptide 

AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR and Ly6/PLAUR peptide 

GLDHGLLAFIQLQQCAQDR did not produce sufficient chromatographic peak shape or acceptable 

ion ratios at the 50 fmol fortification (Figure 3.13). Therefore, these peptides were not assigned a 

LOD and should be interpreted with caution. However, more robust protein biomarkers such as 

neutrophil gelatinase, exhibited acceptable LOD values at 5.0 fmol. Similar results were obtained 

with AQUA analysis in menstrual blood matrix, with LOD values ranging from 2.5 fmol to 25 fmol 

for both vaginal fluid and peripheral blood target markers (Table 3.30). In comparison with vaginal 

fluid matrix analysis, eight vaginal fluid targets produced comparable results in menstrual blood, 

including the dropped peptide biomarkers of cornulin and Ly6/PLAUR. However, five peptide 

targets were found to exhibit a greater LOD in menstrual blood than in vaginal fluid matrix. All 

peripheral blood target LOD values were comparable in menstrual blood, with the exception of 

hemopexin peptide NFPSPVDAAFR, exhibiting a greater LOD in peripheral blood than in menstrual 

blood matrix.  
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 Isotopically-labeled peptide standards were not available for purchase at an acceptable 

purity for saliva proteins statherin and submaxillary gland androgen-regulated protein 3B. Peptide 

synthesis becomes exponentially more difficult as peptide length increases, with the peptide targets 

for these particular proteins outside of accurate synthesis range. Furthermore, peptides with a high 

content of certain amino acid residues (i.e., proline) add additional difficulties to the synthesis 

process. The remaining four peptide targets (from proteins alpha amylase and cystatin SA) 

produced LOD values of 5 fmol or less, with LSGLLDLALGK peptide exhibiting an LOD of 2.5 fmol 

(Table 3.29).  

Table 3.29. Limit of detection quantities of peripheral blood, saliva, and seminal fluid peptide 
biomarkers.  
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Table 3.30. Limit of detection quantities for vaginal fluid and menstrual blood peptide biomarkers. 
Not Detected (ND).  
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Figure 3.13. Peak area response of peptide biomarkers at 50 fmol limit of detection. (A) Menstrual 
blood matrix detection of cornulin peptide AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR, (B) 
vaginal fluid matrix detection of cornulin peptide 
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR, (C) menstrual blood matrix detection of 
Ly6/PLAUR peptide GLDLHGLLAFIQLQQCAQDR, and (D) vaginal fluid matrix detection of 
Ly6/PLAUR peptide GLDLHGLLAFIQLQQCAQDR.  

3.2.8 Ion Suppression 

 This portion of the validation was performed to assess whether coeluting compounds have 

a suppressing or enhancing effect on peptide response. This study was performed by preparing 

two samples: the first containing only isotopically-labeled peptide standards and the second 

containing body fluid fortified with isotopically-labeled peptide standards. As previously stated, 

AQUA standards were not available for saliva proteins statherin and submaxillary gland androgen-

regulated protein 3B and were therefore not tested during this portion of the validation.  

 To assess peptide suppression or enhancement, the percent difference of peak area 

average between the neat standards and the AQUA fortified fluid matrix was calculated (Tables 

3.31 and 3.32). Peptides that expressed a negative percent difference were marked as having ion 
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suppression, indicating the observed peak area of the peptide in the digested body fluid sample 

was less than that observed of the neat standard. Peptides that expressed a positive percent 

difference were interpreted as having ion enhancement, evident by a greater peak area response 

in the fortified digested body fluid than the neat standard. Substantial ion suppression was observed 

in 22% of peptide targets, with calculated percent difference greater than 30%. For example, the 

hemoglobin peptides SAVTALWGK and LLVVYPWTQR showed 55% and 94% suppression, 

respectively, when analyzed in neat peripheral blood (Figure 3.14). Similar suppression of 

hemoglobin peptides was also observed in menstrual blood. Substantial suppression of 

hemoglobin was expected, although not anticipated at such extreme rates, for both peripheral blood 

and menstrual blood matrices due to their endogenous complexity.  

 Ion enhancement was not observed as frequently as suppression, with only two instances 

of substantial enhancement. First, ion enhancement was observed at peptide 

FGQGVHHGLSEGWK from vaginal fluid protein marker suprabasin. This occurrence was 

observed in both vaginal fluid and menstrual blood matrix, with calculated percent difference of 

79% and 67%, respectively. 
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Table 3.31. Calculated percent difference of peripheral blood, seminal fluid, and saliva peptide 
biomarkers to assess ion suppression and enhancement.  
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Table 3.32. Calculated percent difference of vaginal fluid and menstrual blood peptide biomarkers 
to assess ion suppression and enhancement. 
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Figure 3.14. Peak area response of (A) endogenous hemoglobin peptide LLVVYPWTQR and (B) 
AQUA hemoglobin peptide LLVVYPWTQR. 

3.2.9 Carryover 

 Carryover was exhaustively evaluated during validation to ensure accurate and precise 

detection of target biomarkers, particularly for assessment of low-level sample types that are 

preceded by highly concentrated samples. Carryover is defined as the unintended presence of an 

analyte peak in an adjacent sample analyzed after a positive sample [161].  

 Preliminary carryover samples included 10 µg, 20 µg, and 30 µg of prepared material 

analyzed on column followed by a blank injection. Carryover in the subsequent blank was observed 

for two protein biomarkers. First, hemoglobin in peripheral blood and menstrual blood matrices was 

detected in blanks after all three loading amounts evaluated (Figure 3.15). Peptide LLVVPWTQR 

produced linear peak response in blank injections, with linearity of sample injections decreasing as 

the loading amount increased, indicating saturation of the mass spectrometer detector. Peptide 

SAVTALWGK was detected in blank injections after 20 µg and 30 µg sample amounts. Second, 

semenogelin 1 exhibited high levels of carryover in all subsequent blank injections (Figure 3.15). 

Peptide DIFSTQDELLVYNK peak area responses produced linear results in blank injection 

analysis, with peak areas greater than 7,400,000 in sample injections at 10 µg loading amounts. 

Similar to hemoglobin peptide LLVVPQTQR, semenogelin 1 peptide DIFSTQDELLVYNK is 

relatively hydrophobic, eluting toward the end of the analytical run time. With reverse-phase liquid 
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chromatography, hydrophobic moieties are strongly retained within the stationary phase, with 

instances of incomplete release of hydrophobic analytes not uncommon.  

 Because hemoglobin and semenogelin 1 carryover was observed at substantial peak area 

responses, samples were reinjected using the same loading amounts previously described 

followed by two blank injections. This was performed to evaluate the retention of the hydrophobic 

peptides. As expected, both hemoglobin and semenogelin 1 were detected in the second blank 

injection analyzed after a 10 µg injection (Figure 3.16).  

 Preliminary carryover studies showed that 10 µg of material on column produced peak area 

responses that greatly exceeded what is necessary for accurate identification of target fluids. 

Keeping in mind common forensic biology laboratory protocol, lower injection volumes were 

evaluated for use in order to conserve precious sample material. For this purpose, vaginal fluid 

protein biomarkers were assessed as they are inherently detected in lower abundance within 

matrix. 10 µg injection quantities produced adequate peak area responses for all vaginal fluid 

peptide markers, with an average response of all peptide markers recorded as 49,800. From the 

data produced during this study, it was concluded that decreased loading amounts would not only 

limit the possibility of carryover with more abundant targets but would still yield reliable responses 

for target peptide markers by limiting chromatographic effects observed with column overload (i.e., 

peak shouldering, peak tailing, etc.). Final carryover studies were performed using 0.5 µg, 1 µg, 

2.5 µg, and 5 µg loading amounts followed by blank injections.   

 Lower sample injection amounts were found to limit instances of carryover while 

maintaining accurate peak area responses for fluid identification. However, hemoglobin and 

semenogelin 1 carryover persisted, albeit at low-level abundance (Figure 3.17). Although 

semenogelin 1 exhibited carryover at the 2.5 µg injection amount, observed peak areas were 

sufficiently less than those observed from hemoglobin carryover at all loading amounts evaluated. 

Due to these effects, hemoglobin and semenogelin 1 targets must be called at a greater intensity, 

regardless of ion ratio and chromatographic acceptance at lower peak areas. Therefore, a 2.5 µg 

loading amount was selected as the optimal amount of protein on column during analysis. Although 



147 
 

2.5 µg of material still produced sufficient response for less abundant targets, specifically target 

vaginal fluid biomarkers, two instances of protein dropout, Ly6/PLAUR and epididymal secretory 

protein E1, were observed at the 2.5 µg injection. A complete overview of observed carryover is 

outlined in Table 3.33. The presence of carryover was addressed in drafted interpretation 

guidelines, with strict detail given on the acceptance of semenogelin 1 and hemoglobin peaks 

above a designated value in order to prevent the false identification of carryover peaks.  

 

Figure 3.15. Peak area response of (A) hemoglobin peptide LLVVYPWTQR in peripheral blood, 
(B) hemoglobin peptide LLVVYPWTQR in menstrual blood, and (C) semenogelin 1 peptide 
DIFSTQDELLVYNK in seminal fluid in blank injections directly following a 10 µg sample injection.  

 
Figure 3.16. Peak area response of semenogelin 1 peptide DIFSTQDELLVYNK in (A) 10 µg sample 
injection, (B) first subsequent blank injection, and (C) second subsequent blank injection.   
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Figure 3.17. Peak area response of (A) hemoglobin peptide LLVVYPWTQR in 0.5 µg peripheral 
blood, (B) hemoglobin peptide LLVVYPWTQR in subsequent blank injection, (C) semenogelin 1 
peptide DIFSTQDELLVYNK in 2.5 µg seminal fluid, and (D) semenogelin 1 peptide 
DIFSTQDELLVYNK in subsequent blank injection.   
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Table 3.33. Detection of body fluid markers during carryover assessment. Proteins that were 
positively identified by all of their respective peptide markers are shown in green. White indicates 
complete protein dropout. 

 
 

3.2.10 Blind Sample Analysis 

 A series of 50 samples containing fiber-tipped swabs, swatches of cloth, and condoms 

were received from the grant agency for blind analysis. Utilizing the described LC-MS/MS method, 

body fluid identification assignments were made. In total, 41 of 50 blind samples (82%) analyzed 

were correctly identified when compared with true sample contents. The remaining 9 samples 
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(18%) were misidentified, with 3 false positive identifications and 5 false negative (i.e., non-

detections observed) results recorded. A comprehensive summation of experimental 

identifications, true identifications, and sample preparation information is outlined in Appendix H. 

For example, a cotton swab sample (Sample #15) was identified as containing biomarkers 

consistent with seminal fluid and vaginal fluid; however, biomarkers consistent with saliva were not 

detected (Figure 3.18). This sample was characterized as a false negative, having contained a 3-

part mixture (10 µL semen and 1 µL of saliva on a vaginal swab). On the contrary, a cotton swab 

(Sample #22) was misidentified as containing biomarkers consistent with vaginal fluid and 

characterized as a false positive identification (Figure 3.19).  

 Receiving true sample contents ex post facto, the validated LC-MS/MS assay 

demonstrated robustness and reliability when challenged with non-target fluids. For example, when 

subjected to samples containing breast milk (Sample #49), sweat (Sample #50), or urine (Samples 

#23, #24, #39), no misidentifications were made. One interesting sample to note (Sample #30) 

contained nasal secretions. Although not a target fluid of the validated method, a peptide biomarker 

profile was previously acquired and utilized to make a special note regarding the experimental 

identification of this particular sample. Although reported as containing peripheral blood and saliva, 

it was specified as a note that the resulting profile may be chemically consistent with nasal 

secretions.  
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Figure 3.18. Peptide biomarker profile of Blind Sample #15. (A) Biomarkers consistent with seminal 
fluid and vaginal fluid and (B) lack of biomarkers consistent with saliva, prompting a false negative 
identification.  
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Figure 3.19. Peptide biomarker profile of Blind Sample #22. (A) Biomarkers consistent with saliva 
and (B) biomarkers consistent with vaginal fluid, prompting a false positive identification. 

3.3 Concluding Remarks 

 With the completion of this phase of the research, the robustness and reliability of the 

multiplex assay described has been exhaustively demonstrated. In addition, the inherent limitations 

observed through the analysis of both routine and challenging forensic type evidence have 

elucidated a defined understanding of presumptive and confirmatory biomarkers utilized for 

identification. Overall, the culmination of results detailed within this chapter are the final product of 

a fully validated analytical method for the serological analysis of peripheral blood, seminal fluid, 

saliva, and vaginal/menstrual fluids. With achieving sufficient sensitivity coverage over several 

orders of magnitude, in addition to demonstrating the specificity of fluid-specific biomarkers, the 

use of protein mass spectrometry as an advanced serological technique offers significant 

advantages over currently existing catalytic and immunological assays routinely employed in 

operational laboratories.  
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 The deliverable to the forensic community following the developmental validation results 

detailed in this chapter include not only a robust analytical multiplex assay, but comprehensive 

interpretation guidelines (Appendix I). Through meticulous evaluation of detection limits, the 

presence of carryover, and the suppression rates of specific biomarkers, potential avenues for 

misidentification or incorrect interpretation have been minimized. The purpose of the drafted 

interpretation guidelines is to serve as a resource for consistent and reliable identification of the 

body fluids assessed between forensic analysts and laboratories; however, an analyst should 

remain cognizant during interpretation and exercise a conservative approach, as stated within the 

guidelines.   

 The remaining two chapters of this dissertation will establish the use of the described 

serological assay as a vital step to the greater forensic biology workflow and further evaluate 

limitations caused as a result of the complexity of sexual assault evidence. By displaying the ability 

of the multiplex assay to compliment forensic genetic testing methodology, the implementation of 

such an emerging technique can further illustrate the necessity of serological results to a criminal 

investigation. Furthermore, a direct comparison to commercially available immunological and 

catalytic tests will further exemplify the unmatched sensitivity and specificity of the validated assay.  
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CHAPTER 4: A COMPARATIVE STUDY OF A VALIDATED PROTEOMIC ASSAY WITH 

EXISTING FORENSIC BIOLOGY CASEWORK MODELS

4 Introduction 

 The objective of this phase of research was to exemplify the use of the validated proteomic 

assay in an operational environment. With the limitations of the assay established in the previous 

chapter, experimentation conducted during this aim demonstrated the efficacy of the validated 

assay within a forensic biology workflow. This was evaluated in two manners; first, by comparing 

the validated assay to existing casework models (i.e., immunochromatographic/lateral flow assays, 

enzymatic assays) for serological screening, and second, the impact of the validated assay on the 

ability to produce a genetic profile. By assessing the validated assay in tandem with existing 

workflow strategies, any adverse effects warranted from implementation were identified and 

addressed.  

 Current testing strategies for serological screening have historically been rooted in 

enzyme- and antibody-based assays that rely on protein structure confirmation to produce a 

positive result. However, given that forensic evidence is commonly subjected to unfavorable 

environmental conditions, protein structure, and therefore protein function, are likely to be 

compromised. In addition, given that the formation of an enzyme-substrate complex or antibody 

binding event lack absolute specificity, these assays are unable to confirm the presence of a target 

body fluid. Therefore, severely degraded samples and cross-reactivity with non-target compounds 

have left both the sensitivity and specificity of serological screening much to be desired, especially 

in comparison with modern genetic testing capabilities. The first aim of this portion of the study was 

to directly compare the developed proteomic assay with available serological screening tests to 

empirically demonstrate the sufficient gains in sensitivity and specificity.  
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 With the lack of advancements achieved within serological screening, a shift in existing 

casework models has been observed within the forensic biology community. Traditionally, evidence 

received would undergo serological screening, with results dictating the prioritization of samples 

for subsequent genetic testing. However, with the lack of reliable body fluid tests, serological 

screening as a gatekeeper for DNA analysis has been reconsidered. More recently, laboratories 

have opted for a “direct to DNA” approach, with small portions of evidence quickly extracted and 

quantitated for genetic material. The resulting quantity and quality of DNA determines the type of 

genetic testing performed, with serological screening only conducted if needed. Although a practical 

alternative to the traditional workflow, there has been little research on the efficacy of a direct to 

DNA procedure, particularly with challenging sample types. By evaluating the use of the proteomic 

workflow within existing casework models, the use of serological screening as a gatekeeper for 

genetic testing has the capability of providing copious amounts of information vital to criminal 

investigations that would have otherwise been absent, in addition to reducing costs associated with 

advanced genetic analyses.   

 This chapter seeks to establish the viability of the validated proteomic assay within the 

overall forensic biology workflow. This was achieved through the completion of a side-by-side 

comparison of the assay with select available immunological and enzymatic tests and by 

demonstrating the value of proteomic results in relation to the quality of genetic profiles produced. 

For the purposes of direct comparison, this chapter is organized according to sample type, with 

serological and genetic information presented together.  

4.1 Methods and Materials 

 All research conducted under this phase of the project was reviewed and approved by the 

University of Denver IRB for research involving human subjects. Sample collection and research 

was conducted in full accordance with the U.S. federal policy for the protection of human subjects 

as described in section 2.11. 
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4.1.1 Sample Preparation 

 Samples were prepared as outlined in section 3.1 and carried over to this portion of the 

research for operational testing. Three categories of laboratory prepared casework-type samples 

were reserved for serological comparison only: substrate samples (3.1.6.1), environmental 

contaminant samples (3.1.6.2), and aged samples (3.1.6.6). Six categories of casework-type 

samples were reserved for both serological comparison and genetic analysis: sensitivity samples 

(3.1.6.7), mixtures (3.1.6.3), simulated sexual assault samples (3.1.6.4.1), sexual assault type 

samples (3.1.6.4.2), digital swab samples (3.1.6.4.3), and degraded samples (3.1.6.5). Swabs or 

substrates were solubilized as previously described in section 3.1. Remaining supernatant was 

tested against existing serological models in tandem with proteomic analysis, eliminating an 

additional freeze/thaw cycle to ensure consistency in material evaluated. Cell pellets were 

preserved for genetic analysis at -20 ºC and were thawed at room temperature prior to DNA typing.   

4.1.2 Traditional Serological Testing 

 Casework-type samples were prepared using the previously described protocol (section 

2.1.4) and once solubilized, a matched liquid sample was manually processed with a corresponding 

antibody-based assay or enzymatic test. Specifically, antibody-based and enzyme-based tests 

targeting blood, seminal fluid, and saliva were selected. The immunochromatographic assays 

utilized for this portion of the research were as follows: RSID™ Semen, RSID™ Blood, RSID™ Saliva 

(Independent Forensics, Hillside, IL), ABAcard® p30 and ABAcard® HemaTrace (Abacus 

Diagnostics, West Hills, CA). The enzymatic test used for this portion of the research was 

SALIgAE® (Abacus Diagnostics) and was selected given the manufacturer does not supply an 

antibody-based assay for the identification of saliva. See Table 4.1 for more specific information 

regarding the selected commercially available screening tests.   

 For sensitivity samples, the maximum volume suggested by the manufacturer was used 

for testing (200 µL ABAcard® assays, 100 µL RSID™ assays, 50 µL SALIgAE® assay). This set of 

samples was not originally quantitated for total protein amount during the validation phase of this 

research, as outlined in Chapter 3. For remaining sample types, matched liquid samples were 
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prepared as an equivalent total protein amount. The quantity observed from BCA quantitation was 

diluted up to maximum volume in Universal Buffer™ (Independent Forensics of Illinois). The 

maximum volume, and therefore an equivalent protein amount, was processed on either a lateral 

flow cartridge or enzyme test.  

Table 4.1. Selected traditional serological screening tests for comparison with the developed 
proteomic assay.  

 

4.1.3 Forensic Genetic Testing 

4.1.3.1 DNA Extraction 

 Given the composition of the samples assessed during this phase of the research, two 

DNA extraction protocols were utilized. Knowing a priori the makeup of each sample, all samples 

containing semen or seminal fluid were subjected to a previously validated manual organic 

differential extraction procedure. All other samples (i.e., those free of semen) were subjected to a 

previously validated manual organic extraction protocol.  

 Pelleted cellular material selected for organic extraction was treated with 350 µL of master 

mix containing extraction buffer and proteinase K solution. Samples were incubated at 56 ºC 

overnight (a maximum of 18 hours) on a shaker at 850 RPM. After incubation, samples were 

purified and concentrated. Each sample received two iterations of purification using 300 µL of 
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phenol:chloroform:isoamyl alcohol reagent. An additional cleanup step was performed with the 

addition of 300 µL of water saturated butanol. Purified sample was passed through a Vivacon® 500 

centrifugal concentrator (Vivaproducts, Inc., Littleton, MA), washed with 200 µL of TE-4 buffer 

(10mM Tris-HCl, 0.1mM EDTA, pH 8.0), and eluted in 100 µL of TE-4 buffer.  

 Pelleted cellular material selected for organic differential extraction was treated with 505 

µL of master mix containing extraction buffer and proteinase K solution. Samples were incubated 

at 56 ºC for 40 minutes on a shaker at 850 RPM. Samples were centrifuged for 10 minutes at 

14,000 x g. The supernatant (epithelial fraction) was transferred to a clean tube. Remaining cellular 

material (sperm fraction) was washed with 500 µL of UltraPure water and centrifuged for 10 minutes 

at 14,000 x g, where the wash buffer was removed. Cellular material was treated with 380 µL of 

master mix containing extraction buffer, 1 M dithiothreitol (DTT), and proteinase K solution. The 

sample was incubated at 89 ºC for 40 minutes on a shaker at 850 RPM. Epithelial and sperm 

fractions were purified and concentrated as described above for the organic extraction. 

Concentrated DNA was recovered in 100 µL of TE-4 buffer. Extractions were batched, with each 

batch being assigned a unique reagent control to monitor for any instances of contamination. 

Extracts were stored at -20 ºC for later use.   

4.1.3.2 DNA Quantitation 

 Once purified, all samples were quantitated using Quantifiler™ Trio DNA Quantification Kit 

(Applied Biosystems™, Foster City, CA). Extracts were thawed and brought to room temperature 

prior to quantitation. A previously validated standard operating procedure was used. A standard 

curve was prepared, in addition to a negative control, for each batch of samples. Standards were 

prepared by diluting the DNA Standard with Quantifiler™ THP DNA Dilution Buffer to the following 

final concentrations: 50 ng/µL, 5.0 ng/µL, 0.5 ng/µL, 0.05 ng/µL, and 0.005 ng/µL. TE-4 buffer was 

used for the negative control. Standards, controls, and samples were treated with a master mix of 

kit specific Primer Mix and PCR Reaction Mix. Quantitation was performed on an Applied 

Biosystems™ 7500 Real-Time PCR System. Thermal cycler parameters were set to heat at 95 ºC 

for 2 minutes followed by 40 cycles of 9 seconds at 95 ºC and 30 seconds at 60 ºC. The 
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quantification batch was considered valid if the standard curve slope measured between -3.0 and 

-3.6 and the R2 value was greater than or equal to 0.98. 

4.1.3.3 DNA Amplification 

 Amplification reactions were prepared in accordance with DNA quantification results. All 

samples that underwent an organic extraction (i.e., those free of semen) were amplified for STR 

analysis using GlobalFiler™ PCR Amplification Kit (Applied Biosystems™). Samples that were 

subjected to an organic differential extraction that produced a male quantification value were also 

prepared for routine STR amplification using GlobalFiler™ PCR Amplification Kit. However, 

remaining organic differential samples that did not produce a male quantification value were 

prepared for Y-STR amplification using Yfiler™ Plus PCR Amplification Kit (Applied Biosystems™).  

 Full scale amplification was performed, with a total of 1.0 ng of DNA targeted. Maximum 

extract volume (15 µL GlobalFiler™, 10 µL Yfiler™ Plus) was used for samples that did not produce 

a sufficient quantitation value. Manufacturer recommended protocols for GlobalFiler™ and Yfiler™ 

Plus were followed, with no changes made to the respective protocols. Amplification was performed 

on an Applied Biosystems™ 9700 Thermal Cycler. 29 amplification cycles were performed for 

GlobalFiler™ and 30 amplification cycles were performed for Yfiler™ Plus. Samples were batched, 

with each batch assigned a positive and negative control to ensure amplification was performed 

properly. Amplicons were stored at 4 °C until separation.  

4.1.3.4 DNA Separation and Analysis 

 Amplicons were separated and detected using a 3500 Genetic Analyzer (Applied 

Biosystems™) fitted with an 8-capillary array. POP-4™polymer (Applied Biosystems™) was utilized 

as the separation matrix. GeneScan™ 600 LIZ™ Dye Size Standard (v2.0) and DNA Control 007 

were used for both GlobalFiler™ and Yfiler™ Plus amplicons. The Yfiler™ Plus Allelic Ladder and 

GlobalFiler™ Allelic Ladder were employed for their respective amplicon samples.  

 GeneMapper® ID-X software (v.1.4) was utilized for profile interpretation. Through internal 

validation that independently evaluated the signal-to-noise characteristics of each dye channel, the 

following analytical thresholds were set for a 10 second injection with GlobalFiler™: 6-FAM™, 60 
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relative fluorescence units (RFUs); VIC™, 75 RFUs; NED™, 50 RFUs; TAZ™, 60 RFUs; and SID™, 

60 RFUs. From a separate internal validation, the following analytical thresholds were set for a 10 

second injection with Yfiler™ Plus: 6-FAM™, 50 RFUs; VIC™, 50 RFUs; NED™, 40 RFUs; TAZ™, 40 

RFUs; and SID™, 40 RFUs. 

4.2 Results and Discussion 

 For the purposes of direct comparison, results for sensitivity in the operational environment 

and compatibility with existing casework models have been merged for each sample type 

evaluated.  

4.2.1 Substrate Samples 

 Substrate samples were designed to ensure chemical products or composition would not 

interfere with protein biomarker detection or recovery. Overall, the proteomic assay was successful 

in identifying the target body fluid of each substrate sample (Table 3.18), with three instances of 

vaginal fluid protein dropout observed for menstrual blood samples. Matched samples were 

compared with serological screening tests (Table 4.2). With the exception of two peripheral blood 

samples, all substrate samples were positive on traditional immunological and enzymatic based 

assays. Peripheral blood applied to carpet (sample ID SUB03) and to leather (sample ID SUB04) 

produced a negative result when evaluated with RSID™ Blood, with carpet exhibited in Figure 4.1A. 

In addition, when compared with a positive control test, a majority of peripheral blood and menstrual 

blood containing samples resulted in weak or very weak positive results. For example, menstrual 

blood on cotton resulted in a weak positive result on RSID™ Blood in comparison with ABAcard® 

HemaTrace (Figure 4.1B). However, the proteomic assay was able to positively identify blood-

containing samples by all targeted peptide biomarkers. Similarly, target proteins for semen and 

saliva samples were positively characterized by the proteomic assay, in addition to positive 

identification using traditional screening tests, with examples highlighted in Figure 4.1C and Figure 

4.1D, respectively. DNA analysis was not performed on this set of casework samples.  

 With the exception of the aforementioned negative peripheral blood samples on the single 

manufacturer test, the traditional assays and proteomic assay were comparable in identification of 
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target body fluid. However, given the inherent nature of the LC-MS/MS technology, the proteomic 

assay fundamentally provided precise protein identification and additional information not capable 

of the lateral flow assays.  

Table 4.2. Summary of comparative results for substrate samples. Positive identifications are 
represented by a green box. Negative identifications are represented by a red box. White boxes 
represent no testing was performed with that specific assay. Vaginal fluid samples were removed 
from the table as no additional testing or comparison was conducted.  
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Figure 4.1. Selected serological screening test results on substrate samples. RSID™ tests are  
pictured on the left. ABAcard® tests and SALIgAE® are pictured on the right. Within the lateral flow 
test membrane window, the test line is positioned on the left and the control line on the right. Results 
for (A) peripheral blood on carpet, (B) menstrual blood on cotton, (C) semen on cotton, and (D) 
saliva on plastic bottle. On lateral flow assays, a positive result is indicated by the presence of a 
red line at both the test and control zones. For SALIgAE®, a positive result is indicated by a yellow 
colored reagent.  

4.2.2 Environmental Contaminant Samples 

 This subset of samples was prepared to assess the effects of environmental contaminants 

on sample preparation chemistries of the developed proteomic workflow. When evaluated with the 

proteomic assay, three samples exhibited protein and peptide dropout (Table 3.19). Menstrual 

blood samples (sample ID CON04 and CON05) illustrated vaginal fluid protein and peptide dropout. 

The third sample, vaginal fluid and wate-based lubricant, exhibited complete protein dropout; 

however, this sample was unable to be directly compared with other serological screening tests as 

there are none commercially available. As observed with substrate samples, the traditional and 

proteomic assays produced comparable results in regard to target fluid identification. A summary 
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of serological screening results is outlined in Table 4.3. Overall, samples subjected to chemical 

insult did not inhibit the ability to produce a positive result with traditional serological assays. A very 

weak positive was observed for peripheral blood and 10% bleach (Figure 4.2A), which contradicts 

the positive protein identifications observed during proteomic analysis. It was originally 

hypothesized that the presence of personal lubricant would decrease advantageous protein binding 

events and result in an increase in negative reporting. However, immunological assays accurately 

characterized semen and menstrual blood samples containing personal lubricant (Figure 4.2B and 

4.2C). There was no inhibition of salivary amylase, with both saliva case samples characterized as 

exhibited by saliva extracted from a cigarette filter (Figure 4.2D). DNA analysis was not performed 

on this set of casework samples. In summary, comparable results between the proteomic method 

and traditional methodologies were observed; however, the proteomic method provides a greater 

depth of coverage in specific biomarker identifications.  

Table 4.3. Summary of comparative results for environmental contaminant samples. Positive 
identifications are represented by a green box. White boxes represent no testing was performed 
with that specific assay. Vaginal fluid samples were removed from the table as no additional testing 
or comparison was conducted.  
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Figure 4.2. Selected serological screening test results for environmental contaminant samples. 
ABAcard® test and SALIgAE® are pictured on the left. RSID™ test is pictured on the right. Within 
the membrane window, the test line is positioned on the left and the control line on the right. Results 
for (A) peripheral blood and 10% bleach, (B) menstrual blood and personal lubricant, (C) semen 
and personal lubricant, and (D) saliva on a cigarette. On lateral flow assays, a positive result is 
indicated by the presence of a red line at both the test and control zones. For SALIgAE®, a positive 
result is indicated by a yellow colored reagent. 

4.2.3 Mixture Samples 

 For this portion of the study, mixture samples evaluated are separate from those used 

during validation to determine transition interference. Casework-type mixture samples were 

designed to assess the capability of each testing strategy to detect a minor contributor when in the 

matrix of a major contributor, simulating commonly received sample types in a forensic biology 

laboratory. Of the five mixture samples assessed, the minor contributor was characterized when 

evaluated with the proteomic assay. When directly comparing a matched sample using traditional 

techniques, two instances of negative detection were observed (Table 4.4). With the detection of 

a minor saliva contributor, the enzymatic test SALIgAE® was unable to characterize the presence 

of the target fluid in either a vaginal fluid or menstrual blood matrix; however, RSID™ Saliva 
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exhibited a positive result for both MIX01 and MIX04 samples (Figure 4.3). It should be noted that 

the inherent color of the MIX04 extract caused the SALIgAE® buffer to become discolored, 

potentially masking the visualization of a positive result. There were no reported discrepancies for 

the detection of seminal fluid with either antibody-based assay (Figure 4.4). Due to the lack of 

commercially available serological tests for vaginal fluid, a matched sample for MIX05, vaginal fluid 

in a urine major contributor, was not evaluated using antibody-based or enzymatic tests.  

 Allele calls produced by mixtures samples for short tandem repeat (STR) and Y 

chromosome STR (Y-STR) analyses are outlined in Tables 4.5 and 4.6, respectively, with alleles 

unique to the major contributor removed for ease of comparison. The allele calls presented are 

unique to the minor contributor or shared with the major contributor. For sample MIX01, a minor 

saliva contributor with a major vaginal fluid contributor, 2 out of 4 salivary protein biomarkers were 

detected with the proteomic assay; however, the DNA profile generated was consistent with the 

vaginal fluid major contributor. The DNA profile produced was single source, and even with allele 

sharing between the two contributors, the profile did not indicate instances of peak imbalance or 

YINDEL/DYS391 detection (Table 4.5). For samples MIX02 and MIX03, a minor semen contributor 

in a major vaginal fluid and menstrual blood contributor, respectively, were extracted using an 

organic differential protocol. The sperm fractions were analyzed for Y-STR’s and produced full 

haplotypes (Table 4.6). Furthermore, all 5 target seminal fluid biomarkers were detected with the 

proteomic assay for these samples. For sample MIX04, a minor saliva contributor in a major 

menstrual blood contributor, no unique alleles consistent with the minor contributor were detected. 

And lastly, MIX05, a minor vaginal fluid contributor in a major urine contributor, produced a 

complete profile for the minor contributor, with 2 out of 7 vaginal fluid markers detected with the 

proteomic assay. 
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Table 4.4. Summary of comparative results for mixture samples. Positive identifications are 
represented by a green box. Negative results are represented by a red box. White boxes indicate 
no testing with that specific assay.   

 

 

Figure 4.3. Serological screening test results for mixture samples containing saliva as a minor 
contributor. Within the membrane window, the test line is positioned on the left and the control line 
on the right. Results for saliva in a vaginal fluid major contributor using (A) RSID™ Saliva and (B) 
SALIgAE®. Results for saliva in a menstrual blood major contributor using (C) RSID™ Saliva and 
(D) SALIgAE®. On lateral flow assays, a positive result is indicated by the presence of a red line at 
both the test and control zones. For SALIgAE®, a positive result is indicated by a yellow colored 
reagent. 
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Figure 4.4. Serological screening test results for mixture samples containing semen as a minor 
contributor. RSID™ Semen test is pictured on the left. ABAcard® p30 test is pictured on the right. 
Within the membrane window, the test line is positioned on the left and the control line on the right. 
Results for (A) semen in a vaginal fluid major contributor and (B) semen in a menstrual blood major 
contributor. A positive result is indicated by the presence of a red line at both the test and control 
zones.  

Table 4.5. STR genetic results for mixture samples. Unique allele ratio for the minor contributor 
was calculated using reference profiles. For clarity, unique major contributor alleles have been 
removed from case samples. Alleles depicted represent shared and/or unique minor contributor 
alleles.  
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Table 4.6. Y-STR genetic results for mixture samples with semen as a minor contributor. Y-STR 
analysis was performed based on quantification values.  

 

4.2.4 Sexual Assault Samples 

4.2.4.1 Simulated Sexual Assault Samples 

 Simulated sexual assault samples were designed to imitate the environment of the vaginal 

cavity and its effects on the breakdown of semen. The ability to identify constituents of seminal fluid 

post-coitus, particularly after 48 hours, is advantageous to forensic practitioners. The poor 

sensitivity of currently available immunological screening assays has been reported in the literature 

for the detection of seminal fluid in an extended post-coital interval [50,162]. A sufficient difference 

in sensitivity between manufacturers was observed for this subset of samples (Table 4.7). 

Consistent with proteomic identification, RSID™ Semen positively characterized seminal fluid for all 

time points evaluated. However, ABAcard® p30 failed to detect seminal fluid via prostate specific 

antigen after time point zero (Figure 4.5).  
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 In total, samples from all time points assessed produced at least 20 of 24 (83%) unique 

male alleles, with four samples generating 100% unique male alleles (Table 4.8). Time points at 

days three, five, seven, and nine report complete detection of the 24 unique alleles from the male 

contributor, with day zero returning the smallest number of unique alleles, with a minimum of 20 

alleles detected from the male contributor.  

Although simulating the environment of the vaginal cavity, breakdown products are not 

being removed in the process. Loss of sample due to natural removal of target material through 

vaginal drainage as well as breakdown of biomarkers by endogenous protease enzymes within the 

vaginal vault make the detection of seminal fluid and saliva in sexual assault samples more 

challenging. Protein denaturation via naturally occurring protease activity is one limitation affecting 

post-coital detection intervals for immunochromatographic assays. It is important to understand 

whether proteolytic digestion of seminal fluid and saliva targets in the vaginal vault occurs within a 

target peptide sequence. From the results of this study, the endogenous breakdown of semenogelin 

does not affect the positive characterization when using RSID Semen™; however, it can be 

hypothesized that the lack of p30 detection using ABAcard® p30 test can be attributed to 

unfavorable protein degradation that compromises the targeted protein epitope confirmation. In 

comparison with proteomic assay results, it can be concluded that the selected amino acid 

sequences of target seminal fluid biomarkers are not negatively affected by endogenous 

breakdown and cleavage of protein material. Furthermore, a decrease in allele characterization 

would also be expected with vaginal drainage.  

Table 4.7. Summary of comparative results for simulated sexual assault samples. Positive 
identifications are represented by a green box. Negative results are represented by a white box. 
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Figure 4.5. Immunochromatographic results for simulated sexual assault samples. ABAcard® p30 
test is pictured on the left. RSID™ Semen test is pictured on the right. Within the membrane window, 
the test line is positioned on the left and the control line on the right. Results for (A) timepoint zero, 
(B) day one, (C) day three, (D) day five, (E) day seven, (F) day nine, and (G) day eleven. A positive 
result is indicated by the presence of a red line at both the test and control zones.  
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Table 4.8. STR genetic results for simulated sexual assault samples. The male reference sample 
depicts unique male alleles in bold.  

 

4.2.4.2 Mock Sexual Assault Kit Samples 

 Both sets of laboratory-prepared sexual assault samples, one set containing semen from 

a non-vasectomized donor and the second set containing semen from a vasectomized donor, were 

reserved for analysis during this portion of the study (Table 4.9). When screening for seminal fluid 

using the proteomic assay, at least 3 of 5 target seminal fluid protein markers were detected across 

all swabs. Immunological lateral flow assays produced comparable results among the two sample 

sets evaluated. A positive result was observed for all vaginal swabs on RSID™ Semen and 

ABAcard® p30, with oral swabs producing a positive result on ABAcard® p30 only (Figure 4.6). 

However, all rectal swab samples exhibited a negative result when evaluated with a lateral flow 

assay.  

 For genetic analysis, all samples were subjected to an organic differential extraction 

protocol. Samples containing semen from a non-vasectomized individual produced Total Human 

DNA quantitation values and were analyzed for routine STR typing; however, samples containing 

semen from a vasectomized individual were analyzed for Y-STR markers. As expected, no genetic 
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profiles were generated for samples containing semen from a vasectomized individual (Table 4.9, 

Appendix J). Nonetheless, mass spectrometry results show at least 3 seminal fluid biomarkers 

detected in each sample type of this group. Complete and partial DNA profiles were observed for 

samples containing semen from a non-vasectomized individual (Table 4.10). The variation in profile 

generated can be attributed to each sample having been prepared individually (i.e., not prep 

replicates), in order to best simulate sample-to-sample variability. For example, case sample 

SA01_02.1, an oral swab, generated 9 out of 24 unique male alleles; however, the second oral 

swab produced a full STR profile.  

Table 4.9. Summary of comparative results for mock sexual assault samples containing semen 
from a non-vasectomized and a vasectomized donor. Positive identifications are represented by a 
green box. Negative results are represented by a white box. 
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Figure 4.6. Immunochromatographic results for mock sexual assault samples. Within the 
membrane window, the test line is positioned on the left and the control line on the right. Results 
for (A) oral swab replicates using RSID™ Semen, (B) oral swab replicates using ABAcard® p30, (C) 
oral swab replicates containing semen from a vasectomized donor using RSID™ Semen, and (D) 
oral swab replicates containing semen from a vasectomized donor using ABAcard® p30. A positive 
result is indicated by the presence of a red line at both the test and control zones.  

Table 4.10. STR genetic results for simulated sexual assault samples. The male reference sample 
depicts unique male alleles in bold. 
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4.2.4.3 Digital Swab Samples 

 Self-collected digital swab samples were obtained to mimic casework type samples as 

closely as possible. However, it should be noted that because the samples were self-collected, the 

likelihood of a mixed genetic profile was reduced as the body fluid and digit were of the same 

individual. Overall, serological tests produced comparable results with the proteomic assay and full 

genetic profiles were obtained from all samples (Table 4.11). Both oral cavity replicates produced 

a positive result from RSID™ Saliva and SALIgAE® tests (Figure 4.7A). When assessed for the 

presence of blood, menstrual blood was positively characterized by RSID™ Blood, with a negative 

result produced using ABAcard® HemaTrace for a single replicate (Figure 4.7B). A complete DNA 

profile consistent with the female contributor was produced by all digital swab samples (Table 

4.12).  

 Although this subset of samples provided insight into the advantages of the proteomic 

assay over traditional techniques, especially for vaginal fluid samples, authentic digital swab 

samples would need to be evaluated for a veritable comparison. Nevertheless, the proteomic assay 

produced consistent identifications between replicates that were complimentary to genetic testing 

results.  

Table 4.11. Summary of comparative results for digital swab samples. Positive identifications are 
represented by a green box. Negative results are represented by a red box. White boxes indicate 
no testing was performed.  
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Figure 4.7. Selected serological screening test results for digital swab samples. ABAcard® test and 
SALIgAE® are pictured on the left. RSID™ test is pictured on the right. Within the membrane 
window, the test line is positioned on the left and the control line on the right. Results for (A) digital 
swab saliva and (B) digital swab menstrual blood. On lateral flow assays, a positive result is 
indicated by the presence of a red line at both the test and control zones. For SALIgAE®, a positive 
result is indicated by a yellow colored reagent. 

Table 4.12. STR genetic results for digital swab samples.  
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4.2.5 Degradation Samples 

 Laundered substrates, composed of a set of substrates containing semen and a set of 

clothing containing peripheral blood, were carried over to this section of research. As noted in 

section 3.1.6.5, all samples and control regions were prepared, laundered, dried, and analyzed. 

Overall, the expected results were observed for the proteomic assay and genetic analyses (Table 

4.13). All samples produced a full genetic profile (Table 4.14). For the set of samples containing 

semen, the proteomic assay was capable of detecting protein signatures on both the bed sheet 

and underwear, with only a single protein biomarker (epididymal secretory protein) not detected on 

the bed sheet (Table 4.13). Conversely, immunological lateral flow assays failed to detect trace 

levels of seminal fluid (Figure 4.8A and Figure 4.8B). Both control regions exhibited negative 

results for both the proteomic assay and immunochromatographic assays. The second set of 

degraded samples, a cloth bath towel and a pair of denim jeans, targeted peripheral blood 

identification. Both samples produced comparable results. All protein biomarkers were detected 

with the proteomic assay and weak positive results were observed with lateral flow assays (Table 

4.13, Figure 4.8C, Figure 4.8D). Interestingly, the extracted control samples from both the towel 

and the jeans produced a positive and weak positive result on RSID™ Blood, respectively. Using 

the LC-MS/MS method as a confirmation, these immunological assay results were not able to be 

verified, as this approach produced no identification of peripheral blood biomarkers. Furthermore, 

no genetic profile was produced from these control samples, even with manual analysis of 

electropherograms identifying no true alleles below the established analytical threshold (Appendix 

J).    
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Table 4.13. Summary of comparative results for degraded samples. Positive identifications are 
represented by a green box. Negative results are represented by a white box. 
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Table 4.14. STR genetic results for degraded samples.  
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Figure 4.8. Immunochromatographic results for degraded samples. ABAcard® tests are pictured on 
the left. RSID™ tests are pictured on the right. Question samples are oriented on the top of each 
frame. Control samples are oriented on the bottom of each frame. Within the membrane window, 
the test line is positioned on the left and the control line on the right. Results for (A) semen extracted 
from a bed sheet, (B) semen extracted from underwear, (C) blood extracted from a towel, and (D) 
blood extracted from denim jeans. A positive result is indicated by the presence of a red line at both 
the test and control zones. 

4.2.6 Aged Samples 

 Swabs fortified with neat body fluid were kept at room temperature for time points zero, 

three, five, seven, and thirty-five days. Comparative results are outlined in Table 4.15 for this 

portion of the study. No instances of negative detection were recorded for evaluation using 

traditional screening techniques or the proteomic assay (Figure 4.9); however, weak and very weak 

positives were observed for ABAcard® HemaTrace® for peripheral and menstrual blood samples. 

No change in detection was observed over the 35-day period. DNA analysis was not performed on 

this set of casework samples. 

 The traditional serological tests and the proteomic assay produced comparable results. 

However, the weak and very weak positive results exhibited for peripheral blood, menstrual blood, 

and saliva detection with traditional assays pose a cause for concern. With complete and almost 

complete identification of protein material for each target fluid, the LC-MS/MS assay produced 

greater confirmation in fluid identification based on the specificity of the peptide biomarkers 

detected.  
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Table 4.15. Summary of comparative results for aged samples. Positive identifications are 
represented in green. 
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Figure 4.9. Serological screening test results for aged samples at Day 35. ABAcard® test and 
SALIgAE® are pictured on the left. RSID™ test is pictured on the right. Within the membrane 
window, the test line is positioned on the left and the control line on the right. Results for (A) 
peripheral blood, (B) menstrual blood, (C) semen, and (D) saliva. On lateral flow assays, a positive 
result is indicated by the presence of a red line at both the test and control zones. For SALIgAE®, 
a positive result is indicated by a yellow colored reagent. 

4.2.7 Sensitivity Samples 

 This particular cohort of sensitivity samples were designed differently than those used for 

analytical sensitivity determination of the LC-MS/MS assay. Diluted body fluid was spotted on 

cotton swabs prior to analysis, resulting in further dilution of target material during sample 

solubilization, representing an inherent limitation to the preparation workflow. A summary of 

proteomic, serological, and genetic testing results for each target fluid are outlined in Tables 4.16-

4.20. The lowest diluted sample to still produce a positive result when screened with serological 

tests are picture in Figure 4.10. Reviewing proteomic results, peripheral blood was characterized 

at the 20,000-fold dilution with the detection of a single hemoglobin peptide (Table 4.16). With 

processing a matched sample on commercially available lateral flow assays, the RSID™ Blood and 

ABAcard® HemaTrace tests produced a positive result up to and including the 100-fold dilution. 

Conversely, STR analysis results were more consistent with the rate of peptide identification using 

the proteomic assay (Table 4.17). A complete STR profile was recovered through the 100-fold 

dilution, mirroring the complete characterization of peripheral blood peptide markers to the same 

dilution. The capability of STR profiling drastically decreased at a 5,000-fold and 10,000-fold 
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dilutions, with samples producing a 7% and 5% STR profile, respectively. Remaining samples did 

not generate an STR profile; however, as previously stated, hemoglobin was still detected at the 

20,000-fold dilution with the proteomic assay. Overall, the proteomic assay was demonstrated to 

be 200 times more sensitivity than immunological assays for the detection of peripheral blood. In 

addition, the proteomic assay exceeded the sensitivity of routine STR typing chemistries.  

 Menstrual blood was characterized down to the 40,000-fold dilution sample on the 

proteomic method, with the detection of a single hemoglobin peptide, similar to peripheral blood 

described above (Table 4.18). But only 4 of 7 vaginal fluid markers were accurately characterized 

with the proteomic assay. Cornulin, a more specific vaginal fluid marker, was detected at the 100-

fold dilution, with small proline rich protein 3 sporadically identified for the remainder of the dilution 

series (Table 3.27). Interestingly, two instances of high dose hook effect were observed with 

immunochromatographic testing, with the neat and 2-fold dilution samples exhibiting a negative 

result on the antibody-based assays (Table 4.18). In regard to identifying the blood component of 

menstrual blood, the proteomic assay outperformed the antibody-based tests by a factor of 400. 

Furthermore, with the absence of a vaginal fluid screening test, the proteomic assay inherently 

provided additional pertinent information down to the 100-fold dilution. A complete STR profile was 

obtained through the 100-fold dilution, with informative partial profiles produced at the 1,000- and 

2,000-fold dilutions (Table 4.22). Sufficient allele and locus dropout were recorded for the 

remaining samples.  

 Seminal fluid was accurately identified at the lowest dilution on the proteomic assay, with 

detection of semenogelin peptide QITIPSQEQEHSQK (Table 4.20). However, in comparison, the 

lateral flow assays exhibited poor sensitivity. RSID™ Semen failed to produce a positive result after 

the 100-fold dilution (Figure 4.10C). Furthermore, ABAcard® p30 demonstrated decreased 

sensitivity limits, reproducibly exhibiting a positive result only to the 10-fold dilution evaluated. In 

comparison, the proteomic assay demonstrated comparable results with STR and Y-STR genetic 

typing (Tables 4.23 and 4.24). With all protein biomarkers positively identified through the 100-fold 

dilution and a complete STR profile generated, seminal fluid identification using the validated assay 
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strongly mirrors the abilities of routine genetic testing. As the number of peptides detected 

inherently decreases, so did the number of alleles characterized. In regard to genetic testing, 

samples beginning with the 10,000-fold dilution failed to produce a male quantitation value and 

were therefore amplified for Y-STR typing (Table 4.24). Few Y-STR alleles were characterized at 

the lower end of the dilution series, with the 20,000-fold and 40,000-fold samples producing only a 

7% and a 4% Y-STR profile, respectively. Overall, the proteomic assay demonstrated a sensitivity 

level 400 times more sensitivity than immunological tests but exhibited a similar sensitivity range 

of that of STR and Y-STR chemistries.  

 Diluted saliva was characterized reproducibly at the 1,000-fold dilution, with the detection 

of a single amylase peptide (Table 4.19). One antibody-based test and one enzymatic test were 

acquired for traditional serological testing for this portion of the study. Both RSID™ Saliva and 

SALIgAE® tests performed equally, with positive results observed up to and including the 10-fold 

dilution samples (Figure 4.10D). As previously described, the proteomic assay kept pace with the 

ability to generate an STR profile; however, the capabilities of genetic typing and reaching a larger 

sensitivity range outweigh those of the proteomic assay (Table 4.25). Identification of peptide 

markers began to decrease at the 100-fold dilution, where a full STR profile was still generated. 

Furthermore, out to the 2,000-fold dilution, a 70% complete STR profile was reported whereas the 

proteomic assay failed to detect saliva for the remainder of samples evaluated. To conclude, the 

proteomic assay demonstrated a sensitivity range 100 times more robust than that of the traditional 

screening assays. Conversely, routine genetic testing remained more sensitive than the validated 

assay.     

 Vaginal fluid was characterized by all target protein markers at the 10-fold dilution, with 2 

of 7 markers detected at the 100-fold dilution and only a single protein (small proline rich protein 3) 

detected for the remaining samples (Table 4.20). In comparison, a full STR profile was produced 

down to the 500-fold dilution, with partial profiles observed for the remaining samples (Table 4.26). 

For the 100-fold dilution sample, no quantitation value was recorded and no DNA profile was 

produced. This result is inconsistent with the remaining data, and is therefore, being viewed as an 
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outlier. However, no matched comparison could be generated given the lack of a commercially 

available assay for vaginal fluid screening.  

 Overall, the validated proteomic assay greatly outperformed existing serological screening 

tests. It should be noted that samples were not solubilized in kit-specific buffer provided by the 

commercial entities for immunochromatographic testing. Although solubilization in buffer is 

recommended by the manufacturers, concentrated samples did not seem to inhibit the functionality 

of the assays (with the exception of the high dose hook effect for menstrual blood). Research has 

been conducted on the effect of pH and the ability to produce false positive and false negative 

results on the lateral flow assays. It was determined that extreme acidic or alkaline pH is not the 

sole contributor to false positive or false negative results. One study found that it is the presence 

of additional organic acids that causes disruption in the antibody-dye labeling mechanism [55].   

Table 4.16. Summary of comparative results for peripheral blood sensitivity samples. Positive 
identifications are represented by a green box. Negative results are represented by a white box. 

 

Table 4.17. Summary of comparative results for menstrual blood sensitivity samples. Positive 
identifications are represented by a green box. Negative results are represented by a white box. 
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Table 4.18. Summary of comparative results for seminal fluid sensitivity samples. Positive 
identifications are represented by a green box. Negative results are represented by a white box. 

 

Table 4.19. Summary of comparative results for saliva sensitivity samples. Positive identifications 
are represented by a green box. Negative results are represented by a white box. 

 

Table 4.20. Summary of comparative results for vaginal fluid sensitivity samples. Positive 
identifications are represented by a green box. Negative results are represented by a white box. 
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Figure 4.10. Serological screening test results for sensitivity samples. ABAcard® test and SALIgAE® 
are pictured on the left. RSID™ test is pictured on the right. Within the membrane window, the test 
line is positioned on the left and the control line on the right. Results for (A) 100-fold dilution of 
peripheral blood, (B) 100-fold dilution of menstrual blood, (C) 100-fold dilution of semen, and (D) 
10-fold dilution of saliva. On lateral flow assays, a positive result is indicated by the presence of a 
red line at both the test and control zones. For SALIgAE®, a positive result is indicated by a yellow 
colored reagent. 
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Table 4.21. STR genetic results for peripheral blood sensitivity samples. Complete locus 
identification represented by a green box. Partial locus identification represented by a grey box. 
Locus dropout represented by a white box.  
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Table 4.22. STR genetic results for menstrual blood sensitivity samples. Complete locus 
identification represented by a green box. Partial locus identification represented by a grey box. 
Locus dropout represented by a white box. Menstrual blood for this subset of samples was provided 
by two donors (Reference #1 and Reference #2).  
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Table 4.23. STR genetic results for seminal fluid sensitivity samples. Complete locus identification 
represented by a green box. Partial locus identification represented by a grey box. Locus dropout 
represented by a white box. 
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Table 4.24. Y-STR genetic results for seminal fluid sensitivity samples. Complete locus 
identification represented by a green box. Partial locus identification represented by a grey box. 
Locus dropout represented by a white box. 
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Table 4.25. STR genetic results for saliva sensitivity samples. Complete locus identification 
represented by a green box. Partial locus identification represented by a grey box. Locus dropout 
represented by a white box. 
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Table 4.26. STR genetic results for vaginal fluid sensitivity samples. Complete locus identification 
represented by a green box. Partial locus identification represented by a grey box. Locus dropout 
represented by a white box. 

 

4.3 Concluding Remarks 

 In conclusion, the data demonstrated that the validated proteomic assay exhibits sufficient 

gains in sensitivity over currently utilized antibody- and enzyme-based screening techniques. 

Although various types of samples were deployed for this portion of the assessment, perhaps the 

greatest discrepancies between the traditional and proteomic analyses were observed with the 

sensitivity samples. The proteomic assay greatly outperformed traditional tests and provided 

detailed information on the proteins/peptides identified. This information can present other avenues 

for interpretation and subsequent testing to a forensic analyst. Still, one particular area of 

advancement worth highlighting is with the analysis of seminal fluid from a vasectomized individual. 
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When considering the scenario of a suspected rape, the ability to accurately characterize 

semenogelin off a vaginal swab that will test negative for sperm cells has the potential to provide 

critical information to an investigation. This data further supports the necessity for confirmatory 

seminal fluid identification, given that not all male perpetrators may contain sperm cells that could 

be visualized using routine microscopic techniques. 

 Furthermore, it was established that the proteomic assay can be seamlessly integrated into 

the larger forensic biology workflow, having no discernible effect on the ability to produce a genetic 

profile. With the idea of reverting back to a traditional workflow in place of direct to DNA, it can be 

argued that protein characterization may correlate to the likelihood of producing an informative 

genetic profile, particularly with sexual assault samples. For more than two decades, the forensic 

community has focused on improving the sensitivity and robustness of DNA profiling. While 

advances have made it possible to individualize biological traces on challenging types of 

evidentiary material, DNA alone does not readily indicate the body fluid source from which it was 

extracted. Serological testing to identify the body fluid from which a DNA profile has been 

generated, however, can provide vital contextual information to facilitate a successful prosecution. 

With sensitivity and specificity gains established by the developed proteomic method, the 

combination of proteomic screening with advanced genetic profiling presents a model workflow for 

adoption in forensic biology laboratories.   

 The remaining two chapters of this dissertation will focus on the proteomic analysis of 

sexual assault samples. As seen previous and revisited within this chapter, the presence of 

personal lubricants can have deleterious effects on the ability to positively identify vaginal fluid. The 

impact of this particular contaminant will be further explored in the next chapter, in addition to a 

greater assessment on its impact for the identification of seminal fluid and saliva biomarkers. In 

addition, renewed insight into intact protein identification for expedited serological analysis will be 

discussed in the final chapter.  
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CHAPTER 5: ASSESSMENT OF THE POTENTIAL INHIBITORY EFFECTS OF PERSONAL 

LUBRICANTS ON BODY FLUID IDENTIFICATION

5 Introduction 

The Federal Bureau of Investigation’s Uniform Crime Reporting Program solicits 

information from law enforcement agencies to provide reliable and uniform crime statistics for the 

United States [163]. Currently, more than 18,000 agencies across the United States voluntarily 

submit data to this program on an annual basis. For the year 2019, the most current report 

available, there were 64,048 reported rapes and a rate of offense estimated at 42 offenses per 

100,000 people. Of the 61,531 offenses where the sex of the offender was reported, 95.6% of 

offenses had a male offender (equivalent to 58,853 reported offenses). Within a single year, a 6.4% 

increase was observed in reported rape offenses, with 59,945 offenses reported in 2018. Over a 

six-year period, an increase of 37.92% of rape offenses is reported. Although the number of 

submitting agencies has increased by 15% since the year 2013, the prevalence of rape and sexual 

assault has continued to grow in the United States. This data was compiled using the 2013 revised 

definition of rape, with a single report referring to an instance of rape, attempted rape, or assault 

with intent to rape [163]. In the United States, approximately 1 in 6 women will be a victim of 

attempted or completed acts of sexual assault, with females under age 24 three times more likely to 

be a victim of sexual violence than the general population [164,165]. 

 For more than two decades, the forensic community has focused on improving the 

sensitivity and robustness of DNA profiling. While advances have made it possible to individualize 

biological traces on challenging types of evidentiary material, DNA alone does not readily indicate 

the body fluid source from which it was extracted. Serological testing to identify the body fluid from 

which a DNA profile has been generated, however, can provide vital contextual information to 
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facilitate a successful prosecution. In the event of a sexual assault or rape, a Suspect Sexual 

Assault Evidence Collection Kit is taken by a trained nurse and submitted for forensic testing. Kits 

generally include vaginal, oral, and rectal swabs, in addition to articles of clothing and supplemental 

swabs submitted on a case-by-case basis (e.g., breast, labia, inner thigh swabs). In addition, 

objects such as condoms or items used for vaginal penetration can be submitted for testing. Given 

the persistent sexual assault kit backlogs and that the sensitivity of post-coital DNA testing now 

exceeds that of contemporary serological tests, many labs have adopted a “direct to DNA” workflow. 

While this approach has a number of advantages, serological testing is especially important when 

the item of evidence in question (e.g., a towel or bedding) does not readily lend itself to an 

interpretation of likely sexual contact to the same degree as an intimate swab or underwear, where 

the mere presence of suspect’s DNA may be sufficient for criminal proceedings. 

 In the previous chapters, it was demonstrated that protein mass spectrometry techniques 

exhibit increased sensitivity and specificity to conduct accurate screening of evidentiary items for 

the presence of biological fluids. This approach has proven the LC-MS/MS analytical method to be 

robust and reliable in the detection of protein signatures, particularly for sexual assault type samples. 

With the developed workflow, it was demonstrated that protein components were able to be identified 

with a level of sensitivity comparable to that of STR/Y-STR profiling. The Uniform Crime Report 

states that in the year 2019, 17% of rape offenses were also linked with instances of sodomy and 

6.5% with instances of sexual assault with a foreign object [163]. In the context of sexual assault 

sample screening, the identification of seminal fluid in addition to saliva and vaginal fluid play a 

significant role in sample processing and generation of critical sample information. Of the laboratory-

generated case samples utilized during validation and implementation assessments, a particular set 

of samples, those treated with personal lubricant as part of the environmental contaminant subset, 

were identified for additional analyses. In particular, peak area responses of vaginal fluid biomarkers 

were inhibited or complete protein dropout was observed with samples subjected to a personal 

lubricant.  
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The objective of this phase of research was to assess the potential inhibitory effects of 

personal lubricants on the sensitivity of mass spectrometry-based body fluid identification. A two-

prong approach was designed to elucidate potential deleterious effects. First, target biological fluids 

were subjected to multiple lubricant types at varying volumes to illustrate the changes in protein 

biomarker detection. Second, body fluids recovered from lubricated condoms were evaluated. In 

combination, the results of this research provide an inclusive assessment of sample contaminants 

and alternate methodologies for processing challenging sample types received as forensic 

evidence. This research was completed under three scientific aims using the validated LC-MS/MS 

assay previously described. The first aim evaluated the effects of personal lubricant on the 

detection of vaginal fluid protein biomarkers. Similarly, the second aim assessed the effects of 

personal lubricant on seminal fluid and saliva identification, both individually and as mixed source 

samples. And lastly, the final aim evaluated condoms containing lubricant and spermicide 

elements.    

5.1 Methods and Materials  

5.1.1 Sample Collection and Materials 

 All research conducted under this phase of the project was reviewed and approved by the 

University of Denver IRB for research involving human subjects. Sample collection and research 

was conducted in full accordance with the U.S. federal policy for the protection of human subjects 

as described in section 2.11. In total, 10 subjects were recruited from the graduate population at 

Arcadia University (Glenside, PA) and staff members employed at The Center for Forensic Science 

Research & Education (Willow Grove, PA). 

Five classes of personal lubricant were selected for this study: water-based lubricant with 

glycerin (Astroglide®), water-based lubricant without glycerin (Sliquid® H2O), hybrid lubricant 

(Sliquid® Silk), silicone lubricant (Swiss Navy®), and natural oil-based lubricant (Coconut Oil). 

Lubricant details are described in Table 5.1.  
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Table 5.1. Personal lubricants utilized for this study. Notes on lubricant ingredients, formula, and 
pH compiled from patent material and/or product descriptions.  

 

5.1.2 Lubricants and Vaginal Fluid Biomarker Detection  

5.1.2.1 Experimental Sample Assembly 

 Two experimental design plans were constructed for the processing and preparation of 

vaginal swab samples subjected to personal lubricants. The original experimental design consisted 

of full vaginal swabs that were cut in half, with one half serving as a control and the second half 

fortified with a set volume of personal lubricant (Figure 5.1). Lubricant volumes of 1 µL, 5 µL, or 15 

µL were added to half swabs. Control half swabs were not fortified with lubricant. Swab halves were 

dried at room temperature overnight. Half swabs were solubilized in 500 µL of deionized water for 

30 minutes with frequent agitation. Swabs were placed in a centrifugal basket and centrifuged at 

10,000 x g for 10 minutes. Supernatant was transferred to a clean microcentrifuge tube and cell 

pellets were discarded. Supernatant was reserved for analysis via LC-MS/MS.  

For the second experimental design, vaginal swabs were solubilized and extract was 

fortified with personal lubricant (Figure 5.2). Swab tips were solubilized in 500 µL of deionized 
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water for 30 minutes at room temperature with frequent agitation. Swabs were placed in a 

centrifugal basket and spun for 10 minutes at 10,000 x g to remove excess liquid. Supernatant was 

transferred and pooled for further preparation. Processed swabs and cell pellets were discarded. 

Pooled vaginal extract was fortified with increasing volumes of personal lubricant. For each 

lubricant type evaluated, 700 µL of pooled vaginal extract was fortified with either 7 µL, 35 µL, or 

105 µL of personal lubricant. These volumes simulate targeting 1 µL, 5 µL, and 15 µL of personal 

lubricant per sample replicate. Control samples consisted of pooled vaginal extract and were not 

subject to any personal lubricant manipulation. Mixtures were thoroughly vortexed and 100 µL 

aliquots were transferred to clean microcentrifuge tubes for triplicate analysis.  

 

Figure 5.1. Original sample preparation strategy using vaginal swabs fortified with lubricant types. 
One vaginal swab was cut in half, with each paired half representing a control and an experimental 
sample.  
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Figure 5.2. Modified sample preparation strategy developed to mitigate expression inconsistencies 
in vaginal fluid proteins. Vaginal swabs were solubilized and pooled prior to mixing with lubricant 
types.  

5.1.2.2 Pre-Digestion Cleanup 

 Prepared sample aliquots were diluted with 400 µL of 0.5% trifluoroacetic acid (TFA) in 

deionized water. A positive pressure manifold (Biotage® PRESSURE+ 48) was fitted with Waters 

HLB 1cc extraction cartridges (Waters Corporation, Milford, MA). Cartridges were primed with 1 

mL of 50% acetonitrile (ACN) 0.5% TFA in deionized water. Cartridges were equilibrated with 1 mL 

of 0.5% TFA in deionized water. The full 500 µL of diluted sample was applied to and passed 

through the extraction cartridge, which was then washed with 1 mL of 0.5% TFA in deionized water. 

Material was eluted from the cartridge in 200 µL of 70% ACN 0.1% formic acid (FA) in deionized 

water.  

5.1.2.3 Sample Processing and Analysis 

Extracted samples were quantitated using the BCA assay (section 2.1.3.1) and 100 µg 

total protein was lyophilized to dryness. Samples were subjected to the previously described 8 M 

urea tryptic digestion and SPE purification on the AssayMAP Bravo liquid handling platform (section 

2.1.4). Eluate was fortified with 20 µL of 0.5 mg/mL intact myelin protein prior to tryptic digestion 

and 2.5 pmol of isotopically-labeled internal standard prior to SPE cleanup. Eluate was lyophilized 

to dryness and reconstituted in 100 µL of 2% ACN 0.1% FA in deionized water for LC-MS/MS 

analysis. Prepared samples were injected onto the 6495 triple quadrupole mass spectrometer 
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coupled to a 1290 series liquid chromatograph (Agilent Technologies). Data was acquired using 

the validated analytical method developed under Chapter 2, with data analysis performed in Skyline 

Software. 

5.1.3. Lubricants and the Detection of Semen and Saliva Biomarkers  

 Vaginal swabs were collected as previously described. Pooled vaginal extract was fortified 

with various amounts of lubricant and either semen, saliva, or a mixture of semen and saliva. 

Personal lubricant volumes of 1 µL, 5 µL, and 15 µL were also utilized for this portion of the 

assessment. In addition, target volumes of 1 µL of semen and 10 µL of saliva were utilized for 

single fluid experimental samples. For example, 400 µL of pooled extract was fortified with either 4 

µL, 20 µL, or 60 µL of personal lubricant in addition to 4 µL of semen or 40 µL of saliva (Figures 

5.3 and 5.4). Mixture samples were prepared in a similar manner. Pooled vaginal extract was 

fortified with personal lubricant as previously described in addition to 4 µL of semen and 40 µL of 

saliva (Figure 5.5). Control samples were fortified with semen and/or saliva but absent of personal 

lubricant. Samples were thoroughly vortexed and 100 µL of sample was aliquoted for further 

processing. Samples underwent pre-digestion cleanup, tryptic digestion, and SPE purification as 

described in section 5.1.2.2.  

 

Figure 5.3. Sample preparation strategy for control and experimental samples containing semen.  
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Figure 5.4. Sample preparation strategy for control and experimental samples containing saliva. 

 

Figure 5.5. Sample preparation strategy for control and experimental samples containing both 
semen and saliva. 

5.1.4 Vaginal Fluid Biomarker Detection from Condoms 

 Four condom types were selected for evaluation: Trojan™ ENZ™ unlubricated condoms, 

SKYN® Original condoms, SKYN® Extra Lube condoms, and Durex® Performax® condoms. These 

condoms were selected because they were marketed to cover a range of lubricant amounts. A 

summary of condom types and product information is outlined in Table 5.2.  

 Condoms were removed from the packaging, unraveled, and placed on a clean piece of 

butcher paper. Simulating authentic casework, only the external surface (i.e., the surface that 
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contacts the vaginal cavity when inserted) was swabbed for this study. Vaginal swabs were 

obtained from female volunteers and dried at room temperature. A single swab was moistened with 

two drops of deionized water and used to swab the entire external surface of one condom. This 

was repeated in triplicate, with one vaginal swab per condom. Swabs were allowed to dry at room 

temperature for 30 minutes. Swabs were solubilized in 500 µL deionized water for 30 minutes with 

frequent agitation. Swabs were placed in a centrifugal basket and centrifuged for 10 minutes at 

10,000 x g. Supernatant was transferred and pooled in a clean microcentrifuge tube for further 

preparation. Cell pellets and processed swabs were discarded. Supernatant was subjected to pre-

digestion cleanup, tryptic digestion, and SPE purification as previously described. Eluate was 

lyophilized to dryness and reconstituted in 100 µL of 2% ACN 0.1% FA. 10 µL of sample was 

injected on column for LC-MS/MS analysis.  

Table 5.2. Condom brands utilized for this study. Notes on condom lubricant (if present) and 
material compiled from patent information and/or product descriptions. 

 

5.2 Results and Discussion 

5.2.1 Lubricants and Vaginal Fluid Biomarker Detection  

5.2.1.1 Digest Efficiency 

 The total protein concentration of control and experimental samples was determined using 

the BCA assay. Quantitation was used to normalize the amount of total protein input into the 

enzymatic digestion procedure. Should the presence of personal lubricants negatively impact the 
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ability to accurately determine the total protein quantity in a sample, the protein input for tryptic 

digestion would be incorrect. This would result in insufficient digestion or missed cleavages. No 

effect on digest efficiency was observed across and lubricant type or lubricant volume, resulting in 

no sufficient variation in protein concentration (Figure 5.6). A median protein concentration was 

measured at 266.42 µg/mL and 272.18 µg/mL for control and experimental samples, respectively.  

Trypsin performance was monitored by assessing peak area ratios of intact internal 

positive control to digested internal positive control (IPC). Acceptance criteria outlined during 

validation studies (Chapter 3) were employed during this assessment to ascertain IPC 

performance. IPC ratios that fell within ratio bounds of 15.8 (upper bound) and 11.5 (lower bound) 

were considered acceptable and unaffected by experimental procedures. Digest performance was 

impacted by several personal lubricant types prior to implementing a supplemental pre-digestion 

cleanup (Figure 5.7). Greatest protease inhibition prior to supplemental cleanup was observed for 

Sliquid® H2O, Coconut Oil, and Swiss Navy® lubricants. For example, the average IPC ratio for 1 

µL coconut oil samples was 19.15, a ratio that falls outside the acceptable range. With the addition 

of the pre-digestion cleanup, this ratio fell to an acceptable 12.42. Interestingly, Sliquid® Silk 

demonstrated an inverse dose-response relationship, with 1 µL volumes of personal lubricant 

above the established range, 5 µL volumes within the established range, and 15 µL volumes below 

the established range. Protease activity was not negatively affected by Astroglide®. Acceptable IPC 

ratios for all lubricants assessed were restored with the addition of the pre-digestion cleanup to the 

sample processing protocol.   
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Figure 5.6. Quantitative results comparing total protein concentration of control and lubricated 
vaginal swab samples. Box = 25th and 75th percentiles; bars = Tukey fences. Outliers were 
calculated as any values outside ± 1.5 Inter Quartile Range (IQR).  

 

Figure 5.7. Internal positive control response ratio for control and lubricated samples which have 
or have not undergone an additional SPE purification during sample preparation. Response ratios 
were averaged across three replicates.  

5.2.1.2 Biomarker Detection 

 The effect of personal lubricant on biomarker detection was assessed by calculating the 

percent difference of endogenous and internal standard peak area responses for all samples 



205 
 

evaluated. Similar to the results observed for digestion efficiency, biomarker detection was 

negatively affected by the presence of personal lubricant, particularly prior to the addition of the 

pre-digestion cleanup. Overall, impact of personal lubricant was sufficiently reduced at all lubricant 

volumes with pre-digestion cleanup (Figure 5.8). 

 The greatest deleterious effects were observed for Sliquid® H2O, Coconut Oil, and Sliquid® 

Silk lubricants. Sliquid® H2O, the water-based lubricant without glycerin, exhibited a dose-response 

relationship for both endogenous and internal standard biomarkers. When fortified with lubricant, a 

median percent difference for endogenous vaginal fluid biomarkers of 0.31%, −11.28%, and 

−37.54% were observed at the 1 µL, 5 µL, and 15 µL lubricant volumes, respectively. The greater 

percent difference at the 15 µL volume was mitigated with a pre-digestion cleanup, resulting in a 

percent difference of −14.28% (Figure 5.8B). A similar dose-response relationship was exhibited 

by samples treated with Sliquid® Silk (Figure 5.8D). Samples treated with Coconut Oil exhibited 

negative impact on biomarker detection regardless of lubricant volume. A percent difference of 

−25.04%, −22.15%, and −25.03% were observed for 1 µL, 5 µL, and 15 µL volumes, respectively. 

However, a wide range in response ratios was demonstrated. The lower whisker extends to 

−80.94% and the median lies at the top of the inter quartile range (IQR). Internal standard 

responses exhibited a negative percent difference, but not to the same extent as the endogenous 

biomarkers (Figure 5.8C).  

 To further illustrate the negative effects of certain lubricants on specific endogenous 

biomarkers, Figure 5.9 depicts the response of neutrophil gelatinase peptide WYVVGLAGNAILR 

when subjected to each lubricant evaluated. This biomarker was selected given the specificity of 

neutrophil gelatinase in vaginal fluid and the hydrophobic nature of the WYVVGLAGNAILR peptide 

(retention time of 8.7 minutes). The response of this specific peptide was unaffected by Astroglide® 

and Sliquid® Silk; however, sufficient decrease in response was exhibited with Sliquid® H2O, 

Coconut Oil, and Swiss Navy®. With the addition of a pre-digestion cleanup, inconsistencies were 

not entirely eliminated, but minimized in most cases. For example, Figure 5.10 illustrates the 
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increase in peak area response of endogenous neutrophil gelatinase peptide WYVVGLAGNAILR 

with the addition of the pre-digestion cleanup. 

   

 

Figure 5.8. Effect of (A) Astroglide®, (B) Sliquid® H2O, (C) Coconut Oil, (D) Sliquid® Silk, and (E) 
Swiss Navy® lubricants measured as percent difference on peak area response of endogenous 
vaginal fluid proteins and isotopically-labeled internal standards both with and without pre-digestion 
SPE cleanup. Box = 25th and 75th percentiles; bars = Tukey fences. Outliers were calculated as 
any values outside ± 1.5 IQR. 
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Figure 5.9. Chromatographic peak response for endogenous neutrophil gelatinase peptide 
WYVVGLAGNAILR when subjected to 15 µL of (A) Astroglide®, (B) Sliquid® H2O, (C) Coconut Oil, 
(D) Sliquid® Silk, and (E) Swiss Navy®.  

 

Figure 5.10. Chromatographic peak response for endogenous neutrophile gelatinase peptide 
WYVVGLAGNAILR (A) without pre-digestion cleanup and (B) with pre-digestion cleanup, when 
subjected to 15 µL of Swiss Navy®.  

5.2.2 Lubricants and the Detection of Semen and Saliva Biomarkers 

 The overall effect of personal lubricant was further assessed with mock sexual assault 

samples. Generally, when sexual assault evidence is received in a forensic laboratory, it will be 

screened for the presence of seminal fluid and/or saliva. Therefore, in addition to the effect of 
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personal lubricant on the detection of vaginal fluid, it was vital to establish any deleterious effects 

that may inhibit the identification of seminal fluid and/or saliva. To simulate sexual assault samples, 

pooled vaginal extract was fortified with seminal fluid, saliva, and a mixture of both target fluids in 

addition to increasing amounts of personal lubricant. All lubricant classes and selected volumes 

were evaluated in triplicate.  

 In summary, all seminal fluid and saliva protein biomarkers were detected at all lubricant 

volumes and for all lubricant classes evaluated, in both the prepared single source and mixture 

samples. For prepared samples containing saliva, marginal suppression or enhancement effects 

were observed for samples fortified with Astroglide®, Sliquid® H2O, and Coconut Oil. In comparison 

with the detection of vaginal fluid markers, sufficient losses in peptide response were observed for 

samples fortified with Sliquid® Silk, even with the pre-digest cleanup (Figure 5.11A). A median 

saliva biomarker signal decrease of −37.0%, −54.7%, and −93.3% at the 1 µL, 5 µL, and 15 µL 

volumes was observed with the Sliquid® Silk lubricant. Furthermore, at the 15 µL volume, sufficient 

enhancement effects were observed for Swiss Navy®, with a median signal increase of 120.5%. 

These observed effects were consistent with recorded peak area responses of the internal 

standards of single source saliva samples (Figure 5.11B). The greatest suppression effects were 

illustrated by endogenous seminal fluid protein biomarkers, with consistent suppression noted for 

Astroglide®, Sliquid® H2O, Coconut Oil, and Sliquid® Silk. A median signal decrease of −23.3% and 

−85.7% were observed at the 5 µL and 15 µL Sliquid® Silk volumes, respectively. These two 

samples exhibit a large IQR. However, small instances of enhancement were recorded for the 15 

µL Sliquid® Silk and 1 µL Swiss Navy® lubricants, with signal increases of 4.9% and 4.8%, 

respectively (Figure 5.11C). Conversely, minimal suppression and enhancement effects were 

observed for seminal fluid internal standard responses (Figure 5.11D).  

 Interestingly, the severe instances of peak response suppression for Sliquid® Silk were not 

as evident in samples containing a mixture of seminal fluid and saliva (Figure 5.12A and 5.12C) 

Although an average peptide response loss of −49.7% for saliva and −26.4% for seminal fluid were 

observed at the 15 µL volume of Sliquid® Silk, peak response enhancement for Coconut Oil was 
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illustrated (Figure 5.12A and 5.12C). Internal standard response demonstrated limited 

suppression for both target fluids, with enhancement observed for Coconut Oil and Sliquid® Silk 

lubricants (Figure 5.12B and 5.12D). For example, decrease in peak area response for 

semenogelin 2 and alpha amylase is depicted in Figure 5.13. Endogenous peak area response 

(red peaks) demonstrates a linear decrease while the internal standard response (blue peaks) 

remains relatively unchanged across lubricant volumes. 

 

Figure 5.11. Effects of lubricant on (A) endogenous saliva biomarkers, (B) internal standard saliva 
biomarkers, (C) endogenous seminal fluid biomarkers, and (D) internal standard seminal fluid 
biomarkers. Plotted is the percent difference of average signal intensity for control versus 
experimental samples for all target biomarkers. Box = 25th and 75th percentiles; bars = Tukey 
fences. Outliers were calculated as any values outside ± 1.5 IQR. 
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Figure 5.12. Effects of lubricant on (A) endogenous saliva biomarkers, (B) internal standard saliva 
biomarkers, (C) endogenous seminal fluid biomarkers, and (D) internal standard seminal fluid 
biomarkers in mixture samples. Plotted is the percent difference of average signal intensity for 
control versus experimental samples for all target biomarkers. Box = 25th and 75th percentiles; 
bars = Tukey fences. Outliers were calculated as any values outside ± 1.5 IQR. 
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Figure 5.13. Semenogelin 2 peptide GSISIQTEEQIHGK peak area response in mixture samples 
containing (A) 1 µL, (B) 5 µL, and (C) 15 µL volumes of Sliquid® Silk lubricant. Alpha amylase 
peptide LSGLLDLALGK peak area response in mixture samples containing (D) 1 µL, (E) 5 µL, and 
(F) 15 µL volumes of Sliquid® Silk lubricant. Red peaks represent endogenous peptide peak area 
response. Blue peaks represent internal standard peak area response.  

5.2.3 Vaginal Fluid Biomarker Detection from Condoms 

 Pre-lubricated condoms typically contain a proprietary lubricant which may include the 

addition of spermicidal additives, such as the non-ionic detergent nonoxol-9. It was hypothesized 

that such detergents and additives may decrease binding capacity of solid phase extraction 

cartridges. The sorbent material of the validated microextraction cartridges were hydrophobic C18 

hydrocarbons bonded to silica beads. The presence of detergents can introduce competitive 

binding, resulting in a decrease in capture and recovery of hydrophobic markers during analysis. 

Furthermore, detergents have the potential to act as ion suppressants when introduced into a mass 

spectrometer. 



212 
 

 To further assess this hypothesis, lubricated condoms both with and without spermicidal 

additives were evaluated. The external surface of each condom was swabbed with a vaginal swab 

to capture the proprietary lubricant and/or spermicide additive at concentrations commonly 

encountered in forensic casework. Unlubricated condoms (Trojan™ ENZ™) served as the condom 

control, in addition to pooled, untreated vaginal extract serving as the negative control. In addition 

to the unlubricated condom type, SKYN® Original, SKYN® Extra Lube, and Durex® Performax® 

condoms were selected for this portion of the study. After initial observations made during sample 

handling, the Durex® Performax® condoms contained the greatest amount of surface lubricant and, 

although marketed as unlubricated, the Trojan™ ENZ™ condoms did contain a minimal amount of 

lubricant on the external surface.  

Overall, target peptide response of vaginal fluid markers was greater across all condom 

types in comparison to negative control samples (Figure 5.14). It should be noted that 

inconsistency in sample data was observed, as depicted by the percent difference range of 

endogenous targets and large IQR of internal standard response. For endogenous biomarkers, the 

calculated percent differences of peak area response were evenly distributed between the first and 

third quartiles. However, outliers greater than 1.5 IQR were observed for Durex® Performax®, 

SKYN® Original, and SKYN® Extra Lube condom samples. A median 50% gain in peptide response 

was exhibited by vaginal fluid markers recovered from swabs subjected to the surfaces of SKYN® 

Extra Lube and Trojan™ ENZ™ condoms (Figure 5.14A). Overall, peak response of isotopically-

labeled internal standard was enhanced in comparison with control samples (Figure 5.14B). The 

internal standard response demonstrated greater agreement among sample replicates than 

endogenous biomarkers responses, evident by the absence of outliers and a more consistent IQR. 

Chromatographic endogenous and internal standard peak area responses across condom replicate 

samples are depicted in Figure 5.15.  

An active ingredient in Durex® Performax® condoms that may attribute to the larger IQR 

and presence of outlier data points is benzocaine. Benzocaine is a common ingredient in over-the-

counter topical pain ointments, such as those used for oral and otic pain. The mechanism of action 
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of benzocaine that results in pain relief has also been leveraged for use in contraceptives. 

Benzocaine acts by inhibiting voltage-dependent sodium channels, preventing an action potential 

from propagating down a neuron membrane. When applied to condoms, benzocaine can prevent 

premature ejaculation by decreasing sensitivity of male sex organs. Given the compound’s 

structure, it is hydrophobic in nature and readily soluble in alcohol-based solvents. Therefore, 

benzocaine has great affinity for the C18 sorbent material of solid phase extraction cartridges and 

for the acetonitrile-based elution solvent. 

 

Figure 5.14. Effects of condom lubricant on (A) endogenous vaginal fluid biomarkers and (B) 
internal standard vaginal fluid biomarkers. Plotted is the percent difference of average signal 
intensity for control versus experimental samples for all target biomarkers. Box = 25th and 75th 
percentiles; bars = Tukey fences. Outliers were calculated as any values outside ± 1.5 IQR. 
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Figure 5.15. Neutrophil gelatinase peptide WYVVGLAGNAILR peak area response for (A) Durex® 
Performax®, (B) SKYN® Original, (C) SKYN® Extra Lube, and (D) Trojan™ ENZ™ condom triplicate 
samples. Red peaks represent endogenous peptide peak area response. Blue peaks represent 
internal standard peak area response. 
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5.3 Concluding Remarks 

 With the completion of this phase of research, it has been demonstrated that the 

deleterious effects of personal lubricants, specifically oil and silicone-based formulas, can be 

mitigated through the addition of a second solid phase extraction cleanup. When implemented prior 

to digestion, this cleanup eliminated interferents that would otherwise negatively affect trypsin 

processivity and mass spectrometry detection.  

Extraction cartridge sorbent material was selected based on chemical interactions between 

the sorbent functional groups with functional groups of target protein biomarkers. These functional 

groups are considerably different from other structural elements and functional groups of 

interference compounds, such as surfactants. The functional group interaction between the target 

analyte and its surrounding environment was crucial in modifying the sample preparation protocol 

for this portion of the study. Given the presence of interfering compounds present in personal 

lubricants, such as surfactants and medium chain fatty acids, additional steps were needed to 

ensure maximum recovery of target biomarkers.  

Reverse phase solid phase extraction was used for additional sample cleanup. Reverse 

phase employs a polar mobile phase and a nonpolar sorbent stationary phase. Given that 

serological samples are generally maintained in water or saline solution, reverse phase extraction 

was a clear solution to mitigating the effects of hydrophobic compounds common in lubricant 

formulas. A C18 sorbent material was selected for solid phase extraction cleanup and optimized 

as part of the developed protocol under the validation of the LC-MS/MS assay. C18 sorbents are 

nonpolar in nature and therefore attract and retain nonpolar analytes in solution, such as nonpolar 

peptide side chains or nonpolar interferent compounds.  

 Astroglide® contains the compound (1-(3-chloroallyl)-3,5,7-triaza-1-azoniaadamantane 

chloride), referred to as polyquaternium-15. Although water soluble, this compound has surfactant 

properties. Surfactants, even at low concentrations, have the ability to severely suppress ionization 

during mass spectrometry analysis. Swiss Navy®, the silicone lubricant selected for this study, 

contains the compound dimethicone that has surfactant properties as well. Dimethicone is a 
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hydrophobic compound, as is Vitamin E acetate (α-tocopheryl acetate) and cyclopentasiloxane. 

These three compounds would be retained during reverse phase solid phase extraction. In order 

to selectively remove retained proteins from interferents, a relatively polar elution solvent was 

necessary. In comparison with other organic solvents such as ethyl acetate or acetone, acetonitrile 

is a polar solvent. Therefore, protein material would have greater affinity for the elution solvent than 

severely hydrophobic interferents, such as dimethicone, which would stay retained to the sorbent 

material. In summary, it was demonstrated that the analysis of sexual assault samples subjected 

to personal lubricants or condom forms of contraception was achievable with modified sample 

preparation protocols.  

 The remaining chapter of this dissertation will further delve into advancing proteomic 

techniques as they apply to the analysis of sexual assault evidence. Thus far, the protein markers 

targeted using the validated LC-MS/MS assay have been manipulated by the protease trypsin, 

producing distinct peptide fragments. This process has the potential to eliminate high quality 

peptide targets that may fall within or outside of a tryptic peptide. Although it has been demonstrated 

that this bottom up proteomic process can be amenable to high throughput analyses, the multi-day 

workflow is a substantial drawback to the adoption of this workflow by forensic practitioners. 

Therefore, an enzyme-free proteomic identification method of seminal fluid, saliva, and vaginal fluid 

has been developed and assessed.  



217 
 

CHAPTER 6: DEVELOPMENT OF A PEPTIDOMIC METHOD FOR BODY FLUID 

IDENTIFICATION 

6 Introduction 

It has been well-established that protein mass spectrometry methodologies demonstrate 

the desired sensitivity and specificity for the confirmatory identification of biological fluids, 

particularly in comparison with traditional serological screening techniques. The research 

presented thus far utilized a bottom up proteomic approach, where protein material was subjected 

to a multi-step workflow of denaturation, enzymatic digestion, cleanup, and analysis. Although this 

bottom up workflow reliably identified biological stains and was amenable to automation, the multi-

day workflow presents a substantial impediment to the implementation of this next generation 

technique in operational forensic laboratories. In contrast to traditional bottom up approaches, top 

down techniques measure intact proteins, naturally derived peptides, or breakdown products of 

larger proteins. Driven primarily by the demands of the biopharmaceutical and biomedical 

industries, it is possible to reliably measure small to medium sized peptides in complex biological 

matrices [166]. Procedural methods are straightforward and require minimal sample preparation to 

remove abundant endogenous proteins, such as albumin. Typically, only a one-step solid phase 

extraction is required prior to detection by high resolution mass spectrometry. Data analysis 

employs advanced bioinformatics software capable of deconvoluting and matching fragmentation 

spectra of large peptides. These technical advances allow for a streamlined same day workflow, 

an attractive alternative to the more laborious bottom up procedures currently required for 

proteomic body fluid identification.  

A multiplex assay using high-specificity protein biomarker panels for the identification of 

five forensically-relevant body fluids (i.e., peripheral blood, saliva, seminal fluid, vaginal/menstrual 

fluids) was developed and validated, as described in Chapters 2 and 3. This approach has proven 
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to be broadly robust and reliable, particularly for the processing of sexual assault-type samples. 

With this workflow, the protein components, and by association the body fluid source, of stains can 

be detected with a level of sensitivity comparable to that of DNA profiling. The assay has been 

rigorously validated in accordance with the Scientific Working Group for Forensic Toxicology 

(SWGTOX) Standard Practices for Method Validation in Forensic Toxicology [167] and the FBI’s 

Quality Assurance Standards (QAS) [168] to establish the reliability and limitations of the 

methodology. Studies on assay performance with casework-type samples have shown that the 

method is fully compatible with downstream genetic testing and that assay sensitivity greatly 

exceeds that of traditional lateral flow assays, particularly with trace level samples. Additional 

studies, discussed in Chapter 5, that targeted the potential impact of substances commonly 

encountered in sexual assault-type evidence (e.g., personal lubricants and spermicidal 

compounds) provided additional insight on how best to maximize the successful detection of body 

fluids in casework. 

The objective of this phase of research was to develop a peptidomic assay for the 

expedited identification of vaginal fluid, saliva, and seminal fluid in sexual assault evidence by high 

resolution mass spectrometry. This research was completed under four scientific aims. First, 

various sample processing protocols were evaluated and compared to ensure optimal biomarker 

recovery from solubilized stains. The second aim sought to adapt and transfer an existing prototype 

assay to a high-flow operational platform. The third aim employed a population study for the 

determination of candidate protein and peptide biomarkers. And lastly, a performance assessment 

was conducted using a targeted acquisition method created with the selected biomarkers for each 

biological fluid. The final deliverable would contain an expedited proteomic methodology, with the 

length enzymatic digestion step eliminated, where surrogate peptides could serve as a means of 

body fluid source determination. This peptidomic approach streamlines body fluid identification by 

coupling direct protein analysis of whole-body fluids in lieu of workflows that employ time-

consuming enzymatic digestion prior to sample analysis. Additionally, it enabled the swift but 
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accurate identification and verification of body fluid-specific biomarkers with a same-day sample 

processing workflow for sexual assault analysis. 

6.1 Methods and Materials 

 All research conducted under this phase of the project was reviewed and approved by the 

University of Denver IRB for research involving human subjects. Sample collection and research 

was conducted in full accordance with the U.S. federal policy for the protection of human subjects 

as described in section 2.11. In total, 10 subjects were recruited from the graduate population at 

Arcadia University and staff members employed at The Center for Forensic Science Research & 

Education.  

Semen was self-collected from consenting donors as described in section 2.1.1. Collection 

cups were vortexed and 200 µL single use aliquots were prepared and stored at -80 °C until use. 

Saliva was collected from consenting volunteers who refrained from eating or drinking for 1 hour 

prior to collection. Salivette® collection tubes (Sarstedt, Nümbrecht, Germany) were utilized as 

described in section 2.1.1. 200 µL single use aliquots were prepared and stored at -80 °C until use. 

Single use body fluid aliquots (semen or saliva) were thawed at room temperature for 30 minutes 

then centrifuged for 10 minutes at 10,000 x g. Supernatant was transferred to a clean 

microcentrifuge tube and cell pellets were discarded. For this study, vaginal secretions were 

collected using only the swabbing method as described in section 2.1.1. Upon receipt, swabs were 

dried at room temperature where the cotton tip was removed from the wooden handle and placed 

in a clean microcentrifuge tube. Swabs were stored at -80 °C until use. Full cotton swabs were 

solubilized in 600 µL of deionized water for 30 minutes with frequent agitation. Swabs were placed 

into centrifugal baskets and centrifuged at 10,000 x g for 10 minutes. Supernatant was pooled and 

transferred to a clean microcentrifuge tube.  

Given laboratory and IRB restrictions in place out of caution for the SARS-CoV-2 virus, 

additional biological matrices were purchased from both Lee Biosolutions, Inc. (Maryland Heights, 

MO) and Innovative Research, Inc. (Novi, MI) for the population assessment. Upon ordering, it was 

requested that each sample was obtained from a unique donor, with no repetitive donors. Biological 
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material was shipped on dry ice and immediately stored at -80 °C until use. Saliva and semen 

samples were thawed at room temperature for 30 minutes, vortexed, and pulse spun. 200 µL was 

removed for analysis and treated as described above. Supernatant was transferred to a clean 

microcentrifuge tube and cell pellets were discarded. Full vaginal swabs were cut and treated as 

described above.  

Body fluid material was quantitated using the bicinchoninic acid (BCA) assay as described 

in section 2.1.4. Protein material was extracted using a method described below.  

6.1.1 Sample Processing Development and Comparison 

 For this portion of the research, single source body fluid samples from at least two 

individuals were prepared in triplicate for analysis as described above. Final preparation protocol 

comparison (Agilent Bond Elut Plexa plate versus Agilent RP-S Cartridges) was performed with 

single source body fluid from two individuals prepared in quadruplicate.  

6.1.1.1 Protein Precipitation 

 A total protein amount of 200 µg was diluted with equal volume of cold acetonitrile 

(maximum volume of 100 µL) and agitated. Samples were centrifuged at 10,000 x g for 15 minutes 

at 4 °C. Supernatant was transferred to a clean microcentrifuge tube and lyophilized to dryness. 

Precipitated protein (pelleted material) was discarded. The procedure was repeated with 150 µg, 

50 µg, 10 µg, and 1 µg protein amounts. Protein quantities smaller than 50 µL volume equivalent 

were brought up to a final volume of 50 µL with 100 mM Tris-HCl prior to acetonitrile addition.  

6.1.1.2 Centrifugal Filtration 

 Two centrifugal filters were evaluated: Spin-XR UF 500 (Corning®, Corning, NY) and 

Amicon® Ultracel® (Millipore Sigma, Darmstadt, Germany), both of which had a molecular weight 

cutoff of 10 kDa. A total protein amount of 200 µg was diluted with 30% acetonitrile (ACN) with 

0.1% formic acid (FA) to a final volume of 500 µL. Centrifugal filters were centrifuged at 10,000 x g 

for 10 minutes. Eluate was lyophilized to dryness prior to analysis. 
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6.1.1.3 Automated Solid Phase Extraction 

Two microextraction cartridges compatible with the AssayMAP Bravo liquid handling 

platform were selected for evaluation: C18 sorbent and RP-S sorbent, both purchased from Agilent 

Technologies (Santa Clara, CA). A total protein amount of 100 µg was diluted with 0.5% 

trifluoroacetic acid (TFA) in deionized water for a final volume of 250 µL. Microextraction cartridges 

were primed with 100 µL 50% ACN 0.5% TFA at a flow rate of 300 µL/min. Cartridges were 

equilibrated with 50 µL of 0.5% TFA in deionized water at 10 µL/min. 220 µL of diluted sample was 

passed over the cartridge at a flow rate of 15 µL/min. Cartridges were washed with 50 µL of 0.5% 

TFA in deionized water at a rate of 10 µL/min. Sample material was eluted from the sorbent in 25 

µL of 30% ACN 0.1% FA at 5 µL/min. Eluate was lyophilized to dryness prior to analysis. 

6.1.1.4 Manifold Solid Phase Extraction 

 A positive pressure manifold was fitted with either a Bond Elut Plexa or a Bond Elut Plexa 

PCX plate (Agilent Technologies). Plates were received in a 96-well cartridge format. Cartridges 

were primed with 500 µL of 50% ACN with 0.5% TFA in deionized water and washed with 500 µL 

of 0.5% TFA in deionized water. A total protein amount of 100 µg was diluted with 0.5% TFA in 

deionized water for a final volume of 500 µL and loaded onto the cartridge. Sorbent material was 

washed with 500 µL of 0.5% TFA in deionized water. Sample material was eluted with 100 µL of 

30% ACN with 0.1% FA in deionized water. This step was repeated for a total of 200 µL of eluate, 

which was lyophilized to dryness prior to analysis.  

6.1.2 Development of Data Acquisition Method and Analytical Parameter Optimization 

 Mixed-source samples containing various protein quantities of semen and saliva were 

prepared. Neat biological fluid was quantitated using the BCA assay previously described. Two 

sets of samples were generated. First, a saliva major contributor with a semen minor contributor, 

with total protein quantities ranging from 80 µg to 99 µg for the major contributor. All mixture 

samples contained a total of 100 µg total protein. Second, a semen major contributor with a saliva 

minor contributor series was created, prepared in an equivalent manner.  
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 An inclusion list containing desirable peptide biomarkers was generated from data acquired 

during the population study, discussed in the section below. The inclusion list was prepared in 

Skyline Proteomics Environmental software v. 20.2.0.343 (MacCoss Labs, University of 

Washington) and imported into Xcaliber™ control software on the Q Exactive™ Quadrupole-

Orbitrap™ mass spectrometer (Thermo Scientific, Waltham, MA). Analytical parameters on the Q 

Exactive™ Quadrupole-Orbitrap™ mass spectrometer were optimized using single source biological 

fluids. Recommended instrument settings outlined by the University of Washington Proteomics 

Resource (UWPR) were used as a starting point for parameter optimization.  

6.1.3 Population Study and Performance Assessment 

 Twenty semen samples were purchased from Innovative Research and thirty semen 

samples were purchased from Lee Biosolutions, for a total of 50 semen donors. An additional 5 

semen samples from vasectomized donors were purchased from Lee Biosolutions. Twenty-five 

saliva samples were purchased from Innovative Research and Lee Biosolutions for a total of 50 

saliva donors. Twenty-five vaginal swabs were purchased from Lee Biosolutions and seven vaginal 

swabs were collected under IRB, for a total of 32 vaginal swab donors. Regardless of donor source, 

received vaginal swabs were stored at -80 ºC upon receipt. Population samples were purchased 

due to SARS-CoV-2 restrictions put in place for collection of biological samples under the approved 

IRB. Performance assessment samples were divided into six categories: sensitivity, aged, 

substrates, contaminants, mixtures, and simulated sexual assault kit. All samples were prepared 

in triplicate as described in Table 6.1. Substrates were washed with Tide Natural detergent in cold 

water and dried prior to use to ensure consistency between samples.  

Population samples were quantitated using the BCA assay and extracted using the Bond 

Elut Plexa plate protocol as described above. Performance assessment samples were extracted 

using Waters Oasis HLB cartridges (Milford, MA), the manufacturer equivalent of the Bond Elut 

Plexa chemistry. This switch was induced by time constraints and backordered consumables due 

to SARS-CoV-2 testing. 100 µg total protein was used for analysis. Extraction procedures between 

the two manifold cartridges were equivalent, with the exception of increasing the organic elution 
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solvent to 35% ACN with 0.1% FA with the Waters Oasis HLB cartridges, per manufacturer 

recommendations. Eluate was lyophilized to dryness for LC-MS/MS analysis.  

Table 6.1. Performance assessment sample preparation parameters. Room temperature (RT). 
Samples were prepared in triplicate, with the exception of laundered sheets (substrates).  
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6.1.4 Protein Identification by LC-MS/MS 

 Lyophilized samples were reconstituted in 50 µL of 2% ACN with 0.1% FA in deionized 

water. Acquisition was performed using 5 µL of sample per injection on a Q Exactive™ Quadrupole-

Orbitrap™ mass spectrometer (Thermo Scientific, Waltham, MA). A Waters® ACQUITY UPLC BEH 

C18 analytical column (1 x 100 mm, 1.7 µm, 130Å) was used for separation (Waters, Milford, MA). 

Mobile phase A consisted of water with 0.1% FA and mobile phase B consisted of ACN with 0.1% 

FA. Separation initiated at 5% B followed by a linear 5-35% B gradient over 17 minutes, a 3-minute 

hold at 90% B, followed by a 5-minute re-equilibration at a 0.40 mL/min flow rate and column 

temperature of 50 °C.  

 Acquired data was searched using Protein Metrics Byonic™ (v. 3.8) software (Protein 

Metrics Inc., Cupertino, CA). A no enzyme search method was created with the following criteria: 

for sample digestion parameters, the cleavage site was left blank, the cleavage side was set to C-

terminal, the digestion specificity as nonspecific (slowest), and the number of missed cleavages 

was set to 2; for instrument parameters, the precursor mass tolerance was input as 5 ppm, 

fragmentation type was set to QTOF/HCD, fragment mass tolerance input as 10 ppm, and 

recalibration selected as none; for modification parameter, the total common max was input as 2 

and the total rare max was input as 1, with pyro-Glu, oxidation, and deamidation set as fixed 

modifications. No parameters were input for glycans, S-S Xlink bonded pairs, or inclusion. Under 

the advanced option, the maximum precursor mass was set to 4,000, with the maximum number 

of precursors per MS2 input as 1, and smoothing width set to 0.01 m/z. The whole human proteome 

(UniProt ID UP000005640) was utilized for data searches during preliminary assessments. A 

focused database containing the amino acid sequences of selected protein biomarkers was 

generated for performance assessment data acquisition. Data files searched against either the 

whole human proteome or focused database were further analyzed using Protein Metrics Byologic® 

(v. 3.9-32) software (Protein Metrics, Inc.). Searched Byonic™ files were imported into Byologic® for 

additional peptide sequence elucidation.  
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6.2 Results and Discussion 

6.2.1 Sample Processing Development and Comparison 

When analyzing complex matrices such as seminal fluid, saliva, and vaginal fluid, 

pretreatment steps are necessary to isolate peptide material from unwanted salts, intact proteins, 

or cellular debris, as well as environmental contaminants. Traditional sample processing 

techniques for cleanup employ reverse phase solid phase extraction. A previously developed 

Waters Oasis® HLB cartridge extraction protocol using a positive pressure manifold [169] was 

replaced with an improved preparation protocol. Several preparation protocols were developed for 

comparison, including two automated reverse phase extraction approaches on the AssayMAP 

Bravo liquid handling platform, two manifold solid phase extraction plate-based approaches, 

centrifugal filtration methods, and a precipitation method. These various approaches were 

evaluated using a set of single source body fluid matrix samples. Data was acquired using the 

Thermo Q Exactive™ Quadrupole-Orbitrap™ mass spectrometer (herein referred to as the Q 

Exactive). In general, high confident identifications were observed for multiple salivary markers 

including statherin (STAT), submaxillary gland androgen-regulated protein 3B (SMR3B), histatin-1 

(HIS1) and -3 (HIS3), cystatin-SN (CST1), and multiple proline-rich protein isoforms (PRP_1, 

PRP_2, PRP_3, PRP_4, and PRPC). Several seminal fluid biomarkers including semenogelin 1 

(SEMG1), semenogelin 2 (SEMG2), prostate specific antigen (KLK3), and prostatic acid 

phosphatase (PPAP) were detected. Multiple vaginal fluid proteins including cornulin (CRNN), 

suprabasin (SBSN), and involucrin (IVL) were identified as well.  

 Developing a single uniform preparation protocol compatible with all matrices of interest 

proved challenging. Of the preparation protocols initially developed, both centrifugal filtration as 

well as the protein precipitation protocols were removed from further consideration. Centrifugal 

filtration methods utilized molecular weight cutoff (MWCO) filters ranging from 10,000 to 50,000 

Daltons (Da). This methodology was consistently unable to identify the majority of seminal fluid 

markers (Figure 6.1), with dropout of proteins KLK3 and PPAP observed. Regarding the protein 

precipitation protocol, when lower quantities (i.e., below 10 µg of total protein) were prepared, no 
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precipitation occurred, leading to large amounts of 10 kDa or greater proteins binding to the 

analytical column. 

Two automated approaches using the AssayMAP Bravo liquid handling platform were 

developed (C18 and RP-S microextraction cartridges) as well as two manifold-based approaches 

(Agilent Bond Elut Plexa and Bond Elut Plexa PCX plate-based cartridges). Here, the C18 

microextraction cartridges consistently clogged when saliva was applied to the sorbent material, to 

the extent that clogged cartridges did not produce eluate for analysis. This occurred regardless of 

protein quantities applied (50 to 150 µg) and is contributed to the viscosity of the biological matrix, 

even once cellular material was removed. In contrast, the RP-S cartridges did not exhibit the same 

issue, regardless of biological fluid evaluated (Figures 6.2-6.4). Regarding the manifold-based 

procedures, the Bond Elut Plexa consistently provided greater coverage of protein biomarkers, 

albeit at lower intensities than the Plexa PCX sorbent, as exhibited in the saliva matrix in Figure 

6.5. Furthermore, the Bond Elut Plexa displayed greater coverage of peptide signatures (Figure 

6.6). Moving forward, the automated RP-S microextraction cartridge and Bond Elut Plexa manifold 

protocols were selected for further assessment using multiple biological replicates.  

Sample processing protocols were compared using consistent protein quantities to assess 

biomarker identification rates. Four replicate samples from two individuals for a total of eight 

samples per preparation protocol (RP-S and Bond Elut Plexa) were prepared and analyzed on the 

Q Exactive. In summary, the Bond Elut Plexa plate was selected as the optimal sample processing 

protocol for the remainder of the study. Biomarker identification in vaginal fluid was generally 

comparable between the two processing protocols (Figure 6.7). Cornulin and suprabasin were 

consistently identified whereas involucrin was absent from two of four replicates from the Donor #1 

Bond Elut Plexa preparation and one of four replicates of Donor #1 RP-S cartridge preparation. All 

seminal fluid biomarkers were identified across all samples and preparation protocols (Figure 6.8). 

Slightly elevated peak intensities were observed for SEMG1 with the Bond Elut Plexa preparation 

whereas SEMG2, KLK3, and PPAP intensities were slightly elevated with the RP-S cartridge 

protocol. Similar to vaginal fluid and seminal fluid, most salivary biomarkers were detected across 
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all individuals and sample preparation protocols but with varying signal intensities (Figure 6.9). 

However, statherin and histatin-1, which are critical for saliva identification, were absent from a 

subset of the replicates prepared from Donor #2 using the RP-S cartridges (Figure 6.10). Since 

the detection of these proteins is critical for a confirmatory serological identification of saliva, the 

Bond Elut Plexa plate was selected for the remainder of research development. 

The unbalanced distribution of detected proteins is attributed to the various sorbent 

material chemistries of the manifold plate protocols. The Bond Elut Plexa PCX plate utilizes strong 

cation ion exchange chemistries and was designed for the concentration and retention of alkaline 

analytes. In contrast, the Bond Elut Plexa employs a standard nonpolar sorbent, allowing the 

analyst to control retention based on the type and pH of mobile phase passed over the sorbent 

column.  

 

Figure 6.1. Area comparison between Millipore centrifugal filters, protein precipitation, and 
Corning® centrifugal filters for the detection of seminal fluid from two donors. Proteins KLK3 and 
PPAP were not detected using these preparation protocols.  
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Figure 6.2. Area comparison between C18 and RP-S microextraction cartridges using the 
AssayMAP liquid handling platform for the detection of seminal fluid from two donors. 

 

Figure 6.3. Area comparison between C18 and RP-S microextraction cartridges using the 
AssayMAP liquid handling platform for the detection of saliva from three donors. Two samples 
prepared with C18 cartridges did not produce eluate for analysis and is reflected by the single 
sample set reported.  
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Figure 6.4. Area comparison between C18 and RP-S microextraction cartridges using the 
AssayMAP liquid handling platform for the detection of vaginal fluid from three donors. 

 

Figure 6.5. Area comparison between Bond Elut Plexa PCX and Bond Elut Plexa plates on a 
positive pressure manifold for the detection of saliva from three donors. 
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Figure 6.6. Peptide coverage of salivary protein statherin for Bond Elut Plexa PCX (black, blue, and 
red bars) and Bond Elut Plexa (yellow, purple, and green bars) using triplicate samples.  

 

Figure 6.7. Area comparison between Bond Elut Plexa plate and RP-S microextraction cartridge 
protocol for the detection of vaginal fluid from two donors prepared in quadruplicate.  
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Figure 6.8. Area comparison between Bond Elut Plexa plate and RP-S microextraction cartridge 
protocol for the detection of seminal fluid from two donors prepared in quadruplicate. 

 

Figure 6.9. Area comparison between Bond Elut Plexa plate and RP-S microextraction cartridge 
protocol for the detection of saliva from two donors prepared in quadruplicate. 
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Figure 6.10. Area comparison between Bond Elut Plexa plate and RP-S microextraction cartridge 
protocol for the detection of saliva with focus on highly specific salivary biomarkers. Elevated 
statherin (dark green) and histatin-1 (light green) bars were observed for Bond Elut Plexa plate 
protocol.  

6.2.2 Development of Data Acquisition Method and Analytical Parameter Optimization 

A previously designed high-flow (0.40 mL/minute flow rate) analytical method that 

employed a 2.1 mm internal diameter analytical column [169] was transferred to a 1 mm internal 

diameter microbore analytical column. The original method was developed for a quadrupole time-

of-flight (QTOF) mass spectrometer and was transferred to the Q Exactive. A Waters® BEH C18 

analytical column (300Å, 1.7 µm, 1 mm X 150 mm) was utilized to develop the initial run conditions; 

however, in order to increase throughput, a Waters® BEH C18 1 x 100 mm analytical column was 

employed to create the final 25-minute analytical run (Table 6.2). In total, 35 minutes of run time 

per sample injection was saved through optimization of the analytical method. Representative 

chromatography for each target biological fluid can be seen in Figure 6.11. Analytical columns are 

manufactured in a multitude of diameters, lengths, and stationary phase materials. Column 

selection has the greatest effect on efficiency and speed of analysis, as seen by the shortening of 

run time during optimization. Although the stationary phase material remained the same, by 

decreasing the internal diameter, the flow rate was subsequently lowered. These reductions 

allowed for increased chromatographic efficiency and improved resolution. 
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Table 6.2. Separation gradient of 25-minute analytical method on the Q Exactive analytical 
platform.  

 

 

Figure 6.11. Representative chromatography for (A) saliva, (B) seminal fluid, and (C) vaginal fluid 
biological matrices on the Q Exactive analytical platform.  

The Q Exactive was selected for this research given its enhanced sensitivity limits when 

compared with the original QTOF platform available. Given the inherent construction of the orbitrap 

mass analyzer, the selection and transmission of precursor to product ions was of interest. 

Optimizing acquisition parameters for the Q Exactive was conducted to ensure optimal detection 

of fragmentation products was achieved (Table 6.3). Low-abundance targets, such as salivary 
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protein statherin, were found to have increased signal regardless of matrix complexity. In order to 

ensure the highest ionization efficiency, source conditions including sheath gas flow rate, nozzle 

voltage, and gas temperatures were evaluated for optimal performance. The final source and tune 

parameters for the analytical method are outlined in Table 6.4. Overall, a majority of parameters 

were unchanged from those recommended by UWPR, with the exception of the Normalized 

Collision Energy ((N)CE) and Minimum Automatic Gain Control (AGC) Target. 

To preferentially select desired peptide biomarkers further, a targeted acquisition method 

was developed for use during the performance assessment. The peptide match parameter under 

dd settings of the Q Exactive was set as ‘on’ and a peptide inclusion list was generated in Skyline 

software. Skyline is a vendor-neutral software that assisted with organizing selected peptide 

biomarkers, their m/z ratio, and associated retention times into a file type that could be imported 

into the Thermo Xcaliber™ software. The inclusion list was input into the targeted acquisition; 

however, the Q Exactive MS/MS parameters were still able to detect peptides not within the 

inclusion list, but preference was set for the inclusion list peptides. Although the Q Exactive 

prioritized the inclusion list biomarkers, it was of interest to gather additional information outside of 

the inclusion list for future method validation and additional studies regarding biomarker specificity. 

A series of mixed-source samples were prepared to further evaluate the use of a targeted 

acquisition method (Figure 6.12). Although the targeted and data dependent acquisition methods 

behaved similarly, the detected of additional peptide markers from minor contributor biological fluids 

was observed. For example, when 1 µg of saliva was mixed with 99 µg of semen, one additional 

peptide was identified with the targeted acquisition method. The targeted approach routinely 

identified more peptide biomarkers for a saliva minor contributor in comparison with the data 

dependent acquisition method. Therefore, the peptide biomarkers of the inclusion list were verified 

with reference material and the targeted approach was utilized for the performance assessment 

portion of this research. Verification of peptide mass, charge, retention time, and MS2 spectrum 

quality were all taken into consideration prior to generating the final inclusion list.  
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Historically, the relationship between chromatography and depth of coverage achieved via 

mass spectrometry was an inverse relationship, with a trade-off for speed of separation in relation 

to depth of proteome coverage considered. However, with advancements in analytical 

instrumentation, separation science, and software applications, the gap between sacrificing 

proteome coverage for speed of analysis has been minimized. The proteome is complex in nature 

and introduces inherent analytical challenges, particularly with untargeted characterization. 

Enhancing the chromatographic separation of protein constituents therefore increases the 

efficiency of detection using mass spectrometry techniques, allowing for greater depth of proteome 

coverage. 

Table 6.3. MS and MS/MS performance parameters selected on the Q Exactive analytical platform.  
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Table 6.4. Source parameters optimized on the Q Exactive analytical platform.  

 

 

Figure 6.12. Comparison between a targeted acquisition (blue bars) and a data dependent 
acquisition (purple bars) method using a series of mixed-source samples. Samples were prepared 
by total protein amount and are represented on the x-axis. Methods were compared according to 
the number of selected peptides identified.  

6.2.3 Biomarker Selection and Population Study 

In order to accurately assess the developed analytical method and preliminary biomarkers, 

a population assessment was performed. This experiment was designed to conclude if a candidate 

biomarker was routinely identified within a larger sample population, further supporting its use as a 

specific biomarker for body fluid identification. For this portion of the study, an evaluation was 

conducted at the protein level. Parameters taken into consideration for overall assessment were 

percent coverage of total amino acid sequence, number of unique peptides, signal intensity, and 

best score. Percent coverage describes the portion of the protein sequence identified by the 

software. Using the complete amino acid sequence, percent coverage represents the number of 
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amino acids detected in relation to the full sequence. The number of unique peptides represents 

the number of peptide spectrum matches and does not include duplicate identifications made by 

the software. Signal intensity simply describes the total intensity of the MS/MS peaks produced. 

And lastly, best score represents the quality of the peptide spectrum match and serves as an 

indicator of correctness.  

In summary, purchased semen samples from healthy male donors displayed an average 

donor age of 31.6 years, with an age range of 18 to 54 years. A majority (80%) of semen samples 

were collected from Caucasian donors, with 3 donors of African American descent, 3 donors of 

Hispanic descent, 2 donors of Asian descent, and 2 donors from Asian/Caucasian descent. Semen 

purchased from vasectomized male donors displayed an average donor age of 51.6 years, with an 

age range of 39 to 61 years. All vasectomized samples were donated by individuals of Caucasian 

descent. Overall, this approach consistently identified SEMG1, SEMG2, KLK3, and PPAP across 

the population. Summary search results for non-vasectomized and vasectomized sample sets can 

be found in Tables 6.5 and 6.6, respectively, with complete detailed search results outlined in 

Appendix K. Only a single instance of protein dropout was observed within the sample population 

(sample ID 31978-07), with KLK3 not detected in this particular sample. Otherwise, all non-

vasectomized and vasectomized samples were positive for the four target protein biomarkers 

stated previous. There was little difference between the two sample populations. A slightly greater 

average percent coverage was exhibited by the non-vasectomized population for biomarkers KLK3 

and PPAP, displaying a 15.18% and 15.48% increase, respectively. There was no change in 

percent coverage observed for SEMG2 and a minute 2.48% increase in coverage for vasectomized 

samples for SEMG1. A similar trend was illustrated for the average number of unique peptides 

identified by the bioinformatics software. Overall, the developed sample preparation protocol was 

able to characterize semen-specific protein biomarkers in both non-vasectomized and 

vasectomized samples. These results were used to identify surrogate peptides that are consistently 

identified across all individuals, as described in the next section.  
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Purchased saliva samples from healthy donors displayed an average donor age of 40.38 

years, an age range of 19 to 70 years, with 48% female and 52% male donors represented. Racial 

decent was not provided for this sample set. Similar to the semen samples, consistency in protein 

coverage was observed with multiple protein biomarkers being confidently identified in the saliva 

sample population. Summary search results can be found in Table 6.7 with complete detailed 

search results outlined in Appendix L. Several proteins were identified across all samples (e.g., 

STAT, SMR3B, and HIS1). Other targets, such as HIS3 and CST1 were identified in 64% and 68% 

of samples, respectively. While more protein loss was observed with the saliva population in 

comparison with the semen population, it is likely that this is a function of the data dependent 

acquisition approach utilized. A targeted method would likely detect even the proteins which were 

not identified in each sample. This is due to certain salivary biomarkers being of lower abundance 

in relation to the limited number of precursor ions which the instrument can measure in parallel.  

Unexpected results were observed for the protein alpha amylase-1. Although it was 

detected in 90% of the sample population, this protein was characterized with low percent coverage 

and by a single unique peptide. It was anticipated that the source parameters selected were not 

adequate at producing complete fragmentation of this particular protein. However, given the poor 

specificity of this protein for the saliva biological matrix, parameters were not changed in order to 

continuously identify more characteristic salivary biomarkers. In summary, the developed sample 

preparation protocol was able to characterize saliva-specific protein biomarkers. As with the semen 

targets, these results will be used to identify signature peptides that are both sensitive and specific 

for the creation of a targeted analytical method.  

A total of 32 individuals were retained for the vaginal fluid population assessment. In 

summary, purchased vaginal swab samples (25 samples) from healthy donors displayed an 

average donor age of 39.16 years, with an age range of 23 to 61 years. All vaginal swab samples 

were collected from Caucasian donors. No identifying information was recorded for IRB collected 

samples (7 samples). Summary search results can be found in Table 6.8, with complete detailed 

search results outlined in Appendix M. Overall, no candidate protein biomarkers were consistently 
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detected in all samples of this population; however, cornulin displayed the highest occurrence rate 

with accurate detection in 31 of 32 samples evaluated. Furthermore, this protein demonstrated an 

average coverage rate of 52%. Secondary candidate biomarkers identified during sample 

preparation protocol development, suprabasin and involucrin, exhibited favorable population 

occurrence of 78% and 81%, respectively. The protein periplakin, a biomarker included within the 

previously described bottom up proteomic method (Chapters 2 and 3), displayed poor detection 

and protein coverage, prompting reevaluation of biomarker inclusion. With previous 

experimentation conducted on vaginal fluid, the lower sample occurrence, percent coverage, and 

number of unique peptides was anticipated to be less desirable than the results of seminal fluid 

and saliva evaluation. Nevertheless, the proteins detected are consistent with those of previous 

studies, indicating the reproducibility of biomarker recovery and identification. Of the 32 samples 

evaluated within this population assessment, the four candidate biomarkers were not identified 

within one sample (sample ID C1). As with the semen and saliva targets, these results will be used 

to identify surrogate peptides that are both sensitive and specific for the creation of a targeted 

analytical method.  

A piece of data worthy of consideration is the detection of protein biomarker glycodelin in 

a single sample of the vaginal swab population (sample ID 5488). Although detected in only a single 

sample, this identification is promising for future development of top down proteomic 

methodologies. This particular protein is expressed in multiple body fluids, such as vaginal and 

seminal fluid, but displays variation in N-linked glycosylation patterns that can be exploited for fluid 

specificity [170]. With a challenging body fluid such as vaginal fluid, targeting additional biological 

properties, such as glycan chains, may be beneficial to identifying specific protein biomarkers, and 

therefore, increasing the specificity of the overall proteomic assay.  
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Table 6.5. Descriptive statistics of non-vasectomized semen population. 
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Table 6.6. Descriptive statistics of vasectomized semen population. 

 

  



242 
 

Table 6.7. Descriptive statistics of saliva population. 
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Table 6.8. Descriptive statistics of vaginal swab population.  

 

6.2.4 Target Peptide Biomarker Selection 

Biomarkers were selected for inclusion in body fluid-specific panels under this portion of 

the study and are reported on the peptide level. Here, optimal peptide biomarkers are specific to 

the target body fluid and demonstrate consistency of expression across the sample population 

evaluated under the previous section. Additionally, relative abundance of peptide and protein 

biomarkers within the target matrix was used to facilitate inclusion within the target library.  

To recapitulate, SEMG1, SEMG2, KLK3, and PPAP were consistently identified across the 

semen population samples. Salivary proteins SMR3B, STAT, and HIS1 were identified in all 

individuals with basic salivary proline-rich protein isoforms 1, 2, 3, and 4 (PRP_1, PRP_2, PRP_3, 

and PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), and HIS3 being identified in most 

samples. And lastly, vaginal fluid was characterized by cornulin, suprabasin, involucrin, and 

periplakin. With these protein biomarkers selected, specific peptide fragments were identified for 

inclusion and reference material was synthesized for verification purposes. Purified reference 

material was purchased and employed to confirm the target biomarkers to ensure no erroneous 

identifications were made with the bioinformatics software searches. In addition, reference material 

was utilized to confirm the peptide retention times as well as to develop the targeted method, as 

discussed later in this section. 
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The following criteria were set for peptide filtering: peptide fragments must be within 8 to 

25 amino acid residues in length, preference for peptides detected in at least 80% of the sample 

population, high MS1 signal intensity, high quality MS2 spectra, and those that contain minimal 

potential modification sites (i.e., asparagine, methionine, and cysteine amino acid residues). 

However, these criteria were not concrete, as certain markers may exhibit high quality spectra with 

a lower population occurrence. Therefore, peptide length and sample occurrence were taken into 

consideration, but were not the sole criteria for including or eliminating a peptide marker. Signal 

intensity, spectrum quality, and limiting modification sites were given additional weight in decision 

making.  

Using the criteria stated above, a preliminary list of targets included 77 semen peptides, 

92 saliva peptides, and 30 vaginal fluid peptides, for which reference material was purchased and 

evaluated. The salivary protein HIS3 was removed from the peptide list due to low quality spectra 

and sample occurrence. All other listed protein biomarkers were represented in the peptide list. 

Furthermore, prolactin inducible protein (PIP) found in seminal fluid was re-introduced. Although 

not originally described during the population assessment, this protein exhibited higher quality 

spectra with a range of sample occurrence that prompted additional interest in this particular 

biomarker. In total, 38 seminal fluid peptides, 44 saliva peptides, and 12 vaginal fluid peptides were 

selected for the final inclusion library (Tables 6.9-6.11).  
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Table 6.9. Peptide markers for seminal fluid. Prostate specific antigen (KLK3), prolactin inducible 
protein (PIP), prostatic acid phosphatase (PPAP), semenogelin 1 (SEMG1), and semenogelin 2 
(SEMG2). RT = retention time, AA = amino acid. 
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Table 6.10. Peptide markers for saliva. Histatin-1 (HIS1), basic salivary proline-rich protein 1 
(PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich protein 4 
(PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated protein 
3B (SMR3B), and statherin (STAT). RT = retention time, AA = amino acid.  
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Table 6.11. Peptide markers for vaginal fluid. Cornulin (CRNN), involucrin (IVL), periplakin (PPL), 
and suprabasin (SBSN). RT = retention time, AA = amino acid.  

 

6.2.5 Performance Assessment 

 Reported below are results at the protein level for each sample evaluated. Peptide level 

results for the performance assessment are detailed in Appendix N.  

6.2.5.1 Sensitivity Samples 

Sensitivity replicates were prepared by diluting target body fluid with deionized water and 

applying the dilution to a cotton swab. Therefore, the dilution factor was inherently diluted a second 

time during the solubilization step of the developed workflow. Data for seminal fluid, saliva, and 

vaginal fluid dilutions are outlined in Tables 6.12-6.14. Proteins were positively identified by the 

presence of at least one peptide target from the inclusion list. Seminal fluid was reproducibly 

identified at the lowest dilution factor (10,000-fold) by both SEMG1 and SEMG2. However, the 

remaining seminal fluid proteins showed poor sensitivity, with little to no identifications at the 100-

fold dilution. Salivary protein biomarkers demonstrated robust sensitivity, with a majority of proteins 

detected at the 100-fold dilution. Basic salivary proline-rich protein 1, salivary acidic proline-rich 

protein 1/2, and submaxillary gland androgen-regulated protein 3B were detected in at least one 

replicate at the lowest dilution factor. Vaginal fluid sensitivity was contingent on cornulin 

identification, which was positive through the 100-fold dilution. The remaining protein biomarkers 

demonstrated poor sensitivity. 
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Table 6.12. Sensitivity sample results for seminal fluid. Prostate specific antigen (KLK3), prolactin 
inducible protein (PIP), prostatic acid phosphatase (PPAP), semenogelin 1 (SEMG1), and 
semenogelin 2 (SEMG2). (+) indicates at least one peptide detected for the designated protein. (-) 
indicates a negative result. 

 

Table 6.13. Sensitivity sample results for saliva. (+) indicates at least one peptide detected for the 
designated protein. (-) indicates a negative result. Histatin-1 (HIS1), basic salivary proline-rich 
protein 1 (PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich protein 
4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated protein 
3B (SRM3B), and statherin (STAT). 

 

Table 6.14. Sensitivity sample results for vaginal fluid. (+) indicates at least one peptide detected 
for the designated protein. (-) indicates a negative result. Cornulin (CRNN), involucrin (IVL), 
periplakin (PPL), and suprabasin (SBSN). 

 

6.2.5.2 Aged Samples 

 The effect of biomarker recovery and characterization from aged biological material was 

assessed using a two-pronged approach. Each target fluid was evaluated as a single source in 

addition to a vaginal swab matrix fortified with either semen or saliva. Samples were kept at room 

temperature for 2, 3, 7, and 30 days, with detailed results outlined in Table 6.15. Seminal fluid as 

a single source was positively characterized at every timepoint; however, PPAP exhibited complete 
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dropout. Consistency between replicates was observed, with a single replicate exhibiting a positive 

KLK3 result. Similar results were obtained for seminal fluid recovered from a vaginal swab matrix. 

However, complete dropout of PIP was recorded. It is hypothesized that a protease may be present 

in vaginal fluid that may degrade PIP past the point of characterization. A comparable observation 

was made for saliva and saliva recovered from a vaginal swab matrix. Although consistency in 

replicate characterization was recorded for saliva on its own, complete dropout of PRP_2, histatin-

1, and statherin was exhibited when saliva was recovered from a vaginal swab. And lastly, as seen 

with sensitivity samples, vaginal fluid characterization relied on cornulin detection, which exhibited 

consistency with each replicate at all timepoints.  
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Table 6.15. Aged sample results. (+) indicates at least one peptide detected for the designated protein for each replicate. (-) indicates a negative 
result. NT = not tested. Prostate specific antigen (KLK3), prolactin inducible protein (PIP), prostatic acid phosphatase (PPAP), semenogelin 1 
(SEMG1), and semenogelin 2 (SEMG2), histatin-1 (HIS1), basic salivary proline-rich protein 1 (PRP_1), basic salivary proline-rich protein 2 
(PRP_2), basic salivary proline-rich protein 4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated protein 
3B (SRM3B), and statherin (STAT), cornulin (CRNN), involucrin (IVL), periplakin (PPL), and suprabasin (SBSN). 
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6.2.5.3 Sexual Assault Samples 

Laboratory prepared sexual assault kit samples were generated to simulate authentic 

samples, with results outlined in Table 6.16. Of surprise was the ability of the developed method 

to positively characterize both seminal fluid and saliva when recovered from a rectal swab. Given 

the endogenous bacterial presence common with this sample type, the observation of reproducible 

peptide identifications demonstrates the robustness of a peptidomic strategy. Where previous 

studies have indicated the presence of fecal matter to inhibit the processivity of trypsin, the removal 

of proteolytic cleavage sites has eliminated this issue. For example, during validation of the bottom 

up LC-MS/MS method (Chapter 3), KLK3 was not detected on rectal swab samples, whereas this 

protein was consistently detected on replicates with the peptidomic technique. Furthermore, the 

recovery of saliva from rectal swabs was included in this portion of research. The presence of fecal 

matter exhibited no deleterious effects in the ability to identify saliva. For example, salivary protein 

SMR3B demonstrated excellent ion coverage and spectral quality (Figure 6.13).  
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Table 6.16. Sexual assault kit sample results. (+) indicates at least one peptide detected for the 
designated protein for each replicate. (-) indicates a negative result. NT = not tested. Prostate 
specific antigen (KLK3), prolactin inducible protein (PIP), prostatic acid phosphatase (PPAP), 
semenogelin 1 (SEMG1), and semenogelin 2 (SEMG2), histatin-1 (HIS1), basic salivary proline-
rich protein 1 (PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich 
protein 4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated 
protein 3B (SRM3B), and statherin (STAT), cornulin (CRNN), involucrin (IVL), periplakin (PPL), and 
suprabasin (SBSN). 
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Figure 6.13. (A) Mass spectrum of saliva recovered from a rectal swab replicate. Depicted is peptide 
GPGIFPPPPPQP of protein submaxillary androgen-regulated protein 3B (SRM3B). (B) y and b 
ions characterized for the peptide sequence are shown in bold type.

6.2.5.4 Mixture Samples 

Volume mixtures of seminal fluid and saliva were applied to vaginal swabs to assess ion 

suppression, particularly for a minor saliva contributor in a major seminal fluid contributor. Vaginal 

swabs were selected as the matrix in order to simulate sexual assault type samples more closely. 

In summary, all target fluids were positively identified (Table 6.17). Seminal fluid is protein rich, and 

despite the greater volumes, did not inhibit the ability to positively characterize saliva or vaginal 

fluid peptide targets. Saliva was consistently identified by the presence of PRPC, even when the 

amount of semen was greater (MIX03) or equivalent to (MIX04) the saliva contribution. As seen 

with previous performance samples, complete dropout of statherin was exhibited when in the 

presence of vaginal fluid.  
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Table 6.17. Mixture sample results. (+) indicates at least one peptide detected for the designated 
protein for each replicate. (-) indicates a negative result. Prostate specific antigen (KLK3), prolactin 
inducible protein (PIP), prostatic acid phosphatase (PPAP), semenogelin 1 (SEMG1), and 
semenogelin 2 (SEMG2), histatin-1 (HIS1), basic salivary proline-rich protein 1 (PRP_1), basic 
salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich protein 4 (PRP_4), salivary acidic 
proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated protein 3B (SRM3B), and 
statherin (STAT), cornulin (CRNN), involucrin (IVL), periplakin (PPL), and suprabasin (SBSN). 

 

6.2.5.5 Contaminant Samples 

 The recovery of target biomarkers when subjected to chemical insult and environmental 

contaminants was of interest to this research in order to more closely simulate authentic forensic 

evidence received in operational laboratories (Table 6.18). Based on data reported in Chapter 5, 

personal lubricants, in addition to bleach and dish soap, were identified as contaminants that have 

the potential to prevent the identification of seminal fluid. SEMG1 and SEMG2 were positively 

identified when in the presence of all contaminants. Uniform protein dropout PIP and PPAP was 

recorded. Overall, the presence of contaminants did not impede the ability to correctly characterize 

seminal fluid, particularly when in the presence of 10% bleach (Figure 6.14). SEMG2 peptide 

NVVDVREE exhibited a clean and clear spectrum, with characteristic b, y, and y++ ions detected.  
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Saliva characterization in the presence of chemical insults was not as robust as observed 

with seminal fluid biomarkers. Negative results for all peptide targets were recorded for saliva 

treated with 10% bleach. For the remaining samples, salivary acidic proline-rich protein 1/2 and 

SMR3B were identified by the presence of at least one target peptide. And lastly, vaginal fluid was 

identified from a menstrual swab based on the positive characterization of cornulin in all three 

replicates. Detergents and formulations containing halogen substances, such as bleach, present 

additional challenges with mass spectrometric analysis. Halogens, such as chlorine, have a 

characteristic isotope distribution on a mass spectra. This distribution is straightforward with small 

molecule analysis; however, with larger peptide masses, the chlorine isotope distribution can 

impact the quality of a mass spectrum.  

Table 6.18. Contaminant samples results. (+) indicates at least one peptide detected for the 
designated protein for each replicate. (-) indicates a negative result. NT = not tested. Prostate 
specific antigen (KLK3), prolactin inducible protein (PIP), prostatic acid phosphatase (PPAP), 
semenogelin 1 (SEMG1), and semenogelin 2 (SEMG2), histatin-1 (HIS1), basic salivary proline-
rich protein 1 (PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich 
protein 4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated 
protein 3B (SRM3B), and statherin (STAT), cornulin (CRNN), involucrin (IVL), periplakin (PPL), and 
suprabasin (SBSN). 
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Figure 6.14. (A) Mass spectrum of seminal fluid treated with 10% bleach. Depicted is peptide 
NVVDVREE of protein semenogelin 2 (SEMG2). (B) y and b ions characterized for the peptide 
sequence are shown in bold type. 

6.2.5.6 Substrate Samples 

In conjunction with contaminants, the ability to positively characterize biological fluids 

recovered from various substrates was important to consider. Four fabric types were selected for 

this portion of the study: 100% cotton, 100% polyester, polyester blend (60% polyester, 40% 

cotton), and denim. Each fabric had small quantities of biological fluid applied, with the 100% cotton 

underwear worn by a female subject prior to fluid application. Detailed results are outlined in Table 

6.19. As with previous data sets, SEMG1 and SEMG2 outperformed the remaining seminal fluid 

protein targets. However, all protein targets were characterized when recovered from denim. It is 

hypothesized that, given the texture of denim fabric, the applied semen was retained over a smaller 

surface area and easily released back into solution once solubilized. In addition to these samples, 

semen stains were excised and recovered from bed sheets to assess biomarker loss during 

laundering. Seminal fluid was positively characterized on both bed sheets evaluated by the 
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presence of SEMG1 and SEMG2, in addition to a single KLK3 peptide identification on the polyester 

blend bed sheet (Figure 6.15). Semenogelin 2 peptide NVVDVREE demonstrated great intensity 

from laundered items in comparison with the 10% bleach solution, further highlighting the lower 

sensitivity limits of the developed methodology.  

 Saliva protein characterization was substrate dependent. As with seminal fluid, recovery of 

saliva from denim was nearly complete, with protein dropout of basic salivary proline-rich protein 4 

exhibited. However, both statherin and SMR3B, confirmatory saliva biomarkers, were identified. 

Additional protein dropout and greater inconsistency between replicates were reported for polyester 

blend and 100% polyester (Table 6.19). 

Table 6.19. Contaminant samples results. (+) indicates at least one peptide detected for the 
designated protein for each replicate. (-) indicates a negative result. NT = not tested. Prostate 
specific antigen (KLK3), prolactin inducible protein (PIP), prostatic acid phosphatase (PPAP), 
semenogelin 1 (SEMG1), and semenogelin 2 (SEMG2), histatin-1 (HIS1), basic salivary proline-
rich protein 1 (PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich 
protein 4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated 
protein 3B (SRM3B), and statherin (STAT). 
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Figure 6.15. (A) Mass spectrum of seminal fluid recovered from laundered polyester blend bed 
sheet. Depicted is peptide NVVDVREE of protein semenogelin 2 (SEMG2). (B) y and b ions 
characterized for the peptide sequence are shown in bold type. 

6.3 Concluding Remarks 

In summary, the use of a peptidomic approach for seminal fluid, saliva, and vaginal fluid 

identification revealed that multiple non-tryptic peptide fragments are produced through 

endogenous cleavage during analysis with high resolution mass spectrometry. The protein 

biomarkers identified with this technique were comparable to those detected with the validated 

bottom up LC-MS/MS assay. Therefore, the ability to prepare biological stains for proteomic 

analysis with an expedited, simple extraction prior to chromatographic separation eliminated the 

need for lengthy enzymatic digestion incubation periods. The results presented provide support for 

further development of peptidomic applications in the field of forensic serology. From a forensic 

biology standpoint, it is recommended that reporting of results be based on the identification of 

inclusion peptides. Although additional peptide fragments are identified by the proteomic software, 

the peptides included in the library have undergone quality control assessment during verification 

using purified reference material. Significant proteins include semenogelin 1 and 2 for seminal fluid 
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identification in addition to statherin and submaxillary gland androgen-regulated protein 3B for 

saliva identification.  

Supplemental research is required for the identification of a vaginal fluid-specific protein 

biomarker. Although the four protein biomarkers described, particularly cornulin, demonstrated 

adequate sensitivity and robustness, the selected proteins do not exhibit specificity to vaginal fluid. 

Suprabasin, although expressed in vaginal, cervical, and uterine tissue, shares comparable 

expression patterns in esophagus tissue and keratinocytes of skin tissues. Similar protein 

expression patterns are evident for cornulin and involucrin. In addition, involucrin is expressed in 

tissues of the urinary bladder and epididymis [171].  

The Protein Metrics Byonic™ application is a software tool used for identifying peptides and 

proteins, similar to more traditional applications such as Mascot and SEQUEST. However, this 

software provides additional functionalities that can contribute to areas of future work, such as 

advanced glycopeptide and crosslinking search capabilities.  

Various challenges and limitations exist with the implementation of protein mass 

spectrometry techniques into an operational laboratory. First, the creation of training materials will 

be essential for onboarding molecular biologists in advanced proteomic techniques. Second, 

generating interest with stakeholders so that resources and capital investments are made to 

support the implementation of this screening technique, such as the purchase of the LC-MS/MS 

analytical system, will be crucial for a seamless implementation. And lastly, overcoming a Daubert 

admissibility hearing for using proteomic data in a court of law will impose significant challenges 

moving forward. The case findings from Daubert v. Merrell Dow Pharmaceuticals, Inc. is the 

documentation accepted by the federal government and a majority of state government for the 

admissibility of scientific evidence in court. The findings suggest that scientific methodology be 

testable, have a known or potential error rate, have applicable standards and controls, be subjected 

to peer review and publication, and be generally accepted in the scientific community. Sufficient 

gains have been made for use of protein mass spectrometry in forensic laboratories, specifically in 

the field of forensic toxicology, but additional research into drafting of interpretation guidelines, 
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applicable use of controls, and support within the greater community will be critical for admissibility 

of data in court. Furthermore, the addition of confidence level reporting would be beneficial in 

relaying the weight of data to the trier of fact.  

In toto, the specific hypotheses outlined for completion of this research were successfully 

evaluated. Proteomic techniques in the form of bottom up and peptidomic methodologies were 

demonstrated to surpass the sensitivity and specificity capable of traditional serological screening 

techniques. The transferring of a multiplex mass spectrometry-based assay from a nanoflow to 

high performance LC-MS/MS analytical system sufficiently increased sample throughput. In 

addition, an automated sample processing procedure mitigated sources of human error and 

contributed to increased sample throughput without a loss in peptide intensity. The multiplex LC-

MS/MS assay underwent rigorous validation and comparison, illustrating its robust performance 

and compatibilities with existing forensic biology workflows. It has been demonstrated that the 

ability to produce serological information at sensitivity levels consistent with STR/Y-STR typing is 

achievable with protein mass spectrometry technology. Body fluid identification of samples 

subjected to personal lubricants was achieved through specific sample preparation procedures and 

detection of surrogate peptides using the validated LC-MS/MS assay. And lastly, an expedited 

proteomic analysis of body fluids consistent with sexual assault evidence was developed using 

peptidomic techniques. The use of proteomics and advanced analytical instrumentation is a viable 

solution to meeting the sensitivity and specificity demands of the forensic biology community for 

the confirmation of biological origin, therefore contributing to the identification and individualization 

of evidentiary material. 

6.4 Future Direction and Impact on the Criminal Justice System 

 The identification of biological stains has posed significant challenges since the onset and 

acceleration of DNA individualization. Currently, practitioners have no means of reliably confirming 

the presence of biological stains, especially the differentiation of saliva and vaginal fluid. The 

presumptive results obtained through serological screening prevent definitive statements regarding 

the origin of a biological stain by an expert witness during courtroom testimony. While implementing 
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a new technology such as protein mass spectrometry comes with significant onboarding actions, 

such as new analyst training and purchasing of instrumentation, the cost-to-benefit ratio of investing 

in this next generation technique is substantial.  

Extensive research has demonstrated that protein mass spectrometry exhibits unmatched 

detection capabilities, particularly with trace quantities of biological stains in the presence of 

contaminants. The research presented in this dissertation contributes to the sufficient gains of the 

forensic subdiscipline that has fallen behind its counterpart. Detailed standard operating 

procedures for the validated proteomic methodology are written and presented for the effective 

transfer of this technology into an operational laboratory. However, a comparative assessment of 

proteomics with other next generation techniques, such as RNA-based assays and epigenetic 

profiling, would identify gaps in proposed methodologies and provide the forensic biology 

community with valuable information to aid in technology transfer and retirement of traditional 

serological screening protocols. 

Additional research into characteristic protein biomarkers for vaginal fluid detection is 

necessary for the confirmatory identification of this biological matrix. Given its similarities in protein 

makeup to that of saliva, additional distinctive traits should be taken into consideration. The 

availability of a reliable and sensitive method for the confirmatory identification of vaginal fluid would 

have important forensic utility for the analysis of sexual assault evidence. While the presence of a 

victim’s DNA profile on a suspect’s genitals or underwear provides a strong indication of sexual 

contact on its own, a vaginal fluid assay would increase the probative value of a broader range of 

evidentiary items (e.g., swabs of fingers, fingernail scrapings, outer clothing). Furthermore, items of 

evidence submitted in sexual assault cases involving vaginal rape with a foreign object would greatly 

benefit from such an assay.  

This obstacle can be overcome by leveraging unique post translational modifications (PTM) 

that proteins undergo only in vaginal tissues. A common type of PTM includes glycosylation, and 

with the addition of carbohydrate moieties, glycosylation can have a significant effect on protein 

confirmation and antigenic properties. N-linked glycosylation occurs in the endoplasmic reticulum at 
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specific asparagine sequences (i.e., Asn-X-Ser/Thr), where the addition of sugar residues result in 

unique structural modifications [172]. The process of N-linked glycosylation is highly conserved in 

eukaryotes, indicating the importance of carbohydrate labeling as a means of generating diversity 

within the proteome [41]. For instance, the protein glycodelin exhibits multiple isoforms with 

differential glycosylation that dictates body fluid specific functionalities. For example, the glycodelin-

A (GdA) isoform in amniotic and vaginal fluids induces an immunosuppressive response by silencing 

maternal T cells, preventing an immune response toward an implanted embryo. In addition, this 

isoform also acts as a natural contraceptive by impeding spermatozoa binding to the oocyte outside 

the fertile window of ovulation [173]. In contrast, the glycodelin-S (GdS) isoform in seminal fluid 

blocks spermatozoa capacitation (i.e., destabilization of the acrosomal membrane) prior to passing 

through the cervical mucus of the female reproductive tract [173]. 

Additional advancements in proteomic applications to forensic biology include the use of 

genetically variable peptides (GVPs) and the concept of proteomic genotyping. A single amino acid 

polymorphism can be correlated to a single nucleotide polymorphism (SNP), generating the link 

between identification and individualization of biological material. Research in this area has focused 

on fingermarks [174], bone [152], and hair [175], but the possibilities of expanding to other biological 

matrices are evident. For example, the detection of GVPs for the salivary protein statherin and 

subsequent SNP profiling could provide a confirmatory identification of saliva and the inclusion of a 

suspected individual for an evidentiary item associated with a sexual assault or rape.  
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APPENDIX A: FINAL BIOMARKER LIST AND ASSOCIATED COLLISION ENERGIES 

Body Fluid Protein Peptide Sequence Precursor ion 
(m/z)

Product ions 
(m/z)

Collision 
Energy (V)

Retention Time 
(min)

910.4880 + 15.2

797.4040 + 18.2

696.3563 + 15.2

829.5142 + 19.8

716.4301 + 13.8

531.3501 + 16.8

959.4945 + 22.9

775.4097 + 25.9

480.2509 ++ 16.9

949.4890 + 17.8

850.4206 + 23.8

687.3573 + 17.8

774.4509 + 12.5

675.3824 + 15.5

574.3348 + 18.5

971.4680 + 29.0

670.3406 + 26.0

569.2930 + 26.0
1053.5463 + 22.5

940.4622 + 22.5

600.8110 ++ 19.5

735.4036 + 16.2

678.3821 + 16.2

563.3552 + 19.2

1091.5368 + 20.4

776.3937 + 17.4

675.3461 + 20.4

Apolipoprotein A1 
(P02647)

610.8066 ++

SAVTALWGK 466.7636 ++

SVLGQLGITK 508.3109 ++

4.9555.8057 ++LSITGTYDLK

LLVVYPWTQR 637.8664 ++

Hemoglobin 
Subunit Beta 

(P68871)

5.7

6.1

5.0

Hemopexin 
(P02790) NFPSPVDAAFR

Pe
rip

he
ra

l B
lo

od

3.2489.7482 ++DGAGDVAFVK

Serotransferrin 
(P02787)

5.0625.3066 ++SASDLTWDNLK

7.3LLDNWDSVTSTFSK 806.8960 ++

9.3693.8612 ++VSFLSALEEYTK

Alpha 1 Antitrypsin 
(P01009)

7.6
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Body Fluid Protein Peptide Sequence Precursor ion 
(m/z)

Product ions 
(m/z)

Collision 
Energy (V)

Retention Time 
(min)

691.8673 ++ 7.5
635.3253 ++ 19.5

461.5807 +++ 10.5
1038.5466 + 23.8
951.5146 + 26.8
751.3985 + 20.8
834.4203 + 14.9
747.3883 + 20.9
634.3042 + 13.9

1309.6634 + 27.1
523.2875 + 24.1
424.2191 + 24.1

706.3442 ++ 12.1
599.2784 ++ 18.1
943.5095 + 20.7
646.3770 + 23.7

472.2584 ++ 20.7
760.4386 + 15.1
532.3276 + 9.1

536.2844 ++ 15.1
575.6298 +++ 18.1

948.4884 + 20.0
819.4458 + 23.0
276.1343 + 20.0
930.5407 + 18.6
817.4567 + 18.6
730.4246 + 18.6
635.3875 + 14.7
247.1441 + 14.7
421.2558 + 14.7
759.3831 + 16.8
645.3389 + 16.8
485.3082 + 16.8
774.4356 + 14.3
630.3821 + 14.3
276.0649 + 17.3

551.6128 +++

7.4

508.7633 ++

2.4

1.7

FVTLVFR

ELSELSLLSLYGIHK

525.2502 ++

Se
m

in
al

 F
lu

id

Semenogelin-1 
(P04279)

DIFSTQDELLVYNK

Semenogelin-2 
(Q02383)

FLRPGDDSSHDLMLLR

Prostate Specific 
Antigen (P07288)

QITIPSQEQEHSQK

SGINCPIQK

GSISIQTEEQIHGK

DCGSVDGVIK

Prostatic Acid 
Phosphatase 

(P15309)

Epididymal 
Secretory Protein E1 

(P61916)

FQELESETLK

509.5985 +++ 2.5

441.2658 ++

567.9856 +++

612.3113 ++

6.9

8.8

3.5

842.9251 ++

468.7413 ++++ 5.9

GSISIQTEEK

DVSQSSISFQIEK

546.2826 ++

734.3699 ++

2

5

4.4636.8677 ++LSEPAELTDAVK
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Body Fluid Protein Peptide Sequence Precursor ion 
(m/z)

Product ions 
(m/z)

Collision 
Energy (V)

Retention 
Time (min)

606.3358 + 18.3
903.4538 ++ 21.3
867.9352 ++ 21.3
986.5881 + 18.1
899.5560 + 15.1
729.4505 + 15.1
1228.6473 + 29.4
850.4459 + 29.4
1172.6099 + 29.4
729.3930 + 14.8
535.2875 + 20.8
1141.604 + 23.8
1466.6394 + 30.3
1110.4698 + 30.3
947.4065 + 30.3
640.2937 + 8.1
424.2191 + 14.1
568.7904 ++ 14.1
1687.7751 + 30.9
1074.4891 + 32.9
1229.5626 + 32.9

Sa
liv

a

Statherin (P02808)

Cystatin SA 
(P09228)

1215.2330 +++FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF

GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR 1034.5394 +++

IPPPPPAPYGPGIFPPPPPQP 710.7189 +++

Submaxillary Gland 
Androgen Regulated 
Protein 3B (P02814)

640.3330 +++
Alpha-amylase 1 

(P04745)

IIEGGIYDADLNDER 846.9074 ++

8.7

8.7

9.5

4.8

LSGLLDLALGK 550.3397 ++

IAEYMNHLIDIGVAGFR

4.8440.9031 +++ALHFVISEYNK

9.2

8.3
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Body Fluid Protein Peptide Sequence Precursor ion 
(m/z)

Product ions 
(m/z)

Collision Energy 
(V)

Retention Time 
(min)

1001.4647 ++ 28.4
886.9115 ++ 22.4
851.3930 ++ 25.4
1247.6226 + 31.7
1006.4800 + 31.7
793.4127 ++ 31.7
294.1812 + 13.3

695.8279 ++ 16.3
639.2859 ++ 16.3
884.5312 + 23.2
350.1499 + 20.2
449.2183 + 23.2
1000.5350 + 18.6
837.4716 + 21.6
295.1111 + 15.6
1054.4622 + 23.7
955.3938 + 20.7
827.3352 + 23.7
905.3894 + 22.8
649.2722 + 25.8
1037.5778 + 19.8
599.3022 ++ 11.8
541.7887 ++ 14.8
696.3444 ++ 13.7
603.8044 ++ 16.7
659.8775 ++ 10.3
610.3433 ++ 13.3
553.8013 ++ 13.3
505.7669 ++ 14.1
699.3308 + 17.1
812.4149 + 14.1
689.3213 + 15.9
560.2787 + 12.9
920.4585 + 12.9
871.4632 + 24.3
814.4417 + 18.3
243.1088 + 18.3
803.4258 + 17.0
690.3417 + 17.0
228.1343 + 14.0
633.3566 + 10.9
546.3246 + 16.9
200.1030 + 13.9
788.3607+ 17.8
562.2654 + 17.8

394.6840 ++ 17.8
664.3665 + 17.4
565.2980 + 14.4

381.2132 ++ 14.4

636.2608 ++GCVQDEFCTR

2.8461.2443 +++ALDGINSGITHAGR

1.5574.6237 +++HLVQQEGQLEQQER

4.2607.9829 +++QEAQLELPEQQVGQPK

3.3502.2755 +++GEVLLPVEHQQQK

Small Proline Rich 
Protein 3 (Q9UBC9)

VPEPGCTK 444.2182 ++ 1.1

VPVPGYTK 430.7475 ++ 2.3

Va
gi

na
l F

lu
id

/M
en

st
ru

al
 B

lo
od

2.3

839.8888 ++++AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR 1.4

501.9157 +++LLDEDHTGTVEFK

Cornulin (Q9UBG3)

3.6

Involucrin (P07476)

FGQGVHHGLSEGWK 513.5881 +++

Suprabasin 
(Q6UWP8)

AQSLQSAK 416.7298 ++

NLLDEIASR 515.7800 ++

ISPQIQLSGQTEQTQK 893.4707 ++

NQGPQESVVR 557.2860 ++

Neutrophil Gelatinase 
Associated Lipocalin 

(P80188)
MYATIYELK 566.2914 ++

Ly6/PLAUR domain-
containing protein 3 

(O95274)

Periplakin (O60437)

3.4

5.4

0.9

1.4

6.2

8.8716.4090 ++WYVVGLAGNAILR

10.3766.0671 +++GLDLHGLLAFIQLQQCAQDR

2.3



278 

APPENDIX B: STANDARD OPERATING PROCEDURES FOR THE BOTTOM UP LC-MS/MS 

ASSAY 

BODY FLUID IDENTIFICATION BY LC-MS/MS 

TABLE OF CONTENTS 

Materials and Reagents 

Controls 

Body Fluid Extraction and Quantitation 

Protein Sample Digestion 

Peptide Sample Cleanup 

Analysis by Mass Spectrometry 

Appendix I: AssayMAP Bravo Startup/Shutdown 

Appendix II: Human Serum Albumin Acquisition Parameters 

Appendix III: Body Fluid Identification Acquisition Parameters 



279 

MATERIALS AND REAGENTS 

Equipment 
1. Analytical Balance
2. Refrigerated Microcentrifuge: Capable of speeds up to 12,000 RCF
3. Spectrophotometer: Capable of 562 nm reading
4. SpeedVac Concentrator set to 45 °C
5. Incubator set to 37⁰C
6. Agilent AssayMAP Bravo Liquid Handler
7. Agilent 1290 Series Liquid Chromatography System
8. Agilent 6495 Triple Quadrupole LC/MS
9. Agilent AdvancedBio Peptide Map column, 3x100mm, 2.7 µM, #655950-302

General Plastics and Labware 
1. Disposable scalpels
2. Clean Bench Paper
3. Deionized water
4. 10% Bleach
5. Microcentrifuge tubes Protein LoBind (Eppendorf 1.5 and 2.0 mL #022431081,

022431102)
6. Costar SpinX .45 µm spin filter (Corning #8163)
7. Costar SpinX spin baskets nofilter inserts (Corning #9301)
8. Pierce BSA Protein Assay Kit (Thermo #23225)
9. Corning Costar Assay Plate, clear, flat bottom (Corning #9017)

AssayMAP and Automation Labware 
1. AssayMAP C18 5 µL Cartridge Rack (Agilent #5190-6532)
2. 250 µL sterile pipette tips for AssayMAP Bravo (Agilent #19477-012)
3. Eppendorf 96 well LoBind PCR plate (Eppendorf #0030129512)
4. 12 Column Reservoir Plate (SeahorseBio #201280-100)
5. Greiner U-Bottom White 96 well plate (Greiner #650207)
6. Greiner Universal Plate Lids (Grenier #656199)
7. Eppendorf Storage Film (Eppendorf #0030127870)

Chemicals 
1. 100 mM Tris-HCl (Thermo #15568-025)

a. Dilute 1M Tris-HCl 1:10 in LCMS grade water
2. 8 M Urea (Sigma BioUltra #51456)

a. 3.123 grams in 4 mL 100 mM Tris-HCl
3. 1 M Tris(2-carboxyethyl)phosphine hydrochloride, TCEP (Thermo #20490)

a. 0.286 grams in 1 mL LCMS grade water. 35 µL aliquots stored at -80 ⁰C.
4. 100 mM Iodoacetamide, IAA (Sigma BioUltra #I1149)

a. 0.036 grams in 2.0 mL LCMS grade water

General Solvents 
1. Acetonitrile , LCMS grade
2. Water, LCMS grade
3. Methanol, LCMS Grade
4. Isopropanol, LCMS Grade
5. Formic Acid (FA), LCMS Grade
6. Trifluoroacetic Acid (TFA), HPLC Grade

AssayMAP Solvents 
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1. Priming Solvent: 50% Acetonitrile in water with 0.5% TFA
a. 500 mL acetonitrile, 500 mL water, 5 mL TFA

2. Equilibration and Wash Solvent: Water with 0.5% TFA
a. 1,000 mL water, 5 mL TFA

3. Elution Solvent: 70% Acetonitrile in water with 0.1% FA
a. 700 mL acetonitrile, 300 mL water, 1 mL formic acid

4. Cartridge Wash (60% Methanol)
a. 600 mL Methanol, 400 mL water

Mass Spectrometry Solvents 
1. Mobile Phase A: Water with 0.1% formic acid

a. 1,000 mL LCMS grade water, 1 mL LCMS grade formic acid
2. Mobile Phase B: Acetonitrile with 0.1% formic acid

a. 1,000 mL LCMS grade acetonitrile, 1 mL LCMS grade formic acid
3. Syringe Wash Solution: 1:1:1:1 Methanol:Acetonitrile:Isopropanol:Water

a. 250 mL methanol, 250 mL acetonitrile, 250 mL isopropanol, 250 mL water
4. Seal Wash Solution: 10% Methanol in water

a. 900 mL LCMS grade water, 100 mL LCMS grade methanol

Enzymes: 
1. Sequencing Grade Trypsin (Promega #V511B)

a. 100 µg sequencing grade trypsin reconstituted in 400 µL 50 mM acetic acid for a
final concentration of 0.25 µg/µL

b. 50 µL aliquots stored at -80 ⁰C for up to 1 year.

Myelin Internal Control Reagents: 
1. Intact Bovine Myelin Basic Protein Stock Solution (Sigma #13-104)

a. Reconstituted 10 mg in 20 mL 2% acetonitrile 0.1% FA for 0.5 mg/mL stock
b. Aliquoted and freeze (-80°C) at stock concentration for up to 1 year
c. Intact Bovine Myelin Basic Protein Working Solution

i. Thawed and dilute 1:100 with 30% acetonitrile 0.1% FA for a final
concentration of 5 ng/µL

ii. Spike prior to digest (at dry down stage)
iii. With a repeater pipette add 20 µL of 5 ng/µL for a 100 ng spike per sample

2. Myelin Isotopically Labelled Peptide Stock Solution (DTGILDSLGR^, New England
Peptide)

a. 2 nmol material from NEP (Molar equivalent = 2.11 µg)
b. Reconstituted in 2.11 mL 30% acetonitrile 0.1% FA for 1 µg/mL stock
c. Aliquoted and frozen (-80) at stock concentration for up to 1 year
d. Myelin Isotopically Labelled Peptide Working Solution

i. Thaw
ii. Spiked prior to SPE cleanup
iii. With a repeater pipette add 10 µL of 1 µg/mL stock for a 10 ng spike per

sample
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System Suitability: 
1. HSA Peptide Standard Mix (Agilent #G2455-85001) 

a. To each vial of HSA standard (500 pmol) add 500 µL of 15% acetonitrile with 0.1% 
formic acid for a 1 pmol/µL stock. 

b. Vortex and mix vial for 30 seconds. Allow the vial to stand at room temperature for 
5 minutes 

2. Dilute 1 pmol/µL stock 1:10 for a final concentration of 100 fmol/µL.  
a. Aliquot 50 µL to 250 µL polypropylene snap caps vials.  

3. Cap vials, store at -80°C for up to 1 year 

CONTROLS 

Positive Control (PC) – a known control sample (e.g. human semen or blood) is required for each 

analytical batch which undergoes extraction, digestion, and cleanup alongside questioned 

samples.  

Reagent (negative) Control (RC) – a blank samples that undergoes the same extraction process 

as the samples to test the reagents for contaminants. 
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BODY FLUID EXTRACTION AND QUANTITATION 

Initial preparations: 

1. Clear off a workspace and lay a new, clean piece of bench paper. Check and replace any

reagents that have expired.

2. Prepare one set of 2.0 mL microcentrifuge tubes for each sample marked with a unique sample

identifier.

Extraction protocols: 

1. Gather all utensils (e.g., scalpel, scissors, forceps, weigh paper) needed for sample cutting.

2. Sterilize utensils with a 20% bleach solution followed by a water rinse.

3. If samples were not already collected and prepared during the evidence examination process

(i.e. placed in a 2.0 mL microcentrifuge tube), carefully cut the stain (~1 x 1 cm, or as

appropriate, depending on the nature of the stain) and place in the appropriately marked 2.0

mL microcentrifuge tube.  If the sample is on a swab, use ½ of the swab or the stained area if

the staining is uneven.  In the case of loose flakes, use at the discretion of the analyst.   In the

case of cigarette butts, remove the paper around the filter. If the staining is light, a larger area

may be taken.

4. Extract evidentiary material by soaking in 500 - 1,000 µL of deionized water for 30 minutes.

Vortex the sample frequently to facilitate extraction of biological material from substrate.  Pulse

spin for 10 seconds to remove droplets from the lid, and transfer the sample substrate into a

clean spin basket and centrifuge at 12,000 RPM for 10 minutes.

5. Transfer supernatant to a clean Costar 0.45 µM SpinX filter and reserve pelleted material for

genetic testing. Filter the supernatant by centrifuging at 10,000 RPM for 2 minutes, or until all

extract has passed through the filter. Remove the SpinX filter and discard.

NOTES: Blood samples may not completely pass through the SpinX filter. 
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Quantitation protocols: 

1. Prepare bovine serum albumin standards in 100 mM Tris-HCl using the following table: 

Standard Bovine Serum 
Albumin (µL) 

100mM Tris-HCl 
(µL) 

Protein Concentration 
(µg/mL) 

A 2 mg/mL stock None 2000 
B 375 A 125 1500 
C 325 A 325 1000 
D 175 B 175 750 
E 325 C 325 500 
F 325 E 325 250 
G 325 F 400 125 
H 100 G 400 25 

BLANK None All N/A 
 

2. For sample preparation, dilute sample supernatant in 100mM Tris-HCl at the discretion of the 

analyst 

a. Blood and Semen Samples 1:100 dilution 

b. Saliva and Vaginal Fluid 1:50 dilution 

c. Dependent on the concentration and physical appearance of the extract 

3. Prepare BCA Protein Assay working reagent according to the number of samples being 

prepared. 

a. Volume of Reagent A = (total # samples and standards + 2) x 200 

b. Volume of Reagent B = (volume of reagent A) / 50 

4. Prepare a 96 well Corning square bottom plate. Aliquot 25 µL of standard or sample to the 

appropriate well. Add 200 µL of prepared working reagent to each well and seal using a 

protective film. Incubate the plat at 37 ⁰ C for 30 minutes. 

5. Order the plate according to the following chart: 
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 1 2 3 

A BLANK STD E SAMPLE 

B BLANK STD E SAMPLE 

C STD B STD F SAMPLE 

D STD B STD F  

E STD C STD G  

F STD C STD G  

G STD D STD H  

H STD D STD H  

 

6. Remove the protective film and analyze on a spectrophotometer at 562 nm. Ensure the 

spectrophotometer is programmed accordingly, with the standard concentrations in the 

appropriate well number. 

7. Evaluate the results as follows: 

a. Standard Curve R2 value: >0.98 

8. Calculate the total protein for each question sample, targeting 100 µg total protein 

a. (100 µg) / (Reported protein concentration in µg/mL x Dilution Factor) x 1000 

9. Prepare a 96 well Greiner U-bottom White plate, with a repeater pipette add 20 µL of 5 ng/µL 

for a 100 ng spike per sample of intact Bovine Myelin Basic Protein.  

10. Add up to 100 µg total protein for each sample being analyzed. 

11. Lyophilized to dryness in a SpeedVac concentrator at 45 ⁰ C 
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PROTEIN SAMPLE DIGESTION 

1. Run AssayMAP startup procedure found in Appendix I.

2. Open the Pipette Tip Transfer Utility Application in the VWorks Software Utility Library. Arrange

the pipette tip rack according to the deck layout diagram displayed. Input the number of

columns to transfer according to the number of samples being processed. A full row of tips

should be transferred, regardless of whether the sample plate contains a complete row of

samples to be analyzed. Run the Pipette Tip Transfer Application. Remove the pipette tip rack

from the instrument.

3. Open the In-Solution Digest Single Plate application in the VWorks Software App Library.

4. Prepare the denaturant solution. Add 32.5 µL of 1 M TCEP stock solution to 8 M Urea in 100

mM Tris-HCl (for a 5 mM final concentration). Aliquot 100 µL of denaturant solution into each

well of a Greiner U-Bottom White 96 well plate. Move the plate to deck position 5 on the

AssayMAP.

5. Prepare the alkylant solution. Aliquot 50 µL of 100 mM IAA solution into each well of a Greiner

U-Bottom White 96 well plate. Place a universal black lid on the plate. Check the corresponding

box in the VWorks Software indicating the alkylant plate is lidded. Move the plate to deck 

position 6 on the AssayMAP. 
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6. Prepare the diluent solution. Aliquot 250 µL of 100 mM Tris-HCl into each well of a Greiner U-

Bottom White 96 well plate. Move the plate to deck position 8 on the AssayMAP.

7. Prepare the trypsin solution. Aliquot 15 µL of 0.25 µg/µL sequencing grade trypsin into each

well of an Eppendorf 96 well PCR plate. Move the plate to deck position 9 on the AssayMAP.

8. Move the sample plate containing the lyophilized sample to deck position 4 on the AssayMAP.

Place a universal black lid on the sample plate. Check the corresponding box in the VWorks

Software indicating the sample plate is lidded.

9. Input the correct number of columns to be digested according to the number of samples being

processed in the sample plate. Verify the following parameters into the application:

Digest Solution Addition 
Volume # Mix Cycles Incubation Time and Temperature 

Denaturant 55 µL 15 mix cycles 45-minute incubation at 25 ⁰ C
Alkylant 6 µL 15 mix cycles 30-minute incubation at 25 ⁰ C
Diluent 170 µL 15 mix cycles No incubation 
Trypsin 10 µL 15 mix cycles No incubation 

10. Run the digestion application.

11. With the completion of the digestion application, remove the sample plate and seal with an

Eppendorf storage film. Place the sample plate in an incubator set at 37 ⁰C for 14-16 hours.

12. Run AssayMap shutdown procedure found in Appendix I.
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PEPTIDE SAMPLE CLEANUP 

Sample Acidification: 

1. Run AssayMap startup procedure found in Appendix I. 

2. Allow the sample plate to come to room temperature. Remove Myelin Isotopically Labelled 

Peptide Stock Solution from freezer.  

3. Remove storage film. With a repeater pipette, add 10 µL of Myelin Isotopically Labelled Peptide 

stock solution at1 µg/mL for a 10 ng spike per sample. 

4. Open the Pipette Tip Transfer Utility Application in the VWorks Software Utility Library. Arrange 

the pipette tip rack according to the deck layout diagram displayed. Input the number of 

columns to transfer according to the number of samples being processed. A full row of tips 

should be transferred, regardless of whether the sample plate contains a complete row of 

samples to be analyzed. Run the Pipette Tip Transfer Application. Remove the pipette tip rack 

from the instrument. 

 

5. Open the Reagent Transfer Utility application in the VWorks Software Utility library. 

6. Fill the appropriate number of channels of a 12 Column Reservoir Plate with 25% TFA solution. 

Move the plate to the source location of the deck layout displayed.  
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7. Place the sample plate containing digested material to the destination location of the deck 

layout displayed. 

8. In the Reagent Transfer Utility application, select the number of columns to be transferred, 

check the box indicating the use of pipette tips to transfer, and input 10 µL of 25% TFA to be 

transferred to each well.  

 

9. Run the Reagent Transfer application. 

10. Discard the pipette tips. 

11. Discard the 25% TFA solution into solvent waste. 

Cartridge Transfer: 

1. Open the Cartridge Transfer Utility application in VWorks Software Utility library. 

2. Arrange the cartridge rack according to the deck layout diagram displayed. 

3. Input the number of columns to transfer according to the number of samples being processed. 

Note that full columns should be transferred. 
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4. Run the Cartridge Transfer application.

5. Remove the cartridge rack from the instrument.

Peptide Cleanup Protocol: 

1. Open the Peptide Cleanup application in VWorks Software application library.

2. Prepare the Prime solution. Fill the corresponding number of channels to capacity of a labeled

12 Column Reservoir Plate to the number of columns being processed.  Move the plate position

5 on the AssayMAP deck.

3. Prepare the Equilibration solution. Fill the corresponding number of channels to capacity of a

labeled 12 Column Reservoir Plate to the number of columns being processed. Move the plate

to position 6 on the AssayMAP deck.

4. Prepare the Elution solution. Fill the corresponding number of channels to capacity of a labeled

12 Column Reservoir Plate to the number of columns being processed. Move the plate to

position 8 on the AssayMAP deck.

5. Place the 96 well plate containing digested and acidified sample in the corresponding position

to the displayed deck layout.

6. Place a 12 Column Reservoir plate in the Organic Waste/position 3 on the deck.

7. Place a 96 well PCR plate in the Eluate Collection/position 9 on the deck.
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8. Input the appropriate number of columns being processed in the software. 

9. Verify the following parameters in the software: 

Cleanup Step Addition Volume Flow Rate # Wash Cycles 
Initial Syringe Wash --- --- 4 wash cycles 

Prime 100 µL 50% ACN 0.5% TFA 300 µL/min 3 wash cycles 
Equilibrate 50 µL of H2O 0.5% TFA 10 µL/min 3 wash cycles 

Sample Load 220 µL 15 µL/min 3 wash cycles 
Cup Wash 25 µL --- 1 wash cycle 

Internal Cartridge Wash 50 µL 10 µL/min 3 wash cycles 
Stringent Syringe Wash 50 µL --- 1 wash cycle 

Elute 20 µL 70% ACN 0.1% FA 5 µL/min 3 wash cycles 
Final Syringe Wash --- --- 3 wash cycles 

 

 

10. Run the Peptide Cleanup application. 

11. Upon completion, remove the eluate collection plate from the instrument. 

12. Dry down in the SpeedVac concentrator at 45 ⁰C until lyophilized to dryness.  
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ANALYSIS BY MASS SPECTROMETRY 

Initial Preparations: 

1. Run AssayMap startup procedure found in Appendix I.

2. Open the Pipette Tip Transfer Utility Application in the VWorks Software Utility Library. Arrange

the pipette tip rack according to the deck layout diagram displayed. Input the number of

columns to transfer according to the number of samples being processed. A full row of tips

should be transferred, regardless of if the sample plate contains a complete row of samples to

be analyzed. Run the Pipette Tip Transfer Application. Remove the pipette tip rack from the

instrument.

3. Open the Reagent Transfer Utility application in the VWorks Software Utility library.

4. Fill the appropriate number of channels of a 12 Column Reservoir Plate with 2% acetonitrile

with 0.1% formic acid in LCMS grade water.

5. Move the plate to the source location of the deck layout displayed. Place the sample plate

containing lyophilized, purified sample to the destination location of the deck layout displayed.
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6. In the Reagent Transfer Utility application, select the number of columns to be transferred,

check the box indicating the use of pipette tips to transfer, and input 100 µL of 2% ACN 0.1%

FA to be transferred to each well.

7. Run the Reagent Transfer application.

8. Discard the pipette tips.

9. Discard the 2% ACN 0.1% FA solution into solvent waste.

Sample Plate Analysis: 

1. Ensure all solvents are not expired.

2. Verify the Agilent Jet Stream source as been cleaned during the week of analysis or as

necessary. For example, deterioration or material on the spray shield.

3. Verify the 6495 MS has been fully tuned within 1 month and a check tune has been performed

during the week of analysis. If necessary, tune the instrument.

4. Open MassHunter Acquisition Software.

5. Under the Method Tab, open and load the HSA method.
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6. If fresh solvents were prepared, update the bottle fillings by right clicking the Binary Pump 

Module.  

 

7. Purge the A and B Mobile Phase pump lines by right clicking the Binary Pump Module. Purge 

at 50:50 mobile phase A:B at 4 mL/min for 4 minutes.  

8. Ensure the correct analytical column is connected in the proper position on the heat block. 

Agilent AdvancedBio Peptide Map column, 3x100mm, 2.7 µM, #655950-302. 

9. Turn on the instrument by clicking the green ‘On’ button in the lower right corner of the Module 

bar. Allow the instrument to idly pump for approximately five minutes. Monitor the pressure 

listed on the Binary Pump Module. Pressures > 350 bar may indicate the column requires 

maintenance or replacement.   

10. Create a new run folder on the computer hard drive, labeling appropriately according to 

laboratory protocol. 
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11. In MassHunter Acquisition Software, under the Worklist Tab, modify the Worklist Run

Parameters. Input the new run folder and ensure the proper method and run folder is selected.

12. Click the Worklist tab in the bottom left corner of the screen. Begin a new worklist by right

clicking the space and selecting Add Sample. Alternatively, open a previously made worklist

by clicking the Worklist Tab at the top of the screen and opening the desired worklist. Label the

samples appropriately and insert blanks where necessary. Always run HSA System Suitability

samples in triplicate at the beginning of the worklist, to ensure proper instrument performance.

Always include a shutdown script at the end of the worklist, communicating to the instrument

to go into standby once the run is completed.
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13. Once the worklist is prepared, place samples into the autosampler according to the plate/vial 

position.  

14. Select all the samples in the worklist by checking the square box at the top left of the worklist. 

Hit the triangle “Play” button to start the worklist.  

15. Review the results for the HSA System Suitability samples in the Qualitative Analysis Software.  

16. Verify that all six peptides are present in the system suitability injections. Verify retention times, 

relative intensities, as well as peak shape for the peptides. If a problem is observed, 

troubleshoot the issue before running the full batch.  

17. Refer to the table and representative chromatogram below: 
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Peptide Sequence Retention Time 
(min.) 

Intensity 
(cts.) 

AAFTEC[+57.0]C[+57.0]QAADK 1 5.5 x 103 
AVMDDFAAFVEK 1.7 4.0 x 104 

RPC[+57.0]FSALEVDETYVPK 1.4 2.5 x 104 
HPYFYAPELLFFAK 1.8 2.0 x 105 

LVNEVTEFAK 1.3 1.0 x 105 
KVPQVSTPTLVEVSR 1.3 5.5 x 104 

YLYEIAR 1.3 1.5 x 105 
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APPENDIX I ASSAYMAP BRAVO STARTUP AND SHUTDOWN 

Startup 

1. Turn on the AssayMAP Bravo automation system. Ensure the wash station carboy contains a 

sufficient amount of water and the waste carboy is empty. Open the Startup Utility Application 

in the VWorks Software. Run the application and follow the prompts on the computer. 

 

Shutdown 

1. Open the Startup & Shutdown Utility Application in the VWorks Software. Run the application 

and follow the prompts on the computer. 
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APPENDIX II HUMAN SERUM ALBUMIN ACQUISITION PARAMETERS 

Instrument Parameters 

• Instrumentation: Agilent 6495 Tandem Mass Spectrometer with an Agilent 1290 LC system.

o Instrument Mode: MRM

• Agilent AdvancedBio Peptide Map column, 3x100mm, 2.7 µM

o Mobile Phases:

 A:  Water with 0.2% Formic Acid

 B:  Acetonitrile with 0.2% Formic Acid

o Needle Wash:  1:1:1:1 Methanol:Acetonitrile:Isopropanol:Water

o Injection Volume: 2.5 -10 µL

• System Suitability: Agilent Human Serum Albumin peptide mix with 100 fmol on column.

• The ions monitored are listed below.

Compound Group Compound Name Precursor Ion Product Ion 
sp|P02768|ALBU_HUMAN AAFTEC[+57.0]C[+57.0]QAADK.light 686.3 981.4 

sp|P02768|ALBU_HUMAN AAFTEC[+57.0]C[+57.0]QAADK.light 686.3 852.3 

sp|P02768|ALBU_HUMAN AVMDDFAAFVEK.light 671.8 1,172.5 

sp|P02768|ALBU_HUMAN AVMDDFAAFVEK.light 671.8 1,041.5 

sp|P02768|ALBU_HUMAN RPC[+57.0]FSALEVDETYVPK.light 637.6 961.5 

sp|P02768|ALBU_HUMAN RPC[+57.0]FSALEVDETYVPK.light 637.6 851.4 

sp|P02768|ALBU_HUMAN HPYFYAPELLFFAK.light 581.6 779.4 

sp|P02768|ALBU_HUMAN HPYFYAPELLFFAK.light 581.6 482.8 

sp|P02768|ALBU_HUMAN LVNEVTEFAK.light 575.3 937.5 

sp|P02768|ALBU_HUMAN LVNEVTEFAK.light 575.3 595.3 

sp|P02768|ALBU_HUMAN KVPQVSTPTLVEVSR.light 547.3 702.4 

sp|P02768|ALBU_HUMAN KVPQVSTPTLVEVSR.light 547.3 589.3 

sp|P02768|ALBU_HUMAN YLYEIAR.light 464.3 651.3 

sp|P02768|ALBU_HUMAN YLYEIAR.light 464.3 488.3 
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• The acquisition parameters are as follows:
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APPENDIX III BODY FLUID IDENTIFICATION ACQUISITION PARAMETERS 

Instrument Parameters: 

• Instrumentation: Agilent 6495 Tandem Mass Spectrometer with an Agilent 1290 LC system. 

o Instrument Mode: MRM 

• Agilent AdvancedBio Peptide Map column, 3x100mm, 2.7 µM 

o Mobile Phases:  

 A: Water with 0.2% Formic Acid 

 B: Acetonitrile with 0.2% Formic Acid 

o Needle Wash: 1:1:1:1 Methanol:Acetonitrile:Isopropanol:Water 

o Injection Volume: 2.5 -10 µL 

• System Suitability: Agilent Human Serum Albumin peptide mix with 100 fmol on column.  

• The ions monitored are listed below and with representative chromatograms for each protein 

target following. 
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Compound Group Compound Name Precursor 
Ion 

Product 
Ion 

sp|O95274|LYPD3_HUMAN GLDLHGLLAFIQLQQC[+57.0]AQDR.light 766.1 649.3 

sp|O95274|LYPD3_HUMAN GLDLHGLLAFIQLQQC[+57.0]AQDR.light 766.1 905.4 

sp|O95274|LYPD3_HUMAN GLDLHGLLAFIQLQQC[+57.0]AQDR.light 766.1 1037.6 

sp|P02808|STAT_HUMAN FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF.light 1215.2 1074.5 

sp|P02808|STAT_HUMAN FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF.light 1215.2 1229.6 

sp|P02808|STAT_HUMAN FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF.light 1215.2 1687.8 

sp|P02647|APOA1_HUMAN VSFLSALEEYTK.light 693.9 600.8 

sp|P02647|APOA1_HUMAN VSFLSALEEYTK.light 693.9 940.5 

sp|P02647|APOA1_HUMAN VSFLSALEEYTK.light 693.9 1053.5 

sp|P02814|SMR3B_HUMAN GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR.light 1034.5 850.4 

sp|P02814|SMR3B_HUMAN GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR.light 1034.5 1172.6 

sp|P02814|SMR3B_HUMAN GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR.light 1034.5 1228.6 

sp|P80188|NGAL_HUMAN WYVVGLAGNAILR.light 716.4 350.1 

sp|P80188|NGAL_HUMAN WYVVGLAGNAILR.light 716.4 449.2 

sp|P80188|NGAL_HUMAN WYVVGLAGNAILR.light 716.4 884.5 

sp|P15309|PPAP_HUMAN ELSELSLLSLYGIHK.light 568.0 730.4 

sp|P15309|PPAP_HUMAN ELSELSLLSLYGIHK.light 568.0 817.5 

sp|P15309|PPAP_HUMAN ELSELSLLSLYGIHK.light 568.0 930.5 

sp|P04745|AMY1_HUMAN IAEYMNHLIDIGVAGFR.light 640.3 606.3 

sp|P04745|AMY1_HUMAN IAEYMNHLIDIGVAGFR.light 640.3 867.9 

sp|P04745|AMY1_HUMAN IAEYMNHLIDIGVAGFR.light 640.3 903.5 

sp|P04745|AMY1_HUMAN LSGLLDLALGK.light 550.3 729.5 

sp|P04745|AMY1_HUMAN LSGLLDLALGK.light 550.3 899.6 

sp|P04745|AMY1_HUMAN LSGLLDLALGK.light 550.3 986.6 

sp|P02814|SMR3B_HUMAN IPPPPPAPYGPGIFPPPPPQP.light 710.7 535.3 

sp|P02814|SMR3B_HUMAN IPPPPPAPYGPGIFPPPPPQP.light 710.7 729.4 

sp|P02814|SMR3B_HUMAN IPPPPPAPYGPGIFPPPPPQP.light 710.7 1141.6 

sp|P68871|HBB_HUMAN LLVVYPWTQR.light 637.9 687.4 

sp|P68871|HBB_HUMAN LLVVYPWTQR.light 637.9 850.4 

sp|P68871|HBB_HUMAN LLVVYPWTQR.light 637.9 949.5 

sp|P04279|SEMG1_HUMAN DIFSTQDELLVYNK.light 842.9 424.2 

sp|P04279|SEMG1_HUMAN DIFSTQDELLVYNK.light 842.9 523.3 

sp|P04279|SEMG1_HUMAN DIFSTQDELLVYNK.light 842.9 1309.7 

sp|P02647|APOA1_HUMAN LLDNWDSVTSTFSK.light 806.9 569.3 

sp|P02647|APOA1_HUMAN LLDNWDSVTSTFSK.light 806.9 670.3 

sp|P02647|APOA1_HUMAN LLDNWDSVTSTFSK.light 806.9 971.5 

sp|P15309|PPAP_HUMAN FVTLVFR.light 441.3 247.1 

sp|P15309|PPAP_HUMAN FVTLVFR.light 441.3 421.3 
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sp|P15309|PPAP_HUMAN FVTLVFR.light 441.3 635.4 

sp|O60437|PEPL_HUMAN NLLDEIASR.light 515.8 228.1 

sp|O60437|PEPL_HUMAN NLLDEIASR.light 515.8 690.3 

sp|O60437|PEPL_HUMAN NLLDEIASR.light 515.8 803.4 

sp|P02790|HEMO_HUMAN NFPSPVDAAFR.light 610.8 480.3 

sp|P02790|HEMO_HUMAN NFPSPVDAAFR.light 610.8 775.4 

sp|P02790|HEMO_HUMAN NFPSPVDAAFR.light 610.8 959.5 

sp|P07288|KLK3_HUMAN FLRPGDDSSHDLMLLR.light 468.7 536.3 

sp|P07288|KLK3_HUMAN FLRPGDDSSHDLMLLR.light 468.7 575.6 

sp|P07288|KLK3_HUMAN FLRPGDDSSHDLMLLR.light 468.7 760.4 

sp|P01009|A1AT_HUMAN SVLGQLGITK.light 508.3 531.4 

sp|P01009|A1AT_HUMAN SVLGQLGITK.light 508.3 716.4 

sp|P01009|A1AT_HUMAN SVLGQLGITK.light 508.3 829.5 

sp|P02687|MBP_BOVIN DTGILDSLGR.light 523.8 660.4 

sp|P02687|MBP_BOVIN DTGILDSLGR.light 523.8 830.5 

sp|P02687|MBP_BOVIN DTGILDSLGR.heavy 528.8 670.4 

sp|P02687|MBP_BOVIN DTGILDSLGR.heavy 528.8 840.5 

sp|P80188|NGAL_HUMAN MYATIYELK.light 566.3 295.1 

sp|P80188|NGAL_HUMAN MYATIYELK.light 566.3 837.5 

sp|P80188|NGAL_HUMAN MYATIYELK.light 566.3 1000.5 

sp|P68871|HBB_HUMAN SAVTALWGK.light 466.8 574.3 

sp|P68871|HBB_HUMAN SAVTALWGK.light 466.8 675.4 

sp|P68871|HBB_HUMAN SAVTALWGK.light 466.8 774.5 

sp|Q02383|SEMG2_HUMAN DVSQSSISFQIEK.light 734.4 751.4 

sp|Q02383|SEMG2_HUMAN DVSQSSISFQIEK.light 734.4 951.5 

sp|Q02383|SEMG2_HUMAN DVSQSSISFQIEK.light 734.4 1038.5 

sp|P02787|TRFE_HUMAN SASDLTWDNLK.light 625.3 675.3 

sp|P02787|TRFE_HUMAN SASDLTWDNLK.light 625.3 776.4 

sp|P02787|TRFE_HUMAN SASDLTWDNLK.light 625.3 1091.5 

sp|P01009|A1AT_HUMAN LSITGTYDLK.light 555.8 696.4 

sp|P01009|A1AT_HUMAN LSITGTYDLK.light 555.8 797.4 

sp|P01009|A1AT_HUMAN LSITGTYDLK.light 555.8 910.5 

sp|P09228|CYTT_HUMAN ALHFVISEYNK.light 440.9 424.2 

sp|P09228|CYTT_HUMAN ALHFVISEYNK.light 440.9 568.3 

sp|P09228|CYTT_HUMAN ALHFVISEYNK.light 440.9 640.3 

sp|P09228|CYTT_HUMAN IIEGGIYDADLNDER.light 846.9 947.4 

sp|P09228|CYTT_HUMAN IIEGGIYDADLNDER.light 846.9 1110.5 

sp|P09228|CYTT_HUMAN IIEGGIYDADLNDER.light 846.9 1466.6 

sp|P07288|KLK3_HUMAN LSEPAELTDAVK.light 636.8 472.3 
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sp|P07288|KLK3_HUMAN LSEPAELTDAVK.light 636.8 646.4 

sp|P07288|KLK3_HUMAN LSEPAELTDAVK.light 636.8 943.5 

sp|P07476|INVO_HUMAN QEAQLELPEQQVGQPK.light 608.0 505.8 

sp|P07476|INVO_HUMAN QEAQLELPEQQVGQPK.light 608.0 699.3 

sp|P07476|INVO_HUMAN QEAQLELPEQQVGQPK.light 608.0 812.4 

sp|Q9UBG3|CRNN_HUMAN LLDEDHTGTVEFK.light 501.9 294.2 

sp|Q9UBG3|CRNN_HUMAN LLDEDHTGTVEFK.light 501.9 639.3 

sp|Q9UBG3|CRNN_HUMAN LLDEDHTGTVEFK.light 501.9 695.8 

sp|P15309|PPAP_HUMAN FQELESETLK.light 612.3 276.1 

sp|P15309|PPAP_HUMAN FQELESETLK.light 612.3 819.4 

sp|P15309|PPAP_HUMAN FQELESETLK.light 612.3 948.5 

sp|Q9UBG3|CRNN_HUMAN ISPQIQLSGQTEQTQK.light 893.5 793.4 

sp|Q9UBG3|CRNN_HUMAN ISPQIQLSGQTEQTQK.light 893.5 1006.5 

sp|Q9UBG3|CRNN_HUMAN ISPQIQLSGQTEQTQK.light 893.5 1247.6 

sp|P07476|INVO_HUMAN GEVLLPVEHQQQK.light 502.3 553.8 

sp|P07476|INVO_HUMAN GEVLLPVEHQQQK.light 502.3 610.3 

sp|P07476|INVO_HUMAN GEVLLPVEHQQQK.light 502.3 659.9 

sp|P02787|TRFE_HUMAN DGAGDVAFVK.light 489.7 563.4 

sp|P02787|TRFE_HUMAN DGAGDVAFVK.light 489.7 678.4 

sp|P02787|TRFE_HUMAN DGAGDVAFVK.light 489.7 735.4 

sp|Q6UWP8|SBSN_HUMAN ALDGINSGITHAGR.light 461.2 541.8 

sp|Q6UWP8|SBSN_HUMAN ALDGINSGITHAGR.light 461.2 599.3 

sp|Q02383|SEMG2_HUMAN GSISIQTEEQIHGK.light 509.6 461.6 

sp|Q02383|SEMG2_HUMAN GSISIQTEEQIHGK.light 509.6 635.3 

sp|Q02383|SEMG2_HUMAN GSISIQTEEQIHGK.light 509.6 691.9 

sp|P61916|NPC2_HUMAN DC[+57.0]GSVDGVIK.light 525.3 276.1 

sp|P61916|NPC2_HUMAN DC[+57.0]GSVDGVIK.light 525.3 630.4 

sp|P61916|NPC2_HUMAN DC[+57.0]GSVDGVIK.light 525.3 774.4 

sp|Q6UWP8|SBSN_HUMAN FGQGVHHGLSEGWK.light 513.6 603.8 

sp|Q6UWP8|SBSN_HUMAN FGQGVHHGLSEGWK.light 513.6 696.3 

sp|O95274|LYPD3_HUMAN GC[+57.0]VQDEFC[+57.0]TR.light 636.3 827.3 

sp|O95274|LYPD3_HUMAN GC[+57.0]VQDEFC[+57.0]TR.light 636.3 955.4 

sp|O95274|LYPD3_HUMAN GC[+57.0]VQDEFC[+57.0]TR.light 636.3 1054.5 

sp|Q9UBC9|SPRR3_HUMAN VPVPGYTK.light 430.7 381.2 

sp|Q9UBC9|SPRR3_HUMAN VPVPGYTK.light 430.7 565.3 

sp|Q9UBC9|SPRR3_HUMAN VPVPGYTK.light 430.7 664.4 

sp|Q02383|SEMG2_HUMAN GSISIQTEEK.light 546.3 634.3 

sp|Q02383|SEMG2_HUMAN GSISIQTEEK.light 546.3 747.4 

sp|Q02383|SEMG2_HUMAN GSISIQTEEK.light 546.3 834.4 
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sp|P04279|SEMG1_HUMAN QITIPSQEQEHSQK.light 551.6 599.3 

sp|P04279|SEMG1_HUMAN QITIPSQEQEHSQK.light 551.6 706.3 

sp|P61916|NPC2_HUMAN SGINC[+57.0]PIQK.light 508.8 485.3 

sp|P61916|NPC2_HUMAN SGINC[+57.0]PIQK.light 508.8 645.3 

sp|P61916|NPC2_HUMAN SGINC[+57.0]PIQK.light 508.8 759.4 

sp|P07476|INVO_HUMAN HLVQQEGQLEQQER.light 574.6 560.3 

sp|P07476|INVO_HUMAN HLVQQEGQLEQQER.light 574.6 689.3 

sp|P07476|INVO_HUMAN HLVQQEGQLEQQER.light 574.6 920.5 

sp|Q9UBG3|CRNN_HUMAN AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR.light 839.9 851.4 

sp|Q9UBG3|CRNN_HUMAN AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR.light 839.9 886.9 

sp|Q9UBG3|CRNN_HUMAN AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR.light 839.9 1001.5 

sp|O60437|PEPL_HUMAN NQGPQESVVR.light 557.3 243.1 

sp|O60437|PEPL_HUMAN NQGPQESVVR.light 557.3 814.4 

sp|O60437|PEPL_HUMAN NQGPQESVVR.light 557.3 871.5 

sp|Q9UBC9|SPRR3_HUMAN VPEPGC[+57.0]TK.light 444.2 394.7 

sp|Q9UBC9|SPRR3_HUMAN VPEPGC[+57.0]TK.light 444.2 562.3 

sp|Q9UBC9|SPRR3_HUMAN VPEPGC[+57.0]TK.light 444.2 788.4 

sp|O60437|PEPL_HUMAN AQSLQSAK.light 416.7 200.1 

sp|O60437|PEPL_HUMAN AQSLQSAK.light 416.7 546.3 

sp|O60437|PEPL_HUMAN AQSLQSAK.light 416.7 633.4 
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Peripheral Blood: 

Apolipoprotein P02647|APOA1 

K.LLDNWDSVTSTFSK.L [69, 82]
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K.VSFLSALEEYTK.K [250, 261]
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Hemoglobin Beta P68871|HBB 

SAVTALWGK 

LLVVYPWTQR 
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Hemopexin P02790|HEMO 

K.NFPSPVDAAFR.Q [91, 101]
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Alpha-1 Antitrypsin P01009|A1AT 

K.LSITGTYDLK.S [314, 323]

K.SVLGQLGITK.V [324, 333]
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Serotransferrin P02787|TRFE 

 

K.DGAGDVAFVK.H [215, 224] 

 

K.SASDLTWDNLK.G [453, 463] 
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Saliva 

 

Statherin P02808 |STAT 

 

R.FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF - [32, 61] 
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Submaxillary Gland Androgen-Regulated Protein 3B P02814|SMR3B 

 

R.GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR.I [27, 57] 

 

R.IPPPPPAPYGPGIFPPPPPQP - [58, 78] 
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Alpha Amylase-1 P04745|AMY1 

R.LSGLLDLALGK.D [176, 186]

K.IAEYMNHLIDIGVAGFR.I [193, 209]
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Cystatin SA P09228|CYTT 

 

R.IIEGGIYDADLNDER.V [28, 42] 

 

R.ALHFVISEYNK.A [46, 56] 
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Vaginal Fluid 

Ly6/PLAUR O95274|LYPD3 

R.GLDLHGLLAFIQLQQCAQDR.C [92, 111]
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R.GCVQDEFCTR.D [191, 200] 
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Neutrophil Gelatinase P80188|NGAL 

 

K.WYVVGLAGNAILR.E [50, 62] 

 

K.MYATIYELK.E [70, 78] 
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Periplakin O60437|PEPL 

R.AQSLQSAK.A [721, 728]

K.NLLDEIASR.E [771, 779]
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R.NQGPQESVVR.K [924, 933] 
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Involucrin P07476|INVO 

K.HLVQQEGQLEQQER.Q [404, 417]

K.QEAQLELPEQQVGQPK.H [485, 500]



324 
 

K.GEVLLPVEHQQQK.Q [562, 574] 
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Cornulin Q9UBG3|CRNN 

R.LLDEDHTGTVEFK.E [59, 71]

R.ISPQIQLSGQTEQTQK.A [178, 193]
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R.AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR.T [219, 251]
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Suprabasin Q6UWP8|SBSN 

 

K.ALDGINSGITHAGR.E [49, 62] 

 

R.FGQGVHHGLSEGWK.E [331, 344] 
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Small Proline Rich Protein 3 Q9UBC9|SPRR3 

K.VPEPGCTK.V [60, 67]

K.VPVPGYTK.L [140, 147]
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Seminal Fluid 

 

Prostatic Acid Phosphatase P15309|PPAP 

 

K.FVTLVFR.H [36, 42] 
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R.FQELESETLK.S [163, 172]

R.ELSELSLLSLYGIHK.Q [236, 250]
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Prostate Specific Antigen P07288|KLK3 

 

R.FLRPGDDSSHDLMLLR.L [109, 124] 

 

R.LSEPAELTDAVK.V [125, 136] 
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Semenogelin 2 Q02383|SEMG2 

 

K.GSISIQTEEK.I [311, 320] 

 

K.GSISIQTEEQIHGK.S [371, 384] 

 

 



333 

K.DVSQSSISFQIEK.L [487, 499]
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Semenogelin 1 P04279|SEMG1 

K.DIFSTQDELLVYNK.N [251, 264]

K.QITIPSQEQEHSQK.A [328, 341]
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Epididymal Secretory Protein P61916|NPC2 

K.DCGSVDGVIK.E [25, 34]

K.SGINCPIQK.D [94, 102]
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• The acquisition parameters are as follows: 
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APPENDIX C: SAMPLE PREPARATION LIST FOR 3.1.6 CASEWORK 
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APPENDIX D: REPEATABILITY AND REPRODUCIBILITY CALCULATED COEFFICIENT OF 

VARIATION FOR PEAK AREA RESPONSE 
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APPENDIX E: REPEATABILITY AND REPRODUCIBILITY CALCULATED COEFFICIENT OF 

VARIATION FOR RELATIVE RETENTION TIME 
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APPENDIX F: REPEATABILITY AND REPRODUCIBILITY CALCULATED COEFFICIENT OF 

VARIATION FOR ION RATIO RESPONSE 
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APPENDIX G: AUTOSAMPLER STABILITY COMPREHENSIVE RESULTS 
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APPENDIX H: BLIND SAMPLE ANALYSIS RESULTS 
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APPENDIX I: INTERPRETATION GUIDELINES 

INTERPRETATION GUIDELINES 

Introduction: 

The interpretation of data from LC-MS/MS analyses is a matter of professional training and 

expertise. The following objective criteria are to be used by analysts to guide most routine data 

interpretation scenarios. Not every situation, however, may be fully covered by these interpretation 

guidelines. The treatment of samples that appear to fall outside of these guidelines should be 

addressed through discussion with the Technical Reviewer in order to reach agreement on a 

reportable opinion. In the event that agreement on a reportable opinion cannot be reached, the 

laboratory’s Technical Leader should be consulted to issue a final decision on a reportable opinion 

or other course of action. These interpretation guidelines are based upon validation studies, the 

peer-reviewed scientific literature, and professional training and expertise. These interpretation 

guidelines establish a solid framework of quality criteria to ensure that: 

• Conclusions in the casework report are scientifically supported by the analytical data,

including that obtained from appropriate standards and controls;

• Interpretations are made objectively; and

• Interpretations are consistent and accurate from analyst to analyst and case to case.

Evaluation of Controls: 

Internal Positive Control: This control (e.g., bovine myelin basic protein) serves to demonstrate that 

the sample digest (including digestion, denaturation, reduction and alkylation) performed 

successfully for each sample in the batch.  The internal positive control should be evaluated for 

each sample to determine if it meets the laboratory’s established quality criteria. Specifically, both 

the natural targeted peptide peak as well as the heavy labeled peak should be identified based on 

the appearance of two MRM transitions per peptide. Additionally, peaks should fall within two peak 

widths of the acceptable retention times outlined in the table below (± 0.2 min). The area ratio of 

the heavy labeled peptide to the natural peptide should be 15.0 ± 30%.  Area ratios falling outside 
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of this range may indicate the presence of digestion inhibition.  Notes: As the required heavy 

labelled peptide is not currently commercially available, it should be custom synthesized. In 

addition, the purity of commercially available myelin basic protein can vary. As such, the area ratio 

of the heavy labeled peptide to the natural peptide may fluctuate between reagents lots and should 

be monitored by the analyst. However, within a single preparation of these standards, the ratio will 

remain stable. 

1. If there appears to be an injection or other chromatographic problem, the sample should be re-

injected.

2. If the internal positive control fails to generate a peak for the natural/light peptide, or if the ratio

falls to meet the response criteria indicated above, the sample should be considered for re-

extraction.

Protein Peptide Sequence MRM transitions Retention time (min) 

Myelin 
DTGILDSLGR (Light) 523.7 → 660.3, 830.4 5.5 

DTGILDSLGR (Heavy) 528.7 → 670.3, 840.4 5.5 

Reagent (Negative) Control: This control (e.g., a sample processed in parallel with the casework 

samples of a batch but to which no protein source material was added) serves to demonstrate that 

the protein extraction and processing reagents do not contain targeted protein. The negative 

reagent control should be evaluated and meet the laboratory’s quality criteria.  Specifically, the 

negative reagent control should be free of detectible target protein upon analysis. The occurrence 

of more than one targeted peptide peak should be considered an indication of protein 

contamination. Such findings should be considered necessary but not sufficient for failing the 

negative reagent control. The official designation of a failure of the negative reagent control should 

be reviewed and documented by the laboratory’s supervisor or Technical Leader. 

1. If protein contamination is observed in a negative reagent control, acknowledgment of the

contaminant and subsequent actions should be documented in the case file.  In addition, the

analyst should endeavor to determine the point at which the contamination was introduced,

and the scope of the samples affected by the contamination.
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2. If the contaminating source affects all samples in the extraction set, the analysis should be

redone from the point at which the contamination was introduced.

3. If it is unclear at what point the contamination was introduced, the analysis should be repeated

from the protein sample preparation step forward.

4. If additional negative reagent controls were prepared with the batch and these show no sign of

contamination AND the associated samples show no sign of contamination, the incident may

be considered tube-specific. The data already derived from these samples can be used for fluid

identification purposes.

Additional Considerations: 

Carryover – Carryover was observed for Semenogelin-1 and Hemoglobin during the validation 

studies of the analytical method. Accordingly, any elevated signal from these proteins should be 

evaluated in subsequent injections.  A Blank (i.e., neat methanol) can be run after every sample in 

order to wash the column and prevent sample carryover.   

Peak Designation and Peptide Identification 

Proteins are composed of a sequence of amino acids arranged in a linear order.  This allows for 

the prediction, to a given degree of confidence, of the fragmentation pattern and MS/MS spectra 

that will be produced. To enhance the specificity of the method, up to three MRM transitions for 

each peptide are employed.  Detectable peptide peaks are those that meet the following criteria: 

• The peak has a signal to noise ratio greater than 3

• The peak height is greater than 1,000 counts

• The peak for the peptide should fall within two peak widths  (± 0.2 min) from the target

retention time

• The response ratio for the qualifier ions should be within ± 20% of the target. Note: extreme 

low or high signal intensity can result in a deviation from expected ion ratios.

Body Fluid Identification and Reporting Language 

Confirmatory Identification: The presence of at least one confirmatory protein (see Body Fluid 

Specificity Table below) for a body fluid of interest provides a confirmatory indication of the 
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presence of the corresponding targeted biological fluid.  This will be reported as “A confirmatory 

identification of (blood/saliva/semen) was obtained for item…” 

Presumptive Detection: The presence of at least one presumptive protein (see Specificity Table 

below) for a body fluid of interest provides a presumptive indication of the presence of the 

corresponding targeted biological fluid.  This will be reported as “A presumptive indication of 

(vaginal fluid) was obtained for item…” 

Not Detected: In all cases, a failure to detect a minimum of one targeted peptide for any body fluid 

represents a negative result. This will be reported as “No targeted biological fluids were detected”.  

Statements Regarding Human Specificity: Within the context of a confirmatory result, reporting of 

the result as human specific requires the detection of a peptide target unique to humans (see 

Species Specificity Table below).  This will be reported as “the confirmatory identification of human 

(blood/vaginal fluid/saliva/semen) was obtained” 
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Body Fluid Specificity 

Fluid Protein Confirmatory Presumptive Non-
Specific Notes: 

Peripheral 
Blood 

P02647|APOA1 Y 

P68871|HBB Y 
Trace levels in some 
saliva/seminal fluid (<1,000 
cts.) 

P02790|HEMO Y 

P01009|A1AT Y 
Trace levels in some 
saliva/seminal fluid (<2,000 
cts.) 

P02787|TRFE Y Detectable in seminal fluid 

Saliva 

P02808 |STAT Y 

P02814|SMR3B Y 

P04745|AMY1 Y Trace levels in some vaginal 
fluid (<1,000 cts.) 

P09228|CYTT Y 

Vaginal 
Fluid 

O95274|LYPD3 Y Consistent trace levels in 
saliva (<1,000 cts.) 

P80188|NGAL Y Consistent trace levels in 
saliva (<1,000 cts.) 

O60437|PEPL Y 

P07476|INVO Y Consistent trace levels in 
saliva (<2,000 cts.) 

Q9UBG3|CRNN Y Consistent trace levels in 
saliva (<1,000 cts.) 

Q6UWP8|SBSN Y Detectable in saliva 

Q9UBC9|SPRR3 Y Detectable in saliva 

Seminal 
Fluid 

P15309|PPAP Y Detectable in vaginal fluid 

P07288|KLK3 Y Consistent Trace levels in 
vaginal fluid 

Q02383|SEMG2 Y 

P04279|SEMG1 Y 

P61916|NPC2 Y Consistent Trace levels in 
vaginal fluid (<1,000 cts.) 
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Human/Species Specificity 

Fluid Protein Peptide Human 
Specific 

Species Cross 
Reactivity 

Peripheral 
Blood 

P02647|APOA1 LLDNWDSVTSTFSK N Chimpanzee 

P02647|APOA1 VSFLSALEEYTK N Primates 

P68871|HBB LLVVYPWTQR N Primates / 
mammals 

P68871|HBB SAVTALWGK N Primates / 
mammals 

P02790|HEMO NFPSPVDAAFR N Orangutan 

P01009|A1AT SVLGQLGITK Y  

P01009|A1AT LSITGTYDLK N Orangutan 

P02787|TRFE SASDLTWDNLK N Chimpanzee 

P02787|TRFE DGAGDVAFVK N Primates 

Saliva 

P02808 |STAT FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF Y  

P02814|SMR3B GPYPPGPLAPPQPFGPGFVPPPPPPPYGPG
R Y  

P02814|SMR3B IPPPPPAPYGPGIFPPPPPQP Y  

P04745|AMY1 IAEYMNHLIDIGVAGFR Y  

P04745|AMY1 LSGLLDLALGK Y  

P09228|CYTT ALHFVISEYNK Y  

P09228|CYTT IIEGGIYDADLNDER Y  

Seminal 
Fluid 

P15309|PPAP ELSELSLLSLYGIHK N Mouse 

P15309|PPAP FVTLVFR N Mouse 

P15309|PPAP FQELESETLK Y  

P07288|KLK3 FLRPGDDSSHDLMLLR Y  

P07288|KLK3 LSEPAELTDAVK Y  

Q02383|SEMG2 GSISIQTEEK N Primates 

Q02383|SEMG2 DVSQSSISFQIEK Y  

Q02383|SEMG2 GSISIQTEEQIHGK N Primates 

P04279|SEMG1 QITIPSQEQEHSQK Y  

P04279|SEMG1 DIFSTQDELLVYNK Y  

P61916|NPC2 DC[+57.0]GSVDGVIK Y  

P61916|NPC2 SGINC[+57.0]PIQK N Mammals 
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Fluid Protein Peptide Human 
Specific 

Species Cross 
Reactivity 

Vaginal 
Fluid 

O95274|LYPD3 GC[+57.0]VQDEFC[+57.0]TR Y  

O95274|LYPD3 GLDLHGLLAFIQLQQC[+57.0]AQDR Y  

P80188|NGAL WYVVGLAGNAILR Y  

P80188|NGAL MYATIYELK Y  

O60437|PEPL NQGPQESVVR Y  

O60437|PEPL NLLDEIASR Y  

O60437|PEPL AQSLQSAK Y  

P07476|INVO GEVLLPVEHQQQK Y  

P07476|INVO QEAQLELPEQQVGQPK N Chimpanzee 

P07476|INVO HLVQQEGQLEQQER Y  

Q9UBG3|CRNN LLDEDHTGTVEFK Y  

Q9UBG3|CRNN ISPQIQLSGQTEQTQK Y  

Q9UBG3|CRNN AHQTGETVTGSGTQTQAGATQTVEQDSSHQ
TGR Y  

Q6UWP8|SBSN ALDGINSGITHAGR Y  

Q6UWP8|SBSN FGQGVHHGLSEGWK Y  

Q9UBC9|SPRR
3 VPVPGYTK Y  

Q9UBC9|SPRR
3 VPEPGC[+57.0]TK Y  

 

*Data Searched using NCBI Algorithm PHI-BLAST (Pattern Hit Initiated BLAST), Animalia (taxid: 

33208), Non-redundant UniProt KB/SwissProt sequences database, Molecule Type: Protein 

Update date: 2019/03/26, Number of sequences: 471513. 

NOTES: 

Body fluid identification is confirmed through the mass spectral identification of multiple protein 

markers. Those protein markers, in turn, are confirmed through the detection of multiple tryptic 

peptides per protein. Below is a brief description of the biological function each targeted protein.  

Peripheral Blood is identified through the detection of α-1-antitrypsin, hemopexin, apolipoprotein 

A1, Serotransferrin, and hemoglobin subunit beta. α-1-antitrypsin is a non-specific serine protease 

inhibitor found in human plasma. This protein’s primary role is as an inhibitor of neutrophil elastase 

which protects tissues from proteolytic damage (Kolarich et al.; Parfrey et al.).  Hemopexin is 

produced in the liver and found in plasma. This protein is responsible for trapping free heme in 
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plasma as well as iron recycling in the liver (Ascenzi et al.; Liebert).  Apolipoprotein A1 is a 

component of HDL particles and is involved with the transport of cholesterol from tissues (Breslow 

et al.). Serotransferrin is an iron binding protein responsible for the transport of iron from sites of 

absorption and heme degradation to sites of storage and utilization (Aisen et al.; Yang et 

al.). Hemoglobin subunit beta - The metalloprotein hemoglobin is responsible for oxygen transport 

and is the major protein contained within erythrocytes. Hemoglobin exists as a tetramer containing 

two beta chains and two alpha chains (Berg et al.).  

Vaginal Fluid is identified through the detection of neutrophil gelatinase-associated lipocalin, 

cornulin, ly6/PLAUR domain-containing protein 3, periplakin, involucrin, and suprabasin. Neutrophil 

gelatinase-associated lipocalin belongs to the lipocalin family of transport proteins which have been 

associated with innate immunity though iron sequestration (Goetz et al.). As such, this protein can 

be found in tissues prone to exposure to bacterial and other microorganisms including the 

respiratory tract, salivary glands, uterus, and prostate (Goetz et al.; Cowland and Borregaard). 

Cornulin is also expressed in squamous cells where it plays a role in epithelial cell differentiation. 

It may also play a role in mucosal-epithelial immune response. The protein has been characterized 

in the cervix and in esophageal tissues (Contzler et al.; Arnouk et al.). Ly6/PLAUR domain-

containing protein 3 is involved in the regulation between extracellular structural support scaffolding 

and epithelial cell layers (Smith et al.). Suprabasin is expressed in keratinocytes and plays a role 

in epidermal differentiation. It has been reported to be expressed in the uterus as well as the 

esophagus (Park et al.). Involucrin is a component of cornified cell envelope (CE) of stratified 

squamous epithelia and is involved with membrane protein cross-linking (Djian et al.). Periplakin is 

a component of the cornified envelope of keratinocytes. May link the cornified cell envelope to 

desmosomes and intermediate filaments (Ruhrberg et al.).  

Saliva is confirmed through the detection of statherin, submaxillary gland androgen-regulated 

protein 3B, Cystatin SA, and alpha amylase. Statherin, as well as submaxillary gland androgen-

regulated protein 3B, assist in inhibiting potentially harmful calcium phosphate precipitation in saliva 

(Schlesinger and Hay; Hay et al.). Alpha amylase is the most abundant protein found in saliva 
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where it digests starches into glucose and maltose (Ramasubbu et al.). While highly abundant in 

saliva, this protein can be found in a number of alternate body fluids including vaginal fluid, breast 

milk, fecal matter, urine, blood and semen. Cystatin SA is a cysteine protease inhibitor located in 

the cystatin locus. It is found at high levels in saliva and tears. 

Seminal Fluid identification is based off the detection of Epididymal secretory protein E1, prostatic 

acid phosphatase, semenogelin-I/II, and prostate-specific antigen. Epididymal secretory protein E1 

is involved with intracellular cholesterol transporters. It acts in concert with NPC1 and plays an 

important role in the egress of cholesterol from the lysosomal compartment. Prostatic Acid 

Phosphatase (also known as Seminal Acid Phosphatase or SAP) is a glycoprotein secreted by the 

epithelial cells of the prostate gland. It is capable of hydrolyzing phosphate groups from substrate 

molecules (Yam).  SAP is a seminal fluid protein which has seen utility as a clinical marker for 

prostate cancer (Taira et al.). While largely replaced by PSA/p30 for screening purposes, the 

combination of low expression in non-target tissues and assay detection limits makes this protein 

useful as a potential marker of seminal fluid. Semenogelin-I/II are the most abundant proteins in 

seminal plasma and are responsible for the gel-like matrix of human semen. Both isoforms act as 

substrates for prostate specific antigen (p30), where upon lysis, sperm are able to move freely 

through the seminal matrix (Kise et al.; Malm and Hellman). Prostate-Specific Antigen (also known 

as PSA or p30) is a serine protease produced by epithelial cells located in the prostate (Ward et 

al.). The primary function of prostate-specific antigen is to cleave semenogelin-I/II thus creating a 

soluble, liquid medium, for spermatozoa movement (Ward et al.). Prostate-specific antigen has 

been well studied as an indicator for prostate cancer when serum levels reach approximately 4-10 

ng/mL (Basch et al.).  While this protein is not absolutely seminal fluid-specific, the detection limits 

of most assays make it difficult to detect it in whole blood (Keshishian et al.). As a result, this protein 

may have utility, in combination with other biomarkers, for the detection of seminal fluid.  
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APPENDIX J: GENETIC PROFILES OF CASEWORK SAMPLES 

Sample ID: SA01_01.1 Vaginal swab with semen from a non-vasectomized donor (sperm fraction) 
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Sample ID: SA01_01.2 Vaginal swab with semen from a non-vasectomized donor (sperm 
fraction) 
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Sample ID: SA01_02.1 Oral swab with semen from a non-vasectomized donor (sperm fraction) 
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Sample ID: SA01_02.2 Oral swab with semen from a non-vasectomized donor (sperm fraction) 
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Sample ID: SA01_03.1 Rectal swab with semen from a non-vasectomized donor (sperm fraction) 
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Sample ID: SA01_03.2 Rectal swab with semen from a non-vasectomized donor (sperm fraction) 
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Sample ID: SA02_02.1 Oral swab with semen from a vasectomized donor (sperm fraction) 
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APPENDIX K: PROTEIN IDENTIFICATION OF SEMEN POPULATION SAMPLES 

Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 
Score 

Average 
Best 

Score 

06C6979 

SEMG1 85.71 383 4.30E+09 

1.68E+09 

1141.90 

801.85 
SEMG2 78.69 301 2.39E+09 1350.90 

KLK3 30.65 8 9.74E+06 296.30 
PPAP 20.98 9 3.45E+07 418.30 

06C7294 

SEMG1 90.04 399 5.05E+09 

2.08E+09 

1087.90 

811.03 
SEMG2 80.58 295 3.24E+09 1404.20 

KLK3 34.87 7 7.17E+06 330.50 
PPAP 16.58 6 1.64E+07 421.50 

06C7352 

SEMG1 78.57 376 2.86E+09 

1.30E+09 

1146.30 

912.28 
SEMG2 75.94 290 2.04E+09 1321.70 

KLK3 40.61 22 1.35E+08 482.70 
PPAP 48.45 64 1.82E+08 698.40 

06C9228 

SEMG1 86.80 425 4.00E+09 

1.78E+09 

1167.50 

880.45 
SEMG2 81.27 322 3.00E+09 1366.40 

KLK3 40.61 19 6.87E+07 542.20 
PPAP 36.27 18 6.41E+07 445.70 

06C9237 

SEMG1 71.43 465 3.66E+09 

1.32E+09 

1102.90 

860.20 
SEMG2 69.42 255 1.57E+09 1301.00 

KLK3 39.08 15 2.12E+07 496.90 
PPAP 28.24 24 2.59E+07 540.00 

07C3133 

SEMG1 86.36 346 2.92E+09 

1.29E+09 

1125.00 

868.58 
SEMG2 74.57 222 2.14E+09 1368.50 

KLK3 40.61 16 2.87E+07 484.00 
PPAP 29.27 17 7.84E+07 496.80 

07C3212 

SEMG1 87.01 366 2.60E+09 

1.17E+09 

1075.90 

804.13 
SEMG2 79.21 304 2.06E+09 1364.20 

KLK3 27.97 6 3.78E+06 445.10 
PPAP 12.18 3 3.21E+06 331.30 

08C3217 

SEMG1 90.26 358 3.48E+09 

1.41E+09 

1113.70 

831.98 
SEMG2 76.46 246 2.12E+09 1373.50 

KLK3 34.87 9 1.44E+07 456.70 
PPAP 32.12 10 1.42E+07 384.00 

09C2531 

SEMG1 88.31 245 1.65E+09 

6.79E+08 

1276.10 

851.13 
SEMG2 71.65 153 1.05E+09 1236.90 

KLK3 19.54 4 2.48E+06 478.80 
PPAP 22.28 8 9.01E+06 412.70 

17_08_505 

SEMG1 83.12 245 7.41E+08 

3.46E+08 

1016.10 

729.13 
SEMG2 72.16 188 6.38E+08 1209.20 

KLK3 21.07 5 2.88E+06 385.80 
PPAP 15.28 5 3.16E+06 305.40 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 
Score 

Average 
Best 
Score 

17_08_506 

SEMG1 86.15 365 2.62E+09 

8.16E+08 

1067.30 

765.45 
SEMG2 65.81 172 5.57E+08 1112.30 

KLK3 40.61 18 4.07E+07 469.80 
PPAP 20.98 16 4.46E+07 412.40 

17_12_513 

SEMG1 83.33 400 3.48E+09 

1.48E+09 

1103.50 

818.48 
SEMG2 79.38 265 2.39E+09 1283.00 

KLK3 30.27 10 1.64E+07 469.00 
PPAP 20.98 9 3.29E+07 418.40 

18_01_691 

SEMG1 77.27 339 2.35E+09 

1.17E+09 

1145.90 

824.23 
SEMG2 77.66 243 2.19E+09 1189.60 

KLK3 40.61 16 4.91E+07 439.40 
PPAP 39.38 24 8.46E+07 522.00 

18_03_543 

SEMG1 83.55 385 3.64E+09 

1.54E+09 

1184.40 

890.90 
SEMG2 74.23 283 2.48E+09 1345.20 

KLK3 30.27 12 1.99E+07 460.20 
PPAP 27.72 26 3.08E+07 573.80 

18_03_579 

SEMG1 82.47 354 4.60E+09 

1.84E+09 

1136.40 

913.00 
SEMG2 78.52 253 2.49E+09 1362.80 

KLK3 40.61 23 1.38E+08 619.50 
PPAP 36.79 28 1.21E+08 533.30 

18_03_579 

SEMG1 92.86 314 4.57E+09 

1.84E+09 

1345.90 

906.78 
SEMG2 77.49 219 2.77E+09 1417.90 

KLK3 14.94 4 5.54E+06 453.50 
PPAP 20.98 7 7.11E+06 409.80 

18_03_615 

SEMG1 92.42 452 5.98E+09 

2.47E+09 

1108.50 

857.23 
SEMG2 83.33 319 3.82E+09 1400.10 

KLK3 31.80 12 2.74E+07 479.60 
PPAP 28.24 17 5.61E+07 440.70 

18_09_594 

SEMG1 89.83 376 5.51E+09 

2.26E+09 

1181.60 

861.70 
SEMG2 80.58 287 3.43E+09 1461.10 

KLK3 40.61 14 3.83E+07 354.10 
PPAP 25.39 14 5.19E+07 450.00 

19_02_507 

SEMG1 83.12 305 2.26E+09 

1.14E+09 

1128.60 

864.40 
SEMG2 82.47 249 2.16E+09 1409.10 

KLK3 37.93 15 8.07E+07 478.90 
PPAP 44.04 20 4.97E+07 441.00 

19_03_518 

SEMG1 82.90 347 3.02E+09 

1.41E+09 

1157.50 

833.18 
SEMG2 77.49 285 2.61E+09 1298.90 

KLK3 40.23 8 1.12E+07 480.00 
PPAP 13.47 4 6.17E+06 396.30 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 
Score 

Average 
Best 
Score 

19_06_629 

SEMG1 86.15 325 2.44E+09 

1.21E+09 

1149.90 

850.25 
SEMG2 74.40 202 2.29E+09 1326.60 

KLK3 33.33 11 4.13E+07 457.90 
PPAP 31.09 25 6.81E+07 466.60 

19_07_577 

SEMG1 89.39 362 3.43E+09 

1.42E+09 

1121.00 

853.40 
SEMG2 76.98 255 2.22E+09 1390.40 

KLK3 31.80 11 2.74E+07 490.40 
PPAP 20.98 11 2.78E+07 411.80 

19_09_609 

SEMG1 86.58 395 4.05E+09 

1.82E+09 

1145.90 

822.53 
SEMG2 79.04 243 3.10E+09 1383.80 

KLK3 40.61 16 5.68E+07 318.90 
PPAP 38.60 20 7.09E+07 441.50 

19_10_584 

SEMG1 88.96 285 1.50E+09 

6.58E+08 

1075.80 

765.08 
SEMG2 74.40 191 1.11E+09 1270.00 

KLK3 21.84 6 3.25E+06 379.90 
PPAP 23.83 13 1.23E+07 334.60 

19_11_614 

SEMG1 94.16 311 3.87E+09 

1.62E+09 

1234.90 

806.78 
SEMG2 73.20 231 2.59E+09 1371.80 

KLK3 23.37 6 8.93E+06 237.90 
PPAP 12.18 4 3.72E+06 382.50 

19_12_573 

SEMG1 95.02 398 5.83E+09 

2.17E+09 

1288.00 

884.88 
SEMG2 80.24 264 2.80E+09 1375.90 

KLK3 31.80 8 1.82E+07 470.60 
PPAP 20.98 7 2.02E+07 405.00 

20_02_628 

SEMG1 88.53 334 4.30E+09 

1.72E+09 

1242.10 

892.28 
SEMG2 75.43 258 2.52E+09 1427.50 

KLK3 39.08 15 4.04E+07 499.10 
PPAP 20.98 7 2.15E+07 400.40 

20_02_628 

SEMG1 89.18 322 2.83E+09 

1.08E+09 

1277.20 

861.25 
SEMG2 75.43 209 1.44E+09 1303.00 

KLK3 38.70 11 1.91E+07 462.70 
PPAP 24.87 14 2.75E+07 402.10 

20_02_694 

SEMG1 94.59 278 3.09E+09 

1.29E+09 

1205.70 

691.90 
SEMG2 78.35 209 2.07E+09 1247.70 

KLK3 11.49 2 2.26E+05 68.80 
PPAP 13.47 4 1.70E+06 245.40 

20_04_559 

SEMG1 91.56 367 5.21E+09 

2.09E+09 

1250.10 

920.75 
SEMG2 79.72 262 3.08E+09 1491.40 

KLK3 33.33 10 2.66E+07 469.40 
PPAP 20.98 8 3.14E+07 472.10 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 
Score 

Average 
Best 
Score 

31978_01 

SEMG1 83.55 374 3.74E+09 

1.78E+09 

1125.10 

953.08 
SEMG2 80.24 250 2.70E+09 1417.20 

KLK3 41.38 33 2.25E+08 600.60 
PPAP 48.45 54 4.32E+08 669.40 

31978_02 

SEMG1 90.04 397 5.76E+09 

2.42E+09 

1198.10 

919.63 
SEMG2 82.30 295 3.56E+09 1391.60 

KLK3 40.61 21 1.59E+08 503.70 
PPAP 43.78 30 1.84E+08 585.10 

31978_03 

SEMG1 83.98 387 5.71E+09 

2.16E+09 

1098.60 

903.23 
SEMG2 79.72 247 2.67E+09 1360.90 

KLK3 39.08 20 1.32E+08 577.20 
PPAP 48.19 40 1.42E+08 576.20 

31978_04 

SEMG1 86.58 415 4.22E+09 

1.79E+09 

1166.70 

850.18 
SEMG2 82.30 290 2.84E+09 1353.90 

KLK3 37.93 12 1.70E+07 343.50 
PPAP 28.24 12 7.01E+07 536.60 

31978_05 

SEMG1 87.88 396 7.31E+09 

3.00E+09 

1176.00 

870.73 
SEMG2 78.35 301 4.64E+09 1395.00 

KLK3 27.20 8 1.69E+07 478.60 
PPAP 16.58 5 1.93E+07 433.30 

31978-06 

SEMG1 90.9 234 1.58E+09 

6.24E+08 

1268.5 

863.10 
SEMG2 70.6 163 9.09E+08 1359.8 

KLK3 14.2 4 3.77E+06 443.7 
PPAP 4.4 2 1.94E+06 380.4 

31978-07 

SEMG1 78.8 375 1.80E+09 

7.50E+08 

1123.1 

650.80 
SEMG2 76.6 305 1.20E+09 1273.6 

KLK3 0 0 0 0 
PPAP 3.1 2 1.43E+05 206.5 

31978-08 

SEMG1 84 390 6.53E+09 

2.62E+09 

1243.2 

813.63 
SEMG2 80.8 272 3.93E+09 1351.5 

KLK3 8.8 2 3.08E+06 286.4 
PPAP 25.6 9 8.28E+06 373.4 

31978-09 

SEMG1 89.8 418 7.20E+09 

2.90E+09 

1171.6 

843.28 
SEMG2 84.4 327 4.36E+09 1315.8 

KLK3 27.2 9 1.94E+07 423.4 
PPAP 25.4 10 2.40E+07 462.3 

31978-10 

SEMG1 86.8 330 2.49E+09 

1.12E+09 

1102.9 

831.25 
SEMG2 74.1 289 1.97E+09 1350.6 

KLK3 31.8 10 1.25E+07 432.5 
PPAP 21 8 1.11E+07 439 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 
Score 

Average 
Best 
Score 

31978-11 

SEMG1 87.4 373 4.47E+09 

1.79E+09 

1233.4 

816.65 
SEMG2 80.1 272 2.66E+09 1349.2 

KLK3 31.8 9 1.38E+07 297.3 
PPAP 21 8 1.47E+07 386.7 

31978-12 

SEMG1 83.8 391 3.04E+09 

1.37E+09 

1095.3 

815.05 
SEMG2 78.2 310 2.42E+09 1265.8 

KLK3 33.3 14 2.30E+07 493.8 
PPAP 16.6 7 9.46E+06 405.3 

31978-13 

SEMG1 90 401 6.14E+09 

2.69E+09 

1146.9 

831.90 
SEMG2 82.1 282 4.61E+09 1332.5 

KLK3 36 9 1.02E+07 409.4 
PPAP 21 6 1.27E+07 438.8 

31978-14 

SEMG1 90.7 439 9.33E+09 

3.60E+09 

1172.5 

879.85 
SEMG2 79.2 323 4.93E+09 1342.4 

KLK3 33.3 16 7.47E+07 542.6 
PPAP 25.4 11 8.03E+07 461.9 

31978-15 

SEMG1 89.2 374 4.49E+09 

1.99E+09 

1217.8 

860.88 
SEMG2 80.2 258 3.38E+09 1354.2 

KLK3 40.2 12 2.47E+07 406.3 
PPAP 25.4 10 5.91E+07 465.2 

31978-16 

SEMG1 83.5 376 2.94E+09 

1.25E+09 

1136.8 

829.40 
SEMG2 77.7 295 2.03E+09 1332.4 

KLK3 37.9 11 1.04E+07 470.1 
PPAP 16.6 5 2.97E+06 378.3 

31978-17 

SEMG1 90.9 360 3.70E+09 

1.57E+09 

1097.2 

784.13 
SEMG2 79.6 266 2.57E+09 1417.2 

KLK3 20.7 6 6.00E+06 309 
PPAP 11.4 2 3.17E+06 313.1 

31978-18 

SEMG1 78.6 312 2.70E+09 

1.35E+09 

1171.3 

911.98 
SEMG2 85.6 331 2.59E+09 1354.2 

KLK3 33.4 30 5.85E+07 605.3 
PPAP 37.2 11 3.61E+07 517.1 

31978_19 

SEMG1 86.58 465 4.56E+09 

2.08E+09 

1158.20 

963.53 
SEMG2 82.13 321 3.37E+09 1443.80 

KLK3 40.61 23 1.42E+08 564.90 
PPAP 53.63 61 2.28E+08 687.20 

31978_20 

SEMG1 86.80 342 4.73E+09 

2.01E+09 

1217.90 

923.63 
SEMG2 83.16 260 3.08E+09 1359.00 

KLK3 39.46 21 8.12E+07 543.60 
PPAP 45.08 31 1.49E+08 574.00 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 
Score 

Average 
Best 
Score 

20_04_566 

SEMG1 81.17 411 2.47E+09 

1.18E+09 

1112.60 

882.85 
SEMG2 79.38 322 2.14E+09 1381.20 

KLK3 40.23 13 5.41E+07 470.60 
PPAP 46.63 29 6.43E+07 567.00 

20_05_510 

SEMG1 92.21 305 2.96E+09 

1.35E+09 

1235.10 

908.08 
SEMG2 76.80 225 2.26E+09 1300.60 

KLK3 40.23 17 6.67E+07 502.90 
PPAP 40.41 27 1.03E+08 593.70 

20_05_515 

SEMG1 87.45 236 1.62E+09 

6.48E+08 

1232.20 

817.33 
SEMG2 69.76 166 9.70E+08 1370.80 

KLK3 9.96 5 3.50E+06 434.40 
PPAP 3.63 1 7.58E+05 231.90 

20_05_522 

SEMG1 89.83 321 3.60E+09 

1.62E+09 

1173.10 

924.98 
SEMG2 79.38 246 2.60E+09 1396.60 

KLK3 41.76 24 1.57E+08 584.10 
PPAP 39.12 27 1.09E+08 546.10 

20_05_523 

SEMG1 89.39 357 5.89E+09 

2.66E+09 

1200.10 

989.08 
SEMG2 76.12 271 4.42E+09 1424.40 

KLK3 44.83 27 1.61E+08 705.00 
PPAP 48.45 43 1.69E+08 626.80 



394 
 

 

Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 
Score 

Average 
Best 
Score 

18_03_552 
(Vasectomized) 

SEMG1 87.88 323 2.53E+09 

1.08E+09 

1171.50 

808.35 
SEMG2 74.57 227 1.78E+09 1360.80 
KLK3 14.18 5 3.64E+06 460.40 
PPAP 3.63 1 3.76E+05 240.70 

19_09_537 
(Vasectomized) 

SEMG1 87.88 411 3.99E+09 

1.68E+09 

1126.10 

816.98 
SEMG2 79.38 299 2.72E+09 1391.20 
KLK3 18.39 7 1.07E+07 443.00 
PPAP 16.58 6 7.01E+06 307.60 

19_10_565 
(Vasectomized) 

SEMG1 90.26 334 2.42E+09 

1.02E+09 

1114.90 

852.65 
SEMG2 76.46 210 1.63E+09 1383.20 
KLK3 23.75 8 1.27E+07 483.60 
PPAP 20.98 9 1.08E+07 428.90 

17_04_533 
(Vasectomized) 

SEMG1 90.69 438 4.48E+09 

1.78E+09 

1146.50 

839.95 
SEMG2 76.29 308 2.65E+09 1375.90 
KLK3 16.86 5 5.24E+06 479.30 
PPAP 11.66 3 3.17E+06 358.10 

17_02_589 
(Vasectomized) 

SEMG1 89.83 356 3.21E+09 

1.48E+09 

1180.30 

710.65 
SEMG2 82.65 302 2.71E+09 1350.80 
KLK3 12.26 2 7.74E+05 137.50 
PPAP 4.66 2 4.04E+05 174.00 
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APPENDIX L: PROTEIN IDENTIFICATION OF SALIVA POPULATION SAMPLES 

Sample 
ID Protein ID % 

Coverage 
# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

1866 

Basic Salivary 1 95.41 181 7.17E+08 

2.24E+08 

1024.30 

667.77 

Basic Salivary 2 45.43 31 1.05E+08 757.10 
Basic Salivary 3 64.10 78 3.61E+08 976.40 
Basic Salivary 4 45.16 42 7.03E+07 616.60 

Salivary Acidic 1/2 90.36 156 7.62E+08 928.70 
Statherin 54.84 145 2.09E+08 557.80 

Submaxillary Gland 72.15 76 1.43E+08 496.10 
Histatin 1 66.67 71 6.83E+07 482.60 
Histatin 3 62.74 15 1.66E+07 578.90 

Cystatin-SN 30.50 13 1.26E+07 424.60 
Alpha-Amylase 1 9.59 6 1.86E+06 502.40 

1995 

Basic Salivary 1 18.11 7 8.74E+06 

1.83E+08 

501.40 

532.11 

Basic Salivary 2 85.10 97 2.21E+08 735.90 
Basic Salivary 3 81.55 96 4.82E+08 824.20 
Basic Salivary 4 64.52 61 2.32E+08 595.30 

Salivary Acidic 1/2 90.36 126 7.98E+08 798.10 
Statherin 45.16 53 4.42E+07 397.60 

Submaxillary Gland 72.15 80 1.84E+08 500.00 
Histatin 1 43.86 45 3.62E+07 564.90 
Histatin 3 31.37 4 1.76E+06 319.50 

Cystatin-SN 11.35 6 2.74E+06 382.30 
Alpha-Amylase 1 5.28 4 6.03E+05 234.00 

2407 

Basic Salivary 1 93.62 158 6.61E+08 

3.22E+08 

874.40 

601.41 

Basic Salivary 2 45.91 19 4.88E+07 536.50 
Basic Salivary 3 73.79 76 5.14E+08 927.20 
Basic Salivary 4 26.45 12 1.63E+07 560.60 

Salivary Acidic 1/2 90.36 146 1.36E+09 809.90 
Statherin 54.84 119 2.81E+08 544.90 

Submaxillary Gland 72.15 98 4.70E+08 609.00 
Histatin 1 47.37 104 1.87E+08 567.70 
Histatin 3 60.78 7 4.63E+06 384.00 

Cystatin-SN 19.86 4 9.64E+05 424.70 
Alpha-Amylase 1 4.89 3 7.63E+05 376.60 

3955 

Basic Salivary 1 94.90 204 1.40E+09 

4.06E+08 

1032.80 

662.20 

Basic Salivary 2 45.43 26 1.23E+08 674.50 
Basic Salivary 3 70.87 61 3.03E+08 872.50 
Basic Salivary 4 51.29 51 2.15E+08 1024.80 

Salivary Acidic 1/2 90.36 149 1.33E+09 923.30 
Statherin 66.13 96 2.07E+08 482.40 

Submaxillary Gland 72.15 107 7.15E+08 587.70 
Histatin 1 45.61 90 1.58E+08 555.00 
Histatin 3 21.57 3 1.06E+06 338.50 

Cystatin-SN 10.64 4 1.60E+06 408.90 
Alpha-Amylase 1 4.89 2 7.41E+05 383.80 
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Sample 
ID Protein ID % 

Coverage 
# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

4646 

Basic Salivary 1 93.88 134 6.69E+08 

3.72E+08 

1050.90 

657.98 

Basic Salivary 2 38.70 14 4.16E+07 631.70 
Basic Salivary 3 76.70 79 6.55E+08 1008.40 
Basic Salivary 4 34.52 22 8.05E+07 658.80 

Salivary Acidic 1/2 90.36 131 1.50E+09 961.50 
Statherin 54.84 109 3.37E+08 623.00 

Submaxillary Gland 72.15 80 5.42E+08 617.30 
Histatin 1 66.67 105 2.51E+08 602.10 
Histatin 3 62.74 14 1.58E+07 405.20 

Cystatin-SN 5.67 1 2.18E+05 307.50 
Alpha-Amylase 1 2.15 1 8.82E+05 371.40 

4970 

Basic Salivary 1 53.57 26 2.84E+07 

1.37E+08 

637.90 

514.24 

Basic Salivary 2 93.03 140 5.78E+08 1068.00 
Basic Salivary 3 6.84 1 2.79E+05 125.50 
Basic Salivary 4 63.23 65 1.49E+08 674.50 

Salivary Acidic 1/2 81.32 91 3.01E+08 823.90 
Statherin 54.84 62 7.11E+07 395.70 

Submaxillary Gland 72.15 91 2.47E+08 504.00 
Histatin 1 64.91 89 1.09E+08 502.80 
Histatin 3 62.74 17 1.65E+07 559.10 

Cystatin-SN 13.48 3 7.40E+05 365.20 
Alpha-Amylase 1 0.00 0 0.00E+00 0.00 

5711 

Basic Salivary 1 93.37 152 6.73E+08 

3.98E+08 

921.10 

631.76 

Basic Salivary 2 42.31 20 5.01E+07 685.00 
Basic Salivary 3 71.20 77 4.72E+08 927.00 
Basic Salivary 4 41.61 17 6.32E+07 513.40 

Salivary Acidic 1/2 90.36 161 1.65E+09 881.30 
Statherin 54.84 118 4.10E+08 537.60 

Submaxillary Gland 72.15 100 8.47E+08 633.40 
Histatin 1 47.37 107 2.05E+08 582.40 
Histatin 3 41.18 5 1.88E+06 377.30 

Cystatin-SN 13.48 3 2.25E+06 440.40 
Alpha-Amylase 1 2.15 1 6.11E+05 450.50 

6003 

Basic Salivary 1 47.70 24 4.15E+07 

2.17E+08 

571.60 

582.05 

Basic Salivary 2 90.14 103 3.56E+08 786.40 
Basic Salivary 3 73.79 54 1.98E+08 783.50 
Basic Salivary 4 53.87 58 1.25E+08 635.20 

Salivary Acidic 1/2 90.36 122 8.03E+08 701.00 
Statherin 54.84 114 1.94E+08 506.30 

Submaxillary Gland 72.15 94 5.19E+08 543.90 
Histatin 1 47.37 91 1.36E+08 568.60 
Histatin 3 60.78 13 9.74E+06 470.30 

Cystatin-SN 30.50 13 8.03E+06 482.50 
Alpha-Amylase 1 8.41 4 1.26E+06 353.20 
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Sample 
ID Protein ID % 

Coverage 
# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

6014 

Basic Salivary 1 92.35 168 1.22E+09 

4.19E+08 

1044.50 

670.97 

Basic Salivary 2 44.71 22 1.23E+08 597.30 
Basic Salivary 3 58.90 62 4.93E+08 1051.10 
Basic Salivary 4 74.84 89 8.56E+08 1027.20 

Salivary Acidic 1/2 90.36 142 9.72E+08 744.30 
Statherin 66.13 106 2.63E+08 527.70 

Submaxillary Gland 67.09 107 5.36E+08 537.30 
Histatin 1 45.61 69 1.31E+08 532.40 
Histatin 3 21.57 4 2.12E+06 299.50 

Cystatin-SN 13.48 9 1.22E+07 520.10 
Alpha-Amylase 1 4.50 2 8.99E+05 499.30 

6066 

Basic Salivary 1 93.37 152 8.45E+08 

2.42E+08 

1016.50 

570.11 

Basic Salivary 2 43.75 21 1.11E+08 592.30 
Basic Salivary 3 19.94 4 6.27E+06 425.80 
Basic Salivary 4 67.10 80 3.95E+08 839.80 

Salivary Acidic 1/2 18.07 5 1.53E+07 529.50 
Statherin 66.13 102 2.70E+08 535.70 

Submaxillary Gland 72.15 113 7.10E+08 546.50 
Histatin 1 54.39 117 3.03E+08 550.70 
Histatin 3 60.78 12 7.08E+06 353.10 

Cystatin-SN 10.64 4 1.64E+06 395.90 
Alpha-Amylase 1 2.15 1 7.39E+05 485.40 

6163 

Basic Salivary 1 95.15 196 1.82E+09 

3.45E+08 

1068.90 

647.77 

Basic Salivary 2 54.09 51 3.09E+08 867.80 
Basic Salivary 3 46.72 34 1.70E+08 806.90 
Basic Salivary 4 58.39 54 2.72E+08 714.50 

Salivary Acidic 1/2 90.36 83 6.72E+08 735.90 
Statherin 53.22 56 8.83E+07 493.10 

Submaxillary Gland 72.15 94 2.88E+08 635.20 
Histatin 1 66.67 96 1.47E+08 550.80 
Histatin 3 60.78 9 1.88E+07 554.70 

Cystatin-SN 11.35 2 8.45E+05 395.40 
Alpha-Amylase 1 2.15 1 4.00E+05 302.30 

6166 

Basic Salivary 1 94.90 213 1.16E+09 

2.62E+08 

997.70 

597.95 

Basic Salivary 2 50.96 34 1.02E+08 651.30 
Basic Salivary 3 73.79 67 3.06E+08 788.40 
Basic Salivary 4 37.74 36 9.86E+07 584.90 

Salivary Acidic 1/2 90.36 118 6.54E+08 744.70 
Statherin 54.84 100 1.30E+08 545.90 

Submaxillary Gland 72.15 93 3.12E+08 521.60 
Histatin 1 45.61 68 1.07E+08 509.30 
Histatin 3 58.82 6 1.98E+06 450.60 

Cystatin-SN 18.44 7 1.32E+06 328.90 
Alpha-Amylase 1 4.89 2 1.03E+06 454.10 
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Sample ID Protein ID % Coverage # Unique 
Peptides Intensity Average 

Intensity 
Best 
Score 

Average 
Best Score 

6171 

Basic Salivary 1 36.67 14 5.80E+07 

2.29E+08 

637.50 

525.11 

Basic Salivary 2 83.41 127 5.17E+08 867.20 
Basic Salivary 3 54.42 20 9.01E+07 767.90 
Basic Salivary 4 77.10 94 6.91E+08 895.80 

Salivary Acidic 1/2 90.36 91 4.43E+08 685.20 
Statherin 50.00 76 1.90E+08 510.60 

Submaxillary Gland 72.15 78 4.53E+08 546.00 
Histatin 1 45.61 49 7.33E+07 480.40 
Histatin 3 0.00 0.00 0.00E+00 0.00 

Cystatin-SN 0.00 0.00 0.00E+00 0.00 
Alpha-Amylase 1 4.89 2 6.38E+05 385.60 

6238 

Basic Salivary 1 93.88 162 9.99E+08 

2.78E+08 

1016.80 

606.36 

Basic Salivary 2 44.23 18 9.76E+07 699.00 
Basic Salivary 3 73.46 65 5.06E+08 823.90 
Basic Salivary 4 57.10 61 3.59E+08 1068.20 

Salivary Acidic 1/2 18.07 5 9.13E+06 558.50 
Statherin 54.84 87 2.49E+08 528.30 

Submaxillary Gland 72.15 87 7.00E+08 578.80 
Histatin 1 47.37 82 1.34E+08 565.90 
Histatin 3 0 0 0.00E+00 0 

Cystatin-SN 18.44 3 1.44E+06 411.30 
Alpha-Amylase 1 4.89 2 7.70E+05 419.30 

6239 

Basic Salivary 1 37.24 34 6.61E+07 

1.28E+08 

541.50 

459.75 

Basic Salivary 2 2.40 1 5.99E+06 443.70 
Basic Salivary 3 62.39 39 1.48E+08 765.50 
Basic Salivary 4 55.47 36 1.00E+08 525.50 

Salivary Acidic 1/2 81.93 99 5.29E+08 662.80 
Statherin 61.29 70 7.26E+07 425.70 

Submaxillary Gland 67.09 56 4.63E+08 500.00 
Histatin 1 50.88 24 1.55E+07 418.90 
Histatin 3 0 0 0.00E+00 0 

Cystatin-SN 24.11 6 1.49E+06 403.30 
Alpha-Amylase 1 2.74 2 6.76E+05 370.30 

6260 

Basic Salivary 1 23.47 7 5.98E+06 

1.24E+08 

333.10 

520.52 

Basic Salivary 2 88.46 77 1.57E+08 715.20 
Basic Salivary 3 70.87 67 2.43E+08 841.50 
Basic Salivary 4 49.03 42 6.76E+07 628.90 

Salivary Acidic 1/2 21.08 7 5.33E+06 283.40 
Statherin 69.35 127 2.86E+08 491.00 

Submaxillary Gland 72.15 106 4.79E+08 583.40 
Histatin 1 47.37 96 1.10E+08 550.70 
Histatin 3 60.78 9 1.03E+07 473.80 

Cystatin-SN 12.06 2 2.75E+06 443.30 
Alpha-Amylase 1 2.15 1 4.18E+05 381.40 
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Sample 
ID Protein ID % 

Coverage 
# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

6310 

Basic Salivary 1 0 0 0.00E+00 

1.58E+08 

0 

359.75 

Basic Salivary 2 18.75 10 4.00E+06 299.10 
Basic Salivary 3 68.95 49 3.36E+08 752.90 
Basic Salivary 4 30.00 21 2.39E+07 438.60 

Salivary Acidic 1/2 87.35 94 5.36E+08 707.80 
Statherin 43.55 55 7.17E+07 460.50 

Submaxillary Gland 67.09 79 7.37E+08 500.40 
Histatin 1 42.10 29 2.89E+07 441.10 
Histatin 3 0 0 0.00E+00 0 

Cystatin-SN 0 0 0.00E+00 0 
Alpha-Amylase 1 2.74 2 9.66E+05 356.80 

6343 

Basic Salivary 1 95.92 194 2.01E+09 

4.18E+08 

1115.80 

744.31 

Basic Salivary 2 59.62 47 1.77E+08 921.80 
Basic Salivary 3 55.66 38 2.03E+08 792.00 
Basic Salivary 4 63.55 48 2.70E+08 961.20 

Salivary Acidic 1/2 90.36 94 9.83E+08 1105.80 
Statherin 67.74 101 1.52E+08 527.40 

Submaxillary Gland 72.15 93 4.47E+08 559.50 
Histatin 1 66.67 99 2.87E+08 569.90 
Histatin 3 60.78 15 7.26E+07 670.20 

Cystatin-SN 18.44 6 3.09E+06 466.10 
Alpha-Amylase 1 7.04 3 1.18E+06 497.70 

6462 

Basic Salivary 1 89.39 101 5.34E+08 

3.45E+08 

1033.60 

599.55 

Basic Salivary 2 25.48 10 2.19E+07 449.20 
Basic Salivary 3 67.96 70 7.75E+08 924.40 
Basic Salivary 4 53.87 45 3.74E+08 867.70 

Salivary Acidic 1/2 90.36 120 1.42E+09 734.20 
Statherin 51.61 75 1.28E+08 502.10 

Submaxillary Gland 72.15 92 4.31E+08 600.30 
Histatin 1 66.67 80 1.08E+08 535.10 
Histatin 3 58.82 7 2.46E+06 446.70 

Cystatin-SN 0.00 0.00 0.00E+00 0 
Alpha-Amylase 1 4.31 2 1.14E+06 501.80 

6472 

Basic Salivary 1 4.08 1 1.09E+06 

1.39E+08 

221.90 

453.25 

Basic Salivary 2 51.44 34 3.71E+07 583.20 
Basic Salivary 3 60.52 47 1.86E+08 741.00 
Basic Salivary 4 38.71 34 8.53E+07 546.50 

Salivary Acidic 1/2 86.75 147 6.83E+08 836.70 
Statherin 50.00 114 2.56E+08 565.20 

Submaxillary Gland 67.09 95 2.45E+08 494.80 
Histatin 1 42.10 16 2.98E+07 421.10 
Histatin 3 0 0 0.00E+00 0 

Cystatin-SN 30.50 9 4.05E+06 309.40 
Alpha-Amylase 1 2.15 1 3.97E+05 266.00 
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Sample 
ID Protein ID % 

Coverage 
# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

6503 

Basic Salivary 1 92.35 136 3.13E+08 

2.07E+08 

746.90 

511.56 

Basic Salivary 2 21.63 11 1.98E+07 471.90 
Basic Salivary 3 69.58 54 2.91E+08 768.30 
Basic Salivary 4 65.16 57 1.62E+08 598.30 

Salivary Acidic 1/2 21.08 12 7.36E+07 623.40 
Statherin 66.13 105 2.53E+08 523.70 

Submaxillary Gland 67.09 134 1.08E+09 540.80 
Histatin 1 50.88 50 7.65E+07 557.30 
Histatin 3 0 0 0.00E+00 0 

Cystatin-SN 15.60 5 6.60E+06 518.30 
Alpha-Amylase 1 2.15 1 3.51E+05 278.30 

6510 

Basic Salivary 1 95.66 163 5.53E+08 

1.59E+08 

865.50 

573.24 

Basic Salivary 2 47.84 30 4.51E+07 624.60 
Basic Salivary 3 67.64 36 8.87E+07 760.50 
Basic Salivary 4 47.74 21 3.13E+07 472.80 

Salivary Acidic 1/2 90.36 85 4.21E+08 903.00 
Statherin 58.06 100 1.81E+08 412.90 

Submaxillary Gland 72.15 88 3.36E+08 542.50 
Histatin 1 43.86 23 9.27E+07 605.20 
Histatin 3 31.37 3 1.19E+06 394.50 

Cystatin-SN 24.82 5 2.52E+06 414.30 
Alpha-Amylase 1 2.15 1 3.44E+05 309.80 

6554 

Basic Salivary 1 91.82 150 7.49E+08 

3.11E+08 

1023.30 

638.67 

Basic Salivary 2 51.20 22 5.44E+07 589.70 
Basic Salivary 3 73.14 68 3.75E+08 859.20 
Basic Salivary 4 46.45 39 1.47E+08 708.10 

Salivary Acidic 1/2 90.36 117 1.04E+09 966.20 
Statherin 69.35 120 1.76E+08 447.40 

Submaxillary Gland 72.15 89 6.97E+08 557.90 
Histatin 1 45.61 100 1.77E+08 515.70 
Histatin 3 58.82 12 6.98E+06 588.50 

Cystatin-SN 13.48 3 9.48E+05 393.90 
Alpha-Amylase 1 2.15 1 4.57E+05 375.50 

6557 

Basic Salivary 1 10.97 3 2.72E+06 

2.42E+08 

366.90 

480.94 

Basic Salivary 2 71.39 41 3.16E+07 506.10 
Basic Salivary 3 73.79 73 4.35E+08 787.40 
Basic Salivary 4 41.61 29 8.25E+07 516.30 

Salivary Acidic 1/2 90.36 154 1.06E+09 801.10 
Statherin 54.84 115 2.36E+08 529.10 

Submaxillary Gland 72.15 108 6.68E+08 523.40 
Histatin 1 66.67 92 1.47E+08 505.30 
Histatin 3 45.10 3 5.44E+05 276.70 

Cystatin-SN 0.00 0.00 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 9.23E+05 478.00 

SA_01 

Basic Salivary 1 95.92 127 5.92E+08 

1.75E+08 

921.70 

578.40 

Basic Salivary 2 50.48 29 5.34E+07 651.60 
Basic Salivary 3 75.73 41 1.25E+08 776.10 
Basic Salivary 4 51.94 26 7.05E+07 521.30 

Salivary Acidic 1/2 82.53 80 4.50E+08 964.30 
Statherin 66.13 102 1.47E+08 477.40 

Submaxillary Gland 72.15 63 2.45E+08 507.50 
Histatin 1 64.91 62 1.14E+08 527.70 
Histatin 3 62.74 31 1.30E+08 683.30 

Cystatin-SN 13.48 5 1.93E+06 331.50 
Alpha-Amylase 1 0.00 0 0.00E+00 0.00 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

IR1 

Basic Salivary 1 87.50 48 1.42E+08 

4.89E+07 

1042.00 

412.48 

Basic Salivary 2 7.21 2 1.19E+06 132.00 
Basic Salivary 3 27.07 13 3.16E+07 555.00 
Basic Salivary 4 0.00 0 0.00E+00 0.00 

Salivary Acidic 1/2 62.65 29 1.62E+08 646.60 
Statherin 53.22 51 6.16E+07 542.10 

Submaxillary Gland 72.15 53 9.14E+07 493.70 
Histatin 1 63.16 13 5.14E+06 277.60 
Histatin 3 62.74 17 4.17E+07 597.90 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 2.51E+05 250.40 

IR2 

Basic Salivary 1 91.82 101 7.59E+08 

3.26E+08 

1063.60 

590.71 

Basic Salivary 2 55.29 26 9.50E+07 791.20 
Basic Salivary 3 70.55 51 3.01E+08 959.80 
Basic Salivary 4 51.61 38 7.10E+07 597.80 

Salivary Acidic 1/2 90.36 100 8.33E+08 999.10 
Statherin 67.74 176 5.48E+08 535.50 

Submaxillary Gland 72.15 116 9.29E+08 580.00 
Histatin 1 63.16 31 4.62E+07 529.20 
Histatin 3 0.00 0 0.00E+00 0.0 

Cystatin-SN 12.06 3 1.25E+06 441.60 
Alpha-Amylase 1 0.00 0 0.00E+00 0.0 

IR3 

Basic Salivary 1 52.55 28 3.50E+07 

1.34E+08 

537.60 

445.27 

Basic Salivary 2 6.01 3 2.97E+06 445.70 
Basic Salivary 3 75.40 52 1.67E+08 815.50 
Basic Salivary 4 11.29 3 1.06E+06 239.30 

Salivary Acidic 1/2 90.36 95 6.05E+08 743.80 
Statherin 69.35 93 1.07E+08 424.70 

Submaxillary Gland 72.15 75 5.31E+08 496.40 
Histatin 1 45.61 40 2.62E+07 468.40 
Histatin 3 54.90 3 5.81E+05 374.70 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 4.53E+05 351.90 

IR4 

Basic Salivary 1 3.83 1 1.47E+05 

9.20E+07 

203.80 

423.75 

Basic Salivary 2 57.93 24 2.28E+07 463.30 
Basic Salivary 3 66.67 39 8.67E+07 563.10 
Basic Salivary 4 50.00 21 1.69E+07 547.90 

Salivary Acidic 1/2 90.36 74 3.77E+08 737.00 
Statherin 69.35 94 7.75E+07 370.20 

Submaxillary Gland 72.15 78 3.82E+08 545.80 
Histatin 1 64.91 40 3.93E+07 492.70 
Histatin 3 60.78 9 8.94E+06 520.60 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 1.65E+05 216.80 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

IR5 

Basic Salivary 1 21.68 8 4.46E+06 

2.75E+07 

403.00 

334.59 

Basic Salivary 2 51.68 29 2.81E+07 485.20 
Basic Salivary 3 68.95 31 7.42E+07 768.30 
Basic Salivary 4 38.39 18 1.75E+07 419.00 

Salivary Acidic 1/2 8.43 4 2.02E+07 274.80 
Statherin 66.13 55 2.54E+07 412.60 

Submaxillary Gland 72.15 54 1.31E+08 543.50 
Histatin 1 33.33 5 1.10E+06 291.30 
Histatin 3 17.65 1 6.24E+04 82.80 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 0.00 0 0.00E+00 0.00 

IR6 

Basic Salivary 1 95.66 172 1.53E+09 

3.94E+08 

978.30 

489.52 

Basic Salivary 2 47.84 18 4.32E+07 430.50 
Basic Salivary 3 55.66 34 2.97E+08 815.40 
Basic Salivary 4 85.42 77 6.00E+08 888.90 

Salivary Acidic 1/2 89.76 108 6.06E+08 692.30 
Statherin 62.90 85 1.34E+08 536.30 

Submaxillary Gland 69.62 130 1.11E+09 620.20 
Histatin 1 24.56 7 1.10E+07 422.80 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 0.00 0 0.00E+00 0.00 

IR7 

Basic Salivary 1 90.61 91 6.77E+08 

1.87E+08 

1052.50 

621.54 

Basic Salivary 2 46.15 24 3.50E+07 727.40 
Basic Salivary 3 44.44 27 1.04E+08 834.50 
Basic Salivary 4 29.68 14 3.14E+07 549.10 

Salivary Acidic 1/2 90.36 91 4.58E+08 802.30 
Statherin 61.29 139 3.17E+08 545.00 

Submaxillary Gland 72.15 79 3.39E+08 517.90 
Histatin 1 66.67 53 7.43E+07 535.40 
Histatin 3 62.74 8 1.63E+07 568.00 

Cystatin-SN 5.67 2 1.61E+06 414.50 
Alpha-Amylase 1 2.15 1 2.02E+05 290.30 

IR8 

Basic Salivary 1 93.03 57 1.01E+08 

9.76E+07 

941.00 

508.85 

Basic Salivary 2 0 0 0.00E+00 0 
Basic Salivary 3 41.60 22 4.68E+07 815.90 
Basic Salivary 4 25.81 10 8.11E+06 529.40 

Salivary Acidic 1/2 90.36 78 4.75E+08 904.30 
Statherin 58.06 96 1.58E+08 480.80 

Submaxillary Gland 72.15 65 2.26E+08 568.40 
Histatin 1 63.16 29 2.26E+07 453.10 
Histatin 3 62.74 15 3.45E+07 567.20 

Cystatin-SN 5.67 2 9.82E+05 337.20 
Alpha-Amylase 1 0.00 0 0.00E+00 0.00 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

IR9 

Basic Salivary 1 66.07 20 1.46E+07 

4.28E+07 

410.00 

350.85 

Basic Salivary 2 0 0 0.00E+00 0 
Basic Salivary 3 40.74 15 2.33E+07 576.80 
Basic Salivary 4 12.90 3 1.05E+06 145.00 

Salivary Acidic 1/2 90.36 76 2.53E+08 679.30 
Statherin 58.06 55 1.77E+07 309.70 

Submaxillary Gland 72.15 49 1.54E+08 539.50 
Histatin 1 66.67 16 3.89E+06 395.10 
Histatin 3 49.02 5 3.21E+06 496.50 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 2.38E+05 307.50 

IR10 

Basic Salivary 1 13.52 5 1.58E+06 

1.75E+08 

319.60 

430.98 

Basic Salivary 2 30.05 19 2.59E+07 458.80 
Basic Salivary 3 54.99 32 7.78E+07 549.40 
Basic Salivary 4 41.70 27 5.73E+07 436.40 

Salivary Acidic 1/2 83.73 127 5.30E+08 720.90 
Statherin 61.29 65 4.53E+07 418.30 

Submaxillary Gland 72.15 140 1.18E+09 581.10 
Histatin 1 36.84 10 7.23E+06 415.00 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 29.79 8 1.33E+06 286.30 
Alpha-Amylase 1 3.13 2 1.95E+06 555.00 

IR11 

Basic Salivary 1 28.57 10 3.96E+06 

2.32E+07 

360.90 

442.00 

Basic Salivary 2 78.37 33 5.22E+07 695.40 
Basic Salivary 3 21.37 14 8.63E+06 839.40 
Basic Salivary 4 0.00 0 0.00E+00 0.00 

Salivary Acidic 1/2 69.28 34 7.56E+07 665.90 
Statherin 67.74 58 6.92E+07 439.50 

Submaxillary Gland 72.15 29 2.08E+07 429.80 
Histatin 1 61.40 19 7.75E+06 443.40 
Histatin 3 62.74 17 1.67E+07 626.70 

Cystatin-SN 5.67 1 7.77E+04 222.80 
Alpha-Amylase 1 2.15 1 1.74E+05 138.20 

IR12 

Basic Salivary 1 12.76 5 1.94E+06 

1.19E+08 

347.80 

447.31 

Basic Salivary 2 87.98 49 3.90E+07 572.70 
Basic Salivary 3 66.95 45 1.43E+08 738.70 
Basic Salivary 4 43.87 26 1.90E+07 425.90 

Salivary Acidic 1/2 90.36 87 4.24E+08 712.80 
Statherin 69.35 158 3.37E+08 480.40 

Submaxillary Gland 72.15 79 3.10E+08 570.80 
Histatin 1 61.40 56 3.63E+07 439.90 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 5.67 1 1.71E+05 333.20 
Alpha-Amylase 1 2.15 1 3.03E+05 298.20 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

IR13 

Basic Salivary 1 95.41 116 3.28E+08 

8.28E+07 

914.70 

459.74 

Basic Salivary 2 54.81 19 2.48E+07 460.70 
Basic Salivary 3 74.76 44 1.45E+08 806.70 
Basic Salivary 4 51.94 22 7.46E+07 573.40 

Salivary Acidic 1/2 83.13 70 1.91E+08 713.50 
Statherin 51.61 52 3.40E+07 401.40 

Submaxillary Gland 65.82 59 1.09E+08 501.20 
Histatin 1 35.09 10 4.54E+06 414.90 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 2.37E+05 270.60 

IR14 

Basic Salivary 1 23.21 10 6.26E+06 

1.58E+08 

217.10 

365.89 

Basic Salivary 2 2.40 1 2.70E+05 283.40 
Basic Salivary 3 57.60 24 4.88E+07 533.80 
Basic Salivary 4 18.71 8 7.22E+06 328.70 

Salivary Acidic 1/2 83.73 139 6.06E+08 737.40 
Statherin 64.52 80 7.60E+07 384.40 

Submaxillary Gland 72.15 103 9.82E+08 499.30 
Histatin 1 43.86 10 7.60E+06 439.10 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 24.82 6 1.41E+06 232.80 
Alpha-Amylase 1 21.33 16 3.64E+06 368.80 

IR15 

Basic Salivary 1 95.92 110 7.24E+08 

2.13E+08 

872.60 

579.25 

Basic Salivary 2 64.90 28 6.04E+07 575.60 
Basic Salivary 3 72.49 56 2.44E+08 794.00 
Basic Salivary 4 59.68 52 1.58E+08 989.60 

Salivary Acidic 1/2 89.76 78 5.84E+08 709.70 
Statherin 66.13 104 2.07E+08 507.60 

Submaxillary Gland 72.15 58 2.98E+08 527.40 
Histatin 1 45.61 46 6.41E+07 477.20 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 13.48 4 2.94E+06 439.50 
Alpha-Amylase 1 2.15 1 7.86E+05 478.60 

IR16 

Basic Salivary 1 92.42 114 7.02E+08 

2.03E+08 

995.50 

640.42 

Basic Salivary 2 47.84 23 4.31E+07 602.90 
Basic Salivary 3 77.67 48 1.61E+08 810.60 
Basic Salivary 4 54.52 38 9.46E+07 741.30 

Salivary Acidic 1/2 90.36 77 6.44E+08 882.50 
Statherin 54.84 78 9.33E+07 459.10 

Submaxillary Gland 72.15 64 3.70E+08 555.00 
Histatin 1 45.61 58 9.51E+07 596.20 
Histatin 3 45.10 8 2.77E+07 655.90 

Cystatin-SN 13.48 2 4.79E+05 367.00 
Alpha-Amylase 1 2.15 1 3.36E+05 378.60 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

IR17 

Basic Salivary 1 58.93 44 1.02E+08 

1.24E+08 

544.40 

468.24 

Basic Salivary 2 11.06 4 4.15E+06 416.30 
Basic Salivary 3 60.68 33 1.08E+08 552.60 
Basic Salivary 4 45.48 25 4.13E+07 521.10 

Salivary Acidic 1/2 87.35 66 4.96E+08 734.50 
Statherin 58.06 158 1.58E+08 393.60 

Submaxillary Gland 72.15 78 4.43E+08 532.00 
Histatin 1 63.16 13 5.77E+06 497.50 
Histatin 3 39.21 3 1.68E+06 429.20 

Cystatin-SN 12.06 3 1.09E+06 201.10 
Alpha-Amylase 1 2.15 1 3.17E+05 328.30 

IR18 

Basic Salivary 1 80.61 77 4.80E+08 

1.87E+08 

728.00 

472.75 

Basic Salivary 2 10.82 6 1.43E+07 449.10 
Basic Salivary 3 69.26 39 2.12E+08 564.70 
Basic Salivary 4 44.84 23 2.80E+07 432.20 

Salivary Acidic 1/2 90.36 74 5.57E+08 719.70 
Statherin 59.68 105 9.68E+07 461.70 

Submaxillary Gland 72.15 69 6.42E+08 543.20 
Histatin 1 63.16 29 2.84E+07 505.60 
Histatin 3 47.06 4 3.48E+06 527.00 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 2.21E+05 269.00 

IR19 

Basic Salivary 1 56.38 34 8.93E+07 

1.17E+08 

704.90 

526.48 

Basic Salivary 2 95.43 98 5.78E+08 1014.00 
Basic Salivary 3 56.13 32 7.63E+07 772.90 
Basic Salivary 4 39.03 20 4.06E+07 575.30 

Salivary Acidic 1/2 90.36 66 2.76E+08 684.30 
Statherin 67.74 130 1.17E+08 372.40 

Submaxillary Gland 72.15 49 9.52E+07 525.80 
Histatin 1 36.84 20 5.87E+06 404.60 
Histatin 3 62.74 9 6.87E+06 525.10 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 5.28 2 2.15E+05 212.00 

IR20 

Basic Salivary 1 62.24 54 1.61E+08 

1.25E+08 

547.80 

415.86 

Basic Salivary 2 11.78 8 2.76E+07 468.90 
Basic Salivary 3 65.24 43 1.73E+08 574.50 
Basic Salivary 4 56.45 38 1.03E+08 550.40 

Salivary Acidic 1/2 86.75 105 5.53E+08 664.90 
Statherin 61.29 92 8.76E+07 394.10 

Submaxillary Gland 69.62 64 2.71E+08 494.40 
Histatin 1 31.58 4 9.17E+05 273.20 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 19.15 3 4.64E+05 254.90 
Alpha-Amylase 1 2.15 1 3.09E+05 351.40 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

IR21 

Basic Salivary 1 44.90 29 4.49E+07 

8.41E+07 

682.50 

480.65 

Basic Salivary 2 95.67 95 4.95E+08 1022.60 
Basic Salivary 3 38.46 29 1.02E+08 524.20 
Basic Salivary 4 37.42 25 4.89E+07 575.70 

Salivary Acidic 1/2 74.10 27 7.83E+07 609.40 
Statherin 67.74 27 1.44E+07 246.80 

Submaxillary Gland 72.15 37 1.19E+08 491.10 
Histatin 1 64.91 44 1.81E+07 347.40 
Histatin 3 62.74 4 4.17E+06 516.50 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 1.93E+05 271.00 

IR22 

Basic Salivary 1 68.62 56 1.75E+08 

2.54E+08 

703.90 

484.06 

Basic Salivary 2 12.74 7 1.04E+07 493.90 
Basic Salivary 3 75.73 46 2.38E+08 632.80 
Basic Salivary 4 38.39 20 1.36E+08 508.10 

Salivary Acidic 1/2 89.76 140 9.88E+08 717.10 
Statherin 51.61 90 1.62E+08 470.80 

Submaxillary Gland 72.15 89 1.07E+09 507.00 
Histatin 1 31.58 13 7.40E+06 423.50 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 16.31 7 3.74E+06 507.40 
Alpha-Amylase 1 2.15 1 4.40E+05 360.20 

IR23 

Basic Salivary 1 92.73 152 1.42E+09 

2.29E+08 

1066.30 

566.65 

Basic Salivary 2 52.16 36 8.21E+07 859.80 
Basic Salivary 3 64.10 42 1.68E+08 783.10 
Basic Salivary 4 7.10 2 1.69E+07 559.20 

Salivary Acidic 1/2 83.73 73 4.67E+08 740.00 
Statherin 69.35 111 1.41E+08 447.00 

Submaxillary Gland 72.15 70 1.96E+08 537.00 
Histatin 1 56.14 31 2.67E+07 474.50 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 10.64 1 3.35E+05 295.10 
Alpha-Amylase 1 2.15 1 6.03E+05 471.20 

IR24 

Basic Salivary 1 10.97 6 7.90E+06 

1.10E+08 

554.40 

431.72 

Basic Salivary 2 85.34 60 1.59E+08 700.50 
Basic Salivary 3 70.87 49 3.16E+08 653.80 
Basic Salivary 4 53.55 42 1.63E+08 579.00 

Salivary Acidic 1/2 89.76 73 3.57E+08 717.00 
Statherin 54.84 83 6.36E+07 424.10 

Submaxillary Gland 72.15 51 1.45E+08 503.70 
Histatin 1 45.61 10 2.47E+06 339.00 
Histatin 3 0.00 0.00 0.00E+00 0.00 

Cystatin-SN 0.00 0.00 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 2.71E+05 277.40 

IR25 

Basic Salivary 1 92.09 99 3.91E+08 

1.50E+08 

755.00 

446.95 

Basic Salivary 2 22.84 10 1.11E+07 438.00 
Basic Salivary 3 73.79 47 3.06E+08 778.50 
Basic Salivary 4 42.58 32 1.40E+08 566.30 

Salivary Acidic 1/2 86.75 82 4.72E+08 714.80 
Statherin 61.29 63 5.06E+07 426.50 

Submaxillary Gland 67.09 56 2.64E+08 496.20 
Histatin 1 45.61 23 1.21E+07 431.40 
Histatin 3 0.00 0 0.00E+00 0.00 

Cystatin-SN 0.00 0 0.00E+00 0.00 
Alpha-Amylase 1 2.15 1 4.49E+05 309.70 
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APPENDIX M: PROTEIN IDENTIFICATION OF VAGINAL FLUID POPULATION SAMPLES 

Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

3714 

CRNN 75.2 90 3.85E+08 

1.02E+08 

1099.50 

605.93 SBSN 32.5 17 1.52E+07 647.60 
IVL 23.1 8 8.24E+06 476.70 
PPL 0.9 1 2.42E+05 199.90 

4669 

CRNN 29.1 17 3.04E+06 

1.01E+06 

201.40 

121.10 SBSN 2.7 2 1.89E+05 67.30 
IVL 1.9 2 8.06E+05 215.70 
PPL 0.0 0 0.00E+00 0.00 

5488 

CRNN 67.5 93 1.91E+08 

5.01E+07 

1105.70 

434.68 SBSN 25.8 14 8.49E+06 345.80 
IVL 2.4 1 7.58E+05 287.20 
PPL 0.0 0 0.00E+00 0.00 

5560 

CRNN 40.0 28 9.83E+06 

2.56E+06 

629.50 

189.83 SBSN 0.0 0 0.00E+00 0.00 
IVL 1.9 2 4.26E+05 129.80 
PPL 0.0 0 0.00E+00 0.00 

5701 

CRNN 69.1 68 8.39E+07 

2.11E+07 

1007.20 

313.00 SBSN 9.8 3 5.23E+05 244.80 
IVL 0.0 0 0.00E+00 0.00 
PPL 0.0 0 0.00E+00 0.00 

5854 

CRNN 54.3 49 9.91E+07 

2.80E+07 

956.00 

444.35 SBSN 12.5 5 2.91E+06 146.50 
IVL 22.4 7 9.34E+06 516.80 
PPL 0.9 1 5.62E+05 158.10 

6239 

CRNN 62.0 69 9.54E+07 

2.83E+07 

952.80 

424.98 SBSN 15.4 7 4.17E+06 178.60 
IVL 45.5 33 1.38E+07 568.50 
PPL 0.0 0 0.00E+00 0.00 

6241 

CRNN 63.2 68 1.01E+08 

2.65E+07 

1022.00 

407.98 SBSN 5.4 3 9.27E+05 75.40 
IVL 20.7 8 3.34E+06 260.60 
PPL 0.9 1 5.36E+05 273.90 

6260 

CRNN 62.6 42 2.22E+07 

5.86E+06 

557.30 

171.03 SBSN 15.4 5 1.26E+06 126.80 
IVL 0.0 0 0.00E+00 0.00 
PPL 0.0 0 0.00E+00 0.00 

6291 

CRNN 51.5 39 4.49E+07 

1.29E+07 

652.10 

284.73 SBSN 11.7 5 1.72E+06 177.70 
IVL 6.7 5 5.11E+06 309.10 
PPL 0.0 0 0.00E+00 0.00 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

6303 

CRNN 45.1 46 5.61E+07 

1.51E+07 

751.50 

382.08 SBSN 10.5 5 4.13E+06 666.10 
IVL 0.0 0 0.00E+00 0.00 
PPL 1.1 1 3.04E+05 110.70 

6310 

CRNN 45.3 62 1.33E+08 

3.50E+07 

971.80 

438.08 SBSN 14.1 8 3.01E+06 298.20 
IVL 10.1 5 3.29E+06 354.80 
PPL 0.9 1 6.69E+05 127.50 

6311 

CRNN 66.3 85 1.11E+08 

3.18E+07 

766.70 

463.78 SBSN 31.2 16 1.03E+07 415.00 
IVL 13.9 6 3.33E+06 305.10 
PPL 2.5 2 2.63E+06 368.30 

6320 

CRNN 75.8 94 2.87E+08 

8.75E+07 

1054.30 

596.90 SBSN 57.3 35 3.85E+07 678.10 
IVL 24.1 11 1.79E+07 356.10 
PPL 5.0 6 6.38E+06 299.10 

6343 

CRNN 3.2 1 8.44E+04 

2.11E+04 

36.60 

9.15 SBSN 0.0 0 0.00E+00 0.00 
IVL 0.0 0 0.00E+00 0.00 
PPL 0.0 0 0.00E+00 0.00 

6460 

CRNN 42.8 41 8.54E+07 

2.22E+07 

1033.80 

307.95 SBSN 0.0 0 0.00E+00 0.00 
IVL 10.6 2 3.01E+06 160.00 
PPL 2.1 2 2.40E+05 38.00 

6551 

CRNN 43.6 38 5.54E+07 

1.40E+07 

936.90 

286.93 SBSN 0.0 0 0.00E+00 0.00 
IVL 7.4 2 7.40E+05 210.80 
PPL 0.0 0 0.00E+00 0.00 

6557 

CRNN 57.6 59 1.62E+08 

5.02E+07 

1044.20 

514.98 SBSN 32.7 27 3.73E+07 683.60 
IVL 2.1 2 6.67E+05 271.80 
PPL 1.6 2 9.20E+05 60.30 

6587 

CRNN 59.6 70 1.53E+08 

4.69E+07 

690.20 

441.00 SBSN 35.1 26 3.28E+07 604.90 
IVL 13.9 4 1.60E+06 277.40 
PPL 0.9 1 4.26E+05 191.50 

6635 

CRNN 40.6 38 1.60E+07 

9.41E+06 

424.40 

288.25 SBSN 15.6 12 3.03E+06 279.60 
IVL 39.7 42 1.86E+07 449.00 
PPL 0.0 0 0.00E+00 0.00 

6636 

CRNN 52.7 48 3.13E+07 

1.23E+07 

465.50 

226.10 SBSN 3.4 2 2.47E+05 106.10 
IVL 44.8 45 1.79E+07 332.80 
PPL 0.0 0 0.00E+00 0.00 
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Sample ID Protein ID % 
Coverage 

# Unique 
Peptides Intensity Average 

Intensity 
Best 

Score 
Average 

Best 
Score 

6654 

CRNN 56.6 53 1.95E+08 

5.11E+07 

1023.70 

401.23 SBSN 12.0 7 3.29E+06 215.90 
IVL 18.0 5 6.05E+06 365.30 
PPL 0.0 0 0.00E+00 0.00 

6661 

CRNN 68.7 95 2.69E+08 

7.34E+07 

1059.10 

566.78 SBSN 22.7 12 9.44E+06 382.70 
IVL 19.5 11 1.49E+07 508.60 
PPL 1.0 1 6.64E+05 316.70 

6674 

CRNN 67.1 84 1.02E+08 

2.61E+07 

976.80 

367.68 SBSN 13.1 5 1.64E+06 223.80 
IVL 4.4 2 2.42E+05 270.10 
PPL 0.0 0 0.00E+00 0.00 

6681 

CRNN 58.6 87 1.71E+08 

4.48E+07 

753.70 

382.98 SBSN 12.0 5 2.05E+06 225.90 
IVL 13.9 8 5.03E+06 272.50 
PPL 1.7 2 1.35E+06 279.80 

A1 

CRNN 69.9 79 2.44E+08 

7.99E+07 

990.50 

664.75 SBSN 11.2 7 7.76E+06 519.80 
IVL 41.2 28 6.61E+07 675.40 
PPL 2.1 2 1.16E+06 473.30 

B1 

CRNN 49.1 32 4.85E+07 

1.29E+07 

883.30 

289.08 SBSN 21.2 5 3.14E+06 271.90 
IVL 3.1 1 1.22E+05 1.10 
PPL 0.0 0 0.00E+00 0.00 

C1 

CRNN 0.0 0 0.00E+00 

0.00E+00 

0.00 

0.00 SBSN 0.0 0 0.00E+00 0.00 
IVL 0.0 0 0.00E+00 0.00 
PPL 0.0 0 0.00E+00 0.00 

D1 

CRNN 39.4 48 4.34E+07 

1.10E+07 

760.80 

232.90 SBSN 0.0 0 0.00E+00 0.00 
IVL 4.6 2 5.87E+05 170.80 
PPL 0.0 0 0.00E+00 0.00 

E1 

CRNN 72.1 79 3.14E+08 

8.62E+07 

1104.70 

646.35 SBSN 13.9 9 8.66E+06 621.60 
IVL 23.3 11 2.11E+07 376.90 
PPL 1.1 1 7.97E+05 482.20 

F1 

CRNN 14.6 7 1.33E+06 

3.33E+05 

357.90 

89.48 SBSN 0.0 0 0.00E+00 0.00 
IVL 0.0 0 0.00E+00 0.00 
PPL 0.0 0 0.00E+00 0.00 

G1 

CRNN 62.4 62 1.19E+08 

3.13E+07 

1081.40 

529.28 SBSN 10.2 3 3.57E+06 349.50 
IVL 6.5 3 2.10E+06 421.10 
PPL 2.0 2 7.29E+05 265.10 
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APPENDIX N: PEPTIDE IDENTIFICATION OF PERFORMANCE ASSESSMENT SAMPLES 

 

TABLE LEGEND:  

Green Box = Positive target peptide identification 

Grey Box = Negative target peptide identification, positive protein identification 

Red Box = Negative protein identification 

NT = Not Tested 
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