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Validation of a Deployable Proteomic Assay for the Serological Screening of
Sexual Assault Samples

Abstract

Protein mass spectrometry (MS) has emerged as a technique to supplant traditional serological tests for
body fluid identification. It was hypothesized that proteomic techniques would surpass the sensitivity and
specificity of traditional serological techniques. An automated workflow coupled with protein MS has
been developed for the confirmatory identification of five biological fluids. A developmental validation
was completed, assessing parameters such as reproducibility, sensitivity, ion suppression, and limit of
detection. Implementation was determined through tandem sample processing by MS, traditional
serological tests, and standard DNA profiling methods. The MS approach offered superior detection limits
while also providing true confirmatory results, producing an unambiguous identification of body fluids to
the point where the technology can be considered comparable to DNA profiling.

An extensive study was conducted to evaluate the effects of personal lubricants on biomarker detection
in sexual assault evidence. Lubricants have the potential to inhibit protease activity, displace hydrophobic
markers during solid phase extraction, and suppress ion detection during MS analysis. Three studies were
performed: (1) determination of vaginal fluid biomarker detection from vaginal swabs fortified with
lubricant; (2) the effect of lubricant formula on seminal fluid and saliva biomarker detection was
established; and (3) the detection of biomarkers condoms. Data was interpreted by the overall peak area
response (PAR) of the target biomarker, biomarker PAR in relation to internal standard, and PAR of
digestion control protein.

Multi-stage workflows associated with proteomic analysis remain a major hurdle towards the adoption of
the technique in caseworking laboratories. A streamlined sample-to-results workflow has been developed
using peptidomic analysis, allowing for straightforward preparation versus bottom up methodologies.
Low molecular weight proteins were extracted and data was acquired using an orbitrap-quadrupole
HRMS. Numerous protein biomarkers have been characterized in human seminal fluid, saliva, and vaginal
fluid.

In conclusion, the implementation of the protein MS approach offers an advantageous relationship
between a positive identification and downstream DNA testing, including the capacity to deliver
confirmatory contextual information in a criminal investigation. Furthermore, lubricant type does affect
the ability to accurate identify protein biomarkers. And lastly, the research presented will demonstrate the
use of peptidomic analysis for the confirmatory identification of biological fluids in SA type evidence.
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ABSTRACT

Protein mass spectrometry (MS) has emerged as a technique to supplant traditional
serological tests for body fluid identification. It was hypothesized that proteomic techniques would
surpass the sensitivity and specificity of traditional serological techniques. An automated workflow
coupled with protein MS has been developed for the confirmatory identification of five biological
fluids. A developmental validation was completed, assessing parameters such as reproducibility,
sensitivity, ion suppression, and limit of detection. Implementation was determined through tandem
sample processing by MS, traditional serological tests, and standard DNA profiling methods. The
MS approach offered superior detection limits while also providing true confirmatory results,
producing an unambiguous identification of body fluids to the point where the technology can be
considered comparable to DNA profiling.

An extensive study was conducted to evaluate the effects of personal lubricants on
biomarker detection in sexual assault evidence. Lubricants have the potential to inhibit protease
activity, displace hydrophobic markers during solid phase extraction, and suppress ion detection
during MS analysis. Three studies were performed: (1) determination of vaginal fluid biomarker
detection from vaginal swabs fortified with lubricant; (2) the effect of lubricant formula on seminal
fluid and saliva biomarker detection was established; and (3) the detection of biomarkers condoms.
Data was interpreted by the overall peak area response (PAR) of the target biomarker, biomarker
PAR in relation to internal standard, and PAR of digestion control protein.

Multi-stage workflows associated with proteomic analysis remain a major hurdle towards
the adoption of the technique in caseworking laboratories. A streamlined sample-to-results
workflow has been developed using peptidomic analysis, allowing for straightforward preparation

versus bottom up methodologies. Low molecular weight proteins were extracted and data was



acquired using an orbitrap-quadrupole HRMS. Numerous protein biomarkers have been
characterized in human seminal fluid, saliva, and vaginal fluid.

In conclusion, the implementation of the protein MS approach offers an advantageous
relationship between a positive identification and downstream DNA testing, including the capacity
to deliver confirmatory contextual information in a criminal investigation. Furthermore, lubricant type
does affect the ability to accurate identify protein biomarkers. And lastly, the research presented
will demonstrate the use of peptidomic analysis for the confirmatory identification of biological fluids

in SA type evidence.
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CHAPTER 1: INTRODUCTION

1 Introduction

Forensic science is the application of scientific testing to criminal and civil law. The
overarching goal of forensic testing is to establish an association between a piece of physical
evidence and an individual, whether a victim or suspect of a crime. By exploiting the transfer of
evidence, as stated by Edmond Locard [1], analysts seek to identify, compare, and associate
physical evidence in an effort to provide information to a court of law to assist the trier of fact in
determining the probative value and weight of forensic evidence. The probative value of physical
evidence stems from the ability to determine an object’s uniqueness. The capabilities of forensic
testing to narrow down the range of possibilities as to what an item of evidence may be, such as a
biological stain, or to whom biological evidence may belong, can help to focus an investigation.

Forensic biology is a subdiscipline within the field of forensic science that seeks to identify
and individualize the source of biological stains through serological and genetic testing. Forensic
serology describes the identification of biological fluids, such as blood, semen, and saliva, through
the use of biochemical techniques to associate an item of evidence with a victim or suspect.
Common types of crimes that utilize forensic biology testing include homicide, assault, and rape.
Prior to the advent of DNA analysis, forensic biologists depended heavily on antigen and protein
polymorphisms as a means of discriminatory identification. For example, the identification system
of ABO blood type groups was developed during the early 20" century. The frequency and
inheritance of A and B antigens present on the surface of erythrocytes were mapped and used as
the first form of human identification apart from fingerprint analysis. While this discovery lead to a
more advanced classification system, the use of erythrocyte antigen characterization was primarily

utilized for exclusionary purposes.



1.1 Modern Genetic Typing for Forensic Identification

It was not until the late 20" century that DNA polymorphisms, in the form of variable number
tandem repeats, were applied to forensic evidence successfully. This novel technique
demonstrated greater individual variability than protein polymorphic markers, with DNA profiling not
only capable of identifying a true perpetrator but excluding innocent suspects. With the
simultaneous development of the polymerase chain reaction (PCR), the use of DNA polymorphisms
quickly surpassed that of more established techniques. Rapid advancements in PCR chemistries,
polymorphism fragment length, and automation have led to genetic typing being crowned the gold
standard within the field of forensic biology. For example, the National DNA Index System (NDIS),
launched in October 1998, contains 1,096,398 forensic profiles and over 14,492,991 offender
profiles (i.e., convicted offender, detainee, and legal profiles) to date [2]. Forensic uses of DNA
typing expand beyond the capability of identifying potential suspects and include the identification
of mass catastrophe victims, missing persons, and endangered or protected species.

The process of genetic testing follows five central procedural steps: extraction, quantitation,
amplification, separation, and interpretation. It is estimated that the human genome shares 99.7%
sequence homology between individuals, limiting forensic researchers to target the remaining 0.3%
for discriminatory analyses. Short tandem repeat (STR) regions, a type of microsatellite, are
currently targeted for forensic genetic typing as they are small in size (approximately 2 to 7 base
pairs in length) and the number of repeats at a given location is highly variable among individuals.
Simply, they describe a pattern of nucleotides that are repeated directly adjacent to each other,
with the number of consecutive repeats varying between individuals. STR regions can be further
classified as simple, non-consensus, compound, or complex repeats based on their incremental
repeat patterns. Twenty STR locations are accepted into the Combined DNA Index System
(CODIS), with the number increased from the original thirteen locations in the year 2017. As interest
in the analysis of highly degraded evidence continued to push the lower sensitivity limits of genetic
typing, the use of single nucleotide polymorphism (SNP) markers emerged to supplement STR

typing. SNPs are single base pair sequence variations at a particular point in the genome that arise
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due to spontaneous mutation. These mutations can be present in coding, regulatory, and intronic
sequences within genes or in intergenic regions. SNP markers are attractive for forensic
investigations given their short amplicon size, lack of stutter artifact formation during amplification,
and their ability to predict ethnicity and phenotypic characterizations.

Common practice for DNA size fractionation traditionally involves the use of capillary
electrophoresis. However, crime laboratories have begun implementing next generation
sequencing (NGS) methodologies for challenging casework. NGS, also referred to as massively
parallel sequencing (MPS), allows for the simultaneous sequencing of many DNA samples, instead
of one sample at a time as with capillary electrophoretic separation. The benefits of this type of
analysis allow for an influx of data that is not normally obtained with traditional sequencing, such
as the discovery of different types of genomic features in a single sequencing run (e.g., SNPs, copy
number variants, structural variants). In regard to forensic genetic applications, NGS can be used
for a variety of analyses such as STR identification for relationship testing, SNP identification for
phenotypic characterization, and mitochondrial genome sequencing. NGS is currently used for
investigative lead generation and genetic genealogy practices, seen in cases such as the Golden
State Killer [3] or the identification and conviction of W.M. Talbot in Washington state for the 1987
murders of Jay Cook and Tonya Van Cuylenborg [4].

Modern genetic testing procedures have rapidly exceeded the anticipated sensitivity limits
to the extent that trace DNA can be identified from an individual that had prior interaction with a
person but was not involved in criminal activity. The concept of indirect transfer of genetic material
describes the deposition of one’s DNA onto an object or person and subsequently having their DNA
relocated to a secondary object or person without physical contact. This phenomenon has been
rigorously evaluated within the forensic community in an attempt to provide reason in the event of
explaining alternate transfer propositions [5—8]. This limitation has prompted forensic investigators
to question not what evidence to collect for DNA analysis, but where to collect on an item of
evidence to obtain accurate results. For example, given the case scenario of a drug facilitated

sexual assault, a victim that was unconscious during sexual activity would not have recollection of
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where the offender may have removed an article of clothing or the extent of sexual acts performed.
In a recent study, simulated digital sexual assault scenarios were conducted in a controlled
laboratory setting and revealed that the amount of offender DNA deposited on undergarments is
highly variable. Furthermore, although not an original aim of the study, the DNA of a colleague or
cohabitating partner was identified in several instances [9].

The principles of DNA transfer, persistence, prevalence, and recovery are taken into
consideration during data interpretation to provide insight into activity level reporting and generating
descriptive probability estimates [10]. It is important to understand these variables as they relate to
DNA transfer versus contamination or true instances of multiple contributors. As genetic testing
methodologies have gotten more sensitive and can generate informative results from poor quality
and lesser quantities of input DNA, the types of DNA profiles obtained have become exceedingly
more challenging to interpret, particularly in samples with multiple low level contributors.
Practitioners within the field have responded by shifting to the use of more advanced probabilistic
modeling. The need for innovative interpretation strategies for low template DNA was reported two
decades ago [11], and since, various types of semi-continuous and continuous probabilistic
genotyping models are accepted in the forensic community [12]. In short, probabilistic genotyping
has unlocked potential for deciphering challenging DNA profiles that would have otherwise been
deemed uninterpretable with the use of traditional binary methods, such as combined probability of
inclusion (CPI) calculations.

DNA profiling and interpretation methodologies have grown very rapidly over the past 25
years. The lack of consistency in reporting language of advanced probabilistic genotyping
calculations remains a topic of debate within the greater forensic biology community. Furthermore,
the proprietary source code of interpretation software, such as TrueAllele® by Cybergenetics, has
received criticism within the legal community as defendants are unable to visualize how software
forms decisions [13,14]. In essence, the scientific methodology behind DNA profiling has been well-

demonstrated and is concrete, with limitations arising from the interpretation of generated profiles.



On the contrary, the scientific methodology for modern serological testing has not received the
same attention.

1.2 Test Classifications for Traditional Body Fluid Identification

In contrast to the evolution and occasional transilience of modern genetic testing, the
identification of biological stains remains rooted in historical biochemical analyses. Traditional
serological procedures rely on detecting the presence or activity of macromolecules that display a
level of specificity within a biological fluid. Historically, proteins are the macromolecule of interest.
Proteins are composed of amino acid monomers that have been bound together through
polypeptide covalent bonds. Amino acids are simple monomer subunits that contain an amine and
a carboxyl functional group, providing the monomer with directionality. Amino acids are categorized
according to their side chain, which extends as a substituent from the backbone structure. There
are twenty unique side chains, and therefore twenty unique amino acids. Given the combination of
amino acids within a protein, a nearly endless array of protein sequences can be achieved. It is the
amino acid side chains, or combination of side chains, that provide a protein with specific chemical
properties such as polarity and charge state. The primary structure of a protein is defined as the
sequence of amino acids or unfolded polypeptide chain. The polypeptide chain begins to adopt a
three-dimensional structure as amino acid side chains initiate new interactions in the form of
hydrogen bonds and functional group interactions. The orientation and unique combination of
amino acids at the primary level dictate the interactions formed at the secondary level. Interactions
become stronger and the protein obtains its true three-dimensional shape at the tertiary level,
where characteristic folds initiate a protein’s function. When two or more polypeptide subunits are
joined, a quaternary structure is achieved.

Protein form and function have remained a primary target for serological assays. A majority
of historical serological techniques rely on detecting the presence or activity of proteins consistent
with a target body fluid. Body fluids are rich in protein material, however, the challenge for forensic
testing is to identify specific targets and not necessarily the most abundant targets. Achieving a

desirable balance between sensitivity and specificity has proven difficult, with cross-reactivity and
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false positive identifications fairly common. In general, evidence that is received in the laboratory
for forensic biology testing will first be screened for the presence of biological stains. This is
conducted through visualizing stains that may not be evident to the naked eye and conducting
presumptive testing to narrow down the possible stain origin. For sexual assault evidence,
confirmatory testing can also be performed to further discriminate the presence of biological stains.
Once the origin of a stain is revealed, small cuttings or scrapings are acquired, and genetic material
is extracted for analysis. Together, results from serological and genetic testing deliver associative
support for a connection between an individual and a biological stain on an item of evidence.
However, modern genetic testing procedures are more sensitive than their serology counterpart,
and thus DNA results often take precedence in a criminal investigation.

The identification of biological fluids on forensic evidence provides important contextual
information to an investigation. While genetic testing provides individualization to a biological stain,
serological testing can indicate where the biological stain originated. In this section, the traditional
techniques used for presumptive and confirmatory identification of biological fluids will be
summarized. Screening procedures are classified according to their mechanism of action or sample
preparation procedure and are characterized below into one of the following groups: alternative
light source, colorimetric assays, enzymatic assays, microscopic visualization, and antibody-based
assays. Although many techniques exist for each, a select grouping of procedures were chosen to
exemplify each classification, with the discussion herein not designed to present an exhaustive list
of historical techniques.

1.2.1 Alternate Light Source for Body Fluid Identification

A crime scene investigator or forensic analyst will rely heavily on the use of an alternative
light source (ALS) for the screening of large surface areas, such as a wall or a mattress. This
screening technique visually enhances biological stains that may not be visible to the naked eye
and can be employed for assistance with collection, documentation, and processing of biological
evidence [15]. The theory behind this investigative tool relies on emission and excitation

wavelengths. Excitation wavelengths, generally in the visible range of the electromagnetic
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spectrum, are absorbed by fluorophores within a stain or substrate. The fluorophore absorbs the
excitation wavelength and transitions the energy to a more excited state, emitting excess energy.
This excess, or emission wavelength, is detected as fluorescence. Barrier filters or colored goggles
are necessary for visualization of fluorescence, as the excitation wavelength will otherwise
overpower the emission wavelength. Colored goggles selectively filter light and allow the emission
wavelength to pass through and be detected by the eye. ALS is utilized for gunshot residue [16],
fiber [17], and fingerprint evidence [18], and within forensic biology, is a prevalent tool for localizing
biological stains, such as semen, saliva, and urine.

For seminal fluid visualization, flavins and choline contribute to the fluorescence of semen
as well as any bacterial growth. When irradiated, semen stains will appear bluish-white when
deposited on dark materials or, in contrast, may appear as dark spots when deposited on white
fabrics due to high background fluorescence. Similarly, saliva detection is indicated by a bluish-
white illumination and is more difficult to visualize in comparison with other fluids given its simple
composition [19]. Generally, wavelengths between 450 nm and 495 nm (blue light) are used in
combination with orange filter goggles for fluorescence visualization. Benefits of ALS include the
ability to scan larger items of evidence, such as a bed sheet, for trace amount of biological material.
However, background interferences are common, and are attributed to substrate color and
presence of whiteners or other substances applied during the manufacturing process. It is accepted
practice to use ALS as a screening tool prior to further examination of forensic evidence.

1.2.2 Colorimetric Assays for Body Fluid Identification

Colorimetric assays utilize the conjugation of electrons across an indicator compound to
cause a shift in the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-
LUMO) gap to produce a wavelength of light within the visible spectrum. Blood is most frequently
detected using colorimetric tests that exploit the peroxidase-like activity of the protein hemoglobin.
The non-protein heme group present within hemoglobin catalyzes oxidation-reduction reactions,
where colorless indicators are oxidized and cause a color change. The oxidation of a molecule

describes the loss of an electron whereas the reduction of a molecule describes the gain of an
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electron. Colorimetric tests for blood detection can be further separated into one-phase and two-
phase procedures [19]. For one-phase procedures, a suspected stain is subjected to hydrogen
peroxide and an indicator compound, such as tetramethylbenzidine (TMB), simultaneously.
Although rapid to perform and fairly sensitive, one-phase procedures display a wide variety of false
positives ranging from plant, animal, and bacterial sources that exhibit strong chemical
oxidant/reductant properties or peroxidase-like activity [20]. In contrast, two-phase procedures
subject a suspected stain first to an indicator compound followed by a separate addition of
hydrogen peroxide. Positive reactions that occur prior to the addition of hydrogen peroxide are
ruled negative. An example of a two-phase procedure is the phenolphthalein test, also referred to
as Kastle-Meyer test [21].

Unlike TMB or phenolphthalein, oxidation-reduction reactions can produce
chemiluminescence or fluorescence instead of a color change. Luminol test (3-
aminophthalhydrazide) is commonly employed during crime scene investigation for the detection
of minute traces of blood, even traces that have been wiped clean from surfaces.
Chemiluminescence is visualized as a blue glow. This test has demonstrated unparalleled
sensitivity, with a reporting limit of 5,000,000-fold blood dilution detected [22]; however, commercial
bleach is a false positive [23]. Given its use on large items of evidence such as carpets, walls, and
flooring, it has been demonstrated that luminol will not negatively affect polymerase chain reaction
for DNA analysis [24].

1.2.3 Microscopic and Histological Analysis for Body Fluid Identification

Microscopic crystal tests were historically performed for the identification of blood but have
been replaced in favor of catalytic tests and antibody-binding assays. An example of a crystal test
is the Takayama test [25]. The heme group is dissociated from the hemoglobin protein unit and
pyridine binds to the fifth and sixth orbital positions on the iron atom, resulting in the compound
hemochromogen. Under alkaline conditions and in the presence of glucose, hemochromogen is
pushed out of solution and creates rhomboid-shaped crystals (Figure 1.1A). Although once

considered confirmatory, it was determined that crystal formation was selective for the iron
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protoporphyrin ring structure within heme and not the protein itself. Furthermore, crystal growth is
contingent on creating an ideal environment, which is time consuming and difficult to reproduce.

In comparison with the visualization of crystal formation, the histological staining and
visualization of cells is used for semen identification and vaginal fluid detection. The detection of
vaginal fluid is not common practice in operational laboratories, as the histological staining described
herein is not discriminatory for vaginal epithelia. Three historical staining techniques include Periodic
Acid-Schiff (PAS) reagent, Lugol's iodine, and Dane’s stain. PAS is used to visualize
polysaccharides present in cells, commonly glycogen and glycoproteins. This staining technique is
commonly used by pathologists during routine renal biopsy evaluation and determination of alveolar
sarcoma [26]; however, this stain has been retired from forensic testing of vaginal epithelia, having
exhibited no differentiating power between vaginal and rectal epithelial cell types [27]. Lugol’s iodine
stain to detect glycogenated epithelial cells was once considered a reliable indicator of vaginal fluid.
This was based on the belief that vaginal epithelial cells had a significantly higher glycogen content
than other epithelial cell types [28,29]. lodine present in the stain reacts with intra-cellular glycogen,
producing a dark brown color [29] (Figure 1.1B). Further research revealed that (1) glycogen content
varies widely during the menstrual cycle [30] and (2) epithelial cells from swabs of the glans penis
and male urethral secretions contain similar glycogen levels [28,29]. As a result, Lugol’s test is no
longer common practice for forensic analysis as the value of this technique has diminished. Dane’s
stain (haematoxylin-phloxine-alcian) uses three dyes that preferentially stain mucopolysaccharides
from prekeratin and keratin [31]. This technique differs from PAS and Lugol’s iodine in that it can
distinguish skin epithelial cells, appearing bright red upon microscopic visualization, from
vaginal/buccal cells which stain orange, based on the high presence of keratin found in skin. Using
a modified Dane’s stain with methanol fixation, vaginal epithelia were able to be differentiated from
buccal epithelia [32]. Although a promising solution to challenges encountered with PAS and Lugol’'s
iodine, limitations arise with the analysis of mixed sample types commonly encountered in sexual

assault evidence.



The only accepted confirmatory test within forensic biology is the microscopic visualization
of spermatozoa in semen. Spermatozoa are unique to semen and exhibit a distinct morphology in
relation to other cell types, especially epithelial cells. Specifically, the head region contains nuclear
DNA and is protected by the acrosomal cap, the location of digestive enzymes that break down the
zona pellucida and assist in penetration of the female ovum. The midpiece connects the head region
to the tail and contains numerous mitochondria. The most defining characteristic of spermatozoa is
the tail region. The flagellated cell contains a microfilament that runs the length of the tail region,
creating rhythmic contractions and forward motion. The histological staining of head and tail regions,
in addition to the overall morphology of the cell, attribute to the confirmatory nature of this technique.

The most commonly used histological stain is Kernechtrot-Picroindigocarmine (KPIC), also
referred to as Christmas tree stain. KPIC uses a series of stains to differentially identify sperm cells
from epithelial cells. Nuclear fast red dye stains the nuclear material of the head region and picric
acid-indigocarmine stains the membrane and tail regions a blue-green color [33] (Figure 1.1C).
Limitations to this technique arise due to the lack of standardization among interpretation guidelines
within agencies. While there is a generally accepted scale for sperm scoring, subjectivity is
introduced in the manner in which an analyst interprets the ratio of spermatozoa to epithelial cells.
In addition, the major challenge faced by most examiners is not the judgement of whether a cell is a
spermatozoon but rather to locate an intact cell. The severing of the head region from the tail region
of the spermatozoa is not uncommon and is caused by many factors, such as analyst handling,
spermicidal lubricants, and extreme temperatures. There are varying opinions in the field on whether
a spermatozoon needs to be intact to prompt a positive identification. Furthermore, absence of
spermatozoa in the male ejaculate can be due to hereditary, pathologic, or surgical reasons.

The product Sperm Hy-Liter™ (Independent Forensics) utilizes a fluorescently labeled,
human specific, monoclonal antibody that binds to sperm head proteins and further assists with the
visualization of spermatozoa. Specifically, this commercial kit contains two separate fluorescent
dyes. The first, 4’,6-diamidino-2-phenylindole (DAPI) stain is incorporated into nuclear material and

is visualized with a DAPI compatible fluorescent filter. The second dye, green fluorescein
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isothiocyanate (Alexa 488), is bound to a monoclonal antibody that targets protein antigen in the
sperm nuclear membrane. With selective filters, dye components can be visualized separately
(Figures 1.1D and 1.1E) or overlayed (Figure 1.1F), allowing for visualization of sperm cells in a
dense vaginal epithelial sample. Due to the preferential binding of the antibody, this method is more
sensitive and specific than traditional histological staining techniques [34]; however, a limitation to
this method is the breakdown of sperm cells over time [35]. The reporting of a positive result is based
on the occurrence of a binding event between the paratope of the antibody and the epitope of the
sperm head proteins. Within the Sperm Hy-Liter™ procedure, the reducing agent dithiothreitol (DTT)
is applied to the sample and functions to make the spermatozoon cell membrane more permeable
to staining. As spermatozoa degrade, the specific epitope present on the cell surface may undergo
a conformational change an impede antibody binding. This lack of binding poses as a limitation to
basing a confirmatory technique off of the detection of cellular components alone. Furthermore,
depending upon the severity of degradation, the DTT can potentially lyse cell membranes instead
of increasing permeability.

In summary, this classification of serological testing contains the only accepted confirmatory
technique for body fluid identification. Furthermore, in regard to semen identification, histological
staining of cellular material is not applicable in instances for suspects that have undergone a
vasectomy surgical procedure or those that suffer from aspermia. Histological staining has historical
significance within the field of forensic biology but has largely been replaced by enzymatic and

antibody based assays.
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Figure 1.1. Histological stains and microscopic visualization for body fluid identification. (A)
Takayama crystal formation of peripheral blood. (B) Lugol's iodine stain of a vaginal smear. (C)
Kernechtrot-Picroindigocarmine stain of a vaginal swab containing spermatozoa. Spermatozoa
visualized using Sperm Hy-Liter™ with fluorescent microscopy and the (D) DAPI filter displaying
sperm and epithelial cells, (E) FTIC filter displaying spermatozoa, and (F) filter overlay displaying
sperm and epithelia nuclei. © 2021 by Catherine Brown.

1.2.4 Enzymatic Assays for Body Fluid Identification

Enzymatic assays rely on protein form and function to remain intact in order for the test to
be carried out successfully. In general, protein enzymes within a biological fluid are mixed with a
cognate substrate. Through the chemical modification of the substrate, an applied dye compound
will bind to the modified substrate, resulting in a visible color change. Perhaps the most widely
accepted presumptive test within the enzymatic classification is the acid phosphatase test for the
detection of seminal fluid, which was proposed in the early 1950s [36]. Prostatic acid phosphatase
is produced in the prostate and is currently evaluated as a diagnostic marker for prostate cancer.
Its physiological function is to cleave the protein semenogelin, resulting in the liquefaction of semen
and creating a more conducive environment for sperm motility within the female reproductive tract.
Referred to as the AP Spot Test, a seminal fluid stain is subjected to a reagent containing alpha
naphthyl phosphate. The acid phosphatase protein cleaves the phosphate functional group of alpha
naphthyl phosphate, resulting in alpha naphthol. A diazonium salt, such as o-dianiside (Fast Blue

B), is applied and binds to alpha naphthol, producing a purple color change. This mechanism

12



occurs rapidly, with samples presumptively positive for seminal fluid within 60 seconds of reagent
application. However, isoforms of acid phosphatase are present in vaginal secretions [37] and
serum [15] (Figure 1.2). Although the number of false positives is relatively high, the use of AP
Spot Test has historically been presumptive in nature [38] and is often performed as a quick screen

for sexual assault evidence prior to sperm scoring.

A. B. C.

Figure 1.2. Positive experimental results of AP Spot Test on a (A) positive control swab containing
semen diluted 2-fold measured at 10 seconds, (B) a vaginal swab containing semen diluted 1,000-
fold measured at 45 seconds, and (C) a semen-free vaginal swab measured at 45 seconds. © 2021
by Catherine Brown.

Similarly, saliva identification relies heavily on the detection of amylase. Three classes of
amylase have been characterized, with alpha amylase being of interest to forensic investigations.
The isoenzyme salivary alpha amylase is produced in the parotid and submandibular glands and
is responsible for the breakdown of long-chain carbohydrates. Examples of enzymatic assays for
saliva detection are the starch iodine diffusion gel and commercial assays such as SALIGAE®
(Abacus Diagnostics) and Phadebas® Amylase Test (Phadebas®). For starch iodine diffusion gels,
agarose gel is embedded with starch molecules which are subsequently cleaved by amylase
present in a sample. When stained with iodine, intact starch will turn blue, showing amylase enzyme
activity by the absence of blue color (Figure 1.3). Similarly, SALIQAE® and Phadebas® use dye-
labeled starch molecules, and when cleaved by amylase, the dye is released, and a color change
is observed. The specificity of these tests is poor, as they will react with any type amylase, such as
pancreatic alpha amylase or beta amylase in bacteria, producing a high false positive rate. For

example, RSID™-Saliva (an antibody-based assay discussed in the next section) and SALIgAE®

have been shown to cross-react with urine, breast milk, and feces [39]. A comparison of the three
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enzymatic methods was performed, with a modified starch iodine test that incorporated
centrifugation in absence of agarose gel. The sensitivity and specificity of the three methods was
assessed in addition to a series of mixed source samples and casework-type samples. It was
concluded that Phadebas® Amylase Test performed with the greatest sensitivity, detecting down to
a 200-fold dilution of human saliva [40].

Enzymatic assays rely largely on color-based interpretation of results. Although it may be
fairly obvious with concentrated samples, the ability to visualize a color change with trace samples
is less than straightforward. Furthermore, with the testing of mixed source samples, the presence
of a non-target matrix such as blood can impede the visualization of the necessary color to interpret
a positive result. For example, the SALIGAE® assay is interpreted based on the change of the
reagent from clear to yellow. Even with dilute blood samples containing saliva, the positive color

change can appear more orange in nature.

Figure 1.3. Experimental results of a starch diffusion gel depicting (C1) neat saliva, (C2) negative
control, (B1) saliva diluted 10-fold, (B2) probiotic yogurt, (B3) triple hop India pale ale style beer,
and (A4) human breast milk. © 2021 by Catherine Brown.

1.2.5 Antibody Assays for Body Fluid Identification

The most widely employed type of test system in operational laboratories are the antibody-
based assays. There is a multitude of commercially available assays on the market, many of which

achieve greater specificity in comparison with the colorimetric and enzymatic assays described
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above. The theory behind these commercial assays is centered upon the binding events that occur
between an antibody and its complementary antigen [15].

The production of antibodies begins with introducing a foreign antigen to a host organism,
such as a rabbit, to stimulate an adaptive immune response. The foreign antigen serves as the
target of the immunological response. The host organism begins producing antibody-forming cells,
which can be isolated and cultured. As cells begin to divide and increase antibody production, the
antibodies can be subsequently isolated for use in exogenous assays [41]. Antibodies that are
capable of binding to a multivalent antigen are referred to as polyclonal antibodies. In comparison,
antibodies that bind to a single epitope are defined as monoclonal antibodies. Polyclonal antibodies
display stronger activity because several epitopes can be recognized for a single binding event.
However, monoclonal antibodies are more specific.

Antibody-based assays, either in the form of an enzyme-linked immunosorbent assay
(ELISA) or an immunochromatographic assay, employ a series of dye-labeled mono- or polyclonal
antibodies. For ELISA tests, antigen is introduced to wells coated with antibody. Once bound, dye-
labeled antibody conjugate is added to create a sandwich complex. Reagents are then added to
cause a color change in wells containing dye-labeled antibody in the sandwich complex, which is
read by a spectrophotometer. ELISA testing has largely been replaced with the use of
immunochromatographic assays, also referred to as lateral flow assays. Simply, a liquid sample is
introduced to the sample well of a cassette, where dye-labeled antibody present will bind target
antigen in the fluid sample. As the sample migrates down the membrane, immobilized antibody in
the test region of the cassette will bind, creating the sandwich complex similar to that of an ELISA.
Sample well antibodies will continue migrating to the control region of the membrane and interact
with immobilized antiglobulin. The control zone will exhibit a positive line because the antiglobulin
will bind to the dye-labeled antibody that originated in the sample well whether antigen is present
or not [15] (Figure 1.4). A positive identification is made by the presence of a colored line in the

test zone and the control zone of the viewing window. A negative result is recorded when only a
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colored line is observed at the control zone. An invalid result entails the absence of a colored line
in the control zone, indicating the test should be repeated.

Commercial assays from various manufacturers, such as Independent Forensics of lllinois
[42—44], Abacus Diagnostics [45,46], and Seratec [47—49], are currently on the market for the
detection of peripheral blood, menstrual blood, saliva, semen, and urine. Regardless of
manufacturer, a similar construction to the lateral flow assay is employed, but they vary in target
antigen and antibody. For example, RSID™-Semen (Independent Forensics of lllinois) targets the
protein semenogelin for seminal fluid identification, whereas ABAcard® p30 (Abacus Diagnostics)
and PSA Semiquant (Seratec®) both target the protein prostate specific antigen. In general, dye-
labeled monoclonal antibodies will be present in the sample well and unlabeled monoclonal
antibodies will be immobilized in the test zone. Manufacturers have opted for the use of monoclonal
antibodies to increase the specificity of the assay.

Lateral flow assays have proven rapid and simple to perform for screening purposes;
however, they have a limited sensitivity range. False negative results can occur if too much target
antigen is introduced into the sample well. This phenomenon, referred to as the high-dose hook
effect, results when excess target antigen migrates along the membrane, resulting in competitive
binding with bound antibody-antigen complexes at the test zone. The excess antigen binds to the
immobilized antibody, preventing the formation of a sandwich complex. To avoid the high-dose
hook effect, the sample should be diluted to reduce the amount of antigen applied to the membrane.
Conversely, the lower sensitivity limit of lateral flow assays has been well documented. For
example, a validation study of RSID™-Semen reports a sensitivity limit of 2.5 nL of semen [50], with
a similar study reporting 50 nL of saliva as a lower limit of detection for RSID™-Saliva [51].

Similar to enzyme-based tests, antibody-based assays are categorized as presumptive
because the binding specificity and avidity are not absolute, even with monoclonal antibodies. The
reading and reporting of results create instances of analyst subjectivity when interpreting color
change, particularly with low-level samples. Although these assays are marketed as confirmatory

tests, they are prone to high false positive rates. For example, an internal assessment of lateral
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flow assays for seminal fluid identification was previously performed. Semen-free vaginal swabs
were tested using RSID™-Semen, ABAcard® p30, and PSA Semiquant. Of the 100 samples tested,
RSID™-Semen returned a false positive rate for 6% and both ABAcard® p30 and PSA Semiquant
demonstrated a false positive rate for 17% [52]. False positive reactions have also been reported
for extracts recovered from condoms when evaluated with PSA Semiquant [53] and extracts
subjected to topical lubricants with ABAcard® p30 [54]. Furthermore, when evaluated in absence
of body fluid, immunochromatographic assays have been shown to display false positives in the
presence of organic acids, lending insight into the mechanism behind which dyes are bound to
sample well antibodies [55]. Therefore, reliance on antibody-binding as a confirmatory assay is not
supported by the literature and forensic analysts should use caution in reporting of results.

In summary, traditional techniques for body fluid identification lend value to forensic
investigations but suffer from numerous limitations that have suppressed the progression of the
field as a whole. Regardless of test classification selected for serological screening, perhaps the
greatest limitation is the lack of multiplex testing. All of the previously described classifications are
single-plex assays. Furthermore, there is an obvious lack of confirmatory tests available for target
fluids or lack of tests in general for fluids such as vaginal/menstrual fluid. It is for these reasons that
operational laboratories have shifted to a “direct to DNA” workflow, where serological screening is
omitted in favor of more sensitive genetic typing chemistries. For more than two decades, the
forensic community has focused on improving the sensitivity and robustness of DNA profiling. While
advances have made it possible to individualize biological traces on challenging types of
evidentiary material, DNA alone does not readily indicate the body fluid source from which it was
extracted. Serological testing to identify the body fluid from which a DNA profile has been
generated, however, can provide vital contextual information to facilitate a successful prosecution.
While this approach has a number of advantages, serological testing is especially important when
the item of evidence in question (e.g., a towel or bedding) does not readily lend itself to an
interpretation of likely contact to the same degree as an intimate swab or underwear where the

mere presence of suspect’'s DNA may be sufficient.
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Figure 1.4. Schematic of a lateral flow assay, depicting a (A) positive identification, (B) negative
identification, and (C) invalid test. Blue diamond represents target antigen. © 2021 by Catherine
Brown.

1.3 Next Generation Techniques for Body Fluid Identification

Serology testing, at one point in time, was heavily regarded as a means of not only
identifying a sample but individualizing a biological stain. With the advent of PCR ampilification and
DNA profiling, the novelty of serology screening began to fade. Practitioners, researchers, and
academics have exponentially grown the capabilities of genetic typing since its first use in a criminal
investigation in the mid-1980s. DNA profiling was propelled into the public eye and swiftly exceeded
expectations as to the information attainable. However, this rapid change in the field of forensic
biology left advancements in serology testing as an afterthought. With the ability to deconvolute
profiles originating from multiple contributors, generate partial profiles from DNA quantities less
than those present in a single cell nucleus, or elucidate phenotypic characteristics from SNP
locations, the sensitivity limits of modern genetic typing have remained unchallenged. Given the
substantial limitations characteristic of traditional serological procedures, several next generation

approaches have been proposed and evaluated by researchers. DNA methylation, RNA assays,
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Raman spectroscopy, and proteomic techniques seek to advance serological testing to sensitivity
and specificity levels currently achievable with modern genetic typing chemistries.

1.3.1 DNA Methylation Assays for Body Fluid Identification

Epigenetics is the study of changes in gene expression that result from modifications other
than those made to the DNA sequence. These changes can be categorized as those made to DNA
nitrogenous bases or those made to histone proteins after the process of translation [56]. For the
purposes of this section, DNA base modifications will be discussed, specifically cytosine/5-CpG-3’
methylation or CpG sites. There are approximately 30,000 CpG sites within the human genome
[57]. At these locations, methyl groups are added to the 5’ carbon position on cytosine rings and
are adjacently followed by a guanine base pair. In vivo, this process is carried out by the enzyme
methyltransferase. Modifications occur largely in promotor regions upstream of target gene
sequences. In the event a promoter region becomes methylated, the region becomes less
accessible by transcription factors and gene transcription is reduced or halted. Therefore, the
mapping of DNA methylation regions can provide useful information, not only for human disease,
but for forensic purposes. Targeting specific gene regions and mapping the presence or absence
of DNA methylation has the ability to generate a methylation fingerprint for body fluid identification.

The most commonly employed method for determining DNA methylation patterns is with
the use of bisulfite conversion, a chemical modification made to unmethylated cytosine residues
[58]. With the addition of bisulfite, all unmethylated cytosine residues are replaced with uracil. When
amplified using PCR, resulting amplicons will vary depending on the presence or absence of
methylation. This change in sequence is analyzed and compared among fluids and tissues to
determine methylation regions suitable for identification. Methylation sequences can be analyzed
using a variety of techniques such as methylation-sensitive single-base extension assay
(SNaPshot™), pyrosequencing, methylation specific PCR, and high resolution melt (HRM)
analysis. Tissue-associated differences in the form of hypo- and hypermethylated regions are

mapped and compared between target fluids for determination of methylation-specific patterns.
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The first use of DNA methylation as a strategy for body fluid identification was reported a
decade ago [59]. Restriction enzyme PCR targeting methylation regions for blood, semen, saliva,
and skin identification was performed. Original research has focused on evaluating a single fluid or
amplifying a single target with the use of pyrosequencing. This procedure describes a sequence
by synthesis technique. Simply, a chemiluminescent signal is produced after the addition of each
nucleotide during sequencing. Therefore, the signal measured is proportional to the number of
nucleotide bases added [60]. Using this technique, procedures for the identification of blood,
semen, saliva, and skin have been developed and validated [58,61]. The robustness of epigenetic
profiling was illustrated by the analysis of samples with low input DNA, the presence of amplification
inhibitors, and aged/degraded samples. More recently, with the use of microarray technology, 150
candidate markers for blood, saliva, semen, vaginal fluid, and menstrual blood identification have
been described. Through more rigorous experimentation, a total of nine markers were validated for
use and assay sensitivity rivaled that of contemporary STR genetic analyses [62]. In a similar study
that utilized restriction enzyme PCR, eight CpG markers were identified and evaluated
simultaneously with two control regions [63]. To date, a multiplex assay for blood, semen, saliva,
and vaginal fluid has been developed with a single PCR procedure [64]. Upon comparison with
previously developed single-plex assays, the multiplex assay produced comparable methylation
trends.

Perhaps one of the most promising aspects of epigenetic analysis is the potential
differentiation between peripheral and menstrual blood sources. The embryonal fyn-associated
substrate (EFS) gene, which encodes for a scaffolding protein linked to immune function, was
demonstrated with bisulfite pyrosequencing to have specific methylation patterns for peripheral
blood when evaluated in a large population [65]. In a similar analysis of 11 CpG sites, the marker
BLU2 encoded by the gene C160rf54, was identified as a discriminatory marker between peripheral
and menstrual blood [66]. In regard to assay sensitivity, an original study that employed
pyrosequencing illustrated promising results for blood, semen, and saliva; however, an input of 10

ng of DNA was necessary to execute the procedure [67]. The same research group continued
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refining the procedure, opting for HRM analysis, citing 1 ng of DNA input to be sufficient for
successful analysis [61].

Advantages to exploring DNA methylation expression patterns for serological identification
include its ability to multiplex target fluids, its high sensitivity and specificity, and its compatibility
with existing DNA-based methods. Nevertheless, DNA methylation patterns exhibit high rates of
variability between sexes, individuals, and populations. Furthermore, forensic evidence is more
often than not in some form of degraded state upon the start of analysis, with DNA loss or
fragmentation being of concern for the optimization and validation of assays for body fluid
identification. Additional advancements in assay sensitivity and analysis of authentic samples
would be beneficial for future implementation in operational laboratories.

1.3.2 RNA Assays for Body Fluid Identification

In a similar fashion to differentially methylated regions of DNA typed for epigenetic
identification, gene expression patterns have been targeted for messenger RNA (mRNA) and micro
RNA (miRNA) assays for body fluid identification. Both forms of RNA assay seek to detect gene
transcripts that display specificity to a cell or tissue type. RNA serves as the molecular intermediate
for the translation of DNA into protein and is formed during the process of transcription. This
process is catalyzed by RNA polymerase, the enzyme responsible for reading the DNA template
and matching complementary nucleotides to form mRNA and other small RNAs. The transcription
unit, or the stretch of DNA template that spans from the promoter region to the terminator sequence,
produces a single RNA molecule. Post-transcription, the process of alternative splicing removes
interfering introns and pieces together the desired exons for the generation of a unique RNA
transcript fit for translation.

1.3.2.1 Messenger RNA Profiling

mRNA profiling is performed by analyzing terminally differentiated cells, where gene
expression is developmentally regulated. By observing transcriptionally silent cells versus actively
transcribed cells, a pattern of gene expression unique to a group of cells is established. With body

fluids containing a mosaic of cell mixtures and secretions, multiple gene expression patterns and
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associated mMRNA markers can be exploited for the detection and identification of such fluids. The
use of mRNA profiling for body fluid identification purposes was first reported in 2003, with a proof
of concept study developed and candidate genes proposed for saliva identification [68]. It was
demonstrated that sufficient quantities of total RNA could be isolated from cells, especially dried
stains that had been solubilized, with mRNA measured through the detection of housekeeping
genes such as GAPDH. This original work was further developed into a multiplex assay for the
identification of blood, semen, saliva, and vaginal fluid, with each fluid characterized by two genes
[69]. Gene transcripts for menstrual blood were subsequently added and an interpretation strategy
was proposed to illustrate the specificity of each mRNA marker [70]].

With the promising results of this methodology, a series of collaborative studies organized
by the European DNA Profiling Group (EDNAP) was initiated to further demonstrate the robustness,
reliability, and sensitivity of the technique. For each study, participating laboratories could perform
either an RNA extraction or an RNA/DNA co-extraction on neat stains, diluted stains, and mock
casework samples of human and nonhuman origin. All of the mRNA panels described herein were
simultaneously evaluated with markers for housekeeping genes. The first study focused on blood
identification and employed two mRNA multiplexes: a duplex targeting genes for hemoglobin alpha
and hemoglobin beta, and a pentaplex targeting genes for ALAS2, CD3G, ANK1, SPTB, and PBGD
[71]. The following study tested the methodology for the identification of saliva and semen [72]. A
saliva triplex included genes for histatin-3, statherin, and mucin-7. A semen pentaplex included
genes for protamine 1 and 2, prostate specific antigen, semenogelin 1, and transglutaminase 4.
Continuous collaborations then focused on vaginal secretions and menstrual blood [73]. Two triplex
panels were selected for menstrual blood: the first containing genes for matrix metalloproteinase
7,10, and 11, and the second triplex targeting Msh homobox 1, LEFTY2, and SFRP4. Vaginal fluid
identification was based on two triplexes. The first targeting mucin-4, myozenin-1, and CYP2B7P.
Interestingly, the second triplex targeted genes of Lactobacillus bacteria (Ljen, Lcris, and Lgas),
the most abundant vaginal bacteria in the female reproductive tract. A similar panel of matrix

metalloproteinases was evaluated over the course of the female uterine cycle, confirming the lack
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of specificity needed to discriminate with vaginal fluid and that target abundance changes over a
typical menstrual cycle [74]. The final collaborative study demonstrated the use of mMRNA profiling
for the detection of skin and contact traces [75]. Of the eight gene markers evaluated, two genes
were consistently identified. The inconsistency of detection is likely attributed to the low quantities
of genetic material deposited by shed skin cells.

Original research utilized reverse transcription-polymerase chain reaction (RT-PCR)
procedures for method development [68—70]. Alternative methods using Real-Time PCR [76,77]
and high resolution melt (HRM) analysis [78] were also proposed during early stages of method
development. More recently, a digital gene expression method utilizing solution hybridization of
NanoString® probes was explored [79]. Although RT-PCR is capable of producing informative
quantitative data, assays are limited to the number of targets that can be assessed. Digital gene
expression methods have the ability to count the number of individual transcripts for each sample
and mimics the use of next generation sequencing for genetic analysis. This methodology was
developed to assess the ability of predicting activity level of a perpetrator based on the quantity of
sample present through the use of likelihood ratio statistical calculations. A custom set of genes
was created: 23 gene targets for the identification of blood, menstrual blood, saliva, semen, skin,
and vaginal secretions as well as an additional 10 targets for housekeeping genes. Authors note
that saliva biomarkers exhibited poor specificity in relation to previously conducted work, but the
remainder of targets performed as expected and exhibited high specificity and sensitivity. This
method development preceded the use of massively parallel sequencing [80] and SNP
characterization [81]. Reported read counts of mRNA markers for target and non-target fluids
provided additional insight into the specificity of biomarkers selected in previous studies. Additional
future directions for this methodology comprise the inclusion of other RNA products, such as
circular RNAs [82], into multiplex panels to further investigate the sensitivity and specificity
achieved with mRNA typing.

In summary, the use of MRNA profiling for forensic purposes has been well developed and

evaluated. Opposition to implementing this technology in operational laboratories remain from the
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fear of mMRNA stability, particularly in challenging sample types. However, the quality and quantity
of RNA has been demonstrated in both aged samples and samples subjected to environmental
insult [83,84].

1.3.2.2 Micro RNA Profiling

Comparably, miRNA are the small non-coding RNA sequences that attenuate protein
translation and have been targeted as viable biomarkers for body fluid identification, but to a lesser
extent than mRNA profiling. Given their inherent size (approximately 20-25 bases in length),
miRNAs emerged as an attractive marker for the identification of highly degraded body fluids. A
majority of miRNA transcripts were selected based on their function within a specific tissue.
However, these markers proved challenging to type using traditional primer binding strategies given
their shortened length. Overall, three categories of methods are prevalent in the literature:
microarray hybridization methods, quantitative reverse transcription PCR, and RNA sequencing.
The combination of these techniques for miRNA profiling has led to a series of inconsistent results
reported among research groups [85].

Original research into their use for forensic purposes was reported in 2009, with nine
candidate miRNAs for blood, semen, saliva, vaginal secretions, and menstrual blood identified from
a pool of 452 markers through the use of RT-PCR [86]. When evaluated against 21 tissue types,
the panel exhibited high specificity and potential for future method development. A similar study,
utilizing quantitative PCR, confirmed miRNA markers for peripheral blood and semen but described
a lack of support for candidate markers for saliva, vaginal fluid, and menstrual blood [87].
Conversely, a separate research group identified and validated a proof of concept triplex of markers
for both blood and saliva detection [88].

Research data presented for mRNA followed a natural evolution and build in regard to
achievements and application. The same cannot be said for miRNA profiling. Original
methodologies present conflicting data on the ability to characterize forensically relevant body
fluids, and with large amounts of miRNA markers to evaluate and multiple methodologies

performed for analysis, this area lacks a clear direction. In order to elucidate a more reliable path
24



forward, researchers turned to statistical modeling of data. A linear regression model for the
identification of menstrual blood was generated [89]. Although trained and tested with a limited
sample set, the model produced accurate identifications. But perhaps the most interesting result of
this study was the reported limit of detection. The total RNA quantity for the proposed methodology
was measured to be 50 pg for menstrual blood analysis, whereas comparative mRNA research
performed at this time, reported an input of 5 ng of total RNA [89]. Apart from the first use of miRNA
profiling [86], a full panel of biomarkers underwent rigorous experimentation prior to presenting
candidate selections. From a pool of 1,700 miRNAs, a preliminary panel of 203 markers were
selected for use in a microarray against blood, semen, saliva, and vaginal fluid. Once the
preliminary panel was paired down, a set of eight miRNA targets were proposed as candidates:
miR-484 and miR-182 for blood, miR-223 and miR-145 for saliva, miR-2392 and miR-3197 for
semen, and miR-1260b and miR-654-5p for vaginal secretions [90].

More recently, statistical decision making has been continuously applied on validated
panels of miRNA markers and additional interpretation strategies in normalizing data to
housekeeping genes has been proposed [91-94]. Using these strategies, the greatest amount of
body fluid matrices (blood, semen, saliva, vaginal fluid, menstrual blood, urine, feces, and sweat)
have been successfully sequenced at quantities consistent with low-level forensic evidence [92],
with authors noting interference in sequence annotations due to bacterial presence in certain fluids.
A notable benefit of mMIRNA profiling is the ability to identify markers from DNA extracts, an attractive
quality for caseworking laboratories seeking to streamline sample preparation procedures from
commercially available DNA extraction kits [95].

Although research strongly supports the use of miRNA profiling for the identification of
blood and semen, there is a lack of evidence encouraging its use for vaginal secretions and
menstrual blood. There is conflicted data presented on the consistency of saliva miRNA marker
specificity. In regard to data analysis, miRNA profiling does not lend to straightforward interpretation
[93]. Furthermore, the stability of miRNA markers is affected by a myriad of factors, such as

temperature, changes in pH, and radiation [85]. Disease state and the function of miRNA in
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proliferation and inflammation have been well documented [96,97], illustrating that miRNA
expression is not static within the human body. In conclusion, miRNA profiling requires
supplementary research to provide a clear and convincing model for use as an alternative means
for serological screening.

1.3.3 Raman Spectroscopy for Body Fluid Identification

Spectroscopy is a technique that measures the interaction between matter and radiation
to elucidate physical structure at the molecular or atomic level. There are many different types of
spectroscopy, each with a unique application and can be distinguished based on the interactions
that take place. This section will focus specifically on Raman spectroscopy. This type of
spectroscopy stems from inelastic Raman scattering which occurs when the matrix of interest is
excited with a high-powered laser, causing the vibrational and rotational energies of the molecules
to shift [98]. A photon beam is used to excite a molecule into a virtual energy state. The photon
emitted from the excited molecule will be measured at a higher or lower energy state than the
photon used to initiate excitement. This light scattering event results in different rotational and
vibrational states of the atoms and molecules present. The emitted photon, therefore, shifts to a
different frequency. The vibrational signature, or the specific change in energy, of the molecules
present is recorded and used to identify the material. This technique requires minimal to no sample
preparation and is nondestructive in nature; however, the target matrix must be concentrated in
order to produce a strong vibrational spectrum.

In the field of forensic science, Raman spectroscopy has longstanding use for applications
in drug chemistry [99,100], paint and ink analysis [101,102], and the examination of trace evidence
[103,104]. For serological purposes, this next generation technique demonstrates gains in
specificity when considered alongside traditional colorimetric, enzymatic, and antibody-based
assays. The Raman spectra produced for forensically relevant body fluids is determined by the
entire molecular composition of the specific fluid. Original research initiatives focused on using
Raman spectroscopy to generate vibrational signatures of single source body fluids. It was

hypothesized that the spectra produced would reflect the unique composition and complexity of
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each fluid and serve as a novel tool with greater discriminatory power than historical techniques.
Promising results were obtained from preliminary studies containing limited sample sizes, with
experiments performed under highly controlled laboratory conditions. With the successful
characterization of molecular components consistent with human semen, blood, saliva, vaginal fluid
and sweat, researchers saw promise in the use of Raman spectroscopy for more challenging
sample types and envisioned robust reporting with advanced statistical calculations [105,106].
When focusing specifically on human blood characterization, early studies reported the ability to
make a positive identification of human blood that had been diluted 250-fold; however, the Raman
signatures produced varied among individuals and even within samples supplied by a single
individual [107].

More recent advancements have been illustrated through the analysis of samples that
more closely resemble those collected from a crime scene. Although capable of detecting
components of human blood and semen from various substrates, sensitivity was shown to
decrease in relation to previous studies, with human blood detected at a 100-fold dilution. Raman
spectroscopic techniques were unable to identify signatures of human blood from laundered
substrates but were demonstrated to be unaffected by evidence treated with luminol [108].

Raman signatures for human blood have produced consistent spectral components of
hemoglobin, heme, and tryptophan, with multiple studies demonstrating the ability to discriminate
human and nonhuman blood sources [109-111]. Components used for semen identification have
been reported to display vibrational signatures consistent with acid phosphatase, citric and lactic
acid, urea, and zinc [112,113]. The use of non-specific signatures, such as those of lactic acid,
decrease the confidence of an identification, based on endogenous levels of non-specific
signatures in various fluids and tissues. However, a more recent study was successful in detection
signatures indicative of prostate specific antigen. This protein is found in high concentrations in
semen, with low concentrations in serum and male urine, both of which have the potential to
produce a false positive result. It was successfully demonstrated that the detection of prostate

specific antigen using Raman spectroscopy can eliminate a false positive detection from male urine
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when simultaneously assessed with dilute semen samples [114]. Characteristic components of
vaginal fluid, saliva, and sweat have been reported [113], but limited research as to the extent of
substrate interference and contamination on the ability to form an accurate identification of these
fluids has been conducted.

With the development of portable Raman systems, the use of this technology directly at a
crime scene allows for rapid sample analysis. Traditional screening techniques for suspected blood
stains, such as the use of leucomalachite green, can damage genetic material [115]. Advantages
of screening with Raman spectroscopy are the technique is nondestructive and it maintains the
integrity of the evidence for additional testing. The success of portable Raman spectroscopic
analysis has been demonstrated for both human and nonhuman blood samples, in addition to
positively characterizing a 3 month old stain [109].

Perhaps the most alluring attribute for the use of Raman spectroscopy for body fluid
identification is the ability to use advanced data analysis tools to estimate error rates. The field of
forensic science has been scrutinized on multiple accounts in regard to the accuracy and reliability
of testing performed. As such, to determine if a methodology is valid in federal court, the procedure
must not only have been tested, but potential error rates should be stated [116]. Chemometrics
applies statistical theories to large and complex data sets [117]. For example, it was demonstrated
that differentiation of five body fluids can be achieved with the use of interval partial least squares
discriminant analysis (iPLSDA) [113]. An important aspect of this study involved the separation of
datasets into those used for calibration and those used for validation. Similar practices are utilized
for determining type | and type Il error rates for genetic typing method validation in operational
laboratories. More recently, a detection algorithm was successfully applied to the characterization
of semen in the presence of substrate interferences [118]. This study sought to address one of the
main limitations of Raman spectroscopy for body fluid identification. Substrates can cause
interference signatures during evaluation, but given trace level sample analysis, signatures can be

sufficiently more intense and mask those of the fluid components.
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As such, limitations to Raman spectroscopic analysis of body fluid evidence stem from the
inability to completely remove background interferences caused by substrates and sensitivity
constraints caused by low-level samples. Furthermore, given the inherent complexity of biological
matrices, advanced understanding of statistical theories is needed for deconvoluting components
in a mixed source sample. Although the current research is supportive of this next generation
technique, a majority of studies focus on human blood and semen identification, with a limited
number of studies reporting on vaginal fluid [119], saliva [120], and sweat [121]. Nevertheless, this
technique has been explored additionally for sex and race determination of forensic samples [122].

In summary, research into the use of Raman spectroscopy for body fluid identification has
demonstrated a refined technique that is nondestructive, rapid, and confirmatory in nature. With
the advent of portable instrumentation, this technique is an attractive tool for screening of biological
material at a crime scene.

1.3.4 Proteomic Assays for Body Fluid Identification

The final next generation serological technique is the use of proteomic assays and will be
the focus of research disseminated in later chapters. Proteomics is the large-scale study of the
proteome and protein expression. It describes not just a single technique, but a family of scientific
approaches that exploit protein structure and function for the purpose of further elucidating the
enigma that is the human proteome. Simply, proteins are an attractive diagnostic marker because
they represent intermediate phenotypes for disease and illustrate the effect of non-genetic risk
factors on cellular function [123]. This concept is adopted for use in forensic biology. Forensic
proteomics uses advanced analytical techniques, such as liquid chromatography and mass
spectrometry, in combination with bioinformatics to analyze biological evidence. In addition to
applications for historical and archeological investigations, proteomic techniques have been
developed for use in the greater forensic biology workflow for the identification of body fluids, such
as in cases of sexual assault and rape.

Biological evidence is, more often than not, subjected to unfavorable conditions. These

conditions can include both environmental in the literal sense, such as extended UV degradation
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or excessive heat, or environmental in the biological sense. In regard to the latter, natural protein
function within biological systems can result in endogenous degradation of other protein material.
For example, the protein prostate specific antigen in seminal fluid functions by cleaving
semenogelin isoforms, resulting in the seminal fluid matrix to lose its gel-like structure. Both
prostate specific antigen and semenogelin are attractive protein targets for seminal fluid
identification. However, certain serological screening assays rely on protein activity, and therefore
a protein’'s confirmational structure, for testing purposes. It would be prudent for serological
identification to rely on protein presence more heavily, especially for degraded evidence.
Proteomics is an attractive alternative to chemical and enzymatic assays because it can detect
protein presence. Furthermore, with the inherent sensitivity of analytical techniques, proteomics
has the ability to confirm protein presence based on molecular weight.

As previously discussed, proteins are highly abundant within the human body and exhibit
an immense variety of functions. Therefore, proteins and their peptide fragments were a natural
target for advancing serological testing strategies from traditional activity-based and ligand binding
assays. One of the main challenges of proteomics is correctly determining the amino acid sequence
of a protein target, as many proteins can be composed of the same amino acids but in a different
order, ultimately lending to their unique properties. Liquid chromatography-mass spectrometry
provides the necessary structural and molecular weight information needed for accurate
identifications.

1.3.4.1 Theory of Modern Proteomic Techniques

1.3.4.1.1 Protein Digestion and Sample Preparation

Intact protein identification is challenging given the inherent size of protein molecules. For
example, prostate specific antigen in seminal fluid has a mass of 28,741 Daltons. In comparison to
small molecule mass spectrometry utilized for alternative forensic applications, proteins can have
a molecular weight one hundred times greater than that of a single drug molecule. In addition,
proteins exhibit variable charge states, sequence variants, and post translational modifications that

complicate mass spectral analysis. By cleaving large protein molecules into peptide fragments,
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charge state variations can be controlled, and sequence specific information can be obtained
through the use of bioinformatics. Ideal peptide targets can range between 8 to 25 amino acids in
length. As opposed to intact protein identification, peptides ionize well, fragment in a predicable
manner, and produce good chromatography.

Protein digestion is comprised of 4 simple steps: denaturation, reduction, alkylation, and
cleavage [124]. Denaturing agents can be used to compromise the quaternary, tertiary, and
secondary structure of proteins, causing them to lose their native three-dimensional structure and
expose amino acid side chains by breaking molecular interactions. Commonly utilized detergents,
such as SDS, are not compatible with mass spectrometers. However, denaturing agents such as
urea, trifluoroethanol, or guanidine thiocyanate compete for hydrogen bonding within the complex
protein folds, resulting in exposure of amino acid side chains and subsequent linearization. While
the protein is being denatured, bonds are simultaneously being reduced. A commonly utilized
hydrophilic reducing agent is tris(2-carboxyethyl)phosphine (TCEP), selected for its solubility and
stability in aqueous solutions at both acidic and alkaline pH. An SN2 nucleophilic substitution
reaction occurs when TCEP is introduced to the sample. Denaturation and reduction of protein
targets is necessary in order to ensure complete exposure for enzymatic digestion. Alkylation is
performed in order to cap exposed and reactive cysteine thiol groups, preventing reformation of
disulfide bonds or other non-specific reactions. lodoacetamide is an irreversible alkylating agent
commonly utilized during protein digestion processes. This compound causes rapid
carboxymethylation of reduced cysteine residues preventing disulfide bond formation. The peptide
sequence is then ready for cleavage, producing more manageable peptide fragments for analysis.
Protease enzymes exhibit specificity with regard to amino acid cleavage sites. For example, the
serine protease trypsin cleaves at the carboxylic junction of arginine and lysine residues, yielding
predictable and specific peptide sequences.

Following digestion, denaturation agents, salts, and unwanted matrix components are
removed prior to analysis via liquid chromatography-mass spectrometry. During peptide cleanup,

solid phase extraction (SPE) employs a sorbent material that preferentially separates and removes
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any unwanted compounds (Figure 1.5). A sorbent material made up of hydrocarbon chains is
packed into cartridges. Simply, the sorbent is primed with an acidic organic solvent, which activates
the functional groups present and removes any trapped air. The cartridge is then equilibrated using
acidified water in order to maximize the sorbent’s interaction with the sample matrix. Next, the
digested sample material is applied to the cartridge. Slowly, the sample passes over the sorbent
material which retains target peptides. Then, the cartridge is washed to remove any unbound
material from the sorbent, including residual reagents from digestion processes. Lastly, peptides
are eluted from the sorbent bed with acidified organic solvents. The eluant can be directly injected

into the liquid chromatograph to begin analysis or lyophilized for storage or concentration.
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Figure 1.5. Schematic depicting a solid phase extraction procedure for post-digestion cleanup. ©
2021 by Catherine Brown.
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1.3.4.1.2 Chromatographic Separation and lonization

Biological samples are subjected to separation through the use of liquid chromatography.
Simply, liquid chromatography is the use of a liquid mobile phase to carry target species through a
column containing a stationary phase (Figure 1.6). The target species will interact with the
stationary phase differently than interferents or other target species. As mobile phase conditions
change, the target species elute from the column based on preferential interactions. Liquid
chromatography is the ideal separation method for proteins because it can analyze samples that

span a wide range of analyte polarity in addition to capabilities of analyzing large molecular weight
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species. In general, the mobile phase is continuously pumped through the liquid chromatograph.
Pre-programmed mobile phase conditions, referred to as the mobile phase gradient, change over
the course of a sample run time. For example, mobile phase starting conditions more closely
resemble a high aqueous solvent, such as a 2% acetonitrile in water. Separation and elution from
the analytical column occur as mobile phase conditions change, with a majority of protein material
eluting at approximately 30% acetonitrile in water. Protein material that is not as strongly retained
by interactions with the stationary phase of the analytical column will be carried out of the
chromatograph by the mobile phase. Eluted material can either be directly detected or further
fragmented in a mass spectrometer. The resulting chromatogram displays the elution sequence
and amount of material present. Retention time is plotted on the x-axis and represents the time in
which a specific analyte eluted from the analytical column. Intensity is represented on the y-axis. If
a reference sample is available, retention time for compounds should occur within a designated

amount of time.

Figure 1.6. Schematic of a liquid chromatograph containing (A) mobile phase components, (B)
mobile phase pumps and mixing chamber, (C) autosampler, (D) analytical column containing
stationary phase, (E) detector, and (F) resulting chromatogram. © 2021 by Catherine Brown.
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Multiple variables can be modified to optimize chromatographic separation. For example,
mobile phase flow rate, solvent composition and pH modifiers, stationary phase composition, and
column temperature are just a few factors that influence peak resolution, retention time and
selectivity. Reverse phase liquid chromatography is well suited for protein separation. This mode
of chromatography employs a water-based mobile phase and hydrocarbon stationary phase, such
as octadecylsilyl (C18) or octylsilyl (C8) moieties. These moieties are bound to a silica support and
intrude into the negative space of the analytical column to interact with analytes carried by the
mobile phase. The column chemistry that ensues is fitting for the separation of compounds that are
neutral, weakly acidic, and weakly basic. The retention of analytes to the stationary phase is
dependent on the analyte’s hydrophobicity, and by extension, an analyte’s ionization state. Mobile
phase is commonly supplemented with an ion pairing agent to control the retention of ionic analytes,
as retention time is affected by the ionization state of an analyte.

With continuing structural elucidation using mass spectrometry, eluted analytes must first
be desolvated and ionized prior to entering the mass analyzer. The process of electrospray
ionization (ESI) is commonly used to transfer eluate from the chromatograph into gas phase ions
suitable for mass spectrometric analysis [125] (Figure 1.7). A transfer line carries chromatograph
eluate into the ESI source, where the eluate is sprayed from a charged capillary as a fine aerosol
mist into a heated chamber. Nebulization occurs as solvent is readily evaporated and droplets are
formed. The potential difference applied to the capillary allows the droplets to reduce in size. As
the radius of the drop decreases, the droplet charge remains constant and repulsion forces within
the droplet increase. Eventually, the repulsion stress must be released, and droplets undergo
droplet jet fission to produce small, charged particles. ESI is commonly employed in proteomics
research because of its ability to produce multiply-charge ions. This inherent characteristic allows
additional mass-to-charge ratio measurements to be made even with a mass analyzer that have a
limited mass range [126]. Instrumental parameters that can be modified to reach optimal ionization

include drying gas temperature and flow rate, nebulizer pressure, and capillary voltage.
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Figure 1.7. Schematic depicting electrospray ionization and the interface between the liquid
chromatograph and the mass spectrometer. Green arrows represent the drying gas. Blue circles
represent the charged droplets as they reduce in size due to drying and jet fission forces. © 2021
by Catherine Brown.

1.3.4.1.3 Mass Spectrometry Instrumentation and Interpretation

Within the last two decades, significant advances in mass spectrometry-based
methodologies have expanded the capabilities and possibilities of scientific achievements.
Parameters such as increased dynamic range and quantitative accuracy presented attractive
qualities to disciplines such as clinical diagnostics and forensic science. Mass spectrometry as it
applies to proteomics has assumed many forms based on the type of analyses conducted.

In a broad sense, mass analysis is the separation and filtration of ions, from which the
chemical form of a species, such as its structure and ionization potential, can be elucidated. This
chemical form is represented by a mass spectrum or a plot that graphs signal abundance against
mass-to-charge ratio (m/z). Three qualities are evaluated when selecting a specific mass analyzer:
mass resolution, mass accuracy, and mass range. Mass resolution describes the ability of a mass
analyzer to separate two adjacent masses and becomes an important property when coelution of
target ions may exist. Mass accuracy illustrates the mass measurement recorded to that of the true
mass of the target. And lastly, mass range defines the difference between the highest and lowest
measurable m/z. There are several types of mass analyzers that exhibit fundamental differences,

each with a desirable application in regard to proteomics.
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Quadrupole mass analyzers, which are commonly selected for targeted proteomic
analysis, function by filtering ions using electrostatic potentials and selecting ions based on m/z.
The quadrupole is constructed out of four poles that are oriented to create a central channel down
which charged ions can travel, where they are separated and filtered by electrostatic potentials
applied to the four poles. An ion will carry a stable trajectory down the central channel if it oscillates
within a narrow radius. On the contrary, a collisional trajectory occurs when an ion oscillates outside
of the narrow radius, resulting in collision with the poles and ejection from the central channel.
Quadrupole mass analyzers are popular given their low cost and uniform performance across a
wide mass range; however, quadrupole mass analyzers have relatively poor mass resolution and,
in relation to other mass analyzers, demonstrate a slower speed for scanning travelling ions.

Time of flight mass analyzers exploit differences in kinetic energy to map flight paths and
predict ion separation. This type of mass analyzer is attractive for discovery proteomics. lon clusters
are subjected to an accelerating voltage, where they are propelled into the flight tube. The time of
flight for each ion cluster is measured from the onset of the accelerating voltage until clusters reach
the detector at the end of the flight tube. The speed at which ions clusters travel through the flight
tube is dependent on the m/z of the ion [127]. Although instrument calibration is more complex than
a quadrupole mass analyzer, time of flight analyzers have the greatest mass range and fast ion
scanning speeds.

And lastly, ion trap mass analyzers rely on applied voltages to further group ions with a
specific m/z. lons that do not favor the applied voltage do not cluster and are propelled from the ion
trap. In addition, because the ion trap is filled with an inert gas, additional fragmentation of selected
ions can occur [128]. Because of this property, the use of ion trap mass analyzers is popular for
top down proteomics. These types of mass analyzers display excellent mass resolution and
sensitivity; however, they are easily saturated and produce unusual spectra if parameters are not
properly configured.

Mass analyzers can be combined in unique ways to increase ion filtration and improve

qualities such as mass range and mass resolution. The goal of using multiple mass analyzers in a
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single instrument is to gain additional structural information, achieve selectivity, and maximize
sensitivity for quantitative analyses. Typical examples of mass analyzer combinations are triple
quadrupole (i.e., two quadrupole analyzers separated by a collision cell) (Figure 1.8) and

quadrupole time of flight. The use of multiple mass analyzers lends to the process of tandem mass

spectrometry.
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Figure 1.8. Schematic of a triple quadrupole mass spectrometer for the detection of semenogelin
2 peptide DVSQSSISFQIEK precursor and product ions. © 2021 by Catherine Brown.

1.3.4.1.4 Proteomic Methodologies

Once protein targets have been separated, it is important to consider the type of
information desired from mass spectrometric analysis. Two main next generation proteomic
methodologies include bottom up proteomics and top down proteomics. Bottom up proteomics
describes the detection and identification of proteins that are first enzymatically digested into
predictable peptide fragments. Protein material is subjected to a series of chemical modifications
prior to identification. Denaturation, reduction, and proteolytic cleavage, with an enzyme such as
trypsin, break complex protein domains into predictable peptide fragments suitable for mapping
and targeted analysis. The retention of ionic species is achieved through the addition of ion pairing
reagents, such as formic acid, into the mobile phase.

Bottom up proteomics can be further divided into discovery or shotgun proteomics and
targeted analysis [129]. Discovery proteomics is utilized for the unbiased scanning of peptide ions,
with specific search parameters applied after data acquisition. This proteomic application earned
its title from its use in discovering protein and peptide signatures and is often performed to generate
a targeted ion selection list [130]. But in order to create a targeted list, a vast amount of data must

first be collected and analyzed. The two most commonly used mass analyzer combinations for data
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collection are quadrupole time of flight and ion trap mass analyzers. Quadrupole time of flight
(QTOF) mass spectrometry is a popular analytical platform for discovery proteomics, given its mass
accuracy and wide dynamic range (Figure 1.9). However, in comparison with other analytical
platforms, the QTOF system lacks desirable resolution. To address the limitations of QTOF mass
spectrometry, the Orbitrap analyzer was introduced. Similar to QTOF, the Orbitrap has a wide mass
range, but also provides high mass resolution. A benefit of bottom up discovery proteomics is the
limited amount of prior knowledge necessary for data interpretation. By scanning for and measuring

the masses of precursor and subsequent product ions, a roadmap of related transitions can be

generated.
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Figure 1.9. Schematic of a proteomic workflow with identification via QTOF. © 2021 by Catherine
Brown.

Targeted proteomics seeks to identify an analyte or multiple analytes through the use of a
selective ion list [131,132]. Although sample preparation procedures are shared between shotgun
and targeted proteomics, the analytical instrumentation differs. A triple quadrupole mass analyzer
is commonly selected for targeted analysis. The first quadrupole is set up to selectively scan for a

given precursor mass. In the second quadrupole, or collision cell, the precursor mass is subjected
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to a charged gas, resulting in further fragmentation. The third quadrupole selectively scans for a
specific product ion. Single reaction monitoring (SRM) or multiple reaction monitoring (MRM) are
common targeted proteomic methods for determining the absolute and relative quantification of
target analytes in a given sample. Isotopically-labeled peptide standards can be simultaneously
assessed [133,134]. By comparing peak area responses of endogenous peptide fragments with
those of peptide standards, a relative quantitation can be calculated [135].

In comparison with bottom up proteomics, which identifies proteins that have been
subjected to enzymatic cleavage, top down proteomics forgoes enzymatic cleavage [136,137]. This
category of proteomics can be further classified by conducting intact protein analysis or peptidomic
analysis, which describes the identification of low molecular weight proteins, naturally derived
peptides, and truncated amino acid sequences of larger proteins [138]. With this type of proteomic
analysis, full characterization of proteins can be achieved with increased sequence coverage
because analysis is not limited to cleavage products. The eliminated laborious digestion procedures
during sample preparation makes for streamlined and expedited sample analysis. Furthermore,
post-translational modifications (PTMs) can remain intact and enrich data analysis.

Similar to shotgun proteomics, Orbitrap analytical platforms are a popular selection for top
down proteomic analyses. The fundamental construction of the ion trap mass analyzer provides
the means for intrinsic fragmentation to occur. Although tryptic peptide analysis provides immense
amounts of information from complex samples, the information remains limited to cleavage sites
and the length of peptide fragments produced, resulting in some information to be ignored due to
lack of unambiguous identification. This becomes mitigated with top down procedures and the
migration from peptide-centered to a protein-centered interpretation.

Regardless of methodology selected, peptides will fragment in a consistent manner once
in a mass analyzer due to their repetitive monomer assembly. Peptides become protonated as they
enter the ESI interface and are selected as precursor ions. Precursor ions are then fragmented into
a variety of product ions as polypeptide backbone bonds are cleaved. Peptides are sequenced

according to the bond cleavages that occur as they provide important structural information [139].
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The cleavage of peptide bonds between the carboxylic acid and amine functional groups of two
adjacent amino acids generates product ions that are the sum of their amino acid composition
residue masses. With this type of breakage, product ions will contain at least one proton that will
mobilize on either terminus group or any of the amide nitrogens within the fragment. To form
multiply-charged ions, the analyte must have more than one location that can undergo ionization.
Typically for peptide sequencing, basic amino acid side chains, such as those of lysine, arginine,
and histidine, serve as excellent proton acceptors. By determining the number of protons present
in a mass spectrum, the molecular mass, and ultimately the peptide sequence, can be determined.

1.3.4.2 Proteomics in Forensic Biology

Forensic proteomics has been well-defined for the characterization of microbial traces
[140,141], species identification [142], and protein toxin detection [143,144]. However, only within
the last two decades has proteomics been proposed as an alternative strategy for forensic serology
applications. Research initiatives sought to address the sensitivity, specificity, and reliability of
existing traditional screening techniques in addition to providing a means of identification for fluids
which lack an existing technique (i.e., vaginal/menstrual fluid).

Original research conducted employed discovery proteomics for the characterization of
presumptive and confirmatory peptide signatures for proteins consistent with blood, semen, saliva,
vaginal fluid, and menstrual blood. Protein material was cleaved into known peptide fragments, and
because each protein contains a unique amino acid sequence, the mass measurements of each
fragment can be read and converted into an amino acid alphabet. Perhaps the greatest attribute of
proteomic analysis is the ability to selectively target characteristic biomarkers, a quality shared with
RNA and methylation assay but lacking in Raman spectroscopy techniques. Body fluids are rich in
protein material, a majority of which is shared among cell and tissue types. For example,
immunoglobulins are expressed in blood, saliva, and vaginal fluid, given their immune function to
neutralize pathogens. Although shared protein material is important, targeting fluid-specific proteins
was of interest to forensic researchers. Original candidate biomarkers were selected based on their

uniqueness or level of enrichment within a target fluid. Studies described candidate markers
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consistent with blood identification as hemoglobin beta and alpha-spectrin; with semen
identification as semenogelin-1 and semenogelin-2, prostate specific antigen, and progestogen-
associated endometrial protein; and saliva identification as alpha-amylase 1, cystatin SA, and
histatin-1 [145,146]. Comparable and additional biomarkers, such as submaxillary gland androgen-
regulated protein 3B for saliva and hemopexin for blood, were characterized in a similar study [130].
Tissue specificity of characterized proteins were cross-referenced with existing protein databases
to demonstrate the specificity of the developed methodology. In addition, the latter study evaluated
reproducibility by fractionation, an important technique to ensure maximum coverage of the human
proteome during discovery [130].

In order to further understand the expression patterns among individuals, candidate
biomarkers were verified through population studies. With limited sample sizes utilized for
biomarker characterization, it was critical to evaluate protein levels in a more diverse sample
population. A population of 50 human body fluids were correctly identified by the presence of one
or more candidate markers [147]. Authors make a compelling argument that, in comparison with
STR markers currently targeted for genetic typing, proteins exhibit greater interindividual
expression variability. Although highly specific targets may be characterized in limited samples,
they may not be consistently detected or serve as the most robust biomarkers for future method
development.

A majority of research aims have included the analysis of forensic-type samples, such as
complex mixtures, aged stains, and stains on various substrates [145]. In regard to sexual assault
and rape, evidence commonly contains fluids of mixed source. For example, a vaginal swab taken
from a rape victim will inherently contain vaginal fluid, but semen and saliva may also be present.
It is important to have assays sensitive and specific enough to discriminate a mixed-source sample
in order to provide essential information for investigative purposes. When evaluating 2-component
mixtures, proteomic techniques were successful in identifying both components, with matrix
interferences observed for saliva in peripheral blood [147]. Protein material is innately separated

from genetic material during solubilization of forensic evidence, with the cell pellets reserved for
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genetic typing and the supernatant used for serological screening. The compatibility of proteomic
techniques within a DNA-focused forensic biology workflow have been demonstrated by
researchers [52,146]. One study reports the analysis of authentic crime scene samples, illustrating
the successful characterization of blood in addition to producing a genetic profile with one seamless
sample preparation protocol [148]. The sensitivity limits achieved with this analytical
instrumentation are continuously challenged. It has been shown that laboratory-prepared
laundered fabrics containing whole blood can be characterized with proteomic techniques [149].
Challenging sample type analysis will only continue to illustrate the effectiveness of proteomic
analyses for body fluid identification, especially as analytical methods become more refined.

More recent studies have employed quantitative proteomic techniques to detect peptide
signatures. It was originally hypothesized that semi-quantitation of biomarkers could be used to
determine the amount of body fluid present in the original stain. Although biomarker concentrations
were calculated, it was concluded stain amounts could not be inferred due to sufficient expression
variability among individuals [150]. Similarly, external standards have been employed to monitor
trypsin processivity, ionization efficiency, and matrix interferences [147]. Currently, protein mass
spectrometry technology has not been implemented into operational crime laboratories for body
fluid source determination application.

A main challenge of proteomic characterization is achieving a sample preparation protocol
that is successful in extracting and purifying biomarker targets. Given the inherent complexity of
protein material, differences in polarity and size can hinder the use of a common protocol. The
conventional procedure for bottom-up targeted proteomics is time intensive to ensure adequate
cleavage and recovery of protein material prior to analysis. A majority of protocols describe an
overnight incubation as well as lyophilization steps; however, more recent studies explored
expedited sample preparation [150,151]. In addition, as seen with other next generation techniques,
the differentiation of vaginal fluid and menstrual blood remains a challenge. One area of
improvement necessary for advancement of proteomic techniques is the dissemination of extensive

interpretation guidelines and reporting language. Because vaginal fluid and menstrual blood
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originate from the same cavity, guidelines in reporting protein biomarkers is essential to forming
accurate result statements.

Benefits of proteomic techniques for body fluid identification include its ability to conduct
multiplex analyses, its sensitivity range, and potential use for correlation to genetic typing success
[52]. In comparison with traditional screening techniques, proteomic research has demonstrated
the ability to consistently characterize five body fluids within a single assay, unlike chemical,
enzymatic, and antibody-based assays which each target a single fluid. Furthermore, antibody-
based assays have a limited working range, with concentrated samples producing a false negative
result. Although emphasis is placed on trace level sample analysis within forensic biology, the
ability to accurately characterize concentrated samples remains valuable for investigation. The
inherent relationship between protein and DNA expression, characterized by the Central Dogma,
illustrates the ability to utilize quantitative proteomic results as a means of predicting the quality of
a genetic profile from a single stain. This relationship has been illustrated outside the realm of body
fluid identification through the characterization of genetically variant peptides (GVP) and single
nucleotide polymorphisms (SNP) in bone [152] and hair [153]. The strength of proteomic techniques
in forensic biology are centered in its selectivity and ability to provide complimentary data to genetic
testing.

1.4 Research Objectives

This dissertation research was designed to develop and rigorously validate a high-
specificity forensic serology assay. The assay was designed for the simultaneous identification of
five forensically-relevant body fluids: peripheral blood, seminal fluid, saliva, vaginal fluid, and
menstrual blood. To achieve this, two well-established technologies, ultra-performance liquid
chromatography and triple quadrupole mass spectrometry (UPLC-QQQ), were selected in
combination with automated sample preparation to produce an integrated system well-suited with
forensic casework needs. A previously developed prototype assay served as the model for further
method development and validation. Validation procedures were conducted in accordance with the

Federal Bureau of Investigation’s Quality Assurance Standard for Forensic DNA Testing
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Laboratories as well as guidelines published by the Scientific Working Group on DNA Analysis
Methods (SWGDAM). In addition, given the analytical instrumentation employed, appropriate
guidelines from the Organization of Scientific Area Committees for Forensic Science (OSAC)
Chemistry: Seized Drug and Toxicology Scientific Area Committee were also considered. The final
deliverable presents a fully validated analytical assay that demonstrates sensitivity and specificity
gains over traditional serological screening techniques and is compatible with downstream genetic
testing.

Additional assessments were formulated to better understand and mitigate the deleterious
effects of personal lubricants and spermicidal products on the ability to accurately identify seminal
fluid and saliva in cases of sexual assault. Supplementary measures were incorporated into the
sample processing procedure to diminish competitive binding during sample purification and
remove the interferents prior to proceeding with protein digestion. The multiplex assay was then
used as a foundation for the development of a top down peptidomic methodology for the
assessment of sexual assault evidence. With the prevalence of sexual assault evidence, an
expedited sample processing workflow that is capable of generating comparable results was
identified as an area that needed further attention. It was demonstrated that same-day sample
preparation could be used for the identification of seminal fluid, saliva, and vaginal fluid.

The successful completion of these objectives has important implications for advancing the
field of forensic serology by providing alternative means to confirming the presence of body fluids,
especially in the event of sexual assault or rape.

1.5 Hypotheses

The overarching hypothesis that was tested in the course of this dissertation research is
that proteomic techniques in the form of bottom up and top down methodologies will surpass the
sensitivity and specificity capable of traditional serological screening techniques. The specific
hypotheses that were at the core of this research therefore are:

1. The transferring of a multiplex mass spectrometry-based assay from a nanoflow to high

performance chromatographic system will sufficiently increase sample throughput.
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2. An automated sample processing procedure will mitigate sources of human error and
contribute to increased sample throughput without a loss in peptide intensity.

3. A multiplex mass spectrometry-based assay can undergo rigorous validation and
comparison to illustrate its performance and compatibility with existing forensic biology
workflows.

4. Body fluid identification of samples subjected to personal lubricants can be achieved
through specific sample preparation procedures and detection of protein signatures using
the validated mass spectrometry-based assay.

5. An expedited proteomic analysis of body fluids consistent with sexual assault evidence can
be developed using peptidomic techniques.

1.6 Dissertation Structure

Each chapter within this dissertation will contain an introduction to provide the essential
background content of the research conducted and present scientific reasoning behind the
experimental design. Experimental methods and a comprehensive presentation of results will be
detailed. The significance of research findings will be discussed, including any caveats to the
developed methodology.

Chapter 2 details the transfer of a previously developed prototype LC-MS/MS technique to
a more sensitive analytical platform. In addition, the optimization and automation of the sample
processing method will be discussed. Chapter 3 focuses on the full developmental validation of the
LC-MS/MS technique for the identification of five forensically relevant body fluids. Chapter 4
evaluates the validated LC-MS/MS method in relation to currently utilized serological screening
techniques. In addition, the compatibility of the developed LC-MS/MS methodology with
downstream genetic testing protocols was assessed. Chapter 5 presents the effects of personal
lubricants on the ability to accurate identify body fluids consistent with sexual assault analysis. And
lastly, Chapter 6 focuses on a streamlined proteomic approach to biomarker screening for sexual

assault evidence analysis.
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CHAPTER 2: METHOD TRANSFER AND DEVELOPMENT OF AN AUTOMATED SAMPLE
PROCESSING WORKFLOW

2 Introduction

Through previous research initiatives in the Danielson laboratory ([130,147] and
unpublished research), it has been demonstrated that a targeted mass spectrometry-based
multiplex assay allows for the unambiguous identification of body fluids in a forensic context.
Furthermore, the sensitivity and specificity gains achieved with the developed research grade
assay illustrated the significant advantages of proteomic techniques when compared with reporting
limits of existing serological screening tests. However, additional areas of interest required further
development to reach the readiness level expected for implementation into an operational
laboratory. Areas of interest included decreasing analytical run time without sacrificing sensitivity
gains, automation of preparation procedures, a direct comparison with existing serological tests,
and extending the boundaries for high throughput analyses.

The research grade assay was developed on an Agilent 6430 mass spectrometer coupled
to a liquid chromatograph fitted with a 1100 series nanoflow pump. Although this system was a
triple quadrupole mass spectrometer capable of advanced sensitivity and specificity in comparison
with other high resolution mass spectrometers, the limitation of the initial assay was the nanoflow
liquid chromatograph system. While originally chosen for increased sensitivity, to ensure complete
peptide biomarker separation, and reduce the likelihood of coelution, nanoflow chromatography
requires inherently small flow rates to achieve greater ionization. A 30-minute analytical run time at
a 400 nL/min flow rate was necessary to achieve adequate separation of biomarkers on the
nanoflow system. Furthermore, a manual tryptic digestion and sample cleanup was employed,
limiting the number of samples processed in a given batch. These processes incorporated multiple

sample handling steps and incubation times in addition to centrifugation and lyophilization steps.
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In summary, the research grade assay was limited to 12 samples per batch, which required a full
day of preparation and an additional full day to acquire data.

Under this portion of the project, the previously developed research grade assay was
transferred from the nanoflow chromatography system to an ultra-performance liquid
chromatography tandem mass spectrometry (LC-MS/MS) platform. Specifically, an Agilent 6495
mass spectrometer coupled to a 1290 series liquid chromatograph was utilized. With the transfer
of the analytical method, instrument and chromatography parameters required optimization prior to
validation. During this portion of the study, synthetic peptide standards were synthesized, an
internal positive control was selected and tested, and analytical operating parameters were
determined.

This chapter seeks to report and establish a refined protein biomarker panel for the
identification of peripheral blood, seminal fluid, saliva, and vaginal/menstrual fluid in addition to
developing an automated sample processing protocol for increased sample throughput. This
research was completed under three main scientific aims. The first research aim addressed the
need to transfer the research grade assay to a high resolution analytical platform. The second
research aim established an automated sample processing procedure and evaluated techniques
for accurate protein quantification. The final research aim compared the automated processing
procedure with the existing manual processing procedure for accuracy in the identification of
selected biomarkers. The results outlined herein provide an optimized sample processing
procedure and analytical method equipped for a full developmental validation.

2.1 Methods and Materials

2.1.1 Body Fluid Collection

All research conducted under this phase of the project was reviewed and approved by the
University of Denver Institutional Review Board (IRB) for research involving human subjects.
Sample collection and research was conducted in full accordance with the U.S. federal policy for
the protection of human subjects. In total, 60 subjects were recruited from the graduate population

at Arcadia University (Glenside, PA) and staff members employed at The Center for Forensic
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Science Research & Education (Willow Grove, PA). All volunteers agreed and signed a letter of
consent acknowledging that they had received, read, and understood all protocols involved in
sample collection. Furthermore, all collected samples were assigned a random unique identifier to
protect confidentiality.

Peripheral blood samples were collected through venipuncture under previous IRB
approval. Additional blood specimens were purchased from Innovative Research, Inc. (Novi, MI).

Semen was self-collected from consenting donors. The donor deposited the semen sample
into a sterile collection cup and was asked to refrigerate the sample until transport to the lab. Upon
receipt, semen samples were allowed to liquify at room temperature for 30 minutes. Collection cups
were vortexed and 200 L single use aliquots were prepared and stored at -80 °C until use.

Saliva was collected from consenting volunteers who refrained from eating or drinking for
1 hour prior to collection. Salivette® collection tubes (Sarstedt, Nimbrecht, Germany) were utilized.
Donors were instructed to remove the absorbent pad from the Salivette® tube and place the pad in
their mouth. To stimulate saliva production, donors were instructed to gently chew on the absorbent
pad. After 45 seconds, the donor placed the absorbent pad back into the Salivette® tube. The
Salivette® tube was centrifuged for 10 minutes at 1,000 x g and saliva flowthrough was collected.
200 pL single use aliquots were prepared and stored at -80 °C until use.

Vaginal secretions were self-collected by consenting donors. Female participants were
asked to refrain from unprotected sexual intercourse for 12 days prior to the collection of vaginal
fluid. The hypoallergenic, over the counter Softdisc™ collection cup (The Flex Company, Venice,
CA) was utilized. Donors inserted the collection cup into the vagina following manufacturer’s
instructions. It was requested the cup remain in the vagina for a minimum of 1 hour but could be
left in for a period up to 12 hours. The entire Softdisc™ was placed into a sterile collection cup and
transported to the laboratory. The liquid contents were placed into the collection cup and the
Softdisc™ was repeatedly washed with 1 mL of ultra-pure water to remove mucous-like secretions.
The liquid contents and mucous secretions were pooled and thoroughly vortexed to create a

homogenous sample. 200 uL single use aliquots were prepared and stored at -80 °C until use. In
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addition to vaginal secretions collected with the Softdisc™, female participants were asked to
provide self-collected vaginal swabs. Consenting volunteers were provided with sterile cotton-
tipped swabs. A single swab was inserted into the vaginal cavity, similar to inserting a tampon. The
swab was rotated in a circular manner for 15 seconds and gently removed. Swabs were placed into
sterile manila collection envelopes for transport to the laboratory. Upon receipt, swabs were dried
at room temperature where the cotton tip was removed from the wooden handle and placed in a
clean microcentrifuge tube. Swabs were stored at -80 °C until use.

Menstrual blood samples were self-collected by consenting donors. Female participants
were asked to refrain from unprotected sexual intercourse for 12 days prior to the collection of
menstrual blood. The hypoallergenic, over the counter DivaCup™ (Diva International, Inc., Ontario,
Canada) was utilized. Donors inserted the DivaCup™ in accordance with manufacturer’s guidelines
during menses. It was requested the cup remain in the vagina for a minimum of 1 hour but could
be left in for a period up to 12 hours. The entire DivaCup™ was placed into a sterile collection cup
for transport to the laboratory. Upon receipt, the liquid contents were poured into the collection cup
and thoroughly vortexed. 200 pL single use aliquots were prepared and stored at -80 °C until use.

2.1.2 Method Transfer and Biomarker Selection

2.1.2.1 Confirmation of Body Fluid-Specific Targets

Previously acquired data on candidate target protein and peptide sequences was reviewed
in tandem with analysis of peptide standards in fluid matrix to reevaluate optimal transitions. In
total, 26 peptide signatures from previously acquired data were carried over for additional analysis
[130,147]. Under these previous research efforts, crude (70% purity) peptide standards were
purchased, and product ions were selected via fragmentation analysis using Quadrupole Time-of-
Flight (QTOF) mass spectrometry. Authentic body fluids were quantitated (Section 2.1.3.1),
manually digested and purified (Section 2.1.3.3) for analysis with the target inclusion list.

2.1.2.2 Mass Spectrometer Instrument Parameters

Synthetic peptide standards prepared in Section 2.1.2.1 were combined to create a protein

master mix containing peptide standards at equal concentration. Each protein master mix was
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directly infused into the Agilent Jet Stream source of the 6495 mass spectrometer. Using the Agilent
Source and iFunnel Optimizer software (v. B.08.00), starting values of source parameters were
evaluated in a step-wise fashion. Parameters assessed included sheath gas temperature and flow
rate, nozzle voltage, nebulizer pressure, drying gas temperature and flow rate, and capillary
voltage. Resulting data was analyzed in MassHunter Qualitative software (v.B.04.01) for greatest
peak intensities and peak shape.

Collision energy for individual peptides was determined using crude (70% purity) peptide
standards prepared in Section 2.1.2.1. Skyline Proteomics Environmental software v. 20.1.0.155
(MacCoss Labs, University of Washington) was used to establish predictive in silico collision energy
values for each peptide of interest. Values were incrementally increased and decreased around
the predicted value to determine the maximum signal of each ion transition. Resulting data was
analyzed using MassHunter Qualitative software.

2.1.2.3 Chromatographic Optimization

2.1.2.3.1 Preliminary Assessment

Synthetic peptide standards prepared in Section 2.1.2.1 were utilized to assess the effect
of mobile phase gradient, analytical column internal diameter, and flow rate on chromatographic
peak separation and signal intensity. Two analytical columns were evaluated: an Agilent Poroshell
120 EC-C18 3 mm x 100 mm column and an Agilent Poroshell 120 EC-C18 2.1 mm x 100 mm
column. Flow rates assessed include 0.4 mL/min, 0.5 mL/min, and 1.0 mL/min. Due to the
construction of the 2.1 mm x 100 mm column, the 1.0 mL/min flow rate could not be assessed on
this column due to pressure limitations. Run times evaluated include 10, 13, and 15 minutes, each
with a 3-minute post run to allow for equilibration. Two final analytical methods were selected for
further analysis: a 10-minute (3.1 mm x 100 mm) method using a 1.0 mL/min flow rate and a 13-
minute (2.1 mm x 100 mm) method using a 0.5 mL/min flow rate. Body fluid samples from five
donors were pooled, enzymatically digested, and extracted using the AssayMAP Bravo liquid

handling platform protocol (discussed in Section 2.1.3.2) and analyzed, in addition to prepared
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peptide standards, on both analytical methods to ensure peak-to-peak resolution remained
desirable.

2.1.2.3.2 Sensitivity Assessment

Human serum albumin (HSA) peptide (Agilent Technologies, Santa Clara, CA) was diluted
using 30% ACN with 0.1% FA to the following concentrations: 100 fmol/uL, 10 fmol/uL, 1 fmol/uL,
0.5 fmol/uL, and 0.1 fmol/uL. A series of seminal fluid and vaginal fluid mixtures were created from
pooled fluid from five donors. Vaginal fluid was held at a constant 100 yL while 10 L, 1 uL, 0.1 uL,
and 0.01 pL of semen were added into the vaginal fluid sample (i.e., a vaginal fluid to semen ratio
of 1:10 to 1:10,000). Each concentration was prepared and analyzed in triplicate between the 13-
minute (2.1 mm x 100 mm) method and the 10-minute (3 mm x 100 mm) method. Samples were
digested and extracted using the AssayMAP Bravo liquid handling platform (discussed in Section
2.1.3.2) and 1 yL of sample was analyzed via LC-MS/MS.

2.1.2.4 Internal Positive Control

Intact Bos taurus myelin basic protein was purchased at a concentration of 1 mg/mL
(Millipore Sigma, Darmstadt, Germany). Upon receipt, intact myelin was diluted with 50 mM
ammonium bicarbonate (ABC) to a final concentration of 10 ng/uL. Isotopically-labeled Bos taurus
myelin basic protein peptide DTGILDSLGR was purchased (New England Peptide) at a
concentration of 1 mg/mL and diluted in 30% ACN 0.1% FA for a final concentration of 0.5 mg/mL.
Single use aliquots of both the intact and labeled internal positive control (IPC) were stored at -80
°C. Upon use, aliquots were thawed at room temperature for 30 minutes, vortexed, and pulse spun.
Isotopically-labeled IPC stock solution was further diluted with 30% ACN and 0.1% FA in deionized
water to a concentration of 1 pmol/pL.

Seminal fluid and peripheral blood were used for IPC concentration analysis as they are
the most protein rich fluids analyzed within this assay. A series of four 2-fold dilutions were prepared
by mixing 100 ug of body fluid matrix pooled from 5 donors with either 200 ng, 100 ng, 50 ng, or 25
ng of a 1:1 molar ratio of intact myelin basic protein and isotopically-labeled peptide standard.

Samples were digested and extracted using the AssayMAP Bravo liquid handling platform
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(discussed in Section 2.1.3.2) and 1 pL of sample was analyzed via LC-MS/MS. Intact IPC was
added to samples prior to tryptic digestion and isotopically-labeled myelin IPC was added prior to
solid phase extraction cleanup.

2.1.3 Sample Preparation Optimization

2.1.3.1 Protein Quantitation

A comparison of two protein quantitation techniques was conducted. A previously
optimized protocol for the bicinchoninic acid (BCA) assay was selected (Thermo Fisher Scientific,
Waltham, MA). Assay standards were prepared by diluting concentrated bovine serum albumin
(BSA) in 100 mM tris-hydrochloride (tris-HCI) to the following concentrations: 1,500 pug/mL; 1,000
pg/mL; 750 pg/mL; 500 pg/mL; 250 pg/mL; 125 ug/mL; and 25 pg/mL. To a 96-well flat bottom
plate, 25 uL of standard or sample was added in duplicate. Samples and standards were treated
with 200 uL of working reagent containing 200 pL of Reagent A and 50 uL of Reagent B per sample.
The plate was incubated at 37 °C for 30 minutes followed by 10 minutes at room temperature.
Samples were read using a spectrophotometer at 652 nm wavelength. The second quantitation
technique utilized a Nanodrop™ One Microvolume UV-Vis spectrophotometer (Thermo Fisher
Scientific). To operate, 1 uL of sample or standard was applied to the stage. Two quantitation
functions on the Nandrop™ were selected for evaluation: the 280 nm absorbance assay and the
built-in BCA application.

For comparison, single use body fluid aliquots were thawed at room temperature for 30
minutes then centrifuged for 10 minutes at 10,000 x g. Supernatant was transferred to a clean
microcentrifuge tube and cell pellets were discarded. Single-fluid and mixture samples were
prepared. Single-fluid samples were analyzed neat and diluted 10-fold, 100-fold, and 1,000-fold in
50 mM ammonium bicarbonate. Two-fluid mixture samples were prepared by combining 50 yL of
each fluid for 1:1 volume mixtures. Mixture samples were thoroughly vortexed and pulse spun prior
to analysis. All samples were evaluated in triplicate. Descriptive statistics were calculated and
comparisons were performed through observation of average protein concentration and standard

error.
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2.1.3.2 Automation Procedure Development

A previously developed manual tryptic digestion was modified and transferred to the
AssayMAP Bravo liquid handling platform (Agilent Technologies). A denaturant solution of 8 M urea
and 5 mM tris(2-carboxyethyl)phosphine (TCEP) was prepared in 100 mM tris-HCI. Upon
procedure development, varying volumes of 40 uL, 55 pL, and 90 pL denaturant solution were
added to samples for evaluation. Alkylation solution was prepared as 100 mM iodoacetamide in
deionized water. 100 mM tris-HCI was utilized as diluent prior to the addition of 0.25 ug/pL
sequencing grade modified trypsin (Promega Corporation, Madison, WI). With the exception of the
sample load volume, the default peptide cleanup parameters on the AssayMAP Bravo software
were utilized for removal of residual digestion solutions.

2.1.3.3 Workflow Testing and Optimization

A comparative assessment between the manual and automated processing procedures
was conducted. For the manual tryptic digestion, lyophilized sample was reconstituted in 15 pL of
50 mM ABC, vortexed for 10 seconds, and pulse spun. Protein was denatured with 15 pL of
trifluoroethanol (TFE) and reduced with 1 yL of 200 mM TCEP for 30 minutes at 55 °C. After
incubation, 2 uL of 200 mM iodoacetamide (IAA) was added and samples were vortexed and pulse
spun. Samples were incubated for 30 minutes in the dark at room temperature. Samples were
diluted with 250 uL 50 mM ABC for a final concentration of 5mM TCEP and 10 mM IAA. Samples
were treated with 10 yL of 0.25 pg/uL sequencing grade modified trypsin and incubated at 37 °C
for 15 hours. Digestion was stopped with the addition of 10 pL of 10% trifluoroacetic acid (TFA).
Pierce® C18 Spin Columns (Thermo Fisher Scientific) were primed with 300 uL of 50% ACN in
deionized water and centrifuged at 1.4 x g for 1 minute. Cartridges were equilibrated with 300 L
of 0.1% formic acid (FA) in deionized water and centrifuged at 1.4 x g for 1 minute. Total sample
volume (266 uL) was loaded into the spin column and centrifuged for 1 minute at 1.4 x g. Columns
were washed with 300 pL of 0.1% FA in deionized water and centrifuged at 1.4 x g for 1 minute,
for a total of 3 wash steps. Samples were eluted with 2 passes of 20 pyL of 70% ACN with 0.1% FA

in deionized water by centrifuging for 1 minute at 1.4 x g, for a total of 40 L of eluate. Eluate was
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lyophilized to dryness. The automated procedures were conducted as described below (Section
2.4.1). Samples were fortified with 100 ng intact IPC prior to digestion and a final concentration of
50 fmol/uL isotopically-labelled IPC prior to solid phase extraction (SPE) cleanup. Descriptive
statistics were calculated and comparisons were performed through observation of peak area
response and standard error.

Various consumables were evaluated to provide optimum biomarker recovery. Three
sample plates were compared: a Non Binding Surface treated 96-well U-bottom plate (Corning®,
Corning, NY), Lo-Bind treated plate (Eppendorf, Hamburg, Germany), and a non-treated U-bottom
96-well plate (Greiner, Monroe, NC).

2.1.4 Final Protocol for Sample Preparation

Samples were quantitated using the BCA assay. Standards and working reagent were
prepared as described above (Section 2.1.3.1). If necessary, samples were diluted with 100 mM
tris-HCL. Samples were fortified with 20 yL of 0.5 mg/mL intact myelin protein and lyophilized to
dryness.

Lyophilized sample was reconstituted and digested using the AssayMAP Bravo liquid
handling platform. Samples were denatured in 55 pL of denaturant solution (8 M urea, 5 mM TCEP
in 100 mM tris-HCI) for 45 minutes at 25 °C. 6 pL of 100 mM IAA was added and samples were
incubated for 30 minutes at 25 °C with a lid on the plate. After 30 minutes, 170 uL of 100 mM tris-
HCI was added. Samples were treated with 10 yL of 0.25 ug/pL trypsin. The sample plate was
sealed and shaken for 5 minutes prior to incubating at 37 °C for 15 hours.

The tryptic reaction was stopped with the addition of 10 uL of 25% TFA. Digested samples
were manually fortified with 10 uL of 1 pg/mL isotopically-labeled IPC stock solution. The sample
plate was placed back on the AssayMAP Bravo deck for SPE cleanup. C18 microextraction
cartridges (Agilent Technologies) were primed with 100 uL 50% ACN 0.5% TFA at a flow rate of
300 pL/min. Cartridges were equilibrated with 50 pL of 0.5% TFA in deionized water at 10 yL/min.
200 pL of digested sample was passed over the cartridge at a flow rate of 15 yL/min. Cartridges

were washed with 50 pL of 0.5% TFA in deionized water at a rate of 10 yL/min. Sample material
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was eluted from the sorbent in 25 pyL of 70% ACN 0.1% FA at 5 yL/min. Eluate was lyophilized to
dryness and prepared for LC-MS/MS analysis.

Lyophilized samples were reconstituted in 100 pL of 2% ACN with 0.1% FA in deionized
water. Acquisition was performed using 10 pL of sample per injection on an Agilent 6495 mass
spectrometer coupled to a 1290 series liquid chromatograph. An Agilent Poroshell 120 EC-C18 3
mm x 100 mm analytical column was used for separation. Mobile phase A consisted of water with
0.1% FA and mobile phase B consisted of ACN with 0.1% FA. Separation initiated at 5% B followed
by a linear 8-32% B gradient over 8.5 minutes, a 1-minute hold at 80% B, followed by a 3-minute
re-equilibration at a 1.0 mL/min flow rate and column temperature of 50 °C. Data was analyzed
using Skyline Proteomics Environmental software v. 20.1.0.155.

2.2 Results and Discussion

The objective of this phase of the research was the design and optimization of the LC-
MS/MS method utilized for the remainder of the project. Specifically, human body fluid-specific
biomarkers were selected; peptide standards were synthesized; an internal positive control was
designated; and the Agilent 6495 LC-MS/MS operating parameters were determined. Furthermore,
experimentation was conducted to determine if sample processing procedures were amenable to
automation. It should be noted that all preliminary target selection included the analysis of
biomarkers consistent with the identification of urine (in addition to peripheral blood, seminal fluid,
saliva, and vaginal/menstrual fluids). Upon development of the sample preparation procedures
outlined in Section 2.1 and in consultation with senior practitioners, the identification of urine was
dropped from the analytical method to allow for consistency in sample processing and preparation.
However, preliminary results for urine identification are included within portions of this chapter to
demonstrate the inconsistencies of preparation chemistries at accurately identifying peptide

signatures consistent with urine.
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2.2.1 Method Transfer and Biomarker Selection

2.2.1.1 Confirmation of Body Fluid-Specific Targets

To maximize the sensitivity and specificity of the assay, an extensive evaluation of protein,
peptide, and peptide fragment ions were identified during method development. Preliminary peptide
fragments were selected from the most abundant proteins present in the target body fluids (i.e.,
peripheral blood, seminal fluid, saliva, vaginal/menstrual fluids) through review of previously
acquired data from prior research initiatives [130,147]. Proteins were reassessed using proteomic
databases (i.e., UniProt, NCBI gene) for species- and fluid-specificity. Selected targets were
evaluated experimentally to ensure the targets were abundant and not effected by endogenous
matrix interferences, and top fragmentation products were selected for inclusion in the remainder
of the study. Whole proteins, peptide sequences, or ion transitions were eliminated based on signal
intensity, retention time, and fragmentation observed via LC-MS/MS. High purity isotopically-
labeled peptide standards were custom synthesized for the final biomarker target list and used in
the remainder of the study.

Product ion transition selection was carried out using QTOF analysis of synthetic peptide
standards. Figure 2.1 provides an illustrative example of peripheral blood protein alpha 1
antitrypsin peptide LSITGTYDLK peak area response, fragmentation spectra, and product ion
detection and selection. The peptide precursor m/z ratio of 555.80 was fragmented and the four
most abundant product ions (i.e., m/z 997.5201, 910.4880, 797.4040, 696.3563) were selected for
inclusion. This process was repeated for all protein/peptide pairings prior to being transferred to
the Agilent 6495 LC-MS/MS platform. The preliminary inclusion list contained 30 protein targets
characterized by 136 peptides (including markers for urine identification).

The inclusion list was drastically paired down during the remainder of this portion of the
study. This was performed to increase the sensitivity and specificity of the analytical method by
limiting the likelihood of coelution of peptide signatures. Such a large transition list results in
decreased dwell times, which in turn limits the amount of time the mass spectrometer scans for the

target compound, therefore preventing informative data points from being obtained. Furthermore,
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as instances of fluid cross-reactivity or interference were observed, candidate protein and peptide
markers were subsequently eliminated in favor of more specific protein targets. In summary, a total
of 21 proteins were selected for the final inclusion list, characterized by 45 amino acid sequences
and 132 unique ion transitions. Figures 2.2-2.6 illustrate the chromatographic separation of the
final peptide inclusion list for each body fluid. A complete list of protein, peptide, and transition
targets is detailed in Appendix A. Although representative of fluid-specific and abundant targets,
the diversity in protein composition of the inclusion list presented further analytical challenges for
method optimization. Peptide targets exhibited a wide range of physical properties including

hydrophobicity/hydrophilicity and molecular weight.
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Figure 2.1. Analysis of alpha 1 antitrypsin peptide LSITGTYDLK by QTOF and LC-MS/MS. Top
image represents the precursor ion response. Middle figure represents the fragmentation spectra
of the precursor ion. Bottom figure represents the product ion distribution. The product ions
exhibiting the greatest abundance were selected for inclusion in the targeted LC-MS/MS assay.
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Figure 2.2. Assay results for the detection of human peripheral blood. Peaks represent selected
peptides consistent with proteins (A) hemopexin, alpha 1 antitrypsin, apolipoprotein,
serotransferrin, and (B) hemoglobin.

59



200 —
A.
150 + -
& g
o o
% 100 + g N 5 %
c =z >
o
g 2 ||
50 + 14 |
|
2e o < \\ - < o
=z 832 ‘% l/: = = )
0 Y S-S 4 LI i
0 2 4 6 8 10 12
Retention Time
30 1
B.
25 1 3

SAV
L

20 +

Intensity (1046)
&

i
o 1 . L .

0 2 4 6 8 10 12
Retention Time

Figure 2.3. Assay results for the detection of human menstrual blood. Peaks represent selected
peptides consistent with proteins (A) hemopexin, alpha 1 antitrypsin, apolipoprotein,
serotransferrin, cornulin, neutrophil gelatinase, Ly6/PLAUR, suprabasin, periplakin, involucrin,
small proline rich protein 3, and (B) hemoglobin.
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Figure 2.4. Assay results for the detection of human seminal fluid. Peaks represent selected
peptides consistent with proteins semenogelin 1, semenogelin 2, prostate specific antigen,
prostatic acid phosphatase, and epididymal secretory protein.
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Figure 2.5. Assay results for the detection of human saliva. Peaks represent selected peptides
consistent with proteins (A) submaxillary gland androgen-regulated protein 3B, cystatin SA,
statherin, and (B) alpha amylase. (C) Alpha amylase peptides on a smaller retention time scale to
illustrate peak resolution.
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Figure 2.6. Assay results for the detection of human vaginal fluid. Peaks represent selected
peptides consistent with proteins (A) neutrophil gelatinase, Ly6/PLAUR, suprabasin, periplakin,
involucrin, (B) cornulin, and small proline rich protein 3.

2.2.1.2 Mass Spectrometer Instrument Parameters

Given the formation of a targeted list of target protein and peptide biomarkers, additional
instrument parameters were optimized for each target to ensure optimal detection and
identification. In order to optimize ionization efficiency, Agilent mass spectrometer Jet Stream
source conditions were adjusted (Figure 2.7). The source conditions modified for maximum peak
area response included nebulizing gas flow rate and temperature, sheath gas flow rate and
temperature, capillary voltage, nebulizer pressure, and nozzle voltage. Conditions were optimized
by injecting peptide standards and manually modifying the aforementioned parameters until a
maximum peptide response signal was observed. Finalized source condition parameters are
detailed in Table 2.1.

While source parameters were established based on response signal of the biomarker

panel as a whole, the optimal collision energy was determined for each individual peptide transition.
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Collision energy optimization is necessary to achieve maximum ion transmission and fragmentation
within the mass spectrometer. Similar to source parameter conditions, collision energy was
incrementally modified until a maximum peptide response signal was observed. Using Skyline
Proteomics Environment Software, in silico predictions of optimal collision energy for each target
peptide sequence were generated. Using synthetic peptide standards, the collision energy was
modified in a stepwise manner both above and below the predicted value. A complete list of final
collision energy values for target peptide sequences is detailed in Appendix A. For example,
semenogelin 2 peptide DVSQSSISFQIEK had a predicted collision energy value of 23.8 V. The
positive addition collision energies are shown in Figure 2.8, with 25.8 V producing the greatest

peak intensity of those tested.

Nebulizing gas

Enhanced efficiency nebulizer

Nozzle voltage \
The super-heated sheath gas collimates

the nebulizer spray and creates higher

ion density in front of the capillary Resistive sampling

capillary

Figure 2.7. Agilent Jet Stream source schematic. Reprinted from Agilent Jet Stream Thermal
Gradient Focusing Technology (p. 1) by A. Mordehai and J. Fjeldsted. Publication number 5990
3494. Copyright 2009 by Agilent Technologies.
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Table 2.1. Optimized Agilent Jet Stream
spectrometer.

source parameters on the Agilent 6495

Source Parameter

Source Value

Drying Gas Temperature

150°C

Drying Gas Flow

15 liters/minute

Nebulizer Pressure

30 psi

Sheath Gas Temperature

200°C

Sheath Gas Flow

11 liters/minute

Capillary Voltage 3500 Volts
Nozzle Voltage 300 Volts
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Figure 2.8. Collision energy optimization of semenogelin 2 peptide DVSQSSISFQIEK. Retention
time is depicted on the x-axis and peak intensity on the y-axis. Colored peaks represent peak area
intensity of the peptide at a given collision energy. The collision energy that produced the greatest

peak intensity (i.e., 25.8 V in tan) was selected.

2.2.1.3 Chromatographic Optimization

An area of interest that was identified for assay development in relation to the previous

research grade assay was decreasing analytical run time in order to increase sample throughput.

In addition to automated sample preparation (discussed in section 2.2.2.2), increasing sample

throughput is an attractive quality for consideration in operational laboratories. One of the main

challenges associated with a decrease in analytical run time is the loss of resolution between target
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compounds due to coelution and potential ion suppression. Run time optimization and
chromatographic separation were evaluated during this portion of the project using synthetic
peptide standards and challenging sample types. During analysis, the LC-MS/MS mobile phase
gradient, specifically for the acetonitrile organic solvent, was monitored and adjusted to prevent co-
elution of peptide targets.

2.2.1.3.1 Preliminary Assessment

The starting analytical gradient was set for a 15-minute run time with a 3-minute post time
at a 0.4 mL/min flow rate, for a total run time of 18 minutes. With the implementation of robotic
sample preparation, the analysis of a 96-well sample plate would take approximately 30 hours. This
was determined to be unsuitable for an operational environment faced with quick turn-around times,
given that a single 96-well plate could not be analyzed within a single day. Therefore, two additional
chromatographic run times were evaluated: a 13-minute run time and a 10-minute run time, both
with a 3-minute post time (Table 2.2). To account for the analysis of such a large number of target
compounds and the speed of analysis, two analytical columns were also assessed. The 13-minute
gradient was developed using a 2.1 mm x 100 mm AdvanceBio Peptide Map column with a flow
rate of 0.5 mL/min. The 10-minute gradient was developed using a 3 mm x 100 mm AdvanceBio
Peptide Map column and a flow rate of 1.0 mL/min, with both columns containing a 2.7-micron pore
size (Table 2.2). The increase in internal diameter of the analytical column, from 2.1 mm to 3 mm,
allowed for increased flow rate due to the larger bore column. However, as flow rate is increased,
peak-to-peak resolution will compress, generating potential challenges in maintaining assay
sensitivity. A preliminary assessment of the analytical methods included the analysis of digested
protein material from the target body fluids. While some compression was expected, no loss in
resolution was observed with the 10-minute method for any of the body fluids. For example, Figure
2.9 depicts chromatographic separation and resolution of a seminal fluid peptide targets for both
the 13-minute (2.1 mm x 100 mm) and 10-minute (3 mm x 100 mm) methods. No consequential
loss in peak resolution was observed while three minutes of instrument run time was spared per

sample assayed.
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Table 2.2. Chromatographic parameters for the three analytical gradients evaluated.

Parameter 15 min Run Time 13 min Run Time 10 min Run Time
Column 2.1x 100 mm Peptide Map 2.1x 100 mm Peptide Map 3x 100 mm Peptide Map
Te;(:)l:gtnure s0°C
Moble Phase B 0.1% FAn ACN
0.5mL/min 0.5 mL/min 1.0 mL/min

Time %B Time %B Time %B
Initial 5 Initial 5 Initial 5
1.1 5 0.5 8 05 8

Flow Rate 12.5 32 11.5 32 85 32
13.0 80 1.7 80 8.7 80
14.0 80 12.7 80 9.7 80
14.2 5 12.9 5 9.9 5
15.0 5 13.0 5 10.0 5

Stop Time 15 min 13 min 10 min

Post Time 3 min

Total Run Time 18.5min 16.5min 13.5
?g:g:ﬁ;:gf 29.6 hours 26.4 hours 21.6 hours
10 min 13 min 15 min
Run Run Run
Time Time Time

x102 |Cpd 3 DVSQSSISFQIEK light: +ESI MRM Frag=380.0V CF<)!

1

Peak Intensity
1.1 X102

Figure 2.9. Normalized chromatographic separation of seminal fluid peptide DVSQSSISFQIEK
across the three developed gradients (15-minute run time, orange; 13-minute run time, light green;

Retention Time

10-minute run time, dark green).

2.2.1.3.2 Sensitivity Assessment

A serial dilution of human serum albumin (HSA) was prepared and analyzed on the 13-

minute and 10-minute analytical methods. A slightly greater (i.e., <2%) peak area was observed in
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favor of the 13-minute analytical method (Figure 2.10). It was determined that the 10-minute 1.0
mL/min flow rate did not negatively impact the ability of low-level sample detection and
identification. Following these results, all body fluids were analyzed using the 13- and 10-minute
methods to observe any consequential loss in peak-to-peak resolution due to compressed
chromatographic separation. While peak compression was expected, no loss in resolution was
observed with the 10-minute method for any of the fluids. For example, chromatographic separation
for saliva is depicted in Figure 2.11. A change in elution order was observed for the two alpha-
amylase peptides IAEYMNHLIDIGVAGFR and LSGLLDLALGK (green and pink peaks). The
LSGLLDLALGK peptide eluted first on the 13-minute method and second on the 10-minute method.
Other than compression of peak elution, no other changes in elution order were observed for the
remaining body fluids.

To simulate sexual assault type samples, a series of semen dilutions in vaginal fluid were
prepared. Of the four dilutions prepared, results for two are illustrated, with the 0.01 L representing
the lowest dilution point assessed. A marginal loss in peak area was observed for semenogelin 2
on the 10-minute method; however, greater peak responses for prostate specific antigen were
observed on the same method (Figure 2.12). Based on the data obtained, the tradeoff between
peptide response and sample throughput favors the faster 10-minute (3 mm x 100 mm) run time.

In conclusion, the 10-minute chromatographic method was selected for the remainder of the study.
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A. Human Serum Albumin Peptide YLYEIAR B. Human Serum Albumin Peptide
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Figure 2.10. Peak area comparison between the 13-minute (purple) and 10-minute (blue) analytical
methods for human serum albumin peptide (A) YLYEIAR and (B) AAFTECCQAADK. Error bars
represent standard error. The amount of protein material on column (in femtomoles) is represented
on the x-axis. Peak area response is represented on the y-axis.
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Figure 2.11. Chromatographic resolution comparison between saliva biomarker peptides on the (A)
13-minute and (B) 10-minute analytical methods.
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Semenogelin 2 Prostate Specific Antigen
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Figure 2.12. Peak area response comparison for low-level seminal fluid in a vaginal fluid matrix
between the 10-minute and 13-minute analytical methods. Semenogelin 2 peptide GSISIQTEEK
at the 10-minute (orange) and 13-minute (red) retention times. Prostate specific antigen peptide
FMLCAGR at the 10-minute (green) and 13-minute (grey) retention times. Peak area response is
represented on the y-axis.

2.2.1.4 Internal Positive Control

In order to monitor inhibition of proteolytic digestion due to the presence of sample-specific
contaminants or inhibitors, an internal positive control (IPC) was designed. Two versions of the IPC
were acquired: an intact protein to evaluate digestion efficiency and a heavy isotope-labeled
peptide from the same protein to monitor purification and chromatographic analysis. Inhibition in
protein cleavage efficiency was indicated by a reduction in the signal intensity of the control intact
protein in comparison with the heavy-labeled peptide sequence of the same protein. Bovine myelin
basic protein, both an intact protein version and an isotopically-labeled peptide sequence, were

selected for use as the IPC (Figure 2.13). This protein had been used as an IPC in previous
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research studies and was selected for it’s conserved amino acid sequence. Using seminal fluid and
peripheral blood sample matrices, a dilution series of a 1:1 molar ratio of intact myelin and labeled
peptide standard were evaluated. The theory behind selecting only seminal fluid and peripheral
blood for IPC evaluation rests in the inherent matrix effects and protein concentration of these two
fluids.

As expected, the heavy peptide standard to digested myelin response ratios did not reach
the theoretical 1:1 ratio maximum for any protein cleavage reaction in tested authentic body fluids.
The ratio that was obtained, however, was constant for both the seminal fluid and peripheral blood
matrices over the full range of concentrations tested. Figure 2.14 shows the peak response for the
digested myelin protein and heavy peptide standard for a 100 ng assessment in seminal fluid and
peripheral blood. Both fluid matrices have matching peak heights, retention times, and a stable
ratio of heavy peptide standard to digested myelin. The experiment was repeated across all body
fluids using the same 1:1 molar ratio of intact myelin to labeled peptide standard, created in 100 ug
of fluid matrix. Similar to results observed previous, the theoretical ratio of 1:1 was not illustrated.
However, among the dilutions of each fluid matrix, the response ratios obtained had coefficients of
variation (CV) values of 2% or less (Table 2.3). Therefore, the 100 ng quantity of intact IPC was
selected for use in developmental validation studies.

The discordance in obtaining the theoretical 1:1 response ratio is best described by the
relationship between enzymatic digestion of intact protein and monitoring of surrogate peptides that
is characteristic of bottom up proteomic analyses [154]. The relative quantitation of surrogate
peptides relies on the catalytic activity of trypsin. A 1:1 response ratio would assume a catalytic

activity that displays 100% accuracy in cleaving at each arginine and lysine residue.
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A. Bos taurus Myelin Basic Protein (P02687)

AAQKRPSQRSKYLASASTMDHARHGFLPRHRDTGILDSLGRFFGSDRG
APKRGSGKDGHHAARTTHYGSLPQKAQGHRPQDENPVVHFFKNIVTPR
TPPPSQGKGRGLSLSRFSWGAEGQKPGFGYGGRASDYKSAHKGLKGH
DAQGTLSKIFKLGGRDSRSGSPMARR

B. Homo sapiens Myelin Basic Protein (P02686)

MGNHAGKRELNAEKASTNSETNRGESEKKRNLGELSRTTSEDNEVFGE
ADANQNNGTSSQDTAVTDSKRTADPKNAWQDAHPADPGSRPHLIRLFS
RDAPGREDNTFKDRPSESDELQTIQEDSAATSESLDVMASQKRPSQRH
GSKYLATASTMDHARHGFLPRHRDTGILDSIGRFFGGDRGAPKRGSGKD
SHHPARTAHYGSLPQKSHGRTQDENPVVHFFKNIVTPRTPPPSQGKGR
GLSLSRFSWGAEGQRPGFGYGGRASDYKSAHKGFKGVDAQGTLSKIFK

LGGRDSRSGSPMARR

Figure 2.13. Protein sequences for myelin basic protein in (A) Bos taurus and (B) Homo sapiens.
The Bos taurus specific peptide (DTGILDSLGR, pink) and Homo sapiens specific peptide
(DTGILDSIGR, purple) lack 100% sequence identity, making it possible to discriminate between
bovine-based IPC and endogenous human myelin basic protein.
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Figure 2.14. Detection of myelin bovine albumin peptide DTGILDSLGR in peripheral blood (left)

and seminal fluid (right). Digested internal positive control is depicted in red (m/z 523.7775++).
Heavy isotope labeled internal positive control is depicted in blue (m/z 528.7816++).
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Table 2.3. Detection of IPC at 100 ng quantities. Response ratio was calculated by dividing the
peak area response of the heavy peptide standard by the peak area response of the natural (intact)
protein.

DTGILDSLGR DTGILDSLGR
Replicate (Heavy Standard) | (Natural Protein)
Peak Area Peak Area Response Ratio | Average SD %CV
Vaginal Fluid #1 7576501.5 482856.6 15.6
- - 15.5 0.1 0.65
Vaginal Fluid #2 1753853.2 113610.3 15.4
Saliva #1 9241114 645746.6 14.3
- 14.1 0.2 1.42
Saliva#2 9243275 658870.1 14.0
Seminal Fluid #1 6891479.5 500570.6 13.7
- - 13.5 0.2 0.57
Seminal Fluid #2 6881512.5 514243.0 13.3
Menstrual Blood #1 2525159.7 135897.5 18.5
18.55 0.05 0.27
Menstrual Blood #2 1931371.7 1037221 18.6
Peripheral Blood #1 1991764.8 104990.3 18.9
- 18.7 0.2 1.07
Peripheral Blood #2 2369814.7 127606.9 18.5

2.2.2 Sample Preparation Optimization

The purpose of this portion of the study was to develop an automated and expedited
sample preparation protocol aside from initial swabbing or cutting of evidentiary material. This
protocol was determined through the completion of three objectives. First, through evaluating two
techniques for total protein quantitation. Second, development of an automated processing
workflow. And lastly, comparing the automated workflow with a previously developed manual
procedure.

2.2.2.1 Protein Quantitation

Accurate determination of protein quantitation is vital for biochemical experimentation,
specifically for enzymatic digestion of protein material. A multitude of quantitation techniques are
available [155], with two UV absorbance techniques chosen for comparison. The bicinchoninic acid
assay (BCA) is a standard technique for the reliable and specific quantitation of protein content.
While analytically reliable and conservative with regard to consumption of evidentiary material,
newer instrumentation employing micro spectrophotometry have been promoted by some
practitioners within the field. The NanoDrop™ One Microvolume UV-Vis spectrophotometer (herein

referred to as NanoDrop™) was acquired and compared to a previously optimized BCA assay. It
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was hypothesized that the NanoDrop™ would provide a faster alternative to obtaining protein
concentration data while consuming as little as 1 pL of extract.

Three experiments were designed to compare the two quantitation procedures. Single
source and mixed source body fluids were prepared for the BCA assay and NanoDrop™ method at
280 nm absorbance. The NanoDrop™ produced greater protein concentrations in comparison to
the BCA reaction when assessing single source fluids (Figure 2.15). However, any notation of
improvement between the two assays was highly inconsistent across fluids. For example, the
NanoDrop™ indicated an average protein concentration for semen that was 50% greater than that
obtained using the BCA assay. Moreover, this irregularity was observed across 15 samples that
contained 1:1 mixtures of the target body fluids (Figure 2.16). The greatest discrepancy in
quantitation results for both single source and mixture samples were produced by samples
containing urine. Urine is primarily composed of water and non-protein compounds such as uric
acid and creatinine. Both of these compounds have the ability to absorb 280 nm wavelength UV
light [156].

Ultimately, the protein quantitation estimates provided by the NanoDrop™ with the 280 nm
absorbance mode were determined to be inconsistent and unreliable. This was attributed to the
presence of non-protein matrix components that absorb light in the 280 nm range. Measuring
protein absorbance at 280 nm is routinely conducted in biological procedures given that
measurements can be quickly taken and are highly reproducible when using purified sample
material. It has been reported that aromatic amino acids, such as tyrosine and tryptophan, strongly
absorb UV light at the 280 nm wavelength [157]. However, other aromatic ring containing
structures, such as enzymatic cofactors, can also absorb UV light at the 280 nm wavelength.
Furthermore, UV absorbance can be affected by protein structure, peptide sequence, and pH
environment.

The NanoDrop™ had a built-in BCA application, which was run in parallel with the manual
BCA assay to evaluate the inconsistent results observed with single and mixed source samples.

This was conducted with only peripheral blood, seminal fluid, and saliva matrices. For this
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experiment, all samples were treated with the Bradford reagent and samples were analyzed in
parallel with the manual BCA assay and NanoDrop™ system. Protein concentrations were
consistent between the two analyses; however, the standard spectrophotometer proved to be the
faster of the two methods (Figure 2.17).

Due to the inconsistent results observed with the 280 nm quantitation approach, it was
determined that all samples would require quantitation with the BCA assay. In addition, pipetting
individual samples onto the NanoDrop™ system introduced more analyst hands-on time and sample
handling than with the standard BCA analysis. The discrepancies in urine quantitation values were
an underlying source of concern and attributed to the removal of urine form the target inclusion list.
In conclusion, the manual BCA assay using a standard spectrophotometer was selected as the

protein quantitation method for the remainder of the study.
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Quantitation Method Comparison - Single Source
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Figure 2.15. Single source body fluid comparison using the NanoDrop™ 280 nm (blue) and BCA
assay (purple). Representative dilution samples are represented on the x-axis. Average protein
concentration is represented on the y-axis. Error bars represent standard error.
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Quantiation Method Comparison - Mixture Samples
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Figure 2.16. Mixture sample comparison using the NanoDrop™ 280 nm (blue) and BCA assay
(purple). Mixture samples were prepared as a 1:1 ratio and are represented on the x-axis. Samples
were diluted prior to analysis with quantitation methods. Average concentration is represented on
the y-axis. Error bars represent standard error.
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Quantitation Method Comparison - BCA Function
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Figure 2.17. Comparison of the NanoDrop™ BCA function (blue) and manual BCA assay (purple)
using peripheral blood, seminal fluid, and saliva. Average concentration is represented on the y-
axis. Error bars represent standard error.

2.2.2.2 Automation Procedure Development

A previously developed tryptic digestion and SPE cleanup were reformatted to be
conducted on the AssayMAP Bravo liquid handling platform. The reagent volumes and robotic
processes were developed using an existing protocol [158]. Parameters such as liquid flow rates
and reagent transfer volumes were evaluated to ensure optimal digestion efficiency and retention
of target protein material during extraction. Specific handling parameters and deck layouts for
tryptic digestion and SPE cleanup are depicted in Figures 2.18 and 2.19, respectively.

To demonstrate the consistency of results obtained by the automated procedure, six
seminal fluid samples were prepared in duplicate and digested, desalted, and purified on the
AssayMAP Bravo liquid handling platform. Representative results for the semenogelin 2 peptide
GSISIQTEEK are depicted in Figure 2.20 and Table 2.4. Resulting peak area responses for the
quantifier ion (m/z 834.4203+) were reproducible across all 12 samples using the AssayMAP Bravo

liquid handling platform, with a calculated coefficient of variation less than 15%. The same
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preparation was conducted for the remaining body fluid matrices, with similar results observed as
those described above (Figure 2.21).

Digestion variability was observed when large volumes of fluid were processed using the
AssayMAP Bravo system. For example, when digesting diluted seminal fluid and saliva, lyophilized
residue deposited on the side of the microplate wells was not consistently solubilized with the
addition of denaturant reagent. To address this, varying volumes of denaturant (default 40 uL, 55
pL, and 90 yL) were added to wells containing lyophilized seminal fluid sample. In addition, a gentle
mixing step was added to the digestion protocol. It was determined that a 15 pL increase over the
default application volume produced the most consistent results (Table 2.5). Furthermore, the
larger amount of denaturant volume (90 puL) may have inhibited trypsin activity, resulting in less
consistent digestion efficiency.

In summary, the developed automation procedure for the digestion and purification of
protein material was successful. Overall, the procedure was designed with respect to simplicity and
speed of processing. Reagent preparation and procedure parameters were streamlined into a

seamless protocol that was further evaluated in the next section.

Protein Digestion

In-Solution Digestion: Single Plate
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Figure 2.18. Sample process setting and deck layout for automated tryptic digestion in a 96-well
plate format on the AssayMAP Bravo liquid handling platform.
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Peptide Cleanup: Using AssayMAP
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Figure 2.19. Sample process setting and deck layout for automated solid phase extraction cleanup
in a 96-well plate format on the AssayMAP Bravo liquid handling platform.
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Figure 2.20. Reproducibility results for six seminal fluid samples (prepared in duplicate) processed
using the automated procedure. lllustrated is protein semenogelin 2 peptide GSISIQTEEK. (A)
Chromatograph of sample 7-r001, depicting retention time on the x-axis and peak area response
on the y-axis. (B) Reproducibility of retention time, depicting minor drifts among the 12 replicates.
(C) Reproducibility of peak area response among the 12 replicates.
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Table 2.4. Peak area reproducibility for seminal fluid protein semenogelin 2 peptide GSISIQTEEK.

Sample D Peak Area Response
7-r001 2.80E6
7-r002 2.69E6
8-r001 2.93E6
8-ro02 2.94E6
9-r001 2.69E6
9-r002 2.67E6
10-r001 2.83E6
10-r002 2.80E6
11-r001 2.17E6
11-r002 2.09E6
12-r001 2.03E6
12-r002 2.00E6

Average 2.55E6

Standard Deviation 3.66E5
%CV 14.32
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Figure 2.21. Chromatography for (A) peripheral blood, (B) menstrual blood, (C) seminal fluid, (D)
saliva, and (E) vaginal fluid, illustrating successful processing with the automated procedure.
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Table 2.5. Calculated CV (as a percent) for representative peptide biomarkers of seminal fluid
proteins at three denaturant volumes evaluated for digestion on the AssayMAP Bravo liquid
handling platform.

Control 15 +50
Protein Peptide (40 pL) Denaturant | Denaturant
H (55 pL) (90 pL)
Prostatic Acid FQELESETLK 8.38 357 6.13
Phosphatase
Prostate Specific | | srpaE| TDAVK 6.38 8.34 19.40
Antigen
Semenogelin 1 DIFSTQDELLVYNK 6.68 4.80 4.09
Semenogelin 2 GSISIQTEEK 7.13 3.62 4.55
Epididymal
Seorstory Protein SGINCPIQK 7.19 3.65 6.03

2.2.2.3 Workflow Testing and Optimization

A comparison between the manual and automated preparation protocols was conducted
to serve as the final assessment of the performance parameters for each approach. This
experimentation was carried out with three single-source samples of each body fluid that had been
fortified with internal standard. Digestion efficiency was determined by calculating the ratio of
digested peptide in relation to the response of the internal standard. For example, two
chromatograms depicting peak area responses consistent with saliva are depicted in Figure 2.22.
As expected, the greatest peak intensity is representative of alpha-amylase peptide
LSGLLDLALGK; however, peak intensity for the manual preparation was almost twice as much as
that of the automated preparation. Similar results were observed for saliva protein submaxillary
gland androgen-regulated protein 3B (Figure 2.23). This particular peptide target is more
hydrophobic than a majority of the peptide sequences within the multiplex assay. Endogenous peak
areas across three replicates were greater for the manual preparation in comparison with the

automated platform (red bars). Internal standard (blue bars) showed greater consistency between

the two preparation methods, with slightly lower peak area response for the manual preparation.
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The small loss in response with the liquid handling platform that was depicted for saliva
was consistent across all fluids tested (Figure 2.24). It was hypothesized that this loss in response
could be contributed to the quality of plastic labware utilized between the two preparation methods.
The manual digestion was performed using coated low-retention microcentrifuge tubes; however,
the same coating was not utilized for preliminary experimentation on the AssayMAP Bravo liquid
handling platform. To address this, 96-well microplates containing the same or similar low-retention
coatings were acquired and evaluated. Eppendorf Lo-Bind and Corning® Non Binding Surface
treated plates were evaluated, with untreated Grenier U-bottom serving as a control. Single source
fluids were prepared and processed using each plate type, with the optimal plate selected based
on peak intensity of peptide targets. For example, peak intensities of seminal fluid peptide
DIFSTQDELLVYNK on each plate are depicted in Figure 2.25. The greatest peak area intensity is
illustrated by the Corning® Non Binding Surface plate. Similar results were observed across peptide
markers of the remaining target fluids.

Furthermore, with the manual preparation, the entire sample volume is transferred onto
sorbent material during SPE cleanup and purification. With the automated platform, however, a
minimum sample volume (20 L of the 250 pL digestion product) must remain in each well to ensure
that no air is injected into the micro cartridges during SPE cleanup. In summary, despite the lower
peak area responses, the automated sample processing procedure was selected for use for the
remainder of the study. The automated liquid handling platform deposits purified tryptic peptides

directly into the 96-well autosampler plate, further streamlining the processing procedure.
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Figure 2.22. Digestion and purification of saliva via the (A) automated procedure and (B) manual
procedure. Peak area response for alpha-amylase peptide LSGLLDLALGK is illustrated in pink.
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Figure 2.23. Digest and purification comparison of saliva protein submaxillary gland androgen-
regulated protein 3B peptide GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR. Endogenous
peptide peak area response (red) and internal standard peptide peak area response (blue)
illustrated for three replicates processed on the automated platform and with the manual procedure.
(A) Representative chromatography on the AssayMAP Bravo system. (B) Consistency in peak area
response.
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Figure 2.24. Single source body fluids processed on the AssayMAP Bravo liquid handling platform
(blue) and manual procedure (purple). Representative proteins for each fluid evaluated are
depicted on the x-axis (HBB, hemoglobin; SEMG2, semenogelin 2; SMR3B, submaxillary gland
androgen-regulated protein 3B; CRNN, cornulin; NGAL, neutrophil gelatinase). Average relative
response ratio is represented on the y-axis. Error bars represent standard error.
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Figure 2.25. 96-well microplate comparison for use in automated digestion and purification. Three
microplates were evaluated for greatest peak area intensity, depicted on the y-axis. Shown is a
chromatogram for semenogelin 1 peptide DIFSTQDELLVYNK.

2.3 Concluding Remarks

In summary, the results detailed herein demonstrate the ability to automate sample
processing and expedite analysis of the research grade multiplex assay without loss of sensitivity.
Previously identified protein and peptide biomarker targets were subjected to further scrutiny for
inclusion in the high throughput LC-MS/MS assay. With the creation of a targeted analytical

method, individual parameters were sufficiently established for optimal target detection and
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identification. The final biomarker target list includes both presumptive and confirmatory proteins
consistent with peripheral blood, seminal fluid, saliva, and vaginal/menstrual fluid.

Implementation of an automated sample processing protocol not only sufficiently increased
the number of samples amenable to preparation in a given batch but mitigated preventable sources
of human error during digestion and cleanup procedures. Where small batches averaging fifteen
samples were prepared for analysis using the research grade assay, the optimized protocol was
constrained only to the capacity of a 96-well plate. Furthermore, by limiting the amount of sample
handling time by the analyst, the automated protocol promotes efficiency of additional laboratory
resources in regard to analysts’ time. The benefits of automation and high throughput screening
are advantageous to generating interest among practitioners for implementation of a novel
technique into operational laboratories.

The following two chapters detail a full developmental validation and comparison
assessment of the optimized LC-MS/MS assay and sample processing protocol described within
this chapter. With a verified protein biomarker panel and preparation protocol, the analytical
boundaries and limitations of the LC-MS/MS needed identifying. Therefore, a full developmental
validation was conducted in accordance with standard guidelines within forensic biology and
toxicology. Additionally, compatibility of the LC-MS/MS assay within the greater forensic biology

workflow was demonstrated.
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CHAPTER 3: DEVELOPMENTAL VALIDATION OF AN AUTOMATED MULTIPLEX
ASSAY FOR THE IDENTIFICATION OF BIOLOGICAL FLUIDS
3 Introduction

The objective of this phase of the research was to validate the developed and optimized
multiplex serological assay. Validation is the final phase of the proteomic workflow, allowing for
efficacy and reliability of the analytical method to be established as acceptable prior to
implementation into an operational environment. The experimentation performed during this phase
was designed in accordance with the Quality Assurance Standards set forth by the Federal Bureau
of Investigation (FBI) and recommended guidelines published by the Scientific Working Group on
DNA Analysis Methods (SWGDAM) and the Scientific Working Group on Forensic Toxicology
(SWGTOX). Due to the hybrid nature of experimentation and data analysis described, it was
determined that both toxicological and serological guidelines were to be consulted and exercised
for validation purposes. Specifically, with the use of liquid chromatography-tandem mass
spectrometry (LC-MS/MS), validation guidelines were referenced via SWGTOX publications for
experimental procedures such as ion suppression and enhancement, repeatability, reproducibility,
and limit of detection.

This chapter reports the validation results of the previously described proteomic assay for
the identification of peripheral blood, seminal fluid, saliva, and vaginal/menstrual fluid. Body fluid
specific protein markers were previously selected under prior funding, where they underwent
rigorous discovery and verification of the candidate markers within a greater population. The
selected markers were reconfirmed as described in Chapter Two, with each protein marker and
subsequent peptide targets assessed both in vitro with analytical identification and in silico using

bioinformatics software. The successful operation of the method at each level described herein
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identified working conditions and associated limitations that were acknowledged to estimate the
true performance of the analytical method.

3.1 Methods and Materials

All research conducted under this phase of the project was reviewed and approved by the
University of Denver Institutional Review Board (IRB) for research involving human subjects as
described under section 2.1.1.

3.1.1 Repeatability and Reproducibility Sample Preparation

The research scientist prepared all body fluid aliquots for sample preparation following
protocols outlined in section 2.1.1. Aliquots were stored at -80 °C until use. For the remainder of
the study, both the research scientist and laboratory advisor performed sample processing
procedures on the prepared aliquots simultaneously, including total protein quantitation, reagent
preparation, plate loading for digestion and cleanup, and sample reconstitution for instrumental
analysis. Protocols outlined in section 2.1.4 were followed during this portion of the study on all five
target body fluids. Procedures were performed over the course of three days.

Repeatability was recorded as the variation in precision for results obtained by a single
analyst. Reproducibility was recorded as the variation in accuracy obtained between analysts
conducting identical protocols. Coefficient of variation (CV) of total protein quantitation in addition
to the variation in internal standard were calculated for each individual and between individuals.

3.1.2 Sensitivity Sample Preparation

Target body fluid from five individuals was prepared according to parameters outlined in
section 2.1.1. A serial dilution of pooled fluid was created in deionized water. For seminal fluid,
saliva, and vaginal fluid, dilutions were started at 2-fold. Knowing a priori peripheral and menstrual
blood exhibit concentrated protein material, dilutions were started at 100-fold. Dilutions were not
quantitated for total protein amount. 200 uL of each dilution was lyophilized and digested followed
by SPE cleanup using protocols detailed in section 2.1.4. Sample dilutions were prepared in

triplicate, with 20 pL of sample injected on column. A select set of sample dilutions were prepared
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and analyzed given laboratory resources. Table 3.1 below details dilutions analyzed via LC-MS/MS
per target body fluid.

Table 3.1. Dilutions analyzed for the sensitivity study of the multiplex assay validation.

Seminal saliva Peripheral Menstrual Vaginal
Fluid Blood Blood Fluid
1.02E+03 8.00E+00 1.60E+03 1.60E+03 4.00E+00
2.05E+03 1.60E+01 3.20E+03 3.20E+03 8.00E+00
4.10E+03 3.20E+01 6.40E+03 6.40E+03 1.60E+01
8.19E+03 6.40E+01 1.28E+04 1.28E+04 3.20E+01
1.64E+04 1.28E+02 2.56E+04 2.56E+04 6.40E+01
3.28E+04 2.56E+02 5.12E+04 5.12E+04 1.28E+02
6.55E+04 5.12E+02 1.02E+05 1.02E+05 2.56E+02
1.31E+05 1.02E+03 4.10E+05 4 10E+05 5.12E+02
2.62E+05 2.05E+03 8.19E+05 8.19E+05 1.02E+03
5.24E+05 4.10E+03 1.64E+06 1.64E+06 2.05E+03
8.19E+03 3.28E+06 3.28E+06 4.10E+03
1.64E+04 6.55E+06 6.55E+06 8.19E+03

3.28E+04 1.64E+04
6.55E+04 3.28E+04
6.55E+04

3.1.3 Stability Sample Preparation

3.1.3.1 Freeze Thaw Stability

Target body fluid from five individuals was pooled and prepared in three batches containing
triplicate samples according to parameters outline in section 2.1.4. The first batch of samples (Day
1) were processed and analyzed, with 2.5 ug of protein material injected on column. Remaining
sample batches (Day 2 and Day 3) were stored at -80 °C until future use. Day 2 of Freeze Thaw
Stability started by completely thawing all prepared material to room temperature and continuing
with the sample processing procedure for batch two (Day 2). Batch three material was again frozen
at -80 °C until future use. Day 3 of Freeze Thaw Stability was conducted in the same manner,
allowing the final batch to thaw completely prior to sample processing. Vaginal fluid samples were
analyzed for 2.5 ug and 10 pg on column, to adequately assess any loss of lower abundant target
peptides.

3.1.3.2 Autosampler Stability

Target body fluid from five individuals was prepared according to parameters outlined in
section 2.1.4. Samples were analyzed via LC-MS/MS over the course of 3 days, with the microplate
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containing processed sample remaining in the autosampler kept at 8 °C for the duration of the
study. 2.5 pg of material was analyzed on column. Samples were reinjected 24 hours (Day 2) and
48 hours (Day 3) after original sample preparation.

3.1.4 Mixtures Sample Preparation

Target body fluid from five individuals was pooled, filtered, and quantitated according to
parameters outlined in section 2.1.1. Mixtures in a 1:1 ratio of 50 ug total protein per fluid were
generated, for a total of 100 pg protein material. All possible combinations of two-fluid mixtures
were created: vaginal fluid (VF) and saliva (SA); VF and seminal fluid (SE); VF and peripheral blood
(PB); VF and menstrual blood (MB); MB and PB; MB and SE; SA and MB; SA and PB; SA and SE;
SE and PB. Mixture samples underwent digestion and SPE procedures outlined in section 2.1.4.
10 ug of material was analyzed on column.

3.1.5 Specificity Sample Preparation

Whole blood samples from 11 different species (Rhesus monkey, horse, pig, chicken, cow,
beagle, mouse, black bear, coyote, white-tailed deer, river otter) and saliva samples from 2 species
(cow, Rhesus monkey) were purchased from Innovative Research™ (Novi, MI). Blood samples
were treated with potassium ethylenediamine tetraacetic acid anticoagulant. In addition, oral swabs
from 2 species (alpaca, tortoise) were obtained by the research scientist.

Oral swabs were resuspended in 500 uL of deionized water and allowed to solubilize for
30 minutes at room temperature with frequent vortexing. All samples (blood, saliva, oral swabs)
were microcentrifuged at 12,000 x g for 10 minutes. Supernatant was filtered using Costar® Spin-
X® centrifugal filters (Corning®, Corning, NY) at 10,000 x g for 2 minutes. The remaining sample
preparation follows procedures outlined in section 2.1.4. 2.5 ug of material was analyzed on
column.

3.1.6 Casework Type Sample Preparation

A compilation of all casework samples prepared is detailed in Appendix C.
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3.1.6.1 Substrate Samples

Substrates tested include cotton, denim, leather, carpet, drywall, plastic beverage bottle,
aluminum beverage can, and feminine hygiene menstrual pad. Substrates were cut into
approximately 2 cm x 2 cm squares upon which 50 L of single source body fluid was applied.
Samples were dried at room temperature overnight. Substrates were solubilized in 1 mL deionized
water for 30 minutes with frequent vortexing. Substrates were placed in a centrifugal basket and
centrifuged at 10,000 x g for 10 minutes. Supernatant was transferred for analysis following
procedures outlined in section 2.1.4 and cell pellets were discarded.

3.1.6.2 Environmental Contaminant Samples

Environmental contaminants tested include dirt slurry, rust slurry, 10% bleach in water
solution, chewing tobacco, cigarette butt, lubricated condom with spermicide additive, and water-
based personal lubricant. Dirt slurry was prepared by mixing 1 gram weather-conditioned soil with
1 mL tap water. In a similar manner, the rust slurry was prepared by mixing 500 pg rust with 500
uL of tap water. Rust was obtained by scarping the external surface of a weather-conditioned chain
link fence. Neat bleach was diluted 10-fold with deionized water for a final concentration of 10%
bleach. Chewing tobacco expellant was obtained from a volunteer that actively engages in using
smokeless tobacco products. Water-based personal lubricant containing glycerin was purchased
(CVS Pharmacy™, Woonsocket, RI).

Liquid matrix contaminants (i.e., dirt slurry, rust slurry, 10% bleach solution, chewing
tobacco, and water-based lubricant) were thoroughly mixed in a 1:1 v/v ratio with corresponding
target body fluid. A 100 pyL volume of the resulting mixture was applied to a full cotton swab and
allowed to dry at room temperature overnight. Solid matrix contaminants (i.e., cigarette butt,
spermicide lubricated condom, menstrual pad) were cut into a 2 cm x 2 cm square prior to applying
50 pL target body fluid. Prepared samples were dried at room temperature overnight. Full swabs
and 2 cm x 2 cm contaminant samples were extracted in 1 mL deionized water for 30 minutes with

frequent vortexing. Substrates were placed in a centrifugal basket centrifuged at 10,000 x g for 10
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minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4
and cell pellets were discarded.

3.1.6.3 Mixtures Samples

Mixture samples were prepared using single source body fluid from consenting donors. A
50-fold two-component mixture solution was created by thoroughly vortexing 10 uL of neat body
fluid serving as a minor contributor with 500 uL neat body fluid serving as the major contributor.
100 pL of mixture solution was applied to a cotton-tipped swab and allowed to dry at room
temperature overnight. Full swabs were extracted in 1 mL deionized water for 30 minutes with
frequent vortexing. Substrates were placed in a centrifugal basket and centrifuged at 10,000 x g for
10 minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4
and cell pellets were reserved for genetic testing, described in Chapter 4.

Five two-component mixture samples were prepared for this portion of the project: (1)
vaginal fluid in urine, (2) saliva in vaginal fluid, (3) seminal fluid in vaginal fluid, (4) saliva in
menstrual blood, (5) seminal fluid in menstrual blood.

3.1.6.4 Sexual Assault Samples

3.1.6.4.1 Simulated Sexual Assault Samples

Simulated sexual assault samples were prepared by thoroughly mixing 10 yL neat semen
with 1 mL neat vaginal fluid, both fluids being from a single donor. This was repeated for a total of
seven samples. The semen and vaginal fluid utilized for all seven samples were donated by the
same individuals to prevent inconsistency in protein expression. Samples were incubated at 37 °C
for one day, three days, five days, seven days, nine days, and eleven days, with time zero samples
immediately stored for future processing. When the designated time point was reach, samples were
removed from the incubator and frozen at -80 °C until analysis. Samples were prepared and
analyzed following procedures outlined in section 2.1.4.

3.1.6.4.2 Mock Sexual Assault Kit Samples

Vaginal, oral, and rectal swabs were obtained from a single, consenting female individual.

Immediately after sampling, neat semen from a single donor was applied in order to most accurately
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simulate an authentic sample collection. Semen was diluted 100-fold with deionized water prior to
application. 10 uL of diluted semen was applied, for a volume equivalent of 0.1 yL semen applied
to each swab. Samples were prepared in duplicate and allowed to dry at room temperature
overnight. Full swabs were extracted in 1 mL deionized water for 30 minutes with frequent
vortexing. Substrates were placed in a centrifugal basket and centrifuged at 10,000 x g for 10
minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4
and cell pellets were reserved for genetic testing, described in Chapter 4. This preparation protocol
was duplicated using semen provided by a vasectomized male individual, for a total of 12 mock
sexual assault kit samples (6 non-vasectomized and 6 vasectomized male donors).

3.1.6.4.3 Digital Swab Samples

Three types of digital swab samples were prepared for this portion of the study: vaginal
swabs, menstrual blood swabs, and saliva swabs. One consenting female donor was utilized. The
volunteer thoroughly washed their hands prior to self-penetration. In the comfort of the individual’s
home, the volunteer was instructed to digitally penetrate the vagina both during menses and in the
absence of menses using the index finger for 20 seconds. The volunteer removed their finger and
allowed the deposited material to dry for approximately 5 minutes. Self-collection using a dry cotton-
tipped swab was performed, with the entire area of the finger swabbed for collection. Collection
was repeated in duplicate for each form of penetration, with each sample taken on a separate day.
Upon receipt at the laboratory, swabs were dried at room temperature overnight to ensure
consistency. Full swabs were extracted in 1 mL deionized water for 30 minutes with frequent
vortexing. Substrates were placed in a centrifugal basket and centrifuged at 10,000 x g for 10
minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4
and cell pellets were reserved for genetic testing, described in Chapter 4.

3.1.6.5 Degradation Samples

Degradation samples simulating laundered items of evidence were generated for this
portion of the study. Peripheral blood and semen were the selected target body fluids. To a cotton

bath towel and to denim jeans, 1 mL of single-source peripheral blood was applied to the substrate,
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outlined with permanent marker, and allowed to dry at room temperature overnight. In addition, a
control region to which no body fluid was applied approximately 20 cm from the stain region was
marked for analysis. To a cotton-blend bed sheet and a cotton pair of women’s underwear, 1 mL
of single-source semen was applied to the substrate, outlined with permanent marker, and allowed
to dry at room temperature overnight. In addition, a control region to which no body fluid was applied
approximately 20 cm from the stain region (bed sheet) or 8 cm from the stain region (underwear)
was marked for analysis. Target body fluid was applied to simulate stained items of evidence that
are commonly received in caseworking laboratories.

Substrates were washed individually with 1.5 fl. oz. commercially available laundry
detergent (Seventh Generation™ Free and Clear, Burlington, VT) in cold water for a 15-minute wash
cycle using a household grade washing machine. Substrates were individually dried in a heated
commercial dryer for approximately 40 minutes. 2 cm x 2 cm cuttings of the stain and control region
were excised from the substrate. Cuttings were solubilized in 1 mL deionized water for 30 minutes
with frequent vortexing. Substrates were placed in a centrifugal basket centrifuged at 10,000 x g
for 10 minutes. Supernatant was transferred for analysis following procedures outlined in section
2.1.4 and cell pellets were reserved for genetic testing, described in Chapter 4.

3.1.6.6 Aged Samples

Aged swabs were prepared by spotting 50 pL of neat, single-source peripheral blood,
menstrual blood, saliva, semen, or vaginal fluid on a full cotton swab. An additional set of samples
were prepared using 150 L of neat, single-source vaginal fluid. Swabs were allowed to incubate
at room temperature for 35 days, with collections at time zero, Day 1, Day 3, Day 7, and Day 35.
Upon collection, full swabs were frozen at -80 °C until analysis. All time points were prepared in
duplicate. Samples were prepared according to procedures outlined in section 2.1.4.

3.1.6.7 Sensitivity Samples

Sensitivity samples were prepared by diluting single-source, neat body fluid in deionized
water in a serial manner to cover a range of final concentrations. Dilutions prepared are detailed in

Table 3.2. 150 pL of each dilution was spotted on a full cotton swab and allowed to dry at room
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temperature. Full swabs were solubilized in 1 mL deionized water for 30 minutes with frequent
vortexing. Substrates were placed in a centrifugal basket and centrifuged at 10,000 x g for 10
minutes. Supernatant was transferred for analysis following procedures outlined in section 2.1.4
and cell pellets were reserved for genetic testing, described in Chapter 4.

Table 3.2. Dilutions analyzed for the sensitivity study within casework sample analysis.

Peripheral Blood saliva
Menst_rual Blc_)od Vaginal Fluid
Seminal Fluid
Neat Neat
1:2 1:2
1:10 1:10
1:100 1:100
1:1,000 1:500
1:2,000 1:1,000
1:5,000 1:2,000
1:10,000 1:5,000
1:20,000 1:10,000
1:40,000

3.1.7 Limit of Detection Sample Preparation

Isotopically-labeled peptide internal standards (AQUA) were purchased (New England
Peptide, Inc., Gardner, MA) for each selected peptide marker, with the exception of proteins
statherin and submaxillary gland androgen-regulated protein 3B. AQUA were received as 1 nmol
of material, lyophilized to dryness. Material was reconstituted in 200 pL of 30% ACN with 0.1% FA
in LC-MS grade water. Standards were pooled and brought up to volume in 30% ACN with 0.1%
FA for a final concentration of 100 pmol/mL. 20 pmol aliquots (200 uL) were prepared, lyophilized,
and stored at -80 °C. Upon use, 20 pmol aliquots were resuspended in 40 uL of 30% ACN with
0.1% FA for a 0.5 pmol/pL stock solution.

Blank matrix was prepared by pooling target body fluid from five individuals. 100 ug total
protein underwent tryptic digestion and SPE cleanup prior to AQUA fortification. The 0.5 pmol/uL
stock solution was further diluted with 30% ACN with 0.1% FA to 50 fmol/yL and 5 fmol/pL

substocks, used for creation of the serial dilution. Matrix was fortified with AQUA material following
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volumes and target concentrations listed in Table 3.3. Samples were analyzed following
parameters outlined in section 2.1.4.

Table 3.3. Volumes and concentrations of internal standard used during the limit of detection
experimentation.

Target Amount on AQUA Fortification Volume of AQUA
Column Amount Substock Solution

50 fmol 2 pmol 4 uL of 0.5 pmol/uL

25 fmol 1 pmol 2 uL of 0.5 pmol/uL

10 fmol 0.4 pmol 8 pL of 50 fmol/pL

5 fmol 0.2 pmol 4 pL of 50 fmol/pL

2.5 fmol 0.1 pmol 2 uL of 50 fmol/uL

1 fmol 40 fmol 8 pL of 5 fmol/pL

0.5 fmol 20 fmol 4 pL of 5 fmol/pL

3.1.8 lon Suppression Sample Preparation

Target body fluid from five individuals was prepared and pooled for ion suppression and
enhancement analysis. 100 ug of total protein was targeted for digestion. AQUA stock solution was
prepared in the same manner as detail in section 3.1.7. Two sample sets were prepared for this
portion of the study. First, 20 uL of 0.5 pmol/uL AQUA stock solution was analyzed independently
(i.e., in the absence of blank matrix). Second, pooled body fluid was fortified with 20 pL of 0.5
pmol/uL AQUA stock for a target amount of 10 pmol, with all samples prepared in triplicate.
Samples were prepared according to procedures outlined in section 2.1.4. 2.5 ug of sample was
analyzed per injection.

3.1.9 Carryover Sample Preparation

Samples were prepared in triplicate for a preliminary carryover study by pooling fluid from
five different individuals and digesting 100 pg of total protein. Following tryptic digestion and SPE
cleanup parameters outlined in section 2.1.4, samples were reconstituted in 100 yL of 2% ACN
with 0.1% FA. 10 ug, 20 pg, and 30 pg of processed sample were injected on column, with each
injection followed by a blank mobile phase injection (0.1% FA in water) of the same volume.
Carryover was assessed by the presence of compounds within the subsequent blank injection.

A second set of samples targeting smaller quantities of total protein were prepared in

triplicate and analyzed. Following the same procedure as described above, 0.5 yg, 1 yg, 2.5 g,
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and 5 ug quantities of digested protein were evaluated per body fluid. A blank mobile phase sample
(0.1% FA in water) of the same volume was injected directly after each sample.

3.1.10 Blind Sample Analysis

A series of 50 blind samples were received from the grant agency for analysis. No
information was supplied with the samples received. Samples consisted of pre-halved fiber-tipped
swabs, swatches of cloth, and condoms. Exhibits were taken according to a pre-defined laboratory
sampling protocol. Swab samples received were cut in half (i.e., approximately %4 of a full swab),
reserving the remain section for additional testing, if necessary. Cuttings measuring 2 cm x 2 cm
were taken from cloth swatch samples received, reserving the remaining cloth for additional testing,
if necessary. The inside and outside of condom samples were double swabbed using a sterile
cotton swab wetted with 2% sodium dodecyl sulfate (SDS) followed by a dry cotton swab. Condom
swabs were dried at room temperature for at least 2 hours. Wet and dry swabs were combined and
processed as a single sub-exhibit. Sub-exhibits were solubilized in 500 pL of deionized water for
30 minutes with frequent vortexing. Substrates were placed in a centrifugal basket and centrifuged
at 10,000 x g for 10 minutes. Supernatant was transferred for analysis following procedures outlined
in section 2.1.4 and cell pellets were discarded.

3.2 Results and Discussion

3.2.1 Repeatability and Reproducibility

Reproducibility was assessed to ensure robust results could be obtained over a period of
multiple analysis batches prepared by a single individual. Repeatability was evaluated to ensure
reliable results could be obtained between individual analysts across a period of multiple analysis
batches. For this portion of the validation, reproducibility and repeatability were assessed in tandem
through the preparation, analysis, and data acquisition of samples by two analysts over the course
of a three-day period. This entailed BCA quantitation, robotic digestion, SPE cleanup, and analysis
via LC-MS/MS.

Body fluid samples were received and prepared for testing by a single individual within the

laboratory. Pooled fluid was aliquoted into single use tubes to ensure consistency of the samples
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being processed for this portion of the validation. On each day of preparation, analysts performed
a BCA quantitation on a single use aliquot for each target body fluid to determine the total protein
concentration prior to tryptic digestion. The necessary reagents for robotic digestion and SPE
cleanup were prepared individually by the analysts. Data presented in this section is representative
of the variation observed for the BCA total protein quantitation in addition to the mass spectrometry
results obtained including signal response, retention time, and qualitative response ratios.
Furthermore, the performance of the internal positive control between analysts and across the
three-day period was evaluated for reliability and robustness.

3.2.1.1 BCA Quantitation

BCA quantitation is required prior to tryptic digestion in order to normalize the amount of
total protein input into the robotic preparation process. This is to ensure that the proper ratio of
digestion enzyme to protein substrate is met, in addition to monitoring the amount loaded onto the
SPE cleanup cartridges and LC-MS/MS system. The average protein concentration, as well as the
measured combined and individual variability of the BCA quantitation assay for each body fluid, is
detailed in Table 3.4. Coefficient of variation (CV) values both within and between analysts was
less than 10% across this portion of the validation.

Table 3.4. Calculated CV (as a percent) of average protein concentration between analysts and
combined for each fluid assayed.

Fluid Analyst 1 Analyst 2 Combined
Menstrual Blood 5.562 7.300 6.188
Peripheral Blood 4.021 6.315 5.056

Seminal Fluid 5.437 8.342 6.861
Vaginal Fluid 6.899 8.370 8.557
Saliva 4.095 7.830 7.385

3.2.1.2 Signal Response

The peak area of each peptide in the assay was assessed for all replicates as well as
across the replicates for the two analysts individually. Of the 46 peptides included in the assay, 41

showed CV values less than 25%, with the majority of these targets showing less than 10%
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variation. Data for this portion of the study can be found in Appendix D, with results for seminal
fluid depicted in Table 3.5.

As previously stated, a small fraction of peptides did display higher degrees of peak area
variability. High CV values were associated with either small hydrophilic (i.e., eluting early during
chromatographic separation) or large hydrophobic (i.e., eluting late during chromatographic
separation) peptides. For example, semenogelin 2 peptide GSISIQTEEK is one of the first eluting
peptides in the assay, with a retention time of 1.9 minutes, and had a combined peak area CV of
51.764%. It is hypothesized that this specific peptide target is not captured efficiently during the
SPE cleanup, resulting in more variable recovery across replicates. Likewise, it is hypothesized
that more hydrophobic peptide markers will be bound, essentially irreversibly, to plastics during
tryptic digestion and to the sorbent material of SPE cartridges. In addition, there may be reduced
resolubilization issues after any lyophilization step. At the onset of peptide target selection, it was
expected that some peptides would display more variability in recovery, solubility, and nonspecific
absorption than others, simply due to the specific chemistries associated with each amino acid
sequence. As a counter to this potential challenge, the ability to target multiple proteins per fluid
and multiple peptides for each protein (i.e., a fundamental concept underlying the design of the
assay), helped to ensure that there are reliable peptide biomarkers which can be consistently
detected for identification of each fluid. For example, other semenogelin 2 peptides (e.g.,
DVSQSSISFQIEK) show consistent CV values of approximately 8%, albeit at lower overall peak

areas.
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Table 3.5. Calculated CV (as a percent) for peak area response of seminal fluid peptide markers

between analysts and combined.

Fluid Protein Peptide Analyst 1 Analyst 2 Combined
FVTLVFR 87.638 41.252 95.688
Acid Phosphatase FQELESETLK 19.405 14.717 26.483
ELSELSLLSLYGIHK 5.787 10.988 8.773
. ) FLRPGDDSSHDLMLLR 54.820 21.388 62.553

Prostate Specific Antigen
LSEPAELTDAVK 34.849 17.358 45.393
Seminal GSISIQTEEK 38.678 19.467 51.764
Fluid Semenogelin 2 GSISIQTEEQIHGK 10.208 10.259 15.247
DVSQSSISFQIEK 2.677 11.744 8.304
) DIFSTQDELLVYNK 5.340 10.368 8.063
Semenogelin 1

QITIPSQEQEHSQK 6.822 7.261 7.747
Enididvmal Secretor DCGSVDGVIK 6.243 11.758 9.125
piciey Y SGINCPIQK 9318 9.948 9.425

3.2.1.3 Retention Time

The retention time of each peptide biomarker in the assay was assessed for all replicates

as well as across the three replicates for the two analysts. Retention time averages for each analyst

were used to calculate the variability. Percent CV values for this dataset were all below 0.5%. An

illustrative example of results for seminal fluid is shown in Table 3.6. The remainder of the data are

presented in Appendix E.

Table 3.6. Calculated CV (as a percent) for retention time of seminal fluid peptide markers between
analysts and combined.

Fluid Protein Peptide Analyst 1 Analyst 2 Combined
FVTLVFR 0.049 0.059 0.054
Acid Phosphatase FQELESETLK 0.069 0.069 0.067
ELSELSLLSLYGIHK 0.058 0.059 0.058
. ) FLRPGDDSSHDLMLLR 0.081 0.081 0.078

Prostate Specific Antigen
LSEPAELTDAVK 0.085 0.071 0.078
Seminal GSISIQTEEK 0.124 0.124 0.120
Fluid Semenogelin 2 GSISIQTEEQIHGK 0.134 0.160 0.147
DVSQSSISFQIEK 0.075 0.079 0.076
s fin 1 DIFSTQDELLVYNK 0.063 0.042 0.052
emencgein QITIPSQEQEHSQK 0.174 0.132 0.151
- DCGSVDGVIK 0.138 0.157 0.148
Epididymal Secretory

SGINCPIQK 0.147 0.000 0.104

3.2.1.4 Qualitative Response Ratios

The ion ratio for each peptide biomarker was assessed by dividing the peak area response

of the quantifier ion (i.e., more abundant transitions observed during target selection) by the peak

area response of the qualifier ion(s) (i.e., lower abundant transitions observed during peptide
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selection). lon ratios were assessed for all replicates as well as across the two analysts. The ion
ratios for all peptides were found to be highly consistent, with a majority of calculations showing
CV values less than 5%. An illustrative example of results for seminal fluid is shown in Table 3.7.
Epididymal secretory protein peptide DCGSVDGVIK exhibited a higher CV value but was
consistent between the two analysts, demonstrating a high rate of precision both within-run and
between-run. The remainder of the data are presented in detail in Appendix F. Only neutrophil
gelatinase protein in menstrual blood exhibited higher variability in the qualitative response ratio.
In this case, the proteins were of very low abundance in the pooled sample being assessed.

Table 3.7. Calculated CV (as a percent) for ion ratios of seminal fluid peptide markers between
analysts and combined.

Fluid Protein Peptide Analyst 1 Analyst 2 Combined
FVTLVFR 1.503 1.240 1.342
Acid Phosphatase FQELESETLK 4.248 3.127 3.636
ELSELSLLSLYGIHK 4.844 2.577 4.455
Prostate Specific Antigen FLRPGDDSSHDLMLLR 3.828 3.360 3.677
LSEPAELTDAVK 1.918 1.032 1.601
Seminal GSISIQTEEK 4.360 3.249 4.025
Fluid Semenogelin 2 GSISIQTEEQIHGK 3.749 3.127 3.505
DVSQSSISFQIEK 6.209 3.842 5.066
) DIFSTQDELLVYNK 3.455 4.174 3.801

Semenogelin 1

QITIPSQEQEHSQK 2.578 3.036 2.810
Epididymal Secretory DCGSVDGVIK 5.835 5.021 5.501
SGINCPIQK 3.971 3.225 3.863

3.2.1.5 Internal Positive Control

The performance of the internal positive control (IPC) was assessed by comparing the
response ratio of the digested myelin basic protein to that of an isotopically-labeled internal
standard added to the sample being analyzed. The response ratio was found to be highly consistent
across all body fluids. The variability observed both among different samples of individual body
fluid and between different body fluids consistently displayed CV values less than 8% (Table 3.8
and Figure 3.1). Samples evaluated for this portion of the validation displayed and average peak

area response ratio of 13.7+0.999.
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Table 3.8. Combined calculated CV (as a percent) for the internal positive control peak area
response ratio for the duration of repeatability and reproducibility experimentation.

Protein Peptide Analyst 1 Analyst 2 Combined

Myelin Control | DTGILDSLGR 7.158 7.095 7.546

Myelin Internal Positive Control Response Ratio
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Figure 3.1. Internal positive control response ratio for the duration of repeatability and
reproducibility experimentation.

3.2.2 Sensitivity

A series of dilutions were prepared for each body fluid using pooled material from multiple
individuals. These samples were assayed in order to establish the minimal protein quantity in which
reliable results can be obtained. Based on data acquired under previous phases of this research
and the sensitivity limits observed under previously completed research (NIJ awards 2009-DN-BX-
K165; 2012-DN-BX-K035) the lower end of the dilution series was considerably extended from prior
studies in order to evaluate lower limits of the assay. For peripheral blood and menstrual blood, a
2-fold dilution series was made, from a 1:100 dilution to a 1:6,533,600 dilution. For seminal fluid, a
2-fold dilution series from 1:2 through 1:524,288 was made. And lastly, for saliva and vaginal fluid,
a 2-fold dilution series from 1:2 to 1:65,536 was generated. Not all created dilutions were analyzed
via LC-MS/MS.

Data for each body fluid is summarized in Tables 3.9-3.13. Results were evaluated for
retention time consistency, chromatographic peak shape, peak area response, as well as
calculated ion ratios. Overall, peripheral blood was confidently identified at a 1:6,533,600 dilution
(Table 3.9) and menstrual blood at 1:6,400 dilution (Table 3.10). Although both peptide targets for

hemoglobin were accurately detected at the lowest dilution in the peripheral blood matrix, a majority
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of the remaining protein markers exhibited dropout at the 1:204,800 dilution. Similar results were
observed for peripheral blood protein markers in menstrual blood; however, vaginal fluid markers
in menstrual blood were shown to exhibit less sensitivity. Four protein targets failed to be detected
within the menstrual blood matrix (Ly6 PLAUR, suprabasin, periplakin, and involucrin), with
remaining biomarkers exhibiting dropout at the protein level after the 6,400-fold dilution. Small
proline rich protein 3 was detected in each dilution assessed, however, peptide peak areas did not
display negative linearity as the dilution series decreased. Peak area intensities for peptide
VPEPGCTK remained consistent between the 25,600-fold dilution and the 6,533,600-fold dilution
(Figure 3.2). Therefore, this marker was not considered when characterizing menstrual blood for
biomarker sensitivity. Strong instances of peptide and protein dropout, particularly for the vaginal
fluid biomarkers in this matrix, may be attributed to expression variability during the menstruation
cycle.

Seminal fluid was accurately detected at the lowest dilution assessed, with three peptides
identified at the 524,288-fold dilution (Table 3.11). All peptide targets were correctly detected at
the 16,389-fold dilution, with linear peptide and protein dropout displayed as the dilution series
decreased. Semenogelin 1, semenogelin 2, and acid phosphatase peptide targets met all
acceptance criteria at the lowest dilution sample.

Saliva was characterized at the lowest dilution tested, with a single alpha amylase peptide
detected at the 65,536-fold dilution (Table 3.12). All peptide markers were detected through the
256-fold dilution, and similar to seminal fluid, exhibited linear protein and peptide dropout as the
dilution series decreased. With the exception of alpha amylase, remaining protein markers
displayed complete dropout at the 8,192-fold dilution tested.

Vaginal fluid was identified in a two-tiered manner. Because the target biomarkers exhibit
a wide range of specificity for vaginal fluid, the confidence level of accurately detecting and
identifying vaginal fluid fluctuates. For this data set, vaginal fluid was confidently identified down to
the 2,048-fold dilution by the presence of cornulin and neutrophil gelatinase, both of which exhibit

strong specificity for vaginal fluid (Table 3.13). However, small proline rich protein 3 was detected
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at the 32,768-fold dilution. Given the known cross-reactivity this protein exhibits, vaginal fluid
detection was made with less confidence at this lower range. The use of this protein as a
presumptive biomarker has been thoroughly detailed in interpretation guidelines.

Table 3.9. Observed sensitivity limit of peripheral blood. Proteins that were positively identified by
all of their respective peptide markers are shown in dark green. Light green indicates where at least

one peptide marker for the respective protein dropped out. White indicates complete protein
dropout.

Dilution Factor
1,600 3,200 6,400 12,800 25,600 51,200 [ 102,400 | 204,800 | 409,600 | 819,200 [1,638,400( 3,276,800 | 6,533,600

Fluid Protein

Hemoglobin
Apolipoprotein
Alpha-1 Antitrypsin
Hemopexin
Serotransferrin

Peripheral
Blood

Table 3.10. Observed sensitivity limit of menstrual blood. Proteins that were positively identified
by all of their respective peptide markers are shown in dark green. Light green indicates where at
least one peptide marker for the respective protein dropped out. White indicates complete protein
dropout.

Dilution Factor
1,600 3,200 6,400 12,800 | 25,600 [ 51,200 | 102,400 | 204,800 | 409,600 | 819,200 |1,638,400|3,276,800|6,533,600

Fluid Protein

Hemoglobin
Apolipoprotein
Alpha-1 Antitrypsin
Hemopexin
Serotransferrin
Menstrual Small Proline Rich Protein

Blood Cornulin
Neutrophil Gelatinase
Ly6/PLAUR
Suprabasin
Periplakin
Involucrin

Table 3.11. Observed sensitivity limit of seminal fluid. Proteins that were positively identified by all
of their respective peptide markers are shown in dark green. Light green indicates where at least
one peptide marker for the respective protein dropped out. White indicates complete protein
dropout.

Dilution Factor
1,024 2,048 4,096 8,192 16,389 32,768 | 65,536 | 131,072 | 262,144 | 524,288

Fluid Protein

Semenogelin 1
Semenogelin 2
Acid Phosphatase
Prostate Specific Antigen
Epididymal Secretory

Seminal
Fluid

Table 3.12. Observed sensitivity limit of saliva. Proteins that were positively identified by all of their
respective peptide markers are shown in dark green. Light green indicates where at least one
peptide marker for the respective protein dropped out. White indicates complete protein dropout.

Dilution Factor
8 16 32 64 128 256 512 1,024 2,048 | 4,096 8,192 | 16,389 | 32,768 | 65,536

Fluid Protein

Alpha Amylase
Cystatin
Submaxillary Protein
Statherin

Saliva
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Table 3.13. Observed sensitivity limit of vaginal fluid. Proteins that were positively identified by all
of their respective peptide markers are shown in dark green. Light green indicates where at least
one peptide marker for the respective protein dropped out. White indicates complete protein
dropout.

Fluid Protein Dilution Factor
4 8 16 32 64 128 256 512 1,024 | 2,048 | 4,096 | 8,192 | 16,389 | 32,768 | 65,536
Small Proline Rich Protein
Cornulin
. Neutrophil Gelatinase
Vgﬂ&al Suprabasin
Involucrin
Periplakin
Ly6/PLAUR
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Figure 3.2. Small proline rich protein 3 peptide VPEPGCTK peak area response. (A) Peak area
intensity at a 25,600-fold dilution. (B) Peak area intensity at a 6,553,600-fold dilution. (C) Peak area
response across all replicates evaluated, progressing from 1,600-fold to 6,553,600-fold dilution.
3.2.3 Stability
Stability was evaluated to ensure that samples remain viable if an instrumentation error or
power outage were to occur that causes samples either: (1) to remain in the autosampler overnight

without being processed or (2) to be subjected to additional freeze-thaw cycles. This portion of the
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validation assessed two aspects of a sample’s stability. First, freeze thaw stability was evaluated
using aliquots of pooled samples. Three samples were assayed immediately and served as
baseline peak area response. The remaining six samples were stored at -80 °C. All six remaining
aliquots were thawed the following day. Three of the thawed samples were analyzed on the second
day and the remaining three were refrozen for subsequent thawing and analysis on day three. The
second form of stability assessed, autosampler stability, was evaluated by storing processed
samples in the chilled autosampler and analyzing them over a period of 3 days.

3.2.3.1 Freeze Thaw Stability

Single use aliquots of pooled body fluid were evaluated over two freeze thaw cycles to
evaluate if storage would have a negative effect on the detection of a particular fluid (Tables 3.14
and 3.15). A significant reduction in signal intensity would indicate that samples are degrading
during the freeze-thaw process and would require re-extraction, digestion, and cleanup prior to
reliable analysis. Overall, only one vaginal fluid peptide was affected by repeated freeze thaw
cycles (Table 3.15). Suprabasin peptide FGQGVHHGLSEGWK was detected in Day 1 samples
but was absent after the first freeze thaw cycle (Figure 3.3). Because FGQGVHHGLSEGWK is a
low abundant target, even minor degradation of the sample appears to have deleterious effects. In
addition to the one suprabasin peptide in vaginal fluid, several markers (e.g., suprabasin, periplakin,
etc.) in menstrual blood were not detected during this portion of the study. These results may be
attributed to the low abundance of these markers in the menstrual blood matrix, which is consistent
with results observed under subsequent aims. Furthermore, given that protein dropout was
observed on Day 1 of the study, it is more likely due to low abundance in comparison with protein
biomarker degradation due to instability. Finally, performance of the IPC was assessed to ensure
complete sample preparation over the course of this study (Figure 3.4). Although a negative trend
pattern is visible when plotting the IPC response ratio over time, all calculated ratios fell within

acceptance criteria.
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Table 3.14. Freeze thaw stability results for peripheral blood, saliva, and seminal fluid. Peptide
markers that were positively identified are shown in dark green. No peptide or protein dropout was

observed.
Fluid Protein Peptide Day1 | Day2 | Day 3
. . LSITGTYDLK
Alpha-1 Antitrypsin SVLGALGITK
. SAVTALWGK
. Hemoglobin LLA/YPWTQR
Peé:g:‘zra' Hemopexin NFPSPVDAAFR
Apolipoprotein LLDNWDSVTSTFSK
VSFLSALEEYTK
Serotransferrin DGAGDVAFVK
SASDLTWDNLK
LSGLLDLALGK
Alpha Amylase IAEYMNHLIDIGVAGFR
Statherin FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF
Saliva Submaillary Protein GPYPPGPLAPPQPFGPGFVPPPPPPPTGPGR
IPPPPPAPYGPGIFPPPPPQP
Cystatin [IEGGIYDADLNDER
ALHFVISEYNK
FVTLVFR
Acid Phosphatase FQELESETLK
ELSELSLLSLYGIHK
Prostate Specific Antigen FLRPGDDSSHDLMLLR
LSEPAELTDAVK
Fluid Semenogelin 2 GSISIQTEEQIHGK
DVSQSSISFQIEK
Semenogelin 1 DIFSTQDELLVYNK
QITIPSQEQEHSQK
- DCGSVDGVIK
Epididymal Secretory SGINCPIQK
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Table 3.15. Freeze thaw stability for vaginal fluid and menstrual blood. Peptide markers that were
Fluid

positively identified are shown in dark green. White indicates peptide dropout.
Protein

Peptide Day 1
LLDEDHTGTVEFK
ISPQIQLSGQTEQTQK

AHQTGETVTGSGTQTQAGATQRTVEQDSSHQTGR
Neutrophil Gelatinase WYVVGLAGNAILR
MYATIYELK
GLDHGLLAFIQLQQCAQDR
LyB/PLAUR GCVQDEFGTR
Vaginal Suprabasin ALGDINSGITHAGR
Fluid FGQGVHHGLSEGWK
AQSLQSAK
NLLDEIASR

NQGPQESVVR
. . . VPEPGCTK
Small Praline Rich Protein 3 VEVBGYTK

HLVQQEGQLEQQER
QEAQLELPEQQVGQPK

GEVLLPVEHQQQK

LLDEDHTGTVEFK
ISPQIQLSGQTEQTQK

AHQTGETVTGSGTQTQAGATAQTVEQDSSHAQTGR
Neutrophil Gelatinase WYVVGLAGNAILR
MYATIYELK
GLDHGLLAFIQLQQCAQDR
LyB/PLAUR GCVQDEFCTR
Suprabasin ALGDINSGITHAGR
FGQGVHHGLSEGWK
AQSLQSAK
NLLDEIASR
NQGPQESVVR
Menstrual HLVQQEGQLEQQER

Blood Involucrin QEAQLELPEQQVGQPK

GEVLLPVEHQQQK
. . . VPEPGCTK
Small Proline Rich Protein 3 VPVPGYTK
. . LSITGTYDLK
Alpha-1 Antitrypsin SVLGQLGTK
Hemeoglobin SAVTALWGK
LLVWYPWTQR

NFPSPVDAAFR
Apolipoprotein LLDNWDSVTSTFSK
VSFLSALEEYTK

Serotransferrin DGAGDVAFVK
SASDLTWDNLK

Cornulin

Day 2

Day 3

Periplakin

Involucrin

Cornulin

Periplakin

Hemopexin
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Figure 3.3. Suprabasin peptide FGQGVHHGLSEGWK peak area response in vaginal fluid. (A)
Peak area intensity on Day 1. (B) Peak area intensity on Day 2. (C) Peak area response on Day 3.
(D) Peak area response across all triplicates evaluated, progressing from Day 1 to Day 3.
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Figure 3.4. Internal positive control response ratio for the duration of freeze thaw stability
experimentation.

3.2.3.2 Autosampler Stability

Three replicates of the five target body fluids were processed and evaluated over a period

of 3 days. Samples were analyzed on Day 1 (i.e., 0 hours) and stored on the liquid chromatograph’s
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chilled autosampler set at 8 °C. The same samples were then reinjected 24 hours (Day 2) and
again at 48 hours (Day 3) after original processing to assess fluctuations in detection signal. A
significant drop in signal strength or quality would indicate that any samples stored in excess of 24
hours on the autosampler would need to be re-extracted, digested, and cleaned up. Fortunately,
the resulting data confirms that no such problems occurred. There was no sufficient drop in peak
area response for any target peptide in the assay. On the contrary, a slight increase in peak area
response was often observed. This was evident across all fluids; however, this increase is not
sufficient. This was attributed to sample evaporation and concentration of target peptides that
occurred after the 96-well sample plate cover was punctured for initial injection, resulting in
evaporation of reconstitution solvent. Detailed results for this portion of the study are outlined in
Appendix G. In addition, IPC ion ratios across the three days were calculated, with no significant
difference between ion ratios for 0 and 24 hours (ts=0.404, df=58, P>0.05) or for 0 and 48 hours
(ts=1.084, df=58, P>0.05). Percent CV value for the IPC are listed in Table 3.16. Overall, these
results indicate that samples plated on the autosampler can be analyzed within two days of being
processed without significant change in signal strength.

Table 3.16. Calculated CV (as a percent) for the internal positive control for the duration of the
autosampler stability study.

Protein Peptide Day 1 +24hr +48hr

Myelin Control| DTGILDSLGR 8.051 8.530 8.760

3.2.4 Mixtures Study

Pooled samples from five individuals were prepared in triplicate as 1:1 v/v mixtures among
each of the five target fluids. The primary purpose of this mixture study was to identify potential
cross-fluid interference and ion suppression that could produce a false negative or false positive
result. The pairwise matrix of five body fluids includes all possible combinations of fluid interactions.
Typical of toxicological assays, this study was designed to mimic interference studies performed
as part of LC-MS/MS validations in operational toxicology laboratories. It is important to emphasize

that the objective of this study is fundamentally different from mixture studies performed in forensic
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DNA testing. In the context of DNA assay validation, the goal of a mixture study is typically to detect
and resolve major and minor contributors.

In several cases, cross-fluid interferences were detected, potentially leading to difficulties
in the interpretation of results. These have been identified, and using an abundance of caution, the
interfering transition was either removed or replaced. For example, a major interference peak was
detected with prostatic acid phosphatase peptide FVTLFR when seminal fluid was mixed with
peripheral blood (Figure 3.5). In this case, the transition m/z 534.3398+ (purple peak) generates
the interference peak. By replacing transition m/z 534.3398+ with transition m/z 247.1441+, the

problem was readily eliminated in all subsequent analyses.
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Figure 3.5. Prostatic acid phosphatase peptide FVTLFR peak area response in (A) neat seminal
fluid and (B) seminal fluid and peripheral blood mixture. The m/z 534.3398+ transition (purple peak
denoted with arrow) was removed and replaced.

3.2.5 Specificity Samples

The amino acid sequences of each biomarker were previously screened against protein
databases to assess the possibility of obtaining positive results from non-human proteins. To
remain in concordance with governing validation guidelines, additional in vitro experimentations
was conducted to demonstrate species specificity. The data presented in this section demonstrates
this empirically, through the analysis of domestic pet and livestock body fluid samples. Seven
peripheral blood samples (Rhesus monkey, pig, horse, chicken, cow, mouse, and dog) were

purchased and four peripheral blood samples (coyote, white-tailed deer, black bear, and river otter)
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were acquired from previous projects. In addition, four saliva samples (cow, Rhesus monkey,
tortoise, and alpaca) were procured.

The results of this study are outlined in Table 3.17. It was previously determined through
investigation of database entries that the selected hemoglobin peptide sequences were not human
specific. It is well known that the hemoglobin amino acid sequence is highly conserved across
mammals, particularly in higher order primates (Figure 3.6). As hypothesized, hemoglobin was
identified across most of the species assayed. In addition, there were two instances of trace vaginal
fluid biomarkers, neutrophil gelatinase and Ly6 PLAUR, detected in cow and Rhesus monkey saliva
(Figure 3.7). Trace levels of acid phosphatase and epididymal secretory protein were detected in
cow and Rhesus monkey peripheral blood samples as well.

Table 3.17. Species specificity of protein biomarkers within the multiplex assay. Light green is

indicative of at least one peptide marker identification for the respective protein. White indicates no
protein marker was detected.
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Figure 3.6. Hemoglobin peptide LLVVYPWTQR peak area response in (A) Rhesus monkey and
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Figure 3.7. Peak area response of vaginal fluid markers in saliva samples. Ly6/PLAUR peptide
GCVQDEFCTR peak area intensity in (A) bovine saliva, (B) Rhesus saliva, and (C) human vaginal
fluid control samples. Neutrophil gelatinase peptide MYATIYELK peak area intensity in (D) Rhesus
saliva and (E) human vaginal fluid control samples.

114



There were no instances of cross reactivity with the established assay for peripheral blood
from chicken, coyote, or dog in addition to alpaca saliva (Figure 3.8). A more comprehensive
assessment with the inclusion of additional target fluids from various species could present further
chromatographic interferences. Overall, the results of this experimentation stress the importance
of clear interpretation guidelines, particularly when examining potential trace amounts of body fluid

when only one biomarker is present.
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Figure 3.8. Peak area response of species specificity samples evaluated. (A) alpaca saliva sample
protein cystatin peptide ALHFVISEYNK, (B) alpaca saliva sample protein amylase peptide
LSGLLDLALGK, (C) hemoglobin peptide LLVVYPWTQR across all blood sample obtained.

3.2.6 Casework Type Samples

Laboratory simulated forensic casework type samples were evaluated to identify additional
performance limitations, particularly with the analysis of trace level samples, and to aid in the

generation of finalized Standard Operating Procedures and interpretation guidelines.
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3.2.6.1 Substrate Samples

Various substrate compositions were analyzed to ensure chemical products (i.e., indigo
dye) or extraction efficiency off different materials (i.e., cotton versus leather) would not interfere
with the detection of protein biomarkers. Single source body fluids were evaluated on the following
substrates: cotton, leather, denim, carpet, drywall, plastic bottle, aluminum bottle, and feminine
hygiene menstrual pad. Results from this study are detailed in Table 3.18.

Peripheral blood was applied to cotton, denim, carpet, leather, and drywall. Upon
processing, all peripheral blood peptide markers were detected and identified for each substrate
type. No indication of suppression due to substrate composition was observed during analysis.
Saliva was applied to plastic bottle and aluminum bottle cuttings. Analysis of the substrates showed
that all saliva peptide markers were accurately identified. Similar to peripheral blood results,
biomarkers were not suppressed due to substrate composition. Seminal fluid was applied to cotton
and leather. All seminal fluid peptide markers were detected during analysis, indicating substrate
composition did not affect the ability to accurately identify seminal fluid.

Vaginal fluid was applied to cotton, denim, and leather. Instances of vaginal fluid peptide
dropout were observed during evaluation. For the cotton sample analyzed, all peptide markers with
the exception of suprabasin peptide FGQGVHHGLSEGWK were detected. Similarly, peptide
dropout for suprabasin peptide FGQGVHHGLSEGWK and involucrin  peptide
HLVQQEGQLEQQER were observed during analysis of vaginal fluid recovered from leather. The
greatest instance of peptide dropout was observed with the analysis of vaginal fluid when applied
to denim. Five vaginal fluid proteins, neutrophil gelatinase, Ly6/PLAUR, suprabasin, periplakin, and
involucrin were incompletely detected, with dropout of at least one peptide per protein.

Similar vaginal fluid biomarker dropout was evident during menstrual blood analysis.
Menstrual blood was applied to cotton, denim, and a feminine hygiene menstrual pad. Although all
peripheral blood markers were positively detected, instances of vaginal fluid peptide dropout and
complete protein dropout were observed. Across all substrates tested, three proteins exhibited

complete dropout: suprabasin, involucrin, and Ly6/PLAUR. Furthermore, peptide dropout for
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proteins cornulin and periplakin was also observed, leaving proteins neutrophil gelatinase and small
proline-rich protein 3 as the only vaginal fluid markers completely identified.

Although suppression from substrate composition is a possible explanation as to the
dropout of vaginal fluid peptide markers for both the analysis of vaginal fluid and menstrual blood
matrices, the endogenous low-level abundance of these proteins must be taken into consideration.
The dilution of protein material during extraction is a more probable explanation, causing the protein
markers to be below the limit of detection. Furthermore, because the protein biomarker dropout
during menstrual blood analysis was not dictated by the substrate on which the fluid was applied,
the consistency across substrate type further substantiates the lower abundance of vaginal markers
to protein absence during analysis. In conclusion, the composition of common substrates
encountered during forensic analysis do not affect the ability for protein biomarkers to be identified

using the developed workflow.

Table 3.18. Detection of body fluid markers in substrate samples. Proteins that were positively
identified by all of their respective peptide markers are shown in dark green. Light green indicates

where at least one peptide marker for the respective protein dropped out. Red indicates complete
protein dropout. White indicates not tested.
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3.2.6.2 Environmental Contaminant Samples

A variety of environmental contaminants were selected and tested to evaluate potential

concerns with enzymatic digestion, peptide cleanup, or to detect any instances of unanticipated
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interferences during instrumental analysis. Single source body fluids were tested with the following
environmental contaminants: dirt, rust, 10% bleach solution, chewing tobacco, cigarette bultt,
spermicide lubricated condom, and water-based personal lubricant. Results from this study are
detailed in Table 3.19.

Peripheral blood was applied and mixed with dirt, rust, and a 10% bleach solution. All
peripheral blood peptide markers met acceptance criteria and were positively identified during
analysis. Similarly, saliva was applied and mixed with chewing tobacco and a cigarette butt. All
saliva peptide biomarkers met acceptance criteria and were positively identified. Seminal fluid was
applied and mixed with water-based personal lubricant, spermicide lubricated condom, and 10%
bleach solution. With the exception of the 10% bleach solution, all seminal fluid peptide markers
were positively identified. Epididymal secretory protein E1 peptide SGINCPIQK was not detected
in 10% bleach solution.

Vaginal fluid was applied or mixed with water-based personal lubricant and a spermicide
lubricated condom. This study was repeated with menstrual blood following equivalent sample
preparation parameters. Detection of vaginal fluid peptide markers within these two matrices was
determined to be specific for the environmental contaminant being assessed. Beginning with the
vaginal fluid matrix, no instances of protein dropout were observed when analyzed from a
spermicide lubricated condom. However, peptide and protein dropout were exhibited with the
introduction of water-based personal lubricant. Complete protein dropout of suprabasin,
Ly6/PLAUR, periplakin, small proline rich protein 3, and involucrin in addition to peptide dropout of
protein cornulin were observed. The lack of detection when subjected to lubricant is likely due to
two separate chemical interactions. First, lubricant is composed of long, lipophilic hydrocarbons
that act as a competitive species during SPE cleanup. Lubricant hydrocarbons are preferentially
bound to sorbent material during SPE as a result of their chemical structure. Although a simple
addition of sodium dodecyl sulfate (SDS) would eliminate this interference, SDS is not compatible

with mass spectrometry analysis.
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Second, the specific type of personal lubricant utilized during this study contained glycerol
(propane-1,2,3-triol), a compound produced from the hydrolysis of triglycerides that increases the
solubility of proteins when in matrix. At concentrations greater than 10%, glycerol causes inaccurate
protein quantitation [159]. Diluting the sample to decrease the interference caused by this
ingredient is not suitable for analysis as the vaginal fluid peptide markers exist endogenously in low
abundance, resulting in a misleading quantitation value.

Similar with menstrual blood containing samples, protein and peptide dropout was
exhibited. Vaginal fluid protein biomarkers Ly6/PLAUR, suprabasin, and involucrin were not
detected and peptide marker dropout was exhibited for proteins cornulin and periplakin. However,
there was consistency in protein dropout observed between contaminant sample types, indicating
that the natural low-level abundance of vaginal fluid markers attributes to the lack of detection.
Furthermore, the protein detection for these sample types is equivalent to that reported during the

substrate interference study in section 3.2.6.1.
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Table 3.19. Detection of body fluid markers in samples subjected to environmental contaminants.
Proteins that were positively identified by all of their respective peptide markers are shown in dark
green. Light green indicates where at least one peptide marker for the respective protein dropped
out. Red indicates complete protein dropout. White indicates not tested.
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3.2.6.3 Mixtures

The purpose of this study was to evaluate the performance of the optimized assay when
analyzing mixed samples with a major and minor component. Five two-fluid mixtures were
prepared, with pairings selected based on sample types routinely tested for in operational forensic
laboratories. For example, a seminal fluid minor contributor in a vaginal fluid major contributor was
prepared to simulate a sexual assault type sample. Results from this study are summarized in
Table 3.20.

With the exception of urine, for which protein biomarkers are not included within the
developed assay, all major and minor body fluid contributors were correctly identified. Beginning
with the vaginal fluid minor contributor in a urine major contributor, high rates of vaginal fluid protein
marker dropout were observed. Fluid identification was made from the presence of small proline
rich protein 3 and cornulin. The urine matrix predictably diluted the vaginal fluid markers past the

limit of detection of the assay. In addition, although the average urea composition (9.5 g/L) in urine
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is below the concentration incompatible with the BCA protein quantitation assay [159], the presence
of urea and additional salts endogenous to urine may have negatively affected the ability to produce
a reliable protein quantitation value. Therefore, if the total protein quantitation was underestimated,
less then optimal protein amounts would have been utilized for testing.

The saliva minor contributor was confirmed present in a vaginal fluid major contributor
based on the presence of alpha amylase and submaxillary gland androgen-regulated protein 3B.
Furthermore, all vaginal fluid protein markers were accurately identified.

The third two-component mixture tested was a seminal fluid minor contributor in a vaginal
fluid major contributor. Only one instance of peptide dropout was observed, with seminal fluid
protein prostate specific antigen peptide FLRPGDDSSHDLMLLR being undetected. The remaining
protein markers were positively identified, particularly confirmatory markers semenogelin 1 and
semenogelin 2. As expected, the vaginal fluid major contributor was also positively identified by all
protein biomarkers consistent with vaginal fluid.

The seminal fluid minor contributor was positively confirmed in a menstrual blood major
contributor, with all protein biomarkers accurately detected and identified. However, as seen with
other casework type samples, instances of peptide and protein dropout were observed for
menstrual blood characterization. Although vaginal fluid proteins cornulin, neutrophil gelatinase,
and small proline rich protein 3 were present, in addition to peptides consistent with periplakin and
involucrin, protein dropout of Ly6/PLAUR and suprabasin was exhibited. This dropout is consistent
with results obtained during Substrate and Environment Contaminant studies (sections 3.2.6.1 and
3.2.6.2, respectively), with endogenous low-level abundance negatively affecting the ability to
detect these proteins in a complex matrix such as menstrual blood.

The last two-component mixture analyzed was a saliva minor contributor in a menstrual
blood major contributor. The saliva contributor was identified based on the sole presence of protein
alpha amylase. Because this protein has demonstrated cross-expression in other body fluids and

tissues, the presence of saliva in this particular sample cannot be reported as confirmatory.
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Furthermore, as observed with the seminal fluid in menstrual blood mixture previously described,
there was consistent vaginal fluid protein biomarker dropout exhibited in this sample.

Table 3.20. Detection of body fluid markers in mixture samples. Proteins that were positively
identified by all of their respective peptide markers are shown in dark green. Light green indicates
where at least one peptide marker for the respective protein dropped out. Red indicates complete
protein dropout. White indicates not tested.
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3.2.6.4 Sexual Assault Samples

3.2.6.4.1 Simulated Sexual Assault Samples

Prepared samples were allowed to incubate at 37 °C for up to and including eleven days
after preparation. At time zero, proteins semenogelin 1, semenogelin 2, and epididymal secretory
protein were positively identified (Table 3.21). The complete panel of seminal fluid peptide markers
was not detected in full during any timepoints evaluated during this study. Only epididymal
secretory protein was consistently detected over the course of the eleven-day incubation study.
Furthermore, a single peptide for both semenogelin 1 and 2 were consistently identified over the

course of the study (Figure 3.9). Peptide dropout for proteins prostatic acid phosphatase and
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prostate specific antigen was observed at time zero, with complete protein dropout of prostate
specific antigen observed for the remainder of the study. Prostatic acid phosphatase exhibited
protein dropout after day seven.

This study demonstrates the robustness of the seminal fluid peptide markers selected for
inclusion within the larger multiplex panel. For example, prostate specific antigen’s inherent function
is to cleave semenogelin proteins in order to liquify ejaculated semen. With the ability to detect
semenogelin proteins after incubation for eleven days further exemplifies that the selected peptide
markers do not fall within amino acid cleavage sites. Furthermore, the inherent hostile environment
of vaginal fluid in terms of acidic pH and endogenous proteases, did not negatively affect the ability
to positively characterize “invasive” seminal fluid proteins to an extent as great as originally
hypothesized.

Table 3.21. Detection of body fluid markers in simulated sexual assault samples. Proteins that were
positively identified by all of their respective peptide markers are shown in dark green. Light green

indicates where at least one peptide marker for the respective protein dropped out. White indicates
complete protein dropout.

Day Zero
Day One
Day Three
Day Five
Day Seven
Day Nine
Day Eleven

Semenaogelin 2
Semenogelin 1
Acid Phosphatase
Prostate Specific Antigen
Epididymal Secretory
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Figure 3.9. Peak area response of seminal fluid biomarkers in simulated sexual assault samples.
Semenogelin 1 peptide QITIPSQEQEHSQK peak area intensity (A) at Day Eleven and (B) over the
entirety of the incubation study. Semenogelin 2 peptide GSISIQTEEK peak area intensity (C) at
Day Eleven and (D) over the entirety of the incubation study.

3.2.6.4.2 Mock Sexual Assault Kit Samples

Mock sexual assault kit samples were prepared in duplicate using semen provided by a
vasectomized and a non-vasectomized male individual (Table 3.22). For sexual assault swabs
prepared with semen from a non-vasectomized donor, seminal fluid was positively identified
through the detection of the following protein fingerprints. Beginning with vaginal swab samples,
two occurrences of seminal fluid protein dropout were recorded for a single sample (SA01_01.2).
Prostate specific antigen and epididymal secretory protein were not positively identified; however,
prostatic acid phosphatase, semenogelin 1, and semenogelin 2 were completely characterized. In
addition, given the sample type, vaginal fluid protein markers were successfully detected and
identified for both samples being assessed. Similar results were recorded for the oral swab sample
types. All seminal fluid biomarkers were detected, with the exception of epididymal secretory
protein, which exhibited complete dropout. Furthermore, given the sample type, all saliva
biomarkers were accurately detected with no protein dropout exhibited. Rectal swab samples were
shown to exhibit protein inhibition, with occurrences of seminal fluid protein dropout for both sample

collections. Prostate specific antigen and epididymal secretory protein were not detected, in
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addition to peptide dropout observed for prostatic acid phosphatase and semenogelin 2 (Figure
3.10).

Similar results were observed for samples prepared with semen from a vasectomized
donor. Vaginal swab samples produced positive detection of prostatic acid phosphatase and
semenogelin 1 seminal fluid proteins, in addition to vaginal fluid biomarkers. However, for both
samples being analyzed, prostate specific antigen was not detected. Furthermore, semenogelin 2
exhibited peptide dropout. Second, oral swab samples were confirmed to contain seminal fluid due
to the identification of semenogelin 1 and 2. The first swab analyzed (SA02_02.1) exhibited protein
dropout for prostate specific antigen and epididymal secretory protein. The second oral swab
(SA02_02.2) was only lacking epididymal secretory protein. Lastly, comparable with the non-
vasectomized samples, the rectal swabs containing displayed occurrences of protein inhibition. For
both sample collections, prostate specific antigen and epididymal secretory protein were not
detected. Furthermore, peptide dropout of proteins prostatic acid phosphatase and semenogelin 2
were reported, with instances of semenogelin 1 peptide dropout for sample SA02_03.1 (Figure
3.11).

In summary, the LC-MS/MS assay was able to accurately identify trace amounts of seminal
fluid from both non-vasectomized and vasectomized male individuals. Moreover, the protein
inhibition reported from rectal swab sample analysis can be attributed to the increased presence of
bacteria common for this sample type [160]. Bacteria of the human gut microbiome contain serine
protease inhibitors, which may negatively affect the function of trypsin during protein digestion

processes.
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Table 3.22. Detection of body fluid markers in sexual assault kit samples. Proteins that were
positively identified by all of their respective peptide markers are shown in dark green. Light green
indicates where at least one peptide marker for the respective protein dropped out. White indicates
complete protein dropout.
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Figure 3.10. Peak area response of seminal fluid biomarkers in mock sexual assault kit samples
containing semen from a non-vasectomized donor. Prostate specific antigen peptide
LSEPAELTDAVK peak area intensity in (A) vaginal swab (B) oral swab (C) rectal swab.
Semenogelin 2 peptide GSISIQTEEK peak area intensity (D) across vaginal, oral, and rectal swab
sample replicates. Semenogelin 1 peptide QITIPSQEQEHSQK peak area intensity (E) across
vaginal, oral, and rectal swab sample replicates.
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Figure 3.11. Peak area response of seminal fluid biomarkers in mock sexual assault kit samples
containing semen from a vasectomized donor. Prostate specific antigen peptide LSEPAELTDAVK
peak area intensity in (A) vaginal swab (B) oral swab (C) rectal swab. Semenogelin 2 peptide
GSISIQTEEK peak area intensity (D) across vaginal, oral, and rectal swab sample replicates.
Semenogelin 1 peptide QITIPSQEQEHSQK peak area intensity (E) across vaginal, oral, and rectal
swab sample replicates.

3.2.6.4.3 Digital Swabs

Digital swab samples were collected on separate days for a total of two swab types, with
each sample serving as a distinct sample collection. A summary of results is outlined in Table 3.23.
Beginning with the oral penetration digital swabs, all saliva protein biomarkers were positively
identified for both sample collections. The first sample evaluated was positive for alpha amylase
and submaxillary gland androgen-regulated protein 3B, with peptide dropout observed for proteins
statherin and cystatin SA. The second sample analyzed was positive for submaxillary gland
androgen-regulated protein 3B and cystatin SA, with peptide dropout exhibited for alpha amylase
and statherin. There were no instances of complete protein dropout observed for oral penetration

digital swabs. Although inconsistencies were observed for alpha amylase detection between the
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two samples received, the identification of submaxillary gland androgen-regulated protein 3B was
encouraging, as this protein exhibits saliva specificity.

Vaginal penetration digital swabs were accurately identified by the presence of at least one
peptide marker for all vaginal fluid markers within the assay. For the first sample analyzed, peptide
dropout was observed for proteins cornulin, Ly6/PLAUR, periplakin, involucrin, and small proline
rich protein 3; however, identification was made due to the presence of neutrophil gelatinase and
suprabasin. Similarly, the second sample evaluated exhibited peptide dropout for proteins cornulin,
periplakin, involucrin, and small proline rich protein 3. It should be noted that epididymal secretory
protein, a presumptive seminal fluid protein biomarker, was detected for both vaginal penetration
digital swabs.

Vaginal penetration during menses swabs were taken at both the beginning and the end
of menstruation, creating two unique samples. The first digital swab was taken at the beginning of
menstruation and was positively identified by both vaginal fluid and peripheral blood protein
markers. Although protein dropout was observed for protein cornulin, three vaginal fluid markers
were completely identified (neutrophil gelatinase, suprabasin, and involucrin). Furthermore, all
peripheral blood proteins were detected, with high abundance of protein hemoglobin and alpha-1
antitrypsin reported. The second sample analyzed was collected at the end of menstruation,
causing the sample to more closely resemble a vaginal swab than a menstrual swab. No instances
of vaginal fluid biomarker dropout were observed. In addition, as expected, signal intensities for

peripheral blood protein markers were less intense than those of the first swab evaluated.
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Table 3.23. Detection of body fluid markers in digital swab samples. Proteins that were positively
identified by all of their respective peptide markers are shown in dark green. Light green indicates

where at least one peptide marker for the respective protein dropped out. White indicates complete
protein dropout.
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3.2.6.5 Degraded Samples

Substrates were prepared to simulate authentic items of evidence that have been
laundered. Upon analysis, both the stain region and the control (non-stain region) of the same
substrate were processed concurrently. A complete summary of results is depicted in Table 3.24.
Peripheral blood containing samples (cotton bath towel, denim) yielded positive identifications for
all target peripheral blood biomarkers. For the towel sample, peptide dropout for apolipoprotein and
serotransferrin was observed. The denim sample containing peripheral blood did not exhibit any

instances of peptide or protein dropout. Both the towel and denim control regions were negative for

all peripheral blood protein targets.
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Seminal fluid was accurately identified on both substrates evaluated (cotton-blend bed
sheet, cotton underwear). All protein markers were positively detected for the underwear stain
region, with one instance of peptide dropout exhibited for prostate specific antigen. The control
region for this substrate was negative for all biomarkers. The bed sheet sample had a single
occurrence of protein dropout for epididymal secretory protein, with peptide dropout exhibited by
prostatic acid phosphatase and prostate specific antigen. The control region for this substrate was
also negative for all protein markers.

It was originally hypothesized that the use of laundry detergent may severely inhibit
biomarker detection, given that detergent is commonly used to lyse cell membranes and denature
protein, but have additional deleterious effects on SPE chemistries. Furthermore, detergent is
generally incompatible with mass spectrometer functionality. However, laundering of the stain
regions did not inhibit the ability to accurately identify target biomarkers within the validated assay.
Additional studies into the effect of different detergent formulations would be of interest. A detergent
marketed as “natural” was selected for this subset of samples, however, it is hypothesized that

formulations containing other chemical ingredients may change the observed outcomes.
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Table 3.24. Detection of body fluid markers in degraded samples. Proteins that were positively
identified by all of their respective peptide markers are shown in dark green. Light green indicates
where at least one peptide marker for the respective protein dropped out. White indicates complete
protein dropout.
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3.2.6.6 Aged Samples

Aged body fluid swabs were prepared to assess the degradation of target protein markers
in addition to extraction efficiency when target body fluids were not stored under ideal conditions.
Protein identification results for all aged samples are outlined in Table 3.25. Peripheral blood
biomarkers were detected at all time points collected. No instances of protein degradation were
observed, with all peak intensities remaining consistent over the course of the study. Similar results
regarding peripheral blood markers in menstrual blood were obtained; however, vaginal fluid
marker dropout was observed. Proteins Ly6/PLAUR, suprabasin, and involucrin were not detected
during this study. All other vaginal fluid markers did exhibit stability for the time points collected,

with no additional protein or peptide dropout exhibited.
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Seminal fluid and saliva behaved similar to peripheral blood. All target protein markers
were correctly identified during each time point collected, with no instances of protein or peptide
dropout over the course of the study. The amount of material present for vaginal fluid (i.e., 50 pL
vs. 150 pL) effected the positive identification of specific markers, as originally hypothesized.
Peptide dropout was observed for protein periplakin during the study, with inconsistent peptide
dropout exhibited by protein suprabasin. This suggests that the selected peptide marker
AQSLQSAK for suprabasin does not exhibit the same high degree of robustness when compared
with remaining vaginal fluid markers.

Table 3.25. Detection of body fluid markers in aged samples. Proteins that were positively identified
by all of their respective peptide markers are shown in dark green. Light green indicates where at

least one peptide marker for the respective protein dropped out. White indicates complete protein
dropout.

Fluid Protein Day 0 Day 1 Day 3 Day 7 Day 35
Hemoglobin
Apolipoprotein
Alpha-1 Antitrypsin
Hemopexin
Serotransferrin
Hemoglobin
Apolipoprotein
Alpha-1 Antitrypsin
Hemopexin
Serotransferrin
Menstrual | Small Proline Rich Protein
Blood Cornulin
Neutrophil Gelatinase
Ly6/PLAUR
Suprabasin
Periplakin
Involucrin
Semenogelin 1
Semenogelin 2
Acid Phosphatase
Prostate Specific Antigen
Epididymal Secretory
Alpha Amylase
Cystatin
Submaxmary Protein
Statherin
Small Proline Rich Protein
Cornulin
Neutrophil Gelatinase
Suprabasin
Involucrin
Periplakin
Ly6/PLAUR

Peripheral
Blood

Seminal
Fluid

Saliva

Vaginal
Fluid
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3.2.6.7 Sensitivity Samples

Sensitivity samples were prepared by extracting a serial dilution of target body fluid from
cotton swabs. These samples differ from those prepared under section 3.2.2 by diluting target body
fluid and recovering from a substrate, in comparison with evaluating diluted target fluid directly in a
test tube. A summary of results is detailed in Tables 3.26-3.28. Beginning with peripheral blood
detection, all protein markers were successfully identified for neat, 1:2, 1:10, and 1:100 dilution
samples (Table 3.26). Hemopexin dropout was observed at the 1:1,000 dilution, with additional
protein dropout of alpha-1 antitrypsin and serotransferrin peptide dropout at the 1:2,000 dilution.
From this dilution, the only protein marker consistently detected was hemoglobin, with peptide or
protein dropout reported for all other markers at the 1:5,000, 1:10,000 and 1:20,000 dilutions
(Figure 3.12). No peripheral blood biomarkers were detected at the 40,000-fold dilution.

Similar results were exhibited by menstrual blood sensitivity analysis (Table 3.26). All
peripheral blood markers were accurately detected through the 100-fold dilution, with peptide
dropout for serotransferrin and apolipoprotein at the 1:1,000 dilution. Peripheral blood marker
dropout of hemopexin and alpha-1 antitrypsin was observed at the 1:2,000 dilution, with all proteins
except hemoglobin not detected at the 1:5,000 dilution. Hemoglobin was detected in all menstrual
blood dilution samples analyzed. As hypothesized, vaginal fluid protein markers did not exhibit the
same level of sensitivity as the peripheral blood markers in menstrual blood. Protein dropout for
involucrin, Ly6/PLAUR, and suprabasin was observed for all samples evaluated. Furthermore,
peptide dropout for cornulin and periplakin was exhibited for all samples. These results remained
consistent up to and including the 100-fold dilution sample. Additional protein dropout of periplakin
and neutrophil gelatinase was reported at the 1,000-fold dilution sample. Further dilutions exhibited
inconsistent protein and peptide detection. Small proline rich protein 3 was detected at the 1:10,000
and 1:20,000 dilutions (Figure 3.12); however, exhibited peptide dropout at the 1:5,000 and
1:40,000 dilutions. As with other casework type samples analyzed, the endogenous low
abundances of target vaginal fluid protein markers attributes to the lack of detection at lower dilution

samples.
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Robust detection of seminal fluid biomarkers over the course of the dilution study was
observed (Table 3.26). All protein targets were identified in the neat, 1:2, and 1:10 dilutions, with
two instances of peptide dropout for proteins prostatic acid phosphatase and prostate specific
antigen at the 1:100 dilution. Prostate specific antigen and epididymal secretory protein were not
detected at the 1:1,000 dilution, with additional prostatic acid phosphatase dropout at the 2,000-
fold dilution. Although peptide dropout was exhibited, semenogelin 1 and 2 were positively identified
at the 1:5,000, 1:10,000, and 1:20,000 dilution samples. Furthermore, semenogelin 1 peptide
QITIPSQEQEHSQK was accurately detected at 40,000-fold dilution extract (Figure 3.12).

Saliva dilution samples, as hypothesized, did not demonstrate the same degree of
sensitivity as semen and peripheral blood based on the lower endogenous levels of protein quantity
(Table 3.27). All protein markers were positively identified at the neat, 1:2, and 1:10 dilution
extracts, with complete dropout of cystatin SA at 1:100. From this point, inconsistencies in
biomarker detection were observed. Beginning with protein alpha amylase, peptide dropout was
exhibited at the 500-fold dilution but was completely detected at the 1,000-fold dilution sample
(Figure 3.12). Similarly, submaxillary gland androgen-regulated protein 3B demonstrated protein
dropout at 1:500, with a single peptide detected at 1:1,000. The remaining samples analyzed
(1:2,000; 1:5,000; 1:10,000) were negative for all target protein markers consistent with saliva.

Lastly, vaginal fluid sensitivity was evaluated (Table 3.28). Three instances of peptide
dropout were observed at the initial 10-fold dilution analyzed: periplakin, Ly6/PLAUR, and
involucrin. After this dilution, almost complete protein dropout was exhibited at 1:100, with only two
peptides being accurately detected for small proline rich protein 3 and periplakin. From this point,
only a single small proline rich protein 3 peptide was detected for the remainder of the samples
analyzed (Figure 3.12). It should be restated that the dilution evaluated was initially applied to a
cotton swab and subsequently extracted in 1 mL of deionized water, further diluting any protein
material that was originally present. The large extraction volume was necessary to produce enough
material for additional studies conducted during subsequent aim of this project, as described in

Chapter 4. This decrease in recovery contributed to poor sensitivity in comparison with the
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sensitivity study conducted in section 3.2.2. However, in common forensic biology laboratory
protocols, swabs are extracted in sufficient liquid to ensure saturation, further concentrating present
targets prior to analysis.

Table 3.26. Detection of body fluid markers in casework sensitivity samples for peripheral blood,
menstrual blood, and seminal fluid. Proteins that were positively identified by all of their respective

peptide markers are shown in dark green. Light green indicates where at least one peptide marker
for the respective protein dropped out. White indicates complete protein dropout.

Dilution Factor
Fluid Protein Neat 1:2 1:10 1:100 1:1000 1:2000 1:5000 1:10,000 1:20,000 1:40,000
Hemoglobin
Apolipoprotein
Serrotransferrin
Alpha-1 Antitrypsin
Hemopexin
Small Proline Rich
Cornulin
Neutrophil Gelatinase
Periplakin
Involucrin
Menstrual Ly6/PLAUR
Blood Suprabasin
Hemoglobin
Serrofransferrin
Apolipoprotein
Hemopexin
Alpha-1 Antitrypsin
Semenogelin 1
Semenogelin 2
Acid Phosphatase
Prostate Specific Antigen
Epididymal Secretory

Peripheral
Blood

Seminal
Fluid

Table 3.27. Detection of body fluid markers in casework sensitivity samples for saliva. Proteins that
were positively identified by all of their respective peptide markers are shown in dark green. Light
green indicates where at least one peptide marker for the respective protein dropped out. White
indicates complete protein dropout.

Dilution Factor
Fluid Protein Neat 1:2 1:10 1:100 1:500 1:1,000 1:2,000 1:5,000 | 1:10,000
Alpha Amylase
Submaxillary Protein
Statherin
Cystatin

Saliva

Table 3.28. Detection of body fluid markers in casework sensitivity samples for vaginal fluid.
Proteins that were positively identified by all of their respective peptide markers are shown in dark
green. Light green indicates where at least one peptide marker for the respective protein dropped
out. White indicates complete protein dropout.

Dilution Factor

Fluid Protein 1:10 1:100 1:1000 1:2,000 1:5,000 1:10,000 1:20,000

Small Proline Rich Protein
Periplakin
Cornulin

Neutrophil Gelatinase

Suprabasin
Ly6/PLAUR

Involucrin

Vaginal
Fluid
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Figure 3.12. Peak area response of peptide biomarker at lowest detected sensitivity sample. (A)
seminal fluid protein semenogelin 1 peptide QITIPSQEQEHSQK at 40,000-fold dilution, (B)
peripheral blood protein hemoglobin peptide LLVVYPWTQR at 20,000-fold dilution, (C) saliva
protein amylase peptide IAEYMNHLIDIGVAGFR at 1,000-fold dilution, (D) menstrual blood protein
hemoglobin peptide LLVVYPWTQR at 40,000-fold dilution, (E) menstrual blood protein small
proline rich protein 3 peptide VPEPGCTK at 20,000-fold dilution, and (F) vaginal fluid protein small
proline rich proline 3 peptide VPEPGCTK at 20,000-fold dilution.

3.2.7 Limit of Detection

This study was performed to determine the detection limit for individual target peptides
contained within their cognate body fluid. This aim was carried out by generating a dilution series
of isotopically-labeled peptide standards, ranging from 50 femtomoles (fmol) to 500 attomoles
(amol) per injection. Samples were prepared in triplicate in digested body fluid matrix. In general,
the limit of detection (LOD) is described as the lowest concentration an analyte can be differentiated
from analytical noise. The LOD was determined according to acceptable signal peak area
response, signal to noise ratio, retention time, and qualitative response ratio between each
transition.

A summary of results obtained are detailed in Tables 3.29 and 3.30. Overall, the LOD
values for target peptide markers ranged from 1.0 to 25 femtomoles per individual peptide.

Beginning with peripheral blood, the LOD for target peptide markers ranged from 2.5 fmol to 10
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fmol per injection analyzed (Table 3.29). Hemoglobin peptides SAVTALWGK and LLVVYPWTQR
were found to have a higher LOD of 10 fmol due to observed peak area fluctuations of qualifier
ions. Furthermore, this higher LOD is beneficial for analysis because, as discussed later in section
3.2.9, both hemoglobin peptides were found to have high instances of carryover between sample
injections.

Seminal fluid peptide marker LOD values ranged from 1.0 fmol to 25 fmol (Table 3.29).
Similar to hemoglobin, semenogelin 1 peptide DIFSTQDELLVYNK exhibited an LOD of 25 fmol, a
higher value than those observed for remaining targets, and was found to have greater instances
of carryover (section 3.2.9). On the contrary, LOD values for proteins prostatic acid phosphatase
and prostate specific antigen were on the lower end of the range, with peptide FVTLVFR exhibiting
an LOD of 1.0 fmol.

Derived LOD values for vaginal fluid ranged from 1.0 fmol to 25 fmol, with two instances of
target isotopically-labeled peptide standard dropout (Table 3.30). Cornulin peptide
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR and Ly6/PLAUR peptide
GLDHGLLAFIQLQQCAQDR did not produce sufficient chromatographic peak shape or acceptable
ion ratios at the 50 fmol fortification (Figure 3.13). Therefore, these peptides were not assigned a
LOD and should be interpreted with caution. However, more robust protein biomarkers such as
neutrophil gelatinase, exhibited acceptable LOD values at 5.0 fmol. Similar results were obtained
with AQUA analysis in menstrual blood matrix, with LOD values ranging from 2.5 fmol to 25 fmol
for both vaginal fluid and peripheral blood target markers (Table 3.30). In comparison with vaginal
fluid matrix analysis, eight vaginal fluid targets produced comparable results in menstrual blood,
including the dropped peptide biomarkers of cornulin and Ly6/PLAUR. However, five peptide
targets were found to exhibit a greater LOD in menstrual blood than in vaginal fluid matrix. All
peripheral blood target LOD values were comparable in menstrual blood, with the exception of
hemopexin peptide NFPSPVDAAFR, exhibiting a greater LOD in peripheral blood than in menstrual

blood matrix.
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Isotopically-labeled peptide standards were not available for purchase at an acceptable
purity for saliva proteins statherin and submaxillary gland androgen-regulated protein 3B. Peptide
synthesis becomes exponentially more difficult as peptide length increases, with the peptide targets
for these particular proteins outside of accurate synthesis range. Furthermore, peptides with a high
content of certain amino acid residues (i.e., proline) add additional difficulties to the synthesis
process. The remaining four peptide targets (from proteins alpha amylase and cystatin SA)
produced LOD values of 5 fmol or less, with LSGLLDLALGK peptide exhibiting an LOD of 2.5 fmol
(Table 3.29).

Table 3.29. Limit of detection quantities of peripheral blood, saliva, and seminal fluid peptide
biomarkers.

Fluid Protein Peptide LOD (fmol)
. . LSITGTYDLK 5.0
Alpha-1 Antitrypsin
SVLGQLGITK 5.0
. SAVTALWGK 10.0
Hemoglobin
) LLWYPWTQR 10.0
Peé'l*;';‘;’a' Hemopexin NFPSPVDAAFR 50
LLDNWDSVTSTFSK 25
Apolipoprotein
VSFLSALEEYTK 5.0
. DGAGDVAFVK 5.0
Serotransferrin
SASDLTWDNLK 10.0
LSGLLDLALGK 2.5
Alpha Amylase
IAEYMNHLIDIGVAGFR 5.0
Statherin FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF| not tested
Saliva ) . |GPYPPGPLAPPQPFGPGFVPPPPPPPTGPGR| not tested
Submaxillary Protein
IPPPPPAPYGPGIFPPPPPQF not tested
. IIEGGIYDADLNDER 5.0
Cystatin
ALHFVISEYNK 5.0
FVTLVFR 1.0
Acid Phosphatase FQELESETLK 5.0
ELSELSLLSLYGIHK 10.0
o . FLRPGDDSSHDLMLLR 25
Prostate Specific Antigen
LSEPAELTDAVK 2.5
Fluid Semenogelin 2 GSISIQTEEQIHGK 5.0
DVSQSSISFQIEK 10.0
DIFSTQDELLVYNK 25.0
Semenogelin 1
QITIPSQEQEHSQK 2.5
L DCGSVDGVIK 5.0
Epididymal Secretory
SGINCPIQK 5.0
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Table 3.30. Limit of detection quantities for vaginal fluid and menstrual blood peptide biomarkers.
Not Detected (ND).

Fluid Protein Peptide LOD (fmol)
LLDEDHTGTVEFK 2.5
Cornulin ISPQIQLSGQTEQTQK 25.0
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR ND
Neutrophil Gelatinase WYVVGLAGNAILR 50
MYATIYELK 5.0
GLDHGLLAFIQLQQCAQDR ND
LyS/PLAUR GCVQDEFCTR 5.0
Vaginal Suprabasin ALGDINSGITHAGR 1.0
Fluid FGQGVHHGLSEGWK 25.0
AQSLQSAK 25
Periplakin NLLDEIASR 1.0
NQGPQESVVR 10.0
) ] ) VPEPGCTK 25
Small Proline Rich Protein 3 VPVBGYTK £0
HLVQQEGQLEQQER 10.0
Invelucrin QEAQLELPEQQVGQPK 5.0
GEVLLPVEHQQQK 2.5
LLDEDHTGTVEFK 25
Cornulin ISPQIQLSGATEQTQK 10.0
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR ND
Neutrophil Gelatinase WYVVGLAGNAILR 100
MYATIYELK 5.0
GLDHGLLAFIQLQQCAQDR ND
LyS/PLAUR GCVQDEFCTR 10.0
Suprabasin ALGDINSGITHAGR 10.0
FGQGVHHGLSEGWK 25.0
AQSLQSAK 25
Periplakin NLLDEIASR 2.5
NQGPQESVVR 10.0
Menstrual HLVQQEGQLEQQER 10.0
Blood Invelucrin QEAQLELPEQQVGQPK 5.0
GEVLLPVEHQQQK 5.0
) ) . VPEPGCTK 25
Small Proline Rich Protein 3 VBVPGYTK 10.0
. ] LSITGTYDLK 5.0
Alpha-1 Antitrypsin SVLGOLGMK £0
Hemoglobin SAVTALWGK 10.0
LLVVYPWTQR 10.0
Hemopexin NFPSPVDAAFR 2.5
Apolipoprotein LLDNWDSVTSTFSK 25
VSFLSALEEYTK 5.0
Serotransferrin DGAGDVAFVK 50
SASDLTWDNLK 25.0
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Figure 3.13. Peak area response of peptide biomarkers at 50 fmol limit of detection. (A) Menstrual
blood matrix detection of cornulin peptide AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR, (B)
vaginal fluid matrix detection of cornulin peptide
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR, (C) menstrual blood matrix detection of
Ly6/PLAUR peptide GLDLHGLLAFIQLQQCAQDR, and (D) vaginal fluid matrix detection of
Ly6/PLAUR peptide GLDLHGLLAFIQLQQCAQDR.

3.2.8 lon Suppression

This portion of the validation was performed to assess whether coeluting compounds have
a suppressing or enhancing effect on peptide response. This study was performed by preparing
two samples: the first containing only isotopically-labeled peptide standards and the second
containing body fluid fortified with isotopically-labeled peptide standards. As previously stated,
AQUA standards were not available for saliva proteins statherin and submaxillary gland androgen-
regulated protein 3B and were therefore not tested during this portion of the validation.

To assess peptide suppression or enhancement, the percent difference of peak area
average between the neat standards and the AQUA fortified fluid matrix was calculated (Tables

3.31 and 3.32). Peptides that expressed a negative percent difference were marked as having ion
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suppression, indicating the observed peak area of the peptide in the digested body fluid sample
was less than that observed of the neat standard. Peptides that expressed a positive percent
difference were interpreted as having ion enhancement, evident by a greater peak area response
in the fortified digested body fluid than the neat standard. Substantial ion suppression was observed
in 22% of peptide targets, with calculated percent difference greater than 30%. For example, the
hemoglobin peptides SAVTALWGK and LLVVYPWTQR showed 55% and 94% suppression,
respectively, when analyzed in neat peripheral blood (Figure 3.14). Similar suppression of
hemoglobin peptides was also observed in menstrual blood. Substantial suppression of
hemoglobin was expected, although not anticipated at such extreme rates, for both peripheral blood
and menstrual blood matrices due to their endogenous complexity.

lon enhancement was not observed as frequently as suppression, with only two instances
of substantial enhancement. First, ion enhancement was observed at peptide
FGQGVHHGLSEGWK from vaginal fluid protein marker suprabasin. This occurrence was
observed in both vaginal fluid and menstrual blood matrix, with calculated percent difference of

79% and 67%, respectively.
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Table 3.31. Calculated percent difference of peripheral blood, seminal fluid, and saliva peptide
biomarkers to assess ion suppression and enhancement.

Fluid Protein Peptide %Difference
Albha-1 Antit . LSITGTYDLK 2.03E+01
pha-t Antirypsin SVLGQLGITK -6.54E+00
H lobi SAVTALWGK -5.53E+01
_ emogiopin LLVWWYPWTQR -9 43E+01
PeB”Ig:zra' Hemopexin NFPSPVDAAFR -1.03E+01
. . LLDNWDSVTSTFSK 2.20E+01
Apolipoprotein
VSFLSALEEYTK -2.15E+01
. DGAGDVAFVK -3.15E-01
Serotransferrin
SASDLTWDNLK -1.08E+01
FVTLVFR -8.46E+00
Acid Phosphatase FQELESETLK -8.39E+00
ELSELSLLSLYGIHK 2.31E+00
Prostate Specific Antiaen FLRPGDDSSHDLMLLR -3.75E+00
P g LSEPAELTDAVK 1.44E+01
Seminal GSISIQTEEK -1.10E+01
Fluid Semenogelin 2 GSISIQTEEQIHGK -1.30E+01
DVSQSSISFQIEK 6.93E+00
. DIFSTQDELLVYNK 1.46E+01
Semenogelin 1
QITIPSQEQEHSQK -2.39E+01
L DCGSVDGVIK -7.27E+00
Epididymal Secretory
SGINCPIQK -1.56E+01
LSGLLDLALGK -3.05E+00
Alpha Amylase
IAEYMNHLIDIGVAGFR 2.27E+01
Statherin FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF | Not tested
Saliva Sub il Protei GPYPPGPLAPPQPFGPGFVPPPPPPPTGPGR | Not tested
ubmaxillary Protein
y IPPPPPAPYGPGIFPPPPPQP Not tested
Cvstatin IIEGGIYDADLNDER -2.09E+00
y ALHFVISEYNK -1.69E+01
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Table 3.32. Calculated percent difference of vaginal fluid and menstrual blood peptide biomarkers
to assess ion suppression and enhancement.

Fluid Protein Peptide %Difference
LLDEDHTGTVEFK -4 95E+00
Cornulin ISPQIQLSGQTEQTQK -2.81E+00
AHQTGETVTGSGTQTQAGATQTVEQDSSHQATGR| 6.59E+00
Neutrophil Gelatinase WYVVGLAGNAILR 2.25E+01
MYATIYELK -7.88E+00
GLDHGLLAFIQLQQCAQDR 8.23E+00
Ly8/PLAUR GCVQDEFCTR -1.41E+00
Vaginal Suprabasin ALGDINSGITHAGR -6.21E+00
Fluid FGQGVYHHGLSEGWK 7.90E+01
AQSLQSAK -8.64E+00
Periplakin NLLDEIASR -6.10E+00
NQGPQESVVR -7.83E+00
. . . VPEPGCTK -9 73E+00
Small Proline Rich Protein 3 VPVPGYTK A 51E+00
HLVQQEGQLEQQER -5.28E+00
Involucrin QEAQLELPEQQVGQPK -6.87E+00
GEVLLPVEHQQQK -3.85E+00
LLDEDHTGTVEFK -2.17E+01
Cornulin ISPQIQLSGQTEQTQK -2.93E+01
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR| -8.43E+00
Neutrophil Gelatinase WYVVGLAGNAILR 2.25E+01
MYATIYELK -1.55E+01
GLDHGLLAFIQLQQCAQDR -1.15E+02
Ly6/PLAUR GCVQDEFCTR -2.18E+01
Suprabasin ALGDINSGITHAGR -8.31E+01
FGQGVHHGLSEGWK 6.68E+01
AQSLQSAK -1.71E+01
Periplakin NLLDEIASR -1.26E+01
NQGPQESVVR -2.38E+01
Menstrual HLVQQEGQLEQQER -1.85E+01
Blood Involucrin QEAQLELPEQQVGQPK -2.46E+01
GEVLLPVEHQQQK -1.02E+01
. . . VPEPGCTK -1.77E+01
Small Proline Rich Protein 3 VBVPGYTK 3 E5E+01
. . LSITGTYDLK 3.93E+00
Alpha-1 Antitrypsin SVLGQLGITK 1 87E+01
Hemoglobin SAVTALWGK -5.11E+01
LLVWYPWTQR -9.26E+01
Hemopexin NFPSPVDAAFR -2.40E+01
Apolipoprotein LLDNWDSVTSTFSK -68.42E-01
VSFLSALEEYTK 4. 70E+00
Serotransferrin DGAGDVAFVK -1.71E+01
SASDLTWDNLK -1.78E+01
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Figure 3.14. Peak area response of (A) endogenous hemoglobin peptide LLVWYPWTQR and (B)
AQUA hemoglobin peptide LLVVYPWTQR.

3.2.9 Carryover

Carryover was exhaustively evaluated during validation to ensure accurate and precise
detection of target biomarkers, particularly for assessment of low-level sample types that are
preceded by highly concentrated samples. Carryover is defined as the unintended presence of an
analyte peak in an adjacent sample analyzed after a positive sample [161].

Preliminary carryover samples included 10 ug, 20 pg, and 30 ug of prepared material
analyzed on column followed by a blank injection. Carryover in the subsequent blank was observed
for two protein biomarkers. First, hemoglobin in peripheral blood and menstrual blood matrices was
detected in blanks after all three loading amounts evaluated (Figure 3.15). Peptide LLVVPWTQR
produced linear peak response in blank injections, with linearity of sample injections decreasing as
the loading amount increased, indicating saturation of the mass spectrometer detector. Peptide
SAVTALWGK was detected in blank injections after 20 ug and 30 pg sample amounts. Second,
semenogelin 1 exhibited high levels of carryover in all subsequent blank injections (Figure 3.15).
Peptide DIFSTQDELLVYNK peak area responses produced linear results in blank injection
analysis, with peak areas greater than 7,400,000 in sample injections at 10 pg loading amounts.
Similar to hemoglobin peptide LLVVPQTQR, semenogelin 1 peptide DIFSTQDELLVYNK is
relatively hydrophobic, eluting toward the end of the analytical run time. With reverse-phase liquid

145



chromatography, hydrophobic moieties are strongly retained within the stationary phase, with
instances of incomplete release of hydrophobic analytes not uncommon.

Because hemoglobin and semenogelin 1 carryover was observed at substantial peak area
responses, samples were reinjected using the same loading amounts previously described
followed by two blank injections. This was performed to evaluate the retention of the hydrophobic
peptides. As expected, both hemoglobin and semenogelin 1 were detected in the second blank
injection analyzed after a 10 pg injection (Figure 3.16).

Preliminary carryover studies showed that 10 ug of material on column produced peak area
responses that greatly exceeded what is necessary for accurate identification of target fluids.
Keeping in mind common forensic biology laboratory protocol, lower injection volumes were
evaluated for use in order to conserve precious sample material. For this purpose, vaginal fluid
protein biomarkers were assessed as they are inherently detected in lower abundance within
matrix. 10 pg injection quantities produced adequate peak area responses for all vaginal fluid
peptide markers, with an average response of all peptide markers recorded as 49,800. From the
data produced during this study, it was concluded that decreased loading amounts would not only
limit the possibility of carryover with more abundant targets but would still yield reliable responses
for target peptide markers by limiting chromatographic effects observed with column overload (i.e.,
peak shouldering, peak tailing, etc.). Final carryover studies were performed using 0.5 ug, 1 ug,
2.5 ug, and 5 g loading amounts followed by blank injections.

Lower sample injection amounts were found to limit instances of carryover while
maintaining accurate peak area responses for fluid identification. However, hemoglobin and
semenogelin 1 carryover persisted, albeit at low-level abundance (Figure 3.17). Although
semenogelin 1 exhibited carryover at the 2.5 pg injection amount, observed peak areas were
sufficiently less than those observed from hemoglobin carryover at all loading amounts evaluated.
Due to these effects, hemoglobin and semenogelin 1 targets must be called at a greater intensity,
regardless of ion ratio and chromatographic acceptance at lower peak areas. Therefore, a 2.5 ug

loading amount was selected as the optimal amount of protein on column during analysis. Although
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2.5 ug of material still produced sufficient response for less abundant targets, specifically target

vaginal fluid biomarkers, two instances of protein dropout, Ly6/PLAUR and epididymal secretory

protein E1, were observed at the 2.5 ug injection. A complete overview of observed carryover is

outlined in Table 3.33. The presence of carryover was addressed in drafted interpretation

guidelines, with strict detail given on the acceptance of semenogelin 1 and hemoglobin peaks

above a designated value in order to prevent the false identification of carryover peaks.
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Figure 3.15. Peak area response of (A) hemoglobin peptide LLVVYPWTQR in peripheral blood,
(B) hemoglobin peptide LLVVYPWTQR in menstrual blood, and (C) semenogelin 1 peptide
DIFSTQDELLVYNK in seminal fluid in blank injections directly following a 10 ug sample injection.
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Figure 3.16. Peak area response of semenogelin 1 peptide DIFSTQDELLVYNK in (A) 10 ug sample
injection, (B) first subsequent blank injection, and (C) second subsequent blank injection.
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Figure 3.17. Peak area response of (A) hemoglobin peptide LLVVYPWTQR in 0.5 yg peripheral
blood, (B) hemoglobin peptide LLVVYPWTQR in subsequent blank injection, (C) semenogelin 1
peptide DIFSTQDELLVYNK in 2.5 pg seminal fluid, and (D) semenogelin 1 peptide
DIFSTQDELLVYNK in subsequent blank injection.
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Table 3.33. Detection of body fluid markers during carryover assessment. Proteins that were
positively identified by all of their respective peptide markers are shown in green. White indicates
complete protein dropout.

Sample (ug) Blank (ug)

Fluid Protein 05| 1 ]25| 5 |10]20]30]05] 1 ]|25| 5 |10]|20]30

Alpha-1 Antitrypsin
Hemoglobin

Peripheral

Blood Hemopexin

Apolipoprotein

Serotransferrin
Alpha Amylase
Statherin
Submaxillary Protein
Cystatin
Cornulin
Neutrophil Gelatinase
Ly6/PLAUR
Suprabasin

Saliva

Vaginal
Fluid

Periplakin

Small Proline Rich Protein 3

Involucrin
Acid Phosphatase
Prostate Specific Antigen

Seminal

Fluid Semenogelin 2

Semenogelin 1
Epididymal Secretory

Cornulin
Neutrophil Gelatinase
Ly6/PLAUR
Suprabasin

Periplakin

Menstrual Involucrin

Blood  |Small Proline Rich Protein 3

Alpha-1 Antitrypsin
Hemoglobin

Hemopexin

Apolipoprotein

Serotransferrin

3.2.10 Blind Sample Analysis

A series of 50 samples containing fiber-tipped swabs, swatches of cloth, and condoms
were received from the grant agency for blind analysis. Utilizing the described LC-MS/MS method,
body fluid identification assignments were made. In total, 41 of 50 blind samples (82%) analyzed

were correctly identified when compared with true sample contents. The remaining 9 samples
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(18%) were misidentified, with 3 false positive identifications and 5 false negative (i.e., non-
detections observed) results recorded. A comprehensive summation of experimental
identifications, true identifications, and sample preparation information is outlined in Appendix H.
For example, a cotton swab sample (Sample #15) was identified as containing biomarkers
consistent with seminal fluid and vaginal fluid; however, biomarkers consistent with saliva were not
detected (Figure 3.18). This sample was characterized as a false negative, having contained a 3-
part mixture (10 yL semen and 1 pL of saliva on a vaginal swab). On the contrary, a cotton swab
(Sample #22) was misidentified as containing biomarkers consistent with vaginal fluid and
characterized as a false positive identification (Figure 3.19).

Receiving true sample contents ex post facto, the validated LC-MS/MS assay
demonstrated robustness and reliability when challenged with non-target fluids. For example, when
subjected to samples containing breast milk (Sample #49), sweat (Sample #50), or urine (Samples
#23, #24, #39), no misidentifications were made. One interesting sample to note (Sample #30)
contained nasal secretions. Although not a target fluid of the validated method, a peptide biomarker
profile was previously acquired and utilized to make a special note regarding the experimental
identification of this particular sample. Although reported as containing peripheral blood and saliva,
it was specified as a note that the resulting profile may be chemically consistent with nasal

secretions.
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Figure 3.18. Peptide biomarker profile of Blind Sample #15. (A) Biomarkers consistent with seminal
fluid and vaginal fluid and (B) lack of biomarkers consistent with saliva, prompting a false negative
identification.

151



A. B00 t
500

400 +

S
00
200 +
100 + %
. ) _a_.._ . . . & . i

5 i
T T 1 T T T T 1

Intensity (1043)

Retention Time

B. 2500 4 :
(=]
]
2000 1 "
£ 1500 1
]
£
E 1000 4
500 -
0 -|||-t|---—4:-.—-|-|r|-|----1{||rr}--u-||r:-}1---1{
2 3 4 5 6 T 8 a9 10

Retention Time

Figure 3.19. Peptide biomarker profile of Blind Sample #22. (A) Biomarkers consistent with saliva
and (B) biomarkers consistent with vaginal fluid, prompting a false positive identification.

3.3 Concluding Remarks

With the completion of this phase of the research, the robustness and reliability of the
multiplex assay described has been exhaustively demonstrated. In addition, the inherent limitations
observed through the analysis of both routine and challenging forensic type evidence have
elucidated a defined understanding of presumptive and confirmatory biomarkers utilized for
identification. Overall, the culmination of results detailed within this chapter are the final product of
a fully validated analytical method for the serological analysis of peripheral blood, seminal fluid,
saliva, and vaginal/menstrual fluids. With achieving sufficient sensitivity coverage over several
orders of magnitude, in addition to demonstrating the specificity of fluid-specific biomarkers, the
use of protein mass spectrometry as an advanced serological technique offers significant
advantages over currently existing catalytic and immunological assays routinely employed in

operational laboratories.
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The deliverable to the forensic community following the developmental validation results
detailed in this chapter include not only a robust analytical multiplex assay, but comprehensive
interpretation guidelines (Appendix I). Through meticulous evaluation of detection limits, the
presence of carryover, and the suppression rates of specific biomarkers, potential avenues for
misidentification or incorrect interpretation have been minimized. The purpose of the drafted
interpretation guidelines is to serve as a resource for consistent and reliable identification of the
body fluids assessed between forensic analysts and laboratories; however, an analyst should
remain cognizant during interpretation and exercise a conservative approach, as stated within the
guidelines.

The remaining two chapters of this dissertation will establish the use of the described
serological assay as a vital step to the greater forensic biology workflow and further evaluate
limitations caused as a result of the complexity of sexual assault evidence. By displaying the ability
of the multiplex assay to compliment forensic genetic testing methodology, the implementation of
such an emerging technique can further illustrate the necessity of serological results to a criminal
investigation. Furthermore, a direct comparison to commercially available immunological and

catalytic tests will further exemplify the unmatched sensitivity and specificity of the validated assay.
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CHAPTER 4: A COMPARATIVE STUDY OF A VALIDATED PROTEOMIC ASSAY WITH
EXISTING FORENSIC BIOLOGY CASEWORK MODELS
4 Introduction

The objective of this phase of research was to exemplify the use of the validated proteomic
assay in an operational environment. With the limitations of the assay established in the previous
chapter, experimentation conducted during this aim demonstrated the efficacy of the validated
assay within a forensic biology workflow. This was evaluated in two manners; first, by comparing
the validated assay to existing casework models (i.e., immunochromatographic/lateral flow assays,
enzymatic assays) for serological screening, and second, the impact of the validated assay on the
ability to produce a genetic profile. By assessing the validated assay in tandem with existing
workflow strategies, any adverse effects warranted from implementation were identified and
addressed.

Current testing strategies for serological screening have historically been rooted in
enzyme- and antibody-based assays that rely on protein structure confirmation to produce a
positive result. However, given that forensic evidence is commonly subjected to unfavorable
environmental conditions, protein structure, and therefore protein function, are likely to be
compromised. In addition, given that the formation of an enzyme-substrate complex or antibody
binding event lack absolute specificity, these assays are unable to confirm the presence of a target
body fluid. Therefore, severely degraded samples and cross-reactivity with non-target compounds
have left both the sensitivity and specificity of serological screening much to be desired, especially
in comparison with modern genetic testing capabilities. The first aim of this portion of the study was
to directly compare the developed proteomic assay with available serological screening tests to

empirically demonstrate the sufficient gains in sensitivity and specificity.
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With the lack of advancements achieved within serological screening, a shift in existing
casework models has been observed within the forensic biology community. Traditionally, evidence
received would undergo serological screening, with results dictating the prioritization of samples
for subsequent genetic testing. However, with the lack of reliable body fluid tests, serological
screening as a gatekeeper for DNA analysis has been reconsidered. More recently, laboratories
have opted for a “direct to DNA” approach, with small portions of evidence quickly extracted and
quantitated for genetic material. The resulting quantity and quality of DNA determines the type of
genetic testing performed, with serological screening only conducted if needed. Although a practical
alternative to the traditional workflow, there has been little research on the efficacy of a direct to
DNA procedure, particularly with challenging sample types. By evaluating the use of the proteomic
workflow within existing casework models, the use of serological screening as a gatekeeper for
genetic testing has the capability of providing copious amounts of information vital to criminal
investigations that would have otherwise been absent, in addition to reducing costs associated with
advanced genetic analyses.

This chapter seeks to establish the viability of the validated proteomic assay within the
overall forensic biology workflow. This was achieved through the completion of a side-by-side
comparison of the assay with select available immunological and enzymatic tests and by
demonstrating the value of proteomic results in relation to the quality of genetic profiles produced.
For the purposes of direct comparison, this chapter is organized according to sample type, with
serological and genetic information presented together.

4.1 Methods and Materials

All research conducted under this phase of the project was reviewed and approved by the
University of Denver IRB for research involving human subjects. Sample collection and research
was conducted in full accordance with the U.S. federal policy for the protection of human subjects

as described in section 2.11.
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4.1.1 Sample Preparation

Samples were prepared as outlined in section 3.1 and carried over to this portion of the
research for operational testing. Three categories of laboratory prepared casework-type samples
were reserved for serological comparison only: substrate samples (3.1.6.1), environmental
contaminant samples (3.1.6.2), and aged samples (3.1.6.6). Six categories of casework-type
samples were reserved for both serological comparison and genetic analysis: sensitivity samples
(3.1.6.7), mixtures (3.1.6.3), simulated sexual assault samples (3.1.6.4.1), sexual assault type
samples (3.1.6.4.2), digital swab samples (3.1.6.4.3), and degraded samples (3.1.6.5). Swabs or
substrates were solubilized as previously described in section 3.1. Remaining supernatant was
tested against existing serological models in tandem with proteomic analysis, eliminating an
additional freeze/thaw cycle to ensure consistency in material evaluated. Cell pellets were
preserved for genetic analysis at -20 °C and were thawed at room temperature prior to DNA typing.

4.1.2 Traditional Serological Testing

Casework-type samples were prepared using the previously described protocol (section
2.1.4) and once solubilized, a matched liquid sample was manually processed with a corresponding
antibody-based assay or enzymatic test. Specifically, antibody-based and enzyme-based tests
targeting blood, seminal fluid, and saliva were selected. The immunochromatographic assays
utilized for this portion of the research were as follows: RSID™ Semen, RSID™ Blood, RSID™ Saliva
(Independent Forensics, Hillside, IL), ABAcard® p30 and ABAcard® HemaTrace (Abacus
Diagnostics, West Hills, CA). The enzymatic test used for this portion of the research was
SALIgAE® (Abacus Diagnostics) and was selected given the manufacturer does not supply an
antibody-based assay for the identification of saliva. See Table 4.1 for more specific information
regarding the selected commercially available screening tests.

For sensitivity samples, the maximum volume suggested by the manufacturer was used
for testing (200 yL ABAcard® assays, 100 uL RSID™ assays, 50 uL SALIgAE® assay). This set of
samples was not originally quantitated for total protein amount during the validation phase of this

research, as outlined in Chapter 3. For remaining sample types, matched liquid samples were
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prepared as an equivalent total protein amount. The quantity observed from BCA quantitation was
diluted up to maximum volume in Universal Buffer™ (Independent Forensics of lllinois). The
maximum volume, and therefore an equivalent protein amount, was processed on either a lateral
flow cartridge or enzyme test.

Table 4.1. Selected traditional serological screening tests for comparison with the developed
proteomic assay.

TestName Target Antigen/
Manufacturer (Test Type) Substrate Dye
®
ABAcard . Possible Colloidal Gold, Colloidal
HemaTrace Hemoglobin -
. Silver, Carbon, or Latex
(Antibody)
Abacus ® o . - :
Diagnostics ABAcard® p30 Prostate Specific | Possible Colloidal Gold, Colloidal
(Antibody) Antigen Silver, Carbon, Latex
SALIgAE® . . .
(Enzymatic) Salivary Amylase Proprietary Mechanism
RSID™ Blood . .
(Antibody) Glycophorin A Colloidal Gold
Independent RSID™ Semen . .
Forensics (Antibody) Semenogelin Colloidal Gold
RSID™ Saliva Salivary o- .
(Antibody) Amylase Colloidal Gold

4.1.3 Forensic Genetic Testing

4.1.3.1 DNA Extraction

Given the composition of the samples assessed during this phase of the research, two
DNA extraction protocols were utilized. Knowing a priori the makeup of each sample, all samples
containing semen or seminal fluid were subjected to a previously validated manual organic
differential extraction procedure. All other samples (i.e., those free of semen) were subjected to a
previously validated manual organic extraction protocol.

Pelleted cellular material selected for organic extraction was treated with 350 uL of master
mix containing extraction buffer and proteinase K solution. Samples were incubated at 56 °C
overnight (a maximum of 18 hours) on a shaker at 850 RPM. After incubation, samples were

purified and concentrated. Each sample received two iterations of purification using 300 pL of
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phenol:chloroform:isoamyl alcohol reagent. An additional cleanup step was performed with the
addition of 300 pL of water saturated butanol. Purified sample was passed through a Vivacon® 500
centrifugal concentrator (Vivaproducts, Inc., Littleton, MA), washed with 200 pL of TE* buffer
(10mM Tris-HCI, 0.1mM EDTA, pH 8.0), and eluted in 100 uL of TE* buffer.

Pelleted cellular material selected for organic differential extraction was treated with 505
pL of master mix containing extraction buffer and proteinase K solution. Samples were incubated
at 56 °C for 40 minutes on a shaker at 850 RPM. Samples were centrifuged for 10 minutes at
14,000 x g. The supernatant (epithelial fraction) was transferred to a clean tube. Remaining cellular
material (sperm fraction) was washed with 500 pL of UltraPure water and centrifuged for 10 minutes
at 14,000 x g, where the wash buffer was removed. Cellular material was treated with 380 pL of
master mix containing extraction buffer, 1 M dithiothreitol (DTT), and proteinase K solution. The
sample was incubated at 89 °C for 40 minutes on a shaker at 850 RPM. Epithelial and sperm
fractions were purified and concentrated as described above for the organic extraction.
Concentrated DNA was recovered in 100 yL of TE* buffer. Extractions were batched, with each
batch being assigned a unique reagent control to monitor for any instances of contamination.
Extracts were stored at -20 °C for later use.

4.1.3.2 DNA Quantitation

Once purified, all samples were quantitated using Quantifiler™ Trio DNA Quantification Kit
(Applied Biosystems™, Foster City, CA). Extracts were thawed and brought to room temperature
prior to quantitation. A previously validated standard operating procedure was used. A standard
curve was prepared, in addition to a negative control, for each batch of samples. Standards were
prepared by diluting the DNA Standard with Quantifiler™ THP DNA Dilution Buffer to the following
final concentrations: 50 ng/uL, 5.0 ng/uL, 0.5 ng/uL, 0.05 ng/uL, and 0.005 ng/uL. TE* buffer was
used for the negative control. Standards, controls, and samples were treated with a master mix of
kit specific Primer Mix and PCR Reaction Mix. Quantitation was performed on an Applied
Biosystems™ 7500 Real-Time PCR System. Thermal cycler parameters were set to heat at 95 °C

for 2 minutes followed by 40 cycles of 9 seconds at 95 °C and 30 seconds at 60 °C. The
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quantification batch was considered valid if the standard curve slope measured between -3.0 and
-3.6 and the R? value was greater than or equal to 0.98.

4.1.3.3 DNA Amplification

Amplification reactions were prepared in accordance with DNA quantification results. All
samples that underwent an organic extraction (i.e., those free of semen) were amplified for STR
analysis using GlobalFiler™ PCR Amplification Kit (Applied Biosystems™). Samples that were
subjected to an organic differential extraction that produced a male quantification value were also
prepared for routine STR amplification using GlobalFiler™ PCR Amplification Kit. However,
remaining organic differential samples that did not produce a male quantification value were
prepared for Y-STR amplification using Yfiler™ Plus PCR Amplification Kit (Applied Biosystems™).

Full scale amplification was performed, with a total of 1.0 ng of DNA targeted. Maximum
extract volume (15 uL GlobalFiler™, 10 uL Yfiler™ Plus) was used for samples that did not produce
a sufficient quantitation value. Manufacturer recommended protocols for GlobalFiler™ and Yfiler™
Plus were followed, with no changes made to the respective protocols. Amplification was performed
on an Applied Biosystems™ 9700 Thermal Cycler. 29 amplification cycles were performed for
GlobalFiler™ and 30 amplification cycles were performed for Yfiler™ Plus. Samples were batched,
with each batch assigned a positive and negative control to ensure amplification was performed
properly. Amplicons were stored at 4 °C until separation.

4.1.3.4 DNA Separation and Analysis

Amplicons were separated and detected using a 3500 Genetic Analyzer (Applied
Biosystems™) fitted with an 8-capillary array. POP-4™polymer (Applied Biosystems™) was utilized
as the separation matrix. GeneScan™ 600 LIZ™ Dye Size Standard (v2.0) and DNA Control 007
were used for both GlobalFiler™ and Yfiler™ Plus amplicons. The Yfiler™ Plus Allelic Ladder and
GlobalFiler™ Allelic Ladder were employed for their respective amplicon samples.

GeneMapper® ID-X software (v.1.4) was utilized for profile interpretation. Through internal
validation that independently evaluated the signal-to-noise characteristics of each dye channel, the

following analytical thresholds were set for a 10 second injection with GlobalFiler™: 6-FAM™, 60
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relative fluorescence units (RFUs); VIC™, 75 RFUs; NED™, 50 RFUs; TAZ™, 60 RFUs; and SID™,
60 RFUs. From a separate internal validation, the following analytical thresholds were set for a 10
second injection with Yfiler™ Plus: 6-FAM™, 50 RFUs; VIC™, 50 RFUs; NED™, 40 RFUs; TAZ™, 40
RFUs; and SID™, 40 RFUs.

4.2 Results and Discussion

For the purposes of direct comparison, results for sensitivity in the operational environment
and compatibility with existing casework models have been merged for each sample type
evaluated.

4.2.1 Substrate Samples

Substrate samples were designed to ensure chemical products or composition would not
interfere with protein biomarker detection or recovery. Overall, the proteomic assay was successful
in identifying the target body fluid of each substrate sample (Table 3.18), with three instances of
vaginal fluid protein dropout observed for menstrual blood samples. Matched samples were
compared with serological screening tests (Table 4.2). With the exception of two peripheral blood
samples, all substrate samples were positive on traditional immunological and enzymatic based
assays. Peripheral blood applied to carpet (sample ID SUB03) and to leather (sample ID SUB04)
produced a negative result when evaluated with RSID™ Blood, with carpet exhibited in Figure 4.1A.
In addition, when compared with a positive control test, a majority of peripheral blood and menstrual
blood containing samples resulted in weak or very weak positive results. For example, menstrual
blood on cotton resulted in a weak positive result on RSID™ Blood in comparison with ABAcard®
HemaTrace (Figure 4.1B). However, the proteomic assay was able to positively identify blood-
containing samples by all targeted peptide biomarkers. Similarly, target proteins for semen and
saliva samples were positively characterized by the proteomic assay, in addition to positive
identification using traditional screening tests, with examples highlighted in Figure 4.1C and Figure
4.1D, respectively. DNA analysis was not performed on this set of casework samples.

With the exception of the aforementioned negative peripheral blood samples on the single

manufacturer test, the traditional assays and proteomic assay were comparable in identification of
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target body fluid. However, given the inherent nature of the LC-MS/MS technology, the proteomic
assay fundamentally provided precise protein identification and additional information not capable
of the lateral flow assays.

Table 4.2. Summary of comparative results for substrate samples. Positive identifications are
represented by a green box. Negative identifications are represented by a red box. White boxes

represent no testing was performed with that specific assay. Vaginal fluid samples were removed
from the table as no additional testing or comparison was conducted.

sample | oosorpion | ZoDU | Ashcere | e | aSdcert | ROD” | guy
SUBO1 Peripheral Blood on Cotton | + very weak + weak

SuUB02 Peripheral Blood on Denim + + weak

SUBO03 Peripheral Blood on Carpet - + weak

SUB04 Peripheral Blood on Leather - + weak

SUBO5 Peripheral Blood on Drywall |+ very weak + weak

SUBO8 Menstrual Blood on Cotton + weak +

SUBO09 Menstrual Blood on Denim + + weak

SUB10 Menstrual Blood on Pad + + weak

SUB06 Semen on Cotton + +
SUBO7 Semen on Leather + +
SUB14 Saliva on Plastic Bottle

SUB15 Saliva on Aluminum Can
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Figure 4.1. Selected serological screening test results on substrate samples. RSID™ tests are
pictured on the left. ABAcard® tests and SALIGAE® are pictured on the right. Within the lateral flow
test membrane window, the test line is positioned on the left and the control line on the right. Results
for (A) peripheral blood on carpet, (B) menstrual blood on cotton, (C) semen on cotton, and (D)
saliva on plastic bottle. On lateral flow assays, a positive result is indicated by the presence of a
red line at both the test and control zones. For SALIGAE®, a positive result is indicated by a yellow
colored reagent.

4.2.2 Environmental Contaminant Samples

This subset of samples was prepared to assess the effects of environmental contaminants
on sample preparation chemistries of the developed proteomic workflow. When evaluated with the
proteomic assay, three samples exhibited protein and peptide dropout (Table 3.19). Menstrual
blood samples (sample ID CON04 and CONO5) illustrated vaginal fluid protein and peptide dropout.
The third sample, vaginal fluid and wate-based Ilubricant, exhibited complete protein dropout;
however, this sample was unable to be directly compared with other serological screening tests as
there are none commercially available. As observed with substrate samples, the traditional and

proteomic assays produced comparable results in regard to target fluid identification. A summary
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of serological screening results is outlined in Table 4.3. Overall, samples subjected to chemical
insult did not inhibit the ability to produce a positive result with traditional serological assays. A very
weak positive was observed for peripheral blood and 10% bleach (Figure 4.2A), which contradicts
the positive protein identifications observed during proteomic analysis. It was originally
hypothesized that the presence of personal lubricant would decrease advantageous protein binding
events and result in an increase in negative reporting. However, immunological assays accurately
characterized semen and menstrual blood samples containing personal lubricant (Figure 4.2B and
4.2C). There was no inhibition of salivary amylase, with both saliva case samples characterized as
exhibited by saliva extracted from a cigarette filter (Figure 4.2D). DNA analysis was not performed
on this set of casework samples. In summary, comparable results between the proteomic method
and traditional methodologies were observed; however, the proteomic method provides a greater
depth of coverage in specific biomarker identifications.

Table 4.3. Summary of comparative results for environmental contaminant samples. Positive
identifications are represented by a green box. White boxes represent no testing was performed

with that specific assay. Vaginal fluid samples were removed from the table as no additional testing
or comparison was conducted.

A e T s
CONO1 Peripheral Blood & Dirt + +

CONO02 Peripheral Blood & Rust + +

CONO03 Peripheral Blood & 10% Bleach + very weak +

CONO4 Menstrual Blood & Lube + +

CONO5 Menstrual Blood & Spermicide Condom + +

CONO08 Semen & Lube

CONO0S Semen & Spermicide Condom

CON10 Semen & 10% Bleach + +

CON11 Saliva & Tobacco + +
CON12 Saliva & Cigarette + +
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Figure 4.2. Selected serological screening test results for environmental contaminant samples.
ABAcard® test and SALIgAE® are pictured on the left. RSID™ test is pictured on the right. Within
the membrane window, the test line is positioned on the left and the control line on the right. Results
for (A) peripheral blood and 10% bleach, (B) menstrual blood and personal lubricant, (C) semen
and personal lubricant, and (D) saliva on a cigarette. On lateral flow assays, a positive result is
indicated by the presence of a red line at both the test and control zones. For SALIQAE®, a positive
result is indicated by a yellow colored reagent.

4.2.3 Mixture Samples

For this portion of the study, mixture samples evaluated are separate from those used
during validation to determine transition interference. Casework-type mixture samples were
designed to assess the capability of each testing strategy to detect a minor contributor when in the
matrix of a major contributor, simulating commonly received sample types in a forensic biology
laboratory. Of the five mixture samples assessed, the minor contributor was characterized when
evaluated with the proteomic assay. When directly comparing a matched sample using traditional
techniques, two instances of negative detection were observed (Table 4.4). With the detection of
a minor saliva contributor, the enzymatic test SALIGAE® was unable to characterize the presence

of the target fluid in either a vaginal fluid or menstrual blood matrix; however, RSID™ Saliva
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exhibited a positive result for both MIX01 and MIX04 samples (Figure 4.3). It should be noted that
the inherent color of the MIX04 extract caused the SALIgGAE® buffer to become discolored,
potentially masking the visualization of a positive result. There were no reported discrepancies for
the detection of seminal fluid with either antibody-based assay (Figure 4.4). Due to the lack of
commercially available serological tests for vaginal fluid, a matched sample for MIX05, vaginal fluid
in a urine major contributor, was not evaluated using antibody-based or enzymatic tests.

Allele calls produced by mixtures samples for short tandem repeat (STR) and Y
chromosome STR (Y-STR) analyses are outlined in Tables 4.5 and 4.6, respectively, with alleles
unique to the major contributor removed for ease of comparison. The allele calls presented are
unique to the minor contributor or shared with the major contributor. For sample MIX01, a minor
saliva contributor with a major vaginal fluid contributor, 2 out of 4 salivary protein biomarkers were
detected with the proteomic assay; however, the DNA profile generated was consistent with the
vaginal fluid major contributor. The DNA profile produced was single source, and even with allele
sharing between the two contributors, the profile did not indicate instances of peak imbalance or
YINDEL/DYS391 detection (Table 4.5). For samples MIX02 and MIX03, a minor semen contributor
in a major vaginal fluid and menstrual blood contributor, respectively, were extracted using an
organic differential protocol. The sperm fractions were analyzed for Y-STR’s and produced full
haplotypes (Table 4.6). Furthermore, all 5 target seminal fluid biomarkers were detected with the
proteomic assay for these samples. For sample MIX04, a minor saliva contributor in a major
menstrual blood contributor, no unique alleles consistent with the minor contributor were detected.
And lastly, MIX05, a minor vaginal fluid contributor in a major urine contributor, produced a
complete profile for the minor contributor, with 2 out of 7 vaginal fluid markers detected with the

proteomic assay.
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Table 4.4. Summary of comparative results for mixture samples. Positive identifications are
represented by a green box. Negative results are represented by a red box. White boxes indicate
no testing with that specific assay.

Sample MIX01 MIX04 MIX02 MIX03 MIX05
Salivain Salivain Semenin | Semen in Vaginal

Description Vaginal Menstrual Vaginal Menstrual Fluid in
Fluid Blood Fluid Blood Urine

Target Fluid Saliva Saliva Semen Semen V?ﬁ;iréal

Mass Spec | 5 Gitof4 | 1outof4 | 5outof5 | 5outof5 | 2outof?

Protein ID
Minor
Contributor 2‘;’5:;7 2‘;’5:;{7 22 of 22
Unique # Alleles
RSID™ Saliva + +
SALIgAE®
RSID™ Semen + +
ABAcard® p30 + +
MIX0| MIK 04
A ¢ .- c
B NLgAE D

£

Figure 4.3. Serological screening test results for mixture samples containing saliva as a minor
contributor. Within the membrane window, the test line is positioned on the left and the control line
on the right. Results for saliva in a vaginal fluid major contributor using (A) RSID™ Saliva and (B)
SALIgAE®. Results for saliva in a menstrual blood major contributor using (C) RSID™ Saliva and
(D) SALIgAE®. On lateral flow assays, a positive result is indicated by the presence of a red line at
both the test and control zones. For SALIGAE®, a positive result is indicated by a yellow colored

reagent.

166



MIX0Z

MIX03
B.

L) -

B e & goxiW

Figure 4.4. Serological screening test results for mixture samples containing semen as a minor
contributor. RSID™ Semen test is pictured on the left. ABAcard® p30 test is pictured on the right.
Within the membrane window, the test line is positioned on the left and the control line on the right.
Results for (A) semen in a vaginal fluid major contributor and (B) semen in a menstrual blood major
contributor. A positive result is indicated by the presence of a red line at both the test and control
zones.

Table 4.5. STR genetic results for mixture samples. Unique allele ratio for the minor contributor
was calculated using reference profiles. For clarity, unique major contributor alleles have been
removed from case samples. Alleles depicted represent shared and/or unique minor contributor
alleles.

Semen ) | Menstrual MIX01 MIX02 MIX03 MIX04 MIX05

Mixtures Saliva Uri’ne Vaginal Fluid Blood Sali\{ain Semt_enin Semenin | Salivain Vagin_al

’ Reference Vaginal Vaginal |Menstrual | Menstrual [ Fluid in

Reference Reference 9 9

Fluid Fluid Blood Blood Urine
D3S1358 15,17 16,17 16,18 17 17 - - 16
VWA 17,18 15,18 16 18 18 - - 15
D163539 11,12 9,12 13,14 12 12 - - 9
CSF1PO 10,11 11,14 12,13 11 11 - - 14
TPOX 8,11 8,11 9,12 8,11 8,11 - - -
YINDEL 2 - - - - 2 - -
= Amelogenin XY X X X X X X X
H D831179 10,13 12,13 13,14 13 13 13 13 12

o D21511 31.2,32.2 27,30 27.30 - - - 27,30

o D18S51 11,15 10,14 12,13 - - - - 10,14
DYS391 12 - - - - - - -
= D25441 11,14 11,12 10, 11 11 11 11 11 12
9 D19S433 13,14 14,15 13 14 13,14 13 13 15

= THO1 6,7 9,9.3 6,9.3 - - 6 6 9,9.3
> FGA 20,24 20 20,24 20 20 20,24 20,24 -
D2251045 15,16 11,15 15,16 15 15 15,16 15,16 11
D53818 11,12 11,12 12,13 11,12 11,12 12 12 -
D13S317 10,12 11,12 10, 11 12 12 10 10 11
D73280 10,12 10,12 10, 11 10,12 10,12 10 10 -

SE33 21,28.2 17,26.2 28.2%,29.2 - - - - 17,26.2
D1051248 14,15 14,15 13,15 14,15 14,15 15 15 -

D151656 15 14,17 15,16.3 - - 15 15 14,17

D125391 15,16 18,20 15,22 - - 15 15 18,20
D251338 17,24 17,19 19,24 17 17 24 24 19

Minor Contributor
Unique Allele Ratio - - - 0/24 1/24 1127 0/27 22/22
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Table 4.6. Y-STR genetic results for mixture samples with semen as a minor contributor. Y-STR
analysis was performed based on quantification values.

Mixtures Reference| MIX02 MIX03
DYS576 17 17 17
DYS389I 14 14 14
DYS635 20 20 20
DYS389lI 30 30 30
DYS627 23 23 23
DYS460 10 10 10
> | DYS458 17 17 17
i DYS19 14 14 14
(4 YGAT 13 13 13
O " Dvsa4s 19 19 19
DYS391 12 12 12
DYS456 17 17 17
g DYS390 23 23 23
- [ Dys43s 12 12 12
W[ DYS392 13 13 13
DYS518 40 40 40
DYS570 17 17 17
DYS437 15 15 15
DYS395 11,14 11,14 | 11,14
DYS449 28 28 28
DYS393 13 13 13
=8| DVYS439 13 13 13
-3l DYS481 22 22 22
| DYF387S1 3536 3536 | 35,36
DYS533 12 12 12
Profile Percentage - 100% 100%

4.2.4 Sexual Assault Samples

4.2.4.1 Simulated Sexual Assault Samples

Simulated sexual assault samples were designed to imitate the environment of the vaginal
cavity and its effects on the breakdown of semen. The ability to identify constituents of seminal fluid
post-coitus, particularly after 48 hours, is advantageous to forensic practitioners. The poor
sensitivity of currently available immunological screening assays has been reported in the literature
for the detection of seminal fluid in an extended post-coital interval [50,162]. A sufficient difference
in sensitivity between manufacturers was observed for this subset of samples (Table 4.7).
Consistent with proteomic identification, RSID™ Semen positively characterized seminal fluid for all
time points evaluated. However, ABAcard® p30 failed to detect seminal fluid via prostate specific

antigen after time point zero (Figure 4.5).
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In total, samples from all time points assessed produced at least 20 of 24 (83%) unique
male alleles, with four samples generating 100% unique male alleles (Table 4.8). Time points at
days three, five, seven, and nine report complete detection of the 24 unique alleles from the male
contributor, with day zero returning the smallest number of unique alleles, with a minimum of 20
alleles detected from the male contributor.

Although simulating the environment of the vaginal cavity, breakdown products are not
being removed in the process. Loss of sample due to natural removal of target material through
vaginal drainage as well as breakdown of biomarkers by endogenous protease enzymes within the
vaginal vault make the detection of seminal fluid and saliva in sexual assault samples more
challenging. Protein denaturation via naturally occurring protease activity is one limitation affecting
post-coital detection intervals for immunochromatographic assays. It is important to understand
whether proteolytic digestion of seminal fluid and saliva targets in the vaginal vault occurs within a
target peptide sequence. From the results of this study, the endogenous breakdown of semenogelin
does not affect the positive characterization when using RSID Semen™; however, it can be
hypothesized that the lack of p30 detection using ABAcard® p30 test can be attributed to
unfavorable protein degradation that compromises the targeted protein epitope confirmation. In
comparison with proteomic assay results, it can be concluded that the selected amino acid
sequences of target seminal fluid biomarkers are not negatively affected by endogenous
breakdown and cleavage of protein material. Furthermore, a decrease in allele characterization
would also be expected with vaginal drainage.

Table 4.7. Summary of comparative results for simulated sexual assault samples. Positive
identifications are represented by a green box. Negative results are represented by a white box.

Day Day Day Day Day Day Day

Sample Zero One Three Five Seven Nine Eleven

Mass Spec Protein ID| 5 out of 5 | 4 out of 5 | 4 out of 5 | 4 out of 5 | 4 out of 5 | 3 out of 5 | 3 out of 5

No.Unique Male | 54 t5) | 230f24 | 240f24 | 240724 | 240724 | 240f24 | 220724

Alleles
RSID™ Semen + + + + + + +
ABAcard® p30 +
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Figure 4.5. Immunochromatographic results for simulated sexual assault samples. ABAcard® p30
test is pictured on the left. RSID™ Semen test is pictured on the right. Within the membrane window,
the test line is positioned on the left and the control line on the right. Results for (A) timepoint zero,
(B) day one, (C) day three, (D) day five, (E) day seven, (F) day nine, and (G) day eleven. A positive
result is indicated by the presence of a red line at both the test and control zones.
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Table 4.8. STR genetic results for simulated sexual assault samples. The male reference sample
depicts unique male alleles in bold.

Retn'::l:'lce R::er::rllie Day Zero Day One | Day Three | Day Five |Day Seven | Day Nine |Day Eleven
D351358 1517 16,17 15,17 1517 1517 15,17 15,17 15,17 1517
VWA 17,18 15,18 17,18 17,18 17,18 17,18 17,18 17,18 17,18
D163539 11,12 9,12 11,12 12 11,12 11,12 11,12 11,12 11,12
CSF1PO 10,11 11,14 10,11 10,11 10,11 10,11 10,11 10,11 10,11
TPOX 8,11 8,11 8,11 8,11 8,11 8,11 8,11 8,11 8,11
YINDEL 2 - 2 2 2 2 2 2 2
= IAmelogenin| XY X X XY XY XY XY XY XY
H D831179 10,13 12,13 10,13 10,13 10,13 10,13 10,13 10,13 10,13
x| D21511 | 31.2,32.2 27,30 31.2,322 | 312,322 | 312,323 | 31.2,322 | 312,323 | 31.2,322 | 31.2,32.2
€ D18S51 11,15 10,14 11,15 11,15 11,15 11,15 11,15 11,15 11,15
DYS391 12 - - 12 12 12 12 12 12
= | D2s441 11,14 11,12 11 11,14 11,14 11,14 11,14 11,14 11,14
O [ D19S433 13,14 14,15 13,14 13,14 13,14 13,14 13,14 13,14 13,14
o L_THO1 6,7 9,9.3 7 6,7 8,7 8,7 8,7, 8,7 6,7
> FGA 20,24 20 20 20,24 20,24 20,24 20,24 20,24 20
D2251045| 1516 11,15 15,16 15,16 15,16 15,16 15,16 15,16 15,16
D53818 11,12 11,12 11,12 11,12 11,12 11,12 11,12 11,12 11,12
D13S317 10,12 11,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12
D75830 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12 10,12
SE33 21,28.2 17,26.2 21,28.2 21,28.2 21,28.2 21,28.2 21,28.2 21,28.2 21,28.2
D10S51248| 14,15 14,15 14,15 14,15 14,15 14,15 14,15 14,15 14,15
D151656 15 14,17 15 15 15 15 15 15 -
D125391 15,16 18,20 15,16 15,16 15,16 15,16 15,16 15,16 15,16
D251338 17,24 17,19 17,24 17,24 17,24 17,24 17,24 17,24 17,24
Unique Male - - 20/24 23/24 24/24 24/24 24/24 24/24 22/24
Allele Ratio

4.2.4.2 Mock Sexual Assault Kit Samples

Both sets of laboratory-prepared sexual assault samples, one set containing semen from
a non-vasectomized donor and the second set containing semen from a vasectomized donor, were
reserved for analysis during this portion of the study (Table 4.9). When screening for seminal fluid
using the proteomic assay, at least 3 of 5 target seminal fluid protein markers were detected across
all swabs. Immunological lateral flow assays produced comparable results among the two sample
sets evaluated. A positive result was observed for all vaginal swabs on RSID™ Semen and
ABAcard® p30, with oral swabs producing a positive result on ABAcard® p30 only (Figure 4.6).
However, all rectal swab samples exhibited a negative result when evaluated with a lateral flow
assay.

For genetic analysis, all samples were subjected to an organic differential extraction
protocol. Samples containing semen from a non-vasectomized individual produced Total Human
DNA quantitation values and were analyzed for routine STR typing; however, samples containing

semen from a vasectomized individual were analyzed for Y-STR markers. As expected, no genetic
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profiles were generated for samples containing semen from a vasectomized individual (Table 4.9,
Appendix J). Nonetheless, mass spectrometry results show at least 3 seminal fluid biomarkers
detected in each sample type of this group. Complete and partial DNA profiles were observed for
samples containing semen from a non-vasectomized individual (Table 4.10). The variation in profile
generated can be attributed to each sample having been prepared individually (i.e., not prep
replicates), in order to best simulate sample-to-sample variability. For example, case sample
SA01_02.1, an oral swab, generated 9 out of 24 unique male alleles; however, the second oral

swab produced a full STR profile.

Table 4.9. Summary of comparative results for mock sexual assault samples containing semen
from a non-vasectomized and a vasectomized donor. Positive identifications are represented by a
green box. Negative results are represented by a white box.

Describtion Mass Spec RSID™ ABAcard® | No. Unique
P Protein ID Semen p30 Male Alleles

5 Vaginal Swab 5 out of 5 + + 24 of 24
c
[e]
% Vaginal Swab 3 outof5 + + 40f24
s
b Oral Swab 4 out of 5 + 9of24
N
§| oralswab 4out of 5 + 24 0f 24
(&)
@
§ Rectal Swab 3 outof 5 22 of 24
<
o
£ Rectal Swab 3 out of 5 24 of 24

Vaginal Swab 4 out of 5 + +
g
8 Vaginal Swab 3 out of 5 + +
<2
S Oral Swab 3 out of 5 +
e
8
= Oral Swab 4 out of 5 +
5]
§ Rectal Swab 3 out of 5
p

Rectal Swab 3 out of 5
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Figure 4.6. Immunochromatographic results for mock sexual assault samples. Within the
membrane window, the test line is positioned on the left and the control line on the right. Results
for (A) oral swab replicates using RSID™ Semen, (B) oral swab replicates using ABAcard® p30, (C)
oral swab replicates containing semen from a vasectomized donor using RSID™ Semen, and (D)
oral swab replicates containing semen from a vasectomized donor using ABAcard® p30. A positive
result is indicated by the presence of a red line at both the test and control zones.

Table 4.10. STR genetic results for simulated sexual assault samples. The male reference sample
depicts unique male alleles in bold.

Male Eemale SA01_01.1 | SA01_01.2 | SA01_02.1 | SA01_02.2 | SA01_03.1 | SA01_03.2
Reference | Reference Vaginal Swab|Vaginal Swab| Oral Swab Oral Swab | Rectal Swab | Rectal Swab
D3S1358 15,17 16,17 15,17 17 17 15,17 17 15,17
VWA 17,18 15,18 17,18 - - 17,18 17,18 17,18
D163539 11,12 9,12 11,12 11 11 11,12 11,12 11,12
CSF1PO 10,11 11,14 10,11 - - 10,11 10,11 10,11
TPOX 8,11 8,11 8,11 - 8 8 8,11 8,11
YINDEL 2 - 2 - 2 2 2 2
= Amelogenin XY X XY X XY XY XY XY
H D831179 10,13 12,13 10,13 10,13 13 10,13 10,13 10,13
e | D21511 31.2,32.2 27,30 31.2,32.2 - - 31.2,32.2 31.2,32.2 31.2,32.2
@ D18551 11,15 10,14 11,15 - 11 11,15 11,15 11,15
DYS391 12 - 12 - 12 12 - 12
= | _D2s441 11,14 11,12 11,14 11 11 11,14 11,14 11,14
O | D19s433 13,14 14,15 13,14 - 13,14 13,14 13,14 13,14
i THO1 6,7 9,9.3 6,7 - 6 6,7 6,7 6,7
> FGA 20,24 20 20,24 - 20 20,24 20,24 20,24
D2251045 15,16 11,15 15,16 - - 15,16 15,16 15,16
D53818 11,12 11,12 11,12 11 12 11,12 11,12 11,12
D13S317 10,12 11,12 10,12 - - 10,12 10,12 10,12
D75830 10,12 10,12 10,12 - 12 10,12 10,12 10,12
SE33 21,28.2 17,26.2 21,28.2 - - 21,28.2 21,28.2 21,28.2
D1051248 14,15 14,15 14,15 14,15 14 14,15 14,15 14,15
D151656 15 14,17 15 15 15 15 15 15
D125391 15,16 18,20 15,16 15 16 15,16 15,16 15,16
D251338 17,24 17,19 17,24 17 17,24 17,24 17,24 17,24
Unique Male - - 24124 4124 9/24 24124 22124 24/24
Allele Ratio
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4.2.4.3 Digital Swab Samples

Self-collected digital swab samples were obtained to mimic casework type samples as
closely as possible. However, it should be noted that because the samples were self-collected, the
likelihood of a mixed genetic profile was reduced as the body fluid and digit were of the same
individual. Overall, serological tests produced comparable results with the proteomic assay and full
genetic profiles were obtained from all samples (Table 4.11). Both oral cavity replicates produced
a positive result from RSID™ Saliva and SALIgAE® tests (Figure 4.7A). When assessed for the
presence of blood, menstrual blood was positively characterized by RSID™ Blood, with a negative
result produced using ABAcard® HemaTrace for a single replicate (Figure 4.7B). A complete DNA
profile consistent with the female contributor was produced by all digital swab samples (Table
4.12).

Although this subset of samples provided insight into the advantages of the proteomic
assay over traditional techniques, especially for vaginal fluid samples, authentic digital swab
samples would need to be evaluated for a veritable comparison. Nevertheless, the proteomic assay
produced consistent identifications between replicates that were complimentary to genetic testing
results.

Table 4.11. Summary of comparative results for digital swab samples. Positive identifications are

represented by a green box. Negative results are represented by a red box. White boxes indicate
no testing was performed.

DS03.1 DS03.2
. E.)SO1'1 . IZ_)SO1.2 . E_)302.1 . I:_)SOZ.Z Digital Swab | Digital Swab
Sample Digital Swab | Digital Swab | Digital Swab | Digital Swab
. . N . . X Menstrual Menstrual
Saliva Saliva Vaginal Fluid | Vaginal Fluid
Blood Blood
Mass Spec | ot of4 doutof4 | Boutof12 | Qoutof12 | 11outof12 | 10outof 12
Protein ID
DNA % Profile 100 100 100 100 100 100
RSID™ Saliva + +
SALIgAE® + +
ABAcard® .
HemaTrace
RSID™ Blood + +
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Figure 4.7. Selected serological screening test results for digital swab samples. ABAcard® test and
SALIgAE® are pictured on the left. RSID™ test is pictured on the right. Within the membrane
window, the test line is positioned on the left and the control line on the right. Results for (A) digital
swab saliva and (B) digital swab menstrual blood. On lateral flow assays, a positive result is
indicated by the presence of a red line at both the test and control zones. For SALIQAE®, a positive

result is indicated by a yellow colored reagent.

Table 4.12. STR genetic results for digital swab samples.

DS01.1 DS01.2 DS02.1 DS02.2 DS03.1 DS03.2

Female - -
Reference Oral ) Oral ) Vagina_l Vagina_l PE\II‘IE:E?II';EIOH Pe‘::::;::m

Penetration | Penetration | Penetration | Penetration

(Menstrual) [ (Menstrual)

D3S1358 16,17 16,17 16,17 16,17 16,17 16,17 16,17
VWA 15,18 15,18 15,18 15,18 15,18 15,18 15,18
D163539 9,12 9,12 9,12 9,12 9,12 9,12 9,12
CSF1PO 11,14 11,14 11,14 11,14 11,14 11,14 11,14
TPOX 8,11 8,11 8,11 8,11 8,11 8,11 8,11

YINDEL - - - - - - -

= Amelogenin X X X X X X X
H D831179 12,13 12,13 12,13 12,13 12,13 12,13 12,13
% D21511 27,30 27,30 27,30 27,30 27,30 27,30 27,30
D18S51 10,14 10,14 10,14 10,14 10,14 10,14 10,14

DYS391 - - - - - - -

= D2S441 11,12 11,12 11,12 11,12 11,12 11,12 11,12
9 D19S8433 14,15 14,15 14,15 14,15 14,15 14,15 14,15
i THO1 99.3 993 993 993 993 993 9,9.3
> FGA 20 20 20 20 20 20 20
D2251045 11,15 11,15 11,15 11,15 11,15 11,15 11,15
D53818 11,12 11,12 11,12 11,12 11,12 11,12 11,12
D13S317 11,12 11,12 11,12 11,12 11,12 11,12 11,12
D7S830 10,12 10,12 10,12 10,12 10,12 10,12 10,12
SE33 17,26.2 17,26.2 17,26.2 17,26.2 17,26.2 17,26.2 17,26.2

el D10S1248 14,15 14,15 14,15 14,15 14,15 14,15 14,15
i D1S1656 1417 14,17 14,17 14,17 14,17 14,17 14,17
% D12S391 18,20 18,20 18,20 18,20 18,20 18,20 18,20
B D251338 17,19 17,19 17,19 17,19 17,19 17,19 17,19
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4.2.5 Degradation Samples

Laundered substrates, composed of a set of substrates containing semen and a set of
clothing containing peripheral blood, were carried over to this section of research. As noted in
section 3.1.6.5, all samples and control regions were prepared, laundered, dried, and analyzed.
Overall, the expected results were observed for the proteomic assay and genetic analyses (Table
4.13). All samples produced a full genetic profile (Table 4.14). For the set of samples containing
semen, the proteomic assay was capable of detecting protein signatures on both the bed sheet
and underwear, with only a single protein biomarker (epididymal secretory protein) not detected on
the bed sheet (Table 4.13). Conversely, immunological lateral flow assays failed to detect trace
levels of seminal fluid (Figure 4.8A and Figure 4.8B). Both control regions exhibited negative
results for both the proteomic assay and immunochromatographic assays. The second set of
degraded samples, a cloth bath towel and a pair of denim jeans, targeted peripheral blood
identification. Both samples produced comparable results. All protein biomarkers were detected
with the proteomic assay and weak positive results were observed with lateral flow assays (Table
4.13, Figure 4.8C, Figure 4.8D). Interestingly, the extracted control samples from both the towel
and the jeans produced a positive and weak positive result on RSID™ Blood, respectively. Using
the LC-MS/MS method as a confirmation, these immunological assay results were not able to be
verified, as this approach produced no identification of peripheral blood biomarkers. Furthermore,
no genetic profile was produced from these control samples, even with manual analysis of
electropherograms identifying no true alleles below the established analytical threshold (Appendix

J).
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Table 4.13. Summary of comparative results for degraded samples. Positive identifications are

represented by a green box. Negative results are represented by a white box.

e Mass Spec ™ o | Male DNA
Description Protein ID RSID ABAcard % Profile
Bed Sheet 4 out of 5 100
& Bed Sheet Control
5
n Underwear 5 out of 5 + + 100
Underwear Control
Towel 5 out of 5 + weak + weak 100
3
e}
- Towel Control +
(]
@
5 Jeans 5 out of 5 + weak + weak 100
Q
Jeans Control + weak
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Table 4.14. STR genetic results for degraded samples.

s Peripheral | Peripheral
emenon | Semenon
Blood on | Blood on
Bed Sheet |Underwear
Towel Jeans
D351358 15,17 15,17 15,17 15,17
VWA 17,18 17,18 16,17 16,17
D163539 11,12 11,12 11,13 11,13
CSF1PO 10,11 10,11 9,11 9,11
TPOX 8,11 8,11 8,9 8,9
YINDEL 2 2 2 2
e Amelogenin XY XY XY XY
H D831179 10,13 10,13 13 13
'd D21S11 31.2,322 | 31.2,32.2 28,30 28,30
2 D18S51 11,15 11,15 17 17
DYS391 12 12 11 11
= D2S441 11,14 11,14 11,14 11,14
9 D195433 13,14 13,14 14,15.2 14,15.2
i THO1 6,7 6,7 9 9
> FGA 20,24 20,24 18,22 18,22
D2251045 15,16 15,16 11,17 11,17
D53818 11,12 11,12 12,13 12,13
D13S317 10,12 10,12 11,12 11,12
D73280 10,12 10,12 11 11
SE33 21,28.2 21,28.2 18,30.2 18,30.2
w D10S51248 14,15 14,15 12,14 12,14
i D1S1656 15 15 15,17 15,17
g D12S391 15,16 15,16 20,22 20,22
o D251338 17,24 17,24 19,20 19,20

178




LSol. L503

LS50l CTRL

E | LSoZ. I

..
© L3
LSo] Looa

B. = D. =

L502 (TR [ o4 (TR

Figure 4.8. Immunochromatographic results for degraded samples. ABAcard® tests are pictured on
the left. RSID™ tests are pictured on the right. Question samples are oriented on the top of each
frame. Control samples are oriented on the bottom of each frame. Within the membrane window,
the test line is positioned on the left and the control line on the right. Results for (A) semen extracted
from a bed sheet, (B) semen extracted from underwear, (C) blood extracted from a towel, and (D)
blood extracted from denim jeans. A positive result is indicated by the presence of a red line at both
the test and control zones.

4.2.6 Aged Samples

Swabs fortified with neat body fluid were kept at room temperature for time points zero,
three, five, seven, and thirty-five days. Comparative results are outlined in Table 4.15 for this
portion of the study. No instances of negative detection were recorded for evaluation using
traditional screening techniques or the proteomic assay (Figure 4.9); however, weak and very weak
positives were observed for ABAcard® HemaTrace® for peripheral and menstrual blood samples.
No change in detection was observed over the 35-day period. DNA analysis was not performed on
this set of casework samples.

The traditional serological tests and the proteomic assay produced comparable results.
However, the weak and very weak positive results exhibited for peripheral blood, menstrual blood,
and saliva detection with traditional assays pose a cause for concern. With complete and almost
complete identification of protein material for each target fluid, the LC-MS/MS assay produced
greater confirmation in fluid identification based on the specificity of the peptide biomarkers

detected.
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Table 4.15. Summary of comparative results for aged samples. Positive identifications are
represented in green.

Day Day Day Day Day
Sample Zero One Three Seven Thirty-Five
o
8 Mass Spec Protein ID S5outof5 | S5outof5 | Soutof5 | Soutof5 | Soutof5
m
e RSID™ Blood + + + + +
£
2
E ABAcard® HemaTrace +weak |+veryweak| +weak [+ veryweak]|+ veryweak
o
g Mass Spec Protein ID 9outof12 | Qoutof12 | Qout of 12 | Sout of 12 | 9 out of 12
m
& RSID™ Blood + + + + +
-
% ABAcard® HemaTrace + weak + weak + weak + weak + weak
.'g Mass Spec Protein ID 5out of5 Soutof5 Sout of5 Sout of 5 Soutof5
i
© RSID™ Semen + + + + +
g
n ABAcard® p30 + + + + +
Mass Spec Protein ID 4outof4d | 4outof4 | 4outof4 | 4outof4 | 4outof4d
s
= RSID™ Saliva + weak + weak + weak + weak + weak
(7]
SALIgAE® + + + + +
RS
o3 Mass Spec Protein ID 7 out of 7 7 out of 7 7 out of 7 7 out of 7 7 out of 7
© LW
>
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Figure 4.9. Serological screening test results for aged samples at Day 35. ABAcard® test and
SALIgAE® are pictured on the left. RSID™ test is pictured on the right. Within the membrane
window, the test line is positioned on the left and the control line on the right. Results for (A)
peripheral blood, (B) menstrual blood, (C) semen, and (D) saliva. On lateral flow assays, a positive
result is indicated by the presence of a red line at both the test and control zones. For SALIGAE®,
a positive result is indicated by a yellow colored reagent.

4.2.7 Sensitivity Samples

This particular cohort of sensitivity samples were designed differently than those used for
analytical sensitivity determination of the LC-MS/MS assay. Diluted body fluid was spotted on
cotton swabs prior to analysis, resulting in further dilution of target material during sample
solubilization, representing an inherent limitation to the preparation workflow. A summary of
proteomic, serological, and genetic testing results for each target fluid are outlined in Tables 4.16-
4.20. The lowest diluted sample to still produce a positive result when screened with serological
tests are picture in Figure 4.10. Reviewing proteomic results, peripheral blood was characterized
at the 20,000-fold dilution with the detection of a single hemoglobin peptide (Table 4.16). With
processing a matched sample on commercially available lateral flow assays, the RSID™ Blood and
ABAcard® HemaTrace tests produced a positive result up to and including the 100-fold dilution.
Conversely, STR analysis results were more consistent with the rate of peptide identification using
the proteomic assay (Table 4.17). A complete STR profile was recovered through the 100-fold
dilution, mirroring the complete characterization of peripheral blood peptide markers to the same

dilution. The capability of STR profiling drastically decreased at a 5,000-fold and 10,000-fold
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dilutions, with samples producing a 7% and 5% STR profile, respectively. Remaining samples did
not generate an STR profile; however, as previously stated, hemoglobin was still detected at the
20,000-fold dilution with the proteomic assay. Overall, the proteomic assay was demonstrated to
be 200 times more sensitivity than immunological assays for the detection of peripheral blood. In
addition, the proteomic assay exceeded the sensitivity of routine STR typing chemistries.

Menstrual blood was characterized down to the 40,000-fold dilution sample on the
proteomic method, with the detection of a single hemoglobin peptide, similar to peripheral blood
described above (Table 4.18). But only 4 of 7 vaginal fluid markers were accurately characterized
with the proteomic assay. Cornulin, a more specific vaginal fluid marker, was detected at the 100-
fold dilution, with small proline rich protein 3 sporadically identified for the remainder of the dilution
series (Table 3.27). Interestingly, two instances of high dose hook effect were observed with
immunochromatographic testing, with the neat and 2-fold dilution samples exhibiting a negative
result on the antibody-based assays (Table 4.18). In regard to identifying the blood component of
menstrual blood, the proteomic assay outperformed the antibody-based tests by a factor of 400.
Furthermore, with the absence of a vaginal fluid screening test, the proteomic assay inherently
provided additional pertinent information down to the 100-fold dilution. A complete STR profile was
obtained through the 100-fold dilution, with informative partial profiles produced at the 1,000- and
2,000-fold dilutions (Table 4.22). Sufficient allele and locus dropout were recorded for the
remaining samples.

Seminal fluid was accurately identified at the lowest dilution on the proteomic assay, with
detection of semenogelin peptide QITIPSQEQEHSQK (Table 4.20). However, in comparison, the
lateral flow assays exhibited poor sensitivity. RSID™ Semen failed to produce a positive result after
the 100-fold dilution (Figure 4.10C). Furthermore, ABAcard® p30 demonstrated decreased
sensitivity limits, reproducibly exhibiting a positive result only to the 10-fold dilution evaluated. In
comparison, the proteomic assay demonstrated comparable results with STR and Y-STR genetic
typing (Tables 4.23 and 4.24). With all protein biomarkers positively identified through the 100-fold

dilution and a complete STR profile generated, seminal fluid identification using the validated assay
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strongly mirrors the abilities of routine genetic testing. As the number of peptides detected
inherently decreases, so did the number of alleles characterized. In regard to genetic testing,
samples beginning with the 10,000-fold dilution failed to produce a male quantitation value and
were therefore amplified for Y-STR typing (Table 4.24). Few Y-STR alleles were characterized at
the lower end of the dilution series, with the 20,000-fold and 40,000-fold samples producing only a
7% and a 4% Y-STR profile, respectively. Overall, the proteomic assay demonstrated a sensitivity
level 400 times more sensitivity than immunological tests but exhibited a similar sensitivity range
of that of STR and Y-STR chemistries.

Diluted saliva was characterized reproducibly at the 1,000-fold dilution, with the detection
of a single amylase peptide (Table 4.19). One antibody-based test and one enzymatic test were
acquired for traditional serological testing for this portion of the study. Both RSID™ Saliva and
SALIgAE® tests performed equally, with positive results observed up to and including the 10-fold
dilution samples (Figure 4.10D). As previously described, the proteomic assay kept pace with the
ability to generate an STR profile; however, the capabilities of genetic typing and reaching a larger
sensitivity range outweigh those of the proteomic assay (Table 4.25). Identification of peptide
markers began to decrease at the 100-fold dilution, where a full STR profile was still generated.
Furthermore, out to the 2,000-fold dilution, a 70% complete STR profile was reported whereas the
proteomic assay failed to detect saliva for the remainder of samples evaluated. To conclude, the
proteomic assay demonstrated a sensitivity range 100 times more robust than that of the traditional
screening assays. Conversely, routine genetic testing remained more sensitive than the validated
assay.

Vaginal fluid was characterized by all target protein markers at the 10-fold dilution, with 2
of 7 markers detected at the 100-fold dilution and only a single protein (small proline rich protein 3)
detected for the remaining samples (Table 4.20). In comparison, a full STR profile was produced
down to the 500-fold dilution, with partial profiles observed for the remaining samples (Table 4.26).
For the 100-fold dilution sample, no quantitation value was recorded and no DNA profile was

produced. This result is inconsistent with the remaining data, and is therefore, being viewed as an
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outlier. However, no matched comparison could be generated given the lack of a commercially
available assay for vaginal fluid screening.

Overall, the validated proteomic assay greatly outperformed existing serological screening
tests. It should be noted that samples were not solubilized in kit-specific buffer provided by the
commercial entities for immunochromatographic testing. Although solubilization in buffer is
recommended by the manufacturers, concentrated samples did not seem to inhibit the functionality
of the assays (with the exception of the high dose hook effect for menstrual blood). Research has
been conducted on the effect of pH and the ability to produce false positive and false negative
results on the lateral flow assays. It was determined that extreme acidic or alkaline pH is not the
sole contributor to false positive or false negative results. One study found that it is the presence
of additional organic acids that causes disruption in the antibody-dye labeling mechanism [55].

Table 4.16. Summary of comparative results for peripheral blood sensitivity samples. Positive
identifications are represented by a green box. Negative results are represented by a white box.

Dilution Factor
Neat 2 10 100 1,000 2,000 5,000 10,000 20,000 40,000

Mass Spec | 5t of5 | Soutof5 | Soutof5 | Soutof5 | 4outof5 | 3outof5 | 3outof5 | 2outof5 | 1outof5

Protein ID

Mass Spec
% Peptide ID 100 100 100 100 89 56 44 33 22

DNA

% Profile 100 100 100 100 90.2 463 7.3 49

RSID™ Blood + + + wEls
positive
ABAcard® . . . we_a_k
HemaTrace positive

Table 4.17. Summary of comparative results for menstrual blood sensitivity samples. Positive
identifications are represented by a green box. Negative results are represented by a white box.

Dilution Factor
Neat 2 10 100 1,000 2,000 5,000 10,000 | 20,000 | 40,000

“:,?zfeisnpl‘l’; 9outof12 [ 9outof 12 [ 9 out of 12 [ 9 out of 12 | 7 out of 12 | 3 out of 12 | 2 out of 12 | 2 out of 12 | 2 out of 12 | 2 out of 12
Mass Spec
% Poptide ID 58 58 58 58 38 15 12 15 15 12

,, DNA 100 100 100 100 756 82.9 17.1 36.6 9.7 49

% Profile
RSID™ Blood +

ABAcard® . . . we_a_k

HemaTrace positive
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Table 4.18. Summary of comparative results for seminal fluid sensitivity samples. Positive
identifications are represented by a green box. Negative results are represented by a white box.

Dilution Factor
Neat 2 10 100 1,000 2,000 5,000 10,000 | 20,000 | 40,000
"gfzfe?npg’ 5outof5 | 5outof5 | Soutof5 | 5outof5 | 3outof5 | 2outof5 | 2outof5 | 2outof5 | 2outof5 | 1outof5
Mass Spec
% Poptide ID 100 100 100 83 50 42 17 17 17 17
DNA Y-STR Y-STR Y-STR
% Profile 100 100 100 100 837 767 27.9 9 74 37
RSID™ Semen + + + +
ABAcard® p30 + + +

Table 4.19. Summary of comparative results for saliva sensitivity samples. Positive identifications
are represented by a green box. Negative results are represented by a white box.

Dilution Factor
Neat 2 10 100 500 1,000 2,000 5,000 10,000

Mass Spec | 4 1 of4 | 4outofs | 4cutofs | 3outofs | 1outofs | 3outors

Protein ID

Mass Spec
% Peptide 1D 100 100 100 57 14 57

DNA

% Profile 100 100 100 100 95.3 86 51.1 13.9
RSID™ Saliva + + +

SALIgAE® + + +

Table 4.20. Summary of comparative results for vaginal fluid sensitivity samples. Positive
identifications are represented by a green box. Negative results are represented by a white box.

Dilution Factor

10 100 500 1,000 2,000 5,000 10,000
Mass Spec | i of7 | 20utof7 | 1outof7 | 1outof7 | 1outof7 | 1outof7 | 1outof?
Protein ID
Mass Spec
% Paptide 1D 71 12 6 6 6 6 6

DNA

% Profile 100 100 87.8 90.2 20.2 73
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Figure 4.10. Serological screening test results for sensitivity samples. ABAcard® test and SALIQAE®
are pictured on the left. RSID™ test is pictured on the right. Within the membrane window, the test
line is positioned on the left and the control line on the right. Results for (A) 100-fold dilution of
peripheral blood, (B) 100-fold dilution of menstrual blood, (C) 100-fold dilution of semen, and (D)
10-fold dilution of saliva. On lateral flow assays, a positive result is indicated by the presence of a
red line at both the test and control zones. For SALIGAE®, a positive result is indicated by a yellow
colored reagent.
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Table 4.21. STR genetic results for peripheral blood sensitivity samples. Complete locus
identification represented by a green box. Partial locus identification represented by a grey box.
Locus dropout represented by a white box.

Peripheral Blood | Neat 2 10 100 | 1,000 | 2,000 | 5,000 |10,000 | 20,000 | 40,000
D351358 | 1517 | 1517 | 1517 | 1517 | 17
VWA 18,21 | 18,21 | 18,21 | 18,21 | 21

D163539 9,11 9,11 9,11 9,11 9,11
CSF1PO 12,13 | 1213 [ 1213 | 1213 | 12,13 13

TPOX 8,9 8,9 8,9 8,9 8,9 9
YINDEL 2 2 2 2 2
=z Amelogenin XY XY XY XY XY X
H D831179 14,15 | 1415 | 1415 | 1415 | 14,15 15
g D21S11 28 28 28 28 28 28 28 28
D18S51 16,17 | 16,17 | 16,17 | 16,17 | 16,17 16
DYS391 11 11 11 11 11 11
= D25441 1112 | 1112 [ 1112 | 1112 | 11,12 | 11,12
9 D195433 11,12 | 1112 [ 11,12 | 11,12 11 12 11
T THO1 7 7 7 7 7 7
> FGA 2527 | 2527 | 25,27 | 25,27 | 25,27 25
D2251045 | 11,15 | 1115 [ 1115 | 11,15 | 11,15 11
D53818 12 12 12 12 12 12

D13S317 12,13 | 1213 | 1213 | 12,13 12 12,13 13
D73280 10,12 | 10,12 | 10,12 | 10,12 | 10,12 10
SE33 21,26.2)121,26.2|21,26.2(21,26.2|21,26.2
w D10S1248 | 12,13 | 1213 | 12,13 | 12,13 | 12,13 13
T D1S1656 |12,16.3[12,16.3[12,16.3|12,16.3|12,16.3
g D125391 17,20 | 17,20 | 17,20 | 17,20 | 17,20 20
s D251338 23,26 | 23,26 | 23,26 | 23,26 | 23,26 | 23,26
Profile Percentage | 100 100 100 100 90.2 46.3 7.3 4.9 0 0
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Table 4.22. STR genetic results for menstrual blood sensitivity samples. Complete locus
identification represented by a green box. Partial locus identification represented by a grey box.
Locus dropout represented by a white box. Menstrual blood for this subset of samples was provided
by two donors (Reference #1 and Reference #2).

Menstrual Blood R"f‘:f"c" Neat 2 10 REf‘;r;'““e 100 | 1,000 | 2,000 | 5,000 | 10,000 | 20,000 | 40,000
D351358 | 16,18 | 16,18 | 16,18 | 16,18 | 16,17 | 16,17 | 16,17 | 17
VWA 16 16 16 16 1518 | 15,18 | 1518 | 15 18
D163539 | 13,14 | 13,14 | 13,14 | 13,14 | 912 | 912 | 9,12 9
CSF1PO | 12,13 | 12,13 | 12,13 | 12,13 | 11,14 | 11,14 11,14
TPOX 9,12 | 912 | 912 | 9,12 | 811 811 | 811 | 811 1 8
YINDEL ; ; ; ; ; ; ; ; ; ; ; ;
= Amelogenin X X X X X X X X X X
W | D831179 | 13,14 | 13,14 | 1314 | 1314 | 1213 | 1213 | 1213 | 1213 | 1213 | 12,13
& | D215t 27.30 | 27,30 | 27,30 | 27,30 | 27,30 | 27,30 | 27,30 | 27,30 | 27,30 30
D18551 12,13 | 12,13 | 1213 | 1213 | 10,14 | 10,14 | 1014 | 10,14
DYS391 - - ; ; ; ; ; ; - ; - ;
z | D2s441 10,11 | 10,11 | 10,11 | 1041 | 11,42 | 11,42 | 1142 | 11,12 142 | 1
© [ D19s5433 13 13 13 13 14,15 | 14,15 | 14,15 | 14,15 15
3 THO1 593 | 693 | 693 | 693 | 993 | 993 | 993 | 993 | 93 93
> FGA 20,24 | 20,24 | 20,24 | 20,24 20 20 20 20 20 20
D2251045 | 15.16 | 15,16 | 15,16 | 15,16 | 11,15 | 11,15 | 11,15
D53818 12,13 | 12,13 | 1213 | 1213 | 11,12 | 11,12 | 1112 | 11,12
D135317 | 10.11 | 1011 | 10,11 | 1041 | 11,12 | 11,12 11,12 142 | 12
D73280 10,11 | 10,41 | 10,11 | 10,41 | 10,12 | 10,12 10,12 10
SE33 292 292 | 292 | 292 | 17,262 |17,26.2 17,26.2| 17 17
M D10S1248 | 13.15 | 13,15 | 13,15 | 13,15 | 14,15 | 14,15 14
Pl D151656 | 15.16.3 | 15,16.3]15,16.3|15,16.3| 14,17 | 14,17 | 14,17 | 14,17
78 0125391 | 1522 | 1522 | 1522 | 1522 | 18,20 | 18,20 | 18,20 | 18,20
(AN D251338 | 19,24 | 19,24 | 19,24 | 19,24 | 17.19 | 17.19 | 17,19 | 17.19 | 19 17 17
Profile Percentage| - 100 | 100 | 100 - 100 | 756 | 829 | 171 | 366 | 9.7 49
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Table 4.23. STR genetic results for seminal fluid sensitivity samples. Complete locus identification
represented by a green box. Partial locus identification represented by a grey box. Locus dropout
represented by a white box.

Semen Reference Neat 2 10 100 1,000 2,000 5,000
D351358 15,17 15,17 15,17 15,17 15,17 15,17 15 15
VWA 17,18 17,18 17,18 17,18 17,18 17,18 17,18
D163539 11,12 11,12 11,12 11,12 11,12 11,12 12
CSF1PO 10,11 10,11 10,11 10,11 10,11 10,11 10,11
TPOX 8,11 8,11 8,11 8,11 8,11 8,11 11
YINDEL 2 2 2 2 2 2 2
Amelogenin XY XY XY XY XY X Y
E D831179 10,13 10,13 10,13 10,13 10,13 10 10,13 10
g D21511 312,322 [31.2,322|31.2,322|131.2,322|131.2,322|31.2,322| 322 31.2
D18551 11,15 11,15 11,15 11,15 11,15 11,15 11,15 15
DYS391 12 12 12 12 12 12 12
D25441 11,14 11,14 11,14 11,14 11,14 11 11 11,14
% D195433 13,14 13,14 13,14 13,14 13,14 13 13
T THO1 6,7 6,7 6,7 8,7 6,7 7 6,7
> FGA 20,24 20,24 20,24 20,24 20,24 20,24 20,24 24
D2251045 15,16 15,16 15,16 15,16 15,16 15,16 15,16
D53818 11,12 11,12 11,12 11,12 11,12 11,12 12
D135317 10,12 10,12 10,12 10,12 10,12 10,12 10,12 12
D73280 10,12 10,12 10,12 10,12 10,12 10,12 10,12 12
SE33 21,28.2 21,282 | 21,28.2 | 21,28.2 | 21,28.2 21 21,282
w D1051248 14,15 14,15 14,15 14,15 14,15 14,15 15
i D1S1656 15 15 15 15 15 15 15 15
§ D125391 15,16 15,16 15,16 15,16 15,16 15,16 15,16
D2S1338 17,24 17,24 17,24 17,24 17,24 17 17
Profile Percentage - 100 100 100 100 83.7 76.7 27.9
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Table 4.24. Y-STR genetic results for seminal fluid sensitivity samples. Complete locus
identification represented by a green box. Partial locus identification represented by a grey box.
Locus dropout represented by a white box.

Semen Reference| 10,000 | 20,000 | 40,000
DYS576 17
DYS389I 14 14
DYS635 20
DYS389ll 30
DYS627 23
DYS460 10 10
DYS458 17
E DYS19 14 14
5 YGAT 13 13
DYS448 19 19
DYS391 12
DYS456 17
g DYS390 23 23
-4 DYS438 12
W[ Dys392 13 13
DYS518 40
DYS570 17
DYS437 15 15
DYS395 11,14
DYS449 28
DYS393 13
DYS439 13
DYS481 22
DYF387S1 35,36 35 35
DYS533 12
Profile Percentage - 25.9% 7.4% 3.7%
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Table 4.25. STR genetic results for saliva sensitivity samples. Complete locus identification
represented by a green box. Partial locus identification represented by a grey box. Locus dropout
represented by a white box.

Saliva Reference| Neat 2 10 100 500 1,000 2,000 5,000 | 10,000
D351358 15,17 15,17 15,17 15,17 15,17 15,17 15 15
VWA 17,18 17,18 17,18 17,18 17,18 17,18 17,18
D163539 11,12 11,12 11,12 11,12 11,12 11,12 12
CSF1PO 10,11 10,11 10,11 10,11 10,11 10,11 10,11
TPOX 8,11 8,11 8,11 8,11 8,11 8,11 8 8
YINDEL 2 2 2 2 2 2 2
z Amelogenin XY XY XY XY XY XY X X
H D831179 10,13 10,13 10,13 10,13 10,13 10,13 10,13 13
g D21S11 31.2,32.2 31.2,32.2(31.2,32.2|31.2,32.2|31.2,32.2(31.2,32.2(31.2,32.2|31.2,32.2
D18S51 11,15 11,15 11,15 11,15 11,15 11,15 11,15 11
DYS391 12 12 12 12 12 12 12 12
= D2S441 11,14 11,14 11,14 11,14 11,14 11,14 11,14 11,14 11
9 D195433 13,14 13,14 13,14 13,14 13,14 13,14 13,14 13,14
=l THO1 6,7 6,7 6,7 6,7 6,7 6,7 6 6,7
> FGA 20,24 20,24 20,24 20,24 20,24 20,24 20,24 20,24
D2251045 15,16 15,16 15,16 15,16 15,16 15,16 15,16
D53818 11,12 11,12 11,12 11,12 11,12 11,12 11,12 11,12 11
D13S317 10,12 10,12 10,12 10,12 10,12 10,12 10,12 12 10
D73280 10,12 10,12 10,12 10,12 10,12 10 10,12 10
SE33 21,28.2 |21,28.2|21,28.2 | 21,28.2 [ 21,28.2|21,28.2 | 21,282 | 28.2
T D10S1248 14,15 14,15 14,15 14,15 14,15 14 14 15
g D1S1656 15 15 15 15 15 15 15 15
§ D125391 15,16 15,16 15,16 15,16 15,16 15,16 15,16 16
o D251338 17,24 17,24 17,24 17,24 17,24 17,24 17,24 17
Profile Percentage - 100 100 100 100 95.3 86 51.1 0 13.9
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Table 4.26. STR genetic results for vaginal fluid sensitivity samples. Complete locus identification
represented by a green box. Partial locus identification represented by a grey box. Locus dropout
represented by a white box.

Vaginal Fluid |Reference| 10 100 500 1,000 | 2,000 | 5,000 | 10,000
D3S1358 16,17 16,17 16,17 | 16,17 | 16,17 17
VWA 15,18 15,18 15,18 | 15,18 | 15,18 15
D163539 9,12 9,12 9,12 9,12 9,12
CSF1PO 11,14 11,14 11,14 | 11,14 11
TPOX 8,11 8,11 8,11 8,11 8,11 11
YINDEL - - - - - - - -
- Amelogenin X X X X X X
H D831179 12,13 12,13 12,13 | 1213 | 12,13 13 13
g D21S11 27,30 27,30 27,30 | 27,30 30
D18S51 10,14 10,14 10,14 | 10,14 | 10,14
DYS391 i - - - - - - -
= D2S441 11,12 11,12 11,12 | 11,12 | 1112 | 11,12
9 D195433 14,15 14,15 14,15 | 14,15 | 14,15 | 14,15
d THO1 9,9.3 9,9.3 9,9.3 9,9.3 9 9.3 9
> FGA 20 20 20 20 20 20 20
D2251045 11,15 11,15 11,15 11 11,15 11
D53818 11,12 11,12 11,12 | 11,12 | 11,12
D13S317 11,12 11,12 11,12 12 11,12
D73280 10,12 10,12 10,12 10 12
SE33 17,26.2 |17,26.2 17,26.2 17 17,26.2
T D1051248 14,15 14,15 14,15 | 14,15 | 14,15
d D151656 14,17 14,17 14,17 17 14,17
g D125391 18,20 18,20 18,20 | 18,20 | 18,20
o D251338 17,19 17,19 17,19 | 17,19 19
roﬁ_le Percentage - 100 0 100 87.8 90.2 292 7.3

4.3 Concluding Remarks

In conclusion, the data demonstrated that the validated proteomic assay exhibits sufficient
gains in sensitivity over currently utilized antibody- and enzyme-based screening techniques.
Although various types of samples were deployed for this portion of the assessment, perhaps the
greatest discrepancies between the traditional and proteomic analyses were observed with the
sensitivity samples. The proteomic assay greatly outperformed traditional tests and provided
detailed information on the proteins/peptides identified. This information can present other avenues
for interpretation and subsequent testing to a forensic analyst. Still, one particular area of

advancement worth highlighting is with the analysis of seminal fluid from a vasectomized individual.
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When considering the scenario of a suspected rape, the ability to accurately characterize
semenogelin off a vaginal swab that will test negative for sperm cells has the potential to provide
critical information to an investigation. This data further supports the necessity for confirmatory
seminal fluid identification, given that not all male perpetrators may contain sperm cells that could
be visualized using routine microscopic techniques.

Furthermore, it was established that the proteomic assay can be seamlessly integrated into
the larger forensic biology workflow, having no discernible effect on the ability to produce a genetic
profile. With the idea of reverting back to a traditional workflow in place of direct to DNA, it can be
argued that protein characterization may correlate to the likelihood of producing an informative
genetic profile, particularly with sexual assault samples. For more than two decades, the forensic
community has focused on improving the sensitivity and robustness of DNA profiling. While
advances have made it possible to individualize biological traces on challenging types of
evidentiary material, DNA alone does not readily indicate the body fluid source from which it was
extracted. Serological testing to identify the body fluid from which a DNA profile has been
generated, however, can provide vital contextual information to facilitate a successful prosecution.
With sensitivity and specificity gains established by the developed proteomic method, the
combination of proteomic screening with advanced genetic profiling presents a model workflow for
adoption in forensic biology laboratories.

The remaining two chapters of this dissertation will focus on the proteomic analysis of
sexual assault samples. As seen previous and revisited within this chapter, the presence of
personal lubricants can have deleterious effects on the ability to positively identify vaginal fluid. The
impact of this particular contaminant will be further explored in the next chapter, in addition to a
greater assessment on its impact for the identification of seminal fluid and saliva biomarkers. In
addition, renewed insight into intact protein identification for expedited serological analysis will be

discussed in the final chapter.
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CHAPTER 5: ASSESSMENT OF THE POTENTIAL INHIBITORY EFFECTS OF PERSONAL
LUBRICANTS ON BODY FLUID IDENTIFICATION
5 Introduction
The Federal Bureau of Investigation’s Uniform Crime Reporting Program solicits
information from law enforcement agencies to provide reliable and uniform crime statistics for the

United States [163]. Currently, more than 18,000 agencies across the United States voluntarily

submit data to this program on an annual basis. For the year 2019, the most current report
available, there were 64,048 reported rapes and a rate of offense estimated at 42 offenses per
100,000 people. Of the 61,531 offenses where the sex of the offender was reported, 95.6% of
offenses had a male offender (equivalent to 58,853 reported offenses). Within a single year, a6.4%
increase was observed in reported rape offenses, with 59,945 offenses reported in 2018. Over a
six-year period, an increase of 37.92% of rape offenses is reported. Although the number of
submitting agencies has increased by 15% since the year 2013, the prevalence of rape and sexual
assault has continued to grow in the United States. This data was compiled using the 2013 revised
definition of rape, with a single report referring to an instance of rape, attempted rape, or assault

with intent to rape [163]. In the United States, approximately 1 in 6 women will be a victim of

attempted or completed acts of sexual assault, with females under age 24 three times more likely to
be a victim of sexual violence than the general population [164,165].

For more than two decades, the forensic community has focused on improving the
sensitivity and robustness of DNA profiling. While advances have made it possible to individualize
biological traces on challenging types of evidentiary material, DNA alone does not readily indicate
the body fluid source from which it was extracted. Serological testing to identify the body fluid from

which a DNA profile has been generated, however, can provide vital contextual information to
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facilitate a successful prosecution. In the event of a sexual assault or rape, a Suspect Sexual
Assault Evidence Collection Kit is taken by a trained nurse and submitted for forensic testing. Kits
generally include vaginal, oral, and rectal swabs, in addition to articles of clothing and supplemental
swabs submitted on a case-by-case basis (e.g., breast, labia, inner thigh swabs). In addition,
objects such as condoms or items used for vaginal penetration can be submitted for testing. Given
the persistent sexual assault kit backlogs and that the sensitivity of post-coital DNA testing now
exceeds that of contemporary serological tests, many labs have adopted a “direct to DNA” workflow.
While this approach has a number of advantages, serological testing is especially important when
the item of evidence in question (e.g., a towel or bedding) does not readily lend itself to an
interpretation of likely sexual contact to the same degree as an intimate swab or underwear, where
the mere presence of suspect’'s DNA may be sufficient for criminal proceedings.

In the previous chapters, it was demonstrated that protein mass spectrometry techniques
exhibit increased sensitivity and specificity to conduct accurate screening of evidentiary items for
the presence of biological fluids. This approach has proven the LC-MS/MS analytical method to be
robust and reliable in the detection of protein signatures, particularly for sexual assault type samples.
With the developed workflow, it was demonstrated that protein components were able to be identified
with a level of sensitivity comparable to that of STR/Y-STR profiling. The Uniform Crime Report

states that in the year 2019, 17% of rape offenses were also linked with instances of sodomy and

6.5% with instances of sexual assault with a foreign object [163]. In the context of sexual assault

sample screening, the identification of seminal fluid in addition to saliva and vaginal fluid play a
significant role in sample processing and generation of critical sample information. Of the laboratory-
generated case samples utilized during validation and implementation assessments, a particular set
of samples, those treated with personal lubricant as part of the environmental contaminant subset,
were identified for additional analyses. In particular, peak area responses of vaginal fluid biomarkers
were inhibited or complete protein dropout was observed with samples subjected to a personal

lubricant.
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The objective of this phase of research was to assess the potential inhibitory effects of
personal lubricants on the sensitivity of mass spectrometry-based body fluid identification. A two-
prong approach was designed to elucidate potential deleterious effects. First, target biological fluids
were subjected to multiple lubricant types at varying volumes to illustrate the changes in protein
biomarker detection. Second, body fluids recovered from lubricated condoms were evaluated. In
combination, the results of this research provide an inclusive assessment of sample contaminants
and alternate methodologies for processing challenging sample types received as forensic
evidence. This research was completed under three scientific aims using the validated LC-MS/MS
assay previously described. The first aim evaluated the effects of personal lubricant on the
detection of vaginal fluid protein biomarkers. Similarly, the second aim assessed the effects of
personal lubricant on seminal fluid and saliva identification, both individually and as mixed source
samples. And lastly, the final aim evaluated condoms containing lubricant and spermicide
elements.

5.1 Methods and Materials

5.1.1 Sample Collection and Materials

All research conducted under this phase of the project was reviewed and approved by the
University of Denver IRB for research involving human subjects. Sample collection and research
was conducted in full accordance with the U.S. federal policy for the protection of human subjects
as described in section 2.11. In total, 10 subjects were recruited from the graduate population at
Arcadia University (Glenside, PA) and staff members employed at The Center for Forensic Science
Research & Education (Willow Grove, PA).

Five classes of personal lubricant were selected for this study: water-based lubricant with
glycerin (Astroglide®), water-based Iubricant without glycerin (Sliquid® H20), hybrid lubricant
(Sliquid® Silk), silicone lubricant (Swiss Navy®), and natural oil-based lubricant (Coconut Oil).

Lubricant details are described in Table 5.1.
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Table 5.1. Personal lubricants utilized for this study. Notes on lubricant ingredients, formula, and
pH compiled from patent material and/or product descriptions.

Lubricant Class

Lubricant
Make and Model

Abbreviation

Notes

Water-Based without

Sliquid® H,O Natural

*Glycerin and paraben free formula
*Water scluble

I A
Glycerin Intimate Lubricant Sliquid® H,0 Unflavored
*Unscented
*pH balanced (pH 4.0-4.4)
) Astroglide®Liquid . . .
Water-Basgdwnh \Water-Based Personal Astroglide® Contains Purified Water, Glyt_:erln‘ Propylene
Glycerin - Glycol, Polyquaternium 15
Lubricant
*Water and silicon blend
Sliauid® Silk Intimate *Glycerin and paraben free formula
Hybrid quic . Sliquid® Silk *Unflavored
Hybrid Lubricant
*Unscented
*pH balanced (4.0-4.4 pH)
- Swiss Navy® Silicone . Contains Cyclopentasiloxane, Dimethicone,
Silicone Lubricant Swiss Navy® Tocopheryl Acetate (Vitamin E).
Majestic Pure™ *Fractionation procesascrizzloved leng chain fatty
. Cosmeceuticals ’ . . L .
Natural Oil Fractionated Coconut Coconut Oil *High concentration o;Cci:prlc acid and caprylic

Qil (Cocos Nucifera)

*Hexane, paraben, and sulfate free formula

5.1.2 Lubricants and Vaginal Fluid Biomarker Detection

5.1.2.1 Experimental Sample Assembly

Two experimental design plans were constructed for the processing and preparation of
vaginal swab samples subjected to personal lubricants. The original experimental design consisted
of full vaginal swabs that were cut in half, with one half serving as a control and the second half
fortified with a set volume of personal lubricant (Figure 5.1). Lubricant volumes of 1 pL, 5 yL, or 15
ML were added to half swabs. Control half swabs were not fortified with lubricant. Swab halves were
dried at room temperature overnight. Half swabs were solubilized in 500 pL of deionized water for
30 minutes with frequent agitation. Swabs were placed in a centrifugal basket and centrifuged at
10,000 x g for 10 minutes. Supernatant was transferred to a clean microcentrifuge tube and cell
pellets were discarded. Supernatant was reserved for analysis via LC-MS/MS.

For the second experimental design, vaginal swabs were solubilized and extract was

fortified with personal lubricant (Figure 5.2). Swab tips were solubilized in 500 pL of deionized
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water for 30 minutes at room temperature with frequent agitation. Swabs were placed in a
centrifugal basket and spun for 10 minutes at 10,000 x g to remove excess liquid. Supernatant was
transferred and pooled for further preparation. Processed swabs and cell pellets were discarded.
Pooled vaginal extract was fortified with increasing volumes of personal lubricant. For each
lubricant type evaluated, 700 pL of pooled vaginal extract was fortified with either 7 yL, 35 pL, or
105 pL of personal lubricant. These volumes simulate targeting 1 uL, 5 pL, and 15 pL of personal
lubricant per sample replicate. Control samples consisted of pooled vaginal extract and were not
subject to any personal lubricant manipulation. Mixtures were thoroughly vortexed and 100 uL

aliquots were transferred to clean microcentrifuge tubes for triplicate analysis.

i

g b I N = ®
z =% < a z a
[} o) S ) o] o)
(6] [ (&} [v's &) 1
From the Same From the Same From the Same
Individual Individual Individual
Lubricants Spike
% V°1'“Tes ¢y 3Swabs o 45Vaginal
5 HL per Volume — Swabs Total
Swiss Navy® 15“ L
Coconut Qil H

Figure 5.1. Original sample preparation strategy using vaginal swabs fortified with lubricant types.

One vaginal swab was cut in half, with each paired half representing a control and an experimental
sample.
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700 L 700 plL 700 plL 700 L

vaginal vaginal vaginal vaginal
extract extract extract extract

No 7 yL 35 uL 105 uL
lubricant lubricant lubricant lubricant

“apool 1 l l l

Extract

From the Same Control 1L 5L 15 pL
Individual Samples Samples Samples

Figure 5.2. Modified sample preparation strategy developed to mitigate expression inconsistencies
in vaginal fluid proteins. Vaginal swabs were solubilized and pooled prior to mixing with lubricant
types.

5.1.2.2 Pre-Digestion Cleanup

Prepared sample aliquots were diluted with 400 pL of 0.5% trifluoroacetic acid (TFA) in
deionized water. A positive pressure manifold (Biotage® PRESSURE+ 48) was fitted with Waters
HLB 1cc extraction cartridges (Waters Corporation, Milford, MA). Cartridges were primed with 1
mL of 50% acetonitrile (ACN) 0.5% TFA in deionized water. Cartridges were equilibrated with 1 mL
of 0.5% TFA in deionized water. The full 500 yL of diluted sample was applied to and passed
through the extraction cartridge, which was then washed with 1 mL of 0.5% TFA in deionized water.
Material was eluted from the cartridge in 200 pL of 70% ACN 0.1% formic acid (FA) in deionized
water.

5.1.2.3 Sample Processing and Analysis

Extracted samples were quantitated using the BCA assay (section 2.1.3.1) and 100 pg
total protein was lyophilized to dryness. Samples were subjected to the previously described 8 M
urea tryptic digestion and SPE purification on the AssayMAP Bravo liquid handling platform (section
2.1.4). Eluate was fortified with 20 yL of 0.5 mg/mL intact myelin protein prior to tryptic digestion
and 2.5 pmol of isotopically-labeled internal standard prior to SPE cleanup. Eluate was lyophilized
to dryness and reconstituted in 100 pL of 2% ACN 0.1% FA in deionized water for LC-MS/MS

analysis. Prepared samples were injected onto the 6495 triple quadrupole mass spectrometer
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coupled to a 1290 series liquid chromatograph (Agilent Technologies). Data was acquired using
the validated analytical method developed under Chapter 2, with data analysis performed in Skyline
Software.

5.1.3. Lubricants and the Detection of Semen and Saliva Biomarkers

Vaginal swabs were collected as previously described. Pooled vaginal extract was fortified
with various amounts of lubricant and either semen, saliva, or a mixture of semen and saliva.
Personal lubricant volumes of 1 yL, 5 uL, and 15 yL were also utilized for this portion of the
assessment. In addition, target volumes of 1 uL of semen and 10 pL of saliva were utilized for
single fluid experimental samples. For example, 400 uL of pooled extract was fortified with either 4
pL, 20 L, or 60 uL of personal lubricant in addition to 4 uL of semen or 40 L of saliva (Figures
5.3 and 5.4). Mixture samples were prepared in a similar manner. Pooled vaginal extract was
fortified with personal lubricant as previously described in addition to 4 yL of semen and 40 yL of
saliva (Figure 5.5). Control samples were fortified with semen and/or saliva but absent of personal
lubricant. Samples were thoroughly vortexed and 100 uL of sample was aliquoted for further
processing. Samples underwent pre-digestion cleanup, tryptic digestion, and SPE purification as

described in section 5.1.2.2.

400 pL 400 yL 400 pL 400 pL

vaginal vaginal vaginal vaginal

extract extract extract extract

No 4 uL 20 pL 60 pL
lubricant lubricant lubricant lubricant

- No 4 pL 4L 4 uL
Solubilize semen semen semen semen
& Pool

Extract ﬂ ﬂ ﬂ ﬂ

From the Same
Individual

1L 5L 15 pL

elilicl Samples Samples Samples

Figure 5.3. Sample preparation strategy for control and experimental samples containing semen.
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From the Same
Individual

400 pL 400 pL 400 pL 400 pL
vaginal vaginal vaginal vaginal
extract extract extract extract
No 4 uL 20 uL 60 uL
lubricant lubricant lubricant lubricant
- No 40 pL 40 pL 40 pL
Sallubllae saliva saliva saliva saliva
& Pool
Extract ﬂ ﬂ ﬂ ﬂ

Control

1 uL
Samples

5L
Samples

15 L
Samples

Figure 5.4. Sample preparation strategy for control and experimental samples containing saliva.

From the Same

Individual

400 pL 400 pL 400 pL 400 pL
vaginal vaginal vaginal vaginal
extract extract extract extract
No 4 pL 20 yL 60 uL
lubricant lubricant lubricant lubricant
No 4 pL 4 yL 4 pL
Solubilize semen or semen & semen & semen &
& Pool saliva 40 .uL 40 .pL 40 ‘uL
saliva saliva saliva
Extract

1

Control

l

1L
Samples

l

5puL
Samples

1

15 pL
Samples

Figure 5.5. Sample preparation strategy for control and experimental samples containing both

semen and saliva.

5.1.4 Vaginal Fluid Biomarker Detection from Condoms

Four condom types were selected for evaluation: Trojan™ ENZ™ unlubricated condoms,
SKYN® Original condoms, SKYN® Extra Lube condoms, and Durex® Performax® condoms. These
condoms were selected because they were marketed to cover a range of lubricant amounts. A
summary of condom types and product information is outlined in Table 5.2.

Condoms were removed from the packaging, unraveled, and placed on a clean piece of

butcher paper. Simulating authentic casework, only the external surface (i.e., the surface that
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contacts the vaginal cavity when inserted) was swabbed for this study. Vaginal swabs were
obtained from female volunteers and dried at room temperature. A single swab was moistened with
two drops of deionized water and used to swab the entire external surface of one condom. This
was repeated in triplicate, with one vaginal swab per condom. Swabs were allowed to dry at room
temperature for 30 minutes. Swabs were solubilized in 500 pL deionized water for 30 minutes with
frequent agitation. Swabs were placed in a centrifugal basket and centrifuged for 10 minutes at
10,000 x g. Supernatant was transferred and pooled in a clean microcentrifuge tube for further
preparation. Cell pellets and processed swabs were discarded. Supernatant was subjected to pre-
digestion cleanup, tryptic digestion, and SPE purification as previously described. Eluate was
lyophilized to dryness and reconstituted in 100 pL of 2% ACN 0.1% FA. 10 pL of sample was
injected on column for LC-MS/MS analysis.

Table 5.2. Condom brands utilized for this study. Notes on condom lubricant (if present) and
material compiled from patent information and/or product descriptions.

Condom o
Condom Class Make and Model Abbreviation Notes
. Trojan™ ENZ™ Non- _ -
Unlubricated Lubricated Condoms Trojan™ ENZ Made from latex
Lubricated SKYN® Original SKYN® Criginal *Made from SKYNFEEL™ non-latex material

<Made from SKYNFEEL™ non-latex material

®
Extra Lubricated SKYN® Extra Lube SKYLN Extra *Marketed to contain 40% more lubricant than
ube ® (i
SKYN® Original
Durex® Performax® Durex® *Ribbed, dotted, and lubricated
Ribbed Intense Lubricated P furex ® *Made from latex
Condoms errormax +Contains Benzocaine 5%

5.2 Results and Discussion

5.2.1 Lubricants and Vaginal Fluid Biomarker Detection

5.2.1.1 Digest Efficiency

The total protein concentration of control and experimental samples was determined using
the BCA assay. Quantitation was used to normalize the amount of total protein input into the

enzymatic digestion procedure. Should the presence of personal lubricants negatively impact the
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ability to accurately determine the total protein quantity in a sample, the protein input for tryptic
digestion would be incorrect. This would result in insufficient digestion or missed cleavages. No
effect on digest efficiency was observed across and lubricant type or lubricant volume, resulting in
no sufficient variation in protein concentration (Figure 5.6). A median protein concentration was
measured at 266.42 pg/mL and 272.18 ug/mL for control and experimental samples, respectively.

Trypsin performance was monitored by assessing peak area ratios of intact internal
positive control to digested internal positive control (IPC). Acceptance criteria outlined during
validation studies (Chapter 3) were employed during this assessment to ascertain IPC
performance. IPC ratios that fell within ratio bounds of 15.8 (upper bound) and 11.5 (lower bound)
were considered acceptable and unaffected by experimental procedures. Digest performance was
impacted by several personal lubricant types prior to implementing a supplemental pre-digestion
cleanup (Figure 5.7). Greatest protease inhibition prior to supplemental cleanup was observed for
Sliquid® H20, Coconut Oil, and Swiss Navy® lubricants. For example, the average IPC ratio for 1
ML coconut oil samples was 19.15, a ratio that falls outside the acceptable range. With the addition
of the pre-digestion cleanup, this ratio fell to an acceptable 12.42. Interestingly, Sliquid® Silk
demonstrated an inverse dose-response relationship, with 1 pL volumes of personal lubricant
above the established range, 5 pL volumes within the established range, and 15 yL volumes below
the established range. Protease activity was not negatively affected by Astroglide®. Acceptable IPC
ratios for all lubricants assessed were restored with the addition of the pre-digestion cleanup to the

sample processing protocol.
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Figure 5.6. Quantitative results comparing total protein concentration of control and lubricated
vaginal swab samples. Box = 25th and 75th percentiles; bars = Tukey fences. Outliers were
calculated as any values outside + 1.5 Inter Quartile Range (IQR).
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Figure 5.7. Internal positive control response ratio for control and lubricated samples which have
or have not undergone an additional SPE purification during sample preparation. Response ratios
were averaged across three replicates.

5.2.1.2 Biomarker Detection

The effect of personal lubricant on biomarker detection was assessed by calculating the

percent difference of endogenous and internal standard peak area responses for all samples
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evaluated. Similar to the results observed for digestion efficiency, biomarker detection was
negatively affected by the presence of personal lubricant, particularly prior to the addition of the
pre-digestion cleanup. Overall, impact of personal lubricant was sufficiently reduced at all lubricant
volumes with pre-digestion cleanup (Figure 5.8).

The greatest deleterious effects were observed for Sliquid® H20, Coconut Oil, and Sliquid®
Silk lubricants. Sliquid® H20, the water-based lubricant without glycerin, exhibited a dose-response
relationship for both endogenous and internal standard biomarkers. When fortified with lubricant, a
median percent difference for endogenous vaginal fluid biomarkers of 0.31%, —11.28%, and
—-37.54% were observed at the 1 pL, 5 pL, and 15 pL lubricant volumes, respectively. The greater
percent difference at the 15 uL volume was mitigated with a pre-digestion cleanup, resulting in a
percent difference of —14.28% (Figure 5.8B). A similar dose-response relationship was exhibited
by samples treated with Sliquid® Silk (Figure 5.8D). Samples treated with Coconut Oil exhibited
negative impact on biomarker detection regardless of lubricant volume. A percent difference of
-25.04%, —22.15%, and —25.03% were observed for 1 yL, 5 pL, and 15 pL volumes, respectively.
However, a wide range in response ratios was demonstrated. The lower whisker extends to
-80.94% and the median lies at the top of the inter quartile range (IQR). Internal standard
responses exhibited a negative percent difference, but not to the same extent as the endogenous
biomarkers (Figure 5.8C).

To further illustrate the negative effects of certain lubricants on specific endogenous
biomarkers, Figure 5.9 depicts the response of neutrophil gelatinase peptide WYVVGLAGNAILR
when subjected to each lubricant evaluated. This biomarker was selected given the specificity of
neutrophil gelatinase in vaginal fluid and the hydrophobic nature of the WYVVGLAGNAILR peptide
(retention time of 8.7 minutes). The response of this specific peptide was unaffected by Astroglide®
and Sliquid® Silk; however, sufficient decrease in response was exhibited with Sliquid® H20,
Coconut Oil, and Swiss Navy®. With the addition of a pre-digestion cleanup, inconsistencies were

not entirely eliminated, but minimized in most cases. For example, Figure 5.10 illustrates the
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increase in peak area response of endogenous neutrophil gelatinase peptide WYVVGLAGNAILR

with the addition of the pre-digestion cleanup.
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Figure 5.8. Effect of (A) Astroglide®, (B) Sliquid® H20, (C) Coconut Oil, (D) Sliquid® Silk, and (E)
Swiss Navy® lubricants measured as percent difference on peak area response of endogenous
vaginal fluid proteins and isotopically-labeled internal standards both with and without pre-digestion
SPE cleanup. Box = 25th and 75th percentiles; bars = Tukey fences. Outliers were calculated as
any values outside = 1.5 IQR.
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Figure 5.9. Chromatographic peak response for endogenous neutrophil gelatinase peptide
WYVVGLAGNAILR when subjected to 15 L of (A) Astroglide®, (B) Sliquid® H20, (C) Coconut Oil,
(D) Sliquid® Silk, and (E) Swiss Navy®.
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Figure 5.10. Chromatographic peak response for endogenous neutrophile gelatinase peptide
WYVVGLAGNAILR (A) without pre-digestion cleanup and (B) with pre-digestion cleanup, when
subjected to 15 L of Swiss Navy®.

5.2.2 Lubricants and the Detection of Semen and Saliva Biomarkers

The overall effect of personal lubricant was further assessed with mock sexual assault
samples. Generally, when sexual assault evidence is received in a forensic laboratory, it will be

screened for the presence of seminal fluid and/or saliva. Therefore, in addition to the effect of
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personal lubricant on the detection of vaginal fluid, it was vital to establish any deleterious effects
that may inhibit the identification of seminal fluid and/or saliva. To simulate sexual assault samples,
pooled vaginal extract was fortified with seminal fluid, saliva, and a mixture of both target fluids in
addition to increasing amounts of personal lubricant. All lubricant classes and selected volumes
were evaluated in triplicate.

In summary, all seminal fluid and saliva protein biomarkers were detected at all lubricant
volumes and for all lubricant classes evaluated, in both the prepared single source and mixture
samples. For prepared samples containing saliva, marginal suppression or enhancement effects
were observed for samples fortified with Astroglide®, Sliquid® H20, and Coconut Oil. In comparison
with the detection of vaginal fluid markers, sufficient losses in peptide response were observed for
samples fortified with Sliquid® Silk, even with the pre-digest cleanup (Figure 5.11A). A median
saliva biomarker signal decrease of -37.0%, —54.7%, and —-93.3% at the 1 yL, 5 yL, and 15 pL
volumes was observed with the Sliquid® Silk lubricant. Furthermore, at the 15 uL volume, sufficient
enhancement effects were observed for Swiss Navy®, with a median signal increase of 120.5%.
These observed effects were consistent with recorded peak area responses of the internal
standards of single source saliva samples (Figure 5.11B). The greatest suppression effects were
illustrated by endogenous seminal fluid protein biomarkers, with consistent suppression noted for
Astroglide®, Sliquid® H20, Coconut Oil, and Sliquid® Silk. A median signal decrease of —23.3% and
-85.7% were observed at the 5 yL and 15 uL Sliquid® Silk volumes, respectively. These two
samples exhibit a large IQR. However, small instances of enhancement were recorded for the 15
pL Sliquid® Silkk and 1 uL Swiss Navy® lubricants, with signal increases of 4.9% and 4.8%,
respectively (Figure 5.11C). Conversely, minimal suppression and enhancement effects were
observed for seminal fluid internal standard responses (Figure 5.11D).

Interestingly, the severe instances of peak response suppression for Sliquid® Silk were not
as evident in samples containing a mixture of seminal fluid and saliva (Figure 5.12A and 5.12C)
Although an average peptide response loss of —49.7% for saliva and —26.4% for seminal fluid were

observed at the 15 pL volume of Sliquid® Silk, peak response enhancement for Coconut Oil was
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illustrated (Figure 5.12A and 5.12C). Internal standard response demonstrated limited
suppression for both target fluids, with enhancement observed for Coconut Oil and Sliquid® Silk
lubricants (Figure 5.12B and 5.12D). For example, decrease in peak area response for
semenogelin 2 and alpha amylase is depicted in Figure 5.13. Endogenous peak area response
(red peaks) demonstrates a linear decrease while the internal standard response (blue peaks)

remains relatively unchanged across lubricant volumes.
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Figure 5.11. Effects of lubricant on (A) endogenous saliva biomarkers, (B) internal standard saliva
biomarkers, (C) endogenous seminal fluid biomarkers, and (D) internal standard seminal fluid
biomarkers. Plotted is the percent difference of average signal intensity for control versus
experimental samples for all target biomarkers. Box = 25th and 75th percentiles; bars = Tukey
fences. Outliers were calculated as any values outside + 1.5 IQR.
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Figure 5.12. Effects of lubricant on (A) endogenous saliva biomarkers, (B) internal standard saliva
biomarkers, (C) endogenous seminal fluid biomarkers, and (D) internal standard seminal fluid
biomarkers in mixture samples. Plotted is the percent difference of average signal intensity for
control versus experimental samples for all target biomarkers. Box = 25th and 75th percentiles;
bars = Tukey fences. Outliers were calculated as any values outside + 1.5 IQR.
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Figure 5.13. Semenogelin 2 peptide GSISIQTEEQIHGK peak area response in mixture samples
containing (A) 1 uL, (B) 5 pL, and (C) 15 pL volumes of Sliquid® Silk lubricant. Alpha amylase
peptide LSGLLDLALGK peak area response in mixture samples containing (D) 1 pL, (E) 5 pL, and
(F) 15 yL volumes of Sliquid® Silk lubricant. Red peaks represent endogenous peptide peak area
response. Blue peaks represent internal standard peak area response.

5.2.3 Vaginal Fluid Biomarker Detection from Condoms

Pre-lubricated condoms typically contain a proprietary lubricant which may include the
addition of spermicidal additives, such as the non-ionic detergent nonoxol-9. It was hypothesized
that such detergents and additives may decrease binding capacity of solid phase extraction
cartridges. The sorbent material of the validated microextraction cartridges were hydrophobic C18
hydrocarbons bonded to silica beads. The presence of detergents can introduce competitive
binding, resulting in a decrease in capture and recovery of hydrophobic markers during analysis.
Furthermore, detergents have the potential to act as ion suppressants when introduced into a mass

spectrometer.
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To further assess this hypothesis, lubricated condoms both with and without spermicidal
additives were evaluated. The external surface of each condom was swabbed with a vaginal swab
to capture the proprietary lubricant and/or spermicide additive at concentrations commonly
encountered in forensic casework. Unlubricated condoms (Trojan™ ENZ™) served as the condom
control, in addition to pooled, untreated vaginal extract serving as the negative control. In addition
to the unlubricated condom type, SKYN® Original, SKYN® Extra Lube, and Durex® Performax®
condoms were selected for this portion of the study. After initial observations made during sample
handling, the Durex® Performax® condoms contained the greatest amount of surface lubricant and,
although marketed as unlubricated, the Trojan™ ENZ™ condoms did contain a minimal amount of
lubricant on the external surface.

Overall, target peptide response of vaginal fluid markers was greater across all condom
types in comparison to negative control samples (Figure 5.14). It should be noted that
inconsistency in sample data was observed, as depicted by the percent difference range of
endogenous targets and large IQR of internal standard response. For endogenous biomarkers, the
calculated percent differences of peak area response were evenly distributed between the first and
third quartiles. However, outliers greater than 1.5 IQR were observed for Durex® Performax®,
SKYN® Original, and SKYN® Extra Lube condom samples. A median 50% gain in peptide response
was exhibited by vaginal fluid markers recovered from swabs subjected to the surfaces of SKYN®
Extra Lube and Trojan™ ENZ™ condoms (Figure 5.14A). Overall, peak response of isotopically-
labeled internal standard was enhanced in comparison with control samples (Figure 5.14B). The
internal standard response demonstrated greater agreement among sample replicates than
endogenous biomarkers responses, evident by the absence of outliers and a more consistent IQR.
Chromatographic endogenous and internal standard peak area responses across condom replicate
samples are depicted in Figure 5.15.

An active ingredient in Durex® Performax® condoms that may attribute to the larger IQR
and presence of outlier data points is benzocaine. Benzocaine is a common ingredient in over-the-

counter topical pain ointments, such as those used for oral and otic pain. The mechanism of action
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of benzocaine that results in pain relief has also been leveraged for use in contraceptives.
Benzocaine acts by inhibiting voltage-dependent sodium channels, preventing an action potential
from propagating down a neuron membrane. When applied to condoms, benzocaine can prevent
premature ejaculation by decreasing sensitivity of male sex organs. Given the compound’s
structure, it is hydrophobic in nature and readily soluble in alcohol-based solvents. Therefore,
benzocaine has great affinity for the C18 sorbent material of solid phase extraction cartridges and

for the acetonitrile-based elution solvent.
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Figure 5.14. Effects of condom lubricant on (A) endogenous vaginal fluid biomarkers and (B)
internal standard vaginal fluid biomarkers. Plotted is the percent difference of average signal
intensity for control versus experimental samples for all target biomarkers. Box = 25th and 75th
percentiles; bars = Tukey fences. Outliers were calculated as any values outside + 1.5 IQR.
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Figure 5.15. Neutrophil gelatinase peptide WYVVGLAGNAILR peak area response for (A) Durex®
Performax®, (B) SKYN® Original, (C) SKYN® Extra Lube, and (D) Trojan™ ENZ™ condom triplicate
samples. Red peaks represent endogenous peptide peak area response. Blue peaks represent
internal standard peak area response.
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5.3 Concluding Remarks

With the completion of this phase of research, it has been demonstrated that the
deleterious effects of personal lubricants, specifically oil and silicone-based formulas, can be
mitigated through the addition of a second solid phase extraction cleanup. When implemented prior
to digestion, this cleanup eliminated interferents that would otherwise negatively affect trypsin
processivity and mass spectrometry detection.

Extraction cartridge sorbent material was selected based on chemical interactions between
the sorbent functional groups with functional groups of target protein biomarkers. These functional
groups are considerably different from other structural elements and functional groups of
interference compounds, such as surfactants. The functional group interaction between the target
analyte and its surrounding environment was crucial in modifying the sample preparation protocol
for this portion of the study. Given the presence of interfering compounds present in personal
lubricants, such as surfactants and medium chain fatty acids, additional steps were needed to
ensure maximum recovery of target biomarkers.

Reverse phase solid phase extraction was used for additional sample cleanup. Reverse
phase employs a polar mobile phase and a nonpolar sorbent stationary phase. Given that
serological samples are generally maintained in water or saline solution, reverse phase extraction
was a clear solution to mitigating the effects of hydrophobic compounds common in lubricant
formulas. A C18 sorbent material was selected for solid phase extraction cleanup and optimized
as part of the developed protocol under the validation of the LC-MS/MS assay. C18 sorbents are
nonpolar in nature and therefore attract and retain nonpolar analytes in solution, such as nonpolar
peptide side chains or nonpolar interferent compounds.

Astroglide® contains the compound (1-(3-chloroallyl)-3,5,7-triaza-1-azoniaadamantane
chloride), referred to as polyquaternium-15. Although water soluble, this compound has surfactant
properties. Surfactants, even at low concentrations, have the ability to severely suppress ionization
during mass spectrometry analysis. Swiss Navy®, the silicone lubricant selected for this study,

contains the compound dimethicone that has surfactant properties as well. Dimethicone is a
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hydrophobic compound, as is Vitamin E acetate (a-tocopheryl acetate) and cyclopentasiloxane.
These three compounds would be retained during reverse phase solid phase extraction. In order
to selectively remove retained proteins from interferents, a relatively polar elution solvent was
necessary. In comparison with other organic solvents such as ethyl acetate or acetone, acetonitrile
is a polar solvent. Therefore, protein material would have greater affinity for the elution solvent than
severely hydrophobic interferents, such as dimethicone, which would stay retained to the sorbent
material. In summary, it was demonstrated that the analysis of sexual assault samples subjected
to personal lubricants or condom forms of contraception was achievable with modified sample
preparation protocols.

The remaining chapter of this dissertation will further delve into advancing proteomic
techniques as they apply to the analysis of sexual assault evidence. Thus far, the protein markers
targeted using the validated LC-MS/MS assay have been manipulated by the protease trypsin,
producing distinct peptide fragments. This process has the potential to eliminate high quality
peptide targets that may fall within or outside of a tryptic peptide. Although it has been demonstrated
that this bottom up proteomic process can be amenable to high throughput analyses, the multi-day
workflow is a substantial drawback to the adoption of this workflow by forensic practitioners.
Therefore, an enzyme-free proteomic identification method of seminal fluid, saliva, and vaginal fluid

has been developed and assessed.
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CHAPTER 6: DEVELOPMENT OF A PEPTIDOMIC METHOD FOR BODY FLUID
IDENTIFICATION

6 Introduction

It has been well-established that protein mass spectrometry methodologies demonstrate
the desired sensitivity and specificity for the confirmatory identification of biological fluids,
particularly in comparison with traditional serological screening techniques. The research
presented thus far utilized a bottom up proteomic approach, where protein material was subjected
to a multi-step workflow of denaturation, enzymatic digestion, cleanup, and analysis. Although this
bottom up workflow reliably identified biological stains and was amenable to automation, the multi-
day workflow presents a substantial impediment to the implementation of this next generation
technique in operational forensic laboratories. In contrast to traditional bottom up approaches, top
down techniques measure intact proteins, naturally derived peptides, or breakdown products of
larger proteins. Driven primarily by the demands of the biopharmaceutical and biomedical
industries, it is possible to reliably measure small to medium sized peptides in complex biological
matrices [166]. Procedural methods are straightforward and require minimal sample preparation to
remove abundant endogenous proteins, such as albumin. Typically, only a one-step solid phase
extraction is required prior to detection by high resolution mass spectrometry. Data analysis
employs advanced bioinformatics software capable of deconvoluting and matching fragmentation
spectra of large peptides. These technical advances allow for a streamlined same day workflow,
an attractive alternative to the more laborious bottom up procedures currently required for
proteomic body fluid identification.

A multiplex assay using high-specificity protein biomarker panels for the identification of
five forensically-relevant body fluids (i.e., peripheral blood, saliva, seminal fluid, vaginal/menstrual

fluids) was developed and validated, as described in Chapters 2 and 3. This approach has proven
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to be broadly robust and reliable, particularly for the processing of sexual assault-type samples.
With this workflow, the protein components, and by association the body fluid source, of stains can
be detected with a level of sensitivity comparable to that of DNA profiling. The assay has been
rigorously validated in accordance with the Scientific Working Group for Forensic Toxicology
(SWGTOX) Standard Practices for Method Validation in Forensic Toxicology [167] and the FBI’s
Quality Assurance Standards (QAS) [168] to establish the reliability and limitations of the
methodology. Studies on assay performance with casework-type samples have shown that the
method is fully compatible with downstream genetic testing and that assay sensitivity greatly
exceeds that of traditional lateral flow assays, particularly with trace level samples. Additional
studies, discussed in Chapter 5, that targeted the potential impact of substances commonly
encountered in sexual assault-type evidence (e.g., personal lubricants and spermicidal
compounds) provided additional insight on how best to maximize the successful detection of body
fluids in casework.

The objective of this phase of research was to develop a peptidomic assay for the
expedited identification of vaginal fluid, saliva, and seminal fluid in sexual assault evidence by high
resolution mass spectrometry. This research was completed under four scientific aims. First,
various sample processing protocols were evaluated and compared to ensure optimal biomarker
recovery from solubilized stains. The second aim sought to adapt and transfer an existing prototype
assay to a high-flow operational platform. The third aim employed a population study for the
determination of candidate protein and peptide biomarkers. And lastly, a performance assessment
was conducted using a targeted acquisition method created with the selected biomarkers for each
biological fluid. The final deliverable would contain an expedited proteomic methodology, with the
length enzymatic digestion step eliminated, where surrogate peptides could serve as a means of
body fluid source determination. This peptidomic approach streamlines body fluid identification by
coupling direct protein analysis of whole-body fluids in lieu of workflows that employ time-

consuming enzymatic digestion prior to sample analysis. Additionally, it enabled the swift but
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accurate identification and verification of body fluid-specific biomarkers with a same-day sample
processing workflow for sexual assault analysis.

6.1 Methods and Materials

All research conducted under this phase of the project was reviewed and approved by the
University of Denver IRB for research involving human subjects. Sample collection and research
was conducted in full accordance with the U.S. federal policy for the protection of human subjects
as described in section 2.11. In total, 10 subjects were recruited from the graduate population at
Arcadia University and staff members employed at The Center for Forensic Science Research &
Education.

Semen was self-collected from consenting donors as described in section 2.1.1. Collection
cups were vortexed and 200 pL single use aliquots were prepared and stored at -80 °C until use.
Saliva was collected from consenting volunteers who refrained from eating or drinking for 1 hour
prior to collection. Salivette® collection tubes (Sarstedt, Nimbrecht, Germany) were utilized as
described in section 2.1.1. 200 uL single use aliquots were prepared and stored at -80 °C until use.
Single use body fluid aliquots (semen or saliva) were thawed at room temperature for 30 minutes
then centrifuged for 10 minutes at 10,000 x g. Supernatant was transferred to a clean
microcentrifuge tube and cell pellets were discarded. For this study, vaginal secretions were
collected using only the swabbing method as described in section 2.1.1. Upon receipt, swabs were
dried at room temperature where the cotton tip was removed from the wooden handle and placed
in a clean microcentrifuge tube. Swabs were stored at -80 °C until use. Full cotton swabs were
solubilized in 600 pL of deionized water for 30 minutes with frequent agitation. Swabs were placed
into centrifugal baskets and centrifuged at 10,000 x g for 10 minutes. Supernatant was pooled and
transferred to a clean microcentrifuge tube.

Given laboratory and IRB restrictions in place out of caution for the SARS-CoV-2 virus,
additional biological matrices were purchased from both Lee Biosolutions, Inc. (Maryland Heights,
MO) and Innovative Research, Inc. (Novi, MI) for the population assessment. Upon ordering, it was

requested that each sample was obtained from a unique donor, with no repetitive donors. Biological
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material was shipped on dry ice and immediately stored at -80 °C until use. Saliva and semen
samples were thawed at room temperature for 30 minutes, vortexed, and pulse spun. 200 uL was
removed for analysis and treated as described above. Supernatant was transferred to a clean
microcentrifuge tube and cell pellets were discarded. Full vaginal swabs were cut and treated as
described above.

Body fluid material was quantitated using the bicinchoninic acid (BCA) assay as described
in section 2.1.4. Protein material was extracted using a method described below.

6.1.1 Sample Processing Development and Comparison

For this portion of the research, single source body fluid samples from at least two
individuals were prepared in triplicate for analysis as described above. Final preparation protocol
comparison (Agilent Bond Elut Plexa plate versus Agilent RP-S Cartridges) was performed with
single source body fluid from two individuals prepared in quadruplicate.

6.1.1.1 Protein Precipitation

A total protein amount of 200 ug was diluted with equal volume of cold acetonitrile
(maximum volume of 100 yL) and agitated. Samples were centrifuged at 10,000 x g for 15 minutes
at 4 °C. Supernatant was transferred to a clean microcentrifuge tube and lyophilized to dryness.
Precipitated protein (pelleted material) was discarded. The procedure was repeated with 150 ug,
50 pg, 10 ug, and 1 ug protein amounts. Protein quantities smaller than 50 pL volume equivalent
were brought up to a final volume of 50 yL with 100 mM Tris-HCI prior to acetonitrile addition.

6.1.1.2 Centrifugal Filtration

Two centrifugal filters were evaluated: Spin-XR UF 500 (Corning®, Corning, NY) and
Amicon® Ultracel® (Millipore Sigma, Darmstadt, Germany), both of which had a molecular weight
cutoff of 10 kDa. A total protein amount of 200 pg was diluted with 30% acetonitrile (ACN) with
0.1% formic acid (FA) to a final volume of 500 uL. Centrifugal filters were centrifuged at 10,000 x g

for 10 minutes. Eluate was lyophilized to dryness prior to analysis.
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6.1.1.3 Automated Solid Phase Extraction

Two microextraction cartridges compatible with the AssayMAP Bravo liquid handling
platform were selected for evaluation: C18 sorbent and RP-S sorbent, both purchased from Agilent
Technologies (Santa Clara, CA). A total protein amount of 100 pg was diluted with 0.5%
trifluoroacetic acid (TFA) in deionized water for a final volume of 250 pL. Microextraction cartridges
were primed with 100 yL 50% ACN 0.5% TFA at a flow rate of 300 yL/min. Cartridges were
equilibrated with 50 yL of 0.5% TFA in deionized water at 10 yL/min. 220 yL of diluted sample was
passed over the cartridge at a flow rate of 15 yL/min. Cartridges were washed with 50 yL of 0.5%
TFA in deionized water at a rate of 10 yL/min. Sample material was eluted from the sorbent in 25
pL of 30% ACN 0.1% FA at 5 yL/min. Eluate was lyophilized to dryness prior to analysis.

6.1.1.4 Manifold Solid Phase Extraction

A positive pressure manifold was fitted with either a Bond Elut Plexa or a Bond Elut Plexa
PCX plate (Agilent Technologies). Plates were received in a 96-well cartridge format. Cartridges
were primed with 500 pL of 50% ACN with 0.5% TFA in deionized water and washed with 500 pL
of 0.5% TFA in deionized water. A total protein amount of 100 ug was diluted with 0.5% TFA in
deionized water for a final volume of 500 yL and loaded onto the cartridge. Sorbent material was
washed with 500 yL of 0.5% TFA in deionized water. Sample material was eluted with 100 yL of
30% ACN with 0.1% FA in deionized water. This step was repeated for a total of 200 pL of eluate,
which was lyophilized to dryness prior to analysis.

6.1.2 Development of Data Acquisition Method and Analytical Parameter Optimization

Mixed-source samples containing various protein quantities of semen and saliva were
prepared. Neat biological fluid was quantitated using the BCA assay previously described. Two
sets of samples were generated. First, a saliva major contributor with a semen minor contributor,
with total protein quantities ranging from 80 ug to 99 ug for the major contributor. All mixture
samples contained a total of 100 ug total protein. Second, a semen major contributor with a saliva

minor contributor series was created, prepared in an equivalent manner.
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An inclusion list containing desirable peptide biomarkers was generated from data acquired
during the population study, discussed in the section below. The inclusion list was prepared in
Skyline Proteomics Environmental software v. 20.2.0.343 (MacCoss Labs, University of
Washington) and imported into Xcaliber™ control software on the Q Exactive™ Quadrupole-
Orbitrap™ mass spectrometer (Thermo Scientific, Waltham, MA). Analytical parameters on the Q
Exactive™ Quadrupole-Orbitrap™ mass spectrometer were optimized using single source biological
fluids. Recommended instrument settings outlined by the University of Washington Proteomics
Resource (UWPR) were used as a starting point for parameter optimization.

6.1.3 Population Study and Performance Assessment

Twenty semen samples were purchased from Innovative Research and thirty semen
samples were purchased from Lee Biosolutions, for a total of 50 semen donors. An additional 5
semen samples from vasectomized donors were purchased from Lee Biosolutions. Twenty-five
saliva samples were purchased from Innovative Research and Lee Biosolutions for a total of 50
saliva donors. Twenty-five vaginal swabs were purchased from Lee Biosolutions and seven vaginal
swabs were collected under IRB, for a total of 32 vaginal swab donors. Regardless of donor source,
received vaginal swabs were stored at -80 °C upon receipt. Population samples were purchased
due to SARS-CoV-2 restrictions put in place for collection of biological samples under the approved
IRB. Performance assessment samples were divided into six categories: sensitivity, aged,
substrates, contaminants, mixtures, and simulated sexual assault kit. All samples were prepared
in triplicate as described in Table 6.1. Substrates were washed with Tide Natural detergent in cold
water and dried prior to use to ensure consistency between samples.

Population samples were quantitated using the BCA assay and extracted using the Bond
Elut Plexa plate protocol as described above. Performance assessment samples were extracted
using Waters Oasis HLB cartridges (Milford, MA), the manufacturer equivalent of the Bond Elut
Plexa chemistry. This switch was induced by time constraints and backordered consumables due
to SARS-CoV-2 testing. 100 ug total protein was used for analysis. Extraction procedures between

the two manifold cartridges were equivalent, with the exception of increasing the organic elution
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solvent to 35% ACN with 0.1% FA with the Waters Oasis HLB cartridges, per manufacturer
recommendations. Eluate was lyophilized to dryness for LC-MS/MS analysis.

Table 6.1. Performance assessment sample preparation parameters. Room temperature (RT).
Samples were prepared in triplicate, with the exception of laundered sheets (substrates).

Category Sample Description
. Blank Cotton Swab No body fluid applied
Negative Blank Vaginal Swab N I lied
Control ginal Swa o semen or saliva applie i
Blank Oral Swab [No semen or vaginal fluid applied
Vaginal Swab aginal swab + 2.5uL Semen
Oral Swab Oral swab + 2.5 uL Semen
Sexual Rectal Swab Rectal swab + 2.5 uL Semen
Assault Kit Vaginal Swab aginal swab + 10 uL Saliva
Breast Swab ICotton swab + 2 drops water, rubbed on skin for 10 seconds + 10 uL Saliva
Rectal Swab Rectal swab + 10 uL Saliva
Mixture 1 Half swab + 10 uL Saliva+ 2.5 uL Semen
Mixtures Mixture 2 Half swab + 50ulL Saliva + 2.5 uL Semen
Mixture 3 Half swab + 10 uL Saliva + 25 uL Semen
Mixture 4 Half swab + 10 uL Saliva+ 10 uL Semen
Cotton Underwear orn by female for 8 hours + 2.5 uL Semen applied to crotch area
Denim 100% Cotton denim jeans + 2.5uL Semen, dried RT
Denim [100% Cotton denim jeans + 10 uL Saliva, dried RT
Polyester Sheet 100% polyester bed sheet + 2.5 uL Semen, dried RT
Substrates Polyester Sheet 100% polyester bed sheet + 10 uL Saliva, dried RT
Poly Blend Sheet 60% poly 40% cotton sheet + 2.5 uL Semen, dried RT
Poly Blend Sheet 0% poly 40% cotton sheet + 10 uL Saliva, dried RT

Laundered Polyester Sheet |1 mL semen, dried RT, laundered with Tide Natural
Laundered Poly Blend Sheet |1 mL semen, dried RT, laundered with Tide Natural

Bed Sheet Controls Cutting of laundered bedsheet 2 ft. from semen stain
Lubricant aginal swab, swab half + 2.5 uL Semen + 5 uL water-based lubricant
Lubricant aginal swab, swab half + 2.5 uL Semen + 5 uL silicon-based lubricant
Lubricant aginal swab, swab half + 2.5 uL Semen + 5 uL natural-based lubricant
10% Bleach [10% bleach prepped in water, cotton swab + 25 uL 10% bleach + 2.5 uL Semen
Contaminants 10% Bleach 110% bleach prepped in water, cotton swab + 25 uL 10% bleach + 10 uL Saliva
Dish Soap 1 drop Dawn blue in 1 mL water, cotton swab + 25 uL soap solution + 2.5 uL Semen
Dish Soap 1 drop Dawn blue in 1 mL water, cotton swab + 25 uL soap solution + 10 uL Saliva
Menstrual Blood aginal swab procured during menses, swab half
Menstrual Blood aginal swab procured during menses, swab half + 2.5 uL Semen
Menstrual Blood aginal swab procured du menses, swab half + 10 uL Saliva

Collection +2 days, swab half

Collection +3 days, swab half

Collection +7 days, swab half

ICollection +30 days, swab half
aginal Swab Collection, swab half + 2.5 uL Semen +2 days
aginal Swab Collection, swab half + 2.5 uL Semen +3 days
aginal Swab Collection, swab half + 2.5 uL Semen +7 days
aginal Swab Collection, swab half + 2.5 uL Semen +30 days
aginal Swab Collection, swab half + 10 uL Saliva +2 days
aginal Swab Collection, swab half + 10 uL Saliva +3 days
aginal Swab Collection, swab half + 10 uL Saliva +7 days
aginal Swab Collection, swab half + 10 uL Saliva +30 days

Half swab + 2.5 uL Semen + 2 days

Half swab + 2.5 uL Semen + 3 days

Half swab + 2.5 uL Semen + 7 days

Half swab + 2.5 uL Semen + 30 days

Half swab + 10 uL saliva + 2 days

Half swab + 10 uL saliva+ 3 days

Half swab + 10 uL saliva+ 7 days

Half swab + 10 uL saliva + 30 days

1/2 swab + 150 uL 1:100 Semen

1/2 swab + 150 uL 1:1,000 Semen

Seminal Fluid 1/2 swab + 150 uL 1:2,000 Semen

1/2 swab + 150 uL 1:5,000 Semen

[1/2 swab + 150 uL 1:10,000 Semen

1/2 swab + 150 uL 1:2 Saliva

1/2 swab + 150 uL 1:10 Saliva

Saliva 1/2 swab + 150 uL 1:50 Saliva

1/2 swab + 150uL 1:100 Saliva

1/2 swab + 150 uL 1:500 Semen

[1/2 swab + 150 uL 1:2 Vaginal Extract (full swab + 500 uL water)

1/2 swab + 150 uL 1:10 Vaginal Extract (full swab + 500 uL water)

Vaginal Fluid [1/2 swab + 150 uL 1:50 Vaginal Extract (full swab + 500 uL water)

[1/2 swab + 150 uL 1:100 Vaginal Extract (full swab + 500 uL water)

[1/2 swab + 150 uL 1:500 Vaginal Extract (full swab + 500 uL water)

Vaginal Swab

Semen + Vaginal Swab

Aged Swabs Saliva + Vaginal Swab

Semen

Saliva

Sensitivity
Swabs
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6.1.4 Protein Identification by LC-MS/MS

Lyophilized samples were reconstituted in 50 yL of 2% ACN with 0.1% FA in deionized
water. Acquisition was performed using 5 uL of sample per injection on a Q Exactive™ Quadrupole-
Orbitrap™ mass spectrometer (Thermo Scientific, Waltham, MA). A Waters® ACQUITY UPLC BEH
C18 analytical column (1 x 100 mm, 1.7 um, 130A) was used for separation (Waters, Milford, MA).
Mobile phase A consisted of water with 0.1% FA and mobile phase B consisted of ACN with 0.1%
FA. Separation initiated at 5% B followed by a linear 5-35% B gradient over 17 minutes, a 3-minute
hold at 90% B, followed by a 5-minute re-equilibration at a 0.40 mL/min flow rate and column
temperature of 50 °C.

Acquired data was searched using Protein Metrics Byonic™ (v. 3.8) software (Protein
Metrics Inc., Cupertino, CA). A no enzyme search method was created with the following criteria:
for sample digestion parameters, the cleavage site was left blank, the cleavage side was set to C-
terminal, the digestion specificity as nonspecific (slowest), and the number of missed cleavages
was set to 2; for instrument parameters, the precursor mass tolerance was input as 5 ppm,
fragmentation type was set to QTOF/HCD, fragment mass tolerance input as 10 ppm, and
recalibration selected as none; for modification parameter, the total common max was input as 2
and the total rare max was input as 1, with pyro-Glu, oxidation, and deamidation set as fixed
modifications. No parameters were input for glycans, S-S Xlink bonded pairs, or inclusion. Under
the advanced option, the maximum precursor mass was set to 4,000, with the maximum number
of precursors per MS2 input as 1, and smoothing width set to 0.01 m/z. The whole human proteome
(UniProt ID UP000005640) was utilized for data searches during preliminary assessments. A
focused database containing the amino acid sequences of selected protein biomarkers was
generated for performance assessment data acquisition. Data files searched against either the
whole human proteome or focused database were further analyzed using Protein Metrics Byologic®
(v. 3.9-32) software (Protein Metrics, Inc.). Searched Byonic™ files were imported into Byologic® for

additional peptide sequence elucidation.
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6.2 Results and Discussion

6.2.1 Sample Processing Development and Comparison

When analyzing complex matrices such as seminal fluid, saliva, and vaginal fluid,
pretreatment steps are necessary to isolate peptide material from unwanted salts, intact proteins,
or cellular debris, as well as environmental contaminants. Traditional sample processing
techniques for cleanup employ reverse phase solid phase extraction. A previously developed
Waters Oasis® HLB cartridge extraction protocol using a positive pressure manifold [169] was
replaced with an improved preparation protocol. Several preparation protocols were developed for
comparison, including two automated reverse phase extraction approaches on the AssayMAP
Bravo liquid handling platform, two manifold solid phase extraction plate-based approaches,
centrifugal filtration methods, and a precipitation method. These various approaches were
evaluated using a set of single source body fluid matrix samples. Data was acquired using the
Thermo Q Exactive™ Quadrupole-Orbitrap™ mass spectrometer (herein referred to as the Q
Exactive). In general, high confident identifications were observed for multiple salivary markers
including statherin (STAT), submaxillary gland androgen-regulated protein 3B (SMR3B), histatin-1
(HIS1) and -3 (HIS3), cystatin-SN (CST1), and multiple proline-rich protein isoforms (PRP_1,
PRP_2, PRP_3, PRP_4, and PRPC). Several seminal fluid biomarkers including semenogelin 1
(SEMG1), semenogelin 2 (SEMGZ2), prostate specific antigen (KLK3), and prostatic acid
phosphatase (PPAP) were detected. Multiple vaginal fluid proteins including cornulin (CRNN),
suprabasin (SBSN), and involucrin (IVL) were identified as well.

Developing a single uniform preparation protocol compatible with all matrices of interest
proved challenging. Of the preparation protocols initially developed, both centrifugal filtration as
well as the protein precipitation protocols were removed from further consideration. Centrifugal
filtration methods utilized molecular weight cutoff (MWCO) filters ranging from 10,000 to 50,000
Daltons (Da). This methodology was consistently unable to identify the majority of seminal fluid
markers (Figure 6.1), with dropout of proteins KLK3 and PPAP observed. Regarding the protein

precipitation protocol, when lower quantities (i.e., below 10 pg of total protein) were prepared, no
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precipitation occurred, leading to large amounts of 10 kDa or greater proteins binding to the
analytical column.

Two automated approaches using the AssayMAP Bravo liquid handling platform were
developed (C18 and RP-S microextraction cartridges) as well as two manifold-based approaches
(Agilent Bond Elut Plexa and Bond Elut Plexa PCX plate-based cartridges). Here, the C18
microextraction cartridges consistently clogged when saliva was applied to the sorbent material, to
the extent that clogged cartridges did not produce eluate for analysis. This occurred regardless of
protein quantities applied (50 to 150 ug) and is contributed to the viscosity of the biological matrix,
even once cellular material was removed. In contrast, the RP-S cartridges did not exhibit the same
issue, regardless of biological fluid evaluated (Figures 6.2-6.4). Regarding the manifold-based
procedures, the Bond Elut Plexa consistently provided greater coverage of protein biomarkers,
albeit at lower intensities than the Plexa PCX sorbent, as exhibited in the saliva matrix in Figure
6.5. Furthermore, the Bond Elut Plexa displayed greater coverage of peptide signatures (Figure
6.6). Moving forward, the automated RP-S microextraction cartridge and Bond Elut Plexa manifold
protocols were selected for further assessment using multiple biological replicates.

Sample processing protocols were compared using consistent protein quantities to assess
biomarker identification rates. Four replicate samples from two individuals for a total of eight
samples per preparation protocol (RP-S and Bond Elut Plexa) were prepared and analyzed on the
Q Exactive. In summary, the Bond Elut Plexa plate was selected as the optimal sample processing
protocol for the remainder of the study. Biomarker identification in vaginal fluid was generally
comparable between the two processing protocols (Figure 6.7). Cornulin and suprabasin were
consistently identified whereas involucrin was absent from two of four replicates from the Donor #1
Bond Elut Plexa preparation and one of four replicates of Donor #1 RP-S cartridge preparation. All
seminal fluid biomarkers were identified across all samples and preparation protocols (Figure 6.8).
Slightly elevated peak intensities were observed for SEMG1 with the Bond Elut Plexa preparation
whereas SEMG2, KLK3, and PPAP intensities were slightly elevated with the RP-S cartridge

protocol. Similar to vaginal fluid and seminal fluid, most salivary biomarkers were detected across
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all individuals and sample preparation protocols but with varying signal intensities (Figure 6.9).
However, statherin and histatin-1, which are critical for saliva identification, were absent from a
subset of the replicates prepared from Donor #2 using the RP-S cartridges (Figure 6.10). Since
the detection of these proteins is critical for a confirmatory serological identification of saliva, the
Bond Elut Plexa plate was selected for the remainder of research development.

The unbalanced distribution of detected proteins is attributed to the various sorbent
material chemistries of the manifold plate protocols. The Bond Elut Plexa PCX plate utilizes strong
cation ion exchange chemistries and was designed for the concentration and retention of alkaline
analytes. In contrast, the Bond Elut Plexa employs a standard nonpolar sorbent, allowing the
analyst to control retention based on the type and pH of mobile phase passed over the sorbent

column.

Millipore Centrifugal Protein Precipitation Corning® Centrifugal
Filter Protocol Protocol Filter Protocol

Donor #1 Donor #2 Donor #1 Donor #2 Donor #1 Donor #2

L
summed, Level 0)|

L !
Normalize Column(XIC areat

imples-Replifats Alias name

H Semenogelin 1
O Semenogelin 2

Figure 6.1. Area comparison between Millipore centrifugal filters, protein precipitation, and
Corning® centrifugal filters for the detection of seminal fluid from two donors. Proteins KLK3 and
PPAP were not detected using these preparation protocols.
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C18 Microextraction Protocol Agilent RP-S Cartridge Protocol

Donor #1 Donor #2 Donor #1 Donor #2

Normalize Column(XIC areasummed, Level 0)

0 Samgles-Rs MSAlias name
H Semenogelin 1 I Prostate Specific Antigen
O Semenogelin 2 B Prostatic Acid Phosphatase

O Prolactin Inducible Protein

Figure 6.2. Area comparison between C18 and RP-S microextraction cartridges using the
AssayMAP liquid handling platform for the detection of seminal fluid from two donors.

c18
Microextraction Agilent RP-S Cartridge Protocol
Protocol
Donor #1 Donor #1 Donor #2 Donor #3

Normalize Column(XIC areasummed, Level 0)

0.154

0.1
0.05 ‘
]

M Basic Salivary Proline-Rich Protein 1 I Statherin
M Basic Salivary Proline-Rich Protein 2 O Histatin-1
[ Basic Salivary Proline-Rich Protein 3 M Histatin-3
O Basic Salivary Proline-Rich Protein 4 O Submaxillary Androgen Regulated
O Salivary Acidic Proline-Rich Protein 3B
Phosphoprotein 1/2

Figure 6.3. Area comparison between C18 and RP-S microextraction cartridges using the
AssayMAP liquid handling platform for the detection of saliva from three donors. Two samples
prepared with C18 cartridges did not produce eluate for analysis and is reflected by the single
sample set reported.
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C18 Microextraction Protocol Agilent RP-S Cartridge Protocol

Donor #1 Donor #2 Donor #3 Donor #1 Donor #2 Donor #3

Notmalize Column(XIC areasummed, Level 0)

Reg]i

B Periplakin O Suprabasin
HE Involucrin W Cornulin

Figure 6.4. Area comparison between C18 and RP-S microextraction cartridges using the
AssayMAP liquid handling platform for the detection of vaginal fluid from three donors.

Agilent Bond Elut Plexa PCX Plate Protocol Agilent Bond Elut Plexa Plate Protocol

Donor #1 Donor #2 Donor #3 Donor #1 Donor #2 Donor #3

Level 0)

Normalize Column(XIC

0.1
ol _me w - | - mpled-Rep) SAliasiflame

O Basic Salivary Proline-Rich Protein 1 M Statherin
O Basic Salivary Proline-Rich Protein 2 O Histatin-1
[ Basic Salivary Proline-Rich Protein 3 O Histatin-3
O Basic Salivary Proline-Rich Protein 4 B Submaxillary Androgen Regulated Protein 3B
[ Salivary Acidic Proline-Rich Phosphoprotein
12

Figure 6.5. Area comparison between Bond Elut Plexa PCX and Bond Elut Plexa plates on a
positive pressure manifold for the detection of saliva from three donors.
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sp|P02808| STAT_HUMAN Statherin OS=Homo sapiens
10 20 30 40 50 60

MKFLVFAF ILALMVSMIGADS SEEKFLRRIGRF GYGYGPY(QPVPEQPLYPQPYQPQYQQYTF
————=——=——Plexa PCX Sample Set #1

Plexa PCX Sample Set #2
Plexa PCX Sample Set #3

Plexa Sample Set #1

Plexa Sample Set #2

Plexa Sample Set #3

Figure 6.6. Peptide coverage of salivary protein statherin for Bond Elut Plexa PCX (black, blue, and
red bars) and Bond Elut Plexa (yellow, purple, and green bars) using triplicate samples.

Agilent Bond Elut Plexa Plate Protocol Agilent RP-S Cartridge Protocol
Donor #1 Donor #2 Donor #1 Donor #2
Replicates 1-4 Replicates 1-4 Replicates 1-4 Replicates 1-4

(NI

M Involucrin
[ Suprabasin
O Cornulin

Figure 6.7. Area comparison between Bond Elut Plexa plate and RP-S microextraction cartridge
protocol for the detection of vaginal fluid from two donors prepared in quadruplicate.
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Agilent Bond Elut Plexa Plate Protocol

Agilent RP-S Cartridge Protocol

Donor #1
Replicates 1-4

Donor #2
Replicates 1-4

Donor #1
Replicates 1-4

Donor #2
Replicates 1-4

W Semenogelin 1
W Semenogelin 2

[ Prostate Specific Antigen
O Prostatic Acid Phosphatase

Figure 6.8. Area comparison between Bond Elut Plexa plate and RP-S microextraction cartridge
protocol for the detection of seminal fluid from two donors prepared in quadruplicate.

Agilent Bond Elut Plexa Plate Protocol

Agilent RP-S Cartridge Protocol

Donor #1
Replicates 1-4

Donor #2
Replicates 1-4

Donor #1
Replicates 1-4

Donor #2
Replicates 1-4

L
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ks By By by

a0 141 150 L
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O Basic Salivary Proline-Rich Protein 1
W Basic Salivary Proline-Rich Protein 2
M Basic Salivary Proline-Rich Protein 3
O Basic Salivary Proline-Rich Protein 4
O Salivary Acidic Proline-Rich Phosphoprotein 1/2

[ Statherin

O Submaxillary Androgen Regulated Protein 3B

O Histatin-1
@ Histatin-3

Figure 6.9. Area comparison between Bond Elut Plexa plate and RP-S microextraction cartridge
protocol for the detection of saliva from two donors prepared in quadruplicate.
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Agilent Bond Elut Plexa Plate Protocol Agilent RP-S Cartridge Protocol

Donor #1 Donor #2 Donor #1 Donor #2
Replicates 1-4 Replicates 1-4 Replicates 1-4 Replicates 1-4

I

Figure 6.10. Area comparison between Bond Elut Plexa plate and RP-S microextraction cartridge
protocol for the detection of saliva with focus on highly specific salivary biomarkers. Elevated
statherin (dark green) and histatin-1 (light green) bars were observed for Bond Elut Plexa plate
protocol.

M Statherin O Histatin-1
E Submaxillary Androgen Regulated Protein 3B M Histatin-3

6.2.2 Development of Data Acquisition Method and Analytical Parameter Optimization

A previously designed high-flow (0.40 mL/minute flow rate) analytical method that
employed a 2.1 mm internal diameter analytical column [169] was transferred to a 1 mm internal
diameter microbore analytical column. The original method was developed for a quadrupole time-
of-flight (QTOF) mass spectrometer and was transferred to the Q Exactive. A Waters® BEH C18
analytical column (300A, 1.7 um, 1 mm X 150 mm) was utilized to develop the initial run conditions;
however, in order to increase throughput, a Waters® BEH C18 1 x 100 mm analytical column was
employed to create the final 25-minute analytical run (Table 6.2). In total, 35 minutes of run time
per sample injection was saved through optimization of the analytical method. Representative
chromatography for each target biological fluid can be seen in Figure 6.11. Analytical columns are
manufactured in a multitude of diameters, lengths, and stationary phase materials. Column
selection has the greatest effect on efficiency and speed of analysis, as seen by the shortening of
run time during optimization. Although the stationary phase material remained the same, by
decreasing the internal diameter, the flow rate was subsequently lowered. These reductions

allowed for increased chromatographic efficiency and improved resolution.
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Table 6.2. Separation gradient of 25-minute analytical method on the Q Exactive analytical
platform.

Time (min) | Flow (mL/min) %B
0.00 0.040 5.0
17.40 0.040 35.0
17.50 0.040 90.0
20.00 0.040 90.0
20.10 0.040 5.0
20.25 0.150 5.0
2425 0.150 5.0
245 0.040 5.0
25 Stop 5.0

Column Temperature 60 °C
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Figure 6.11. Representative chromatography for (A) saliva, (B) seminal fluid, and (C) vaginal fluid
biological matrices on the Q Exactive analytical platform.

The Q Exactive was selected for this research given its enhanced sensitivity limits when
compared with the original QTOF platform available. Given the inherent construction of the orbitrap
mass analyzer, the selection and transmission of precursor to product ions was of interest.
Optimizing acquisition parameters for the Q Exactive was conducted to ensure optimal detection

of fragmentation products was achieved (Table 6.3). Low-abundance targets, such as salivary
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protein statherin, were found to have increased signal regardless of matrix complexity. In order to
ensure the highest ionization efficiency, source conditions including sheath gas flow rate, nozzle
voltage, and gas temperatures were evaluated for optimal performance. The final source and tune
parameters for the analytical method are outlined in Table 6.4. Overall, a majority of parameters
were unchanged from those recommended by UWPR, with the exception of the Normalized
Collision Energy ((N)CE) and Minimum Automatic Gain Control (AGC) Target.

To preferentially select desired peptide biomarkers further, a targeted acquisition method
was developed for use during the performance assessment. The peptide match parameter under
dd settings of the Q Exactive was set as ‘on’ and a peptide inclusion list was generated in Skyline
software. Skyline is a vendor-neutral software that assisted with organizing selected peptide
biomarkers, their m/z ratio, and associated retention times into a file type that could be imported
into the Thermo Xcaliber™ software. The inclusion list was input into the targeted acquisition;
however, the Q Exactive MS/MS parameters were still able to detect peptides not within the
inclusion list, but preference was set for the inclusion list peptides. Although the Q Exactive
prioritized the inclusion list biomarkers, it was of interest to gather additional information outside of
the inclusion list for future method validation and additional studies regarding biomarker specificity.
A series of mixed-source samples were prepared to further evaluate the use of a targeted
acquisition method (Figure 6.12). Although the targeted and data dependent acquisition methods
behaved similarly, the detected of additional peptide markers from minor contributor biological fluids
was observed. For example, when 1 pg of saliva was mixed with 99 pg of semen, one additional
peptide was identified with the targeted acquisition method. The targeted approach routinely
identified more peptide biomarkers for a saliva minor contributor in comparison with the data
dependent acquisition method. Therefore, the peptide biomarkers of the inclusion list were verified
with reference material and the targeted approach was utilized for the performance assessment
portion of this research. Verification of peptide mass, charge, retention time, and MS2 spectrum

quality were all taken into consideration prior to generating the final inclusion list.
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Historically, the relationship between chromatography and depth of coverage achieved via
mass spectrometry was an inverse relationship, with a trade-off for speed of separation in relation
to depth of proteome coverage considered. However, with advancements in analytical
instrumentation, separation science, and software applications, the gap between sacrificing
proteome coverage for speed of analysis has been minimized. The proteome is complex in nature
and introduces inherent analytical challenges, particularly with untargeted characterization.
Enhancing the chromatographic separation of protein constituents therefore increases the

efficiency of detection using mass spectrometry techniques, allowing for greater depth of proteome

coverage.

Table 6.3. MS and MS/MS performance parameters selected on the Q Exactive analytical platform.

MS Settings
Resolution 70,000
AGC Target 3.00E+06
Maximum IT 50 ms
Scan Range 350to 2000
dd-MS2/ dd-SIM Settings
Microscans 1
Resolution 17,500
AGC Target 1.00E+05
Maximum IT 100 ms
Loop Count 10
Isolation Window 22m/z
(N)CE 27
dd Settings
Minimum AGC Target 1.00E+03
Peptide Match Preferred
Exclude Isotope On
Dynamic Exclusion 6s
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Table 6.4. Source parameters optimized on the Q Exactive analytical platform.

Scan Range 400to 2,000 m/z
Polarity Positive
Resolution 70,000
Sheath Gas Flow Rate 35
Auxiliary Gas Flow Rate 10
Auxiliary Gas Temperature 200°C
Sweep Gas Flow Rate 1
Spray Voltage 3.5kV
Capillary Temperature 250°C

Targeted vs. Data Dependent Acquisition
45
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35
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30 28
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25 2422
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37 3737 37
3635 36

No. Peptides Identified

SE SA SE SA SE SA SE SA SE SA SE SA SE SA SE SA
80SA +20SE 90SA +10SE 95SA +5SE 99SA +1SE B80SE +20SA 90SE +10SA 95SE +5SA 99SE +18A

Target = DDA

Figure 6.12. Comparison between a targeted acquisition (blue bars) and a data dependent
acquisition (purple bars) method using a series of mixed-source samples. Samples were prepared
by total protein amount and are represented on the x-axis. Methods were compared according to
the number of selected peptides identified.

6.2.3 Biomarker Selection and Population Study

In order to accurately assess the developed analytical method and preliminary biomarkers,
a population assessment was performed. This experiment was designed to conclude if a candidate
biomarker was routinely identified within a larger sample population, further supporting its use as a
specific biomarker for body fluid identification. For this portion of the study, an evaluation was
conducted at the protein level. Parameters taken into consideration for overall assessment were
percent coverage of total amino acid sequence, number of unique peptides, signal intensity, and
best score. Percent coverage describes the portion of the protein sequence identified by the

software. Using the complete amino acid sequence, percent coverage represents the number of
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amino acids detected in relation to the full sequence. The number of unique peptides represents
the number of peptide spectrum matches and does not include duplicate identifications made by
the software. Signal intensity simply describes the total intensity of the MS/MS peaks produced.
And lastly, best score represents the quality of the peptide spectrum match and serves as an
indicator of correctness.

In summary, purchased semen samples from healthy male donors displayed an average
donor age of 31.6 years, with an age range of 18 to 54 years. A majority (80%) of semen samples
were collected from Caucasian donors, with 3 donors of African American descent, 3 donors of
Hispanic descent, 2 donors of Asian descent, and 2 donors from Asian/Caucasian descent. Semen
purchased from vasectomized male donors displayed an average donor age of 51.6 years, with an
age range of 39 to 61 years. All vasectomized samples were donated by individuals of Caucasian
descent. Overall, this approach consistently identified SEMG1, SEMG2, KLK3, and PPAP across
the population. Summary search results for non-vasectomized and vasectomized sample sets can
be found in Tables 6.5 and 6.6, respectively, with complete detailed search results outlined in
Appendix K. Only a single instance of protein dropout was observed within the sample population
(sample ID 31978-07), with KLK3 not detected in this particular sample. Otherwise, all non-
vasectomized and vasectomized samples were positive for the four target protein biomarkers
stated previous. There was little difference between the two sample populations. A slightly greater
average percent coverage was exhibited by the non-vasectomized population for biomarkers KLK3
and PPAP, displaying a 15.18% and 15.48% increase, respectively. There was no change in
percent coverage observed for SEMG2 and a minute 2.48% increase in coverage for vasectomized
samples for SEMG1. A similar trend was illustrated for the average number of unique peptides
identified by the bioinformatics software. Overall, the developed sample preparation protocol was
able to characterize semen-specific protein biomarkers in both non-vasectomized and
vasectomized samples. These results were used to identify surrogate peptides that are consistently

identified across all individuals, as described in the next section.
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Purchased saliva samples from healthy donors displayed an average donor age of 40.38
years, an age range of 19 to 70 years, with 48% female and 52% male donors represented. Racial
decent was not provided for this sample set. Similar to the semen samples, consistency in protein
coverage was observed with multiple protein biomarkers being confidently identified in the saliva
sample population. Summary search results can be found in Table 6.7 with complete detailed
search results outlined in Appendix L. Several proteins were identified across all samples (e.g.,
STAT, SMR3B, and HIS1). Other targets, such as HIS3 and CST1 were identified in 64% and 68%
of samples, respectively. While more protein loss was observed with the saliva population in
comparison with the semen population, it is likely that this is a function of the data dependent
acquisition approach utilized. A targeted method would likely detect even the proteins which were
not identified in each sample. This is due to certain salivary biomarkers being of lower abundance
in relation to the limited number of precursor ions which the instrument can measure in parallel.

Unexpected results were observed for the protein alpha amylase-1. Although it was
detected in 90% of the sample population, this protein was characterized with low percent coverage
and by a single unique peptide. It was anticipated that the source parameters selected were not
adequate at producing complete fragmentation of this particular protein. However, given the poor
specificity of this protein for the saliva biological matrix, parameters were not changed in order to
continuously identify more characteristic salivary biomarkers. In summary, the developed sample
preparation protocol was able to characterize saliva-specific protein biomarkers. As with the semen
targets, these results will be used to identify signature peptides that are both sensitive and specific
for the creation of a targeted analytical method.

A total of 32 individuals were retained for the vaginal fluid population assessment. In
summary, purchased vaginal swab samples (25 samples) from healthy donors displayed an
average donor age of 39.16 years, with an age range of 23 to 61 years. All vaginal swab samples
were collected from Caucasian donors. No identifying information was recorded for IRB collected
samples (7 samples). Summary search results can be found in Table 6.8, with complete detailed

search results outlined in Appendix M. Overall, no candidate protein biomarkers were consistently
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detected in all samples of this population; however, cornulin displayed the highest occurrence rate
with accurate detection in 31 of 32 samples evaluated. Furthermore, this protein demonstrated an
average coverage rate of 52%. Secondary candidate biomarkers identified during sample
preparation protocol development, suprabasin and involucrin, exhibited favorable population
occurrence of 78% and 81%, respectively. The protein periplakin, a biomarker included within the
previously described bottom up proteomic method (Chapters 2 and 3), displayed poor detection
and protein coverage, prompting reevaluation of biomarker inclusion. With previous
experimentation conducted on vaginal fluid, the lower sample occurrence, percent coverage, and
number of unique peptides was anticipated to be less desirable than the results of seminal fluid
and saliva evaluation. Nevertheless, the proteins detected are consistent with those of previous
studies, indicating the reproducibility of biomarker recovery and identification. Of the 32 samples
evaluated within this population assessment, the four candidate biomarkers were not identified
within one sample (sample ID C1). As with the semen and saliva targets, these results will be used
to identify surrogate peptides that are both sensitive and specific for the creation of a targeted
analytical method.

A piece of data worthy of consideration is the detection of protein biomarker glycodelin in
a single sample of the vaginal swab population (sample ID 5488). Although detected in only a single
sample, this identification is promising for future development of top down proteomic
methodologies. This particular protein is expressed in multiple body fluids, such as vaginal and
seminal fluid, but displays variation in N-linked glycosylation patterns that can be exploited for fluid
specificity [170]. With a challenging body fluid such as vaginal fluid, targeting additional biological
properties, such as glycan chains, may be beneficial to identifying specific protein biomarkers, and

therefore, increasing the specificity of the overall proteomic assay.
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Table 6.5. Descriptive statistics of non-vasectomized semen population.

% Coverage ﬁ:plllig:: Intensity Best Score %Dziaen;t’?algs
- Minimum 71.43 234 7.41E+08 1016.10
g Maximum 95.02 465 9.33E+09 1345.90 100%
] Median 87.01 367 3.66E+09 1157.50
@ Average 86.83 360 3.91E+09 1165.05
o~ Minimum 65.81 153 5.57E+08 1112.30
g Maximum 85.60 331 4.93E+09 1491.40 100%
% Median 78.52 264 2.52E+09 1359.00
Average 77.87 261 2.57E+09 1348.34
Minimum 0.00 0 0.00E+00 0.00
e Maximum 44.83 33 2.25E+08 705.00 98%
g' Median 34.87 11 2.12E+07 469.40 (49/50)
Average 32.27 12 4.43E+07 443.41
Minimum 3.10 1 1.43E+05 206.50
& Maximum 53.63 64 4.32E+08 698.40 100%
& Median 25.39 11 3.08E+07 439.00 ’
Average 26.98 16 5.70E+07 45217
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Table 6.6. Descriptive statistics of vasectomized semen population.

% Coverage ﬁ:plllig:: Intensity Best Score %D:?e";'ﬂ:s

- Minimum 87.88 323 2.42E+09 1114.90
g Maximum 90.69 438 4 48E+09 1180.30 100%
w Median 89.83 356 3.21E+09 1146.50
@ Average 89.31 372 3.33E+09 1147.86
~ Minimum 74.57 210 1.63E+09 1350.80
g Maximum 82.65 308 2.72E+09 1391.20 100%
i Median 76.46 299 2.65E+09 1375.90
@ Average 77.87 269 2.30E+09 1372.38

Minimum 12.26 2 7.74E+05 137.50
e Maximum 23.75 8 1.27E+07 483.60 100%
2 Median 16.86 5 5.24E+06 460.40 ’

Average 17.09 5 6.60E+06 400.76

Minimum 3.63 1 3.76E+05 174.00
& Maximum 20.98 9 1.08E+07 428.90 100%
o Median 11.66 3 3.17E+086 307.60

Average 11.50 4 4.34E+06 301.86
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Table 6.7. Descriptive statistics of saliva population.

1 0,
% Coverage f':plllig:: Intensity Best Score AD:?:;E:SS
- Minimum 0.00 0 0.00E+00 0.00
o Maximum 95.92 213 2.01E+09 1115.80 98%
E Median 88.45 67 2.44E+08 750.95 (49/50)
Average 65.31 83 4.61E+08 730.27
o~ Minimum 0.00 0 0.00E+00 0.00
o) Maximum 95.67 140 5.78E+08 1068.00 96%
E Median 47.84 23 4 41E+07 591.00 (48/50)
Average 46.64 33 1.05E+08 587.88
. Minimum 6.84 1 2.79E+05 125.50
o! Maximum 81.55 96 7.75E+08 1051.10 100%
E Median 67.80 44 1.79E+08 783.30
Average 61.67 45 2.28E+08 749.83
- Minimum 0.00 0 0.00E+00 0.00
o Maximum 85.42 94 8.56E+08 1068.20 96%
E Median 45.97 30 7.76E+07 569.85 (48/50)
Average 44.74 34 1.38E+08 589.48
Minimum 8.43 4 5.33E+06 274.80
8 Maximum 90.36 161 1.65E+09 1105.80 100%
E Median 90.36 91 5.33E+08 734.35 °
Average 80.51 90 5.90E+08 743.71
Minimum 43.55 27 1.44E+07 246.80
'E Maximum 69.35 176 5.48E+08 623.00 100%
"3 Median 60.49 96 1.44E+08 478.90
Average 59.93 94 1.62E+08 468.67
m Minimum 65.82 29 2.08E+07 429.80
) Maximum 7215 140 1.18E+09 635.20 100%
= Median 72.15 79 4.06E+08 538.40
@ Average 71.32 81 4.58E+08 539.35
Minimum 24 .56 4 9.17E+05 273.20
7y Maximum 66.67 117 3.03E+08 605.20 100%
I Median 47.37 44 4.27E+07 495.10
Average 51.65 49 7.59E+07 481.03
Minimum 0.00 0 0.00E+00 0.00
a Maximum 62.74 31 1.30E+08 683.30 64%
I Median 43.14 4 1.82E+06 376.00 (32/50)
Average 33.49 5 9.75E+06 302.25
Minimum 0.00 0 0.00E+00 0.00
- Maximum 30.50 13 1.26E+07 520.10 68%
3 Median 11.35 2 9.56E+05 330.20 (34/50)
Average 10.70 3 1.72E+06 258.02
< Minimum 0.00 0 0.00E+00 0.00
T Maximum 21.33 16 3.64E+06 555.00 90%
= Median 2.15 1 4.29E+05 351.65 (45/50)
< Average 3.18 1 5.96E+05 315.77
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Table 6.8. Descriptive statistics of vaginal swab population.

% Coverage ﬁ:prlli?i:: Intensity Best Score %D:?erzgceis
Minimum 0.00 0 0.00E+00 0.00
Z Maximum 75.76 95 3.85E+08 1105.70 96.8%
5 Median 57.58 56 9.72E+07 944.85 (31/32)
Average 52.02 55 1.14E+08 792.23
Minimum 0.00 0.00 0.00E+00 0.00
% Maximum 57.29 35.00 3.85E+07 683.60 78.1%
g Median 12.03 5.00 2.96E+06 224.85 (25/32)
Average 13.98 7.66 6.38E+06 267.29
Minimum 0.00 0.00 0.00E+00 0.00
d Maximum 45.47 45.00 6.61E+07 675.40 81.2%
= Median 8.72 3.50 2.55E+06 274.95 (26/32)
Average 13.29 8.00 7.03E+06 267.00
Minimum 0.00 0.00 0.00E+00 0.00
7 Maximum 5.01 5.01 6.38E+06 482.20 46.8%
o Median 0.00 0.00 0.00E+00 0.00 (15/32)
Average 0.77 0.77 5.50E+05 113.89

6.2.4 Target Peptide Biomarker Selection

Biomarkers were selected for inclusion in body fluid-specific panels under this portion of
the study and are reported on the peptide level. Here, optimal peptide biomarkers are specific to
the target body fluid and demonstrate consistency of expression across the sample population
evaluated under the previous section. Additionally, relative abundance of peptide and protein
biomarkers within the target matrix was used to facilitate inclusion within the target library.

To recapitulate, SEMG1, SEMG2, KLK3, and PPAP were consistently identified across the
semen population samples. Salivary proteins SMR3B, STAT, and HIS1 were identified in all
individuals with basic salivary proline-rich protein isoforms 1, 2, 3, and 4 (PRP_1, PRP_2, PRP_3,
and PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), and HIS3 being identified in most
samples. And lastly, vaginal fluid was characterized by cornulin, suprabasin, involucrin, and
periplakin. With these protein biomarkers selected, specific peptide fragments were identified for
inclusion and reference material was synthesized for verification purposes. Purified reference
material was purchased and employed to confirm the target biomarkers to ensure no erroneous
identifications were made with the bioinformatics software searches. In addition, reference material
was utilized to confirm the peptide retention times as well as to develop the targeted method, as

discussed later in this section.
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The following criteria were set for peptide filtering: peptide fragments must be within 8 to
25 amino acid residues in length, preference for peptides detected in at least 80% of the sample
population, high MS1 signal intensity, high quality MS2 spectra, and those that contain minimal
potential modification sites (i.e., asparagine, methionine, and cysteine amino acid residues).
However, these criteria were not concrete, as certain markers may exhibit high quality spectra with
a lower population occurrence. Therefore, peptide length and sample occurrence were taken into
consideration, but were not the sole criteria for including or eliminating a peptide marker. Signal
intensity, spectrum quality, and limiting modification sites were given additional weight in decision
making.

Using the criteria stated above, a preliminary list of targets included 77 semen peptides,
92 saliva peptides, and 30 vaginal fluid peptides, for which reference material was purchased and
evaluated. The salivary protein HIS3 was removed from the peptide list due to low quality spectra
and sample occurrence. All other listed protein biomarkers were represented in the peptide list.
Furthermore, prolactin inducible protein (PIP) found in seminal fluid was re-introduced. Although
not originally described during the population assessment, this protein exhibited higher quality
spectra with a range of sample occurrence that prompted additional interest in this particular
biomarker. In total, 38 seminal fluid peptides, 44 saliva peptides, and 12 vaginal fluid peptides were

selected for the final inclusion library (Tables 6.9-6.11).
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Table 6.9. Peptide markers for seminal fluid. Prostate specific antigen (KLK3), prolactin inducible
protein (PIP), prostatic acid phosphatase (PPAP), semenogelin 1 (SEMG1), and semenogelin 2
(SEMG2). RT = retention time, AA = amino acid.

Protein| Sequence l(\ﬂr:;s) Charge (z)) RT |Start AA|End AA T.Z?'lt.c::t’_:
F.LRPGDDSSHDLML.L 485.9014 3 8.80 111 123 12
) R.FLRPGDDSSHDLML.L 534.9242 3 10.60| 110 123 13
X L.LRLSEPAELTD.A 622.3301 2 8.70 124 134 10
X L.LRLSEPAELTDA.V 657.8486 2 9.20 124 135 11
W.GSIEPEEFLTPK.K 673.8456 2 10.50| 158 169 11
o Y.TIEILKVE - 472.7868 2 6.60 139 146 7
— FYTIEILKVE - 554.3184 2 11.70| 138 146 8
F.AELVGPVIPQDW.S 662.3508 2 13.85| 357 368 11
e F.GIWSKVYDPLY.C 670.8479 2 12.65| 204 214 10
& F.GQLTQLGMEQHYEL.G 823.8958 2 10.55| 68 81 13
F.GQLTQLGMEQHYELGEY | 998.4585 2 10.70| 68 84 16
Y.DLNALHKTTKSQRH.L 412.9774 4 1.50 86 99 13
Q.HGSHGGLDIVIIE.Q 4495736 2 11.30| 428 440 12
Y.GENGVQKDVSQRS | 468.5673 3 1.60 | 361 373 12
V.VEVREEHS.S 492.7409 2 285 [ 224 231 7
T.NREQDLLSHEQKGRHQ.H 494.5018 4 255 | 412 427 15
- LTIPSQEQEHSQKA.N 494.9110 3 1.30 [ 331 343 12
g Q.TEKLVAGKSAQ. 530.8035 2 1.70 | 378 387 9
L Q.NVVEVREEH.S 555.7805 2 3.05 | 222 230 8
@ N.TEERLWVHG.L 563.7856 2 6.35 162 170 8
R.EQDLLSHEQKGRHQ.H 568.9519 3 250 | 414 427 13
Q.NVVEVREEHS.S 599.2966 2 3.05 | 222 231 9
Y.SQTEKLVAGKSAQ. | 638.3488 2 240 | 376 387 11
Q.NVVEVREEHSSK.V 706.8601 2 205 | 222 233 11
Q.STNREQDLLSHEQKGRHQ.H [721.6932 3 265 | 410 427 17
V.DINDHDWTR.K 391.1757 3 4.75 72 80 11
Q.NVVDVREEHS.S 395.1949 3 3.30 | 222 231 9
V.DINDHDWTRK.S 433.8741 3 3.85 72 81 9
Q.NVVDVREE H 480.2433 2 430 [ 222 229 7
Y.NEDRNPIST - 523.2491 2 3.50 [ 574 582 8
® Y.DLNALHKATKSKQH.L 530.9610 3 2.05 86 99 13
= Q.NVVDVREEHSSKLQ.T 547.2848 3 430 | 222 235 13
%) K.DVSQSSISFQIEKLVEGKSQ.l |553.0391 4 13.35| 488 507 19
S.SISFQIEKLVEGKSQ.I 564.9771 3 1140 | 493 507 14
Q.IEKLVEGKSQ.| 565.8244 2 315 [ 498 507 9
Y.HVDINDHDWTRK.S 768.3711 2 4.60 70 81 11
K.DVSQSSISFQIEKLVEGKSQIQ.T | 817.4306 3 13.80| 488 509 21
Y.VLQTEELVVNKQQRETK.N  |1021.5657 2 6.05 195 211 16
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Table 6.10. Peptide markers for saliva. Histatin-1 (HIS1), basic salivary proline-rich protein 1
(PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich protein 4
(PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated protein
3B (SMR3B), and statherin (STAT). RT = retention time, AA = amino acid.

Protein Sequence '(wr:fzs) Charge (z))] RT |Start AA|EndAA T.i?\téctile
H.SHREFPF.Y 460.2247 2 8.25 39 45 5]
- H.REFPFYGDY.G 597.2682 2 10.58 41 49 8
) K HHSHREFPF.Y 5907 .2836 2 6.35 37 45 8
T S.HREFPFYGDY.G 665.7962 2 9.85 40 49 9
F.YGDYGSNYLYDN.- 722.2886 2 7.33 46 57 11
| Q.GGNKPQGPPPPPGKPQ.G 518.2792 3 3.09 43 58 15
& Q.GPPQQGGNRPQ.G 568.2828 2 0.99 242 252 10
o A.GNPQGPSPQGGNKPQ.G 731.8553 2 1.42 34 48 14
N Q.GPPSPPGKFPQ.G 481.2587 2 2.85 49 58 9
& Q.GGNKPQGPPSPPGKPQ.G 514.9390 3 3.24 43 58 15
o A.GNPQGAPPQGGNKPQ.G 723.8578 2 1.52 34 48 14
ffl Q.RPPPPPGKPQ.G 535.8089 2 1.39 49 58 9
% Q.GPPPPPQGGRPP.R 577.3093 2 3.77 289 300 11
o Q.SHRPPPPPGKPE.R 648.3469 2 1.26 194 205 11
Q.GPPQGQSPQ .- 448 2170 2 1.23 158 166 8
Q Q.GPPPPPPGKPQ.G 534.7955 2 2.76 137 147 10
& Q.QGPPPPQGKPQ.G 565.8013 2 1.50 82 92 10
o Q.GPPQQGGHPPPPQGRPQ.G | 577.9606 3 2.07 93 109 16
Q.GPPQQGGHPRPP.R 612.8153 2 213 110 121 11
P.RGPYPPGPL.A 477.2648 2 7.98 27 35 8
P.GIFPPPPPQP.- 523.7877 2 10.65 70 79 9
G.RIPPPPPAPY.G 552.8137 2 7.69 58 67 9
G.FVPPPPPPPY.G 554 2973 2 9.58 45 57 12
P.GRIPPPPPAPY.G 581.3244 2 7.55 57 67 10
@ P.GFVPPPPPPPY.G 582.8080 2 10.66 45 57 12
g:" Y.GPGIFPPPPPQP.- 600.8242 2 10.74 68 79 11
= P.YPPGPLAPPQPF.G 640.8373 2 12.45 30 41 11
v L. APPQPFGPGFVPPPPPPPY.G |[652.6733 3 13.54 36 54 18
Y.GPGRIPPPPPAFPY.G 658.3615 2 8.13 55 67 12
F.GPGFVPPPPPPPY.G 659.8458 2 11.06 42 54 12
R.GPYPPGPLAPPQPF.G 717.8744 2 12.78 28 41 13
F.GPGFVPPPPPPPYGPG.R 765.3930 2 10.82 44 57 13
P.RGPYPPGPLAPFPQPF.G 795.9250 2 11.89 27 41 14
P.YQPVPEQPL.Y 535.7795 2 8.39 40 48 8
P EQPLYPQPY.Q 567.7769 2 8.34 46 56 10
Y.GPYQPVPEQPL.Y 612.8166 2 7.30 38 48 10
R.IGRFGYGYGPY.Q 625.3037 2 9.15 30 40 10
- P.VPEQPLYPQPY.Q 665.8375 2 9.19 43 53 10
ff E.QPLYPQPYQPQ.Y 679.8406 2 7.81 46 56 10
0 P.YQPVPEQPLYPQPYQPQ.Y 691.3423 3 9.89 40 56 16
Y.QPVPEQPLYPQPY.Q 778.3932 2 9.69 41 53 12
R.FGYGYGPYQPVPEQPL.Y 906.4356 2 11.07 33 48 15
Y.QPVPEQPLYPQPYQPQ.Y 954.9782 2 9.22 41 56 15
F.GYGYGPYQPVPEQPLYPQPY.Q |[1157.0468 2 11.80 34 53 19
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Table 6.11. Peptide markers for vaginal fluid. Cornulin (CRNN), involucrin (IVL), periplakin (PPL),
and suprabasin (SBSN). RT = retention time, AA = amino acid.

Protein| Sequence ?::;E)' Charge (z)) RT |Start AA|End AA T.i?\tg;ctile
L.YSYLRSTKP.- 372.2012 3 476 487 495 8
E.WVDDHSRET.V 382.1712 3 2.41 442 450 8
A.DVIVKPHDPA.T 545.7982 2 5.19 43 52 9
% R.SQTSQAVTGGHTQIQAGSH.T 632.3053 3 3.62 336 354 18
% L.DEDHTGTVEFK.E 639.2859 2 4.6 62 72 10
M.PQLLQNINGIIE.A 676.3826 2 13.12 2 13 11
D.VIVKPHDPATVDE.V 710.3775 2 5.25 44 56 12
F.ADVIVKPHDPATVDE.V 803.4096 2 6.29 42 56 14
IVL V.ELPVEVPSKQEEKH.M 412.9690 4 5.98 50 63 13
PPL L.KTENPGDASDLQGRQL.L 864.9292 2 5.71 492 507 15
SBSN RVVQGLHHGVSQAGR.E 722.8920 2 2.31 404 417 13
N.NAAGQVGKEADKLIHHGVHHGAN.Q| 787.4037 3 6.29 121 143 22

6.2.5 Performance Assessment

Reported below are results at the protein level for each sample evaluated. Peptide level
results for the performance assessment are detailed in Appendix N.

6.2.5.1 Sensitivity Samples

Sensitivity replicates were prepared by diluting target body fluid with deionized water and
applying the dilution to a cotton swab. Therefore, the dilution factor was inherently diluted a second
time during the solubilization step of the developed workflow. Data for seminal fluid, saliva, and
vaginal fluid dilutions are outlined in Tables 6.12-6.14. Proteins were positively identified by the
presence of at least one peptide target from the inclusion list. Seminal fluid was reproducibly
identified at the lowest dilution factor (10,000-fold) by both SEMG1 and SEMG2. However, the
remaining seminal fluid proteins showed poor sensitivity, with little to no identifications at the 100-
fold dilution. Salivary protein biomarkers demonstrated robust sensitivity, with a majority of proteins
detected at the 100-fold dilution. Basic salivary proline-rich protein 1, salivary acidic proline-rich
protein 1/2, and submaxillary gland androgen-regulated protein 3B were detected in at least one
replicate at the lowest dilution factor. Vaginal fluid sensitivity was contingent on cornulin
identification, which was positive through the 100-fold dilution. The remaining protein biomarkers

demonstrated poor sensitivity.
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Table 6.12. Sensitivity sample results for seminal fluid. Prostate specific antigen (KLK3), prolactin
inducible protein (PIP), prostatic acid phosphatase (PPAP), semenogelin 1 (SEMG1), and
semenogelin 2 (SEMG2). (+) indicates at least one peptide detected for the designated protein. (-)
indicates a negative result.

Dilution KLK3 PIP PPAP | SEMG1 | SEMG2
1:100 + - ++ + S +++ | +++
1:1000 --- --- S +++ | +++
1:2000 --- --- S +++ | +++
1:5000 --- --- S +++ | +++
1:10000 - - o F4++ | + 4+

Table 6.13. Sensitivity sample results for saliva. (+) indicates at least one peptide detected for the
designated protein. (-) indicates a negative result. Histatin-1 (HIS1), basic salivary proline-rich
protein 1 (PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich protein
4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated protein

3B (SRM3B), and statherin (STAT).

Dilution HIS1 PRP_1 PRP_2 PRP_4 PRPC SMR3B STAT
1:2 ++ + ++ + ++ + ++ + ++ + ++ + ++ +
1:10 ++ + +++ ++ + +++ +++ ++ + ++ +
1:50 + - - ++ + ++ + -—- ++ + ++ + + + -
1:100 +-- +++ ++ + - +++ ++ + +--
1:500 --- +-- --- - + + - + - - -

Table 6.14. Sensitivity sample results for vaginal fluid. (+) indicates at least one peptide detected
for the designated protein. (-) indicates a negative result. Cornulin (CRNN), involucrin (IVL),

periplakin (PPL), and suprabasin (SBSN).

Dilution CRNN IVL PPL SBSN
1:2 + 4+ - - + 4+
1:10 +++ - - -
1:50 ++ + - o -
1:100 ++- - - -
1:500 . .- - -

6.2.5.2 Aged Samples

The effect of biomarker recovery and characterization from aged biological material was
assessed using a two-pronged approach. Each target fluid was evaluated as a single source in
addition to a vaginal swab matrix fortified with either semen or saliva. Samples were kept at room
temperature for 2, 3, 7, and 30 days, with detailed results outlined in Table 6.15. Seminal fluid as

a single source was positively characterized at every timepoint; however, PPAP exhibited complete
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dropout. Consistency between replicates was observed, with a single replicate exhibiting a positive
KLKS result. Similar results were obtained for seminal fluid recovered from a vaginal swab matrix.
However, complete dropout of PIP was recorded. It is hypothesized that a protease may be present
in vaginal fluid that may degrade PIP past the point of characterization. A comparable observation
was made for saliva and saliva recovered from a vaginal swab matrix. Although consistency in
replicate characterization was recorded for saliva on its own, complete dropout of PRP_2, histatin-
1, and statherin was exhibited when saliva was recovered from a vaginal swab. And lastly, as seen
with sensitivity samples, vaginal fluid characterization relied on cornulin detection, which exhibited

consistency with each replicate at all timepoints.
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Table 6.15. Aged sample results. (+) indicates at least one peptide detected for the designated protein for each replicate. (-) indicates a negative
result. NT = not tested. Prostate specific antigen (KLK3), prolactin inducible protein (PIP), prostatic acid phosphatase (PPAP), semenogelin 1
(SEMGH1), and semenogelin 2 (SEMG2), histatin-1 (HIS1), basic salivary proline-rich protein 1 (PRP_1), basic salivary proline-rich protein 2
(PRP_2), basic salivary proline-rich protein 4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated protein
3B (SRM3B), and statherin (STAT), cornulin (CRNN), involucrin (IVL), periplakin (PPL), and suprabasin (SBSN).

Sample [Timepoint] KLK3 PIP | PPAP |SEMG1[SEMG2| HIS1 [PRP_1|[PRP 2 [ PRP_4 | PRPC [SMR3B| STAT | CRNN | VL PPL | SBSN
Day2 | +-- |+++| --- |+++|+++
Seminal Day3 | +-- |+++| --- |+++|+++
Fluid Day7 | +-- [+++| - |+++[+++
Day30 | +-- [+++]| --- |+ ++|+++
Day 2 + + - - - - -—- +++|(+++ + 4+ + R - |+ +-
Seminal Fluid| paya | 4 __ | --- | --- |+ ++|+++ +H++ [ - - | +--
on Vaginal
Swab Day 7 + - - --- --- |+t ++ |+ ++ + + + - - - |+ ++
Day30 | ++-| --- | -=-- |+++|+++ +++ | --- | o= | +--
Day 2 +++ |+ || Ao [ FH ||+
) Day 3 +o-|F+H[F++H| - | FHF ||+
Saliva Day 7 +++ |+ |+ Ao [FH | FHH |+
Day 30 +++|+++ [+ - |+ |+ FH| A+
Day 2 --- --- - —em |+ - |+ --- - |+ ++
Salivaon Day 3 --- |+ --- B B i I s i o [ B S R R [ o +++
Vaginal Swab| Day 7 R I S 2k I O S e e - |+ + 4+
Day 30 T [ R B 0 I 2 e [ S A S R R s
Day 2 +++ | +-- | - |+ +-
Vaginal Day 3 +++ |+ -] -
Swab Day 7 FIRFIRFE R S
Day 30 +++| - | - [+ ++




6.2.5.3 Sexual Assault Samples

Laboratory prepared sexual assault kit samples were generated to simulate authentic
samples, with results outlined in Table 6.16. Of surprise was the ability of the developed method
to positively characterize both seminal fluid and saliva when recovered from a rectal swab. Given
the endogenous bacterial presence common with this sample type, the observation of reproducible
peptide identifications demonstrates the robustness of a peptidomic strategy. Where previous
studies have indicated the presence of fecal matter to inhibit the processivity of trypsin, the removal
of proteolytic cleavage sites has eliminated this issue. For example, during validation of the bottom
up LC-MS/MS method (Chapter 3), KLK3 was not detected on rectal swab samples, whereas this
protein was consistently detected on replicates with the peptidomic technique. Furthermore, the
recovery of saliva from rectal swabs was included in this portion of research. The presence of fecal
matter exhibited no deleterious effects in the ability to identify saliva. For example, salivary protein

SMR3B demonstrated excellent ion coverage and spectral quality (Figure 6.13).

251



Table 6.16. Sexual assault kit sample results. (+) indicates at least one peptide detected for the
designated protein for each replicate. (-) indicates a negative result. NT = not tested. Prostate
specific antigen (KLK3), prolactin inducible protein (PIP), prostatic acid phosphatase (PPAP),
semenogelin 1 (SEMG1), and semenogelin 2 (SEMGZ2), histatin-1 (HIS1), basic salivary proline-
rich protein 1 (PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich
protein 4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated
protein 3B (SRM3B), and statherin (STAT), cornulin (CRNN), involucrin (IVL), periplakin (PPL), and
suprabasin (SBSN).

el e B I I
KLK3 S ++ + - NT
_ PIP S +-- ++ + NT
Sle::]'i’;a' PPAP - . - NT
SEMG1 +++ +++ ++ + NT
SEMG2 +++ +++ ++ + NT

HIS1 - ++ - NT -

PRP_1 - +++ NT +++

PRP_2 - ++ - NT +--

Saliva PRP_4 -—- -—- NT +__

PRPC +-- +++ NT +++

SMR3B +-- +++ NT ++ +

STAT S +++ NT ++ -
CRNN ++ + NT NT NT
Vaginal IVL + + - NT NT NT
Fluid PPL +-- NT NT NT
SBSN ++ + NT NT NT
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Figure 6.13. (A) Mass spectrum of saliva recovered from a rectal swab replicate. Depicted is peptide
GPGIFPPPPPQP of protein submaxillary androgen-regulated protein 3B (SRM3B). (B) y and b
ions characterized for the peptide sequence are shown in bold type.

6.2.5.4 Mixture Samples

Volume mixtures of seminal fluid and saliva were applied to vaginal swabs to assess ion
suppression, particularly for a minor saliva contributor in a major seminal fluid contributor. Vaginal
swabs were selected as the matrix in order to simulate sexual assault type samples more closely.
In summary, all target fluids were positively identified (Table 6.17). Seminal fluid is protein rich, and
despite the greater volumes, did not inhibit the ability to positively characterize saliva or vaginal
fluid peptide targets. Saliva was consistently identified by the presence of PRPC, even when the
amount of semen was greater (MIX03) or equivalent to (MIX04) the saliva contribution. As seen
with previous performance samples, complete dropout of statherin was exhibited when in the

presence of vaginal fluid.
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Table 6.17. Mixture sample results. (+) indicates at least one peptide detected for the designated
protein for each replicate. (-) indicates a negative result. Prostate specific antigen (KLK3), prolactin
inducible protein (PIP), prostatic acid phosphatase (PPAP), semenogelin 1 (SEMG1), and
semenogelin 2 (SEMG2), histatin-1 (HIS1), basic salivary proline-rich protein 1 (PRP_1), basic
salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich protein 4 (PRP_4), salivary acidic
proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated protein 3B (SRM3B), and
statherin (STAT), cornulin (CRNN), involucrin (IVL), periplakin (PPL), and suprabasin (SBSN).

MIX01 MIX02 MIX03 MIX04
Fluid Protein | 5 & :f st | 28 :Ls ot 2150p|.I|-LssEA+ 1100‘];:13;;
KLK3 + + - + - - ++ + + + +
PIP o + - +++ ++ -
Seminal PPAP +o - +o- ++ 4+ + 4+
SEMG1 +++ +++ +++ +++
SEMG2 +++ +++ +++ +++
HIS1 - + o - -
PRP_1 + + - + + + + - - + - -
PRP_2 - +o- - oo
Saliva PRP_4 + + - --- - -
PRPC +++ ++ 4+ +++ ++ 4+
SMR3B +o- +++ - +
STAT - - - -
CRNN +++ +++ +++ +++
Vaginal IVL + + - + - - + + - + - -
Fluid PPL + - - + - - [ + + -
SBSN + + - + + + + - - + + -

6.2.5.5 Contaminant Samples

The recovery of target biomarkers when subjected to chemical insult and environmental
contaminants was of interest to this research in order to more closely simulate authentic forensic
evidence received in operational laboratories (Table 6.18). Based on data reported in Chapter 5,
personal lubricants, in addition to bleach and dish soap, were identified as contaminants that have
the potential to prevent the identification of seminal fluid. SEMG1 and SEMG2 were positively
identified when in the presence of all contaminants. Uniform protein dropout PIP and PPAP was
recorded. Overall, the presence of contaminants did not impede the ability to correctly characterize
seminal fluid, particularly when in the presence of 10% bleach (Figure 6.14). SEMG2 peptide

NVVDVREE exhibited a clean and clear spectrum, with characteristic b, y, and y++ ions detected.

254



Saliva characterization in the presence of chemical insults was not as robust as observed
with seminal fluid biomarkers. Negative results for all peptide targets were recorded for saliva
treated with 10% bleach. For the remaining samples, salivary acidic proline-rich protein 1/2 and
SMRB3B were identified by the presence of at least one target peptide. And lastly, vaginal fluid was
identified from a menstrual swab based on the positive characterization of cornulin in all three
replicates. Detergents and formulations containing halogen substances, such as bleach, present
additional challenges with mass spectrometric analysis. Halogens, such as chlorine, have a
characteristic isotope distribution on a mass spectra. This distribution is straightforward with small
molecule analysis; however, with larger peptide masses, the chlorine isotope distribution can
impact the quality of a mass spectrum.

Table 6.18. Contaminant samples results. (+) indicates at least one peptide detected for the
designated protein for each replicate. (-) indicates a negative result. NT = not tested. Prostate
specific antigen (KLK3), prolactin inducible protein (PIP), prostatic acid phosphatase (PPAP),
semenogelin 1 (SEMG1), and semenogelin 2 (SEMG2), histatin-1 (HIS1), basic salivary proline-
rich protein 1 (PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich
protein 4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated

protein 3B (SRM3B), and statherin (STAT), cornulin (CRNN), involucrin (IVL), periplakin (PPL), and
suprabasin (SBSN).

Fluid Protein Wfter'.BaS*’d Natural sé"!.i‘éﬂ 10% Bleach | Dish Soap | Menstrual
ubricant Lubricant Lubricant Swab
KLK3 +-- +-- +++ - - R
. PIP - - - - - -
SeF'IE'i’c‘f' PPAP - - - - - -
SEMG1 +++ +++ +++ +++ ++ - +++
SEMG2 +++ +++ +++ +++ ++ - +++
HIS1 NT NT NT - o -
PRP_1 NT NT NT S - +--
PRP_2 NT NT NT - . -
Saliva PRP_4 NT NT NT - - -
PRPC NT NT NT - +++ +++
SMR3B NT NT NT - ++ - + + -
STAT NT NT NT - - -
CRNN ++ + ++ + +++ NT NT +++
Vaginal IVL + - - + - - + - - NT NT ---
Fluid PPL - - - NT NT ---
SBSN +++ ++ - +++ NT NT S
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Figure 6.14. (A) Mass spectrum of seminal fluid treated with 10% bleach. Depicted is peptide
NVVDVREE of protein semenogelin 2 (SEMGZ2). (B) y and b ions characterized for the peptide
sequence are shown in bold type.

6.2.5.6 Substrate Samples

In conjunction with contaminants, the ability to positively characterize biological fluids
recovered from various substrates was important to consider. Four fabric types were selected for
this portion of the study: 100% cotton, 100% polyester, polyester blend (60% polyester, 40%
cotton), and denim. Each fabric had small quantities of biological fluid applied, with the 100% cotton
underwear worn by a female subject prior to fluid application. Detailed results are outlined in Table
6.19. As with previous data sets, SEMG1 and SEMG2 outperformed the remaining seminal fluid
protein targets. However, all protein targets were characterized when recovered from denim. It is
hypothesized that, given the texture of denim fabric, the applied semen was retained over a smaller
surface area and easily released back into solution once solubilized. In addition to these samples,
semen stains were excised and recovered from bed sheets to assess biomarker loss during

laundering. Seminal fluid was positively characterized on both bed sheets evaluated by the
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presence of SEMG1 and SEMG2, in addition to a single KLK3 peptide identification on the polyester
blend bed sheet (Figure 6.15). Semenogelin 2 peptide NVVDVREE demonstrated great intensity
from laundered items in comparison with the 10% bleach solution, further highlighting the lower
sensitivity limits of the developed methodology.

Saliva protein characterization was substrate dependent. As with seminal fluid, recovery of
saliva from denim was nearly complete, with protein dropout of basic salivary proline-rich protein 4
exhibited. However, both statherin and SMR3B, confirmatory saliva biomarkers, were identified.
Additional protein dropout and greater inconsistency between replicates were reported for polyester
blend and 100% polyester (Table 6.19).
Table 6.19. Contaminant samples results. (+) indicates at least one peptide detected for the
designated protein for each replicate. (-) indicates a negative result. NT = not tested. Prostate
specific antigen (KLK3), prolactin inducible protein (PIP), prostatic acid phosphatase (PPAP),
semenogelin 1 (SEMG1), and semenogelin 2 (SEMG2), histatin-1 (HIS1), basic salivary proline-
rich protein 1 (PRP_1), basic salivary proline-rich protein 2 (PRP_2), basic salivary proline-rich

protein 4 (PRP_4), salivary acidic proline-rich protein 1/2 (PRPC), submaxillary androgen-regulated
protein 3B (SRM3B), and statherin (STAT).

0,
Fluid Protein 1323’9‘:‘2:;“ P(;Ilggs/;er BIF:::EGSS rt:;; t Denim ke L‘:gg"e/:ed L?:ri?;led LF?:I;S::::’ (;-::t?gle{ : g)
Sheet Polyester (Poly) Blend
KLK3 --- +++ +++ +++ - - + -
PIP -—- -—-- --- ++ + - - - -
SEMG1 ++- +++ +++ +++ + - + -
SEMG2 ++ - +++ +++ +++ + - + -
HIS1 NT --- +-- + + - NT NT NT NT
PRP_1 NT ++ + +++ ++ + NT NT NT NT
PRP_2 NT - - +-- ++ + NT NT NT NT
Saliva PRP_4 NT -—-- --- -—-- NT NT NT NT
PRPC NT ++ + +++ ++ + NT NT NT NT
SMR3B NT ++ + +++ ++ + NT NT NT NT
STAT NT - - - + + - NT NT NT NT
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Figure 6.15. (A) Mass spectrum of seminal fluid recovered from laundered polyester blend bed
sheet. Depicted is peptide NVVDVREE of protein semenogelin 2 (SEMG2). (B) y and b ions
characterized for the peptide sequence are shown in bold type.

6.3 Concluding Remarks

In summary, the use of a peptidomic approach for seminal fluid, saliva, and vaginal fluid
identification revealed that multiple non-tryptic peptide fragments are produced through
endogenous cleavage during analysis with high resolution mass spectrometry. The protein
biomarkers identified with this technique were comparable to those detected with the validated
bottom up LC-MS/MS assay. Therefore, the ability to prepare biological stains for proteomic
analysis with an expedited, simple extraction prior to chromatographic separation eliminated the
need for lengthy enzymatic digestion incubation periods. The results presented provide support for
further development of peptidomic applications in the field of forensic serology. From a forensic
biology standpoint, it is recommended that reporting of results be based on the identification of
inclusion peptides. Although additional peptide fragments are identified by the proteomic software,
the peptides included in the library have undergone quality control assessment during verification

using purified reference material. Significant proteins include semenogelin 1 and 2 for seminal fluid
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identification in addition to statherin and submaxillary gland androgen-regulated protein 3B for
saliva identification.

Supplemental research is required for the identification of a vaginal fluid-specific protein
biomarker. Although the four protein biomarkers described, particularly cornulin, demonstrated
adequate sensitivity and robustness, the selected proteins do not exhibit specificity to vaginal fluid.
Suprabasin, although expressed in vaginal, cervical, and uterine tissue, shares comparable
expression patterns in esophagus tissue and keratinocytes of skin tissues. Similar protein
expression patterns are evident for cornulin and involucrin. In addition, involucrin is expressed in
tissues of the urinary bladder and epididymis [171].

The Protein Metrics Byonic™ application is a software tool used for identifying peptides and
proteins, similar to more traditional applications such as Mascot and SEQUEST. However, this
software provides additional functionalities that can contribute to areas of future work, such as
advanced glycopeptide and crosslinking search capabilities.

Various challenges and limitations exist with the implementation of protein mass
spectrometry techniques into an operational laboratory. First, the creation of training materials will
be essential for onboarding molecular biologists in advanced proteomic techniques. Second,
generating interest with stakeholders so that resources and capital investments are made to
support the implementation of this screening technique, such as the purchase of the LC-MS/MS
analytical system, will be crucial for a seamless implementation. And lastly, overcoming a Daubert
admissibility hearing for using proteomic data in a court of law will impose significant challenges
moving forward. The case findings from Daubert v. Merrell Dow Pharmaceuticals, Inc. is the
documentation accepted by the federal government and a majority of state government for the
admissibility of scientific evidence in court. The findings suggest that scientific methodology be
testable, have a known or potential error rate, have applicable standards and controls, be subjected
to peer review and publication, and be generally accepted in the scientific community. Sufficient
gains have been made for use of protein mass spectrometry in forensic laboratories, specifically in

the field of forensic toxicology, but additional research into drafting of interpretation guidelines,
259



applicable use of controls, and support within the greater community will be critical for admissibility
of data in court. Furthermore, the addition of confidence level reporting would be beneficial in
relaying the weight of data to the trier of fact.

In toto, the specific hypotheses outlined for completion of this research were successfully
evaluated. Proteomic techniques in the form of bottom up and peptidomic methodologies were
demonstrated to surpass the sensitivity and specificity capable of traditional serological screening
techniques. The transferring of a multiplex mass spectrometry-based assay from a nanoflow to
high performance LC-MS/MS analytical system sufficiently increased sample throughput. In
addition, an automated sample processing procedure mitigated sources of human error and
contributed to increased sample throughput without a loss in peptide intensity. The multiplex LC-
MS/MS assay underwent rigorous validation and comparison, illustrating its robust performance
and compatibilities with existing forensic biology workflows. It has been demonstrated that the
ability to produce serological information at sensitivity levels consistent with STR/Y-STR typing is
achievable with protein mass spectrometry technology. Body fluid identification of samples
subjected to personal lubricants was achieved through specific sample preparation procedures and
detection of surrogate peptides using the validated LC-MS/MS assay. And lastly, an expedited
proteomic analysis of body fluids consistent with sexual assault evidence was developed using
peptidomic techniques. The use of proteomics and advanced analytical instrumentation is a viable
solution to meeting the sensitivity and specificity demands of the forensic biology community for
the confirmation of biological origin, therefore contributing to the identification and individualization
of evidentiary material.

6.4 Future Direction and Impact on the Criminal Justice System

The identification of biological stains has posed significant challenges since the onset and
acceleration of DNA individualization. Currently, practitioners have no means of reliably confirming
the presence of biological stains, especially the differentiation of saliva and vaginal fluid. The
presumptive results obtained through serological screening prevent definitive statements regarding

the origin of a biological stain by an expert withess during courtroom testimony. While implementing
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a new technology such as protein mass spectrometry comes with significant onboarding actions,
such as new analyst training and purchasing of instrumentation, the cost-to-benefit ratio of investing
in this next generation technique is substantial.

Extensive research has demonstrated that protein mass spectrometry exhibits unmatched
detection capabilities, particularly with trace quantities of biological stains in the presence of
contaminants. The research presented in this dissertation contributes to the sufficient gains of the
forensic subdiscipline that has fallen behind its counterpart. Detailed standard operating
procedures for the validated proteomic methodology are written and presented for the effective
transfer of this technology into an operational laboratory. However, a comparative assessment of
proteomics with other next generation techniques, such as RNA-based assays and epigenetic
profiling, would identify gaps in proposed methodologies and provide the forensic biology
community with valuable information to aid in technology transfer and retirement of traditional
serological screening protocols.

Additional research into characteristic protein biomarkers for vaginal fluid detection is
necessary for the confirmatory identification of this biological matrix. Given its similarities in protein
makeup to that of saliva, additional distinctive traits should be taken into consideration. The
availability of a reliable and sensitive method for the confirmatory identification of vaginal fluid would
have important forensic utility for the analysis of sexual assault evidence. While the presence of a
victim’s DNA profile on a suspect’s genitals or underwear provides a strong indication of sexual
contact on its own, a vaginal fluid assay would increase the probative value of a broader range of
evidentiary items (e.g., swabs of fingers, fingernail scrapings, outer clothing). Furthermore, items of
evidence submitted in sexual assault cases involving vaginal rape with a foreign object would greatly
benefit from such an assay.

This obstacle can be overcome by leveraging unique post translational modifications (PTM)
that proteins undergo only in vaginal tissues. A common type of PTM includes glycosylation, and
with the addition of carbohydrate moieties, glycosylation can have a significant effect on protein

confirmation and antigenic properties. N-linked glycosylation occurs in the endoplasmic reticulum at
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specific asparagine sequences (i.e., Asn-X-Ser/Thr), where the addition of sugar residues result in
unique structural modifications [172]. The process of N-linked glycosylation is highly conserved in
eukaryotes, indicating the importance of carbohydrate labeling as a means of generating diversity
within the proteome [41]. For instance, the protein glycodelin exhibits multiple isoforms with
differential glycosylation that dictates body fluid specific functionalities. For example, the glycodelin-
A (GdA) isoform in amniotic and vaginal fluids induces an immunosuppressive response by silencing
maternal T cells, preventing an immune response toward an implanted embryo. In addition, this
isoform also acts as a natural contraceptive by impeding spermatozoa binding to the oocyte outside
the fertile window of ovulation [173]. In contrast, the glycodelin-S (GdS) isoform in seminal fluid
blocks spermatozoa capacitation (i.e., destabilization of the acrosomal membrane) prior to passing
through the cervical mucus of the female reproductive tract [173].

Additional advancements in proteomic applications to forensic biology include the use of
genetically variable peptides (GVPs) and the concept of proteomic genotyping. A single amino acid
polymorphism can be correlated to a single nucleotide polymorphism (SNP), generating the link
between identification and individualization of biological material. Research in this area has focused
on fingermarks [174], bone [152], and hair [175], but the possibilities of expanding to other biological
matrices are evident. For example, the detection of GVPs for the salivary protein statherin and
subsequent SNP profiling could provide a confirmatory identification of saliva and the inclusion of a

suspected individual for an evidentiary item associated with a sexual assault or rape.
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APPENDIX A: FINAL BIOMARKER LIST AND ASSOCIATED COLLISION ENERGIES

Body Fluid Protein Peptide Sequence Prec(unrjzc;r ion Proc::]cl::)ions E%ZI:EC:C) Reter(l:‘:(i):)Time
910.4880 + 15.2
LSITGTYDLK 555.8057 ++ 797.4040 + 18.2 4.9
Alpha 1 Antitrypsin 696.3563 + 152
(PO1009) 829.5142 + 19.8
SVLGQLGITK 508.3109 ++ 716.4301 + 13.8 5.7
531.3501 + 16.8
959.4945 + 22.9
"lgrg;;’ggi)” NFPSPVDAAFR | 610.8066++ | 775.4097 + 25.9 6.1
480.2509 ++ 16.9
949.4890 + 17.8
LLVWYPWTQR 637.8664 ++ 850.4206 + 23.8 7.6
- Hemoglobin 687.3573 + 17.8
8 Subunit Beta
o (P68871) 774.4509 + 12.5
g SAVTALWGK 466.7636 ++ 675.3824 + 155 5.0
.-§ 574.3348 + 18.5
e 971.4680 + 29.0
LLDNWDSVTSTFSK| 806.8960 ++ 670.3406 + 26.0 7.3
Apolipoprotein A1 569.2930 + 26.0
(P02647) 1053.5463 + 225
VSFLSALEEYTK 693.8612 ++ 940.4622 + 225 9.3
600.8110 ++ 19.5
735.4036 + 16.2
DGAGDVAFVK 489.7482 ++ 678.3821 + 16.2 3.2
Serotransferrin 563.3552 + 19.2
(P02787) 1091.5368 + 204
SASDLTWDNLK 625.3066 ++ 776.3937 + 17.4 5.0
675.3461 + 20.4
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Precursor ion

Product ions

Collision

Retention Time

Body Fluid Protein Peptide Sequence (miz) (miz) Energy (V) (min)
691.8673 ++ 75
GSISIQTEEQIHGK 500.5985 +++ | 6353253 ++ 19.5 25
461.5807 +++ 105
_ 1038.5466 + 23.8
Semenogelin-2 DVSQSSISFQIEK 734.3699 ++ 951.5146 + 26.8 5
(Q02383)
751.3985 + 20.8
834.4203 + 149
GSISIQTEEK 546.2826 ++ 747.3883 + 20.9 2
634.3042 + 139
1309.6634 + 271
Semenogelin- DIFSTQDELLVYNK 842.9251 ++ 523.2875 + 24.1
(Po4279) 740264;114921 +++ ?211 "
QITIPSQEQEHSQK | 5516128 +++ |— = " 51
943.5095 + 20.7
- LSEPAELTDAVK 636.8677 ++ 646.3770 + 23.7 44
E Prostate Specific 4722584 ++ 207
3 Antigen (P07288) ;ggg;?g : 195‘11
£ FLRPGDDSSHDLMLLR | 468.7413 ++++ : : 5.9
8 536.2844 ++ 15.1
575.6298 +++ 18.1
948.4884 + 20.0
FQELESETLK 612.3113 ++ 819.4458 + 23.0 35
276.1343 + 20.0
Prostatic Acid 930.5407 + 18.6
Phosphatase ELSELSLLSLYGIHK | 567.9856 +++ 817.4567 + 18.6 8.8
(P15309) 730.4246 + 18.6
635.3875 + 147
FVTLVFR 441.2658 ++ 2471441 + 147 6.9
421.2558 + 147
759.3831 + 16.8
SGINCPIQK 508.7633 ++ 645.3389 + 16.8 1.7
Epididymal 485.3082 + 16.8
Secretory Protein E1
(P61916) 774.4356 + 143
DCGSVDGVIK 525.2502 ++ 630.3821 + 14.3 24
276.0649 + 173
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Precursor ion

Product ions

Collision

Retention

Body Fluid Protein Peptide Sequence (miz) (miz) Energy (V) Time (min)
606.3358 + 18.3
IAEYMNHLIDIGVAGFR 640.3330 +++ 903.4538 ++ 21.3 8.7
Alpha-amylase 1 867.9352 ++ 21.3
(P04745) 986.5881 + 18.1
LSGLLDLALGK 550.3397 ++ 899.5560 + 15.1 8.7
729.4505 + 15.1
1228.6473 + 294
] GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR | 1034.5394 +++ 850.4459 + 294 9.2
S |Protein 3B (P02814) 729.3930 + 14.8
5 IPPPPPAPYGPGIFPPPPPQP 710.7189 +++ 535.2875 + 20.8 8.3
@ 1141.604 + 23.8
1466.6394 + 30.3
IIEGGIYDADLNDER 846.9074 ++ 1110.4698 + 30.3 4.8
Cystatin SA 947.4065 + 30.3
(P09228) 640.2937 + 8.1
ALHFVISEYNK 440.9031 +++ 4242191 + 14.1 4.8
568.7904 ++ 14.1
1687.7751 + 30.9
Statherin (P02808) | FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF | 1215.2330 +++ | 1074.4891 + 32.9 9.5
1229.5626 + 32.9




Precursor ion

Product ions

Collision Energy

Retention Time

Body Fluid Protein Peptide Sequence (miz) (miz) V) (min)
1001.4647 ++ 284
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR | 839.8888 ++++ | 886.9115 ++ 224 14
851.3930 ++ 254
1247.6226 + 317
Cornulin (QUUBG3) ISPQIQLSGQTEQTQK 893.4707 ++ | 1006.4800 + 317 3.4
793.4127 ++ 317
294.1812 + 13.3
LLDEDHTGTVEFK 501.9157 +++ 695.8279 ++ 16.3 3.6
639.2859 ++ 16.3
884.5312 + 23.2
WYWGLAGNAILR 716.4090 ++ |  350.1499 + 20.2 8.8
Neutrophil Gglatina§e 4490183 + 23.2
R ooty 1000.5350 + 186
MYATIYELK 566.2914 ++ | 837.4716 + 216 5.4
2951111 + 15.6
1054.4622 + 23.7
GCVQDEFCTR 636.2608 ++ | 955.3938 + 20.7 23
Ly6/PLAUR domain- 827.3352 + 23.7
At 905.3894 + 228
- GLDLHGLLAFIQLQQCAQDR 766.0671 +++ | 649.2722 + 258 10.3
H 1037.5778 + 19.8
% suprabasin ALDGINSGITHAGR 461.2443 +++ gifgggg : 11:2 2.8
é (QBUWPS) FGQGVHHGLSEGWK 513.5881 +++ gggiggﬁ : 12; 23
3 659.8775 ++ 103
i GEVLLPVEHQQQK 502.2755 +++ | 610.3433 ++ 13.3 33
£ 553.8013 ++ 13.3
5’ 505.7669 ++ 141
Involucrin (P07476) QEAQLELPEQQVGQPK 607.9829 +++ | 699.3308 + 17.1 4.2
812.4149 + 14.1
689.3213 + 15.9
HLVQQEGQLEQQER 574.6237 +++ | 560.2787 + 12.9 15
920.4585 + 12.9
871.4632 + 243
NQGPQESVVR 557.2860 ++ |  814.4417 + 18.3 14
243.1088 + 18.3
803.4258 + 17.0
Periplakin (060437) NLLDEIASR 5157800 ++ | 690.3417 + 17.0 6.2
228.1343 + 14.0
633.3566 + 10.9
AQSLQSAK 416.7298 ++ | 546.3246 + 16.9 0.9
200.1030 + 13.9
788.3607+ 17.8
VPEPGCTK 4442182 ++ | 562.2654 + 17.8 11
Small Proline Rich 394.6840 ++ 17.8
Protein 3 (QYUBCS) 664.3665 + 174
VPVPGYTK 430.7475++ | 565.2980 + 14.4 23
381.2132 ++ 14.4
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APPENDIX B: STANDARD OPERATING PROCEDURES FOR THE BOTTOM UP LC-MS/MS

ASSAY

BODY FLUID IDENTIFICATION BY LC-MS/MS
TABLE OF CONTENTS

Materials and Reagents

Controls

Body Fluid Extraction and Quantitation

Protein Sample Digestion

Peptide Sample Cleanup

Analysis by Mass Spectrometry

Appendix I: AssayMAP Bravo Startup/Shutdown

Appendix II: Human Serum Albumin Acquisition Parameters

Appendix III: Body Fluid Identification Acquisition Parameters
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MATERIALS AND REAGENTS

Equipment

Analytical Balance

Refrigerated Microcentrifuge: Capable of speeds up to 12,000 RCF
Spectrophotometer: Capable of 562 nm reading

SpeedVac Concentrator set to 45 °C

Incubator set to 37°C

Agilent AssayMAP Bravo Liquid Handler

Agilent 1290 Series Liquid Chromatography System

Agilent 6495 Triple Quadrupole LC/MS

Agilent AdvancedBio Peptide Map column, 3x100mm, 2.7 uM, #655950-302

©CoNoOO A~ WN =

General Plastics and Labware

1. Disposable scalpels

2. Clean Bench Paper

3. Deionized water

4. 10% Bleach

5. Microcentrifuge tubes Protein LoBind (Eppendorf 1.5 and 2.0 mL #022431081,
022431102)

6. Costar SpinX .45 pm spin filter (Corning #8163)

7. Costar SpinX spin baskets nofilter inserts (Corning #9301)

8. Pierce BSA Protein Assay Kit (Thermo #23225)

9. Corning Costar Assay Plate, clear, flat bottom (Corning #9017)

AssayMAP and Automation Labware

AssayMAP C18 5 pL Cartridge Rack (Agilent #5190-6532)

250 L sterile pipette tips for AssayMAP Bravo (Agilent #19477-012)
Eppendorf 96 well LoBind PCR plate (Eppendorf #0030129512)

12 Column Reservoir Plate (SeahorseBio #201280-100)

Greiner U-Bottom White 96 well plate (Greiner #650207)

Greiner Universal Plate Lids (Grenier #656199)

Eppendorf Storage Film (Eppendorf #0030127870)

Nooh~wdh =

Chemicals
1. 100 mM Tris-HCI (Thermo #15568-025)
a. Dilute 1M Tris-HCI 1:10 in LCMS grade water
2. 8 M Urea (Sigma BioUltra #51456)
a. 3.123 grams in 4 mL 100 mM Tris-HCI
3. 1 M Tris(2-carboxyethyl)phosphine hydrochloride, TCEP (Thermo #20490)
a. 0.286 grams in 1 mL LCMS grade water. 35 L aliquots stored at -80 °C.
4. 100 mM lodoacetamide, IAA (Sigma BioUltra #11149)
a. 0.036 grams in 2.0 mL LCMS grade water

General Solvents

Acetonitrile , LCMS grade

Water, LCMS grade

Methanol, LCMS Grade

Isopropanol, LCMS Grade

Formic Acid (FA), LCMS Grade
Trifluoroacetic Acid (TFA), HPLC Grade

oAM=

AssayMAP Solvents
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1. Priming Solvent: 50% Acetonitrile in water with 0.5% TFA
a. 500 mL acetonitrile, 500 mL water, 5 mL TFA
2. Equilibration and Wash Solvent: Water with 0.5% TFA
a. 1,000 mL water, 5 mL TFA
3. Elution Solvent: 70% Acetonitrile in water with 0.1% FA
a. 700 mL acetonitrile, 300 mL water, 1 mL formic acid
4. Cartridge Wash (60% Methanol)
a. 600 mL Methanol, 400 mL water

Mass Spectrometry Solvents
1. Mobile Phase A: Water with 0.1% formic acid
a. 1,000 mL LCMS grade water, 1 mL LCMS grade formic acid
2. Mobile Phase B: Acetonitrile with 0.1% formic acid
a. 1,000 mL LCMS grade acetonitrile, 1 mL LCMS grade formic acid
3. Syringe Wash Solution: 1:1:1:1 Methanol:Acetonitrile:Isopropanol: Water
a. 250 mL methanol, 250 mL acetonitrile, 250 mL isopropanol, 250 mL water
4. Seal Wash Solution: 10% Methanol in water
a. 900 mL LCMS grade water, 100 mL LCMS grade methanol

Enzymes:
1. Sequencing Grade Trypsin (Promega #V511B)
a. 100 pg sequencing grade trypsin reconstituted in 400 yL 50 mM acetic acid for a
final concentration of 0.25 ug/uL
b. 50 yL aliquots stored at -80 °C for up to 1 year.

Myelin Internal Control Reagents:
1. Intact Bovine Myelin Basic Protein Stock Solution (Sigma #13-104)
a. Reconstituted 10 mg in 20 mL 2% acetonitrile 0.1% FA for 0.5 mg/mL stock
b. Aliquoted and freeze (-80°C) at stock concentration for up to 1 year
c. Intact Bovine Myelin Basic Protein Working Solution
i. Thawed and dilute 1:100 with 30% acetonitrile 0.1% FA for a final
concentration of 5 ng/uL
ii. Spike prior to digest (at dry down stage)
iii. With a repeater pipette add 20 pL of 5 ng/uL for a 100 ng spike per sample
2. Myelin Isotopically Labelled Peptide Stock Solution (DTGILDSLGR”, New England
Peptide)
a. 2 nmol material from NEP (Molar equivalent = 2.11 ug)
b. Reconstituted in 2.11 mL 30% acetonitrile 0.1% FA for 1 ug/mL stock
c. Aliquoted and frozen (-80) at stock concentration for up to 1 year
d. Myelin Isotopically Labelled Peptide Working Solution
i. Thaw
ii. Spiked prior to SPE cleanup
ii. With a repeater pipette add 10 yL of 1 ug/mL stock for a 10 ng spike per
sample
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System Suitability:
1. HSA Peptide Standard Mix (Agilent #G2455-85001)
a. To each vial of HSA standard (500 pmol) add 500 uL of 15% acetonitrile with 0.1%
formic acid for a 1 pmol/uL stock.
b. Vortex and mix vial for 30 seconds. Allow the vial to stand at room temperature for
5 minutes
2. Dilute 1 pmol/puL stock 1:10 for a final concentration of 100 fmol/uL.
a. Aliquot 50 pL to 250 pL polypropylene snap caps vials.
3. Cap vials, store at -80°C for up to 1 year

CONTROLS

Positive Control (PC) — a known control sample (e.g. human semen or blood) is required for each
analytical batch which undergoes extraction, digestion, and cleanup alongside questioned
samples.

Reagent (negative) Control (RC) — a blank samples that undergoes the same extraction process

as the samples to test the reagents for contaminants.
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BODY FLUID EXTRACTION AND QUANTITATION

Initial preparations:

1.

2.

Clear off a workspace and lay a new, clean piece of bench paper. Check and replace any
reagents that have expired.
Prepare one set of 2.0 mL microcentrifuge tubes for each sample marked with a unique sample

identifier.

Extraction protocols:

1.

2.

3.

Gather all utensils (e.g., scalpel, scissors, forceps, weigh paper) needed for sample cutting.
Sterilize utensils with a 20% bleach solution followed by a water rinse.

If samples were not already collected and prepared during the evidence examination process
(i.e. placed in a 2.0 mL microcentrifuge tube), carefully cut the stain (~1 x 1 cm, or as
appropriate, depending on the nature of the stain) and place in the appropriately marked 2.0
mL microcentrifuge tube. If the sample is on a swab, use %z of the swab or the stained area if
the staining is uneven. In the case of loose flakes, use at the discretion of the analyst. In the
case of cigarette butts, remove the paper around the filter. If the staining is light, a larger area
may be taken.

Extract evidentiary material by soaking in 500 - 1,000 yL of deionized water for 30 minutes.
Vortex the sample frequently to facilitate extraction of biological material from substrate. Pulse
spin for 10 seconds to remove droplets from the lid, and transfer the sample substrate into a
clean spin basket and centrifuge at 12,000 RPM for 10 minutes.

Transfer supernatant to a clean Costar 0.45 uM SpinX filter and reserve pelleted material for
genetic testing. Filter the supernatant by centrifuging at 10,000 RPM for 2 minutes, or until all
extract has passed through the filter. Remove the SpinX filter and discard.

NOTES: Blood samples may not completely pass through the SpinX filter.
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Quantitation protocols:

1.

Prepare bovine serum albumin standards in 100 mM Tris-HCI using the following table:

Standard Bovine_Serum 100mM Tris-HCI | Protein Concentration
Albumin (uL) (uL) (ng/mL)

A 2 mg/mL stock None 2000
B 375 A 125 1500
C 325 A 325 1000
D 175 B 175 750
E 325C 325 500
F 325 E 325 250
G 325 F 400 125
H 100 G 400 25

BLANK None All N/A

For sample preparation, dilute sample supernatant in 100mM Tris-HCI at the discretion of the
analyst

a. Blood and Semen Samples 1:100 dilution

b. Saliva and Vaginal Fluid 1:50 dilution

c. Dependent on the concentration and physical appearance of the extract
Prepare BCA Protein Assay working reagent according to the number of samples being
prepared.

a. Volume of Reagent A = (total # samples and standards + 2) x 200

b. Volume of Reagent B = (volume of reagent A) / 50
Prepare a 96 well Corning square bottom plate. Aliquot 25 pL of standard or sample to the
appropriate well. Add 200 pL of prepared working reagent to each well and seal using a
protective film. Incubate the plat at 37 ° C for 30 minutes.

Order the plate according to the following chart:
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1 2 3
A BLANK STD E SAMPLE
B BLANK STD E SAMPLE
C STD B STD F SAMPLE
D STD B STD F
E STDC STD G
F STD C STD G
G STD D STD H
H STDD STDH

6. Remove the protective film and analyze on a spectrophotometer at 562 nm. Ensure the
spectrophotometer is programmed accordingly, with the standard concentrations in the
appropriate well number.

7. Evaluate the results as follows:

a. Standard Curve R? value: >0.98
8. Calculate the total protein for each question sample, targeting 100 ug total protein
a. (100 pg)/ (Reported protein concentration in ug/mL x Dilution Factor) x 1000

9. Prepare a 96 well Greiner U-bottom White plate, with a repeater pipette add 20 uL of 5 ng/uL
for a 100 ng spike per sample of intact Bovine Myelin Basic Protein.

10. Add up to 100 ug total protein for each sample being analyzed.

11. Lyophilized to dryness in a SpeedVac concentrator at 45°C
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PROTEIN SAMPLE DIGESTION

1. Run AssayMAP startup procedure found in Appendix .

2. Open the Pipette Tip Transfer Utility Application in the VWorks Software Utility Library. Arrange
the pipette tip rack according to the deck layout diagram displayed. Input the number of
columns to transfer according to the number of samples being processed. A full row of tips
should be transferred, regardless of whether the sample plate contains a complete row of

samples to be analyzed. Run the Pipette Tip Transfer Application. Remove the pipette tip rack

from the instrument.

Utility: Pipette Tip Transfer <%~ Agilent Technolagies

LA - E—
Application Settings: 1. Wash Station || 2. Tip Seating 3. EMPTY E]Instructions
. s Station (No
9 Tips) ¥ Run Transfer
Col f pipette tips in the Source Ti
B:‘:mnsn pipette tips in the Source Tip Catlins ’1* o ,f 4. EMPTY 5. EMPTY E.?;;l;;ill”;';;ox -
Columns to be filled in the Tip Seating . 4|
Stations Geis J£. [ o 3 | 7. ENIPTY 8. EMPTY 9. EMPTY 51 Full Screen On/OFf
< Utility Library

Labware Table

Deck
Location

1 86AM Wash Station (p/n G5498B#057)

96AM Cartridge & Tip Seating Station - EMPTY
Empty (No Labware)

Empty (No Labware) =
Empty (No Labware) -L Ii”il
96 V11 LT 250 Tip Box 19477.002 (p/n 19477.002)

Empty (No Labware)

Empty (No Labware)

Labware Type

© @ N e oo e W N

Empty (No Labusare)

3. Open the In-Solution Digest Single Plate application in the VWorks Software App Library.

4. Prepare the denaturant solution. Add 32.5 pL of 1 M TCEP stock solution to 8 M Urea in 100
mM Tris-HCI (for a 5 mM final concentration). Aliquot 100 pL of denaturant solution into each
well of a Greiner U-Bottom White 96 well plate. Move the plate to deck position 5 on the
AssayMAP.

5. Prepare the alkylant solution. Aliquot 50 pyL of 100 mM IAA solution into each well of a Greiner
U-Bottom White 96 well plate. Place a universal black lid on the plate. Check the corresponding
box in the VWorks Software indicating the alkylant plate is lidded. Move the plate to deck

position 6 on the AssayMAP.
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6. Prepare the diluent solution. Aliquot 250 pL of 100 mM Tris-HCI into each well of a Greiner U-
Bottom White 96 well plate. Move the plate to deck position 8 on the AssayMAP.

7. Prepare the trypsin solution. Aliquot 15 pL of 0.25 pg/pL sequencing grade trypsin into each
well of an Eppendorf 96 well PCR plate. Move the plate to deck position 9 on the AssayMAP.

8. Move the sample plate containing the lyophilized sample to deck position 4 on the AssayMAP.
Place a universal black lid on the sample plate. Check the corresponding box in the VWorks
Software indicating the sample plate is lidded.

9. Input the correct number of columns to be digested according to the number of samples being

processed in the sample plate. Verify the following parameters into the application:

Digest Solution ':‘,C:,T:r':: # Mix Cycles | Incubation Time and Temperature
Denaturant 55 L 15 mix cycles 45-minute incubation at 25°C
Alkylant 6 uL 15 mix cycles 30-minute incubation at 25°C
Diluent 170 pL 15 mix cycles No incubation
Trypsin 10 pL 15 mix cycles No incubation

A. Select Method

In-Solution Digestion: Single Plate

=

% Agilent Technologies

Status

Update Deck Layout

Bottom, White PolyPro

Browse for a Method: [C:/VWorks Workspace/Methods/AM Tn Solution Dige ... eri. . Update Deck Layout /,-rm'aﬂ Cumuiative Sample Volume [uL:
S 4
: - - - L =
Method Loaded: Load Values i s (5] Instructions
Method Status:
<Pos 1 Wash Station> <Pos 2 Tip Seating Station> <Pos 3 Lid Hotel 2> (B Run Digestion
AM Wash Station 96AM Cartridge and Tip *Empty Location. Reserved
Seating Station with & fior Lids* i) Pause
Columns of Tips d
: i Restore Defaults
B. Input Sample Settings <Pos 4 Sample Plate> <Pos 5 Denaluration> <Pos 6 Alkylation>
Setting Value 96 Grelner 650207_U- 96 Greiner 650207_U- 96 Grelner 650207_U- & Full Screen On/Off

- Bottom, White PolyPro Bottom, White PolyPra e
Sample Plate Labware |96 Greiner 650207_U-Battom, White PolyPro ~| -+ App Library
Sample Plate Lidded ®
RIE- S <Pos 7 Lid Hotel 1> <Pos 8 Dikuent> <Pos 9 Protease 1> Save Method
*Empty Location. Reserved || 96 Greiner 650207_U- 96 Eppendorf 30129300, Name
Starting Sample Volume [uL] g for Lids® Bottom, White PolyPro PCR, Full Skirt, PolyPra
Overwrite if Name Exists; T
Number of Full Columns of Samples 6 a0
C. Input Addition Step Settings - T
Reagent  Addition Pause Use Number
Addition Dock  Volume Mixing Incubation Incubation Aftor Plate  Tipsfor of Wash
Number Addition Name Location [pl]  Cycles Time[min| Tomp|C] _Addition Labwars Selection Lidded _ Addition _Cycles
1 [Denaturation -] & 55 i5 a5 [5 = ~  [06 Greiner 650207_U-Bottom, White PolyPro  ~| I 5 3
2 [Alkylation -] s 3 5 o [5 =] [06Grelner 650207_U-Bottom, White PolyPro  ¥] ® ® 3
3 [Diluent -] 8 im 5 25 - r |06 Greiner 650207_U-Bottom, White PolyPro | I~ 53 3
4 [protease 1 B 10 5 o [a5 = |06 Eppendorf 30120300, PCR, Full Skirt, PolyPrc =| T 3 B

10. Run the digestion application.
11. With the completion of the digestion application, remove the sample plate and seal with an

Eppendorf storage film. Place the sample plate in an incubator set at 37 °C for 14-16 hours.

12. Run AssayMap shutdown procedure found in Appendix I.
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PEPTIDE SAMPLE CLEANUP

Sample Acidification:

1.

Run AssayMap startup procedure found in Appendix I.

2. Allow the sample plate to come to room temperature. Remove Myelin Isotopically Labelled

Peptide Stock Solution from freezer.

Remove storage film. With a repeater pipette, add 10 uL of Myelin Isotopically Labelled Peptide
stock solution at1 yg/mL for a 10 ng spike per sample.

Open the Pipette Tip Transfer Utility Application in the VWorks Software Utility Library. Arrange
the pipette tip rack according to the deck layout diagram displayed. Input the number of
columns to transfer according to the number of samples being processed. A full row of tips
should be transferred, regardless of whether the sample plate contains a complete row of

samples to be analyzed. Run the Pipette Tip Transfer Application. Remove the pipette tip rack

from the instrument.

Utility: Pipette Tip Transfer . <% Agilent Technolagies
U LN U e—
Application Settings: 1. Wash Station || 2. Tip Seating 3. EMPTY & Instructions
Station (No

Setting Values

__Tips) (% Run Transfer
fz 4. EMPTY 5. EMPTY 6. Source Tip Box
(250 pL Tips) i) Pause
- [12
“ ,7 7. EMPTY 8. EMPTY 9. EMPTY 1 Full Screen On/Off
< Utility Library

Columns of pipette tips in the Source Tip Coliinas
Box:

o«

Columns to be filled in the Tip Seating

Station: Columns:

Labware Table
Deck Labware Type
86AM Wash Station (p/n G5498B067)

96AM Cartridge & Tip Seating Station - EMPTY

Empty (No Labware)
Empty (No Labware) 5
Bl s .L Iﬂ”il

96 V11 LT 250 Tip Box 19477.002 (p/n 19477.002)
Empty (No Labware)
Empty (No Labware)

R R

Empty (No Labware)
Open the Reagent Transfer Utility application in the VWorks Software Utility library.
Fill the appropriate number of channels of a 12 Column Reservoir Plate with 25% TFA solution.

Move the plate to the source location of the deck layout displayed.
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7. Place the sample plate containing digested material to the destination location of the deck
layout displayed.
8. In the Reagent Transfer Utility application, select the number of columns to be transferred,

check the box indicating the use of pipette tips to transfer, and input 10 yL of 25% TFA to be

transferred to each well.

Utility: Reagent Transfer - : % pgilent Technologies

| U"“\\ Deck Layout ) /»—U

Application Settings

1. Wash Station 2.Tip Seating 3. EMPTY [EInstructions
General Settings Value Station (with
Use Pipette Tips for Transfer: " 250 p Tips) (B Run Transfer ‘

Initial Syinge/Tip Wash Cycles:

Final Syringe/Tip Wash Cycles: 7. Source Plate | 8. Destination _ ||9. EMPTY i Al Screen On/O

Number of Columns of Samples to be Transferred: 6 4 EMPTY 5. EMPTY 8. EMPTY i Pause
(o]
(v]

Plate

+- Utility Library ‘
Source Plate Settings Value
Initial Well Volume: 900 ul
Volume to Transfer: ’T ul Labware Table
Lﬂ'l::i'; . Labware Type
Destination Plate Settings Valug 1 96AM Wash Station (p/n G5488B#057)
Initial Well Volume: 251 nl 86AM Cartridge & Tip Seating Station (with 250 plL Tips)

Mix Cycles after Transfer: Empty (No Labware)
Empty (No Labware)

2
3
4
5 Empty (No Labware)
6
7
8
9

1

Blowout Volume:

Empty (No Labware)

[12 Column, Low Profile Reservoir, Natural PP =]

96 Greiner 650207_U-Bottom, White PolyPro -l

Empty (No Labware)

9. Run the Reagent Transfer application.

10. Discard the pipette tips.

11. Discard the 25% TFA solution into solvent waste.

Cartridge Transfer:

1. Open the Cartridge Transfer Utility application in VWorks Software Utility library.

2. Arrange the cartridge rack according to the deck layout diagram displayed.

3. Input the number of columns to transfer according to the number of samples being processed.

Note that full columns should be transferred.
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4.

5.

Agilent

Utility: CARTRIDGE TRANSFER ) ;
yocesa AssayMAP
A. Application Settings ‘1 f\, B. Deck Layout 7_/1/»*“'1. m:|

First Column in Source Cartridge Rack S

(] Instructions
2. Destination:

1. Wash Station 5 " 3. Empty
Seating Station (® Run Cartridge Transfer

6. Suur(':e: ii) Pause
Reverse Process Cartridge Rack
[ Save Settings

7. Empty 8. Empty 9. Empty
7. Empty pty mpty 4 Restore Defaults |

Number of Columns to Transfer

First Column in Destination Cartridge Rack

N

4. Empty 5. Empty

< Utility Library

C. Labware Table

Deck
Location

1 96AM Wash Station
2 96AM Cartridge & Tip Seating Station

Labware Type

6 96AM Cartridge Rack and Receiver Plate
Agilent Technologies
Run the Cartridge Transfer application.

Remove the cartridge rack from the instrument.

Peptide Cleanup Protocol:

1.

2.

Open the Peptide Cleanup application in VWorks Software application library.

Prepare the Prime solution. Fill the corresponding number of channels to capacity of a labeled
12 Column Reservoir Plate to the number of columns being processed. Move the plate position
5 on the AssayMAP deck.

Prepare the Equilibration solution. Fill the corresponding number of channels to capacity of a
labeled 12 Column Reservoir Plate to the number of columns being processed. Move the plate
to position 6 on the AssayMAP deck.

Prepare the Elution solution. Fill the corresponding number of channels to capacity of a labeled
12 Column Reservoir Plate to the number of columns being processed. Move the plate to
position 8 on the AssayMAP deck.

Place the 96 well plate containing digested and acidified sample in the corresponding position
to the displayed deck layout.

Place a 12 Column Reservoir plate in the Organic Waste/position 3 on the deck.

Place a 96 well PCR plate in the Eluate Collection/position 9 on the deck.
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8. Input the appropriate number of columns being processed in the software.

9. Verify the following parameters in the software:

Cleanup Step Addition Volume Flow Rate # Wash Cycles
Initial Syringe Wash --- --- 4 wash cycles
Prime 100 pL 50% ACN 0.5% TFA 300 pL/min 3 wash cycles
Equilibrate 50 L of H20 0.5% TFA 10 uL/min 3 wash cycles
Sample Load 220 yL 15 yL/min 3 wash cycles
Cup Wash 25 uL --- 1 wash cycle
Internal Cartridge Wash 50 pyL 10 pL/min 3 wash cycles
Stringent Syringe Wash 50 uL - 1 wash cycle
Elute 20 uL 70% ACN 0.1% FA 5 yL/min 3 wash cycles
Final Syringe Wash --- - 3 wash cycles

Peptide Cleanup: Using AssayMAP

Application Settings P Deck Layout e
Pp! '} L‘;j - __ :[l\éj
W L S e B D ’6_ 1. Wash Station 2. Cartridges 3. Organic Waste
o Conduct  Volume  Flow Rate  Wash
Step? (uL) (ul/min)  Cycles
Initial Syringe Wash 5 ]r 4. Sample 5. Priming & 6. Elution Buffer
Pilins o W W ’3— :yringe Wash
— — uffer
IS e 0 10 B 7. Flow Through || 8. Equilibration & |[9. Eluate
Load Sample & o~ [ B Collection Cartridge Wash || Collection
GolleesFlow Through - Builer
Cup Wash 3 ’F ’1_
Internal Cartridge Wash ¥ [0 o [ Kabwary Tokile
Collect Flow Through r Lﬂ:i':" Labware Type
Stringent Syringe Wash " ]F F 1 96AM Wash Station
Elute w s [ i 2 96AM Cartridge & Tip Seating Station
Eluste Discard r (O 3 [12 Column, Low Profile Reservoir, Natural PP ~
Add to Flaw Through ~ 4 [95 Greiner 650207_U-Bottom, White PolyPro =l
Existing Collection Volume r 5 |12 Column, Low Profile Reservoir, Natural PP |
Final Syringe Wash w ’37 6 |12 Column, Low Profile Reservoir, Natural PP L‘
7 [96 Eppendorf 30129300, PCR, Full Skirt, PolyPro |
8 [12 Column, Low Profile Reservorr, Natural PP -
9 [96 Eppendorf 30129300, PCR, Full Skirt, PolyPro ~]

10. Run the Peptide Cleanup application.
11. Upon completion, remove the eluate collection plate from the instrument.

12. Dry down in the SpeedVac concentrator at 45 °C until lyophilized to dryness.
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Status

ZngPepods Oeanip.
B Run Peptide Cleanup
i Pause

[F] Save Settings

4 Restore Defaults
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ANALYSIS BY MASS SPECTROMETRY

Initial Preparations:

1. Run AssayMap startup procedure found in Appendix I.

2. Open the Pipette Tip Transfer Utility Application in the VWorks Software Utility Library. Arrange
the pipette tip rack according to the deck layout diagram displayed. Input the number of
columns to transfer according to the number of samples being processed. A full row of tips
should be transferred, regardless of if the sample plate contains a complete row of samples to
be analyzed. Run the Pipette Tip Transfer Application. Remove the pipette tip rack from the

instrument.

Utility: Pipette Tip Transfer

Agilent Technologies

T LN - E—
Application Settings: 1. Wash Station || 2. Tip Seating 3. EMPTY & Instructions

Station (No
Tips) (B Run Transfer
- ,f 4 EMPTY 5. EMPTY 6. Source Tip Box
(250 pL Tips) i) Pause

Setting Values

Columns of pipette tips in the Source Tip
Box:

Columns to be filled in the Tip Seating

- j
- Columns: |1 -w- |12
saton: e JE Lo ] 7. ENPTY 8. EMPTY 9. EMPTY 51 Full Screen On/OFf

< Utility Library

Labware Table

Deck
Location

1 86AM Wash Station (p/n G5498B#057)
96AM Cartridge & Tip Seating Station - EMPTY
Empty (No Labware)

Labware Type

Empty (No Labware) -
Empty (No Labware) -L Ii”il
96 V11 LT 250 Tip Box 19477.002 (p/n 19477.002)

Empty (No Labware)

Empty (No Labware)

- R T )

Empty (No Labware)

3. Open the Reagent Transfer Utility application in the VWorks Software Utility library.

4. Fill the appropriate number of channels of a 12 Column Reservoir Plate with 2% acetonitrile
with 0.1% formic acid in LCMS grade water.

5. Move the plate to the source location of the deck layout displayed. Place the sample plate

containing lyophilized, purified sample to the destination location of the deck layout displayed.
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[ ]
Utility: Reagent Transfer Agilent Technologies
[ ]

A ]

1. Wash Station  |[2. Tip Seating 3. EMPTY ElInstructions

Application Settings

General Settings Value Station (with

Uss Pipstte Tips for Transfer: ® 250 pL Tips) (B Run Transfer ‘

Number of Columns of Samples to be Transferred: ’67 A. EMPTY B. EMPTY 8. EMPTY i Pause

Initial Syinge/Tip Wash Cycles: b

Final Syringe/Tip Wash Cycles: b 7. Source Plate 8. Destination 9. EMPTY LI
Flat + Utlity Library ‘

Source Plate Settings

5
H
H

Initial Well Volume: 1900 L Lab Tabl
abware lable
Volume to Transfer: 10 ul

Deck
Location

1 86AM Wash Station (p/n G5498B#057)

Labware Type

Destination Plate Settings

Initial Well Volume: 86AM Cartridge & Tip Seating Station (with 250 pL Tips)

Mix Cycles after Transfer: Empty (No Labware)
Empty (No Labware)

2
3
q
5 Empty (No Labware)
6
7
8
9

Blowout Volume:

Empty (No Labware)

[12 Column, Low Profile Reservoir, Natural PP ~|

[96 Greiner 650207_U-Bottom, White PolyPro =l

Empty (No Labware)

In the Reagent Transfer Utility application, select the number of columns to be transferred,
check the box indicating the use of pipette tips to transfer, and input 100 pyL of 2% ACN 0.1%
FA to be transferred to each well.

Run the Reagent Transfer application.

Discard the pipette tips.

Discard the 2% ACN 0.1% FA solution into solvent waste.

Sample Plate Analysis:

1.

2.

Ensure all solvents are not expired.

Verify the Agilent Jet Stream source as been cleaned during the week of analysis or as
necessary. For example, deterioration or material on the spray shield.

Verify the 6495 MS has been fully tuned within 1 month and a check tune has been performed
during the week of analysis. If necessary, tune the instrument.

Open MassHunter Acquisition Software.

Under the Method Tab, open and load the HSA method.
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Em,ikm" H ion Data A

File  View Sample Worklist | Method | Tools Help

N e

Methed: [Samtest.m = worklist: |

 Instrument Status Open. Ctrl+0
Save Ctrlss

i Save As... . ¢ ColumnComp. 2 — &

o0 © Idle | priy Q@ | &NotReady EYC) Standby [N

Reset

D:\MassHunter\..\S0mLtestm
ximm DA\MassHunter\...\ms.m
DA\MassHunter\..\S0mmMS.m
[z D:\MassHunter\..\S0mLtest_v2.m

_ﬂ D:\MassHunter\,.\50mm_THC.m
BZS °C

D:\MassHunter\..\50mm_THC_MS.m

Instrument L
anReady- i" ®on@pon

6. |If fresh solvents were prepared, update the bottle fillings by right clicking the Binary Pump

Module.

[ES Agitent MassHunter Workstation Data Acquisition
File View Semple Worklst Method Tools  Help

Contest: [Acquisition +| Layout: [kmLivt M- 8 Method: [s0mtest.m ~| Workiist: | -

! Instrument Status x|
e]0] & Not Ready QO Standby I
Port1->6 ﬂ

Qs @ Identify Device )

%r Switch On

5000 5000 [=

Error Method

@ Switch Solvent Selection Valve A|

653 Switch Solvent Selection Valve B ';fj‘;",;’::;; B @ ©o @ox

Bottle Fillings...

Purge On
= g P — QA0 Spectum (M3 [1:MRM (345.2), AJS
_ Prime On 20 miz: 327.2
or Height: 120
7002 Conditioning On 100
600 -
g 80

7. Purge the A and B Mobile Phase pump lines by right clicking the Binary Pump Module. Purge
at 50:50 mobile phase A:B at 4 mL/min for 4 minutes.

8. Ensure the correct analytical column is connected in the proper position on the heat block.
Agilent AdvancedBio Peptide Map column, 3x100mm, 2.7 uM, #655950-302.

9. Turn on the instrument by clicking the green ‘On’ button in the lower right corner of the Module
bar. Allow the instrument to idly pump for approximately five minutes. Monitor the pressure
listed on the Binary Pump Module. Pressures > 350 bar may indicate the column requires
maintenance or replacement.

10. Create a new run folder on the computer hard drive, labeling appropriately according to

laboratory protocol.
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11. In MassHunter Acquisition Software, under the Worklist Tab, modify the Worklist Run

Parameters. Input the new run folder and ensure the proper method and run folder is selected.

[ Agiert Masshi ion Data A
File View Sample | Worklist | Method Tools  Help
Context: | Acquisition L= - a2 Method: [s0mLtest.m -] workiist; | -
i Instrument Stahus Open... Curl+ W
Save Ctriel
< HiP Samp Save As.. ?. ¢ ColumnComp. 2 _ & » QQQ ? =
QQ & i Run 4 Q0 & Not Ready QO Standby [N
Stop Ctil+Fs
Pause Ctrl+F6
\
5.00p Add Multiple Samples...
@! Add Sample .
. Add Script... 0.000 mL/min
. L rertsompe [ 000 Bhr ]
28°C
Insert Script... .
Delete Row(s) etrament
I iment “
00070 SNNPRTSE ot Feody BRI @ ©)0n @on
= = Add Column(s)... x| s Bt
Insert Column(s)... Femee
LU — G0 Spectrum [MS [1: MREM (345.2), AJS E|
Delete Column(s) Binary Pump: Pressure T2
bar 7| 120 F .
7':0'5 Modify Column... Height: 120
E Show/Hide/Order Columns... i
EE o
E Add Worklist.. L
500 5
00 Worklist Run Parameters... E 5 119.0
o Impert Worklist... w
- Track Worklist Run .
100-] Dr\MassHunter\..\20170804.wid
e ———1 D:\MaszHunter.. \worklist.wkd . A . . . 0
zll':] ) 5 4250 4285 4260 4265 min 120 140 160
D:\MassHunter\...\worklist.wil [~
i Workdist D:\MassHunter\..\Workdist.wkl
SrMu e .
: tert... 3 -
[T Sample b W Method Data File Sam|

12. Click the Worklist tab in the bottom left corner of the screen. Begin a new worklist by right
clicking the space and selecting Add Sample. Alternatively, open a previously made worklist
by clicking the Worklist Tab at the top of the screen and opening the desired worklist. Label the
samples appropriately and insert blanks where necessary. Always run HSA System Suitability
samples in triplicate at the beginning of the worklist, to ensure proper instrument performance.
Always include a shutdown script at the end of the worklist, communicating to the instrument

to go into standby once the run is completed.
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[ES Agitent MassHunter Workstation Data Acquisition
File View Sample Worklist Method Tools Help

Context: Acquisttion -] Leyout: [knLit - & Method: [s0mLtest.m -] Workiist: | - @

HiP Sampler ?2 - & i Binary Pump 2 || ColumnComp. 2 & » QQQ ? =

& Idle I | © @ & Not Ready QO & Not Ready Q0 Standby I

00

v . @ @ Portl->6
\_ 5.00uL 50.00 50.00 f %
Y 0.000 mL/min =
Jasc ] @ 4 o000tk
24.27°C 24.34°C

Instrument -
ot Rensy B @ ©)0n @on

000 Spectrum [MS [1: MEM (345.2), AJS
m/z: 327.2
Height: 120

Tic Binary Pump: Pressura

bar 120

100

80
s 1190

T
undance

40

20

A 0

jl ﬂ:l 4238 4240 4248 4260 <285 4260 4265 o 120 140 160
v I

i Worklist

Ovidid » B =

ample Position Method Data File San

Add Multiple Samples...
Add Sample
Add Script..

Add Column(s)...
Show/Hide/Order Columns...
Text Size 4
Add Worklist...

Worklist Run Parameters...
Import Worklist.
Wrap
Track Worklist Run

13. Once the worklist is prepared, place samples into the autosampler according to the plate/vial
position.

14. Select all the samples in the worklist by checking the square box at the top left of the worklist.
Hit the triangle “Play” button to start the worklist.

15. Review the results for the HSA System Suitability samples in the Qualitative Analysis Software.

16. Verify that all six peptides are present in the system suitability injections. Verify retention times,
relative intensities, as well as peak shape for the peptides. If a problem is observed,
troubleshoot the issue before running the full batch.

17. Refer to the table and representative chromatogram below:
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Peptide Sequence Rete?r:?:_ )Time In(tgtr;s.;ty
AAFTEC[+57.0]C[+57.0]QAADK 1 55x10°
AVMDDFAAFVEK 1.7 4.0 x 10*
RPC[+57.0]FSALEVDETYVPK 1.4 2.5 x 10*
HPYFYAPELLFFAK 1.8 2.0x10°
LVNEVTEFAK 1.3 1.0x 10°
KVPQVSTPTLVEVSR 1.3 5.5 x 10*
YLYEIAR 1.3 1.5x 10°

: R TN

01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 53 31 32 33 34 35 36 37 38 39

Counts vs. Acquisition Time (min)
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APPENDIX | ASSAYMAP BRAVO STARTUP AND SHUTDOWN

Startup

1. Turn on the AssayMAP Bravo automation system. Ensure the wash station carboy contains a
sufficient amount of water and the waste carboy is empty. Open the Startup Utility Application

in the VWorks Software. Run the application and follow the prompts on the computer.

AssayMAP Startup & Shutdown: Using AssayMAP

Agilent Technologies

' e s il | e————
s P d 1. Wash Station 2. Cartridge 3. Empty &) Instructions
tartup Procedure i i
p : ) ) Seating Station ® Run Startup
The purpose of this procedure is to initialize the system, safely discard
liquid introduced during the shutdown procedure, and prime the wash 4. Empty 5. Empty 6. Empty 3 Run Shutdown
station tubing.
Startup Options Value T T o'E @ Pause ‘
. Syringe Storage || 8. Empty . Empty
Number of Syringe Wash Cycles 3 Liquid {eptionat) £ Full Screen an/off
Wash Station Prime Duration 10 sec
4 Utility Library

Labware Table

Deck
Shutdown Procedure Description Lecation

This procedure is designed to introduce water into the AssayMAP sy- 1 96AM Wash Station (p/n G5498B#057)
ringes to protect their plunger seals from drying during extended peri- 96AM Cartridge and Tip Seating Station (p/n }

ods of inactivity. Water is aspirated from the 96AM Wash Station at 2

deck location 1. Running the Shutdown Procedure is recommended 3 Empty (No Labware)

for AM Bravo idle periods of 1 hr - 1 week. 2 Empty (No Labware)

‘Shutdown Options Value 5  Empty (No Labware) l

1]
7
8
9

Labware Type

Number of Syringe Wash Cycles 3 Empty (No Lakveare)
Syringe Storage Liquid Source  |96AM Wash Station - \u T = |

Empty (No Labware)
Empty (No Labware)

Shutdown
1. Open the Startup & Shutdown Utility Application in the VWorks Software. Run the application

and follow the prompts on the computer.
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AssayMAP Startup & Shutdown: Using AssayMAP

Startup Procedure

The purpose of this procedure is to initialize the system, safely discard
liquid i during the p . and prime the wash
station tubing.

Startup Options Value
Number of Syringe Wash Cycles 3
Wash Station Prime Duration 10 s

Shutdown Procedure Description

This procedure is designed ta introduce water into the AssayMAP sy-
ringes to protect their plunger seals from drying during extended peri-
ods of inactivity. Water is aspiratad from the 96AM Wash Station at

deck location 1. Running the is
for AM Bravo idle periods of 1 hr - 1 week.
Shutdawn Options. Value
Number of Syringe Wash Cycles 3

Syringe Storage Liquid Source  |96AM Wash Station =

Deck Layout

Empty (No Labware)

=
1. Wash Station 2. Cartridge 3. Empty
Seating Station
4. Empty 5. Empty 6. Empty
7. Syringe Storage || 8. Empty 9. Empty
Liquid {optional)
Labware Table
u‘:::i'; 4 Labware Type
1 96AM Wash Station (p/n G5498B#057)
2 96AM Cartridge and Tip Seating Station (p/n )
3 Empty (No Labware)
4 Empty (No Labware)
5 Empty (No Labware)
6  Empty (No Labware)
7 [12 Column, Low Profile Reservoir, Natural pp Bl
8
L]

Empty (No Labware)
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APPENDIX Il HUMAN SERUM ALBUMIN ACQUISITION PARAMETERS
Instrument Parameters
e Instrumentation: Agilent 6495 Tandem Mass Spectrometer with an Agilent 1290 LC system.
o Instrument Mode: MRM
o Agilent AdvancedBio Peptide Map column, 3x100mm, 2.7 yM
o Mobile Phases:
= A: Water with 0.2% Formic Acid
= B: Acetonitrile with 0.2% Formic Acid
o Needle Wash: 1:1:1:1 Methanol:Acetonitrile:Isopropanol: Water
o Injection Volume: 2.5-10 pL
e System Suitability: Agilent Human Serum Albumin peptide mix with 100 fmol on column.

e The ions monitored are listed below.

Compound Group Compound Name Precursor lon | Product lon
sp|P02768|ALBU_HUMAN | AAFTEC[+57.0]C[+57.0]QAADK light 686.3 981.4
sp|P02768|ALBU_HUMAN | AAFTEC[+57.0]C[+57.0]QAADK light 686.3 852.3
sp|P02768|ALBU_HUMAN AVMDDFAAFVEK light 671.8 1,172.5
sp|P02768|ALBU_HUMAN AVMDDFAAFVEK light 671.8 1,041.5
sp|P02768|ALBU_HUMAN RPC[+57.0]FSALEVDETYVPK light 637.6 961.5
sp|P02768|ALBU_HUMAN RPCI[+57.0]FSALEVDETYVPK.light 637.6 851.4
sp|P02768|ALBU_HUMAN HPYFYAPELLFFAK.light 581.6 779.4
sp|P02768|ALBU_HUMAN HPYFYAPELLFFAK light 581.6 482.8
sp|P02768|ALBU_HUMAN LVNEVTEFAK light 575.3 937.5
sp|P02768|ALBU_HUMAN LVNEVTEFAK light 575.3 595.3
sp|P02768|ALBU_HUMAN KVPQVSTPTLVEVSR.light 547.3 702.4
sp|P02768|ALBU_HUMAN KVPQVSTPTLVEVSR.light 547.3 589.3
sp|P02768|ALBU_HUMAN YLYEIAR.light 464.3 651.3
sp|P02768|ALBU_HUMAN YLYEIAR .light 464.3 488.3
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The acquisition parameters are as follows:

Time Segment 1

Scan Segments

Cpd Name ISTD?
AAFTEC Mo
[+57.0]C

[+57.0]

QAADK lig

ht

AAFTEC No
[+57.01C
[+57.00
QAADK lig
nt
AVMDDFA No
AFVEK lig
nt

AVMDDFA Mo
AFVEK.lig
ht

RPC No
[+57.0]
FSALEVD
ETYVPKI
ght
RPC No
[+57.0]
FSALEVD
ETYVPK
ght
HPYFYAP Mo
ELLFFAK.li
ght
HPYFYAP Mo
ELLFFAK.II
ght
LVNEVTEF No
AK light
LYNEVTEF No
AK light
KVPQVST No
PTLVEVS
R light
KVPQVST Mo
PTLVEVS
R.light
YLYEIARI Mo

g
YLYEIARI Mo
ght

Scan Parameters
Data Stg
Centroid

Source Parameters

Parameter
Gas Temp (°C)
Gas Flow {I/min)
Nebulizer (psi)
SheathGasHeater
SheathGasFlow
Capillary (V)
VCharging

lon Funnel Parameters

Pos High Pressure RF
Pos Low Pressure RF

Chromatograms
Chrom Type Label
TiC TiC

Instrument Curves

Actual

Threshold

0

Prec lon MS1 Res

68626701 Unit/Enh
9

5490)

686.28701 Unit'Enh

9 (5490)

B671.82102 UnitEnh

(6490)

671.62102 Unit/Enh

(6490)

63764874 Unit/Enh
3

5490)

63764874 Unit/Enh

3 (8490)

581.63621 UnitEnh

4 (6490)

581.63621 Unit/Enh

4 (6490)

575.31114 Unit'Enh

5490)

B
575.31114 UnitEnh

(5490)

6
54731743 Unit/Enh

3 (6490)

547.31743 UnitEnh

3 (8490)

46425036 Unit/Enh
¢

6490)

464 25036 UnitEnh

(6490)

Value (+)
200

13

35

200

12

3500
300

150

Prod lon

961.37644
2

85233384

@

11725292
T

1041.4887
52

961.45601
3

851.41452

MS2 Res

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit'Enh
(6490)

Unit/Enh
(6480

Unit/Enh
(6490)

Unit/Enh

5 (6490)

T79.35113

Unit'Enh

7 (6490)

48277875

w

937.46253

8
595.30860

w

T02.41446

wn

589.33040

Unit/Enh
(6490)

Unit/Enh
(6490)
Unit/Enh
(6490)
Unit/Enh
(6490)

Unit/Enh

1 (6430)

651.34605
1

488.28272

Unit'Enh
6490)
Unit'Enh

3 (6490)

Value (-}

200
13
35

200
12

3000

500

Offset

Dwell Frag (V)
20 380
20 380
20 380
20 380
20 380
20 380
20 380
20 380
20 380
20 380
20 380
20 380
20 380
20 380

Meg High Pressure RF
Neg Low Pressure RF

Y-Range
10000000

300

CE (V)
24

26

218

238

18.2

182

121

188
188
168

18.9

13.4

15.4

Cell Acc

150
60

v)
4

Polarity

Positive

Paositive

Positive

Positive

Positive

Positive

Positive

Paositive

Positive
Positive

Positive

Paositive

Positive

Positive



Acquisition Method Info

Method Name HSA.m

Method Path
Method Description
Device List
HiP Sampler
Binary Pump

Column Comp.
aaq

MS QQQ Mass Spectrometer

D:\MassHunter\Methods\Proteomics_DOD\3mm_Final\HSA.m

1 min source with trap column, HSA

lon Source AJS ESI Tune File atunes TUNE XML
Stop Mode No Limit/As Purmp Stop Time (min) 1
Time Filter on Time Filter Width (min) 0.03
Time Segments
Index Start Time Scan Type lon Mode Div Valve Delta EMV Store
{min)
1 0 MRM ESl+Agilent Jet To M5 200 Yes
Stream
Name: HiP Sampler Model: G4226A
Auxiliary
Draw Speed 100.0 pLfmin
Eject Speed 100.0 pLfmin
Draw Position Offset 0.0 mm
Wait Time After Drawing 20s
Sample Flush Out Factor 5.0
Vial/Well bottom sensing Mo

Injection
Injection Mode
Injection Volume
Needle Wash
Needle Wash Location
Wash Time
High throughput
Automatic Delay Volume Reduction
Overlapped Injection
Enable Overlapped Injection
Valve Switching
Valve Movements
Valve Switch Time 1
Switch Time 1 Enabled
Valve Switch Time 2
Switch Time 2 Enabled
Valve Switch Time 3
Switch Time 3 Enabled
Valve Switch Time 4
Switch Time 4 Enabled
Stop Time
Stoptime Mode
Post Time
Posttime Mode

Injection with needle wash
1.00 pL

Flush Port
30s

No

Mo

Mo
No
No
No
As pump/No limit

Off
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Name: Binary Pump Model: G4220A
Flow 1.000 mL/min
Use Solvent Types Yes
Stroke Mode Synchronized
Low Pressure Limit 0.00 bar
High Pressure Limit 500.00 bar

Max. Flow Ramp Up

Max. Flow Ramp Down

100.000 mL/min®
100.000 mL/min®

Expected Mixer Mo check
Stroke A
Automatic Stroke Calculation A Yes
Stop Time
Stoptime Mode Time set
Stoptime 4.00 min
Post Time
Posttime Mode Time set
Posttime 3.00 min
Solvent Composition
(Channel Ch. 1 Solv. MName 1 (Ch2 solv. Name 2 selected Used Percent
1|A 100.0 % Water 100.0 % Water Ch.1 Yes 95.00%
V.03 V.03
2 |B 100.0% 100.0% Ch.1 Yes 5.00 %
Acetonitrile Acetonitrile
V.03 V.03
Timetable
Time &) B Flow Pressure
1 |2.40 min 40.00 % 50.00% — mL/min - bar
2 |3.10 min 20.00 % 80.00% — mL/min - bar
3 |3.80 min 20.00 % B80.00% — mL/min --- bar
4 |3.30 min 95.00 % 5.00 % — mL/min - bar
5 |4.00 min 95.00 % 5.00 % — mL/min --- bar
Name: Column Comp. Model: G1316C
Valve Position Portl->6
Ready when front door open Yes

Left Temperature Control

Temperature Control
Temperature
Enable Analysis Left

Mode

Temperature

Enable Analysis Left Temperature On
Enable Analysis Left Temperature Value
Right Temperature Control
Right temperature Control Mode
Enable Analysis Right Temperature
Enable Analysis Right Temperature On
Enable Analysis Right Temperature Value

Stop Time
Stoptime Mode

Post Time
Posttime Mode

Temperature Set
45.00°C

Yes
08°C

Not Controlled

Yes
08°C

Az pump/injector

off
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APPENDIX 11l BODY FLUID IDENTIFICATION ACQUISITION PARAMETERS

Instrument Parameters:
e Instrumentation: Agilent 6495 Tandem Mass Spectrometer with an Agilent 1290 LC system.
o Instrument Mode: MRM
o Agilent AdvancedBio Peptide Map column, 3x100mm, 2.7 yM
o Mobile Phases:
= A: Water with 0.2% Formic Acid
= B: Acetonitrile with 0.2% Formic Acid
o Needle Wash: 1:1:1:1 Methanol:Acetonitrile:Isopropanol:Water
o Injection Volume: 2.5-10 pL
e System Suitability: Agilent Human Serum Albumin peptide mix with 100 fmol on column.

e The ions monitored are listed below and with representative chromatograms for each protein

target following.
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Compound Group Compound Name IF:'relcursor ::::duct
sp|095274|LYPD3_HUMAN GLDLHGLLAFIQLQQCI[+57.0]JAQDR.light 766.1 649.3
sp|095274|LYPD3_HUMAN GLDLHGLLAFIQLQQC[+57.0]JAQDR . light 766.1 905.4
sp|095274|LYPD3_HUMAN GLDLHGLLAFIQLQQCI[+57.0]JAQDR.light 766.1 1037.6
sp|P02808|STAT_HUMAN FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF light 1215.2 1074.5
sp|P02808|STAT_HUMAN FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF light 1215.2 1229.6
sp|P02808|STAT_HUMAN FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF light 1215.2 1687.8
sp|P02647|APOA1_HUMAN VSFLSALEEYTK light 693.9 600.8
sp|P02647|APOA1_HUMAN VSFLSALEEYTK.light 693.9 940.5
sp|P02647|APOA1_HUMAN VSFLSALEEYTK light 693.9 1053.5
sp|P02814|SMR3B_HUMAN GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR.light 1034.5 850.4
sp|P02814|SMR3B_HUMAN GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR.light 1034.5 1172.6
sp|P02814|SMR3B_HUMAN GPYPPGPLAPPQPFGPGFVPPPPPPPYGPGR.light 1034.5 1228.6
sp|P80188INGAL_HUMAN WYVVGLAGNAILR.light 716.4 350.1
sp|P80188|NGAL_HUMAN WYVVGLAGNAILR!.light 716.4 449.2
sp|P80188INGAL_HUMAN WYVVGLAGNAILR.light 716.4 884.5
sp|P15309|PPAP_HUMAN ELSELSLLSLYGIHK light 568.0 730.4
sp|P15309|PPAP_HUMAN ELSELSLLSLYGIHK light 568.0 817.5
sp|P15309|PPAP_HUMAN ELSELSLLSLYGIHK light 568.0 930.5
sp|P04745AMY1_HUMAN IAEYMNHLIDIGVAGFR .light 640.3 606.3
sp|P04745/AMY1_HUMAN IAEYMNHLIDIGVAGFR .light 640.3 867.9
sp|P04745AMY1_HUMAN IAEYMNHLIDIGVAGFR .light 640.3 903.5
sp|P04745/AMY1_HUMAN LSGLLDLALGK light 550.3 729.5
sp|P04745/AMY1_HUMAN LSGLLDLALGK light 550.3 899.6
sp|P04745AMY1_HUMAN LSGLLDLALGK light 550.3 986.6
sp|P02814|SMR3B_HUMAN IPPPPPAPYGPGIFPPPPPQP.light 710.7 535.3
sp|P02814|SMR3B_HUMAN IPPPPPAPYGPGIFPPPPPQP.light 710.7 729.4
sp|P02814|SMR3B_HUMAN IPPPPPAPYGPGIFPPPPPQP.light 710.7 1141.6
sp|P68871|HBB_HUMAN LLVVYPWTQR light 637.9 687.4
sp|P68871|HBB_HUMAN LLVVYPWTQR light 637.9 850.4
sp|P68871|HBB_HUMAN LLVVYPWTQR light 637.9 949.5
sp|P04279|SEMG1_HUMAN DIFSTQDELLVYNK light 842.9 4242
sp|P04279|SEMG1_HUMAN DIFSTQDELLVYNK light 842.9 523.3
sp|P04279|SEMG1_HUMAN DIFSTQDELLVYNK light 842.9 1309.7
sp|P02647|APOA1_HUMAN LLDNWDSVTSTFSK light 806.9 569.3
sp|P02647|APOA1_HUMAN LLDNWDSVTSTFSK light 806.9 670.3
sp|P02647|APOA1_HUMAN LLDNWDSVTSTFSK.light 806.9 971.5
sp|P15309|PPAP_HUMAN FVTLVFR.light 441.3 2471
sp|P15309|PPAP_HUMAN FVTLVFR.light 4413 421.3
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sp|P15309|PPAP_HUMAN FVTLVFR light 4413 635.4
sp|060437|PEPL_HUMAN NLLDEIASR Jlight 515.8 228.1
sp|060437|PEPL_HUMAN NLLDEIASR light 515.8 690.3
sp|060437|PEPL_HUMAN NLLDEIASR light 515.8 803.4
sp|P02790|HEMO_HUMAN | NFPSPVDAAFR.light 610.8 480.3
sp|P02790|HEMO_HUMAN | NFPSPVDAAFR light 610.8 775.4
sp|P02790|HEMO_HUMAN | NFPSPVDAAFR.light 610.8 959.5
sp|P07288|KLK3_HUMAN FLRPGDDSSHDLMLLR light 468.7 536.3
sp|P07288|KLK3_HUMAN FLRPGDDSSHDLMLLR light 468.7 575.6
sp|P07288|KLK3_HUMAN FLRPGDDSSHDLMLLR .light 468.7 760.4
sp|PO1009|A1AT_HUMAN SVLGQLGITK.light 508.3 531.4
sp|P0O1009|A1AT_HUMAN SVLGQLGITK.light 508.3 716.4
sp|PO1009|A1AT_HUMAN SVLGQLGITK.light 508.3 829.5
sp|P02687|MBP_BOVIN DTGILDSLGR light 523.8 660.4
sp|P02687|MBP_BOVIN DTGILDSLGR .light 523.8 830.5
sp|P02687|MBP_BOVIN DTGILDSLGR.heavy 528.8 670.4
sp|P02687|MBP_BOVIN DTGILDSLGR.heavy 528.8 840.5
sp|P80188|NGAL_HUMAN MYATIYELK light 566.3 295.1
sp|P80188|NGAL_HUMAN MYATIYELK light 566.3 837.5
sp|P80188|NGAL_HUMAN MYATIYELK. light 566.3 1000.5
sp|P68871|HBB_HUMAN SAVTALWGK light 466.8 574.3
sp|P68871|HBB_HUMAN SAVTALWGK light 466.8 675.4
sp|P68871|HBB_HUMAN SAVTALWGK light 466.8 7745
sp|Q02383|SEMG2_HUMAN | DVSQSSISFQIEK.light 734.4 751.4
sp|Q02383|SEMG2_HUMAN | DVSQSSISFQIEK.light 734.4 951.5
sp|Q02383|SEMG2_HUMAN | DVSQSSISFQIEK.light 734.4 1038.5
sp|P02787| TRFE_HUMAN SASDLTWDNLK.light 625.3 675.3
sp|P02787| TRFE_HUMAN SASDLTWDNLK light 625.3 776.4
sp|P02787|TRFE_HUMAN SASDLTWDNLK.light 625.3 1091.5
sp|PO1009|A1AT_HUMAN LSITGTYDLK.light 555.8 696.4
sp|PO1009|A1AT_HUMAN LSITGTYDLK.light 555.8 797.4
sp|PO1009|A1AT_HUMAN LSITGTYDLK.light 555.8 910.5
sp|P09228|CYTT_HUMAN ALHFVISEYNK light 440.9 4242
sp|P09228|CYTT_HUMAN ALHFVISEYNK.light 440.9 568.3
sp|P09228|CYTT_HUMAN ALHFVISEYNK light 440.9 640.3
sp|P09228|CYTT_HUMAN IIEGGIYDADLNDER light 846.9 947.4
sp|P09228|CYTT_HUMAN IIEGGIYDADLNDER .light 846.9 1110.5
sp|P09228|CYTT_HUMAN IIEGGIYDADLNDER .light 846.9 1466.6
sp|P07288|KLK3_HUMAN LSEPAELTDAVK light 636.8 4723
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sp|P07288|KLK3_HUMAN LSEPAELTDAVK light 636.8 646.4
sp|P07288|KLK3_HUMAN LSEPAELTDAVK light 636.8 9435
sp|P07476|INVO_HUMAN QEAQLELPEQQVGQPK light 608.0 505.8
sp|P07476|INVO_HUMAN QEAQLELPEQQVGQPK light 608.0 699.3
sp|P07476|INVO_HUMAN QEAQLELPEQQVGQPK light 608.0 812.4
sp|QOUBG3|CRNN_HUMAN | LLDEDHTGTVEFK.light 501.9 294.2
sp|QYUBG3|CRNN_HUMAN | LLDEDHTGTVEFK.light 501.9 639.3
sp|QOUBG3|CRNN_HUMAN | LLDEDHTGTVEFK.light 501.9 695.8
sp|P15309|PPAP_HUMAN FQELESETLK.light 612.3 276.1
sp|P15309|PPAP_HUMAN FQELESETLK.light 612.3 819.4
sp|P15309|PPAP_HUMAN FQELESETLK.light 612.3 948.5
sp|Q9UBG3|CRNN_HUMAN | ISPQIQLSGQTEQTQK.light 893.5 793.4
sp|QOUBG3|CRNN_HUMAN | ISPQIQLSGQTEQTQK.light 893.5 1006.5
sp|QOUBG3|CRNN_HUMAN | ISPQIQLSGQTEQTQK light 893.5 1247.6
sp|P07476|INVO_HUMAN GEVLLPVEHQQQK light 502.3 553.8
sp|P07476|INVO_HUMAN GEVLLPVEHQQQK light 502.3 610.3
sp|P07476|INVO_HUMAN GEVLLPVEHQQQK light 502.3 659.9
sp|P02787| TRFE_HUMAN DGAGDVAF VK light 489.7 563.4
sp|P02787|TRFE_HUMAN DGAGDVAF VK light 489.7 678.4
sp|P02787|TRFE_HUMAN DGAGDVAF VK light 489.7 735.4
sp|QBUWPS|SBSN_HUMAN | ALDGINSGITHAGR light 461.2 541.8
sp|QBUWPS|SBSN_HUMAN | ALDGINSGITHAGR light 461.2 599.3
sp|Q02383|SEMG2_HUMAN | GSISIQTEEQIHGK. light 509.6 461.6
sp|Q02383|SEMG2_HUMAN | GSISIQTEEQIHGK light 509.6 635.3
sp|Q02383|SEMG2_HUMAN | GSISIQTEEQIHGK. light 509.6 691.9
sp|P61916|NPC2_HUMAN DC[+57.0]GSVDGVIK.light 525.3 276.1
sp|P61916|NPC2_HUMAN DC[+57.0]GSVDGVIK light 525.3 630.4
sp|P61916|NPC2_HUMAN DC[+57.0]GSVDGVIK light 525.3 774.4
sp|QBUWPS|SBSN_HUMAN | FGQGVHHGLSEGWK.light 513.6 603.8
sp|QBUWPS|SBSN_HUMAN | FGQGVHHGLSEGWK.light 513.6 696.3
sp|095274|LYPD3_HUMAN | GC[+57.0]VQDEFC[+57.0]TR light 636.3 827.3
sp|095274|LYPD3_HUMAN | GC[+57.0]VQDEFC[+57.0]TR.light 636.3 955.4
sp|095274|LYPD3_HUMAN | GC[+57.0]VQDEFC[+57.0]TR light 636.3 1054.5
sp|QOUBCY|SPRR3_HUMAN | VPVPGYTK.light 430.7 381.2
sp|QOUBCY|SPRR3_HUMAN | VPVPGYTK.light 430.7 565.3
sp|QOUBCY|SPRR3_HUMAN | VPVPGYTK.light 430.7 664.4
sp|Q02383|SEMG2_HUMAN | GSISIQTEEK light 546.3 634.3
sp|Q02383|SEMG2_HUMAN | GSISIQTEEK light 546.3 747.4
sp|Q02383|SEMG2_HUMAN | GSISIQTEEK light 546.3 834.4
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sp|P04279|SEMG1_HUMAN | QITIPSQEQEHSQK.light 551.6 599.3
sp|P04279|SEMG1_HUMAN | QITIPSQEQEHSQK.light 551.6 706.3
sp|P61916|NPC2_HUMAN SGINC[+57.0]PIQK.light 508.8 485.3
sp|P61916|NPC2_HUMAN SGINC[+57.0]PIQK.light 508.8 645.3
sp|P61916|NPC2_HUMAN SGINC[+57.0]PIQK light 508.8 759.4
sp|P07476|INVO_HUMAN HLVQQEGQLEQQER light 574.6 560.3
sp|P07476|INVO_HUMAN HLVQQEGQLEQQER light 574.6 689.3
sp|P07476|INVO_HUMAN HLVQQEGQLEQQER light 574.6 920.5
sp|QOUBG3|CRNN_HUMAN | AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR.light | 839.9 851.4
sp|QOUBG3|CRNN_HUMAN | AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR light | 839.9 886.9
sp|QOUBG3|CRNN_HUMAN | AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR.light | 839.9 1001.5
sp|060437|PEPL_HUMAN NQGPQESVVR light 557.3 243.1
sp|060437|PEPL_HUMAN NQGPQESVVR .light 557.3 814.4
sp|060437|PEPL_HUMAN NQGPQESVVR light 557.3 8715
sp|QOUBCY|SPRR3_HUMAN | VPEPGC[+57.0]TK.light 4442 394.7
sp|QYUBCY|SPRR3_HUMAN | VPEPGC[+57.0]TK light 444.2 562.3
sp|QOUBCY|SPRR3_HUMAN | VPEPGC[+57.0]TK.light 4442 788.4
sp|060437|PEPL_HUMAN AQSLQSAK light 416.7 200.1
sp|060437|PEPL_HUMAN AQSLQSAK light 416.7 546.3
sp|060437|PEPL_HUMAN AQSLQSAK light 416.7 633.4
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Alpha-1 Antitrypsin PO1009|A1AT
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Serotransferrin P02787|TRFE
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Submaxillary Gland Androgen-Regulated Protein 3B P02814|SMR3B
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Alpha Amylase-1 P04745|AMY1

Intensity (10%6)
;

0s 4

—_—
_—
IAE.

LSG.

R.LSGLLDLALGK.D [176,

Intensity (1043)

186]

600

200

400

300

200

100

t
86 87 88 e ] 9.0 a1
Retention Time

— y10-886.5881+ —— yO- 8095560+

— y7- 7204505+

8.6
.

84 845 B A B7 A8 a4 a0 91
Retention Time

K.IAEYMNHLIDIGVAGFR.I [193, 209]

Intensity (1043)

o
=
[am)

o
=
[am)

Ia
=
[am)

%)
=
[am)

[
=
[am)

=
[am)

—— y6- 6063358+ —— y16- 0034538+
—— y15- §AT 8353+
1 87
} } } } ; } } {
8.4 85 86 8.7 B8 &84 a.0 9.1 92

Retention Time

316



Cystatin SA P09228|CYTT
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Vaginal Fluid
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Neutrophil Gelatinase P80188|NGAL
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Periplakin 060437|PEPL

20 4

@
A0S,

Intensity (1043)
3

MLL.

R.AQSLQSAK.A [721, 728]

Intensity

K.NLLDEIASR.E [771, 779]

Intensity

Retention Time

— yhi- 633 3566+

W5 - 546 3246+

— h2-2001030+

3000
3500 +
2000 £
1500 4
1000
g0 1

0.6
n] .

.E.EI
0o 1.1 131!

05 0B 07 08 08 10 1

T 12 13 14 145
Retention Time

— 47 - 803.4250+

yB - 690.3417+

— h2- 2281343+

2000
6.1
|
1500 |
om0 1
so0 1
G4 fs
i = e e ./-\"'!“'"'F".-: !
58 58 B0 B1 62 63 B4 65 B 6.7

Retention Time

321



R.NQGPQESVVR.K [924, 933]

— y3- 8714632+ YT - 8144417+

— hl- 2431088+

800 T

L

700

500 +

a0 +

Intensity

00

1o L 41 12 \ 15

0 RUSUTTEUTETE SUTES -

oga 10 11 12 13 14 14
Retention Time

322



Involucrin P07476|INVO
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Cornulin QQUBG3|CRNN
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R.AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR.T [219, 251]

Intensity (1043)

]

0O —= kI 0 M m -~ O

— y19-1001.4647++

— y1h- 851 3830++

Y17 -886.9115++

13 14 145
Retention Time

326



Suprabasin Q6UWP8|SBSN
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Small Proline Rich Protein 3 Q9UBC9|SPRR3
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Prostate Specific Antigen P07288|KLK3
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Semenogelin 2 Q02383|SEMG2
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Epididymal Secretory Protein P61916|NPC2
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e The acquisition parameters are as follows:

Acquisition Method Info

Method Name 1imin_dMRM_FINALm
Method Path D:\MassHunter\methods\Proteomics_DODY\3mm_Final\11min_dMRM_FINAL.m
Method Description 11 min 3x100

Device List
HiP Sampler
Binary Pump
Column Comp.
aaq

MS QQQ Mass Spectrometer

lon Source AJS ESI Tune File atunes TUNEXML
Stop Mode Mo Limit/as Pump Stop Time (min) 1
Time Filter On Time Filter Width (min) 0.03
LC->Waste Pre Row N/A LC->Waste Post Row NfA
Time Segments
Index Start Time Scan Type lon Mode Div Valve Delta EMV Store Cycle Time Triggered? MRM Repeats
(min) {ms)
1 0 DynamicMRM  ESl+Agilent Jet To MS 200 Yes 400 No 3
Stream

Time Segment 1

Scan Segments

Cpd Mame  ISTD? Prec lon MS1 Res Prod lon MS2 Res Frag (V) CE(V) CellAcc RetTime Ret  Polarity
[\4] {min) Window
AHQTGET Mo 83898888 Unit/Enh 1001 4646 Unit/Enh 380 28 4 146 06 Positive
VTGSGTQ (6490) 83 (6490)
TQAGATQ
TVEQDSS
HQTGR Jig
ht
AHQTGET Mo £39.8888 Unit/Enh 666.91153 UnitEnh 380 22 4 146 06 Positive
VTGSGTQ (6490) 5 (6490)
TQAGATQ
TVEQDSS
HQTGR Jig
ht
AHQTGET Mo 839.8888 Unit/Enh 851.39297 UnitEnh 380 254 4 146 06 Positive
VTGSGTQ (6430) & (6430)
TQAGATQ
TVEQDSS
HQTGR lig
ht
ALDGINS Mo 461.24426 Unit/Enh 59930217 Unit/Enh 380 ME 4 283 06 Positive
GITHAGRI & (5490) 5 (B490)
ight
ALDGINS Mo 461.24426 Unit/Enh 541.78670 UnitEnh 380 15 4 283 06 Positive
GITHAGR.I G (6490) 4 (6430)
ight
ALHFVISE Mo 440.90307 Unit/Enh 640.29368 Unit/Enh 380 g 4 4.89 06 Positive
YNK_light 2 (B490) 1 (B490)
ALHFVISE Mo 440.90307 Unit/Enh 568.22419 UnitEnh 380 14 4 4.89 06 Positive
YNK_light 2 (G490) 4 (6490)
ALHFVISE Mo 440.90307 Unit/Enh 42421906 UnittEnh 380 14 4 4.89 06 Positive
YNE light 2 (6490) (6450)
AQSLQSA Mo 416.72979 Unit/Enh 633.35661 UnitEnh 380 11 4 092 06 Positive
K light 2 (6490) 6 (6490)
AQSLQSA Mo 416.72979 Unit/Enh 546.32458 UnitEnh 380 17 4 092 06 Positive
K light 2 (6490) 8 (6490)
AQSLOSA Mo 416.72979 Unit/Enh 200.10296 Unit/Enh 380 139 4 092 06 Positive
K Jight 2 (6490) 7 (6490)
DC[+57.0] Mo 525.25023 Unit/Enh 774.43559 UnitEnh 380 14 4 243 06 Positive
GSVDGVI 1 (6490) 5 (6490)
K light
DC[+57.0] Mo 525.25023 Unit/Enh 630.38210 UnitEnh 380 14 4 243 06 Positive
GSVDGVI 1 (6490) 2 (6490)
K Jight
DC[+57.0]1 Mo 52525023 Unit/Enh 276.06486 UnitEnh 380 7.3 4 243 06 Positive
GSVDGVI 1 (6490) & (6430)
K light
DGAGDVA Mo 488.74816 Unit/Enh 735.40356 UnitEnh 380 16.2 4 3.28 06 Positive
FVK light 1 (6490) 6 (6490)
DGAGDVA Mo 489.74818 Unit/Enh 678.238210 UnitEnh 380 16.2 4 3.28 06 Positive
FVK light 1 (G490) 2 (6490)
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Cpd Name

DGAGDVA
FVK light
DIFSTQDE
LLVYNK lig
ht
DIFSTQDE
LLVYNK lig
nt

DIFSTQDE
LLVYNK lig
ht
DTGILDSL
GR_heavy
DTGILDSL
GR_heavy
DTGILDSL
GR.light
DTGILDSL
GR.light
DVSQssl
SFQIEK lig
ht

DVSQss|
SFQIEK lig
ht
DVSQss!
SFQIEK lig
nt
ELSELSLL
SLYGIHE.I
ght
ELSELSLL
SLYGIHK.li
ght
ELSELSLL
SLYGIHE. I
ght
FGQGWVHH
GLSEGWK
light
FGQGVHH
GLSEGWK
light
FGYGYGP
YQPVPEQ
PLYPQPY
QPQYQQ
YTFlight
FGYGYGP
YQPVPEQ
PLYPQPY
QPaYQQ
YTFlight
FGYGYGP
YQPVPEQ
PLYPQPY
QPQYQQ
YTF.light
FLRPGDD
SSHDLML
LR.light
FLRPGDD
SSHDLML
LR light
FLRPGDD
SSHDLML
LR light
FQELESE
TLK Jight
FQELESE
TLK Jight
FQELESE
TLK light
FVYTLVFR.

ight
FVYTLVFR.
ight
FWTLVFR
ight
GC[+57.0]
VQDEFC
[+57.0]
TR.light

Mo

Mo

Mo

Mo

Prec lon MS1Res

489.74818 Unit/Enh

(6430)

84292506 Unit/Enh
(6430)

-

84292506 Unit/Enh
(6430)

B842.92506 Unit/Enh
(6490)

528.78160 Unit/Enh
£490)
528.78160 Unit/Enh
(6490)
523.77747 Unit/Enh
(6490)
523.77747 Unit/Enh
(6490)
734.36892 Unit/Enh
(6490)

w

w

734.36992 Unit/Enh
(6490)

734.36992 Unit/Enh
(6430)

56798557 Unit/Enh
2 (6490)

567.98557 Unit/Enh
2 (5490)

567.98557 Unit/Enh
2 (6490)

513.58814 Unit/Enh
B (6490)

513.58814 Unit/Enh
6 (6490)

1215.2330 Unit/Enh
17 (6490)

1215.2330 Unit/Enh
17 (6490)

1215.2330 Unit/Enh
17 (6490)

468.74126 Unit/Enh
& (6430)

468.74126 Unit/Enh
& (6490)

466.74126 Unit/Enh
& (6490)

612.31134 UnitEnh
(6490)
612.31134 Unit/Enh
3 (6490)
612.31134 Unit/Enh
(6490)
441.26561 Unit/Enh
6490)
441.26561 Unit/Enh
6490)
44126581 Unit/Enh
3 (6490)
636.26080 Unit/Enh
4 (5490)

w

[RR

w

Prod lon
563.35515
9

1309.6634
22

523.28747

MS2 Res

Unit/Enh
(6490)
Unit/Enh
(6490)

Unit/Enh

4 (6490)

42421906

540.458131
2
E70.37578
530.47304
3
660.36751

5
1038.5466
02

951.51457
3

751.39848
1
930.54072
8
817.45688

Unit/Enh
(6490)

Unit/Enh

Unit/Enh
(6490)

Unit/Enh
(6450)

Unit/Enh
(8490)

Unit/Enh

4 (6490)

73042483
[
B96 34437
4

603.80435
4

16877750
98

1229.5625
86

1074.4890
a7

760.43857

Unit/Enh
(6450)

Unit/Enh
(8490)

Unit/Enh
(6490)

Unit/Enh
(8490)

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit/Enh

2 (6490)

57562979
4

536.26440
8

948.48841

o

10.44582
5
276.13428
7
635.38752
2
421.25578
247 1441

1054.4622
2

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit/Enh
(6490)
Unit/Enh
(6490)
Unit/Enh
(6490)
Unit/Enh
(6490)
Unit/Enh
6490)
Unit/Enh
(6490)
Unit/Enh
(6490)

Frag (V)
380

380
380
360

380
380
360
360

380
380
380
380
380
380
380
380

380

360

380

380
380
360

380
380
380
360
360
3&0

380

337

CE (V)
18

271

24

24

172
172
172

172

2

21

Kl

a3

3

20
23
20
147
147
147

24

Cell Acc
)
4

4

O S

Ret Time
imin)
3.28

75

75

75

55
55
5.5
5.5

5.06

5.08

5.06

881

8.81

24

24

9.57

9.57

957

5.99

5.899

3.54
354
354
6.93
6.93
693

237

Ret

Window

0.6

06

0.6

06

06

06

06

06

06

06

0.6

06

06

0.6

06

06

0.6

06

06

0.6

0.6

06

0.6

06

06

06

06

06

0.6

Polarity
Positive

Positive

Positive

Positive

Positive
Positive
Positive
Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive
Positive
Positive
Positive
Positive
Positive

Positive



Cpd Name

GC[+57.0]
VQDEFC
[+57.0]
TR.light
GC[+57.0]
VQDEFC
[+57.00
TR.light
GEVLLPY
EHQQQK.I
ight
GEVLLPY
EHQQQKI
ight
GEVLLPY
EHQQQK.I
ight
GLDLHGL
LAFIQLQQ
C[+57.0]
ACQDR light
GLDLHGL
LAFIQLQQ
C[+57.0]
AQDR light
GLDLHGL
LAFIQLQQ
C[+57.01
AQDR light
GPYPPGP
LAPPQPF
GPGFVPF
PPPPPYG
PGR.light
GPYPPGP
LAPPQPF
GPGFVPP
PPPPPYG
PGR.light
GPYPFGP
LAPPQPF
GPCFVPP
FPPPPYG
PGR.light
GSISIQTE
EK light
GSISIQTE
EK_light
GSISIQTE
EK_light
GSISIQTE
EQIHGK i
ght
GSISIQTE
EQIHGK i
ght
GSISIQTE
EQIHGK i
ght
HLVQQEG
QLEQQER
Jight
HLVQQEG
QLEQCER
Jight
HLVQQEG
QLEQQER
light
LAEYMNH
LIDIGVAG
FR_light
LAEYMNH
LIDIGVAG
FRlight
TAEYMNH
LIDIGVAG
FR.light
IEGGIYD
ADLNDER.
light
IEGGIYD
ADLNDER.
light

ISTD?

Mo

Mo

Mo

Mo

Mo

No

Mo

Mo

No

Mo

Mo

Prec lon
636.26080
4

636.26080
4

502.27545
7
502.27545
7
50227545
7
T66.06707

1

T66.06707
1

T66.06707
1

1034.5393
B8

1034.5393
88

1034.5393
88

546.28258

o

546.28258

5
546.28258

o

509.59848
8

509.59848
8

509.59848
8

57462369
B

574.62360
[

574 623689
B
640.33297
7

640.33297
7

640.33257
7

B46.90739
8

B46.90739
8

MS1Res

Unit/Enh
{6490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
{6490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit/Enh
6490)
Unit/Enh
(B490)
Unit/Enh
(B430)
Unit/Enh
(B430)

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
(6490)

Unit/Enh
{6490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
(6490

Unit/Enh
(6490)

Unit/Enh
(6430)

Prod lon
95539380
B

627.33522
9

B659.87751
9

610.34331
2
553.80128

1037.5778
42

905.38939
649.27223
5

1228.6473
19

1172.6098
71

650.44576
5

63442033

9
T47.38831
634.30424

8
691.86734
8

635.32531
3

461.58065
7

920.45845
5

689.32129
3

5602787
903.45379
B

867.93523
9

606.33582
1

146663393
a3

1110.4698
08

MS2 Res

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
(8490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
(B4390)

Unit/Enh
(6490)

Unit/Enh
(6490)
Unit/Enh
(6490)
Unit/Enh
(B4390)
Unit/Enh
(B4390)

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
(B4390)

Unit/Enh
(6490)

Unit/Enh
(6490)

Unit/Enh
(6430)

Unit/Enh
(64390)

Unit/Enh
(8490)

Unit/Enh
(6430)

Frag (V)
380

360

380
360
380

380

380

360

380

360

360

360
360
380
380

380
380
380
380
380
380
380
380
380

380

338

CE(V)

207

24

10

13.3

26

29

29

29

15
21
14

20

11

13

15.9

13

21

21

18.3

30

30

Cell Acc
)
4

N

Ret Time
imin)
237

237

335

335

10.32

1032

10.32

93

93

93

20m
20m
20m

25

25

25

151

151

878

8.78

a7a

48

48

Ret
Window
06

06

06

06

06

08

1K

06

06

06

0e

06

06

06

08

0e

1K

06

08

06

1K

08

Polarity

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive
Positive
Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive

Positive



Cpd Name

IEGGIYD
ADLNDER.
light
IPPPPPAP
YGPGIFP
PPPPQPI

ght
IPPPPPAP
YGPGIFP
PPPPQPI

ght
IPPPPPAP
YGPGIFP
PPPPQPI
ght
ISPQIQLS
GATEQTQ
K_light
ISPQIOLS
GQTEQTQ
K _light
ISPQIOLS
GATEQTQ
K_light
LLDEDHT
GTVEFK.ii
ght
LLDEDHT
GTVEFK. i

ght
LLDEDHT
GTVEFK i
ght
LLDNWDS
WTSTFSKI
ight
LLDNWDS
WTSTFSKI
ight
LLDNWDS
VTSTFSKI
ight
LLVVYPW
TQR light
LLVWYPW
TQR light
LLVWYPW
TQR light
LSEPAELT
DAVE light
LSEPAELT
DAV light
LSEPAELT
DAVE light
LSGLLDLA
LGK light
LSGLLDLA
LGK light
LSGLLDLA
LGK light
LSITGTYD
LK light
LSITGTYD
LK light
LSITGTYD
LK light
MYATIYEL
K_light
MYATIYEL
K_light
MYATIYEL
K_light
NFPSPVD
AAFR light
NFPSPVD
AAFR light
NFPSPVD
AAFR light
NLLDEIAS
R.light
NLLDEIAS
R.light
NLLDEIAS
R.light

Mo

Mo

Mo

Mo

Mo

Mo

Mo

Mo

Prec lon MS1 Res

846 90739 Unit/Enh
& (6490)

710.71893 Unit/Enh
7 (5490)

710.71893 Unit/Enh
7 (5490)

71071893 Unit/Enh
7 (6490)

B893.47069 Unit/Enh
7 (6430)

893.47069 Unit/Enh
7 (8490)

893.4T069 Unit/Enh
7 (6430)

501.91570 Unit/Enh
& (6490)

501.91570 Unit/Enh
6 (6430)

501.91570 Unit/Enh
& (5490)

806.89630 Unit/Enh
2 (6490)

B806.89630 Unit/Enh
2 (5490)

B06.89630 Unit/Enh
2 (B490)

637.86642 Unit/Enh
3 (5490)
637.86642 Unit'Enh
(6490)
637.86642 Unit'Enh
£490)
636.83772 Unit/Enh
(6490)
636.83772 UnitEnh
(6490)
636.83772 Unit/Enh
(6490)
550.33970 Unit/Enh
(6490)
550.33970 Unit/Enh
& (5490)
550.33970 Unit/Enh
(6490)
555.80569 Unit/Enh
(6490)
55580569 Unit/Enh
(6490)
555.80569 Unit/Enh
& (5490)
566.29138 Unit/Enh
(6490)
566.29138 Unit/Enh
B (5490)
566.29136 Unit/Enh
(6490)
510.80656 Unit/Enh
2 (B490)
510.80656 Unit/Enh
5490
610.80656 Unit/Enh
(6490)
515.78001 Unit/Enh
3 (5490)
515.78001 Unit/Enh
(6490)
515.78001 Unit/Enh
3 (B490)

@O 0w R

@

o

@

m

w

5]

5]

w

Prod lon

947 40647
9

1141.6040
57
729.39300
1

535.28747
4

12476226

MSZRes

UnitEnh
(8490)

Unit/Enh
(8430)

Unit/Enh
(8430)

Unit/Enh
(6430)

UnitEnh

2 (6490)

1006.4799
il

793.41265
1

695.62768
8
639.28585
6

29418121
8

971.46801

Unit/Enh
(8490)

UnitEnh
(6430)

Unit/Enh
(8490)

UnitEnh
(6430)

Unit/Enh
(6430)

UnitEnh

7 (8490)

E70.34083
2

569.29295

Unit/Enh
(8430)

Unit/Enh

3 (6490)

949.48902
7
850.42081

Unit/Enh
(8430)
UnitEnh

3 (6490)

B87.35728
5

943.50948

e

B46.37701
47225538
2
986.58307
B899.55604
4
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Source Parameters

Parameter Value (+} Value (-}
Gas Temp (°C) 200 200
Gas Flow {Ifmin) 13 13
MNebulizer (psi) 35 35
sheathGasHeater 200 200
SheathGasFlow 12 12
Capillary (V) 3500 3000
VCharging 300 500
lon Funnel Parameters
Pos High Pressure RF 150 Meg High Pressure RF a0
Pos Low Pressure RF 60 Meg Low Pressure RF 60
Chromatograms
Chrom Type Label Offset Y-Range
TIC TIC (V] 10000000
Instrument Curves
Actual
Name: HiP Sampler Model: G4226A
Auxiliary
Draw Speed 100.0 pLfmin
Eject Speed 100.0 pLfmin
Draw Position Offset -3.0mm
Wait Time After Drawing 00s
sample Flush Out Factor 5.0
Vialfwell bottom sensing Mo

Injection
Injection Made
Injection Volume
Needle Wash
Needle Wash Location
Wash Time
High throughput

Automatic Delay Volume Reduction

Overlapped Injection

Enable Overlapped Injection

Valve Switching
Valve Movements
Valve Switch Time 1
Switch Time 1 Enabled
Valve Switch Time 2
Switch Time 2 Enabled
Valve Switch Time 3
Switch Time 3 Enabled
Valve Switch Time 4
Switch Time 4 Enabled
Stop Time
Stoptime Mode
Post Time
Posttime Mode

Injection with needle wash
20.00 pL

Flush Port
150s

No

As pump/No limit

off
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Name: Binary Pump Model: G4220A
Flow 1.000 mL/min
Use Solvent Types Yes
Stroke Mode Synchronized
Low Pressure Limit 0.00 bar
High Pressure Limit 550.00 bar

Max. Flow Ramp Up
Max. Flow Ramp Down

100.000 mLfmin®
100.000 mLfmin®

Expected Mixer No check
Stroke A
Automatic Stroke Calculation A Yes
Stop Time
Stoptime Mode Time set
Stoptime 11.00 min
Post Time
Posttime Mode Time set
Posttime 3.00 min
Solvent Composition
(Channel Ch. 1 Solv. Name 1 Ch2 Solv. Name 2 |selected Used Percent
1 |a 100.0 % Water | H20 100.0% Water |H20 ch.1 Yes 95.00 %
V.03 V.03
2 |B 100.0% ACNOD.1%FA |100.0% IPA ch.1 Yes 5.00 %
Acetonitrile Acetonitrile
V.03 V.03
Timetable
Time A B Flow Pressure
1 |0.50min 20.00 % 10.00 % — mL/min -— bar
2 |8 70 min 70.00% 30.00 % —mL/min -— bar
3 |9.80 min 10.00% 90.00 % — mL/min -— bar
4 |10.80 min 10.00 % 90.00 % — mL/min -— bar
5 |10.90 min 95.00 % 5.00% —mL/min -— bar
6 |11.00 min 05.00 % 5.00% — mL/min -— bar
Name: Column Comp. Model: G1316C
Valve Position Port1->6
Ready when front door open Yes

Left Temperature Control
Temperature Control Mode
Temperature

Enable Analysis Left Temperature

Enable Analysis Left Temperature On
Enable Analysis Left Temperature Value

Right Temperature Control
Right temperature Control Mode
Enable Analysis Right Temperature

Enable Analysis Right Temperature On
Enable Analysis Right Temperature Value

Stop Time
Stoptime Mode

Post Time
Posttime Mode

Temperature Set
45.00°C

Yes
08°%C

Not Controlled

Yes
08°%C

As pumpy/injector

off
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APPENDIX C: SAMPLE PREPARATION LIST FOR 3.1.6 CASEWORK

Descriptor| Identifier Samples Preparation
HI\F;IE Bﬁ ;er'g:;:l BBllggg Neat fluid (single source) pipetted onto cotton swab.
3 NSE D Seminal Eluid Incubated at room temperature for Day 0, 1, 3, 7, and 35
3:" NVEED DF Vaanal Eluid days in duplicate. Swab cut and placed in freezerat
gina’ Tl designatedtime, analyzed in a single batch.
NSA_D# Saliva
E SSA_ZERO Day Zero
X _S SSA_ONE Day One ) ) _ _
0SS SSA_THREE Day Three 10 ul neat semen (single source) in 1 mL vaginal fluid
e 3 SSA_FIVE Day Five (single source) incubated at 37 for the listed days. Tubes
& 2 2 SSA_SEVEN Day Seven frozen at designated time, analyzed in a single batch.
E £ SSA_NINE Day Nine
0 SSA_ELEVEN Day Eleven

SUB01.1; SUBO1.2

Peripheral Blood on Cotton

50 ul neat peripheral blocd on cutting of cotton Tshirt,
dried at RT overnight

SuUB02.1; sUB02.2

Peripheral Blood on Denim

50 ul neat peripheral blood on cutting of denim, dried at
RT overnight

SUB03.1; SUBQ3.2

Peripheral Blood on Carpet

50 ul neat peripheral blood on cutting of carpet, dried at
RT overnight

SUB04.1; SUB04.2

Peripheral Blood on Leather

50 ul neat peripheral blocd on cutting of leather, dried at
RT overnight

Substrates

SUB05.1; SUBQS.2

Peripheral Blocd on Drywall

50 ul neat peripheral bload on cutting of drywall, cutting
taken for analysis

SUBO06.1; SUB06.2

Semen on Cotton

50 ul neat semen on cutting of cotton Tshirt, dried at RT
overnight

SUB07.1; SUBQ7.2

Semen on Leather

50 ul neat semen on cutting of leather, dried at RT
overnight, cutting taken for analysis

SUB08.1; SUB08.2

Menstrual Blood on Cotton

50 ul neat menstrual bloed on cutting of cotton T-shirt,
dried at RT overnight

SUB09.1; SUB0S.2

Menstrual Blood on Denim

50 ul neat menstrual blood on cutting of denim, dried at
RT overnight

SuUB10.1; sSUB10.2

Menstrual Blood on Pad

50 ul neat menstrual blood on pad, dried at RT
overnight, cutting taken for analysis

SUB11.1; SUB11.2

Vaginal Fluid on Cotton

50 ul neat vaginal fluid en cutting of cotton T-shirt, dried
at RT cvernight

SuUB12.1; sUB12.2

Vaginal Fluid on Demin

50 ul neat vaginal fluid on cutting of denim, driedat RT
overnight

SUB13.1; SUB13.2

Vaginal Fluid on Leather

50 ul neat vaginal fluid on cutting of leather, dried at RT
overnight

SUB14.1; SUB14.2

Saliva on Plastic Bottle

50 ul on bettle, dried at RT overnight

SUB15.1; sUB15.2

Saliva on Aluminum Can

50 ul on bottle, dried at RT ovemnight
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Descriptor

Identifier

Samples

Preparation

Environmental Contaminants

CONOD1.1; CONO1.2

Peripheral Blood & Dirt

50 ul neat peripheral blood & 50 ul dirt slurry on 1/2
swab, dried at RT overnight

COND2.1; CON02.2

Peripheral Blood & Rust

50 ul neat peripheral blood & 50 ul rust slurry on 1/2
swab, dried at RT overnight

COND3.1; CONO03.2

Peripheral Blood & 10%
Bleach

50 ul neat peripheral blood & 50 ul 10% bleach on 1/2
swab, dried at RT overnight

COND4.1; CON04.2

Menstrual Blood & Lube

50 ul neat menstrual blood & 50 ul lube on 1/2 swab,
dried at RT overnight

COND5.1; CONO5.2

Menstrual Blood &
Spermicide Condom

50 ul neat menstrual blood on cutting of condom, dried at
RT overnight

CONO6.1; CON06.2

Vaginal Fluid & Spermicide
Condom

50 ul neat vaginal fluid en condom cutting of , dried at
RT overnight

CONO07.1; CON07.2

Vaginal Fluid & Lube

50 ul neat vaginal fluid & 50 ul lube cn 1/2 swab, dried at
RT overnight

CONO8.1; CON08.2

Semen & Lube

50 ul neat semen & 50 ul lube on 1/2 swab, driedat RT
overnight

CONO0S.1; CON0S.2

Semen & Spermicide
Condom

50 ul neat semen on condem cutting of , driedat RT
overnight

CON10.1; CON10.2

Semen & 10% Bleach

50 ul neat semen & 50 ul 10% bleach on 1/2 swab, dried
at RT overnight

CON11.1 ; CON11.2

Saliva & Tobacco

50 ul saliva/tobacco slurry on 1/2 swab, dried at RT
overnight

CON12.1; CON12.2

Saliva & Cigarette

50 ul saliva on cutting of filter, dried at RT overnight

Mixtures

Saliva (minor) & Vaginal

MIXO1 Fluid (majer)

MIX02 Semen (minor) & Vaginal
Fluid (major)

MIX03 Semen (minor) &_Menstural
Blood (major)

MIX04 Saliva (minor) & !\nenstrual
Blood (major)

MIXO05 \/aginal Fluid (minor) & Urine

(major)

10 ul minor fluid mixed with 500 ul major fluid, 100 ul
spotted on full swab. Dried at RT cvernight, resuspended
in 1 ml deionized water. Immunochromatographic
comparison. Single Source.
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Descriptor Identifier Samples Preparation
SENO1 Peripheral Bleed 1:100
SENO2 Peripheral Blood 1:1,000
SENO3 Peripheral Blood 1:2,000
SENO4 Peripheral Blood 1:5,000
SENO5 Peripheral Blood 1:10,000
SENO6 Peripheral Blood 1:20,000
SENO7 Peripheral Blood 1:40,000
SENO8 Semen 1:100
SENO09 Semen 1:1,000
SEN10 Semen 1:2,000
SEN11 Semen 1:5,000
SEN12 Semen 1:10,000
SEN13 Semen 1:20,000
@ SEN14 Semen 1:40,000
2 SEN15 Saliva 1:10
= SEN16 Saliva 1:100 Dilutions prepared in deionizedwater, 150 ul
‘2 SEN17 Saliva 1:500 spotted on full swabs. Dried at RT overnight,
o SEN18 Saliva 1:1,000 resuspended in 1 ml deionized water.
2 SEN19 Saliva 1:2,000 Immunochromatographic. Single Source. Injected
'.E SEN20 Saliva 1:5,000 20 uL on column.
= SEN21 Saliva 1:10,000
o SEN22 Menstrual Blood 1:100
SEN23 Menstrual Blood 1:1,000
SEN24 Menstrual Bloed 1:2,000
SEN25 Menstrual Blood 1:5,000
SEN26 Menstrual Blood 1:10,000
SEN27 Menstrual Blood 1:20,000
SEN28 Menstrual Blood 1:40,000
SEN29 Vaginal Fluid 1:10
SEN30 Vaginal Fluid 1:100
SEN31 Vaginal Fluid 1:500
SEN32 Vaginal Fluid 1:1,000
SEN33 Vaginal Fluid 1:2,000
SEN34 Vaginal Fluid 1:5,000
SEN35 Vaginal Fluid 1:10,000
Sexual Assault Kit
SSAA?‘]—%:;‘ Vaginal Swab
SSAA?‘]_%%; Oral Swab Swabs taken from a single female individual in
SA0T 03 '1 : duplicate imme_diqtely before preparation. jO ul of
- Rectal Swab 1:100 semen dilution spotted on swabs, dried at
SA01 032 . P S,
Sexual Assault Kit-Vasectomized Suspect RT. o»termght. Full swab resuspended in 1 mL
SA0D 011 delonlzgd wate_r‘ Immuncchromatographic
= Vaginal Swab comparison. Single source male and female
T SA02 01'2 donors.
= SA02_02.1; Oral Swab
|- SA02_02.2 ralowa
E SSAA%%—%%; Rectal Swab
LaunderedSamples 1 mL of fluid 'squirted’ on substrate, outlined with
LS01 Semen on Bed Sheet marker. Substrates washed separately (by fluid) on
LS02 Semen on Underwear regular cycle with detergentand dried completely
LS03 Peripheral Blood on Towel in dryer. Cutting of stain and control region taken
LS04 Peripheral Blood on Denim for analysis.
DS0T 1 DS01 3 Digital Swabs San Dry swab of finger, dried at RT avernight prior to
E . aliva . .
DS02.1: DS02.2 Vaginal Fluid analysis. Full swab resuspendedin 1 mL of

DS03.1,Ds803.2

Menstrual Blood

deionized water. Single Source.
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APPENDIX D: REPEATABILITY AND REPRODUCIBILITY CALCULATED COEFFICIENT OF

VARIATION FOR PEAK AREA RESPONSE

Fluid Protein Peptide Analyst1 | Analyst 2 [Combined

Alpha-1 Antitrypsin LSITGTYDLK 11.845 10.800 11.530
- SVLGQLGITK 9.366 9.210 9.336
g Hemoglobin SAVTALWGK 7.054 6.768 6.792
m LLVVYPWTQR 7.457 5.374 6.463
g Hemopexin NFPSPVDAAFR 10.990 9.664 10.756
é_ Apolipoprotein LLDNWDSVTSTFSK 13.664 9.755 11.945
= VSFLSALEEYTK 7.843 15.313 12.289
Serotransfertin DGAGDVAFVK 12.350 10.574 11.615
SASDLTWDNLK 6.351 7.044 7.045
Alpha Amylase LSGLLDLALGK 6.434 7.201 9.067
IAEYMNHLIDIGVAGFR 3.954 9.962 9.079
@ Statherin FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF 12.736 11.058 13.988
'Tau . . GPYPPGPLAPPQPFGPGFVPPPPPPPTGPGR 7.189 9.944 10.139
” Submaxillary Protein IPPPPPAPYGPGIFPPPPPQP 5.941 8414 | 9873
. IIEGGIYDADLNDER 5.811 10.255 12.909

Cystatin
ALHFVISEYNK 5.991 8.555 10.719
LLDEDHTGTVEFK 6.647 15.880 13.902
Cornulin ISPQIQLSGQTEQTQK 6.635 17.521 14.595
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR| 4.567 10.743 8.064
Neutrophil Gelatinase WYVVGLAGNAILR 7.926 11.252 10.790
MYATIYELK 9.313 12,546 12.265
GLDHGLLAFIQLQQCAQDR 10.027 7.458 8.874
o Ly8/PLAUR GCVQDEFCTR 7.244 16.604 14.520
E Suprabasin ALGDINSGITHAGR 4.790 12.886 11.096
'_E FGQGVHHGLSEGWK 10.922 13.427 13.855
'g: AQSLQSAK 5.933 11.403 11.056
> Periplakin NLLDEIASR 9.246 15.735 16.460
NQGPQESVVR 7.738 13.654 12.771
. . . VPEPGCTK 8.700 7.030 8.070
ISmall Proline Rich Protein 3 VPVPGYTK 5925 11228 10284
HLVQQEGQLEQQER 5.846 18.955 15.417
Involucrin QEAQLELPEQQVGQPK 4.357 15.600 12.361
GEVLLPVEHQQQK 9.393 10.984 10.677
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Fluid Protein Peptide Analyst1 | Analyst 2 [Combined
FVTLVFR 87.638 41.252 95.688
Acid Phosphatase FQELESETLK 19.405 14.717 26.483
ELSELSLLSLYGIHK 5.787 10.988 8.773
- Prostate Specific Antigen FLRPGDDSSHDLMLLR 54.820 21.388 62.553
= LSEPAELTDAVK 34.849 17.358 45.393
LT: GSISIQTEEK 38.678 19.467 51.764
E Semenogelin 2 GSISIQTEEQIHGK 10.208 10.259 15.247
2 DVSQSSISFQIEK 2.677 11.744 8.304
Semenogelin 1 DIFSTQDELLVYNK 5.340 10.368 8.063
QITIPSQEQEHSQK 6.822 7.261 T7.747
Epididymal Secretory DCGSVDGVIK 6.243 11.758 9.125
SGINCPIQK 9.318 9.948 9.425
LLDEDHTGTVEFK 14.904 12.570 14.500
Cornulin ISPQIQLSGQTEQTQK N/D N/D N/D
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR N/D N/D N/D
Neutrophil Gelatinase WYVVGLAGNAILR 24.821 15.549 20.181
MYATIYELK 22.655 24.441 23.949
GLDHGLLAFIQLQQCAQDR N/D N/D N/D
Ly6/PLAUR GCVQDEFCTR N/D N/D N/D
Suprabasin ALGDINSGITHAGR N/D N/D N/D
FGQGVHHGLSEGWK N/D N/D N/D
AQSLQSAK N/D N/D N/D
3 Periplakin NLLDEIASR N/D N/D N/D
% NQGPQESVVR N/D N/D N/D
= HLVQQEGQLEQQER N/D N/D N/D
H Invelucrin QEAQLELPEQQVGQPK N/D N/D N/D
% GEVLLPVEHQQQK N/D N/D N/D
= . . . VPEPGCTK 8.312 10.234 10.224
Small Proline Rich Protein 3 VPVPGYTK 8304 2714 8635
Alpha-1 Antitrypsin LSITGTYDLK 19.303 11.382 16.432
SVLGQLGITK 13.169 11.973 12.729
Hemoglobin SAVTALWGK 9.186 6.718 8.131
LLVWYPWTQR 8.966 5.508 7.739
Hemopexin NFPSPVDAAFR 15.337 12.862 14.875
Apolipoprotein LLDNWDSVTSTFSK 21.725 13.442 19.061
VSFLSALEEYTK 22.803 17.151 21.686
Serotransferrin DGAGDVAFVK 15.868 11.908 14.349
SASDLTWDNLK 12.424 11.779 12.704
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APPENDIX E: REPEATABILITY AND REPRODUCIBILITY CALCULATED COEFFICIENT OF

VARIATION FOR RELATIVE RETENTION TIME

Fluid Protein Peptide Analyst1|Analyst 2 [Combined

Alpha-1 Antitrypsin LSITGTYDLK 0.093 0.093 0.090

o SVLGQLGITK 0.077 0.043 0.060

_8 Hemoalobin SAVTALWGK 0.106 0.132 0.118

m g LLVVYPWTQR 0.184 0.124 0.157

g Hemopexin NFPSPVDAAFR 0.062 0.059 0.059

_-5_ Apolipoprotein LLDNWDSVTSTFSK 0.108 0.070 0.089

5 VSFLSALEEYTK 0.106 0.025 0.075

o Serotransfarrin DGAGDVAFVK 0.000 0.000 0.000

SASDLTWDNLK 0.102 0.076 0.088

Alpha Amylase LSGLLDLALGK 0.044 0.036 0.040

IAEYMNHLIDIGVAGFR 0.058 0.036 0.047

@ Statherin FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF 0.044 0.032 0.039

% . . GPYPPGPLAPPQPFGPGFVPPPPPPPTGPGR 0.076 0.055 0.064
0] Submaxillary Protein

IPPPPPAPYGPGIFPPPPPQP 0.072 0.073 0.074

Cystatin IIEGGIYDADLNDER 0.053 0.053 0.051

ALHFVISEYNK 0.000 0.000 0.000

LLDEDHTGTVEFK 0.118 0.065 0.093

Cornulin ISPQIQLSGQTEQTQK 0.128 0.107 0.115

AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR| 0.176 0.264 0.226

Neutrophil Gelatinase WYVVGLAGNAILR 0.064 0.036 0.052

MYATIYELK 0.066 0.066 0.064

Ly6/PLAUR GLDHGLLAFIQLQQCAQDR 0.029 0.022 0.025

g GCVQDEFCTR 0.193 0.170 0.185

E Suprabasin ALGDINSGITHAGR 0.135 0.171 0.152

[ FGQGVHHGLSEGWK 0.248 0.159 0.215

g-: AQSLQSAK 0.000 0.269 0.190

= Periplakin NLLDEIASR 0.038 0.081 0.053

NQGPQESVVR 0.186 0.295 0.258

Small Proline Rich Protein 3 XE\E/Eg‘?'ITPPE g??g g?gg g?g;

HLVQQEGQLEQQER 0.000 0.225 0.165

Invelucrin QEAQLELPEQQVGQPK 0.100 0.118 0.107

GEVLLPVEHQQQK 0.155 0.110 0.136
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Fluid Protein Peptide Analyst1|Analyst 2 |Combined
FVTLVFR 0049 | 0059 | 0054
Acid Phosphatase FQELESETLK 0.0689 | 0.089 | 0.067
ELSELSLLSLYGIHK 0.058 | 0059 | 0.058
2 | Prostate Specific Anfigen FLRPGDDSSHDLMLLR 0.081 0.081 0.078
= [SEPAELTDAVK 0.085 | 0071 0.078
- GSISIQTEEK 0124 | 0124 | 0.120
£ Semenogelin 2 GSISIQTEEQIHGK 0.134 | 0160 | 0.147
£ DVSQSSISFQIEK 0.075 | 0079 | 0.076
2 Semenogelin 1 DIFSTQDELLVYNK 0.063 | 0042 | 0052
QITIPSQEQEHSQK 0.174 | 0132 | 0.151
= oididvmal Secretor DCGSVDGVIK 0.138 | 0.157 | 0.148
picicy Y SGINCPIQK 0.147 | 0000 | 0.104
LLDEDHTGTVEFK 0.104 | 0118 | 0.113
Cornulin ISPQIAQLSGQTEQTQK N/D N/D N/D
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR| N/D N/D N/D
Neutrophil Gelatinase WYVVGLAGNAILR 0.089 | 0083 | 0.084
MYATIYELK 0.066 | 0114 | 0093
GLDHGLLAFIQLQQCAQDR N/D N/D N/D
Ly8/PLAUR GCVQDEFCTR N/D N/D N/D
Suprabasin ALGDINSGITHAGR N/D N/D N/D
FGQGVHHGLSEGWK N/D N/D N/D
AQSLQSAK N/D N/D N/D
3 Periplakin NLLDEIASR N/D N/D N/D
2 NQGPQESVVR N/D N/D N/D
= HLVOQEGQLEQQER N/D N/D N/D
E Involucrin QEAQLELPEQQVGQPK N/D N/D N/D
2 GEVLLPVEHQQQK N/D N/D N/D
= | Small Proline Rich Protein 3 ‘\igigggm g'gg? g'?gg g'ggg
Aoha Anfitrosi [SITGTYDLK 0078 | 0082 | 0078
P P SVLGQALGITK 0.064 | 0.085 | 0.073
Hemoglobin SAVTALWGK 0066 | 0128 | 0099
LLVWYPWTGQR 0176 | 0094 | 0137
Hemopexin NEPSPVDAAFR 0.114 | 0.071 0.094
Apolipoprotein LLDNWDSVTSTFSK 0.106 | 0043 | 0.078
VSFLSALEEYTK 0.054 | 0062 | 0.057
Serotransfen DGAGDVAFVK 0.100 | 0136 | 0.122
SASDLTWDNLK 0.102 | 0.051 0.078
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APPENDIX F: REPEATABILITY AND REPRODUCIBILITY CALCULATED COEFFICIENT OF

VARIATION FOR ION RATIO RESPONSE

Fluid Protein Peptide Analyst 1 |Analyst 2 |[Combined
Alphe-1 Antitrypsin LSITGTYDLK 7520 | 5011 6315
- SVLGQLGITK. 3.103 | 3.745 | 3.341
S ¥y obi SAVTALWGK 4820 | 4842 | 4.743
o emoglobin LLVWVYPWTQR 1963 | 1824 | 1969
g Hemopexin NFPSPVDAAFR 3.156 | 3.490 | 3.496
5 Apolipoprotein LLDNWDSVTSTFSK 1830 | 3.817 | 3.088
= VSFLSALEEYTK 2973 | 2785 | 2796
a Serotransfer DGAGDVAFVK 3095 | 2746 | 2853
SASDLTWDNLK 4843 | 5640 | 5469
Alphe Amylase LSGLLDLALGK 3647 | 2038 | 3.099
IAEYMNHLIDIGVAGFR 4826 | 4782 | 4867
@ Statherin FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF 3617 | 6615 | 5362
= Submailar Proter GPYPPGPLAPPQPFGPGFVPPPPPPPTGPGR | 0.864 | 1209 | 1.044
o uomaxiiary Fratein PPPPPAPYGPGIFPPPPPQP 0511 0588 | 0586
Cystatin [IEGGIYDADLNDER 4112 | 4217 | 4541
ALHFVISEYNK 2028 | 4286 | 3695
LLDEDHTGTVEFK 4193 | 3883 | 4534
Cormnulin SPQIQLSGQTEQTAK 2087 | 2340 | 2333
AHQTGETVTGSGTQTQAGATQTVEQDSSHQTGR| 7.412 | 6244 | 7.175
Neutrophil Gelatinase WYVVGLAGNAILR 6804 | 5743 | 6108
MYATIYELK 4088 | 3308 | 3.753
GLDHGLLAFIGLQQCAQDR 2.913 | 1.805 | 2.364
T LY6/PLAUR GCVQDEFCTR 5220 | 4690 | 5500
T Suprabasin ALGDINSGITHAGR 3605 | 5569 | 4568
g FGQGVHHGLSEGWK 6678 | 6419 | 6.370
) AQSLQSAK 2477 | 2819 | 2896
= Periplakin NLLDEIASR 4053 | 3.911 4113
NQGPQESVVR 8886 | 3902 | 7232
— ) VPEPGCTK 4.396 | 3.693 | 3.954
Small Proline Rich Protein 3 VPVPGYTK 5035 5408 2044
HLVQQEGQLEQQER 5630 | 7.285 | 6.368
Involucrin QEAQLELPEQQVGQPK. 1731 2.578 | 2.309
GEVLLPVEHQQQK 2.940 | 2489 | 2651
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Fluid Protein Peptide Analyst 1]Analyst 2 [Combined
FVTLVER 1503 | 1.240 | 1.342
Acid Phosphatase FQELESETLK 4248 | 3127 | 3636
ELSELSLLSLYGIHK 4844 | 2577 | 4455
- Prostate Specilic Antigen FLRPGDDSSHDLMLLR 3808 | 3360 | 36877
= LSEPAELTDAVK 1918 | 1.032 | 1.601
= GSISIQTEEK 4360 | 3249 | 4.025
£ Semenogelin 2 GSISIQTEEQIHGK 3.749 | 3127 | 3.505
£ DVSQSSISFQIEK 6.209 | 3.842 | 5.066
0 Semenoaclin DIFSTQDELLVYNK 3455 | 4174 | 3.801
¢ QITIPSQEQEHSQAK 2578 | 3.036 | 2810
e oididvrmal Secretor DCGSVDGVIK 5835 | 5.021 5501
praidy Y SGINCPIQK 3.971 3205 | 3.863
[LDEDHTGTVEFK 5145 | 7.970 | 6519
Cornulin [SPQIQLSGQTEQTQK ND ND NID
AHQTGETVIGSGTQT QAGATATVEQDSSHQTGR| NID N/D N/D
Neutrophil Gelatinase WYVVGLAGNAILR 11812 | 14.081 | 12682
MYATIYELK 8859 | 20230 | 20.098
GLDHGLLAFIQLQQCAQDR ND ND ND
Ly8/PLAUR GCVQDEFCTR ND ) NID
Suprabasin ALGDINSGITHAGR N/D N/D N/D
FGQGVHHGLSEGWK ND NID N/ID
AQSLQSAK N/D NID N/D
3 Periplakin NLLDEIASR ND ND N/D
£ NQGPQESVVR ND ND N/D
= ALVQQEGQLEQQER ND ND ND
2 Involucrin QEAQLELPEQQVGQPK ND NID NID
2 GEVLLPVEHQQQK ND NID NID
= Small Proline Rich Protein 3 xEEEg%{E gggg ;ggg gi;g
Alpha-1 Antitrypsin LSITGTYDLK 4598 | 4.323 | 4.418
SVLGQLGITK 3147 | 2.257 | 2.661
Hemoglobin SAVTALWGK 4,661 3507 | 4.200
LLVVYPWTQR 3446 | 2150 | 2.820
Hemopexin NFPSPVDAAFR 3064 | 2.758 | 3.320
Apolipoprotein [LDNWDSVISTFSK 3865 | 2246 | 3.070
VSFLSALEEYTK 3.316 | 3.242 | 3.805
Serotransforrn DGAGDVAFVK 2.730 | 3.418 | 3.001
SASDLTWDNLK 3875 | 6.952 | 5.488
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APPENDIX G: AUTOSAMPLER STABILITY COMPREHENSIVE RESULTS
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60000000
50000000 = ——
40000000
& 30000000
© 20000000
10000000

0

ak Area

Averag

Day 1 24 hr 48 hr

Hemoglobin SAVT =—@=Hemoglobin LLVV

Menstrual Blood

250000
® 200000 .______-___-.--________.
<
§ 150000 M
o (@
o
2 50000
< e o= -0
0
Day 1 24 hr 48 hr

Antitrypsin LSIT
=8— Antitrypsin SVLG
—8—Hemopexin NFPS
=8-Apolipoprotein LLDN
—8— Apolipoprotein VSFL
—e—Serotransferrin DGAG
—8—Serotransferrin SASD

353



Menstrual Blood
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Vaginal Fluid
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Vaginal Fluid
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APPENDIX H: BLIND SAMPLE ANALYSIS RESULTS

Sample Sample Quant Experir!'lental True Fluid Points of
Number| Description Value Fluid Identification Supplemental Info Discrepan
p (ug/mL) | Identification pancy
Cloth swatch
1 No visible ND | Peripheral Blood | Peripheral Blood| 100 KL of neat bload, NTR
= laundered (w/o bleach)
staining
29.318 ND ND Blank NTR
2 Condom
25.381 ND ND Blank NTR
Cotton swab . . . . 10 uL each semen &
Seminal Fluid Vaginal Fluid L
3 (12) 454335 Saliva Seminal Fluid | 3@/iva in 100 L Vron pre- NTR
No visible . . . collected and dried
L Vaginal Fluid Saliva )
staining vaginal swab
Cloth swatch 100 pL neat semen
4 No visible ND Seminal Fluid Seminal Fluid H ' NTR
= laundered (w/ bleach)
staining
Cotton swab ) .
(172) Seminal Fluid | Vaginal Fluig | 190HL of 1:100diluted
5 420.607 B ] . ) semenon a pre-collected NTR
Pale yellow Vaginal Fluid Seminal Fluid : -
e and dried vaginal swab
staining
Cotton swab ) . i
(1/2) Saliva Vaginal Fluig | 100 ML 1-10diluted saliva
6 o 382.187 - . . on a pre-collectedand NTR
No visible Vaginal Fluid Saliva . .
L dried vaginal swab
staining
Cloth swatch B . . g
7 No visible 130.684 Semmsfl Fluid E‘_.allva _ 10('._) “l._ 10:1 mixture of NTR
= Saliva Seminal Fluid saliva:semen on cloth
staining
Coniniswab Peripheral Blood Single-source swab
8 (1/2) 607.767 PR ) Menstrual Blood | collected from donor, no NTR
Red-brown Vaginal Fluid )
g associated volume
staining
Cotton swab
(1/2)
9 = ND ND ND Blank NTR
No visible
staining
Cloth swatch 100 L neat semen on
10 No visible 68.632 Seminal Fluid Seminal Fluid cloth, laundered (wfo NTR
staining bleach)
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Quant

Experimental

Sample Sample . True Fluid Points of
o Value Fluid . . Supplemental Info "
Number Description (Hg/imL) Identification Identification Discrepancy
Cotton swab .
. . . . 100 pL 1:1 mixture of
11 (1/2) 1120.000 | Seminal Fluid | Seminal Fluid | (o nd semenon NTR
No visible Saliva Saliva
L cotton swab
staining
Cotton swab
(1/2) . . . . .
12 Pale yellow 4144.280 | Seminal Fluid Seminal Fluid | 100 uL neat fluid per swab NTR
staining
Cotton swab Peripheral 100 uL of 1:10diluted
(1/2) Blood Menstrual Blood | semenon a pre-collected
13 Red-brown 963.931 Seminal Fluid Seminal Fluid | and dried menstrual blood NTR
staining Vaginal Fluid swab
Cloth swatch . . . oy
14 No visible 51953 Semlngl Fluid Salwa . 100 “.L 9f 100:1 mixture of NTR
e Saliva Seminal Fluid saliva:semen on cloth
staining
100 pL of mixture
Cottc;r;zswab Seminal Fluid Vaginal Fluid including 10 pL semen, 1 False
15 (1/2) 778.717 - : Seminal Fluid | pL saliva, pipettedontoa Negative
Pale yellow Vaginal Fluid . . . g
taini Saliva previously collectedand | Missed Saliva
staining dried vaginal swab.
Cloth swatch
16 No visible 1027.320 Seminal Fluid Seminal Fluid | 100 uL neat fluid per swab NTR
staining
Cotton swab Peripheral Single-source swab
17 (1/2) 1215.418 Blood | Menstrual Blood | collected from donor, no | 2.5 Fositive
Red-brown Seminal Fluid - False Semen
iy . ) associated volume
staining Vaginal Fluid
Cloth swatch
18 No visible 38.773 Saliva Saliva 100 pL neat fluid per swab NTR
staining
Cotton swab Peripheral 100 L of 1:100 semen
(1/2) Blood Menstrual Blood | dilution on a previously
1° Red-brown 3941.220 Seminal Fluid Seminal Fluid collected and dried NTR
staining Vaginal Fluid menstrual swab
Cotton swab Peripheral 100 L ofa 1:100 semen
(1/2) Blood Vaginal Fluid dilution on a previously
20 Pale yellow 331.883 Seminal Fluid Seminal Fluid collected and dried NTR
staining Vaginal Fluid vaginal swab
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Quant

Experimental

Sample Sample . True Fluid Points of
o Value Fluid ) . Supplemental Info .
Number| Description (ng/mL) Identification Identification Discrepancy
Cotton swab 100 L ofa 1:10 semen
(1/2) Seminal Fluid | Vaginal Fluid | dilution on a previously
21 No visible 440115 Vaginal Fluid | Seminal Fluid collected and dried NTR
staining vaginal swab
Cotton swab False Positive:
(172) Saliva - 100 pL neat fluid per Incorrect
22 No visible 110.124 Vaginal Fluid Saliva swab Vaginal Fluid
staining Identification
Cotton swab
(1/2) . 100 pL neat fluid per
23 No visible 221.366 ND Urine swab NTR
staining
Cotton swab
(1/2) . 100 pL neat fluid per
24 No visible 219.389 ND Urine swab NTR
staining
Cott(c;r;zs)wab Swab collected from
25 No visible 386.845 Vaginal Fluid Vaginal Fluid donor, no associated NTR
L volume
staining
33.993 ND ND Sample on outside NTR
26 Condom
Seminal Fluid 100 L of a 1:1 mixture of | False Negative:
33.295 Seminal Fluid err;n? u semen and saliva on a Missed Saliva
aliva lubricated condom Identification
COttC;anS wab Peripheral Swab collected from Falls e Posn:ve:
27 . (1/2) 368.870 Blood Rectal Swab donor, no associated ncorrect
Faint Red-brown - . Vaginal Fluid
o Vaginal Fluid volume -
staining Identification
Cloth swatch . . .
o8 Red-brown 4367 860 PeBrllphzral PeBrllphzral 100 L neatbflmd per NTR
staining 0o oo swa
Cott(c;r;zs)wab Swab collected from
29 398.438 Vaginal Fluid Vaginal Fluid donor, no associated NTR
Pale yellow
27 volume
staining
Cotton swab B Analyst Note:
(112) Peripheral Nasal 100 L neat fluid per | Consistent with
30 = 267.377 Blood .
No visible Sali Secretions swab Nasal
L aliva .
staining Secretions
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Quant Experimental . .
Sample Sample h True Fluid Points of
s Value Fluid : . Supplemental Info .
Number Description (Hg/mL) | Identification Identification Discrepancy
Cotton swab (1/2) Seminal Fluid | Vaginal Fluid L(.’IOHL °fa1:1°‘°‘.em7"
31 Pale yellow 578.119 erminat =l aginal Ful llution on a previously NTR
A Vaginal Fluid | Seminal Fluid collected and dried
staining .
vaginal swab
Peripheral
. . 100 pL neat semenona
Cotton swab (1/2) Blood Vaginal Fluid '
32 Yellow staining 1159.981 Seminal Fluid | Seminal Fluid prew_ously c_ollected and NTR
" . dried vaginal swab.
Vaginal Fluid
. . . . 100 pL of a 1:10 mixture
33 C°“‘?’? swab (1./2) 2997.140 Semlna_l Fluid Semlngl Fluid of semen:salivaon a NTR
No visible staining Saliva Saliva
cotton swab
ND ND ND Sample on outside NTR
34 Condom
. . . . 100 pL of a 1:10 mixture
4861.345 Semlna_l Fluid Semlna_l Fluid of saliva:semenon a NTR
Saliva Saliva .
lubricated condom
Cloth swatch . . . . 100 pL neat fluid per
35 No visible staining 564.706 Seminal Fluid | Seminal Fluid swab NTR
Cotton swab (1/2) . . . 100 L neat saliva on a
36 Pale yellow 724.519 §allva . Vaglnall Fluid previously collected and NTR
kS Vaginal Fluid Saliva N h
staining dried vaginal swab
100 uL of a 1:100 saliva False Negative:
a7 Cottc_)r? swab (‘1_/2) 357 790 Vaginal Fluid Vaglna_l Fluid dilution on a prevu_nusly Missed Saliva
No visible staining Saliva collected and dried e
) Identification
vaginal swab.
Cotton swab (1/2) . . . . 100 pL neat semenona
38 Pale yellow 3511.905 Sem.mal Flu.ld Vagllnal FIu'.d previously collected and NTR
kS Vaginal Fluid | Seminal Fluid . .
staining dried vaginal swab.
Cotton swab (1/2) . 100 pL neat fluid per
39 No visible staining 524.051 ND Urine swab NTR
100 pL containing 1 pL
Seminal Fluid | Vaginal Fluid semen/ 10 pL saliva
40 C\?:ﬁgj\:fali)n(i;fz) 577.667 Saliva Saliva pipetted onto a previously NTR
g Vaginal Fluid | Seminal Fluid collected and dried

vaginal swab
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Quant

Experimental

Sample Sample . True Fluid Points of
i Value Fluid ) . Supplemental Info h
Number Description (g/mL) | Identification Identification Discrepancy
. . 100 uL of a 1:100 mixture | False Negative:
a1 | Cottonswab (112) {475 596 | Seminal Fiuid | SeminalFluid = ¢ o mensalivaona | Missed Saliva
No visible staining Saliva i
cotton swab Identification
42 Cloth swatch ND ND ND Blank NTR
No visible staining
ND ND ND Sample on outside NTR
43 Condom
. . . . 100 L of a 1:10 mixture of
340.854 Semma_l Fluid Semma_l Fluid saliva:semen on a NTR
Saliva Saliva -
lubricated condom
Cotton swab (1/2) Peripheral Menstrual 100 pL neat semenocon a l;na_lse Zl?/gat?veli
44 Red-brown 7414.495 Blood Blood Seminal | previously collectedand 1ssed vagina
o 8 ) ; - Fluid
staining, saturated Seminal Fluid Fluid dried menstrual swab P
Identification
Cotton swab (1/2) Peripheral Peripheral
45 Red-brown 10172.420 P P 100 pL neat fluid per swab NTR
L Blood Blood
staining, saturated
4 | Cottonswab (12) | 5344 795 | Seminal Fiuid | Seminal Fluid | 100 uL neat fluid per swab NTR
No visible staining
25.050 ND ND Sample on outside NTR
47 Condom
Seminal Fluid Saliva 100pL ofa 1:1 mixture of
1314.222 " . . semenand saliva on a NTR
Saliva Seminal Fluid -
non-lubricated condom
48 Cloth swatch ND Peripheral Peripheral 100 pL on cloth, laundered NTR
No visible staining Blood Blood (w/ bleach)
4g | Cottonswab(12) | 5,3 944 | yndetermined | BreastMilk | 100 uL neat fiuid per swab NTR
No visible staining
50 | Cottonswab (12) | g4 705 ND Sweat | 100pL neat fluid per swab NTR

No visible staining
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APPENDIX |: INTERPRETATION GUIDELINES

INTERPRETATION GUIDELINES
Introduction:
The interpretation of data from LC-MS/MS analyses is a matter of professional training and
expertise. The following objective criteria are to be used by analysts to guide most routine data
interpretation scenarios. Not every situation, however, may be fully covered by these interpretation
guidelines. The treatment of samples that appear to fall outside of these guidelines should be
addressed through discussion with the Technical Reviewer in order to reach agreement on a
reportable opinion. In the event that agreement on a reportable opinion cannot be reached, the
laboratory’s Technical Leader should be consulted to issue a final decision on a reportable opinion
or other course of action. These interpretation guidelines are based upon validation studies, the
peer-reviewed scientific literature, and professional training and expertise. These interpretation
guidelines establish a solid framework of quality criteria to ensure that:

¢ Conclusions in the casework report are scientifically supported by the analytical data,

including that obtained from appropriate standards and controls;

e Interpretations are made objectively; and

e Interpretations are consistent and accurate from analyst to analyst and case to case.
Evaluation of Controls:
Internal Positive Control: This control (e.g., bovine myelin basic protein) serves to demonstrate that
the sample digest (including digestion, denaturation, reduction and alkylation) performed
successfully for each sample in the batch. The internal positive control should be evaluated for
each sample to determine if it meets the laboratory’s established quality criteria. Specifically, both
the natural targeted peptide peak as well as the heavy labeled peak should be identified based on
the appearance of two MRM transitions per peptide. Additionally, peaks should fall within two peak
widths of the acceptable retention times outlined in the table below (£ 0.2 min). The area ratio of

the heavy labeled peptide to the natural peptide should be 15.0 £ 30%. Area ratios falling outside
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of this range may indicate the presence of digestion inhibition. Notes: As the required heavy
labelled peptide is not currently commercially available, it should be custom synthesized. In
addition, the purity of commercially available myelin basic protein can vary. As such, the area ratio
of the heavy labeled peptide to the natural peptide may fluctuate between reagents lots and should
be monitored by the analyst. However, within a single preparation of these standards, the ratio will
remain stable.

1. If there appears to be an injection or other chromatographic problem, the sample should be re-

injected.
2. If the internal positive control fails to generate a peak for the natural/light peptide, or if the ratio

falls to meet the response criteria indicated above, the sample should be considered for re-

extraction.
Protein Peptide Sequence MRM transitions Retention time (min)
Mvelin DTGILDSLGR (Light) 523.7 — 660.3, 830.4 5.5
y DTGILDSLGR (Heavy) 528.7 — 670.3, 840.4 5.5

Reagent (Negative) Control: This control (e.g., a sample processed in parallel with the casework
samples of a batch but to which no protein source material was added) serves to demonstrate that
the protein extraction and processing reagents do not contain targeted protein. The negative
reagent control should be evaluated and meet the laboratory’s quality criteria. Specifically, the
negative reagent control should be free of detectible target protein upon analysis. The occurrence
of more than one targeted peptide peak should be considered an indication of protein
contamination. Such findings should be considered necessary but not sufficient for failing the
negative reagent control. The official designation of a failure of the negative reagent control should
be reviewed and documented by the laboratory’s supervisor or Technical Leader.

1. If protein contamination is observed in a negative reagent control, acknowledgment of the
contaminant and subsequent actions should be documented in the case file. In addition, the
analyst should endeavor to determine the point at which the contamination was introduced,
and the scope of the samples affected by the contamination.
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2. If the contaminating source affects all samples in the extraction set, the analysis should be
redone from the point at which the contamination was introduced.

3. Ifitis unclear at what point the contamination was introduced, the analysis should be repeated
from the protein sample preparation step forward.

4. If additional negative reagent controls were prepared with the batch and these show no sign of
contamination AND the associated samples show no sign of contamination, the incident may
be considered tube-specific. The data already derived from these samples can be used for fluid
identification purposes.

Additional Considerations:

Carryover — Carryover was observed for Semenogelin-1 and Hemoglobin during the validation

studies of the analytical method. Accordingly, any elevated signal from these proteins should be

evaluated in subsequent injections. A Blank (i.e., neat methanol) can be run after every sample in
order to wash the column and prevent sample carryover.

Peak Designation and Peptide Identification

Proteins are composed of a sequence of amino acids arranged in a linear order. This allows for

the prediction, to a given degree of confidence, of the fragmentation pattern and MS/MS spectra

that will be produced. To enhance the specificity of the method, up to three MRM transitions for
each peptide are employed. Detectable peptide peaks are those that meet the following criteria:
e The peak has a signal to noise ratio greater than 3
e The peak height is greater than 1,000 counts
e The peak for the peptide should fall within two peak widths (x 0.2 min) from the target
retention time
e The response ratio for the qualifier ions should be within + 20% of the target. Note: extreme
low or high signal intensity can result in a deviation from expected ion ratios.
Body Fluid Identification and Reporting Language
Confirmatory Identification: The presence of at least one confirmatory protein (see Body Fluid

Specificity Table below) for a body fluid of interest provides a confirmatory indication of the
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presence of the corresponding targeted biological fluid. This will be reported as “A confirmatory
identification of (blood/saliva/semen) was obtained for item...”

Presumptive Detection: The presence of at least one presumptive protein (see Specificity Table
below) for a body fluid of interest provides a presumptive indication of the presence of the
corresponding targeted biological fluid. This will be reported as “A presumptive indication of
(vaginal fluid) was obtained for item...”

Not Detected: In all cases, a failure to detect a minimum of one targeted peptide for any body fluid
represents a negative result. This will be reported as “No targeted biological fluids were detected”.
Statements Regarding Human Specificity: Within the context of a confirmatory result, reporting of
the result as human specific requires the detection of a peptide target unique to humans (see
Species Specificity Table below). This will be reported as “the confirmatory identification of human

(blood/vaginal fluid/saliva/semen) was obtained”
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Body Fluid Specificity

Fluid Protein Confirmatory | Presumptive gon-_ . Notes:
pecific
P02647|APOA1 Y
Trace levels in some
P68871|HBB Y saliva/seminal fluid (<1,000
cts.)
Peripheral | b45790|HEMO Y
Blood
Trace levels in some
PO1009|A1AT Y saliva/seminal fluid (<2,000
cts.)
P02787|TRFE Y Detectable in seminal fluid
P02808 |STAT Y
P02814|SMR3B Y
Saliva - -
Trace levels in some vaginal
PO4745|AMY1 Y fluid (<1,000 cts.)
P09228|CYTT Y
Consistent trace levels in
095274|LYPD3 Y saliva (<1,000 cts.)
Consistent trace levels in
PBO18BINGAL Y saliva (<1,000 cts.)
060437|PEPL Y
Vaginal Consistent trace levels in
Fluid P07476|INVO Y saliva (<2,000 cts.)
Consistent trace levels in
QOUBG3|CRNN Y saliva (<1,000 cts.)
Q6UWP8|SBSN Y Detectable in saliva
Q9UBC9|SPRR3 Y Detectable in saliva
P15309|PPAP Y Detectable in vaginal fluid
Consistent Trace levels in
P07288|KLK3 Y vaginal fluid
Seminal
Fluid QO02383|SEMG2
P04279|SEMG1
Consistent Trace levels in
P61916|NPC2 Y vaginal fluid (<1,000 cts.)
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Human/Species Specificity

Fluid Protein Peptide g;:::?fr.‘c g’;gz;‘l"f‘t‘; ross
P02647JAPOA1 | LLDNWDSVTSTFSK N Chimpanzee
P02647|APOA1 | VSFLSALEEYTK N Primates
P68871|HBB LLVVYPWTQR N E}’;mﬂzfsl

. P68871|HBB SAVTALWGK N Primates

Peripheral

Blood P02790|HEMO NFPSPVDAAFR N Orangutan
PO1009JA1AT | SVLGQLGITK Y
PO1009JA1AT | LSITGTYDLK N Orangutan
P02787[TRFE | SASDLTWDNLK N Chimpanzee
P02787[TRFE | DGAGDVAFVK N Primates
P02808 |[STAT | FGYGYGPYQPVPEQPLYPQPYQPQYQQYTF | Y
Po2814/SMR3B | CF YPPGPLAPPQPFGRGFVPPPPPPRYGRG |
P02814]SMR3B | IPPPPPAPYGPGIFPPPPPQP Y

Saliva P04745/AMY1 | IAEYMNHLIDIGVAGFR Y
P04745)AMY1 | LSGLLDLALGK Y
P09228|CYTT | ALHFVISEYNK Y
P09228|CYTT | IIEGGIYDADLNDER Y
P15309PPAP | ELSELSLLSLYGIHK N Mouse
P15309PPAP | FVTLVFR N Mouse
P15309PPAP | FQELESETLK Y
P07288|KLK3 | FLRPGDDSSHDLMLLR Y
PO7288|KLK3 | LSEPAELTDAVK Y

Seminal | QV2383|SEMG2 | GSISIQTEEK N Primates

Fluid Q02383|SEMG2 | DVSQSSISFQIEK Y
Q02383|SEMG2 | GSISIQTEEQIHGK N Primates
P04279|SEMG1 | QITIPSQEQEHSQK Y
P04279|SEMG1 | DIFSTQDELLVYNK Y
P61916[NPC2 | DC[+57.0]GSVDGVIK Y
P61916[NPC2 | SGINC[+57.0]PIQK N Mammals
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Fluid Protein Peptide g::c?f?c g’;ggif;tsmss
095274|LYPD3 | GC[+57.0VQDEFC[+57.0]TR
095274|LYPD3 | GLDLHGLLAFIQLQQC[+57.0JAQDR Y
P8O188INGAL | WYVVGLAGNAILR Y
P8O18SINGAL | MYATIYELK Y
060437[PEPL | NQGPQESVVR Y
060437|PEPL | NLLDEIASR Y
060437[PEPL | AQSLQSAK Y
P07476]NVO | GEVLLPVEHQQQK Y
Vaginal P07476|INVO QEAQLELPEQQVGQPK N Chimpanzee
Fluid P07476|NVO | HLVQQEGQLEQQER Y
QOUBG3|CRNN | LLDEDHTGTVEFK Y
QOUBG3|CRNN | ISPQIQLSGQTEQTQK Y
QOUBGSICRNN | AHQTGETVTGSGTATQAGATATVEQDSSHA |y
QBUWPS|SBSN | ALDGINSGITHAGR Y
QBUWPS|SBSN | FGQGVHHGLSEGWK Y
3Q9UBC9|SPRR VPVPGYTK Y
3Q9UBCQ|SPRR VPEPGC[+57.0]TK Y

*Data Searched using NCBI Algorithm PHI-BLAST (Pattern Hit Initiated BLAST), Animalia (taxid:
33208), Non-redundant UniProt KB/SwissProt sequences database, Molecule Type: Protein
Update date: 2019/03/26, Number of sequences: 471513.

NOTES:

Body fluid identification is confirmed through the mass spectral identification of multiple protein
markers. Those protein markers, in turn, are confirmed through the detection of multiple tryptic
peptides per protein. Below is a brief description of the biological function each targeted protein.
Peripheral Blood is identified through the detection of a-1-antitrypsin, hemopexin, apolipoprotein
A1, Serotransferrin, and hemoglobin subunit beta. a-1-antitrypsin is a non-specific serine protease
inhibitor found in human plasma. This protein’s primary role is as an inhibitor of neutrophil elastase
which protects tissues from proteolytic damage (Kolarich et al.; Parfrey et al.). Hemopexin is

produced in the liver and found in plasma. This protein is responsible for trapping free heme in
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plasma as well as iron recycling in the liver (Ascenzi et al.; Liebert). Apolipoprotein A1 is a
component of HDL particles and is involved with the transport of cholesterol from tissues (Breslow
et al.). Serotransferrin is an iron binding protein responsible for the transport of iron from sites of
absorption and heme degradation to sites of storage and utilization (Aisen et al.; Yang et
al.). Hemoglobin subunit beta - The metalloprotein hemoglobin is responsible for oxygen transport
and is the major protein contained within erythrocytes. Hemoglobin exists as a tetramer containing
two beta chains and two alpha chains (Berg et al.).

Vaginal Fluid is identified through the detection of neutrophil gelatinase-associated lipocalin,
cornulin, ly6/PLAUR domain-containing protein 3, periplakin, involucrin, and suprabasin. Neutrophil
gelatinase-associated lipocalin belongs to the lipocalin family of transport proteins which have been
associated with innate immunity though iron sequestration (Goetz et al.). As such, this protein can
be found in tissues prone to exposure to bacterial and other microorganisms including the
respiratory tract, salivary glands, uterus, and prostate (Goetz et al.; Cowland and Borregaard).
Cornulin is also expressed in squamous cells where it plays a role in epithelial cell differentiation.
It may also play a role in mucosal-epithelial immune response. The protein has been characterized
in the cervix and in esophageal tissues (Contzler et al.; Arnouk et al.). Ly6/PLAUR domain-
containing protein 3 is involved in the regulation between extracellular structural support scaffolding
and epithelial cell layers (Smith et al.). Suprabasin is expressed in keratinocytes and plays a role
in epidermal differentiation. It has been reported to be expressed in the uterus as well as the
esophagus (Park et al.). Involucrin is a component of cornified cell envelope (CE) of stratified
squamous epithelia and is involved with membrane protein cross-linking (Djian et al.). Periplakin is
a component of the cornified envelope of keratinocytes. May link the cornified cell envelope to
desmosomes and intermediate filaments (Ruhrberg et al.).

Saliva is confirmed through the detection of statherin, submaxillary gland androgen-regulated
protein 3B, Cystatin SA, and alpha amylase. Statherin, as well as submaxillary gland androgen-
regulated protein 3B, assist in inhibiting potentially harmful calcium phosphate precipitation in saliva

(Schlesinger and Hay; Hay et al.). Alpha amylase is the most abundant protein found in saliva
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where it digests starches into glucose and maltose (Ramasubbu et al.). While highly abundant in
saliva, this protein can be found in a number of alternate body fluids including vaginal fluid, breast
milk, fecal matter, urine, blood and semen. Cystatin SA is a cysteine protease inhibitor located in
the cystatin locus. It is found at high levels in saliva and tears.

Seminal Fluid identification is based off the detection of Epididymal secretory protein E1, prostatic
acid phosphatase, semenogelin-1/1l, and prostate-specific antigen. Epididymal secretory protein E1
is involved with intracellular cholesterol transporters. It acts in concert with NPC1 and plays an
important role in the egress of cholesterol from the lysosomal compartment. Prostatic Acid
Phosphatase (also known as Seminal Acid Phosphatase or SAP) is a glycoprotein secreted by the
epithelial cells of the prostate gland. It is capable of hydrolyzing phosphate groups from substrate
molecules (Yam). SAP is a seminal fluid protein which has seen utility as a clinical marker for
prostate cancer (Taira et al.). While largely replaced by PSA/p30 for screening purposes, the
combination of low expression in non-target tissues and assay detection limits makes this protein
useful as a potential marker of seminal fluid. Semenogelin-I/Il are the most abundant proteins in
seminal plasma and are responsible for the gel-like matrix of human semen. Both isoforms act as
substrates for prostate specific antigen (p30), where upon lysis, sperm are able to move freely
through the seminal matrix (Kise et al.; Malm and Hellman). Prostate-Specific Antigen (also known
as PSA or p30) is a serine protease produced by epithelial cells located in the prostate (Ward et
al.). The primary function of prostate-specific antigen is to cleave semenogelin-1/Il thus creating a
soluble, liquid medium, for spermatozoa movement (Ward et al.). Prostate-specific antigen has
been well studied as an indicator for prostate cancer when serum levels reach approximately 4-10
ng/mL (Basch et al.). While this protein is not absolutely seminal fluid-specific, the detection limits
of most assays make it difficult to detect it in whole blood (Keshishian et al.). As a result, this protein

may have utility, in combination with other biomarkers, for the detection of seminal fluid.
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APPENDIX J: GENETIC PROFILES OF CASEWORK SAMPLES

Sample ID: SA01_01.1 Vaginal swab with semen from a non-vasectomized donor (sperm fraction)

Sample File

Sample Name S08 sQ SSPK MIX OMR cGa
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Sample File Sample Name S0s SQ SSPK MIX OMR CcGQ
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Sample ID: SA01_01.2 Vaginal swab with semen from a non-vasectomized donor (sperm

fraction)
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Sample File Sample Name S0s SQ SSPK MIX OMR CGQ
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Sample ID: SA01_02.1 Oral swab with semen from a non-vasectomized donor (sperm fraction)

Sample File Sample Name S0S SQ SSPK MIX OMR CGQ
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Sample File Sample Name S08 SQ SSPK MIX OMR CGQ
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Sample ID: SA01_02.2 Oral swab with semen from a non-vasectomized donor (sperm fraction)

Sample File Sample Name 508 sQ SSPK MIX OMR cGQ
SA01 02.2B C02 GF 10s 2017-06-02-08-02-22 08-02-22.hid SA01 02.2B []
| D3s13s8 || VWA | | D1essas || csFipo | [TPOXIN
90 180 270 380 450 540
210
140
o Lt | . hhe o e Joad | A
15 17 11 10 8
267 258 143 83 275
R R
17 18 12 11
156 147 209 107
----- -02- 01 0228 [ ]
|| [[oesTiorTpzistiny] [TDisssi] [Dysset
9‘0 180 2?0 380 ) 4§D . 5“‘0
300
200
100
0 AL A ‘J A l l Ak ll l il Ak A 3 b
1 T T T
2 10 30 11 12
173 211 89 112 254
X 12 312 14
284 108 287 115
T T T
Y 13 322 15
257 397 136 315

381



Sample File Sample Name S0S sQ SSPK MIX OMR [elc]e]
SA01 022B C02 GF 10s 2017-06-02-08-02-22 08-02-22 hid SAQ1 02.2B [ ]
[ID2Saa1]| Dies433 |[MTHOIN FGA
90 180 270 360 450 540
330
220
10+ ‘ l
ohdll 2 M N RN A
p pai
11 13 6 20
186 265 245 401
i : -
12 14 7 24
62 267 293 179
14 9
253 107
93
112
AQ1 02.2B C02 GF 10s 2017-06-02-08-02-22 08-02-22.hi SA01 02.2B [ ]
[B2E5i088) 05586 [ Di3ssi7 |
9‘0 ) 180 . ZTU . 360 ) 4?0 ) 5?0
390 :
260+
130 :
obb il aa . ah UL aa J‘h u_ A
11/16 11 10 10 21 262
61|75 255 325 500 10183
i I I 1 T
15 12 12 12 28.2
303 185 405 233 127
11
67
| Stutter
Sample File Sample Name S0§ sQ SSPK MIX OMR CccQ
SA01 022B C02 GF 10s 2017-06-02-08-02-22 08-02-22 hid SAQ1 02.28 [ ]
[D1os1248 |  [IIDiST6561[DT28397 [IITD2813581 1]
90 180 270 360 450 540
450+
300
150 i
PRI | IR ORaN | W I | W Al ‘ll‘L e
14 14 15 |20 17 24
329 105 122 {68 436| |253
1 T L I
15 15 16 19
298 583 231 131
L 1
17 18
94 64

382




Sample ID: SA01_03.1 Rectal swab with semen from a non-vasectomized donor (sperm fraction)
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Sample ID: SA01_03.2 Rectal swab with semen from a non-vasectomized donor (sperm fraction)
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Sample ID: SA02_02.1 Oral swab with semen from a vasectomized donor (sperm fraction)
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APPENDIX K: PROTEIN IDENTIFICATION OF SEMEN POPULATION SAMPLES

. Average
. % # Unique . Average Best
Sample ID Protein ID Coverage Peptides Intensity Intensity Score Si?r:
SEMG1 85.71 383 4.30E+09 1141.90
SEMG2 78.69 301 2.39E+09 1350.90
06C6979 1.68E+09 801.85
KLK3 30.65 8 9.74E+06 296.30
PPAP 20.98 9 3.45E+07 418.30
SEMG1 90.04 399 5.05E+09 1087.90
SEMG2 80.58 295 3.24E+09 1404.20
06C7294 2.08E+09 811.03
KLK3 34.87 7 7.17E+06 330.50
PPAP 16.58 6 1.64E+07 421.50
SEMG1 78.57 376 2.86E+09 1146.30
SEMG2 75.94 290 2.04E+09 1321.70
06C7352 1.30E+09 912.28
KLK3 40.61 22 1.35E+08 482.70
PPAP 48.45 64 1.82E+08 698.40
SEMG1 86.80 425 4.00E+09 1167.50
SEMG2 81.27 322 3.00E+09 1366.40
06C9228 1.78E+09 880.45
KLK3 40.61 19 6.87E+07 542.20
PPAP 36.27 18 6.41E+07 445.70
SEMG1 7143 465 3.66E+09 1102.90
SEMG2 69.42 255 1.57E+09 1301.00
06C9237 1.32E+09 860.20
KLK3 39.08 15 2.12E+07 496.90
PPAP 28.24 24 2.59E+07 540.00
SEMG1 86.36 346 2.92E+09 1125.00
SEMG2 74.57 222 2.14E+09 1368.50
07C3133 1.29E+09 868.58
KLK3 40.61 16 2.87E+07 484.00
PPAP 29.27 17 7.84E+07 496.80
SEMG1 87.01 366 2.60E+09 1075.90
SEMG2 79.21 304 2.06E+09 1364.20
07C3212 1.17E+09 804.13
KLK3 27.97 6 3.78E+06 44510
PPAP 12.18 3 3.21E+06 331.30
SEMG1 90.26 358 3.48E+09 1113.70
SEMG2 76.46 246 2.12E+09 1373.50
08C3217 1.41E+09 831.98
KLK3 34.87 9 1.44E+07 456.70
PPAP 3212 10 1.42E+07 384.00
SEMG1 88.31 245 1.65E+09 1276.10
SEMG2 71.65 153 1.05E+09 1236.90
09C2531 6.79E+08 851.13
KLK3 19.54 4 2.48E+06 478.80
PPAP 22.28 8 9.01E+06 412.70
SEMG1 83.12 245 7.41E+08 1016.10
SEMG2 72.16 188 6.38E+08 1209.20
17_08_505 3.46E+08 729.13
- T KLK3 21.07 5 2.88E+06 385.80
PPAP 15.28 5 3.16E+06 305.40
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. Average
0,
Sample ID Protein ID o # Un!que Intensity Average Best Best
Coverage | Peptides Intensity Score s

core
SEMG1 86.15 365 2.62E+09 1067.30
SEMG2 65.81 172 5.57E+08 1112.30

17_08_506 8.16E+08 765.45
KLK3 40.61 18 4.07E+07 469.80
PPAP 20.98 16 4.46E+07 412.40
SEMG1 83.33 400 3.48E+09 1103.50
SEMG2 79.38 265 2.39E+09 1283.00

17_12_513 1.48E+09 818.48
KLK3 30.27 10 1.64E+07 469.00
PPAP 20.98 9 3.29E+07 418.40
SEMG1 77.27 339 2.35E+09 1145.90
SEMG2 77.66 243 2.19E+09 1189.60

18_01_691 1.17E+09 824.23
-~ KLK3 40.61 16 4.91E+07 439.40
PPAP 39.38 24 8.46E+07 522.00
SEMG1 83.55 385 3.64E+09 1184.40
SEMG2 74.23 283 2.48E+09 1345.20

18_03_543 1.54E+09 890.90
KLK3 30.27 12 1.99E+07 460.20
PPAP 27.72 26 3.08E+07 573.80
SEMG1 8247 354 4.60E+09 1136.40
SEMG2 78.52 253 2.49E+09 1362.80

18_03_579 1.84E+09 913.00
-~ KLK3 40.61 23 1.38E+08 619.50
PPAP 36.79 28 1.21E+08 533.30
SEMG1 92.86 314 4 57E+09 1345.90
SEMG2 77.49 219 2.77TE+09 1417.90

18_03_579 1.84E+09 906.78
KLK3 14.94 4 5.54E+06 453.50
PPAP 20.98 7 7.11E+06 409.80
SEMG1 9242 452 5.98E+09 1108.50
SEMG2 83.33 319 3.82E+09 1400.10

18_03_615 2.47E+09 857.23
KLK3 31.80 12 2.74E+07 479.60
PPAP 28.24 17 5.61E+07 440.70
SEMG1 89.83 376 5.51E+09 1181.60
SEMG2 80.58 287 3.43E+09 1461.10

18_09_594 2.26E+09 861.70
KLK3 40.61 14 3.83E+07 354.10
PPAP 25.39 14 5.19E+07 450.00
SEMG1 83.12 305 2.26E+09 1128.60
SEMG2 8247 249 2.16E+09 1409.10

19_02_507 1.14E+09 864.40
- KLK3 37.93 15 8.07E+07 478.90
PPAP 44.04 20 4.97E+07 441.00
SEMG1 82.90 347 3.02E+09 1157.50
SEMG2 77.49 285 2.61E+09 1298.90

19 _03 518 1.41E+09 833.18
-~ KLK3 40.23 8 1.12E+07 480.00
PPAP 1347 4 6.17E+06 396.30
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. Average
. % # Unique . Average Best
Sample ID Protein ID Coverage | Peptides Intensity Intensity Score SBce:rte
SEMG1 86.15 325 2.44E+09 1149.90
SEMG2 74.40 202 2.29E+09 1326.60
19_06_629 1.21E+09 850.25
- T KLK3 33.33 11 4 .13E+07 457.90
PPAP 31.09 25 6.81E+07 466.60
SEMG1 89.39 362 3.43E+09 1121.00
SEMG2 76.98 255 2.22E+09 1390.40
19_07_577 1.42E+09 853.40
KLK3 31.80 11 2.74E+07 490.40
PPAP 20.98 11 2.78E+07 411.80
SEMG1 86.58 395 4.05E+09 1145.90
SEMG2 79.04 243 3.10E+09 1383.80
19_09_609 1.82E+09 822.53
-7 KLK3 40.61 16 5.68E+07 318.90
PPAP 38.60 20 7.09E+07 441.50
SEMG1 88.96 285 1.50E+09 1075.80
SEMG2 74.40 191 1.11E+09 1270.00
19_10_584 6.58E+08 765.08
KLK3 21.84 6 3.25E+06 379.90
PPAP 23.83 13 1.23E+07 334.60
SEMG1 94.16 311 3.87E+09 1234.90
SEMG2 73.20 231 2.59E+09 1371.80
19_11_614 1.62E+09 806.78
KLK3 23.37 6 8.93E+06 237.90
PPAP 12.18 4 3.72E+06 382.50
SEMG1 95.02 398 5.83E+09 1288.00
SEMG2 80.24 264 2.80E+09 1375.90
19_12_573 2.17E+09 884.88
KLK3 31.80 8 1.82E+07 470.60
PPAP 20.98 7 2.02E+07 405.00
SEMG1 88.53 334 4.30E+09 1242.10
SEMG2 75.43 258 2.52E+09 1427.50
20_02_628 1.72E+09 892.28
KLK3 39.08 15 4.04E+07 499.10
PPAP 20.98 7 2.15E+07 400.40
SEMG1 89.18 322 2.83E+09 1277.20
SEMG2 75.43 209 1.44E+09 1303.00
20_02_628 1.08E+09 861.25
KLK3 38.70 11 1.91E+07 462.70
PPAP 24.87 14 2.75E+07 402.10
SEMG1 94.59 278 3.09E+09 1205.70
SEMG2 78.35 209 2.07E+09 1247.70
20_02_694 1.29E+09 691.90
KLK3 11.49 2 2.26E+05 68.80
PPAP 1347 4 1.70E+06 245.40
SEMG1 91.56 367 5.21E+09 1250.10
SEMG2 79.72 262 3.08E+09 1491.40
20_04_559 2.09E+09 920.75
KLK3 33.33 10 2.66E+07 469.40
PPAP 20.98 8 3.14E+07 47210
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%

# Unique

Average

Best

Average

Sample ID Protein ID Coverage | Peptides Intensity Intensity Score SBce:rte
SEMG1 83.55 374 3.74E+09 1125.10
SEMG2 80.24 250 2.70E+09 1417.20
31978_01 1.78E+09 953.08
- KLK3 41.38 33 2.25E+08 600.60
PPAP 48.45 54 4.32E+08 669.40
SEMG1 90.04 397 5.76E+09 1198.10
SEMG2 82.30 295 3.56E+09 1391.60
31978_02 2.42E+09 919.63
KLK3 40.61 21 1.59E+08 503.70
PPAP 43.78 30 1.84E+08 585.10
SEMG1 83.98 387 5.71E+09 1098.60
SEMG2 79.72 247 2.67E+09 1360.90
31978_03 2.16E+09 903.23
- KLK3 39.08 20 1.32E+08 577.20
PPAP 48.19 40 1.42E+08 576.20
SEMG1 86.58 415 4.22E+09 1166.70
SEMG2 82.30 290 2.84E+09 1353.90
31978_04 1.79E+09 850.18
KLK3 37.93 12 1.70E+07 343.50
PPAP 28.24 12 7.01E+07 536.60
SEMG1 87.88 396 7.31E+09 1176.00
SEMG2 78.35 301 4.64E+09 1395.00
31978_05 3.00E+09 870.73
KLK3 27.20 8 1.69E+07 478.60
PPAP 16.58 5 1.93E+07 433.30
SEMG1 90.9 234 1.58E+09 1268.5
SEMG2 70.6 163 9.09E+08 1359.8
31978-06 6.24E+08 863.10
KLK3 14.2 4 3.77E+06 443.7
PPAP 4.4 2 1.94E+06 3804
SEMG1 78.8 375 1.80E+09 1123.1
SEMG2 76.6 305 1.20E+09 1273.6
31978-07 7.50E+08 650.80
KLK3 0 0 0 0
PPAP 3.1 2 1.43E+05 206.5
SEMG1 84 390 6.53E+09 1243.2
SEMG2 80.8 272 3.93E+09 1351.5
31978-08 2.62E+09 813.63
KLK3 8.8 2 3.08E+06 286.4
PPAP 25.6 9 8.28E+06 3734
SEMG1 89.8 418 7.20E+09 1171.6
SEMG2 84.4 327 4.36E+09 13158
31978-09 2.90E+09 843.28
KLK3 27.2 9 1.94E+07 423.4
PPAP 254 10 2.40E+07 462.3
SEMG1 86.8 330 2.49E+09 1102.9
SEMG2 741 289 1.97E+09 1350.6
31978-10 1.12E+09 831.25
KLK3 31.8 10 1.25E+07 4325
PPAP 21 8 1.11E+07 439
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. Average
. % # Unique . Average Best
Sample ID Protein ID Coverage | Peptides Intensity Intensity Score SBce:rte
SEMG1 87.4 373 4 .47E+09 12334
SEMG2 80.1 272 2.66E+09 1349.2
31978-11 1.79E+09 816.65
KLK3 31.8 9 1.38E+07 297.3
PPAP 21 8 1.47E+07 386.7
SEMG1 83.8 391 3.04E+09 1095.3
SEMG2 78.2 310 2.42E+09 1265.8
31978-12 1.37E+09 815.05
KLK3 33.3 14 2.30E+07 493.8
PPAP 16.6 7 9.46E+06 405.3
SEMG1 90 401 6.14E+09 1146.9
SEMG2 82.1 282 4.61E+09 13325
31978-13 2.69E+09 831.90
KLK3 36 9 1.02E+07 409.4
PPAP 21 6 1.27E+07 438.8
SEMG1 90.7 439 9.33E+09 1172.5
SEMG2 79.2 323 4.93E+09 13424
31978-14 3.60E+09 879.85
KLK3 333 16 7A47E+07 542.6
PPAP 254 11 8.03E+07 461.9
SEMG1 89.2 374 4.49E+09 1217.8
SEMG2 80.2 258 3.38E+09 1354.2
31978-15 1.99E+09 860.88
KLK3 40.2 12 2.47E+07 406.3
PPAP 254 10 5.91E+07 465.2
SEMG1 83.5 376 2.94E+09 1136.8
SEMG2 7.7 295 2.03E+09 13324
31978-16 1.25E+09 829.40
KLK3 37.9 11 1.04E+07 470.1
PPAP 16.6 5 2.97E+06 378.3
SEMG1 90.9 360 3.70E+09 1097.2
SEMG2 79.6 266 2.57E+09 1417.2
31978-17 1.57E+09 784.13
KLK3 20.7 6 6.00E+06 309
PPAP 114 2 3.17E+06 3131
SEMG1 78.6 312 2.70E+09 11713
SEMG2 85.6 331 2.59E+09 1354.2
31978-18 1.35E+09 911.98
KLK3 334 30 5.85E+07 605.3
PPAP 37.2 11 3.61E+07 517.1
SEMG1 86.58 465 4.56E+09 1158.20
SEMG2 82.13 321 3.37E+09 1443.80
31978_19 2.08E+09 963.53
KLK3 40.61 23 1.42E+08 564.90
PPAP 53.63 61 2.28E+08 687.20
SEMG1 86.80 342 4.73E+09 1217.90
SEMG2 83.16 260 3.08E+09 1359.00
31978_20 2.01E+09 923.63
KLK3 39.46 21 8.12E+07 543.60
PPAP 45.08 31 1.49E+08 574.00
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%

# Unique

Average

Best

Average

Sample ID Protein ID Coverage | Peptides Intensity Intensity Score SBce:rte
SEMG1 81.17 411 2.47E+09 1112.60
SEMG2 79.38 322 2.14E+09 1381.20

20_04_566 1.18E+09 882.85
- T KLK3 40.23 13 5.41E+07 470.60
PPAP 46.63 29 6.43E+07 567.00
SEMG1 92.21 305 2.96E+09 1235.10
SEMG2 76.80 225 2.26E+09 1300.60

20_05_510 1.35E+09 908.08
KLK3 40.23 17 6.67E+07 502.90
PPAP 40.41 27 1.03E+08 593.70
SEMG1 87.45 236 1.62E+09 1232.20
SEMG2 69.76 166 9.70E+08 1370.80

20_05_515 6.48E+08 817.33
- T KLK3 9.96 5 3.50E+06 43440
PPAP 3.63 1 7.58E+05 231.90
SEMG1 89.83 321 3.60E+09 1173.10
SEMG2 79.38 246 2.60E+09 1396.60

20_05_522 1.62E+09 924.98
KLK3 41.76 24 1.57E+08 584.10
PPAP 39.12 27 1.09E+08 546.10
SEMG1 89.39 357 5.89E+09 1200.10
SEMG2 76.12 271 4.42E+09 1424.40

20_05_523 2.66E+09 989.08
KLK3 4483 27 1.61E+08 705.00
PPAP 48.45 43 1.69E+08 626.80
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Average

SampleID | Protein ID COVZ‘;age ﬁ:p’}‘:g:: Intensity ﬁ‘t’:;as?t; gce:‘rte SBest
core
SEMGH1 87.88 323 2.53E+09 1171.50
18_03_552 SEMG2 74.57 227 1.78E+09 1 08E+09 1360.80 808.35
(Vasectomized) KLK3 14.18 5 3.64E+06 460.40
PPAP 363 1 3.76E+05 240.70
SEMGH1 87.88 411 3.99E+09 1126.10
SEMG2 79.38 299 2.72E+09 1391.20
(ngggt%_mﬁged) KLK3 18.39 7 1.07E+07 1.68E+09 443.00 816.98
PPAP 16.58 6 7.01E+06 307.60
SEMGH1 90.26 334 2.42E+09 1114.90
SEMG2 76.46 210 1.63E+09 1383.20
(V;ZEZ%msiﬁzzd) KLK3 23.75 8 1.27E+07 1.02E+09 483.60 85265
PPAP 20.98 9 1.08E+07 428.90
SEMGH1 90.69 438 4 48E+09 1146.50
17_04_5.33 SEMG2 76.29 308 2.65E+09 1 78E+09 1375.90 83995
(Vasectomized) KLK3 16.86 5 5.24E+06 479.30
PPAP 11.66 3 3.17E+06 358.10
SEMG1 89.83 356 3.21E+09 1180.30
17_02_589 SEMG2 82.65 302 2.71E+09 1 48E+09 1350.80 710,65
(Vasectomized) KLK3 12.26 2 7.74E+05 137.50
PPAP 466 2 4.04E+05 174.00
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APPENDIX L: PROTEIN IDENTIFICATION OF SALIVA POPULATION SAMPLES

. Average
Sample . % # Unique . Average Best
IDp Protein ID Coverage Peptigles Intensity Intens?ty Score SBcisrte
Basic Salivary 1 95.41 181 7.17E+08 1024.30
Basic Salivary 2 4543 31 1.05E+08 757.10
Basic Salivary 3 64.10 78 3.61E+08 976.40
Basic Salivary 4 45.16 42 7.03E+07 616.60
Salivary Acidic 1/2 90.36 156 7.62E+08 928.70
1866 Statherin 54.84 145 2.09E+08 | 2.24E+08 557.80 667.77
Submaxillary Gland 7215 76 1.43E+08 496.10
Histatin 1 66.67 71 6.83E+07 482.60
Histatin 3 62.74 15 1.66E+07 578.90
Cystatin-SN 30.50 13 1.26E+07 424.60
Alpha-Amylase 1 9.59 6 1.86E+06 502.40
Basic Salivary 1 18.11 7 8.74E+06 501.40
Basic Salivary 2 85.10 97 2.21E+08 735.90
Basic Salivary 3 81.55 96 4.82E+08 824.20
Basic Salivary 4 64.52 61 2.32E+08 595.30
Salivary Acidic 1/2 90.36 126 7.98E+08 798.10
1995 Statherin 45.16 53 442E+07 | 1.83E+08 397.60 532.11
Submaxillary Gland 7215 80 1.84E+08 500.00
Histatin 1 43.86 45 3.62E+07 564.90
Histatin 3 31.37 4 1.76E+06 319.50
Cystatin-SN 11.35 6 2.74E+06 382.30
Alpha-Amylase 1 5.28 4 6.03E+05 234.00
Basic Salivary 1 93.62 158 6.61E+08 874.40
Basic Salivary 2 45.91 19 4.88E+07 536.50
Basic Salivary 3 73.79 76 5.14E+08 927.20
Basic Salivary 4 26.45 12 1.63E+07 560.60
Salivary Acidic 1/2 90.36 146 1.36E+09 809.90
2407 Statherin 54.84 119 2.81E+08 | 3.22E+08 544.90 601.41
Submaxillary Gland 7215 98 4.70E+08 609.00
Histatin 1 47.37 104 1.87E+08 567.70
Histatin 3 60.78 7 4.63E+06 384.00
Cystatin-SN 19.86 4 9.64E+05 424.70
Alpha-Amylase 1 4.89 3 7.63E+05 376.60
Basic Salivary 1 94.90 204 1.40E+09 1032.80
Basic Salivary 2 4543 26 1.23E+08 674.50
Basic Salivary 3 70.87 61 3.03E+08 872.50
Basic Salivary 4 51.29 51 2.15E+08 1024.80
Salivary Acidic 1/2 90.36 149 1.33E+09 923.30
3955 Statherin 66.13 96 2.07E+08 | 4.06E+08 482.40 662.20
Submaxillary Gland 72.15 107 7.15E+08 587.70
Histatin 1 45.61 90 1.58E+08 555.00
Histatin 3 21.57 3 1.06E+06 338.50
Cystatin-SN 10.64 4 1.60E+06 408.90
Alpha-Amylase 1 4.89 2 7.41E+05 383.80
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Basic Salivary 1 93.88 134 6.69E+08 1050.90
Basic Salivary 2 38.70 14 4.16E+07 631.70
Basic Salivary 3 76.70 79 6.55E+08 1008.40
Basic Salivary 4 34.52 22 8.05E+07 658.80
Salivary Acidic 1/2 90.36 131 1.50E+09 961.50
4646 Statherin 54.84 109 3.37E+08 | 3.72E+08 623.00 657.98
Submaxillary Gland 7215 80 5.42E+08 617.30
Histatin 1 66.67 105 2.51E+08 602.10
Histatin 3 62.74 14 1.58E+07 405.20
Cystatin-SN 5.67 1 2.18E+05 307.50
Alpha-Amylase 1 2.15 1 8.82E+05 371.40
Basic Salivary 1 53.57 26 2.84E+07 637.90
Basic Salivary 2 93.03 140 5.78E+08 1068.00
Basic Salivary 3 6.84 1 2.79E+05 125.50
Basic Salivary 4 63.23 65 1.49E+08 674.50
Salivary Acidic 1/2 81.32 91 3.01E+08 823.90
4970 Statherin 54.84 62 7.11E+07 | 1.37E+08 395.70 514.24
Submaxillary Gland 7215 91 2.47E+08 504.00
Histatin 1 64.91 89 1.09E+08 502.80
Histatin 3 62.74 17 1.65E+07 559.10
Cystatin-SN 13.48 3 7.40E+05 365.20
Alpha-Amylase 1 0.00 0 0.00E+00 0.00
Basic Salivary 1 93.37 152 6.73E+08 921.10
Basic Salivary 2 42.31 20 5.01E+07 685.00
Basic Salivary 3 71.20 77 4.72E+08 927.00
Basic Salivary 4 41.61 17 6.32E+07 513.40
Salivary Acidic 1/2 90.36 161 1.65E+09 881.30
5711 Statherin 54.84 118 4.10E+08 | 3.98E+08 537.60 631.76
Submaxillary Gland 72.15 100 8.47E+08 633.40
Histatin 1 47.37 107 2.05E+08 582.40
Histatin 3 41.18 5 1.88E+06 377.30
Cystatin-SN 1348 3 2.25E+06 440.40
Alpha-Amylase 1 2.15 1 6.11E+05 450.50
Basic Salivary 1 47.70 24 4.15E+07 571.60
Basic Salivary 2 90.14 103 3.56E+08 786.40
Basic Salivary 3 73.79 54 1.98E+08 783.50
Basic Salivary 4 53.87 58 1.25E+08 635.20
Salivary Acidic 1/2 90.36 122 8.03E+08 701.00
6003 Statherin 54.84 114 1.94E+08 | 2.17E+08 506.30 582.05
Submaxillary Gland 72.15 94 5.19E+08 543.90
Histatin 1 47.37 91 1.36E+08 568.60
Histatin 3 60.78 13 9.74E+06 470.30
Cystatin-SN 30.50 13 8.03E+06 482.50
Alpha-Amylase 1 8.41 4 1.26E+06 353.20
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Basic Salivary 1 92.35 168 1.22E+09 1044.50
Basic Salivary 2 44.71 22 1.23E+08 597.30
Basic Salivary 3 58.90 62 4.93E+08 1051.10
Basic Salivary 4 74.84 89 8.56E+08 1027.20
Salivary Acidic 1/2 90.36 142 9.72E+08 744.30
6014 Statherin 66.13 106 2.63E+08 | 4.19E+08 527.70 670.97
Submaxillary Gland 67.09 107 5.36E+08 537.30
Histatin 1 45.61 69 1.31E+08 532.40
Histatin 3 21.57 4 2.12E+06 299.50
Cystatin-SN 13.48 9 1.22E+07 520.10
Alpha-Amylase 1 4.50 2 8.99E+05 499.30
Basic Salivary 1 93.37 152 8.45E+08 1016.50
Basic Salivary 2 43.75 21 1.11E+08 592.30
Basic Salivary 3 19.94 4 6.27E+06 425.80
Basic Salivary 4 67.10 80 3.95E+08 839.80
Salivary Acidic 1/2 18.07 5 1.53E+07 529.50
6066 Statherin 66.13 102 2.70E+08 | 2.42E+08 535.70 570.11
Submaxillary Gland 7215 113 7.10E+08 546.50
Histatin 1 54.39 117 3.03E+08 550.70
Histatin 3 60.78 12 7.08E+06 353.10
Cystatin-SN 10.64 4 1.64E+06 395.90
Alpha-Amylase 1 2.15 1 7.39E+05 485.40
Basic Salivary 1 95.15 196 1.82E+09 1068.90
Basic Salivary 2 54.09 51 3.09E+08 867.80
Basic Salivary 3 46.72 34 1.70E+08 806.90
Basic Salivary 4 58.39 54 2.72E+08 714.50
Salivary Acidic 1/2 90.36 83 6.72E+08 735.90
6163 Statherin 53.22 56 8.83E+07 | 3.45E+08 493.10 647.77
Submaxillary Gland 72.15 94 2.88E+08 635.20
Histatin 1 66.67 96 1.47E+08 550.80
Histatin 3 60.78 9 1.88E+07 554.70
Cystatin-SN 11.35 2 8.45E+05 395.40
Alpha-Amylase 1 2.15 1 4.00E+05 302.30
Basic Salivary 1 94.90 213 1.16E+09 997.70
Basic Salivary 2 50.96 34 1.02E+08 651.30
Basic Salivary 3 73.79 67 3.06E+08 788.40
Basic Salivary 4 37.74 36 9.86E+07 584.90
Salivary Acidic 1/2 90.36 118 6.54E+08 744.70
6166 Statherin 54.84 100 1.30E+08 | 2.62E+08 545.90 597.95
Submaxillary Gland 72.15 93 3.12E+08 521.60
Histatin 1 45.61 68 1.07E+08 509.30
Histatin 3 58.82 6 1.98E+06 450.60
Cystatin-SN 18.44 7 1.32E+06 328.90
Alpha-Amylase 1 4.89 2 1.03E+06 454.10
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Basic Salivary 1 36.67 14 5.80E+07 637.50
Basic Salivary 2 83.41 127 5.17E+08 867.20
Basic Salivary 3 54.42 20 9.01E+07 767.90
Basic Salivary 4 77.10 94 6.91E+08 895.80
Salivary Acidic 1/2 90.36 91 4.43E+08 685.20
6171 Statherin 50.00 76 1.90E+08 | 2.29E+08 510.60 525.11
Submaxillary Gland 72.15 78 4.53E+08 546.00
Histatin 1 45.61 49 7.33E+07 480.40
Histatin 3 0.00 0.00 0.00E+00 0.00
Cystatin-SN 0.00 0.00 0.00E+00 0.00
Alpha-Amylase 1 4.89 2 6.38E+05 385.60
Basic Salivary 1 93.88 162 9.99E+08 1016.80
Basic Salivary 2 44.23 18 9.76E+07 699.00
Basic Salivary 3 73.46 65 5.06E+08 823.90
Basic Salivary 4 57.10 61 3.59E+08 1068.20
Salivary Acidic 1/2 18.07 5 9.13E+06 558.50
6238 Statherin 54.84 87 2.49E+08 | 2.78E+08 528.30 606.36
Submaxillary Gland 72.15 87 7.00E+08 578.80
Histatin 1 47.37 82 1.34E+08 565.90
Histatin 3 0 0 0.00E+00 0
Cystatin-SN 18.44 3 1.44E+06 411.30
Alpha-Amylase 1 4.89 2 7.70E+05 419.30
Basic Salivary 1 37.24 34 6.61E+07 541.50
Basic Salivary 2 240 1 5.99E+06 443.70
Basic Salivary 3 62.39 39 1.48E+08 765.50
Basic Salivary 4 55.47 36 1.00E+08 525.50
Salivary Acidic 1/2 81.93 99 5.29E+08 662.80
6239 Statherin 61.29 70 7.26E+07 | 1.28E+08 425.70 459.75
Submaxillary Gland 67.09 56 4.63E+08 500.00
Histatin 1 50.88 24 1.55E+07 418.90
Histatin 3 0 0 0.00E+00 0
Cystatin-SN 2411 6 1.49E+06 403.30
Alpha-Amylase 1 274 2 6.76E+05 370.30
Basic Salivary 1 2347 7 5.98E+06 333.10
Basic Salivary 2 88.46 77 1.57E+08 715.20
Basic Salivary 3 70.87 67 2.43E+08 841.50
Basic Salivary 4 49.03 42 6.76E+07 628.90
Salivary Acidic 1/2 21.08 7 5.33E+06 283.40
6260 Statherin 69.35 127 2.86E+08 | 1.24E+08 491.00 520.52
Submaxillary Gland 72.15 106 4.79E+08 583.40
Histatin 1 47.37 96 1.10E+08 550.70
Histatin 3 60.78 9 1.03E+07 473.80
Cystatin-SN 12.06 2 2.75E+06 443.30
Alpha-Amylase 1 2.15 1 4.18E+05 381.40
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Basic Salivary 1 0 0 0.00E+00 0
Basic Salivary 2 18.75 10 4.00E+06 299.10
Basic Salivary 3 68.95 49 3.36E+08 752.90
Basic Salivary 4 30.00 21 2.39E+07 438.60
Salivary Acidic 1/2 87.35 94 5.36E+08 707.80
6310 Statherin 43.55 55 717E+07 | 1.58E+08 460.50 359.75
Submaxillary Gland 67.09 79 7.37E+08 500.40
Histatin 1 42.10 29 2.89E+07 441.10
Histatin 3 0 0 0.00E+00 0
Cystatin-SN 0 0 0.00E+00 0
Alpha-Amylase 1 2.74 2 9.66E+05 356.80
Basic Salivary 1 95.92 194 2.01E+09 1115.80
Basic Salivary 2 59.62 47 1.77E+08 921.80
Basic Salivary 3 55.66 38 2.03E+08 792.00
Basic Salivary 4 63.55 48 2.70E+08 961.20
Salivary Acidic 1/2 90.36 94 9.83E+08 1105.80
6343 Statherin 67.74 101 1.52E+08 | 4.18E+08 527.40 744.31
Submaxillary Gland 72.15 93 4.47E+08 559.50
Histatin 1 66.67 99 2.87E+08 569.90
Histatin 3 60.78 15 7.26E+07 670.20
Cystatin-SN 18.44 6 3.09E+06 466.10
Alpha-Amylase 1 7.04 3 1.18E+06 497.70
Basic Salivary 1 89.39 101 5.34E+08 1033.60
Basic Salivary 2 25.48 10 2.19E+07 449.20
Basic Salivary 3 67.96 70 7.75E+08 924 .40
Basic Salivary 4 53.87 45 3.74E+08 867.70
Salivary Acidic 1/2 90.36 120 1.42E+09 734.20
6462 Statherin 51.61 75 1.28E+08 | 3.45E+08 502.10 599.55
Submaxillary Gland 72.15 92 4.31E+08 600.30
Histatin 1 66.67 80 1.08E+08 535.10
Histatin 3 58.82 7 2.46E+06 446.70
Cystatin-SN 0.00 0.00 0.00E+00 0
Alpha-Amylase 1 4.31 2 1.14E+06 501.80
Basic Salivary 1 4.08 1 1.09E+06 221.90
Basic Salivary 2 51.44 34 3.71E+07 583.20
Basic Salivary 3 60.52 47 1.86E+08 741.00
Basic Salivary 4 38.71 34 8.53E+07 546.50
Salivary Acidic 1/2 86.75 147 6.83E+08 836.70
6472 Statherin 50.00 114 2.56E+08 | 1.39E+08 565.20 453.25
Submaxillary Gland 67.09 95 2.45E+08 494.80
Histatin 1 42.10 16 2.98E+07 421.10
Histatin 3 0 0 0.00E+00 0
Cystatin-SN 30.50 9 4.05E+06 309.40
Alpha-Amylase 1 2.15 1 3.97E+05 266.00
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Basic Salivary 1 92.35 136 3.13E+08 746.90
Basic Salivary 2 21.63 11 1.98E+07 471.90
Basic Salivary 3 69.58 54 2.91E+08 768.30
Basic Salivary 4 65.16 57 1.62E+08 598.30
Salivary Acidic 1/2 21.08 12 7.36E+07 623.40
6503 Statherin 66.13 105 2.53E+08 | 2.07E+08 523.70 511.56
Submaxillary Gland 67.09 134 1.08E+09 540.80
Histatin 1 50.88 50 7.65E+07 557.30
Histatin 3 0 0 0.00E+00 0
Cystatin-SN 15.60 5 6.60E+06 518.30
Alpha-Amylase 1 2.15 1 3.51E+05 278.30
Basic Salivary 1 95.66 163 5.53E+08 865.50
Basic Salivary 2 47.84 30 4.51E+07 624.60
Basic Salivary 3 67.64 36 8.87E+07 760.50
Basic Salivary 4 47.74 21 3.13E+07 472.80
Salivary Acidic 1/2 90.36 85 4.21E+08 903.00
6510 Statherin 58.06 100 1.81E+08 | 1.59E+08 412.90 573.24
Submaxillary Gland 7215 88 3.36E+08 542.50
Histatin 1 43.86 23 9.27E+07 605.20
Histatin 3 31.37 3 1.19E+06 394.50
Cystatin-SN 24.82 5 2.52E+06 414.30
Alpha-Amylase 1 2.15 1 3.44E+05 309.80
Basic Salivary 1 91.82 150 7.49E+08 1023.30
Basic Salivary 2 51.20 22 5.44E+07 589.70
Basic Salivary 3 73.14 68 3.75E+08 859.20
Basic Salivary 4 46.45 39 1.47E+08 708.10
Salivary Acidic 1/2 90.36 117 1.04E+09 966.20
6554 Statherin 69.35 120 1.76E+08 | 3.11E+08 447.40 638.67
Submaxillary Gland 72.15 89 6.97E+08 557.90
Histatin 1 45.61 100 1.77E+08 515.70
Histatin 3 58.82 12 6.98E+06 588.50
Cystatin-SN 1348 3 9.48E+05 393.90
Alpha-Amylase 1 2.15 1 4.57E+05 375.50
Basic Salivary 1 10.97 3 2.72E+06 366.90
Basic Salivary 2 71.39 41 3.16E+07 506.10
Basic Salivary 3 73.79 73 4.35E+08 787.40
Basic Salivary 4 41.61 29 8.25E+07 516.30
Salivary Acidic 1/2 90.36 154 1.06E+09 801.10
6557 Statherin 54.84 115 2.36E+08 | 2.42E+08 529.10 480.94
Submaxillary Gland 72.15 108 6.68E+08 523.40
Histatin 1 66.67 92 1.47E+08 505.30
Histatin 3 45.10 3 5.44E+05 276.70
Cystatin-SN 0.00 0.00 0.00E+00 0.00
Alpha-Amylase 1 2.15 1 9.23E+05 478.00
Basic Salivary 1 95.92 127 5.92E+08 921.70
Basic Salivary 2 50.48 29 5.34E+07 651.60
Basic Salivary 3 75.73 41 1.25E+08 776.10
Basic Salivary 4 51.94 26 7.05E+07 521.30
Salivary Acidic 1/2 82.53 80 4.50E+08 964.30
SA_01 Statherin 66.13 102 147E+08 | 1.75E+08 477 .40 578.40
Submaxillary Gland 72.15 63 2.45E+08 507.50
Histatin 1 64.91 62 1.14E+08 527.70
Histatin 3 62.74 31 1.30E+08 683.30
Cystatin-SN 13.48 5 1.93E+06 331.50
Alpha-Amylase 1 0.00 0 0.00E+00 0.00
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Basic Salivary 1 87.50 48 1.42E+08 1042.00
Basic Salivary 2 7.21 2 1.19E+06 132.00
Basic Salivary 3 27.07 13 3.16E+07 555.00
Basic Salivary 4 0.00 0 0.00E+00 0.00
Salivary Acidic 1/2 62.65 29 1.62E+08 646.60
IR1 Statherin 53.22 51 6.16E+07 | 4.89E+07 542.10 41248
Submaxillary Gland 7215 53 9.14E+07 493.70
Histatin 1 63.16 13 5.14E+06 277.60
Histatin 3 62.74 17 4.17E+07 597.90
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 2.15 1 2.51E+05 250.40
Basic Salivary 1 91.82 101 7.59E+08 1063.60
Basic Salivary 2 55.29 26 9.50E+07 791.20
Basic Salivary 3 70.55 51 3.01E+08 959.80
Basic Salivary 4 51.61 38 7.10E+07 597.80
Salivary Acidic 1/2 90.36 100 8.33E+08 999.10
IR2 Statherin 67.74 176 548E+08 | 3.26E+08 535.50 590.71
Submaxillary Gland 72.15 116 9.29E+08 580.00
Histatin 1 63.16 31 4.62E+07 529.20
Histatin 3 0.00 0 0.00E+00 0.0
Cystatin-SN 12.06 3 1.25E+06 441.60
Alpha-Amylase 1 0.00 0 0.00E+00 0.0
Basic Salivary 1 52.55 28 3.50E+07 537.60
Basic Salivary 2 6.01 3 2.97E+06 445.70
Basic Salivary 3 75.40 52 1.67E+08 815.50
Basic Salivary 4 11.29 3 1.06E+06 239.30
Salivary Acidic 1/2 90.36 95 6.05E+08 743.80
IR3 Statherin 69.35 93 1.07E+08 | 1.34E+08 424.70 44527
Submaxillary Gland 72.15 75 5.31E+08 496.40
Histatin 1 45.61 40 2.62E+07 468.40
Histatin 3 54.90 3 5.81E+05 374.70
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 2.15 1 4.53E+05 351.90
Basic Salivary 1 3.83 1 1.47E+05 203.80
Basic Salivary 2 57.93 24 2.28E+07 463.30
Basic Salivary 3 66.67 39 8.67E+07 563.10
Basic Salivary 4 50.00 21 1.69E+07 547.90
Salivary Acidic 1/2 90.36 74 3.77E+08 737.00
IR4 Statherin 69.35 94 7.75E+07 | 9.20E+07 370.20 423.75
Submaxillary Gland 72.15 78 3.82E+08 545.80
Histatin 1 64.91 40 3.93E+07 492.70
Histatin 3 60.78 9 8.94E+06 520.60
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 2.15 1 1.65E+05 216.80

401




%

# Unique

Average

Best

Average

Sample ID Protein ID Coverage | Peptides Intensity Intensity Score SBc?:)srte
Basic Salivary 1 21.68 8 4.46E+06 403.00
Basic Salivary 2 51.68 29 2.81E+07 485.20
Basic Salivary 3 68.95 31 742E+07 768.30
Basic Salivary 4 38.39 18 1.75E+07 419.00
Salivary Acidic 1/2 8.43 4 2.02E+07 274.80
IR5 Statherin 66.13 55 2.54E+07 | 2.75E+07 412.60 334.59
Submaxillary Gland 7215 54 1.31E+08 543.50
Histatin 1 33.33 5 1.10E+06 291.30
Histatin 3 17.65 1 6.24E+04 82.80
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 0.00 0 0.00E+00 0.00
Basic Salivary 1 95.66 172 1.53E+09 978.30
Basic Salivary 2 47.84 18 4.32E+07 430.50
Basic Salivary 3 55.66 34 2.97E+08 815.40
Basic Salivary 4 85.42 77 6.00E+08 888.90
Salivary Acidic 1/2 89.76 108 6.06E+08 692.30
IR6 Statherin 62.90 85 1.34E+08 | 3.94E+08 536.30 489.52
Submaxillary Gland 69.62 130 1.11E+09 620.20
Histatin 1 24.56 7 1.10E+07 422.80
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 0.00 0 0.00E+00 0.00
Basic Salivary 1 90.61 91 6.77E+08 1052.50
Basic Salivary 2 46.15 24 3.50E+07 727.40
Basic Salivary 3 44 .44 27 1.04E+08 834.50
Basic Salivary 4 29.68 14 3.14E+07 549.10
Salivary Acidic 1/2 90.36 91 4.58E+08 802.30
IR7 Statherin 61.29 139 3.17E+08 | 1.87E+08 545.00 621.54
Submaxillary Gland 72.15 79 3.39E+08 517.90
Histatin 1 66.67 53 743E+07 535.40
Histatin 3 62.74 8 1.63E+07 568.00
Cystatin-SN 5.67 2 1.61E+06 414.50
Alpha-Amylase 1 2.15 1 2.02E+05 290.30
Basic Salivary 1 93.03 57 1.01E+08 941.00
Basic Salivary 2 0 0 0.00E+00 0
Basic Salivary 3 41.60 22 4.68E+07 815.90
Basic Salivary 4 25.81 10 8.11E+06 529.40
Salivary Acidic 1/2 90.36 78 4.75E+08 904.30
IR8 Statherin 58.06 96 1.58E+08 | 9.76E+07 480.80 508.85
Submaxillary Gland 72.15 65 2.26E+08 568.40
Histatin 1 63.16 29 2.26E+07 453.10
Histatin 3 62.74 15 3.45E+07 567.20
Cystatin-SN 5.67 2 9.82E+05 337.20
Alpha-Amylase 1 0.00 0 0.00E+00 0.00
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Basic Salivary 1 66.07 20 1.46E+07 410.00
Basic Salivary 2 0 0 0.00E+00 0
Basic Salivary 3 40.74 15 2.33E+07 576.80
Basic Salivary 4 12.90 3 1.05E+06 145.00
Salivary Acidic 1/2 90.36 76 2.53E+08 679.30
IR9 Statherin 58.06 55 1.77E+07 | 4.28E+07 309.70 350.85
Submaxillary Gland 7215 49 1.54E+08 539.50
Histatin 1 66.67 16 3.89E+06 395.10
Histatin 3 49.02 5 3.21E+06 496.50
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 2.15 1 2.38E+05 307.50
Basic Salivary 1 13.52 5 1.58E+06 319.60
Basic Salivary 2 30.05 19 2.59E+07 458.80
Basic Salivary 3 54.99 32 7.78E+07 549.40
Basic Salivary 4 41.70 27 5.73E+07 436.40
Salivary Acidic 1/2 83.73 127 5.30E+08 720.90
IR10 Statherin 61.29 65 4.53E+07 | 1.75E+08 418.30 430.98
Submaxillary Gland 72.15 140 1.18E+09 581.10
Histatin 1 36.84 10 7.23E+06 415.00
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 29.79 8 1.33E+06 286.30
Alpha-Amylase 1 3.13 2 1.95E+06 555.00
Basic Salivary 1 28.57 10 3.96E+06 360.90
Basic Salivary 2 78.37 33 5.22E+07 695.40
Basic Salivary 3 21.37 14 8.63E+06 839.40
Basic Salivary 4 0.00 0 0.00E+00 0.00
Salivary Acidic 1/2 69.28 34 7.56E+07 665.90
IR11 Statherin 67.74 58 6.92E+07 | 2.32E+07 439.50 442.00
Submaxillary Gland 72.15 29 2.08E+07 429.80
Histatin 1 61.40 19 7.75E+06 443.40
Histatin 3 62.74 17 1.67E+07 626.70
Cystatin-SN 5.67 1 7.77E+04 222.80
Alpha-Amylase 1 2.15 1 1.74E+05 138.20
Basic Salivary 1 12.76 5 1.94E+06 347.80
Basic Salivary 2 87.98 49 3.90E+07 572.70
Basic Salivary 3 66.95 45 1.43E+08 738.70
Basic Salivary 4 43.87 26 1.90E+07 425.90
Salivary Acidic 1/2 90.36 87 4.24E+08 712.80
IR12 Statherin 69.35 158 3.37E+08 | 1.19E+08 480.40 447.31
Submaxillary Gland 72.15 79 3.10E+08 570.80
Histatin 1 61.40 56 3.63E+07 439.90
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 5.67 1 1.71E+05 333.20
Alpha-Amylase 1 2.15 1 3.03E+05 298.20
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Basic Salivary 1 95.41 116 3.28E+08 914.70
Basic Salivary 2 54.81 19 2.48E+07 460.70
Basic Salivary 3 74.76 44 1.45E+08 806.70
Basic Salivary 4 51.94 22 7.46E+07 573.40
Salivary Acidic 1/2 83.13 70 1.91E+08 713.50
IR13 Statherin 51.61 52 3.40E+07 | 8.28E+07 401.40 459.74
Submaxillary Gland 65.82 59 1.09E+08 501.20
Histatin 1 35.09 10 4.54E+06 414.90
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 2.15 1 2.37E+05 270.60
Basic Salivary 1 23.21 10 6.26E+06 217.10
Basic Salivary 2 240 1 2.70E+05 283.40
Basic Salivary 3 57.60 24 4.88E+07 533.80
Basic Salivary 4 18.71 8 7.22E+06 328.70
Salivary Acidic 1/2 83.73 139 6.06E+08 737.40
IR14 Statherin 64.52 80 7.60E+07 | 1.58E+08 384.40 365.89
Submaxillary Gland 72.15 103 9.82E+08 499.30
Histatin 1 43.86 10 7.60E+06 439.10
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 24.82 6 1.41E+06 232.80
Alpha-Amylase 1 21.33 16 3.64E+06 368.80
Basic Salivary 1 95.92 110 7.24E+08 872.60
Basic Salivary 2 64.90 28 6.04E+07 575.60
Basic Salivary 3 72.49 56 2.44E+08 794.00
Basic Salivary 4 59.68 52 1.58E+08 989.60
Salivary Acidic 1/2 89.76 78 5.84E+08 709.70
IR15 Statherin 66.13 104 2.07E+08 | 2.13E+08 507.60 579.25
Submaxillary Gland 72.15 58 2.98E+08 527.40
Histatin 1 45.61 46 6.41E+07 477.20
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 1348 4 2.94E+06 439.50
Alpha-Amylase 1 2.15 1 7.86E+05 478.60
Basic Salivary 1 92.42 114 7.02E+08 995.50
Basic Salivary 2 47.84 23 4.31E+07 602.90
Basic Salivary 3 77.67 48 1.61E+08 810.60
Basic Salivary 4 54.52 38 9.46E+07 741.30
Salivary Acidic 1/2 90.36 77 6.44E+08 882.50
IR16 Statherin 54.84 78 9.33E+07 | 2.03E+08 459.10 640.42
Submaxillary Gland 72.15 64 3.70E+08 555.00
Histatin 1 45.61 58 9.51E+07 596.20
Histatin 3 45.10 8 2.77E+07 655.90
Cystatin-SN 13.48 2 4.79E+05 367.00
Alpha-Amylase 1 2.15 1 3.36E+05 378.60
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%

# Unique

Average

Best

Average

Sample ID Protein ID Coverage | Peptides Intensity Intensity Score SBc?:)srte
Basic Salivary 1 58.93 44 1.02E+08 544.40
Basic Salivary 2 11.06 4 4.15E+06 416.30
Basic Salivary 3 60.68 33 1.08E+08 552.60
Basic Salivary 4 4548 25 4.13E+07 521.10
Salivary Acidic 1/2 87.35 66 4.96E+08 734.50
IR17 Statherin 58.06 158 1.58E+08 | 1.24E+08 393.60 468.24
Submaxillary Gland 7215 78 4.43E+08 532.00
Histatin 1 63.16 13 5.77E+06 497.50
Histatin 3 39.21 3 1.68E+06 429.20
Cystatin-SN 12.06 3 1.09E+06 201.10
Alpha-Amylase 1 2.15 1 3.17E+05 328.30
Basic Salivary 1 80.61 77 4.80E+08 728.00
Basic Salivary 2 10.82 6 1.43E+07 449.10
Basic Salivary 3 69.26 39 2.12E+08 564.70
Basic Salivary 4 44.84 23 2.80E+07 432.20
Salivary Acidic 1/2 90.36 74 5.57E+08 719.70
IR18 Statherin 59.68 105 9.68E+07 | 1.87E+08 461.70 472.75
Submaxillary Gland 72.15 69 6.42E+08 543.20
Histatin 1 63.16 29 2.84E+07 505.60
Histatin 3 47.06 4 3.48E+06 527.00
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 2.15 1 2.21E+05 269.00
Basic Salivary 1 56.38 34 8.93E+07 704.90
Basic Salivary 2 95.43 98 5.78E+08 1014.00
Basic Salivary 3 56.13 32 7.63E+07 772.90
Basic Salivary 4 39.03 20 4.06E+07 575.30
Salivary Acidic 1/2 90.36 66 2.76E+08 684.30
IR19 Statherin 67.74 130 1.17E+08 | 1.17E+08 372.40 526.48
Submaxillary Gland 72.15 49 9.52E+07 525.80
Histatin 1 36.84 20 5.87E+06 404.60
Histatin 3 62.74 9 6.87E+06 525.10
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 5.28 2 2.15E+05 212.00
Basic Salivary 1 62.24 54 1.61E+08 547.80
Basic Salivary 2 11.78 8 2.76E+07 468.90
Basic Salivary 3 65.24 43 1.73E+08 574.50
Basic Salivary 4 56.45 38 1.03E+08 550.40
Salivary Acidic 1/2 86.75 105 5.53E+08 664.90
IR20 Statherin 61.29 92 8.76E+07 | 1.25E+08 394.10 415.86
Submaxillary Gland 69.62 64 2.71E+08 494 .40
Histatin 1 31.58 4 9.17E+05 273.20
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 19.15 3 4.64E+05 254.90
Alpha-Amylase 1 2.15 1 3.09E+05 351.40
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# Unique

Average

Best

Average

Sample ID Protein ID Coverage | Peptides Intensity Intensity Score SBc?:)srte
Basic Salivary 1 44.90 29 4.49E+07 682.50
Basic Salivary 2 95.67 95 4.95E+08 1022.60
Basic Salivary 3 38.46 29 1.02E+08 524.20
Basic Salivary 4 37.42 25 4.89E+07 575.70
Salivary Acidic 1/2 74.10 27 7.83E+07 609.40
IR21 Statherin 67.74 27 1.44E+07 | 8.41E+07 246.80 480.65
Submaxillary Gland 7215 37 1.19E+08 491.10
Histatin 1 64.91 44 1.81E+07 347.40
Histatin 3 62.74 4 4.17E+06 516.50
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 2.15 1 1.93E+05 271.00
Basic Salivary 1 68.62 56 1.75E+08 703.90
Basic Salivary 2 12.74 7 1.04E+07 493.90
Basic Salivary 3 75.73 46 2.38E+08 632.80
Basic Salivary 4 38.39 20 1.36E+08 508.10
Salivary Acidic 1/2 89.76 140 9.88E+08 717.10
IR22 Statherin 51.61 90 1.62E+08 | 2.54E+08 470.80 484.06
Submaxillary Gland 72.15 89 1.07E+09 507.00
Histatin 1 31.58 13 7.40E+06 423.50
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 16.31 7 3.74E+06 507.40
Alpha-Amylase 1 2.15 1 4.40E+05 360.20
Basic Salivary 1 92.73 152 1.42E+09 1066.30
Basic Salivary 2 52.16 36 8.21E+07 859.80
Basic Salivary 3 64.10 42 1.68E+08 783.10
Basic Salivary 4 7.10 2 1.69E+07 559.20
Salivary Acidic 1/2 83.73 73 4.67E+08 740.00
IR23 Statherin 69.35 111 1.41E+08 | 2.29E+08 447.00 566.65
Submaxillary Gland 72.15 70 1.96E+08 537.00
Histatin 1 56.14 31 2.67E+07 474.50
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 10.64 1 3.35E+05 295.10
Alpha-Amylase 1 2.15 1 6.03E+05 471.20
Basic Salivary 1 10.97 6 7.90E+06 554 .40
Basic Salivary 2 85.34 60 1.59E+08 700.50
Basic Salivary 3 70.87 49 3.16E+08 653.80
Basic Salivary 4 53.55 42 1.63E+08 579.00
Salivary Acidic 1/2 89.76 73 3.57E+08 717.00
IR24 Statherin 54.84 83 6.36E+07 | 1.10E+08 42410 431.72
Submaxillary Gland 72.15 51 1.45E+08 503.70
Histatin 1 45.61 10 2.47E+06 339.00
Histatin 3 0.00 0.00 0.00E+00 0.00
Cystatin-SN 0.00 0.00 0.00E+00 0.00
Alpha-Amylase 1 2.15 1 2.71E+05 277.40
Basic Salivary 1 92.09 99 3.91E+08 755.00
Basic Salivary 2 22.84 10 1.11E+07 438.00
Basic Salivary 3 73.79 47 3.06E+08 778.50
Basic Salivary 4 42.58 32 1.40E+08 566.30
Salivary Acidic 1/2 86.75 82 4.72E+08 714.80
IR25 Statherin 61.29 63 5.06E+07 | 1.50E+08 426.50 446.95
Submaxillary Gland 67.09 56 2.64E+08 496.20
Histatin 1 45.61 23 1.21E+07 431.40
Histatin 3 0.00 0 0.00E+00 0.00
Cystatin-SN 0.00 0 0.00E+00 0.00
Alpha-Amylase 1 215 1 4.49E+05 309.70
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APPENDIX M: PROTEIN IDENTIFICATION OF VAGINAL FLUID POPULATION SAMPLES

. Average
. % # Unique . Average Best
Sample ID Protein ID Coverage | Peptides Intensity Intensity Score Siisrte
CRNN 752 90 3.85E+08 1099.50
SBSN 325 17 1.52E+07 647 60
374 VL 23.1 8 8.24E+06 | 0?F*08 47670 605.93
PPL 0.9 1 2.42E+05 199.90
CRNN 29.1 17 3.04E+06 20140
SBSN 27 2 1.80E+05 67.30
4669 VL 19 2 8.06E+05 | 01E*06 50570 121.10
PPL 0.0 0 0.00E+00 0.00
CRNN 675 93 1.91E+08 1105.70
SBSN 258 14 8.49E+06 345 .80
5488 VL 24 1 7588405 | >C1E*07 8720 434.68
PPL 0.0 0 0.00E+00 0.00
CRNN 400 28 9.83E+06 629.50
SBSN 0.0 0 0.00E+00 0.00
5560 VL 19 2 4.26E+05 | 296F*08 5080 189.83
PPL 0.0 0 0.00E+00 0.00
CRNN 69.1 68 8.39E+07 1007.20
SBSN 98 3 5.23E+05 244 80
5701 S8 23 S 2255 2 11E407 08 313.00
PPL 0.0 0 0.00E+00 0.00
CRNN 54.3 49 9.91E+07 956.00
SBSN 125 5 2.91E+06 146.50
5854 VL 224 7 9.34E+06 | 280B*07 1580 444.35
PPL 0.9 1 5.62E+05 158.10
CRNN 62.0 69 9.54E+07 952.80
SBSN 154 7 417E+06 178.60
6239 VL 455 33 138E+07 | 283E+07 m5ge50 424.98
PPL 0.0 0 0.00E+00 0.00
CRNN 63.2 68 1.01E+08 1022.00
SBSN 54 3 9.27E+05 75.40
6241 VL 207 8 3348406 | 20%F*07 250,60 407.98
PPL 0.9 1 5.36E+05 273.90
CRNN 626 42 2.22E+07 557.30
SBSN 154 5 1.26E+06 126.80
6260 VL 0.0 0 0.00e+00 | >80E*06 550 171.03
PPL 0.0 0 0.00E+00 0.00
CRNN 515 39 4.49E+07 652.10
SBSN 17 5 1.72E+06 177.70
6291 VL 6.7 5 5118406 | 22507 30010 284.73
PPL 0.0 0 0.00E+00 0.00
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%

# Unique

Average

Best

Average

Sample ID Protein ID Coverage | Peptides Intensity Intensity Score SBcisrte
CRNN 451 6 561E+07 751.50
SBSN 105 5 4.13E+06 666.10
6303 =2 o 2 LISEIIS | 151407 ool 382.08
PPL 11 1 3.04E+05 110.70
CRNN 453 62 1.33E+08 971.80
SBSN 141 8 3.01E+06 298.20
6310 VL 10.1 5 3208406 | >°0E*07 35480 438.08
PPL 0.9 1 6.69E+05 127,50
CRNN 66.3 85 111E+08 766.70
SBSN 312 16 1.03E+07 415.00
6311 VL 13.9 6 3338406 | > 18E*07T 30540 | 40378
PPL 25 2 2.63E+06 368.30
CRNN 75.8 94 2.87E+08 1054.30
SBSN 573 35 3.85E+07 678.10
6320 VL 24.1 11 179E+07 | &7%F*07 35610 596.90
PPL 50 6 6.38E+06 299.10
CRNN 32 1 8.44E+04 36.60
SBSN 0.0 0 0.00E+00 0.00
6343 VL 0.0 0 0.00E+00 | 2M1E*04 400 9.15
PPL 0.0 0 0.00E+00 0.00
CRNN 428 41 8.54E+07 1033.80
SBSN 0.0 0 0.00E+00 0.00
6460 VL 106 2 3.01E+06 | 222E*07 6000 307.95
PPL 2.1 2 2.40E+05 38.00
CRNN 436 38 5.54E+07 936.90
SBSN 0.0 0 0.00E+00 0.00
6551 VL 74 2 740E+05 | AOB*07 Hi080 | 28693
PPL 0.0 0 0.00E+00 0.00
CRNN 576 59 1.62E+08 1044.20
SBSN 32.7 27 3.73E+07 683.60
6557 VL 2.1 2 6.67E+05 | 2O2E*07T 7180 514.98
PPL 16 2 9.20E+05 60.30
CRNN 59.6 70 1.53E+08 690.20
SBSN 35.1 26 3.28E+07 604.90
6587 VL 13.9 4 160E+06 | +69E*07 50740 441.00
PPL 0.9 1 4.26E+05 19150
CRNN 406 38 1.60E+07 424.40
SBSN 15.6 12 3.03E+06 279.60
6635 VL 39.7 42 186E+07 | H1E*08 24500 288.25
PPL 0.0 0 0.00E+00 0.00
CRNN 527 48 3.13E407 46550
SBSN 34 2 2 47E+05 106.10
6636 VL 448 45 1.79E+07 | 23E*07 T 33580 226.10
PPL 0.0 0 0.00E+00 0.00
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# Unique

Average

Best

Average

Sample ID Protein ID Coverage | Peptides Intensity Intensity Score SBcisrte
CRNN 56.6 53 1.95E+08 1023.70
SBSN 12.0 7 3.20E+06 215.90
6654 VL 18.0 5 6.05E+06 | > 1E*07 36530 401.23
PPL 0.0 0 0.00E+00 0.00
CRNN 68.7 95 2.69E+08 1059.10
SBSN 227 12 9.44E+06 382.70
6661 VL 195 1 1a9E+07 | [34E*07 55860 566.78
PPL 10 1 6.64E+05 316.70
CRNN 67 1 84 1.02E+08 976.80
SBSN 13 1 5 1.64E+06 223.80
6674 VL 44 2 2428+05 | 281E*07 53010 367.68
PPL 0.0 0 0.00E+00 0.00
CRNN 58.6 87 1.71E+08 753.70
SBSN 12.0 5 2.05E+06 225.90
6681 VL 13.9 8 5038406 | T80T 50550 382.98
PPL 17 2 1.35E+06 279.80
CRNN 69.9 79 2.44E+08 990.50
SBSN 112 7 7.76E+06 519.80
Al VL 412 28 661E+07 | [O9F*07 [Tg7540 | 6475
PPL 21 2 116E+06 47330
CRNN 49.1 32 4.85E+07 883.30
SBSN 21.2 5 3.14E+06 271.90
B1 VL 3.1 1 122E+05 | 1-29B+07 110 289.08
PPL 0.0 0 0.00E+00 0.00
CRNN 0.0 0 0.00E+00 0.00
SBSN 0.0 0 0.00E+00 0.00
c1 VL 0.0 0 0.00E+00 | 9-09E+00 500 0.00
PPL 0.0 0 0.00E+00 0.00
CRNN 394 48 4.34E+07 760.80
SBSN 0.0 0 0.00E+00 0.00
D1 VL 46 2 587E+05 | OB 7080 232.90
PPL 0.0 0 0.00E+00 0.00
CRNN 721 79 3.14E+08 1104.70
SBSN 13.9 9 8.66E+06 621.60
E1 VL 233 11 211E+07 | S2E*07 57690 646.35
PPL 11 1 7.97E+05 48220
CRNN 146 7 1.33E+06 357.90
SBSN 0.0 0 0.00E+00 0.00
F1 VL 0.0 0 0.00E+00 | >33E+05 0.00 89.48
PPL 0.0 0 0.00E+00 0.00
CRNN 624 62 119E+08 1081.40
SBSN 102 3 3.57E+06 349.50
G1 VL 65 3 2.10E+06 | > 13E*07 45110 529.28
PPL 20 2 7.29E+05 265.10
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APPENDIX N: PEPTIDE IDENTIFICATION OF PERFORMANCE ASSESSMENT SAMPLES

TABLE LEGEND:

Green Box = Positive target peptide identification

Grey Box = Negative target peptide identification, positive protein identification
Red Box = Negative protein identification

NT = Not Tested
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Ly

Seminal Fluid Sensitivity

Dilution Factor

IChargs;

Proteir) Sequence Mass (m/z) (2) RT 100 100 100 | 1000 | 1000 | 1000 | 2000 | 2000 | 2000 | 5000 | 5000 | 5000 | 10000 | 10000 | 10000
F.LRPGDDSSHDLML.L 485.9014 3 .80
R.FLRPGDDSSHDLML L 534.9242 3 10.60

g L.LRLSEPAELTD.A 622.3301 2 8.70

< L.LRLSEPAELTDA.V 657.8486 2 9.20
W.GSIEPEEFLTPK.K 673.8456 2 10.50

o Y.TIEILKVE.- 472.7868 2 6.60

£ FYTIEILKVE - 554.3184 2 11.70
F.AELVGPVIPQDW.S 662.3508 2 13.85

% F.GIWSKVYDPLY C 670.8479 2 12.65

g F.GQLTALGMEQHYEL.G 523.8958 2 10.55
F.GALTALGMEQHYELGEY | 998.4595 2 10.70
Y .DLNALHKTTKSQRH.L 412.9774 4 1.50
Q.HGEHGGLDIVIE.Q 4495736 2 11.30
Y.GENGVQKDVSQRS 468.5673 3 1.60

V.VEVREEHS .S 492.7409 2 2.85
T.NREQDLLSHEQKGRHQH 494.5018 4 2.55

| TIPSQEQEHSQKAN 4949110 3 1.30

g Q.TEKLVAGKSQ 530.8035 2 1.70
o Q.NVVEVREEH.S 555.7805 2 3.05
N.TEERLWWVHG.L 563.7856 2 6.35
R.EQDLLSHEQKGRHQH 568.9519 3 2.50
Q.NVVEVREEHS.S 599.2966 2 3.05
Y.SQTEKLVAGKSQ. 638.3488 2 2.40
Q.NVVEVREEHSSK.V 706.8601 2 2.05

Q. STNREQDLLSHEQKGRHQ H 7216932 3 265
V.DINDHDWTR.K 3911757 3 4.75
Q.NVVDVREEHS.S 395.1949 3 3.30
V.DINDHDWTRK.S 433.87T41 3 3.85
Q.NVVDVREEH 480.2433 2 4.30
Y.NEDRENPIST - 523.2491 2 3.50

o] Y. DLNALHKATKSKQH.L 530.9610 3 2.05

E Q.NVVDVREEHSSKLQ.T 547.2848 3 4.30

2] K.DVSQSSISFQIEKLVEGKSQLl 553.0391 4 13.35
S_SISFQIEKLVEGKSQL 564.9771 3 11.40

QIEKLVEGKSQ.I 565.8244 2 3.15
Y.HVDINDHDWTRK.S 768.3711 2 4.60
K.DVSQSSISFQIEKLVEGKSQIQ.T | 817.4306 3 13.80
Y VLQTEELVWNKQQRETK.N 1021.5657 | 2 6.05




Ly

Saliva Sensitivity

Dilution Factor

Proteir Sequence Mass |Charged o 10 | 10| 10| 50| 50| s0 | 100 | 100 | 100 | 500 | 500 | 500
(m/z) (z)

HSHREFPEY T602247| 2 | 528
_ FLREFPEYCDY G £97.2662] 2 [ 1058
& K AHSHREFPEY 597.2636] 2 | 6.35
T S HREFPFYGDY.G B65.7962] 2 | 9.65
FYGDYGONYLYDN-  |722.2886] 2 | 733
= | G.GONKPQGPPPPPGKPQG [518.2792] 3| 3.09
. 0.GPPQQGGNRPQ.G _ |560.0808] 2 | 0.99
& [AcnPaGrsracGNKPQG 7318663 2 | 142
~ Q.GPPSPPGRPUG I510587] 2 | 285
o [QOGGNKPQGPPSPPGKPAG [614.9390] 3 | 324
& [TAGNPUGAPPQGGNKPQG |123.8578] 2 [ 162
= QRPPPPPCKPQ.G £35.8089] 2 | 1.39
g O.GPPPPPQGGRPPR |57 3003] 2 | 377
£ Q.SHRPPPPPGKPER 18.3460] 2 | 1.6
Q.cPPacasPa. 5010 2 [ 123
o Q.GPPPPPPGKPAG £347956] 2 | 276
g 0.QGPPPPOGKPQ G [566.8013] 2 | 1.0
& [QGPPQQGGHPPPPQGRPQG [577.9606] 3 | 2.07
G.GPPQQGGHPRPPR 125153] 2 | 213
P RGPYPDGELA A770648] 2 | 798
F GIFPPPPPQP- 5237577 2 | 10.65
G.RPPPPPAPY G 550.0137] 2 | 7.69
G FVPPPEPPPY G 5512673] 2 | 950
P GRIPPPPPAPY G 551.3044] 2 | 755
o B.GEVPEPPPPY G 5626060 2 | 1066
i ¥ .GPGEPPPPPQP- 005242 2 |10.74
= PYPPGPLAPPGPEG 108373 2 [ 1245
® [T APPQPFGPGIVPPPPPLEYG [6626733] 3 | 1364
¥ GPGRIPPPPPADY.G 553616] 2 [543
F.GPGEVEPEEPPPY G £9.8458] 2 | 11.06
RGPYPPGPLAPPGPE G To74d] 2 [12.78
F GPGEVPPPPPPPYGPGR |765.3930] 2 | 10.82
F ROPYPPGPLAPPQPF G [795 0250 2 [ 1189
PYQPVPEQPLY, £35.7795] 2 | 8.39
P EQPLYPGPY d 67 7760] 2 | 5.4
¥ .GPYQPVPEGPLY B128166] 2 | 7.30
RIGREGYGYGPY Q 6253037 2 | 915
. PVPEQPLYPQPY Q 8658375 2 | 9.19
= E QPLYPQPYQPQY 79.6406] 2 | 751
© [ PYapPVPEQPLYPQPYQPQY [691.3423] 3 | 9.69
Y QPVPEQPLYPQPY Q 76.3932] 2 960
RFGYGYGPYQPVPEQPLY 9064356] 2 | 11.07
Y QPVPEQPLYPQPYQPQY_[954.6782] 2 [ 927
[FGYGYGPYQPVPEQPLYPQPY (1167 0468 2| 11.60




€y

Vaginal Fluid Sensitivity

Dilution Factor

Proteir Sequence mﬁ C"Ii;ge RT 10 | 10| 10| 50| 50| s0 | 100 | 100 | 100 | 500 | 500 | 500
LYSYLRSTKP- 122012 3 | 476
E.WVDDHSRET .V 3821712| 3 | 241
ADVIVKPHDPAT sa57982) 2 | 519

z | RrsarsaavieaHTaAcsHT 6323053 3 | 362

& L DEDHTGTVEFK E 639.2859| 2 | 46
M.PQLLQNINGIE.A 676.3826| 2 | 1312
D.VIVKPHDPATVDE V 7103778| 2 | 528

F_ADVIVKPHDPATVDE V 803.4006| 2 | 629

s V ELPVEVPSKQEEKH M 412.9690| 4 | 5.98

g LKTENPGDASDLQGRALL  |864.9292| 2 | 571

= R.VWWQGLHHGVSQAGRE 7228920] 2 | 231

@ [uNAAGQVGKEADKLIHHGVHHGAN 787 4037] 3 | 629




Semual Apsault Zamplse - Samen Oral Fwab Rectal Swab Vaginal Swalb
P Chargs
rotsin saquencs msse iz |~ RT Repl Repz | Rep2 Repl Repz | Repr | Rept | Rep2z
T LAPGDOGSHOLML 50014 3 EE]
. AT LAPGODSSHDLMLL G T | nm
1 LLRLGEPALLTOA R B EE
* Taram | 2 | 2
R 7 | nm
o &72. e B ]
n 5543164 2 | 1.0
T ALLVCEVIEa 5 EFEC E
g T CWSRVTOPLT G ] E
i F UL T OLGMEaH TEL G FRE E
F.GOLTOLGMEOH YELGEY | 4505 2 | om0
¥ DLHALHAT TRGORH L 120774 F 150
CHGSHGGLONIE O 05798 2 | 1%
S50 5673 3 T80
R 2 285
234 5018 3 255
2349110 3 130
@ 530A035 H 170
ﬁ 555 7A0A B 08
S T8 B 3
EQRGRHGH 60,0519 3 25
CMVVEVALENG.S 50 00 B 305
¥ SOTERLVAG RS D R B 280
] B i
FI] 3 265
311757 3 275
95,1929 3 330
S33a7a1 3 385
QDA 02233 2 290
¥ NEDANPIST R 2 350
3 ¥ DLHALHFAT KGR O L 530 9610 3 205
= TNV B 3 290
H [ ] 5510991 ] 1335
R 564 5771 3 ] 1
S5 f2ad B 315
F HVDINDHDW T ARG P6RATT1 B 260
OV SOSSIST QIEALY EGRG0R T B17.4006 3 | 1Al
¥ VLOTEELVWH KO GAET KH S R 05
CYESTLRGTRE. EFFIF] 3 z
EWVOLHSRET.Y ATT2 3 FX]
AVIRETOEAT N B N
z T o Son T Ca O ARG ST, FEE 3 e
E TOEOTT T Ve RE FE H T
M POLLONINGIIE A BT 306 FE
D VIVREHDEATYD 103775 2 525
T ADVIVEPHOPATVOE £ 2 =
WL W ELPVEVESROLCRIL M 212 560 3 568
oL LRTCHPGOASOLOGROLL B T2 2 571
F3 RO GV SOA G E o] B FX]
i N HANGOVGREADR LIHH GVHH GAN.Q | 7872037 3 525
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Gy

Ssmual assault Samplss - Sallva Breast Swab Oral Swab Rectal Swab Vapinal Swab
Protsin Sequence Mate (miz) Gri:;w RT | Rept Repz | Reps | mept Repz | meps Repl Repz Reps | Repl Repz | Reps
REFPF.Y =z | 2 | =
HREFPFTGOY.G S | 2 | s
o WNSIRALTFT Y S | 2 | s
: SHREFPFYGDY.G 5T 2 EES
TP GLTGEHTLYON. o S
- T EENRPOGPOP PP GRPDL & B ] ]
al OGFPOOGGNRPD G Sea g
o P GHPOGFSPOG GHR D & T
= =
- P EIFED
a O GCHRPOGR TSP AP & HEEE 3
4 —
A R GHPOGAEOG GHRD & EEE
- GRPPEPRGRED G ] 2
o OGP PPOGGR e e
- OSHRFPPPPGRPER Gmaee | 2
I R EE I
, Pl T o
4 DOGTETrOGREn & EEE
o QGPPOOGEH OGR P0G 577 06 1
0.GPPOOGEIPRPER Gzes | 2
FRGPTEPGELA T | 2
e T | 2
GRIFEPPERET. & EEIE
SV 5 EEN
ZE Y S EEE
FErVPrPEErET & il
8 GRGIF FPPER R wome | 2
7 FYPPGRLAPRORT & BEw | 2
LAPP0ET GRGT VRERERERT & e 3
s RO G EEE
TorarY ¥ G =
AETVorer PO & EE
e T T
FREPTPPGEPLAFEORT & =
TR H
—
e
EEEE
TLIGHT GYGYeET O =
_ FVPEQPLYPORT 4 woaws | 2
g EQPLYPORTORD.Y [
" R SR v ] 3
¥ OFVPLOPLY POPY O EEE
AT GYGTGRTORVEE GPL Y ELwe | 2
R R R X
F EVEvErPOPVPE ORGP O Meroes | 2 | nm
LYSTLRETRE 22012 3 T
NVOLHSRET Y SEATE I T
ADVIREDPAT T | 2 e
z TLS0T SOAVTGEHTO I AG ST [ 3 1w
i LOEDHTGTVERRE N T
— —
W POLLORINGIE T | 2 | e
B VIREHOERT T | 2 53
T ALITVRETILEAT VIIE | Woame | 2 | 6=
L VELPVEVPSH ™ FFE ] S3
FeL LT ENPGOASOLO GROLL = ]
F FLVVOGLHGVEOA GILE TmE | 2 | an
7 H APV GREADFILNH GV GAR.O T I
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Seminal Fluid Aged Samples Day 2 Day 3 Day 7 Day 30
Protein Sequence Mass [miz) Ch{i;“‘* RT | Rept | Rep2 | Rep2 | Rept | Rep2 | Rep2 | Rept | Rep2 | Rep2 | Rept | Rep2 | Rep3

F LRPGDDSSHDLMLL S5o018 | 3 | 580
RFLRPGDDSSHOLMLL 5as0242 | 3 | 0.60

2 LLRLSEFAELTDA Bzz2301 | 2 | 870
¥ LLRLSEFAELTOAV B5r.ee88 | 2 | 5.20
W.GSIEFEEFLTPR.K B72.8458 | 2 | 10.50

o ¥ TIEILRVE - 4727868 | 2 | 6.60
= FVTIEILKVE.- F5eaisa | 2 | 11.70
FAELVGPVIPQDW.S B62.3508 | 2 | 1285

% F GIWSRVTDPLY.C Br0.8are | 2 | 1268
= FGOLTQLGMEQHYEL G F2a.8958 | 2 | 10.55
F.GOLTQLGMERQHYELGEY 9064595 |2 | 1070

¥ DLNALHKTTKSQRH.L 4128774 | 4| 1.60

Q@ HGSHGGLOIVIE.Q 2s05738 |2 | 11.20

¥ GENGVQFOVSRRS | Jeoorz | =2 | 160
VWEVAEEHS 5 2527408 | 2 | 285

T NREQDLLGHE QR GRAGH AB45018 | 2 | 255

_ T TIPSQEQEHSRRAN 2525110 | 3 | 1.20
a Q.1 ERLVAGKSQ. 5308025 | 2 | 1.70
2 Q.NVVEVREEH.S 5557805 |2 | =05
@ N.TEERLWVHG L 5627868 | 2 | 6.35
R.EQDLLSHEQKGRAGH 5669518 |3 | 250
TLHVVEVREEHS 5 Foooses | 2 | 206

7 SOTERLVAGKSA Bas.oens | 2 | 240

G NVVEVAEERSSH.W 7008601 | 2 | 206
O.STNREQDLLSHEGQRGRAGH | 7216822 | 2 | 265

V. DINDADWT LK, 1767 | 2 | 475

T NVVOVREEHS 5 3551828 | 3 | 220

V DINDHOWTRE.5 2325721 | 3 | 285

@ NVVDVREE.H 2502433 |2 | 220

v NEDRNFIST Foaoasl | 2 | 260

o 7 DLNALHRATKSRQH.L 5209510 | 2| 205
= Q.NVVDOVAEERSSKLGT Farosas | 3 | 220
u K.OVSOSSISFOIERLVEGKSQl | 5520381 | 2 | 12.25
S SISFOIEKLVEGKSG Beaorr1 | 2 | 11.40
QIERLVEGKSR | Sengzad | 2 | 295

¥ HVDINDHOWTRK.5 Teearl | 2 | 280
K.OVSQSSISFQIERLVEGKSQIQ T | 8174308 |3 | 13.80

¥ VLQTEELVVNKQRRETK.N | 10215657 2 | 6.05
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Saliwva Aged Samples Day 2 Day 3 Day 7 Day 30
Protein Sequence Mass [miz} Ch{ir'ge RT | Rep1 | Repz | Rep3 | Rep1 | Rep2 | Rep3 | Rept | Rep2 | Rep3 | Rep1 | Repz | Repa
H.SHREFPF Y Ze0.2247 | 2
_ HREFPFVGOT G E5yosEz | 2
o F.HASHREFFE.Y CEREERE
= 5.HREFPFYGOY.G Ses7oe2 | 2
FVGDYTGSNYLYDN 722.0886 | 2
- O GGNKPRGPPPPPGRPR.G Eie.otez | =
) O GPFOUGGNRPR.G Fee.omoE | 2
o A GNPRGFSPRGGNKFR.G 7218562 | 2
o~ Q. GFFSPPGRPL.G Z51z567 | 7
o © GGNKPOGPPSPPGRPL. G E14.8350 | =
g A GNPUGAPPUGGNRPD. G Tzz8578 | 2
= G RFPFEPGRPLG Eas8085 | 2
o O GPPPPPOGGRPP R S77.a093 | 2
T @ SHRPPPPPGRPER Be5.3480 | 2
Q.GPPOGQSPQ.- Za8.2170 |2
o @ GPPPFPPGRER.G 3475855 | 2
o O QGPPPPRGRPLG Feta01z | 2
& | QGFPOQGGHFFFFQGRFG.G 5779008 | =
Q. GPFQUGGHPRFP R Bl28152 | 2
F.RGFTPEGELA G77.0848 | 2
F.GIFPPPPPQP. FERET
G RIFPFPPAPY G Eezatar | 2
G.FVPPFPPPPY.G Feazora |2
F.GRIPFPFPARY.C =81.9242 | 2
o F.GFVPPPEPEEY.C 5828080 | 2
o ¥ GPGIFPPPPPGE.- B008042 | 2
= FYFPGELAPPQPE G EEEE
@ LAPFOFFGPGIVFFEEPFET G Breraz | =
Y GPGRIFPEFPAPT.C TeaEis | 2
F.GFGFVPPFFFEFY.C 5585458 | 2
R.GPYPPGPLAPPQPF.C 7178742 | 2
F.GFGFVPPPPEPPTGRG R Te5.9530 | 2
F RGPYPPGPLAPPQPF G 7558250 | 2
F.YQPVPEGPL.Y Eac.7795 | 2
F.EQPLYPQPT.Q se7.77e8 | 2
¥ GPYRPVEEGPLY BizEies | 2
RIGRIGTGYGRT.Q FEEEE
- FVPEQPLYPQPY.Q e I
z EQPLYFRPTQFGY BT8.5408 | 2
o FYQFVPEQFLYPQPTRFRY 5812422
¥ QPVPEQPLYPQRY.Q 7783932
R.FGYGYGEYQPVPEQPLY 506.4356 T1.07
 GPVPEQPLYPOPYQPQY Seaotez | 2 9.2
F GVGYGPYOPVPEQPLYPQPY.Q | 11570488 2 | 11.80
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Vaginal Swab Aged Samples Day 2 Day 3 Day 7 Day 30
Protein Sequence Mass miz) Rep2 Rep2 Rep2 Rep2
LYSYLRSTKP.- 3722012
E.WWDDHSRET.V 3821712
A DVIVKPHDPAT 5457982
= R.SQTSQAVTGGHTQIQAGSH.T 832.3053
S
e L.DEDHTGTVEFK.E §39.2859
M.PQLLOMINGIIE.A §76.2826
DAVIVEPHDPATWVDE.W 710.3778
ADVIVKPHDPATWVDE.W 803.4098
E‘ V.ELPYEVPSKQEEKH.M 412.8680
-
& L KTENPGDASDLOGROL.L 864 5292
= RAVVQGLHHGYSQAGR.E T22.8920
@
“ MN.NAAGQVGKEADKLIHHGYHHGAN.Q | 7874037
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Seminal Fluid on Vaginal Swab Aged Samples Day 2 Day 3 Day 7 Day 30
Protein Sequence Mass [miz} 2‘;“ RT | Rept | Rep2z | Rep3 | Rept | Rep2 | Rep3 | Rept | Rep2 | Rep3 | Rept | Rep2z | Repa
F LRPGDDSSHDLML L ZE55012 | 2
R.FLAPGDDSSHOLMLL Ta25242 | 2
2 L LRLSEFAELTD A B222301 | 2
= | LRLSEPAELTDAV 8578436 | 2
W GSIEPEEFLTPK.K 5728456 | 2
N ¥ TIEILKVE - s727868 | 2
z FYTIEILKVE - 5523184 | 2
F AELVGPVIPQDW.5 B622508 | 2
> F GIWSKVYDPLY.C 5708478 | 2
= F GQLTQLGMEQHYEL G 5238958 | 2
F GQLTQLGMEQHYELGEY | 5934595 | 2
¥ DLNALAKT TKSQRA L s129774 | 2
QHGSHGGLONVIEQ Ge9E738 | 2 i
¥ GENGVQKDVSQRS | sEseeTa| 3 | 18
VVEVREEHS S 227408 | 2 | 285
T NREQDLLSHEQKGRHQ H 225018 | 2 | 285
| TIPSQEQERSQRAN 2829110 | 2 T2
o Q TERLVAGKSQI GE 2 7
z QNVVEVREEH S 2 | 205
“ N.TEERLWVHG.L se37858 | 2 | 625
R EQDLLSHEQKGRHQ H s839519 | 3 | 25
Q NVVEVREEHS 5 s9.2988 | 2 | 205
¥ SQTEKLVAGKSQ Bag2ess | 2 | 24
Q NVVEVREEHSSK.V 7088601 | 2 | 205
Q STNREQDLLSHEQKGRHQ H 7216522 | 3 | 265
V DINDHDWTR K 2811757 | 3 | 475
QNVVDVREEHS 5 251848 | 3 | 22
V DINDHDWTRK.5 2338741 | 3 | 285
QNVVDVREE H ss02433 | 2 | 42
¥ NEDRNPIST - T23z481 | 2 | 25
o ¥ DLNALAKATKSKQH L 5205610 | 3 | 205
= QNVVDVREEHSSKLR T ca72848 | 3 | 42
E K DVSQSSISFQIERLVEGKSQ TE30281 | 2 | 1225
= SISFQIEKLVEGKSQ TEesTT1 | 2 | 112
QIEKLVEGKSQ Te5g2es | 2 | 215
v HVDINDHDWTRK.S 7832711 | 2 | 48
K DVSQSSISFQIEKLVEGKSQIQ T 5174208 | 3
¥ VLQTEELVVNKQQRETK.N 10216657] 2
L ¥SYLRSTKP- 2722012 | 2
E WVDOHSRET.V 821712 | 2
A DVIVKPHDPA T sa5 7882 | 2
=z R SQTSQAVTGGHTRIRAGSH T B3z2082 | 3
= | DECHTGTVEFKE 5392858 | 2 | 460
M PQLLQNINGIIE A B76 2826 | 2 | 1212
D VIVKPHOFATVDEV 7102775 | 2
F ADVIVKPHDFATVDE V 5034098 | 2 | &
WL V ELPVEVPSKQEEKH M s128680 | 2 | &
PPL L KTENPGDASDLQGRGL L seeszez | 2 | &
= R VVQGLHHGVSQAGR E 7228520 | 2 | 2
B N NAAGQVGKEADKLINHGVHHGAN.G | 7874037 | 3 | 6.




Saliva on Vaginal Swab Aged Samples Day 2 Day 3 Day 7 Day 30
Protein Sequence Mass (miz) 777 Rep2 Rep2 Rep2 Rep2 | Repd
H SHREFFF.Y 3602247 | 2
HREFFFVGDY G o7 o8B | 2
@ W HHSHREFPE Y sor o838 | 2
= S HREFPFYGDY.G 6657962 | 2
FVGDYGSNYLYDN 7222886 | 2
- @ GGNKPQGFFPPPGKPQ.G Si82792 | 3
o Q.GPPQRGGNRPQ.G seg o828 | 2
o A GNPUGPSPQGGNKFR.G 7318588 | 2
o O GPPSPPGKPR.G 3812587 | 2
o @ GGNKFQGFFSPPGKFQ.G 5148280 | 3
[ A GNFQGAFPQGGNKPQ G 7238878 | 2
< QRPPPPFGKPR.C 5355089 | 2
by Q GPPPPPQGGRPP.R 5773098 | 2
[ Q SHRFFFPPGKFE R Bas 2468 | 2
Q GFFQGQSFQ.- 3282170 | 2
. O GFFFFPFGKPC G Eas7588 | 2
= Q.QGPFFPQOKPQR.C 5658013 | 2
~ Q. GPPOQOQGGHPPPPQGRPQ.G 577.96808 3
@ GPFQQGGHPRFFR Biz8ie | 2
F RGPYFFGFLA sTT2e48 | 2
F GIFFFFFPOF.- T2a7e7T | 2
GRIFFPPPARY.G sezeiar | 2
G FVPFPPPPRY G FEezara | 2
F GRIFFPPPAPY .G 56103242 | 2
P GFVFPPPPPPY G 582.8080 | 2
2 ¥ GPGIFPPPPPQP - s00.8242 | 2
z P.YPPGPLAPPQPF.G 8408372 | 2
APFQFFGPGFVFFPPFFFY.G | 6526732 | 2
¥ GFGRIFFFFFPAFY G 6582015 | 2
F GPGFVFFPFFPRY.C BEosats | 2
R.GPYFFGFLAFFQFF G TiTeT4e | 2
F GFGFVPFFFPPPYGFG R 7853530 | 2
P RGPYFPGPLAPPQPF.G 7950250 | 2
P YQPVFEQPLY 5357795 | 2
FEQPLYPQPY Q@ Ber77es | 2
v GFYQFVFEQPLY 5128168 | 2
RIGRFGYGYGRY Q B252007 | 2
_ FVPEQPLYPQPY Q se58375 | 2
5 E.QPLYPOPYQPQ.Y 879.8408 2
@ P YQPVFEQPLYFQPYQPR.Y B512422 | 2
¥ QFVFEQPLYPQPY.Q Trea5ez | 2
[~ RrGveYGRYLPVPEQRLY 506426 | 2
V.QFVFEQPLYPQPYQPQY 5549782 | 2
F.GVGYGPYOPVPEQPLYPQPY.C | 1157.0468] 2
L YSYLRSTHF - 3722012 | 3
E WVDDHSRET V 2821712 | 3
‘A DVIVKPHDPA. T sas7982 | 2
=z R.SQTSQAVIGGHTQIQAGSH.T | 8222052 | 2
= L DEDHTGTVEFKE EEE B
. FQLLONINGIE A sre228 | 2 |ia.
D.VIVKFHDPATVDEV 7102775 | 2 | 5
F ADVIVKFPHDFATVDEV 5024086 | 2 |62
L V.ELPVEVPSKQEEKH.M 4129880 4 5.5
FPL L KTENPGDASDLQGRGLL Be40202 | 2 | 571
= RVVQGLAHGVSRAGR E 7228520 | 2 | 231
2 [ W NAAGQVGHEADKLIHHGVAHGAN @ | 787 4027 | & | 6.288

420




Seminal Fluid Substrates Underwear Polyester Bed Sheet PolyBlend Bed Sheet Denim
Protein Sequence Mass miz) | <10 Rep2 Repi | Rep2 | Rep3 | Rept | Repz | Rep3 | Rept | Repz | Repa
F LRFGDDSSHDLMLL ssms0ic | 3
R FLAFGODSSHDLMLL el
2 [ LRLSEFAELTD A e
= T LRLSEFAELTOAV Firees6 | 2
W.GSIEFEEFLTFRK TTasete | 2
- ¥ TIEILKVE - Srz7ee8 | 2
= FVTIEILKVE - Seasisi | 2
FAELVGFVIPGOW.S Fe2 3508 | 2
Y FGIWSRVYDFLY C FTosars | 2
z F GGLTGLGMEGHVEL G Foagees | 2
F GOLTOLGMEGHYELGEY | 558 4885 | 2
¥ DLNALAKT TRSQRA.L 2128772 | 2
@ HGSHGGLOVIE @ siserae | 2
¥ GENGVGHKDVSERS | e T
VVEVREEHS 5 227405 ] 2 | 2
T NREQDLLSHEQRGRAQ.H Z5ec0is | 2
T TIFSQEQERSQRAN 3
5 G TERLVAGKS@I 2
z G NVVEVREEAS 3
@ N.TEERLWVHG L 2
R EQDLLSHEQKGRHG.H E
Q.NVVEVREEHS S 2
¥ SOTERLVAGKSG] ]
QNVVEVREEHSSK.V 2
3.5TNREGDLLSHE GRGRAG 1 3
V.DINDHDWTR.K 3
G NVVOVREEHS S 3
V.DINDHOWT RK.S ]
@ NVVOVREE H 2
~ NEDRNFIST El
g ¥ DLNALARATKSRGH L 3
= QNVVOVREEHSSRLA.T ]
& K DVSQ55ISF QIERLVEGKS @ z
S SISF GIERLVEGKSGR | E
G ERLVEGKSA! Terooi | 2
¥ HVDINDHDWT RK.5 Tesaril | 2
K OVeasslsrQIERLVEGRSmIaT | 8179500 | 2
¥ VLGTEELVWHRGGRETR.N B
T VEvLRETRF - 72o012 | 3 T T NT NT NT NT NT NT T
EWVOOHSRET V EFXIAF M) NT NT NT NT NT NT NT NT NT
A DVIVRFHDFAT iz rssz | 2 NT NT NT NT NT NT NT NT NT
=z R SQTSGAVIGGHTQIGAGEHT | 8223053 | 3 NT NT NT NT NT NT NT NT NT
z CDEDHTGTVEFKE Fioo8ts | 2 NT T NT NT NT NT NT NT T
T PRLLGNINGIE A Treae | 2 3 NT NT NT NT NT NT NT NT NT
B VIVRFHDFATVOEV Ti0a75 | 2 525 NT NT NT NT NT NT NT NT NT
F ADVIVKEADFATVOE V 5032086 | 2 | .o98 NT NT NT NT NT NT NT NT NT
WL V ELFVEVFSKQEERA M Tizoes0 | 4| 5oee NT NT NT NT NT NT NT NT T
FRL L KTENPGDASDLQGRALL Soagzez | 7 571 NT NT NT NT NT NT NT NT NT
= R VVQGLHHGVS@AGR.E T2zes20 | 2 | 231 NT NT NT NT NT NT NT NT NT
2 [N NAAGQVGHEADKLINHGVHHGANG | 7574037 | 3 | 8.285 NT NT NT NT NT NT NT NT NT
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Saliva Substrates Polyester Bed Sheet PolyBlend Bed Sheet Denim
. ‘Charge
Protein Sequence Mass (miz} (2 RT Rep1 Rep2 Repd | Repi Rep2 Rep3 | Repi Rep2 | Rep3

H.SHREFPF.Y 450.2247 2 8.25
_ H.REFPFYGDY.G 597.2832 2 10.58
= K.HHSHREFPF.Y 5572836 2 8.35
* S.HREFFFYGDY.G 065. 7962 2 8.85
F.YGOYESNYLYDN.- 722.3886 2 7.33

- 0.GGNKPOQGPPPPPGHPQ.G 518.2792 3 3.09
-3 Q.GPPRQRGENRPQ.G 588.2828 2 0.89
E A GHNPQGPSPQGGENKPA.G 7.31.8553 2 1.42
o 2.GPFSFPGKFQ.G 451.2587 2 2.85
s Q.GGNKPQGPPSPPGKPQ.G 514.9350 2 2.24
o A GHNPOGAPPOGGNKPOG 7238578 2 1.52
= 2. RPPPPPGKPR.G 535.808% 3 1.3
8 Q.GFFFFFQGEGRFP.R 577.3093 2 377
[ 2. SHRFFFFPGKFE.R £48.2405 2 126
0.GPPOQGASPQ.- 448 2170 2 1.23

o Q.GPPPPPPGKPR.G 534.7955 2 2.76
. Q. QGPPPPRGKFR.G 565.8013 3 1.50
o 0.GPPQRGGHFPFPQGRPQ.G 577.9806 3 2.07
0.GPPQQGGHPRPP.R §12.8152 2 212

P RGPYPPGPL.A 477.2848 2 758
P.GIFFFPPPQP .- 5237877 2 10.85
G.RIPPPPPAPY .G 5528137 2 7.89
G.FWVFFFFFPEPY.G 5522072 2 8.58

F GRIFFFFEART.C 581.2244 2 7.55
o F'.GFFF'F'F'F'F'F'F’Y.G 582.8080 2 10.68
o . .GFGIFFFFFFQP - 5005242 i 10.74
= P PPGFLAFPPQFFE.G 2408373 2 12.45
“ L.APPQPFGPGFVPPPFERPPY.G 852.8733 2 13.54
Y. .GPGRIPPPPPAPY.G 858.3815 2 8.13
F.GPGFVPPPPPPPY.G 859.85458 2 11.08
R.GFYPFPGFLAFFQFF.G T17.6744 2 12.78
F.GPGFVPPPPPPPYGPG.R 785.3930 2 10.82
P.RGPYPPGPLAPPQPF.G 795.9250 2 11.89

P YQPVPEQPL.Y E-E-E-.TﬁE- 2 3.39
F.EQPLYFQPY.Q 5677763 2 §.34

Y. GPYQPVPEQPL.Y §12.8166 ] ¥.20
RIGRFGYEYGFY.Q §25.3037 2 5.15

- P WPEQPLYPQPY.Q 865.8375 2 9.19
"f E.QPLYPQPYQPQ.Y 879.5408 2 781
o [T FYQFVFEQFLYFOFYQFQ.Y | 651.3428 | = EEE]
W QPVPEQPLYPQPY.Q 778.2952 2 9.69
R.FGYGYGPYQPVPEQPL.Y 906.4358 2 11.07

. QFVPEQFLYFQFYQPQ.Y 854 8752 3 822
F.GYGYGPYQPVPEQFLYPQPY.Q | 1157.0488 I 11.50
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Seminal Fluid Contaminants

Water-Based Lubricant

Natural Lubricant

Silicon-Based Lubricant

Protein Sequence Mass [miz} Ch{a:;ge RT Repi Rep2 Rep3 Repi Rep2 Rep3d Repi Rep2 Rep3
F.LRPGDDSSHDLML.L 4559014 3
R.FLRPGDDSSHDLML.L 53249242 3

% L.LRLSEPAELTD.A 8223301 2
= L.LRLSEPAELTDAN 657.8485 2
W.GSIEPEEFLTPK.K 673.8456 2
o Y. TIEILKVE.- 4727888 2
z FYTIEILKVE.- 5523184 2
F.AELVGPVIPQDW.S 6682.3508 2
& F.GIWSKWYDFLY.C 670.8479 2
a F.GRLTQLGMEQHYEL.G 8238958 2
F.GRALTQLGMEQHYELGEY | 9858 4595 2
Y. DLNALHKTTKSQRH.L 4129774 4
Q.HGSHGGLDIVIIE.Q 449 5738 2 B
¥ .GENGVQKDVSQRS.| 488 5873 3 1.60
V.WEVREEHS.S 4927409 2 285
T.NREQDLLSHEQKGRHQ.H 454 5018 4 2.55
|.TIPSQEQEHSQKA N 4-94.91 10 3 1.20
a Q. TEKLVAGKSQ. 520.8025 2 1.70
E Q.NMVVEVREEH.S 2 305
@ M. TEERLWWHG.L 3 2 8.35
R.EQDLLSHEQKGRHQ.H 568.9519 3 2.50
O NVWEVREEHS.5 599.2966 2 305
Y. SQTEKLVAGKSQ. 538.3488 2 240
Q.MWVVEVREEHSSK. W 708.8801 2 208
Q. 5TNREQDLLSHEQKGRHO.H 7216932 3 285
V.DINDHDWTR. K 391.1757 3 475
Q. NVWVDVREEHS. S 385.1849 3 3.30
V.DINDHDWTRHK.S 4338741 3 385
Q.NVVDVREE.H 480.2423 2 430
¥ .NEDRNFIST .- 5232491 2 3.50
] . DLNALHKATKSHKOH.L 530.9810 3 205
g O NVVDWVREEHSSKLQ. T 547.2848 3 4.30
@ K. DVSQSSISFQIEKLVEGKSQI 5530381 4 13.35
S.5ISFQIEKLVEGKSQ.| 5849771 3 11.40
Q.IEKLVEGKSQ.] B85 8244 2 3.18
Y HVDINDHDWTRE.S 788.3711 2 4.60
K.DVSQSSISFQIEKLVEGKSQIQ. T 817.4308 3 13.80
Y WLQTEELVVNKCQQRETK.N 1021.5857 2 8.05
LY¥SYLRSTHP.- 3722012 3 478
E.WVDDHSRET.V 3821712 3 241
ADVIVEPHDPAT 5457382 2 519
% R.SQTSQAVTGEGHTQIQAGSH.T 632.3053 3 362
= L.DEDHTGTVEFK.E 839.2859 2 4.8
M. PQLLQNINGIIE. A 876.3826 2 13.12
D VIVKFHDPATVDE. W 710.3775 2 525
F.ADVIVEPHDPATVDE W 8032.40898 2 6.29
VL W ELPVEVPSKQEEKH.M 4123830 4 588
PPL L.KTENPGDASDLQGRQL.L 8549292 2 571
% RAVVQGLHHGVSQAGR.E 7228920 2 2
] N.NAAGOVGKEADKLIHHGVHHGAN.Q | 7E7.4037 3 6.29
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Seminal Fluid Contaminants 10% Bleach Dish Soap Menstrual Swab
Protein Sequence Mass (miz) Ch{a;l"‘ge RT Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3
F.LRPGDDSSHDOLML.L 4852014 3 &.80
R.FLRPGDDSSHOLML L 534.5242 3 10.60
g L.LRLSEPAELTD.A 22,2201 2 870
= L.LRLSEPAELTDAV 657 B488 2 2.20
W.GSIEFPEEFLTPHK.K 673.8456 2 10.50
a Y. TIEILKVE - 472.7868 2 860
= F VY TIEILKVE.- 554.2184 2 11.70
AELVGPVIPQDW.S ‘E)E-Z.SETJB 2 13.85
& F.GIWSKNVYDPLY.C B870.8472 2 12.65
& F.GQLTQLGMEQHYEL.G 8238958 2 10.55
F.GQLTQLGMEQHYELGEY .| 998 4595 2 10.70
W DLNALHKTTKSQRH.L 412.9774 4 1.50
Q.HGSHGGLDIVIIE.Q 440.5738 2 11.20
¥ .GENGYVQKDVSQRS.1 488 5673 3 1.80
W WVEVREEHS.5 4832 7409 2 285
T.NREQDLLSHEQKGRHZ.H 484 5018 4 2.55
I TIPSQEQEHSQKAN 4249110 2 1.20
@ Q. TEKLVAGKSQ. 530.8035 2 1.70
E Q.NVWEVREEH.S 78 2 3.05
w —
N.TEERLWVHG.L 2 8.35
R.EQDLLSHEQKGRHQ.H 565.9519 3 250
Q.NVVEVREEHS.5 599.2988 2 205
Y.SQTEKLVAGKSQ.| 828.2488 2 2.40
Q. NMVWEVREEHSSK. WV 7068801 2 205
Q.STHNREQDLLSHEQKGRHO.H 721.6932 3 265
W.DINDHDWTR. K 391 1757 3 475
Q.NVVDWREEHS.5 295.1949 3
V.DINDHDWTRK.S 4338741 3
Q.MVVDVREEH 480.2433 2
¥ NEDRNFIST - 5222481 | 2
8 . DLNALHKATESKOH.L 530.9610 3
= Q. NVVDWVREEHSSKLQ. T 547.2848 3
@ K.DVSQSSISFQIEKLVEGKSQ.| 552.0281 4
S.5ISFQIEKLVEGKSQ.1 5849771 3
Q.IEKLVEGKSQ.I 8244 2
¥ .HVDINDHDWTRK.S T68.3711 2
K.DV5QSSISFQIEKLVEGKSQIQ. T 817.4308 3
W WLQTEELVYNKQQRETK.N 10215857 2
LY¥SYLRSTKP.- 3722012 3 NT NT NT NT NT NT
E.V‘NDDHSR_ET.V 3821712 3 NT NT NT NT NT MNT
ADVIVEPHDPA.T 5457982 2 NT NT NT NT NT MT
i R.BQATSQAVTGEHTQIQAGSH.T 632.3053 3 NT NT NT NT NT NT
= L.DEDHTGTVEFK.E §20.2859 2 NT NT NT NT NT NT
M.PQLLQNINGIE.A 676.3826 2 NT NT NT NT NT NT
DVIVEPHDPATVDE W 7103775 2 NT NT NT NT NT MNT
F.ADVIVKPHDPATVDE. W 803.4086 2 NT NT NT NT NT MNT
VL V. ELPVEVPSHKQEEKH.M 412.9680 4 5.58 NT NT NT NT NT MT
PPL L KTENPGDASDLQGRAL.L 584.5282 2 5.71 NT NT NT NT NT NT
=z RVVOQGLHHGYSQAGR.E 722.8920 2 2.1 NT NT NT NT NT NT
% M.NAAGOVGKEADKLIHHGVHHGAN.Q | T87.4037 3 8.29 NT NT NT NT NT NT
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Saliva and Vaginal Fluid C i 10% Bleach Dish Soap Menstrual Swab Menstrual Swab + S5aliva
Protein Sequence Mass [miz} ‘:h{‘;“ RT Rep! | Rep2 | Rep3 | Rept | Rep2 | Rep3 | Rept | Rep2z | Rep3 | Rept | Repz | Rep3
H.SHREFFF.Y 3602247 | 2 8.25 NT NT NT
H.REFFFYGOY.G serzesz | 2 | 1058 NT NT NT
o W HHSHREFFF Y 5972836 | 2 | 638 NT T NT
= 5 HREFPFYGDY.G Be57962 | 2 9.85 NT NT NT
F YGOVGSNYLYDN- 7222886 | 2 733 NT NT NT
- Q.GGNKPQGPPPPPGKPQ.G 5182792 | 3 3.09 NT NT NT
2 @ GPPRQGGNRPR.G R R 0.95 NT NT NT
= A GNPQGPSPQGGNKPQ.G 7318563 | 2 142 NT NT NT
- Q.GFFSFRGRFO.G Z512867 | 2 | =288 NT T NT
&' Q GGNHKPQGFPEFPGKRR G B E 202 NT NT NT
= A GNPQGAPPQGGNKPQ.G 7238578 | 2 152 NT NT NT
- QRFFFPPGKPQ.G 5355085 | 2 129 NT NT NT
g Q GPPFPPRGGRFP R 577083 | 2 277 NT T NT
= Q SHRFPFPPGKPE R 8453469 | 2 126 NT NT NT
Q GPPOGRSFQ- sas2170 | 2 123 NT NT NT
n Q.GPPPPPPGKPQ.G 5347955 | 2 | 278 NT NT NT
z Q.QGPFFPQGKFQ.G sess012 | 2 150 NT NT NT
= Q.GPPOQGGHPPPPQGRPR.G 5779606 | 3 | 207 NT NT NT
Q GPPUQGGHPRFF R Bizeita | 2 | 212 NT NT NT
F RGFYFFGFLA aTroeas | 2 798 NT NT NT
F.GIFPFPPPQP - 5237877 | 2 | 1068 NT NT NT
G RIPFFPPAFY G sszsiar | 2 765 T NT NT
G FUFFFFFRFY G 5522973 | 2 558 NT T NT
P GRIPPPFPAFY.G 5812248 | 2 756 NT NT NT
F GFVFFFFFFRY G ssos0s0 | 2 | 1068 NT NT NT
2 . GPGIFPPFPPQP - B008242 | 2 | 10.7% NT NT NT
= F YFPGPLAFFQFF .G Be08372 | 2 | 1245 NT NT NT
| AFPQFFGFGFVFFRFFRFY G | 6526732 | 3 | 1354 NT T NT
¥ GFGRIFFFFPAPY.G S552615 | 2 513 NT NT NT
F GFGFVFPPFPPFY G BEosase | 2 | 11.08 NT NT NT
[ RGPYPPGPLAPPQFF.G 7178748 | 2 | 1278 NT NT NT
F.GFGFVFFFFPPFYGRG.R 7e5.2930 | 2 10.82 T NT NT
F RGFYPFGFLAPFOFF G 7955280 | 2 | 1189 NT T NT
P.YQPVPEQPLY 5357795 | 2 539 NT NT NT
F EQFLYFPQPY Q ser77es | 2 £z NT NT NT
¥ GPYQPVPEQPLY 8128168 | 2 730 NT NT NT
RIGRFGYGYGFY.Q B252037 | 2 515 NT NT NT
- P VFEQFLYFQFY Q 8375 | 2 519 NT T NT
< E.QPLYPQPYQPQ.Y 6798408 | 2 781 NT NT NT
v P YQFVPEQFLYPQPYQPQY EEEEE 589 NT NT NT
Y. QPVFEQPLYPQFY.Q EEA R 5.6 NT NT NT
RFGYGYGPYQPVFEQPLY S084386 | 2 | 1107 NT NT NT
¥ QFVFEQPLYFQFYQRQ Y 525782 | 2 502 NT NT NT
[~ F GvevGPYQPVPEQPLYPOPY.Q | 1157.0488] 2 | 11.80 NT NT NT
L VEVLRSTHE - 2722012 | 2 476 NT NT NT NT NT NT
EWVDDHSRET .V 2821712 2 | 241 NT NT NT NT NT NT
A DVIVKPHDFA T sas7esz | 2 515 | NT NT NT NT NT NT
=z R SOTSOAVTGGHTQIDAGSH T | 8223083 | 3 282 | Nt T NT NT NT NT
= L DEDHTGTVEFK.E 8392859 | 2 ) NT NT NT NT NT NT
M.FQLLGNINGIIE A B7e2s2e | 2 | 1242 | nT NT NT NT NT NT
D.VIVKPHOPATVDE V 7102775 | 2 525 | NT NT NT NT NT NT
FADVIVKPHDPATVDE .V 8034056 | 2 | 628 | NT NT NT NT NT NT
WL V ELPVEVPSKQEEKH 1 Fiooesn | 2 598 NT NT NT NT NT NT
PPL CKTENPGDASDLQGRGLL 5649292 | 2 571 NT NT NT NT NT NT
H RVVQGLHHGVSRAGR E 7228920 | 2 | 221 NT NT NT NT NT NT
2 [N NAAGQVGKEADKLIFHGVHHGANG | 7674037 | 2 | €29 | NT NT NT NT NT NT
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T M1 Mz e Ma
10pl SA + 2.5l SE 504l SA + 2.5l SE 10pL SA + 25 L SE 0L SA + 10yl SE
Protein Sequence Mass {miz) 2‘;92 RT | Rept | Repz | Reps | Rept | Repz | Reps | Rept | Repz | Reps | Rept | Repz | Reps

F LRFGDOSSHOLML L FEEs014 | 2 | 880
R.FLRPGODSSHDLMLL s34524z | 3 | 10.60

g L LRLSEFAELTD A c223301 | 2 | 870
= L LRLSEFAELTDAV S578480 | 2 | 820
W GSIEPEEFLTPR.K S72.8455 | 2 | 10.50

" ¥ TIEILIVE - a7o78e8 | 2 | 680
= FTIEILKVE - Eedziza | 2 | 1170
AELVGPVIPGDW.S Be2.3808 | 2 | 1288

& F GIWSKVYDPLY.C B708478 | 2 | 1268
e F GOLTGLGMEQHYEL G 5228958 | 2z | 10.55
F GRLTQLGMEQHYELGEY | 5854595 | 2z | 10.70

¥ DLNALAKTTRS@RAL Z128775 | & | 150
QHGSHGGLDIVIE Q Zeserae | 2z | 110

¥ GENGVQHOVSGRS | Geseera| 2 | 180

VVEVREEHS 5 Te27408 | 2 | 288

T NREQDLLSHEQKGRAG H Teac0is | & | 2es

| TIPSQEQEHS@RA N F8i8110 | = | 130

3 Q. TEKLVAGKSQ 5308035 | 2 | 170
i QNVVEVREEH.S 5557505 | 2 | 205
N.TEERLWVHG.L 5627856 | 2 | 6.5

R EQDLLSHEGKGRAG H Ee5 5515 | 2 | 250

G NVVEVREEHS 5 Tesooee | 2 | 20%
 SQTEKLVAGKSRI Ba33488 | 2 | 240
@NVVEVREEHSSK.V Toese0l | 2z | 208

2.5 TNREQDLLSHEGKGRAQ.A T2iesaz | = | 265
V.DINDHDWTR.K 2a7e7 | =2 | e75

Q NVVDVREEHS 5 2851945 | 2 | 220
V.DINDHDWTRK.S 2328741 | 2 | 288

G NWDVREE H TE02433 | 2 | 220

¥ NEDRNFIST - E322491 | 2 | 260

o ¥ DLNALHKATKSKGH L E08610 | 2 | 208
2 @.NVVDVREEHSSHLG. T sa7z828 | 2 | 290
& K DVSQESISFQIERLVEGKSR | 553.0551 | 2 | 18.25
S SISFQIERLVEGREG Seearri | = | 1140
QERLVEGHSQ.! 5658244 | 2 | 215

. HVDINDHDWTRK.S Tesatil| 2 | 260

K DVSQSSISFOIEKLVEGKSQIG T | 8174308 | 2 | 12.80

¥ VLQTEELVVNKQQRETK.N o21Eee7| 2 | 608

L VSYLRSTKP.- 2722012 | 2 | 47
EWVDDHSRET.V 221712 | 2 | 241

A DVIVRFHDFA.T ses7ssz | 2z | 508

= RSQTSQAVIGGHTQIRAGSHT | 6222052 | 2 | 262

= L DEDHTGTVEFKE EEEENEE
T POLLGNINGIE A Breisze | 2 | 12i2

D VIVKFRDFATVOEV Tl0aT7E | 2 | 528

F ADVIVKPHDPATVOEV o209 | 2z | 629

WL V. ELFVEVFSKQEERA. M Gizsea0 | & | 588
FRL L KTENFGDASDL@GRGLL Boeszaz | 2z | 571
= RVVQGLHHGVSQAGR.E 7228920 | 2 | 231
2 [NNAAGQVGREADRLINHGVAHGAN.G | 7574037 | 3 | 6.29
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Ly

W ] M2 M3 M2
10pL SA + 2.5l SE 50l SA + 2.5l SE 10l SA + 25yl SE 10 L SA + 10yl SE
Protain Sequence Mass [miz} Ch{Tbge RT | Repi | Rep2z | Rep3 | Repi | Rep2z | Rep3 | Rept | Rep2 | Rep3 | Rept | Repz | Reps
H.SHREFFF.Y agnzzar | 2 | 825
H.REFFFYGOY.G EoT.oesz | 2 | 10.88
- Yooy
i K. HHSHREFPF.Y soT2838 | 2 | 8.35
= S HREFFFYGDY.G Eesteez | 2 | 985
F.YGDYGSNYLYDN.- Tzzoese | 2 | 7.2
- Q.GGNKPQGPPPPPGKPQ.G si62roz | 2 | 309
2 Q.GFPQOGGNRPL.G BeszEzs | 2 | 089
o #.GNPQGPSPRGGNKPR.C TatesEa | 2 | 1.4z
- 0.GPPSPPGKPO.G 4812887 | 2 | 285
&' Q. GGNKFQGFPSPPGKPQ.G 5148280 | 2 | 322
o . GNPRGAPPRGGNKPL.C 7238578 | 2 | 1.52
" QRPPPPPGHPQ.G Zacs0Ed | 2 | 1.29
&' Q. GFFFFPQGGRFF R Erraoez | 2 | 377
o Q.SHRPPPPPGKPE.R Gapades | 2 | 1.28
0. GPPQGLSPQ.- aazi70 | 2 | 122
o 0. GFFPPFPGHPC.G Eaa7ees | 2 | 276
= Q.QGPPPPQGKPQ.G sess012 | 2 | 1.50
o O GPPOQQGGHPPPPOGRPO.G | B77.0608 | 2
0. GPFQQGGHPRFF.R Elzsisz | 2
P.RGPYPFGPLA 4772048 | 2
F.GIFFFFFPQP - E22.7877 | 2
G.RIFFFFFAFT G e e
G.FVPPPPPPPY.G ss4zoTa | 2
F GRIFFFFFPAFY.G 5812244 | 2
F.GFVFFFFFFEY.C 5828080 | 2
o —
D “.GPGIFFFFPPQP.- 2008242 | 2
= F FPGFLAPFQFF.G Bansarz | 2
L AFFQFFGFGFVPFFFEFPY.G | 8526733 | 2
v GPGRIPPPPFAFY.G EEB 2815 | 2
F.GFGFVFFFFFFFY .G B58. F
R.GPYFPGPLAPPQPF.G T17.6744 | 2
F.GPGFVFPPPPPPYGPG R Tez2o20 | 2
F RGFYFFGFLAFFOFT G ToE8zE0 | 2
P.YQPVPEQPL.Y 5asrres | 2
F EQPLYFOPY.Q SeT7TER | 2
¥ .GFYQFVFEQFLY Elzates | 2
R.IGRFGTGYGPY.Q 2253037 | 2
,_ FVFEQPLYPOPY.C EeEBaTE | 2
< E QFLYPQFYQFQ.Y E78.8408 | 2
o P YQPVPEQFLYPQPYQPQY | 691.3423 | 2
¥ .QPVPEQPLYPQPY.Q 7782822 | 2
R.FGYGTGPYQPVPEQPLY 3084288 | 2
SYo Skl ==
. QPVPEQPLYPQPYQPQ.Y 954878z | 2
F GYGYGPYQPVPEQPLYPQFY C | 11570488 2
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