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ABSTRACT

Random graphs are a powerful tool in the analysis of modern networks. Exponential

random graph models provide a framework that allows one to encode desirable subgraph

features directly into the probability measure. Using the theory of graph limits pioneered by

Borgs et. al. as a foundation, we build upon the work of Chatterjee & Diaconis and Radin

& Yin. We add complexity to the previously studied models by considering exponential

random graph models with edge-weights coming from a generic distribution satisfying mild

assumptions. In particular, we show that a large family of two-parameter, edge-weighted

exponential random graphs display a phase transtion and identify the limiting behavior of

such graphs in the dual space provided by the Legendre-Fenchel transform.

For finite systems, we analyze the mixing time of exponential random graph mod-

els. The mixing time of unweighted exponential random graphs was studied by Bhamidi,

Bresler, and Sly. We extend upon the work of Levin, Luczak, and Peres by studying the

Glauber dynamics of a certain vertex-weighted exponential random graph model on the

complete graph. Specifically, we identify regions of the parameter space where the mixing

time is Θ(n log n) and where it is exponentially slow.

Toward the end of this work, we take a drastic turn in a different direction by studying

a generalization of parking functions that we call interval parking functions. Parking func-

tions are a classical combinatorial object dating back to the work of Konheim and Weiss

in the 1960s. Among other things, we explore the connections that bioutcomes of inter-

val parking functions have to various partial orders on the symmetric group on n letters

including the (left) weak order, (strong) Bruhat order, and the bubble-sorting order.
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NOTATION

N,Z,R natural numbers, integers, real numbers

Ja, bK discrete interval, [a, b] ∩ N

Sn symmetric group on n letters

Gn set of simple, labelled graphs on n vertices

Gn set of edge-weighted, simple, labelled graphs on n vertices

Ġn set of vertex-weighted, simple, labelled graphs on n vertices

Gn graph on n vertices

E(G) set of edges in a graph G

V (G) set of vertices in a graph G

P, Q probability measure

EP expectation with respect to the probability measure P†

VarP variance with respect to the probability measure P†

iid independent and identically distributed

O(f) g = O(f) if and only there exists a constant C and M ∈ R such

that |g(x)| ≤ Cf(x) for all x ≥M

Ω(f) g = Ω(f) if and only if f = O(g)

Θ(f) g = Θ(f) if and only if f = O(g) and g = O(f)

f � g lim
x→∞

f(x)

g(x)
= 1

†The associated probability measure is omitted when it is clear from the context.
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Introduction

Organization

This dissertation is primarily concerned with two different topics: exponential random

graph models and interval parking functions, and is therefore divided into two main parts.

Chapters 1 to 3 pertains to the analysis of exponential random graph models. Chapters 4

and 5 introduces and studies interval parking functions. We provide a brief motivation for

both of the topics covered herein.

Exponential random graphs. A pressing problem in the social sciences is the study of

graphs representing a friendship network on social networks such as Facebook or Twitter.

These networks are often too large and volatile for any practical direct analysis, but there

are certain characteristics that are typically present in such a network. For example, we

can assume that if Emily and Alice are friends and Alice and Danielle are friends, then it

is more likely that Emily and Danielle are friends since they have a mutual friend. This

is a network feature that we will refer to as transitivity; the fact that a friend of a friend

is likely to be a friend. Another example is the phenomenon that people tend to have

distinct friend groups. A person may have a friend group among colleagues and a friend

group among family, each of which is highly connected within themselves, but it is less

likely that there are many connections between a person’s family and their colleagues.

Random graphs are important tools in the investigation of modern networks. Randomness

is a powerful assumption when addressing questions about what a graph may look like

when only indirect or partial analysis is possible.

Complex networks that exhibit these properties have become omnipresent structures,

especially with the popularity of technological and social networks, but also in economics
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and healthcare [39, 63, 51]. The ubiquity of networks has hastened the need to develop new

models that aid in the study of these elaborate structures and techniques to study both their

local and global properties as well as how they change over time. Chapters 1 to 3 analyze

probabilistic models of networks; specifically, exponential random graph models, which

can be tuned to possess desirable properties by encoding certain local structures directly

into the model.

Interval parking functions. Parking functions comprise a central object of study in com-

binatorics. Since their introduction in the 1960s, many connections to other combinatorial

objects such as trees, lattice paths, Prüfer codes, etc. have been uncovered and several gen-

eralizations have been introduced. Classic parking functions consider n cars entering a

one-way street with n labelled, open parking spaces. Each car has a preferred place that

they wish to park given by a, a preference sequence of length n. If that spot is open, the car

parks there, if not, they park in the next open spot. If no spot is open after their preferred

spot, they drive away. If all cars park successfully, then a is a parking function.

In Chapters 4 and 5, we study another generalization of the classic object that we

call interval parking functions. These differ from classic parking functions by not only

specifying a spot where cars are willing to start parking along a one-way street, but also by

providing a spot after which cars are no longer willing to park. This definition is motivated

by the following scenario. Consider a group of cars travelling down 5th Ave in New York

City between the 200th and 100th blocks, a one-way street flowing in the direction of

smaller block numbers, in the heart of the Flatiron District. Suppose that one of the cars

wishes to visit a storefront on the 160th block of 5th Ave. It is a reasonable assumption

that these individuals do not want to walk 6 blocks from their parking spot to the store they

intend to visit, if it can be helped. Instead, they would prefer to park in a smaller radius

around the 160th block, say anywhere from the 180th block to the 140th block. Thus we

would think of the 180th block as the beginning of the area in which they are willing to

2



park and the 140th block as the end. This extension of ordinary parking functions adds

additional complexity while also being a quite intuitive generalizaiton based on the classic

parking algorithm and many natural questions are investigated. How many interval parking

functions of length n are there? When is a pair (a, b) an interval parking function? How do

a and b affect where the cars end up parking?

Overview of chapters

This dissertation is divided into two parts. The first is intended to expand upon the

knowledge of exponential random graph models by adding various forms of complexity to

the model. Chapter 1 introduces the background and notation necessary for our study in

Chapters 1 to 3. We will then investigate the phase transition that appears in certain two-

parameter, edge-weighted exponential random graph models in Chapter 2. Specifically, we

will rigorously define what a phase transition is, then we will investigate other asymptotic

behavior of this edge-weighted model. In Chapter 3, we will explore the Glauber dynamics

on vertex-weighted exponential random graphs. In particular, we determine the mixing

time associated with the Glauber dynamics and identify where in the parameter space the

mixing is (quasilinearly) fast and (exponentially) slow.

Chapters 4 and 5 studies several aspects of interval parking functions. Chapter 4 intro-

duces parking functions and interval parking functions as well as basic aspects of the sym-

metric group as a Coxeter system and various partial orders that arise in our study of interval

parking functions. The content of Chapter 5 gives an enumeration of the number of interval

parking functions of length n, their relation to the left weak order and strong Bruhat order

on Coxeter groups, and reveals a close connection between the outcomes of interval park-

ing functions and the bubble sort order on the symmetric group, an instance of Armstrong’s

sorting order [9]. Several open questions are also presented and discussed.
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Chapter 1: Introduction to exponential random graphs

1.1 Background

The first random graph models were proposed by Paul Erdős and Alfréd Rényi [33],

and, contemporaneously and independently, by Edgar Gilbert [37]. This model, G(n, p),

considers n vertices with edges placed between distinct pairs of vertices independently

with identical probability p. This description leads to a probability measure Pp
n on the set

of simple, labelled graphs on n vertices, denoted by Gn, where

Pp
n(G) = pe(G)(1− p)(

n
2)−e(G), (1.1)

and e(G) = |E(G)| is the number of edges in G with E(G) being the set of edges in the

graph G ∈ Gn. Note that this construction can be generalized to considering configurations

on underlying graph structures other than the complete graph, another common underlying

structure is the d-dimensional integer lattice Zd.

Several natural questions about this model can then be investigated. What is the proba-

bility that for a given n and p a graph drawn from this particular distribution is connected?

For a fixed k, what is the probability that for a given n and p a sampled graph has min-

imum degree ≥ k? Questions of this form lead to intriguing results on the asymptotic

behavior of graphs generated in this way. For values of p close to 0, the graph almost

surely contains isolated vertices, while as p increases to log n/n, the graph almost surely

becomes connected. This abrupt structural change in the graph behavior is referred to as a

phase transition and resembles the liquid to gas transition in physics when the temperature

increases.
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Much of the random graph literature has evolved from the famous Erdős-Rényi graph.

While its simple formation has attracted significant mathematical interest, this construction

lacks the ability to model real world networks, which exhibit many noticeable attributes

such as clustering and transitivity. Since these are known to be present and defining features

in large real-world networks, their omission in G(n, p) makes it a less realistic model for

modern networks. One of the first attempts to complicate random graph models was the

effort of Fortuin and Kasteleyn. They created the random cluster model to encourage or

discourage the formation of many connected components [34]. This is done by taking the

model G(n, p) and adding another parameter that gives weight to the number of connected

components in the graph G,

Pp,q
n,c(G) = Z−1qk(G)pe(G)(1− p)(

n
2)−e(G), (1.2)

where k(G) is the number of connected components in the graph G, q > 0, and Z is the

partition function

Z =
∑
G∈Gn

qk(G)pe(G)(1− p)(
n
2)−e(G). (1.3)

Values of q < 1 favors graphs with fewer connected components while q > 1 favors

those with more. When q = 1, we recover the classical G(n, p). This model is of signifi-

cant historical importance as it unifies the percolation, Ising, and Potts models in a single

framework [34].

Another generalization of the Erdős-Rényi model on the path toward exponential ran-

dom graphs is Jonasson’s random triangle model [40]. The random triangle model aims to

capture the importance of clustering and transitivity by introducing another parameter into

the measure that counts the number of triangles in the graph G,

Pp,q
n,t(G) = Z−1qt(G)pe(G)(1− p)(

n
2)−e(G), (1.4)

5



where q ≥ 1, t(G) counts the number of triangles in G, and Z is similarly defined as in

Equation (1.3) where qk(G) is replaced with qt(G).

Many more random graph models have been proposed and studied since the introduc-

tion of the Erdős-Rényi model. These models include Barabási-Albert [3], Watts-Strogatz

[68], random geometric graphs [54], stochastic block model [1], etc. Exponential random

graph models seek to unify many concepts within these models into a single framework by

considering more generalized combinations of functions from the graph space to the reals.

Our central object of study in Chapters 1 to 3, the exponential random graph model

(ERGM), seeks to incorporate the known properties displayed by modern networks. The

general form of measure for exponential random graphs is

PT
n (G) = Z−1eT (G), (1.5)

where Z is the normalization constant and T is a suitably chosen function from the graph

space to the reals. The ERGM captures global network tendencies through local attributes

and, by building the local attributes into the probability measure, yields graphs demonstrat-

ing the desired properties with a higher probability than those that do not. This is achieved

by the following principle: Instead of using a single parameter p to indicate edge presence

probability, exponential random graphs include in the exponent a linear combination of

finite subgraphs coupled with positive or negative parameters to encourage or discourage

the formation of these subgraph structures.

The concept of Markov graphs were first studied by Frank and Strauss [35]. Markov

graphs are a special case of exponential random graphs where the only finite subgraphs

considered are stars and triangles. Wasserman and Pattison [70] extended this framework

by considering general subgraph counts. Inquiries into exponential random graphs have

been made on the variational principle of the limiting normalization constant, concentration

6



of the limiting probability distribution, phase transitions, and asymptotic structures. See for

example Chatterjee and Varadhan [22], Chatterjee and Diaconis [21], Radin and Yin [60],

Lubetzky and Zhao [48] [49], Radin and Sadun [58] [59], Radin et al. [57], Kenyon et al.

[41], Yin [72], Kenyon and Yin [42], Aristoff and Zhu [8], and Chatterjee and Dembo [20].

Many of these papers utilize the elegant theory of graph limits as developed by Lovász

and coauthors (V.T. Sós, B. Szegedy, C. Borgs, J. Chayes, K. Vesztergombi, . . . ) [16] [17]

[18] [46] [47]. Building on earlier work of Aldous [4] and Hoover [38], the graph limit

theory creates a new set of tools for representing and studying the asymptotic behavior

of graphs by connecting sequences of graphs Gn, which are discrete objects that lie in

different probability spaces, to a unified graphon spaceW , which is an abstract functional

space equipped with a cut metric. Though the theory itself is tailored to dense graphs,

parallel theories for sparse graphs are likewise emerging. See Benjamini and Schramm

[11], Aldous and Steele [7], Aldous and Lyons [6], and Lyons [50] where the notion of

local weak convergence is discussed and the works of Borgs et al. [14] [15] that are making

progress towards enriching the existing L∞ theory of dense graph limits by developing a

limiting object for sparse graph sequences based on Lp graphons.

1.2 Another random graph model

As mentioned in the previous section, there are many different models for generating

random graphs. Exponential random graphs are widely used in the social science literature

as they seem to be appropriate for studying relationships among individuals in a social

setting, while other random graph models may find widespread use in other disciplines. It

should be noted that, when comparing different random graph models, context can be very

important – it is strange to say that a hammer is always better than a screwdriver, but it is

rather a matter of having the right tool for the job. We now briefly describe another random

graph model and how it differs from ERGMs.
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1.2.1 Stochastic block model. Many random graph models have been introduced as gen-

eralizations of G(n, p). One such random graph model that builds upon G(n, p) is the

stochastic block model (SBM). Letting n be a predetermined number of vertices, one

chooses a partition {Ci}i=1,...,m of the vertex set where each Ci is referred to as a commu-

nity, and a symmetric m×m matrix A with entries from [0, 1] representing edge presence

probabilities. A graph is then generated as follows: any two vertices u ∈ Ci and v ∈ Cj are

connected with probability Aij . It is rather quick to see that the constant matrix Aij = p

recovers the classic model G(n, p), thereby rendering the vertex set partition meaningless.

More interesting cases occur when the main diagonal of A is taken to be constant and off-

diagonal entries differ. This simulates the situation where connections within communities

are more (or less) likely than connections between distinct communities.

Stochastic block models have enjoyed wide use within the machine learning commu-

nity [1]. A typical problem concerning these models is the community detection problem,

that is, given a graph on n vertices, recover the communities C1, . . . , Cm. One advantage

that this model has over ERGMs is that it is a generative model, that is, the model gives a

procedure for generating a random instance of the model. ERGMs are static models and

do not admit a simple description for generating a random instance instead requiring sam-

pling techniques such as Markov chain Monte Carlo. Eldan and Gross first studied the

connection between exponential random graphs and the stochastic block model [32]. They

concluded that for dense graphs, that is, when the number of edges is on the order of n2,

ERGMs behave like a mixture of stochastic block models. This work was then expanded

by the author and their advisor to the case of vertex-weighted graphs [27].

The added complexity of SBM makes it a better candidate over Erdős-Rényi for mod-

eling modern networks, but it still suffers from the same edge independence assumption

G(n, p). Since ERGMs do not make an assumption about edge independence, they are able

to model more complex interconnected relationships between individuals in a network than
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SBMs; however, this same assumption, which makes them a good candidate for modeling

relationships in a network, is exactly what makes ERGMs difficult to analyze.

1.3 Graph limits

We now move on to introducing the necessary tools for the construction of ERGM

probability measures. In order to construct these measures on Gn (and, similarly, on the

spaces of edge-weighted and vertex-weighted graphs), we first illustrate how to record

features of various finite subgraphs. Recall that a graph is a pair G = (V,E) of vertices

V and (undirected) edges E ⊂ V × V are (unordered) pairs of vertices that represent a

connection between them. We write V (G) and E(G) to denote the vertex and edge sets of

the graph G. We will supress the dependence on G when it is clear from the context. For

a graph with n vertices (|V (G)| = n), we will take V (G) = {1, . . . , n} unless otherwise

noted. By a simple graphH we mean thatH has at most one edge between any two vertices

and there are no edges from any vertex v back to itself. All graphs considered herein will

be simple unless ortherwise noted. With this in mind, let H and G be finite simple graphs.

Definition 1.1. A graph homomorphism from H to G is a map φ : V (H) → V (G) such

that if {u, v} ∈ E(H) then {φ(u), φ(v)} ∈ E(G). Let Hom (H,G) be the set of all graph

homomorphisms from H to G and hom (H,G) = |Hom (H,G) |. The homomorphism

density of H in G, denoted by t(H,G), is defined to be

t(H,G) =
hom (H,G)

|V (G)||V (H)| . (1.6)

The homomorphism density t(H,G) may be thought of as the probability that a random

vertex map V (H) → V (G) is edge-preserving. Through documentation of the density

value associated with different subgraphs H , local information of the graph G is encoded.

One of the questions that we consider in Chapter 2 is: how different are the exponential

random graph model and G(n, p) as the number of vertices increase? In order to address
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this question, we require a notion that captures similarity in growing graphs. Suppose that

{Gn} is a sequence of graphs that become more and more similar as n tends to infinity,

in the sense that t(H,Gn) approaches some limit t(H) for every finite simple graph H .

Lovász and coauthors [16, 17, 18] identified a limiting object for such a sequence {Gn} in

rigorous mathematical terms. It is represented by a function g ∈ W , whereW is the space

of all symmetric measurable functions g : [0, 1]2 → [0, 1], i.e. g(x, y) = g(y, x) for all

x, y ∈ [0, 1]. We refer toW as the graphon space and elements ofW are called graphons

or graph limits. Intuitively, we view [0, 1] as a continuum of vertices and g(x, y) as the

edge weight between graph vertices x and y (in the case of graphs without edge weights,

we take g(x, y) = 1 to indicate the presence and g(x, y) = 0 to indicate the absence of an

edge). The limiting density t(H) may be read off from the limiting object g in the following

manner. If H is a finite simple graph with V (H) = JmK = {1, . . . ,m}, define

t(H, g) =

∫
[0,1]m

∏
{i,j}∈E(H)

g(xi, xj) dx1 · · · dxm. (1.7)

Definition 1.2. A sequence of graphs {Gn} converges to a graphon g ∈ W if for every

finite simple graph H ,

lim
n→∞

t(H,Gn) = t(H, g). (1.8)

For any finite simple graph G on n vertices, a graphon representation of G may be

constructed:

gG(x, y) =

 1 {dnxe , dnye} ∈ E(G)

0 otherwise.
(1.9)

The definition is consistent because t(H,G) = t(H, gG) for any finite simple graph H

where t(H,G) is defined in Definition 1.1 and t(H, gG) in Equation (1.7).

Proposition 1.1. Let H,G ∈ Gn. Then t(H,G) = t(H, gG).
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Proof. Without loss of generality, let V (H) = JmK. Then

t(H, gG) =

∫
[0,1]m

∏
{i,j}∈E(H)

g(xi, xj) dx1 · · · dxm

=
1

nm

n∑
i1=1

· · ·
n∑

im=1

∏
{a,b}∈[m]

g(ia/n, ib/n)

=
hom (H,G)

nm
= t(H,G).

The second to last equality follows since

∏
{a,b}∈[m]

g(ia/n, ib/n) = 1

⇐⇒ g(ia/n, ib/n) = 1 for all {a, b} ∈ E(H)

⇐⇒ {ia, ib} ∈ E(G) when {a, b} ∈ E(H).

�

1 2

3 4

Figure 1.1: Simple graph G on 4 vertices and its corresponding graphon representation.

Example 1.1. As an illustration of the above graphon representation, Figure 1.1 shows

a graph on 4 vertices, while the corresponding graphon gG is depicted as a coloring of a

|V (G)|×|V (G)| grid (in this case, 4×4), where a cyan square indicates presence of an edge

and a white square indicates absence of an edge. We index starting in the top left corner
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with coordinates (0, 0) down to the bottom right corner with coordinates (1, 1), similar to

how matrices are indexed (this is the convention of Lovász in [46]). This construction can

be extended to graphs with weighted edges by defining gG to have the edge weight as its

values.

There are clear advantages to working with the graphon spaceW; the most immediate

of which is that it allows one to consider all simple graphs, regardless of the number of

vertices, as elements of the same space. This will prove useful in the establishment of large

deviation principles for sequences of distributions on graphs after some technical concerns

are addressed.

We now define a norm on the spaceW . Let f ∈ W and define the cut norm as

‖f‖� = sup
S,T⊂[0,1]

∣∣∣∣∫
S×T

f(x, y) dx dy

∣∣∣∣ . (1.10)

The cut norm was introduced on matrices by Frieze and Kannan [36] in the context of

finding certain matrix approximations. The cut norm further induces a distance. For f, h ∈

W define the corresponding cut distance by

d�(f, h) = ‖f − h‖�. (1.11)

The cut distance as defined is a pseudometric. Note that if d�(f, h) = 0, then f and h

either differ on a set of measure 0. To tackle this issue and obtain a metric, we introduce

an equivalence relation ∼ onW . For f, h ∈ W we say that f ∼ h if there exists a measure

preserving bijection σ : [0, 1]→ [0, 1] such that f(x, y) = hσ(x, y) := h(σx, σy). One can

think of the measure preserving bijection σ as a relabeling of the vertices. This equivalence

relation between graphons yields a quotient space W̃ = W/ ∼, referred to as the reduced

graphon space. We denote by f̃ the equivalence class of f with respect to the relation ∼
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onW . In particular, if G is a finite simple graph, we associate to gG its equivalence class

g̃G in W̃ . Since the cut distance d� is invariant under measure preserving bijections σ, we

can define a cut distance δ� on W̃ as

δ�(f̃ , h̃) = inf
σ1,σ2

d�(fσ1 , hσ2), (1.12)

where f̃ , h̃ ∈ W̃ are representative elements of f and h respectively, and σ1, σ2 are measure

preserving bijections of [0, 1]. The technical complication in (W , d�) is thus remedied and

the quotient space (W̃ , δ�) becomes a metric space.

One major advantage of the reduced graphon space (W̃ , δ�) is that for any finite simple

graph H , the homomorphism density functions t(H, ·) in Equation (1.7) are continuous

with respect to the cut metric δ�. The following theorem from [17] relates the definition of

convergence for a sequence of graphs to convergence of graphons under the δ� metric.

Theorem 1.2 (Borgs et. al., Theorem 3.8 in [17]). Let f̃n be a sequence of graphons in W̃ .

Then the following are equivalent:

1. t(H, f̃n) converges for all finite simple graphs H .

2. f̃n is a cauchy sequence in the δ� metric.

3. There exists a graphon f̃ ∈ W̃ such that t(H, f̃n) → t(H, f̃) for all finite simple

graphs H .

Furthermore, t(H, f̃n) → t(H, f̃) for all finite simple graphs H for some graphon f̃ ∈ W̃

if and only if δ�(f̃n, f̃)→ 0.

An important corollary of this theorem establishes a close connection between a con-

vergent sequence of graphs and the limiting graphon.
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Corollary 1.3 (Borgs et. al., Corollary 3.9 in [17]). For any convergent sequence {Gn}

of weighted graphs with uniformly bounded edge weights, there exists a graphon f̃ ∈ W̃

such that δ�(g̃Gn , f̃) → 0. Conversely, any graphon f̃ ∈ W̃ can be obtained as the limit

of a sequence of weighted graphs with uniformly bounded edge weights. The limit of a

convergent graph sequence is unique in the following sense: If g̃Gn → f̃ and g̃Gn → h̃,

then δ�(f̃ , h̃) = 0.

The following figure gives a visual realization of the convergence of a sequence of

graphs and the limiting graphon. We can think of these pixel pictures as representations of

graphs where each pixel indicates the presence (black) or absence (white) of an edge. Note

that these pictures are symmetric about the main diagonal since we consider undirected

edges. As the number of vertices increases without bound, the limiting pixel picture is a

representation of the measurable function.

Figure 1.2: Graphical representation of a sequence of graphs on increasing number of
vertices converging to a limiting graphon.

1.4 Gibbs measure

Generic exponential random graphs are constructed via a Gibbs measure on the set Gn

of simple, labelled graphs Gn on n vertices. Let T : W̃ → R be a bounded continuous

function on the reduced graphon space. Define a probability measure PT
n : Gn → [0, 1] as

PT
n (Gn) = exp

(
n2
(
T (g̃Gn)− ψTn

))
, (1.13)
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where ψTn is the partition function or normalization constant

ψTn =
1

n2
log

∑
Gn∈Gn

exp
(
n2T (g̃Gn)

)
. (1.14)

More specifically, we are interested in k-parameter familys of exponential random

graphs, where the function T in the definition of the Gibbs measure is a sum of k graph

homomorphism densities,

T (g̃Gn) =
k∑
i=1

βit(Hi, g̃Gn), (1.15)

where β = (β1, . . . , βk) ∈ Rk and H1, . . . , Hk are finite subgraphs of Gn (by convention

we take H1 to be a single edge). We will say that the k-parameter exponential random

graph model is attractive if the parameters β2, . . . , βk are positive and repulsive if the

parameters β2, . . . , βk are negative. We may alternatively write the Gibbs measure from

Equation (1.13) on Gn as

Pβ
n(Gn) = exp

(
n2

(
k∑
i=1

βit(Hi, Gn)

)
− n2ψβn

)
, (1.16)

with an associated normalization constant ψβn (Equation (1.14)):

ψβn =
1

n2
log

∑
Gn∈Gn

exp

(
n2

k∑
i=1

βit(Hi, Gn)

)
. (1.17)

In thermodynamics, the normalization constant is also referred to as the Helmholtz free

energy. One can see in the following example that the G(n, p) model introduced in Section

3.1 is indeed a special case of an exponential random graph model.

Example 1.2. Let p ∈ (0, 1) and H1 a single edge. The Erdős-Rényi G(n, p) model is

a single parameter exponential random graph model, with a parameter β depending on p.
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From Definition 1.1, t(H1, Gn) = 2 |E(Gn)| /n2. Take

β =
1

2
log

(
p

1− p

)
and ψβn = − 1

n2

(
n

2

)
log(1− p). (1.18)

Simple calculation yields

Pβ
n(Gn) = exp

(
n2
(
βt(H1, Gn)− ψβn

))
(1.19)

= p|E(Gn)|(1− p)(
n
2)−|E(Gn)| = Pp

n(Gn).

The random triangle model is also an exponential random graph model being a two

parameter exponential random graph model with subgraphs H1 a single edge and H2 a

triangle with an appropriate normalization constant.

One central difficulty in the study of exponential random graph models is the calcula-

tion of the normalization constant ψβn for large values of n. Through the map that sends

Gn ∈ Gn to gGn ∈ W , the probability measure Pβ
n on the space Gn induces a push-forward

probability distribution on the spaceW . We refer to this distribution onW as Qβ
n. Through

the quotient map W → W̃ , we further obtain a push-forward probability distribution Q̃β
n

on the reduced graphon space W̃ . These probability distributions will be investigated in

the next section and a characterization of limn→∞ ψ
β
n is determined.

1.5 Large deviation principle

The goal of large deviation theory is to compute the asymptotic probabilities of rare

events. In their wonderful paper [22], Chatterjee and Varadhan developed a large deviation

principle for the Erdős-Rényi random graph model G(n, p). This is a beautiful result in its

own right and lays the groundwork for many subsequent results on the asymptotic behav-

ior of graphs sampled from the exponential random graph model, as well as methods for

determining the associated limiting normalization constant. Example 1.2 in the previous
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Section 1.4 shows that the exponential random graph model is an extension of the classical

Erdős-Rényi model. A natural question to ask is how significant is this extension? How

does a typical exponential random graph behave as the number of vertices goes to infinity?

For finite values of n, the exponential random graph model captures more diverse behavior

than the classical Erdős-Rényi model [72, 52, 53] . Are the two models still appreciably

different in the limit as n goes to infinity? The development of large deviation results help

to answer these questions.

Recall that a function f : X → R is lower semicontinuous if the lower level sets

Lf (y) = {x ∈ X : f(x) ≤ y} are closed in X for all y ∈ R.

Definition 1.3. Let I : X → [0,∞] be a lower semicontinuous function, where X is

a Hausdorff space, and {rn} ↗ ∞ an increasing sequence of positive real numbers. A

sequence of probability measures {µn} ⊆ M1(X ), the space of probability measures on

X , is said to satisfy a large deviation principle with rate function I and normalization rn if

for all closed subsets F of X ,

lim sup
n→∞

r−1
n log µn(F ) ≤ − inf

x∈F
I(x), (1.20)

and for all open subsets G of X ,

lim inf
n→∞

r−1
n log µn(G) ≥ − inf

x∈G
I(x). (1.21)

We will abbreviate this as LDP(µn, rn, I).

Fix p ∈ (0, 1). In foresight of the goal of formulating a large deviation principle for

Erdős-Rényi random graphs, where edges can be thought of as Bernoulli random variables
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with probability p, define Ip : [0, 1]→ R as

Ip(u) =
1

2
sup
a,b∈R

{
au+ b(1− u)− log(pea + (1− p)eb)

}
=

1

2
sup
a∈R
{au− log(pea + (1− p))} ,

=
1

2
u log

u

p
+

1

2
(1− u) log

1− u
1− p

(1.22)

and extend the domain of Ip toW such that for f ∈ W ,

Ip(f) =
1

2
sup

a:[0,1]2→R

{∫
a(x, y)f(x, y) dx dy −

∫
log(pea(x,y) + (1− p)) dx dy

}
=

1

2

∫ 1

0

∫ 1

0

f(x, y) log
f(x, y)

p
+ (1− f(x, y)) log

1− f(x, y)

1− p
dx dy

=

∫ 1

0

∫ 1

0

Ip(f(x, y)) dx dy (1.23)

where the supremum in the first line is taken over bounded, measurable functions. It may

seem as though the function Ip(u) appears out of nowhere; however, there is good reason

why one might expect it to appear in this context. We now provide some intuition as to

why. Another argument using Stirling’s approximation can be found in Chapter 1 of [61].

A nearly identical function to Ip occurs in large deviations of Bernoulli random variables.

Let p ∈ (0, 1) as before and let s ∈ (0, 1). Consider a sequence of iid Bernoulli random

variables Xi each with identical success probability p. Define Sn = X1 + · · · + Xn. We

wish to analyze the behavior of the event P(Sn ≥ ns). Using Markov’s inequality, for any

t > 0

P(Sn ≥ ns) = P(Sn − ns ≥ 0) = P
(
et(Sn−ns) ≥ 1

)
≤ e−ntsE

(
etSn

)
. (1.24)
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The variables X1, . . . , Xn are iid, so

E
(
etSn

)
=
(
E
(
etX1

))n
=
(
1− p+ pet

)n
, (1.25)

since E
(
etX1

)
is the moment generating function of a Bernoulli random variable. Then for

all t > 0,

P(Sn ≥ ns) ≤ e−n(ts−log(1−p+pet)). (1.26)

Now we optimize the right hand side of the preceding inequality over all t > 0 to find that

P(Sn ≥ ns) ≤ e−nhp(s) (1.27)

where

hp(s) = sup
t

{
ts− log

(
pet + (1− p)

)}
= s log

(
s

p

)
+ (1− s) log

(
1− s
1− p

)
(1.28)

With a little more work, one can show that

lim
n→∞

1

n
logP

(
Sn
n
≥ s

)
= −hp(s). (1.29)

In other words, the sequence of measures µn(A) = P(Sn/n ∈ A) for an iid sequence of

Bernoulli random variables with success probability p satisfies a large deviation principle

with rate function hp and normalization n. Note that the law of large numbers implies that

Sn/n→ p almost surely. For s > p, one would expect then that P(Sn/n ≥ s) goes to zero

as n→∞. The large deviation principle gives the precise rate at which P(Sn/n ≥ s) goes
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to zero, that is, for s > p the probability P(Sn/n ≥ s) converges to 0 at the same rate as

e−nhp(s).

We now return to the setting as before and turn to the establishment of a large deviation

principle for Erdős-Rényi random graphs. The function Ip can be further extended to W̃

by setting Ip(f̃) = Ip(f) where f ∈ W is any representative element of the equivalence

class f̃ ∈ W̃ . This raises the question as to whether Ip is well defined on W̃ and lower

semicontinuous. The following lemma from [22] gives a positive answer. Along with the

intuition of how Ip arises in the context of Bernoulli random variables, this makes Ip a good

contender for a large deviation rate function.

Lemma 1.4 (Chatterjee and Varadhan, Lemma 2.1 in [22]). The function Ip is well defined

on W̃ and is lower semicontinuous under the cut metric δ� on W̃ .

Recall the measure Pp
n from Example 1.2. Let Qp

n be the pushforward measure on the

spaceW induced by Pp
n. The following two theorems establish large deviation principles

on the graphon spacesW and W̃ respectively.

Theorem 1.5 (Chatterjee and Varadhan, Theorem 2.2 in [22]). For any fixed p ∈ (0, 1) the

large deviation principle LDP(Qp
n, n

2, Ip) holds in the weak topology on W . That is, for

every weakly closed set F ⊂ W ,

lim sup
n→∞

1

n2
logQp

n(F ) ≤ − inf
f∈F

Ip(f), (1.30)

and for every weakly open set G ⊂ W ,

lim inf
n→∞

1

n2
logQp

n(G) ≥ − inf
f∈G

Ip(f). (1.31)

We can see that this looks similar to the LDP(µn, n, hp) from before where the n is

replaced by n2 for normalization and 1/2 appears in the rate function due to there being
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(
n
2

)
possible edges in a graph on n vertices. The large deviation principle on the reduced

graphon space W̃ will prove to be useful as well.

Theorem 1.6 (Chatterjee and Varadhan, Theorem 2.3 in [22]). For any fixed p ∈ (0, 1) the

large deviation principle LDP(Q̃p
n, n

2, Ip) holds in the metric topology induced by δ� on

W̃ . That is, for every closed set F̃ ⊂ W̃ ,

lim sup
n→∞

1

n2
log Q̃p

n(F̃ ) ≤ − inf
f̃∈F̃

Ip(f̃), (1.32)

and for every open set G̃ ⊂ W̃ ,

lim inf
n→∞

1

n2
log Q̃p

n(G̃) ≥ − inf
f̃∈G̃

Ip(f̃). (1.33)

Recall that one of the central difficulties in the study of exponential random graphs is

the calculation of the normalization constant. To this end, define the limiting normalization

constant ψT∞ = limn→∞ ψ
T
n , where ψTn is defined as in Equation (1.14). Chatterjee and

Diaconis presented an alternative formulation of the limiting normalization constant ψT∞ in

their seminal paper [24]. Let T : W̃ → R be a bounded continuous function on (W̃ , δ�)

and consider the probability measure PT
n on Gn defined in Equation (1.13). Define I :

[0, 1]→ R as

I(u) =
1

2
u log u+

1

2
(1− u) log(1− u), (1.34)

and extend I to W̃ , in a similar way as for Ip (1.22) (1.23), by setting

I(f̃) =

∫ 1

0

∫ 1

0

I(f(x, y)) dx dy, (1.35)
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where f is any representative element of the equivalence class f̃ ∈ W̃ . Since I can be

written as I(u) = I1/2(u) − (log 2)/2, Lemma 1.4 says that I is well defined and lower

semicontinuous on W̃ .

Theorem 1.7 (Chatterjee and Diaconis, Theorem 3.1 in [24]). If T : W̃ → R is a bounded

continuous function and ψTn and I are defined as in Equations (1.14), (1.34) and (1.35),

then the limiting normalization constant

ψT∞ = lim
n→∞

ψTn = sup
f̃∈W̃

{
T (f̃)− I(f̃)

}
. (1.36)

The proof of Theorem 1.7 mainly utilizes the large deviation principle developed by

Chatterjee and Varadhan in [22] for the G(n, 1/2) model as well as the boundedness and

continuity of the function T . By the continuity of T and the lower semicontinuity of I ,

the supremum in Equation (3.49) is achieved. Let M̃∗ = (T − I)−1
({
ψT∞
})

. It follows

that M̃∗ is closed. Further, by the compactness of W̃ , M̃∗ is also compact. The follow-up

Theorem 1.8 shows that for sufficiently large values of n, the quotient image g̃Gn of a graph

Gn drawn from the exponential random graph model defined by T (Equation (1.13)) lies

close to the set of maximizers for the limiting normalization constant with exponentially

high probability. Especially, if M̃∗ is a singleton set, the theorem gives a law of large

numbers for Gn; while if M̃∗ is not a singleton set, the theorem points to the existence of a

first order phase transition (a concept that will be expanded upon later in Section 2.7).

Theorem 1.8 (Chatterjee and Diaconis, Theorem 3.2 in [24]). Let Gn be drawn from PT
n

(Equation (1.13)) and M̃∗ be defined as in the above paragraph. Then for any η > 0 there

exists a C > 0 and a δ > 0 such that for any n ∈ N,

PT
n

(
δ�

(
g̃Gn , M̃∗

)
> η
)
≤ Ce−n

2δ. (1.37)
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In the case of attractive k-parameter exponential random graphs (Equation (1.16)),

Theorems 1.7 and 1.8 may be reformulated and simplified. As was explained in the intro-

duction, the goal of exponential random graph models is to capture the behavior of modern

networks, such as clustering and transitivity. When T is a linear combination of homomor-

phism densities, this may be achieved through the adjustment of the parameters coupled

with different subgraph statistics in the exponential probability measure. Desirable graph

features are given higher probability (corresponding to a larger or more positive β) while

undesirable graph features are given lower probability (corresponding to a smaller or more

negative β).

The following theorems tell us that a graph drawn from the exponential random graph

model in the attractive region of the parameter space is weakly pseudorandom [12], that

means that it satisfies a number of equivalent properties that are shared by Erdős-Rényi

random graphs.

Theorem 1.9 (Chatterjee and Diaconis, Theorem 4.1 in [24]). Consider the k-parameter

exponential random graph model (Equation (1.16)). Suppose β2, . . . , βk are non-negative.

Then the limiting normalization constant ψβ∞ := limn→∞ ψ
β
n exists and is given by

ψβ∞ = sup
u∈[0,1]

{
k∑
i=1

βiu
e(Hi) − I(u)

}
, (1.38)

where e(Hi) is the number of edges in Hi and I is defined earlier in (1.34).

Theorem 1.10 (Chatterjee and Diaconis, Theorem 4.2 in [24]). Let Gn be an exponential

random graph drawn from (Equation (1.16)). Suppose β2, . . . , βk are non-negative. Then

Gn behaves like an Erdős-Rényi graph G(n, u∗) in the large n limit in the sense of Equa-

tion (1.37), where u∗ is picked randomly from the set U of maximizers of Equation (1.38).
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Chapter 2: Phase transitions in edge-weighted exponential random

graphs

2.1 Introduction

Despite their flexibility, conventionally used exponential random graphs admittedly

have some shortcomings. The primary one that we will be concerned with in this section

is the fact that they cannot directly model weighted networks as the underlying probability

space consists of simple graphs only. Since many substantively important networks are

weighted, this limitation is especially problematic. An alternative interpretation for simple

graphs is such that the edge weights are iid and satisfy a Bernoulli distribution. Follow-

ing this perspective, Yin [73] extended the exponential framework by putting a generic

common distribution on the iid edge weights. After deriving a variational principle for

the limiting normalization constant and an associated concentration of measure, an explicit

characterization of the asymptotic phase transition was obtained for exponential models

with uniformly distributed edge weights. This work expands upon the setting in [73] and

places minimal assumptions on the edge-weights distribution, that is, it is non-degenerate

and supported on the unit interval. By doing so, we recognize the essential properties asso-

ciated with near-degeneracy and universality in edge-weighted exponential random graphs.

This section is organized as follows. In Section 2.2 we recall some basics of graph

limit theory first introduced in Section 1.3, define the model of interest, and introduce key

features of edge-weighted exponential random graphs. Then, in Section 2.3, we summarize

important properties of Legendre duality between the cumulant generating function and

the Cramér rate function for the edge-weights distribution. Section 2.4 demonstrates the
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existence of a first order phase transition curve ending in a second order critical point in

general edge-weighted exponential random graph models through a detailed analysis of

the maximization problem for the normalization constant. Lastly, Section 2.5 explores the

universal and non-universal asymptotics concerning the phase transition.

2.2 Background

Consider the set Gn of all simple edge-weighted complete labelled graphs Gn on n

vertices (“simple” means undirected, with no loops or multiple edges), where the edge

weights xij between vertex i and vertex j are iid real random variables satisfying a non-

degenerate common distribution µ that is supported on [0, 1]. As was shown in Section 1.3,

any such graphGn, irrespective of the number of vertices, may be represented as an element

hGn of the graphon space by setting hGn(x, y) as the edge weight between vertices dnxe

and dnye of Gn where V (Gn) = {1, . . . , n}. Note that in this setting Gn ⊂ Gn for every n

if we view an element G ∈ Gn as a complete graph where the ‘absent’ edges have weight

0 and the ‘present’ edges have weight 1. The common distribution µ for the edge weights

yields probability measure Pn and the associated expectation En on Gn, and further induces

probability measure Qn on the spaceW under the graphon representation.

By a 2-parameter family of edge-weighted exponential random graphs we mean a fam-

ily of probability measures Pβ
n on Gn such that, for any Gn ∈ Gn,

Pβ
n(Gn) = exp

(
n2
(
β1t(H1, Gn) + β2t(H2, Gn)− ψβn

))
Pn(Gn), (2.1)

where β = (β1, β2) are 2 real parameters, H1 is a single edge, H2 is a finite simple graph

with p ≥ 2 edges, t(Hi, Gn) is the density of graph homomorphisms, Pn is the proba-

bility measure induced by the common distribution µ for the edge weights, and ψβn is the
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normalization constant,

ψβn =
1

n2
logEn

(
exp

(
n2 (β1t(H1, Gn) + β2t(H2, Gn))

))
. (2.2)

Since homomorphism densities t(Hi, Gn) are preserved under vertex relabeling, the prob-

ability measure P̃β
n and the associated expectation Ẽβ

n (which coincides with Eβ
n) may like-

wise be defined.

Being exponential families with bounded support, one might expect exponential ran-

dom graph models to enjoy a rather basic asymptotic form, though in fact, virtually all these

models are highly nonstandard as n increases. The 2-parameter edge-weighted exponen-

tial random graph models are simpler than their k-parameter extensions but nevertheless

exhibit a wealth of non-trivial characteristics and capture a variety of interesting features

displayed by large networks. Furthermore, the relative simplicity provides insight into the

expressive power of the exponential construction. In statistical physics, we refer to β1 as the

particle parameter and β2 as the energy parameter. Accordingly, recall that the exponential

model defined in Equation (2.1) is said to be “attractive” if β2 is positive and “repulsive” if

β2 is negative. In this section we will concentrate on “attractive” 2-parameter models. The

interest in these models is well justified. Consider the the graph of a social network, where

the edge weights between different vertex pairs measure the strength of mutual friendship

(perhaps represented by the frequency of interactions between them). Take H1 an edge and

H2 a triangle. Since a friend of a friend is likely also a friend, the influence of a triangle

that assesses the bond of a 3-way friendship should be emphasized, and this corresponds to

taking β2 ≥ 0.

In this section we aim to study the global structure of edge-weighted exponential ran-

dom graph models. Namely, in Section 2.4, we show that, in a particular region of the

parameter space, a phase transition is present and the model is not appreciably different
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from G(n, p) using the Legendre transform. In Section 2.5, we identify this phase tran-

sition curve explicitly and determine that, when the model is similar to G(n, p), the dual,

θ, of p with respect to the Legendre transform and the limiting normalization constant ψβ∞

exhibit universal asymptotic behavior in terms of the ERGM parameters β1 and β2.

2.3 Legendre transform and duality

We now present properties of the cumulant generating function K(θ) and the Cramér

rate function I(u) for the edge-weights distribution µ relevant to our investigation. We will

see that K(θ) is convex on R, which allows the application of the Legendre transform. Let

I : A→ R be the Legendre-Fenchel transform of K given by

I(u) = sup
θ∈R
{θu−K(θ)} , (2.3)

where A, the domain of I , consists of all u so that I(u) < ∞. Note that in large deviation

theory, I is commonly referred to as the Cramér conjugate rate function for the distribution

µ. It follows from Lemma 2.1 that the Legendre transform connecting K and I is an

involution, I is smooth and strictly convex everywhere it is defined, and there is a 1-1

relationship between K and I . Lemma 2.2 and Proposition 2.4 then discuss properties

of K(θ) and I(u) under the additional assumption that µ is symmetric. These properties

will be useful in Section 2.5 when we explore universality in edge-weighted exponential

random graphs. We say that a probability measure P on [0, 1] is degenerate if there exists

a c ∈ [0, 1] such that P(X = c) = 1.

Lemma 2.1. Consider a non-degenerate probability measure µ supported on [0, 1] (i.e., µ

is not supported at only one point). Let M(θ) =
∫
eθxµ(dx) be the associated moment

generating function and K(θ) = logM(θ) be the associated cumulant generating function.

Then K(θ) is everywhere defined on R, infinitely differentiable, and strictly convex.
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Proof. The fact that K is well-defined and smooth follows from standard analytical argu-

ments. Since µ is non-degenerate, M(θ) > 0 and, by Cauchy-Schwarz,

(∫
xeθxµ(dx)

)2

<

∫
x2eθxµ(dx)

∫
eθxµ(dx), (2.4)

thus M(θ)M ′′(θ) − [M ′(θ)]2 > 0. This implies that K ′′(θ) > 0 for all θ ∈ R and so K is

strictly convex. �

Lemma 2.2. Consider a non-degenerate probability measure µ supported on [0, 1]. Let

K(θ) be the associated cumulant generating function. If µ is symmetric about the line

u = 1/2, then K ′′′(0)K ′(0) + (p − 2) (K ′′(0))2 ≥ 0, and equality is obtained only when

p = 2.

Proof. Let X be a random variable distributed according to µ. By symmetry, E(X) = 1/2

and E(X3) = 3E(X2)/2 − 1/4. This implies that K ′(0) = E(X) = 1/2 and K ′′(0) =

E(X2)− (E(X))2 = E(X2)− 1/4. Also,

K ′′′(0) = E(X3)− 3E(X2)E(X) + 2 (E(X))3 = 0. (2.5)

The claim thus follows. �

Lemma 2.3. Consider a non-degenerate probability measure µ supported on [0, 1]. Let

I(u) be the associated Cramér rate function in Equation (2.3). Then the domain of I is a

subset of [0, 1].

Proof. Since µ is supported on [0, 1], we have 0 ≤ K(θ) ≤ θ if θ ≥ 0, and θ ≤ K(θ) ≤ 0

if θ ≤ 0. This gives

I(u) = sup

{
sup
θ≥0
{θu−K(θ)} , sup

θ≤0
{θu−K(θ)}

}
(2.6)
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Limiting Properties of K(θ) θ limit

K(θ)→ −∞ or l < 0 θ → −∞
K ′(θ)→ 0 θ → −∞
K ′′(θ)→ 0 θ → −∞
K(θ)→∞ θ →∞
K ′(θ)→ 1 θ →∞
K ′′(θ)→ 0 θ →∞

Table 2.1: Limiting properties of K(θ) as θ → ±∞.

≥ sup

{
sup
θ≥0
{θ (u− 1)} , sup

θ≤0
{θu}

}
.

If u > 1 then supθ≥0 {θ (u− 1)} = ∞ and thus I(u) is not finite. Similarly, if u < 0 then

supθ≤0 {θu} =∞ and thus I(u) is not finite. �

Analyzing properties of K(θ) and I(u) in detail will give a stronger conclusion than

Lemma 2.3. We recognize that the cumulant generating function K(θ) satisfies K(0) =

0, K ′(0) = E(X), and K ′′(0) = Var(X), where X is a random variable distributed

according to µ. See Table 2.1 for important limiting properties of K(θ) as θ → ±∞.

By Legendre duality, every u ∈ (0, 1) uniquely corresponds to a θ ∈ (−∞,∞), with

K ′(θ) = u and I ′(u) = θ. This implies that I(E(X)) = I ′(E(X)) = 0, and I(u) is

decreasing on (0,E(X)) and increasing on (E(X), 1). We also note that I(0) and I(1),

depending on the probability distribution µ, may be either finite or grow unbounded. In the

former case, the domain of I is [0, 1] (as for Bernoulli(.5)). In the latter case, the domain

of I is (0, 1) (as for Uniform(0, 1)).

Proposition 2.4. Consider a non-degenerate probability measure µ supported on [0, 1]. Let

I(u) be the associated Cramér rate function defined in Equation (2.3). If µ is symmetric

about the line u = 1/2, then I(u) is also symmetric about the line u = 1/2.

29



Proof. Let θ ∈ R. Under the symmetry assumption, we will show, by a simple change of

variable x = 1− y, that K(−θ) = −θ +K(θ).

K(−θ) = log

∫
e−θxµ(dx) = log

∫
e−θ(1−y)µ(dy) (2.7)

= log

∫
e−θeθyµ(dy) = −θ +K(θ).

Let u ∈ (0, 1). Following Legendre duality, u = K ′(θ) for a unique θ. By Equation (2.7),

this implies that 1− u = 1−K ′(θ) = K ′(−θ), i.e., 1− u and −θ are unique duals of each

other. We compute

I(u) = θK ′(θ)−K(θ) (2.8)

= θ (1−K ′(−θ))− (K(−θ) + θ)

= (−θ)K ′(−θ)−K(−θ) = I(1− u).

This verifies our claim. �

2.4 Maximization analysis

In this section we demonstrate the existence of first order phase transitions in general

edge-weighted exponential random graphs. Our main results are Theorem 2.7 and the

consequent Corollary 2.8. In the standard statistical physics literature, phase transition is

often associated with loss of analyticity in the normalization constant, which gives rise to

discontinuities in the observed graph statistics. In the vicinity of a phase transition, even a

tiny change in some local feature can result in a dramatic change of the entire system.

Definition 2.1. A phase is a connected region of the parameter space {β}, maximal for the

condition that the limiting normalization constant ψβ∞ := limn→∞ ψ
β
n is analytic. There is

a jth-order phase transition at a boundary point of a phase if at least one jth-order partial

derivative of ψβ∞ is discontinuous there, while all lower order derivatives are continuous.
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Following this philosophy, we will make use of two theorems from [73], which connect

the occurrence of an asymptotic phase transition in our model with the solution of a certain

maximization problem for the limiting normalization constant.

Theorem 2.5 (Yin, Theorem 3.4 in [73]). Consider a general 2-parameter exponential ran-

dom graph model from Equation (2.1). Suppose β2 is non-negative. Then the limiting

normalization constant ψβ∞ exists, and is given by

ψβ∞ = sup
u

(
β1u+ β2u

p − 1

2
I(u)

)
, (2.9)

where H2 is a simple graph with p ≥ 2 edges, I is the Cramér rate function from Equa-

tion (2.3), and the supremum is taken over all u in the domain of I , i.e., where I <∞.

Theorem 2.6 (Yin, Theorem 3.5 in [73]). Let Gn be an exponential random graph drawn

from Equation (2.1). Suppose β2 is non-negative. Then Gn behaves like an Erdős-Rényi

graph G(n, u) in the large n limit,

lim
n→∞

δ�(h̃Gn , ũ) = 0 almost surely, (2.10)

where u is picked randomly from the set U of maximizers of Equation (2.9).

A significant part of computing phase boundaries for the 2-parameter exponential

model is then a detailed analysis of a calculus problem coupled with probability estimates.

However, as straightforward as it sounds, since the exact form of the Cramér rate function

I is not readily obtainable for a generic edge-weights distribution µ, getting a clear picture

of the asymptotic phase structure is not so simple and various tricks, especially the duality

principle for the Legendre transform, need to be employed [75]. We note that our mecha-

nism for 2-parameter models may be further generalized to a k-parameter setting, and the

crucial idea is to minimize the effect of the ordered parameters on the limiting normal-
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ization constant one by one. See [72] for an illustration of this procedure in the standard

exponential random graph model (where µ is Bernoulli(.5)).

Assumption 1. Let p be the number of edges in H2. Denote by K(θ) the cumulant gener-

ating function associated with the probability measure µ. We place a technical assumption

that

K ′′′(θ)K ′(θ) = −(p− 2) (K ′′(θ))
2 (2.11)

admits only one zero on R.

Remark 1. This requirement on µ, which is satisfied by many common distributions

including Bernoulli(0.5) and Uniform(0, 1) etc., is just a technicality to help explicitly

identify the phase transition curve. For example, this unique zero occurs at θ = log (p− 1)

for µ ∼ Bernoulli(0.5). It is expected that the parameter space would still consist of a sin-

gle phase with first order phase transition(s) across one (or more) curves and second order

phase transition(s) along the boundaries should such Assumption 1 fail.

Theorem 2.7. Suppose the common distribution µ for the edge weights is supported on

[0, 1] and non-degenerate. For any allowed H2, the limiting normalization constant ψβ∞ of

Equation (2.1) is analytic at all (β1, β2) in the upper half-plane (β2 ≥ 0) except on a certain

decreasing curve β2 = r(β1) which includes the endpoint (βc1, β
c
2). The derivatives ∂

∂β1
ψβ∞

and ∂
∂β2
ψβ∞ have (jump) discontinuities across the curve, except at the end point where all

the second derivatives ∂2

∂β2
1
ψβ∞, ∂2

∂β1∂β2
ψβ∞ and ∂2

∂β2
2
ψβ∞ diverge.

Corollary 2.8. For any allowed H2, the parameter space {(β1, β2) : β2 ≥ 0} consists of a

single phase with a first order phase transition across the indicated curve β2 = r(β1) and a

second order phase transition at the critical point (βc1, β
c
2).
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Figure 2.1: The V-shaped region (with phase transition curve r(β1) inside) for the
Beta(2, 2) distribution in the (β1, β2) plane. Graph drawn for p = 2.

Proof of Theorem 2.7. Let p be the number of edges in H2. Denote by I(u) the Cramér

rate function associated with the probability measure µ. Define

L(u; β1, β2) = β1u+ β2u
p − 1

2
I(u) (2.12)

for u ∈ [0, 1]. We consider the maximization problem for L(u; β1, β2) on the interval [0, 1],

where −∞ < β1 <∞ and 0 ≤ β2 <∞ are parameters. We note that by Theorem 2.5, the

supremum should actually be taken over the domain of I , which might differ from [0, 1] at

the endpoints from the discussion following Lemma 2.3. However, when the domain of I

does not include 0 (or 1), L(0) (or L(1)) is negative infinity and so can not be the maximum.

To locate the maximizers of L(u), we examine the properties of L′(u) and L′′(u),

L′(u) = β1 + pβ2u
p−1 − 1

2
I ′(u), (2.13)

L′′(u) = p(p− 1)β2u
p−2 − 1

2
I ′′(u).
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Utilizing the duality principle for the Legendre transform between I(u) and K(θ), we

first analyze properties of L′′(u) on the interval (0, 1). As a consequence of the Legendre

transform,

I(u) +K(θ) = θu, (2.14)

where θ and u are unique duals of each other. Taking derivatives, we find that

u = K ′(θ) and I ′′(u)K ′′(θ) = 1. (2.15)

Consider the function

m(u) =
I ′′(u)

2p(p− 1)up−2
(2.16)

on (0, 1). By Equation (2.15), we may analyze the properties of m(u) through the function

n(θ) = 2p(p− 1)K ′′(θ) (K ′(θ))
p−2

, (2.17)

where θ ∈ R and m(u)n(θ) = 1. From the discussion following Lemma 2.3, we recognize

that

lim
θ→−∞

n(θ) = 0, (2.18)

lim
θ→0

n(θ) = 2p(p− 1)Var(X) (E(X))p−2 ,

lim
θ→∞

n(θ) = 0,

where X is a random variable distributed according to µ. Since

n′(θ) = 2p(p− 1) (K ′(θ))
p−3
(
K ′′′(θ)K ′(θ) + (p− 2) (K ′′(θ))

2
)

(2.19)
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Figure 2.2: An illustrative plot of n(θ) and m(u).

and K ′(θ) > 0 always, under Assumption 1 there exists a unique θ0 such that n′(θ0) = 0.

This unique global maximizer θ0 for n(θ) corresponds to a unique global minimizer for

m(u), which we denote by u0. Using duality, m(u) > 0 for all u ∈ (0, 1) and grows

unbounded on both ends. For β2 ≤ m(u0), L′′(u) ≤ 0 on (0, 1). For β2 > m(u0),

L′′(u) < 0 for 0 < u < u1 and u2 < u < 1 and L′′(u) > 0 for u1 < u < u2, where the

transition points u1 and u2 satisfy L′′(u1) = L′′(u2) = 0. Sign properties of L′′(u) translate

to monotonicity properties of L′(u) over (0, 1). For β2 ≤ m(u0), L′(u) is decreasing over

(0, 1). For β2 > m(u0), L′(u) is decreasing from 0 to u1, increasing from u1 to u2, and

decreasing from u2 to 1. See Figure 2.2 for an illustrative plot of n(θ) and m(u).

The analytic properties of L′(u) and L′′(u) entail analytic properties of L(u) on the

interval [0, 1]. Utilizing the properties pertaining to the duality of the Legendre transform in

Equation (2.14) and Equation (2.15), I(u) is a smooth convex function, with I ′(0) = −∞

and I ′(1) = ∞. Therefore L′(0) = ∞ and L′(1) = −∞, so L(u) cannot be maximized at

u = 0 or u = 1. For β2 ≤ m(u0), L′(u) is decreasing from∞ at 0 to −∞ at 1 passing the

u-axis only once. This intercept, which we denote by u∗, is the unique global maximizer

for L(u). Now consider β2 > m(u0). If L′(u1) ≥ 0, then L′(u) has a unique zero greater

than u2 and so L(u) has a unique global maximizer at u∗ > u2. If L′(u2) ≤ 0, then L′(u)

has a unique zero less than u1 and so L(u) has a unique global maximizer at u∗ < u1.
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Figure 2.3: An illustrative plot of L′(u) for β2 > m(u0).

Lastly, suppose that L′(u1) < 0 < L′(u2). Then L(u) has two local maximizers. Denote

them by u∗1 and u∗2, with 0 < u∗1 < u1 < u0 < u2 < u∗2 < 1. See Figure 2.3 for an

illustrative plot of L′(u) in this case.

Define

f(u) =
uI ′′(u)

2(p− 1)
− 1

2
I ′(u). (2.20)

Using m(u1) = m(u2) = β2 (Equation (2.16)), L′(u1) = β1 + f(u1) and L′(u2) =

β1 + f(u2). We compute

f ′(u) =
uI ′′′(u)− I ′′(u)(p− 2)

2(p− 1)
= pup−1m′(u). (2.21)

As a consequence of the relation between f ′ and m′, following the previous analysis for m,

f is decreasing on (0, u0) and increasing on (u0, 1). We check that similarly as m, f grows

unbounded on both ends. Taking u → 0 corresponds to taking θ → −∞ in the dual space

from Equation (2.14) and Equation (2.15), and the divergence is clear from the discussion

following Lemma 2.3. To see that f(u) diverges as u→ 1, we utilize Equation (2.21). By
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the fundamental theorem of calculus,

f(u)− f(u0) =

∫ u

u0

f ′(t)dt ≥ pup−1
0

∫ u

u0

m′(t)dt = pup−1
0 (m(u)−m(u0)), (2.22)

and grows to infinity as u approaches 1. Let X be a random variable distributed according

to µ, we note some nice formulas for f and m for future reference:

f(E(X)) =
E(X)

2(p− 1)Var(X)
, (2.23)

m(E(X)) =
1

2p(p− 1) (E(X))p−2 Var(X)
.

In order for L′(u1) < 0, we must have β1 < −f(u1). Since f attains an absolute minimum

at u0, f(u1) > f(u0), and then β1 < −f(u0). The only possible region in the (β1, β2) plane

where L′(u1) < 0 < L′(u2) is thus bounded by β1 < −f(u0) and β2 > m(u0). Denote

these two critical values for β1 and β2 by βc1 := −f(u0) and βc2 := m(u0).

Recall that u1 < u0 < u2. By monotonicity of f(u) on the intervals (0, u0) and (u0, 1),

there exist continuous functions a(β1) and b(β1) of β1, such that L′(u1) < 0 for u1 > a(β1)

and L′(u2) > 0 for u2 > b(β1). As β1 → −∞, a(β1) → 0 and b(β1) → 1. a(β1)

is an increasing function of β1, whereas b(β1) is a decreasing function, and they satisfy

f(a(β1)) = f(b(β1)) = −β1. The restrictions on u1 and u2 yield restrictions on β2, and

we have L′(u1) < 0 for β2 < m(a(β1)) and L′(u2) > 0 for β2 > m(b(β1)). As β1 →

−∞, m(a(β1)) → ∞ and m(b(β1)) → ∞. m(a(β1)) and m(b(β1)) are both decreasing

functions of β1, and they satisfy L′(u1) = 0 when β2 = m(a(β1)) and L′(u2) = 0 when

β2 = m(b(β1)). As L′(u2) > L′(u1) for every (β1, β2), the curve m(b(β1)) lies below the

curve m(a(β1)), and together they generate the bounding curves of the V -shaped region

in the (β1, β2) plane with corner point (βc1, β
c
2) where two local maximizers exist for L(u).
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By (Equation (2.21)), for sufficiently negative values of β1, f(a(β1)) < m(a(β1)) and

f(b(β1)) > m(b(β1)), so the straight line β1 = −β2 lies within this region.

Fix an arbitrary β1 < βc1. Then L′(u) shifts upward as β2 increases and downward as

β2 decreases. As a result, as β2 gets large, the positive area bounded by the curve L′(u)

increases, whereas the negative area decreases. By the fundamental theorem of calculus,

the difference between the positive and negative areas is the difference between L(u∗2) and

L(u∗1), which goes from negative (L′(u2) = 0, u∗1 is the global maximizer) to positive

(L′(u1) = 0, u∗2 is the global maximizer) as β2 goes from m(b(β1)) to m(a(β1)). Thus

there must be a unique β2: m(b(β1)) < β2 < m(a(β1)) such that u∗1 and u∗2 are both

global maximizers, and we denote this β2 by r(β1). The parameter values of (β1, r(β1))

are exactly the ones for which positive and negative areas bounded by L′(u) equal each

other. An increase in β1 induces an upward shift of L′(u), and may be balanced by a

decrease in β2. Similarly, a decrease in β1 induces a downward shift of L′(u), and may be

balanced by an increase in β2. This justifies that r(β1) is monotonically decreasing in β1.

See Figure 2.1. Here we letX be a random variable distributed according to Beta(2, 2), then

E(X) = 1/2 and Var(X) = 1/20. By Lemma 2.2, θ0 = 0 and u0 = E(X) = 1/2, which

by Equation (2.23) gives (βc1, β
c
2) = (−5, 5). Also see Figure 1 in [60] and Figure 1 in

[73] for related phase transition plots when the edge-weights distribution µ is respectively

Bernoulli(.5) and Uniform(0, 1).

The rest of the proof follows as in the proof of the corresponding result (Theorem 2.1)

in Radin and Yin [60], where some probability estimates were used. A (jump) discontinuity

in the first derivatives of ψβ∞ across the curve β2 = r(β1) indicates a discontinuity in the

expected local densities, while the divergence of the second derivatives of ψβ∞ at the critical

point (βc1, β
c
2) implies that the covariances of the local densities go to zero more slowly than

1/n2. We omit the proof details.

�
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Remark 2. The maximization problem in Equation (2.9) is solved at a unique value u∗

off the phase transition curve β2 = r(β1), and at two values u∗1 and u∗2 along the curve.

As β1 → −∞ (resp. β2 → ∞), u∗1 → 0 and u∗2 → 1. The jump from u∗1 to u∗2 is quite

noticeable even for small parameter values of β. For example, taking p = 2, β1 = −8, and

β2 = 8 in Beta(2, 2), numerical computations yield that u∗1 ≈ 0.165 and u∗2 ≈ 0.835.

2.5 Universal asymptotics

We now examine near degeneracy and universality in general edge-weighted exponen-

tial random graphs. All our findings in this section are derived based on the assumption

that the non-degenerate probability measure µ for the edge weights is symmetric about the

line u = 1/2. We remark that near degeneracy and universality are expected even when the

edge weights are not symmetrically distributed, except that the universal straight line gets

shifted vertically from β2 = −β1.

Proposition 2.9. Consider a non-degenerate probability measure µ supported on [0, 1] and

symmetric about the line u = 1/2. Take H1 a single edge and H2 a finite simple graph with

p ≥ 2 edges. The phase transition curve β2 = r(β1) lies above the straight line β2 = −β1

when p ≥ 3, and is exactly the portion of the straight line β2 = −β1 (β1 ≤ −1/(4Var(X))

when p = 2. Here X is a random variable distributed according to µ.

Proof. From the proof of Theorem 2.7, there are two global maximizers u∗1 and u∗2 for

L(u) along the phase transition curve β2 = r(β1), 0 < u∗1 < u0 < u∗2 < 1, where u0 is the

unique global minimizer for m(u) from Equation (2.16). By Lemma 2.2, u0 = 1/2 when

p = 2 and u0 > 1/2 when p > 2. Furthermore, the y-coordinate βc2 of the critical point

(βc1, β
c
2) = (−f(u0),m(u0)) is always positive. On the straight line β1 +β2 = 0, we rewrite

L(u) = β1(u−up)−I(u)/2. By Proposition 2.4, I(u) is symmetric about the line u = 1/2.

First suppose p = 2. Since I(u) and u − u2 are both symmetric, two global maximizers

u∗1 and u∗2 exist for L(u) and (−f(u0),m(u0)) = (−1/(4Var(X)), 1/(4Var(X))) by
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Equation (2.23). Next consider the generic case p ≥ 3. Analytical calculations give that

u− up < (1− u)− (1− u)p for 0 < u < 1/2. Since I(u) is symmetric, this says that for

β1 < 0 (resp. β2 > 0), the global maximizer u∗ of L(u) satisfies u∗ ≤ 1/2 and so must be

u∗1. The conclusion readily follows. �

Proposition 2.10. Consider a non-degenerate probability measure µ supported on [0, 1]

and symmetric about the line u = 1/2. Assume the associated Cramér rate function in

Equation (2.3) is bounded on [0, 1] (i.e. I(0) = I(1) is finite). Take H1 a single edge and

H2 a finite simple graph with p ≥ 2 edges. The phase transition curve β2 = r(β1) displays

a universal asymptotic behavior as β1 → −∞, specifically,

lim
β1→−∞

|r(β1) + β1| = 0. (2.24)

Proof. Let β2 = −β1 + δ with δ > 0 fixed. Define F (u; β1) = β1(u − up) and G(u; δ) =

δup− I(u)/2 so that L(u; β1, β2) = F (u; β1) +G(u; δ) by Equation (2.12). We will show,

for sufficiently negative β1, that the global maximizer u∗ of L(u) equals u∗2. Together with

Proposition 2.9, this implies that for these β1, −β1 ≤ r(β1) ≤ −β1 + δ, which will prove

the desired limit.

Under our assumption, −I(u) is a continuous symmetric function that increases on

(0, 1/2) and decreases on (1/2, 1), with a maximum attained at u = 1/2 and−I(1/2) = 0.

Denote by C := −I(0)/2 = −I(1)/2 so that C is finite and negative and G(0) = C.

Recall that 0 < u∗1 < u0 < u∗2 < 1, where u∗1 and u∗2 are two local maximizers for L(u) and

u0 ≥ 1/2 is the unique global minimizer for m(u) (Equation (2.16)) that does not depend

on β1 and β2. Rigorously, it may be that only one local maximizer u∗1 or u∗2 exist for L(u),

but this does not affect our argument below. From the continuity and boundedness of G

on [0, 1], there exists η ∈ (0, 1 − u0) such that if 0 ≤ u < η then G(u) − C < δ/2.

Since u − up = u(1 − up−1) > 0 on (0, 1) and vanishes at the endpoints 0 and 1, there
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exists β < 0 such that for all β1 < β and u ∈ [η, 1 − η], F (u) < C − δ and therefore

L(u) < C−δ+G(u) < C = L(0), so u∗ ∈ [0, η)∪(1−η, 1]. Similarly, using that F (u) ≤ 0

for all β1 < 0 and all u ∈ [0, η), we have L(u) ≤ G(u) < C + δ/2 < C + δ = L(1) so

u∗ ∈ (1− η, 1]. Since u∗1 < u0 < 1− η, this says that u∗ = u∗2. �

Proposition 2.9 and Proposition 2.10 have advanced our understanding of phase transi-

tions in edge-weighted exponential random graphs, yet some fundamental questions remain

unanswered. As explained in Section 2.4, a typical graph sampled from the exponential

model looks like an Erdős-Rényi graph G(n, u) in the large n limit, where the asymptotic

edge presence probability u(β1, β2) → 0 or 1 is prescribed according to the maximization

problem (Equation (2.9)). However, the speed of u towards these two degenerate states is

not at all clear. When a typical graph is sparse (u → 0), how sparse is it? When a typical

graph is nearly complete (u → 1), how dense is it? Can we give an explicit characteriza-

tion of the near degenerate graph structure as a function of the parameters? Theorems 2.11

and 2.12 are dedicated toward these goals.

Theorem 2.11. Consider a non-degenerate probability measure µ supported on [0, 1] and

symmetric about the line u = 1/2. Take H1 a single edge and H2 a finite simple graph

with p ≥ 2 edges. Let β1 < −β2 and β2 ≥ 0. For large n and (β1, β2) sufficiently far away

from the origin, a typical graph drawn from the model looks like an Erdős-Rényi graph

G(n, u), where the edge presence probability u depends on the distribution µ, but its dual

θ universally satisfies θ � 2β1.

Proof. Let β1 = aβ2 with a < −1. Resorting to Legendre duality, Equation (2.9) gives a

condition on θ, the dual of u:

β1 + pβ2(K ′(θ))p−1 =
1

2
θ. (2.25)
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By Proposition 2.9, u → 0 for (β1, β2) sufficiently far away from the origin, which corre-

sponds to θ → −∞ in the dual space. From Table 2.1, K ′(θ) → 0 as θ → −∞, we have

θ

2β2

= a+ p(K ′(θ))p−1 → a. (2.26)

The universal asymptotics of θ � 2β1 is verified.

We claim that u on the other hand depends on the specific distribution µ. We will derive

the asymptotics of u in two special cases, Bernoulli(.5) and Uniform(0, 1). In both cases,

u = K ′(θ) by Legendre duality. For Bernoulli(.5),

u = K ′(θ) =
eθ

1 + eθ
� eθ � e2β1 . (2.27)

While for Uniform(0, 1),

u = K ′(θ) =
eθ

eθ − 1
− 1

θ
� −1

θ
� − 1

2β1

. (2.28)

�

Theorem 2.12. Consider a non-degenerate probability measure µ supported on [0, 1] and

symmetric about the line u = 1/2. Assume the associated Cramér rate function (Equa-

tion (2.3)) is bounded on [0, 1] (i.e. I(0) = I(1) is finite). Take H1 a single edge and

H2 a finite simple graph with p ≥ 2 edges. Let β1 > −β2 and β2 ≥ 0. For large n and

(β1, β2) sufficiently far away from the origin, a typical graph drawn from the model looks

like an Erdős-Rényi graph G(n, u), where the edge presence probability u depends on the

distribution µ, but its dual θ universally satisfies θ � 2(β1 + pβ2).

Proof. Let β1 = aβ2 with a > −1. Resorting to Legendre duality, Equation (2.9) gives

condition Equation (2.25) on θ, the dual of u. By Proposition 2.10, u → 1 for (β1, β2)

sufficiently far away from the origin, which corresponds to θ →∞ in the dual space. From
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Table 2.1, K ′(θ)→ 1 as θ →∞, we have

θ

2β2

= a+ p(K ′(θ))p−1 → a+ p. (2.29)

The universal asymptotics of θ � 2(β1 + pβ2) is verified.

We claim that u on the other hand depends on the specific distribution µ. We will derive

the asymptotics of u in two special cases, Bernoulli(.5) and Uniform(0, 1). In both cases,

u = K ′(θ) by Legendre duality. For Bernoulli(.5),

K ′(θ) =
eθ

1 + eθ
� 1− e−θ � 1− e−2(β1+pβ2). (2.30)

While for Uniform(0, 1),

K ′(θ) =
eθ

eθ − 1
− 1

θ
� 1− 1

θ
� 1− 1

2(β1 + pβ2)
. (2.31)

�

See Table 2.2 and Table 2.3. Even for β with small magnitude, the asymptotic tendency

of the optimal θ (hence the optimal u) is quite evident. Here we take p = 2. The asymptotic

characterizations of u obtained in Theorem 2.11 and Theorem 2.12 make possible a deeper

analysis of the asymptotics of the limiting normalization constant ψβ∞ of the exponential

model in the following Theorem 2.13 and Theorem 2.14. Interestingly, universality is

observed only in the nearly complete region but not the sparse region of the parameter

space.

Theorem 2.13. Consider a non-degenerate probability measure µ supported on [0, 1] and

symmetric about the line u = 1/2. Take H1 a single edge and H2 a finite simple graph with
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β1 β2 θopt uopt exp (2β1) 1− exp (−2(β1 + pβ2))

−2 −4 −4.23 0.014 0.018
1 1 5.99 0.998 0.998

Table 2.2: Asymptotic comparison for Bernoulli(.5) near degeneracy.

β1 β2 θopt uopt −1/(2β1) 1− 1/ (2(β1 + pβ2))

−4 −6 −10.32 0.097 0.125
3 2 13.40 0.925 0.929

Table 2.3: Asymptotic comparison for Uniform(0, 1) near degeneracy.

p ≥ 2 edges. Let β1 < −β2 and β2 ≥ 0. For (β1, β2) sufficiently far away from the origin,

the limiting normalization constant ψβ∞ depends on the distribution µ.

Proof. Let β1 = aβ2 with a < −1. By Theorem 2.5,

ψβ∞ = β1u+ β2u
p − 1

2
I(u), (2.32)

where u is chosen so that the above equation is maximized and u → 0 for (β1, β2) suffi-

ciently far away from the origin. Resorting to Legendre duality, this gives

ψβ∞ = β1K
′(θ) + β2(K ′(θ))p − 1

2
(θK ′(θ)−K(θ)) , (2.33)

where θ is the dual of u and approaches −∞ when (β1, β2) diverge. By Equation (2.25),

ψβ∞ = (1− p)β2(K ′(θ))p +
1

2
K(θ). (2.34)
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Since β2 � θ/(2a) as θ → −∞ from Theorem 2.11, asymptotically we have

ψβ∞ � 1− p
2a

θ(K ′(θ))p +
1

2
K(θ) (2.35)

� (1− p)β2 (K ′(2β1))
p

+
1

2
K(2β1).

�

Remark 3. Many common distributions including Bernoulli(.5) and Uniform(0, 1) satisfy

θK ′(θ)/K(θ) → 0 as θ → −∞, in which case the asymptotics in Theorem 2.13 may be

further reduced to ψβ∞ � K(θ)/2 � K(2β1)/2.

Theorem 2.14. Consider a non-degenerate probability measure µ supported on [0, 1] and

symmetric about the line u = 1/2. Assume the associated Cramér rate function (Equa-

tion (2.3)) is bounded on [0, 1] (i.e. I(0) = I(1) is finite). Take H1 a single edge and

H2 a finite simple graph with p ≥ 2 edges. Let β1 > −β2 and β2 ≥ 0. For (β1, β2)

sufficiently far away from the origin, the limiting normalization constant ψβ∞ universally

satisfies ψβ∞ � β1 + β2.

Proof. Let β1 = aβ2 with a > −1. Similarly as in the proof of Theorem 2.13, Theorem 2.5

gives Equation (2.32), where u is chosen so that the equation is maximized and u→ 1 for

(β1, β2) sufficiently far away from the origin. Since the first two terms diverge to β1 + β2

while the last term is bounded by our assumption, the claim easily follows. �

Remark 4. The boundedness assumption on I in Theorem 2.14 is only used as a sufficient

condition to ensure that u→ 1 for β1 > −β2 in the upper half-plane and far away from the

origin and is not necessary for the derivation of the universal asymptotics for ψβ∞. Indeed,

since θ � 2(β1 + pβ2) by Theorem 2.12, using K(θ)/θ � K ′(θ) � 1 in Equation (2.34),

we have

ψβ∞ � (1− p)β2 + (β1 + pβ2) � β1 + β2. (2.36)
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This universal asymptotic phenomenon is observed for example in Uniform(0, 1), whose

associated Cramér rate function I is not bounded.
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Chapter 3: Mixing time of vertex-weighted exponential random

graphs

3.1 Introduction

We now turn our attention to the evolution of vertex-weighted exponential random

graphs. As motivation, consider the dynamics of spreading events in a complex network.

There are sensitive control points collectively known as “influential spreaders”, whose

infection maximizes the overall fraction of infected vertices. For information diffusion

over Twitter for example, the influential spreaders may be thought of as a celebrity or a

news source. Vertices in the network thus carry with themselves some distinguishing fea-

tures, a phenomenon that could not be directly modeled by standard exponential random

graphs since their underlying probability space consists of simple graphs only. By placing

weights on the vertices, this section addresses this limitation of the exponential model.

Before proceeding further, we provide another reason why the vertex-weighted model

may be of interest [10]. Let Ġn be the set of all vertex-weighted labeled graphs Gn on n

vertices. Assume that the vertex weights are iid real random variables subject to a common

distribution ν supported on [0, 1], the edge weight between two vertices is a product of

the vertex weights, and the triangle weight among three vertices is a product of the edge

weights. Let U be a random variable distributed according to ν and denote its expectation

with respect to ν by E. Further denote the expected edge weight of Gn ∈ Ġn by e and

the expected triangle weight by t. Then we have e = E(U)2 and t = (E(U2))3. Note

that by suitably choosing ν, the entire region between the upper boundary of the realizable

edge-triangle densities and the Erdős-Rényi curve (e3 ≤ t ≤ e3/2) may be attained for
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t

Figure 3.1: The cyan region shows where the expected edge and triangle densities lie for a
vertex-weighted random graph model.

vertex-weighted random graphs. See Figure 3.1. If we take U to be Bernoulli, the upper

boundary is reproduced:

E(U2) = E(U) =⇒ t = e3/2. (3.1)

If we take U to be a constant a.s., the Erdős-Rényi curve is recovered:

E(U2) = E(U)2 =⇒ t = e3. (3.2)

By contrast, since simple graphs may be interpreted as having iid Bernoulli(.5) weights on

the edges, the underlying graph space of standard exponential random graphs lies at a single

point (1/2, 1/8) on the Erdős-Rényi curve. Even without incorporating the exponential

construction, assigning vertex weights alone adds intriguing characteristics to the model.

3.1.1 The model. In this section we will restrict our attention to vertex-weighted expo-

nential random graph models where the vertex weights take values in 0 and 1 only. We

include in the exponent a combination of edge and triangle densities, both with non-
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negative parameters. Even under this simplification, the vertex-weighted model depicts

captivating behaviors in large-scale networks. Recall that by Theorem 1.10 in Section 1.3,

exponential random graph models with non-negative parameters behave like Erdős-Rényi

random graphs in the large n limit; however, this is not the case in this section as we are

considering the model only for finite n. Instead of Erdős-Rényi, this model emphasizes the

formation of cliques, and is particularly suited for the modeling of a broad range of social

networks. Consider the Facebook friend graph for example, where we make the simplify-

ing assumption that a person is either interested (vertex value 1) or not (vertex value 0) in

building a friendship. Then having value 1 at three distinct vertices will force the formation

of a triangle rather than a two-star, which is rooted in the notion that a friend of a friend

is more likely to be a friend. An added benefit of this setting is that the model may be

considered as an extension of the lattice gas (Ising) model on a graph, and the techniques

of spin models may be employed in our investigation [69].

A graph Gn ∈ Ġn may be viewed as an element X ∈ X := {0, 1}n, referred to as

configurations, that attributes weights 0 or 1 to the ordered vertices of Gn. Denote by X(i)

the weight of vertex i. Borrowing terminology from spin models, the vertex weight X(i)

will be called the spin at i. By iid-ness, the spins at different vertices are independent, and

subject to a common distribution ν that assumes value 0 with probability 1− p and 1 with

probability p for some p ∈ (0, 1). Let H1 be the number of edges for the configuration X

and H2 be the number of triangles. They may be formulated explicitly in terms of lattice

gas (Ising) spins

H1(X) =
∑
i 6=j

X(i)X(j) and H2(X) =
∑
i 6=j 6=k

X(i)X(j)X(k), (3.3)

where the inequality n1 6= n2 6= · · · 6= nk means that ni 6= nj for any i 6= j. We rescale

the edge and triangle parameters in the exponent, H = (α1/n)H1 + (α2/n
2)H2, so that the
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total contribution of a single vertex to the weights is O(1). We are now ready to introduce

a Gibbs distribution on the set of spin configurations X . To avoid cumbersome notation,

we suppress the n-dependence in many of the quantities under discussion.

Definition 3.1. Take α1 ≥ 0, α2 ≥ 0, and p ∈ (0, 1). Let X ∈ X be a spin configuration.

Denote by ω(X) the number of vertices with spin 1 in X . Assign a Gibbs probability

measure on X as

π(X) = Z−1 exp(H(X))pω(X)(1− p)n−ω(X), (3.4)

where H = (α1/n)H1 + (α2/n
2)H2 is the combination of edge and triangle weights and

Z = Z(n, p, α1, α2) is the normalizing constant, also referred to as the partition function.

The configuration space X can be partially ordered in the sense that for X, Y ∈ X ,

we say that X ≤ Y if and only if X(i) ≤ Y (i) for every i ∈ {1, . . . , n}. To model the

evolution of the network towards equilibrium, we will adopt (single-site) Glauber dynam-

ics, which is a discrete-time irreducible and aperiodic Markov chain (Xt)
∞
t=0 on X . Under

the Glauber dynamics, the random graph evolves by selecting a vertex i and updating the

spin X(i) according to π conditioned to agree with the spins at all vertices not equal to

i. By sampling from the exponential distribution using Glauber dynamics, we learn the

global structure of the network as well as parameters describing the interactions. Explic-

itly, let X ∈ X be a configuration and set the initial state X0 = X . The next step of the

Markov chain, X1, is obtained as follows. Choose a vertex i uniformly from {1, . . . , n}.

Let X1(j) = X(j) for all j 6= i, X1(i) = 1 with probability P+ and X1(i) = 0 with

probability P−, where the update probabilities P+ and P− are given by

P+(X, i) =
p exp(H ′(X, i))

p exp(H ′(X, i)) + (1− p)
(3.5)
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and

P−(X, i) =
1− p

p exp(H ′(X, i)) + (1− p)
. (3.6)

Here H ′ = (α1/n)S + (α2/n
2)T depends only on the spins at vertices other than i, with

S(X, i) =
∑
j 6=i

X(j) and T (X, i) =
∑
j 6=k 6=i

X(j)X(k) =
S(X, i)(S(X, i)− 1)

2
. (3.7)

For X, Y ∈ X , the transition matrix for the Glauber dynamics is then

P (X, Y ) =
1

n

∑
i

f(Y (i))eY (i)H′(X,i)

f(Y (i))eY (i)H′(X,i) + f(1− Y (i))e(1−Y (i))H′(X,i)
1{Y (j)=X(j)

j 6=i

}, (3.8)

where Y (i) ∈ {0, 1} and we define f such that f(0) = 1 − p and f(1) = p to lighten the

notation.

3.1.2 Mixing time. The Gibbs distribution π is stationary and reversible for the Glauber

dynamics chain. By the convergence theorem for ergodic Markov chains, the Glauber

dynamics will converge to the stationary distribution and our goal is to obtain some esti-

mates on the mixing time, since it greatly affects the efficiency of simulation studies and

sampling algorithms [12] [21]. Given ε > 0, the mixing time for this Markov chain is

defined as

tmix(ε) = min{t : d(t) ≤ ε}, (3.9)

where

d(t) = max
X∈X

∥∥P t(X, ·)− π
∥∥

TV (3.10)

measures the total variation distance to stationarity of the Glauber dynamics chain after t

steps. As is standard, we take tmix = tmix(1/4). The mixing time is thus defined to be the

minimum number of discrete time steps such that, starting from an arbitrary configuration

X , the chain is within total variation distance 1/4 from the stationary distribution π. For
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background on mixing times, see Aldous and Fill [5] and Levin et al. [45]. Our results will

indicate that the mixing time can vary enormously depending on the choice of parameters.

3.1.3 Normalized magnetization. Given a spin configuration X ∈ X , the normalized

magnetization c of X is defined as

c(X) =
1

n

n∑
i=1

X(i). (3.11)

The image of a Markov chain under a map is not usually itself a Markov chain; however,

in this case, it turns out that the normalized magnetization is a Markov chain. Adopting

(single-site) Glauber dynamics on X , (ct)
∞
t=0 is a projection of the chain (Xt)

∞
t=0 and so is

also aperiodic and irreducible. Set the initial state c0 = c. From the mechanism described

in Section 3.1.1, after one Glauber update, c1 will take on one of three values: c − 1/n, c,

or c+1/n. If a spin 0 vertex is chosen and updated to spin 1, c1 = c+1/n. Alternatively, if

a spin 1 vertex is chosen and updated to spin 0, c1 = c− 1/n. When no spins are updated,

c1 = c. By Equation (3.5), the probability that we select a spin 0 vertex and update it to

spin 1 is

Pu =
n− cn
n

p exp
(
α1c+ α2

2
c(c− 1

n
)
)

p exp
(
α1c+ α2

2
c(c− 1

n
)
)

+ (1− p)
. (3.12)

Similarly, by Equation (3.6), the probability that we select a spin 1 vertex and update it to

spin 0 is

Pd =
cn

n

1− p
p exp

(
α1(c− 1

n
) + α2

2
(c− 2

n
)(c− 1

n
)
)

+ (1− p)
. (3.13)

Combining Equation (3.12) and Equation (3.13), the magnetization ct moves up with prob-

ability Pu, down with probability Pd, and remains unchanged with probability 1−Pu−Pd.

For n large enough, Pu � (1− c)λ(c) and Pd � c(1− λ(c)), where

λ(c) =
p exp

(
α1c+ α2

2
c2
)

p exp
(
α1c+ α2

2
c2
)

+ (1− p)
(3.14)
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Figure 3.2: Behavior of the λ function in different regions of the parameter space with
arrows indicating whether the fixed point is an attractor or a repellor.

represents the asymptotic probability that a chosen vertex is updated to spin 1. This implies

that the expected magnetization drift is asymptotically (λ(c)− c)/n, and a rigorous justifi-

cation may be found in Lemma 3.1.

3.1.4 Phase classification. The magnetization chain (ct) is a deciding factor in the con-

vergence of the Glauber dynamics chain (Xt). Note that 0 ≤ ct ≤ 1 and λ is a smooth

and increasing function on [0, 1]. Since λ(0) > 0 and λ(1) < 1, λ(c) = c admits at least

one solution in (0, 1). If the solution c is unique and not an inflection point, i.e. λ′(c) < 1

(referred to as the high-temperature phase), then independent of the initial position all

configurations will be driven towards it, and the burn-in stage will cost O(n) steps. The

burn-in stage is the time required for the magnetization chain to be close to an attractor λ

with high probability for any suitably chosen initial configuration. See the upper left plot

of Figure 3.2. Conversely, if there exist at least two solutions c such that λ′(c) < 1 (referred

to as the low-temperature phase), then the burn-in procedure will take the configurations

to different attractor states depending on their initial positions. See the lower right plot of

53



p

Figure 3.3: Surfaces in the parameter space illustrating the region with fast vs. slow mixing
and identifying the critical curve.

Figure 3.2. Once the configuration is close to an attractor, the Glauber dynamics allows

an exponentially small flow of probability for it to leave. A detailed examination of the

burn-in period will be provided in Section 3.2.

In Section 3.3, through estimating the average distance after one update between two

coupled configurations that agree everywhere except at a single vertex, we show that the

Glauber dynamics Xt mixes in O(n log n) steps in the high-temperature phase. Relating

to coupon collecting and employing spectral methods, the same asymptotic lower bound

Ω(n log n) is validated. While in Section 3.4, by a conductance argument using the Cheeger

inequality, we establish exponentially slow mixing of the Glauber dynamics Xt in the low-

temperature phase. Finally, in Section 3.5, we give evidence that the burn-in will cost

O(n3/2) steps along the “critical curve”, and the Glauber dynamics Xt is thus expected

to mix in O(n3/2) steps. See Figure 3.3. The cyan and canary yellow surfaces separate

the high and low-temperature phases, with their intersection marked by the critical curve.

Convergence of the Glauber dynamics Xt elsewhere on the two surfaces corresponds to the

situation where λ(c) = c has at least two solutions and one solution c satisfies λ′(c) = 1.

See the upper and right and lower left plots of Figure 3.2. The mixing time largely depends

on the movement of the chain around the inflection point and is not addressed.
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3.2 Burn-in period

We start by running the Glauber dynamics for an initial burn-in period. This will ensure

that the associated magnetization chain is with high probability close to an attractor of λ.

Let X ∈ X be any spin configuration. Set the initial state X0 = X and let ct be the

normalized magnetization of Xt at time t. We use PX and EX respectively to denote the

underlying probability measure and associated expectation. To keep the notation light, we

omit the explicit dependence on X when it is clear from the context.

Lemma 3.1. The expected drift in ct after one step of the Glauber dynamics, starting from

the configuration X , is given by

E(ct+1 − ct | ct) =
1

n
(λ(ct)− ct) +O

(
1

n2

)
, (3.15)

where λ is defined as in Equation (3.14).

Proof. From our discussion in Section 3.1.3, we compute

E(ct+1 − ct | ct) =
1

n
(1− ct)

p exp
(
α1ct + α2

2
ct
(
ct − 1

n

))
p exp

(
α1ct + α2

2
ct
(
ct − 1

n

))
+ (1− p)

− 1

n
ct

1− p
p exp

(
α1

(
ct − 1

n

)
+ α2

2

(
ct − 1

n

) (
ct − 2

n

))
+ (1− p)

. (3.16)

Note that lower order fluctuations may be extracted from the exponents since

exp

(
α1ct +

α2

2
ct

(
ct −

1

n

))
= exp

(
−α2

2n
ct

)
exp

(
α1ct +

α2

2
(ct)

2
)
, (3.17)

and

exp

(
α1

(
ct −

1

n

)
+
α2

2

(
ct −

1

n

)(
ct −

2

n

))
= exp

(
−α1

n
− 3α2

2n
ct +

α2

n2

)
exp

(
α1ct +

α2

2
(ct)

2
)
, (3.18)
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which gives

E(ct+1 − ct | ct) =
1

n
(λ(ct)− ct)

+
λ(ct)

n
(1− ct)

exp
(
−α2

2n
ct
)
− 1

1 +
(

p
1−p

)
exp

(
−α2

2n
ct
)

exp
(
α1ct + α2

2
(ct)

2)
+
λ(ct)

n
ct

exp
(
−α1

n
− 3α2

2n
ct + α2

n2

)
− 1

1 +
(

p
1−p

)
exp

(
−α1

n
− 3α2

2n
ct + α2

n2

)
exp

(
α1ct + α2

2
(ct)

2) .
(3.19)

Note that for the first fraction,

−α2

2n
ct ≤ exp

(
−α2

2n
ct

)
− 1 ≤ −α2

2n
ct +

α2
2

8n2
c2
t

implying that

exp
(
−α2

2n
ct
)
− 1

1 +
(

p
1−p

)
exp

(
−α2

2n
ct
)

exp
(
α1ct + α2

2
(ct)

2) = O

(
1

n

)
.

Following a similar argument, the other fraction is O(1/n) as well, and the conclusion

readily follows. �

Applying Lemma 3.1, the following Theorem 3.2 and Corollary 3.3 and Corollary 3.4

show that if the associated magnetization c0 of the initial configuration is significantly dif-

ferent from an attractor c∗ but bounded away from any other solution of the fixed point

equation λ(c) = c, then there is a drift of the Glauber dynamics towards a configuration

whose normalized magnetization is closer to c∗ than the starting state, i.e. ct → c∗. Theo-

rem 3.2 is proved when c0 > c∗, and an analogous result holds for c0 < c∗ using a similar

line of reasoning. See Figure 3.2 for an illustration of this burn-in procedure.
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Theorem 3.2. Suppose λ(c∗) = c∗ and λ′(c∗) < 1. Let c > c∗ be the smallest value

satisfying λ(c) = c. (If no such c exists, take c = 1.) Let the initial magnetization be c0

with c∗ + µ < c0 < c − µ for some µ > 0. Then there exist η, d > 0 depending only on

µ, p, α1, α2 such that T = dn and

P (cT ≤ c0 − η) ≥ 1− e−Ω(
√
n). (3.20)

Proof. Since λ′(c∗) < 1, λ(c) − c < 0 for c ∈ [c∗ + µ, c − µ]. By the extreme value

theorem, the maximum of the smooth function λ(c)− c is attained for some value c in the

compact interval [c∗ + µ, c − µ]. Define γ > 0 as γ = −(λ(c) − c)/2. Choose η > 0 so

that [c0 − 2η, c0 + η] ⊆ [c∗ + µ, c− µ]. Let

Dt(η) = {ct : c0 − 2η ≤ ct ≤ c0 + η} . (3.21)

By Lemma 3.1, for ct ∈ Dt(η) and n sufficiently large, E(ct+1−ct | ct) ≤ −γ/n. Utilizing

the negative drift−γ/n of the random walk ct and employing a moment generating function

method, we first show that “bad” magnetization, i.e. ct > c0+η for some 0 ≤ t ≤ T , occurs

with exponentially small probability.

Define St1,t2 as

St1,t2 =

t2∑
t=t1+1

(
ct − ct−1 +

γ

2n

)
1Dt−1 . (3.22)

The random variable St1,t2 records the change in “good” magnetization ct from t1 to t2,

shifted by γ/(2n) per time step. Let Ft be the natural filtration. Note that eθSt1,t2−1 is

constant given Ft2−1, so, by the tower property of conditional expectation,

E
(
eθSt1,t2

)
= E

(
eθSt1,t2−1E

(
e
θ(ct2−ct2−1+ γ

2n
)1Dt2−1 | Ft2−1

))
. (3.23)
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Using linearity of conditional expectation, we write

E
(
e
θ(ct2−ct2−1+ γ

2n
)1Dt2−1 | Ft2−1

)
=
∞∑
k=0

E

(
θk(ct2 − ct2−1 + γ

2n
)k

k!
1kDt2−1

| Ft2−1

)
= 1 + E

(
θ(ct2 − ct2−1 +

γ

2n
)1Dt2−1 | Ft2−1

)
+
∞∑
k=2

E

(
θk(ct2 − ct2−1 + γ

2n
)k

k!
1kDt2−1

| Ft2−1

)
.

(3.24)

Recall that E(ct+1 − ct | ct) ≤ −γ/n for ct ∈ Dt, and so

E
(
e
θ(ct2−ct2−1+ γ

2n
)1Dt2−1 | Ft2−1

)
≤ 1− γθ

2n
1Dt2−1 +O

(
θ2

n2

)
. (3.25)

Taking θ = c
√
n for a sufficiently small constant c, the above conditional expectation is

less than 1. Iterating this procedure gives

E
(
eθSt1,t2

)
≤ E

(
eθSt1,t2−1

)
≤ · · · ≤ E

(
eθSt1,t1

)
= 1. (3.26)

By the Chernoff bound,

P
(
St1,t2 ≥

η

2

)
≤

E
(
eθSt1,t2

)
eθ

η
2

= e−Ω(
√
n). (3.27)

Consider the set

Bt1,t2(η) =

( ⋂
t1≤t<t2

Dt(η)

)⋂{
ct2 − ct1 >

η

2

}
, (3.28)
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consisting of all “good” magnetizations at time t1 up to time t2, with an increase of at least

η/2 from t1 to t2. Subject to ct ∈ Dt for t1 ≤ t < t2 and ct2 − ct1 > η/2,

St1,t2 =

t2∑
t=t1+1

(
ct − ct−1 +

γ

2n

)
= ct2 − ct1 +

γ

2n
(t2 − t1) >

η

2
, (3.29)

from which the containment Bt1,t2(η) ⊆ {St1,t2 ≥ η/2} follows. Hence

P

( ⋃
0≤t1<t2≤T

Bt1,t2

)
≤ n2e−Ω(

√
n) = e−Ω(

√
n). (3.30)

Take n large enough. Suppose ct > c0 + η for some 0 ≤ t ≤ T . Then there exists a t1

such that c0 − 2η ≤ cs for all t1 ≤ s ≤ t. Define t2 to be the least time greater than t1 with

ct2 > c0 + η. Then ct ∈ Dt for all t1 ≤ t < t2 and ct2 − ct1 > η/2. This implies that

{ct : ct > c0 + η for some 0 ≤ t ≤ T} ⊆
⋃

0≤t1<t2≤T

Bt1,t2 , (3.31)

and further implies that

P (ct > c0 + η for some 0 ≤ t ≤ T ) ≤ e−Ω(
√
n). (3.32)

We have thus shown that the normalized magnetization ct remains below c0 + η for all

0 ≤ t ≤ T with exponentially high probability, provided that c0 is suitably bounded away

from any other fixed point of λ (Note: we say an event has exponentially high probability

if its complement has exponentially small probability). Next we show that cT ends below

c0−η with exponentially high probability. We prove this by showing that ct actually reaches

c0 − 2η with exponentially high probability, and then by the preceding argument will have
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exponentially small probability of increasing to c0 − η. We have

P (ct ≥ c0 − 2η for all 0 ≤ t ≤ T ) ≤ P

( ⋂
0≤t≤T

Dt(η)

)

+ P (ct > c0 + η for some 0 ≤ t ≤ T ) . (3.33)

Subject to ct ∈ Dt(η) for 0 ≤ t ≤ T and noticing that at worst c0 = 1 and cT = 0,

S0,T =
T∑
t=1

(
ct − ct−1 +

γ

2n

)
1Dt−1

= cT − c0 +
γ

2n
T ≥ −1 +

γ

2n
T. (3.34)

Using the Chernoff bound on S0,T and assume that d > 2/γ,

P (ct ≥ c0 − 2η for all 0 ≤ t ≤ T ) ≤ P
(
S0,T ≥ −1 +

γ

2n
T
)

+ e−Ω(
√
n)

≤
E
(
eθS0,T

)
eθ(−1+ γ

2n
T)

+ e−Ω(
√
n)

= e−Ω(
√
n). (3.35)

Finally,

P (cT ≥ c0 − η) ≤ P (cT ≥ c0 − η and ct < c0 − 2η for some 0 ≤ t ≤ T )

+ P ({ct ≥ c0 − 2η for all 0 ≤ t ≤ T}) ≤ e−Ω(
√
n), (3.36)

where to bound the first probability on the right, we apply the bound on “bad” mag-

netization of Equation (3.32) with minor adaptation: initial magnetization ct (for some

0 ≤ t ≤ T ) in place of c0, time interval under consideration [t, T ] in place of [0, T ], and the

increase in magnetization c0 − 2η → c0 − η in place of c0 → c0 + η. �
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Repeated application of Theorem 3.2 shows that after a burn-in period on the order

of O(n), any suitably chosen configuration ends up close to an attractor c∗ with exponen-

tially high probability. Recall the definition of high-temperature phase and low-temperature

phase from Section 3.1.4. The following corollaries are immediate.

Corollary 3.3. In the high-temperature phase, suppose that c∗ is the unique solution to

λ(c) = c and λ′(c∗) < 1. For any ε > 0, there exists α > 0 such that for any initial

configuration with associated magnetization c0, when t ≥ αn we have

P (ct ≥ c∗ + ε) ≤ e−Ω(
√
n) (3.37)

and

P (ct ≤ c∗ − ε) ≤ e−Ω(
√
n). (3.38)

Corollary 3.4. In the low-temperature phase, suppose that c∗ is a solution to λ(c) = c and

λ′(c∗) < 1. Take ε > 0. If the associated magnetization c0 for some initial configuration

satisfies c∗ − ε ≤ c0 ≤ c∗ + ε, then there exists β > 0,

P

(
sup

0<t<eβ
√
n

ct ≥ c∗ + 2ε

)
≤ e−Ω(

√
n) (3.39)

and

P

(
inf

0<t<eβ
√
n
ct ≤ c∗ − 2ε

)
≤ e−Ω(

√
n). (3.40)

3.3 Fast mixing at high-temperature

In this section we study the mixing time of Glauber dynamics in the high-temperature

phase. We first establish an upper bound O(n log n) using path coupling techniques of

Bubley and Dyer [19]. Consider two arbitrary spin configurations X, Y ∈ X . Taking

“attractive” parameters αi ≥ 0 ensures that we may apply a monotone coupling on the
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chain (Xt, Yt): Xt is a version of the Glauber dynamics with starting state X and Yt is

a version of the Glauber dynamics with starting state Y , if X0 ≤ Y0 then Xt ≤ Yt for

all t. We write PX,Y and EX,Y for the underlying probability measure and associated

expectation. To keep the notation light, we omit the explicit dependence on X and Y when

it is clear from the context. To understand how far apart Xt and Yt are, we introduce the

Hamming distance, which records the number of vertices where the two configurations

disagree. Define ρ : X × X → {0, . . . , n} by

ρ(X, Y ) =
n∑
i=1

|X(i)− Y (i)| . (3.41)

Following a standard contraction argument, it suffices to estimate the average distance after

one Glauber update between two coupled configurations X and Y with Hamming distance

ρ(X, Y ) = 1.

Lemma 3.5. Assume that sup0≤c≤1 λ
′(c) < 1. Let X, Y ∈ X be two spin configurations

satisfying X ≤ Y and ρ(X, Y ) = 1. Set the initial state X0 = X and Y0 = Y . Then there

exists δ > 0 depending only on p, α1, α2 such that a single step of the Glauber dynamics

can be coupled in such a way that when n is sufficiently large:

E (ρ(X1, Y1)) ≤ e−δ/n. (3.42)

Proof. Let X, Y ∈ X be two configurations such that X ≤ Y and there exists a single

vertex i such that X(i) = 0 and Y (i) = 1. Let U be a uniform random variable on [0, 1].

We apply the standard monotone coupling, where U is used as the common source of noise

to update both chains so that they agree as often as possible. From the mechanism described

in Section 3.1.1, the chain evolves by selecting a vertex j uniformly at random and updating

62



the spin at j. Set

X1(j) =

 1 U ≤ p+(X, j),

0 U > p+(X, j),
Y1(j) =

 1 U ≤ p+(Y, j),

0 U > p+(Y, j),
(3.43)

and X1(k) = X(k) and Y1(k) = Y (k) for all k 6= j. Define the function f(S) as

f(S) =
p exp

(
α1

n
S + α2

2n2S(S − 1)
)

p exp
(
α1

n
S + α2

2n2S(S − 1)
)

+ (1− p)
. (3.44)

If j = i, then p+(X, j) = f (S(X, j)) = p+(Y, j) and so ρ(X1, Y1) = 0. For j 6= i, we have

p+(X, j) = f (S(X, j)) while p+(Y, j) = f (S(X, j) + 1), where 0 ≤ S(X, j) ≤ n − 2.

Since f is a smooth and increasing function, this shows that p+(X, j) ≤ p+(Y, j). Hence

ρ(X1, Y1) = 2 if p+(X, j) < U ≤ p+(Y, j) and ρ(X1, Y1) = 1 otherwise.

We wish to find an upper bound for

E (ρ(X1, Y1)) = 1− 1

n
+

1

n

∑
j 6=i

(p+(Y, j)− p+(X, j)) . (3.45)

To that end, we compute, by the mean value theorem

p+(Y, j)− p+(X, j) = f (S(X, j) + 1)− f (S(X, j)) =
g′(c)

n
, (3.46)

where 0 ≤ c ≤ 1 and g′(c) is defined as

g′(c) =
p(1− p) exp

(
α1c+ α2

2
c
(
c− 1

n

))
p exp

(
α1c+ α2

2
c
(
c− 1

n

))
+ (1− p)

(
α1 + α2c−

α2

2n

)
. (3.47)

Compare g′(c) against λ′(c), where λ(c) is defined as in Equation (3.14),

λ′(c) =
p(1− p) exp

(
α1c+ α2

2
c2
)

p exp
(
α1c+ α2

2
c2
)

+ (1− p)
(α1 + α2c) . (3.48)
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Via standard analytical arguments as in the proof of Lemma 3.1, the difference g′(c) −

λ′(c) = O(1/n). Therefore

E (ρ(X1, Y1)) ≤ 1− 1

n
+

1

n

∑
j 6=i

(
1

n
sup

0≤c≤1
λ′(c) +O

(
1

n2

))
≤ 1− 1

n
+
n− 1

n2
sup

0≤c≤1
λ′(c) +O

(
1

n2

)
≤ 1−

1− sup0≤c≤1 λ
′(c)

n
+O

(
1

n2

)
. (3.49)

Define δ > 0 as δ =
(
1− sup0≤c≤1 λ

′(c)
)
/2. Then for n sufficiently large, we obtain

E (ρ(X1, Y1)) ≤ 1− δ

n
≤ e−δ/n. (3.50)

�

The requirement sup0≤c≤1 λ
′(c) < 1 in Lemma 3.5 may be weakened. By Corol-

lary 3.3, in the high-temperature phase, with exponentially high probability, after O(n)

time steps the associated magnetization of all configurations are within an ε-neighborhood

of the unique solution c∗ of λwith λ′(c∗) < 1. The supremum referenced in Equation (3.49)

thus need not be taken over the entire interval [0, 1] but just [c∗−ε, c∗+ε], and is guaranteed

to be less than 1 using smoothness of λ. Now take any two configurations X, Y ∈ X with

ρ(X, Y ) = k, where 1 ≤ k ≤ n. (At worst X(i) = 0 and Y (i) = 1 for all i ∈ {1, . . . , n}.)

There is a sequence of statesX0, . . . , Xk such thatX0 = X ,Xk = Y , and each neighboring

pair Xi, Xi+1 are unit Hamming distance apart. Applying Lemma 3.5 for configurations at

unit distance, we have E (ρ(X1, Y1)) ≤ ne−δ/n. Iterating gives

E (ρ(Xt, Yt)) ≤ ne−δt/n. (3.51)
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Theorem 3.6. In the high-temperature phase, the mixing time for the Glauber dynamics is

O(n log n).

Proof. By Theorem 14.6 and Corollary 14.7 of [45], Equation (3.51) implies

tmix(ε) ≤
⌈
n (log n− log ε)

δ

⌉
. (3.52)

Setting ε = 1/4,

tmix ≤
⌈
n (log n+ log 4)

δ

⌉
. (3.53)

�

Next in Theorem 3.7, by checking the total variance distance from the stationary dis-

tribution at time t∗ := (n log n)/4, we establish a matching lower bound Ω(n log n) for the

Glauber dynamics in the high-temperature phase. Together with Theorem 3.6, the correct

order for the mixing time, Θ(n log n), is validated. To this end, let γ be the spectral gap

associated with the Glauber dynamics transition matrix. By Lemma 13.12 and Remark

13.13 of [45],

γ = inf
f :X→R

Varπ(f) 6=0

ε(f)

Varπ(f)
, (3.54)

where the Dirichlet form

ε(f) =
1

2

∑
X,Y ∈X

(f(X)− f(Y ))2 π(X)P (X, Y ), (3.55)

and the variance under stationary distribution

Varπ(f) =
∑
X∈X

(f(X))2 π(X)−

(∑
X∈X

f(X)π(X)

)2

. (3.56)
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Theorem 3.7. In the high-temperature phase, the mixing time for the Glauber dynamics is

Ω(n log n).

Proof. Let f(X) count the number of vertices with spin 1 in a configurationX ∈ X . Then,

for this particular f , we have that

γ ≤ ε(f)

Varπ(f)
, (3.57)

From the mechanism described in Section 3.1.1, for configurations X, Y ∈ X , P (X, Y )

defined in Equation (3.8) is zero unless X and Y differ at at most one vertex. This implies

that

ε(f) ≤ 1

2

∑
X,Y ∈X

π(X)P (X, Y ) =
1

2

∑
X∈X

π(X) =
1

2
, (3.58)

and when applied to Equation (3.57), further implies that 2Varπ(f) ≤ 1/γ. Hence

log 2 (2Varπ(f)− 1) ≤ log 2

(
1

γ
− 1

)
≤ tmix, (3.59)

where the second inequality uses spectral representation techniques (for details, see for

example Theorem 12.4 of [45]). By Theorem 3.6, tmix = O(n log n), which then gives

Varπ(f) = O(n log n). Let configuration X be chosen according to the stationary distri-

bution π. By Chebyshev’s inequality,

π
(
|f(X)− Eπ(f(X))| > n2/3

)
≤ Varπ(f(X))

n4/3
= O(n−1/3 log n). (3.60)

Therefore asymptotically

π
(
|f(X)− Eπ(f(X))| ≤ n2/3

)
→ 1. (3.61)
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Let X+, X− ∈ X be configurations such that X+(i) = 1 and X−(i) = 0 for every i ∈

{1, . . . , n}. Assume that X+ and X− are coupled using the standard monotone coupling

as described in the proof of Lemma 3.5. So X+
t ≥ X−t for all t. Let Rt∗ denote the number

of vertices not yet selected by the Glauber Dynamics by time t∗. By a coupon collecting

argument,

E(Rt∗) � n3/4 and Var(Rt∗) ≤ E(Rt∗). (3.62)

(For details, see for example Lemma 7.12 of [45].) Let ε > 0. Again, by Chebyshev’s

inequality, it follows that, asymptotically,

P (|Rt∗ − E (Rt∗)| > (1− ε)E (Rt∗)) ≤
Var (Rt∗)

(1− ε)2 (E (Rt∗))
2 ≤ O(n−3/4), (3.63)

which, using set containment, implies that

P (Rt∗ < εE (Rt∗)) ≤ P (|Rt∗ − E (Rt∗)| > (1− ε)E (Rt∗)) ≤ O(n−3/4). (3.64)

Therefore Rt∗ = Ω(n3/4) with probability tending to 1 asymptotically. Since f(X+
t∗) −

f(X−t∗) ≥ Rt∗ , we also conclude that f(X+
t∗)− f(X−t∗) = Ω(n3/4) with probability tending

to 1 asymptotically.

Define sets A and B respectively as

A :=
{
X ∈ X :

∣∣f(X+
t∗)− Eπ(f(X))

∣∣ ≤ n2/3
}

(3.65)

and

B :=
{
X ∈ X :

∣∣f(X−t∗)− Eπ(f(X))
∣∣ ≤ n2/3

}
. (3.66)

Then by the triangle inequality, their intersection A ∩ B, if nonempty, satisfies f(X+
t∗) −

f(X−t∗) = O(n2/3). Since n3/4 > n2/3, this contradicts what was established in the previous
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paragraph. Therefore the sets A and B are asymptotically disjoint and so one of them has

probability bounded above by 1/2− o(1). Without loss of generality, suppose A satisfies

P
(∣∣f(X+

t∗)− Eπ(f(X))
∣∣ ≤ n2/3

)
≤ 1

2
− o(1). (3.67)

By definition of the total variation distance and the bounds in Equation (3.61) and Equa-

tion (3.67),

∥∥P t∗(X+, ·)− π
∥∥

TV ≥
∣∣P t∗(X+, A)− π(A)

∣∣ ≥ 1− 1

2
+ o(1). (3.68)

Since at tmix, the default for tmix(ε), the distance must be less than or equal to 1/4, this

shows that the mixing time is asymptotically bigger than t∗ = (n log n)/4 proving the

lower bound. �

3.4 Slow mixing at low-temperature

In this section we study the mixing time of Glauber dynamics in the low-temperature

phase. Rather than analyzing the spin update probability λ defined in Equation (3.14)

directly, we find asymptotic expressions for components of the partition function Z (see

Definition 3.1). For k ∈ {0, . . . , n}, define Ak = {X : |{i : X(i) = 1}| = k}. That is, the

set Ak consists of spin configurations X ∈ X whose number of vertices with spin 1 is k

and number of vertices with spin 0 is n− k. Then

π(Ak) =
1

Z

(
n

k

)
exp

(
α1

n

(
k

2

)
+
α2

n2

(
k

3

))
pk(1− p)n−k. (3.69)

Let ak be such that ak = Zπ(Ak). Notice that
∑n

k=0 ak = Z.

Lemma 3.8. Let c ∈ [0, 1] and ak be defined as above, we have

log(abcnc) = n(ϕp,α1,α2(c) + o(1)), (3.70)
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where

ϕ(c) =
α1

2
c2 +

α2

6
c3 − c log

c

p
− (1− c) log

1− c
1− p

. (3.71)

Proof. Stirling’s formula states that

n! �
√

2πe−nnn
√
n. (3.72)

The binomial coefficient admits the following asymptotic formula

(
n

bcnc

)
� 1√

2πccn
√
c(1− c)(1−c)n

√
1− c

√
n
. (3.73)

Hence

log(abcnc) � n

(
α1

2
c2 +

α2

6
c3 − c log

c

p
− (1− c) log

1− c
1− p

)
− log

(√
2πc(1− c)n

)
= n(ϕ(c) + o(1)). (3.74)

�

Next in Lemmas 3.9 and 3.10, we reveal a deep relationship between ϕ (commonly

referred to as the “free energy density”) and the spin update probability λ. As we will see,

local maximizers for ϕ correspond to fixed points of λ, and concavity of ϕ at the local

maximizer (indicating whether it is a local maximum or minimum) translates to the attrac-

tor/repellor characterization on the fixed point of λ previously described in Theorem 2.7.

Lemma 3.9. Let λ and ϕ be defined as in Equation (3.14) and Equation (3.71). Then

λ(c) = c ⇐⇒ ϕ′(c) = 0.
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Proof. We have the following string of equivalences

λ(c) = c ⇐⇒
(

p

1− p

)
exp

(
α1c+

α2

2
c2
)

=
c

1− c

⇐⇒ α1c+
α2

2
c2 + log

p

1− p
− log

c

1− c
= 0

⇐⇒ ϕ′(c) = 0. (3.75)

�

Lemma 3.10. Let λ and ϕ be defined as in Equation (3.14) and Equation (3.71). Suppose

ϕ′(c) = 0. Then ϕ′′(c) > 0 ⇐⇒ λ′(c) > 1, ϕ′′(c) < 0 ⇐⇒ λ′(c) < 1, and

ϕ′′(c) = 0 ⇐⇒ λ′(c) = 1.

Proof. Suppose ϕ′(c) = 0. From Lemma 3.9, λ(c) = c. Therefore

λ′(c) = c(1− c) (α1 + α2c) . (3.76)

The claim readily follows since

ϕ′′(c) = α1 + α2c−
1

c(1− c)
. (3.77)

�

Using a conductance argument whose idea goes back at least to Griffiths et al. [37],

we now show that in the region where ϕ(c) has at least two local maximizers, the mixing

time for the Glauber dynamics is at least exponential. In the language of λ, this establishes

exponentially slow mixing of the Glauber dynamics when λ(c) = c has at least two solu-

tions c satisfying λ′(c) < 1. Recall the Cheeger constant or bottleneck ratio of a Markov
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chain with stationary distribution π as

Φ∗ = min
S⊆X : π(S)≤1/2

Q(S, Sc)

π(S)
, (3.78)

where S is a set in the configuration space and Q is the edge measure given by

Q(X, Y ) = π(X)P (X, Y ) and Q(A,B) =
∑

X∈A,Y ∈B

Q(X, Y ). (3.79)

Recall that P (X, Y ) defined in Equation (3.8) is the transition probability from configura-

tion X to configuration Y , and so Q(A,B) is the probability of moving from set A to set

B in one step of the chain when starting from the stationary distribution.

Theorem 3.11. In the low-temperature phase, the mixing time for the Glauber dynamics is

eΩ(n).

Proof. Notice that ϕ′(c) → ∞ as c → 0 and ϕ′(c) → −∞ as c → 1, so the local

maximizers of ϕ are contained in (0, 1). Let c1 be the smallest and c2 be the largest local

maximizer of ϕ where c1 6= c2. There exists ε > 0 such that for all c < c1 and c1 < c ≤

c1 + ε, ϕ(c) < ϕ(c1), while for all c2 − ε ≤ c < c2 and c > c2, ϕ(c) < ϕ(c2), with

c1 + ε < c2 − ε. Define the following two sets

S1 = {A0, . . . , Ab(c1+ε)nc} (3.80)

and

S2 = {Ab(c2−ε)nc, . . . , An}. (3.81)

For n large enough, S1 ∩ S2 = ∅, Ab(c1+ε)nc 6= Abc1nc, and Ab(c2−ε)nc 6= Abc2nc. Since S1

and S2 are disjoint, at least one of them has probability bounded above by 1/2. Without
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loss of generality, suppose S1 is such that π(S1) ≤ 1
2
. Then

Φ∗ ≤
Q(S1, S

c
1)

π(S1)
=

1

π(S1)

b(c1+ε)nc∑
i=0

∑
X∈Ai

π(X)
n∑

j=b(c1+ε)nc+1

∑
Y ∈Aj

P (X, Y ). (3.82)

Since a single step of the Glauber dynamics only changes the value of the normalized

magnetization by at most 1/n, the only non-zero transition probability in Equation (3.82)

is the transition from Ab(c1+ε)nc to Ab(c1+ε)nc+1. It follows that

Φ∗ ≤
1

π(S1)

b(c1+ε)nc∑
i=0

∑
X∈Ai

π(X) ≤
π(Ab(c1+ε)nc)

π(Abc1nc)

=
ab(c1+ε)nc

abc1nc
� enϕ(c1+ε)

enϕ(c1)
= en(ϕ(c1+ε)−ϕ(c1)), (3.83)

where the asymptotics are derived in Lemma 3.8. Define δ > 0 as

δ = (ϕ(c1)− ϕ(c1 + ε)) /2.

Then the bottleneck ratio satisfies Φ(S1) ≤ e−δn. Using Theorem 7.3 of [45],

tmix ≥
1

4Φ∗
≥ eδn

4
= eΩ(n). (3.84)

�

Call a Markov chain local if at most o(n) vertices are selected in each step. The argu-

ment used in the proof of Theorem 3.11 actually shows that in the low-temperature phase,

the mixing is exponentially slow for any local Markov chain, with the (single-site) Glauber

dynamics being one such instance. We remark that there is a difference in the qualitative

nature of the phase transition investigated in this section as compared with that in the stan-

dard statistical physics literature. While the asymptotic phase transitions in the rigorous
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statistical physics sense occur at parameter values giving non-unique global maximizers

of the free energy density, the asymptotic transition from high-temperature phase to low-

temperature phase arises as a consequence of the non-uniqueness of local maximizers for

the free energy density. This discrepancy may not come as a surprise, since in simulations it

is often hard to distinguish between a local maximizer and a global maximizer and the algo-

rithm may become trapped at a local maximizer; one solution might be to add controlled

moves based on network geometry.

3.5 Slower burn-in along critical curve

In this section we study the mixing time of the Glauber dynamics along the critical

curve, corresponding to parameters for which λ(c) = c admits a unique solution c with

λ′(c) = 1. We first identify explicitly the high-temperature vs. low-temperature phase. As

explained in Section 3.4, the two phases may be alternatively determined by whether there

is a unique local maximizer for ϕ defined in Equation (3.71). The phase identification thus

reduces to a 3-dimensional intricate calculus problem. Though it sounds straightforward,

various tricks are needed to solve it analytically. The crucial idea is to minimize the effect

of the parameters p, α1, α2 on the free energy density ϕ one by one. (See [72] for more

details of the calculation in a related model.) Denote by l(c) := ϕ(c)− log(1− p).

Proposition 3.12. Fix α2. Consider the maximization problem for

lα2(c; p, α1) =

(
log

p

1− p

)
c+

α1

2
c2 +

α2

6
c3 − c log c− (1− c) log(1− c) (3.85)

on the interval [0, 1], where 0 < p < 1 and −∞ < α1 <∞ are parameters. Then there is a

V-shaped region in the (p, α1)-plane with corner point (pc, αc1),

pc =

c̄ exp

(
4c̄−3

2(1−c̄)2

)
c̄ exp

(
4c̄−3

2(1−c̄)2

)
+ (1− c̄)

, (3.86)
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αc1 =
2− 3c̄

c̄(1− c̄)2
, (3.87)

where c̄ is uniquely determined by

α2 =
2c̄− 1

c̄2(1− c̄)2
. (3.88)

Outside this region, lα2(c) has only one local maximizer c∗. Inside this region, lα2(c) has

exactly two local maximizers c∗1 and c∗2.

Proof. The location of maximizers of lα2(c) on the interval [0, 1] is closely related to the

properties of its derivatives:

l′α2
(c) = log

p

1− p
+ α1c+

α2

2
c2 − log

c

1− c
,

l′′α2
(c) = α1 + α2c−

1

c(1− c)
,

l′′′α2
(c) = α2 +

1− 2c

c2(1− c)2
. (3.89)

We check that l′′′α2
(c) is monotonically decreasing on [0, 1], l′′′α2

(0) =∞, and l′′′α2
(1) = −∞.

Thus there is a unique c̄ in (0, 1) such that l′′′α2
(c̄) = 0, with l′′′α2

(c) > 0 for c < c̄ and

l′′′α2
(c) < 0 for c > c̄. Since the correspondence between α2 and c̄ is one-to-one, we may

describe α2 by Equation (3.88).

This implies that l′′α2
(c) is increasing from 0 to c̄, and decreasing from c̄ to 1, with the

global maximum achieved at c̄, where

l′′α2
(c̄) = α1 +

3c̄− 2

c̄(1− c̄)2
. (3.90)
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Let αc1 be defined as in Equation (3.87) so that l′′α2
(c̄;αc1) = 0. It follows that for α1 ≤ αc1,

l′′α2
(c) ≤ 0 on the entire interval [0, 1]; whereas for α1 > αc1, l

′′
α2

(c) takes on both positive

and negative values, and we denote the transition points by c1 and c2 (c1 < c̄ < c2). For

fixed α2, c1 and c2 are solely determined by α1, and vice versa. Let m(c) = α1 − l′′α2
(c) so

that α1 = m(c1) = m(c2). We have m(0) = m(1) = ∞,m(c) is decreasing from 0 to c̄,

and increasing from c̄ to 1.

We proceed to analyze properties of l′α2
(c) and lα2(c) on the interval [0, 1]. For α1 ≤

αc1, l
′
α2

(c) is monotonically decreasing. For α1 > αc1, l
′
α2

(c) is decreasing from 0 to c1,

increasing from c1 to c2, then decreasing again from c2 to 1. We write down the explicit

expressions of l′α2
(c1) and l′α2

(c2):

l′α2
(c1) = log

p

1− p
+

1

1− c1

− log
c1

1− c1

+
1− 2c̄

2c̄2(1− c̄)2
c2

1,

l′α2
(c2) = log

p

1− p
+

1

1− c2

− log
c2

1− c2

+
1− 2c̄

2c̄2(1− c̄)2
c2

2. (3.91)

Notice that lα2(c) is a bounded continuous function, l′α2
(0) = ∞, and l′α2

(1) = −∞, so

lα2(c) cannot be maximized at 0 or 1. For α1 ≤ αc1, l
′
α2

(c) crosses the c-axis only once,

going from positive to negative. Thus lα2(c) has a unique local maximizer c∗ = c̄. For

α1 > αc1, the situation is more complicated. If l′α2
(c1) ≥ 0 (resp. l′α2

(c2) ≤ 0), lα2(c) has

a unique local maximizer at a point c∗ > c2 (resp. c∗ < c1). If l′α2
(c1) < 0 < l′α1

(c2), then

lα2(c) has two local maximizers c∗1 and c∗2, with c∗1 < c1 < c̄ < c2 < c∗2.

Let

n(c) =
1

1− c
− log

c

1− c
+

1− 2c̄

2c̄2(1− c̄)2
c2 (3.92)
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so that l′α2
(c1) = log(p/(1 − p)) + n(c1) and l′α2

(c2) = log(p/(1 − p)) + n(c2). We have

n(0) =∞, n(1) =∞, with derivative n′(c) given by

n′(c) = c

(
1− 2c̄

c̄2(1− c̄)2
− 1− 2c

c2(1− c)2

)
= c

(
l′′′α2

(c̄)− l′′′α2
(c)
)
. (3.93)

As l′′′α2
(c) is monotonically decreasing on [0, 1], n(c) is decreasing from 0 to c̄, and increas-

ing from c̄ to 1, with the global minimum achieved at c̄,

n(c̄) =
1

1− c̄
− log

c̄

1− c̄
+

1− 2c̄

2(1− c̄)2
. (3.94)

This implies that l′α2
(c1; p, αc1) ≥ 0 for p ≥ pc where pc is defined in Equation (3.86). The

only possible region in the (p, α1)-plane where l′α2
(c1) < 0 < l′α1

(c2) is thus bounded by

p < pc and α1 > αc1.

Finally, we analyze the behavior of l′α1
(c1) and l′α1

(c2) more closely when p and α1 are

chosen from this region. Recall that c1 < c̄ < c2. By monotonicity of n(c) on the intervals

(0, c̄) and (c̄, 1), there exist continuous functions a(p) and b(p), such that l′α2
(c1) < 0 for

c1 > a(p) and l′α2
(c2) > 0 for c2 > b(p). As p → 0, a(p) → 0 and b(p) → 1. a(p) is

an increasing function, whereas b(p) is a decreasing function, and they satisfy n(a(p)) =

n(b(p)) = −p. The restrictions on c1 and c2 yield restrictions on α1, and we have l′α2
(c1) <

0 for α1 < m(a(p)) and l′α2
(c2) > 0 for α1 > m(b(p)). As p → 0,m(a(p)) → ∞ and

m(b(p)) → ∞. m(a(p)) and m(b(p)) are both decreasing functions of p and they satisfy

l′α2
(c1; p,m(a(p)) = l′α2

(c2; p,m(b(p)) = 0. As l′α2
(c2; p, α1) > l′α2

(c1; p, α1) for every

(p, α1), the curve m(b(p)) must lie below the curve m(a(p)), and together they generate

the bounding curves for the V-shaped region in the (p, α1)-plane with corner point (pc, αc1)

where two local maximizers exist for lα2(c). �
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From Proposition 3.12, the critical curve is traced out by (pc, αc1, α2) defined in Equa-

tions (3.86) to (3.88), where we take 1/2 ≤ c̄ = c∗ ≤ 2/3 to meet the non-negativity

constraints on αc1 and α2. See Figure 3.3. We delve deeper into the behavior of the func-

tion λ defined in Equation (3.14) along the critical curve. To lighten the notation, we

denote the associated parameters by (p, α1, α2), and the unique local maximizer by c∗ with

1/2 ≤ c∗ ≤ 2/3.

Lemma 3.13. Along the critical curve, we have

(1) λ(c∗) = c∗, λ′(c∗) = 1, λ′′(c∗) = 0, and λ′′′(c∗) ≤ −8.

(2) λ′′(c) ≤ 0 for c ≥ c∗, and λ′′(c) ≥ 0 for c ≤ c∗.

Proof. The first claim follows from direct computation. We spell out some details. It is

clear that λ(c∗) = c∗. Letting A = p exp(α1c + α2

2
c2)/(1 − p), we write λ’s first few

derivatives as

λ′(c) =
α1 + α2c

1 + A
λ(c),

λ′′(c) = λ(c)
α2

1 + A
+ (1− A)

λ′(c)2

λ(c)
,

λ′′′(c) = λ′(c)
α2

1 + A
− α2λ(c)λ′(c) + 2(1− A)

λ′(c)λ′′(c)

λ(c)

− (1− A)
λ′(c)3

λ(c)2
− (α1 + α2c)A

λ′(c)2

λ(c)
. (3.95)

Substituting the parameter values in Equations (3.86) to (3.88) yields λ′(c∗) = 1, λ′′(c∗) =

0, and

λ′′′(c∗) =
−6(c∗)2 + 6(c∗)− 2

(c∗)2(1− c∗)2
≤ −8. (3.96)
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For the second claim, we show that for c ≥ c∗, λ′′(c) ≤ 0. The parallel claim may be

verified using a similar line of reasoning. As derived previously,

λ′′(c) =
A

(1 + A)3

(
(1 + A)α2 + (1− A)(α1 + α2c)

2
)
. (3.97)

Notice that λ′′(c) ≤ 0 precisely when

α2 + (α1 + α2c)
2

(α1 + α2c)2 − α2

≤ A, (3.98)

where equality holds when c = c∗. For c increasing from c∗, A is increasing whereas the

left hand of the above inequality is decreasing. Our claim thus follows. �

By Lemma 3.13, the expected magnetization drift (λ(c∗) − c∗)/n (Equation (3.15))

drops from first order to third order along the critical curve as compared with other param-

eter regions. As a result, we anticipate that the burn-in will be slower. The following

Theorem 3.14 establishes an upper bound. Utilizing coupling techniques from Levin et al.

[44] with minor adaptation, anO(n2/3) mixing of the Glauber dynamics is further expected.

For details, see Lemma 2.9 and Theorem 4.1 of [44].

Theorem 3.14. Along the critical curve, the burn-in time for the Glauber dynamics is

O(n3/2).

Proof. From Lemma 3.1,

E(ct+1 − c∗ | ct − c∗) =
1

n
(λ(ct)− λ(c∗)) +

(
1− 1

n

)
(ct − c∗) +O

(
1

n2

)
. (3.99)

Let et = ct − c∗ and define g(et) = λ(et + c∗)− λ(c∗). Then

E(|et+1| | et) =
1

n
g(|et|) +

(
1− 1

n

)
|et|+O

(
1

n2

)
for et ≥ 0,
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E(|et+1| | et) = − 1

n
g(−|et|) +

(
1− 1

n

)
|et|+O

(
1

n2

)
for et < 0. (3.100)

Define τ0 = min{t ≥ 0 : |et| ≤ 1/n}. Note that et does not change sign when t < τ0.

Multiplying both sides of Equation (3.100) by the indicator function 1{τ0>t} and using that

g(0) = 0 and 1{τ0>t+1} ≤ 1{τ0>t}, we have

E
(
|et+1|1{τ0>t+1} | et

)
≤ 1

n
g
(
|et|1{τ0>t}

)
+

(
1− 1

n

)
|et|1{τ0>t} +O

(
1

n2

)
,

E(|et+1|1{τ0>t+1} | et) ≤ −
1

n
g(−|et|1{τ0>t})+

(
1− 1

n

)
|et|1{τ0>t}+O

(
1

n2

)
. (3.101)

Let θ+
t = E

(
|et|1{τ0>t}

)
. By Lemma 3.13, g(e) ≤ 0 for e ≥ 0 and g(e) ≥ 0 for e ≤ 0,

g is concave down on the non-negative axis and concave up on the negative axis. Taking

expectation of both sides of Equation (3.101) and applying Jensen’s inequality on g,

θ+
t+1 − θ+

t ≤ −
1

n

(
θ+
t − g(θ+

t )
)

+O

(
1

n2

)
,

θ+
t+1 − θ+

t ≤ −
1

n

(
g(−θ+

t )−
(
−θ+

t

))
+O

(
1

n2

)
. (3.102)

Let µ > 0 and suppose that θ+
t ≥ µ. As in the proof of Theorem 3.2, by the extreme

value theorem, there exists γ(µ) > 0 such that

θ+
t+1 − θ+

t ≤ −
γ(µ)

n
. (3.103)
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Utilizing the negative drift−γ(µ)/n, there exists a time t∗ = O(n) so that θ+
t ≤ 1/4 for all

t ≥ t∗. Consider the Taylor series expansion of g(θ+
t ) and g(−θ+

t ) and using Lemma 3.13:

g(θ+
t ) = λ′(c∗)θ+

t +
λ′′(c∗)

2
(θ+
t )2 +

λ′′′(d1)

6
(θ+
t )3 ≤ θ+

t −
4

3
(θ+
t )3,

g(−θ+
t ) = −λ′(c∗)θ+

t +
λ′′(c∗)

2
(θ+
t )2 − λ′′′(d2)

6
(θ+
t )3 ≥ −θ+

t +
4

3
(θ+
t )3, (3.104)

where d1 ∈ [c∗, c∗ + θ+
t ] and d2 ∈ [c∗ − θ+

t , c
∗]. Then it follows that

θ+
t+1 ≤ θ+

t −
4

3n
(θ+
t )3 +O

(
1

n2

)
(3.105)

for t ≥ t∗.

The remainder of the proof follows analogously as in the proof of Theorem 4.1 in [44].

For some c,

lim
c→∞

P
(
τ0 > cn3/2

)
= 0 (3.106)

uniformly in n, which implies that the Glauber dynamics may be coupled so that the mag-

netizations agree in O(n3/2) time steps. �

3.6 Generalizations and future work

Numerous extensions can be made about these vertex-weighted exponential models.

We started the discussion with the edge-triangle lattice gas (Ising) model, but clearly more

complicated subgraph densities can be considered. Denote by Kk a complete graph on k

vertices so that an edge is K2 and a triangle is K3. For consistency, denote by C0 = 1,

C1 = S(X, i), and C2 = T (X, i). As in Equation (3.7), the crucial quantity

Cm(X, i) =
∑

i 6=i1 6=i2 6=... 6=im

Xi1Xi2 · · ·Xim (3.107)
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satisfies Cm =
(
C1

m

)
, which may be justified by noting that a term in the sum defining

Cm has value 1 if and only if every vertex in the product has spin 1. Moving on, we

have employed a discrete-time update of the network, but the network may be updated on a

continuous-time basis, and this may be realized by posing iid Poisson clocks and examining

the corresponding heat kernel. More significantly, rather than the simplifying assumption

that a person is either interested or not in building a friendship, in reality a person probably

has different levels of interest in forming a connection, and an edge is placed between two

people when the joint interest exceeds a certain threshold value. Also, in social networks

people have diverse attributes; only people with the same attribute or those with more than

a specified number of attributes will establish a tie, which will fall within the regime of the

random cluster model and multilayer networks. All these extensions are quite challenging

both theoretically and computationally, especially when network geometry comes into play,

but we hope to address at least some of them in future work.

After we gain an understanding of the small-world observed structure of big network

data using Markov chain dynamics, we may use this knowledge for the prediction and con-

trol of general spreading processes on large-scale networks. These processes include the

social influence of opinions, users’ decisions to adopt products, and epidemic intervention

strategies, etc. To illustrate, we return to information diffusion over Twitter mentioned at

the beginning of this section. Updating the weight of a vertex corresponding to a celebrity

or a news source will definitely have more impact than that for ordinary people. So instead

of running the Glauber dynamics that chooses a vertex at random, we choose the “hubs” of

the network to update. This selective procedure decreases the mixing time and drives the

spreading dynamics more efficiently towards equilibrium. Other properties of the chains

may be studied simultaneously. For example, the cover time of the network may be inter-

preted as a realization of a “web crawl”, and the hitting time may be interpreted as the

necessary local queries to determine the global connectivity.
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Chapter 4: Parking functions and orders on Coxeter systems

4.1 Introduction

We now turn our focus to the second topic of this dissertation and begin by briefly

recalling the theory of parking functions, introduced in various contexts in [43, 56, 62];

see [71] for a comprehensive survey. Consider a parking lot with n parking spots placed

sequentially along a one-way street. A line of n labelled cars enter the street, one by one,

beginning with car 1 and ending with car nwhere each car has a spot in which they prefer to

park, denoted a(i). The ith car drives to its preferred spot a(i) and parks there if it is open;

if the spot is already occupied then the car parks in the first available spot after a(i). The

list of preferences a = (a(1), . . . , a(n)) is called a parking function if all cars successfully

park; in this case the outcome is the permutation O(a) = x = (x(1), . . . , x(n)), where the

ith car parks in spot x(i). It is well-known that there are (n + 1)n−1 parking functions of

length n.

4.1.1 Overview. Parking functions were first defined by Konheim and Weiss [43] while

researching computer storage as a way to study hash functions. Over the years, they have

become an interesting and well established area of combinatorics research in their own

right. In fact, parking functions have become a central object of study in combinatorics with

connections to labelled trees, non-crossing partitions, lattice paths, the Shi arrangement,

and other topics [43, 66, 71, 65]. There are also many extensions of classical parking

functions that have been studied as well such as u-parking functions, G-parking functions,

parking with variable size cars, etc [71, 55, 31].
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In this section, we study a generalization of parking functions in which the ith car is

willing to park only in the discrete interval

Ja(i), b(i)K = {a(i), a(i) + 1, . . . , b(i)} ⊆ {1, . . . , n}.

If all cars can successfully park then we say that the pair

(a, b) = ((a(1), . . . , a(n)), (b(1), . . . , b(n)))

is an interval parking function, or IPF, of length n. Note that if b(i) = n for all i, then we

recover the classical case described above. It is easy to show that there are n!(n+1)n−1 IPFs

of length n, and that if (a, b) is an IPF then the sequences a and b∗ = (n+1−b(n), . . . , n+

1 − b(1)) must both be parking functions, raising the question of the relationship between

the permutationsO(a) andO(b∗). Both of these facts are stated and proven in Section 4.1.3.

We say that a pair of permutations (x, y) ∈ Sn × Sn is reachable, written x �R y,

if there exists an IPF (a, b) such that x = O(a) and y∗ = O(b∗). Reachability is not a

partial order on Sn because it is not transitive; however, its transitive closure is a partial

order, which we call the pseudoreachability order. One of the main results of this section is

that the pseudoreachability order on Sn is precisely the bubble-sort order on Sn (see [13,

Example 3.4.3]), which in turn is an instance of the more general sorting order defined by

Armstrong for Coxeter systems [9]. In particular, pseudoreachability lies between Bruhat

and (left) weak order in Sn, and it is a self-dual distributive lattice, poset-isomorphic to the

product C2 × · · · × Cn, where Ci denotes the chain with i elements.

We also investigate connections between reachability and pattern avoidance conditions

on the permutations x and y. Section 5.5 contains partial results in this direction: Theo-

rems 5.12 and 5.16 give sufficient conditions for a pair (x, y) to be reachable, provided that

x ≥B y where ≥B is the Bruhat order on Sn. We will introduce and discuss some prelim-
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inaries of this order in Section 4.4.3. Finally, we conjecture that the number of reachable

pairs (x, y) ∈ Sn×Sn gives, what we believe to be, the first combinatorial interpretation of

a certain analytically defined exponential generating function; the details are in Section 5.6.

4.1.2 Preliminaries. Double square brackets denote discrete integer intervals. Define

Jm,nK = {m, . . . , n} for m,n ∈ Z and JnK = J1, nK.

Lists of positive integers (including permutations) will be regarded as functions, so

we will write a = (a(1), . . . , a(n)) rather than a = (a1, . . . , an). Thus notation such as

x Ja, bK is the image of the discrete interval Ja, bK under the function x; therefore, x Ja, bK =

{x(a), x(a + 1), . . . , x(b)}. To simplify notation, we sometimes drop the parentheses and

commas: e.g., 2431 = (2, 4, 3, 1).

Let a = (a(1), . . . , a(n)) and b = (b(1), . . . , b(n)) ∈ Zn. We write a ≤C b if a(i) ≤

b(i) for all i ∈ JnK; this is the componentwise partial order on Zn. The reverse complement

of x ∈ JnKn is the vector x∗ = (n+1−x(n), . . . , n+1−x(1)). Reverse complementation

is an involution that reverses componentwise order. Specifically, (x∗)∗ = x and x ≤C

y ⇐⇒ y∗ ≤C x∗ for all x, y ∈ Zn.

4.1.3 Parking functions and interval parking functions. We now recall some facts

about parking functions before proceeding to our central object of study. Let a ∈ JnKn

be a list of parking preferences. Algorithm 1 defines a O(n2) parking procedure to deter-

mine whether a list of preferrences a is a parking function. Note that if a is a parking

function, the algorithm can easily be amended to return the outcome as well.

If Algorithm 1 succeeds in parking every car, then the preference vector a is called a

parking function. The set of all parking functions a = (a(1), . . . , a(n)) is denoted PFn. It

is well known that |PFn | = (n+1)n−1. This was first proven by Konheim and Weiss [43] in

their paper defining parking functions by analytic methods. A shorter, more elegant proof

due to Pollack was presented by Riordan [62]. Roughly speaking, Pollack’s proof proceeds

as follows. In addition to the original n spaces, another space is added and the n + 1
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Algorithm 1 Parking Procedure A
1: procedure PARK(a)
2: Initialize list of open spaces
3: for i = 1, . . . , n do
4: Try to park car i in spot a(i)
5: while car i has not parked do
6: if car i tries spot j and spot j is open then
7: remove spot j from list of open spaces
8: else
9: move on to spot j + 1

10: end if
11: end while
12: if car i has reached the end of the street then
13: return False
14: end if
15: end for
16: return True
17: end procedure

spaces are arranged clockwise in a circle. The cars enter the street with preferred spaces

1, 2, . . . , n, n + 1 and the n + 1-st space is treated like any other preference. Cars begin

at space 1 and move clockwise around the circle until they park in the first available space

at or after their desired space. Since there are n + 1 spaces and n cars, every preference

sequence leaves 1 space unoccupied. Suppose that (a1, . . . , an) is a preference sequence

where preferences are chosen from J1, n+ 1K. Then there exists a unqiue j ∈ J1, n+ 1K

such that

((a1 + j, . . . , an + j) (mod n+ 1)) + 1

is a parking function. There are (n + 1)n possible preference sequences and, due to sym-

metry, 1/(n+ 1) of them leave the n+ 1-st space unoccupied. Therefore

|PFn | =
(n+ 1)n

(n+ 1)
= (n+ 1)n−1.
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In fact, an equivalent characterization to all cars with preference list a parking is that ã(i) ≤

i for all i where ã is the non-decreasing rearrangement of a. We state and prove this well-

known fact here for thoroughness of exposition.

Proposition 4.1. a ∈ JnKn is a parking function if and only if ã(i) ≤ i for all i ∈ JnK.

Proof. Let a ∈ JnKn and assume that there exists an i ∈ JnK such that ã(i) > i. Then there

are n + 1 − i cars in a that will try to park in the last n + 1 − ã(i) < n + 1 − i spots,

therefore a cannot be a parking function. Conversely, assume that the parking preference

list a ∈ JnKn does not permit all cars to park. Let j be the empty spot with the smallest

index. We know that at least n+1−j cars preferred parking in the last n−j spots, therefore

ã(j) ≥ j + 1 > j. �

This leads to the characterization of the set of parking functions of length n as

PFn = {a ∈ JnKn : ã(i) ≤ i ∀i}.

In particular, every rearrangement of a parking function is a parking function. Thus we can

use this characterization to write a shorter algorithm to determine whether a is a parking

function. Since the keys in a are in the range J1, nK, we can use counting sort to acheive

O(n) worst case run time.

Algorithm 2 Parking Procedure B
1: procedure PARK(a, n)
2: for i = 1, . . . , n do
3: if sorted a(i) > i then
4: return False
5: end if
6: end for
7: return True
8: end procedure
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In fact, we can take advantage of the proof that there are (n+ 1)n−1 parking functions

of length n and Proposition 4.1 to give a procedure that returns a uniformly random parking

function. We note that this fact is known and appears in Diaconis and Hicks [28].

Algorithm 3 Generate Random Parking Function
1: procedure RANDPARK(n)
2: Generate uniformly random a ∈ Znn+1

3: while not PARK(a, n) do
4: a← a+ (1, . . . , 1) (mod n+ 1)
5: end while
6: return a+ (1, . . . , 1)
7: end procedure

From our informal proof of the number of parking functions of length n, there exists a

unique j such that

((a1 + j, . . . , an + j) (mod n+ 1)) + 1

is a parking function. Therefore the while loop executes at most n + 1 times and we have

a linear time algorithm to generate a random parking function.

We now modify Algorithm 1 to obtain our central object of study. Again, consider a

parking lot with n parking spots placed sequentially along a one-way street. Now each car

has space they prefer to park in, a(i), as well as a spot after which they refuse to park, b(i).

A line of n labelled cars enter the street, one by one, beginning with car 1 and ending with

car n where each car has a spot in which they prefer to park, denoted a(i). The ith car

drives to its preferred spot a(i) and parks there if it is open; if the spot is already occupied

then the car parks in the first available spot after a(i) before spot b(i) + 1. The pair (a, b) is

called an interval parking function if all cars successfully park

Definition 4.1. If Algorithm 4 succeeds in parking every car, then c = (a, b) is called an

interval parking function of length n, or IPF. The set of all interval parking functions for n

cars is denoted IPFn. The feasible interval for the ith car is Ja(i), b(i)K.
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Algorithm 4 Interval Parking Procedure
1: procedure INTERVALPARK(a, b)
2: Initialize list of open spaces
3: for i = 1, . . . , n do
4: Try to park car i in spot a(i)
5: while car i has not parked do
6: if car i tries spot j and spot j is open then
7: remove spot j from list of open spaces
8: else
9: move on to spot j + 1

10: end if
11: end while
12: if car i has reached spot b(i) + 1 or the end of the street then
13: return False
14: end if
15: end for
16: return True
17: end procedure

For example,

IPF2 = {(11, 12), (11, 22), (12, 12), (12, 22), (21, 21), (21, 22)}.

Unlike ordinary parking functions, IPFs are not invariant under the action of S2 by per-

muting cars. For example, (11, 12) is an IPF but (11, 21) is not.

4.2 Properties of interval parking functions

Proposition 4.2. Let a, b ∈ [n]n. Then:

1. a ∈ PFn if and only if (a, (n, . . . , n)) ∈ IPFn.

2. (a, b) ∈ IPFn if and only if a ∈ PFn and O(a) ≤C b.

Proof. For (1), if b(i) = n for all i then Algorithm 4 is identical to Algorithm 1. For (2), if

the given conditions hold, then the execution of Algorithm 4 mimics that of Algorithm 1.

On the other hand, if a is not a parking function, then some car will not find a spot, while

if O(a) 6≤C b then some car will not find a spot in its own feasible interval. �
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As a consequence of the proof of Proposition 4.2 2, the outcome O(c) of c = (a, b)

is just O(a). Moreover, for every a ∈ PFn, there are precisely n! choices for b such that

(a, b) ∈ IPFn. In particular,

|IPFn| = n!(n+ 1)n−1. (4.1)

Proposition 4.3. Let c = (a, b) ∈ IPFn. Then

1. a ≤C O(c) ≤C b,

2. b∗ ∈ PFn, and

3. O(b∗)∗ ≤C b.

Proof. 1. Evidently a ≤C O(c) ≤C b based on Algorithm 4.

2. SinceO(c) ≤C b, b∗ ≤C O(c)∗ andO(c)∗ is a permutation, therefore b∗ is a parking

function.

3. By (1), b∗ is a parking function. Thus b∗ ≤C O(b∗). Conjugation reverses the order

≤C and is an involution, so O(b∗)∗ ≤C (b∗)∗ = b. �

4.3 Coxeter groups

Before moving on to the main results of interval parking functions, we recall some

facts about Coxeter groups and various partial orders that are significant in the combina-

torics of Coxeter groups. Coxeter groups are important mathematical objects that lie in the

intersection of algebraic geometry, group theory, and combinatorics, as well as the theory

of partially ordered sets and lattices. Informally speaking, Coxeter groups, named after the

geometer H. S. M. Coxeter, are abstract groups where the relations between generators are

written in terms of reflections. Formally, let S be a set of generators where

S = {r1, . . . , rn}.
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A Coxeter group is a group W with presentation

〈r1, . . . , rn | (rirj)mij = 1〉

where mii = 1 and mij ≥ 2 for all i 6= j. It is permissible that mij = ∞, this convention

implies that there is no relation of the form (rirj)
m = 1 for any m. The pair (W,S) is

referred to as a Coxeter system.

We will be limiting ourselves to studying the symmetric group, Sn, as a Coxeter system

of type An−1. In particular, we are concerned with the symmetric group with generators

S = {s1, . . . , sn−1}

given by adjacent transpositions, si = (i, i+ 1), and presentation

〈
s1, . . . , sn−1 | (si si)1 = 1, (si si+1)3 = 1, (si sj)

2 = 1 for all |i− j| > 1
〉
.

It will also be helpful to have a notation for any transposition of two elements i and j, we

denote this tij . With this notation, we have si = ti,i+1. We will write permutations as words

in S. Note that there are infinitely many ways that one could write an element x ∈ Sn as a

word in S. For example, 2143 ∈ S4 can be written as

s1s3 = s1s2s2s3 = s2s3s2s3s2s3s1s3,

and in many other, even more inefficient, ways. The length of the word w, denoted `(w), is

defined to be the length of the smallest word for w in S. A word of length `(w) is a reduced

word for w. For the example of w = 2143, the word s1s3 is a reduced word for w, as is

s3s1, and `(w) = 2.
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4.4 Partial orders on Coxeter systems

Our interest in the symmetric group as a Coxeter system lies mainly in the theory of

partial orders on Sn. First we recall some facts about partial orders and Sn. If > is a

partial ordering on a set S, then m denotes a covering relation. Recall that x m y is a

covering relation if x > y and there exists no z such that x > z > y. Furthermore, if >1

is a partial order at least as strong as >2, that is, x >2 y implies x >1 y, then x >2 y and

xm1 y together imply xm2 y.

The symmetric group of all permutations of JnK is denoted by Sn. We will as far

as possible follow the notation and terminology for the symmetric group used in [13].

We set e = (1, . . . , n) (the identity permutation) and w0 = (n, n − 1, . . . , 1). Note that

permutations in this section are written in one-line notation. The permutation transposing

i and j and fixing all other values is denoted tij , and we set si = ti,i+1. The elements

s1, . . . , sn−1 are the standard generators for Sn. Our convention for multiplication is right

to left, which is consistent with treating permutations as bijective functions JnK → JnK.

Thus tijx is obtained by transposing the digits i, j wherever they appear in x, while xtij is

obtained by transposing the digits in the ith and jth positions.

Recall that a graded poset is a partially ordered set, (P,>) equipped with a rank func-

tion ρ : P → N that satisfies

• ρ(x) < ρ(y) whenever x < y, and

• ρ(y) = ρ(x) + 1 whenever y covers x.

For our purposes, we will be concerned with Sn and rank function ` : Sn → N where

`(x) = |{(i, j) : x(i) > x(j) where 1 ≤ i < j ≤ n}| . (4.2)
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This notion of length coincides with the word length from above and counts the number of

inversions in a permutation. In our study of IPF’s, we will encounter three different partial

orders on Sn: the weak order, sorting order, and Bruhat order.

4.4.1 Weak order.

Definition 4.2. The left weak order, denoted ≥W , is the transitive closure of the relations

u > siu whenever `(u) > `(siu).

There is also a right weak order that is analogously defined as u > usi whenever

`(u) > `(usi). It turns out that the resulting posets are isomorphic and so we will restrict

ourselves to considering the left weak order and may refer to it simply as the weak order.

With ` as the rank function, (Sn,≥W ) is a graded poset with top element w0 and bottom

element e.

4.4.2 Sorting order. In 2009, Armstrong introduced a family of partial orders on an arbi-

trary Coxeter system collectively referred to as sorting orders. We briefly describe this

family of partial orders, for more details see [9]. Let

S∗ = S0 ∪ S1 ∪ S2 ∪ · · · ∪ S∞

be the collection of all finite and semi-infinite words in S, where Sn is the set of all words

of length n in S and S∞ is the set of all semi-infinite words in S. Given an arbitrary word

ω ∈ S∗, let Wω ⊆ W be the set of group elements that appear as subwords of ω. The word

ω is referred to as the sorting word. For every subword α of ω we identify α with its index

set I(α) ⊆ I(ω), where I(α) describes the positions of the letters of α in ω. For every

element w ∈ Wω, let sortω(w) denote the reduced word for w that is lexicographically first

among subwords of ω. The word sortω(w) is referred to as the ω-sorted word of w.
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Definition 4.3. The ω-sorting order, denoted ≥ω, on Wω is defined as u ≥ω w if

I(sortω(w)) ⊆ I(sortω(u)).

One nice consequence of this definition is that for any sorting word ω ∈ S∗, there exists

a reduced subword ω′ of ω such that the ω′-sorting order and the ω-sorting order coincide.

Example 4.1. Consider S4 and let ω = s1s2s3s1s2s1. Note that ω is a reduced word for

the permutation 4321. Then I(ω) = {1, 2, 3, 4, 5, 6}. For the permutation α = 3241, the

ω-sorting word for α is sortω(α) = s1s2s3s1 and I(sortω(α)) = {1, 2, 3, 4}.

An intuitive way to think about the sorting order is that we want to convert a group

element α−1 ∈ Wω into the identity element and sortω(α) records the steps in the process.

As previously stated, we will study how a specific sorting order on Sn relates to outcomes

interval parking functions. Let

ωn = (s1s2 · · · sn−1)(s1s2 · · · sn−2) · · · (s1s2)(s1),

a reduced word for w0 ∈ Sn, where certain consecutive subwords have been grouped for

clarity. This grouping will be convenient later on as well. Note that in this case,Wωn = Sn.

The particular sorting order we are interested in is the ωn-sorting order on Sn, this also

referred to as the bubble sorting order because it coincides with the sequence of steps

one takes to sort an array of numbers using the bubble sort algorithm, the popular, albeit

inefficient, sorting algorithm one commonly learns in a first course in computer science. In

particular, the ωn-sorting order is a graded lattice that is strictly between the weak order and

the Bruhat order. In particular, for x, y ∈ Sn, we have the following string of implications

x ≥W y =⇒ x ≥ωn y =⇒ x ≥B y.
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Figure 4.1: Diagram of the permuations x = 365412 and y = 354216.

Furthermore, the poset (W,≥ω) is a maximal lattice in the sense that if any Bruhat covers

are added, the resulting poset is no longer a lattice.

4.4.3 Bruhat order. For a Coxeter system (W,S), the Bruhat order, also referred to as

the strong order or the Bruhat-Chevalley order, is another partial order onW that is stronger

than both the weak order and ωn-sorting order. The Bruhat order can be defined in many

equivalent ways and we will present a few different ways to think about it in this section.

Definition 4.4. The Bruhat order, denoted ≥B, is the transitive closure of the relations

u > tiju whenever `(u) > `(tiju).

This can be a very convenient description if we are only concerned with covering rela-

tions, but can be difficult to use when we are not dealing with a covering relation. For

example, it is pretty clear to see that x = 365412 and y = 354216 do not differ by a single

transposition. How can we determine whether x and y are comparable in Bruhat order,

and, more precisely, how they compare to one another? We will present two different ways

to do this. The first is a diagrammatic criterion and the second is a tableau criterion. For

more information on these, see [13, 74]. The diagram of a permutation z ∈ Sn is given

by placing dots in the cells with coordinates (i, z(i)) in the plane for 1 ≤ i ≤ n where

the lower left square has coordinates (1, 1) and the upper right has coordinates (n, n). See

Figure 4.1 for an example of the diagram for the permutations x and y. For z ∈ Sn, let

z〈i, j〉 = |{k ∈ JiK : π(k) ≥ j}| (4.3)
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for i, j ∈ JnK. This quantity z〈i, j〉 has a convenient interpretation in terms of the diagram

of the permutation z, z〈i, j〉 counts the number of dots in the northwest corner above and

including the point with coordinates (i, j). For example, x from Figure 4.1 has x〈2, 3〉 = 2,

x〈4, 3〉 = 3, and x〈3, 1〉 = 3. In fact, for any z ∈ Sn,

z〈n, i〉 = n+ 1− i and z〈i, 1〉 = i

for i ∈ JnK.

Theorem 4.4 (Diagrammatic criterion for Bruhat order). Let x, y ∈ Sn. Then x ≥B y if

and only if x〈i, j〉 ≥ y〈i, j〉 for all i, j ∈ JnK.

For proof, see [13]. We also give another equivalent formulation of the Bruhat order

that we will not use in any proofs, but will be useful when thinking about how the situtation

of interval parking functions relates to ordinary parking functions. This criterion, which is

referred to as the tableau criterion for Bruhat order indicates how one could partially extend

the non-decreasing rearrangement condition for determining whether a parking preference

vector is indeed a parking function to interval parking functions.

Theorem 4.5 (Tableau criterion for Bruhat order). Let x, y ∈ Sn. Then x ≥B y if and

only if xi,j ≥ yi,j for all 1 ≤ i ≤ j ≤ n where xi,j is the i-th entry in the non-decreasing

rearrangement of x1, . . . , xj (and similarly for yi,j).

For example, we can compute the tableau for x = 365412 and y = 354216 where row

j is the non-decreasing rearrangement of x1, . . . , xj and y1, . . . , yj , respectively. From the

comparison of these tableaux, we see that x ≥B y by Theorem 4.5. Note that this is more

difficult to determine using the description of Bruhat order based on covering relations

or the diagrammatic criterion. In practice, we will mostly stick to using the definition

of Bruhat order based on covering relations or the diagrammatic criterion in the coming

sections.
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Figure 4.2: Tableau comparison of the permutations x = 365412 and y = 354216.
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Chapter 5: Outcomes of interval parking functions and orders on the

symmetric group

In this section we prove that outcomes of interval parking functions relate to various

orders on Sn.

5.1 The Bruhat property

Our first main result is that outcomes of interval parking functions are related by the

Bruhat order on permutations. We will use the characterization of the Bruhat order from

Theorem 4.4 in our proof of Theorem 5.1. For later use, we observe that by the pigeonhole

principle, it is always the case that

x〈i, j〉 ≥ i− j + 1. (5.1)

Suppose that c = (a, b) is an IPF, and let x = O(a) and y = O(b∗)∗. Then, in this context,

x〈i, j〉 is the number of cars 1, . . . , i that park at or after spot j under the parking function

a.

Theorem 5.1. Suppose that c = (a, b) is an IPF. Let x = O(a) and y = O(b∗)∗. Then

x ≥B y.

Proof. First, we may assume without loss of generality that x = a, because replacing a

with x doesn’t change the execution of Algorithm 4 (the ith car will have to drive to spot

x(i) anyway, and it is able to park there because c is an IPF).
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Fix i, j ∈ JnK, and let p = x〈i, j〉 and q = y〈i, j〉. By Theorem 4.4 we wish to show

that p ≥ q. By definition of y〈i, j〉 we have

∣∣∣y J1, iK ∩ Jj, nK
∣∣∣ = q (5.2)

or equivalently ∣∣∣y∗ Jn− i+ 1, nK ∩ J1, n+ 1− jK
∣∣∣ = q. (5.3)

Therefore, when Algorithm 1 is run on the parking function b∗ with outcome y∗, the first

n− i cars must leave open at least q spaces in the range J1, n+ 1− jK, so they cannot fill

as many as (n + 1 − j) − q + 1 = n − j − q + 2 of them. Therefore, b∗ J1, n− iK can

contain no subset {v∗(1), . . . , v∗(n− j − q + 2)} such that

(v∗(1), . . . , v∗(n− j − q + 2)) ≤C (q, . . . , n+ 1− j).

Equivalently, {b(i + 1), . . . , b(n)} can contain no subset {v(1), . . . , v(n − j − q + 2)}

such that

(v(1), . . . , v(n− j − q + 2)) ≥C (j, . . . , n− q + 1).

It follows that when Algorithm 4 is run on c, no more than n−j−q+1 of the last n−i cars

will park in the spots Jj, nK. On the other hand, since x = O(c), no more than p = x〈i, j〉

of the first i cars can park in the spots Jj, nK. Therefore, the total number of cars that park

in Jj, nK is at most

(n+ 1− j − q) + p = | Jj, nK |+ (p− q).

On the other hand, exactly | Jj, nK | cars park in Jj, nK. It follows that p ≥ q, as desired.

�
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Theorem 5.1 asserts that there is a well-defined bioutcome function

Ō : IPFn → {(x, y) ∈ Sn ×Sn : x ≥B y}

(a, b) 7→ (O(a),O(b∗)∗).
(5.4)

We say that a pair (x, y) ∈ Sn ×Sn is reachable if it is in the image of Ō; in this case we

write x�R y. We use this notation rather than x ≥R y because reachability is not a partial

order on Sn, as we will discuss shortly. With this notation, Theorem 5.1 asserts that all

reachable pairs are related in Bruhat order.

Remark 5. If a and b∗ are parking functions such that O(a) ≥B O(b∗)∗, it does not follow

that c = (a, b) is an IPF. For example, if a = w0 and b is a permutation, then certainly

a = O(a) ≥B O(b∗)∗ = b, but (a, b) is an IPF only if b = w0 as well.

Moreover, if x, y ∈ Sn with x ≥B y, there does not necessarily exist any IPF c = (a, b)

such that Ō(c) = (x, y). For example, when n = 3, take (x, y) = (321, 213), so that

y∗ = 132. Then a = 321 is the only parking function with O(a) = x. By Propo-

sition 4.3(2) we must have b ≥C a, so b ∈ {321, 331, 322, 332, 323, 333} and b∗ ∈

{321, 311, 221, 211, 121, 111}. But none of these parking functions have outcome y∗ =

132.

The relation of reachability is reflexive (because Ō(x, x) = (x, x) for all x ∈ Sn)

and antisymmetric (as a consequence of Theorem 5.1). However, it is not transitive: for

example, 321 6�R 213, as just shown, but (321, 312) = Ō(312, 322) and (312, 213) =

Ō(312, 313) are reachable. This observation motivates the following definition.

Definition 5.1. We say that (x, y) is pseudoreachable, written x ≥P y, if there is a sequence

x = x0 �R x1 �R · · · �R xk = y. That is, pseudoreachability is the transitive closure of

reachability. As such, it is a partial order on Sn, which by Theorem 5.1 is no stronger than

Bruhat order.
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a ≥C b Componentwise order Zn

x ≥B y Bruhat order
Sn

x ≥W y Left weak order
x�R y Reachability (not transitive)
x ≥P y Pseudoreachability

Table 5.1: Summary of the orders considered in this section.

For reference, we summarize the various order-like relations that we will consider in

Table 5.1.

5.2 Reachability via counting fibers of the bioutcome map

Fix a pair of permutations (x, y) ∈ Sn × Sn. How can we determine if (x, y) is

reachable? More generally, what is the number φ(x, y) = |Ō−1(x, y)| of IPFs (a, b) with

bioutcome (x, y)? We can answer this enumerative question rather quickly, although the

resulting formula is recursive and somewhat opaque. First, for each i, the number of pos-

sibilities ci = ci(x, y) for a(i) is the size of the largest block of spaces ending in x(i) that

are all occupied by one of the first i cars. That is,

ci = ci(x, y) = max
{
j ∈ J1, x(i)K : x−1(x(i)− k) ≤ i for all 0 ≤ k ≤ j − 1

}
.

Second, given a(1), . . . , a(i), the number of possibilities for b(i) is di = di(x, y) =

|Di(x, y)|, where

Di(x, y) = {k ∈ J0, Ji − 1K : y(i) + k ≥ x(i)}

and

Ji = max{j ∈ J1, n+ 1− y(i)K : y−1(y(i) + k) ≥ i for all 0 ≤ k ≤ j − 1}.
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The definition of Ji is analogous to that of ci: it is the size of the largest block of

spaces ending in n + 1 − y(i) that are all occupied by one of the first n + 1 − i cars, so it

is the number of possible values for b∗i under which O(b∗) = y∗. The additional condition

y(i) +k ≥ x(i) in the definition of Di ensures that (a, b) is an IPF because the upper bound

on x(i) given by b(i) does not conflict with where the ith car parks under Algorithm B.

The sequences c = (c1, . . . , cn) and d = (d1, . . . , dn) then determine the size of the

fibers of Ō:

φ(x, y) =
∣∣Ō−1(x, y)

∣∣ =
n∏
i=1

cidi. (5.5)

Example 5.1. Let x = 361245 and y = 341256. Then c = (1, 1, 1, 2, 4, 5) and d =

(4, 1, 2, 1, 2, 1), so there are 234251 = 640 IPFs with bioutcome (x, y).

It is clear from the definition that 1 ≤ ci ≤ i for all i. On the other hand, one or more

di may be zero. The pair (x, y) is reachable if and only if di > 0 for all i; we refer to this

as the Count Criterion for reachability. The equations given above for ci and di are quite

difficult to interpret. We can instead rephrase them in terms similar to the rearrangement

condition for ordinary parking functions as in Proposition 4.1.

Proposition 5.2. Let x, y ∈ Sn. Let L(i) denote the longest consecutive subsequence

in the nondecreasing rearrangment of y(i), . . . , y(n) that starts with y(i). Then ci(x, y)

is the length of the longest consecutive subsequence ending in x(i) in the nondecreasing

rearrangment of x(1), . . . , x(i). Similarly, di(x, y) is the length of the longest consecutive

subsequence of L(i) starting with max{x(i), y(i)}. If no such subsequence exists, then

di(x, y) = 0.

The proof of Proposition 5.2 follows from unpacking the definitions of ci,Di, and Ji.

Evidently, the largest fiber occurs when x and y both equal the identity permutation in Sn.

In this case c = (1, 2, . . . , n) and d = (n, n − 1, . . . , 1), and the fiber size is (n!)2. At the

opposite end of the spectrum, if x = y = (n, . . . , 1), then φ(x, y) = 1.
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Perhaps a better way to think about reachability is the following criterion. If we are

solely interested in reachability and not the number of IPFs that achieve a given outcome,

we can rephrase reachability more directly in terms of the permutations x and y.

Theorem 5.3 (Reachability Criterion). Let x, y ∈ Sn. Then

x�R y ⇐⇒ Jy(i), x(i)K ⊆ y Ji, nK ∀ i ∈ JnK . (RC)

Proof. Let i ∈ JnK. We will show that di(x, y) > 0 if and only if Jy(i), x(i)K ⊆ y Ji, nK.

Suppose that Jy(i), x(i)K \ y Ji, nK 6= ∅. That is, there is some m ∈ Jy(i), x(i)K such

that y−1(m) < i. Thus Ji ≤ m − y(i), so y(i) + k < m ≤ x(i) for all k < Ji, so

di(x, y) = 0.

Now assume that Jy(i), x(i)K ⊆ y Ji, nK. We wish to show that Di 6= ∅. If y(i) ≥ x(i),

then 0 ∈ Di. On the other hand, if y(i) < x(i), then m = x(i) − y(i) > 0, and for all

0 ≤ k ≤ m we have y−1(y(i) + k) ≥ i. Therefore Ji > m and m ∈ Di. �

Remark 6. We would like to remark here that if x �R y, then we can intuitively think of

the Reachability Criterion as implying that, if y(i) < x(i), values larger than y(i) appear

later in y than they do in x. This can, in a very rough sense, be thought of as telling us that

y is “more sorted” than x.

It is worth emphasizing that the Reachability Criterion is sufficient, but not necessary,

for showing that x ≥P y. For example, the pair (x, y) = (321, 213) fails (RC) for i = 2,

but nonetheless x ≥P y.

Proposition 5.4. The sequence d(x, y) has the following properties.

(a) d1 ≥ 1.

(b) For each i, if y(i) ≥ x(i), then di ≥ 1.
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(c) If x ≥B y, then dn = 1.

Proof. The first two assertions are direct consequences of (RC). For (a), we have

Jy(1), x(1)K ⊆ JnK = y JnK ,

and for (b), if y(i) ≥ x(i) then Jy(i), x(i)K ⊆ {y(i)} ⊆ y Ji, nK.

For (c), if y ≤B x, then y(n) ≥ x(n) (a consequence of the inequalities (4.3) for

i = n− 1 and all j), so dn > 0 by part (b). Observe that

Jn = max{j : y(n) + k ≤ n and y−1(y(n) + k) ≥ n for all 0 ≤ k ≤ j − 1} = 1

because the conditions are true for k = 0 but false for k > 0. Therefore, Dn = {k ∈ J0, 0K :

y(n) ≥ x(n)} = {0} and dn = |Dn| = 1. �

5.3 Pseudoreachability order is graded

In this section, we prove that the pseudoreachability order ≥P on Sn is graded by

length, just like the Bruhat and weak orders. Temporarily, we will use the notation xm�R y

to mean that x �R y and `(x) = `(y) + 1. Note that if xm�R y then x mP y (because

x mB y). Our goal is to prove the converse of the last statement, which will imply that

pseudoreachability is graded by length. The bulk of this is accomplished in Proposition 5.8.

In broad strokes, the proof proceeds by double induction on n and m = `(x)− `(y). If the

last entries in x and y are equal, we can use Lemma 5.6 to project these permutations down

to Sn−1 and the existence of a chain follows by the induction hypothesis. This chain can

then be lifted back up to Sn using Corollary 5.7. If they are not equal, then we appeal to

the Bruhat order and the left weak order to construct a chain from y to x.

We have already shown that pseudoreachability order is no stronger than Bruhat order

≥B. We next show that it is no weaker than left weak order ≥W .
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Proposition 5.5. If xmW y, then xm�R y.

Proof. Suppose that xmW y, i.e., that x = say, where j = y−1(a) < y−1(a+ 1) = k. Then

Proposition 5.4(b) implies that di(x, y) > 0 for all i ∈ JnK\{j}. Meanwhile Jy(j), x(j)K =

{a, a+ 1} = {y(j), y(k)} ⊆ Jy(j), y(n)K, so (RC) implies that dj(x, y) > 0 as well. �

For each x ∈ Sn, let x̂ be the permutation in Sn−1 defined by

x̂(i) =


x(i) if x(i) < x(n),

x(i)− 1 if x(i) > x(n).

(5.6)

Lemma 5.6. Let x, y ∈ Sn with x(n) = y(n). Then x�R y if and only if x̂�R ŷ.

Proof. By (RC), the proof reduces to showing that

Jy(i), x(i)K ⊆ y Ji, nK ∀i ∈ JnK (5.7a)

if and only if

Jŷ(i), x̂(i)K ⊆ ŷ Ji, nK ∀i ∈ Jn− 1K . (5.7b)

( =⇒ ) Assume that (5.7a) holds. Let i ∈ Jn− 1K and a ∈ Jŷ(i), x̂(i)K. There are two

cases to consider.

Case 1a: a < y(n). Then ŷ(i) ≤ a < y(n), so ŷ(i) = y(i) (since (5.6) implies that if

ŷ(i) = y(i)− 1 then ŷ(i) ≥ y(n)). Thus

Jŷ(i), aK = Jy(i), aK ⊆ Jy(i), x(i)K ⊆ y Ji, nK

because a ≤ x̂(i) ≤ x(i), and by (5.7a). Therefore a = y(k) = ŷ(k) for some k ∈

Ji, n− 1K.
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Case 1b: a ≥ y(n). Then, since ŷ(i) ≥ y(i) − 1 and x(i) ≥ x̂(i) ≥ y(n), a ∈

Jŷ(i), x̂(i)K implies that a ∈ Jy(i)− 1, x(i)− 1K, i.e., y(i) ≤ a + 1 ≤ x(i). By (5.7a)

there is some k ∈ Ji, nK such that a + 1 = y(k). In fact k 6= n (since a + 1 > y(n)), so

ŷ(k) = y(k)− 1 = a and so a ∈ ŷ Ji, n− 1K.

In both cases we have proved (5.7b).

( ⇐= ) Assume that (5.7b) holds. It is immediate that (5.7a) holds when i = n, so fix

i ∈ Jn− 1K and a ∈ Jy(i), x(i)K. We wish to show that a = y(k) for some k ∈ Ji, nK. This

is clear if a = y(n), so assume a 6= y(n).

Case 2a: a < y(n). Since a ∈ Jy(i), x(i)K, either a = x(i) or a < x(i). If a = x(i),

then a = x(i) = x̂(i). If a < x(i), then a ≤ x̂(i) since x̂(i) ≥ x(i)− 1. In either case,

Jy(i), aK = Jŷ(i), aK ⊆ Jŷ(i), x̂(i)K ⊆ ŷ Ji, n− 1K .

Thus a = ŷ(k) = y(k) for some k ∈ Ji, n− 1K.

Case 2b: a > y(n). Since a ∈ Jy(i), x(i)K, either a = y(i) or a > y(i). If a = y(i),

then a − 1 = y(i) − 1 = ŷ(i) since y(i) > y(n). If a > y(i), then we know that

a − 1 ≥ ŷ(i) since y(i) ≥ ŷ(i). It follows that a − 1 ∈ Jŷ(i), x̂(i)K, so, by (5.7b), there is

some k ∈ Ji, n− 1K such that a− 1 = ŷ(k) ≥ y(n). Therefore, a = y(k).

In both cases we have proved (5.7a). �

Corollary 5.7. Let x, y ∈ Sn with x(n) = y(n). Then xm�R y if and only if x̂m�R ŷ.

Proof. The definition of x̂ implies that

`(x̂) = `(x)− (n− x(n)), (5.8)

which together with Lemma 5.6 produces the desired result. �
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Proposition 5.8. Let x, y ∈ Sn such that x �R y, and let m = `(x) − `(y). Then there

exists a chain

y = x0 l�R x1 l�R · · · l�R xm = x. (5.9)

Proof. The proof proceeds by double induction on n andm. The conclusion is trivial when

n ≤ 2 or m ≤ 1. Accordingly, let n > 2 and m > 1, and assume inductively that the

theorem holds for all (n′,m′) <C (n,m).

First, suppose that x(n) = y(n). Then x̂ �R ŷ by Lemma 5.6 where x̂, ŷ are defined

by (5.6). Moreover, `(x̂) − `(ŷ) = `(x) − `(y) = m by (5.8). Therefore, by the induc-

tion hypothesis, there is a chain ŷ = x̂0 l�R x̂1 l�R · · · l�R x̂m = x̂ in Sn−1, which by

Corollary 5.7 can be lifted to a chain of the form (5.9).

Second, suppose that x(n) 6= y(n). Since x ≥B y by Theorem 5.1, in fact x(n) < y(n)

(as noted in the proof of Proposition 5.4(c)). Let p = y(n)− 1; then p ∈ J1, n− 1K, so we

may set q = y−1(p) and z = spy = ytq,n. Then z mW y and so zm�R y by Proposition 5.5.

We will show that x�R z using (RC).

Case 1: 1 ≤ i ≤ q. Then Jz(i), x(i)K ⊆ Jy[i], x(i)K and y Ji, nK = z Ji, nK, so

dn(x, y) ≥ 1 implies dn(x, z) ≥ 1.

Case 2: q < i < n. Then p = y(q) 6∈ y Ji, nK, so by (RC) p 6∈ Jy(i), x(i)K. Thus

p + 1 6∈ Jy(i) + 1, x(i) + 1K, and certainly p + 1 = y(n) 6= y(i). Thus Jy(i), x(i)K ⊆

y Ji, nK \ {y(n)} = y Ji, n− 1K and

Jz(i), x(i)K = Jy(i), x(i)K ⊆ y Ji, n− 1K = z Ji, n− 1K ⊆ z Ji, nK

so again dn(x, z) ≥ 1.

Case 3: i = n. Then x(n) ≤ y(n)− 1 = z(n), so dn(x, z) ≥ 1 by Proposition 5.4(b).

Taken together, the three cases imply x �R z. By induction there is a chain z =

x1 l�R · · · l�R xm = x, and appending y = x0 produces a chain of the form (5.9). �
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Bruhat order ≥B
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Pseudoreachability ≥P
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Left weak order ≥W
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132 213

231 312

321

Reachability �R

Figure 5.1: Bruhat, pseudoreachability, left weak order, and reachability on S3.

Theorem 5.9. Pseudoreachability order is graded by length.

Proof. The definition of pseudoreachability as the transitive closure of reachability order

implies that if x0 <P · · · <P xm is a maximal chain, then in fact each xi−1 �R xi for all i.

Now, maximality together with Proposition 5.8 implies in turn that in fact xi−1 l�R xi. �

For comparison, the Hasse diagrams of Bruhat, pseudoreachability, and left weak

orders on S3 are shown in Figure 5.1, together with the reachability relation (which is

reflexive and antisymmetric, but not transitive). The three partial orders on S4 are shown

in Figure 5.2.

5.4 Pseudoreachability coincides with Armstrong’s sorting order

The theory of normal forms in a Coxeter system was introduced by du Cloux [30]

and is described in [13, §3.4]. We sketch here the facts we will need; see especially [13,

Example 3.4.3], which describes normal forms in the symmetric group in terms of bubble-

sorting. Let σk = s1 · · · sk and ωn = σn−1 · · ·σ1; then ωn is a reduced word for w0 ∈

Sn. Every x ∈ Sn has a unique conormal form: a reduced word N(w) of the form

vn−1vn−2 · · · v2v1, where vk = sjsj+1 · · · sk is a suffix of σk. The conormal form is the

reverse of the lexicographically first reduced word for x−1 (that is, of the normal form of
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3142 3214

3241 3412

3421

4123

4132 4213
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≥B, ≥P , ≥W
≥B, ≥P
≥B

Figure 5.2: Bruhat, pseudoreachability, and left weak order on S4.

x−1, as described in [13]). Thus x is characterized by the sequence

λ(x) = (λn−1(x), . . . , λ1(x)) = (|vn−1|, . . . , |v1|) ∈ J0, n− 1K× J0, n− 2K×· · ·× J0, 1K .

We now give an example of building the conormal form of a permutation.

Example 5.2. Let x = 43521. First find x−1 = 54213. Then begin by recording the

sequence of transpositions to place 5 in the fifth place for x−1. Then do the same for 4 into

the fourth place, and so on. Table 5.2 illustrates the process to find that the conormal form

of the permutation x is s1s2s3s4s1s2s3s1 and λ(x) = (4, 3, 0, 1).

Armstrong [9] defined a general class of sorting orders on a Coxeter system (W,S):

one fixes w ∈ W and chooses a reduced word ω (the “sorting word”) for w ∈ W , then

partially orders all group elements expressible as a subword of ω by inclusion between

their lexicographically first such expressions. Armstrong proved that for every reduced

word for the top element of a finite Coxeter group, the sorting order is a distributive lattice
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Permutation Transpositions to sort x−1

54213 x−1

45213 x−1s1

42513 x−1s1s2

42153 x−1s1s2s3

42135 x−1s1s2s3s4

24135 x−1s1s2s3s4s1

21435 x−1s1s2s3s4s1s2

21345 x−1s1s2s3s4s1s2s3

12345 x−1s1s2s3s4s1s2s3s1

Table 5.2: Example of the permutation x = 43521 and the calculation of its conormal form.

intermediate between the weak and Bruhat orders. In the case that W = Sn and ω =

ωn, the sorting order is equivalent to comparing λ(x) and λ(y) componentwise, hence is

isomorphic to C2 × · · · × Cn, where Ci denotes a chain with i elements.

Remark 7. Given a permutation x and its conormal form λ(x) = (|wn−1|, . . . , |w1|), it

may be convenient to think of
∑
|wi| = |w1| + · · · + |wn−1| as a measure of how sorted

the permutation is. A value of
∑
|wi| close to 0 indicates that the permutation is close

to sorted, whereas a value close to
(
n
2

)
indicates that the permutation is very disordered.

Furthermore, for two permutations x and y, it may be intuitive to think that λ(y) ≤ λ(x)

implies that y can be sorted with a certain subset of the moves that were used to sort x. One

could say then that y is “more sorted” than x.

Lemma 5.10. Let x, y ∈ Sn with x(n) = y(n) = n, and let v = sjsj+1 · · · sn−1 be a suffix

of s1 · · · sn−1. Then x�R y if and only vx�R vy.

Proof. If v = e, there is nothing to prove. Otherwise, by (RC), it suffices to show that for

every i ∈ JnK, we have

Jy(i), x(i)K ⊆ y Ji, nK (5.10a)
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if and only if

J(vy)(i), (vx)(i)K ⊆ vy Ji, nK . (5.10b)

This is clear if i = n, so we assume henceforth that i 6= n. Moreover,

v(k) =


k if k < j,

k + 1 if j ≤ k < n,

j if k = n

and v−1(k) =


k if k < j,

n if k = j,

k − 1 if k > j.

In particular, if i 6= n, then x(i) > y(i) if and only if v(x(i)) > v(y(i)). We assume

from now on that these two equivalent conditions hold, since, if both fail, then (5.10a)

and (5.10b) are both trivially true. The proofs of the two directions now proceed very

similarly.

(5.10a) =⇒ (5.10b): There are three cases.

Case 1a: j > x(i). Then v fixes J1, x(i)K pointwise, so

J(vy)(i), (vx)(i)K = v Jy(i), x(i)K ⊆ vy Ji, nK

by applying v to both sides of (5.10a).

Case 1b: y(i) < j ≤ x(i). Then (vx)(i) = x(i) + 1 and (vy)(i) = y(i), so

J(vy)(i), (vx)(i)K = Jy(i), j − 1K ∪ {j} ∪ Jj + 1, x(i) + 1K

= v Jy(i), j − 1K ∪ {v(n)} ∪ v Jj, x(i)K

= v (Jy(i), x(i)K ∪ {y(n)})

⊆ vy Ji, nK

establishing (5.10b).
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Case 1c: j ≤ y(i). Similarly to Case 1a, we have

J(vy)(i), (vx)(i)K = Jy(i) + 1, x(i) + 1K = v Jy(i), x(i)K ⊆ vy Ji, nK ,

as desired.

(5.10b) =⇒ (5.10a): Applying v−1 to both sides of (5.10b) gives

v−1 Jvy(i), vx(i)K ⊆ y Ji, nK ,

so in order to prove (5.10a) It is enough to show that

Jy(i), x(i)K ⊆ v−1 Jvy(i), vx(i)K (5.11)

Moreover, the earlier assumption i 6= n implies that vx(i) 6= j and vy(i) 6= j.

Case 2a: j > vx(i). Then v−1 fixes the set J1, vx(i)K pointwise, so in particular

Jy(i), x(i)K = Jvy(i), vx(i)K = v−1 Jvy(i), vx(i)K, establishing (5.11).

Case 2b: vy(i) < j < vx(i). Then y(i) = vy(i) and x(i) = vx(i)− 1, so

Jy(i), x(i)K = Jvy(i), j − 1K ∪ Jj, vx(i)− 1K

= v−1 Jvy(i), vy(n)− 1K ∪ v−1 Jvy(n) + 1, vx(i)K

⊆ v−1 Jvy(i), vx(i)K .

Case 2c: j < vy(i). Then Jy(i), x(i)K = Jvy(i)− 1, vx(i)− 1K = v−1 Jvy(i), vx(i)K,

again implying (5.11). �

Theorem 5.11. The pseudoreachability order coincides with the bubble-sort order.
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Proof. It suffices to show that the two partial orders have the same covering relations, i.e.,

that

xmP y ⇐⇒ λ(x) mC λ(y).

We induct on n; the base case n = 1 is trivial. Let x, y ∈ Sn with n > 1, and let their

conormal forms be

x = ux̄ = (si · · · sn−1)x̄, y = vȳ = (sj · · · sn−1)ȳ

where i = x(n) = n− λn−1(x) and j = y(n) = n− λn−1(y).

(⇐= ) Suppose that λ(x)mC λ(y). Then either i = j− 1 or i = j. If i = j− 1, then

λ(x̄) = λ(ȳ), so x̄ = ȳ and x = siy, which by Proposition 5.5 implies x mP y. If i = j,

then λ(x̄) mC λ(ȳ). Then x̄mP ȳ by induction, so x = vx̄mP vȳ = y by Lemma 5.10.

( =⇒ ) Suppose that xmP y. Then xmB y by Theorem 5.1, so i ≤ j (as noted in the

proof of Proposition 5.4).

If i < j, then v is a proper suffix of u. By the definition of Bruhat order it must be

the case that x = yta,b for some a < b; in fact b = n (otherwise x(n) = y(n)). Then

x(n) = y(a) and x(a) = y(n), and x(k) = y(k) for k 6∈ {a, n}. Moreover, y(a) < x(a)

(since x mB y and not vice versa). On the other hand, if y(a) ≤ x(a) − 2, so that y(a) <

c < x(a) = y(n) for some c, then by (RC) c = y(k) for some k ∈ Ja+ 1, n− 1K, and

in particular x has at least three more inversions than y — not only (a, n), but also (a, k)

and (k, n), which contradicts the assumption x mP y. Therefore y(a) = x(a) − 1, i.e.,

x(n) = y(n) − 1. We conclude that x = siy, so λ(x) mC λ(y) using the conormal forms

above.

If i = j, then u = v, so x̄ mP ȳ by Prop. 5.10. By induction λ(x̄) mC λ(ȳ), and

prepending n− i gives λ(x) mC λ(y) as well. �
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5.5 Reachability via pattern avoidance

In this section, we establish two sufficient conditions for reachability using pattern

avoidance. Let π ∈ Sn and σ ∈ Sm, where m ≤ n. A σ-pattern is a subsequence

π(i1), . . . , π(im) in the same relative order as σ, i.e., such that 1 ≤ i1 < · · · < im ≤ n and

π(ij) < π(ik) if and only if σ(j) < σ(k). If π contains no σ-pattern then we say that π

avoids σ.

Theorem 5.12. If x ≥B y and y avoids 213, then x�R y.

Proof. Suppose that x ≥B y and y avoids 213, but x 6�R y. Let i be any index such

that di(x, y) = 0. By Proposition 5.4 we know that 1 < i < n and that y(i) < x(i). In

particular, m 6= i, where m = y−1(x(i)); that is, y(m) = x(i).

First, suppose that m > i. We claim that there exists some u < i such that y(i) <

y(u) < y(m). Otherwise, Ji ≥ y(m) − y(i) + 1, and then k = y(m) − y(i) has the

properties k < Ji and y(i) + k = y(m) = x(i), so k ∈ Di(x, y), contradicting the

assumption di(x, y) = 0. Therefore y(u), y(i), y(m) is a 213-pattern.

Second, suppose that m < i. If y(k) > y(m) for some k > i, then y(m), y(i), y(k) is a

213-pattern. On the other hand, suppose that y(k) < y(m) = x(i) for all k > i (hence for

all k ≥ i). Then

{k ∈ Ji, nK : y(k) < x(i)} = Ji, nK

) Ji+ 1, nK

⊇ {k ∈ Ji, nK : x(k) < x(i)} ⊆ Ji+ 1, nK

so

|{k ∈ Ji, nK : y(k) < x(i)}| > |{k ∈ Ji, nK : x(k) < x(i)}|
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∴ |{k ∈ J1, i− 1K : y(k) < x(i)}| < |{k ∈ J1, i− 1K : x(k) < x(i)}|

∴ |{k ∈ J1, i− 1K : y(k) ≥ x(i)}| > |{k ∈ J1, i− 1K : x(k) ≥ x(i)}| .

That is, y〈i− 1, x(i)〉 > x〈i− 1, x(i)〉, contradicting the assumption x ≥B y. �

Theorem 5.12 partially answers the question of when the converse of Theorem 5.1

holds, i.e., which Bruhat relations are also relations in pseudoreachability order. We next

study if there is an analogous condition on x, rather than y, that suffices for reachability.

One such condition that allows us to restrict x instead of y is to ensure that only very few

entries x(i) are large with respect to i.

Lemma 5.13. Let x ∈ Sn. The following conditions are equivalent:

1. x−1(i) ≤ i+ 1 for all i ∈ JnK.

2. x〈j, j〉 = 1 for all j ∈ JnK.

3. x avoids both 231 and 321.

4. x is of the form si1 · · · sik , where n− 1 ≥ i1 > · · · > ik ≥ 1.

The number of these permutations is 2n−1, which is easiest to see from condition (4).

Conditions (1) and (3) were mentioned by J. Arndt (June 24, 2009) and M. Riehl (August

5, 2014) respectively in the comments on sequence A000079 in [64]. Accordingly, we

will call a permutation satisfying the condition of Lemma 5.13 an AR permutation (for

Arndt–Riehl).

Proof. (1) ⇐⇒ (2): Formula (4.3) implies that

∀j ∈ JnK : x〈j, j〉 = 1 ⇐⇒ ∀j ∈ JnK : J1, j − 1K ⊆ x J1, jK

⇐⇒ ∀j ∈ JnK : x−1 J1, j − 1K ⊆ J1, jK
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⇐⇒ ∀i ∈ JnK : x−1 J1, iK ⊆ J1, i+ 1K

since the last two statements differ only by the trivially true cases i = 0 and i = n.

(3) ⇐⇒ (1): Condition (3) holds if and only if no digit i ∈ JnK occurs later than

position i+ 1, but this is precisely condition (1).

(4) ⇐⇒ (1)/(3): Let Yn be the set of permutations in Sn satisfying the equivalent

conditions (1) and (3), and let Zn be the set satisfying condition (4). For n ≤ 2 we evidently

have Yn = Zn = Sn. For n ≥ 3, we proceed by induction. Observe that Zn = Zn−1 ∪

sn−1Zn−1, and that left-multiplication by sn−1 (i.e., swapping the locations of n− 1 and n)

does not affect condition (1), which is always true for i ∈ {n− 1, n}. Therefore Zn ⊆ Yn.

On the other hand, if w ∈ Yn then wn ∈ {n − 1, n}, otherwise wn, together with the

digits n − 1 and n, would form a 231- or 321-pattern. Therefore, w′n = n, where either

w′ = w or w′ = sn−1w. By induction w′ ∈ Zn−1, so w ∈ Zn as desired. �

Corollary 5.14. If x is AR and y ≤B x, then y is AR as well.

Proof. Lemma 5.13 asserts that x〈i, i〉 = 1 for all i ∈ JnK. Since y ≤B x, y〈i, i〉 = 1 or 0,

but the latter could not happen by the pigeonhole principle. �

An exceedance of a permutation x ∈ Sn is an index k ∈ JnK such that x(k) > k.

Lemma 5.15. Let x ∈ Sn be an AR permutation. Suppose that k is an exceedance of x,

and let i = x(k). Then x(j) = j − 1 for all j ∈ Jk + 1, iK.

Proof. The argument of Lemma 5.13 implies that J1, k − 1K ⊆ x J1, kK; however, since

x(k) > k we have in fact J1, k − 1K = x J1, k − 1K.

Now let j ∈ Jk + 1, iK. Lemma 5.13 also asserts that x〈j, j〉 = #Aj = 1, where

Aj = {m ∈ JjK : x(m) ≥ j}. Certainly k ∈ Aj , so j 6∈ Aj , that is, x(j) < j. But since

x(j) ≥ k for each such j, we can infer in turn that x(k + 1) = k, x(k + 2) = k + 1, . . . ,

x(i) = i− 1. �
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Theorem 5.16. If x ≥B y and x is AR, then x�R y.

Proof. Suppose that x ≥B y and x is AR, but x 6�R y. Let i be some index such that

di(x, y) = 0. By (RC), there exists j < i such that

y(i) < y(j) ≤ x(i). (5.12)

By Lemma 5.13, x〈i, i〉 = 1; that is, there exists some (unique) k ≤ i such that x(k) ≥ i.

First, suppose that k = i. Then x〈i−1, i〉 = 0, and y〈i−1, i〉 = 0 as well because y ≤B x.

Hence y J1, i− 1K = Ji− 1K. But then (5.12) implies that y(i) < y(j) ≤ i − 1 as well,

a contradiction. Second, suppose that k < i. Then y(i) < x(i) < i by Lemma 5.15, so

y(i) ≤ i− 2. Set k = y(i); then y−1(k) = i ≥ k + 2. But then y is not AR, which violates

Corollary 5.14. �

5.6 Counting reachable pairs and open questions

Let r(n) = |{(x, y) ∈ Sn ×Sn : x�R y}| be the number of reachable pairs in Sn.

Explicit computation (using Python) reveals that the sequence r(1), r(2), . . . begins

1, 3, 17, 151, 1901, 31851, 680265, 17947631, . . .

which matches OEIS sequence A145081. Accordingly, we conjecture that this sequence

gives the values of r(n) for all integers n. The OEIS entry does not give a combinatorial

interpretation for this sequence; rather, the description is as follows. Consider a family of

power series F (t, x) for t = 0, 1, 2, . . . that satisfy F (t, 0) = 1 and

Fx(t, x) = tF (t, x)F (t+ 1, x), (5.13)
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where Fx = d
dx

(F ). We note that the OEIS also gives two other equivalent recurrences in

the form of integral equations. If we interpret F (t, x) as an exponential generating function

F (t, x) =
∞∑
n=0

Rn(t)
xn

n!

then the functional recurrence (5.13) can be transformed into the recurrence

R0(t) = 1, Rn+1(t) = t
n∑
i=0

(
n

i

)
Ri(t)Rn−i(t+ 1) (5.14)

which is convenient for explicit calculation (in particular, the Rn(t) are polynomials). The

table of values for Rn(t) for t = 1, 2, 3, . . . and n = 0, 1, 2, . . . is given by OEIS sequence

A145080. The sequence R0(1), R1(1), R2(1), . . . is OEIS A145081. The first several of

the polynomials Rn(t) are as follows.

R0(t) = 1,

R1(t) = t,

R2(t) = 2t2 + t,

R3(t) = 6t3 + 8t2 + 3t,

R4(t) = 24t4 + 58t3 + 52t2 + 17t,

R5(t) = 120t5 + 444t4 + 680t3 + 506t2 + 151t.

Conjecture 5.1. For all n ≥ 1 we have r(n) = Rn(1).

In order to use this recurrence to prove the conjecture, it appears necessary to either

find a combinatorial interpretation for the entire table of numbersRn(t), or transform (5.14)

into a single-term recurrence for Rn(1).
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Problem 5.1. Find a statistic f on reachable pairs of permutations in Sn such that

Rn(t) =
∑
x�Ry

tf(x,y).

The form of (5.14) somewhat resembles other recurrences that arise in the theory of

parking functions; see, e.g., [29, Corollary 1] and [2, Corollary 2], both of which count the

number of parking functions in which certain entries are specified in advance.

We now state and prove closed-form descriptions for some of the extreme coefficients

of the polynomials Rn(t) and an identity for the value of Rn(−1).

Proposition 5.17. Let [tm]Rn(t) denote the coefficient of tm in Rn(t). Then

1. Rn(−1) = (−1)n for n ≥ 0.

2. [tn]Rn(t) = n! for n ≥ 1.

3. [t1]Rn(t) = Rn−1(1) for n ≥ 1.

4. Rn(0) = 0 for n ≥ 1.

Proof. We will prove (1) and (2) by induction on n, while (3) and (4) follow by direct

computation. Note that deg(Rn(t)) = n.

1. Since F (t, 0) = 1, it follows that R0(t) = 1, so R0(−1) = 1. Assume inductively

that Rn−1(−1) = (−1)n−1. Using the recurrence (5.14), R0(0) = 1 and Rm(0) = 0

for all m ≥ 1. Therefore, again using (5.14),

Rn(−1) = −
n−1∑
i=0

(
n− 1

i

)
Ri(−1)Rn−i−1(0) = −Rn−1(−1) = (−1)n.
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2. From (1), [t]R1(t) = 1. Assume inductively that [tm]Rm(t) = m! for all m < n,

then by (5.14),

[tn]Rn(t) =
n−1∑
i=0

(
n− 1

i

)
[tn−1](Ri(t)Rn−i−1(t+ 1))

=
n−1∑
i=0

(
n− 1

i

)
i!(n− i− 1)! = n!

3. Since R1(t) = t, [t]R1(t) = 1 = R0(1). More generally, using recurrence (5.14),

[t]Rn(t) =
n−1∑
i=0

(
n− 1

i

)
[t0](Ri(t)Rn−i−1(t+ 1)) = [t0]Rn−1(t+ 1) = Rn−1(1).

The second to last equality follows since t is a factor of Ri(t) for i > 1 and the last

equality follows since the constant term in Rn−1(t+ 1) is the sum of the coefficients

in Rn−1(t).

4. This is immediate from (5.14). �

In addition, the second-leading coefficients ofRn(t) appear to have the following com-

binatorial interpretation. The Eulerian number of the second kind
〈〈
n
k

〉〉
is the number of

rearrangements of (1, 1, 2, 2, . . . , n, n) with k ascents such that every number between the

two occurrences of m is less than m, for all m ∈ JnK.

Conjecture 5.2. For every integer n, we have [tn−1]Rn(t) =
〈〈
n+1
n−1

〉〉
(OEIS sequence

A002538).

We have verified this conjecture computationally for n ≤ 100. Given the relationship

between reachability and Bruhat order, we find it intriguing that the numbers
〈〈
n+1
n−1

〉〉
also

count the edges (i.e., covering relations) in Bruhat order on Sn+1.

We briefly present another possible direction of investigation that relates the prob-

lem of counting reachable pairs of bioutcomes of interval parking functions to count-
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ing ordinary parking functions. We note that this line of investigation was suggested

through communications between Jeremy L. Martin and Mei Yin with Richard Stanley. Let

H(x) = xF (t, x), regarded as a power series in x with coefficients in C[t], and let G(x)

be the compositional inverse of H(x) (see [67, §5.4]). Expanding G(x) as an exponential

generating function

G(x) =
∞∑
n=0

Sn(t)
xn+1

n!
(5.15)

it appears that Sn(t) is a polynomial of degree n in t, with integer coefficients that alternate

in sign. The first several of these polynomials are as follows.

S0(t) = 1,

S1(t) = −t,

S2(t) = 2t2 − t,

S3(t) = −6t3 + 7t2 − 3t,

S4(t) = 24t4 − 46t3 + 38t2 − 17t,

S5(t) = −120t5 + 326t4 − 400t3 + 299t2 − 151t.

By Proposition 5.17 (1), Rn(−1) = (−1)n, so H(x)|t=−1 = xe−x. Since the composi-

tional inverse of xe−x is
∑

n≥1 n
n−1xn/n! [67, Example 5.4.4, page 43], it follows easily

from (5.15) that Sn(−1) = (n + 1)n−1, the number of parking functions of length n. The

extreme coefficients are familiar: [tn]Sn(−t) = n! and [t]Sn(−t) = r(n−1). Furthermore,

the coefficient of tn−1 in Sn(−t) appears to match OEIS sequence A067318.

Problem 5.2. Find a statistic g on parking functions of length n such that

Sn(−t) =
∑
p∈PFn

tg(p).
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Of course, parking functions might be replaced with any of the various other combina-

torial objects enumerated by (n+ 1)n−1, such as labelled trees on n+ 1 vertices.

Lastly, we ask the following about reachability and pattern avoidance.

Problem 5.3. Can reachability of the pair x �R y be fully characterized in terms of pattern

avoidance conditions coupled with the assumption that x ≥B y ?
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