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Abstract 

Total knee arthroplasty (TKA) is a procedure where the arthritic surfaces of the knee 

is removed and replaced with a combination of metal and polymer implants that recreates 

the joint line to restore function and quality of life. Implant alignment is important in the 

success of a TKA. Modern day conventional instrumentation can be cumbersome in the 

operating room and can be inaccurate when resecting bone and aligning implants. 

Patients with large errors in resections and implant orientation are more prone to 

experience mechanical failures with their TKA. Mechanical failures in primary TKA 

require revision surgeries which can lead to further iatrogenic effects. New technology 

has been created to reduce these errors such as computer-aided surgery and robotic 

assisted total knee arthroplasty (RATKA). The purpose of this study was to measure the 

accuracy and precision of femoral and tibial osteotomies and implant alignment between 

RATKA and conventional total knee arthroplasty (CTKA). The results showed that 

coronal plane resection errors improved from 1.39° ± 0.95° to 0.65° ± 0.50° and implant 

alignment absolute errors improved from 1.42° ± 1.15° to 0.91° ± 0.83° for RATKA 

cases. Improvements were also seen for sagittal plane implant alignment and femoral 

relative resections for RATKA cases. Other measures reported non-inferiority and there 

was no statistical difference in the flatness of the proximal resection (p = 0.36) between 

CTKA and RATKA.  
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Chapter 1 : Introduction 

1.1 Introduction 

Knee osteoarthritis (OA) is the degeneration of articulating cartilage in the knee joint 

that causes inflammation, pain, and/or joint stiffness due to wear. Treatments for mild 

knee OA include physical therapy and anti-inflammatory medication, but in severe cases, 

osteotomies and arthroplasties are common procedures. 

As the current population ages and rates of osteoarthritis increases, more people are in 

need for a total joint replacement. Data from 2000 to 2014 shows that total hip 

arthroplasty (THA) is projected to grow 71% to 635,000 procedures and total knee 

arthroplasty (TKA) is projected to grow 85% to 1.26 million procedures by 2030 [1]. The 

age of traditional recipients for TKA range from 60 – 70, but the mean patient age for a 

total joint arthroplasty has been getting younger [2]. As younger patients are more 

physically active, revision rates among the younger population have increased [2]. 

Because revision surgery is expensive and often results in worse outcomes, increasing 

implant survivability is pertinent to offset the increasing rates of revision surgery. At the 

moment, studies have shown that implant survivorship ranges from 92 – 97% at 10 years 

postoperative of the primary TKA [3]. Implant survivorship decreases dramatically to 

82% at 25 years postoperatively [4]. This is a problem as younger patients are expected to 

outlive the life of the implant; thus, requiring revision TKA after implant failure.
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Today, common causes for revision surgery are infection, loosening, instability, 

periprosthetic fracture, etc. [5,6]. Following short term failures due to infection are 

mechanical failures such as: loosening, instability, anterior knee pain and periprosthetic 

fracture. There are various reasons behind mechanical failures, but evidence suggests that 

inaccurate resections and implant malalignment are contributing causes [7,8]. 

Currently the most popular way to perform TKA is using conventional tools where 

the surgeon uses a series of cutting jigs, pins, and rods to align the resection relative to 

anatomical landmarks. These methods have been shown to be prone to errors and less 

accurate when preparing the femur and tibia [9]. Error prone tools reconstruct a poorly 

balanced knee, defined by Babazadeh et al. as a knee with a combination of one or more 

of the following factors: limited range of motion, asymmetrical medial-lateral balance at 

full extension and 90° of flexion resulting in trapezoidal tibiofemoral gaps, incorrect 

varus-valgus (V-V), flexion-extension (F-E), and internal-external (I-E) alignment, a 

maltracking patella, and excessive rollback of the femur on the tibia [10]. Newer 

technology has been developed in hopes of improving conventional tools, resulting in 

more accurate results. Robotic surgery has been proposed as a method to resect bone and 

align implants accurately and precisely for a balanced knee. 

1.2 Objectives 

The objective of this thesis is to compare the accuracy and repeatability between 

robotic assisted (RATKA) and conventional TKA (CTKA). It is hypothesized that 

RATKA cases will have greater resection accuracy and implant alignment and less 

outliers compared to CTKA. 
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1. Compare angular and depth resection errors during femoral and tibial preparation 

between the robotic surgical system and conventional tools. 

2. Compare femoral implant fit between the robotic surgical system and 

conventional tools. 

3. Compare final implant alignment errors between the robotic surgical system and 

conventional tools. 

4. Compare the flatness of the proximal tibial resection between the robotic surgical 

system and conventional tools. 

1.3 Thesis Overview 

The purpose of this thesis is to document the methods and results for the work 

performed and further the field of biomechanics specifically for robotic surgical systems 

for TKA. Chapter Two provides information from previous studies through a thematic 

review starting with osteoarthritis, TKAs, common failures in TKAs, patient specific 

instrumentation, and finally robotic surgical systems. Chapter Three outlines a study that 

quantified the resection and implant alignment accuracy and precision for the femur and 

tibia between RATKA and CTKA. Chapter Four describes a study that assessed the 

proximal tibial resection flatness between RATKA and CTKA using two different 

metrics. Chapter Five concludes the thesis with a summary of important findings from 

Chapters Three and Four and presents ideas for future work. This is ended with 

references, additional figures, as well as the MATLAB code used for the resection angle 

analysis. 
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Chapter 2 : Literature Review and Background 

2.1 Osteoarthritis 

Osteoarthritis (OA) is an inflammatory condition of the synovial joint when articular 

cartilage wears down. OA is characterized by joint stiffness, pain, and inflammation. It is 

estimated that 27 million US adults have clinical OA [11,12]. Among the estimated 

population of adults who suffer from OA, 10% of men and 13% of women aged 60 or 

older suffer from knee OA [13]. Popular treatments for mild osteoarthritis include 

physical therapy and anti-inflammatory medication, but in the case of severe degenerative 

osteoarthritis, osteotomies and joint arthroplasties are common procedures. 

 

Figure 2.1: Pre-arthritic knee (left) and arthritic knee (right) (orthoinfo.aaos.org)
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2.2 Total Knee Arthroplasty 

Knee arthroplasty can be partial or total and is a procedure to remove and replace the 

inflamed articulating surface of the knee. During this procedure, the joint line is restored 

using one of the many alignment philosophies: anatomic, mechanical, adjusted 

mechanical, kinematic, or restricted kinematic [14]. The resected bone is restored by a 

combination of metal and polyethylene protheses that attach to the distal end of the femur 

and proximal end of tibia. TKA procedures have become more popular as the number of 

procedures increased by 161.5% from 1991 to 2010 and is projected to increase another 

143% from 2012 to 2050 [15,16]. But despite the recent overall success of total knee 

arthroplasty (TKA), there are still an unacceptable number of patients dissatisfied with 

their TKAs. Choi et al. reported that patient satisfaction after TKA ranges from 75% to 

92% with the most common causes of patient dissatisfaction being residual pain and 

limited function [17]. 

 

Figure 2.2: Arthritic knee (left) and post-TKA (right) (orthoinfo.aaos.org) 
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Poor outcomes of TKA may be attributed to intraoperative factors such as surgical 

technique and prostheses alignment. Bone cutting errors can influence implant alignment 

and can cause the prostheses to experience increased loads which accelerate polyethylene 

wear, mechanical loosening, instability, and unbalanced knee kinematics. In these cases, 

a revision surgery is necessary to replace the failed prostheses. Poor reproducibility using 

conventional instrumentation can be derived from errors in locating anatomical 

landmarks, pinning cutting jigs, and intraoperative movement of instrumentation and 

fixation devices. 

Locating the anatomical landmarks can be difficult even for experienced surgeons. A 

study found that the mean dispersion of locating the medial and lateral femoral 

epicondyles were 2.8 ± 1.5 mm and 1.7 ± 0.9 mm respectively and locating the femoral 

and tibial centers had a dispersion of 1.3 ± 1.3 mm and 1.7 ± 1.5 mm [18]. These errors 

influence the identification of the transepicondylar axis (TEA), a frequently used 

landmark, and consequently the rotational alignment of the knee. Errors in rotational 

alignment have also been shown to affect the coronal and sagittal alignment as well [19]. 

In the study, when the maximum deviations of the anatomical landmarks were used, an 

error of 5.5° was calculated for the TEA which corresponds to resection errors of 0.7° in 

the coronal plane and 2.2° in the sagittal plane. 

Intraoperative movement of conventional instrumentation also attributes to a large 

percent of resection and implant positioning error [9]. Slight movements of the cutting 

jigs due to slip or external forces between the cutting jig and the bone can contribute 10% 

to 40% of the total resection error [9]. Plaskos et al. reported bone cutting errors vary 
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with surgical experience, type of cutting guide, and intraoperative guide movement. The 

authors reported that high volume orthopaedic surgeons resect bone more precisely than 

trainee surgeons in the coronal plane (0.4° vs 0.8°), and a slotted cutting guide compared 

to an open cutting guide reduced variability and bias for sagittal alignment. The authors 

also estimate the variability associated with oscillating saws contribute 0.6° to 1.1° and 

1.8° of SD in coronal and sagittal alignment, respectively. While bone cutting errors can 

be reduced with more precise tooling such as a slotted cutting guide, standards for 

optimal implant alignment are still being debated [9].  

Because implant alignment determines the loading of the underlying bone, correct 

implant alignment is strongly associated with greater stability, a lower rate of loosening, 

and higher clinical scores, but precise range of values for implant alignment have not 

been determined [20]. A preponderance of studies has found a correlation between 

excessive malalignment and revision surgeries [7,8]. Studies suggest that a coronal 

alignment of less than 2.0° or greater than 8.0° valgus for the femoral component and any 

variation other than neutral for the tibial component results in increased failure rates. 

Tibial coronal alignment other than neutral creates an unequal loading distribution at the 

tibiofemoral joint which increases shear forces, resulting in increased wear. Similarly, 

sagittal alignment of the femoral component of more than 3.0° flexed and deviations 

outside 0° and 7° of posterior tibial slope increased failure rates. Femoral and tibial 

components rotated externally outside of the 2° - 5° range increased failure rates 

significantly as well [20,21]. 
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Figure 2.3: Knee alignment philosophies. KA, Kinematic Alignment; rKA, Restricted Kinematic 

Alignment; aMA, Anatomical Mechanical Alignment; AA, Anatomical Alignment; MA, Mechanical 

Alignment [22] 

2.3 Common Failures 

Implant alignment outside of the above-mentioned ranges significantly increases 

mechanical failures. Malalignment in the coronal plane creates an abnormal force 

distribution through the medial and lateral compartments of the polyethylene insert and 

subsequently accelerates polyethylene wear. The increased tractive-rolling forces 

generated from contact mechanics within the tibiofemoral joint during activities 

associated with daily living creates small particles and eventually delaminates and pits 

the polyethylene surface [23]. The same forces at the bone-implant interface, for 

cemented implants, can fatigue the cement mantle and release wear particles as well. 

These wear particles perpetuate particle disease, such as osteolysis, through a series of 

biological pathways and responses such as inflammation. Chronic inflammation 
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stimulates the patient’s auto-immune system and increases osteoclast formation [23]. The 

accumulation of osteoclasts contributes to the resorption of the periprosthetic bone bed 

compromising implant fixation and furthering implant loosening. This further perpetuates 

micromotion of the implant and osteolysis until implant instability or another form of 

failure occurs, and a revision surgery is needed. 

Another form of failure associated with inaccurate resections and implant alignment 

is instability. While a precursor to long term instability is osteolysis and implant 

loosening, a precursor to short term instability is inaccurate osteotomies, mal-aligned 

components, and soft tissue damage. A goal of TKA is to achieve balanced soft tissue 

tension through the knee’s range of motion and is often characterized with balanced 

rectangular flexion and extension gaps. A trapezoidal gap exhibits unequal tension on the 

medial or lateral compartment; therefore, a subsequent resection or ligament release is 

performed to achieve a rectangular gap and is followed with an increase in polyethylene 

thickness to compensate for the increased gap. Loose knees are a resultant of unbalanced 

gaps which increase the chance of excessive displacement of the articular components. 

Unbalanced gaps can be the result of over or under resection of the distal femur with 

respect to the proximal tibia as well as over or under release of one collateral ligament 

relative to the contralateral collateral ligament. Accurate osteotomies and maintaining the 

structural integrity of stabilizing soft tissue structures is necessary to prevent short term 

instability. 
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Figure 2.4: Frontal (left) and sagittal (right) plane views of an unstable TKA [24] 

Anterior knee pain is one of the most common types of chronic pain after TKA. 

Causes of anterior knee pain can be a combination of functional (muscular insufficiencies 

or imbalances) and mechanical (malalignment of prosthetic, poor lower limb balance, 

instability, loosening, etc.) problems. Studies have shown that an internally rotated 

femoral component increases the quadriceps angle (Q-angle), the angle formed between a 

line connecting the anterior superior iliac spine and the center of the patella and a line 

connecting the tibial tuberosity and the center of the patella and can cause an increased 

lateral tilt angle as well as patella lateralization (Figure 2.5) [25]. A lateralized patella 

increases lateral contact forces, and the change in the extensor mechanism causes pain in 

the lateral retinaculum where densely packed nociceptors exist [25]. 
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Figure 2.5: Radiograph of patella lateralization (boneandspine.com) 

Surgeons must also avoid Anterior-Posterior (A-P) offset errors when aligning the 

femoral component. A large overhang due to an oversized femoral component or under 

resection of the anterior femoral cortex can cause “overstuffing” of the patellofemoral 

joint. This increased pressure due to increased shear forces during patellofemoral 

movement causes pain. The opposite must be taken into consideration as well since an 

over resection of the anterior cortex causes the patella to sit posteriorly relative to the 

natural anatomy and may cause quadricep weakness and instability. Because the patella 

provides a moment arm to increase the efficiency during knee extension, a posterior 

translation of the patella decreases the moment arm thus increasing the required 

quadriceps force to extend the knee. While conservative measures can be taken to restore 

functional causes of mild anterior knee pain, in cases of severe pain due to mechanical 

causes, revision surgery is needed but should be prevented by resecting bone and aligning 
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implants more accurately. Care should be taken when performing a revision surgery for 

anterior knee pain as studies have shown success rates to be around 50% [25]. 

Although rare, inaccurate implant alignment and bony resections can cause the 

periprosthetic bone to fracture. One risk factor for femoral fracture is anterior notching. 

Anterior notching occurs when there is an excessive resection of the femoral anterior 

cortex. An anterior notch creates a local stress concentration and predisposes the femur to 

fracture when experiencing high energy trauma. A study has reported that femoral 

fracture occurs in 10 – 46% of notched femurs [26]. On the tibial side, a similar 

phenomenon occurs. A tibial component in varus is associated with medial bone collapse 

due to severe comminution of the medial compartment. When the tibial tray is placed in 

severe varus, an uneven distribution of load on the periprosthetic bone bed causes 

increased localized stress on the medial compartment of the tibia [27]. The resection 

inaccuracy in the coronal plane has been attributed to conventional instrumentation where 

one study showed that extramedullary and intramedullary rods have shown accuracies of 

± 2° 71 – 94% and 82 – 88% of the time respectively [28]. Medial bone collapse will 

occur once the stress exceeds the fatigue strength of the bone. Authors have found that 

periprosthetic fractures corresponding with the tibia range from 0.4% - 1.7% and 0.3% – 

2.5% for the femur [26]. Inaccurate resections should be avoided to prevent fracture of 

the periprosthetic bone. 



13 

 

Figure 2.6: Radiographs of polyethylene failure (A, B) and radiographs of revised TKA (C, D) [7] 

2.4 Patient Specific Instrumentation 

In order to more precisely align implants, the distribution of bone cutting errors must 

be reduced and conventional instruments must be improved. Improvements in technology 

such as patient specific instrumentation (PSI) have been implemented as a potential 

solution. In PSI, customized cutting jigs are created from a preoperative computed 

tomography (CT) or magnetic resonance imaging (MRI) scan. The series of 2D images of 

the lower limb are turned into a 3D model where anatomical landmarks are located, and a 

preoperative plan is created. The preoperative plan consists of the depth of resection, 

coronal, sagittal and rotational alignment for femoral and tibial components. The PSI are 

then manufactured and sent to the surgeon. The patient specific cutting guides are used 

primarily for the distal femoral and proximal tibial resection, then standardized 

instrumentation is used to perform the subsequent cuts [29]. Recent research has debated 

the efficacy of PSI in clinical settings. In a literature review conducted by Sassoon et. al., 

the authors found mixed results when using PSI in comparison to conventional 
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instrumentation. Out of 16 studies, 10 of the studies reported no significant differences in 

improved mechanical alignment, four studies reported fewer alignment outliers, one 

study reported an increased amount of alignment outliers, and one study reported 

improved alignment [30]. There has not been enough evidence to support PSI achieving 

greater neutral alignment when performing TKAs and improved patient reported 

outcomes compared to conventional instrumentation. 

 

Figure 2.7: Patient specific instrumentation (PSI) for the distal femoral and proximal tibia resection 

(consultqd.clevelandclinic.org) 
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2.5 Robotic Assisted Surgical Systems 

Recently there has been a wide adoption of robotic assisted surgical systems. From 

2012 to 2018, the use of robotic surgery for all general surgery procedures has increased 

from 1.8% to 15.1% [31]. As new technology is expanding, orthopaedic surgeons are 

now turning to RATKAs and computer navigation to achieve more precise osseous 

resections and implant alignment. Commercially available surgical robots in TKA come 

with a wide range of autonomy from creating 3D models of the patient’s lower limb to 

orienting cutting guides and performing osteotomies. Surgical robots in TKA can be fully 

active and perform a set of surgical steps programmed preoperatively, or semi-active and 

allow surgeon control while providing haptic, audible, and/or visual feedback. Passive 

systems such as computer navigation have been implemented in tandem to increase 

surgical accuracy providing real time visual information, such as the location and 

orientation of the femur and tibia for the operating surgeon. This information 

significantly improves surgeon visualization of the joint allowing for better knee 

alignment [32]. Computer navigation systems can be image-based or imageless. Image-

based navigation uses a preoperative CT or MRI scan or intraoperative fluoroscopy while 

imageless navigation uses strictly intraoperative information such as anatomical 

landmarks and surfaces. The intraoperative information collected during imageless 

navigation is used to analyze the morphology and alignment of the knee. Clinical studies 

have shown that CT-based navigation results in more neutral tibiofemoral alignment, but 

preoperative radiography increases patient radiation exposure and well as costs and time 

[33]. On the other hand, imageless navigation has been shown to yield equivalent implant 
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positioning in the coronal and sagittal planes as well as reconstruction of the mechanical 

axis of the limb without the need to predispose the patient to radiation [34,35]. 

The process of a semi-active imageless robotic surgical system can be broken into 

three major steps: planning, bony registration, and bony preparation. First, the surgeon 

performs an arthrotomy to obtain adequate exposure of the joint. Rigid body arrays, a 

constellation of markers, are pinned into the femur and tibia which are tracked by a 

camera located opposite from the robotic arm. The computerized system is able to 

calculate the position of the femur and the tibia by creating a coordinate system from the 

markers. The surgeon then characterizes the bony surface by creating point clouds around 

specific anatomical landmarks and articulating surfaces with a stylus that is tracked by 

the camera system. An anatomical coordinate system is created based on the registered 

landmarks, and a 3D model of the patient’s bony anatomy is generated. The robotic 

system then plans the resection angles and depths, and the surgeon verifies and modifies 

the plan for acceptable knee balance. Once the plan has been finalized, the surgeon 

controls the end effector which is equipped with an instrument to remove bone such as an 

oscillating saw or rotating burr. The bony resections and ligament balance are based on 

the surgeon’s methodology (measured resection or gap balancing) [36]. After the bony 

resections, trial prostheses are implanted, the joint space and surrounding soft tissue are 

assessed for an acceptable balanced knee. If the results are unsatisfactory, the surgeon 

may continue to release soft tissue and/or resect bone. Once results are satisfactory, the 

final components are implanted and standard TKA procedures are followed to close the 

wound. 
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Even though the underlying concept of robotic surgical systems is the same for many 

currently marketed surgical robots, the execution varies with manufacturer. The Mako 

system (Stryker, Kalamazoo, MI), a semi-active image based robotic surgical system, 

uses patient specific information from a preoperative CT scan in order to plan the 

resections. This system orients the end effector, an oscillating saw, to the correct position 

and allows the operating surgeon to control and resect bone [37]. Systems such as the 

OMNIBot surgical robot (Corin, Cirencester, UK), a semi-active imageless robotic 

surgical system, will orient the end effector, a slotted cutting guide, to the correct location 

where a manual oscillating saw is then used to perform each resection of the femur. A 

separate cutting jig is then pinned to the anterior cortex of the tibia where screws are 

tightened to orient the resection plane and a manual oscillating saw is used to perform the 

resection [38]. The NAVIO surgical system (Smith & Nephew, London, UK), a semi-

active imageless system, uses a rotating bur to perform the femoral distal resection and 

holes are bored for the placement of a cutting block. Holes are also bored in the anterior 

cortex of the tibia, for the tibial cutting jig, where pins are used to secure the device and a 

manual oscillating saw is used for the tibial proximal resection and the subsequent 

resections of the femur [39]. The ROSA knee system (Zimmer Biomet, Warsaw, IN), an 

image-based or imageless semi-active robotic surgical system, shares aspects with both 

the OMNIBot and NAVIO surgical systems where the end effector, a slotted cutting 

guide, orients the femoral distal resection angle and locates the position of the pins for the 

femoral and tibial cutting block which is used for the subsequent resections. Once the 
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cutting guide is oriented, a manual oscillating saw is then used to perform the resections 

[40]. 

The VELYS™ Robotic Assisted Solution (Depuy Synthes, Warsaw, IN), is a semi-

active imageless robotic surgical system. The surgical system, a three degree of freedom 

(DOF) articulated robotic arm, utilizes three revolute joints to span a workspace, the total 

volume swept out by the end effector. The revolute joints are oriented such that 

transformations from the base to the end effector can be parameterized by three Euler 

Angles. The system consists of three critical components: a satellite station equipped with 

an optical system, a cart that houses the detachable robotic arm, and a detachable robotic 

arm that is attached to the surgical table during operation. Prior to operation, the surgical 

system is calibrated through a series of motions to track the rigid body arrays. Similar to 

currently available imageless robotic surgical systems designed for TKA, bicortical pins 

attached with a constellation of three reflective markers are implanted into the femur and 

tibia. Markers are also attached to the end effector of the surgical unit. The VELYS™ 

Robotic Assisted Solution surgical unit can generate the 3D bony anatomy of the 

patient’s lower limb through the identification of anatomical landmarks using a stylus 

that is optically tracked. Using intraoperative data and a series of coordinate 

transformations, the surgical unit can estimate the relative distance between the femur 

and the tibia. This information is displayed onto the screen as a function of knee angle. 

Because the robotic surgical system is semi-active, the operating surgeon is able to 

control the end effector, equipped with an oscillating saw, to resect bone while the system 

rejects any positional and angular deviations from the procedure. After trial components 
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have been impacted, the operating surgeon can use the relative distance between the 

femur and tibia as a function of knee angle information to check for correct knee balance 

from full flexion to extension. Once satisfactory results have been achieved, standard 

procedures are performed to replace the trial components with the final components and 

to close the wound. 

 

Figure 2.8: VELYS™ Robotic Assisted Solution (DePuy Synthes, Warsaw, IN) (Left) and T-Solution 

One® (THINK Surgical®, Fremont, CA) (Right) [41] 

Previous studies have explored the accuracy and precision of commercially available 

surgical systems. Many studies have shown that robotic surgical systems can recreate 

resection errors of less than ± 1° or ± 1 mm [37,39,40,42]. A study conducted by Hampp 

et al. investigated the difference in accuracy of bone resection and implant positioning 

between the Mako system and conventional instrumentation. The authors found that the 
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robotic-assisted surgical system is capable of resecting bone at a highly accurate and 

significantly different level than the conventional instrumentation in all anatomic planes 

except for the sagittal plane. The Mako system also demonstrated highly accurate implant 

placement in all planes except for the tibial sagittal plane [37]. Casper et al. investigated 

the implant placement accuracy of the Navio system. The authors calculated that the 

Navio is highly accurate in all planes of alignment except for the femoral sagittal plane 

[39]. Figueroa et al. assessed the in-vivo accuracy achieved with the OMNIBot surgical 

robot (Corin, Cirencester, UK). In this clinical study, the authors discovered that the 

OMNIBot was accurate in all planes except for the sagittal plane. For both the femur and 

the tibia, the resections were on average 1.5 ± 0.3° and 1.3 ± 1.5° more flexed [38]. In 

three separate studies with three different robotic systems, the results showed accurate 

resections and/or implant alignment in all planes except for the sagittal plane. In a study 

conducted by Plaskos et al. the authors reported that an oscillating saw blade can 

contribute to 0.6° to 1.1° and 1.8° of SD in the coronal and sagittal planes [9]. This is 

possible due to small vibrations of the equipment which can deviate the resection, or the 

deflection of the blade as a resection is performed because an oscillating blade can deflect 

more easily as the blade travels posteriorly where sclerotic bone tends to exist. 

It is often difficult to directly compare accuracy and precision metrics between 

studies because measurements and calculations vary between studies. In a couple studies, 

authors measured the resection surface using a planar probe [37,40]. A rigid body array 

was attached to the probe, where the camera system calculates the orientation of the 

instrument, and the final cuts were measured relative to the fiducial markers attached to 
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the femur or tibia. Although this measurement technique is accurate in the surgical 

system’s model of the bones, it may not be an accurate representation of the actual 

resection error in the femoral or tibial anatomic coordinate system. Because the surgical 

system’s model is based on surgeon-determined anatomical landmarks, inaccuracies 

associated with locating anatomical landmarks will deviate the true femoral or tibial 

anatomical reference frames from the model. Amanatullah et al conducted a study where 

inaccurate registrations of the femoral epicondyles, femoral and tibial centers, and 

malleoli were correlated to rotational errors in the robotic surgical system’s model. The 

authors found that incorrect registration of the femoral and tibial centers of 6 mm in the 

Medial-Lateral (M-L) and A-P directions caused a 1° change in the Varus-Valgus (V-V) 

and Flexion-Extension (F-E) angle respectively [18]. The study found that the most 

sensitive anatomical landmarks were the medial and lateral epicondyles, where 2 – 4 mm 

of error in the A-P direction caused 1° change in Internal-External (I-E) angle [18]. A 

study encompassed the registration error into the resection error by including a 

preoperative CT scan, which was independent of the surgical technique, and defined the 

anatomic coordinate system for measurements [38]. A postoperative CT scan was taken 

and registered to the preoperative scan, and the resection was measured relative to the 

anatomical coordinate system. The measurement was independent from the coordinate 

system created from the robotic model and includes the registration error of the system. 

Authors agree that diminutive improvements of fractional degrees and millimeters 

will show little clinical significance, but the reduction of outliers will translate to 

improved clinical outcomes [37]. Current research demonstrates that RATKAs are 
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capable of achieving highly accurate and precise implant alignment than conventional 

methods, but in order to correctly determine other potential benefits and long-term 

outcomes of robotic assisted TKAs, larger volume studies and more clinical data is 

needed. There are also various sources of error for RATKA such as: software, hardware 

calibration, pin array placement, registration of anatomic landmarks, intraoperative pin 

array movement, incorrect bone cuts, and incorrect final implant placement, and it is 

pertinent to explore each source of error and their individual contributions to the overall 

system error of RATKA. 
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Chapter 3 : Resection Angle and Implant Orientation Accuracy 

3.1 Introduction 

During CTKA, errors can occur such as intraoperative movement of cutting jigs, due 

to poor fixation, locating anatomic landmarks, and resection and implantation techniques 

which are all dependent on surgical experience [9]. The sum of these errors can amount 

to large deviations of the final implant orientation and an unbalanced knee. 

Instruments are aligned using anatomical landmarks which are determined by 

palpating and identifying bony points. Points on the malleoli, femoral condyles, and tibial 

plateau can be used to create anatomic axes where instruments are used to estimate the 

alignment of the knee. Intra and extra medullary rods estimate the anatomic axis for both 

the tibia and the femur based on patient natural anatomy which is then used to set the 

distal femoral and proximal tibial resection angle. It has been shown that these tools can 

be inaccurate especially when patients suffer from severe valgus or varus deformities 

[19]. 

The aim of RATKA is to reduce intraoperative errors that exist with CTKA resulting 

in more accurate bony resections, implant placement, and a balanced knee. Theoretically, 

by replacing the initial tools used to set the angles of the resections with a computer, 

capable of motions of fractional degrees, intraoperative errors can be reduced. 

This study was performed to compare the resection and implant alignment errors 

between the robotic assisted surgical system and conventional instrumentation. In order  
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to quantify the resection error metric, the angle of the anterior, distal, and posterior 

surface of the femur and proximal tibial surface were determined. To quantify the implant 

alignment errors, the final orientation of the implant was determined. 

3.2 Methodology 

In this study, bilateral TKA was performed on forty pelvis-to-toe cadaveric specimens 

(Age: 70.4 ± 8.2 years, Height: 67.1 ± 4.1 in., Weight: 132.4 ± 35.8 lbs., BMI: 20.6 ± 

4.9). Five board certified orthopaedic surgeons performed all TKAs using either 

conventional tools or the robotic surgical system. For a given knee, the surgical method 

was randomly selected, and the contralateral knee would receive the alternative method 

to avoid side or handed bias. The orthopaedic surgeons were familiar with the ATTUNE 

INTUITION™ conventional instrumentation and were also familiar with either computer 

assisted surgery or RATKA and were also trained on the VELYS™ Robotic Assisted 

Solution surgical system prior to the study. For all cases, the ATTUNE® Cementless 

Cruciate Retaining Femur and ATTUNE® Cemented Tibial Base was impacted onto the 

femur and tibia, respectively. 

Prior to the study, CT scans were taken of each specimen with a 0.6 mm slice 

thickness. The CT scans were used to measure the resection accuracy after TKA but was 

independent of the surgical procedure. 
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Figure 3.1: CT and white light imaging workflow 
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For the robotic assisted cohort, rigid body arrays were attached to the femur and tibia 

using bicortical screws. Standard workflow was performed to expose the knee joint as 

well as to mark, define, and register anatomical landmarks on the femur and tibia using a 

stylus with a rigid body array. The imageless robot is then capable of creating a 3D 

model from the locations of the registered anatomical landmarks and surface point 

clouds. Surgeons subsequently plan the resection angle and depth based on the knee 

balance using the system’s software. The robotic surgical system orients the end effector 

to the correct angle relative to the resected bone and allows the surgeon to perform the 

resection while rejecting positional or angular error. The femoral sagittal angle (FSA), 

femoral coronal angle (FCA), femoral rotational angle (FRA), tibial sagittal angle (TSA), 

tibial coronal angle (TCA), as well as the medial femoral distal thickness, medial femoral 

posterior thickness, and tibial resection thickness target values were recorded. 

For the conventional cohort, a standard arthrotomy was performed to expose the knee 

joint and the surgical technique for the ATTUNE® Knee System was followed. 

 

Figure 3.2: VELYS™ Robotic Assisted Solution (DePuy Synthes, Warsaw, IN) (Left) and Conventional 

Instrumentation Trays (Right) (jnjmedicaldevices.com) 

After each primary resection, bone remnant thicknesses were measured using a 

calibrated digital caliper. The thicknesses of the femoral resections were measured from 
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the resection plane to the most prominent point on the articular surface and the thickness 

of the tibial resection was measured from the resection plane to an electrocautery mark on 

the tibial plateau. 

After the resections, another CT scan was taken to capture the resection surface of the 

postoperative knees. The specimens were returned, and the distal 300 mm of the femur 

and proximal 300 mm of the tibia were extracted (Figure 3.3). The bones were exposed, 

and all soft tissue was stripped. The Artec Space Spider (Artec3D, Luxembourg), 

white/structured light scanner, was then used to accurately capture the resection surfaces 

of the bone. The extracted bones were implanted with their respective components and 

measured again using the white light scanner. The scanning process can be seen in Figure 

3.1. 

 

Figure 3.3: Extraction length (300 mm) for the femur and tibia. 
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A team of engineers at TruMatch® Personalized Solutions (DePuy Synthes) 

segmented each preoperative and postoperative CT scan and created 3D models along 

with the locations of anatomical landmarks of the preoperative model. 

All white light scans were fused using the Artec Studio 15 (Artec3D, Luxembourg) 

software and all postoperative (CT and white light) scans were manually registered by 

matching the topology of the non-implanted regions to the preoperative CT scan in 

HyperMesh (Altair Engineering Inc, Troy, MI). An iterative closest point (ICP) algorithm 

was applied to finalize the registration between the postoperative and preoperative scans 

(Figure 3.4). 

 

Figure 3.4: Registration steps between preoperative and postoperative CT scans. A: no 

transformation. B: manual registration. C: ICP algorithm. 
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3.2.1 Femoral Definitions 

Anatomic coordinate systems were constructed from the preoperative CT scan 

anatomical landmarks. The origin was defined as the most distal point on the femoral 

sulcus. The femoral Superior-Inferior (S-I) axis was aligned to the mechanical axis of the 

femur, a vector from the origin pointing to the center of the femoral head. The coordinate 

system was then rotationally aligned to the posterior condylar axis (PCA), an axis 

between the most posterior points on the posterior femoral condyles, pointing laterally for 

right knees and pointing medially for left knees. The vector product between the femoral 

mechanical axis and the PCA creates the A-P axis. A final vector product between the S-I 

and A-P axes forms the M-L axis (Figure 3.5). 

 

Figure 3.5: Femoral anatomic coordinate system. Posterior condylar axis (purple), Femur mechanical 

axis (blue), A-P axis (green), and M-L axis (red) 
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The femoral sagittal angle (FSA) is defined as the angle between the femoral mechanical 

axis and the distal femoral resection or implant surface in the sagittal plane. The femoral 

coronal angle (FCA) is defined as the angle between the mechanical axis and the distal 

femoral resection or implant surface in the coronal plane. The femoral rotational angle 

(FRA) is defined as the angle between the PCA and the posterior resection or implant 

surface in the transverse plane (Figure 3.6). 

 

Figure 3.6: Femoral rotations relative to anatomic axes. Femoral sagittal angle (FSA) (top left). 

Femoral sagittal angle (FSA) (top right). Femoral rotational angle (FRA) (bottom). A-P axis (green) and 

M-L axis (red). 

3.2.2 Tibial Definitions 

The tibial S-I axis was aligned to the mechanical axis of the tibia, a vector from the 

malleoli center to the tibial intercondylar eminence. The coordinate system was 
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rotationally aligned with a vector from the medial third of the tubercle to the tibial center. 

A vector product was performed between the tibial S-I axis and the medial third of the 

tubercle axis to form the M-L axis. A final vector product between the S-I and M-L axis 

to form the A-P axis (Figure 3.7). 

 

Figure 3.7: Definition of tibial anatomic coordinate system. Medial third of tubercle axis (purple), 

tibial mechanical axis (blue), A-P axis (green), and M-L axis (red). 

The tibial sagittal angle (TSA) is defined as the angle between the tibial mechanical axis 

and the proximal resection surface in the sagittal plane. The tibial coronal angle (TCA) is 

defined as the angle between the tibial mechanical axis and the proximal resection 

surface in the coronal plane (Figure 3.8). 
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Figure 3.8: Tibial rotations relative to anatomic axes. TCA (Left) and TSA (Right). A-P axis (green) 

and M-L axis (red). 

3.2.3 Sign Convention 

In the sagittal plane, flexion is considered positive (+), and extension is considered 

negative (-). In the coronal plane, varus is considered positive (+), and valgus is 

considered negative (-). In the transverse plane, internal is considered positive (+), and 

external is considered negative (-). 

 

Figure 3.9: Sign conventions for a right knee. Flexion (+), Extension (-), Varus (+), Valgus (-), 

Internal (+), and External (-).
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Figure 3.10: Femoral Relative Angle and A-P Distance Targets (Top) and Measures (Bottom). Anterior Posterior Transverse Angle (Left), Anterior 

and Posterior Resection Sagittal Angle (Center), and Anterior-Posterior Distance (Right). 
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3.2.4 Resection Angle Calculations 

The bones were then transformed to their respective anatomic coordinate systems 

where the measurements are calculated. A custom MATLAB (MathWorks, Natick, MA) 

script was used to fit a plane to the distal femoral, posterior femoral, and proximal tibial 

resections (Figure 3.11). 

 

Figure 3.11: Extracted surface (Left), and plane fit (Middle), surface intersection (Right). 

A set of points on each resection surface was extracted from the solid models 

generated from the postoperative CT or white light scans. A covariance matrix was 

formed and the eigenvalues and eigenvectors were computed. The smallest eigenvalue 

and its associated eigenvector returns the principal direction with the highest variability. 

This principal direction is associated with the normal vector to the resection surface. This 

is because for a set of distinct eigenvalues the eigenvectors are orthogonal. With this 

property, the other two eigenvectors are in-plane to the set of points extracted from the 

solid models. The calculated normal vectors of each resection plane are projected to the 

anatomic planes and the FSA, FCA, FRA, TSA, and TCA are calculated using the dot 

product definition (Figure 3.12). 
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Figure 3.12: Calculated resection angles in the sagittal (Left), coronal (Center), and transverse (Right) planes. 
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3.2.5 Implant Angle Calculations 

To quantify the implant orientation error, a homogenous transformation between the 

implant Computer Aided Drawing (CAD) geometry and the white light scan of the 

implanted prosthesis was calculated. The CAD geometry of the femoral component was 

oriented such that a line connecting the center of the medial and lateral posts correlates 

with the M-L axis, a line normal to the distal surface correlates with the S-I axis, and the 

vector product between the two lines correlates with the A-P axis. The CAD geometry for 

the tibial component was oriented such that a line connecting the most lateral and most 

medial points correlates with the M-L axis, a line normal to the proximal surface of the 

tray correlates with the S-I axis, and the vector product between the two lines correlates 

to the A-P axis (Figure 3.13). 

 

Figure 3.13: Implant Coordinate System. Z-axis (blue), A-P axis (green), and M-L axis (red) 

An iterative closest point (ICP) algorithm was implemented to minimize the 

difference between the CAD geometry and white light scan. The basis of this algorithm 

minimizes an error metric such as the sum of squared differences, by comparing a point 

on the source point cloud (fixed) to points on the reference point cloud. A transformation 
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is estimated to minimize the error metric and is iteratively repeated. The output of the 

ICP algorithm returns a homogenous transformation matrix which linearly maps the 

initial position and orientation of the CAD implant geometry to the final implanted 

position and orientation (Figure 3.14). 

 

Figure 3.14: Registration of femoral implant using ICP. Before ICP (Left) and After ICP (Right) 

The homogenous transformation matrix was converted to Cardan Angles, so the 

transformation can be interpreted as rotations, in degrees, about the fixed implant axes. 

The femoral implant sagittal angle (FISA), femoral implant coronal angle (FICA), 

femoral implant rotational angle (FIRA), tibial implant sagittal angle (TISA), and tibial 

implant coronal angle were calculated (TICA). 

3.2.6 Femoral Relative Resection and Anterior Posterior Average Distance 

Calculations 

The preoperative and postoperative scans of the femur were transformed to a distal 

resection coordinate system where the normal vector of the distal resection was aligned 

with the z-axis, and then rotationally aligned with the A-P axis defined in Chapter 3.2.1. 

This consists of creating a temporary vector by taking the vector product between the A-P 
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axis and z-axis. Another vector product is taken between the z-axis and temporary axis to 

form the y-axis, and a final vector product is taken between the y-axis and z-axis to form 

the x-axis.  

 

Figure 3.15: Femur in distal resection coordinate system (solid = anatomical, dotted = distal resection 

coordinate system) 

Similar to the resection angle calculations, a plane was fit to the anterior, distal, and 

posterior resection surfaces and the normal vectors were projected onto the three 

orthogonal planes (X-Y, Y-Z, and X-Z). The anterior resection sagittal angle, posterior 

resection sagittal angle, and A-P transverse angle are then calculated (Figure 3.16). 
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Figure 3.16: Sagittal view of the femur in the distal resection coordinate system and projected 

resection normal vectors. 

To measure the A-P distance between the anterior and posterior resection, an average 

of distances was calculated. A plane, normal to the z-axis, was created on the most 

proximal point on the posterior resection. Then, another plane was created on the most 

distal point on the anterior resection, and the last plane was created equidistant between 

the two planes (Figure 3.17). 

 

Figure 3.17: Sagittal view of the femur with a plane on the most proximal point on the posterior 

resection (dotted), most distal point on anterior resection (dashed), and equidistant between the proximal 

and distal planes (solid). 
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The anterior and posterior resections were then intersected by the equidistant plane. 

When two surfaces intersect, the result is a line. Two lines for the posterior resection are 

extracted and one line for the anterior resection is extracted. Points on the posterior 

resection line are projected onto the anterior resection line in the y-direction. If a point 

exists on the anterior resection line, then a distance can be calculated. The workflow is 

shown in Figure 3.18. 

 

Figure 3.18: A plane (light blue) intersects both the posterior and anterior resections creating a 

posterior resection line (red) and anterior resection line (blue) (Left). Extracted posterior and anterior 

resection lines (Middle). Distance measurement line (black) between posterior and anterior resection lines. 

3.2.5 Statistical Methodology 

Errors were calculated as the difference between the measured alignment metric and 

corresponding target. Summary statistics were calculated which include: mean and 

standard deviation of the errors, median errors, and mean and standard deviations of the 

absolute errors for each metric across the RATKA and CTKA cohorts. After testing for 

normality and constant variances, 2-sample one tailed t-tests with a significance level of 

5% (α = 0.05) were performed to determine superiority (or non-inferiority) of the 

absolute error from the RATKA cohort compared to the CTKA cohort using a minimal 

clinically important difference of 0.5° or 0.5-mm (p ≤ 0.05) where appropriate. For a 

superiority test, a two sample one tailed t-test was performed with the alternative 

hypothesis stating: The mean error in the CTKA cases is significantly greater than the 
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mean error in RATKA cases. If we reject the alternative hypothesis for the superiority 

test, we can perform a non-inferiority test with an alternative hypothesis stating: The 

mean error in RATKA cases is not significantly greater than the CTKA cases by 0.5 mm 

or 0.5°. One tailed t-tests were performed because the absolute values of the errors limit 

the lower tail in the distribution. 

In a previous power analysis, a necessary sample size of 34 specimens was 

determined to achieve a minimum statistical power of 80% with a significance level of 

5% (α = 0.05). By using a sample size of 40 specimens, an error margin is created in the 

case of excluding specimens based on the circumstances of the experiment. Specimens 

were initially included based on the following criteria: 

• Both extremities without prior knee surgery and trauma 

• No retained hardware in the lower limb 

• Intact ligaments 

• Radiographs without evidence of advanced osteoporosis or advanced arthritis that 

would affect screw fixation or inhibit the planning process. 

To quantify the presence of resection or alignment outliers, specimens were 

categorized into accuracy errors less than 3° or 3-mm, less than 2° or 2-mm, and less than 

1° or 1-mm. Since accuracy of the primary resections were calculated using both the CT 

scans and white light scans, mean absolute differences and correlation coefficients were 

calculated between the redundant measures. Finally, mean absolute differences and 
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correlation coefficients were calculated between the resection alignments and final 

implant alignments. 

A linear regression model was created to verify the results generated from t-tests as 

well as to compare the resection angle results between the white light and CT scan. From 

the linear regression model, an adjusted correlation coefficient (R2), goodness-of-fit 

measure, can be used to quantify variances between the two scans. If the R2 value is high, 

the variances between the resection angle calculated from the white light and CT scans 

are explained by the linear model. 

3.3 Results 

Out of the forty RATKA performed, intraoperative movement caused the femoral 

rigid body array to dislodge in two cases. These two cases were excluded from the 

analysis. The resection thickness was not measured in one RATKA case and one 

conventional case. These were also excluded from the analysis. The mean absolute 

resection angle error between the robotic surgical system and conventional 

instrumentation in FSA distal reference was 1.65° ± 1.11° and 1.92° ± 1.50°, in FCA was 

0.65° ± 0.50° and 1.39° ± 0.95°, in FRA was 1.08° ± 0.81° and 1.00° ± 0.70°, in TSA 

was 1.62° ± 1.13° and 1.63° ± 1.39°, and in TCA was 0.93° ± 0.72° and 1.66° ± 1.29° 

respectively. The mean absolute resection depth error between RATKA and CTKA for 

the femoral distal resection was 0.62 mm ± 0.60 mm and 0.88 mm ± 0.96 mm, for the 

femoral posterior distal resection was 0.54 mm ± 0.43 mm and 0.77 mm ± 0.83 mm, and 

for the tibial proximal resection was 0.67 mm ± 0.69 mm and 1.66 mm ± 1.38 mm, 

respectively. The resection accuracy results of the study are also presented in Table 1. 
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A white light scan of the femoral component and tibial tray were corrupted for the 

CTKA group. These cases were also excluded from the analysis. When comparing the 

implant alignment results between RATKA and CTKA, the implant orientation was 

measured. The mean absolute implant orientation error between the robotic surgical 

system and conventional instrumentation in FISA was 1.51° ± 1.08° and 2.49° ± 2.10°, in 

FICA was 0.91° ± 0.83° vs 1.42° ± 1.15°, in FIRA was 1.14° ± 0.76° vs 0.98° ± 0.90°, in 

TISA was 1.37° ± 1.11° vs 1.65° ± 1.51°, and in TICA was 1.31° ± 0.84° vs 2.03° ± 

1.44° respectively. The results of the study are also presented in Table 2. 
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Table 3.1: Resection accuracy descriptive statistics for CT scans. All results are statistically significant (p < 0.05) FSA, femoral sagittal alignment, 

distal or posterior reference; FCA, femoral coronal alignment; FRA, femoral rotational alignment; TSA, tibial. 

 RATKA CTKA   

Metric Mean ± SD Median 
Abs. Mean 

± SD 
Mean ± SD Median 

Abs. Mean 

± SD 
Result p-value 

FSA, Dist. Ref. (°) 1.18 ± 1.62 1.20 1.65 ± 1.11 0.47 ± 2.41 0.56 1.92 ± 1.50 Non-Inferior 0.006 

FSA, Post. Ref. (°) 0.65 ± 1.37 0.71 1.21 ± 0.90 0.15 ± 4.15 0.19 3.27 ± 2.51 Superior 0.000 

FCA (°) 0.00 ± 0.82 -0.01 0.65 ± 0.50 -0.21 ± 1.69 -0.25 1.39 ± 0.95 Superior 0.000 

FRA (°) -0.26 ± 1.33 0.07 1.08 ± 0.81 -0.04 ± 1.23 0.16 1.00 ± 0.70 Non-Inferior 0.009 

TSA (°) 0.69 ± 1.86 1.07 1.62 ± 1.13 0.59 ± 2.07 0.64 1.63 ± 1.39 Non-Inferior 0.036 

TCA (°) -0.04 ± 1.18 0.11 0.93 ± 0.72 0.92 ± 1.90 0.97 1.66 ± 1.29 Superior 0.001 

FDR (mm) 0.01 ± 0.87 -0.03 0.62 ± 0.60 -0.56 ± 1.18 -0.30 0.88 ± 0.96 Non-Inferior 0.000 

FPR (mm) -0.08 ± 0.69 -0.28 0.54 ± 0.43 -0.69 ± 0.89 -0.46 0.77 ± 0.83 Non-Inferior 0.049 

TPR (mm) -0.44 ± 0.86 -0.30 0.67 ± 0.69 -1.21 ± 1.79 -1.30 1.66 ± 1.38 Superior 0.000 

 

Table 3.2: Implant alignment accuracy descriptive statistics. All results are statistically significant (p < 0.05) FISA, femoral implant sagittal alignment; 

FICA, femoral implant coronal alignment; FIRA, femoral implant rotational alignment; TICA, tibial implant. 

 RATKA CTKA   

Metric Mean ± SD Median 
Abs. Mean 

± SD 
Mean ± SD Median 

Abs. Mean 

± SD 
Result p-value 

FISA (°) -0.53 ± 1.79 -0.36 1.51 ± 1.08 -2.22 ± 2.39 -1.75 2.49 ± 2.10 Superior 0.006 

FICA (°) -0.29 ± 1.20 -0.30 0.91 ± 0.83 -0.62 ± 1.73 -0.42 1.42 ± 1.15 Superior 0.014 

FIRA (°) -0.13 ± 1.38 -0.32 1.14 ± 0.76 0.13 ± 1.33 0.01 0.98 ± 0.90 Non-Inferior 0.039 

TISA (°) 0.10 ± 1.77 0.37 1.37 ± 1.11 0.13 ± 2.25 0.36 1.65 ± 1.51 Non-Inferior 0.005 

TICA (°) 0.47 ± 1.50 0.51 1.31 ± 0.84 1.54 ± 1.97 1.68 2.03 ± 1.44 Superior 0.004 
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Figure 3.19: Box plots showing summary statistics of resection angles (CT). Central mark represents 

the median and red dots denote outliers (Data outside 1.5 IQR) 

 

Figure 3.20: Box plots showing summary statistics of resection depths. Central mark represents the 

median and red dots denote outliers (Data outside 1.5 IQR). 
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Figure 3.21: Box plots showing summary statistics of implant alignment angles (CT). Central mark 

represents the median and red dots denote outliers (Data outside 1.5 IQR). 

 

Figure 3.22: Femoral resection accuracy measures based on postoperative CT scans (* indicates 

RATKA superiority at a 95% CI). 
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Figure 3.23: Tibial resection accuracy measures based on postoperative CT scans (* indicates RATKA 

superiority at a 95% CI). 

  

Figure 3.24: Femoral implant alignment measures (* indicates RATKA superiority at a 95% CI). 



 

48 

 

Figure 3.25: Tibial implant alignment measures (* indicates RATKA superiority at a 95% CI). 

Outliers were reported by calculating the number of cases between two different 

bounds. It was found that for RTKA and CTKA, 89.5% (34/38) and 85% (34/40) of cases 

were within ± 3° and 31.6% (22/38) and 35% (14/40) of cases were within ± 1° in FSA, 

Distal Reference. For TSA, 85% (34/40) and 80% (32/40) of cases were within ± 3° and 

35% (14/40) and 42.5% (17/40) of cases were within ± 1° for RTKA and CTKA 

respectively. For FCA, 100% (38/38) and 92.5% (37/40) of cases were within ± 3° and 

86.8% (33/38) and 42.5% (17/40) of cases were within ± 1° for RTKA and CTKA 

respectively. For TCA, 100% (40/40) and 80% (32/40) of cases were within ± 3° and 

60% (24/40) and 37.5% (15/40) of cases were within ± 1° for RTKA and CTKA 

respectively. For FRA, 100% (38/38) and 97.5% (39/40) of cases were within ± 3° and 

52.6% (20/38) and 60% (24/40) of cases were within ± 1° for RTKA and CTKA 

respectively. The results are summarized in Table 3. 
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It was found that for RATKA and CTKA, 92.1% and 69.2% of implants were aligned 

within ± 3° and 42.1% and 20.5% were aligned within ± 1° for the FISA metric 

respectively. 94.7% and 87.2% of cases were aligned within ± 3°, and 68.4% and 46.2% 

of RATKA and CTKA cases were aligned within ± 1° in FICA. 94.7% and 94.9% of 

RATKA and CTKA cases were aligned within ± 3°, and 52.6% and 66.7% of cases were 

aligned within ± 1° for FIRA. 90.0% and 84.6% were aligned within ± 3°, and 42.5% and 

46.2% of cases were aligned within ± 1° for RATKA and CTKA cases in the TISA 

metric. For the TICA metric, 95.0% and 82.1% of cases were within ± 3°, while 35.0% 

and 28.2% of cases were within ± 1° for RATKA and CTKA cases respectively. 
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Table 3.3: Resection angle and resection depth precision summary for CT scans expressed as a percentage of sample size (Number of subjects are 

expressed in parentheses). 

 RATKA CTKA 

Metric Inside ± 1° or 

1 mm 

Inside ± 2° or 

2 mm 

Inside ± 3° or 

3 mm 

Inside ± 1° or 

1 mm 

Inside ± 2° or 

2 mm 

Inside ± 3° or 

3 mm 

FSA, Dist. Ref. 31.6% (12/38) 63.2% (24/38) 89.5% (34/38) 35.0% (14/40) 60.0% (24/40) 85.0% (34/40) 

FSA, Post. Ref. 44.7% (17/38) 92.1% (35/38) 97.4% (37/38) 10.0% (4/40) 35.0% (14/40) 57.5% (23/40) 

FCA 86.8% (33/38) 97.4% (37/38) 100% (38/38) 42.5% (17/40) 85.0% (34/40) 92.5% (37/40) 

FRA 52.6% (20/38) 78.9% (30/38) 100% (38/38) 60.0% (24/40) 90.0% (36/40) 97.5% (39/40) 

TSA 35.0% (14/40) 70.0% (28/40) 85.0% (34/40) 42.5% (17/40) 70.0% (28/40) 80.0% (32/40) 

TCA 60.0% (24/40) 90.0% (36/40) 100% (40/40) 37.5% (15/40) 72.5% (29/40) 80.0% (32/40) 

FDR 78.9% (30/38) 94.7% (36/38) 100% (38/38) 77.5% (31/40) 90.0% (36/40) 95.0% (38/40) 

FPR 84.2% (32/38) 97.4% (37/38) 100% (38/38) 75.0% (30/40) 90.0% (36/40) 95.0% (38/40) 

TPR 79.5% (31/39) 94.9% (37/39) 97.4% (38/39) 41.0% (16/39) 71.8% (28/39) 92.3% (36/39) 

 

Table 3.4: Implant alignment precision summary expressed as a percentage of sample size (Number of subjects are expressed in parentheses). 

 RATKA CTKA 

Metric Inside ± 1° or 

1 mm 

Inside ± 2° or 

2 mm 

Inside ± 3° or 

3 mm 

Inside ± 1° or 

1 mm 

Inside ± 2° or 

2 mm 

Inside ± 3° or 

3 mm 

FISA 42.1% (16/38) 68.4% (26/38) 92.1% (35/38) 20.5% (8/39) 56.4% (22/39) 69.2% (27/39) 

FICA 68.4% (26/38) 89.5% (34/38) 94.7% (36/38) 46.2% (18/39) 71.8% (28/39) 87.2% (34/39) 

FIRA 52.6% (20/38) 92.1% (35/38) 94.7% (36/38) 66.7% (26/39) 84.6% (33/39) 94.9% (37/39) 

TISA 42.5% (17/40) 77.5% (31/40) 90.0% (36/40) 46.2% (18/39) 61.5% (24/39) 84.6% (33/39) 

TICA 35.0% (14/40) 85.0% (34/40) 95.0% (38/40) 28.2% (11/39) 56.4% (22/39) 82.1% (32/39) 
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Figure 3.26: Stacked bar chart of femoral resection accuracy metrics within ±1 (green), ±2 (yellow), 

and ±3 (orange) degrees or mm. 

 

Figure 3.27: Stacked bar chart of tibial resection accuracy metrics within ±1 (green), ±2 (yellow), and 

±3 (orange) degrees or mm. 
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Figure 3.28: Stacked bar chart of implant accuracy metrics within ±1 (green), ±2 (yellow), and ±3 

(orange) degrees. 

The absolute resection error mean for Posterior Resection Sagittal Angle (PRSA) was 

0.95 ± 0.96 and 2.08 ± 2.05 for RTKA and CTKA, respectively. The Anterior Resection 

Sagittal Angle (ARSA) showed absolute mean error values of 1.91 ± 1.05 and 1.92 ± 

1.27 for RTKA and CTKA, respectively. For the Anterior Posterior Transverse Angle 

(APTA) the absolute mean resection error was 0.85 ± 0.70 and 0.71 ± 0.58 for RTKA and 

CTKA. The Anterior Posterior Resection Distance (APRD) showed absolute mean errors 

of 0.56 ± 0.63 and 0.97 ± 0.82. 

The linear regression between the CT and white light scan resection angles describes 

a R2 value of 0.644 for the femoral F-E (distal reference) resection angle, 0.946 for the 

femoral V-V resection angle, 0.911 for the femoral I-E resection angle, 0.834 for the 

tibial F-E resection angle, and 0.915 for the tibial V-V resection angle. 
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A linear regression model between the resection angle and the implant alignment 

angle for femoral F-E (distal reference) describes a R2 value of 0.354. For the femoral V-

V, femoral I-E, tibial F-E, and tibial V-V metrics, the adjusted R2 values were 0.754, 

0.775, 0.760, and 0.841. 

Table 3.5: Resection angle agreement between CT and white light scans expressed as an adjusted 

correlation coefficient. 

Metric Correlation Coefficient (R2) 

Femoral F-E (Distal Ref.) 0.644 

Femoral F-E (Posterior Ref.) 0.833 

Femoral V-V 0.946 

Femoral I-E 0.911 

Tibial F-E 0.834 

Tibial V-V 0.915 

 

Table 3.6: Angle agreement between CT scan resection and implant alignment expressed as an adjusted 

correlation coefficient. 

Metric Correlation Coefficient (R2) 

Femoral F-E (Distal Ref.) 0.354 

Femoral F-E (Posterior Ref.) 0.291 

Femoral V-V 0.754 

Femoral I-E 0.775 

Tibial F-E 0.760 

Tibial V-V 0.841 
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Figure 3.24: Femoral sagittal plane resection agreement between CT and white light scans. 

 

Figure 3.25: Femoral coronal plane resection agreement between CT and white light scans. 
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Figure 3.26: Femoral sagittal plane agreement between resection and implant alignment. 

 

Figure 3.27: Femoral coronal plane agreement between resection and implant alignment. 
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Table 3.7: Femoral relative resection summary statistics. PRSA, Posterior Resection Angle; ARSA, Anterior Resection Sagittal Angle; APTA, Anterior 

Posterior Transverse Angle; APSA, Anterior Posterior Sagittal Angle; APRD, Anterior Posterior Resection Distance. 

 RATKA CTKA   

Metric Mean ± SD Median 
Abs. Mean ± 

SD 
Mean ± SD Median 

Abs. Mean 

± SD 
Result p-value 

PRSA (°) 0.56 ± 1.24 0.46 0.95 ± 0.96 0.23 ± 2.93 -0.15 2.08 ± 2.05 Superior 0.001 

ARSA (°) -1.91 ± 1.05 -1.90 1.91 ± 1.05 -1.75 ± 1.51 -1.81 1.92 ± 1.27 Non-Inferior 0.028 

APTA (°) -0.03 ± 1.10 0.09 0.85 ± 0.70 -0.33 ± 0.86 -0.18 0.71 ± 0.58 Non-Inferior 0.007 

APSA (°) -1.35 ± 1.28 -1.13 1.51 ± 1.08 -1.51 ± 3.27 -1.88 2.84 ± 2.18 Superior 0.001 

APRD (mm) -0.16 ± 0.83 -0.16 0.56 ± 0.63 -0.17 ± 1.27 -0.27 0.97 ± 0.82 Superior 0.001 

 

Table 3.8: Resection accuracy descriptive statistics for white light scans. 

 RATKA CTKA   

Metric Mean ± SD Median 
Abs. Mean 

± SD 
Mean ± SD Median 

Abs. Mean 

± SD 
Result p-value 

FSA, Dist. Ref (°) 1.42 ± 0.99 1.58 1.50 ± 0.86 0.25 ± 2.22 0.35 1.70 ± 1.42 Non-Inferior 0.005 

FSA, Post. Ref (°) 0.89 ± 1.23 0.84 1.14 ± 1.00 -0.02 ± 4 -0.18 2.93 ± 2.69 Superior 0.000 

FCA (°) -0.12 ± 0.75 -0.14 0.59 ± 0.47 -0.35 ± 1.70 -0.47 1.39 ± 1.02 Superior 0.000 

FRA (°) 0.10 ± 1.15 0.12 0.98 ± 0.59 0.29 ± 1.33 0.36 1.10 ± 0.79 Non-Inferior 0.000 

TSA (°) -0.14 ± 1.61 0.09 1.21 ± 1.05 -0.04 ± 2.24 -0.12 1.65 ± 1.49 Non-Inferior 0.000 

TCA (°) 0.47 ± 1.47 0.89 1.28 ± 0.85 1.48 ± 1.91 1.47 1.97 ± 1.38 Superior 0.004 
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3.5 Discussion 

A comparison of mean absolute errors shows that RATKA bone resections and 

implant alignments are either superior or non-inferior to conventional instrumentation. 

The robotic surgical system showed significant increased bony resection and implant 

alignment accuracy and precision in the coronal plane for both the femur and tibia. 

RATKA showed a 53% and 44% increase in resection accuracy in FCA and TCA 

respectively and an increase in implant alignment accuracy of 36% and 35% in FICA and 

TICA respectively compared to CTKA. Frontal plane alignment has been shown as an 

important factor in preventing implant failure when the tibial tray is positioned 

perpendicular to the mechanical axis. A tray positioned perpendicular to the mechanical 

axis distributes loads more evenly between the two condyles compared to a mal-rotated 

tray. A series of studies were conducted to investigate the TICA of intramedullary and 

extramedullary guides and found that trays aligned within 2° of the target ranged between 

71% to 94% and 82% to 88% respectively [28]. The data shows that the use of a robotic 

surgical system resulted in 85% of the trays aligned within 2° and 95% of the trays 

aligned within 3°. 

Historically, it has been reported by authors that surgeons have trouble making 

accurate resections and aligning implants in the sagittal plane compared to the coronal 

and transverse planes [37,43]. Even though not significant, the mean absolute error 

improved from 1.92° ± 1.50° to 1.65° ± 1.11° for FSA when referenced from the distal 

resection; however, significant improvement was found when FSA was referenced from 

the posterior resection from 3.27° ± 2.51° to 1.21° ± 0.90° and for FISA from 2.49° ± 

2.10° in CTKA cases to 1.51° ± 1.08° in RATKA cases. 



 

58 

Other metrics such as the tibial proximal resection (TPR), FISA, proximal resection 

sagittal angle (PRSA), and anterior-posterior resection distance (APRD) were found to be 

superior in RATKA than for CTKA. TPR accuracy increased by 60% and FISA accuracy 

increased by 39 % in RATKA cases. The improvement in FISA may be influenced by 

improvements in the PRSA and APRD. Because the femoral preparation is comprised of 

five resections, each of the resections must be accurate relative to the previous cuts for 

the implanted prosthesis to be congruent with the bony resections; otherwise, the 

implanted prosthesis may impinge during impaction resulting in a mal-aligned prosthesis. 

A superior result in PRSA and APRD would explain a better implant fit to the distal 

femur resulting in improved FISA. All other metrics showed non-inferiority between 

RATKA and CTKA. 

It is also be determined that less outliers were observed in the RATKA cases than the 

CTKA cases. As outliers are more prone to failure, reducing the number of outliers is 

another step in achieving more satisfactory TKAs. Most surgeons believe that an 

acceptable tolerance for implant alignment is ± 3° from the target. In the coronal plane 

100% of the femoral and tibial resections are within ± 3° for the RATKA cases, while 

92.5% and 80% of the femoral and tibial resections are within ± 3° for the CTKA cases. 

In the same plane for implant alignment, 94.7% and 95% of femoral and tibial 

components were oriented within ± 3° for RATKA, while 87.2% and 82.1% of femoral 

and tibial components were oriented within ± 3° for CTKA. 

The rotational alignment in both RATKA and CTKA were analogous. This could be 

caused from the high precision of locating the posterior condylar axis with posterior 
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referencing when using conventional tools, so improvement in the transverse plane is 

limited. On the other hand, locating the most posterior points on the lateral condyle, for 

the posterior condylar axis, is challenging for the RATKA cases due to the lack of access 

to the posterior compartment with the stylus because of space occupying osseous and soft 

tissue structures prior to the tibial osteotomy. 

Out of the five resection angle measurements, the metric with the least agreement 

between the CT and white light scan is FSA referenced from the distal resection (R2 = 

0.639). Theoretically, the correlation coefficient between measures taken with the CT and 

white light scans should be 1, but errors derived from registration, segmentation, and 

calculations dimmish the correlation coefficient. The high R2 values for femoral V-V, 

femoral I-E, tibial F-E, and tibial V-V show that the linear model explains a large portion 

of the variability. Agreement between CT and white light scans improved, when FSA 

was referenced from the posterior resection (R2 = 0.833). The poor correlation with FSA 

referenced from the distal resection is attributed to the resolution and segmentation errors 

of the CT scans. Because the distal resection is closely aligned to the axial CT scan slice, 

segmentation of the distal resection surface can be noisy and inaccurate compared to 

resections perpendicular to the axial CT scan slice. The scan slice thickness was 0.6 mm, 

so a distal resection that deviates less than 0.6 mm cannot be differentiated and will be 

expressed as a flat plane during segmentation. For example, with a 0.6 mm scan slice 

thickness and a femoral distal resection A-P dimension of 20 mm, the minimum angular 

change capable of being observed by the segmentation software is 1.72°. This means that 
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angular changes of less than 1.72° cannot be differentiated and are segmented as a single 

voxel on segmentation software. This is visually explained in Figure 3.27. 

 

Figure 3.28: Femoral flexion-extension resolution based on axial CT scan slice thickness. 

Limitations in this study include possible errors during the registration phase of the 

study. In the study an initial registration was performed then an ICP algorithm was 

implemented to finalize the registration. A potential solution to further minimize 

registration error is to implant fiducial markers prior to the preoperative scan. Because 

the fiducial markers are rigidly fixed to the bones, a simple singular value decomposition 

(SVD) algorithm can be used to register the preoperative and postoperative bones 

together. This could potentially guarantee a more accurate initial registration. Another 

limitation stems from the scanning equipment used for this study. The resolution of the 

models generated from the CT scans for the distal resection were large compared to the 

white light scans. One way to reduce this error is to orient the bones differently and not 

align the distal resection along the axial slice of the CT scan. This may have caused 

deviations in the fit plane and the calculated resection angles. 
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Chapter 4 : Tibial Flatness 

4.1 Introduction 

Cemented implants have been the standard, but today cementless implants have been 

increasing in popularity in TKAs for younger patients. As younger patients perform more 

demanding and load intensive activities, high stresses at the implant-cement interface and 

bone-cement interface can cause loose wear particles and osteolysis which predates 

aseptic loosening. In order to avoid particle debris generated at the tibiofemoral joint, 

orthopaedic surgeons found a new form of fixation. 

The initial stability of an implant is affected by the fixation method. Modern implants 

can be cemented or cementless, where cemented implants are covered in a layer of bone 

cement, commonly polymethyl methacrylate (PMMA), which fills gaps and voids within 

the implant-bone interface and anchors the prosthesis to the bone. On the other hand, 

cementless implants are initially anchored to the bone using a press fit, and fixed long 

term through bony ingrowth. The press fit takes advantage of the plastic deformation 

between the bone and the implant to create large normal and frictional forces. The surface 

of cementless implants is usually manufactured with a porous structure to promote 

osseointegration (e.g., angiogenesis and osteogenesis) with the prosthesis. 

The postoperative tibial resection is considered clinically flat, but at a microscopic 

level peaks and valleys exist that may be large enough to influence bony ingrowth.
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Gaps between the implant-bone interface larger than 500 μm have shown to reduce the 

quality and rate of bone formation [44]. Since tibial trays are manufactured with a very 

tight tolerance, bony preparation of the tibia must be made accurately for significant 

contact between the bone and the implant. As cementless designs have been increasing in 

popularity, especially in patients younger than 55, the method of long-term fixation for 

cementless designs is heavily dependent on bony ingrowth. 

Bony ingrowth is multifactorial with factors including micromotion, implant 

topography, biocompatibility, and external load. Lack of bony ingrowth with cementless 

implants have been associated with higher rates of aseptic loosening [45]. Because the 

knee joint experiences complex loading throughout flexion and extension, cementless 

tibial trays fail more often due to micromotion from the combination of shear forces and 

moments. Large amounts of micromotion inhibit bony ingrowth and acceptable ranges 

have been reported to be from 28 – 150 μm [46]. Studies suggest that micromotion 

greater than 150 μm facilitates fibrocartilaginous formation rather than osteogenesis [44]. 

In a canine study, researchers tested the bony ingrowth of implants with a porous 

surface and found that contact osteogenesis occurred around the implant for all 

micromotion groups from 0 to 150 μm of displacement, but bone formation on the 

surface of the implant was in continuity with surrounding bone in the 0 to 20 μm groups. 

The groups between 40 μm and 150 μm of micromotion showed implants surrounded 

with fibrocartilaginous tissue [47]. 

Surface topography is another influential factor on the rate and quality of bone 

formation. When bones are remodeled, osteoclasts remove old bone and create a proper 



 

63 

surface for new bone formation. The implant surface must have a similarly complex 

surface for bone formation as well. The formation of bone, osteogenesis, is not simple 

and can be broken into two different phenomena, distance osteogenesis and contact 

osteogenesis. In contact osteogenesis, bone matrix is secreted by active osteoblasts on the 

surface of the implant and proceeds toward the cut edges of the bone. When bone forms 

in the opposite direction, from the cut edges of the bone to the implant surface, it is called 

distance osteogenesis. The formation of immature bone matrix, woven bone, provides 

secondary stabilization for the implant if both osteogenic processes occur. If contact 

osteogenesis does not occur due to inadequate implant surface topography, woven bone 

created from distance osteogenesis cannot interdigitate with the surface of the implant 

and bone bonding does not occur; therefore, the creation of a complex surface is 

important in bone bonding and porous surface structures can be created in many ways. 

One method is sintering, where particles are fused together using pressure and high 

temperatures. The particles are bonded without melting the material leaving interstitial 

spaces for osteointegration. Another method is solid state foaming, where the expansion 

gas bubbles aerate through a material and create a porous structure. During this phase, the 

porosity, pore size, and pore throat size are important in facilitating contact osteogenesis. 

Studies have found that implants with larger porosity sizes, around 600 μm, had larger 

amounts of bony ingrowth at 2 weeks [48]. 

The component materials can change how the body interacts with the implant. 

Materials are classified by their biocompatibility and labeled either biotolerant, bioinert, 

or bioactive materials. Common implant material such as PMMA and stainless steel are 
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biotolerant, aluminum oxides, titanium (Ti), and cobalt chromium (CrCo) alloys are 

bioinert, and calcium phosphates and ceramics are bioactive [49]. To theoretically 

maximize osseointegration, a trabecular structure made with a bioactive material will 

promote contact osteogenesis hence coatings of calcium phosphates, and popularly 

hydroxyapatite (HA), have been introduced to create an osteoconductive surface to 

improve contact osteogenesis and implant fixation. 

Flat resections are important to generate maximum bone-implant contact of less than 

500 μm apart [50]. A non-planar surface will seat the tibial tray unevenly, leaving 

sections of the tray with large displacements relative to the peri-prosthetic bone bed. 

Naturally, the tray will sit on the medial and lateral side of the resection, where harder 

cancellous bone exists near the cortical wall. Cancellous bone near the center of the 

resection is naturally softer creating a bowl-like geometry and a zone where potentially 

large displacements within the implant-bone interface exist. Because high points on an 

osteotomy naturally exist, a majority of peri-prosthetic contact will occur amid impaction 

of the tibial tray. Subsidence of the prosthetic will elastically deform and crush weight 

bearing bony islands, generating surface contact between the peri-prosthetic bone bed. 

With conventional instrumentation, a flat surface is achieved using a cutting jig and 

oscillating saw. As described in Chapter 3, intraoperative guide movement and incorrect 

pinning can cause resection errors. Plaskos et al., describes popular errors introduced by 

conventional tools such as the deflection of the resection blade with open slotted cutting 

jigs. The resection blade, a cantilevered beam, can deflect when the operating surgeon 

applies a small biasing force on the cutting jig. As a result, slotted cutting jigs have been 
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proposed as a solution, but errors such as vibrations and contact from the oscillating saw 

can loosen pin fixation and displace the cutting jig. Another consequence of slotted 

cutting guides is the use of thin blades. In order to correctly guide the resection, the thin 

blade must fit within the slot. A decrease in blade thickness correlates to a decreased 

moment of inertia, and overall blade stiffness, and therefore, increased deflection. 

Contact with sclerotic bone, an unusual thickening or hardening of the bone, would cause 

larger deflections for a thinner resection blade which can skive the proximal resection 

surface. With the elimination of conventional cutting jigs and the use of thicker saw 

blades in robotic surgical systems, RATKA has been proposed as a solution to reduce 

intraoperative error during osteotomies. 

A metric to quantify surface flatness of the proximal tibial resection has not been 

established among the orthopaedic community. Flatness metrics have been defined as the 

standard deviation of measuring points as well as the height above the best fit plane that 

encompasses 99% of the surface [45,50,51]. Flatness has also been defined by machinists 

as the smallest distance between two parallel planes, the tolerance zone, that encompasses 

the measuring points. In a study conducted by Toksvig-Larsen and Ryd (1991), the 

authors measured the topographic geometry of eight prepared tibial surfaces using a 

coordinate measuring machine. Plaster-cast negative and positive imprints of the surface 

resection were created and measured to assess the reproducibility of the method. The 

maximum roughness, difference between the highest and lowest measuring point, was 

reported to be 1.05 – 2.39 mm for the bone and 1.22 – 2,30 mm for the imprints and the 

flatness was reported 0.15 – 0.40 mm and 0.20 – 0.42 for the bone and imprints, 
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respectively. A study conducted by Delgadillo et al., utilized a laser scanner, a non-

contact measurement tool, to capture the surface topography of the tibial osteotomy. To 

quantify the surface flatness, a plane was fit to the resection surface, and the height above 

the fit plane was calculated. The flatness of the osteotomy was 1.15 ± 0.10 mm (range 

0.56 – 1.81). 

This study was performed to compare the surface flatness between RATKA and 

CTKA. Two measures were taken to quantify the surface flatness of the tibial osteotomy 

and the distance between the implant-bone interface. It is hypothesized that RATKA 

cases will have increased surface flatness as well as less distance between the prosthetic 

and bone bed compared to CTKA cases. 

4.2 Methodology 

Bilateral TKA was performed on forty pelvis-to-toe cadaveric specimens (Age: 70.4 

± 8.2 years, Height: 67.1 ± 4.1 in., Weight: 132.4 ± 35.8 lbs., BMI: 20.6 ± 4.9). Five 

board certified orthopaedic surgeons performed all CTKA or RATKA procedures. To 

avoid handed or side bias, the initial surgical procedure for a lower limb was randomized 

between CTKA or RATKA, then the contralateral limb would receive the alternate 

procedure. After TKA, the tibias were denuded of soft tissue and the Artec Space Spider 

(Artec3D, Luxembourg) was used to optically capture the surface geometry from the 

resected epiphysis to the distal diaphysis. Afterwards, the bone was impacted with the 

ATTUNE® Cemented Tibial Base (Depuy Synthes, Warsaw, IN) and another optical 

white light scan was taken. White light scans of the tibial proximal resection surface were 

transformed to the implant coordinate system (Figure 3.13). The tibial implant coordinate 

system was oriented such that a line connecting the most lateral and most medial points 
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correlates with M-L axis, a line normal to the proximal surface of the tray correlates with 

the S-I axis, and the vector product between the two lines correlates to the A-P axis. The 

origin of the implant coordinate system was located at the most anterior point of the 

proximal surface. The origin was translated 4.1 mm inferiorly to set the origin on the 

distal surface of the tibial tray.  

 

Figure 4.1: Proximal 5 mm of the tibial resection (Left). Proximal 5 mm with removed cortical bone 

(Right). 

The proximal 5 mm of the tibial osteotomy was extracted from solid models 

generated using the white light scans, and the outer cortical bone was removed (Figure 

4.1) using a custom MATLAB (MathWorks, Natick, MA) script. The cortical bone was 

removed by projecting the proximal resection vertices onto the transverse plane and 

encompassing the projected vertices within a concave hull. The concave hull was then 

offset interiorly by 2 mm to remove the cortical bone. 
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Figure 4.2: Transverse view of convex hulls surrounding the tibial proximal resection. Convex hull 

offset by 2 mm interiorly (red region). Subsequent convex hull offset creating an annulus (blue region). 

In multiple cases, because the metaphysis of the tibia narrows distally towards the 

diaphysis, a second removal was necessary. For the second removal, another concave hull 

was created and offset by another 2 mm from the first offset concave hull. To isolate the 

region between the two offset concave hulls, an annulus, the XOR logic operator was 

implemented, and the vertices were unprojected from the transverse plane and the 

standard deviation of the vertices within the annulus was calculated. Vertices were kept 

within the annulus if they existed within 2.5 standard deviations (98.76%). A 2D median 

filter, with a kernel size of 5 mm, was then applied to reduce noise during the scanning 

phase of the white light scan. These steps to remove the cortical bone and filter the 

proximal surface are important as bony and soft tissue artifacts exist on the resection 

surface, especially around the cortical bone where soft tissue attaches and posteriorly 

where unfinished resections are likely to exist. 
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Figure 4.3: Unfiltered proximal resection (Left). Filtered proximal resection (Right). Distance between 

the tibial tray and proximal resection contours (Top). Proximal resection surface geometry (Bottom). 

The proximal resection was then sectioned into seven different regions and several 

metrics were calculated such as surface flatness and the mean distance between the 

periprosthetic interface for each section. Each zone is defined by the anatomic location 

relative to the geometric center of the tibial proximal resection. The Antero-Medial (A-

M), Postero-Medial (P-M), Anterior Cruciate Ligament (ACL), Center (C), Posterior 

Cruciate Ligament (PCL), Antero-Lateral (A-L), and Postero-Medial (P-M) regions are 

shown in Figure 4.4. 



 

70 

 

Figure 4.4: Proximal resection regions. Antero-Medial (Blue), Postero-Medial (Yellow), ACL (Red), 

Center (Green), PCL (Brown), Antero-Lateral (Gray), Postero-Lateral (Purple). 

The flatness metric was calculated using the GD&T definition of parallelism. Surface 

parallelism was defined as a tolerance zone controlled by two planes, where the two 

planes bound all the surface points and are parallel to a reference datum. The first plane 

lied on the tallest irregularity and the second plane lied on the deepest irregularity. The 

height between the two planes was the reported as the parallelism (Figure 4.5). For the 

rest of the thesis, this metric will be defined as tibial surface flatness. 

 

Figure 4.5: Distance between tibial tray and proximal resection error bar plot, surface flatness metric 
defined by red dotted lines (Top Left). Proximal resection with surface flatness planes in red, isometric 

view (Top Right). Proximal resection with surface flat. 
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A second metric was used to quantify gaps within the tibial periprosthetic interface by 

computing the distance between the distal surface of the tibial tray and the proximal 

resection. This metric was calculated by computing the height difference between points 

on the resection surface and a point on the distal surface of the tibial tray. Distances were 

categorized into five different buckets: < 100 μm, 100 – 200 μm, 200 – 300 μm, 300 – 

400 μm, and > 400 μm. 

 

Figure 4.6: Distance between tibial tray and proximal resection contour. (< 100 μm in white, 100 – 

200 μm in orange, 200 – 300 μm in yellow, 300 – 400 μm in green, and > 400 μm in blue). 

Figure 4.6 maps the categorized distances between the tibial tray and the proximal 

resection. Visual comparisons between proximal resections is less noisy and simpler with 

categorized distances. The information displayed using the categorized distances also 

represents locations of potential bony ingrowth (< 100 μm). 

Another analysis was performed to account for the plastic deformation of the 

cancellous bone during impaction. For this analysis, the region underneath the tibial tray 

was extracted by superimposing the periphery of the tibial tray onto the surface of the 
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proximal resection (Figure 4.7) and removing any points outside the tray periphery. Areas 

above 0 μm are considered to be above the distal surface of the registered implant and 

will bear a majority of the weight when the tibial tray is impacted. These areas are then 

plastically deformed until the resulting distance relative to the tibial tray is 0 μm (Figure 

4.8). 

 

Figure 4.7: Proximal resection overlayed with the periphery of the implanted tibial tray (Left). Isolated 

proximal resection underneath the tibial tray (Right). 

 

Figure 4.8: Surface peaks prior to plastic deformation (Left)and surface peaks post plastic 

deformation (Right). 

4.2.1 Sign Convention 

The sign conventions for this chapter follows the tibial implant coordinate system in 

Chapter Three. A positive distance corresponds a point proximal to the distal surface of 

the tray and a negative distance corresponds to a point distal to the distal surface of the 

tray. 
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Figure 4.9: Tibial tray distal surface datum and z-axis diagram. 

4.2.2 Statistical Methodology 

Normality was tested by using the Shapiro-Wilk’s test and the homogeneity of 

variances was tested using Levene’s test. Linear regressions and hypothesis testing were 

then implemented to analyze potential differences between RATKA and CTKA. When 

testing for the effect of surgical method on the tibial surface flatness or distance within 

the periprosthetic interface, the region of the tibial resection was controlled for. In 

another linear regression model, the inputs were the same as the previous model except 

the region of the tibial resection was not controlled for. 
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Table 4.1: Null and alternative hypotheses for surface flatness and distance between the tibial tray and 

resection surface metrics. 

Surface Flatness Distance within Periprosthetic Interface 

Ho: There is no difference in tibial surface 

flatness between RATKA and CTKA 

cases 

Ho: There is no difference in the distance 

within the periprosthetic interface 

between RATKA and CTKA cases 

Ha: There is a difference in tibial surface 

flatness between RATKA and CTKA 

cases 

Ha: There is a difference in the distance 

within the periprosthetic interface 

between RATKA and CTKA cases 

Confidence intervals (CI) with a 95% confidence level (α risk of 0.05) were also 

calculated to determine significant differences. All statistical tests for this chapter were 

performed in RStudio (RStudio, Boston, MA). 

4.3 Results 

Out of the forty cases, two of which, one RATKA and one CTKA case, were 

removed due to corrupted files. Observing the overall flatness of the resection, the mean 

flatness for the RATKA group was 3.31 ± 1.47 mm while the mean flatness for the 

CTKA group was 3.04 ± 1.08 mm. The mean distance between the tray and resection for 

the RATKA group was 186 ± 129 μm and 195 ± 142 μm for the CTKA group. 

Statistically significant differences (p < 0.05) were not observed between any region. 

Table 4.2: Mean values for tibial surface flatness and distance between the tibial tray and the proximal 

resection for the full tibial resection surface. 

 RATKA CTKA p-value 

Surface Flatness (mm) 3.31 ± 1.47 3.04 ± 1.08 0.36 

Mean Tray to Resection 

Distance (μm) 
-186 ± 129 -195 ± 142 0.74 

 

To observe localized effects, the surface flatness was calculated for each of the seven 

regions on the proximal resection. The surface flatness for RATKA and CTKA cases is 

summarized in Table 11.  
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Figure 4.10: Composite image of theoretical resection surface flatness separated by anatomic regions 

for CTKA (Left) and RATKA (Right). Plots are generated from data in Table 4.3. 

Table 4.3: Mean surface flatness between anatomic regions for RATKA and CTKA. 

 Mean Resection Surface Flatness (mm) 
p-value 

Region RATKA CTKA 

Antero-Lateral 2.08 ± 1.16 1.93 ± 0.94 0.52 

Postero-Lateral 1.57 ± 0.84 1.45 ± 0.61 0.48 

ACL 1.38 ± 0.79 1.61 ± 0.74 0.20 

Center 1.31 ± 0.95 1.41 ± 0.85 0.65 

PCL 2.18 ± 1.51 1.81 ± 1.17 0.23 

Antero-Medial 1.08 ± 0.51 1.12 ± 0.48 0.72 

Postero-Medial 1.42 ± 0.82 1.52 ± 0.77 0.62 

 

The same regions were used to quantify the distance between the implant and 

resection surfaces. In the antero-lateral region, the mean distance was 37 ± 243 and -32 ± 

270 μm for RATKA and CTKA groups, respectively. In the postero-lateral region, the 

mean distance was -158 ± 265 and -151 ± 281 μm for RATKA and CTKA groups, 

respectively. In the ACL region, the mean distance was -228 ± 234 and -224 ± 286 μm 

for RATKA and CTKA groups, respectively. For the center, PCL, antero-medial, and 

postero-medial regions, the RATKA and CTKA mean distance values were -487 ± 341 

and -525 ± 309 μm, -263 ± 394 and -297 ± 396 μm, -6 ± 179 and -17 ± 209 μm, and -194 
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± 235 and -132 ± 252 μm respectively. Statistically significant differences (p < 0.05) 

were not observed between any region. 

 

Figure 4.11: Composite image of theoretical distance from the tibial tray separated by anatomic 

regions for CTKA (Left) and RATKA (Right). Plots are generated from data in Table 4.4. 

 

Table 4.4: Mean distances between the tibial tray and the proximal resection between anatomic regions for 

RATKA and CTKA. 

 Mean Tray to Resection Distance (μm) 
p-value 

Region RATKA CTKA 

Antero-Lateral 37 ± 243 -32 ± 270 0.24 

Postero-Lateral -158 ± 265 -151 ± 281 0.91 

ACL -228 ± 234 -224 ± 286 0.94 

Center -487 ± 341 -525 ± 309 0.61 

PCL -263 ± 394 -297 ± 396 0.70 

Antero-Medial -6 ± 179 -17 ± 209 0.79 

Postero-Medial -194 ± 235 -132 ± 252 0.26 
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Figure 4.12: Scatter plot of mean distances from tibial tray to resection between anatomic regions 

(Error bars represent minimum and maximum values). 

 

Table 4.5: One-way ANOVA test showing the variation between mean distance from the tibial tray to the 

resection surface between anatomic regions. 

 Df Sum Sq. Mean Sq. F value p-value 

Regions 6 14.06 2.34 29.11 0.000 

Residuals 539 43.40 0.08   

 

Table 4.6: Mean distance from tibial tray to resection (Top), Post hoc test (Bottom) (* shows the mean 

difference is significant at the 0.05 level). 

Mean Tray to Resection Distance (μm) 

A-L P-L ACL C PCL A-M P-M 

2.52 ± 

257.72 

-154.36 ± 

271.43 

-226.29 ± 

259.74 

-506.10 ± 

323.80 

-280.05 ± 

392.67 

-11.54 ± 

193.24 

-162.84 ± 

244.26 

P-values Between Anatomic Regions for Mean Tray to Resection Distance 

 A-L P-L ACL C PCL A-M P-M 

A-L  0.001* 0.000* 0.000* 0.000* 0.757 0.000* 

P-L 0.001*  0.114 0.000* 0.006* 0.002* 0.852 

ACL 0.000* 0.114  0.000* 0.237 0.000* 0.163 

C 0.000* 0.000* 0.000*  0.000* 0.000* 0.000* 

PCL 0.000* 0.006* 0.237 0.000*  0.000* 0.010* 

A-M 0.757 0.002* 0.000* 0.000* 0.000*  0.001* 

P-M 0.000* 0.852 0.163 0.000* 0.010* 0.001*  
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Table 4.7: Percentage of total resection surface area within tibial tray distance bounds. 

 Percentage of Surface within Distance 

Distances RATKA CTKA 

< 100 μm 45.83% 46.85% 

100 – 200 μm 12.00% 10.53% 

200 – 300 μm 10.36% 8.83% 

300 – 400 μm 9.31% 7.92% 

> 400 μm 22.51% 25.87% 

 

4.4 Discussion 

Each year, the number of TKAs performed around the world has increased, 

particularly for younger patients. Due to the increased demand for TKA, a need to reduce 

revision surgeries due to mechanical failures is imperative, such that aseptic loosening of 

components has driven a large proportion of revision surgeries. Authors believe that 

improvements in secondary fixation such as bony ingrowth will reduce mechanical 

loosening of tibial trays. The two metrics we measured that effect bony fixation were: the 

flatness of the tibial osteotomy and the mean distance from the tibial tray to the tibial 

osteotomy. Our results show that the surface flatness (p = 0.36) and distance between the 

tibial tray and the proximal resection (p = 0.74) were not significantly different between 

RATKA and CTKA cases. Even though RATKA cases had a larger mean flatness value 

(3.31 ± 1.47 mm) compared to CTKA cases (3.04 ± 1.08 mm), RATKA cases showed 

smaller mean distances within the periprosthetic interface (-186 ± 129 μm) compared to 

CTKA (-195 ± 142 μm). The results also show that the osseous surface after resection 

using an oscillating saw is not flat and varies with anatomic location (p < 0.001). The 

center of the tibial osteotomy in addition to the region directly anteriorly and posteriorly 

are elevated inferiorly than the medial and lateral sections. This is accompanied by 
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another difference between the anterior and posterior section of the tibial resection. The 

heights of the tibial sections can be ordered from lowest to highest from: Center, ACL 

and PCL, P-L and P-M, and A-L and A-M. This is supported by the fact that the mean 

distance from the tray to the anterior region (A-L and A-M) is strictly less than 50 μm, 

the posterior region (P-L and P-M) is bounded between 100 μm and 200 μm, and the 

intermediate regions are greater than 200 μm, regardless of resection method. These 

findings align with Delgadillo et al. and Toksvig-Larsen and Ryd [45,51]. 

It was also quantified that 45.83% and 46.85% of the proximal resection was less than 

100 μm from the distal surface of the tibial tray for RATKA and CTKA cases, 

respectively. These percentages would theoretically increase from plastic deformation of 

the trabecular bone when the prosthesis is impacted, as space for initial fixation devices 

such as posts, keels, and pegs displace bony material. This can be seen in Figure 4.13, 

where the dotted line represents the keel and post of the tibial tray. 

 

Figure 4.13: Tibial osteotomy surface with an overlayed implanted post and keel. 

One limitation within this study consists of allowing surgeons to resurface the tibial 

osteotomy with the oscillating saw. During tibial preparation in TKA, an initial resection 
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is performed but not completed. The osseous remnant is then raised to provide clearer 

visualization of the soft tissue structures and the remainder of the resection is performed. 

In some cases, the osseous remnant is pulled after the partial resection and bony 

asperities develop posteriorly, requiring the need to resurface the resection. This 

technique allows surgeons to protect surrounding soft tissue structures such as the 

collateral and posterior cruciate ligaments, as poor structural integrity of the posterior 

cruciate ligament is associated with jeopardized A-P knee translation. 

In conclusion, no significant differences were found between the two cohorts, but 

differences within the groups were found where the mean distance metric shows more 

prominent gaps on the posterior region (P-L and P-M) than the anterior region (A-L and 

A-M) of the resection surface. This begs the question whether this phenomenon occurs 

due to the oscillating saw, surgical technique during resection or implantation, or from 

natural variation on the topography of the tibial resection. 
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Chapter 5 : Conclusion 

5.1 Final Remarks 

The goal of RATKA systems is to improve upon conventional instrumentation to 

provide better outcomes for patients; therefore, the work presented in this thesis offers an 

initial investigation on the resection and implant alignment accuracy of the VELYS™ 

Robotic Assisted Solution compared to conventional instrumentation. Further 

investigations and significant improvements for RATKA systems will minimize the 

revision rates for TKAs, reduce outliers, and improve patient satisfaction. 

The work from Chapter Three showed significant improvement in resection and 

implant alignment for both the femur and tibia in the coronal plane. Improvements were 

also seen in the sagittal plane for the femoral resection, referenced from the posterior 

resection, femoral component alignment, and femoral relative resections. In conjunction 

with increased accuracy metrics, precision based metrics also improved. Resection and 

implant alignment metrics were less prone to be outside the 3°- or 3-mm tolerance for 

RATKA cases compared to CTKA cases. This chapter gives potential insight to future 

improvements and investigations for VELYS™ Robotic Assisted Solution in the 

transverse plane. 

Chapter Four showed no statistical differences for the flatness metrics of the proximal 

tibial osteotomy but did show that flatness varies over the anatomic location of the 

proximal resection. This chapter stressed the importance of a flat surface for bony 
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fixation in TKA. We infer that the majority of the tibial flatness error is derived from 

theresection tooling (oscillating saw) and/or intraoperative tibial resurfacing. More work 

needs to be performed to isolate the predictive factors effecting the flatness of a tibial 

osteotomy. 

5.2 Future Work 

The next step to improve the robotic surgical system is to map the total system error 

to each subsequent step in the VELYS™ Robotic Assisted Solution TKA surgical 

procedure. The information gathered from this work would quantify the magnitude of 

error associated with each step in the surgical procedure and can give engineers and 

surgeons potential solutions to improve the hardware, software, or surgical technique for 

VELYS™ Robotic Assisted Solution. 

Future work would also consist of gathering clinical data with VELYS™ Robotic 

Assisted Solution and to measure patient satisfaction rates using a knee scoring system. 

Without clinical outcomes, it would be difficult to associate the improvement in resection 

and implant alignment to patient outcomes. Functional clinical data can also be used to 

quantify preoperative and postoperative differences in knee kinematics during everyday 

activities such as walking, sitting, standing, leaning, climbing stairs, etc. with the 

VELYS™ Robotic Assisted Solution. 

Another potential study could include comparing various measurement techniques. 

Because many authors used various techniques to quantify the resection and implant 

alignment accuracy, a study should be done to compare each method. Methods range 

from using a planar probe to creating small divots, fiducial markers, into the prosthesis 

and creating the respective coordinate transformations. These methods should be 
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compared to the methods used in Chapter Three to provide accurate comparisons between 

authors. This study would hope to evaluate the different measurement techniques and set 

a precedence for best practices to measure resection and implant alignment accuracy 

metrics in the future. 
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Appendix 

Additional Figures for Chapter Three 

 

Figure A.1: Box plots showing summary statistics of resection angles (white light scans). Central mark represents 
the median and red dots denote outliers (Data outside 1.5 IQR). 

 

Figure A.2: Femoral resection measures based on white light scans (* denotes statistically significant results at 
95% CI). 
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Figure A.3: Stacked bar chart of femoral resection accuracy metrics (white light scans) within ±1 (green), ±2 

(yellow), and ±3 (orange) degrees or mm. 

 

Figure A.4: Tibial resection measures based on white light scans (* denotes a statistically significant result at 
95% CI). 
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Figure A.5: Stacked bar chart of tibial resection accuracy metrics (white light scans) within ±1 (green), ±2 

(yellow), and ±3 (orange) degrees or mm. 

 

Figure A.6: Femoral relative resection measures based on postoperative CT scans (* indicates RTKA superiority 
at a 95% CI). 
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Figure A.7: Coronal plane resection precision histograms for the femur based on postoperative CT scans (Left) 
and tibia (Right). 

 

Figure A.8: Coronal plane implant alignment precision histograms for the femur based on postoperative CT scans 

(Left) and tibia (Right). 



 

96 

 

Figure A.9: Femoral sagittal posterior reference (Left) and transverse (Right) plane precision histograms. 

 

Figure A.10: Sagittal plane implant alignment precision histograms for the femur (Left) and tibia (Right). 
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Figure A.11: Transverse plane implant alignment precision histograms for the femur (Left) and tibia (Right). 

 

Figure A.12: Posterior, distal, and transverse resection depth precision histograms. 
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Figure A.13: Femoral sagittal plane posterior reference resection agreement between CT and white light scans. 

 

Figure A.14: Femoral transverse plane resection agreement between CT and white light scans. 
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Figure A.15: Tibial transverse plane resection agreement between CT and white light scans. 

 

Figure A.16: Tibial coronal plane resection agreement between CT and white light scans. 
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Table A.1: Angle agreement between white light scan resection and implant alignment expressed as an adjusted 
correlation coefficient. 

Metric Adjusted R2 

Femoral F-E (Distal Ref.) 0.538 

Femoral F-E (Posterior Ref.) 0.269 

Femoral V-V 0.766 

Femoral I-E 0.839 

Tibial F-E 0.859 

Tibial V-V 0.945 

 

 

Figure A.17: Femoral transverse plane agreement between resection and implant alignment. 
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Figure A.18: Tibial sagittal plane agreement between resection and implant alignment. 

 

Figure A.19: Tibial coronal plane agreement between resection and implant alignment. 
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Additional Figures for Chapter Four 

Table A.2: Mean values for tibial surface flatness and distance between tibial tray and proximal resection for entire 

proximal resection surface with plastic deformation. 

 RATKA CTKA p-value 

Surface Flatness (mm) 1.63 ± 0.72 1.66 ± 0.98 0.88 

Mean Tray to Resection 

Distance (μm) 
-0.27 ± 0.12 -0.28 ± 0.12 0.61 

 

Table A.3: Mean values for tibial surface flatness for resection surface regions with plastic deformation. 

 Resection Surface Flatness (mm) 
p-value 

Region RATKA CTKA 

Antero-Lateral 0.91 ± 0.73 0.94 ± 0.66 0.85 

Postero-Lateral 0.95 ± 0.65 0.94 ± 0.58 0.94 

ACL 0.98 ± 0.74 1.04 ± 0.65 0.71 

Center 1.21 ± 0.91 1.27 ± 0.82 0.76 

PCL 1.12 ± 0.71 1.05 ± 0.45 0.61 

Antero-Medial 0.56 ± 0.45 0.69 ± 0.39 0.16 

Postero-Medial 0.86 ± 0.60 0.85 ± 0.39 0.98 

 

Table A.4: Mean values for distance between tibial tray and proximal resection for resection surface regions with 
plastic deformation. 

 Mean Tray to Resection Distance (μm) 
p-value 

Region RATKA CTKA 

Antero-Lateral -0.13 ± 0.16 -0.16 ± 0.22 0.45 

Postero-Lateral -0.23 ± 0.23 -0.23 ± 0.21 0.95 

ACL -0.27 ± 0.19 -0.29 ± 0.24 0.73 

Center -0.49 ± 0.34 -0.54 ± 0.29 0.50 

PCL -0.40 ± 0.25 -0.41 ± 0.27 0.96 

Antero-Medial -0.11 ± 0.11 -0.13 ± 0.11 0.44 

Postero-Medial -0.25 ± 0.18 -0.21 ± 0.18 0.36 

 

MATLAB Code to Calculate Resection Angles 

%% Main Script for Resection Angle Analysis 

%% Description 

% This script is used to perform the Resection Angle Accuracy for Velys and 

% Conventional cases. 

% The script imports anatomical landmarks, robotic planned points, Pre/Post Op  

% CT data, and White Light data. 

%% Steps 

% 1.) User picks a surgeon with associated cases to analyze 

% 2.) Memory is pre-allocated for structures "data" 

% 3.) Start analysis by looping through cases 



 

103 

% 4.) Sort anatomical landmarks given by variable "landmarksList" 

% 5.) Read in STL files and convert from triangulation class to structures 

% For both Femur and Tibia 

% 6.) Create anatomical TM and apply to Pre/Post Op CT and WhiteLight data 

% 7.) Create PostOp and WhiteLight to PreOp CT TM through ICP 

% 8.) Apply respective ICP TM to PostOp and White Light data 

% For all resections 

% 9.) Apply respective TM (anatomical and ICP) to resections 

% 10.) Fit planes to resections and create intersections with anatomical planes 

% 11.) Calculate angles using dot product definition and assign clinically conventions 

%% Clear all Data 

clear; clc; close all; 

%% Create Paths, Constants, and Lists 

  

myFolder = pwd;                     % Searches for current working directory 

addpath('functions');               % Add sub folders to current search path 

k = strfind(myFolder,'MATLAB');     % Find the "MATLAB" string 

PATH = myFolder(1:k - 1);             % Parse away everything after "StreamLine" 

  

analysisType = 'CT';        % Options Include 'CT' or 'WhiteLight' 

  

surgeonList = {'Green','Wright','Swank','Smith','Heoffel'}; 

  

for countsl = 5:length(surgeonList) 

surgeon = surgeonList{countsl}; 

  

% surgeon = 'Wright';                % Options are Green, Wright, Swank, Smith, Heoffel, 

and Test 

  

switch surgeon 

    case 'Green' 

        specimen = 

{'C200610L','C200610R','C200617L','C200617R','C200624L','C200624R','C200630L','C200630R',

'C200640L','C200640R','C200656L','C200656R','C200659L','C200659R','C200666L','C200666R'}; 

% Greens Cases 

    case 'Wright' 

        specimen = 

{'S201490L','S201490R','I200572L','I200572R','I200607L','I200607R','I200620L','I200620R',

'I200624L','I200624R','F200747L','F200747R','F200881L','F200881R','F200882L','F200882R'}; 

% Wrights Cases 

    case 'Swank' 

        specimen = 

{'L200888L','L200888R','L200997L','L200997R','S201318L','S201318R','S201343L','S201343R',

'S201350L','S201350R','S201408L','S201408R','S201411L','S201411R','S201461L','S201461R'}; 

% Swanks Cases 

    case 'Smith' 

        specimen = 

{'F200870L','F200870R','F200873L','F200873R','F200875L','F200875R','F200877L','F200877R',

'F200894L','F200894R','F200889L','F200889R','S201497L','S201497R','S201533L','S201533R'}; 

% Smiths Cases 

    case 'Heoffel' 

        specimen = 

{'S201193L','S201193R','S201240L','S201240R','S201253L','S201253R','S201300L','S201300R',

'S201326L','S201326R','S201471L','S201471R','S201488L','S201488R','S201500L','S201500R'}; 

% Heoffels Cases 

    case 'Test' 

        specimen = {'F200894L','F200894R'}; 

    otherwise 

        error('Error') 

end 

  

cutPlanes = 

{'Anterior','Anterior_Distal','Distal','Posterior_Distal','Posterior','Proximal'};      % 

List of Resection Planes 

bone = {'Femur','Tibia'};       % List of Bones 
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landmarksList = 

{'Ankle_Center','Malleolus_Center','Femoral_Head','Femur_Medial_Epicondyle','Femur_Latera

l_Epicondyle',... 

                 

'Femur_Anterior_Cortex_Point','Tibia_Anterior_Medial_Plateau','Tibia_Posterior_Medial_Pla

teau','Tibia_Anterior_Lateral_Plateau','Tibia_Posterior_Lateral_Plateau',... 

                 

'Femur_Center','Tibia_Center','Tibia_Medial_Tubercle','Tibia_Lateral_Tubercle'};   % 

Forces Anatomical Landmarks in Boxes.txt to be read in this order 

  

%% Pre-Allocate Empty Structures 

  

tempStructs = struct('vertices',[],'faces',[],'TMvertices',[]);      % Create parent 

structure with empty structures vertices, faces, and TMvertices 

tempStructc = 

struct('vertices',[],'faces',[],'TMvertices',[],'Distance',[],'Normal',zeros(1,3),'Point'

,zeros(1,3));        % Create parent structure with empty structures vertices, faces, 

TMvertices, Distance, Normal, and Point 

for counts = length(specimen):-1:1      % Create Final Size of Structure on 1st Iteration 

    data(counts).ID = 'Specimen ID';                    % Allocate memory for ID 

    data(counts).AnatLandmarks = zeros(14,3);           % Allocate memory for Anatomical 

Landmarks 

    data(counts).PlanningPoints = zeros(30,3);          % Allocate memory for Planning 

Points 

     

    % Allocate memory for Femur and Tibia 

    data(counts).Femur = 

struct('PreOpCT1',tempStructs,'PreOpCT2',tempStructs,'PostOpCT',tempStructs,'WhiteLight',

tempStructs,'TM_GtoA',zeros(4),'TM_LtoC',zeros(4),'TM_PtoP',zeros(4),'Angles',struct('FE'

,0,'VV',0,'IE',0,'aFE',0)); 

    data(counts).Tibia = 

struct('PreOpCT1',tempStructs,'PreOpCT2',tempStructs,'PostOpCT',tempStructs,'WhiteLight',

tempStructs,'TM_GtoA',zeros(4),'TM_LtoC',zeros(4),'TM_PtoP',zeros(4),'Angles',struct('FE'

,0,'VV',0)); 

     

    % Allocate memory for Resection Planes 

    for countc = length(cutPlanes):-1:1 

        data(counts).CutPlanes.(cutPlanes{countc}) = tempStructc; 

    end 

end 

  

%% Analysis Starts Here 

  

for counts = 1:length(specimen)     % Start Specimen Loop 

     

    if mod(counts,2) == 1       % Odd = Left 

        chirality = 'Left'; 

    elseif mod(counts,2) == 0   % Even = Right 

        chirality = 'Right'; 

    end 

     

    data(counts).ID = [specimen{counts}];       % Fill ID with Specimen Name 

     

    % Load in Anatomical Landmarks 

    fid = fopen([PATH,'Boxes_ScriptLog/',specimen{counts},'_Boxes.txt']); 

    tempAnatLandmarks = textscan(fid,'%s %f %f %f','Delimiter',','); 

    fclose(fid); 

     

    % Organize Anatomical Landmarks by landmarksList 

    for countl = 1:length(landmarksList) 

        myLandmark = landmarksList{countl}; 

        for counta = 1:size(tempAnatLandmarks{1,1},1) 

            testLandmark = tempAnatLandmarks{1}{counta}; 

            if strcmp(myLandmark,testLandmark) 

                x = tempAnatLandmarks{2}(counta); 

                y = tempAnatLandmarks{3}(counta); 

                z = tempAnatLandmarks{4}(counta); 

  



 

105 

                data(counts).AnatLandmarks(countl,:) = [x,y,z]; 

            end 

        end 

    end 

     

    % Load in Planning Points 

    data(counts).PlanningPoints = 

readExp([PATH,'Boxes_ScriptLog/',specimen{counts},'_ScriptLog.txt']); 

     

    for countc = 1:length(cutPlanes)        % Start Resection Plane Loop 

         

        switch analysisType 

            case 'CT' 

                tempCut = 

stlread([PATH,'PostOp_CT_Analysis/Cut_Planes/',specimen{counts},'_',cutPlanes{countc},'_'

,'Cut.stl']);     % Read in Resection Planes 

            case 'WhiteLight' 

                tempCut = 

stlread([PATH,'White_Light_Analysis/Cut_Planes/',specimen{counts},'_',cutPlanes{countc},'

_','Cut.stl']);     % Read in Resection Planes 

            otherwise 

                error('Could not determine type of analysis'); 

        end 

         

        data(counts).CutPlanes.(cutPlanes{countc}).vertices = 

zeros(size(tempCut.Points));           % Pre-allocate Contents of Fields 

        data(counts).CutPlanes.(cutPlanes{countc}).faces = 

zeros(size(tempCut.ConnectivityList)); 

         

        data(counts).CutPlanes.(cutPlanes{countc}).vertices = tempCut.Points;        % 

Convert stlread Structures to write friendly structures 

        data(counts).CutPlanes.(cutPlanes{countc}).faces = tempCut.ConnectivityList; 

    end 

     

    for countb = 1:length(bone)     % Start Bone Loop 

        tempPreOpCT1 = 

stlread([PATH,'PostOp_CT_Analysis/PreOp_CT_Mod/',specimen{counts},'_',bone{countb},'_PreO

p_CT_Mod.stl']);            % Load in Modified PreOp CT Nodes for PostOp Analysis 

        tempPreOpCT2 = 

stlread([PATH,'White_Light_Analysis/PreOp_CT_Mod/',specimen{counts},'_',bone{countb},'_Pr

eOp_CT_Mod.stl']);          % Load in Modified PreOp CT Nodes for WhiteLight Analysis 

        tempPostOpCT = 

stlread([PATH,'PostOp_CT_Analysis/PostOp_CT_Mod/',specimen{counts},'_',bone{countb},'_Pos

tOp_CT_Mod.stl']);          % Load in Modified PostOp CT Nodes 

        tempWhiteLight = 

stlread([PATH,'White_Light_Analysis/White_Light_Mod/',specimen{counts},'_',bone{countb},'

_Laser_Mod.stl']);        % Load in Modified WhiteLight Nodes 

         

        tempPreOpCTOG = 

stlread([PATH,'PreOp_CT/',specimen{counts},'_',bone{countb},'_PreOp_Full.stl']);                                    

% Load in Original PreOp CT Nodes 

        tempPostOpCTOG = 

stlread([PATH,'PostOp_CT_Analysis/PostOp_CT_Registered/',specimen{counts},'_',bone{countb

},'_PostOp_CT.stl']);     % Load in Original PostOp CT Nodes 

        tempWhiteLightOG = 

stlread([PATH,'White_Light_Analysis/White_Light_Registered/',specimen{counts},'_',bone{co

untb},'_Laser.stl']);   % Load in Original WhiteLight Nodes 

         

        if strcmp(bone{countb},'Femur')         % Conditional Statement for Femur 

            % Allocate memory for vertices and faces for modified data 

            data(counts).Femur.PreOpCT1.vertices = zeros(size(tempPreOpCT1.Points)); 

            data(counts).Femur.PreOpCT1.faces = 

zeros(size(tempPreOpCT1.ConnectivityList)); 

            data(counts).Femur.PreOpCT1.TMvertices = zeros(size(tempPreOpCT1.Points)); 

            data(counts).Femur.PreOpCT2.vertices = zeros(size(tempPreOpCT2.Points)); 

            data(counts).Femur.PreOpCT2.faces = 

zeros(size(tempPreOpCT2.ConnectivityList)); 

            data(counts).Femur.PreOpCT2.TMvertices = zeros(size(tempPreOpCT2.Points)); 
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            data(counts).Femur.PostOpCT.vertices = zeros(size(tempPostOpCT.Points)); 

            data(counts).Femur.PostOpCT.faces = 

zeros(size(tempPostOpCT.ConnectivityList)); 

            data(counts).Femur.PostOpCT.TMvertices = zeros(size(tempPostOpCT.Points)); 

            data(counts).Femur.WhiteLight.vertices = zeros(size(tempWhiteLight.Points)); 

            data(counts).Femur.WhiteLight.faces = 

zeros(size(tempWhiteLight.ConnectivityList)); 

            data(counts).Femur.WhiteLight.TMvertices = 

zeros(size(tempWhiteLight.Points)); 

             

            % Allocate memory for vertices and faces for original data 

            data(counts).Femur.PreOpCT1.OGvertices = zeros(size(tempPreOpCTOG.Points)); 

            data(counts).Femur.PreOpCT1.OGfaces = 

zeros(size(tempPreOpCTOG.ConnectivityList)); 

            data(counts).Femur.PreOpCT1.OGTMvertices = zeros(size(tempPreOpCTOG.Points)); 

            data(counts).Femur.PostOpCT.OGvertices = zeros(size(tempPostOpCTOG.Points)); 

            data(counts).Femur.PostOpCT.OGfaces = 

zeros(size(tempPostOpCTOG.ConnectivityList)); 

            data(counts).Femur.PostOpCT.OGTMvertices = 

zeros(size(tempPostOpCTOG.Points)); 

            data(counts).Femur.WhiteLight.OGvertices = 

zeros(size(tempWhiteLightOG.Points)); 

            data(counts).Femur.WhiteLight.OGfaces = 

zeros(size(tempWhiteLightOG.ConnectivityList)); 

            data(counts).Femur.WhiteLight.OGTMvertices = 

zeros(size(tempWhiteLightOG.Points)); 

             

            % Convert Triangulation Class to structure 

            data(counts).Femur.PreOpCT1.vertices = tempPreOpCT1.Points; 

            data(counts).Femur.PreOpCT1.faces = tempPreOpCT1.ConnectivityList; 

            data(counts).Femur.PreOpCT2.vertices = tempPreOpCT2.Points; 

            data(counts).Femur.PreOpCT2.faces = tempPreOpCT2.ConnectivityList; 

            data(counts).Femur.PostOpCT.vertices = tempPostOpCT.Points; 

            data(counts).Femur.PostOpCT.faces = tempPostOpCT.ConnectivityList; 

            data(counts).Femur.WhiteLight.vertices = tempWhiteLight.Points; 

            data(counts).Femur.WhiteLight.faces = tempWhiteLight.ConnectivityList; 

             

            data(counts).Femur.PreOpCT1.OGvertices = tempPreOpCTOG.Points; 

            data(counts).Femur.PreOpCT1.OGfaces = tempPreOpCTOG.ConnectivityList; 

            data(counts).Femur.PostOpCT.OGvertices = tempPostOpCTOG.Points; 

            data(counts).Femur.PostOpCT.OGfaces = tempPostOpCTOG.ConnectivityList; 

            data(counts).Femur.WhiteLight.OGvertices = tempWhiteLightOG.Points; 

            data(counts).Femur.WhiteLight.OGfaces = tempWhiteLightOG.ConnectivityList; 

             

            [data(counts).Femur.TM_GtoA] = 

anatomicalTM(data(counts).AnatLandmarks,bone{countb},data(counts).PlanningPoints,chiralit

y);      % Create Anatomical TM 

             

            % Apply Inverse Transformation to Pre/Post Op CT and WhiteLight vertices 

            [data(counts).Femur.PreOpCT1.TMvertices] = 

iTransformNodes(data(counts).Femur.PreOpCT1.vertices,data(counts).Femur.TM_GtoA); 

            [data(counts).Femur.PreOpCT1.OGTMvertices] = 

iTransformNodes(data(counts).Femur.PreOpCT1.OGvertices,data(counts).Femur.TM_GtoA); 

            [data(counts).Femur.PreOpCT2.TMvertices] = 

iTransformNodes(data(counts).Femur.PreOpCT2.vertices,data(counts).Femur.TM_GtoA); 

            [data(counts).Femur.PostOpCT.TMvertices] = 

iTransformNodes(data(counts).Femur.PostOpCT.vertices,data(counts).Femur.TM_GtoA); 

            [data(counts).Femur.PostOpCT.OGTMvertices] = 

iTransformNodes(data(counts).Femur.PostOpCT.OGvertices,data(counts).Femur.TM_GtoA); 

            [data(counts).Femur.WhiteLight.TMvertices] = 

iTransformNodes(data(counts).Femur.WhiteLight.vertices,data(counts).Femur.TM_GtoA); 

            [data(counts).Femur.WhiteLight.OGTMvertices] = 

iTransformNodes(data(counts).Femur.WhiteLight.OGvertices,data(counts).Femur.TM_GtoA); 

             

            [data(counts).Femur.TM_PtoP] = 

icpTM(data(counts).Femur.PreOpCT1.TMvertices,data(counts).Femur.PostOpCT.TMvertices);     

% Create ICP TM for Pre/Post Op data 
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            [data(counts).Femur.TM_LtoC] = 

icpTM(data(counts).Femur.PreOpCT2.TMvertices,data(counts).Femur.WhiteLight.TMvertices);   

% Create ICP TM for Pre/WhiteLight data 

             

            % Apply ICP Transformation to PostOp CT and WhiteLight vertices 

            [data(counts).Femur.PostOpCT.TMvertices] = 

fTransformNodes(data(counts).Femur.PostOpCT.TMvertices,data(counts).Femur.TM_PtoP); 

            [data(counts).Femur.PostOpCT.OGTMvertices] = 

fTransformNodes(data(counts).Femur.PostOpCT.OGTMvertices,data(counts).Femur.TM_PtoP); 

            [data(counts).Femur.WhiteLight.TMvertices] = 

fTransformNodes(data(counts).Femur.WhiteLight.TMvertices,data(counts).Femur.TM_LtoC); 

            [data(counts).Femur.WhiteLight.OGTMvertices] = 

fTransformNodes(data(counts).Femur.WhiteLight.OGTMvertices,data(counts).Femur.TM_LtoC); 

             

            for countc = 1:length(cutPlanes) - 1        % Start Resection Plane Loop for 

Femur (Anterior to Posterior) 

                 

                [data(counts).CutPlanes.(cutPlanes{countc}).TMvertices] = 

iTransformNodes(data(counts).CutPlanes.(cutPlanes{countc}).vertices,data(counts).Femur.TM

_GtoA);        % Perform Anatomical Alignment of PostOpCT Resection Planes 

                switch analysisType 

                    case 'CT' 

                        [data(counts).CutPlanes.(cutPlanes{countc}).TMvertices] = 

fTransformNodes(data(counts).CutPlanes.(cutPlanes{countc}).TMvertices,data(counts).Femur.

TM_PtoP);      % Perform ICP Alignment of PostOpCT Resection Planes 

                    case 'WhiteLight' 

                        [data(counts).CutPlanes.(cutPlanes{countc}).TMvertices] = 

fTransformNodes(data(counts).CutPlanes.(cutPlanes{countc}).TMvertices,data(counts).Femur.

TM_LtoC);      % Perform ICP Alignment of WhiteLight Resection Planes 

                    otherwise 

                        error('Error Determining Type of Analysis') 

                end 

                

[data(counts).CutPlanes.(cutPlanes{countc}).Distance,data(counts).CutPlanes.(cutPlanes{co

untc}).Normal,data(counts).CutPlanes.(cutPlanes{countc}).Point] = 

resectionPlanes(data(counts).CutPlanes.(cutPlanes{countc}).TMvertices);         % Affine 

Fit Plane and Quantify Distance 

                 

                switch cutPlanes{countc} 

                    case 'Anterior' 

                        % If normal for Anterior Plane is pointing posteriorly, flip the 

normal to point anteriorly 

                        if data(counts).CutPlanes.Anterior.Normal(2) < 0 

                            data(counts).CutPlanes.Anterior.Normal = -

data(counts).CutPlanes.Anterior.Normal; 

                        end 

                         

                        tempNorm = data(counts).CutPlanes.Anterior.Normal; 

                        tempNorm(1) = 0; tempNorm = tempNorm/norm(tempNorm);    % Project 

onto Sagittal Plane and Create Unit Vector 

                        data(counts).Femur.Angles.Anterior2SI = 

acosd(dot(tempNorm,[0,0,1])); 

                    case 'Distal' 

                        % If normal for Distal Plane is pointing inferiorly, flip the 

normal to point superiorly 

                        if data(counts).CutPlanes.Distal.Normal(3) < 0 

                            data(counts).CutPlanes.Distal.Normal = -

data(counts).CutPlanes.Distal.Normal; 

                        end 

  

                        tempNorm = data(counts).CutPlanes.Distal.Normal; 

                        tempNorm(2) = 0; tempNorm = tempNorm/norm(tempNorm);    % Project 

onto Coronal Plane and Create Unit Vector 

                        data(counts).Femur.Angles.VV = acosd(dot(tempNorm,[0,0,1])); 

  

                        tempNorm = data(counts).CutPlanes.Distal.Normal; 

                        tempNorm(1) = 0; tempNorm = tempNorm/norm(tempNorm);    % Project 

onto Sagittal Plane and Create Unit Vector 
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                        data(counts).Femur.Angles.FE = acosd(dot(tempNorm,[0,0,1])); 

                    case 'Posterior' 

                        % If normal for Posterior Plane is pointing posteriorly, flip the 

normal to point anteriorly 

                        if data(counts).CutPlanes.Posterior.Normal(2) < 0 

                            data(counts).CutPlanes.Posterior.Normal = -

data(counts).CutPlanes.Posterior.Normal; 

                        end 

  

                        tempNorm = data(counts).CutPlanes.Posterior.Normal; 

                        tempNorm(3) = 0; tempNorm = tempNorm/norm(tempNorm);    % Project 

onto Axial Plane and Create Unit Vector 

                        data(counts).Femur.Angles.IE = acosd(dot(tempNorm,[0,1,0])); 

                         

                        % Temporarily flip normal to point posteriorly 

                        if data(counts).CutPlanes.Posterior.Normal(2) > 0 

                            tempNorm = -data(counts).CutPlanes.Posterior.Normal; 

                        end 

                         

                        tempNorm(1) = 0; tempNorm = tempNorm/norm(tempNorm);    % Project 

onto Sagittal Plane and Create Unit Vector 

                        data(counts).Femur.Angles.Posterior2SI = 

acosd(dot(tempNorm,[0,0,1]));    % Calculate Angle between Posterior Normal and SI 

                    otherwise 

                end 

                 

            end % End Resection Plane Loop 

             

            % Set Clinically Correct Signs for Rotations 

            if data(counts).CutPlanes.Distal.Normal(2) < 0 

                data(counts).Femur.Angles.FE = -data(counts).Femur.Angles.FE; 

            end 

             

            switch chirality 

                case 'Left' 

                    if data(counts).CutPlanes.Distal.Normal(1) > 0 

                        data(counts).Femur.Angles.VV = -data(counts).Femur.Angles.VV; 

                    end 

                    if data(counts).CutPlanes.Posterior.Normal(1) < 0 

                        data(counts).Femur.Angles.IE = -data(counts).Femur.Angles.IE; 

                    end 

                case 'Right' 

                    if data(counts).CutPlanes.Distal.Normal(1) < 0 

                        data(counts).Femur.Angles.VV = -data(counts).Femur.Angles.VV; 

                    end 

                    if data(counts).CutPlanes.Posterior.Normal(1) > 0 

                        data(counts).Femur.Angles.IE = -data(counts).Femur.Angles.IE; 

                    end 

            end 

             

            % Solve for Anatomical Axis for Femur 

            tempPlanningPoints = 

iTransformNodes(data(counts).PlanningPoints,data(counts).Femur.TM_GtoA);       % 

Transform Planning Points to Anatomical CoSys 

            anatAxis = tempPlanningPoints(25,:) - tempPlanningPoints(24,:); anatAxis = 

anatAxis/norm(anatAxis);  % Create Unit Vector in Anatomical CoSys 

            anatAxis(1) = 0; anatAxis = anatAxis/norm(anatAxis); 

            data(counts).Femur.Angles.aFE = acosd(dot(anatAxis,[0,0,1]));     % Solve for 

angle between SI axis and Projected Vector to Sagittal Plane 

             

            % Set Clinically Correct Signs for Anatomic Axis (FE component) 

            if anatAxis(2) < 0 

                data(counts).Femur.Angles.aFE = - data(counts).Femur.Angles.aFE; 

            end 

             

        elseif strcmp(bone{countb},'Tibia')         % Conditional Statement for Tibia 

            % Allocate memory for vertices and faces for modified data 

            data(counts).Tibia.PreOpCT1.vertices = zeros(size(tempPreOpCT1.Points)); 



 

109 

            data(counts).Tibia.PreOpCT1.faces = 

zeros(size(tempPreOpCT1.ConnectivityList)); 

            data(counts).Tibia.PreOpCT1.TMvertices = zeros(size(tempPreOpCT1.Points)); 

            data(counts).Tibia.PreOpCT2.vertices = zeros(size(tempPreOpCT2.Points)); 

            data(counts).Tibia.PreOpCT2.faces = 

zeros(size(tempPreOpCT2.ConnectivityList)); 

            data(counts).Tibia.PreOpCT2.TMvertices = zeros(size(tempPreOpCT2.Points)); 

            data(counts).Tibia.PostOpCT.vertices = zeros(size(tempPostOpCT.Points)); 

            data(counts).Tibia.PostOpCT.faces = 

zeros(size(tempPostOpCT.ConnectivityList)); 

            data(counts).Tibia.PostOpCT.TMvertices = zeros(size(tempPostOpCT.Points)); 

            data(counts).Tibia.WhiteLight.vertices = zeros(size(tempWhiteLight.Points)); 

            data(counts).Tibia.WhiteLight.faces = 

zeros(size(tempWhiteLight.ConnectivityList)); 

            data(counts).Tibia.WhiteLight.TMvertices = 

zeros(size(tempWhiteLight.Points)); 

             

            % Allocate memory for vertices and faces for original data 

            data(counts).Tibia.PreOpCT1.OGvertices = zeros(size(tempPreOpCTOG.Points)); 

            data(counts).Tibia.PreOpCT1.OGfaces = 

zeros(size(tempPreOpCTOG.ConnectivityList)); 

            data(counts).Tibia.PreOpCT1.OGTMvertices = zeros(size(tempPreOpCTOG.Points)); 

            data(counts).Tibia.PostOpCT.OGvertices = zeros(size(tempPostOpCTOG.Points)); 

            data(counts).Tibia.PostOpCT.OGfaces = 

zeros(size(tempPostOpCTOG.ConnectivityList)); 

            data(counts).Tibia.PostOpCT.OGTMvertices = 

zeros(size(tempPostOpCTOG.Points)); 

            data(counts).Tibia.WhiteLight.OGvertices = 

zeros(size(tempWhiteLightOG.Points)); 

            data(counts).Tibia.WhiteLight.OGfaces = 

zeros(size(tempWhiteLightOG.ConnectivityList)); 

            data(counts).Tibia.WhiteLight.OGTMvertices = 

zeros(size(tempWhiteLightOG.Points)); 

             

            % Convert Triangulation Class to structure 

            data(counts).Tibia.PreOpCT1.vertices = tempPreOpCT1.Points; 

            data(counts).Tibia.PreOpCT1.faces = tempPreOpCT1.ConnectivityList; 

            data(counts).Tibia.PreOpCT2.vertices = tempPreOpCT2.Points; 

            data(counts).Tibia.PreOpCT2.faces = tempPreOpCT2.ConnectivityList; 

            data(counts).Tibia.PostOpCT.vertices = tempPostOpCT.Points; 

            data(counts).Tibia.PostOpCT.faces = tempPostOpCT.ConnectivityList; 

            data(counts).Tibia.WhiteLight.vertices = tempWhiteLight.Points; 

            data(counts).Tibia.WhiteLight.faces = tempWhiteLight.ConnectivityList; 

             

            data(counts).Tibia.PreOpCT1.OGvertices = tempPreOpCTOG.Points; 

            data(counts).Tibia.PreOpCT1.OGfaces = tempPreOpCTOG.ConnectivityList; 

            data(counts).Tibia.PostOpCT.OGvertices = tempPostOpCTOG.Points; 

            data(counts).Tibia.PostOpCT.OGfaces = tempPostOpCTOG.ConnectivityList; 

            data(counts).Tibia.WhiteLight.OGvertices = tempWhiteLightOG.Points; 

            data(counts).Tibia.WhiteLight.OGfaces = tempWhiteLightOG.ConnectivityList; 

             

            [data(counts).Tibia.TM_GtoA] = 

anatomicalTM(data(counts).AnatLandmarks,bone{countb},data(counts).PlanningPoints,chiralit

y);     % Create Anatomical TM 

             

            % Apply Inverse Transformation to Pre/Post Op CT and WhiteLight vertices 

            [data(counts).Tibia.PreOpCT1.TMvertices] = 

iTransformNodes(data(counts).Tibia.PreOpCT1.vertices,data(counts).Tibia.TM_GtoA); 

            [data(counts).Tibia.PreOpCT1.OGTMvertices] = 

iTransformNodes(data(counts).Tibia.PreOpCT1.OGvertices,data(counts).Tibia.TM_GtoA); 

            [data(counts).Tibia.PreOpCT2.TMvertices] = 

iTransformNodes(data(counts).Tibia.PreOpCT2.vertices,data(counts).Tibia.TM_GtoA); 

            [data(counts).Tibia.PostOpCT.TMvertices] = 

iTransformNodes(data(counts).Tibia.PostOpCT.vertices,data(counts).Tibia.TM_GtoA); 

            [data(counts).Tibia.PostOpCT.OGTMvertices] = 

iTransformNodes(data(counts).Tibia.PostOpCT.OGvertices,data(counts).Tibia.TM_GtoA); 

            [data(counts).Tibia.WhiteLight.TMvertices] = 

iTransformNodes(data(counts).Tibia.WhiteLight.vertices,data(counts).Tibia.TM_GtoA); 
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            [data(counts).Tibia.WhiteLight.OGTMvertices] = 

iTransformNodes(data(counts).Tibia.WhiteLight.OGvertices,data(counts).Tibia.TM_GtoA); 

             

            [data(counts).Tibia.TM_PtoP] = 

icpTM(data(counts).Tibia.PreOpCT1.TMvertices,data(counts).Tibia.PostOpCT.TMvertices);     

% Create ICP TM for Pre/Post Op data 

            [data(counts).Tibia.TM_LtoC] = 

icpTM(data(counts).Tibia.PreOpCT2.TMvertices,data(counts).Tibia.WhiteLight.TMvertices);   

% Create ICP TM for Pre/WhiteLight data 

             

            [data(counts).Tibia.PostOpCT.TMvertices] = 

fTransformNodes(data(counts).Tibia.PostOpCT.TMvertices,data(counts).Tibia.TM_PtoP); 

            [data(counts).Tibia.PostOpCT.OGTMvertices] = 

fTransformNodes(data(counts).Tibia.PostOpCT.OGTMvertices,data(counts).Tibia.TM_PtoP); 

            [data(counts).Tibia.WhiteLight.TMvertices] = 

fTransformNodes(data(counts).Tibia.WhiteLight.TMvertices,data(counts).Tibia.TM_LtoC); 

            [data(counts).Tibia.WhiteLight.OGTMvertices] = 

fTransformNodes(data(counts).Tibia.WhiteLight.OGTMvertices,data(counts).Tibia.TM_LtoC); 

             

            [data(counts).CutPlanes.(cutPlanes{end}).TMvertices] = 

iTransformNodes(data(counts).CutPlanes.(cutPlanes{end}).vertices,data(counts).Tibia.TM_Gt

oA);        % Perform Anatomical Alignment of PostOpCT Resection Planes 

             

            switch analysisType 

                case 'CT' 

                    [data(counts).CutPlanes.(cutPlanes{end}).TMvertices] = 

fTransformNodes(data(counts).CutPlanes.(cutPlanes{end}).TMvertices,data(counts).Tibia.TM_

PtoP);      % Perform ICP Alignment of PostOpCT Resection Planes 

                case 'WhiteLight' 

                    [data(counts).CutPlanes.(cutPlanes{end}).TMvertices] = 

fTransformNodes(data(counts).CutPlanes.(cutPlanes{end}).TMvertices,data(counts).Tibia.TM_

LtoC);      % Perform ICP Alignment of WhiteLight Resection Planes 

                otherwise 

                    error('Error Determining Type of Analysis') 

            end 

             

            

[data(counts).CutPlanes.(cutPlanes{end}).Distance,data(counts).CutPlanes.(cutPlanes{end})

.Normal,data(counts).CutPlanes.(cutPlanes{end}).Point] = 

resectionPlanes(data(counts).CutPlanes.(cutPlanes{end}).TMvertices);         % Affine Fit 

Plane and Quantify Distance 

             

            % If normal for Proximal Plane is pointing inferiorly, flip the normal to 

point superiorly (Should assist FE and VV) 

            if data(counts).CutPlanes.Proximal.Normal(3) < 0 

                data(counts).CutPlanes.Proximal.Normal = -

data(counts).CutPlanes.Proximal.Normal; 

            end 

             

            tempNorm = data(counts).CutPlanes.Proximal.Normal; 

            tempNorm(2) = 0; tempNorm = tempNorm/norm(tempNorm);    % Project onto 

Coronal Plane and Create Unit Vector 

            data(counts).Tibia.Angles.VV = acosd(dot(tempNorm,[0,0,1])); 

             

            tempNorm = data(counts).CutPlanes.Proximal.Normal; 

            tempNorm(1) = 0; tempNorm = tempNorm/norm(tempNorm);    % Project onto 

Sagittal Plane and Create Unit Vector 

            data(counts).Tibia.Angles.FE = acosd(dot(tempNorm,[0,0,1])); 

             

            % Set Clinically Correct Signs for Rotations 

            if data(counts).CutPlanes.Proximal.Normal(2) > 0 

                data(counts).Tibia.Angles.FE = -data(counts).Tibia.Angles.FE; 

            end 

             

            switch chirality 

                case 'Left' 

                    if data(counts).CutPlanes.Proximal.Normal(1) < 0 

                        data(counts).Tibia.Angles.VV = -data(counts).Tibia.Angles.VV; 
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                    end 

                case 'Right' 

                    if data(counts).CutPlanes.Proximal.Normal(1) > 0 

                        data(counts).Tibia.Angles.VV = -data(counts).Tibia.Angles.VV; 

                    end 

            end 

        end    % End Femur/Tibia Conditional Statement 

    end        % End Bone Loop 

end            % End Specimen Loop 

  

disp(['Finished Surgeon: ',num2str(countsl),'/5']) 

  

%% Save Variables 

  

switch analysisType 

    case 'CT' 

        save([PATH,'MATLAB/MainIO/variables/','dataBatch',surgeon,'.mat'],'data') 

    case 'WhiteLight' 

        

save([PATH,'MATLAB/MainIO/variables/','dataBatch',surgeon,'WhiteLight.mat'],'data') 

    otherwise 

        error('There was trouble saving the data') 

end 

  

end 
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