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ABSTRACT 

 

Parkinson’s disease (PD) is a neurodegenerative movement disorder that progresses 

gradually over time. The onset of symptoms in people who are suffering from PD can vary 

from case to case, and it depends on the progression of the disease in each patient. The PD 

symptoms gradually develop and exacerbate the patient’s movements throughout time. An 

early diagnosis of PD could improve the outcomes of treatments and could potentially 

delay the progression of this disorder and that makes discovering a new diagnostic method 

valuable. In this study, I investigate the feasibility of using a machine learning (ML) 

approach to classify PD patients from a healthy group. A set of plasma samples were 

collected from both PD patients and healthy people.  Then the data were processed in a 

custom-designed capillary zone electrophoresis (CZE) system. CZE allows us to study 

metabolomics, which is the chemical processes and comprehensive analysis of small 

molecules in regard to metabolism within an organism such as a cell or body fluids like 

plasma. Metabolic profiling can demonstrate changes in the composition and therefore it 

can potentially reflect an underlying condition or may provide valuable information for 

disease diagnosis. After preprocessing the generated electropherograms or output data 

from the CZE system, I developed and applied various machine learning algorithms to 

distinguish the PD samples from the healthy samples based on the biomarkers extracted 
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using the CZE system. Our experimental results demonstrate that there are clearly different 

features in two groups of samples. Therefore, it was possible to reach the classification 

accuracy of 94% in a very small set of samples. 
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CHAPTER ONE: INTRODUCTION 

 

1. Parkinson’s Disease 

 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that causes 

movements malfunctions. It is possible people start showing PD symptoms at an early age, 

but the average age is around 60. In the United States, it is estimated that the prevalence of 

PD reaches nearly 1 million at present. This number is predicted to reach 1.2 million cases 

by 2030 [1]. The symptoms develop gradually, and they progress and get worse over time. 

In PD, specific neurons start to malfunction, and gradually it will lead to the death 

of these vital nerve cells [2]. The loss of these neurons that their presence is essential to 

produce a neurotransmitter called dopamine. Dopamine is responsible for controlling 

movement and coordination, and the decrease of its amount causes abnormal brain activity 

such as impaired movement. The progress of PD exacerbates dopamine production in the 

brain, leaving a person unable to control movement normally [3]. 

However, the exact cause of PD is unknown; researchers believe genetic mutations 

and environmental triggers could play a role. 

Primary motor signs of Parkinson’s disease include the following: 

• Tremor of the hands, arms, legs, jaw, and face 

• Bradykinesia or slowness of movement 
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• Rigidity of the limbs and trunk 

• Postural instability or impaired balance and coordination. 

 

There is no specific test to diagnose Parkinson's disease. Neurologists will diagnose 

PD based on the patient’s medical history, evaluations of signs and symptoms, and a 

neurological and physical examination [4], [5]. Due to the lack of a reliable test, there is 

always a possibility for misdiagnosis. Moreover, the onset of PD is currently determined 

when the motor symptoms start to emerge but there is evidence suggesting that when first 

motor symptoms manifest about 50% of substantia nigra dopaminergic neurons are 

compromised [6], [7]. 

Even though there is no cure for PD, there are two main types of treatment to 

improve the symptoms. Firstly, administrating carbidopa-levodopa can help to produce 

dopamine in the brain and compensate for the lack of it. Carbidopa will help to prevent the 

degeneration of levodopa in the bloodstream [8]. This treatment is for the early stages of 

PD and by the progression of the disease, levodopa loses its effectiveness. The other 

treatment is deep brain stimulation (DBS). DBS is an invasive method and it requires 

surgery. A surgeon will put electrodes in a specific area of the brain, called the subthalamic 

nucleus and it has proven that the stimulation can improve the symptoms significantly [9].  
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2. Metabolomics 

 

The study of chemical processes and comprehensive analysis of small molecules in 

regard to metabolism within an organism such as a cell or body fluids like plasma refers to 

metabolomics. Metabolomics provides unique chemical fingerprints and profiles 

associated with distinguishing chemical processes [10], [11]. Metabolic profiling can be 

utilized to demonstrate changes in the composition of the metabolites, and therefore it can 

potentially reflect an underlying condition or may provide valuable insights about it. Due 

to recent advances, metabolomics is considered an emerging technology that delivers a 

powerful tool for precision medicine and provides a direct "functional readout of the 

physiological state" of an organism [10]. Different analytical techniques have been widely 

exploited in metabolomics, such as Gas Chromatography (GC), Liquid Chromatography 

(LC) interfaced with Mass Spectroscopy (MS) as well as Nuclear Magnetic Resonance 

(NMR) Spectroscopy and Capillary Electrophoresis [12]. 

 

3. Capillary Zone Electrophoresis 

 

Capillary Zone Electrophoresis is described as a technique of detecting specific 

particles, sample ions, such as different molecules, proteins, peptides, and nucleic acids 

within a larger unknown compound in a narrow bore (25-100 micron) capillary tube filled 

with an electrolyte solution (buffer)  [13]. The buffer solution provides conductivity 

through the capillary tube allowing the flow of current. 
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By applying high voltage across the capillary, the generated current which flows 

through the tube results in the separation of the injected compound. The sample solution 

(typically 1-20 nL) is placed at the end of the capillary tube away from the detector. The 

light detector, photomultiplier, is somewhere near the capillary right before it enters the 

buffer reservoir that is connected to the ground. The capillary tube ends from both sides 

are dipped into reservoirs containing electrolyte solution and high-voltage electrodes. One 

electrode from a cable leads to the output of the high-voltage power supply, whereas the 

other one is connected to the ground cable. To have the best conductivity, the electrodes 

usually are made of platinum [14].  

The sample solution goes through a preparation process. It is combined with a 

biomarker, fluorescein isothiocyanate (FITC), that can show the volume of each particle. 

The measurements happen by finding the intensity of the glowing fluorescent, resulting 

from the laser when it hits the capillary. The generated plot of detector response through 

time is termed an electropherogram. 

The system consists of different parts that are described in the following: 

• Capillary: It is a long, very small tube with a length and diameter of about 

60 cm and 25 microns respectively. The capillary has a yellow coating 

which should be removed where the laser hits to be transparent for it. 

• Laser: it is a solid-state continuous waveform laser with a 488nm 

wavelength. 

• Photomultiplier: to measure the light intensity resulting from laser hitting 

the capillary. 
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• Pump: there is a pump for conditioning the capillary and the injection of the 

sample.  

• Valves: there are two valves that control the injection and conditioning. 

• Pressure chamber: this keeps the pressure constant for the different runs of 

the samples.  

• Buffer reservoir: this reservoir containing the buffer provides an 

environment for the buffer inside the capillary to be connected to the ground 

and keep the circuit closed for the current. 

• Power supply: It is responsible for providing a high voltage of 27000 volts. 

The block diagram of the CZE is depicted in Figure 1.1. 

 

 

Figure 1.1 CZE block diagram 
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3.1 Electrophoresis 

 

Electrophoresis refers to the movement of sample ions under the influence of an 

electric field [14], [15]. The applied voltage causes ions to move toward the appropriate 

electrode and pass through the detector. The size and number of ionic charges affect the 

migration rate or mobility resulting in different shapes of time series. For instance, a 

smaller ion moves faster than a larger one considering both have the same number of 

charges, or an ion with higher charges moves faster than an ion in the same size with only 

one charge. The ionic mobility is described as Equation 1.1  

𝜇𝐸 =  
𝑞

6𝜋
𝜂𝑟    1.1 

 

Where 𝜇𝐸 is electrophoretic mobility, 𝑞 number of charges,  𝜂 solution viscosity, and 𝑟 

radius of the ion. 

Therefore, in electrophoresis of solutions of different ions, the smaller particle will 

appear sooner in the plot of detector response. 

Furthermore, the electrophoretic velocity (Equation 1.2) of the ions is related to their 

mobilities and the magnitude of the applied electric field. 

𝑣 = 𝜇𝐸  𝐸  1.2 

Where 𝑣 is the velocity of the ion, and is 𝐸 the applied electric field.  
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3.2 Electro-Osmotic Flow (EOF) 

 

The applied voltage across the capillary causes a flow of solution due to the 

presence of an electrolyte. This solution flow pushes solute ions along the capillary toward 

the same direction as the flow generated by the applied voltage. This flow happens due to 

the ionization of the acidic silanol groups on the inside of the capillary because of being in 

contact with the buffer solution. At high pH, these groups are separated, resulting in a 

negatively charged surface followed by cations appearing near the surface to maintain 

electroneutrality. The applied voltage across the capillary pushes these cations towards the 

cathode (Figure 1.2). Due to the presence of water molecules solvating the cations, a flow 

of solution along the capillary occurs due to cations movement (Figure. 1.2). This effect 

refers to as an "electric pump." 

The flow intensity is dependent on the charge on the capillary, the buffer viscosity, 

and the dielectric constant of the buffer, which is shown in Equation 1.3: 

 𝜇𝐸𝑂𝐹 =  
𝜀𝜁

𝜂
              1.3 

where 𝜇𝐸𝑂𝐹 = "EOF mobility," 𝜂 = viscosity, and ζ = Zeta potential (charge on the 

capillary surface). 
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Figure 1.2 Electroendosmosis flow [14] 

 

The ζ potential is highly affected by the ionization of the acidic silanols, resulting 

in the EOF intensity's dependence on electrolyte pH. Below pH 4, since the ionization is 

small, the EOF flow rate is neglectable. On the contrary, above pH 9, the silanols are 

completely ionized, leading to a strong EOF [16]. The relation of pH and EOF is depicted 

in Figure 1.3. The EOF level reduces with the increase in electrolyte concentration while 

the ζ potential is diminished. 
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Figure 1.3 Changes of EOF based on pH [14] 

 

The separation occurs due to the presence of EOF, which allows detection of both 

cations and anions within a single analysis, due to sufficient level of EOF at pH 7 and 

above, to push anions towards the cathode regardless of their charge. The electropherogram 

results from a study of a mixture of cations, neutral compounds, and anions. Each peak 

represents a compound and the corresponding migration time for that peak is when the 

compound passes through the detector. 
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Since the smaller anions show more resistance against the EOF, they are detected 

later than anions with lower mobility. Additionally, anions with higher charges move more 

strongly against the EOF, and therefore they will be detected later. Thus, pH is considered 

as the most critical operating parameter since it has significant impacts on the separation 

of the ionic particle by affecting both solute charged level and the EOF intensity. 

Finally, the migration time of a solute is defined with regard to the mobility of the 

solute and its intensity. Equation 1.4 describes the apparent mobility equation, which is 

measured from the migration time. 

𝜇𝐴 = 𝜇𝐸 + 𝜇𝐸𝑂𝐹 =
𝑙𝐿

𝑡𝑉
           1.4 

where l = length along the capillary (cm) to detector, V = Voltage, and L = total length 

(cm) of the capillary. 

 

4. Capillary Electrophoresis Background 

 

For disease diagnosis, it is crucial to discover the associated biomarkers [17] and 

proteins and peptides constitute one of the essential groups of biomarkers. The various 

approaches that have been used to detect these biomarkers are not without difficulties since 

they require the handling of real samples [18].  

We can find these biochemical biomarkers in tissues or biological fluids such as 

blood and cerebrospinal fluid (CSF). For a diagnosis purpose, the physiological process of 

the disease affects the selection of the biological fluid. Therefore, the patient’s disease state 

can be defined by the concentration of the biomarkers in the collected sample. 



11 

 

There are different strategies reported for capillary electrophoresis (CE) analysis in 

diagnosis which is developed by using body fluids. By using CE, not only could we detect 

biomarkers but also quantize them, and this technique is highly advantageous since it 

provides high efficiency and resolution with a small amount of sample volume. Also, it is 

possible to accomplish high sensitivity when it is coupled with laser-induced fluorescence 

detection (LIF) [19] or mass spectrometry (MS). However, dealing with biomarker analysis 

by CE is not without difficulties. Firstly, the complexity of the sample matrix and then their 

low concentration could play an important role in this analysis.  

For example, a very common biological fluid is blood containing many proteins in 

very different concentrations. This could cause problems due to interfering substances that 

could deteriorate the separation and also because of potential interaction between the 

targeted substance and the rest of plasma proteins leading to changing the accuracy. 

Proteins and peptides, additionally, have a tendency to interact with the surface of the 

silicone capillary affecting the resolution and sensitivity of the system. To keep the system, 

different functional actions must be taken in addition to the initial CE separation system. 

Biological fluids containing biomarkers consist of proteins and compounds that 

could lead to many potential interferences due to similar behavior during the CE analysis 

process. Therefore, prior to running the sample, a preparation step must be performed in 

order to reduce or eliminate the adversarial factors that could potentially interrupt CE 

analysis. The preparation process not only helps to get rid of the non-interesting 

compounds but also to magnify the biomarker effects by increasing their concentration of 

them. 
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The most common body fluids that are used for protein analysis are plasma, serum, 

and cerebrospinal fluid. Protein analysis from these fluids is complicated since it requires 

sample cleanup before other steps. Many methods have been presented for the sample 

treatment to extract, isolate, filtrate, or concentrate the targeted substance from these body 

fluids. This study uses liquid-liquid-based extraction techniques to eliminate interfering 

substances in the plasma, such as centrifugation or precipitation. The steps for sample 

treatment are thoroughly explained in the next chapter.  

 

5. Literature Review 

 

The applications of artificial intelligence (AI) and machine learning (ML) have 

been gaining more popularity in biomedical research. Most research is focused on medical 

diagnosis and detection of different stages in different diseases. In spite of the fact that 

several studies have been carried out to explore biomarkers associated with PD, a reliable 

test to diagnose PD remains unknown [20]. Presently, most diagnoses are made after the 

onset of motor symptoms, and the emergence of symptoms occurs once the damage has 

progressed drastically. Despite the vast knowledge of the neuropathology of PD, an 

accurate test for diagnosing PD remains challenging, especially in the PD early stages [21].  

Even though many studies are being conducted on developing and validating 

biomarkers for PD, the success rate remains far from satisfactory [22]. Thus, the discovery 

of diagnostic biomarkers is necessary to provide enough time to intervene by early 

diagnosis at the onset of the disorder and affect the efficiency of the course of treatments. 
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As mentioned, one of the most well-known techniques to detect and identify 

different chemical compounds is capillary electrophoresis (CE). This analytical tool 

presents a simple, cost-efficient, and fast separation method that can be exploited in the 

analysis and detection of different components and particles of larger unknown 

compounds. The applications of CE have been rapidly growing in a chemometric study, 

such as diagnosis of diabetes [23] or quantifying the amount of polyamines [24] which can 

be an important way to understand the progression of PD. Since CE can help measure the 

amount of a particular component within a given chemical compound, it has been used to 

quantify the amount of putrescine in red blood cells of PD patients. It is shown that the 

levels of putrescine concentration were significantly higher for PD patients compared to 

healthy people [24].  

Additionally, it has been demonstrated that the CE can offer a classification method 

for different chemical compounds [25]. They propose an ML approach to classify the 

quality of olive oil using CZE with UV detection to generate electropherograms of three 

different groups of samples. This study shows that using CE makes it possible to reach a 

high classification accuracy for separating the various quality of olive oil. 

Furthermore, in toxicology, some research has been conducted for using pattern 

recognition in the classification of urine samples. They used different ML algorithms for 

determining the type of cadmium dosage, acute or chronic. The ML models were trained 

based on the urine profiling that CE offers [26].  Capillary electrophoresis has been used 

on urine profiling for cancer patients as well [27]. They have shown that by using a neural 
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network, it is possible to separate normal people from patients who are suffering from 

different kinds of cancer.  

To the best of our knowledge, there has been very little work on pattern recognition 

and machine learning for capillary electrophoresis analysis for PD research. As mentioned 

[9], PD patients could have a higher concentration of putrescine in their blood cells. 

Furthermore, in another study, they show that spermine levels and also spermine-

spermidine ratio were significantly declined in the PD group [28]. Therefore, we can 

assume there are other molecules and chemical components that their concentration can be 

affected by PD. This study aims to investigate the application of CE further and by using 

the whole electropherogram instead of a few peaks in the signal, we want to dig deeper into 

differences in PD patients and healthy people.  

In this study, before data analysis, the plasma samples went through a preparation 

process. Next, I run all the samples based on a designed protocol and the electropherograms 

of the plasma samples are acquired by using CZE. Firstly, the corresponding peaks across 

samples are detected and they are used to do a classification between the PD group and 

healthy people. Finally, the classification algorithms are developed using whole 

electropherograms. Several steps are taken to preprocess the data before analysis, namely 

noise reduction and baseline correction. 
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6. Thesis Goals and Impacts  

 

As discussed earlier, there is no reliable test to determine whether someone has PD 

or not based on blood biomarkers and the available methods are physical exam and 

evaluation of brain imaging. However, there is a high chance of misdiagnosis in the 

mentioned methods. The main goal of this thesis is to provide a way for early and accurate 

diagnosis of PD patients. It is shown that electropherogram signals contain vital 

information about the contents of a compound. In other words, the thesis aims to investigate 

the correlation of patterns associated with PD and find a biomarker for this disease. This 

could help classify healthy people and detect anomalies in their samples in the early stage 

of the disease using machine learning algorithms. By developing a data analysis pipeline, 

I extracted features from electropherograms and used them to do the classification of the 

dataset into the two groups of PD and NC.  
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CHAPTER TWO: DATA ACQUISITION 

 

1. Subjects 

 

For collecting data, the samples should be prepared. The plasma sample was taken 

from 22 people, with 11 subjects for the PD group and 11 subjects for normal control (NC). 

The demographic information of each subject is shown in Table 2.1 and Table 2.2. 

Table 2.1 Normal control group 

Study ID SEX AGE 

C-1 male 62 

C-2 male 60 

C-3 female 64 

C-4 female 65 

C-5 female 62 

C-6 female 64 

C-7 female 61 

C-8 female 61 

C-9 female 68 

C-11 female 72 

C-12 female 64 



17 

 

 

Table 2.2 PD subjects 

Study ID SEX AGE 

DISEASE DURATION 

since diagnosis (years) 

P-1 female 70 7 

P-2 male 61 10 

P-3 female 67 8 

P-4 male 71 5 

p-6 female 61 7 

p-7 male 67 8 

p-8 male 69 8 

p-9 male 60 7 

p-10 female 68 8 

p-11 female 62 6 

p-12 female 71 10 

 

 

The plasma samples of subjects were kept in the freezer at -80 Celsius degree temperature.   

 

2. Sample Preparation 

 

After thawing samples at room temperature, each plasma sample goes through a 

preparation process to be ready to be run in the systems. This step is essential to remove 

any interfering substance from the samples. A brief explanation of this process is given: 
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• Adding acetonitrile to samples to precipitate the proteins in plasma. 

• Centrifuging the samples to separate the plates in plasma. 

• Extracting the clear supernatant from centrifuged plasma. 

• Adding Fluorescein isothiocyanate (FITC), which is mixed with carbonate 

buffer and acetone to derivatize the samples with equal volume as the 

samples. 

• Leave the samples for 24 hours to be combined with FITC. 

To prepare the dye to be used as biomarkers, the Fluorescein isothiocyanate (FITC) 

was mixed with acetone with a dilution factor of 1mg per 1ml. After mixing it well, the 

solution was added to the same amount of carbonate buffer. Next, the dye needs to be 

filtered before adding to derivatize the samples.    

After preparing the samples, it is crucial to dilute them with the correct dilution 

factor to get the most applicable spectrum of samples. Five microliters of each sample were 

taken and added to 95 microliters of H2O for these samples. Then 25 microliters of the 

new solution were taken and mixed with 12.5 microliters of H20. The different dilution 

factors have impacts on the generated spectrum. The high concentration of FITC without 

proper dilution will cause saturation of the signals in most peaks, making it hard to 

distinguish between them.    

There are two different buffers that are used, the carbonate buffer and the borate 

buffer. The carbonate buffer was resulted by combining 200mM sodium carbonate and 

200mM sodium bicarbonate. The amount of each solution is 5 ml and 5 ml, respectively.  

Then 90 ml of H2O was added to make 100 ml of 20 mM carbonate buffer. And 40mM 
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sodium tetraborate decahydrate and 20mM sodium dodecyl sulfate was used in equal 

volume to make the borate buffer. The carbonate buffer was used in the dye, and then for 

running the samples, the capillary was filled with the borate buffer.    

 

3. Data Acquisition  

 

For running the samples, the system must be prepared. Before injecting the sample 

to the capillary, the capillary was conditioned with 0.1 mM NaOH. Then it was rinsed with 

water. For these processes, the capillary was washed using positive pressure by applying 

constant pressure on the syringes containing NaOH and H2O for two minutes. Next, the 

capillary was filled with a buffer that provides its current conductivity. 

The protocol to run a sample is as described: 

• Condition the capillary with 0.1mM NaOH for two minutes with positive 

pressure or 8 minutes with negative pressure. 

• Rinse with H2O for two minutes with positive pressure or 8 minutes with 

negative pressure. 

• Filled the capillary with BF for two minutes with positive pressure or 8 

minutes with negative pressure. 

• Inject the sample for 2 sec using the pressure chamber and the pump. 

• Inject the BF for 2 sec using the pressure chamber and the pump. 

• Activate the power supply a let it run for about 40 minutes. 
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The signal acquired by the photomultiplier represents the amount of some specific 

molecules within the samples. By mixing the plasma samples with FITC, the particles of 

the plasma get attached to the FITC. After applying high voltage across the capillary, the 

particles start to separate from each other due to the polarity of molecules. The negative 

particles go towards the cathode and the negative ones towards the anode. There are some 

neutral molecules that will be pushed by the Na ion existing inside the buffer since Na is 

moving towards the anode. This difference between polarities of molecules causes the 

electropherogram to have three groups of peaks. The first group has a negative charge, the 

second group is neutral, and the last one is positive. 

When these molecules pass the laser, the fluorescent starts to glow, providing a 

phenomenon that the photomultiplier can catch. The intensity of this light shows the 

amount of FITC attached to the molecules, which can quantize the amount of the 

compartments. 

The acquired electropherograms from two NC and PD groups samples are depicted 

in figures 2.1 and 2.2, respectively.   
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Figure 2.1 Electropherogram of a healthy person 

 

 

Figure 2.2 Electropherogram of a PD patient 
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The concentration of plasma samples in the newly prepared solution is essential to 

give the most detailed information about each sample. For instance, one of the samples of 

the PD group was rum three times with three different dilution factors. The first sample is 

prepared by mixing 5 ul of the original solution and 95 ul of H2O. The second one uses 25 

ul of the previously described solution with 12.5 ul of H2O. For the final solution, another 

25 ul of the same solution is used with the difference in the amount of water added, which 

is 25 ul. The spectrums of these solutions, the first solution (blue), the second solution 

(purple), and the last solution (green) are shown in figures 2.3 and 2.4.  

 

 

Figure 2.3 Electropherogram of a PD patient with different concentrations of FITC 
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Figure 2.4 Area of interest; Electropherogram of a PD patient with different concentration of FITC 

 

By adding more water to the samples, we can decrease the number of saturated peaks, 

which is important to show the differences between any other of them. However, more 

water can cause a decrease in the amplitude of smaller peaks. Therefore, the concentration 

of the second solution is considered as the optimal diluted solution.  

 

4. Sample Spiking 

 

Each peak represents a different molecule. To find the targeted molecule, first, the 

plasma sample was run alone. Next, we inject the sample for two seconds along with the 

injection of a specific molecule right after that. In this way, the concentration of each 

molecule inside the capillary drops except for the molecule that was injected separately. 

By comparing the newly acquired electropherogram with the spectrum of the sample, we 
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can identify the location of the specific molecule among all the peaks. For instance, in 

Figure 2.5, the spectrum for the PD sample of subject six is shown along with the spectrum 

of the same sample with an injection of Alanin for 2 seconds.  

As can be seen in figure 2.2, at a time of about 7.2 minutes, there is only an increase 

in the amplitude of the peaks. Thus, this peak represents the arginine. 

 

 

 

Figure 2.5 Electropherogram of a PD patient compared to the Electropherogram of the same sample with 

Alanin injection 
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Figure 2.6 Peak associated with Alanin 

 

 

This relationship is the reason why the electropherogram contains crucial information and 

can be utilized to diagnose distinctive diseases. Since PD has different symptoms and they 

can have impacts on the metabolism of the body’s organs, the concentration of each 

molecule in the plasma could change based on the severity of the PD in the patients. In this 

method, by taking all common peaks into consideration, we can find the pattern associated 

with PD and use it for early diagnoses.    
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CHAPTER THREE: DATA PREPROCESSING  

 

1. Denoising  

 

For noise suppression, two different methods are carried out depending on the 

accuracy of the algorithm to preserve the vital information of the electropherograms. 

Firstly, noise suppression was accomplished by using wavelet transform Figure 3.1. Prior 

to further analysis the wavelet decomposition of the signal at level 7 with ‘Symlet4’ was 

computed. 

 

Figure 3.1 Wavelet coefficients in different level 
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After thresholding the detail coefficients, the denoised signal was reconstructed 

using the original coefficients of level 7 and the modified detail coefficients of level from 

1 to 7.  

Secondly, a moving average filter is used to remove the noise in the signals. The 

procedure is carried out by sweeping a window of a specific length through the signal and 

taking the average of the data points within the window. It was shown that the moving 

average performs better over the wavelet to keep the value of peaks in the 

electropherograms.  

 

2. Baseline Correction 

 

Due to changes in experimental conditions such as possible residue of the dye inside 

the capillary and erosion of the inner side of the capillary through time, the signal can drift 

with different experiments. To keep the shape of the electropherogram consistent, it is 

necessary to remove the bias in the baseline. For the baseline correction, the signal passes 

a low-pass filter to omit small fluctuations in order to find the prominent peaks of the 

signals. The valleys of the signals were determined by using the reversed signal and 

detection of peaks of specific height in the new signal. Then by using a cubic interpolation 

among the detected valleys, a baseline was drawn. Finally, the fitting curve was subtracted 

from the original electropherogram to correct the baseline. 
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3. Peak Detection 

 

Detection of peaks in the electropherogram is important since each peak represents 

a molecule in the chemical compound. The peak was detected by using the first derivation 

of the signal and adding some restrictions to obtain the relevant ones, such as the height 

and minimum distance of two adjacent peaks. 

In order to find the corresponding peaks, an algorithm called Dynamic Time 

Warping (DTW) was used. In DTW, the distance between all two pairs of peaks is 

calculated and, based on those pairs; these calculations result in a matrix of distances for 

all peaks. In this matrix, a path that has the shortest distance for all pairs of peaks is the 

answer to the alignment [29].  

With these links that exist between each pair, the path between two corresponding 

peaks is known, and by assigning each peak to the corresponding point in the other signal 

the aligned signals are obtained.  

 

4. Feature extraction  

 

For the feature extraction, since the corresponding peaks across all 

electropherograms are found, by calculating the height and the area under each peak we 

have a vector of features that can be used to classify the spectrums into two groups. This 

process is described in more detail in the next chapter for each different dataset. 
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5. Software Implementation  

 

The code for all of the above parts was implemented on MATLAB and a graphical 

user interface was developed to provide a user-friendly environment for manipulating the 

peaks. 

 

 

Figure 3.2 Graphical interface of the peak detection pipeline 
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CHAPTER FOUR: CLASSIFICATION  

 

1. Algorithms for Binary Classification 

 

The goal of this thesis is to classify electropherograms into two different groups. 

Therefore, a binary classifier is needed. Several methods are evaluated for this 

classification, such as support vector machine (SVM), random forest, k-nearest neighbors 

algorithms, and deep learning.  

 

1.1 Support Vector Machine (SVM) 

 

The SVM has been used widely in pattern recognition applications. SVM finds the 

optimal hyperplane that separates the two training classes [30]. As can be seen in figure 

4.1a there are a number of potential hyperplanes. The support vectors refer to the samples 

of a class that is in the closest distance of the other class, and the margin is defined by the 

distance between the hyperplane and the support vectors. SVM chooses the hyperplane 

with the largest margin of separation which can be seen in Figure 4.1b. 
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Figure 4.1 SVM chooses the maximum margin various among potential hyperplanes 

 

Given a training set of n points with the following form  

(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)  

Where the 𝑦𝑖 indicates in which classes xi belongs. In this algorithm, the goal is to find the 

maximum-margin hyperplane that can divide the points xi into different groups. Any 

hyperplane that can satisfy the following (Equation 4.1) can split the points into different 

classes. 

𝑤𝑇𝑥𝑖 − 𝑏 = 0   4.1 

where w is the normal vector of the hyperplane. 

 SVM solves the following optimization problem (Eq 4.2) for the given X, Y vectors. 

by minimizing 

1

𝑛
∑ max(0, 1 − 𝑦𝑖(𝑤𝑇𝑥𝑖 − 𝑏))𝑛

𝑖=1 + 𝜆‖𝑤‖2   4.2 

 

 

a b 
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1.2 Random Forests 

 

  Random decision forests are an ensemble learning method for classification that 

operates by constructing a large number of decision trees at training time. The classification 

output of the model is chosen by the output class of most decision trees [31]. 

  The RF functions are based on decision trees, a type of ML algorithm for 

supervised learning. In decision trees, the data is continuously split into different parts 

according to a certain parameter. These parameters could be interoperated as features to 

train the model. For training a random forest model, many decision trees will be created 

and the result of the majority of models determines the output class of the algorithm.  

 

1.3 K-nearest Neighbors 

 

K-nearest neighbors (KNN) is a type of classification where the algorithm relies on 

the distance of each set of points from each group [32].  In this classification algorithm, k 

is a user-defined constant which determines the number of training samples closest to the 

query point. An unlabeled vector (a query point) is classified by assigning the label of the 

most frequent class among the group of k training samples nearest to that vector. 
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Figure 4.2 KNN classification for two groups of samples 

 

1.4 Deep Learning for the Classification 

 

Most of the previous research on capillary electrophoresis analysis was based on 

using traditional machine learning to classify data into different classes. The problem with 

those approaches is the need for aligning signals prior to starting using classification 

algorithms. In this method, the alignment process was disregarded by training a deep model 

that is not sensitive to the timing of electropherograms.  

This model, first, was developed on a different dataset. The electropherograms of 

this dataset are acquired by running the eye chamber fluid. First, Pancreatic islets of 

diabetic subjects were implanted in the eye chamber of mice.  Next, the fluid inside the eye 

chamber was extracted and was derivatized similar to parkinsonian subjects.  

The samples belong to two groups. The first group describes the mice that rejected 

the islets, and the other group belongs to mice that tolerated the implants. A sample of the 
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data for each group is shown in Figure 4.3. Ceballos et al. performed the classification 

based on a machine learning approach [33]. The goal of developing this new deep learning 

model is to be able to classify electropherograms correctly without the need for alignment.  

To develop this new model, a convolution neural network (CNN) is connected to 

the recurrent neural network (RNN), providing features for long short-term memory 

networks (LSTM) [34], [35]. Since this network is not stable during different runtimes, 

five similar architectures of the CNN-LSTM network are aggregated. Finally, a fully 

connected network is used to convert the outputs of these five networks into two classes. 

The neural network is depicted in Figure 4.4. 

 

 

Figure 4.3 The electropherograms of rejected (orange) and tolerant (blue) group 
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Figure 4.4 Schematic of the deep learning model 

 

Wavelet transform is also used to transfer the input signal to a shorter length in 

order to be fed to the network. The coefficients of the 5th level of ‘Symlet4’ are used for 

wavelet transformation.  

 For making the DL model insensitive to the timing of the input signal, data 

augmentation was used. In this method, several electropherogram signals are generated by 

shifting the signal to the right and left. Using those newly generated signals to train the DL 

model means there is no need to align the electropherograms before feeding them to the 

model. The accuracy that was achieved for the original samples from the eye chamber 

fluids by using this new dl model was 91%.   

 

2. Results 

 

2.1 Using the Integrated Peaks 

 

A total of 30 peaks were selected based on the observation of all electropherograms 

and the height and the area under the curve of each peak were calculated. Firstly, All the 

extracted features are used in the classification problem. Furthermore, to improve the result 
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of machine learning algorithms, based on the mean and the standard deviation of the height 

and the area under each peak, 19 peaks were handpicked and were used as features for 

training the ML algorithm. The features are selected based on the statistical hypothesis test 

(t-test). 

The calculation of height and area under each peak results in the first set of features. 

Therefore, a total number of 49 features are exploited to be used in the machine learning 

algorithms. The highest accuracy that was reached using all integrated peaks was 68%. 

This was achieved by using SVM algorithms as the classifier with linear kernel. To 

improve the results, a feature reduction algorithm, principal components analysis (PCA), 

is performed on the features, resulting in an accuracy of 72 percent with the same ML 

algorithms. Furthermore, based on the p-value of features in each group, 19 peaks were 

selected. This new approach helped to reach the accuracy of 91 percent.  For classification, 

the three methods described earlier are used. As it is shown, the best result belongs to SVM. 

In each time, the model was trained based on 11-fold cross-validation 100 times. The 

confusion matrix, accuracy, sensitivity, and specificity for SVM, Random Forest, and KNN 

are reported respectively.   

The c value in SVM is 3, and among the kernels, the linear kernel offered the most 

promising results. The confusion matrix is shown in Table 4.1. 

 

Table 4.1 Confusion matrix of SVM on selected peaks 

 
PD NC 

PD (predicted) 465 85 

NC (predicted) 13 537 
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Accuracy: 
𝑇𝑃+𝑇𝑁

TP+FP+TN+FN
=  0.918       4.3 

Sensitivity: 
𝑇𝑃

TP+FN
=  0.97      4.4 

Specificity: 
𝑇𝑁

FP+TN
=  0.86        4.5 

 

For the random forest, the number of estimators is 100 and entropy was used for the 

criterion, and the confusion matrix is described in Table 4.2 and the result for KNN 

classification is depicted in Table 4.3.  

 

 

Table 4.2 Confusion matrix of RF on selected peaks 

 
PD NC 

PD (predicted) 369 181 

NC (predicted) 121 429 

Accuracy: 0.73  

Sensitivity:  0.75 

Specificity: 0.70 

 

 

 

Table 4.3 Confusion matrix of KNN on selected peaks 

 
PD NC 

PD (predicted) 300 250 

NC (predicted) 102 448 

Accuracy:  0.68  

Sensitivity:  0.74 

Specificity:  0.64 
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2.2 Using the Whole Electropherogram 

 

It was realized that due to differences in the speed of reaction between the samples 

and FITC, the amplitudes of the peaks can vary across different samples. To tackle this 

problem, a new set of samples are derivatized. However, this time the samples were 

allowed to sit for 5 days in darkness. The samples went through the same sample treatment, 

dilution procedure, and the same running protocol.  

Before starting the analysis for the newly acquired dataset, the same moving 

average algorithm to suppress the noise is used. Once the filtering with moving average 

filter is performed, the baseline correction needs to be carried out. Therefore, after the noise 

reduction, the valleys of the signal are detected, and they are used to draw a curve based 

on the cubic interpolation of these points. Next, the fitting curve is subtracted from the 

signal resulting in baseline correction. Due to changes in experimental uncontrolled 

conditions such as temperature, or current variation within different samples run-times, the 

peaks migration time could vary, and these time shifts lead to differences in the occurrence 

of corresponding peaks across samples. Therefore, it is crucial to perform a signal 

alignment algorithm for further analysis. Dynamic time warping (DTW) is used to align 

the signals. DTW is a well-known approach that widely has been used to deal with different 

retention times in CE analysis [36]. The DTW algorithm performs the alignment by 

calculating the distance between a pair of points in two given time series. To perform DTW, 

one sample is needed to be the reference for the alignment of the rest of the signals. Once 

the signal alignment is performed (Figure 4.5), due to the high resolution of CE and since 

the whole electropherogram is utilized for the classification, I investigated the effect of 
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reducing the dimension of data on the performance of the models. Principle component 

analysis (PCA) is used to extract the most relevant features of the signals in the dataset 

[37]. Finally, the random forest algorithm and SVM are used to classify the outcome of 

PCA and the preprocessed signals without dimension reduction into two groups of PD and 

NC. 

Due to the small number of samples, the k-fold cross-validation procedure is used 

to reach the most generalized result. The value for k is 11, and therefore in each 

observation, 10% of the samples belong to the validation set. To apply the DTW method 

on the dataset for alignment, one electropherogram is randomly selected as the reference. 

For the PCA, I assigned a variance coefficient of 99% and it is applied on noise reduced, 

baseline corrected, and aligned electropherograms. Once the PCA is carried out, the dataset 

is transferred to 19 principal components. As can be seen (Figure 4.6), there are 

considerable differences in the PD and NC groups. This illustration is based on only the 

first three important principal components of the dataset. 
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Figure 4.5 a) The samples after noise reduction and baseline correction b) DTW is used to align the 

electropherograms; PD (red) and NC (blue) 
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Figure 4.6 Sample of PCA implementation on the dataset based on a random reference for alignment; PD (Red) and 

NC (green) 

 

The performance of the classification algorithms is evaluated using a loop within 

the signals. Due to the selection of different references for the DTW method, a loop is 

implemented, and therefore, I can sweep across the dataset and choose each of the 

electropherograms as a reference for one time. To consider all features, I studied the 

performance of different ML classifiers. Firstly, the classification is carried out based on 

the Random Forest (RF) algorithm. To train the RF model, I used 500 decision trees. 

Moreover, I deployed the Support Vector Machine (SVM) model on the dataset. For the 

SVM model, I used a linear kernel with a C of 100. Lastly, within the loop of different 

electropherogram references, the classification is performed by the RF and SVM models 

which are deployed to the preprocessed, aligned signals and the PCA version of the dataset. 
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The highest accuracy of 94 ± 5 % belongs to the RF model on noise-suppressed, baseline-

corrected aligned signals. This is the average accuracy of the classification due to different 

electropherogram references along with the standard deviation of the classification 

accuracies. The results of SVM improved on the PCA version of signals, compared to the 

outcome of the same model without dimension reduction. On the other hand, the PCA did 

not improve the accuracy of the RF model and as the result, the performance of the model 

dropped to 85 ± 7 %. Since the alignment signal is different, the length of the model input 

can vary within the loop. The average length of signals is 61034 and the average number 

of features after downsampling and alignment is 6129. The results of this analysis are 

thoroughly illustrated in Table 4.4. the values are shown based on the average of different 

performances with regard to different DTW references and the standard deviation of them. 

The accuracy for each model with different DTW references is calculated by 11-fold cross 

validation. For the implementation of the data analysis pipeline, I used Python and Scikit-

learn machine learning package. 

 

Table 4.4 Results of different models for electropherogram classification 

Algorithm Accuracy Validity 

RF 94.00 ± 5.19 % 
Sensitivity: 94.84 ± 7.20 % 

Specificity:  94.22 ± 5.73 % 

PCA-RF 85.12 ± 7.27 % 
Sensitivity: 86.24 ± 8.88 % 

Specificity:  85.14 ± 8.32 % 

SVM 91.32 ± 8.43 % 
Sensitivity: 92.35 ± 9.27 % 

Specificity:  90.89 ± 8.86 % 

PCA-SVM 93.13 ± 5.77 % 
Sensitivity: 94.93 ± 5.40 % 

Specificity:  92.05 ± 7.32 % 
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The deep learning model that was originally developed for a different dataset 

consisting of electropherograms of eye chamber fluids is used to classify the data. The 

same approach for data augmentation was used. However, the accuracy achieved was not 

satisfactory. Several steps were taken to tackle the low accuracy such as different 

augmentation methods and changing the architecture of the original model, but it did not 

improve the results.  

 

3. Conclusion and Discussion  

 

This research shows that using electropherogram signals is a reliable method to 

classify PD patients from healthy people.  The best result was achieved using the RF on 

the whole preprocessed signals for classification of the electropherograms of the PD group 

from normal control with an average accuracy of 94 percent. As it was shown, by using a 

wider number of peaks, higher accuracy can be achieved since it will help with the adequate 

number of features on the model. However, every person has a unique composition of 

different components in their blood which reflects their distinctive metabolism. Therefore, 

this would lead to having a unique electropherogram for each person. This uniqueness is 

the reason why we see the variation of the ML model accuracy with different alignments. 

There are some molecules that do not exist among all cases that can be the cause of 

electropherograms misalignment, and it has impacts on the accuracy of the machine 

learning model. Nevertheless, it has been shown that the highest average classification 

accuracy across samples is 94% which proves the hypothesis of this study about the 

potential use of CE as a new diagnostic tool in precision medicine. Moreover, this 
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classification (PD vs NC) was accomplished without identifying any of the molecules in 

the electropherogram, and therefore, the overall pattern of the electropherograms is only 

important.  

Moreover, this study indicates that even by using a few selected numbers of peaks, 

we can distinguish PD samples from the healthy group with an SVM model and reach an 

accuracy of 91%. This suggests that if we only use targeted peaks that can be identified by 

spiking, we can reach a reliable accuracy and limit the variation that is caused due to 

misalignment. It is demonstrated that the RF algorithm does a better classification when 

we have a larger number of features due to the model characteristic in building a group of 

decision trees compared to SVM which is more applicable for a fewer number of features. 

This study demonstrates the feasibility of using plasma samples as a testing method 

to diagnose PD. This would help the discovery of PD biomarkers because a chemical 

element is reflected in a peak in capillary electrophoresis and by identifying this peak in 

CE of PD patients, we can find the indicator of Parkinson's disease. This is not just for an 

early and accurate diagnosis since it can also play a role in prognosis, by administrating 

that element to the patient in order to maintain a healthy state of metabolism. 
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4. Future work 

 

For future study, an internal standard can be added to the samples while they are 

being derivatized. This can help the analysis of electropherograms in two ways. First, one 

of the problems with the current approach is that the injection system of the CZE can 

withdraw a different number of samples at different times. An internal standard such as 

fluorescence can be used to scale the electropherogram across all the samples. Since 

fluorescence does not interact with any of the molecules inside the samples, its intensity in 

the detector signal must stay the same assuming there is a similar amount of fluorescence 

in all derivatized samples. Furthermore, an internal standard (IS) can help in aligning the 

electropherograms together. It can be exploited to break down the electropherogram into 

two parts helping the alignment procedure to find better the corresponding peaks in two 

signals. 

Another important issue that needs to be considered is the fact that similar diseases 

that can have common symptoms such as essential tremor (ET) can be misdiagnosed and 

including samples from ET patients to the future work will be helpful for building a 

generalized model. 

Moreover, identifying the peaks existing in the electropherogram will be very 

helpful for both classification problems and also determining the biomarkers that are 

associated with Parkinson’s disease. Finding the biological components that affect the PD 

condition is important since changing the amount of that components to the normal level 

could potentially affect the prognosis of Parkinson’s disease.  
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Furthermore, to improve the accuracy of the capillary electrophoresis system, we 

need to provide an environment for the system to maintain the temperature inside and 

outside the capillary to avoid air bubbles. Also, it is important to build a platform where 

the laser hits the capillary so there will be no need for the alignment of the capillary with 

the laser light and the amplitude of the signals remains persistent with different times of 

running samples. 
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