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Abstract 

This study aimed to investigate the effectiveness of using the fraction of missing 

information (FMI) to select auxiliary variables in imputing missing data in confirmatory 

factor analysis (CFA). This was done by conducting two studies (a simulation study and 

an empirical study). A Monte Carlo simulation technique was used to compare the 

performance and the effect of the restrictive strategy based on FMI and the inclusive 

strategy on parameter estimate bias and parameter estimate efficiency. The missing data 

mechanisms, missing data proportion, correlation strength between the analysis variables 

and auxiliary variables, and the inclusive and restrictive strategies were assessed in the 

simulation study for their impact on three dependent variables: bias, mean squared error 

(MSE), and confidence interval coverage of parameters. In addition, the difference between 

the inclusive and restrictive strategies was examined using empirical data where missing 

data were designed with two levels of missingness (15% and 30%) and two missingness 

mechanisms to assess their impact on parameter estimate bias, gain in efficiency, and 

power. In the simulation study, factorial ANOVAs were conducted to assess the design 

factors and their interactions’ effects. The results indicated that the design factors had no 

impact on study. The two strategies showed no impact on parameter estimate bias for the 

empirical data. Yet, the restrictive strategy based on the FMI outperformed the inclusive 
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strategy in terms of gains in efficiency and power. Thus, there is an initial support of using 

the FMI to evaluate the auxiliary variables.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

iv 

 

Acknowledgments 

First and foremost, I would like to thank Allah for giving me the strength and the 

knowledge to pursue my study abroad. Without his support and mercy, this achievement 

would not have been possible. 

Actively pursuing any Ph.D. involves the entire family and advisors, and they 

were all my cheerleaders. I should begin with an acknowledgment of my parents. Thank 

you for encouraging me always to chase my dream with passion, no matter what kind of 

struggles I encounter. I am also deeply grateful to my lovely husband, Mohsen. Thank 

you for giving me relentless support and love during the completion of this journey. I 

must also acknowledge my children, Loreen and Baraa, who grew up watching their 

mother spend long hours studying and who learned first-hand the value of education and 

the need for persistence. I would like to express my indebtedness to all my siblings who 

always believed in me, even when I had my doubts.  

Special thanks go to my advisor, Dr. Duan Zhang, for reviewing endless drafts of 

this dissertation and offering invaluable suggestions to improve the quality of my 

research and writing. I also want to express my heartfelt thanks to Dr. Kathy Green, not 

only for her continuous support throughout my Ph.D. years but also for providing truly 

warm welcomes and considerable encouragement that meant a lot to me as an 

international student. I am also grateful to Dr. Jeanine Coleman for her excellent 

teaching. It was an honor to be her student. 

  



 

 

v 

 

  Table of Contents 

Chapter One: Introduction ............................................................................................................... 1 

Chapter Two: Literature Review ..................................................................................................... 6 

Missing Data Mechanism ............................................................................................................ 6 

Missing Data Treatment Techniques ........................................................................................... 7 

Auxiliary Variable Definition ...................................................................................................... 9 

The Importance of Auxiliary Variables ..................................................................................... 10 

Strategies of including auxiliary variables into an imputation model ........................................ 14 

The Fraction of Missing Information (FMI) .............................................................................. 19 

Obtaining the FMI from FIML .................................................................................................. 22 

Interpretation of the FMI ........................................................................................................... 23 

The Use of FMI in the Literature ............................................................................................... 24 

Factors Affecting FMI ............................................................................................................... 25 

Using FMI for Auxiliary Variables Selection in Missing Data Imputation ............................... 26 

Research Questions .................................................................................................................... 29 

The Study’s Significance ........................................................................................................... 30 

Chapter Three: Method .................................................................................................................. 33 

Simulation Study ........................................................................................................................ 33 

Research Design..................................................................................................................... 33 

Conditions .............................................................................................................................. 34 

Data Generation ..................................................................................................................... 36 

Generating Missing Values .................................................................................................... 36 

Evaluation Criteria ................................................................................................................. 39 

Empirical Study ......................................................................................................................... 41 

Empirical Data ....................................................................................................................... 41 

Data Manipulation ................................................................................................................. 42 

Generating MAR .................................................................................................................... 45 

Analytic Strategy ................................................................................................................... 46 

Study Outcomes ..................................................................................................................... 46 

Chapter Four: Results .................................................................................................................... 48 

The Simulation Study’s Results ................................................................................................. 48 

Selection Procedure ............................................................................................................... 48 



 

 

vi 
 

Parameter Estimate Bias ........................................................................................................ 50 

Mean Squared Error ............................................................................................................... 60 

Confidence Interval Coverage (CIC) ..................................................................................... 70 

FMI Properties ....................................................................................................................... 78 

The Empirical Study’s Results ................................................................................................... 81 

The Process of Selecting Auxiliary Variables ....................................................................... 81 

Inclusive and Restrictive Strategies ....................................................................................... 81 

Distinguishing Type A and B Auxiliary Variables ................................................................ 82 

Bias ........................................................................................................................................ 82 

Efficiency ............................................................................................................................... 86 

Chapter Five: Discussion ............................................................................................................... 90 

The Main Findings ..................................................................................................................... 90 

References .................................................................................................................................... 101 

Appendix A .................................................................................................................................. 110 

Appendix B .................................................................................................................................. 112 

Appendix C .................................................................................................................................. 114 

 

  



 

 

vii 
 

List of Tables 

Chapter Three: Method ......................................................................................................32 

Table 1 ...................................................................................................................44 

Table 2 ...................................................................................................................45 

Chapter Four: Results .................................................................................................................... 48 

Table 3 ...................................................................................................................52 
Table 4 ...................................................................................................................53 

Table 5 ...................................................................................................................54 

Table 6 ...................................................................................................................55 

Table 7 ...................................................................................................................56 

Table 8 ...................................................................................................................57 

Table 9 ...................................................................................................................58 

Table 10 .................................................................................................................59 

Table 11 .................................................................................................................62 

Table 12 .................................................................................................................63 

Table 13 .................................................................................................................64 

Table 14 .................................................................................................................65 

Table 15 .................................................................................................................66 

Table 16 .................................................................................................................67 

Table 17 .................................................................................................................68 

Table 18 .................................................................................................................69 

Table 19 .................................................................................................................71 

Table 20 .................................................................................................................72 

Table 21 .................................................................................................................75 

Table 22 .................................................................................................................77 

Table 23 .................................................................................................................79 

Table 24 .................................................................................................................80 

Table 25 .................................................................................................................84 

Table 26 .................................................................................................................73 

Table 27 .................................................................................................................75 

Table 28 .................................................................................................................75 

Table 29 .................................................................................................................79 

Table 30 .................................................................................................................80 

Table 31 .................................................................................................................83 

Table 32 .................................................................................................................84 

Table 33 .................................................................................................................85 

 

 



 

 

1 

 

Chapter One: Introduction 

It is very common that researchers in the social and behavioral sciences collect 

item-level data using questionnaires, where they face the problem of missing data in the 

analysis phase of their studies. Missing data on the items are inevitable, where responders 

may refuse to answer sensitive items or accidentally skip items. The prevalence of 

missing data encouraged methodologists to propose and improve statistical methods to 

handle the missing data in a way that will not preclude researchers from obtaining valid 

inferences. Several methods have been developed to deal with missing data that can be 

classified as traditional and modern methods (Enders, 2010), where the modern 

techniques such as full information maximum likelihood (FIML) and multiple imputation 

(MI) outperformed traditional methods like listwise deletion or mean imputation when 

data are missing at random (MAR) or missing not at random (MNAR) based on 

simulation studies’ results (Enders, 2001; Enders & Bandalos, 2001; Madley-Dowd et al., 

2019).  

In addition, the literature on missing data suggests adding auxiliary variables to 

the imputation model can increase the power and reduce the estimation bias of the model 

parameters (Collins et al. 2001; Enders, 2010). Most of the studies recommend the 

inclusive strategy of using auxiliary variables, where the researchers add all possible
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 covariates to the imputation model, as these variables will improve the estimation, 

especially if they are highly correlated with the outcome (Collins et al.,

 2001; Raykov &West, 2016; Yoo, 2009), even when these variables are incomplete 

(Eners, 2008; Wang & Deng, 2016). On the other hand, some studies found that auxiliary 

variables did not positively impact the imputation model (Hardt et al., 2012; Mustillo, 

2012). Yuan and Savalei (2012) found that auxiliary variables might increase the 

standard error (SE) with a small sample size, high missing data proportion, and non-

normal distribution of the auxiliary variables. Also, it was found that the impact of adding 

auxiliary variables to the imputation model could be harmful to the precision of the 

model estimate by increasing the SE and the fraction of missing information (FMI) when 

the auxiliary variables are incomplete (Madley-Dowd et al., 2019). 

Thus, the inclusive strategy might not be the solution to overcome missingness in some 

situations, and it can increase the bias in the model (Hardt et al., 2012). However, Collins 

et al. (2001) justified using the inclusive strategy over the restrictive strategy, which 

includes a selected subset of auxiliary variables in the imputation model, as including all 

available auxiliary variables will decrease the chance of omitting any cause of 

missingness. 

 This study examined the effect of using the FMI to evaluate the effectiveness of 

auxiliary variables, as it is assumed that the FMI may help researchers to select the 

optimal auxiliary variables and avoid the problems of convergence, difficulty in 

implementations, and omitting the auxiliary variables that may add information to the 
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model. The FMI can inform researchers about the amount of information that can be 

returned by including auxiliary variables, so researchers can use the restrictive strategy to 

select and include the auxiliary variable that reduces the FMI. 

Based on previous works that compared the inclusive and restrictive strategies, we 

can infer the recommendation of using the inclusive strategy as a way to enhance the 

plausibility of meeting the MAR assumption. This recommendation comes from the 

concern that using the restrictive strategy might lead to excluding an auxiliary variable 

that is related to the missingness, which in turn leads to non-ignorable missingness. This 

study proposes using the FMI as a tool to evaluate the candidate auxiliary variables. It 

was found that the FMI can be used as an indicator for the missing mechanism; 

specifically, if the FMI is greater than the missingness rate, a missing data mechanism 

may be nonignorable (Nishimura et al., 2016). The researcher is aware of only two 

studies that examined the use of the FMI to select auxiliary variables (Andridge et al., 

2015; Madley-Dowd et al., 2019); however, Andridge et al. (2015) applied the method 

using empirical data where the results cannot speak to the impact of using this method on 

the bias. While Madley-Dowd et al. (2019) examined the proposed method using a 

simulation design, they did not test this method with a measurement model and condition 

like the incomplete auxiliary variables that might affect the FMI performance. Thus, this 

study examined the case of having incomplete auxiliary variables, which reflects a 

condition that researchers often face. This study evaluated using the FMI as a tool to 

select the auxiliary variables and examined the performance of the FMI under different 

conditions.  
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Due to the growing application of CFA by researchers in social sciences (Guo et 

al., 2009; Jackson et al., 2009; Martens, 2005; Raykov et al., 1991), this study utilized 

this model. In a review of articles published in the Personality and Social Psychology 

Bulletin during the years 1996, 1998, and 2000, 12% of the articles used CFA. A similar 

trend has been noticed in social work research where Guo et al. (2009) found that the 

CFA is the most common type of structural equation modeling (SEM) that has been used 

in the top-ranked social work journals published from 2001 to 2007. 

Giving that quantitative research in the social sciences relies on using scales to 

measure latent constructs, it is important to examine the use of the FMI to include the 

auxiliary variables in the imputation process of the CFA model. 

By conducting this study, the researcher aims to contribute to the literature of 

missing data by extending the previous research on the identification strategies of 

effective auxiliary variables. The results of this simulation study can help guide applied 

researchers in modeling CFA with an incomplete dataset by identifying and selecting 

useful auxiliary variables among a set of candidate auxiliary variables, which in turn 

could help to enhance the plausibility of the MAR assumption.  

This study examined the effectiveness of using the FMI to select auxiliary 

variables in imputing missing data in the CFA model through a Monte Carlo simulation. 

This was done by comparing the effect of the restrictive strategy based on FMI and 

inclusive strategy on parameter estimate bias and parameter estimate efficiency. In 

addition, this study answered the research question of the influence of missing data 

mechanisms, missing data proportion, correlation strength between the analysis variables 
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and auxiliary variables, and the use of the restrictive strategy and the inclusive strategy 

on the parameter estimate bias and parameter estimate efficiency
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Chapter Two: Literature Review 

Missing Data Mechanism 

There are two terms in the missing data literature that are often used 

interchangeably, which are missing data patterns and missing data mechanisms. It is 

important to distinguish between these two terms as they have different meanings 

(Enders, 2010). While the missing data pattern represents the location of the missing data, 

the missing data mechanism refers to the relationship between the data and missingness 

and explains the reason for missingness (Enders, 2010). The focus of the literature is 

more on the missing data mechanisms as the pattern of the missing data is no longer 

important since the modern missing data methods maximum likelihood (ML) and 

multiple imputation (MI) are well suited for any pattern (Enders, 2010).   

Missing data mechanisms are the foundation for Rubin's (1976) missing data 

theory. Rubin (1976) classified missing data into three categories based on the probability 

of missing data relying on the measured variables in the data set. The process of Missing 

Completely at Random (MCAR) happens when the missingness is independent of the 

observed and the missing value in the data (Enders, 2010). This mechanism has a 

restricted assumption as it assumes the missingness is completely unrelated to the 

measured variables, which rarely happens unless the missingness is planned (Little & 

Rhemtulla, 2013). Missing at Random (MAR) exists when there is a systematic 

relationship between the probability of missing data and one or more measured variables.
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 Missing not at random (MNAR) occurs when the probability of missingness 

depends on the missing value (Enders, 2010). The difference between the

mechanisms is based on how the distribution of missingness is related to the data values. 

Missing Data Treatment Techniques 

Several methods have been developed to deal with missing data that can be 

classified as traditional and modern methods (Enders, 2010). Traditional methods include 

mean substitution, listwise deletion, pairwise deletion, and single imputation methods. 

Modern missing data methods include full information maximum likelihood (FIML) and 

multiple imputation (MI). Reviewing the practice of handling missing data in empirical 

studies showed that the listwise method is the most common technique that is used in 

psychological journals using the CFA model (Jackson et al., 2009), epidemiological 

journals using multi-item instruments (Eekhout et al., 2012), prevention research (Lang & 

Little, 2016), cluster randomized trials (Fiero et al., 2016), and in medical journals using 

randomized controlled trials (Wood et al., 2004). While it is common to use complete 

case analysis, simulation studies revealed that modern techniques such as FIML and MI 

outperformed the traditional methods when data were MAR or MNAR (Enders, 

2001; Enders & Bandalos, 2001; Madley-Dowd et al., 2019). A more detailed review of 

the modern methods is provided in the next section.  

Multiple Imputation. MI was proposed by Rubin (1978), which generates 

multiple independent imputed data sets and then conducts inferences by averaging across 

them. This process takes into account the uncertainty of parameter estimates that is 

caused by missing data (Enders, 2010). Compared to FIML and traditional methods, MI 
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is more complicated as it involves multiple steps. Appling MI is done through three 

phases: an imputation phase, an analysis phase, and a pool phase. In the first phase, 

multiple imputed datasets are generated with missing values filled in. Then, the analysis 

step is used to fit the hypothesized model to each imputed dataset. In the final step, the 

pooling step, results across imputed data sets are combined to produce the results 

(Enders, 2010). 

The Full Information Maximum Likelihood. In structural equation modeling 

(SEM), FIML is a recommended method to handle missing data. This method was known 

to produce unbiased and efficient parameter estimates under the assumption of MAR and 

normality (Enders & Bandalos,2001) 

FIML was designed to use individual likelihood functions by maximizing the sum 

of the log of “case wise” likelihood functions (Enders, 2010). This was expressed as:  

 
����� = – 

	�

2
 ��� (2 � ) – 

1

2
 ��� |∑ �| – 

1

2
 (�� –  μ �) �∑ – 1 (�� –  μ �) 

(1) 

where Ki represents the number of complete data points for case i, Yi denotes the 

data for the case, the mean vector µ i and the covariance matrix Σ i represent parameters 

unique to each case (Enders, 2010). Thus, FIML allows the dimensions of the mean 

vector and covariance matrix to be person-specific. The term direct-maximum likelihood 

is often used in the literature to describe the FIML as it is considered as a direct approach 

to handling missing data. In other words, with FIML, the missing values are not imputed, 

instead, FIML estimates the model parameters and the associated standard errors directly 

from the observed data of each individual case. 
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It is clear from the description above the difference between MI and FIML in 

handling missing data. While MI allows for different imputation and analysis models, the 

FIML, which is considered a model-based approach, handles the missing data within a 

single iterative step. This gives MI an advantage and flexibility when the researcher 

includes auxiliary variables in the imputation model. Despite these differences, both 

methods produced the same results under the condition that both had the same imputation 

and analysis models when the number of imputations was sufficiently large (Collins et 

al., 2001; Graham et al., 2007). In addition, the assumption of missingness ignorability 

was required for both methods.  

In the context of structural equation modeling, SEM, researchers had tended to 

prefer the FIML method to handle missing data (e.g., Enders, 2010; Enders & 

Bandalos,2001; Raykov, 2005; Savalei & Bentler, 2009). It seems that this preference 

was based on convenience as the FIML is available in most SEM software (e.g., Amos, 

LISREL, and Mplus) rather than a theoretical reason (Savalei & Rhemtulla, 2012). Since 

the goal of this study is to handle missing data using auxiliary variables in the CFA 

model, the FIML method will be the focus of this study as it represents a challenge in 

incorporating a large number of auxiliary variables, and as it is available in most SEM 

programs. 

Auxiliary Variable Definition 

As has been discussed, methodologists recommended using modern methods in 

handling missing data to reduce estimation bias and increase power under less restrictive 

assumptions compared with traditional approaches (Allison, 2003; Collin et al.,2001; 
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Enders, 2010). The effectiveness of these modern methods depended on meeting the 

MAR assumption, which means that all variables that are related to the missingness or 

variables with missing data should be included in the process of imputing the missing 

data (Allison, 2003; Collin et al.,2001; Enders, 2010). These kinds of variables are called 

auxiliary variables that are generally not of direct interest to researchers, but they are 

used to keep the assumptions about ignorability of the missing data plausible. 

The Importance of Auxiliary Variables 

To maximize the benefit of using modern methods, methodologists recommend 

using auxiliary variables that are related to the missing data but not of substantive interest 

for the main analysis. MI and FIML allow for including auxiliary variables in different 

ways to help meet the MAR assumption, which reduces the bias of the estimates. A 

common recommendation is to include the available auxiliary variables in the imputation 

process. Despite the recommendation, little work has been done in evaluating and 

assessing the benefits of the candidate auxiliary variables.  

In most cases, with incomplete datasets, researchers had some extra variables that 

might not be of direct interest to the research analysis, but they can provide indirect 

information about the likely values of missing data. Using this information could 

effectively recover missing data to the degree of the association between these auxiliary 

variables and missingness or incomplete variables (Collins et al., 2001; Enders, 2010). 

Collins et al., (2001) classified auxiliary variables into three categories: A type A 

auxiliary variable is correlated with the incomplete variable and missingness, type B is 

the variable that correlates with the incomplete variable but not the missingness, and type 
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C is the variable that correlates with neither the incomplete variable nor the missingness. 

They found that including type A auxiliary variables reduced bias, and both type A and B 

improved the efficiency of the estimated parameter.  

In line with Collins et al. (2001) results, Howard et al. (2015) found that including 

auxiliary variables that were related to missingness using MI reduced the bias compared 

with omitting these variables from the imputation model. 

 Enders (2008) has extended this proof with incomplete auxiliary variables, while 

in practice, it is expected that auxiliary variables themselves would have missing data. 

Using a FIML based model, Enders (2008) conducted a simulation study to examine the 

impact of using incomplete auxiliary variables under different conditions, including a 

missing data mechanism for the auxiliary variable (MCAR and MNAR), moderate and 

strong associations between the auxiliary variable and the model variables, and different 

missing data rates for the auxiliary variable (25% and 50%). The complete auxiliary 

variables outperformed the incomplete ones, and the inclusion of an auxiliary variable 

that was highly correlated with model variables improved the parameter estimation. In his 

study, the proportion and the mechanism of the missing data of the auxiliary variables 

showed little impact on the bias. However, the missing data pattern was the factor that 

most influenced bias in the regression model parameters. For instance, the proportion of 

observations missing for both the auxiliary and dependent variables was the cause of the 

most observed bias in parameter estimation; specifically, when about 15% of the cases 

were missing for both the auxiliary and dependent variables, the most extreme bias values 

were observed. Thus, Enders (2008) recommended checking missing data patterns when 
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including incomplete auxiliary variables in the imputation model. Overall, this study 

recommends including the auxiliary variable even if it has a substantial proportion of 

missing data. 

Wang and Deng (2016) drew the same conclusion after expanding Enders’s 

(2008) study by testing the impact of different missing mechanisms for both the outcome 

and the auxiliary variables under the FIML using the CFA model. They varied the 

conditions of the simulation study to include different sample size (100, 200, 500, and 

1000), missingness rates (5%, 10 %, 15 %, and 20 %), missingness mechanism 

combinations for both the outcome and the auxiliary variables (MCAR-MCAR, MCAR-

MAR, MCAR-MNAR, MAR-MCAR, MAR-MAR, and MAR-MNAR ), number of 

auxiliary variables (1, 3, and 5), and the magnitude of the association between auxiliary 

variables and the outcome (low, moderate, and high). They found that including auxiliary 

variables, even when they were incomplete, improved the parameter estimates in most 

cases. Based on the results of this study, researchers recommended including auxiliary 

variables even if they have low correlations with variables of interest in the model.  

Another simulation study that explored the role of auxiliary variables in CFA 

using MI was conducted by Yoo (2009). The sample size (200, 500), missingness rates 

(10%, 20%), missingness mechanism combinations (MCAR–MCAR, MCAR–MAR, 

MAR–MAR, MCAR– MNAR, MAR–MNAR, and MNAR–MNAR), missingness types 

(linear or convex), and the absence or presence of the auxiliary variables were used to 

examine their impacts on convergence failure, bias, standard error, and confidence 

interval coverage of parameters. In this simulation study, the researcher used highly 
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correlated auxiliary variables that ranged between 0.48 and 0.72, type A auxiliary 

variables that were associated with incomplete variables and the indicators of 

missingness, and type B auxiliary variable that were associated only with the incomplete 

variable.  

The results showed that MI performed very well under ignorable missingness 

regardless of the type of missing data, missingness combination, and strategy for 

including auxiliary variables. In addition, MI showed robust results with the nonignorable 

linear type of missingness but not with the nonignorable convex type, which resulted in 

unacceptable bias. However, using the inclusive strategy with the nonignorable convex 

type improved the estimation and solved the problem. The difference in the performance 

of the inclusive and restrictive strategies depended on the magnitude of the correlation 

between auxiliary and model variables as she found that the inclusive strategy 

outperformed the restrictive strategy using variables with correlations between 0.48 and 

0.72. Thus, Yoo (2009) recommended including the auxiliary variables in the imputation 

model; especially, when the correlation between auxiliary variables and model variables 

is relatively high (e.g., ≥ 0.48). 

Despite the effectiveness of using auxiliary variables that were established in the 

previous simulation studies, some studies questioned the usefulness of auxiliary 

variables. In a simulation study, Mustillo (2012) argued that the benefits of auxiliary 

variables appear to be minimal. She tested the impact of using different types of auxiliary 

variables, three levels of missing data (10%, 20%, and 30%), and two missingness 
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mechanisms (MCAR, MAR). She came to the conclusion that including any type of 

auxiliary variables did not appreciably impact the coefficient bias or efficiency.  

However, Mustillo (2012) acknowledged the advantage of including auxiliary 

variables in increasing the power. In other words, she mentioned that including type A 

and B variables in the MAR models reduced the SE from 0.0240 to 0.0226, which led to 

an increase in the sample size from 1988 to 2242. Thus, even when the auxiliary 

variables appear to be ineffective in improving efficiency, they can increase the power. 

Strategies of including auxiliary variables in an imputation model 

As concluded from prior research, auxiliary variables can play important roles in 

the imputation process by decreasing bias and increasing power which improves the 

efficiency of the estimation process (Enders, 2010; Rhemtulla & Hancock, 2016). 

Generally, in the imputation literature, the approaches taken to choose auxiliary variables 

can be divided into two categories: the inclusive strategy and the restrictive strategy. 

Methodologists have generally recommended the inclusive strategy, which encourages 

the generous use of all available auxiliary variables from a dataset rather than the 

restrictive strategy, that includes a selected subset of auxiliary variables (Collins et al., 

2001; Enders, 2010). The rationale for recommending the inclusive strategy is that 

including all possible covariates in the imputation model reduces the chance of omitting 

an important cause of missingness (Collins et al., 2001). In addition, Collins et al. (2001) 

pointed out that when including too many auxiliary variables, the worst results are 

neutral.  
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On the other hand, from a practical view, some researchers recommended the 

restrictive strategy as including too many auxiliary variables can introduce 

implementation difficulties with ML estimation, especially with SEM (Enders, 2010). 

Since ML handles missing data problems simultaneous with model-fitting, incorporating 

a large number of auxiliary variables can be difficult to implement using a saturated 

correlates approach (Enders, 2010). Thus, using a few auxiliary variables can be adequate 

to satisfy the MAR assumption assuming that any potential cause of missing data is 

explained by the selected auxiliary variables. 

Even though Enders (2010) mentioned the superiority of the inclusive strategy 

over the restrictive strategy, he acknowledged the difficulty of applying this method and 

the consequences of including too many auxiliary variables. Taking into account the 

benefits of using auxiliary variables, it is important to consider how best to select 

influential auxiliary variables. Enders (2010) noted that the literature review could be a 

good source to provide researchers with ideas for important auxiliary variables to include. 

Many researchers also proposed alternative methods to select auxiliary variables. There is 

no rule of thumb for selecting a particular set of auxiliary variables. However, there are 

many efforts from methodologists in proposing and testing methods for choosing a 

restrictive set of auxiliary variables. The first recommended approach is to look at the 

correlation of auxiliary variables with the research variables and select auxiliary variables 

with high correlations. There is no rule of thumb for the value of the correlation 

coefficient, but Graham (2009) recommended adding auxiliary variables that correlated 
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with research variables at r ≥ 0.50, and Collins et al. (2001) suggested using auxiliary 

variables that correlated about r ≥ 0.40 with the variables to be imputed.  

One method that can be used is comparing mean differences of the complete and 

incomplete data groups among potential auxiliary variables. If this comparison results in 

a significant difference between the two groups for a given variable, this means that this 

variable should be included as an auxiliary variable. This can be tested using independent 

t-tests after creating complete and incomplete data groups for each variable. However, 

selecting auxiliary variables based on mean differences ignores the covariance 

information, which may prevent researchers from effectively implementing the 

restrictive auxiliary variable strategy (Enders, 2010). Another criticism of this method is 

that using hypothesis testing to identify effective auxiliary variables may not be helpful 

as it will be sensitive to the sample size (Raykov & Marcoulides, 2014).  

In responding to this criticism, Raykov and Marcoulides (2014) proposed using 

latent variable modeling to obtain point and interval estimations of mean and variance 

differences on potential auxiliary variables across the groups of cases with complete data 

and with missing data on an outcome of interest. They mentioned that this approach 

could be useful to find measures on which cases with missing data on a variable of 

interest are different from those with complete data on the outcome. Applying this 

method requires a large sample size, normal data, and it should be used along with an 

appropriate method for estimating the correlations between the candidate auxiliary 

variables and the outcome in a joint effort to detect effective auxiliary variables. One 

drawback of Raykov and Marcoulides’s (2014) study is that they only describe the 
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application of the proposed method without showing the effect of using this method on 

the outcome estimation. It would be advantageous to perform additional comparisons 

between the proposed method to select auxiliary variables and an inclusive strategy that 

includes all available auxiliary variables to see the effect of the proposed method.  

Another study by Raykov and West (2016) in the area of identifying useful 

auxiliary variables proposed a method to evaluate the potential auxiliary variables by 

estimating the correlation between the outcome and the auxiliary variables and the 

correlation between the auxiliary variables and the outcome’s residual. They stated that 

effective auxiliary variables could be the covariates that show notable point estimates of 

their correlations with the incomplete outcome after accounting for its relationships with 

independent variables. Raykov and West (2016) suggested using this proposed method in 

tandem with the group difference examination approach that was described in Raykov 

and Marcoulides’s (2014) study. Both procedures can be considered complementary to 

each other in identifying effective auxiliary variables (Raykov & West, 2016). 

They demonstrated the proposed method using real data where they estimated the 

bivariate and semi-partial correlations between six auxiliary variables and the outcomes 

using latent variable modeling. Based on the results, they included four auxiliary 

variables that had acceptable bivariate and semi-partial correlations with the outcome. 

They claimed that by using this imputed model, they were able to use the whole dataset 

in a prediction model that had three significant predictors. The prediction model 

explained 74% of the outcome variance. However, stating that all the predictor variables 

in the model contributed significantly in explaining the outcome variance is not sufficient 
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to conclude that using the proposed method is beneficial without comparing the results 

with the unimputed model or a model that includes all available auxiliary variables. 

A study by Howard et al. (2015) proposed the idea of using principal components 

analysis (PCA) to reduce the number of the included auxiliary variables. Conducting a 

simulation study, the researchers compared the performance of the inclusive strategy and 

the PCA strategy under different conditions. Their study examined the impact of different 

magnitudes of correlations (six levels), eight rates of missing data ranging from 10% to 

80% in increments of 10%, missing data mechanism (linear and nonlinear MAR), and 39 

sample sizes ranging from 50 to 1,000 on parameter bias, root mean squared error, and 

confidence interval coverage. Consistent with previous studies, the results showed bias 

estimates when the missingness was linear and auxiliary variables were not included in 

the model, which resulted in MNAR by omitting variables that have a linear relationship 

with missingness. In line with Collins et al. (2001), this study found that including 

auxiliary variables when the missingness was nonlinear removed the parameter bias with 

no need to include the interaction variable. In addition, the PCA approach exhibited 

comparable performance to the inclusive strategy across a linear and nonlinear cause of 

missingness, which indicated the effectiveness of PCA in reducing the number of 

auxiliary variables without increasing bias. However, it is important to mention that PCA 

requires complete data, which means researchers need to take a further step by imputing 

incomplete auxiliary variables before using PCA. In this study, researchers imposed 10% 

MCAR on the auxiliary variables to address this problem. However, the missingness rate 

and mechanism of auxiliary variables can be more complicated in real data. Also, in 
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applying this method to empirical data, it was not clear how many principal components 

should be included in the imputation model.  

The Fraction of Missing Information (FMI) 

The concept of information, in statistics, means the amount of information 

available for inference about parameters (Rhemtulla & Hancock, 2016; Savalei & 

Rhemtulla, 2012). The inverse relationship between the information available and the 

size of the standard error of a specific parameter helps to understand the concept of 

missing information. The less information we have to estimate a parameter, the less we 

know about this parameter, which results in a larger standard error (Rhemtulla & 

Hancock, 2016; Savalei & Rhemtulla, 2012). 

This concept of missing information was introduced by Orchard and Woodbury 

(1972) where they demonstrated that the available information from an incomplete 

dataset is equal to complete information minus missing information. Thus, they 

introduced the fraction of missing information as the ratio of missing information to 

complete information. Orchard and Woodbury (1972) discussed the impact of missing 

data on sampling variability in the context of maximum likelihood, which can be 

explained as large maximum likelihood standard errors because of inflated variance from 

missing data. Therefore, the missed information can influence the efficiency of 

parameters by increasing their standard errors (Rhemtulla & Hancock, 2016; Savalei & 

Rhemtulla, 2012). 
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As the missing information principle is grounded in likelihood theory, we will 

follow Savalei and Rhemtulla’s (2012) illustration of the missing information principle in 

the context of ML. 

The likelihood of the complete data can be expressed as:  

 L (θ| X) = L1 (θ|Y) ƒ2 (Z|Y,θ)           (2) 

where X, Y, and Z represent the complete, observed, and missing data for n cases, 

respectively. From the previous equation, the likelihood of the complete data can be 

defined as the likelihood of observed data times the conditional density of the missing 

data given observed data (Savalei & Rhemtulla, 2012).  

Based on the previous equation, we can partition the derivative of the log-

likelihood as: 

 � log � (�|�)

��′
=

� log �1(�|�)

��′
+

� log ƒ2(Z|Y, �)

��′
 

(3) 

Defining the information matrix as the covariance matrix of the score vector (Rao, 

2002, as cited in Savalei & Rhemtulla, 2012 ), and based on Equation 2, the information 

about the parameters θ that would be available from complete data can be expressed as:  

 JX = cov( 
 !"# $ (%|&)

 %'
 ) (4) 

The information about the parameters θ that would be available from the observed 

data is the covariance of  

 JY = cov( 
 !"# $((%|))

 %'
 ) (5) 
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The information that would be available from missing data about θ is the 

covariance of  

 JX|Y = JZ|Y = cov (
 !"# ƒ*(+|,,%)

 %'
) (6) 

Thus, Orchard and Woodbury’s (1972) missing information principle can be 

expressed as: 

 JX = JY + JX|Y (7) 

 

If the data are complete, we can estimate the ML parameter �-ML by maximizing 

the complete data likelihood function L (θ| X) assuming a normal distribution for �-ML 

with a covariance matrix equal to the inverse of the complete data information matrix. 

 α cov (√/ θ-ML) = 1&
2( (8) 

When there are missing data, the �-FIML can be estimated by maximizing the 

incomplete data likelihood function L1 (θ|Y) with the condition that the missingness is 

either MCAR or MAR, assuming a normal distribution for �-FIML  with a covariance 

matrix equal to the inverse of the incomplete data information matrix. 

 α cov (√/ θ-FIML) = 1)
2( (9) 

Based on Orchard and Woodbury’s (1972) missing information principle, we can 

infer that  1&
2(≤ 1)

2( because the diagonal of 1)
2( are expected to be larger than 1&

2( due to 

the standard error when there is missing data. The influence of missing data can be seen 

in the greater variability of �-FIML comparing with �-ML (Savalei & Rhemtulla, 2012). 
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Since the diagonal of 1&
2( and 1)

2( indicates the parameter estimates’ variances of the 

complete and incomplete data, respectively, the fraction of missing information for a 

given parameter θj can be stated as:  

 
λ j = 1- 

{45
67}99

{4:
67}99

 = 1- 
;<9,=

>

;<9,?
>  

(10) 

Where @AB,C
* is the standard error of �-ML based on complete data, and @AB,D

*  is the 

standard error of the FIML estimate �-FIML based on incomplete data. From this equation, 

we can infer that the FMI quantifies the amount of a parameter’s information that is lost 

due to missingness. 

Obtaining the FMI from FIML 

The traditional way to estimate the FMI requires using MI. However, with the 

preference of using the FIML method among SEM researchers, Savalei and Rhemtulla 

(2012) demonstrate how to obtain an estimate of the FMI from FIML. They noted that the 

FMI estimate from FIML is superior to the obtained estimate from MI when the number 

of imputations is small. They described four steps that can be applied in many SEM 

software packages (e.g., Mplus, R, and EQS) to estimate the FMI for each parameter. It 

requires running the SEM program twice; first fitting the model using FIML to the 

original incomplete data to obtain the standard error for each parameter of interest. Then, 

running the same model using FIML to the model-implied means and covariance matrix 

and vector of means obtained from the previous step as input into the complete data ML 

routine. In the next step, the FMI for each parameter can be estimated as one minus the 

ratio of the corresponding squared standard errors from each output.  
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Interpretation of the FMI  

Savalei and Rhemtulla (2012) suggested many approaches to interpret the FMI as 

it relates to different statistical concepts. One approach is to relate it to the relative 

efficiency, which measures the amount of information loss due to missingness and relates 

negatively to the FMI. In other words, relative efficiency can be computed as the ratio of 

the sampling variances of the complete data estimates to the incomplete data estimates 

(Rhemtulla et al., 2014), which can be expressed as: 

 @AB,C
*

@AB,D
*  

(11) 

Recalling the equation for estimating the FMI  

 
λ j= 1- 

{45
67}99
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 = 1- 
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>
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>  

(12) 

We can see how FMI and relative efficiency are related as the FMI is one minus 

the relative efficiency. Thus, the FMI can be interpreted as the loss of efficiency in the 

estimation of a particular parameter (Savalei & Rhemtulla, 2012).  

Additionally, the FMI could be interpreted as the loss of statistical power caused 

by missing data (Savalei & Rhemtulla, 2012). The effective sample size that would have 

achieved the same efficiency for a parameter with complete data can be defined as: 

 EB
∗= N (1- λ j) (13) 

The more information available to estimate a parameter, the smaller its standard 

error, and thus the greater the statistical power of a significance test on that parameter 

(Rhemtulla & Hancock, 2016). The lower the FMI, the less information lost, and the 

higher the quality of estimation (Enders, 2010; Savalei & Rhemtulla, 2012). 
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The Use of FMI in the Literature 

The fraction of missing data has been used for different reasons; it was used as a 

tool for evaluating survey quality during data collection to assess the risk of non-

response, so actions can be taken based on the FMI estimate (Wagner, 2010; Wagner, 

2012). For instance, based on a pre-specified FMI, researchers monitored the change that 

happened over time for the FMI. When the FMI estimate was high, researchers could 

intervene to obtain additional respondents (Wagner, 2010). Another study was conducted 

by Andridge and Little (2011) used the FMI to evaluate the risk of non-response once the 

data collection was completed.  

In addition, the FMI was widely used in MI to determine the number of 

imputations to achieve reasonable relative efficiency (Bodner 2008; Harel, 2007; Rubin, 

1987; Von Hippel, 2020). It was suggested by Rubin (1987) that the number of 

imputations (2-10) is sufficient in most cases when researchers use MI. However, Bodner 

(2008) questioned this guideline and emphasized that researchers should consider the 

FMI to determine the needed number of the imputations. With a higher FMI, more 

imputations were necessary for stable estimations of the p values, confidence interval 

half-widths, and estimated FMI (Bodner, 2008).  

In general, it is recommended that researchers and practitioners report the FMI 

when they deal with missingness as an index of the estimation accuracy and a diagnostic 

tool for the impact of missingness (Enders, 2010; Lang & Little, 2016; Rhemtulla & 

Hancock, 2016; Savalei & Rhemtulla, 2012). 
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Factors Affecting FMI 

Before we discuss the factors that affect the FMI, we should distinguish between 

the FMI and the proportion of missing data. The proportion of missing data does not 

reflect the influence of missingness on the accuracy of parameter estimates. However, the 

amount of missing information can be an informative diagnostic tool that communicates 

how much the estimation of a parameter was affected by missingness (Enders, 2010; 

Orchard & Woodbury, 1972; Rhemtulla & Hancock, 2016; Savalei & Rhemtulla, 2012). 

On the other hand, the amount and pattern of missingness can affect the information 

available to estimate parameters; specifically, the missing information is influenced by 

which variables are missing (Rhemtulla & Hancock, 2016). The rates of univariate and 

pairwise missingness can lead to a higher FMI and standard error (Madley-Dowd et al., 

2019). The missingness mechanism can influence the FMI as the FMI will be bounded by 

the largest rates of missingness when the mechanism is MCAR, while it can be higher 

than the missingness rate when the mechanism is MAR (Savalei & Rhemtulla, 2012). 

The intercorrelation among the variables in the model is another factor that can affect the 

FMI (Andridge & Thompson, 2015). If we have highly correlated variables, the 

missingness in one of them will not affect the missing information in the data when 

including the other variables. Since the FMI depends on the specific set of variables used 

in the model, including extra variables that are highly correlated with the missingness can 

improve estimation and result in a lower FMI (Enders, 2010). Thus, it is recommended to 

add auxiliary variables that correlate highly with the imputed variable. Additionally, if we 

have multiple auxiliary variables, the correlation among them could affect the FMI. For 
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example, adding two auxiliary variables that are highly collinear into an imputation 

model might not decrease the FMI even if they are highly correlated with the imputed 

variable (Andridge & Thompson, 2015). 

Using FMI for Auxiliary Variable Selection in Missing Data Imputation 

As mentioned above, most of the research suggests using the inclusive strategy for 

including auxiliary variables in the imputation models. However, it is not feasible to 

include all variables in practice as they may introduce problematic situations such as 

multicollinearity (Mustillo, 2012), or implementation difficulty, especially with FIML, 

which requires incorporating the auxiliary variables with the saturated correlate model 

(Enders, 2010). In other words, including a large number of auxiliary variables in the MI 

analysis is easier because the auxiliary variables will play a role only in the imputation 

phase, and there will be no need to include them in the analysis phase. Thus, MI can handle 

a larger number of auxiliary variables than a maximum likelihood analysis (Enders, 2010). 

Additionally, in some cases, including all the available covariates may lead to an increase 

in computation time or in failure to converge (White et al., 2011), especially with a small 

sample size or longitudinal design when the number of covariates approaches the number 

of cases (Hardt et al., 2012). Therefore, Enders (2010) suggested limiting the number of 

included auxiliary variables to use the most useful variables correlated with incomplete 

analysis variables. This indicates the importance of selecting informative auxiliary 

variables to help recover the missed information. It is assumed that the FMI can be a useful 

tool to select the most informative auxiliary variables that can decrease the fraction of 

missing information by recovering the lost information.     
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In a study investigating the FMI use to select potential auxiliary variables, Andridge 

et al. (2015) proposed using proxy pattern‐mixture (PPM) to obtain a maximum likelihood 

estimate of the FMI. Then, they selected the auxiliary variables based on the FMI. The goal 

of using the PPM to estimate the FMI is that PPM helped to avoid the instability of 

imputation-based estimates and helped estimate the FMI under both MAR and MNAR 

assumptions. The use of PPM reduced a set of auxiliary variables to a single “proxy” 

variable which then was used for imputation under either a bivariate normal model or a 

bivariate gamma model.  

The variable selection procedure to select the best auxiliary variables can be done 

using the forward selection procedure (Andridge & Thompson, 2015). They used a forward 

selection procedure to include and evaluate auxiliary variables, where the FMI was 

estimated for each auxiliary variable one at a time. The variable that produced the smallest 

FMI was then selected into the imputation model. The other auxiliary variables were 

entered one at a time, and the variable producing the largest decrease in FMI was selected. 

In other words, they added auxiliary variables to the imputation model, and they monitored 

how this changed the FMI. When the extra variables did not improve the imputation model, 

they removed them. This procedure continued until changes in the FMI were not large 

enough to be worth adding additional auxiliary variables. 

They administrated the use of the proposed method in empirical data. They found 

that adding auxiliary variables to the imputation model decreases the FMI in most cases, 

except for variables with low associations with the outcome and strong associations with 
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missingness. They utilized a real data set, so they did not address the performance of 

auxiliary variables on the estimate’s accuracy.  

In a recent study, Madley-Dowd et al. (2019) compared the use of MI and complete 

case analysis (CCA). They examined the utility of the FMI as a guide to select the most 

beneficial auxiliary variables. They generated a normally distributed dataset that consisted 

of an outcome, Y, an independent variable, X, and 11 auxiliary variables, Z, with different 

magnitudes of association between Y and Z. All the variables were only correlated with 

the outcome, and the outcome was the only variable with missingness. Missingness 

proportions were manipulated at different levels (0%, 5%, 10%, 20%, 40%, 60%, 80%, 

and 90%). 

The simulation study results showed an association between the increase of the 

empirical SE and the FMI of any given proportion of missing data, especially at high 

missingness proportions. Adding auxiliary variables to the model resulted in a decrease in 

the FMI value and SE. This indicated the gain in efficiency by including auxiliary variables 

in the imputation model. In addition, it was noticed that at different proportions of missing 

data but similar FMI values, the SEs were approximately the same, which demonstrated 

that the FMI is a good measure of the estimate’s precision.  

Moreover, they used empirical data to demonstrate the comparison between MI and 

CCA and the application of FMI. The results showed that using MI reduced bias and 

improved efficiency, and including auxiliary variables improved the estimation regardless 

of the proportion of missing data. However, the empirical example results indicated that 

the impact of adding additional auxiliary variables to the imputation model was not 
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consistent. For example, introducing an auxiliary variable to the imputation model that did 

not reduce the FMI can negatively affect the precision of model estimates. This was noticed 

with the incomplete auxiliary variable. The researchers suggested including auxiliary 

variables based on the FMI to ensure that these variables are adding information to the 

model.  

However, a closer look at the study design reveals that the simulation design’s 

conditions did not reflect real empirical data where auxiliary variables are expected to 

correlate to each other and be incomplete too.  

The researcher is aware of only the previous two studies that examined FMI use to 

select auxiliary variables (Andridge et al., 2015; Madley-Dowd et al., 2019). However, 

each one suffers from certain weaknesses. Thus, this study extended previous studies by 

examining FMI use in selecting incomplete auxiliary variables as well as comparing the 

effect of the restrictive strategy based on the FMI and inclusive strategy on the parameter 

estimate using FIML methods in the CFA context.  

Research Questions 

Two research questions were addressed in this study. 

1. Is including a smaller set of auxiliary variables based on FMI (restrictive 

strategy) as beneficial as including all possible auxiliary variables (inclusive 

strategy) for the parameter estimate bias and parameter estimate efficiency 

in CFA? 

2. How are the parameter estimate bias and parameter estimate efficiency 

influenced by the missing data mechanism, missing data proportion, 
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correlation strength between the analysis variables and auxiliary variables, 

and the used strategy of including auxiliary variables (restrictive and 

inclusive)? 

The Study’s Significance 

Based on previous work, we can classify the approaches taken to choose auxiliary 

variables into two categories: the inclusive strategy and the restrictive strategy. Previous 

simulation studies that compared the inclusive and restrictive strategies’ effectiveness 

recommended using the inclusive strategy to enhance the plausibility of meeting the MAR 

assumption (Collins et al., 2001; Yoo, 2009). Practically, using a few auxiliary variables 

can adequately satisfy the MAR assumption, assuming that the selected auxiliary variables 

explain any potential cause of missing data. 

 This study proposes using the FMI to evaluate the candidate auxiliary variables to 

include the most effective auxiliary variables in the imputation model as the FMI can help 

identify a covariate that recovers some of the missed information. Researchers found that 

the missing data mechanism was nonignorable when the FMI was greater than the 

missingness rate (Nishimura et al., 2016). Therefore, the FMI can be used to indicate the 

missing data mechanism.  

It is assumed that using the restrictive strategy based on the FMI would help 

overcome methodologists’ concerns about omitting an auxiliary variable related to 

missingness (Collins et al., 2001; Yoo, 2009). The researcher is aware of only two studies 

that examined the FMI use to select auxiliary variables (Andridge et al., 2015; Madley-

Dowd et al., 2019). However, Andridge et al. (2015) applied the method using empirical 
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data where the results cannot speak to the impact of using this method on bias estimation. 

While Madley-Dowd et al. (2019) examined the proposed method using a simulation 

design, the simulation design’s conditions did not reflect real empirical data where 

variables are expected to correlate to each other and be incomplete. Thus, this study aims 

to expand previous works in different ways.  

First, the aforementioned studies used auxiliary variables that were completely 

observed. However, researchers should expect to deal with incomplete auxiliary variables 

in practice. Therefore, this study simulated the uninvestigated situations where all auxiliary 

variables are incomplete.  

Second, lacking in the previously mentioned studies is generalization to other 

models such as CFA, as both studies used regression analysis. Therefore, this study applied 

FMI to select auxiliary variables for the imputation in a basic two-factor measurement 

model using FIML as an imputation method.  

Third, even though Andridge et al. (2015) and Madley-Dowd et al. (2019) 

examined FMI use to select auxiliary variables, they did not compare the performance of 

the inclusive strategy and the restrictive strategy that select covariates based on the FMI. 

Based on empirical data, Andridge et al. (2015) used the PPM to reduce a set of auxiliary 

variables to a single “proxy” variable used for the imputation.  

On the other hand, Madley-Dowd et al. (2019) designed a simulation study focused 

on comparing the CCA and the MI. They applied FMI use in choosing the auxiliary 

variables. Thus, this study compared the inclusive strategy that includes all the auxiliary 

variables into the imputation model and the restrictive strategy that selects auxiliary 
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variables that reduce the FMI. In addition, Madley-Dowd et al.’s (2019) simulation study 

only manipulated the correlation between auxiliary variables and the outcome. Still, they 

set the correlation among auxiliary variables to be zero. This study reflected the real 

situations where auxiliary variables are expected to be correlated.  

This study aimed to contribute to the literature by extending the previous research 

on selecting informative auxiliary variables. Since this study employs CFA, which is 

considered a sub-model of SEM, its results can help applied researchers who use this model 

in their analyses. As quantitative research usually employs instruments to collect data, 

researchers are supposed to present evidence for the instrument’s psychometric properties. 

Validity and reliability are the core psychometric properties that should be examined and 

reported for any measure in the study. Construct validity, in particular, is used to establish 

evidence about the degree to which the instrument measures what it is designed to measure 

by examining the measure’s structure and the relationship between the factors and the 

indicators. The CFA model is one of the methods used to examine construct validity. Thus, 

it is not surprising to find common use of this model in the field of social science (Guo et 

al., 2009; Jackson et al., 2009; Martens, 2005; Raykov et al., 1991), as it plays an important 

role in developing and establishing validity evidence of the developed instruments. As a 

sub-model of SEM, CFA can be used even in more complex models and serve as the 

measurement model in the structural model. Given this model’s importance and common 

use, this study can help researchers deal with the inevitable problem of having missingness 

on items. Particularly, it is hoped that this study can provide researchers with a more 

effective strategy to identify and select auxiliary variables to include in the imputation mod.
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Chapter Three: Method 

The FMI use to select the auxiliary variables was assessed using a Monte Carlo 

simulation study and an existing empirical dataset. 

Simulation Study  

Research Design 

Following Yoo (2009), the analysis model reflected two correlated factors and six 

indicators. Specifically, three indicators were used per latent variable, with each indicator 

loading on only one factor. This model is similar to the population model used by Enders 

(2008), Enders and Peugh (2004), Wang and Deng (2016), and Savalei and Bentler (2009). 

The correlation between the two latent variables was 0.40, and the factor variance was 

fixed at 1 (Enders & Peugh, 2004; Yoo, 2009). The factor loadings were 0.70, and the error 

variances were 0.51 as defined by 1 minus the squared factor loadings (Enders, 2008). 

Factor loadings (≤ .7) are commonly seen in studies measuring concrete constructs such as 

cognitive abilities, reasoning abilities, or attitudes (McNeish et al., 2017). The current 

study’s sample size was fixed at 500, as it is common to see this sample size in SEM 

simulation studies (e.g., Enders, 2008; Wang & Deng, 2016; Yoo, 2009; Yuan & Savalei, 

2014). 
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This analysis model was chosen as it shares features with many models in the 

existing CFA simulation literature, and its two-factor, six-indicator model overlaps 

partially or completely with models appearing in many notable CFA simulation studies 

(e.g., Enders, 2008; Enders & Peugh, 2004; Savalei & Bentler, 2009; Yoo, 2009).

Besides, a CFA model is generally considered the fundamental step in a more 

complex structural equation model (Kline, 2016). 

The number of the generated auxiliary variables in this study were ten auxiliary 

variables with a mean of 0 and a standard deviation of 1. The correlation among auxiliary 

variables was set at 0.4. Following Collins et al. (2001) and Yoo (2009), type A and type 

B auxiliary variables were generated. While type A auxiliary variables are variables that 

associate with incomplete variables and missingness indicators, type B auxiliary variables 

are variables that associate only with the incomplete variables (Collins et al., 2001).  

Conditions  

The design factors chosen for this study are the ones that have been identified as 

important in affecting the FMI’s performance. The levels of each condition were selected 

to reflect realistic situations. 

Correlation Strength. As has been stated in previous studies, the magnitude of the 

association between the auxiliary variables and analysis variables can influence the 

imputation process (Collins et al., 2001; Enders, 2008; Enders, 2010; Enders & Peugh, 

2004; Yoo, 2009) and the FMI performance (Andridge & Thompson, 2015; Savalei & 

Rhemtulla, 2012). Methodologists recommended using auxiliary variables that correlate 
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about r ≥ 0.40 with the variables to be imputed (Collins et al., 2001; Enders, 2010; Yoo, 

2009). However, since simulation studies should be designed to imitate real data studies 

(Burton et al., 2006), the manipulated levels of the correlations between the auxiliary 

variables and the analysis variables were determined based on two steps.  

First, the researcher generated two independent datasets; one of these datasets had 

ten variables that can be considered auxiliary variables while the other represented a 

measurement model of two latent factors and six observed items. The correlations among 

auxiliary variables were manipulated at different levels (0.3, 0.4, 05, and 0.8) to observe 

any pattern of correlations between auxiliary variables and factor indicators. The result of 

estimating correlation matrices of 250 datasets is that the two datasets were correlated at a 

very low level that never exceeded 0.177, regardless of the magnitude of the correlation 

among auxiliary variables.  

In the second step, multiple publicly accessible large-scale datasets were consulted 

to examine the actual and expected relationship between scale items and covariates. Based 

on these datasets, most auxiliary variables correlated with the items at a low level, few 

covariates correlated moderately with some items (0.4-0.54), and the correlations among 

auxiliary variables varied between 0.2-0.5. 

Based on the previous exploratory steps, the correlations between the auxiliary 

variables and the analysis variables were manipulated at two levels: low (0.3) and moderate 

(0.6), which the researcher judged to be realistic. 

Missing Data Proportion. This study investigated two levels of missing data (15% 

and 30%) (Savalei & Bentler, 2009; Yoo, 2009). The same missing portion was imposed 
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on each simulation study’s indicators and auxiliary variables. The motivation for imposing 

missingness on the auxiliary variables is based on the idea that real data will have 

incomplete auxiliary variables (Enders, 2008; Hardt et al., 2012; Yoo, 2009) as well as the 

results of Madley-Dowd et al.’s (2019) study that showed an increase in the FMI with 

adding an auxiliary variable that had 38% missingness.  

Missing Data Mechanisms. The MCAR and MAR were used in this study. The 

choice to examine these two missing data mechanisms is influenced by Savalei and 

Rhemtulla (2012), as they indicate that the FMI can be affected by missing mechanisms. 

Since the FIML assumes that data are MCAR or MAR, the MNAR mechanism was not 

examined in this study.  

Data Generation  

The Mplus program 8.6 (Muthén & Muthén, 2017) was used to generate the data, 

which consisted of 32 conditions with 100 replications for each condition. Then, the R 

program (R Core Team, 2021) was utilized to run the CFA model using the Lavaan 

package (Rosseel, 2012). Finally, SPSS (IBM Corp., 2021) was used to analyze the 

results of the 32 conditions. The following sections describe the analysis steps taken in 

this study in more detail.  

Generating Missing Values  

Mplus was used to facilitate missing data generation for both missing data 

mechanisms (MCAR and MAR). The missing values were created for both the items and 

auxiliary variables. To create MCAR, Mplus allows users to specify the proportion of data 
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missing for each variable in the model using the PATMISS option. For the MAR 

mechanism, logistic regression models were used to generate incomplete data on the items 

and the auxiliary variables based on values of the first auxiliary variable (X1). Thus, X1 

was considered the type A auxiliary variable, and the rest of the auxiliary variables 

represented type B auxiliary variables.  

Once the full dataset was generated, R was used to apply the CFA model using both 

strategies of including auxiliary variables (inclusive and restrictive based on FMI). To run 

the CFA model using the auxiliary variables. The Lavaan package was used. Lavaan allows 

the saturated correlates model to incorporate auxiliary variables into the FIML estimation 

routine (Graham, 2003). This model was implemented according to the following rules: (a) 

auxiliary variables must be correlated with the exogenous manifest variables, (b) auxiliary 

variables must be correlated with residuals of all predicted manifest variables, and (c) 

auxiliary variables must be correlated with one another. However, since this study utilized 

the CFA model with two latent factors, the first rule does not apply to this analysis (see 

Figure 1).   
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Figure 1 

The Saturated Correlates Model  

 

The variable selection procedure to select the best auxiliary variables was done 

using the forward selection procedure (Andridge & Thompson, 2015). In the beginning, 

the FMI was estimated for each parameter by fitting the CFA model without adding any 

auxiliary variable (FMIno AV). This model served as the baseline model to which subsequent 

models could be compared. Then, the FMI was estimated using each auxiliary variable one 

at a time (FMIAVi). Then, the variable that produces the smallest FMI was selected to be 

entered into the imputation model. All the auxiliary variables were entered one at a time, 

and the procedure continued until no further decrease was observed in the FMI (Figure 2). 

Then, each simulation’s results (i.e., parameter estimates and standard errors) were saved 

into an Excel sheet to be analyzed. Considering that two strategies included auxiliary 
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variables (inclusive and restrictive based on the FMI), 64 Excel files were imported into 

SPSS for descriptive and inferential analyses.  

Figure 2 

The Forward Selection Procedure 

 

Evaluation Criteria 

Parameter Bias. The current study’s main outcome of interest was parameter bias. 

The average parameter estimate from each simulation condition is compared to the true 

population parameter resulting in an estimate of raw bias. To make this result more 

comparable with previous research, raw bias was reported as a percentage relative to the 

true parameter value (Collins et al., 2001; Enders & Bandalos, 2001; Yoo, 2009), which 

can be expressed as: 
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 % Bias= 
G HIJ 2 GK 

GK
 * 100 (14) 

Where the numerator represents the raw bias, which is the difference between the average 

parameter estimate across replications within a design cell (θest) and the population value 

(θ0). According to Muthen et al. (1987), bias smaller than 10% to 15% is considered 

acceptable in most SEM contexts. 

Mean Squared Error (MSE). MSE represents the average squared difference 

between a parameter estimate and the true population value. It can be decomposed into 

the sum of the squared bias and the variance of the estimate. Thus, when a parameter 

estimate is unbiased, MSE quantifies the sampling variance, or efficiency of an estimate. 

For a biased outcome, the measure serves to quantify the overall accuracy of an estimate, 

combining bias and sampling variance.  

Confidence Interval Coverage (CIC). CIC can be computed as the percentage of 

replications in a design cell that leads to 95% confidence intervals containing the 

population value. Following Collins et al. (2001), a coverage value below 90% is 

considered problematic, indicating an inflated Type I error rate. Optimally, a parameter 

estimate is expected to be covered 95% of the time, which is 95 times out of the 100 

replications in this study. Therefore, the confidence intervals of each parameter were 

obtained with each replication’s results, and frequency analyses were applied to track the 

number of replications in which the true value is included in the 95% confidence interval 

for each parameter. 

In summary, a Monte Carlo simulation was run to compare the inclusive strategy 

and the restrictive strategy based on FMI. Specifically, there were 32 combinations 
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(2x2x2x2x2): two missing data mechanisms (MCAR, MAR) for the items and the auxiliary 

variables, two missing proportions (15%, 30%) for the items and the auxiliary variables, 

two levels of the magnitude of the associations between the auxiliary variable and the 

model variables (low and moderate). For each cell, there were 100 replications. These 

factors’ impacts were examined in terms of bias, MSE, and confidence interval coverage 

of parameters. Analysis of variance (ANOVA) was conducted to determine the design 

factors’ impact on the dependent variables. 

Empirical Study 

In addition to the simulation work, the FMI use to select the auxiliary variables was 

investigated in an empirical data example to demonstrate their actual data performances.  

Empirical Data 

The dataset was based on a sample of the Midlife in the United States study (MIDUS) wave 

three collected in 2013. The data include 3,291 participants and hundreds of variables such 

as questions about cognitive functioning, economic recession experiences, optimism, 

coping, stressful life events, caregiving, and variables about demographic information. The 

data are publicly available from the Inter-university Consortium for Political and Social 

Research at https://www.icpsr.umich.edu/web/ICPSR/studies/36346 

 and https://www.icpsr.umich.edu/web/ICPSR/studies/37095. 

The Brief Test of Adult Cognition by Telephone (BTACT), administered in 

MIDUS wave three, was used for the CFA model in this study.  

The Brief Test of Adult Cognition by Telephone (BTACT). This battery consists 

of seven tests. The first latent construct, Executive Function, is measured by five tasks: 
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Stop and Go Switch Task (SGST), 30 Seconds and Counting Task (30-SACT), Number 

Series, Category Verbal Fluency, and Backward Digit Span. The second latent construct, 

Episodic Memory, is measured by two tasks: word list recall immediate and word list recall 

delayed. The measurement model’s cognitive function framework was adapted from 

Lachman et al. (2014), where the seven tasks were the indicators in the measurement 

model. This battery has been used to measure cognitive function in many studies (e.g., 

Bhattacharyya et al., 2020; Charles et al., 2020; Hartanto et al., 2020) and to measure 

Executive Function (Roiland et al., 2015; Lin et al., 2014). 

Data Manipulation 

Given that the missingness rate in the MIDUS dataset was very low (less than 5%), 

the missing data were removed, and the complete data (N=2673) was used as the population 

data. Then, different missingness rates were imposed on the scale items (15%-30%), and 

two missing mechanisms (MCAR & MAR) were generated using the missMethods 

package in R (Rockel, 2020). Then, Mplus was used to fit the CFA model and estimate 

each parameter’s FMI.  

The Auxiliary Variables and Correlation. Since the simulation study 

manipulated the auxiliary variables’ correlation with the items at two levels (low and 

moderate) and they were all at the same level in each condition, it was interesting to use 

auxiliary variables that vary in their correlation with the imputed items. The potential 

variables in the data set of MIDUS wave three that can be used as auxiliary variables were 

age and nine variables about the Personality in Intellectual Contexts (PIC). The correlation 

between age and the BTACT items ranged between .12 and .4 (Table 1), and the magnitude 
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of the correlation between personality variables and the BTACT items ranged between .01 

and .3 (Table 2). These ten variables represented the low and moderate levels of the 

correlation magnitude with the items. To include a covariate that can correlate in a higher 

level with the imputed items, seven items of the BTACT scales from wave two were used 

as auxiliary variables. The correlation between wave two items and wave three items 

ranged between .12 and .8 (Table 1). This makes the total number of the used auxiliary 

variables 17 variables. One of these variables was completely observed, and the rest of the 

variables had missing data.   
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Table 1 

Correlations Between the Imputed Items, BTACT Wave 2 Items, and Age. 

Note. Y1-Y7= the imputed variables of the BTACT from wave 3, X1-X10 = auxiliary 

variables from the BTACT scale of wave 2. 

 

 

 

 

VariablesY1 Y2 Y3 Y4 Y5 Y6 Y7 X1 X2 X3 X4 X5 X6 X7 Age 

Y1 1               

Y2 .8 1              

Y3 .32 .31 1             

Y4 .29 .24 .21 1            

Y5 .28 .23 .35 .39 1           

Y6 .28 .25 .34 .43 .55 1          

Y7 -.19 -.14 -.15 -.26 -.24 -.37 1         

X1 .47 .45 .24 .24 .23 .23 -.13 1        

X2 .46 .51 .24 .23 .21 .23 -.12 .77 1       

X3 .26 .24 .45 .17 .31 .3 -.13 .32 .31 1      

X4 .22 .19 .19 .65 .36 .37 -.17 .24 .22 .19 1     

X5 .22 .18 .32 .33 .66 .46 -.23 .25 .22 .36 .35 1    

X6 .22 .19 .32 .38 .51 .84 -.31 .23 .22 .32 .38 .45 1   

X7 -.18 -.15 -.21 -.27 -.32 -.45 .39 -.18 -.16 -.19 -.28 -.29 -.47 1  

Age -.31 -.31 -.19 -.33 -.31 -.41 .12 -.19 -.22 -.1 -.23 -.18 -.36 .24 1 
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Table 2 

Correlations Between the Imputed Items and PIC Variables. 

VariablesY1 Y2 Y3 Y4 Y5 Y6 Y7 P1 P2 P3 P4 P5 P6 P7 P8 P9 

Y1 1                

Y2 .8 1               

Y3 .32 .31 1              

Y4 .29 .24 .21 1             

Y5 .28 .23 .35 .39 1            

Y6 .28 .25 .34 .43 .55 1           

Y7 -.19 -.14 -.15 -.26 -.24 -.37 1          

P1 -.13 -.11 -.11 -.13 -.14 -.16 .11 1         

P2 .09 .08 .06 .08 .05 .02 -.01 .02 1        

P3 .14 .14 .19 .18 .31 .25 -.15 -.14 .13 1       

P4 .11 .1 .08 .11 .14 .11 -.09 -.17 .4 .32 1      

P5 -.04 -.06 -.05 -.03 -.02 -.07 .06 .17 -.07 .001 -.07 1     

P6 .07 .06 .07 .04 .04 .004 -.02 -.06 .61 .11 .45 -.01 1    

P7 .16 .13 .16 .19 .27 .24 -.17 -.2 .19 .36 .39 -.05 .22 1   

P8 .13 .13 .1 .1 .1 .1 -.06 -.13 .36 .18 .52 -.1 .44 .32 1  

P9 .18 .2 .13 .12 .1 .09 -.1 -.16 .33 .2 .37 -.16 .36 .31 .38 1 

Note.Y1-Y7= the imputed variables of the BTACT, P1-P9= auxiliary variables from the 
PIC. 

Generating MAR 

For MCAR, 15% and 30% of the responses in each item were removed randomly 

using the missMethods package (Rockel, 2020). For the MAR, the missingness on items 
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was imposed based on age. In other words, age represents type A auxiliary variables where 

missingness likely increases with higher value of age. To validate the generated missing 

data, SPSS was used to determine the missingness rates and the missing mechanisms of 

each data file. Appendix C shows the missing counts and rates for each item across 

conditions. To check the missingness mechanisms, dummy variables were created for 

missing indicators, and differences between the two groups in the auxiliary variables were 

explored. In MCAR conditions, some items showed differences in some auxiliary 

variables, however, these differences were not practically significant as the effect sizes 

were ds <.2. Thus, the MCAR condition was assumed with paying attention to the impact 

of including and removing these auxiliary variables in the analysis. For MAR conditions, 

the missingness in all the items related to age with effect sizes ds ≥.3. Besides, the 

missingness in some items showed differences in some auxiliary variables but with effect 

sizes of ds <.2. 

Analytic Strategy 

Similar to the simulation study, the forward selection procedure was applied to 

select the auxiliary variables and form an imputation model.  

Study Outcomes 

Bias. Using the complete data as the population parameters, the percentage bias 

was calculated for each parameter (factor loadings, factor correlation, and error variances) 

(Table 26). The threshold range that states bias smaller than 10% is acceptable was used in 

this analysis (Muthen et al., 1987).  
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Efficiency. Relative efficiencies have been used to compare estimators in 

simulation studies (Enders & Bandalos, 2001; Savalei & Bentler, 2009). Following Savalei 

and Bentler (2009), relative efficiency was used to determine the gain in efficiency due to 

including auxiliary variables, where the variance of the parameter estimates based on the 

model that did not use auxiliary variables was used over the variance of the same parameter 

based on the model that used one of the strategies (inclusive – restrictive).  

Power. The FMI was used to show the differences between the two strategies 

regarding the loss of statistical power caused by missing data.  

The equation for the effective sample size was 

EB
∗= N (1- λ j) ((13) 

This indicates the sample size that would have achieved the same efficiency for a 

parameter with complete d
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Chapter Four: Results 

The Simulation Study’s Results 

Selection Procedure 

In selecting the included auxiliary variables based on the FMI, the researcher faced 

the difficulty of choosing the auxiliary variable as the FMI estimated values for all the 

parameters did not differ notably between auxiliary variables, even with type A auxiliary 

variables. As mentioned in the third chapter, this simulation study’s design included two 

types of auxiliary variables: a type A auxiliary variable, correlated with the incomplete 

variable and missingness, and a type B variable that correlates with the incomplete variable 

but not the missingness. Based on the research design, the first auxiliary variable was set 

to be type A, and the rest of the auxiliary variables were type B. Including a type A auxiliary 

is important as it changes the assumption of the missingness to the ignorable situation. In 

the conditions where the items’ missing mechanism is MAR, including a type A auxiliary 

variable changed the non-ignorable situations to ignorable. Thus, it was expected that the 

type A auxiliary variable would reduce the FMI more than the type B auxiliary variable. 

However, only in six conditions out of 16, the type A auxiliary variable showed more 

reduction in the FMI of the factor correlation and error variances than the type B auxiliary 

variables. Yet, the difference between type A and type B auxiliary variables in reducing 

the FMI was very small.
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To demonstrate this, a condition with the missingness rate of 15% at both items and 

auxiliary variables and items with MAR mechanism and auxiliary variables with 

MCAR mechanism is used as an example. Compared to the FMI of the model that 

did not include auxiliary variables, adding the type A auxiliary variable decreased the 

factor correlation’s FMI to .006, and the factor loadings and the error variances FMIs 

decreased about 0.005. The effect of using the type B auxiliary variable showed that the 

factor correlation’s reduction in the FMI was 0.0058, the reduction in the FMIs of the factor 

loadings was 0.005, and the error variances were 0.004. This example showed how small 

the difference was between the impact of the auxiliary variables on the FMI.  

In the subsequent steps, when more auxiliary variables were added into the 

imputation model across the board, the FMI decreased in all parameters. Thus, using the 

restrictive strategy, which includes auxiliary variables based on the FMI, suggested that 

the imputation model should include the ten auxiliary variables. Because of the above 

reasons, the results indicated that in 27 conditions, there was no difference between the 

inclusive strategy and the restrictive strategy based on the FMI since both suggested 

including all the auxiliary variables. In four conditions, the restrictive strategy based on 

FMI suggested including eight auxiliary variables, and only in one condition, the 

imputation model included six auxiliary variables.  
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The following section will show the parameter estimate bias results, MSE, and CIC.  

Parameter Estimate Bias  

In line with Enders and Bandalos (2001) and Yoo (2009), the percentage bias was 

calculated in reference to the true population parameter for factor loadings, factor 

correlation, and error variances (see equation 14). Muthen et al. (1987) suggested that bias 

smaller than 10% to 15% is acceptable in most SEM contexts. Thus, this threshold range 

will be referenced in the following discussion. 

Factorial analysis of variance (ANOVA) was conducted to test the design factors’ 

impact (missing data rate, missing data mechanism, the magnitude of the correlation, and 

the strategy of including the auxiliary variables) on the parameter estimate bias.  

Only the factors and interactions that were identified as statistically significant (p 

≤ 0.05) and with large enough effect sizes (η2> 0.01) (Cohen, 1988) are presented and 

discussed with additional details. The rationale is that when the effect size is very small, 

even if the p-value is significant, the difference is often of limited to no practical 

significance. As suggested by Cohen (1988), a rule of thumb was employed to assess η2 

effect size: small when η2 > 0.01, medium when η2 ≥ 0.06, and large when η2 ≥ 0.14. 

A total of 13 factorial ANOVA models were conducted to test the impact of the 

five factors on the parameter estimate bias of six-factor loadings, six error variances, and 

the factor correlation.  

Tables 3-6 show the factor loading parameters’ mean parameter estimate bias 

percentage by the missing data rate, missing data mechanism, the correlation’s magnitude, 
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and the strategy of including auxiliary variables. As seen in the tables, all the cells yielded 

no biased estimates.  

Based on ANOVA results, no interaction or main effect yielded statistically 

significant results with partial eta square of value that exceeded Cohen’s (1988) medium 

effect size criteria (.06). The mean percentage of bias for the factor loading Y1 showed a 

statistically significant main effect (p = .02) for the missingness rate of the items with a 

very small effect size (η2 = .001). This pattern of the small effect size was noticed in other 

parameters where the effect sizes never exceeded .004. 

Results for the factor correlation parameter were similar to those of the factor 

loadings and error variances. As before, no interaction or main effect yielded statistically 

significant results with a partial eta square value larger than (.01). Consistent with previous 

results, all the cells showed no biased estimates (Tables 3- 6).  

Finally, results from the error variances were quite similar to those reported for the 

factor loadings. Again, no interaction or main effect yielded statistically significant results 

with partial eta square value that exceeded (.01). Consistent with previous results, all the 

cells yielded no bias (Tables 7-10). However, there was some variability among the mean 

percentage error variances bias compared to the factor correlation and factor loadings. This 

could be due to the sensitivity of error variance to the missingness compared to the factor 

correlation and factor loadings, as the FMIs’ results showed that error variances indicated 

the higher FMIs compared to the factor correlation and factor loadings. 
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Table 3 

Mean Percentage for Factor Loadings and Factor Correlation Bias by Factors Design for the Moderate Magnitude and the 

15% of the Item Missingness Rate.  

AV 

Missing 

Rate 

Item Missing 

Mechanism 

AV Missing Mechanism Strategy Bias % 

Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR Inclusive .56 -.92 1.91 .47 -1.09 -.28 .77 

Restrictive .46 -.92 1.98 .48 -1.11 -.31 .78 

MAR Inclusive .62 -.97 1.93 .49 -1.16 -.29 .72 

Restrictive .67 -.96 1.88 .52 -1.05 -.32 .78 

MAR MCAR Inclusive .59 -1.21 1.53 .66 -1.33 -.52 .79 

Restrictive .56 -1.15 1.52 .71 -1.23 -.54 .83 

MAR Inclusive .6 -1.24 1.58 .6 -1.38 -.58 .71 

Restrictive .58 -1.5 1.55 .66 -1.48 -.49 .71 

30% MCAR MCAR Inclusive .55 -.85 1.87 .46 -1.07 -.31 .77 

Restrictive .56  -.86 1.82 .46 -.93 -.41 .83 

MAR Inclusive .53 -.91 1.9 .43 -1 -.38 .74 

Restrictive .56 -.88 1.85 .42 -.87 -.46 .77 

MAR MCAR Inclusive .56 -1.09 1.51 .58 -1.29 -.57 .71 

Restrictive .48 -1.06 1.52 .59 -1.31 -.47 .69 

MAR Inclusive  .54 -1.17 1.36 .49 -1.3 -.68 .47 

Restrictive .56 -1.17 1.36 .55 -1.23 -.73 .37 

Note: AV= auxiliary variable 
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Table 4 

Mean Percentage for Factor Loadings and Factor Correlation Bias by Factors Design for the Moderate Magnitude and the 

30% of the Item Missingness Rate.  

AV 
Missing 
Rate 

Item Missing 
Mechanism 

AV Missing 
Mechanism 

Strategy Bias % 

Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR Inclusive .96 -.22 1.35 1.03 -1.33 -1.17 .14 

Restrictive .81 -.2 1.41 1.01 -1.09 -1.37 .26 

MAR Inclusive 1.04 -18 1.25 1.09 -1.29 -1.21 .25 

Restrictive .94 -.17 1.30 1.08 -1.08 -1.39 .31 

MAR MCAR Inclusive 1.2 -1.22 1.27 1.11 -1.45 -1.06 .29 

Restrictive 1.21 -1.25 1.24 1.14 -1.29 -1.27 .59 

MAR Inclusive 1.32 -1.30 1.29 1.23 -1.58 -1.24 .16 

Restrictive  1.35 -1.37 1.24 1.24 -1.44 -1.44 .16 

30% MCAR MCAR Inclusive 1.03 -.08 1.31 .97 -1.21 -1.15 .05 

Restrictive 1.07 -.17 1.35 1.01 -.1.12 -1.26 .21 

MAR Inclusive .96 -.04 1.22 .9 -1.12 -1.24 .07 

Restrictive .94 -.04 1.23 .97 -.92 -1.46 .17 

MAR MCAR Inclusive 1.26 -1.22 1.32 1.06 -1.38 -1.18 .27 

Restrictive 1.27 -1.23 1.31 1.1 -1.23 -1.41 .49 

MAR Inclusive 1.15 -1.4 1.13 .83 -1.52 -1.35 -.18 

Restrictive 1.16 -1.35 1.07 .86 -1.39 -1.56 .003 

Note: AV= auxiliary variable. 
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Table 5 

Mean Percentage for Factor Loadings and Factor Correlation Bias by Factors Design for the Low Magnitude and the 15% of 

the Item Missingness Rate.  
AV 

Missing 

Rate 

Item Missing 

Mechanism 

AV Missing Mechanism Strategy Bias % 

Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR Inclusive .49 -.96 1.98 .39 -1.1 -.36 1.02 

Restrictive .5 -.96 1.98 .38 -1.11 -.35 1.03 

MAR Inclusive .47 -.97 1.98 .42 -1.12 -.37 .98 

Restrictive .44 -.98 1.97 .45 -1.1 -.38 .95 

MAR MCAR Inclusive .75 -.98 1.66 .55 -.97 -.44 .96 

Restrictive .76 -1.01 1.63 .56 -.95 -.41 .87 

MAR Inclusive .72 -.97 1.66 .56 -1 -.42 .86 

Restrictive .7 -.99 1.63 .55 -.98 -.41 .82 

30% MCAR MCAR Inclusive .49 -.93 1.95 .4 -1.13 -.41 .94 

Restrictive .46 -.94 1.94 .44 -1.1 -.42 .9 

MAR Inclusive .51 -.96 1.95 .39 -1.11 -.41 1.01 

Restrictive .53 -.96 1.96 .39 -1.1 -.4 .99 

MAR MCAR Inclusive .7 -.93 1.64 .54 -.99 -41 .87 

Restrictive .67 -.9 1.67 .56 -1 -.43 .84 

MAR Inclusive .74 -.95 1.6 .56 -.95 -.45 .95 

Restrictive .75 -.98 1.59 .56 -.96 -.45 .83 

Note: AV= auxiliary variable. 
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Table 6 

Mean Percentage for Factor Loadings and Factor Correlation Bias by Factors Design for the Low Magnitude and the 30% of 

the Item Missingness Rate.  

AV 

Missing 

Rate 

Item Missing 

Mechanism 

AV Missing Mechanism Strategy Bias % 

Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR Inclusive .86 -.1 1.55 1.25 -1.43 -1.73 .27 

Restrictive .82 -.08 1.55 1.27 -1.36 -1.78 .16 

MAR Inclusive .81 -.12 1.6 1.28 -1.46 -1.72 .22 

Restrictive .87 -.1 1.62 1.24 -1.45 -1.75 .22 

MAR MCAR Inclusive 1.17 -1.21 1.72 1.31 -1.08 -1.43 1.35 

Restrictive 1.18 -1.19 1.76 1.3 -1.12 -1.42 1.32 

MAR Inclusive 1.08 -1.25 1.74 1.32 -1.15 -1.41 1.36 

Restrictive 1.07 -1.24 1.76 1.36 -1.11 -1.42 1.41 

30% MCAR MCAR Inclusive .89 -.13 1.53 1.2 -1.36 -1.7 -.01 

Restrictive .89 -.17 1.6 1.21 -1.34 -1.65 .12 

MAR Inclusive .94 -.15 1.57 1.16 -1.31 -1.66 .09 

Restrictive .86 -.11 1.55 1.23 -1.26 -1.71 .04 

MAR MCAR Inclusive 1.16 -1.25 1.7 1.23 -1.07 -1.46 1.24 

Restrictive 1.14 -1.1 1.74 1.27 -1.1 -1.44 1.28 

MAR Inclusive 1.22 -1.28 1.7 1.24 -1.06 -1.45 1.27 

Restrictive 1.19 -1.29 1.73 1.24 1.08 -1.47 1.23 

Note: AV= auxiliary variable. 
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Table 7 

Mean Percentage for Error Variance Bias by Factors Design for the Moderate Magnitude and the 15% of the Item 

Missingness Rate.  

AV 
Missing 
Rate 

Item Missing 
Mechanism 

AV Missing 
Mechanism 

Strategy Bias % 

e1 e2 e3 e4 e5 e6 

15% MCAR MCAR Inclusive  -.09 1.96 -3.57 -2.31 .79 -1.46 

Restrictive .07 1.95 -3.72 -2.41 .83 -1.35 

MAR Inclusive -.21 2.08 -3.6 -2.32 .83 -1.5 

Restrictive -.19 2.1 -3.58 -2.37 .63 -1.48 

MAR MCAR Inclusive -.5 2.42 -3.04 -2.25 1.13 -.95 

Restrictive -.42 2.34 -3 -2.3 .95 -.93 

MAR Inclusive -.61 2.47 -3.07 -2.17 1.1 -.96 

Restrictive -.6 2.34 -3.04 -2.21 1.21 -.95 

30% MCAR MCAR Inclusive -.19 1.89 -3.42 -2.25 .8 -1.46 

Restrictive -.15 1.8 -3.35 -2.3 .61 -1.27 

MAR Inclusive -.16 2.01 -3.41 -2.17 .71 -1.35 

Restrictive -.17 1.89 -3.35 -2.19 .49 -1.18 

MAR MCAR Inclusive -.57 2.25 -2.83 -2.11 1.06 -.92 

Restrictive -.49 2.25 -2.79 -2.19 .99 -.96 

MAR Inclusive -.64 2.34 -2.68 -2.07 .98 -.83 

Restrictive -.6 2.35 -2.71 -2.16 .86 -.79 
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Table 8 

Mean Percentage for Error Variance Bias by Factors Design for the Moderate Magnitude and the 30% of the Item Missingness Rate.  

AV 

missing 

rate 

Item Missing 

Mechanism 

AV Missing 

Mechanism 

Strategy Bias % 

e1 e2 e3 e4 e5 e6 

15% MCAR MCAR Inclusive -1.31 1.05 -2.2 -2.22 1.44 -.55 

Restrictive -1.17 1.02 -2.25 -2.26 1 -.3 

MAR Inclusive -1.35 .97 -1.97 -2.3 1.39 -.52 

Restrictive -1.29 .95 -2.01 -2.26 .97 -.3 

MAR MCAR Inclusive -1.76 2.25 -3.11 -2.52 1.44 -.9 

Restrictive -1.72 2.25 -2.99 -2.63 1.08 -.54 

MAR Inclusive -1.96 2.25 -3.08 -2.81 1.5 -.7 

Restrictive -2 2.32 -2.98 -2.83 1.24 -.59 

30% MCAR MCAR Inclusive -1.44 .86 -1.94 -1.94 1.35 -.71 

Restrictive -1.45 .95 -2.02 -2.02 1.04 -.54 

MAR Inclusive -1.46 .76 -1.69 -1.94 1.28 -.47 

Restrictive -1.47 .63 -1.63 -2.06 .9 -.09 

MAR MCAR Inclusive -2 2.24 -3 -2.34 1.36 -.77 

Restrictive -1.96 2.2 -2.9 -2.46 1.03 -.38 

MAR Inclusive -2.05 2.31 -2.81 -2.31 1.36 -.72 

Restrictive -2.06 2.22 -2.7 -2.47 1.01 -.35 
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Table 9 

Mean Percentage for Error Variance Bias by Factors Design for the Low Magnitude and the 15% of the Item Missingness Rate.  

AV missing 

rate 

Item Missing 

Mechanism 

AV Missing 

Mechanism 

Strategy Bias % 

e1 e2 e3 e4 e5 e6 

15% MCAR MCAR Inclusive .08 1.95 -3.59 -2.45 .53 -1.2 

Restrictive .1 1.92 -3.6 -2.43 .53 -1.23 

MAR Inclusive .1 1.94 -3.61 -2.48 .54 -1.21 

FMI .12 1.92 -3.59 -2.51 .52 -1.19 

MAR MCAR Inclusive -.53 2.17 -2.62 -2.3 .91 -.79 

Restrictive -.54 2.12 -2.63 -2.34 .87 -.82 

MAR Inclusive -.51 2.14 -2.66 -2.32 .93 -.82 

Restrictive -.5 2.1 -2.65 -2.32 .9 -.84 

30% MCAR MCAR Inclusive .08 1.91 -3.59 -2.49 .53 -1.15 

Restrictive .1 1.87 -3.56 -2.53 .5 -1.12 

MAR Inclusive .11 1.92 -3.56 -2.45 .53 -1.18 

Restrictive .11 1.9 -3.58 -2.45 .52 -1.19 

MAR MCAR Inclusive -.49 2.08 -2.62 -2.29 .9 -.82 

Restrictive -.43 2.02 -2.63 -2.33 .9 -.82 

MAR Inclusive -51 2.09 -2.56 -2.3 .88 -.8 

Restrictive -.54 2.06 -2.58 -2.36 .88 -.83 
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Table 10 

Mean Percentage for Error Variance Bias by Factors Design for the Low Magnitude and the 30% of the Item Missingness Rate.  

AV 
missingness 
rate 

Item Missing 
Mechanism 

AV Missing 
Mechanism 

Strategy Bias % 

e1 e2 e3 e4 e5 e6 

15% MCAR MCAR Inclusive -.95 .79 -2.21 -2.86 1.13 .2 

Restrictive -.9 .7 -2.22 -2.9 1.04 .28 

MAR Inclusive -.88 .78 -2.32 -2.88 1.17 .16 

Restrictive -.92 .76 -2.36 -2.83 1.15 .2 

MAR MCAR Inclusive -1.68 2.68 -3.01 -3.15 .87 -.42 

Restrictive -1.7 2.66 -3.07 -3.2 .89 -.4 

MAR Inclusive -1.6 2.7 -3.09 -3.15 .89 -.46 

Restrictive -1.6 2.65 -3.11 -3.21 .84 -.44 

30% MCAR MCAR Inclusive -.97 .83 -2.27 -2.74 1.02 .1 

Restrictive -.99 .87 -2.41 -2.82 1.08 .06 

MAR Inclusive -.98 .83 -2.29 -2.7 .99 .06 

Restrictive -.95 74 -2.24 -2.83 .96 .16 

MAR MCAR Inclusive -1.73 2.73 -3.06 -3.08 .82 -.46 

Restrictive -1.69 2.43 -3.1 -3.13 .81 -.38 

MAR Inclusive -1.79 2.75 -3.04 -3.05 .83 -.44 

Restrictive -1.78 2.75 -3.1 -3.11 .83 -.39 

Note: AV= auxiliary variable. 
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Mean Squared Error  

Tables 11-18 show the MSE’s results for each parameter under the different 

missingness rates for both items and auxiliary variables, the massing mechanism for items 

and auxiliary variables, the magnitude of the correlation, and the strategy for including 

auxiliary variables. The SPSS was used to conduct ANOVA analysis to quantify the design 

factors’ effects and these factors’ interactions on parameter MSE. To meet the assumption 

of normality, logMSE was used for all parameters. The homogeneity of variance 

assumption was violated (p < 0.01) for some parameters, but analysis of variance is robust 

concerning violation of homogeneity of variance with a balanced design. 

Based on ANOVA results, no interaction or main effect yielded statistically 

significant results with partial eta square of value that exceeded Cohen (1988) medium 

effect size criteria (η2=.06). The items’ missingness rate shows a statistically significant 

main effect on the MSE for six parameters. For the factor loading Y2, the items’ 

missingness rate has a main effect F(1,6336) = 232.47, p < .001, η2 = .04 with a lower MSE 

for the missingness rate of 15% (mean = .001, SD < 0.001) than that for the missingness 

rate of 30% (mean = .002, SD < 0.001). For the factor loading Y3, the items’ missingness 

rate has a main effect F (1, 6336) = 106.703, p < .001, η2 = .02 with a lower MSE for the 

missingness rate of 15% (mean = .001, SD < 0.001) than that for the missingness rate of 

30% (mean = .002, SD < 0.001).  

The same pattern was found for the error variance of Y1, the items’ missingness 

rate has a main effect F (1, 6336) = 131.071, p < .001, η2 = .02 with a lower MSE for the 

missingness rate of 15% (mean = .001, SD < 0.001) than that for the missingness rate of 
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30% (mean = .002, SD < 0.001). The error variance of Y2 shows significant main effect 

for the items’ missingness rate F (1, 6336) = 108.646, p < .001, η2 = .02 with a lower MSE 

for the missingness rate of 15% (mean = .001, SD < 0.001) than that for the missingness 

rate of 30% (mean = .002, SD < 0.001). 

Similarly, the error variance of Y3 shows significant main effect for the items’ 

missingness rate F (1, 6336) = 99.647, p < .001, η2 = .02 with a lower MSE for the 

missingness rate of 15% (mean = .001, SD < 0.001) than that for the missingness rate of 

30% (mean = .002, SD < 0.001). 

For the factor correlation F (1, 6336) = 94.958, p < .001, η2 = .02 with a lower MSE 

for the missingness rate of 15% (mean = .001, SD < 0.001) than that for the missingness 

rate of 30% (mean = .002, SD < 0.001). All the other main effects and interaction had 

uninterpretable effect sizes that contributed less than or equal to 1% of the total variance 

in MSE.  
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Table 11 

Mean Squared Error for Factor Loadings and Factor Correlation by Factors Design for the Moderate Magnitude and the 15% of the Item 

Missingness Rate. 

AV 

missing 

rate 

Item Missing 

Mechanism 

AV Missing 

Mechanism 

Strategy Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR Inclusive  .0013 .0012 .001 .001 .001 .001 .0013 

Restrictive .0013 .0012 .001 .001 .0011 .001 .0013 

MAR Inclusive .0012 .0012 .001 .001 .001 .0011 .0013 

Restrictive .0012 .0012 .001 .001 .001 .001 .0013 

MAR MCAR Inclusive .0013 .0011 .001 .001 .001 .001 .0013 

Restrictive .0013 .0011 .001 .001 .001 .001 .0013 

MAR Inclusive .0013 .0011 .001 .001 .001 .001 .0013 

Restrictive .0013 .0011 .001 .001 .001 .001 .0014 

30% MCAR MCAR Inclusive .0012 .0011 .001 .001 .0011 .001 .0013 

Restrictive .0012 .0011 .001 .001 .0011 .001 .0013 

MAR Inclusive .0012 .0012 .001 .001 .0011 .0011 .0013 

Restrictive .0012 .0012 .001 .001 .0011 .0011 .0013 

MAR MCAR Inclusive .0012 .0011 .001 .001 .001 .001 .0013 

Restrictive .0013 .0011 .001 .001 .001 .001 .0013 

MAR Inclusive .0012 .0011 .001 .001 .0011 .001 .0013 

Restrictive .0013 .0011 .001 .001 .0011 .001 .0014 

Note: AV= auxiliary variable. 
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Table 12 

Mean Squared Error for Factor Loadings and Factor Correlation by Factors Design for the Moderate Magnitude and the 30% of the Item 

Missingness Rate. 

AV 
missing 
rate 

Item Missing 
Mechanism 

AV Missing 
Mechanism 

Strategy Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR Inclusive .0016 .0017 .0015 .0015 .0011 .0013 .0017 

Restrictive .0016 .0017 .0014 .0015 .0011 .0013 .0017 

MAR Inclusive .0015 .0016 .0014 .0015 .0011 .0013 .0017 

Restrictive .0016 .0016 .0014 .0015 .0011 .0013 .0017 

MAR MCAR Inclusive .0016 .0019 .0015 .0013 .0012 .0014 .0018 

Restrictive .0017 .0018 .0015 .0012 .0012 .0014 .0019 

MAR Inclusive .0016 .0019 .0015 .0013 .0012 .0014 .0018 

Restrictive .0017 .0019 .0015 .0013 .0013 .0014 .0018 

30% MCAR MCAR Inclusive .0014 .0016 .0014 .0015 .0012 .0013 .0018 

Restrictive .0015 .0017 .0015 .0015 .0012 .0012 .0018 

MAR Inclusive .0015 .0017 .0014 .0015 .0012 .0013 .0018 

Restrictive .0016 .0016 .0014 .0015 .0012 .0013 .0018 

MAR MCAR Inclusive .0016 .0018 .0015 .0013 .0013 .0014 .0019 

Restrictive .0017 .0018 .0015 .0013 .0012 .0014 .0019 

MAR Inclusive .0016 .0019 .0015 .0013 .0013 .0014 .0019 

Restrictive .0016 .0019 .0015 .0013 .0013 .0014 .0019 

Note: AV= auxiliary variable. 
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Table 13 

Mean Squared Error for Factor Loadings and Factor Correlation by Factors Design for the Low Magnitude and the 15% of the Item 

Missingness Rate. 

AV missing 

rate 

Item Missing 

Mechanism 

AV Missing 

Mechanism 

Strategy Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR Inclusive .0013 .0012 .0011 .0012 .0011 .0012 .0014 

Restrictive .0013 .0012 .0011 .0012 .0011 .0012 .0014 

MAR Inclusive .0013 .0012 .0011 .0012 .0011 .0012 .0014 

Restrictive .0013 .0012 .0011 .0012 .0011 .0012 .0014 

MAR MCAR Inclusive .0014 .0011 .0012 .0011 .0011 .001 .0014 

Restrictive .0014 .0011 .0012 .0011 .0011 .001 .0014 

MAR Inclusive .0014 .0011 .0012 .0011 .0011 .001 .0014 

Restrictive .0014 .0011 .0012 .0011 .0011 .001 .0014 

30% MCAR MCAR Inclusive .0013 .0012 .0011 .0012 .0011 .0012 .0014 

Restrictive .0013 .0012 .0011 .0012 .0011 .0012 .0014 

MAR Inclusive .0013 .0012 .0011 .0012 .0011 .0012 .0014 

Restrictive .0013 .0012 .0011 .0012 .0011 .0012 .0014 

MAR MCAR Inclusive .0014 .0011 .0012 .0011 .0011 .001 .0014 

Restrictive .0014 .0011 .0012 .0011 .0011 .001 .0014 

MAR Inclusive .0013 .0011 .0012 .0011 .0011 .0011 .0014 

Restrictive .0014 .0011 .0012 .0011 .0011 .001 .0014 

Note: AV= auxiliary variable. 
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Table 14 

Mean Squared Error for Factor Loadings and Factor Correlation by Factors Design for the Low Magnitude and the 30% of the Item 

Missingness Rate. 

AV 

missing 

rate 

Item Missing 

Mechanism 

AV Missing 

Mechanism 

Strategy Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR Inclusive .0017 .0019 .0016 .0016 .0013 .0015 .002 

Restrictive .0017 .0019 .0016 .0016 .0013 .0015 .002 

MAR Inclusive .0017 .0019 .0016 .0016 .0013 .0015 .002 

Restrictive .0017 .0019 .0016 .0016 .0013 .0015 .002 

MAR MCAR Inclusive .0017 .002 .0018 .0015 .0014 .0016 .0021 

Restrictive .0018 .002 .0018 .0015 .0013 .0017 .0021 

MAR Inclusive .0018 .002 .0017 .0015 .0014 .0016 .002 

Restrictive .0018 .002 .0018 .0015 .0014 .0016 .002 

30% MCAR MCAR Inclusive .0017 .0019 .0016 .0016 .0013 .0015 .002 

Restrictive .0017 .0019 .0016 .0016 .0012 .0015 .002 

MAR Inclusive .0017 .0019 .0016 .0016 .0013 .0015 .002 

Restrictive .0017 .0019 .0016 .0016 .0013 .0015 .002 

MAR MCAR Inclusive .0018 .002 .0018 .0015 .0014 .0016 .0021 

Restrictive .0018 .002 .0018 .0015 .0013 .0016 .0021 

MAR Inclusive .0017 .002 .0017 .0015 .0014 .0016 .0021 

Restrictive .0017 .002 .0017 .0015 .0014 .0016 .0021 

Note: AV= auxiliary variable. 
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Table 15 

Mean Squared Error for Error Variances by factors design for the moderate magnitude and the 15% of the Item Missingness Rate. 

AV 

missingness 

rate 

Item Missing 

Mechanism 

AV Missing 

Mechanism 

Strategy e1 e2 e3 e4 e5 e6 

15% MCAR MCAR Inclusive  .0017 .0015 .0013 .0015 .0014 .0016 

Restrictive .0017 .0015 .0013 .0015 .0014 .0015 

MAR Inclusive .0017 .0015 .0013 .0015 .0014 .0016 

Restrictive .0017 .0015 .0014 .0015 .0014 .0016 

MAR MCAR Inclusive .0017 .0013 .0014 .0013 .0013 .0015 

Restrictive .0018 .0013 .0014 .0013 .0013 .0015 

MAR Inclusive .0017 .0013 .0014 .0013 .0013 .0015 

Restrictive .0017 .0012 .0014 .0015 .0015 .0015 

30% MCAR MCAR Inclusive .0016 .0015 .0013 .0015 .0015 .0016 

Restrictive .0016 .0015 .0013 .0015 .0015 .0016 

MAR Inclusive .0017 .0015 .0014 .0014 .0015 .0016 

Restrictive .0017 .0015 .0013 .0014 .0015 .0016 

MAR MCAR Inclusive .0017 .0013 .0014 .0013 .0013 .0015 

Restrictive .0017 .0013 .0015 .0013 .0013 .0015 

MAR Inclusive .0017 .0013 .0014 .0013 .0013 .0015 

Restrictive .0017 .0013 .0015 .0013 .0013 .0015 
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Table 16 

Mean Squared Error for Error Variances by factors design for the moderate magnitude and the 30% of the Item Missingness Rate. 

AV 

missing 

rate 

Item Missing 

Mechanism 

AV Missing 

Mechanism 

Strategy e1 e2 e3 e4 e5 e6 

15% MCAR MCAR Inclusive .0023 .002 .0017 .0019 .0016 .0019 

Restrictive .0023 .0019 .0017 .0019 .0017 .0019 

MAR Inclusive .0023 .0019 .0017 .0019 .0017 .0019 

Restrictive .0023 .0019 .0016 .0019 .0017 .0019 

MAR MCAR Inclusive .0026 .0019 .002 .0017 .0018 .0022 

Restrictive .0025 .0018 .002 .0016 .0018 .0022 

MAR Inclusive .0026 .0019 .002 .0017 .0018 .0022 

Restrictive .0026 .0019 .002 .0017 .0018 .0022 

30% MCAR MCAR Inclusive .0023 .0021 .0017 .002 .0019 .0019 

Restrictive .0023 .002 .0018 .002 .0018 .0018 

MAR Inclusive .0023 .002 .0017 .0019 .0017 .0018 

Restrictive .0022 .002 .0016 .0018 .0018 .0019 

MAR MCAR Inclusive .0027 .0019 .002 .0016 .0019 .0022 

Restrictive .0026 .0019 .002 .0016 .0019 .0023 

MAR Inclusive .0026 .002 .0021 .0016 .0019 .0022 

Restrictive .0025 .0019 .002 .0016 .0019 .0022 
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Table 17 

Mean Squared Error for Error Variances by factors design for the Low magnitude and the 15% of the Item Missingness Rate. 

AV 

missing 

rate 

Item Missing 

Mechanism 

AV Missing 

Mechanism 

Strategy e1 e2 e3 e4 e5 e6 

15% MCAR MCAR Inclusive .0017 .0015 .0014 .0015 .0015 .0017 

Restrictive .0018 .0015 .0014 .0015 .0015 .0017 

MAR Inclusive .0017 .0015 .0014 .0015 .0015 .0017 

Restrictive .0017 .0015 .0014 .0015 .0015 .0017 

MAR MCAR Inclusive .0018 .0014 .0015 .0013 .0014 .0015 

Restrictive .0019 .0014 .0015 .0014 .0014 .0015 

MAR Inclusive .0018 .0014 .0015 .0013 .0014 .0015 

Restrictive .0018 .0014 .0015 .0013 .0013 .0015 

30% MCAR MCAR Inclusive .0017 .0015 .0014 .0015 .0015 .0017 

Restrictive .0017 .0015 .0014 .0015 .0015 .0016 

MAR Inclusive .0017 .0015 .0014 .0015 .0015 .0017 

Restrictive .0017 .0015 .0014 .0015 .0015 .0017 

MAR MCAR Inclusive .0018 .0014 .0015 .0013 .0014 .0015 

Restrictive .0018 .0014 .0015 .0013 .0014 .0015 

MAR Inclusive .0018 .0014 .0015 .0013 .0014 .0015 

Restrictive .0018 .0014 .0015 .0013 .0014 .0016 
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Table 18 

Mean Squared Error for Error Variances by factors design for the Low magnitude and the 30% of the Item Missingness Rate. 

AV 

missing 

rate 

Item Missing 

Mechanism 

AV Missing 

Mechanism 

Strategy e1 e2 e3 e4 e5 e6 

15% MCAR MCAR Inclusive .0025 .002 .0018 .0022 .0018 .0021 

Restrictive .0025 .0021 .0018 .0023 .0018 .0021 

MAR Inclusive .0025 .002 .0019 .0022 .0018 .0021 

Restrictive .0025 .0021 .0019 .0022 .0018 .0021 

MAR MCAR Inclusive .0026 .0021 .0023 .0021 .0019 .0026 

Restrictive .0026 .0021 .0023 .0021 .0019 .0026 

MAR Inclusive .0025 .0021 .0023 .002 .0019 .0026 

Restrictive .0026 .0021 .0023 .002 .0019 .0026 

30% MCAR MCAR Inclusive .0024 .0021 .0018 .0022 .0019 .0021 

Restrictive .0024 .0021 .0019 .0022 .0019 .0021 

MAR Inclusive .0024 .0021 .0018 .0022 .0018 .0021 

Restrictive .0024 .0021 .0018 .0022 .0019 .0021 

MAR MCAR Inclusive .0026 .0022 .0023 .0021 .0019 .0025 

Restrictive .0026 .0021 .0023 .002 .0019 .0025 

MAR Inclusive .0026 .0022 .0023 .002 .0019 .0026 

Restrictive .0026 .0022 .0023 .002 .0019 .0026 
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Confidence Interval Coverage (CIC) 

CIC’s coverage rate was computed as the percentage of times that the 95% 

confidence intervals of the parameter estimates contain the true parameter values. Tables 

19-22 give the 95% confidence interval coverage rates of the 13 parameters by the design 

factors.  

The coverage rates for inclusive and restrictive strategies based on FMI were 

generally well above the 90% mark across all conditions for all factor loadings and factor 

correlation. 

In terms of the error variances, all parameters performed well under the two 

strategies and across the conditions, except for the error variances of the Y6 item, which 

showed problematic coverage (CIC < .90). There was no exact pattern for the low CIC in 

this parameter. Still, the problematic coverages were produced in some conditions of the 

low correlation between the items and auxiliary variables, which could be due to sampling 

variability (Table 22) 
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Table 19 

Confidence Interval Coverage for Factor loadings and factor correlation by factors 

design for the moderate magnitude and the 15% of the Item Missingness Rate.  

AV 

Missing 

Rate 

Item 

Mechanism 

AV 

Missing 

Mechanism 

Strategy CIC % 

Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR IS 92 96 96 96 95 97 94 

RS 93 97 97 97 95 98 95 

MAR IS 94 96 96 97 95 97 94 

RS 94 96 96 96 95 98 94 

MAR MCAR IS 94 98 96 95 98 97 96 

RS 94 97 96 96 99 98 94 

MAR IS 95 98 96 94 97 97 95 

RS 94 99 97 96 98 98 94 

30% MCAR MCAR IS 94 97 95 97 95 97 94 

RS 94 97 95 98 96 97 94 

MAR IS 94 96 95 96 95 97 94 

RS 94 96 95 96 95 97 93 

MAR MCAR IS 95 98 96 96 97 98 94 

RS 96 98 96 95 97 98 94 

MAR IS 96 99 96 93 98 98 95 

RS 96 98 96 94 97 97 93 

Note: AV= auxiliary variable, IS= inclusive strategy, RS= restrictive strategy.  
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Table 20 

Confidence Interval Coverage for Factor loadings and factor correlation by factors 

design for the moderate magnitude and the 30% of the Item Missingness Rate.  

AV 

Missing 

Rate 

Item 

Mechanism 

AV 

Missing 

Mechanism 

Strategy CIC % 

Y1 Y2 Y3 Y4 Y5 Y6 F 

15% MCAR MCAR IS 94 92 95 95 98 98 95 

RS 94 94 95 95 98 99 95 

MAR IS 94 93 95 95 97 98 95 

RS 95 95 96 95 99 99 96 

MAR MCAR IS 93 90 96 98 98 95 96 

RS 93 92 96 98 98 95 95 

MAR IS 93 93 96 97 98 94 96 

RS 93 92 95 99 98 93 96 

30% MCAR MCAR IS 97 94 95 96 99 97 95 

RS 97 96 95 96 99 99 95 

MAR IS 96 95 96 96 97 97 95 

RS 98 93 96 95 97 98 96 

MAR MCAR IS 93 92 95 97 97 97 95 

RS 93 93 95 97 98 95 92 

MAR IS 94 93 95 96 98 97 95 

RS 94 92 94 97 98 95 94 

Note: AV= auxiliary variable, IS= inclusive strategy, RS= restrictive strategy.  
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Table 21 

Confidence Interval Coverage for Factor loadings and factor correlation by factors 

design for the low magnitude and the 15% of the Item Missingness Rate.  

AV 

Missin

g Rate 

Item 

Mechanism 

AV 

Missing 

Mechanism 

Strategy CIC % 

Y1 Y2 Y3 Y

4 

Y

5 

Y

6 

F 

15% MCAR MCAR IS 95 97 95 97 95 95 96 
RS 95 97 95 97 95 96 96 

MAR IS 95 97 95 97 95 93 94 
RS 95 99 95 97 95 94 94 

MAR MCAR IS 94 99 96 95 98 98 93 
RS 94 99 96 95 98 98 93 

MAR IS 94 98 96 95 98 97 93 
RS 94 98 96 95 95 97 93 

30% MCAR MCAR IS 95 97 96 97 95 94 94 
RS 95 97 96 97 95 95 95 

MAR IS 95 97 96 97 95 94 93 
RS 95 97 95 97 95 95 94 

MAR MCAR IS 94 98 96 95 98 98 93 
RS 94 99 96 95 98 98 93 

MAR IS 94 99 95 95 98 98 93 
RS 95 98 96 95 98 97 93 

Note: AV= auxiliary variable, IS= inclusive strategy, RS= restrictive strategy.  
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Table 22 

Confidence Interval Coverage for Factor loadings and factor correlation by factors 

design for the low magnitude and the 30% of the Item Missingness Rate.  

AV 
Missin
g Rate 

Item 
Mechanism 

AV 
Missing 
Mechanism 

Strategy CIC % 

Y1 Y2 Y3 Y
4 

Y
5 

Y6 F 

15% MCAR MCAR IS 96 92 96 96 98 96 92 

RS 95 92 97 96 98 96 93 

MAR IS 96 92 97 96 98 96 93 

RS 95 92 95 96 98 96 93 

MAR MCAR IS 94 91 96 95 97 91 92 

RS 95 91 96 95 98 91 93 

MAR IS 95 91 97 95 97 91 93 

RS 94 91 97 95 97 91 93 

30% MCAR MCAR IS 95 93 97 96 97 96 92 

RS 95 93 98 96 98 96 93 

MAR IS 95 92 97 95 97 96 92 

RS 95 92 98 95 98 97 92 

MAR MCAR IS 94 90 97 94 97 91 92 

RS 94 92 97 94 98 92 93 

MAR IS 95 90 97 94 97 91 93 

RS 95 90 97 94 98 93 93 

Note: AV= auxiliary variable, IS= inclusive strategy, RS= restrictive strategy.  
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Table 23 

Confidence Interval Coverage for error variances by factors design for the moderate 

magnitude and the 15% of the Item Missingness Rate.  

AV 
Missing 
Rate 

Item 
Mechanism 

AV 
Missing 
Mechanism 

Strategy CIC % 

e1 e2 e3 e4 e5 e6 

15% MCAR MCAR IS 92 94 94 93 95 93 
RS 93 95 94 93 95 93 

MAR IS 92 94 94 93 95 92 
RS 91 95 94 93 96 90 

MAR MCAR IS 92 96 94 95 95 94 
RS 93 96 95 95 98 95 

MAR IS 92 98 94 95 94 93 
RS 93 97 94 95 94 93 

30% MCAR MCAR IS 94 93 94 93 94 91 
RS 93 93 94 93 94 92 

MAR IS 92 94 9 94 93 91 
RS 91 93 94 93 93 91 

MAR MCAR IS 94 97 95 95 94 96 
RS 95 97 94 9 93 96 

MAR IS 93 97 94 95 95 96 
RS 93 97 95 95 93 95 

Note: AV= auxiliary variable, IS= inclusive strategy, RS= restrictive strategy.  

 

 

 

 

 

 

 

 

 

 

 

 



 

76 

 

Table 24 

Confidence Interval Coverage for error variances by factors design for the moderate 

magnitude and the 30% of the Item Missingness Rate.  

AV 
Missing 
Rate 

Item 
Mechanism 

AV 
Missing 
Mechanism 

Strategy CIC % 

e1 e2 e3 e4 e5 e6 

15% MCAR MCAR IS 93 93 96 95 97 93 
RS 94 93 96 96 97 93 

MAR IS 93 94 96 95 98 95 
RS 94 95 96 96 97 93 

MAR MCAR IS 92 98 93 96 98 91 
RS 94 98 92 96 98 91 

MAR IS 94 98 93 96 99 91 
RS 94 98 93 96 100 92 

30% MCAR MCAR IS 93 93 96 95 97 93 
RS 93 95 96 95 97 92 

MAR IS 93 93 97 96 97 93 
RS 94 94 97 96 97 93 

MAR MCAR IS 93 97 93 96 98 91 
RS 93 97 92 96 98 90 

MAR IS 93 97 93 95 97 92 
RS 92 97 93 96 97 92 

Note: AV= auxiliary variable, IS= inclusive strategy, RS= restrictive strategy.  
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Table 25 

Confidence Interval Coverage for error variances by factors design for the low 

magnitude and the 15% of the Item Missingness Rate.  

AV 

Missing 

Rate 

Item 

Mechanism 

AV 

Missing 

Mechanism 

Strategy CIC % 

e1 e2 e3 e4 e5 e6 

15 MCAR MCAR IS 94 96 93 94 96 88 

RS 93 96 93 94 96 88 

MAR IS 93 96 93 94 96 88 

RS 92 96 93 94 95 88 

MAR MCAR IS 92 97 95 97 95 93 

RS 93 96 95 97 95 92 

MAR IS 93 97 94 97 95 93 

RS 93 96 94 97 95 93 

30 MCAR MCAR IS 94 95 93 93 95 90 

RS 94 95 93 93 94 91 

MAR IS 93 95 93 97 94 91 

RS 92 96 93 97 94 91 

MAR MCAR IS 93 97 94 97 95 93 

RS 93 97 94 97 95 93 

MAR IS 93 97 95 97 94 93 

RS 93 97 95 97 94 92 

Note. Bolded cells indicate that the coverage rate is less than 90%. 
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Table 26 

Confidence Interval Coverage for error variances by factors design for the low 

magnitude and the 30% of the Item Missingness Rate.  

AV 

Missing 

Rate 

Item 

Mechanism 

AV 

Missing 

Mechanism 

Strategy CIC % 

e1 e2 e3 e4 e5 e6 

15 MCAR MCAR IS 96 95 98 98 97 91 

RS 95 96 98 98 97 92 

MAR IS 96 96 98 98 97 91 

RS 96 96 98 98 97 92 

MAR MCAR IS 93 93 94 95 98 89 

RS 93 94 94 96 98 89 

MAR IS 93 94 95 96 97 89 

RS 91 94 95 96 98 89 

30 MCAR MCAR IS 95 96 97 98 97 92 

RS 95 95 97 98 97 91 

MAR IS 96 96 97 98 97 92 

RS 95 97 97 98 97 92 

MAR MCAR IS 92 94 95 96 97 89 

RS 93 93 93 96 98 89 

MAR IS 93 93 95 96 98 89 

RS 93 93 94 96 97 89 

Note. Bolded cells indicate that the coverage rate is less than 90%. 

FMI Properties  

Since few articles talk about FMI properties, it is important to discuss the FMI 

properties observed in this study. To understand the effect of using auxiliary variables on 

the FMI, the FMI properties without using auxiliary variables for each parameter are 

reported first.  

FMI Properties Without Using Auxiliary Variables. Analyzing the model 

without using any auxiliary variable showed that each parameter’s FMI increased as the 

items’ missingness rate increased (Table 27).  
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FMI Properties Using Auxiliary Variables. For the model with auxiliary 

variables, the FMI of the inclusive strategy is reported as both strategies showed similar 

results. The findings showed that adding auxiliary variables to the model decreased the 

FMI values for all parameters, conditioning on the magnitude of the correlation between 

auxiliary variables and items (Table 28). In other words, the decrease in the FMI was clear 

when the magnitude of the correlation between auxiliary variables and items was moderate 

and became very notable with adding more auxiliary variables to the model. This finding 

is not surprising, as the higher the correlations between auxiliary variables and items are, 

the more information the auxiliary variables will add to the model imputation.  

Another pattern observed in the results is related to the empirical SE. There was an 

association between each parameter’s SE and the FMI. Specifically, the SE and the FMI 

increased as the items’ missingness rates increased. Using auxiliary variables that 

correlated with items at a moderate level (.6), the SE and the FMI decreased. 

 

Table 21 

FMI Parameters Without Adding Auxiliary Variables (AVs)  

Item Missing 

Mechanism  

Item Missing 

Rate  

Factor 

Correlation 

Facto Loading 

Y1 

Error Variance 

Y1 

MCAR 15% .14 .21 .27 

30% .31 .42 .49 

MAR 15% .16 .23 .28 

30% .33 .43 .5 
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Table 22 

FMI Parameter with the Inclusive Strategy 

Magnitude Item Missing 

Mechanism  

Item 

Missing 

rate  

Factor 

Correlation 

Factor 

Loading Y1 

Error 

Variance Y1 

Moderate MCAR 15% .12 .17 .23 

30% .24 .36 .45 

MAR 15% .13 .19 .25 

30% .26 .37 .45 

Low MCAR 15% .14 .21 .28 

30% .31 .42 .49 

MAR 15% .16 .22 .28 

30% .32 .42 .5 
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The Empirical Study’s Results 

The Process of Selecting Auxiliary Variables 

In this empirical example, selecting auxiliary variables based on their FMI was 

much easier across the conditions as the FMIs differed among the auxiliary variables. As 

was expected, the highly correlated auxiliary variables (wave 2 BTACT items) showed 

lower FMIs in most parameters compared to lower correlated auxiliary variables 

(personality variables). The difference between FMIs becomes clearer between the 

imputation models. For example, in some conditions, using wave two BTACT items as the 

imputation model showed the lowest FMIs in most parameters compared to the model that 

included all the personality variables.  

Inclusive and Restrictive Strategies 

In the simulation study, there were no differences between the inclusive and 

restrictive strategies as the FMI suggested, including all auxiliary variables into the 

imputation model. As mentioned previously, the restrictive strategy showed lower FMIs 

only in a few conditions. In the empirical study, however, and using auxiliary variables 

that varied in their correlations with the imputed items, the restrictive strategy in all 

conditions showed lower FMIs in most parameters (13 out of 15) compared to inclusive 

strategy. The restrictive strategy included seven variables in the conditions of MCAR 15%, 

MCAR 30%, and MAR 30%, whereas five variables were included in the condition of 

MAR 15%. 
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Distinguishing Type A and B Auxiliary Variables 

In this study, age was used as a type A auxiliary variable. The parameters’ FMIs 

after including age in the imputation model showed lower FMIs compared to personality 

variables. Yet, some wave two BTACT items outperformed age in decreasing the FMIs. In 

the selection process of including auxiliary variables, the covariates that produced lower 

FMI were chosen to form an imputation model. In the condition of MAR 30%, selecting 

wave two BTACT items as the auxiliary variables showed the lowest FMIs in most 

parameters. However, after adding age into this imputation model, the FMI increased in 13 

parameters out of 15, and the FMIs after adding age were identical to the FMIs after using 

age separately. The same was observed in the condition of MAR 15%. Thus, FMI could 

not distinguish the type A auxiliary variable among the other variables.  

Bias  

In the conditions of MCAR with a 15% missingness rate, the inclusive and 

restrictive strategies showed similar results as all the parameters produced ignorable 

percentage bias except for the error variance of item 1. For MCAR with missingness of 

30%, the inclusive strategy produces three biased estimates (the estimates of the factor 

loading of item three and the error variances of items 1 and 2). However, the restrictive 

strategy showed two biased estimates (the error variances of items 1 and 2). In this 

condition, the restrictive strategy resulted in lower bias levels and lower biased estimates 

than the inclusive one.  
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For MAR with missingness of 15%, both strategies showed similar results as all the 

parameters produced ignorable percentage bias except for the error variance of item 1. In 

the MAR with missingness of 30%, the error variance estimates of item 1 showed a bias 

higher than 10%. Neither the inclusive strategy nor the restrictive strategy could solve the 

bias problem. However, the restrictive strategy resulted in lower bias levels than the 

inclusive one in nine parameters.  

In general, both strategies showed a similar pattern when the missingness rate was 

15%, yet, with a higher missingness rate, the restrictive strategy resulted in lower bias 

levels and/or lower biased estimates than the inclusive one (Tables 29-30).  
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Table 23 

Mean Percentage for Factor Loadings and Factor Correlation Bias by Factor Design.  

Missing 

Mechanism 

Missing Rate Strategy Bias % 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 F 

MCAR 15% Inclusive -1.33 1.38 2.74 -2.97 1.01 -1.81 0 .22 

Restrictive -1.46 1.56 2.02 -1.9 1.29 -1.47 -1.4 -.22 

30% Inclusive -2.98 4.91 10.1 -. 65 -1.75 -1.83 -4.22 3.85 

Restrictive -3.29 4.96 6.92 -.38 -.36 -1.29 0 1.34 

MAR 15% Inclusive -1.06 -0.75 -3.03 -0.41 -0.55 -1.06 4.92 1.56 

Restrictive -1.64 1.56 -3.03 -.65 -.55 -.13 -4.22 .44 

30% Inclusive -2.62 1.96 3.75 -2.17 -.27 -.12 4.92 2.69 

Restrictive -1.64 1.6 2.88 -.5 -2.21 -1.31 6.33 1.34 

Note. Bolded cells indicate that the mean percentage bias is higher than 10%. 
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      Table 30 

      Mean Percentage for Error Variance Bias by Factors Design.  

Missing 

Mechanism 

Missing 

Rate 

Strategy Bias % 

e1 e2 e3 e4 e5 e6 e7 

MCAR 15% Inclusive 28.32 -4.84 -.47 -1.64 -.23 -1.52 -5.31 

Restrictive 30.32 -5.27 -.11 1.14 -.78 -.46 -4.25 

30% Inclusive 75.93 -16.81 -7.08 -.29 3.79 5.37 1.06 

Restrictive 81.45 -17.2 -5.43 -.69 1.1 4.53 0 

MAR 15% Inclusive 24.6 -4.53 .05 1.86 .63 3.62 -4.25 

Restrictive 36.84 -7.13 .47 1 1.18 .03 -4.25 

30% Inclusive 55.13 -1.59 -2.47 4.03 1.02 5.09 0 

Restrictive 40.6 .47 -1.71 1.68 2.92 1.35 0 

     Note. Bolded cells indicate that the mean percentage bias is higher than 10%. 
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Efficiency 

Shifting toward the impact of using inclusive and restrictive strategies on efficiency 

and power, the relative gain in efficiency and the loss of statistical power caused by missing 

data were estimated. A specific parameter’s FMI value can be interpreted as the loss of 

efficiency in the estimation of that parameter (Savalei & Rhemtulla, 2012). Thus, the 

restrictive strategy, which produced lower FMI values in most parameters (13 out of 15) 

across conditions, indicated that the loss of efficiency in estimating these parameters due 

to missing data was lower with using the restrictive strategy than with the inclusive 

strategy.  

Moreover, the relative gain in efficiency results showed that the restrictive strategy 

improved efficiency relative to the absence of the auxiliary variables in most parameters, 

with more improvement with a higher missingness rate (Tables 31-32). However, across 

conditions, the inclusive strategy showed no improvement as most parameters were as 

effective as the model with no auxiliary variables. Some parameters showed a loss of 

efficiency when the mechanism was MAR (Tables 31-32).  

In terms of power, the FMI could be interpreted as the loss of statistical power due 

to missing data as it can be used to estimate the effective sample size. This indicates the 

sample size that would have achieved the same efficiency for a parameter with complete 

data. To illustrate this point, let’s take the condition of MAR with 30% of missingness as 

an example. In Table 31, the results of the effective sample size for all parameters are based 

on three imputation models: model without using auxiliary variables, model using the 

inclusive strategy, and model based on the restrictive strategy. The model with no auxiliary 



 

87 

 

 

variables can be used as the baseline to compare inclusive and restrictive strategies’ impact 

on efficiency and power. For example, under the model that did not include auxiliary 

variables, the factor loading of the sixth item is based on the effective sample size of N* = 

2673(1-0.401) = 1601, which means that its variability is as high as it would have been had 

it been based on a complete data set with only 1601 cases instead of 2673. This reflects the 

loss of power as the sample size decreased from 2673 to 1601. The inclusive strategy 

showed identical results to the model without any auxiliary variables for the same 

parameter (Table 33). 

On the other hand, using the restrictive strategy resulted in an effective sample size 

of 1981, which means that the included auxiliary variables increased the sample size by 

380 compared to the inclusive model and the model with no auxiliary variables. This 

indicates that while using the restrictive strategy based on the FMI could lead to gains in 

efficiency and power, the inclusive strategy that adds all available auxiliary variables could 

cross out the benefit of some of these auxiliary variables, and it could result in the same 

impact of not using any auxiliary variables. The improvement in efficiency and power by 

using the restrictive strategy was observed in most parameters, becoming larger with a 

higher rate of missingness.  
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Table 24 

Gain in Efficiency in Factor Loadings and Factor Correlation Bias by Factor Design.  

Missing 

Mechanism 

Missing 

Rate 

Strategy Y1 Y2 Y3 Y4 Y5 Y6 Y7 F 

MCAR 15% Inclusive 1 1 1 1 1 1.01 1 1 

Restrictive 1.02 1 1 1.06 1.06 1.1 1.31 1 

30% Inclusive 1 1 1 1.01 1 1.01 1 1 

Restrictive 1.03 1.03 1.11 1.18 1.17 1.28 1 1 

MAR 15% Inclusive 1 1 1 1.01 1 1.01 1 1 

Restrictive 1.04 1 1 1.08 1.06 1.12 1 1 

30% Inclusive 1 1 1.05 1 1 1 1 1 

Restrictive 1.03 1.06 1.11 1.18 1.17 1.27 1 1.09 

 

Table 32 

Gain in Efficiency in Error Variance by Factors Design.  

Missing 

Mechanism 

Missing 

Rate 

Strategy e1 e2 e3 e4 e5 e6 e7 

MCAR 15% Inclusive 1 1.009 1 1.002 1 1.004 1 

Restrictive 1.03 1.02 1 1.02 1.08 1.07 1 

30% Inclusive 1.009 1.02 1 1.006 1.03 1.009 1 

Restrictive 1.04 1.04 1.07 1.12 1.17 1.24 1 

MAR 15% Inclusive 0.98 0.99 1 1 1 1.003 1 

Restrictive 1.04 1 1 1.07 1.08 1.12 1 

30% Inclusive 1 1 1 0.99 1 1.001 1 

Restrictive 1.02 1.06 1.03 1.12 1.13 1.28 1 

Note. Bolded cells indicate the loss of efficiency.  



 

 

89 

 

 

Table 33 

The Effective Sample Size 

Parameters  Model with no AV IS RS 

Factor loading 1 1581.657 1581.657 1631.47 

Factor loading 2 1642.069 1642.069 1734.563 

Factor loading 3 1581.657 1665.997 1757.268 

Factor loading 4 1677.557 1677.557 1973.067 

Factor loading 5 1688.858 1688.858 1982.063 

Factor loading 6 1601.217 1601.217 1981.569 

Factor loading 7 1617 1617 1617 

Factor correlation  1856.25 1856.25 2021.172 

Error variance 1 1347.295 1347.295 1434.043 

Error variance 2 1376.297 1376.297 1448.821 

Error variance 3 1683.673 1683.673 1738.424 

Error variance 4 1646.899 1647.793 1811.195 

Error variance 5 1519.023 1519.023 1724.771 

Error variance 6 1352.936 1352.645 1647.283 

Error variance 7 2673 2673 2673 

Note: AV= auxiliary variable, IS= inclusive strategy, RS= restrictive strategy.



 

 

90 

 

 

Chapter Five: Discussion 

In this chapter, a summary of the main findings, the integration of this study’s 

results with the literature, this study’s limitations, and recommendations for researchers 

and future studies are provided.  

The Main Findings 

Bias. One of the outcomes of interest in this study was bias, which is the difference 

between the expected value of the parameter and the true or population parameter. Based 

on the simulation study results and the empirical study, the two strategies did not differ in 

parameter estimate bias. In the simulation study, both strategies were almost identical as 

the restrictive strategy that selected auxiliary variables based on the FMI suggested 

including all the auxiliary variables in most conditions. As mentioned previously, the FMI 

showed small differences when including different auxiliary variables. In other words, after 

adding each auxiliary variable separately, each parameter’s FMI was estimated, and the 

resulting FMIs displayed small differences with the change in auxiliary variables. This 

small difference might be due to the similarity between the auxiliary variables regarding 

the magnitude of the correlation with the items. To clarify, since all auxiliary variables 

correlated with items at the same level, the FMI did not show notable differences between 

them in the information gained. Therefore, it is not surprising that the performances of both
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strategies were almost the same in all the study’s outcomes since the inclusive and 

restrictive strategies were very similar across the board. Generating ten auxiliary 

variables that vary in their correlations with the items might show different results. 

However, varying the correlations of the ten variables and manipulating the other study 

factors would complicate the generation process. Thus, the empirical data in the second 

phase of this study was used to overcome this limitation.   

In addition, running the model without using any auxiliary variables resulted in no 

parameter estimate bias across conditions. This indicates that the FIML performs well in 

handling missing data assuming MAR. Thus, the auxiliary variables had little to contribute 

to reducing bias. This result is consistent with past studies, such as Savalei and Bentler 

(2009). They found no bias in parameter estimations across conditions, even without using 

any auxiliary variables with missingness rates of 15% and 30% and with low levels of 

correlation between items and auxiliary variables (.1 & .3). Another related work that used 

the CFA model and similar results is Yoo’s (2009) study. She examined both linear and 

nonlinear types of missingness under MCAR, MAR, and MNAR with missingness rates of 

10% and 20% using the MI techniques. The findings showed that restrictive and inclusive 

strategies produced ignorable bias levels in parameter estimates regardless of missingness 

rate and sample size when the missingness type was MCAR or linear-MAR. The bias in 

estimation was observed when the mechanism was MNAR or when the type of missingness 

was nonlinear, which was not covered in the current study. Enders (2008) mentioned that 

omitting auxiliary variables produced bias compared to the model that included them. Yet, 

these levels of bias are still considered ignorable under the threshold range that the current 
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study followed (Muthen et al., 1987). For example, in the structural model, the parameter 

resulting from regressing the latent variable Y on X was .553 when the auxiliary variable 

was omitted, while the population parameter was .6. By applying the threshold range that 

the current study followed (Muthen et al., 1987), we can infer that this level of bias is 

ignorable. The current study’s finding is consistent with previous literature, which 

indicated that the modern approaches in handling missing data performed well in 

estimating parameters with up to 30% missingness rates with random missingness. Thus, 

auxiliary variables have little to add to the imputation process in terms of bias.  

The empirical example did not show differences in the parameter estimation bias 

between the two strategies. Across all conditions, both produced the same amount of 

parameter bias. The biased parameter was the error variance of the first item, which has the 

highest factor loading among the other items (.96). In one condition, the second item’s 

error variances produced unacceptable bias levels, which also had the second-highest factor 

loading (.8). Likewise, Yoo’s (2009) study reported that the error variance of the items 

with high factor loadings showed biased estimates when the conditions were non-ignorable 

(MNAR) or nonlinear. However, Yoo (2009) examined two low missingness rates (10% 

& 20%), so we might observe biased error variance estimates with ignorable linear 

conditions similar to the current study when the factor loadings (≥.95) with missingness 

rate ≥ 15%, or when the factor loadings (≥.8) with missingness rate higher than 20%. This 

finding might indicate that the error variance associated with higher factor loadings seems 

to have been more easily disrupted by missingness than those with lower factor loadings 

(Yoo, 2009). More research is needed on the impact of missingness on parameter estimates 
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when the factor loading’s magnitude is high. It is worth noting that the restrictive strategy 

produced fewer biased estimates or lower bias levels in most parameters when the 

missingness rate was 30%. 

Efficiency. The accuracy and precision of parameter estimates were assessed in this 

study. As expected, the simulation study did not find differences between the two strategies 

as both were almost identical in the number of the included auxiliary variables. However, 

the empirical data distinguished between the inclusive strategy and the restrictive strategy. 

The results showed that the restrictive strategy improved the efficiency of parameter 

estimation compared to the absence of auxiliary variables and more than the improvement 

of the inclusive strategy in terms of efficiency, as reflected by FMI. This can be observed 

in the results of the gain efficiency due to the inclusion of auxiliary variables. The 

restrictive strategy resulted in a more efficient parameter estimate relative to the absence 

of the auxiliary variables. In contrast, the inclusive strategy resulted in parameter estimates 

that were as efficient as the model with no auxiliary variables, and in some cases, it showed 

losses of efficiency.  

As the restrictive strategy produced lower FMI values in most parameters (13 out 

of 15) across conditions, the loss of efficiency in estimating these parameters due to 

missing data was lower than the inclusive strategy. This could imply the loss of statistical 

power due to missing data. The restrictive strategy could increase power whereas the 

inclusive strategy showed no improvement in power. It indicates that selecting auxiliary 

variables based on the FMI can help choose variables that can recapture some of the lost 

information, which will improve power. The inclusive strategy with all available auxiliary 
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variables could complicate the model by adding noise to the model. Thus, the “expected 

asymptotic gains in efficiency may be canceled out by variability due to fitting a larger 

number of parameters” (Savalei & Bentler, 2009, pp. 488-489). The empirical data 

example provides initial support for the restrictive strategy, suggesting that it can perform 

better than the inclusive strategy in power and efficiency. Future research would be needed 

to examine the findings from this empirical study.  

Type A Auxiliary Variables. One important finding that is worth noting is related 

to the type A auxiliary variable which is the variable that associates with incomplete 

variables and missingness indicators. In the current study, including the type A auxiliary 

variable showed no difference in bias compared to omitting it. Collins et al. (2001) found 

that omitting type A auxiliary variables introduced bias to the parameter estimations when 

the missingness rate was 50%, and the magnitude of the correlation was very high (r = .9). 

Another condition affected by omitting the type A auxiliary variable was the condition with 

the nonlinear missingness (Collins et al., 2001; Yoo, 2009). In the current study that 

focused on linear-MAR with low and moderate missingness rates and correlation 

magnitudes, omitting type A did not produce bias. This indicates that the type A auxiliary 

variable will effectively handle linear missingness when the missingness rate and the 

magnitude of the correlation with the imputed variable are very high or when the 

missingness is nonlinear (Collins et al., 2001; Yoo, 2009). 

Recommendations  

Given the current study’s results and the simulation studies that utilized the CFA 

model to examine the impact of missing data on parameters estimate bias (Enders, 2008; 
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Enders & Peugh, 2004; Savalei & Bentler, 2009; Yoo, 2009), a few conclusions can be 

drawn within the limit of the common examined conditions in these studies (missingness 

rate up to 30%, assuming MCAR or linear-MAR). Since these studies found no differences 

in bias between auxiliary variables’ absence and presence (Enders, 2008; Enders & Peugh, 

2004; Savalei & Bentler, 2009), and no differences in bias with using auxiliary variables 

that associated with imputed items at a  low level (Enders & Peugh, 2004; Savalei & 

Bentler, 2009) or even high level (Enders, 2008; Yoo, 2009), and no differences between 

the inclusive and restrictive strategies (Yoo, 2009), the modern approaches in handling 

missing data should perform well in parameter estimation. One exception might be applied 

to items with high factor loadings (.8-.9) that might produce biased estimates. 

Omitting the cause of missingness (the type A auxiliary variable) was not 

detrimental in terms of bias when the mechanism was linear-MAR (Enders, 2008; Enders 

& Peugh, 2004; Savalei & Bentler, 2009; Yoo, 2009). However, omitting the type A 

auxiliary variable could cause bias in parameter estimation when the missingness is 

nonlinear (Yoo, 2009).  

That being said, with a missingness rate of up to 30% and assuming linear-MAR, 

researchers and practitioners should use modern techniques (MI-FIML) to handle missing 

data as they showed ignorable parameter estimation bias, even without the use of auxiliary 

variables.  

Although using auxiliary variables showed no impact on estimation bias, 

researchers should consider the efficiency and power improvement that auxiliary variables 

can add (Mustillo, 2014). The empirical study demonstrated the impact of adding auxiliary 
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variables in efficiency and power. Nevertheless, this improvement was consistent only with 

using the restrictive strategy. In line with Mustillo (2012), the inclusive strategy led to 

inconsistent results in gaining power and decreasing SE. Thus, the best way to maximize 

gain and minimize loss is to select auxiliary variables based on the FMI. The current study 

restricts the common recommendation for including all available variables (Collins et al., 

2001) to include only variables that reduced the FMI. Therefore, it is important to evaluate 

the candidate auxiliary variables and know whether they are likely to be beneficial. The 

recommended way to evaluate the auxiliary variable’s usefulness is by estimating the FMI, 

indicating how much information we can gain by adding this variable to the model. 

Consistent with Madley-Dowd et al. (2019), the observed positive association between the 

FMI and SE shows that FMI can be a useful indicator of the gain in efficiency and power.  

Limitations and Directions for Future Research 

While the current simulation study has included several common design factors, 

such as the correlation magnitude between auxiliary variables and items, missingness 

proportion, and mechanism of missingness, other absent factors may also have substantial 

impacts on the performance of the FMI. For example, the effect of using auxiliary variables 

with different levels of correlations (low, moderate, and high) has been observed in the 

empirical example where the FMI shows different estimates, which helped to form an 

imputation model using the restrictive strategy that increased power and efficiency 

compared to the inclusive strategy. However, the results cannot be generalized due to the 

lack of replications in the empirical study. Future studies should examine the selection of 

auxiliary variables with different levels of correlation magnitude based on the FMI.  
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In addition, there are multiple other factors worth investigating that have not been 

included in this study, such as factor loading magnitude that showed different results in the 

parameter estimation bias when the magnitude was strong. Thus, it might be useful to 

include factor loading magnitude as a controlled level in another study. Moreover, because 

this study only used MCAR and linear-MAR, future studies should include nonlinear-MAR 

and MNAR and compare the FMI performance with the different types of missingness.  

In this simulation study, the sample size was fixed at 500 which is considered a 

large sample size. It may be that the design factors showed no impact on the study’s 

outcomes since the sample size was large. Yoo (2009) found that a sample size of 200 with 

a missingness rate of 20% tended to result in larger standard error estimates. Thus, with a 

smaller sample size (100-200), the missing mechanism, missingness rate, and magnitude 

of the correlation could have more impact on bias and efficacy. Additionally, while it is 

possible that the benefits seen in this study on efficiency and power were small, this could 

be due to the efficient large sample size (500). Hence, it is plausible that more benefits in 

efficiency and power will be observed with a smaller sample size. 

This study utilized CFA model which is the basic model and first step in building 

most types of SEM models. It will be interesting to know if the results of this study can be 

generalized to other SEM models. Given the consistency of the study’s results with 

previous works (Andridge et al., 2015; Madley-Dowd et al., 2019) on applying the use of 

FMI in the selection of auxiliary variables, the use of this technique can be used in more 

statistical analysis such as logistic regression, canonical-correlation, and discriminate 

analysis. Madley-Dowd et al. (2019) found that FMI is an effective tool in selecting 
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auxiliary variables to impute the linear regression analysis. In this study, the empirical 

study showed initial support for using this technic to impute CFA, which can suggest the 

applicability of the FMI in evaluating auxiliary variables to impute other statistical models.   

 

In conclusion, findings from the current study may not generalize to situations 

where missingness is substantially higher than 30% or when the missing mechanism is 

nonlinear. Thus, further studies may extend the study’s scope by examining additional 

factors and/or using alternative levels of the design factors. 

Reflection  

In the following paragraphs, I would like to share the personal experiences and 

struggles that I endured during the dissertation process. 

Simulation studies are considered experimental studies where the researcher 

manipulates some factors to examine their impacts on some outcomes. In the process of 

designing my simulation study, I tried to focus on some factors found in the literature of 

missing data to influence the bias and efficiency of parameter estimates. This study 

examined using the FMI to select and evaluate the beneficial auxiliary variables among a 

large number of candidate covariates. Some factors that were of interest are missingness 

rate and missing mechanisms in both items and auxiliary variables, the magnitude of the 

correlation between items and auxiliary variables, the variability of the correlation 

magnitude between items and auxiliary variables in the same condition, the magnitude of 

factor lodgings of the items, number of candidate auxiliary variables, and sample size. 

Varying all previous factors in one study will broaden the scope of the study and will 
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introduce complexity in generation data with different levels of previous factors. Thus, 

some factors were fixed in this study (sample size, the variability of the correlation 

magnitude between items and auxiliary variables in the same matrix, magnitude of factor 

lodgings of the items, number of candidate auxiliary variables). To choose the levels of 

the manipulated factors, the researcher considered levels of factors that reflect real-world 

conditions commonly faced by researchers. For example, the magnitudes of the 

correlation between items and auxiliary variables were chosen to be moderate and low as 

consulting many actual public data showed this range of magnitudes.  

The results of the simulation study were disappointing as there was no difference 

between the inclusive and restrictive strategies. The lack of variability of the correlation 

between items and auxiliary variables in the same condition was expected to be the 

reason for the absence of the difference between the two strategies.  

In order to overcome the simulation study limitations, in the second study, I used 

empirical data where I tried to examine some of the uncovered factors. For example, 17 

covariates were included as auxiliary variables that represented low, moderate, and high 

correlation with the imputed items. As expected, the variability of the correlation between 

the imputed items and auxiliary variables showed differences between the two strategies 

in terms of efficiency and power.  

In simulation studies where many factors could affect the results and are hard to 

be all manipulated, it would be a good idea to build the simulation study based on actual 

data. In other words, the actual data can be treated as the population where the parameters 

from the existing data set represent the population parameter. This way researcher will 
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not need to manipulate all variables, and the design will reflect more real-world 

conditions. 
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Appendix A 

 

Mplus syntax to generate the simulation data 

 

TITLE: CFA MCAR with 15%, and r is Moderate  

 

MONTECARLO: 

 NAMES = y1-y6 x1-x10; 

 NOBSERVATIONS = 500; 

 NREPS = 100; 

 SEED = 4533; 

 PATMISS = y1(.15) y2(.15) y3(.15) y4(.15) y5(.15) y6(.15) 

              x1(.15) x2(.15) x3(.15) x4(.15) x5(.15) x6(.15) 

              x7(.15) x8(.15) x9(.15) x10(.15);  

               

PATPROBS = 1; 

    REPSAVE = ALL;  

    SAVE = MCAR-H.rep*.dat; 

 

ANALYSIS: TYPE = BASIC; 

 

MODEL POPULATION: 

 [x1-x10@0];  

 x1-x10*1; 

 f1 BY y1-y3*0.7; 

    f2 BY y4-y6*0.7; 
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 f1@1; 

    f2@1; 

 y1-y6*.51; 

    f1 with f2*.4; 

    y1-y6 with x1-x10@.42;  

    x1-x10 with x1-x10@.4; 

 

OUTPUT: TECH1  TECH9; 
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Appendix B 

 

R code for Running CFA 

 

library(semTools) 

library(lavaan) 

 

 

mcar <- read.csv("dataforR.csv", na.strings = "999") 

 

#set up model   

  mcar.fmi <- 'F1 =~ y1 + y2 + y3 

F2 =~ y4 + y5 + y6' 

   

  fit.mcarfmi <- cfa.auxiliary(mcar.fmi, data = mcar,std.lv=TRUE, missing = "fiml", 

estimator = "ml", information ="observed", 

                               aux = ("x1")) 

    

  #save model standard errors 

  SE.step1 <- parameterEstimates(fit.mcarfmi)$se 

  #get model-implied covariance matrix and means 

  cov.cfa <- fitted.values(fit.mcarfmi)$cov 

  means.cfa <- fitted.values(fit.mcarfmi)$mean 

  #run the model using model-implied cov. matrix and means as input 

  step2.FMI <- cfa(mcar.fmi, sample.cov = cov.cfa, sample.mean = 

                     means.cfa, sample.nobs = 500, std.lv = TRUE, 

                   meanstructure = TRUE, information = "observed") 
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  #get standard errors 

  SE.step2 <- parameterEstimates(step2.FMI)$se 

  #compute vector of fraction of missing information estimates 

  temp_store_params$FMI <- 1-(SE.step2^2/SE.step1^2) 
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Appendix C 

 

Table 1  

Missing Counts and Missing Rates for each Condition 

Condition Missing Counts /Missing Rate % 

Y1 Y2 Y3 Y4 Y5 Y6 Y7 

MCAR 

15% 

401/15 401/15 401/15 401/15 401/15 401/15 401/15 

MCAR 

30% 

802/30 802/30 802/30 802/30 802/30 802/30 802/30 

MAR 

15% 

401/15 401/15 401/15 401/15 401/15 401/15 401/15 

MAR 

30% 

802/30 802/30 802/30 802/30 802/30 802/30 802/30 
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Checking the Missing Mechanisms 

  

Table 2 

Checking the Missing Mechanisms (MCAR -15%) for variable Y1. 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.006 .045 .020 1 .887 .994 

x2 .018 .039 .202 1 .653 1.018 

x3 -.097 .048 4.155 1 .042 .907 

x4 .021 .011 3.481 1 .062 1.021 

x5 -.047 .049 .900 1 .343 .954 

x6 .011 .007 2.154 1 .142 1.011 

x7 .118 .336 .122 1 .726 1.125 

age .003 .006 .193 1 .660 1.003 

p1 -.057 .055 1.081 1 .299 .944 

p2 -.004 .047 .006 1 .939 .996 

p3 .067 .049 1.836 1 .175 1.069 

p4 .000 .042 .000 1 .995 1.000 

p5 .033 .042 .604 1 .437 1.033 

p6 -.032 .050 .392 1 .531 .969 

p7 -.005 .042 .014 1 .905 .995 

p8 .037 .041 .830 1 .362 1.038 

p9 -.030 .043 .504 1 .478 .970 

Constant -2.544 .841 9.158 1 .002 .079 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 3 

Checking the Missing Mechanisms (MCAR -15%) for variable Y2. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.018 .046 .146 1 .702 .983 

x2 .033 .040 .689 1 .406 1.033 

x3 .030 .048 .400 1 .527 1.031 

x4 .027 .011 5.640 1 .018 1.027 

x5 -.077 .050 2.391 1 .122 .926 

x6 -.007 .007 .963 1 .326 .993 

x7 -.015 .336 .002 1 .963 .985 

age .008 .006 1.444 1 .230 1.008 

p1 .047 .049 .923 1 .337 1.048 

p2 .035 .047 .571 1 .450 1.036 

p3 .043 .048 .825 1 .364 1.044 

p4 .025 .043 .323 1 .570 1.025 

p5 .008 .042 .038 1 .845 1.008 

p6 .005 .050 .011 1 .918 1.005 

p7 -.048 .042 1.317 1 .251 .953 

p8 .047 .041 1.285 1 .257 1.048 

p9 -.038 .043 .748 1 .387 .963 

Constant -2.819 .840 11.259 1 <.001 .060 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 4 

Checking the Missing Mechanisms (MCAR -15%) for variable Y3. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.016 .045 .126 1 .723 .984 

x2 .007 .039 .030 1 .862 1.007 

x3 .059 .047 1.597 1 .206 1.061 

x4 -.008 .011 .489 1 .484 .992 

x5 -.089 .049 3.339 1 .068 .915 

x6 .005 .007 .414 1 .520 1.005 

x7 .197 .321 .375 1 .540 1.217 

age .006 .006 1.065 1 .302 1.006 

p1 -.091 .055 2.721 1 .099 .913 

p2 .017 .046 .128 1 .721 1.017 

p3 .033 .046 .517 1 .472 1.034 

p4 .032 .042 .593 1 .441 1.033 

p5 .015 .042 .129 1 .719 1.015 

p6 -.023 .050 .217 1 .642 .977 

p7 .012 .042 .078 1 .780 1.012 

p8 -.021 .040 .283 1 .595 .979 

p9 -.022 .042 .265 1 .607 .979 

Constant -2.446 .819 8.926 1 .003 .087 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
 

 

  



 

118 

 

 

Table 5 

Checking the Missing Mechanisms (MCAR -15%) for variable Y4. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.032 .046 .483 1 .487 .969 

x2 .041 .039 1.107 1 .293 1.042 

x3 .032 .047 .463 1 .496 1.033 

x4 .000 .011 .001 1 .980 1.000 

x5 .019 .049 .147 1 .701 1.019 

x6 -.011 .007 2.096 1 .148 .989 

x7 -.077 .339 .052 1 .820 .926 

age .008 .006 1.706 1 .192 1.008 

p1 -.124 .060 4.311 1 .038 .883 

p2 -.057 .047 1.457 1 .227 .945 

p3 .133 .054 6.108 1 .013 1.143 

p4 -.009 .043 .043 1 .836 .991 

p5 .015 .042 .128 1 .721 1.015 

p6 .048 .050 .909 1 .340 1.049 

p7 .027 .044 .382 1 .536 1.028 

p8 .066 .040 2.695 1 .101 1.068 

p9 -.035 .043 .650 1 .420 .966 

Constant -2.809 .855 10.792 1 .001 .060 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 6 

Checking the Missing Mechanisms (MCAR -15%) for variable Y5. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .012 .046 .064 1 .801 1.012 

x2 .021 .039 .285 1 .593 1.021 

x3 .044 .047 .852 1 .356 1.045 

x4 .022 .011 3.724 1 .054 1.022 

x5 -.078 .049 2.470 1 .116 .925 

x6 -.003 .007 .225 1 .635 .997 

x7 -.197 .340 .338 1 .561 .821 

age .006 .006 .761 1 .383 1.006 

p1 -.039 .054 .518 1 .472 .962 

p2 -.043 .048 .797 1 .372 .958 

p3 .070 .048 2.180 1 .140 1.073 

p4 .058 .042 1.885 1 .170 1.060 

p5 -.019 .043 .196 1 .658 .981 

p6 .058 .051 1.335 1 .248 1.060 

p7 -.118 .040 8.588 1 .003 .889 

p8 -.087 .042 4.309 1 .038 .917 

p9 .014 .043 .108 1 .743 1.014 

Constant -2.201 .841 6.844 1 .009 .111 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 7 

Checking the Missing Mechanisms (MCAR -15%) for variable Y6. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .043 .045 .925 1 .336 1.044 

x2 -.059 .039 2.252 1 .133 .943 

x3 -.064 .048 1.796 1 .180 .938 

x4 -.007 .011 .387 1 .534 .993 

x5 -.003 .049 .003 1 .959 .997 

x6 .011 .007 2.333 1 .127 1.011 

x7 -.030 .340 .008 1 .929 .970 

age -.007 .006 1.320 1 .251 .993 

p1 .084 .048 3.039 1 .081 1.088 

p2 -.019 .047 .164 1 .686 .981 

p3 .004 .046 .006 1 .939 1.004 

p4 .000 .043 .000 1 .992 1.000 

p5 .010 .043 .053 1 .818 1.010 

p6 .014 .050 .079 1 .779 1.014 

p7 -.040 .042 .929 1 .335 .961 

p8 .032 .041 .616 1 .433 1.032 

p9 .039 .044 .784 1 .376 1.039 

Constant -1.518 .832 3.327 1 .068 .219 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 8 

Checking the Missing Mechanisms (MCAR -15%) for variable Y7. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .006 .046 .015 1 .904 1.006 

x2 -.079 .040 3.951 1 .047 .924 

x3 .004 .048 .006 1 .938 1.004 

x4 .004 .011 .138 1 .710 1.004 

x5 .083 .049 2.792 1 .095 1.086 

x6 -.006 .007 .653 1 .419 .994 

x7 -.062 .339 .034 1 .854 .939 

age -.007 .006 1.397 1 .237 .993 

p1 -.087 .055 2.454 1 .117 .917 

p2 .065 .047 1.903 1 .168 1.067 

p3 .064 .048 1.777 1 .183 1.066 

p4 -.020 .042 .237 1 .626 .980 

p5 .036 .043 .698 1 .404 1.036 

p6 .010 .051 .037 1 .848 1.010 

p7 -.053 .041 1.672 1 .196 .948 

p8 -.120 .042 8.065 1 .005 .887 

p9 .042 .043 .951 1 .329 1.043 

Constant -.964 .839 1.320 1 .251 .381 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 9 

Checking the Missing Mechanisms (MCAR -30%) for variable Y1. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.071 .036 3.865 1 .049 .932 

x2 .064 .031 4.311 1 .038 1.066 

x3 -.019 .037 .273 1 .601 .981 

x4 .030 .009 11.803 1 <.001 1.031 

x5 -.030 .038 .617 1 .432 .970 

x6 .004 .006 .602 1 .438 1.004 

x7 .183 .262 .486 1 .486 1.201 

age .002 .005 .220 1 .639 1.002 

p1 -.005 .041 .013 1 .909 .995 

p2 .058 .037 2.534 1 .111 1.060 

p3 .085 .038 5.025 1 .025 1.089 

p4 -.007 .033 .045 1 .832 .993 

p5 .037 .033 1.228 1 .268 1.037 

p6 .003 .039 .007 1 .934 1.003 

p7 -.006 .033 .036 1 .850 .994 

p8 .011 .032 .126 1 .723 1.011 

p9 -.054 .034 2.610 1 .106 .947 

Constant -2.129 .656 10.518 1 .001 .119 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 10 

Checking the Missing Mechanisms (MCAR -30%) for variable Y2. 

 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.025 .035 .484 1 .487 .976 

x2 .013 .030 .191 1 .662 1.013 

x3 .052 .037 2.001 1 .157 1.053 

x4 .007 .009 .666 1 .414 1.007 

x5 -.047 .038 1.487 1 .223 .955 

x6 -.004 .006 .626 1 .429 .996 

x7 -.160 .263 .369 1 .543 .852 

age .000 .005 .007 1 .935 1.000 

p1 -.050 .041 1.447 1 .229 .951 

p2 -.053 .037 2.090 1 .148 .948 

p3 .075 .038 4.019 1 .045 1.078 

p4 .048 .033 2.118 1 .146 1.049 

p5 .044 .033 1.802 1 .179 1.045 

p6 .018 .039 .209 1 .648 1.018 

p7 .008 .033 .054 1 .816 1.008 

p8 .000 .032 .000 1 .998 1.000 

p9 -.018 .033 .298 1 .585 .982 

Constant -1.285 .650 3.916 1 .048 .277 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 11 

Checking the Missing Mechanisms (MCAR -30%) for variable Y3. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .021 .035 .345 1 .557 1.021 

x2 -.018 .031 .331 1 .565 .983 

x3 -.090 .037 5.805 1 .016 .914 

x4 .005 .009 .315 1 .574 1.005 

x5 .003 .038 .008 1 .928 1.003 

x6 .005 .006 .843 1 .358 1.005 

x7 .057 .261 .047 1 .828 1.058 

age -.002 .005 .128 1 .720 .998 

p1 .050 .039 1.579 1 .209 1.051 

p2 -.017 .037 .210 1 .646 .983 

p3 .001 .036 .001 1 .980 1.001 

p4 .015 .033 .206 1 .650 1.015 

p5 .026 .033 .630 1 .427 1.027 

p6 .028 .039 .516 1 .473 1.029 

p7 -.023 .033 .511 1 .475 .977 

p8 -.022 .032 .472 1 .492 .978 

p9 .025 .034 .536 1 .464 1.025 

Constant -.930 .646 2.070 1 .150 .395 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 12 

Checking the Missing Mechanisms (MCAR -30%) for variable Y4. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.026 .036 .520 1 .471 .975 

x2 -.020 .031 .443 1 .506 .980 

x3 -.054 .037 2.118 1 .146 .947 

x4 .012 .009 2.000 1 .157 1.013 

x5 .099 .038 6.630 1 .010 1.104 

x6 -.009 .006 2.281 1 .131 .991 

x7 -.051 .260 .039 1 .844 .950 

age -.003 .005 .349 1 .555 .997 

p1 -.080 .042 3.520 1 .061 .924 

p2 .007 .037 .038 1 .845 1.007 

p3 -.017 .035 .223 1 .637 .983 

p4 .014 .033 .189 1 .664 1.014 

p5 -.001 .034 .001 1 .977 .999 

p6 .061 .039 2.369 1 .124 1.062 

p7 -.040 .033 1.521 1 .217 .961 

p8 -.085 .032 6.941 1 .008 .918 

p9 .005 .033 .018 1 .892 1.005 

Constant .227 .644 .124 1 .724 1.255 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 

 

 

  



 

126 

 

 

Table 14 

Checking the Missing Mechanisms (MCAR -30%) for variable Y5. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.035 .035 1.003 1 .317 .965 

x2 .005 .030 .031 1 .860 1.005 

x3 .001 .036 .001 1 .981 1.001 

x4 -.011 .009 1.545 1 .214 .989 

x5 .013 .038 .118 1 .731 1.013 

x6 .004 .006 .409 1 .523 1.004 

x7 -.087 .260 .112 1 .738 .917 

age -.004 .005 .803 1 .370 .996 

p1 .076 .039 3.774 1 .052 1.078 

p2 -.021 .036 .348 1 .556 .979 

p3 -.004 .035 .010 1 .919 .996 

p4 -.033 .033 1.005 1 .316 .968 

p5 -.018 .033 .285 1 .593 .982 

p6 -.004 .039 .010 1 .919 .996 

p7 .026 .033 .615 1 .433 1.026 

p8 .038 .031 1.460 1 .227 1.039 

p9 .051 .033 2.374 1 .123 1.053 

Constant -.545 .640 .725 1 .394 .580 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 15 

Checking the Missing Mechanisms (MCAR -30%) for variable Y6. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .009 .035 .061 1 .805 1.009 

x2 -.010 .030 .102 1 .749 .990 

x3 .020 .037 .292 1 .589 1.020 

x4 -.006 .009 .391 1 .532 .994 

x5 -.029 .038 .558 1 .455 .972 

x6 .001 .006 .013 1 .909 1.001 

x7 -.167 .264 .398 1 .528 .847 

age -.004 .005 .570 1 .450 .996 

p1 .023 .040 .327 1 .568 1.023 

p2 .039 .036 1.121 1 .290 1.039 

p3 .010 .036 .076 1 .782 1.010 

p4 -.052 .033 2.452 1 .117 .950 

p5 -.003 .033 .006 1 .938 .997 

p6 .023 .039 .332 1 .564 1.023 

p7 .050 .033 2.224 1 .136 1.051 

p8 -.014 .032 .188 1 .664 .986 

p9 -.017 .033 .255 1 .613 .983 

Constant -.594 .646 .845 1 .358 .552 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 16 

Checking the Missing Mechanisms (MCAR -30%) for variable Y7. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.026 .035 .547 1 .460 .974 

x2 .032 .031 1.065 1 .302 1.032 

x3 .014 .037 .151 1 .697 1.014 

x4 .015 .009 3.067 1 .080 1.016 

x5 -.012 .038 .098 1 .755 .988 

x6 -.010 .006 3.271 1 .071 .990 

x7 -.165 .262 .397 1 .529 .848 

age .003 .005 .515 1 .473 1.003 

p1 .019 .040 .225 1 .635 1.019 

p2 .036 .037 .969 1 .325 1.037 

p3 -.045 .035 1.687 1 .194 .956 

p4 -.049 .033 2.237 1 .135 .952 

p5 .026 .033 .604 1 .437 1.026 

p6 -.063 .040 2.542 1 .111 .939 

p7 .083 .034 6.053 1 .014 1.086 

p8 .018 .032 .303 1 .582 1.018 

p9 -.022 .033 .440 1 .507 .978 

Constant -.689 .642 1.153 1 .283 .502 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 17 

Checking the Missing Mechanisms (MAR -15%) for variable Y1. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .020 .041 .233 1 .629 1.020 

x2 -.019 .035 .285 1 .593 .981 

x3 -.028 .043 .422 1 .516 .972 

x4 -.004 .011 .155 1 .694 .996 

x5 .002 .044 .002 1 .965 1.002 

x6 -.012 .006 3.612 1 .057 .988 

x7 .000 .000 .376 1 .540 1.000 

age .029 .006 26.009 1 <.001 1.029 

p1 .000 .000 .932 1 .334 1.000 

p2 .000 .000 1.439 1 .230 1.000 

p3 .000 .000 .730 1 .393 1.000 

p4 .000 .000 .026 1 .871 1.000 

p5 .000 .000 .095 1 .759 1.000 

p6 .000 .000 1.258 1 .262 1.000 

p7 .000 .000 .722 1 .396 1.000 

p8 .000 .000 .332 1 .564 1.000 

p9 .000 .000 .977 1 .323 1.000 

Constant -3.000 .558 28.917 1 <.001 .050 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 18 

Checking the Missing Mechanisms (MAR -15%) for variable Y2. 

 

 

 B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .003 .041 .006 1 .939 1.003 

x2 -.019 .036 .275 1 .600 .982 

x3 -.032 .041 .620 1 .431 .968 

x4 .004 .010 .182 1 .670 1.004 

x5 .001 .005 .031 1 .861 1.001 

x6 .000 .001 .077 1 .781 1.000 

x7 .000 .000 .761 1 .383 1.000 

age .025 .005 20.782 1 <.001 1.025 

p1 .000 .000 3.582 1 .058 1.000 

p2 .000 .000 2.063 1 .151 1.000 

p3 .000 .000 .205 1 .651 1.000 

p4 .000 .001 .122 1 .727 1.000 

p5 .001 .001 .539 1 .463 1.001 

p6 .000 .000 .387 1 .534 1.000 

p7 .000 .000 .451 1 .502 1.000 

p8 .000 .001 .071 1 .790 1.000 

p9 .000 .001 .218 1 .641 1.000 

Constant -3.226 .509 40.152 1 <.001 .040 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 19 

Checking the Missing Mechanisms (MAR -15%) for variable Y3. 

 

 

 B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.073 .041 3.102 1 .078 .930 

x2 .055 .035 2.378 1 .123 1.056 

x3 -.006 .041 .024 1 .878 .994 

x4 .001 .010 .014 1 .906 1.001 

x5 .001 .001 .211 1 .646 1.001 

x6 .000 .001 .095 1 .757 1.000 

x7 .000 .000 .375 1 .541 1.000 

age .028 .005 27.606 1 <.001 1.029 

p1 .000 .000 3.696 1 .055 1.000 

p2 .000 .000 .066 1 .797 1.000 

p3 .000 .000 .356 1 .551 1.000 

p4 .000 .000 1.572 1 .210 1.000 

p5 .000 .000 .284 1 .594 1.000 

p6 .000 .000 .287 1 .592 1.000 

p7 .000 .000 .678 1 .410 1.000 

p8 .000 .000 .008 1 .930 1.000 

p9 .000 .000 3.789 1 .052 1.000 

Constant -3.304 .506 42.695 1 <.001 .037 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 20 

Checking the Missing Mechanisms (MAR -15%) for variable Y4. 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.008 .041 .038 1 .845 .992 

x2 -.004 .035 .011 1 .916 .996 

x3 .042 .042 1.040 1 .308 1.043 

x4 .011 .010 1.195 1 .274 1.011 

x5 .000 .002 .044 1 .834 1.000 

x6 -.016 .006 6.947 1 .008 .984 

x7 .000 .000 .395 1 .530 1.000 

age .026 .006 21.348 1 <.001 1.026 

p1 .000 .000 .009 1 .924 1.000 

p2 -.001 .002 .112 1 .738 .999 

p3 .000 .000 .605 1 .437 1.000 

p4 .003 .005 .295 1 .587 1.003 

p5 .000 .002 .076 1 .783 1.000 

p6 .000 .000 1.393 1 .238 1.000 

p7 -.001 .002 .082 1 .774 .999 

p8 .000 .002 .028 1 .867 1.000 

p9 -.001 .002 .073 1 .787 .999 

Constant -3.178 .554 32.948 1 <.001 .042 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 21 

Checking the Missing Mechanisms (MAR -15%) for variable Y5. 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .079 .041 3.729 1 .053 1.082 

x2 -.046 .035 1.770 1 .183 .955 

x3 -.034 .042 .645 1 .422 .967 

x4 -.006 .010 .311 1 .577 .994 

x5 -.021 .043 .253 1 .615 .979 

x6 .000 .002 .041 1 .839 1.000 

x7 .000 .000 1.530 1 .216 1.000 

age .031 .005 31.313 1 <.001 1.031 

p1 -.035 .027 1.634 1 .201 .966 

p2 .000 .000 .049 1 .825 1.000 

p3 .000 .000 .184 1 .668 1.000 

p4 -.061 .036 2.994 1 .084 .940 

p5 .000 .000 .058 1 .810 1.000 

p6 .000 .000 2.703 1 .100 1.000 

p7 .000 .000 .207 1 .649 1.000 

p8 .096 .036 7.150 1 .007 1.101 

p9 .000 .000 .173 1 .677 1.000 

Constant -3.691 .514 51.565 1 <.001 .025 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 22 

Checking the Missing Mechanisms (MAR -15%) for variable Y6. 

 

 B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.028 .041 .447 1 .504 .973 

x2 .045 .035 1.625 1 .202 1.046 

x3 .071 .043 2.803 1 .094 1.074 

x4 .007 .010 .445 1 .505 1.007 

x5 -.035 .044 .641 1 .423 .965 

x6 -.004 .006 .447 1 .504 .996 

x7 .000 .000 1.646 1 .200 1.000 

age .030 .006 27.511 1 <.001 1.030 

p1 -.001 .002 .124 1 .725 .999 

p2 .000 .000 .106 1 .745 1.000 

p3 .000 .000 1.920 1 .166 1.000 

p4 .000 .000 1.435 1 .231 1.000 

p5 -.001 .007 .014 1 .906 .999 

p6 .000 .000 .049 1 .825 1.000 

p7 .000 .000 3.325 1 .068 1.000 

p8 .001 .007 .034 1 .855 1.001 

p9 .000 .001 .142 1 .706 1.000 

Constant -3.972 .564 49.617 1 <.001 .019 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 23 

Checking the Missing Mechanisms (MAR -30%) for variable Y1. 

 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.023 .036 .423 1 .515 .977 

x2 -.014 .031 .193 1 .661 .986 

x3 -.015 .038 .149 1 .699 .986 

x4 .005 .009 .310 1 .578 1.005 

x5 .006 .039 .021 1 .883 1.006 

x6 .001 .006 .033 1 .856 1.001 

x7 .113 .262 .186 1 .667 1.119 

age .036 .005 50.101 1 <.001 1.036 

p1 .017 .040 .186 1 .666 1.018 

p2 .014 .037 .141 1 .708 1.014 

p3 -.028 .036 .622 1 .430 .972 

p4 -.021 .034 .402 1 .526 .979 

p5 .019 .034 .335 1 .563 1.020 

p6 -.018 .040 .210 1 .647 .982 

p7 .070 .034 4.191 1 .041 1.073 

p8 -.030 .033 .830 1 .362 .971 

p9 .033 .034 .945 1 .331 1.034 

Constant -3.412 .665 26.352 1 <.001 .033 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 24 

Checking the Missing Mechanisms (MAR -30%) for variable Y2. 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .032 .036 .818 1 .366 1.033 

x2 -.026 .031 .716 1 .397 .974 

x3 .011 .037 .090 1 .764 1.011 

x4 .003 .009 .089 1 .765 1.003 

x5 .012 .039 .097 1 .756 1.012 

x6 .007 .006 1.399 1 .237 1.007 

x7 -.129 .266 .236 1 .627 .879 

age .040 .005 62.855 1 <.001 1.041 

p1 .102 .039 6.783 1 .009 1.107 

p2 -.017 .037 .201 1 .654 .983 

p3 .006 .036 .028 1 .867 1.006 

p4 .044 .034 1.685 1 .194 1.044 

p5 -.011 .034 .117 1 .732 .989 

p6 .020 .040 .257 1 .612 1.020 

p7 -.032 .033 .938 1 .333 .968 

p8 -.012 .032 .134 1 .714 .988 

p9 .012 .034 .120 1 .729 1.012 

Constant -4.065 .669 36.976 1 <.001 .017 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 25 

Checking the Missing Mechanisms (MAR -30%) for variable Y3. 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .042 .036 1.343 1 .246 1.042 

x2 -.019 .031 .380 1 .537 .981 

x3 .004 .038 .013 1 .909 1.004 

x4 -.022 .009 5.696 1 .017 .978 

x5 .020 .039 .259 1 .611 1.020 

x6 .004 .006 .521 1 .470 1.004 

x7 .470 .258 3.329 1 .068 1.600 

age .036 .005 50.044 1 <.001 1.036 

p1 -.009 .040 .044 1 .833 .992 

p2 .006 .037 .027 1 .870 1.006 

p3 .024 .036 .433 1 .510 1.024 

p4 -.022 .034 .423 1 .516 .978 

p5 .040 .033 1.471 1 .225 1.041 

p6 .014 .040 .117 1 .732 1.014 

p7 -.010 .033 .088 1 .766 .990 

p8 .013 .033 .160 1 .689 1.013 

p9 .008 .034 .051 1 .821 1.008 

Constant -3.912 .664 34.733 1 <.001 .020 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 25 

Checking the Missing Mechanisms (MAR -30%) for variable Y4. 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .023 .036 .403 1 .526 1.023 

x2 .002 .031 .003 1 .959 1.002 

x3 -.013 .037 .114 1 .736 .987 

x4 .005 .009 .292 1 .589 1.005 

x5 -.028 .039 .530 1 .467 .972 

x6 .004 .006 .503 1 .478 1.004 

x7 -.328 .269 1.486 1 .223 .721 

age .043 .005 69.765 1 <.001 1.043 

p1 .049 .040 1.523 1 .217 1.051 

p2 -.092 .038 6.000 1 .014 .912 

p3 .044 .037 1.415 1 .234 1.045 

p4 -.021 .033 .391 1 .532 .979 

p5 -.033 .034 .961 1 .327 .967 

p6 .026 .040 .434 1 .510 1.027 

p7 .014 .034 .171 1 .679 1.014 

p8 .040 .032 1.519 1 .218 1.041 

p9 .019 .034 .326 1 .568 1.019 

Constant -3.832 .670 32.673 1 <.001 .022 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 26 

Checking the Missing Mechanisms (MAR -30%) for variable Y5. 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.008 .036 .056 1 .813 .992 

x2 -.002 .031 .004 1 .947 .998 

x3 -.025 .038 .436 1 .509 .975 

x4 .000 .009 .002 1 .965 1.000 

x5 -.036 .039 .853 1 .356 .965 

x6 .012 .006 4.016 1 .045 1.012 

x7 .121 .260 .216 1 .642 1.128 

age .040 .005 61.387 1 <.001 1.040 

p1 .042 .040 1.122 1 .289 1.043 

p2 -.099 .038 6.753 1 .009 .906 

p3 .006 .036 .024 1 .878 1.006 

p4 -.032 .033 .914 1 .339 .968 

p5 -.012 .034 .121 1 .728 .988 

p6 .062 .040 2.355 1 .125 1.064 

p7 -.006 .033 .032 1 .858 .994 

p8 .022 .033 .439 1 .508 1.022 

p9 .005 .034 .019 1 .892 1.005 

Constant -3.605 .662 29.629 1 <.001 .027 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 27 

Checking the Missing Mechanisms (MAR -30%) for variable Y6. 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 -.009 .036 .060 1 .806 .991 

x2 -.006 .031 .040 1 .841 .994 

x3 -.009 .038 .059 1 .808 .991 

x4 -.007 .009 .566 1 .452 .993 

x5 .030 .039 .581 1 .446 1.030 

x6 .008 .006 1.659 1 .198 1.008 

x7 -.473 .272 3.022 1 .082 .623 

age .050 .005 94.896 1 <.001 1.052 

p1 -.084 .043 3.874 1 .049 .919 

p2 -.027 .038 .504 1 .478 .973 

p3 -.042 .036 1.389 1 .239 .959 

p4 -.033 .034 .946 1 .331 .968 

p5 .021 .034 .375 1 .540 1.021 

p6 .009 .040 .045 1 .832 1.009 

p7 .013 .034 .147 1 .702 1.013 

p8 -.008 .033 .060 1 .806 .992 

p9 -.001 .034 .002 1 .965 .999 

Constant -3.167 .668 22.461 1 <.001 .042 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 
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Table 28 

Checking the Missing Mechanisms (MAR -30%) for variable Y7. 

 
B S.E. Wald df Sig. Exp(B) 

Step 1a x1 .015 .036 .173 1 .677 1.015 

x2 .012 .031 .161 1 .688 1.012 

x3 -.019 .038 .260 1 .610 .981 

x4 -.017 .009 3.631 1 .057 .983 

x5 .049 .039 1.588 1 .208 1.050 

x6 .007 .006 1.324 1 .250 1.007 

x7 .149 .261 .324 1 .569 1.160 

age .036 .005 50.271 1 <.001 1.036 

p1 .104 .039 6.899 1 .009 1.109 

p2 -.059 .037 2.493 1 .114 .943 

p3 -.022 .036 .383 1 .536 .978 

p4 .054 .034 2.619 1 .106 1.056 

p5 -.029 .034 .753 1 .386 .971 

p6 .031 .040 .612 1 .434 1.031 

p7 -.027 .033 .661 1 .416 .973 

p8 -.027 .032 .715 1 .398 .973 

p9 .064 .034 3.466 1 .063 1.066 

Constant -3.665 .663 30.527 1 <.001 .026 

a. Variable(s) entered on step 1: x1, x2, x3, x4, x5, x6, x7, age, p1, p2, p3, p4, p5, p6, 

p7, p8, p9. 

 
 


	Using the Fraction of Missing Information (FMI) in Selecting Auxiliary Variables to Impute Missingness in Confirmatory Factor Analysis (CFA)
	Recommended Citation

	Using the Fraction of Missing Information (FMI) in Selecting Auxiliary Variables to Impute Missingness in Confirmatory Factor Analysis (CFA)
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	Microsoft Word - 908087_pdfconv_e4c05bd9-75d3-4108-8069-c8ac98f9c5a9.docx

