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ABSTRACT

Local-global arguments, or those which glean global insights from local information,

are central ideas in many areas of mathematics and computer science. For instance, in

computer science a greedy algorithm makes locally optimal choices that are guaranteed to

be consistent with a globally optimal solution. On the mathematical end, global information

on Riemannian manifolds is often implied by (local) curvature lower bounds. Discrete

notions of graph curvature have recently emerged, allowing ideas pioneered in Riemannian

geometry to be extended to the discrete setting. Bakry-Émery curvature has been one such

successful notion of curvature. In this thesis we use combinatorial implications of Bakry-

Émery curvature on graphs to prove a sort of local discrepancy inequality. This then allows

us to derive a number of results regarding the local structure of graphs, dependent only on

a curvature lower bound. For instance, it turns out that a curvature lower bound implies

a nontrivial lower bound on graph connectivity. We also use these results to consider the

curvature of strongly regular graphs, a well studied and important class of graphs. In this

regard, we give a partial solution to an open conjecture: all SRGs satisfy the curvature

condition CD(∞, 2). Finally we transition to consider a facility location problem motivated

by using Unmanned Aerial Vehicles (UAVs) to guard a border. Here, we find a greedy

algorithm, acting on local geometric information, which finds a near optimal placement of

base stations for the guarding of UAVs.
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Chapter 1: Introduction

A graph G consists of a set of vertices, V (G), and a set of edges E(G) where each

edge joins a pair of vertices. As graphs are so versatile, they have proven an important

tool for many things, including storing and analysing massive sets of relational data. As

graphs being analyzed have grown in both size and complexity it has become impossible

to precisely understand all their properties. Instead, it has become increasingly fruitful to

focus attention on key graph properties which allow us to understand general underlying

behavior. Unfortunately, many of these properties are prohibitively computationally expen-

sive. Uncovering connections between the most enlightening properties and those which

are most computationally feasible has been a huge area of research in virtually all areas of

applied mathematics, and the study of graphs is no exception.

These sorts of questions lie at the heart of extremal graph theory, which may broadly be

described as the study of relationships between graph parameters. For example, a typical

theorem in this area may be of the form, ‘Graphs which satisfy property P also satisfy

property T ’. These kinds of extremal arguments allow us to relate parameters we are most

concerned with to those which we can most easily compute. A fundamental result in this

extremal graph theory is Turan’s Theorem.

Theorem 1 (Turan’s Theorem). [58] A clique is a subset of pairwise adjacent vertices. The

clique number of a graph, ω is the size of the largest clique. For any graph G = (V,E)

with |E| ≥
(
1− 1

r

) |V |2
2

, we have ω ≥ r + 1.

Turan’s theorem relates the number of edges – a parameter that is computationally

inexpensive to compute – to the clique number, which is known to be NP -complete.
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Some graph parameters which are both computationally inexpensive and insightful

are found through viewing spectral properties of various graph matrices. Viewing graphs

though their associated matrices has allowed research in graph theory to take advantage

of a wealth of results and insights from linear algebra and other fields. One such area is

differential geometry. As we explore later in this thesis, there are many parallels between

the Laplace-Beltrami operator and the graph Laplacian matrix.

In Chapters 2 and 3 we explore Bakry-Émery Graph Curvature, a local graph parameter

that has been found to serve as a good discrete analogue of curvature due to relationships

between the Laplace Beltrami operator and the graph Laplacian. Investigating discrete

notion of curvature has been an attractive venture in part because in the continuous set-

ting it has been wildly successful in relating local properties to global phenomena. In the

discrete setting, local conditions are typically computationally inexpensive, making them

very attractive. We explore relationships between local and global properties further when

considering optimal drone base-station placements in Chapter 4.

As graphs model relational data particularly well, polygons and polygonal lines have

been wonderful aids in representing and understanding geographic data. One may see

almost immediately why these objects are so useful in representing roads, islands, borders

between territories, etc. The formal study of algorithms on these objects falls in the area of

computational geometry. A major problem in this field has been finding efficient algorithms

to compute the convex hull of a polygon. In our final chapter we explore a variant of

this problem and provide a near optimal solution to this problem extremely efficiently.

Like our work with curvature, which enabled us to derive global properties of graphs from

local measurements, our algorithm uses local information from the polygon to give global

insights.

In the remainder of the introduction we survey some important results in these areas

and provide some notation and preliminary information.

2



1.1 Spectral Graph Theory and Curvature

In this thesis, G = (V,E) will denote a simple undirected graph. We denote the degree

of the vertex x ∈ V (G) by d(x) and for a subset X ⊂ V we denote by dX(x) the number

of neighbors of x in X . The minimum degree is denoted by δ. We write x ∼ y when

xy ∈ E(G). We only consider graphs which are locally finite; that is, d(x) < ∞ for

all x ∈ V (G) (which encompasses all finite graphs). We will make use of the Landau

notations O, o, so that f(n) = O(g(n)) means
f(n)

g(n)
is bounded above as n → ∞ and

f(n) = o(g(n)) means
f(n)

g(n)
tends to 0 as n→∞.

We begin by introducing the most commonly used graph matrix. The adjacency matrix

A of a graph G on n vertices is the square matrix indexed by the vertices of A such that

Axy = 1 when x ∼ y, and Axy = 0 otherwise. Because A is real and symmetric, A has n

real valued eigenvalues. We commonly label them λ1 ≥ λ2 ≥ · · · ≥ λn and refer to the

collection (with multiplicity) of these values as the spectrum.

Many graph properties are directly related to the spectrum of the adjacency matrix.

For instance, when G is d-regular it is not difficult to see that 1⃗ is an eigenvector with

associated eigenvalue d. One classical result relating the spectrum of A to graph properties

is the expander mixing lemma[2].

Theorem 2 (Expander Mixing Lemma). Suppose G is d-regular.

Define ρ = max{|λ2|, |λn|}. For any two sets X and Y , the number of edges between them

e(X, Y ) satisfies

∣∣e(X, Y )− d|X| · |Y |
|G|

∣∣ ≤ ρ ·
√
|X| · |Y | (1.1)

The term on the left of (1.1) compares the number of edges between X and Y to

what we would expect had the edges of G been distributed randomly. It is known this

bound is asymptotically tight for random d-regular graphs, for which ρ = O(
√
d) with

3



high probability [29]. For this reason, ρ has become a measure of randomness of edge

distribution. We explore the spectrum of A further later in this chapter and again in Chapter

3.

While the spectrum of the adjacency matrix is useful, it also has limitations when used

to understand geometric properties of general graphs. For example, graph connectivity –

a very natural geometric property – is not determined by the adjacency spectrum. For a

small example, the two graphs in Figure 1.1 have the same adjacency spectrum, while one

is connected and the other isn’t.

(a) (b)

Figure 1.1: The adjacency spectra of both graphs is [−2, 0, 0, 0, 2]. On the other hand, their
Laplace spectra are [0, 0, 2, 2, 4] and [0, 1, 1, 1, 5] respectively.

There is a family of graph matrices for which spectra does a particularly good job of

capturing properties like connectivity– the graph Laplacians. These matrices have close

ties to the Laplace-Beltrami operator, allowing graphs to be viewed from a more geometric

perspective. In this thesis, we focus on the combinatorial Laplacian L = D − A where

D = (d1, d2, · · · , dn) is the diagonal degree matrix. Considering the spectra of the two

graphs in Figure 1.1, we see the Laplacian spectrum of graph (a) has 0 with multiplicity 2.

In fact the Laplacian always has an eigenvalue of 0 with eigenvector 1⃗ and the multiplicity

of 0 is exactly the number of connected components of G.

There are several other natural ways to define the graph Laplacian– an incidence matrix

definition is used in the proof of the celebrated Kirkhoff’s matrix tree theorem [26]. We

place an arbitrary orientation on the edges of G and define the |V | × |E| incidence matrix

B as

4



B(v, e) =


1 if the edge e has initial vertex v

−1 if the edge e has final vertex v

0 otherwise.

(1.2)

One can confirm that BB⊺ = L. More enlightening perhaps is that for the edge e from v to

v′ and for all ϕ, (B⊺ϕ) (e) = ϕ(v)− ϕ(v′). From this we see

ϕ⃗⊺Lϕ⃗ =
∑
v∼v′

(ϕ(v)− ϕ(v′))2 (1.3)

and so L is positive semidefinite and as a consequence has non-negative spectrum. We find

the quadratic form of (1.3) suits our results in Chapters 2 and 3 particularly well. Notice that

the Laplacian is also a ‘local’ operator, meaning (Lϕ)(v) only depends on values of ϕ for

v′ ∼ v. From the Laplacian, we define two other local differential operators – the gradient,

Γ and iterated gradient Γ2. We derive them later in Chapter 2. This allows us to define the

Bakry-Émery notion of discrete curvature– a graph G = (V,E) satisfies CD(∞, K) if for

all x ∈ V and all f : V → R, (Γ2f)(x) ≥ K(Γf)(x).

The local nature of Bakry-Émery curvature makes calculating it computationally inex-

pensive. Computing local information in this way often allows us to certify graph prop-

erties, which could otherwise, be prohibitively difficult to determine. For instance in [45]

Matthews and Sumner extended Ore-type results relating minimum degree to longest paths

for K1,3-free graphs. While the general Hamiltonicity problem is NP-complete, certifi-

cation of Hamiltonicity through verification of minimum degree and forbidden subgraphs

conditions can be considerably less computationally expensive.

Bakry-Émery curvature, and its variants, have proven particularly adept at deriving

global consequences from curvature lower bounds. For example, the celebrated work of

5



Li and Yau which provides an upper bound on the gradient of positive solutions of the

heat equation in compact manifolds – was extended to the graph setting by Bauer et al.

[6]. From this, consequences such as the volume doubling property and diameter bounds

were derived, see [22, 38]. Quite recently, Salez proved the nonexistence of non-negatively

curved sparse expanders in both the Ollivier and Bakry-Émery sense, the former being an

open problem for a decade [54].

In Chapter 2 we continue to explore these ideas by using combinatorial arguments.

We show, for example, that curvature implies a local discrepancy inequality which then

provides a non-trivial lower bound on vertex connectivity of connected graphs, dependent

only on the degree and a lower bound on Bakry-Émery curvature.

1.2 Strongly Regular Graphs

In Chapter 3 we consider the curvature of strongly regular graphs (SRGs). A graph

G is said to be strongly regular with parameters (n, d, λ, µ) if G is d-regular of order n,

every two adjacent vertices have exactly λ common neighbors and every two nonadjacent

vertices have exactly µ common neighbors.

Immediately from the definition of strongly regular graphs, structural properties begin

to emerge. It is easy to see, for instance, that connected strongly regular graphs have

diameter at most two and that the complement of a strongly regular graph is strongly regular

with parameter set (n, n− 1− d, n− 2− (2d−µ), n− (2d−λ)). Once one starts studying

them, more non-trivial relations between the parameter sets emerge. For instance, double

counting the edges between the first and second neighborhoods of a vertex reveals that

(n− d− 1)µ = d(d− λ− 1).

More interesting, is that there is an immediate connection between strong regularity

and the spectrum of the graph. Supposing M is the adjacency matrix of G, we have M2 =

dI+λM+µ(J−I−M). To see this, we may view M2 as a count on the number of paths of

length 2. Through dI we see the d paths each vertex has to a neighbor then back to itself. In

6



the second term we see the λ paths a vertex has to its neighbor, and in the third, the µ paths

between a vertex and its non-neighbors. Since M is real symmetric, it is diagonalizable and

aside from the d eigenvalue, eigenvalues γ of M satisfy γ2 = d+λγ−µ−µγ. Therefore γ

can take at most two unique values aside from d. Conversely, it turns out that regular graphs

with 3 distinct eigenvalues are strongly regular. It is good here to note that since the sum

of eigenvalues with multiplicity of M is tr(M) = 0, the smallest eigenvalue is negative.

Because the spectrum of SRGs are so well understood, it is often given as a supplementary

or alternative parameter set, in which case we say the SRG has spectrum d1 rf , and (−m)g,

where 1, f , and g represent the multiplicities of the eigenvalues respectively. Understanding

these multiplicities has also helped further restrict parameter sets. For example, in [51]

Neumaier shows that all SRGs in which −m is not integral have the form n = 4µ + 1,

d = 2µ, and λ = µ− 1. These are the so called conference graphs.

A number of the most commonly encountered SRGs are from highly structured fami-

lies of graphs, notably Cage and Cayley graphs. Such highly structured graphs are a natural

first place to look at curvature – vertex transitivity, for instance, makes computing curvature

much simpler as the curvature at all vertices is the same. Beyond this, generalizations of

these families seem like natural graph classes to look at the curvature of.

One such generalization is the class of Ricci-Flat graphs, introduced by Chung and

Yau [14]. Motivated by the structure of the d-dimensional grid Zd, these graphs satisfy

nonnegative curvature conditions for Bakry-Émery curvature and Ollivier curvature – the

other most studied notion of discrete curvature.

Ricci-flat graphs are described completely by bijections between neighboring balls of

radius one. Ricci-flat graphs are closed under tensor, Cartesian and strong products, making

them a good candidate for the prototypical non-negatively curved graph. In [15] Cushing

et al. showed that Ricci-flat graphs which satisfy an additional reflexively condition also

7



satisfy CD(∞, 2). As it turns out, this is the maximal Bakry-Émery curvature attainable

for triangle free graphs, a proof of which is provided in Chapter 2.

The strongly regular graphs can be thought of as another such generalization. It was

shown by Cushing et al. [15] that despite not generally falling within the family of Ricci-

Flat graphs with Reflexivity, SRGs with girth 4 do attain this maximal curvature of 2. This

suggests perhaps, that the general SRG may also have a strong connection to Bakry-Émery

curvature.

Cushing et al., having computed Bakry-Émery curvatures of many smaller SRGs,

posited the conjecture that all SRGs satisfy CD(∞, 2). In Chapter 3 we explore these ideas,

show this is largely the case, and that the full result may rest on a longstanding conjecture

regarding open feasible parameter sets of SRGs.

1.3 Intro to Base Station Placement Problem

Finally we consider a problem with a more geometric flavor.

Imagine an island modeled as a simple polygon P with n vertices whose coastline we

wish to monitor. We consider the problem of building the minimum number of refueling

stations along the boundary of P in such a way that a drone can follow a polygonal route

enclosing the island without running out of fuel. A drone can fly a maximum distance d

between consecutive stations and is restricted to move either along the boundary of P or

its exterior (i.e., over the sea). We present an algorithm that, given P , finds the locations

for a set of refueling stations whose cardinality is at most the optimal plus one. The time

complexity of this algorithm is O(n2 +
L

d
n), where L is the length of P . We are able to

achieve this time complexity because our algorithm is ‘greedy’.

Greedy algorithms which, given an input make a sequence of locally optimal choices

in order to try and build a globally optimal solution, are a fundamental construct in com-

puter science. In particular, they are often used to construct good approximate solutions to

problems where finding the exact solution is intractable. Of course, making local decisions

8



does not always work – there are many problems where greedy solutions can be arbitrarily

bad in relation to the optimal solution. Take, for instance, the knapsack problem.

Problem 1 (Knapsack Problem). Given a set of n items numbered from 1 to n, each with

a weight wi and a value vi, along with a maximum weight capacity W ,

Maximize
n∑

i=1

vixi

subject to
n∑

i=1

wixi ≤ W and xi ∈ {0, 1}.

The decision problem version of the knapsack problem is known to be NP-complete.

For this reason, we would like to find a good approximation algorithm which is easy to

implement and computationally inexpensive. A natural idea for an approximation algo-

rithm is to greedily choose the items with the largest value to weight ratio.

Algorithm 1 Greedy Knapsack Algorithm

Sort items in nondecreasing order of
vi
wi

Greedily select items from this order while remaining under maximum weight capacity

Unfortunately, this algorithm can be arbitrarily bad: consider an item with weight 1

and value 2 and another item of weight W and value W .

Nonetheless, for broad classes of problems greedy algorithms do work particularly

well. For instance, a wide array of optimization problems are ‘submodular’ where one is

trying to find a set S of a fixed size which maximizes an objective function. We find that

a greedy algorithm provides a multiplicative 1/e approximation – that is, if the best set S

has value f(S), proceeding greedily yields a set S ′ with f(S ′) ≥ f(S)/e. In fact Matroids

are characterized by the property that the greedy algorithm correctly solves optimization

problem.

9



For this drone base location problem we find that while a simple greedy algorithm gives

an arbitrarily bad bound, a modification of this algorithm works quite well. In Chapter 4

we begin with some related work and the presentation of this algorithm. We then consider

a sort of dual to this problem: what if we have some number of base stations which can be

built and wish to minimize the maximum distance that a drone is forced to travel between

refuelings? We then finish Chapter 4 with an extension of the base station location problem.

Instead of enclosing the polygon, we wish to find an optimal set of locations allowing a

drone to fly from one point to another point on a polygon.
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Chapter 2: Curvature

2.1 Introduction

A fundamental issue with the computational study of large networks is that their sheer

size makes many algorithmic approaches unrealistic. Then, instead of computing vari-

ous graph properties exactly, one often studies simpler properties which ‘certify’ that vari-

ous graph properties hold – perhaps not giving the best possible value of a parameter, but

enabling a quick guarantee.

One important route to such information is through spectral graph theory. The spec-

tra of various matrices associated with graphs is known to capture various structural and

geometric properties. For instance, the well-known Cheeger inequality relates isoperimetry

in a graph (that is, the size of normalized cuts) with the first non-trivial eigenvalue of the

Laplacian. Kirkhoff’s matrix tree theorem [26] relates the spectra of the (combinatorial)

Laplacian with the number of spanning trees – which, again, can be thought of as a mea-

sure of how well connected a graph is. As another example, the discrepancy inequality

commonly known as the expander mixing lemma uses the eigenvalues of the adjacency

matrix (for regular graphs) or the normalized Laplacian (for general graphs) to certify the

pseudo-random properties of the edge set of a graph. These facts underlie many commonly

used graph partitioning, clustering, and drawing algorithms.

One particularly interesting aspect of the spectral graph theory of the Laplacian matri-

ces is the strong analogies between Laplace operators on graphs and the Laplace-Beltrami

operator on Riemannian manifolds – perhaps most notably through the Cheeger inequality,

but also through inequalities relating eigenvalues and diameters (for instance). As a result

of this, recent years have seen researchers try to adapt other concepts on manifolds to the
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discrete setting. A particular point of interest has been on the development of notions of

curvature for graphs. One markedly successful aspect of this work has been the adapta-

tion of the so-called curvature dimension inequality CD(N,K), introduced by Bakry and

Émery in a different setting, along with some variants to graphs. Curvature lower bounds in

this sense, which is more precisely defined in Chapter 3, have been used to prove bounds on

eigenvalues, and diameter, along with being used to study heat flow on graphs and, through

this, to establish other geometric properties of networks.

Many of these works have been largely analytic in their character – using curvature to

study networks via eigenfunctions and the mixing of random walks (through heat flow).

In this work, we take a more directly combinatorial view of curvature and aim to use the

definition of curvature to establish a number of purely combinatorial consequences of a

curvature lower bound directly.

Our main result is that, just as eigenvalues of a graph certify the pseudo-randomness of

the edge set, that a curvature lower bound at a point establishes a local pseudo-randomness

– and that the more ‘positively curved’ a graph looks at a point, the more the edge sets in

neighborhoods of that vertex behave (in a precise sense) pseudo-randomly. This result, and

some variants, are then used to obtain a number of combinatorial properties of graphs. For

instance, a bound on the connectivity of a connected graph is given in terms of a curvature

lower bound – interestingly, curvature (being a local property) cannot detect whether a

given graph is connected but it can detect that a connected graph is well connected.

The remainder of the chapter is organized as follows. In Section 2.2 we introduce the

curvature-dimension inequality introduced by Bakry and Émery [5], and give a reformu-

lation of this inequality which is more useful for our purposes. In Section 2.3 we derive

our main result, a discrepancy inequality depending on curvature. Several corollaries and

variants are also presented to highlight the flexibility of results of this type. In Section 2.4

we present several combinatorial consequences of our result, dealing with the connectivity
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of a graph and its local neighborhoods, and small subgraph containment. In Section 14 we

explore graph operations which don’t decrease curvature and in Section 2.6 we consider

future work.

2.2 Preliminaries

In this chapter, G = (V,E) will denote a simple graph. We denote the degree of

the vertex x ∈ V (G) by d(x) and for a subset X ⊂ V we denote by dX(x) the number

of neighbors of x in X . The minimum degree is denoted by δ. We write x ∼ y when

xy ∈ E(G). We only consider graphs which are locally finite; that is, d(x) < ∞ for

all x ∈ V (G) (which encompass all finite graphs). Given a measure µ : V → R, the

µ-Laplacian on G is the operator ∆ : R|V | → R|V | defined by

∆f(x) =
1

µ(x)

∑
y∼x

(f(y)− f(x)).

In the case µ(x) = 1 for all x ∈ V (G), we have ∆ = −L, where L is the combinatorial

graph Laplacian as defined in the introduction. Also of interest is when µ(x) = d(x) for

all x ∈ V (G), in which case ∆ is the normalized graph Laplacian with a change of sign.

Both operators are used in various applications. For the types of combinatorial results that

we aim for, we will use the case µ = 1. This corresponds to the combinatorial (standard)

graph Laplacian.

The gradient form Γ = Γ∆ is defined by

Γ(f, g)(x) =
1

2
(∆(f · g)− f ·∆(g)−∆(f) · g) (x)

=
1

2µ(x)

∑
y∼x

(f(y)− f(x))(g(y)− g(x))
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for all f, g ∈ R|V |. For brevity’s sake we write Γ(f) = Γ(f, f). The iterated gradient form

Γ2 = Γ∆
2 is defined by

2Γ2(f, g) = ∆Γ(f, g)− Γ(f,∆g)− Γ(∆f, g)

for all f, g ∈ R|V |. Again, we write Γ2(f) = Γ2(f, f).

In their 1985 paper [5], Bakry and Émery demonstrated that in the manifold setting

curvature lower bounds may be understood completely through the Laplace-Beltrami oper-

ator. They did so through a modification of Bochner’s identity, a fundamental identity in

Riemannian Geometry. Bakry and Émery suggested using this consequence of curvature in

the manifold setting as a definition in the more general setting of the Markov Semigroup,

which encompasses both diffusion and random walks on graphs. This approach has been

met with much success see e.g. [6, 23–25, 31, 34–37, 39, 46, 48–50, 56]. This is in no

small part due to the close ties between the Laplace-Beltrami Operator and the Laplacian,

as defined above. Through use of the differential operators Γ and Γ2, constructed from the

Laplacian, we state the Bakry-Émery notion of discrete curvature below.

Definition 1 (Bakry-Émery Curvature). Let G be a locally finite graph. For K ∈ R and

N ∈ (0,∞], we say that a vertex x ∈ V satisfies Bakry-Émery’s curvature-dimension

inequality CD(N,K), if for any f : V → R, we have

Γ2(f)(x) ≥
1

N
(∆f(x))2 +KΓ(f)(x),

where N is a dimension parameter and K is regarded as a lower Ricci curvature bound

at x. A graph G is said to satisfy CD(N,K) if every vertex satisfies CD(N,K). Since

graphs do not have a well-defined dimension, a natural choice simplifying this inequality is

to take n =∞. In this thesis the curvature of a vertex (or graph) is defined as the maximum

value K for which CD(∞, K) holds, for that vertex (or globally).
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When considering curvature as a measure of local expansion in the manifold case, we

associate large negative curvature with spaces that expand well and large positive curvature

to spaces without much local expansion. We find this sentiment echoed in the discrete case.

For example, it is known due to [27] that the curvature of the complete graph Kn is 1 +
n

2
;

it turns out for any d regular graph the curvature is at most 1+
d+ 1

2
. We provide a general

upper bound on curvature in Example 1 and a lower bound for the curvature of the complete

graph in Example 2.

The curvature of a d-regular tree, on the other hand, is 2−d [27], the smallest curvature

of a d-regular graph. We use Corollary 7 to prove this in in Example 3. The curvature of

most graphs, of course, fall somewhere between these two extremes.

In Riemannian geometry, there are numerous results that hold for nonnegatively curved

manifolds. If we are to extend these notions to graphs, a natural goal is to determine which

classes of graphs have non-negative curvature. In [27], it is proven that the curvature of

the hypercube Qd is 2, regardless of the dimension. Furthermore, all finite abelian Cayley

graphs, the discrete torus for example, have non-negative curvature. A notable case is that

of the complete bipartite graph Ks,t, as studied in [17]. When s = t, the curvature of Ks,t

is 2. As the parts become more unbalanced, the curvature decreases, and is in fact negative

in many cases.

Often graph curvature is studied on highly symmetric graphs. For vertex transitive

graphs, such as Cayley graphs, the curvature of all vertices is the same. For less structured

graphs, neighborhood structures differ among vertices and the curvatures of different ver-

tices differs. In these cases, global graph curvature is a lower bound on curvature computed

at the vertex level. In this thesis we explore local combinatorial implications of such cur-

vature lower bounds. As we shall see, this gives a way to certify that graphs satisfy certain

interesting properties.
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As defined above, curvature is formulated via the Laplacian (∆) and the gradient (Γ),

each of which only depend on the the structure of the first neighborhood of vertices.

Since the iterated gradient (Γ2) is a composition of these two operators, the curvature is

determined solely by the structure of the balls of radius 2. Therefore, we can translate

CD(∞, K) into more combinatorial terms, highlighting the contribution of each edge type

(that is, the edges within the first neighborhood of x, the edges between the first and second

neighborhoods of x, etc.) to the curvature dimension inequality.

The proposition below allows us to begin to rework the CD inequality. For notational

purposes, let N1(x) = {y : d(x, y) = 1} be the neighborhood of x and let N2(x) = {z :

d(x, z) = 2} be the second neighborhood of x. When x has been fixed, we will often write

these simply as N1 and N2.

Proposition 3. G satisfies CD(∞, K) at x if and only if for all f : V (G)→ R,

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

+
∑

y,y′∈N1

y∼y′

(f(y)− f(y′))2

≥
(
2K + d(x)− 3

2

)
Γ(f)(x)− 1

2
∆(f(x))2. (2.1)

Proof. Expanding Γ2 according to the combinatorial definitions of ∆ and Γ yields

Γ2(f)(x) =
1

2
∆Γ(f)− Γ(f,∆f)

=
1

2

∑
y∼x

[Γ(f)(y)− Γ(f)(x)]− 1

2

∑
y∼x

(f(y)− f(x))(∆f(y)−∆f(x))

=
1

4

∑
y1∼x

[∑
z∼y1

(f(z)− f(y1))
2 −

∑
y2∼x

(f(y2)− f(x))2

]
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− 1

2

∑
y1∼x

(f(y1)− f(x))

[∑
z∼y1

(f(z)− f(y))−
∑
y2∼x

(f(y2)− f(x))

]

=
1

4

∑
y∼x

∑
z∼y

(f(z)− f(y))2 − 1

4

∑
y1∼x

∑
y2∼x

(f(y2)− f(x))2

− 1

2

∑
y1∼x

∑
z∼y1

(f(y1)− f(x))(f(z)− f(y1))

+
1

2

∑
y1∼x

∑
y2∼x

(f(y1)− f(x))(f(y2)− f(x))

=
1

4

∑
y∼x

∑
z∼y

(f(z)− f(y))2 − d(x)
4

∑
y∼x

(f(y)− f(x))2

− 1

2

∑
y1∼x

∑
z∼y1

(f(y1)− f(x))(f(z)− f(y1))

+
1

2

∑
y1∼x

∑
y2∼x

(f(y1)− f(x))(f(y2)− f(x)).

To this sum, the edges between N1 and N2 contribute

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]
. (2.2)

To the sum, the edges between two vertices in N1 contribute

∑
y,y′∈N1

y∼y′

[1
2
(f(y)− f(y′))2 − 1

2
(f(y)− f(x))(f(y′)− f(y))

− 1

2
(f(y′)− f(x))(f(y)− f(y′))

]
=

∑
y,y′∈N1(x)

y∼y′

(f(y)− f(y′))2. (2.3)

Lastly, the edges between x and N1 contribute

∑
y∼x

[1
4
(f(x)− f(y))2 − d(x)

4
(f(y)− f(x))2 +

1

2
(f(y)− f(x))2
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+
1

2
(f(y)− f(x))∆f(x)

]
=

3− d(x)
4

∑
y∼x

(f(x)− f(y))2 +
1

2
∆f(x)

∑
y∼x

(f(y)− f(x)) (2.4)

=
3− d(x)

2
Γ(f)(x) +

1

2
(∆f(x))2. (2.5)

By combining (2.2), (2.3), and (2.5) we see then that Γ2(f)(x) may be rewritten in

combinatorial terms as

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

+
∑

y,y′∈N1(x)
y∼y′

(f(y)− f(y′))2 +
3− d(x)

2
Γ(f)(x) +

1

2
(∆f(x))2. (2.6)

Substituting this rewritten Γ2 into Definition 1 we see CD(∞, K) is satisfied at a vertex

x if and only if for all functions f

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

+
∑

y,y′∈N1

y∼y′

(f(y)− f(y′))2

≥
(
2K + d(x)− 3

2

)
Γ(f)(x)− 1

2
∆(f(x))2. (2.7)

A similar combinatorial reworking of the curvature dimension inequality was estab-

lished by Klartag, et al. in [27]. While their presentation of the curvature dimension

inequality is useful in many applications, ours proved more fruitful for the types of inequal-

ities derived in this thesis.
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There are several approaches to calculating curvature of graph families. In this chapter,

we relate edge distributions to curvature bounds. If we fix some vertex in a graph of interest

and find the CD(∞, K) inequality is tight for a particular function, this K serves as an

upper bound of the vertex and graph curvature. For example if we choose to evaluate the

CD(∞, K) inequality of a function which measures the distance from a vertex x, we are

provided with an upper bound of curvature dependent on the edge distribution in the ball of

radius two around x. A nice example of this may be found in [27]. In Example 1 we show

how we may use the combinatorial interpreitation of Γ2 and Γ in Proposition 3 to find such

bounds.

Example 1 (General Curvature upper bound). Given G satisfying CD(∞, K) at x where

d = d(x),

K ≤ d

2
+

3

2
−

e
(
N1(x), N2(x)

)
2d

.

Proof. By fixing some vertex x with degree d and applying the distance function f(v) =

dist(v, x) we find,

2Γ2(f)(x) = d2 +
∑
v∼x

(
2− d+ deg(v)

2

)
+

∑
∆(x,v,u)

1

and Γ(f)(x) =
1

2
d.

We have the CD(∞,K) inequality simplifies to

d2 +
∑
v∼x

(
2− d+ deg(v)

2

)
+

∑
∆(x,v,u)

1 ≥ dK.

Now let dN1(x)(v) := the number of edges from vertex v into N1(x) and dN2(x)(v) := the

number of edges from vertex v into N2(x). We can simplify the inequality above to find

d2 +
∑
v∼x

(
2− d+ degN1(x)(v) + degN2(x)(v) + 1

2

)
+
∑
v∼x

degN1(x)(v)

2
≥ dK
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d2

2
+

3

2
d− 1

2

∑
v∼x

degN2(x)(v) ≥ Kd

and so

K ≤ d

2
+

3

2
−

e
(
N1(x), N2(x)

)
2d

.

If we hope to find curvature lower bounds we instead find which values of K the

CD(∞, K) inequality holds for all functions on all vertices, we explore this more in Chap-

ter 3.

2.3 Discrepancy Inequalities

Spectral graph theory, in particular the spectral theory of Laplace operators on graphs,

is particularly useful in giving ‘cheap’ certifications of graph properties; for instance,

despite the question of graph Hamiltonicity being NP-complete, polynomial time checks

of regularity and spectral gap conditions may be used to certify Hamiltonicity [28]. One of

the most important properties that the spectra of a graph certifies is the pseudo-randomness

of the edge set, through what is commonly known as the Expander Mixing Lemma, which

we state now in its form for regular graphs.

Lemma 4 (Expander Mixing Lemma). [2] Suppose G = (V,E) is a d-regular n-vertex

graph. Denote by λ the second largest eigenvalue in absolute value of the adjacency matrix.

Then ∀S, T ⊆ V ,

∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ
√
|S||T |,

where e(S, T ) denotes the number of edges between S and T.

This simple proposition implies that graphs with a large spectral gap behave like a

random graph with respect to its edge distribution. Having global control on the edge
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distribution is extremely useful when it occurs, but in some cases it is too much to hope

for. For example, many real world graphs display clustering where neighbors of a vertex

are more likely to be connected among themselves. Furthermore, as most degrees tend to

be small in comparison to the size of the entire network, much of the ‘action’ in the graph

occurs locally.

For these types of graphs, Bakry-Émery Curvature can be particularly useful. The

Bakry-Émery Curvature at a vertex x may also be seen as the largest K such that the

matrix Γ2 −KΓ is positive semidefinite. The order of this matrix depends only on the size

of second neighborhood of x, as opposed to the number of vertices in the graph n, and

hence for a graph with max degree ∆(G), the curvature at a point x may be calculated with

high accuracy in time complexity O(∆(G)6 log(∆(G))) as documented in [16]. Hence, for

a graph of bounded degree, a global curvature lower bound can be computed in linear time

in the order of the graph, with the implied constant depending on the maximum degree.

This makes using curvature to certify certain graph properties efficient computationally.

Moreover, curvature lower bounds certify similar properties to those of the graph spectrum.

For instance, curvature bounds imply bounds on mixing of random walks, on the diameter

of a graph, and (through Buser’s inequality) regarding cut properties of the graph.

In this section, we show that curvature actually implies a type of ‘local’ discrepancy

inequality, which implies that at vertices with a lower curvature bound the edge distribution

within the first and second neighborhood behaves, in a sense, pseudo-randomly. We now

present our main result below.

Theorem 5. Suppose G is a graph satisfying CD(∞, K) at x ∈ V (G). Fix X ⊆ N1(x)

with X = N1(x) \X . If |X| = α|N1(x)|, then

∑
z∈N2

(
[αdX(z)− (1− α)dX(z)]

2

dN1(z)

)
≤
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3

4
[α2 · e(X,N2) + (1− α)2 · e(X,N2)] + e(X,X)−

(
2K + d(x)− 3

4

)
α(1− α)d(x).

The sum on the lefthand side of the inequality of Theorem 5 measures how ‘randomly’

edges are distributed from N1(x) to N2(x) in the following sense. If the edges were dis-

tributed randomly, and a set X ⊆ N1(x) were fixed we would expect a proportion close

to |X|/|N1(x)| of the edges to have an endpoint in X – moreover, we would expect this

to (roughly) be true for the edges incident to every vertex in N2(x). The sum on the left

hand side exactly measures this deviation from ‘random’ in the aggregate – note that if the

edges were precisely distributed in this way then this discrepancy term would be zero. Of

course, this is too much to expect even if the edges in the neighborhood are truly distributed

randomly!

Then, what we obtain is an upper bound on this deviation in such a way that the larger

the curvature is the more ‘random-like’ the behavior is. Note that this mimics the theme of

the Expander Mixing Lemma – a graph parameter is certifying a random-like behavior of

the edge set – only now locally, between the first and second neighborhoods. Hence, this

theorem acts as a local discrepancy inequality.

Proof. Fix x ∈ V (G). We proceed by defining an explicit function f and interpreting the

curvature dimension inequality, per Proposition 3. Define f(x) = 0. Let X ⊆ N1(x) such

that |X| = α|N1(x)| and let X = N1(x) \ X . For each y ∈ X , let f(y) = 1 − α and for

each y ∈ X , let f(y) = −α. Note that for this function ∆f(x) = 0 and

Γ(f)(x) =
1

2
[α(1− α)2 + (1− α)(α)2]d(x)

=
1

2
(α− 2α2 + α3 + α2 − α3)d(x)

=
1

2
(α− α2)d(x)

=
1

2
α(1− α)d(x).
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Our goal is, for each z ∈ N2(x), to select f(z) in order to minimize the left side of the

inequality derived from CD(∞, K). Thus, fix z ∈ N2(x). Then

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

= dX(z)

[
1

4
(f(z)− (1− α))2 − 1

2
(f(z)− (1− α))(1− α)

]
+ dX(z)

[
1

4
(f(z) + α)2 +

1

2
(f(z) + α)α

]
=

1

4
dN1(z)f(z)

2 + [αdX(z)− (1− α)dX(z)] f(z) +
3

4
[α2dX(z) + (1− α)2dX(z)].

By taking a formal derivative with respect to f(z), we see that the sum is minimized when

f(z) = −2 [αdX(z)− (1− α)dX(z)]

dN1(z)
. (2.8)

For this selection of f(z),

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

= − [αdX(z)− (1− α)dX(z)]
2

dN1(z)
+

3

4

[
α2dX(z) + (1− α)2dX(z)

]
.

Summing over z ∈ N2, we find

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

=
∑
z∈N2

(
− [αdX(z)− (1− α)dX(z)]

2

dN1(z)
+

3

4

[
α2dX(z) + (1− α)2dX(z)

])

=
∑
z∈N2

(
− [αdX(z)− (1− α)dX(z)]

2

dN1(z)

)
+

3

4
[α2e(X,N2) + (1− α)2e(X,N2)].
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As a result, satisfying CD(∞, K) implies that

−
∑
z∈N2

(
[αdX(z)− (1− α)dX(z)]

2

dN1(z)

)
+
3

4
[α2e(X,N2)+(1−α)2e(X,N2)]+e(X,X) ≥(

2K + d(x)− 3

4

)
α(1− α)d(x).

Solving for this first term yields

∑
z∈N2

(
[αdX(z)− (1− α)dX(z)]

2

dN1(z)

)
≤

3

4
[α2e(X,N2) + (1− α)2e(X,N2)] + e(X,X)−

(
2K + d(x)− 3

4

)
α(1− α)d(x).

Corollary 6. Suppose G is a graph satisfying CD(∞, K) at x ∈ V (G). Let X ⊆ N1(x)

with X = N1(x) \X . If |X| = α|N1(x)|, then

(∑
z∈N2
|αdX(z)− (1− α)dX(z)|

)2
e(N1, N2)

≤

3

4

[
α2e(X,N2) + (1− α)2e(X,N2)

]
+ e(X,X)−

(
2K + d(x)− 3

4

)
α(1− α)d(x).

Proof. We use Cauchy-Schwarz to simplify the sum

∑
z∈N2

[αdX(z) + (1− α)dX(z)]
2

dN1(z)
.

Using Cauchy-Schwarz in the form of

∑
a2i ≥

(
∑

aibi)
2∑

b2i
,
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with

ai =
αdX(z)− (1− α)dX(z)√

dN1(z)
and bi =

√
dN1(z)

we obtain

∑
z∈N2

[αdX(z)− (1− α)dX(z)]
2

dN1(z)
≥
(∑

z∈N2
[αdX(z)− (1− α)dX(z)]

)2∑
z∈N2

dN1(z)

=

(∑
z∈N2

[αdX(z)− (1− α)dX(z)]
)2

e(N1, N2)
.

As a result, satisfying CD(∞, K) implies that

− (
∑ |αdX(z)− (1− α)dX(z)|)2

e(N1, N2)
+
3

4

[
α2e(X,N2) + (1− α)2e(X,N2)

]
+e(X,X) ≥(

2K + d(x)− 3

4

)
α(1− α)d(x).

This corollary gives us a much cleaner version of the above theorem. However, in

some situations, this corollary gives away too much in its use of Cauchy-Schwarz. While

we typically think of applying these results to bound the discrepancy of a graph whose

curvature is known, they can also be applied to bound the curvature in cases where the local

discrepancy is understood. For example, our theorem gives a sharp bound on curvature for

the graph Zd, while the corollary only gives us an asymptotic upper bound of d on the

curvature. We will more fully explore similar examples later in Section 2.4.

We highlight a few special instances of these results.
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Corollary 7. Suppose G is a graph satisfying CD(∞, K) at x ∈ V (G). For any X ⊆ N(x)

with |X| = 1

2
|N(x)|, if X = N(x) \X , then

(∑
z∈N2
|dX(z)− dX(z)|

)2
e(N1, N2)

≤ 3

4
e(N1, N2) + 4e(X,X)− 2K + d(x)− 3

4
d(x).

Proof. Taking α =
1

2
in the above theorem directly gives the corollary.

Corollary 8. Suppose G is a triangle-free graph satisfying CD(∞, K) at x ∈ V (G). Let

X ⊆ N1(x) with X = N1(x) \X . If |X| = α|N1(x)|, then

(∑
z∈N2
|αdX(z)− (1− α)dX(z)|

)2
e(N1, N2)

≤

3

4

[
α2e(X,N2) + (1− α)2e(X,N2)

]
−
(
2K + d(x)− 3

4

)
α(1− α)d(x).

Proof. If e(X,X) > 0, then there exist adjacent vertices y, y′ ∈ N1. This edge then creates

a triangle with x. Since G is triangle-free, then, e(X,X) = 0.

2.3.1 Local Buser Inequality. The isoperimtric problem in a graph – how sparse is the

sparsest normalized cut? – is well-known to be closely related to the spectrum of the nor-

malized Laplace operator via the Cheeger and Buser inequalities. It concerns the isoperi-

metric constant

Φ(G) = min
S⊆V (G)

e(S, S)

min(vol(S), vol(S))
.

The ‘standard’ form of the Cheeger inequality for graphs states that

Φ(G)2/2 ≤ λ2(L) ≤ 2Φ(G).

Here the lower bound is the analogue of Cheeger’s inequality from Riemannian geometry,

while the upper bound is roughly an analogue of Buser’s inequality. We remark here that
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the upper bound can be improved under a curvature assumption; such a result depending

on curvature is the original Buser’s inequality from manifolds, and is known for graphs

satisfying CD(∞, K) [27].

The simple upper bound λ2(L) ≤ 2Φ(G) on the first non-trivial eigenvalue of the

Laplacian proceeds by fixing a set S minimizing the isoperimetric constant
e(S, S)

vol(S)
. Then

one explicitly defines a vector φ based on this cut and computes via the Rayleigh quotient

that

λ2(L) ≤
e(S, S)vol(V )

vol(S)vol(S)
≤ 2Φ(G).

This inequality is tremendously useful in practice, as it implies that for all sets S

e(S, S) ≥ λ2(L)
vol(S)vol(S)

vol(G)
,

which when restricted to the d-regular case states

e(S, S) ≥ dλ2(L)
n
|S||S|. (2.9)

We remark that local variations of Cheeger’s inequality have been the basis of several

successful local graph partitioning algorithms. While Cheeger’s inequality is a statement

about all subsets of G, of which there are exponentially many, most proofs of Cheeger’s

inequality (and its variants) follow by considering a much smaller number of cuts defined

by some process – eg. via (classically) an eigenvector sweep, or a sweep of the distribution

of a random walk after some number of steps. The underlying ideas have, then, been used

to develop a number of fast algorithms for finding sparse cuts in a graph. For example, one

such algorithm given by Spielman and Teng in 2004 [57] considers subsets based off of a

rapid mixing result for random walks given by Lovász and Simonovits [42, 43]. Through a

modified Cheeger’s inequality, this graph partitioning algorithm runs in time proportional
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to the size of the output – independent of the size of G. This approach and others like it

have been particularly useful in solving problems involving massive networks.

It turns out that, just as curvature provides a ‘local’ version of a discrepency inequality

it also provides a local version of the Buser inequality in the form of (2.9). We explore this

in a variant of Theorem 5 and in Section 2.4 we use it to prove two connectivity results,

one local and the other global. Both proofs rely on the connectivity of the punctured ball

of radius two, which we define as B̊2(x), the subgraph of G containing all vertices with

distance 1 or 2 from x, and all edges between these vertices, except those edges between

vertices of distance 2 from x. Theorem 5 and the corrolaries that followed, show how a

curvature lower bound ensures that most vertices have a close to proportionate edge count

between bipartitions of N1(x). We use this to speak to edge counts between sets in a

variant of our main result, Theorem 10. This allows us to show, for example, Corrolary 11:

Suppose G satisfies CD(∞, K) at x, and x has degree d, for all partitions of B̊2(x) into S

and S,

e(S, S) ≥ 2K + d− 3

4d
|N(x) ∩ S| · |N(x) ∩ S|.

Notice the similarity between this inequality and the Cheeger inequality on regular graphs,

equation (2.9). To prove Theorem 10 we first present the following lemma which gives us

a reworking of the discrepancy term of Theorem 2.3.

Lemma 9. Suppose x ∈ V (G) and let X,X partition N1(x) and A,A partition N2(x). Let

α =
|X|
|N1(x)|

. Then

∑
z∈N2(x)

[αdX(z)− (1− α)dX(z)]
2

dN1(z)

=
[
α2e(X,N2) + (1− α)2e(X,N2)

]
− e(X,A)− e(X,A) +

∑
z∈A

dX(z)
2

dN1(z)
+
∑
z∈A

dX(z)
2

dN1(z)
.

28



Proof. Equality follows from a series of algebraic manipulations. First, we split the sum

over N2(x) of the discrepancy term into a sum over A and a sum over A,

∑
z∈A

[αdX(z)− (1− α)dX(z)]
2

dN1(z)
+
∑
z∈A

[αdX(z)− (1− α)dX(z)]
2

dN1(z)
.

The squares are rewritten in terms of edges to N1 to find

∑
z∈A

[αdN1(z)− dX(z)]
2

dN1(z)
+
∑
z∈A

[(1− α)dN1(z)− dX(z)]
2

dN1(z)
.

We expand the squares to find

∑
z∈A

α2dN1(z)− 2αdX(z) +
dX(z)

2

dN1(z)
+
∑
z∈A

(1− α)2dN1(z)− 2(1− α)dX(z) +
dX(z)

2

dN1(z)
.

Summing over z in A and A yields

α2e(X,A) + α2e(X,A)− 2αe(X,A) +
∑
z∈A

dX(z)
2

dN1(z)

+ (1− α)2e(X,A) + (1− α)2e(X,A)− 2(1− α)e(X,A) +
∑
z∈A

dX(z)
2

dN1(z)
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which can be seen as

α2e(X,N2)− α2e(X,A) + α2e(X,A)− 2αe(X,A) +
∑
z∈A

dX(z)
2

dN1(z)

+ (1− α)2e(X,N2)− (1− α)2e(X,A)

+ (1− α)2e(X,A)− 2(1− α)e(X,A) +
∑
z∈A

dX(z)
2

dN1(z)
.

The discrepancy term is then rewritten as to more easily compare it against other terms in

the CD(∞, K) inequality

[
α2e(X,N2) + (1− α)2e(X,N2)

]
− 2αe(X,A)− (1− α)2e(X,A) + α2e(X,A)

− 2(1− α)e(X,A)− α2e(X,A) + (1− α)2e(X,A) +
∑
z∈A

dX(z)
2

dN1(z)
+
∑
z∈A

dX(z)
2

dN1(z)

=
[
α2e(X,N2) + (1− α)2e(X,N2)

]
−
[
2α + (1− α)2 − α2

]
e(X,A)

−
[
2(1− α) + α2 − (1− α)2

]
e(X,A) +

∑
z∈A

dX(z)
2

dN1(z)
+
∑
z∈A

dX(z)
2

dN1(z)

=
[
α2e(X,N2) + (1− α)2e(X,N2)

]
− e(X,A)− e(X,A)

+
∑
z∈A

dX(z)
2

dN1(z)
+
∑
z∈A

dX(z)
2

dN1(z)
.

In Lemma 9, we see that the discrepancy term may be rewritten to provide information

on the distribution of edges between all bipartitions of B̊2(x). We may use Lemma 9 to

relate this distribution to graph curvature in Theorem 10.
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Theorem 10. Suppose G is a graph satisfying CD(∞, K) at x ∈ V (G). Let X,X partition

N1(x) and A,A partition N2(x). It follows that

e(X,A) + e(X,A) + e(X,X) ≥
(
2K + d(x)− 3

4

) |X| · |X|
d(x)

.

Proof. Using Theorem 5 , let α =
|X|
d(x)

. We have the inequality,

∑
z∈N2(x)

(
− [αdX(z)− (1− α)dX(z)]

2

dN1(z)

)
+

3

4

[
α2e(X,N2) + (1− α)2e(X,N2)

]
+ e(X,X) ≥

(
2K + d(x)− 3

4

)
α(1− α)d(x).

Through Lemma 9 we use the partition of N2(x) into A and A and substitute this into the

inequality to find

−
[
α2e(X,N2) + (1− α)2e(X,N2)

]
+ e(X,A) + e(X,A)−

∑
z∈A

dX(z)
2

dN1(z)
−
∑
z∈A

dX(z)
2

dN1(z)

+
3

4

[
α2e(X,N2) + (1− α)2e(X,N2)

]
+ e(X,X) ≥

(
2K + d(x)− 3

4

)
α(1− α)d(x)

which simplifies to

e(X,X) + e(X,A) + e(X,A)

− 1

4

[
α2e(X,N2) + (1− α)2e(X,N2)

]
−
∑
z∈A

dX(z)
2

dN1(z)
−
∑
z∈A

dX(z)
2

dN1(z)

≥
(
2K + d(x)− 3

4

)
α(1− α)d(x).
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Most notably,

e(X,A) + e(X,A) + e(X,X) ≥
(
2K + d(x)− 3

4

)
α(1− α)d(x).

With the substitution α =
|X|
d(x)

and 1− α =
|X|
d(x)

we have

e(X,A) + e(X,A) + e(X,X) ≥
(
2K + d(x)− 3

4

)
· |X| · |X|

d(x)
.

This immediately gives us the following corollary.

Corollary 11. Suppose G is a graph satisfying CD(∞, K) at x ∈ V (G). Let the degree of

x be d. For all partitions of B̊2(x) into S and S,

e(S, S) ≥ 2K + d− 3

4d
|N(x) ∩ S| · |N(x) ∩ S|.

Proof. Given some partition of B̊2(x) into S and S we use Theorem 10 and let X =

S ∩N1(x), A = S ∩N2(x), X = S ∩N1(x) and A = S ∩N2(x).

2.4 Applications and Examples

2.4.1 Connectivity. Thus far we have seen several ways in which curvature of a graph

can be used to certify similar properties to spectral properties, only locally. Eigenvalues

of the Laplacian are well known to certify notions of connectivity of a graph in various

forms: through Fielder’s Theorem[18], Kirchhoff’s matrix tree theorem [26], and Cheeger’s

inequality, for example.

In this section we present two results relating the curvature to connectivity. One, like

before, is a ‘local’ connectivity result. The other, however, actually provides a truly global
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connectivity bound. We highlight here that a curvature bound alone cannot imply that a

graph is connected. If one takes two disjoint copies of a single graph, curvature can never

see the existence of the other copy – a lower curvature bound for one copy implies a lower

curvature bound for both. None the less, a curvature lower bound does imply a strong bound

on the connectivity of a connected graph. We note that a lower bound on connectivity for

positively curved graphs can also be obtained by combining results of Chung, Lin and Yau

[13] and Fielder [18]. However, we find a result which applies even when the curvature

lower bound for a graph is not too negative.

We say G is l-connected if after the removal of any l−1 vertices G remains connected.

We define κ(G) as the largest l for which G is l-connected. We see through Corollary 11

that even moderate curvature conditions ensure balls of radius 2 to be well stitched together,

we exploit the manner in which these balls overlap to provide a global connectivity bound.

Theorem 12 (Global Connectivity). Suppose G is a connected graph which satisfies

CD(∞, K) with minimum degree δ. Then

κ(G) ≥ 2K + δ + 5

8
.

Remark: Unlike most theorems in this thesis, Theorem 12 requires the graph to satisfy

CD(∞, K) at all x ∈ V (G).

Proof. Suppose G = (V,E) is a connected graph with vertex connectivity κ(G). Then

there exists U = {x1, . . . , xκ(G)} ⊆ V such that G \ U is not connected. Label the com-

ponents of V \ U as A1, A2, · · · , Ak. Let S = A1 and S = ∪ki=2Ai. Choose US and US

to partition U in such a way as to minimize e(S ∪ US, S ∪ US). Notice that as a con-
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sequence of the minimization of e(S ∪ US, S ∪ US), for all xi ∈ US , it is the case that

dS∪US
(xi) ≥ dS∪US

(xi) and for xi ∈ US , it is the case that dS∪US
(xi) ≥ dS∪US

(xi). Fix

x ∈ U which maximizes min{dS(xi), dS(xi)}. Without loss of generality, assume x ∈ US .

We now apply Corollary 11 with X = N1(x) ∩ (S ∪ US), X = N1(x) ∩ (S ∪ US),

A = N2(x) ∩ (S ∪ US), and A = N2(x) ∩ (S ∪ US). From this we see,

e(N1,2(x) ∩ (S ∪ US), N1,2(x) ∩ (S ∪ US)) ≥
(
2K + d(x)− 3

4

) |X| · |X|
d(x)

.

Notice that every edge passing from S ∪ US to S ∪ US is adjacent to a member of U , and

by our choice of x, each member of U is incident to at most |X| of such edges. This allows

us to bound the number of edges in N1,2(x) which pass from S ∪ US to S ∪ US above by

(κ(G)− 1)|X|,

(κ(G)− 1)|X| ≥
(
2K + d(x)− 3

4

) |X| · |X|
d(x)

.

Recalling that
|X|
d(x)

≥ 1

2
, we see

(κ(G)− 1) ≥
(
2K + d(x)− 3

8

)
.

Therefore,

κ(G) ≥ 2K + d(x) + 5

8
.
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We remark that such a curvature based lower bound can, in theory at least, provide an

efficient way of bounding the connectivity of a graph. Classical algorithms for determining

vertex connectivity run in O(|V |3|E|) time (O(|V | · |E|) for determining the number of

vertex disjoint paths between any fixed pair of vertices). Meanwhile, as briefly discussed

above in Section 2.3, for a bounded degree graph the curvature at a given point can be

computed in constant (depending on the degree bound) time and hence a global curvature

bound can be computed in linear time. For details see [16]. A reasonably accurate curvature

calculation at vertex requires a binary search on potential curvatures, taking log(∆) checks,

and each check requires an eigenvalue calculation of a matrix of size O(∆2) (serving as an

upper bound on the size of the second neighborhood of x) which takes at most O(∆6) time.

Therefore, a curvature computation of graph with maximum degree ∆ takes at most time

O(∆6 log(∆)|V (G)|)). In practice, we expect to see degrees much smaller than the size of

the network, making a curvature calculation in linear in V potentially more efficient than a

more classical computation.

Finally, we present a slight improvement of a result in [17]. In [17], Cushing et al.

showed that, with very few exceptions, if the curvature at x is positive then B̊2(x) is con-

nected. Through Corollary 11 we show that with more moderate curvature assumptions,

allowing for negative curvature, this remains true.

Theorem 13 (Local Connectivity). Suppose G is a graph satisfying CD(∞, K) at x ∈

V (G) and 2K + d(x) > 3, then B̊2(x) is connected.

Proof. Let S, S be nonempty and partition B̊2(x). Suppose N1 ⊆ S. Since S is nonempty

it contains a member of N2 and we see e(S, S) > 0. A symmetric argument covers the case

when N1 ⊂ S. Supposing that N1 ∩ S and N1 ∩ S are both nonempty, we use Theorem

10 letting X = N1 ∩ S, A = N2 ∩ S, X = N1 ∩ S and A = N2 ∩ S to find e(S, S) ≥(
2K + d(x)− 3

4

)
· |X| · |X|

d(x)
which by assumption is greater than 0. Therefore, for all

S, S nonempty and partitioning B̊2(x), e(S, S) > 0 and therefore B̊2(x) is connected.
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Sharpness Example for Theorem 13: The two graphs in Figure 2.1 show that Theorem

13 is sometimes sharp. The graph on the right has curvature −1.5 and d(x) = 6 so 2K +

d(x) = 3 and we see that B̊2(x) is disconnected. On the other hand, the graph on the

left has curvature −.5, d(x) = 4, we also have 2K + d(x) = 3 but in this case B̊2(x) is

connected. Following the string of inequalities leading to Corollary 11, we observe that the

inequality in Theorem 13 only needs to be made strict when N2(x) is empty.

x x

Figure 2.1: In the graph on the left, B̊2(x) is connected and N2(x) is nonempty, while in
the graph on the right B̊2(x) is disconnected and N2(x) is empty.

2.4.2 Examples. As promised, we now provide the lower bound of Kn using Proposition

3.

Example 2 (Kn satisfies CD(∞,
n

2
+ 1)).

Proof. By Proposition 3 we have Kn satisfies CD(∞,
n

2
+ 1) at x provided for all f ,

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

+
∑

y,y′∈N1

y∼y′

(f(y)− f(y′))2

≥
(
2K + d(x)− 3

2

)
Γ(f)(x)− 1

2
∆(f(x))2.

Notice that since N2 is empty this may be simplified to

∑
y,y′∈N1

y∼y′

(f(y)− f(y′))2 ≥
(
2K + d(x)− 3

2

)
Γ(f)(x)− 1

2
∆(f(x))2. (2.10)
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We may simplify the lefthand side of (2.10).

∑
y,y′∈N1

y∼y′

(f(y)− f(y′))2 = −2 ·
∑

y,y′∈N1

y∼y′

f(y)f(y′) + (n− 2)
∑
y

f(y)2

= −
(∑

y∈N1

f(y)

)2

+ (n− 1)
∑
y

f(y)2

= −∆(f(x))2 + 2(n− 1)Γ(f)(x). (2.11)

With the substitution of
n

2
+ 1 for K, and n − 1 for d(x), the righthand side of (2.10)

becomes

(n− 1)Γ(f)(x)− 1

2
∆(f(x))2. (2.12)

Since (2.11) is nonnegative and twice (2.12), we see (2.10) holds.

We now present a few examples to illustrate that the inequality presented in Theorem

5 can actually be tight. This implies, in turn, that the functions considered actually witness

the limiting curvature for some family of graphs. This, in turn, means that the discrepancy

properties of graph neighborhoods can, at times, imply sharp upper bounds on the curvature

for graph families.

Example 3 (Regular Trees).

We find that Corollary 7 gives a sharp upper bound on graph curvature of regular trees.

Suppose that G is a d-regular tree. In any tree, every vertex in N2 must be adjacent to

exactly one vertex in N1, as any vertex z ∈ N2 with dN1(z) would form a 4-cycle with x

and its neighbors in N1. Thus, we have that

∑
z∈N2

|dX(z)− dX(z)| =
∑
z∈N2

1 = d(d− 1).
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Furthermore, every tree is triangle-free, which implies that e(X,X) = 0. Our theorem, in

this case, states that

d(d− 1) ≤ 3

4
d(d− 1)− 2K + d− 3

4
d.

Solving for K here yields that K ≤ 2 − d, and as shown in [27], the curvature of a tree is

exactly K = 2− d. Therefore, our theorem gives a sharp upper bound on the curvature of

a d-regular tree.

Example 4 (Zd).

In this example, we find Theorem 5 provides a sharp upper bound on the curvature of

Zd. Consider the graph Zd. Let x = (0, . . . , 0). Then N1(x) = {(y1, . . . , yd) :
∑
|yi| = 1}

and N2(x) = {(z1, . . . , zd) :
∑
|zi| = 2}. Define X ⊆ N1(x) to be the points (y1, . . . , yd)

where yi = 1 for some i ∈ {1, . . . , d} and yj = 0 for all j ̸= i. Then X ⊆ N1(x) is the

set of points (y1, . . . , yd) where yi = −1 for some i ∈ {1, . . . , d} and yj = 0 for all j ̸= i.

Note here that α =
1

2
, as N1 is split evenly according to this partition.

Let z ∈ N2(x). We will analyze how each possible z contributes to the sum on the left

side.

• If z contains two 1s, then |αdX(z) − (1 − α)dX(z)| = 1 and dN1(z) = 2. Thus, the

contribution of z to the sum is
1

2
. There are

(
d

2

)
such vertices.

• If z contains two −1s, then |αdX(z)− (1−α)dX(z)| = 1 and dN1(z) = 2. Thus, the

contribution of z to the sum is
1

2
. There are again

(
d

2

)
such vertices.

• If z contains a 2, then |αdX(z) − (1 − α)dX(z)| =
1

2
and dN1(z) = 1. Thus, the

contribution of z to the sum is
1

4
. There are d such vertices.

• If z contains a −2, then |αdX(z) − (1 − α)dX(z)| =
1

2
and dN1(z) = 1. Thus, the

contribution of z to the sum is
1

4
. There are d such vertices.
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• If z contains a 1 and a−1, then |αdX(z)− (1−α)dX(z)| = 0 and dN1(z) = 2. Thus,

the contribution of z to the sum is 0. There are 2

(
d

2

)
such vertices.

Thus, the sum over all z yields

∑
z∈N2

(
[αdX(z)− (1− α)dX(z)]

dN1(z)

)
=

1

2

(
d

2

)
+

1

2

(
d

2

)
+

1

4
d+

1

4
d+ 0 · 2

(
d

2

)
=

1

2
d2.

On the right side, α =
1

2
. Thus,

3

4
[α2 · e(X,N2) + (1− α)2e(X,N2)] =

3

16
e(N1, N2).

To compute e(N1, N2), every vertex in N2 with two nonzero coordinates has two neighbors

in N1 and there are 4

(
d

2

)
of these vertices. Also, every vertex in N2 with one nonzero

coordinate has one neighbor in N1 and there are 2d of these vertices. Thus, e(N1, N2) =

8

(
d

2

)
+ 2d = 4d2 − 2d. Since Zd is triangle-free, we have that e(X,X) = 0. Finally, the

curvature term yields
d(2K + 2d− 3)

8
.

Therefore, our discrepancy inequality yields that

1

2
d2 ≤ 3

16
(4d2 − 2d)− d(2K + 2d− 3)

8
.

Solving for K yields that K ≤ 0, which again is a tight upper bound as [27] gives that

K = 0.

We remark here that while we have chosen to consider combinatorial properties as

they relate to the infinite curvature dimensional inequality, the functions we consider in our

main result and the corollaries that follow effectively ignore the dimension term in the CD

inequality. As a result, these results hold curvature when normalized to any dimension. We

leave the reader to confirm that the function used in 2.3 satisfies ∆f = 0.
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2.5 Curvature and Graph Operations

Another way to better understand how this curvature on graphs works is to explore how

curvature is affected by various graph operations. As we have seen before, the curvature of

the disjoint union of graphs is calculated by considering the graphs separately. Ricci-flat

graphs are closed under tensor, Cartesian and strong products. In the paper [17] the authors

propose the following two conjectures, both of which we confirm below.

Conjecture 14. Let G = (V,E) be a graph and x ∈ V be a vertex. Let G′ = (V ′, E ′) be

the graph obtained from G by one of the two operations:

• Delete a leaf in S2(x) and its incident edge.

• Delete z ∈ S2(x) and its incident edges {{y, z} ∈ E : y ∈ S1(x)}; Adding a new

edge between every two of {y ∈ S1(x) : {y, z} ∈ E}.

Then we have for any N ∈ (0,∞] and K ∈ R

If G satisfies CD(N,K) at x then so does G′.

We are only interested in the N =∞ case, which we have proofs of below.

We will start with the following lemma.

Lemma 15. Fix some z ∈ N2(x) and let Yz = {y : x ∼ y ∼ z}. If for all y, y′ ∈ Yz,

y ∼ y′, it will be the case that for any function f on Yz, and for optimized values of f(z),

∑
y∼y′∈Yz

(f(y)− f(y′))2 ≥
∑
y∈Yz

(
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))f(y)

)

Proof. Fix some z ∈ N2(x) and let Yz = {y : x ∼ y ∼ z}. Let r = |Yz|.

By Cauchy-Schwarz we can say
(
∑

y∈Yz
f(y))2

r
≤
∑
y∈Yz

f(y)2.
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We have shown that the optimal value of f(z) =
2
∑

y∈Yz
f(y)

r
.

Notice also that

∑
y∼y′∈Yz

(f(y)− f(y′))2 =
∑

y∼y′∈Yz

f(y)2 + f(y′)2 − 2f(y)f(y′). (2.13)

Under the hypothesis that for y, y′ ∈ Yz, y ∼ y′ then the above may be written as

=
∑
y∈Yz

[
(rf(y)2 − f(y)

∑
y′∈Yz

f(y′)

]

=
∑
y∈Yz

rf(y)2 − (
∑
y′∈Yz

f(y′))2

≥ (r − 1)
∑
y∈Yz

f(y)2 +
3

4

∑
y∈Yz

f(y)2 −
(∑

y′∈Yz

f(y′)

)2

≥ (r − 1)
∑
y∈Yz

f(y)2 +
3

4

∑
y∈Yz

f(y)2 −
(r − 1)(

∑
y′∈Yz

f(y′))2

r
−

(
∑

y′∈Yz
f(y′))2

r

(2.14)

Using Cauchy-Schwarz this may be simplified to

(2.14) ≥ 3

4

∑
y∈Yz

f(y)2 −
(
∑

y′∈Yz
f(y′))2

r
(2.15)

≥ 3

4

∑
y∈Yz

f(y)2 −
2(
∑

y′∈Yz
f(y′))2

r
+

(
∑

y′∈Yz
f(y′))2

r
(2.16)

≥ 3

4

∑
y∈Yz

f(y)2 −
2(
∑

y′∈Yz
f(y′))2

r
+

1

4
r

(
2
∑

y′∈Yz
f(y′)

r

)2

(2.17)

≥
∑
y∈Yz

(
3

4
f(y)2 −

2
∑

y′∈Yz
f(y′)

r
f(y) +

1

4

(
2
∑

y′∈Yz
f(y′)

r

)2
)

(2.18)
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with the assumption that f(z) =
2
∑

y∈Yz
f(y)

r
this becomes.

≥
∑
y∈Yz

(
3

4
f(y)2 − f(z)f(y) +

1

4
f(z)2

)
(2.19)

≥
∑
y∈Yz

(
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))f(y)

)
. (2.20)

Therefore,

∑
y∼y′∈Yz

(f(y)− f(y′))2 ≥
∑
y∈Yz

(
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))f(y)

)

Theorem 16 (Proof of Conjecture 14).

Proof. Let G, z and G′ be as in Conjecture 14. Let Yz be as in the Lemma above.

WLOG let f(x) = 0, let f : N1(x)→ R and choose optimized values of f(z).

Let K be the largest value such that G satisfies CD(N,K). We have

∑
z∈N2(x)

∑
y∼z

y∈N1(x)

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

+
∑

y,y′∈N1(x)
y∼y′

(f(y)− f(y′))2

≥ 1

N
(∆f(x))2 +

(
2K + deg(x)− 3

2

)
Γ(f)(x)− 1

2
∆(f(x))2.

Letting K ′ be the largest value such that G′ satisfies CD(N,K), we have

∑
z∈N2(x)

∑
y∼z

y∈N1(x)

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]
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−
∑
y∈Yz

(
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))f(y))

)
+

∑
y∼y′∈Yz

(f(y)− f(y′))2 +
∑

y,y′∈N1(x)
y∼y′

(f(y)− f(y′))2

≥ 1

N
(∆f(x))2 +

(
2K ′ + deg(x)− 3

2

)
Γ(f)(x)− 1

2
∆(f(x))2.

By Lemma 3

∑
z∈N2(x)

∑
y∼z

y∈N1(x)

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

−
∑
y∈Yz

(
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))f(y))

)
+

∑
y∼y′∈Yz

(f(y)− f(y′))2 +
∑

y,y′∈N1(x)
y∼y′

(f(y)− f(y′))2

≥ 1

N
(∆f(x))2 +

(
2K + deg(x)− 3

2

)
Γ(f)(x)− 1

2
∆(f(x))2.

Since our choice of f was arbitrary, and K is the largest value for which the above inequal-

ity holds for arbitrary f , K ≤ K ′. Note also that if G satisfies CD(N,K) it also satisfies

larger values of N and smaller values of K. With this we see that whenever G satisfies

CD(N,K) at x, so does G′.

2.6 Future Work

Moving forward, we hope that these discrepancy-type bounds may be used to certify

other global graph properties, Hamiltonicity for instance. Local Ore-type conditions have

had great success in this regard. We hope that through this local combinatorial lens we

can uncover structural implications of curvature which may then be used to guarantee the

existence of long cycles and paths.
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Chapter 3: Strongly Regular

3.1 Introduction

A graph G is said to be strongly regular with parameters (n, d, λ, µ) if G is d-regular

of order n and, so that every two adjacent vertices have exactly λ common neighbors and

every two nonadjacent vertices have exactly µ common neighbors.

One can see from the definition that structural properties of strongly regular graphs

quickly present themselves. It is easy to see, for instance, that connected strongly regular

graphs have diameter at most two and that the complement of a strongly regular graph is

strongly regular with parameter sets (n, n− 1− d, n− 2− (2d− µ), n− (2d− λ)). Once

one starts studying them, more non-trivial relations between the parameter sets emerge.

For instance, double counting the edges between the first and second neighborhoods of a

vertex reveals that (n− d− 1)µ = d(d− λ− 1).

More interesting, is that there is an immediate connection between strong regularity

and the spectrum of the graph. Supposing M is the adjacency matrix of G, we have M2 =

dI+λM+µ(J−I−M). To see this, we may view M2 as a count on the number of paths of

length 2. Through dI we see the d paths each vertex has to a neighbor then back to itself. In

the second term we see the λ paths a vertex has to its neighbor, and in the third, the µ paths

between a vertex and its non-neighbors. Since M is real symmetric, it is diagonalizable and

aside from the d eigenvalue, eigenvalues γ of M satisfy γ2 = d+λγ−µ−µγ. Therefore γ

can take at most two unique values aside from d. Conversely, it turns out that regular graphs

with 3 distinct eigenvalues are strongly regular. It is good here to note that since the sum

of eigenvalues with multiplicity of M is tr(M) = 0, the smallest eigenvalue is negative.

Because the spectrum of SRGs are so well understood, it is often given as a supplementary
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or alternative parameter set, in which case we say the SRG has spectrum d1 rf , and (−m)g,

where 1, f , and g represent the multiplicities of the eigenvalues respectively. Understanding

these multiplicities has also helped further restrict parameter sets. For example, in [51]

Neumaier shows that all SRGs in which −m is not integral have the form n = 4µ + 1,

d = 2µ, and λ = µ− 1. These are the so called conference graphs.

Because the spectrum is so well understood, algebraic techniques work particularly

well. Due to the close ties between graph spectra and curvature conditions, it is natural

then to ask what the curvatures of these graphs can be. If G is an SRG of girth 5, then

G is a Moore graph in which case balls of radius 2 are trees. As seen in Chapter 2, the

curvature of these graphs is well understood. When the girth is 4 (or equivalently λ = 0

and µ > 1), Cushing et al [15] showed that such graphs satisfy CD(∞, 2). It remains to

be seen however, if there is a general lower bound on the curvature of SRGs with girth 3.

We do not even know if they satisfy CD(∞, 0). Through calculating curvatures of many

known SRGs, Cushing conjectured the following

Conjecture 17 (Cushing SRG Conjecture). All SRGs with girth 3 satisfy CD(∞, 2).

However, proving that all known SRGs satisfy CD(∞, 2) and all possible SRGs satisfy

CD(∞, 2) are two different problems.

Determining for which parameter sets strongly regular graphs exist is a major open

question. To this end, a number of less obvious conditions have been uncovered which

serve to further restrict feasible parameter sets. While some sets may have thousands of

graphs, in many cases we see the parameters alone are enough to certify a number of graph

properties. In this chapter we use the the parameters to understand these SRGs well enough

to give nontrivial curvature bounds. This makes it important for us to understand what the

feasible parameters of SRGs are. In this chapter we use established bounds, and some that

we uncover, to play parameters off each other.
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In one particularly impressive result regarding the classification of feasible parame-

ter sets of SRGs, Brouwer and Maldeghen combined several known powerful relations

between the parameters and their structural implications to establish the following theo-

rem, which they credit largely to Neumaier.

Theorem 18 (Claw Bound). (Theorem 8.6.3 [10]) Let G be a primitive strongly regular

graph with integral eigenvalues k (with multiplicity 1) r = n−m (with multiplicity f ) and

s = −m (with multiplicity g). Let f(m,µ) =
1

2
m(m− 1)(µ+ 1) +m− 1.

Then

(i) (Bruck [11]) If µ = m(m − 1) and n > f(m,µ) then Γ is the collinearity graph of a

partial geometry pg(K,R, T ) with T = R− 1, that is, is a Latin square graph LSm(n).

(ii) (Bose [9]) If µ = m2 and n > f(m,µ) then Γ is the collinearity graph of a partial

geometry pg(K,R, T ) with T = R, that is, the block graph of a 2 − (mn +m − n,m, 1)

design.

(iii) (‘Claw bound’, Neumaier [51]) If µ ̸= m(m− 1) and µ ̸= m2 then n ≤ f(m,µ).

In other words: If r + 1 >
1

2
s(s+ 1)(µ+ 1) then µ = s(s+ 1) or µ = s2.

Using this bound, we show that the truth of Cushing’s conjecture may rest on the

existence of a hypothetical family of SRGs, yet to be found. Specifically, we find the

following.

Theorem 19 (Main Result). All but a finite number of strongly regular graphs with smallest

eigenvalue −m satisfy CD(∞, 2).

Furthermore, if there exists an SRG with λ > 0 and µ = 1, it does not satisfy CD(∞, 2).

This chapter is outlined as follows. We show that all other collinearity graphs of partial

geometries of type i and ii in Theorem 18 satisfy CD(∞, 2). We do this first in Section 3.2

by considering those SRGs which satisfy the conditions or our main lemma, Lemma 20.

46



Lemma 20 (Main Lemma). Strongly Regular Graphs with µ ≥ Max{2, 1
3
λ} satisfy

CD(∞, 2).

We then address the remaining SRGs in Section 3.3 by considering the relationships

between parameters of the underlying partial geometries and finish with Section 3.4 where

we consider future work in this area.

3.2 Proof of Main Lemma

We begin this section by considering the curvature of SRGs with µ = 1. We then

rework the CD inequality and consider SRGs with λ = 1. We then use an averaging

argument to compute a curvature lower bounds for SRGs with λ ≥ 2 and µ ≥ 2λ. We

combine these results to show all SRGs with µ ≥ 1

3
λ and µ ≥ 2 satisfy CD(∞, K).

For the remainder of this chapter we consider an SRG with parameters (n, d, λ, µ) and

fix our attention to some vertex x. We refer to the first neighborhood of x as N1 or N and

the second neighborhood of x as N2. The local graph is the subgraph of the SRG induced

by the vertices of N . We also fix an arbitrary ordering of the vertices in N which we label,

y1, · · · , yd. We find it convenient to sometimes think of f as a function and other times, to

think of f as a vector, f⃗ in which case f⃗i = f(yi). In context, which we are using should

be clear.

Theorem 21. Strongly regular graphs with λ > 0 and µ = 1 do not satisfy CD(∞, 2).

Proof. Let G be an SRG with µ = 1 and λ > 0. Fix some x ∈ G and consider the local

graph. Since µ = 1 and x is a mutual neighbor of all vertices in the local graph, there are

no paths of length two in the local graph, and the local graph is a disjoint union of cliques.

Notice that if λ+1 = d, then µ = 0. It then becomes clear that B̊2(x) is disconnected, and

by Theorem 13, CD(∞, 2) is not satisfied.
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It is interesting to note that it is not known if SRGs with λ > 0 and µ = 1 exist.

The smallest open parameter set is (400, 21, 2, 1). If one were known to exist, then the

Conjecture 17, that all SRGs with girth 3 satisfy CD(∞, 2), would be false.

Lemma 22. Strongly Regular Graphs with parameter set (n, d, λ, µ) satisfy CD(∞, K) at

a vertex x if and only if for all functions, f : N → R,

∑
i,j

[ |z ∈ N2 : z ∼ yi, yj|
µ

+ 1yi∼yj +
λ

4d
− 1

2

]
(f(yi)− f(yj))

2

+
λ

4d
(∆f)2 +

2K − 4

2
Γf ≥ 0 (3.1)

Proof. There are several ways in which we are able to simplify the combinatorial CD

inequality when dealing with the SRG case. We know that f(z) is minimized at the value
2

µ

∑
x∼y∼z

f(y) which will make these values much easier to compare to one another. Recall

also that (∆f)2 = (
∑

f(y))2 and Γf =
1

2

∑
f(y)2. We use the equality

(
n∑

i=1

ai)
2 = n

n∑
i=1

ai −
∑
i,j

(ai − aj)
2

in two ways. In one, we find

(∆f)2 = 2dΓf −
∑
i,j

(f(yi)− f(yj))
2. (3.2)

This allows us to relate some of our most common terms to one another. Also, it allows us

to simplify the previously stubborn
∑
z∈N2

f(z)2 as

∑
z∈N2

f(z)2 =
∑
z∈N2

(
2
∑

x∼y∼z f(y)

µ

)2
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=
∑
z∈N2

4

µ2

µ ∑
x∼y∼z

f(yi)
2 −

∑
x∼{y,w}∼z

(f(y)− f(w))2


=
8(d− λ− 1)

µ
Γf − 4

µ2

∑
i,j

|z ∈ N2 : z ∼ yi, yj|(f(yi)− f(yj))
2. (3.3)

Typically we expect
∑
z∈N2

f(z)2 to depend heavily on the structure of edges between N1 and

N2. Interestingly enough, the only term in (3.3) which isn’t concerned with N1, |z ∈ N2 :

z ∼ yi, yj|, is completely determined by the structure of the local graph. A consequence of

this is that curvature of an SRG at some point x is completely determined by the structure

of the local graph at x. We note here that Cushing et al. made this observation in [17]

(Theorem 11.1).

We begin reworking the CD inequality by considering the first term of (2.1) in Proposition

3

∑
z∈N2

∑
yi∼z

[
1

4
(f(z)− f(yi))

2 − 1

2
(f(z)− f(yi))f(yi)

]
=
∑
z∈N2

∑
yi∼z

[
1

4
(f(z))2 − f(yi)f(z) +

3

4
f(yi)

2

]
=
∑
z∈N2

∑
yi∼z

[
1

4
(f(z))2 − f(yi)f(z)

]
+

3(d− λ− 1)

4

∑
yi∈N

[f(yi)
2]

=− µ

4

∑
z∈N2

[(f(z))2] +
3(d− λ− 1)

4

∑
yi∈N

[f(yi)
2]

=− µ

4

∑
z∈N2

[(f(z))2] +
3(d− λ− 1)

2
Γ(f). (3.4)

With the substitution for
∑

f(z)2 in (3.3), this gives us

(3.4) =

− µ

4

[
8(d− λ− 1)

µ
Γf − 4

µ2

∑
i,j

|z ∈ N2 : z ∼ yi, yj|(f(yi)− f(yj))
2

]
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+
3(d− λ− 1)

2
Γ(f)

=
∑
i,j

|z ∈ N2 : z ∼ yi, yj|
µ

(f(yi)− f(yj))
2 − (d− λ− 1)

2
Γ(f). (3.5)

Using (3.2) we find the equality

−2d+ λ

2
Γf =

−2d+ λ

4d

(
(∆f)2 +

∑
i,j

(f(yi)− f(yj))
2

)
. (3.6)

By adding the right side of the equality (3.6) and subtracting the left, we rewrite (3.5)

as

∑
i,j

[ |z ∈ N2 : z ∼ yi, yj|
µ

+
−2d+ λ

4d

]
(f(yi)− f(yj))

2

+
−2d+ λ

4d
(∆f)2 +

(d+ 1)

2
Γ(f). (3.7)

We also rewrite the second term of (2.1)

∑
y,y′∈N1

y∼y′

(f(y)− f(y′))2 =
∑
i,j

1yi∼yj(f(yi)− f(yj))
2. (3.8)

Through the substitution of (3.7) and (3.8) we find (2.1) is equivalent to

(3.7) +
∑
i,j

1yi∼yj(f(yi)− f(yj))
2 ≥

(
2K + d− 3

2

)
Γ(f)(x)− 1

2
(∆f)2. (3.9)

Through simplification of (3.9) we find (2.1) is equivalent to
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∑
i,j

[ |z ∈ N2 : z ∼ yi, yj|
µ

+ 1yi∼yj +
λ

4d
− 1

2

]
(f(yi)− f(yj))

2

+
λ

4d
(∆f)2 − 2K − 4

2
Γf ≥ 0 (3.10)

and through Proposition 3, an SRG satisfies CD(∞, K) if and only if (3.10) is satisfied.

Corollary 23. Strongly Regular Graphs with parameter set (n, d, λ, µ) satisfy CD(∞, 2) at

a vertex x if and only if for all functions, f : N1 → R

∑
i,j∈N1

[
αi,j(f(yi)− f(yj))

2
]
+

λ

4d
(∆f)2 ≥ 0 (3.11)

where αi,j =
|z ∈ N2 : yi, yj ∼ z|

µ
+1{yi∼yj}+

λ

4d
− 1

2
. Note that if for all i ̸= j, αi,j ≥ 0,

then (3.11) is satisfied.

Proof. This follows immediately from Lemma 22.

Lemma 24. If G is an SRG with λ = 1 or λ = 0, and µ ≥ 2 then G satisfies CD(∞, 2).

Proof. First let G be an SRG with λ = 1 and µ ≥ 2. Fix some x ∈ G. Notice that

the edges within the local graph form a perfect matching. If yi ̸∼ yj ∈ N1 then |z ∈

N2 : z ∼ yi, yj| = µ − 1. In this case we have αi,j ≥
[
µ− 1

µ
+

λ

4d
− 1

2

]
≥ 0. By

Lemma 22 we have that G satisfies CD(∞, 2) at x and since our choice of x was arbitrary,

G satisfies CD(∞, 2). Similarly, we let G be an SRG with λ = 0 and µ ≥ 2. Fix some

x ∈ G. Notice that the local graph has no edges. Then for all yi, yj ∈ N1, yi ̸∼ yj and

|z ∈ N2 : z ∼ yi, yj| = µ − 1. In this case we have αi,j ≥
[
µ− 1

µ
+

λ

4d
− 1

2

]
≥ 0. By

Lemma 22 we have that G satisfies CD(∞, 2) at x and since our choice of x was arbitrary,

G satisfies CD(∞, 2).
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We see that Lemma 24 gives an alternate proof of the result in [15] that all SRGs with

girth 4 and µ ≥ 2 satisfy CD(∞, 2).

We have now covered the cases where λ or µ is 1. Next we redistribute the αi,j coeffi-

cients from adjacent vertices to paths of length 2. We then show that these new coefficients

are non-negative provided λ ≥ 2 and µ ≥ 2λ.

Lemma 25. If G is an SRG with λ ≥ 2 and µ ≥ 2λ, then G satisfies CD(2,∞).

Proof. Let G be an SRG with λ ≥ 2 and µ ≥ 2λ. By Corollary 23 it suffices to show

∑
i,j

[ |z ∈ N2 : yi, yj ∼ z|
µ

+ 1yi∼yj +
λ

4d
− 1

2

]
(f(yi)− f(yj))

2 ≥ 0. (3.12)

We start with the observation that every edge in the local graph is a part of 2(λ − 1) paths

of length 2 in the local graph. This observation, along with the triangle inequality gives us

the rewritten term

∑
i,j

1yi∼yj(yi − yj)
2 =

∑
i,j

 ∑
y∈N∼yi,yj

(
(y − yi)

2 + (y − yj)
2

2(λ− 1)

)
≥
∑
i,j

 ∑
y∈N∼yi,yj

(
(
yi+yj

2
− yi)

2 + (
yi+yj

2
− yj)

2

2(λ− 1)

)
=
∑
i,j

 ∑
y∈N∼yi,yj

(
2(

yi−yj
2

)2

2(λ− 1)

)
=
∑
i,j

( |y ∈ N1 : yi, yj ∼ y|
4(λ− 1)

)
(yi − yj)

2. (3.13)

Thus by averaging (3.13) with its original form, we have

∑
i,j

1yi∼yj(yi − yj)
2 ≥

∑
i,j

1

2
· 1yi∼yj +

|y ∈ N1 : yi, yj ∼ z|
8(λ− 1)

(yi − yj)
2. (3.14)
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Though the substitution of (3.14) into (3.12) we find

∑
i,j

[ |z : yi, yj ∼ z|
µ

+
1

2
· 1yi∼yj +

|y ∈ N1(x) : yi, yj ∼ z|
8(λ− 1)

+
λ

4d
− 1

2

]
(f(yi)− f(yj))

2

≥ 0. (3.15)

Therefore the satisfaction of (3.15) implies the satisfaction of (3.12).

We now show that in the parameter regime we consider, all coefficients of (f(yi) −

f(yj))
2 in (3.15) are non-negative. Note that if yi ∼ yj , then clearly this coefficient is

non-negative, as the contribution from the indicator is enough to make the term positive.

Supposing yi ̸∼ yj , |z ∈ N2 : yi, yj ∼ z| + |y ∈ N1 : yi, yj ∼ y| = µ − 1. When

µ > 8(λ−1) the sum
|z : yi, yj ∼ z|

µ
+
|y : yi, yj ∼ y|

8(λ− 1)
is minimized when |z : yi, yj ∼ z| =

µ− 1 and since
µ− 1

µ
+
|y : yi, yj ∼ y|

8(λ− 1)
≥ 1

2
and the coefficients are non-negative. When

µ ≤ 8(λ−1), the sum
|z : yi, yj ∼ z|

µ
+
|y : yi, yj ∼ y|

8(λ− 1)
is minimized when |z : yi, yj ∼ z| =

µ − (λ + 1) and |y : yi, yj ∼ y| = λ, in which case
|z : yi, yj ∼ z|

µ
+
|y : yi, yj ∼ y|

8(λ− 1)
≥

µ− (λ+ 1)

µ
+

λ

8(λ− 1)
. Now observe that for µ ≥ 2λ and λ ≥ 2,

µ− (λ+ 1)

µ
+

λ

8(λ− 1)
≥ λ− 1

2λ
+

λ

8(λ− 1)
=

1

2
+

1

8
− 1

2λ
+

1

8(λ− 1)
≥ 1

2
.

Thus, with these parameters, all of the coefficients of the (f(yi) − f(yj))
2 terms in (3.15)

are non-negative, and hence the sum is non-negative and hence G satisfies CD(∞, 2).

Now that we have taken care of the cases where λ or µ is 1, and when µ ≥ 2λ. We

will now use the spectrum of the local graph to show CD(∞, 2) is satisfied when µ ≥

max{1
3
λ, 2}. We begin by defining some relevant graph matrices and their row sums.
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For a strongly regular graph with parameter set (n, d, λ, µ) and a fixed x, we define

αi,j =
|z ∈ N2 : yi, yj ∼ z|

µ
+ 1{yi∼yj} +

λ

4d
− 1

2
if i ̸= j and αi,i =

λ

4
− 1

2
. Notice that∑

i

αi,j is independent of j, we will call this sum A =
(d− λ− 1)(µ− 1)

µ
+ λ +

λ

4
− d

2
.

We define A as the square d matrix with Ai,j = αi,j . We remind the reader that a restricted

eigenvalue, is one which is not associated 1⃗. We would also like to remind the reader that

because A is real valued and symmetric, it has d orthonormal eigenvectors. This result,

attributed to Cauchy, was later generalized by Von Neumann and is known as the Spectral

Theorem.

Lemma 26. If there exists a function f : N → R which violates the following inequality,

∑
i,j∈N1(x)

[
αi,j(f(yi)− f(yj))

2
]
−
[
(2K − 4)

2

]
Γf ≥ 0 (3.16)

where K = 2, then there exists a restricted eigenvalue of A larger than A.

Proof. Note that if a function fails (3.16), it can be scaled so that
∑
i

f(yi)
2 = 1. For such

a function f , the left hand side (specialized at K = 2) is

∑
i,j∈N1(x)

αi,j(f(yi)− f(yj))
2

=2
∑

i,j∈N1(x)

[
αi,jf(yi)

2
]
− 2

∑
i,j∈N1(x)

[αi,jf(yi)f(yj)]

=2
∑

i∈N1(x)

[
Af(yi)

2
]
− 2

∑
i,j∈N1(x)

[αi,jf(yi)f(yj)] (3.17)

where we used that A has a constant row and column sum of A. Thinking of f as a vector,

we have

(3.17) = 2A− 2f⃗⊺Af⃗ (3.18)
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and satisfying (3.16) is hence equivalent to minimizing (3.18) and showing that this mini-

mum is non-negative.

A is real symmetric, and hence admits an orthonormal basis of eigenvectors. It is pre-

cisely such a vector that minimizes (3.18). Further observe that, though 1⃗ is an eigenvector

of A, the constant function does satisfy (3.16). Thus if (3.16) is violated it must be must

be for the eigenfunction corresponding to a maximal restricted eigenvalue ofA, γ. For this

function,

(3.17) = A− γ

and we see if (3.16) is not satisfied, then γ > A.

From Lemma 26 we find the left-hand side of 3.16 is minimized at eigenvectors perpen-

dicular to 1⃗. Since
λ

4d
(∆f)2 is also minimized at eigenvectors perpendicular to 1⃗, (3.1) is

also minimized at these eigenvectors and by Lemma 22 we have the following proposition.

Proposition 27. Strongly Regular Graphs with parameter set (n, d, λ, µ) satisfy CD(∞, 2)

at a vertex x if and only if there exists some maximal eigenvalue γ of A such that γ > A.

We now relate the eigenvectors of A to the eigenvectors of the adjacency matrix of the

local graph. Using this same labeling of the local graph used in the construction of A, let

Ā be the adjacency matrix of the local graph. Let γ be the largest restricted eigenvalue of

A. Notice that because the local graph is λ-regular, it has eigenvector 1⃗ with associated

eigenvalue λ. In the next lemma, we show the relationship between γ and an eigenvector

of Ā.
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Lemma 28. Suppose γ is the largest restricted eigenvalue of A. Suppose λ = γ1 ≥ · · · ≥

γk are the eigenvalues of Ā, then

γ = max
i>1

[
− 1

µ
γ2
i +

(λ− µ)

µ
γi +

λ− µ+ 1

µ

]
. (3.19)

Proof. We remind the reader that

Ai,j =αi,j (3.20)

=
|z ∈ N2 : yi, yj ∼ z|

µ
+ 1{yi∼yj} +

λ

4d
− 1

2
. (3.21)

Since vertices yi, yj have Ā2
i,j mutual neighbors in the local graph and one mutual neighbor

x, all other mutual neighbors are in N2. This allows us to rewrite A,

A =
µ− 1

µ
(J − Ā − I) +

λ− 1

µ
Ā − 1

µ
(Ā2 − λI) + Ā+

(
λ

4d
− 1

2

)
J. (3.22)

This expression of A in terms of Ā and J ensures that any restricted eigenvector of A

is a restricted eigenvector of Ā and vice versa.

Notice that 1⃗ is an eigenvector of Ā. Let ϕ⃗i ⊥ 1⃗ be another eigenvector of Ā with

associated eigenvalue γi. Then Jy⃗ = 0⃗. From (3.22) we have

Aϕ⃗i =

[
Ā+

µ− 1

µ
(J − Ā − I) +

λ− 1

µ
Ā − 1

µ
(Ā2 − λI) +

(
λ

4d
− 1

2

)
J

]
ϕ⃗i

=

[
γi +

µ− 1

µ
(0− γi − 1) +

λ− 1

µ
γi −

1

µ

(
γ2
i − λ

)]
ϕ⃗i

=

[
− 1

µ
γ2
i +

(λ− 1)− (µ− 1)

µ
γi +

−(µ− 1) + λ

µ

]
ϕ⃗i

=

[
− 1

µ
γ2
i +

(λ− µ)

µ
γi +

λ− µ+ 1

µ

]
ϕ⃗i.
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where
[
− 1

µ
γ2
i +

(λ− µ)

µ
γi +

λ− µ+ 1

µ

]
is a restricted eigenvalue of A coming from a

restricted eigenvalue γi of Ā.

Maximizing the quadratic in (3.19) allows us, in turn, a bound on γ solely in terms of

the parameters of the SRG. This allows us to drop the dependence of the spectrum of the

local graph in the following corollary.

Corollary 29.

A− γ ≥ d(
µ− 2

2µ
) +

λ

4
− (λ− µ)2

4µ
. (3.23)

Proof. By treating γi as a formal variable in (3.19), we see γ is maximized when some

γi =
λ− µ

2
. Since γ arises from such a γi this implies that

γ ≤
[
(λ− µ)2

4µ
+

λ− µ+ 1

µ

]

as desired. Recall A =
(d− λ− 1)(µ− 1)

µ
+ λ+

λ

4
− d

2
. Therefore

A− γ ≥(d− λ− 1)(µ− 1)

µ
+ λ+

λ

4
− d

2
−
(
(λ− µ)2

4µ
+

λ− µ+ 1

µ

)
=d(

µ− 1

µ
− 1

2
) +

λ− µ+ 1

µ
+

λ

4
−
(
(λ− µ)2

4µ
+

λ− µ+ 1

µ

)
=d(

µ− 1

µ
− 1

2
) +

λ

4
− (λ− µ)2

4µ

=d(
µ− 2

2µ
) +

λ

4
− (λ− µ)2

4µ
.
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Lemma 30. Fix a µ ≥ 2 and let

Cµ = min

{
λ

µ
: An SRG with parameters λ and µ does not satisfy CD(∞, 2)

}
,

taking Cµ =∞ if no such graphs exist. Then C2 ≥ 3 and Cµ ≥ 4 for µ ≥ 3.

Proof. Per Lemma 26 and Corollary 29 the inequality

d(
µ− 2

2µ
) +

λ

4
− (λ− µ)2

4µ
≥ 0

implies CD(∞, 2). As Kd+1 satisfies CD(∞, 2) we know that in any SRG not satisfying

CD(∞, 2) the local graph has two nonadjacent vertices in which case d ≥ 2λ− µ.

Hence it must be the case that if a graph fails this inequality, with λ = x · µ and using

our lower bound on d we must have

(x− 1/2)(µ− 2) +
xµ

4
− µ(x− 1)2

4
< 0.

The roots of this polynomial are

7µ− 8±
√

37µ2 − 96µ+ 64

2µ
.

Note that
7µ− 8−

√
37µ2 − 96µ+ 64

2µ
<

1

2

for µ ≥ 2 (and actually, the limit as µ → ∞ increases to
(7−

√
37)

2
≈ 0.458...). Recall

Lemma 25 implies that Cµ ≥
1

2
therefore all SRGs with x less than this smaller root satisfy

CD(∞, 2).
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Thus the only way that G fails to satisfy CD(∞, 2) is if

x >
7µ− 8 +

√
37µ2 − 96µ+ 64

2µ
.

For µ ≥ 4, this is already at least 4, and for µ = 3, note that this is larger than 11/3 and

hence C3 ≥
12

3
= 4. For µ = 2, this root is

3 +
√
5

2
>

5

2
, and hence C2 ≥

6

2
= 3

We define the conference graph to be an SRG with parameters, n, d =
(n− 1)

2
, λ =

(n− 5)

4
, and µ =

(n− 1)

4
. As mentioned earlier, these graphs are known to be the only

class of SRG without integral eigenvalues. In the next corollary, we show that conference

graphs with girth 3 satisfy CD(∞, 2).

Corollary 31. Conference graphs with girth 3 satisfy CD(∞, 2).

Proof. Notice for a conference graph, with girth 3, n ≥ 9 so µ ≥ 2 and
λ

µ
=

n− 5

n− 1
≤ 1.

By Lemma 30 we see CD(∞, 2) is satisfied.

Unfortunately, there are SRGs with parameter sets which are not covered by Lemma

30. For example, The line graphs L(Kn,n), n ≥ 2, with parameters (n2, 2(n− 1), n− 2, 2).

We consider many of these graphs in the next section.

It is also good to note that the parameters do not determine the local graph, or its spec-

trum. For example, the Shrikhande graph and 4×4 Rook’s graph both have parameters

(16, 6, 2, 2), but the local graph of the Shrikhande graph and 4×4 Rook’s graph (see Fig-

ure 3.1) are not isomorphic – this is reflected in the curvatures of these two graphs. The

Shrikhande graph has curvature 2 (that is, it satisfies CD(∞, 2) but not CD(∞, K) for any

K > 2), while the Rook’s graph has curvature 3 [17].

59



Figure 3.1: On the left is the first and second neighborhood of the Shikrande Graph and
on the right, that of the Rook’s graph. The local graph of x is highlighted in blue.

3.3 Curvature of Collinearity Graphs of Partial Geometries

In this section, we show that the infinite families of graphs with smallest eigenvalue

−m which are not covered by Lemma 20 satisfy CD(∞, 2). By the claw bound, these are

all collinearity graphs of partial geometries. We begin by defining SRGs of this form.

Definition 2. A partial geometry pg(K,R, T ) is a partial linear space (X,L) such that each

line has K points, each point is on R lines, and given a point x outside a line L, there are

precisely T lines on x meeting L.

It is known that the collinearity graph of a partial geometry is strongly regular with

parameters n = K +K(K − 1)(R− 1)/T , d = R(K − 1), λ = (R− 1)(T − 1) +K − 2,

and µ = RT .

We define the set of exceptional graphs as described in the claw bound to be L. We note

here that when R = 1, G is a complete graph and by Example 2 G satisfies CD(∞, 2).

Theorem 32. Suppose G is an SRG with µ = 2 and G /∈ L, then G satisfies CD(∞, 2).

Proof. Suppose G is an SRG with µ = 2 and G /∈ L. If G is a conference graph, then by

Lemma 31 we are done. Otherwise, G has integral smallest eigenvalue −m. By the Claw

Bound, µ = m(m − 1) and G is the collinearity graph of a partial geometry with T = 2

and R = 1, in which case G is a complete graph, which we know satisfies CD(∞, 2).
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Theorem 33 (partial geometry theorem). Let G be the collinearity graph of a partial geom-

etry, pg(K,R, T ), with strongly regular graph parameters (n, d, λ, µ) such that µ ≥ 3.

Then G satisfies CD(∞, 2).

Proof. Let G be the collinearity graph of a partial geometry, pg(K,R, T ), with strongly

regular graph parameters (n, d, λ, µ) such that µ ≥ 3. If λ < 4µ, by Lemma 30 G satisfies

CD(∞, 2). For the remainder of the proof, suppose λ ≥ 4µ. Notice if R = 1 or T = 0

then G is a union of disjoint cliques, which satisfies CD(∞, 2). For the remainder of the

proof we assume R ≥ 2 and T ≥ 1. We let Ā be the adjacency matrix of local graph of G

at some fixed vertex x. We notice Ā = A1 + A2 where A1 is the adjacency matrix of R

many K − 1-cliques and A2 is (R − 1)(T − 1) regular. We let B1 be the R dimensional

eigenspace of A1 associated with the eigenvalue K − 2. Notice that by Perron Frobenius

we have the largest eigenvalue in absolute value ofA2 is (R−1)(T−1). Let γ1 ≥ · · · ≥ γk

be the eigenvalues of Ā. By the Courant-Fischer Theorem we have

γR = max
X

dimX=R

min
x∈X
||x||=1

xT Āx

≥ min
x∈B1
||x||=1

xT Āx

≥K − 2− (R− 1)(T − 1).

Similarly, we define B2 to be the k −R dimensional eigenspace of A1 associated with −1.

Again, by Courant-Fischer,

γR+1 = min
X

dimX=k−R

max
x∈X
||x||=1

xT Āx

≤ max
x∈B2
||x||=1

xT Āx

≤− 1 + (R− 1)(T − 1).
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From Lemma 28 we have

γ = max
i

[
− 1

µ
γ2
i +

(λ− µ)

µ
γi +

λ− µ+ 1

µ

]
.

Recalling A =
(d− λ− 1)(µ− 1)

µ
+ λ+

λ

4
− d

2
, we may rewrite A− γ as

min
i

d(
µ− 2

2µ
) +

λ

4
+

[
γi(γi − λ+ µ)

µ

]
. (3.24)

We may think of A − γ as a function of γi in which case, it is an upward facing parabola.

Here we wish to bound the eigenvalues of Ā away from from the potentially negative region

– which is centered at γi =
λ− µ

2
.

We start by showing that the first R eigenvalues of Ā are sufficiently larger than
λ− µ

2
,

in doing so we find suitable lower bounds for the terms in (3.24). Recall that we assume

λ ≥ 4µ, and so the second term of (3.24),
λ

4
> (R − 1)(T − 1). We see that the lower

bound on γR, K − 2 − (R − 1)(T − 1) = λ − 2(R − 1)(T − 1) >
λ

2
>

λ− µ

2
. Since

K − 2− (R− 1)(T − 1) bounds γR from below, and
[
γi(γi − λ+ µ)

µ

]
is increasing when

γi >
λ− µ

2
, for all j ≤ R,

γi(γi − λ+ µ)

µ
≥ (K − 2− (R− 1)(T − 1)) (K − 2− (R− 1)(T − 1)− λ+ µ)

µ
.

(3.25)

Notice K − 2− (R− 1)(T − 1)− λ+µ = −2(R− 1)(T − 1)+RT > −(R− 1)(T − 1),

the right hand side of (3.25) may be bounded below by

(K − 2− (R− 1)(T − 1)) (−(R− 1)(T − 1))

RT
. (3.26)
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Since R ≥ 2 and T ≥ 1, (R−1)(T −1) ≤ RT −2. Using this substitution we find a lower

bound for (3.26)

(K − 2− (R− 1)(T − 1) (−(RT − 2))

RT
. (3.27)

We will use (3.27) as a lower bound for the third term of (3.24). We now wish to bound the

first term of (3.24). Through substitutions we see

d(
µ− 2

2µ
) =

(K − 1)(RT − 2)

2T
. (3.28)

adding (3.28) to (3.27) yields

(K − 1)(RT − 2)

2T
+

(K − 2− (R− 1)(T − 1) (−(RT − 2))

RT
> 0. (3.29)

(3.29) shows that the sum of the first and third terms of (3.24) is positive, and since the

second term,
λ

4
is also positive, for all j ≤ R we have (3.24) is positive. Therefore, if

(3.24) is minimized at some j ≤ R, G satisfies CD(∞, 2).

We use an analogous argument for j > R. Since λ ≥ 4µ we have K−2+(R−1)(T−1) ≥

4RT and K − 2 > 3RT .

With some substitution we see
λ− µ

2
=

K − 2 + (R− 1)(T − 1)−RT

2
≥ 2RT

2
and we

have −1 + (R − 1)(T − 1) <
λ− µ

2
. Because −1 + (R − 1)(T − 1) bounds γR+1 from

above and
[
γi(γi − λ+ µ)

µ

]
is decreasing when γi <

λ− µ

2
, for all j ≥ R + 1,

γi(γi − λ+ µ)

µ
≥ (−1 + (R− 1)(T − 1)) (−1 + (R− 1)(T − 1)− λ+ µ)

µ
.
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Since −1 + (R − 1)(T − 1) − λ = −1 + (R − 1)(T − 1) − [K − 2 − (R − 1)(T − 1)],

the third term of (3.24) may be rewritten as

(−1 + (R− 1)(T − 1)) (−(K − 1− 2(R− 1)(T − 1)−RT )

RT
. (3.30)

Earlier we saw the first term of (3.24) may be rewritten as

d(
µ− 2

2µ
) =

(K − 1)(RT − 2)

2T
. (3.31)

Since R ≥ 2, RT − 2 > (R− 1)(T − 1)− 1 and K− 1 > K− 1− 2(R− 1)(T − 1)−RT ,

(−1 + (R− 1)(T − 1)) (−(K − 1− 2(R− 1)(T − 1)−RT )

RT

+
(K − 1)(RT − 2)

2T
> 0. (3.32)

Since (3.32) shows the sum of the first and third terms of (3.24) is positive, and
λ

4
clearly

is as well, we have for all j ≥ R+1, (3.24) is positive. Therefore, if (3.24) is minimized at

some j > R, G satisfies CD(∞, 2). Combining this with our result when j ≤ R, we have

(3.24) > 0 and by Lemma 26, G satisfies CD(∞, 2).

3.4 Future Work

While we hope to extend these results to all SRG’s, this will likely require additional

observations regarding the structure of feasible SRGs that we have yet to uncover. We are

particularly interested in the case when
λ

µ
is large. There are also several other families

of graphs for which discrete curvature bounds are of interest. For instance, the Ollivier

curvature of circulant graphs has recently received attention. It would be worthwhile to see

if our combinatorial techniques could give nontrivial lower bounds on the Bakry-Émery

curvature of these graphs.
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Chapter 4: Drones

4.1 Introduction

In the previous two chapters we explored global implications of local structure in the

setting of extremal graph theory. We now turn our attention to a the setting of computa-

tional geometry where we consider a sort of facility location problem. While the setting

is different, the sentiment is the same. Using only local information, we can glean global

insights. In this case, the global insights are a near optimal solution the facility location

problem.

The rapid development and use of Unmanned Aerial Vehicles (UAVs), commonly

called drones, in many activities of our daily life has created a need for the development of

new algorithms to optimize their use. A factor that is common to most types of drones is

their relatively short flying range due mostly to their their restricted energy capacity [41].

Patrolling a border is one typical application of air surveillance systems where the

deployment of drones has become a natural choice [3, 33]. In this context, a team of UAVs

can be deployed to monitor an area and send information such as images or videos to the

nearest base station.

In this chapter we study the following problem which we call the MinStation Problem:

Suppose that we want to guard the border of an island I whose boundary is modeled by a

simple polygon P using a set of drones that can fly a distance d before needing to refuel.

These drones can fly over the boundary of I or over small sectors of the sea surrounding

it, but not over the interior of I. The objective is to place a set S = {s0, . . . , sk−1} of

k refueling base stations with minimum cardinality k and located on the boundary of I,

such that when a drone visits all the refueling stations it travels a closed curve that encloses

65



P; the flying distance between si and si+1 is at most d, with addition taken mod k. See

Figure 4.1. We will refer to S as an optimal solution. A set S ′ = {s′0, . . . , s′k} with k + 1

refueling stations will be called a quasi-optimal solution.

Figure 4.1: Example. A polygon P and d-hull C (black dashed line) that uses an optimal
set of base stations (solid circles) for the MinStation problem.

Our main contributions are as follows: We give an algorithm, OPTSOL, with complex-

ity O(n2 + Ln), such that if s0 is a fixed point on the convex hull of P , CH(P ), finds an

optimal solution S to the MinStation Problem under the restriction that s0 ∈ S; here, L is

the length ofP . This yields either an optimal or quasi-optimal solution to the unconstrained

MinStation Problem (without requiring s0 ∈ S). The problem of finding an optimal uncon-

strained solution is equivalent to that of finding the location of a single station in an optimal

solution. We leave as an open problem the problem of designing a polynomial time algo-

rithm for the general unconstrained case.

Then we address the following dual problem, which we call the MinDistance Problem:

Suppose that we have a budget that allows us to build k refueling stations. Find the smallest

d such that we can build k refueling stations that allow a drone with flight capacity d to

guard the border of the given island. We present an algorithm which approximates an

optimal solution to the MinDistance Problem up to an additive constant. The main tool in

this solution is a discretization of the original MinStation Problem, via an algorithm we

call APPSOL. This discretized approach also yields an easier to implement algorithm to

approximate the MinStation problem.
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Our results can be applied to problems such as border patrolling, where the use of

fleets of small cheaper drones with limited capacity results in cheaper systems that use less

resources, and increase the frequency with which the drones patrol the border.

A reviewer asked the natural question: can we find an optimal placement of base sta-

tions if instead of enclosing the polygon, we wish to travel between two arbitrary points on

the polygon? We find that with some additional machinery, this problem can be answered

by extending our results. We supply this proof in Section 4.6.

4.1.1 Related work. Drones have become the natural choice for the deployment of air

surveillance systems [3, 33, 44]. There are three areas in which problems close to ours can

be found: operations research, wireless networks and computational geometry.

In facility location problems, we are interested in finding the best places to locate a set

of facilities (e.g. airports, pharmacies, gas stations, markets, etc.) to better serve a com-

munity, as well as creating optimal routes to visit them. Recently, applications in the aerial

robotics community, such as finding the best places to locate drone base stations and creat-

ing flying routes for the drones, have arisen in areas such as border patrolling [55]. Cities on

the borders of countries are modeled as demand points, and airports are considered as base

stations or hubs. In [61] the authors studied a base location and path planning problem in

maritime target reconnaissance problems. Their problem is formulated as an integer linear

program where the total score obtained from visiting points of interest by flight routes of

drones is maximized; a novel ant colony optimization metaheuristic approach is proposed.

In a more recent paper [40], both capacity constraints on base stations and endurance limi-

tations on drones are taken into account and two heuristic algorithms are designed to solve

the problem.

Another field of research close to our work can be found in wireless sensor networks.

In [30], the authors study the k-barrier problem: how to deploy a set of sensors in a

belt region surrounding a castle in such a way that any intruder is detected by at least k
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sensors. In [7] the following problem is studied: Given that an intruder has been detected

by a set of sensors, how can they be moved in an optimal way to prevent further intrusions?

An interesting survey of problems similar to ours can be found in [1], where they study the

problem of protecting several types of holes that can occur in a wireless sensor network,

where a hole is a region not covered by the sensing disks of a set of sensors. In the same

paper, other problems related to ours are considered, including routing in static and mobile

sensor networks. See also [8, 19, 60].

Finally, in computational geometry, two classic areas of research that study problems

related to ours are Art Gallery and Watchman Route problems [4, 52, 53, 59]. In the first

one, we deal with the problem of finding a set of points S within an art gallery, usually

modeled by a polygon P , such that every point in the art gallery is visible from at least one

point in S. The watchman problem is that of finding a path that a guard can follow in order

to guarantee that any point within P is visible from a point in the path.

4.2 Terminology and Problem Formulation

In what follows a polygon P is represented by a sequence ⟨p0, . . . , pn−1⟩ of its vertices

given in clockwise order around its boundary. Thus, the edges of P are the line segments

pipi+1, with addition taken mod n. We assume that our polygons are always simple, i.e.

that no two non-consecutive edges intersect. We use Int(P) and Ext(P) to denote, respec-

tively, the interior and exterior of the region enclosed by P , and use P itself to refer to the

boundary of this region (often referred to by ∂P in the literature). Accordingly, the length

of P is the sum of the lengths of its edges. A (polygonal) path is a sequence of points

⟨q0, . . . , qk⟩ together with the set of edges qiqi+1, i = 0, . . . , k − 1; the length of a path is

the sum of the lengths of its edges.

Given two distinct points a, b ∈ P the interval [a, b] is the set of points of P traversed

while moving from a to b in the clockwise direction along the boundary of P . The distance
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δP(a, b) between a and b in P is the length of the interval [a, b]. Observe that since a ̸= b,

[a, b] ̸= [b, a], [a, b] ∪ [b, a] = P , and that δP(a, b) + δP(b, a) is the length of P .

The following definitions of what we will call d-paths and d-hulls arise from the restric-

tion that the flight range of a drone is a fixed number d.

An open line segment contained in Ext(P) joining two points a, b ∈ P will be called

a bridge; if its length is at most d it is called a d-bridge of P . Note that a drone cannot fly

along a bridge of P with length greater than d; the base stations are restricted to be on P ,

thus if a drone chooses to fly over a bridge with length greater than d it would run out of

fuel and fall to the sea.

A polygonal path joining two points a, b ∈ P is called a d-path if all of its edges are

d-bridges of P , or segments of edges of P . We say that a polygon C is a d-hull of P if it

encloses P , and all of its edges are contained in edges of P or are d-bridges of P . Observe

that a polygon has many (in fact an infinite number) of d-hulls, indeed P is a d-hull of

itself.

dpj
pi

a

b

x

y

Figure 4.2: The interval [a, b] and a d-path πx,y joining x and y are shown in black dashed
lines. The segment pipj is a d-bridge contained in πx,y.

The drone distance δ(a, b) from a to b is the length of a shortest clockwise d-path

joining a to b. As an example, Figure 4.2 shows the shortest d-path from x to y. For

simplicity, we will refer to the drone distance as the distance from a to b. Observe that

δ(a, b) is in general different from δ(b, a). Further observe that the drone distance and the

geodesic distance from a to b (understood as the length of the shortest clockwise path from
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a to b disjoint from Int(P)) coincide whenever this distance is at most d. Finally, note that

if a drone with flight range d can fly between two points a, b ∈ P without recharging, then

there is a d-path joining them of length at most d.

Our island guarding problem can now be restated as follows:

Problem 2 (MinStation). Given a polygon P find a set of base stations S = {s0, . . . , sk−1}

with minimum cardinality such that for every 0 ≤ i ≤ k − 1 there is a d-path πi of length

at most d joining si to si+1, and such that C = π0 ∪ . . . ∪ πk−1 is a d-hull of P; si ∈ P ,

i = 0, . . . , k − 1, addition taken mod k.

By a solution to the MinStation problem we refer simply to a set S of base stations

together with the collection of d-paths πi whose union is a polygon that encloses P . Recall

that a solution is optimal if it contains the least possible number of base stations, and quasi-

optimal if it contains one more base station than an optimal solution.

We also study a kind of dual problem to the MinStation problem. Suppose that we

have a budget that allows us to build k base stations, and want to find the locations along P

where to build them such that the flight range of the drones used to patrol P is minimized,

formally:

Problem 3 (MinDistance). Given a simple polygon P and an integer k ≥ 2, find the

smallest d and a set S = {s0, s2, . . . , sk−1} of k stations onP such that, for i = 0, . . . , k−1,

there is a d-path πi of length at most d joining si to si+1, addition taken mod k, and C =

π0 ∪ . . . ∪ πk−1 is a d-hull of P .

Computing a d-hull that minimizes the number of base stations needed to solve the

MinStation problem is more subtle than it may at first look. There are polygons P for

which, given d, the smallest number of base stations needed to solve the MinStation prob-

lem, lie on the shortest d-hull enclosing P . An example is shown in Figure 4.1. However,

there are examples for which the stations of an optimal solution do not lie on the shortest
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d-hull enclosing P . An example is given in Figure 4.3. It is easy to see that placing a

base station at any point other than the black points shown there, increases the number of

base stations needed to solve the MinStation problem. In fact, it is not hard to construct

polygons such that the number of stations required for the shortest d-hull is almost twice

the number of stations given by the MinStation problem. This is the case, for example, for

a star shaped polygon such that the distance between adjacent vertices on the boundary of

the convex hull is
d

2
+ ϵ, for some arbitrarily small ϵ, as shown in Figure 4.4.

We remark that in the optimal solutions of the MinStation and the MinDistance prob-

lems, the base stations lie on P but not necessarily on vertices of P or C.

d d

d− ϵ d− ϵ

ϵ ϵ

d d

Figure 4.3: Example. The optimal d-hull requires 6 base stations. Replacing it with one
with smaller perimeter increases the number of base stations to 7.

d
2 + ϵ

Figure 4.4: Example. The shortest d-hull (dotted) requires almost twice as many stations
as the optimal d-hull that solves the MinStation problem (dashed). This example can be
extended to polygons with arbitrarily many vertices.
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4.3 Preliminary results

Given a fixed point s ∈ P we define a total order Os(P ,⪯) on the points in P as

follows:

1. for any point a ∈ P , s ⪯ a,

2. for any a, b ∈ P , both different from s, a ⪯ b if [s, a] ⊆ [s, b]. (Note that possibly

a = b.)

For convenience we will add an extra element s′ to our order such that for any a ∈ P ,

a ⪯ s′; that is, s and s′ are, respectively, the minimum and the maximum elements of

Os(P ,⪯). We can think of s′ as a copy of s, and refer to Os(P ,⪯) simply as ⪯.

Consider a point s ∈ P and the order ⪯ it defines on the points on P . We define a

distance δd on the points on P as follows:

1. δd(a, a) = 0,

2. if a ⪯ b ∈ P , δd(a, b) = 1 if there is a d-path of length at most d from a to b,

3. δd(a, b) = k if k is the smallest integer such that there is a sequence of points p0 =

a, · · · , pk = b such that δd(pi, pi+1) = 1, i = 0, . . . , k − 1.

The following technical Lemma will be crucial in the proposed approach to solve the

MinStation problem.

Lemma 34 (The Sandwich Lemma). Let w, x, y, z ∈ P such that w ⪯ x ⪯ y ⪯ z on

P , such that δd(w, y) ≤ 1, and δd(x, z) ≤ 1. Then δd(w, z) ≤ 2, δd(w, x) ≤ 2 and

δd(y, z) ≤ 2.

Proof. Suppose that δd(w, z) > 1, for otherwise we are finished. Since w ⪯ x ⪯ y ⪯ z

the shortest d-paths πw,y and πx,z joining w to y, and x to z intersect. Let p be a point
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in the intersection of πw,y and πx,z. If the distance δ(x, p) along πx,z between p and x is

smaller than the distance δ(p, y) between p and y along πw,y, then δ(w, p) + δ(p, x) ≤ 1

and therefore δd(w, z) ≤ 2. The case when δ(p, x) ≥ δ(p, y) follows the same way. The

inequalities δd(w, x) ≤ 2 and δd(y, z) ≤ 2 are proved in a similar way.

w

x

y

zp

Figure 4.5: Illustration of Lemma 34.

Lemma 34 suggests that in an optimal solution to the MinStation problem, a drone

flies around in a non-crossing curve C that encloses P . We formalize this observation in

the lemma that follows:

Lemma 35. Suppose that s0 ∈ P∩CH(P) and let S = {s0, s1, ..., sk−1} be a solution to the

MinStation problem that goes around P in the clockwise direction and which has the least

number of stations among all solutions starting from s0. Then s0 ⪯ s1 ⪯ s2 ⪯ · · · ⪯ sk−1.

Proof. Assume that all of the πi paths joining si to si+1 are of minimum length. Since

C = π0 ∪ · · · ∪ πk−1 encloses P , any point p in CH(P) lies on C. It is now easy to see that

C covers p exactly once. It follows now that s0 is not in the interior of π0, and that π0 is a

simple curve that always advances in the clockwise direction along C.

Now, suppose that si ⪯ si−1 for some i > 1, and let j be the maximum value such that

sj ⪯ si; that is, sj ⪯ si ⪯ sj+1. Using Lemma 34 it follows that sj ⪯ si ⪯ sj+1 ⪯ si−1.

Thus, by Lemma 34, δd(sj, si) ≤ 2, and since S is an optimal solution, it follows that

sj+1 = si−1.
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Let r be the minimum value such that si−1 ⪯ sr. Then, we have that si ⪯ sr−1 ⪯

si−1 ⪯ sr. It follows that si = sr−1.

Now, since sj+1 = si−1 and si = sr−1 we have that sj ⪯ si ⪯ si−1 ⪯ sr, where

δd(sj, si−1) = δd(si, sr) = 1. Therefore, by Lemma 34, δd(sj, sr) ≤ 2. This is a contradic-

tion, and thus si ⪯ si+1 for all i. Hence, {s0, s1, ..., sr} continues to make forward progress

and the result follows.

A similar argument shows that for any optimal solution S = {s0, s1, ..., sk−1} of the

MinStation Problem (no longer subject to the condition that s0 is fixed) C is a simple closed

curve.

4.4 OptSol

We consider the following algorithm, which constructs a solution to the MinStation

problem starting at a point v ∈ P ∩ CH(P).

Algorithm 2 OptSol
Input: Polygon P , s0 ∈ P ∩ CH(P), d > 0.
Output: The stations in an optimal or quasi-optimal d-hull for P .

1: procedure OPTSOL(P , s0, d)
2: Let s0 = s′0 = y−1 = v and y0 = max{y : δd(s0, y) = 1}
3: Set S0 = {s0} and i = 0
4: while yi ̸= s′0 do
5: i = i+ 1
6: yi = max{y : δd(si−1, y) = 2}
7: si = any s ∈ {w : δd(si−1, w) = 1 and δd(w, yi) = 1}
8: Set Si = Si−1 ∪ {si}
9: end while

10: return S = Si

11: end procedure

We claim that if we further require that v ∈ S, then the set S returned is, indeed, an

optimal solution to MinStation. On the other hand, we observe that this algorithm always

gives a solution that is globally optimal or quasi-optimal (no longer subject to the restriction

that v ∈ S).
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Theorem 36. Given a starting point s0 ∈ P ∩ CH(P), if k is the least value such that

sk = s′0, then the set of points S = {s0, · · · , sk−1} returned by the OPTSOLalgorithm is

an optimal solution to the MinStation problem with the additional requirement that a base

station be located at s0.

Proof. Suppose that S has more than one element, for otherwise our result is obvious.

Suppose that Z = {z0, . . . , zn−1} is an optimal solution for the MinStation problem such

that there is a base station located at s0 = z0. We prove now that n = k

By Lemma 35, we may assume that v = z0 ⪯ z1 ⪯ · · · ⪯ zn−1, that for all i,

δd(zi, zi+1) = 1, and that δd(zn−1, s
′
0) = 1. Consider now the set S = {s0 = v, · · · , sk−1}

returned by the OPTSOL algorithm. Recall that yk−1 = s′0. While the relationship between

S and Z is unclear, the relationship between Z and Yk−1 = {y−1, y0, . . . , yk−1} is more

straightforward; indeed we prove by induction that, for all i, zi+1 ⪯ yi.

This clearly holds for i = 0, as z1 ⪯ y0 by definition. Now, suppose zi ⪯ yi−1. Let j be

minimal so that zi ⪯ yj−1. Then j ≤ i, and as v = y−1 ≺ zi we have that j ≥ 1. Now, by

the minimality of j, we know that yj−2 ⪯ zi ⪯ yj−1 and by definition of yj−2, we have that

sj−1 ⪯ yj−2. Combining, sj−1 ⪯ zi ⪯ yj−1. Then as δd(sj−1, yj−1) = 1 by construction,

Lemma 34 implies that zi+1 ⪯ yj ⪯ yi. This completes the inductive step, and hence the

proof.

Therefore, the smallest value of k such that δd(sk, s′0) = 1 is also the smallest value

of n such that δd(yn, s′0) = 1. Thus S = {s0 = v, · · · sk−1} is an optimal solution to the

MinStation problem, with the additional requirement that there is a base station at s0 = v.

Theorem 37. Let s0 = v ∈ P ∩CH(P). The set S = {s0, . . . , sk−1} returned by the OPT-

SOL algorithm is an optimal solution or a quasi-optimal solution to MinStation problem.
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Proof. Suppose that Z = {z0, . . . , zn−1} is an optimal solution to the MinStation problem,

and that S = {s0, . . . , sk−1} is the solution returned by the MinStation algorithm. We

prove now that k = n or k = n+ 1.

Since s0 is on the convex hull of P there is a shortest d-path between some zi and

zi+1 that contains s0. Hence, adding s0 to Z = {z0, . . . , zn−1} yields an optimal or quasi-

optimal solution to the MinStation problem including s0.

Remark 1. Note that this algorithm can be used to solve the MinStation problem for a

polygonal line instead of a simple polygon. This may be useful to patrol a section of the

coastal boundary of a region that is not fully landlocked. We also note that our choice

to travel clockwise is a convention and while traveling counterclockwise may result in

different station locations, the same number of stations will be used.

Remark 2. Although there are polygons such that the optimal solution contains no points

in CH(P) (a simple modification of Figure 4.1 yields one such example), from a practical

point of view, it is convenient to assume that at least one station v lies in P ∩ CH(P), as

otherwise any solution that includes v could have an arbitrarily large number of stations

(imagine that it is located in a large pocket where bridges cannot be established).

Remark 3. Here we also note that a naive greedy algorithm performs poorly. In Figure 4.6

we see one such example. We may further construct similar polygons by increasing the

number of pockets and their depth. As the number of pockets the depth of the pockets

increase we see that a naive greedy algorithm on these polygons which explores all pockets

gives an arbitrarily bad approximation.

4.4.1 Time complexity. We prove now that we can implement the OPTSOL algorithm to

run in O(n2) time.
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d

l

Figure 4.6: In this polygon, pockets are only avoidable if vertices of the polygon are used.
The depth of this polygon is labeled as l.

Given a point si we want to find a point yi+1 = max{y : δd(si, y) = 2} with respect to

⪯ and a point si+1 ∈ {w : δd(si, w) = 1 ∧ δd(w, yi+1) = 1}. We refer to the problem of

finding si+1 and yi+1 as the 2-hop problem, see Figure 4.7.

We will show that by applying a quadratic time pre-processing on P the 2-hop problem

can be solved in linear time for each si.

A point x of an edge e is a projection of a vertex pi on e if x ⪯ pi and the line segment

joining them is a d-bridge of P perpendicular to e. See Figure 4.7 (a).

In a similar way, we say that a point x of an edge e of P is called a d-projection of an

edge f on e if there is a point y ∈ f such that the line segment joining them is a bridge of

P of length d perpendicular to f . See Figure 4.7 (b).

Lemma 38. Given si, si+1 is either a vertex of P , the projection of a vertex on an edge, the

d-projection of an edge, or a point with δ(si, si+1) = d.
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e

yi+1

si+1

si

(a)

fd

e

yi+1

si+1

si

(b)

Figure 4.7: The 2-hop problem. (a) si+1 is a projection of the vertex pj on the edge e. (b)
si+1 is a d-projection of the edge f on the edge e.

Proof. Suppose that si+1 is not a vertex of P and δ(si, si+1) < d. Let e be the edge of P

containing si+1, see Figure 4.7. Note that δ(si+1, yi+1) = d by the choice of yi+1. If si+1 is

neither the projection of a vertex on e nor the d-projection of an edge on e, then it can be

moved slightly along edge e and advance yi+1. This contradicts the definition of yi+1.

There might be O(n) points at distance d from a previously placed station si. However,

we only need to consider the maximum with respect to ⪯ among them as a candidate for

placing si+1, as we prove next.

Lemma 39. Let w, x, y, z be points in P such that w ⪯ x ⪯ y ⪯ z. Suppose that δ(w, x) =

δ(w, y) = d, δ(w, z) > d, and δ(x, z) = ℓ. Then, δ(y, z) ≤ ℓ.

Proof. Let r be an intersection point of the shortest d-path πw,y from w to y and the shortest

d-path πx,z from x to z. Note that r always exists by the choice of the four points on P .

Let δ(w, r) and δ(r, y) be the distance along πw,y between w and r, and between r and

y, respectively. Let δ(x, r) and δ(r, z) be the distance along πx,z between x and r, and

between r and z, respectively. Since δ(w, z) > d, we have δ(r, y) < δ(r, z). Now suppose

that δ(r, y) > δ(x, r). Then we have that δ(w, r) + δ(r, x) < d, which is as contradiction

to our assumption that δ(w, x) = d. Thus, δ(r, y) ⪯ δ(x, r) and δ(y, z) ≤ ℓ.

We claim that, although there may be O(n2) projections of vertices and d-projections

of edges, O(n) candidate points are sufficient to compute si+1.
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Let e and f be edges of P . We say that e⋖ f if for any point x in the interior of e and

any point y in the interior of f , x ⪯ y.

Lemma 40. For each edge e of P we need to store at most three points:

1. The minimum d-projection (with respect to ⪯) of an edge e′ on e such that e⋖ e′.

2. The endpoint not in e of the bridge generating the maximum d-projection (with

respect to ⪯) on e of an edge e′ such that e′ ⋖ e. In this case the stored point lies on

e′.

3. The minimum projection (with respect to ⪯) of a vertex on e.

Proof. Case 1. Let x and x′ be d-projections of two distinct edges f and f ′, respectively,

on e such that e ⋖ f and e ⋖ f ′. Let xy be the d-bridge perpendicular to e having x as an

endpoint, i.e., y ∈ f and xy is has length d. Define x′y′ analogously. Because of the length

of xy (respectively, x′y′), if we place a station at x (respectively, x′) then we also need to

place a station at y (respectively, y′). Suppose w.l.o.g. that x ⪯ x′, see Figure 4.8 Since all

the bridges defining d-projections of edges on e are parallel, this implies that f ′ ⋖ f and

y′ ⪯ y. Moreover, as the interval [x, y] contains the interval [x′, y′], placing a station at x

guarantees that both intervals of P are guarded. Hence, we maximize yi+1 with respect to

⪯ by choosing the minimum d-projection of an edge on e as si+1.

Case 2. This case is analogous to the first one, see Figure 4.8.

Case 3. Let x and x′ be the projections of two distinct vertices pi and pj , respectively, on

an edge e. Let xpi and x′pj be their corresponding d-bridges. Suppose w.l.o.g. that x ⪯ x′.

This implies that pj ⪯ pi and that placing a station at x guarantees that both intervals [x, pi]

and [x′, pj] are guarded, see Figure 4.9. It remains to be proven that by placing a station at
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x we can advance further on P with respect to ⪯. Let w ∈ P be a point such that pi ⪯ w,

and let px,w and px′,w be the shortest d-paths joining x to w and x′ to w. Let r be the

intersection point of xpi and px′,w. Notice that the points x, x′ and r form a right triangle

that is right-angled at x. Therefore, the length of px,w is smaller than the length of px′,w,

which implies that we can maximize yi+1 by choosing the minimum projection of a vertex

on e as si+1.

e

f f ′
y′y

x′x

e

f f ′
x′x

y′y

Figure 4.8: (a) Case 1: we only need to store the point x on edge e. (b) Case 2: we only
need to store the point x on edge f .

pj

pi

e
x x′

w

r

pj
pi

Figure 4.9: (a) Case 3: The distance from x to w is smaller than the distance from x′ to w.
(b) We need to store all vertex projections except the one that is the endpoint of the dotted
segment.

In order to compute the candidate points on P , we first find, for each edge e ∈ P , the

subset containing each point x ∈ P for which there is a segment perpendicular to e joining

x and e, and completely contained in Ext(P). In such case we say that x is orthogonally

visible from e.
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We define a lid as an edge of the convex hull of P that is not an edge of P . Each lid

h = ab defines a polygon Ph, which is the union of h and the interval of P determined

by a and b which has no points in the convex hull of P besides a and b. Note that any

projection of a vertex or d-projection of an edge is defined by a segment whose endpoints

are contained in the samePh, for otherwise the segment would intersect Int(P). Therefore,

we only need to compute the set of points orthogonally visible from each edge e contained

in a Ph; moreover, we only need to look at the polygon Ph containing e to find these points.

For the next lemma, we assume that we have computed the polygons defined by all the

lids of P , as well as the triangulation of each such polygon. This can be done in O(n) time

overall, see [47] and [12].

Lemma 41. We can find the set containing all the segments of P orthogonally visible from

any edge of P in O(n) time. Moreover, each such set has O(n) size.

Proof. Let h = ab be a lid of P and let e = uv be an edge of Ph. We proceed as follows:

Compute the set VP (Ph, e) of points of Ph visible from a point in e. VP (Ph, e) can be

computed in O(n) time [21].

Suppose w.l.o.g. that u ≺ v. Let R be the region contained between the lines perpen-

dicular to e through u and v, and to the left of the line directed from u to v. It is easy to see

that any point of P orthogonally visible from e must lie inRe = VP (Ph, e)∩R, which can

be computed in O(n) time by intersecting VP (Ph, e) with both lines. We suppose w.l.o.g.

that e is horizontal and that the interior ofRe lies above e.

We say that a vertex p ∈ Re is a turn vertex if the maximal vertical segment xy through

p and completely contained inRe separatesRe into three subpolygons, see Figure 4.10(a).

If two of these subpolygons lie to the right (left) of xy, we say that p is a right (left)

turn vertex. Let x be the top endpoint of xy. The segment px separates Re into two

subpoygons, one of them containing e. Let Re(p) denote the subpolygon generated by px

not containing e. It is easy to see that any point in Re not being orthogonally visible from
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e lies in the subpolygon Re(p) for some turn vertex p, and that any point in Re(p) \ px is

not orthogonally visible from e.

Note that the internal angles at both vertices of e = uv are convex in Re. Ghosh et

al. [20] proved that for any vertex p in Re, the shortest path from u to p, denoted as ρu,p,

makes a left turn at every vertex of the path, and ρv,p makes a right turn at every vertex of

the path. This also holds true for the points in the interior of any edge ofRe.

Let p be a turn vertex of Re and let x be the top endpoint of the maximal vertical

segment through p completely contained in Re. We claim that the vertical line through p,

ℓp, does not intersect any point ofRe(p) \ px. Suppose otherwise that there is a point x′ in

Re(p)\px contained in ℓp. Then, there exists a vertex q inRe(p)\px such that ρv,x′ makes

a left turn at q or ρu,x′ makes a right turn at q, which is a contradiction [20], see Figure 4.10

(b).

It follows thatRe(p) ∩ ℓp = px. This fact yields the following algorithm for removing

Re(p) fromRe for each turn vertex p.

We deal with the right turn vertices by traversing the edges of Re clockwise from v to

u. We set a variable edgeIsVisible to true. Let f = qr, q ≺ r, be the current edge in the

traversal.

• If edgeIsVisible is true we check if r is a right turn vertex. In the affirmative case, we

set edgeIsVisible to false and store the vertical line through r, ℓr and the edge f .

• If edgeIsVisible is false, then we had previously stored the last visible edge g = op,

where p is a right turn vertex, and the vertical segment through p, ℓp. We check if

x = f ∩ ℓp is not empty. In such a case, we replace the interval [p, x] of Re with the

vertical segment px, set edgeIsVisible to true, and discard g and ℓp.

We can remove the sub-polygons defined by the left turn vertices analogously by traversing

Re counter-clockwise from u to v. As each edge ofRe is visited at most twice, the removal
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of the sub-polygons defined by all the turn vertices takes O(n) time. LetR′
e be the polygon

obtained by this traversal.

To obtain the subset of P orthogonally visible from e, we only need to discard e, the

segment contained in the lid of Ph, and the vertical segments added in the previous process

(at most one per turn vertex) fromR′
e(p).

SincePh has no holes, each edge ofPh provides at most one segment toR′
e. Therefore,

the set of segments of P orthogonally visible from any edge e has O(n) size.

q

p

r

Re(p)

e

Re(r)

(a)

x′

x

q

p

e

ρv,x′

u v

R(e)

(b)

Figure 4.10: (a) p is a left turn vertex, r is a right turn vertex, and q is not a turn vertex. (b)
Neither x′ nor any point in the shaded region is in Re: the shortest path from v to x′ makes
a left turn at q.

Lemma 42. For any edge e of P we can find the projections described in Lemma 40 in

O(n) time.

Proof. Suppose that e = uv, u ⪯ v. By Lemma 41, we can find the set W of all the

segments of edges and vertices of P orthogonally visible from e in O(n) time; moreover,

W has O(n) size. Let WB be the subset of elements of W smaller than u and let WA be the

subset of the elements of W greater than v with respect to ⪯.

We find the d-projections corresponding to the first two cases of Lemma 40 as follows.

Let ℓ be the line parallel to e, to the left of the line directed from u to v and at distance d

from e. We first compute the intersection of ℓ with both WB and WA, which by the size

of W can be obtained in O(n) time. To obtain the point described in the first case of the

proof of Lemma 40 we take the maximum point q with respect to⪯ in ℓ∩WA and store the
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intersection point of e with the line through q perpendicular to e. To obtain the described

in the second case of the proof of Lemma 40 we store the minimum point in ℓ ∩WB with

respect to ⪯, if any.

We find the projection of the maximum vertex on e described in the third case of

Lemma 40 as follows. For each vertex of P in WB we compute its distance with respect

to e. We then store the maximum with respect to ⪯ of the vertices at distance less or equal

than d from e.

Now we need to solve the following subproblem: given a point x ∈ P , find the max-

imum w, x ⪯ w, such that δ(x,w) = d. Guibas et al. [21] proved that, given the trian-

gulation of a polygon R and a point p ∈ R, the euclidean shortest paths from p to all the

vertices ofR can be found in linear time (see also [32]). The union of all the shortest paths

from the source point p to the vertices of R is a planar tree called the shortest-path tree of

R with respect to p.

Let R be the polygon obtained by enclosing P in a sufficiently large rectangle and

connecting one of the sides of the rectangle to the starting point of the sequence, x0, with

a thin corridor. The polygon R can be obtained in O(n) time, see [52]. Note that R has

m ≤ n + 8 vertices and P is contained in the exterior of R. We assign to the points in R

that are also points in P the same order as in P .

Henceforth we assume that R has been computed along with its triangulation, which

as proven by Chazelle [12] can be found in O(n) time.

Lemma 43. Given any point x ∈ P , the point w ∈ P with δ(x,w) = d such that w is

maximum with respect to ⪯ can be found in O(n) time.

Proof. Let x be a point in P and let x′ be its corresponding point in R. We compute the

shortest path ρ(x′, y) from x′ to every vertex y ∈ R such that y is also a vertex of P and

x′ ≺ y. Let T be the shortest-path tree obtained by the union of these shortest paths. Let
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M be the set of vertices of T such that, for any w ∈ M , δ(x′, w) ≤ d, and w shares an

edge of R with a vertex y such that δ(x′, y) > d. The set M can be found in O(n) time by

traversing T from its root x′.

Observe that any point ofR at distance d from x′ is one of the following:

• An element of M .

• A point in an edge e = uv, u ≺ v, ofR such that e ∈ E(T ). In this case, u ∈M and

δ(x′, v) > d.

• A point in an edge e = uv, u ≺ v, ofR such that e /∈ E(T ). Notice that, in this case,

δ(x′, v) > d. Moreover, there is exactly one z ∈M such that (z, u) ∈ E(T ).

Hence, in order to find all the points at distance exactly d from x′ it is sufficient to

check the edges having a neighbour of an element of M in T as an endpoint. Since each

vertex is adjacent to at most one element of M , this can be done in O(n) time. At the final

step we need to find the maximum among all the points at distance d from x′, which can

also be done in O(n) time. Our result follows.

Theorem 44. Let P be a polygon with n vertices and let s0 ∈ P be a point on the convex

hull of P . Then OPTSOL returns an optimal solution S to the MinStation Problem such

that s0 ∈ S in O(n2 + Ln) time, where L is the length of P .

Proof. By Lemma 38, given si, the point si+1 is either a point on P at distance exactly d

from si, a vertex of P , the projection of a vertex onto an edge, or the d-projection of an

edge onto another edge.

By Lemma 39, we only need to consider the maximum point with respect to ⪯ at

distance d from xi, which can be found in O(n) time as stated in Lemma 43.

There might be O(n2) projections of vertices and d-projections of edges. However,

Lemma 40 states that in the set of candidates we need to store at most three projections for

each edge of P . Moreover, these projections can be found in O(n) time for each edge.
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The set of candidate points to compute all the elements of the set S has O(n) size. For

each candidate x, we compute the maximum point at distance d from x and associate this

point to x, which by Lemma 43 takes O(n) time per candidate.

It is easy to see that we only need to consider the candidates contained in the interval

of P from si to the maximum point with respect to ⪯ at distance d from si. From all these

candidates, we choose as si+1 the candidate which maximizes yi+1, which can be done

in O(n) time. Since we might need to place O(
L

d
) stations, this step takes time O(

L

d
n).

Therefore, the set S can be found in O(n2 +
L

d
n) time.

4.5 Discretization

In this section, we present a discretization algorithm that is easy to implement for

the MinStation problem, and then show how it can be utilized to obtain a solution to the

MinDistance problem which is close to optimal. This algorithm avoids computing pro-

jections, drone distances (geodesic paths) and orthogonal visibility, which makes it very

practical. The idea is to construct a graph and apply a slight modification of Dijkstra algo-

rithm.

Fix 0 < ϵ ≤ d and let X = {s0 = x0 ⪯ . . . ⪯ xr−1} ⊆ P be a set of points so that

s0 lies on P ∩ CH(P) and the distance between xi and xi+1 along P is at most ϵ, addition

taken mod r. For technical reasons that will become apparent later, we also ask that the

vertices of P are contained in X . Consider the graph Gd(X) such that V (Gd(X)) = X

in which two elements xi, xj ∈ X are adjacent if the length of the geodesic path πxi,xj
in

P ∪ Ext(P) connecting them is at most d (as we will show soon, computing Gd(X) does

not require the shortest-path trees mentioned in Lemma 10). We then solve the problem of

finding a shortest cycle in Gd(X) from x0 to itself going around P . The set of vertices of

that cycle, including x0, is a valid solution to our problem, but not necessarily an optimal

one.
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Note that the problem of finding a shortest cycle from x0 to itself can be reduced to

that of finding a shortest path from x0 to a copy x′
0 = xr of x0. To this end, we insert x′

0

in V (Gd(X)) in such a way that, if the length of the interval [xi, x0] is at most d, then xi is

adjacent to x′
0 instead of x0.

Now we show in detail how the algorithm works, including how to compute Gd(X).

It is possible to check whether a directed edge (xi, xj) belongs to E2 in O(n) time.

This leads to a total time complexity of O((
L

ϵ
)3 + (

L

ϵ
)2n) for APPSOL, where L denotes

the total length of P .

This algorithm, while simpler to implement than OPTSOL, does not directly yield an

approximation to the MinStation problem (this is discussed in more detail in the next sec-

tion). We now show how we can improve on this by applying this algorithm more than

once: two applications of the MinStation APPSOL algorithm can be used to certify the

sharpness of a single application of this result, and a logarithmic number of applications

can be used to give an additive approximation for MinDistance.

Denote by α(P , s0, d, ϵ) be the number of base stations found by the APPSOL algorithm

for given P , s0 ∈ P , flight range d, and ϵ > 0. Let k be the minimum number of base

stations among all solutions that have s0 as one of their base stations. The key is the

following result:

Theorem 45. α(P , s0, d + ϵ, ϵ) ≤ k ≤ α(P , s0, d, ϵ). In particular, if α(P , s0, d + ϵ, ϵ) =

α(P , s0, d, ϵ), the solution is best possible among those containing s0.

Proof. Clearly, α(P , s0, d, ϵ) ≥ k. It suffices to show that α(P , s0, d+ ϵ, ϵ) ≤ k. Consider

an optimal set of k base stations S∗. Let S be a set of base stations obtained by selecting

the nearest point in X for each point in S∗, then the geodesic distance between consecutive

base stations in S is at most d+ ϵ. Therefore α(P , s0, d+ ϵ, ϵ) ≤ k.
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Algorithm 3 AppSol
Input: Polygon P , s0 ∈ P ∩ CH(P), d > 0, ϵ > 0.
Output: List of stations in a d-hull of P .

1: procedure APPSOL(P , s0, d, ϵ)
2: if s0 = x0 is not a vertex of P then
3: we make it so by splitting the edge that contains it into two edges
4: end if
5: Let V be the set of vertices of P and set X = V
6: Add a copy x′

0 of x0 to X
7: N ← n
8: for each edge of P of length ℓ > ϵ do

9: Add ⌈ l
ϵ
⌉ points to X dividing the edge into segments of length ≤ ϵ

10: end for
11: Let X = {x0, x1, . . . , xm−1, xm = x′

0} be the set of points in clockwise order
around P

12: Construct a weighted directed graph Hd(X) = (X,E) with E = E1 ∪ E2 defined
as follows:

a: (xi, xj) ∈ E1 if j = i+ 1 and xi, xi+1 are on the same edge of P
b: (xi, xj) ∈ E2 if i < j, and the open segment from xi to xj has length ≤ d and

is contained in Ext(P)
c: The weight of each edge (xi, xj) ∈ E is the Euclidean distance between xi

and xj

13: for each xi ∈ X do
14: use Dijkstra’s algorithm to compute Xi, the set of vertices of X that can be

reached from xi by a directed path of total weight ≤ d
15: end for
16: Construct a graph with vertex set X where xi is adjacent to xj iff xj ∈ Xi or

xi ∈ Xj . Since the vertices of P belong to X , one can easily check that this graph is
actually Gd(X).

17: Using Dijkstra’s algorithm, compute a shortest path P from x0 to x′
0 = xm of

minimum length in Gd(X)
18: return vertices of P
19: end procedure
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In practice, Theorem 45 can be used to certify that the approximation given by a dis-

cretization corresponds to the solution computed by the OPTSOL algorithm, for fixed s0.

Indeed, Figure 4.11 shows two optimal solutions, for different values of d with s0 = 0, that

are obtained and certified by this method.
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Figure 4.11: Salamis Island in the Saronic Gulf. (a) 36 base stations for d = 2000. (b) 26
base stations for d = 2400. The number of base stations in (a) and (b) is optimal among
those containing s0 by Theorem 45.

On the other hand, since s0 lies on the boundary of the convex hull of P , every solution

to MinStation must contain a station on a point z ∈ P such that δ(x0, z) ⩽ d. This can

easily be seen to imply that Theorem 13 can be adapted to work for general solutions

(and not only those that contain x0) by modifying the algorithm so that it searches for the

shortest path in Gd(X) from xi to itself for all xi with δ(x0, xi) ⩽ d +
ϵ

2
, and then returns

the shortest one among all of these. This slight variant of APPSOL will be called APPSOL2.

This has immediate implications for MinDistance; if the least number of stations in a

solution in Gd+ϵ(X) is at most k, then the optimal solution to the MinDistance Problem

(find the smallest flight range such that k stations are sufficient) lies between d and d + ϵ.

Thus by using binary search on d, the optimal flight range can be approximated up to an

additive constant.
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Theorem 46. Given a positive integer k and an ϵ > 0, it is possible to find a solution

to the MinDistance problem using k base stations such that the flight capacity of the

drones is at most ϵ larger than the optimal one. This is achieved by running O(log |X|) =

O(log(
L

ϵ
+ n)) iterations of APPSOL2 to perform a binary search on the set of all distinct

drone (geodesic) distances between pairs of points of X .

Corollary 47. Given a positive integer k and an ϵ > 0,

• An additive ϵ-approximation for the MinDistance problem with one fixed base station

can be computed in O((n2 + Ln) log(
L

ϵ
+ n)) time.

• A quasi-optimal additive ϵ-approximation for the MinDistance problem (i.e. with k

or k + 1 base stations) can be computed in O((n2 + Ln) log(
L

ϵ
+ n)) time.

4.6 Extending Results

We have an algorithm for encircling an island with close to an optimal number of

drones. A very natural question is, what if we only wish to connect two points on this

polygon? We now consider the following variant.

Problem 4 (MinStationVariant). Given a polygon P and two points on the boundary s, f ,

find a set of base stations S = {s = s0, . . . , sk = f} with minimum cardinality such that

for every 0 ≤ i ≤ k − 1 there is a d-path πi of length at most d joining si to si+1.

At first glance it may seem that Problem 4 may be solved directly by OPTSOL. Under

many circumstances this is indeed the case. However, we find that navigating ‘pockets’

can become tricky. In Figure 4.12 we see where problems arise. An optimal solution

to Problem 4 clearly requires base stations on both the clockwise and anticlockwise arcs

from s to t. In OPTSOL we argued that under ⪯ an optimal S was clearly monotonic.

Unfortunately, as we see in Figure 4.12, defining ⪯ as before would not allow optimal S

to have such a property. It is for this reason we introduce two orderings, which as it turns

out, ends up being enough.
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Figure 4.12: Optimally placed based stations will be located on both the clockwise and
counterclockwise arcs from s to t.

4.6.1 The 2 step algorithm for pockets. We choose two distinct points on ∂P , name

one s (for start) and the other f (for finish). We then define a clockwise ordering ≺+ on

the points of ∂P , where a ≺ b if b lies on the clockwise arc (a, f). We also define a

counterclockwise ordering ≺−, where a ≺− b if b lies on the counterclockwise arc (a, f).

Notice that in both orderings we think of f as being maximal. Like before, we say that

d(x, y) is the geodesic distance on R2 \ int(P ). We define a metric dh on ∂P . Given a ∈ P

we let dh(a, a) = 0. We say that dh(a, b) = 1 if a drone at the location a may legally fly

to a base station located at b, and dh(a, b) = k if k is the minimal value such that there is a

location c ∈ ∂P such that dh(c, b) = 1 and dh(a, c) = k − 1.

4.6.2 The Algorithm. We define x+
0 = x−

0 = s ̸= f . We define y+0 as the point y

maximum with respect to ≺+ such that d(y, s) ≤ d and y−0 as the point y maximum with

respect to ≺− such that d(y, s) ≤ d. For i ≥ 1 we define y+i as the point on (s, f)

maximum with respect to ≺+ such that either dh(x
+
i−1, y

+
i ) ≤ 2 or dh(x

−
i−1, y

+
i ) ≤ 2.

We choose x+
i as a point that is one hop from y+i and one hop from either x−

i−1 or x+
i−1.

Similarly for i ≥ 1 we define y−i as the point on (s, f) maximum with respect to ≺−

such that either dh(x
+
i−1, y

−
i ) ≤ 2 or dh(x

−
i−1, y

−
i ) ≤ 2. We choose x−

i as a point that
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s = x+
0 = x−

0

x+
1

x+
2

x+
3

x−
1 x−

2 = y−1

x−
3 = y−2

y+1
f = y+3

d

Figure 4.13: In this example x+
1 is also y+0 , and x−

1 is also y−0 . y+1 is also a candidate for
x+
2 , as both are exactly distance d from x+

3 . However, a slight modification of the polygon
could make one of these two candidates part of the unique optimal solution. Here the
optimal S = {s, x−

1 , x
+
2 , x

+
3 , f}.

is one hop from y−i and one hop from either x−
i−1 or x+

i−1. Notice that for all i ≥ 1,

min{dh(x+
i , x

+
i−1), dh(x

+
i , x

−
i−1)} ≤ 1 and min{dh(x−

i , x
+
i−1), dh(x

−
i , x

−
i−1)} ≤ 1. It fol-

lows that dh(s, y+i ) ≤ i and dh(x0, y
−
i ) ≤ i. We terminate the algorithm when y+j or y−j is

f and let S be the set consisting of s, f , and the x′
is which witness dh(s, f) ≤ j.

In Figure 4.13 we see a small example of this algorithm in practice. Notice that while

there are two solutions to OPTSOLVAR for this example, small changes in the polygon can

quickly make solutions unique.

We can picture the set of xi forming a tree with root s where xi’s are vertices and edges

are present when some xi+1 is formed through some xi. (y+i ) and are non-decreasing with

respect to ≺+ and ≺−, respectively.

Like before, we will show that S from OPTSOLVAR is optimal by relating some optimal

solution to yi values (in this case y+i and y−i ).

Label some set of points (zi) which are a solution of OPTSOLVARsuch that z0 = s,

zm = f and for all i < m, d(zi, zi+1) ≤ 1. We will show that that our set S is of size m. In
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Lemma 48 we argue that if zk is properly bounded by y+i and y−i , then for some j ≤ i, it is

properly sandwiched by some xj and yj where j ≤ i.

Lemma 48 (Sandwich Lemma Variant). Fix some k. If for some i, zk ⪯− y−i and zk ⪯+

y+i , then there exists some j ≤ i such that

1. x+
j ≺− zk ⪯− y−j and dh(x

+
j , y

−
j ) ≤ 1 or

2. x−
j ≺− zk ⪯− y−j and dh(x

−
j , y

−
j ) ≤ 1 or

3. x+
j ≺+ zk ⪯+ y+j and dh(x

+
j , y

+
j ) ≤ 1 or

4. x−
j ≺+ zk ⪯+ y+j and dh(x

−
j , y

+
j ) ≤ 1.

Proof. Consider the minimal i with the property zk ⪯− y−i and zk ⪯+ y+i . By the minimal-

ity of i, y+i−1 ≺+ zk or y−i−1 ≺− zk. WLOG suppose y+i−1 ≺+ zk. Notice that by definition

y+i−1 is the maximal two step from x+
i−2 and x−

i−2, and notice that x+
i and x−

i are 2 steps from

x+
i−2 or x−

i−2, therefore x−
i ⪯+ y+i−1 and x+

i ⪯+ y+i−1. By definition, either dh(x+
i , y

+
i ) ≤ 1

or dh(x−
i , y

+
i ) ≤ 1. Therefore one of the four cases is satisfied.

In Lemma 49 we assume that zk is properly sandwiched by some xj and yj and show

that zk+1 is properly bounded by some yj+1.

Lemma 49 (Bounding zk+1 when zk is sandwiched. ). If for some k and some j,

1. x+
j ≺− zk ⪯− y−j and dh(x

+
j , y

−
j ) ≤ 1 or

2. x−
j ≺− zk ⪯− y−j and dh(x

−
j , y

−
j ) ≤ 1 or

3. x+
j ≺+ zk ⪯+ y+j and dh(x

+
j , y

+
j ) ≤ 1 or

4. x−
j ≺+ zk ⪯+ y+j and dh(x

−
j , y

+
j ) ≤ 1,

then zk+1 ⪯− y−j+1 and zk+1 ⪯+ y+j+1.
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Proof. Fix some k and some j, with the desired property. By 48

1. x+
j ≺− zk ⪯− y−j and dh(x

+
j , y

−
j ) ≤ 1 or

2. x−
j ≺− zk ⪯− y−j and dh(x

−
j , y

−
j ) ≤ 1 or

3. x+
j ≺+ zk ⪯+ y+j and dh(x

+
j , y

+
j ) ≤ 1 or

4. x−
j ≺+ zk ⪯+ y+j and dh(x

−
j , y

+
j ) ≤ 1.

For cases 1 and 2, By sandwich lemma and the definition of y+j+1 and y−j+1, zk+1 ⪯− y−j+1

and zk+1 ⪯+ y+j+1.

For cases 3 and 4, By sandwich lemma and the definition of y+j+1 and y−j+1, zk+1 ⪯− y−j+1

and zk+1 ⪯+ y+j+1.

Like in the original OPTSOLwe use induction to show that for for all i ≥ 0, zi+1 ⪯+ y+i

and zi+1 ⪯− y−i , which will finish our proof.

Theorem 50 (Proof that the OPTSOLVARis optimal). For all i ≥ 0, zi+1 ⪯+ y+i and

zi+1 ⪯− y−i .

Proof. We proceed by induction. We see this holds when i = 0.

Suppose this holds for some i ≥ 0. By Lemma 1 there exists some j ≤ i such that

1. x+
j ≺− zi+1 ≺− y−j and dh(x

+
j , y

−
j ) ≤ 1 or

2. x−
j ≺− zi+1 ≺− y−j and dh(x

−
j , y

−
j ) ≤ 1 or

3. x+
j ≺+ zi+1 ≺+ y+j and dh(x

+
j , y

+
j ) ≤ 1 or

4. x−
j ≺+ zi+1 ≺+ y+j and dh(x

−
j , y

+
j ) ≤ 1,

By Lemma 2, zi+2 ≺− y−j+1 and zi+2 ≺+ y+j+1 and since (y+i ) and (y−i ) are increasing,

zi+2 ≺− y−i+1 and zi+2 ≺+ y+i+1 concluding our inductive step.
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