
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

2022

Model-Based Testing of Smart Home Systems Using EFSM, Model-Based Testing of Smart Home Systems Using EFSM,

CEFSM, and FSMApp CEFSM, and FSMApp

Afnan Mohammed Albahli
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Other Computer Sciences Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Albahli, Afnan Mohammed, "Model-Based Testing of Smart Home Systems Using EFSM, CEFSM, and
FSMApp" (2022). Electronic Theses and Dissertations. 2094.
https://digitalcommons.du.edu/etd/2094

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F2094&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=digitalcommons.du.edu%2Fetd%2F2094&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.du.edu%2Fetd%2F2094&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/2094?utm_source=digitalcommons.du.edu%2Fetd%2F2094&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

Model-Based Testing of Smart Home Systems Using EFSM, CEFSM, and FSMApp Model-Based Testing of Smart Home Systems Using EFSM, CEFSM, and FSMApp

Abstract Abstract
Smart Home Systems (SHS) are some of the most popular Internet of Things (IoT) applications. In 2021,
there were 52.22 million smart homes in the United States and they are expected to grow to 77.1 million
in 2025 [71]. According to MediaPost [74], 69 percent of American households have at least one smart
home device. The number of smart home systems poses a challenge for software testers to find the right
approach to test these systems. This dissertation employs Extended Finite State Machines (EFSMs) [6,
24, 105], Communicating Extended Finite State Machines (EFSMs) [68] and FSMApp [10] to generate
reusable test-ready models of smart home systems. We present an approach to create reusable test-
ready models of smart home systems using EFSMs to model device components (Sensor, Controller and
Actuator), EFSMs to model single devices in the SHS and the interaction between the devices. We
adopted Al Haddad’s [10] FSMApp approach to model and test the mobile application that controls the
SHS. These reusable test-ready models were used to generate tests. This dissertation also addresses
evolution in smart home systems. Evolution is classified into three categories: adding a new device,
updating an excising device or removing one. A method for selective black-box model-based regression
testing for these changes was proposed.

Document Type Document Type
Dissertation

Degree Name Degree Name
Ph.D.

Department Department
Computer Science

First Advisor First Advisor
Anneliese Amschler Andrews

Second Advisor Second Advisor
Chip Reichardt

Third Advisor Third Advisor
Scott Leutenegger

Keywords Keywords
Smart home systems, Applications, Software

Subject Categories Subject Categories
Computer Sciences | Other Computer Sciences | Software Engineering

Publication Statement Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.

This dissertation is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/2094

https://digitalcommons.du.edu/etd/2094

Model-Based Testing of Smart Home

Systems Using EFSM, CEFSM, and

FSMApp

A DISSERTATION

Presented to

the Faculty of the Daniel Felix Ritchie School of Engineering and

Computer Science

University of Denver

in Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Afnan Mohammed Albahli

August 2022

Advisor: Prof. Anneliese Amschler Andrews

©Copyright by Afnan Mohammed Albahli 2022

All Rights Reserved

Author: Afnan Mohammed Albahli
Title: Model-Based Testing of Smart Home Systems Using EFSM, CEFSM, and
FSMApp
Advisor: Prof. Anneliese Amschler Andrews
Degree Date: August 2022

Abstract

Smart Home Systems (SHS) are some of the most popular Internet of Things

(IoT) applications. In 2021, there were 52.22 million smart homes in the United

States and they are expected to grow to 77.1 million in 2025 [71]. According to

MediaPost [74], 69 percent of American households have at least one smart home

device. The number of smart home systems poses a challenge for software testers to

find the right approach to test these systems. This dissertation employs Extended

Finite State Machines (EFSMs) [6, 24, 105], Communicating Extended Finite State

Machines (EFSMs) [68] and FSMApp [10] to generate reusable test-ready models of

smart home systems. We present an approach to create reusable test-ready models of

smart home systems using EFSMs to model device components (Sensor, Controller

and Actuator), EFSMs to model single devices in the SHS and the interaction be-

tween the devices. We adopted Al Haddad’s [10] FSMApp approach to model and

test the mobile application that controls the SHS. These reusable test-ready models

were used to generate tests. This dissertation also addresses evolution in smart home

systems. Evolution is classified into three categories: adding a new device, updating

an excising device or removing one. A method for selective black-box model-based

regression testing for these changes was proposed.

ii

Acknowledgements

I would like to express my sincere gratitude to my advisor, Professor Anneliese

Andrews for the unlimited help and guidance she provided during my PhD study

and research journeys.I truly cannot imagine a better advisor.

I would also like to thank Dr. Chip Reichardt, Dr. Scott Leutenegger and Dr.

Chris GauthierDickey for serving in my oral defence committee.

I am also grateful to the Computer Science Department faculty and staff for

their support. Special thanks to lab mates and colleagues, Lamees Alhazzaa, Zeinab

Abdalla, and Jide Williams for their continuous support.

I am grateful for my wonderful family who made achievement possible and re-

warding. My darling husband Turki Aljebreen deserves a particular mention for

motivating me when I needed it the most and encouraging me to pursue my goals.

I am thankful to my parents, Mohammed and Latefa, for their constant love and

assistance. For their prayers and words of wisdom. I also express my thanks to

my loving sisters and brother for their never-ending support. To my adorable kids

Khalid, Lama and Mohammed, who have served as my inspiration, drive, and moti-

vation. Finally, I want to express my gratitude to Princess Nourah Bint Abdulrah-

man University for their scholarship and to my country for funding my education.

iii

Table of Contents

List of Tables . vi
List of Figures . viii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Scope and Questions . 5
1.3 Research Agenda . 6

2 Background 9
2.1 Model-Based Testing (MBT) . 9
2.2 Finite State Machines (FSMs) . 10
2.3 Extended Finite State Machines (EFSMs) 11
2.4 Communicating Extended Finite State Machines (CEFSMs) 13
2.5 A Systematic Mapping Study of Testing Techniques for Smart Homes

that Use IoT . 16
2.5.1 Research Method . 17
2.5.2 Study classification scheme 24
2.5.3 Analysis of the results . 29
2.5.4 Threats to Validity . 41
2.5.5 Discussion . 42
2.5.6 Conclusion . 43

3 Reusable Test-Ready Models of Smart Home Systems 45
3.1 Problem Statement . 45
3.2 Terminology . 46
3.3 Proposed Approach . 47
3.4 Reusable Test-Ready Models . 47

3.4.1 Model Device Component and Devices: 48
3.4.2 Model the Mobile Application (FSMApp Approach) 75
3.4.3 Model the Interactions . 88

4 Generate Tests from Reusable Test-Ready Models 92
4.1 Problem Statement . 92
4.2 Proposed Approach . 93

iv

4.2.1 Device Testing . 94
4.2.2 System Level Testing . 99
4.2.3 Interaction Testing . 108

5 Smart Home Systems Evolution 110
5.1 Problem Statement . 110
5.2 Evolution in Smart Home System: . 111

5.2.1 Recognize System Changes . 111
5.2.2 Classification of tests after model changes: 113
5.2.3 Examples of Smart Home Evolution 115

6 Future Work 150
6.1 Model other components in the Smart Home System 150
6.2 New system domain . 151
6.3 Automation . 151
6.4 Execution . 151
6.5 Effectiveness . 151

7 Conclusion 152

Bibliography 154

v

List of Tables

1.1 Current Publications List . 8

2.1 Search strings in databases . 20
2.2 Search results . 20
2.3 List of publication venues . 33
2.4 List of retrieved papers grouped by testing type 40
2.5 List of retrieved papers classified by testing environment 41

3.1 Top Ten Smart Devices . 51
3.2 Devices Input Constraints . 51
3.3 Device Components States . 59
3.4 Device’s CEFSM Message Example 59
3.5 Smart Thermostat Input Values . 59
3.6 Smart Thermostat Transitions 3.7 . 61
3.7 Amazon Echo Dot Input Values . 65
3.8 Amazon Echo Dot Transitions 3.8 . 65
3.9 Nest Cam Input Values . 67
3.10 Nest Cam Transitions 3.9 . 68
3.11 August Wi-Fi Smart Lock Input Values 70
3.12 August Wi-Fi Smart Lock Transitions 3.10 71
3.13 Nest protect smoke detector Input Values 73
3.14 Nest protect smoke detector Transitions 3.11 74
3.15 Mobile Application Input Constraints 77
3.16 Transitions for Top-level FSM (Home Page) Fig 3.12 86
3.17 Transitions for Lower-level FSM (Control Thermostat) Fig 3.13 . . . 86
3.18 Transitions for Lowest-level FSM (Control (Mode)) Fig 3.14 86
3.19 Transitions for Lowest-level FSM (Control (Eco)) Fig 3.15 86
3.20 Transitions for Lowest-level FSM (Control (Fan)) Fig 3.16 87
3.21 Transitions for Lowest-level FSM (Control (History)) Fig 3.17 87
3.22 Transitions for Lowest-level FSM (Control (Schedule)) Fig 3.18 87
3.23 Transitions for Lowest-level FSM (Control (Set Up Schedule)) Fig 3.19 87
3.24 Transitions explanation for interactions between devices 89

vi

3.25 Transitions explanation for interactions between device and Mobile
App . 90

3.26 Transitions explanation for interactions between smart lock and Mo-
bile App . 91

4.1 Analog Sensor Test Paths of Fig ?? 94
4.2 Binary Sensor Test Paths of Fig 3.3 95
4.3 Controller Test Paths of Fig 3.4 . 95
4.4 Actuator Test Paths of Fig 3.5 . 95
4.5 Device Test Paths of Fig 3.6 . 95
4.6 Aggregated Test paths generated from single device CEFSM model . 96
4.7 ATP1 with input values . 98
4.8 Home Page Test Path of Fig 3.12 . 99
4.9 Control Thermostat Page Test Paths of Fig 3.13 100
4.10 Mode Page Test Paths of Fig 3.14 . 100
4.11 Eco Mode Page Test Paths of Fig 3.15 100
4.12 Fan Page Test Paths of Fig 3.16 . 100
4.13 History Page Test Paths of Fig 3.17 101
4.14 Schedule Page Test Paths of Fig 3.18 101
4.15 Set Up Schedule Page Test Paths of Fig 3.19 101
4.16 Aggregated Abstract Test Paths . 106
4.17 Aggregated Test Path 6 with input values 107
4.18 Test path for interactions between devices 109
4.19 Test path for interactions between device and Mobile App 109

5.1 Evolution in SHS . 111
5.2 Aggregated Smart Thermostat Test Paths 116
5.3 Aggregated Amazon Echo Dot Test Paths 116
5.4 Summarise Evolution’s cases in SHS 149

vii

List of Figures

1.1 Number of Smart Homes in the United States 2017-2025 [37] 2
1.2 Proposed Modeling and Testing . 8

2.1 Research workflow . 18
2.2 Number of included papers during the study selection criteria 23
2.3 First classification method based on testing approaches, types, level,

and methods . 25
2.4 Distribution of the selected papers per year 29
2.5 Distribution of publications in different publishers 34
2.6 The most cited papers . 36

3.1 Phase 1: Build Test-Ready Models for Devices and System Controller 47
3.2 Overview of Reusable Test-Ready Models 48
3.3 Analog Sensor Behavioral Model . 56
3.4 Controller Behavioral Model . 58
3.5 Actuator Behavioral Model . 58
3.6 Device Behavioral Model . 60
3.7 Smart Thermostat CEFSM Model . 60
3.8 Amazon Echo Dot CEFSM Model . 64
3.9 Nest Cam CEFSM Model . 67
3.10 August Wi-Fi Smart Lock CEFSM Model 70
3.11 Nest protect smoke detector CEFSM Model 73
3.12 Top Level FSM (Main) . 82
3.13 Lower Level FSM (Control) . 83
3.14 Lowest-level FSM (Control (Mode)) 83
3.15 Lowest-level FSM (Control (Eco)) . 84
3.16 Lowest-level FSM (Control (Fan)) . 84
3.17 Lowest-level FSM (Control (History)) 85
3.18 Lowest-level FSM (Control (Schedule)) 85
3.19 Lowest-level FSM (Control (Schedule Set Up)) 85
3.20 Annotated FSM for Fan Cluster of Table 3.20 88
3.21 Devices Interaction . 89
3.22 Device and Mobile App Interaction 90

viii

3.23 Smart Lock and Mobile App Interaction 91

4.1 Phase 2: Testing Reusable Test-Ready Models 93

5.1 Smart Thermostat CEFSM Model . 115
5.2 Block Diagram of SHS After Adding New Device Without Interac-

tions (New App) . 117
5.3 Block Diagram of SHS After Adding New Device Without Interac-

tions (Modified App) . 119
5.4 Block Diagram of SHS After Adding New Device With Interactions

(New App) . 121
5.5 Block Diagram of SHS After Adding New Device With Interactions

(Modified App) . 122
5.6 Block Diagram of SHS After Modifying a Device Without Interactions

(Stand-alone App) . 124
5.7 Block Diagram of SHS After Modifying a Device Without Interactions

(Current App) . 126
5.8 Block Diagram of SHS After Modifying a Device With Interactions

(Stand-alone App) . 128
5.9 Block Diagram of SHS After Modifying a Device With Interactions

(Current App) . 130
5.10 Block Diagram of SHS After Removing a Device Without Interactions

(Stand-alone App) . 132
5.11 Block Diagram of SHS After Removing a Device Without Interactions

(Current App) . 133
5.12 Block Diagram of SHS After Removing a Device With Interactions

(Stand-alone App) . 135
5.13 Block Diagram of SHS After Removing a Device With Interactions

(Current App) . 136

ix

Chapter 1

Introduction

1.1 Problem Statement

The Internet of Things (IoT) refers to a combination of devices connected and

data shared between those devices via platforms [63]. The term IoT was coined

in 1999 and has become widely used over the past decade [73]. The number of

devices connected to the Internet has increased rapidly and is expected to continue

to grow. In 2020, the IoT analytics estimated that by 2025 the number of connected

devices will be more than 30 billion worldwide [71], while the International Data

Corporation (IDC) predicts that the number of connected devices will reach 55.9

billion worldwide, generating 79.4 zettabytes (ZB) of data by 2025 [60].

A Smart Home System (SHS) is one of many IoT applications. According to

Medium, the number of people who search for smart home systems increase monthly

by about 60,000 people [50]. That puts smart home systems among the most com-

mon IoT applications, along with other IoT applications such as: smart city, wear-

able devices, smart grids, connected health, connected cars, and so on. However,

smart home systems are the most popular of these applications for personal use.

1

According to Statista [37], the number of smart home systems in the United States

is expected to be 77,1 million in 2025. Fig 1.1 shows the annual increase over the

years. The massive number of Smart Home Systems today and the expectation for

Figure (1.1) Number of Smart Homes in the United States 2017-2025 [37]

it to increase in the future makes it important for systematic testing to also increase.

The Internet of things (IoT) is a collection of devices connected to the Internet.

These devices are objects, and those objects can be classified based on their intel-

ligence as smart objects or non-smart objects. Examples of smart objects include

smartphones, controllers, or robots, while non-smart objects include sensors and/or

actuators [45]. However, new sensors in the market today are often supported with

artificial intelligence which allows them to process data, if needed, before sending it

to the actuators without the need to send it to a controller smart object, and thus

also may be classified as smart objects [89]. Sensors can be defined as the parts

2

in the smart home system that collect data from the environment (room) or smart

objects (smart bulb). This data can be user data such as sign-on time, period of

usage, and location and so on. Instead, it could be device data such as room tem-

perature, water level, and brightness and others. Actuators are devices that take

actions based on the sensed data which is how the actuator controls the physical

environment. An example of data used by an actuator are the temperature control

values that are used in smart homes. Mainly, a smart home system consists of a

collection of devices most of which fit into the non-smart objects category.

Devices in an IoT environment have the ability and need to interact with each

other, as well as interacting with the controller. In most cases this is a mobile

application or software on a tablet or desktop. These devices also tend to change

over time. For example, a device can be updated and a newer version of that device

with new features that can be introduced. Therefore, the dynamic nature of devices

must be addressed and considered when any IoT system is studied. Once the IoT

system is installed, more devices can be connected, and others might be removed.

Some of these devices can work in-parallel. Others can work as stand-alone devices.

With the fast growth in the number of devices connected to the Internet, it

becomes very important to guarantee the reliability of such devices as a failure could

have quite negative impacts. The sheer number and diversity of devices connected

to the Internet presents a challenge for software testers to find a suitable approach

to test these systems. Software related failures become increasingly hard to detect

but they can have disastrous repercussions. For example, a person might have a

smart smoke detector installed that alerts the owner when it detects smoke via a

phone app. If the smoke detector is compatible with other smart devices, it might

be able to shut down the HVAC system during a fire, turn on cameras to record the

emergency and unlock the front doors. If this is not tested well and in the case of a

3

false alarm, it could lead to shutting down the HVAC, pipes could freeze because of

a faulty device or controller software. Opening your front door could lead to theft.

To assure robustness and safety, as well as to reduce the risk of failures, it becomes

increasingly important that IoT systems be tested systematically and thoroughly

before being placed into operation.

However, there is little research on systematic and thorough testing of IoT sys-

tems. In general most of the IoT system testing is performed ad hoc. Ad hoc testing

can successfully find problems; however, it heavily depends on the testers’ experi-

ence and skills. The quality of the software systems cannot be assured using the ad

hoc approach. A systematic approach is needed to assure that relevant behaviors,

including emergent behaviors, are addressed in a rigorous and disciplined manner.

It is a challenge to model smart home systems because of the large number of

devices and the dynamic nature of these devices. Therefore, offering reusable mod-

els and tests will help in saving time and effort. Testing IoT can be divided into

three levels: device testing, device interaction and system level testing. According

to [52, 104] most testing is done at the device level because it is easier. However, it is

important to test all levels to assure the quality of IoT systems. Device interaction

testing is important because a lot of interactions between devices are possible and

must work properly. Many characteristics of IoT systems make them challenging

to test. Heterogeneity in IoT, standardization problems, security and privacy chal-

lenges, complexity with interoperability and test environment issues are challenges

facing IoT testers [49]. Many researchers agree that there is not enough work on IoT

testing [31, 92]. However, the quality of such systems is critical and this is pushed

to the sideline due to the fast innovation in the IoT market [31].

This dissertation aims to tackle the open challenge in testing IoT systems to sup-

port design and development of effective and systematic software testing method-

4

ologies for smart home systems. It employs Model Based Testing (MBT) to create

a set of reusable models for testing smart home systems at the device, device inter-

action and system levels. It uses Extended Finite State Machines (EFSM) to model

and test device components and Communicating Extended Finite State Machines

(CEFSM) to model and test single device and interaction between devices. For sys-

tem level testing, FSMApp [10] is adopted to test the controller of the entire system,

which is a smart phone application. We proposed test generation approaches suit-

able for these models. This dissertation will offer reusable models and tests where a

user of such system can select from a list of ready models and their tests, or can at

least perform necessary changes to the excising models and the generated tests as

defined in the proposed approach. To show the reusability of these models and test

artifacts, we demonstrate that they are easily modified when adding new devices or

upgrading existing devices. In effect, this is accomplished by providing a customized

regression testing approach.

1.2 Research Scope and Questions

In this section a number of research questions are developed in order to identify

our scope. These research questions will be further expanded and answered.

• RQ1: Is it possible to develop Black-Box Models for modeling device behavior,

device interaction and the controller?

– RQ1.1: What research exists for testing smart home systems that use

IoT?

– RQ1.2: What are the existing research gaps related to testing smart home

systems using IoT?

5

– RQ1.3: Is it possible to develop Black-Box Models for modeling device

behavior?

– RQ1.4: Is it possible to develop Black-Box Models for modeling device

interaction?

– RQ1.5: Is it possible to develop Black-Box Models for modeling the con-

troller?

• RQ2: Is it possible to develop a MBT technique for these models that includes

testing criteria and can be used for device testing, interaction testing and

system testing?

• RQ3: Is it possible to develop a special set of reusable test models and other

test artifacts so software testers do not have to develop models from scratch

for every new smart home system?

• RQ4: How do we effectively and efficiently modify models and test artifacts

when technology changes (devices, device interactions, and controllers)?

1.3 Research Agenda

The following work is conducted to answer the research questions:

• For RQ1: A collection of reusable test-ready models are developed for devices,

controllers and their interaction. (Chapter 3)

• For RQ1.1 and RQ1.2: A systematic mapping study of the existing testing

techniques for smart home systems that used IoT is conducted. (Chapter 2)

• For RQ1.3, RQ1.4 and RQ1.5: Black-Box models are provided for modeling

device behavior, device interactions and the controller. (Chapter 3)

6

• RQ2: A MBT technique is provided for these models that includes testing

criteria and can be used for device testing, device interaction testing and

system testing. Tests are reusable or customizable. (Chapter 4)

• RQ3: A set of reusable test models and other test artifacts is provided so

software testers do not have to develop models from scratch for every new

smart home system. (Chapter 3)

• RQ4: How to adjust and modify models and test artifacts when technology

changes (devices, device interactions, and controllers) is explained. (Chapter

5)

This document is organized as follows: Chapter 2 covers existing work in MBT

using FSM, EFSM and CEFSM, as well as a systematic mapping study of the

existing testing techniques for smart home systems that used IoT. A set of reusable

test-ready models of smart home systems for the three different testing levels is

presented in Chapter 3. Chapter 4 uses these models in the form of an MBT testing

approach for smart home systems to model and test single devices, to test device

integration and for system level testing. How to efficiently and easily adopt models

and test artifacts when technology changes is introduced in Chapter 5. Future work

is presented in Chapter 6. A conclusion of this dissertation is drown in Chapter 7.

Fig 1.2 shows the structure of the dissertation.

Table 1.1 shows the list of current publications and their location in the docu-

ment.

7

Figure (1.2) Proposed Modeling and Testing

Publication Venue Status Chapter
Model-Based Testing of Smart
Home Systems. [8]

ICOMP’21 Published Ch. 4

Model-Based Testing of Smart
Home Systems Using EFSM and
CEFSM. [9]

CSCI’21 Published Ch. 4

Build Test-ready and Reusable Mod-
els for Systematic Testing of Smart
Home Systems. [7]

CSCE’22 Published Ch. 3

Table (1.1) Current Publications List

8

Chapter 2

Background

The main goal of software testing is failure detection when a tester observes a

difference between the expected behavior of the system under test (SUT) and the

implemented system.

2.1 Model-Based Testing (MBT)

According to Utting et al. [103], MBT is a black box testing technique that

generates test cases from a model of the SUT. MBT is an approach to generate

test cases using a model of the system under test [80]. 219 MBT strategies are

described by Dias-Neto et al. [39]. They described how to choose MBT approaches

for software projects, as well as risk considerations that may impact their adoption

in industry and how to mitigate them. One advantage of MBT is that test cases

can be generated automatically from a model instead of manually [109]. Another

advantage of MBT is that this technique allows to test the SUT earlier in the

software development life cycle. This reduces cost and time; and improves testing

quality [102].

9

In general, the MBT process starts with building the test model of the SUT based

on the system requirements. Then, test selection criteria are chosen. After that, the

test selection criteria are used to develop test case specifications. The next step uses

this test model and the test case specifications to generate test cases. Finally, the test

cases are executed and results are validated. Utting et al. [103] provide a taxonomy

of MBT approaches: model scope, characteristics, paradigm, test selection criteria,

test generation technology and test execution. They also provide a categorization of

MBT notations as State Based, History Based, Functional, Operational, Stochastic,

and Transition based.

The focus of transition based notations is on presenting the transitions between

the states in the system. Several graph-based models exist such as Finite State

Machines (FSMs), Extended Finite State Machines (EFSMs), and Communicating

Extended Finite State Machines (CEFSMs). Other examples of transition based

notations are UML behavioral models (such as activity diagrams, sequence and

interaction diagrams), UML state charts, and Simulink Stateflow charts [103]. In

the coming subsections FSMs, EFSMs and CEFSMs will be defined and examples

of existing approaches using each of them will be given.

2.2 Finite State Machines (FSMs)

Finite State Machines (FSM) has a long and illustrious history. Since 1970, it

has been used as a tool to generate test [35, 56, 58, 86]. FSMs model state-based

software behavior [23]. FSMs model the functionality of an application or system by

representing the states of the system usually by nodes and the transitions between

states by edges. Huang et al. [58] suggest that each edge in an FSM be covered,

and Howden [56] suggest that a complete roundtrip be covered without looping.

10

Pimont and Rault [86] suggest pairs of edges be covered. FSMs have been widely

used to model and test different types of software systems. They have been used

to test object oriented programs [44, 67]. Offutt et al. [82, 83] use FSM to develop

models of formal software requirements. They then adapted control flow-based test

criteria to define several testing criteria on the transitions. Hierons [55] uses FSM

to model distributed systems. Chow [35] uses FSMs to model control structure. To

validate these models, Chow introduces a testing strategy where test sequences are

guaranteed to detect errors in the control structure. He uses a specification FSM and

and an implementation FSM and compare them. To verify his proposed approach he

applies it to three case studies in three different fields: computer graphics, real-time

process control, and telephone switching. Andrews et al. [23], introduce FSMWeb

to test web applications. In addition, Andrews et al. [18], use FSMWeb to propose

an approach for regression testing of web applications. Alhaddad [10], develops

FSMApp as an extension of FSMWeb to test mobile applications. FSMWeb and

FSMApp do not consider parallelism. Therefore we cannot adapt it to test behaviour

of IoT systems that have devices working in parallel. However, FSMApp could be

used to test the smart home controller as an App on the Smartphone.

2.3 Extended Finite State Machines (EFSMs)

An EFSM (M) is defined as a 6-tuple (S, s0, PI , PO, V, T) where [6, 24, 105]:

• S is a finite set of states,

• s0 ∈ S is an initial state,

• PI is a finite set of inputs parameters,

11

• PO is a finite set of outputs parameters,

• V is a finite set of variables and

• T is a finite set of transitions

Each transition, t ∈ T is defined as 6-tuple (ss, st, ie, ef, uf, od), where:

• ss ∈ S is the source state

• st ∈ S is the target state

• ie is input event and defined in the format event (PI); it represents the inter-

action of the input event with a list of input parameters, PI .

• ef is the logical expression called guard or enable function and expressed by

variables from V ,PI, constants and comparison operators.

• uf is the assignment statement called update function that updates variables

v ∈ V and parameters p ∈ PO.

• od is the output statement defined in the format disp(), which refers to display

the output with a list of parameters either PI ,V ,PO, or constants.

Cheng and Krishnakumar [32], state that EFSMs is an extension of the tradi-

tional FSM introduced to overcome major shortcomings of the traditional FSM.

This is achieved by adding trigger conditions that need to be satisfied in order for

transitions between states to occur. In addition, EFSMs introduced output actions,

which are sets of actions to be executed once a transition occurs. It also intro-

duces variables. EFSM extends FSM by modeling a system with control and data

parts (unlike FSM which only can model the control parts of a system) [62]. It was

adopted to solve the problem of generating test cases manually. When systems grow

12

huge and fast it became inefficient and error prone to do that manually [110]. Kalaji

et al. [62] mention that path feasibility and path test data generation as a challenge

during test generation using EFSM. When a conflict occurs between two or more

transitions within a test it renders the test path semantically infeasible. Hierons et

al. [55], address path feasibility issues in EFSM models by converting EFSM back

to FSM. However, due to the huge number of states in FSM models this approach

may cause state space explosion. Guglielmo et al. [38] generate test paths from

extended finite state machine (EFSM) models. Fowler [40] proposes an automatic

test pattern generation approach using EFSMs.

2.4 Communicating Extended Finite State Machines

(CEFSMs)

Communicating Extended Finite State Machines (CEFSM) added communica-

tion channels between EFSMs to allow for communication. This structure gives

us the capability of modeling smart home systems that consists of multiple devices

modelled as EFSMs and there is a high possibility to interaction between devices and

there is an interaction between devices and the Mobile Apps as controllers. CEFSMs

can be defined as a finite set of consistent and completely specified EFSMs [32] that

are composed via communication channels that carry input and output messages

[68]: A CEFSM = (S, s0, E, P, T, A, M, V, C), such that:

• S is a finite set of states,

• s0 is the initial state,

• E is a set of events,

13

• P is a set of predicates P = (event, [conditions], actions, messages),

• T is a set of transition functions T: S×P×E→S×A×M,

• A is a set of actions,

• M is a set of communicating messages,

• V is a set of variables, and

• C is the set of input/output communication channels.

CEFSMs are utilized in testing by combining the system under test’s behavior as

a single machine, generating test paths from the CEFSM model, doing reachability

analysis to exclude infeasible test paths, and finally generating test cases for these

test paths. However, the states explosion problem is still possible due to the presence

of variables and conditional statements in CEFSMs.

CEFSM has been used in modeling and testing distributed systems and network

protocols with multiple components [106]. One of CEFSM’s strength is that it can

model orthogonal states of a system in a flat manner and without the need to com-

pose the entire system in one state [22]. CEFSM has been also used to model robotic

systems. Andrews et al. [14] propose a dynamic world testing technique that mod-

els the operating environment for autonomous systems. CEFSM was used to depict

an active world model that describes environmental actors’ behavior. They then

used graph coverage criteria to build test paths to cover the active world mode.

They also use input-space partitioning to generate test data, which is then used

to turn the generated test paths into executable test cases. They use an indoor

tour-guide robot as a case study for their methodology. For testing autonomous

robotic systems, Andrews et al. [15] offer an MBT technique. They employ CEFSM

14

and Petri Nets to model the interaction between robots and environment objects.

They applied their MBT technique to autonomous robotic applications such as an

autonomous ground vehicle (AGV) [14], a tour-guide robot [16], and a search and

rescue robot [17]. The findings demonstrate that MBT is a cost-effective method for

testing autonomous robotic systems. The results also show that formal models such

as CEFSM and Petri Nets can be used to generate test paths. Abdelgawad et al. [3]

present a systematic Model-based Testing strategy that specifies what, where, and

how to test autonomous system worlds, uncover various forms of errors, enhance

scalability, and avoid the state space explosion problem. Instead of flattening all

behaviors of environment actors into a single behavioral model, they utilize a hier-

archical modeling technique. To develop more scalable models, they also divide the

environment landscape into Snippets. Each fragment is linked to a cast of charac-

ters. The snippets are connected and modeled using CEFSM. Abdelgawad et al. [4]

model a Real-time Adaptive Motion Planning Systems (RAMP) by using CEFSMs.

They used different coverage criteria to generate test paths. Edge coverage was used

to generate tests for a single component in the system. Edge-Pair coverage was used

to generate tests for the interaction between each pair of components in the system.

Several studies use CEFSM to test safety critical systems. In [22], a MBT approach

to test safety critical systems was proposed by using CEFSM to model both func-

tional behavior and mitigation requirements. CEFSMs were used for testing proper

failure mitigation in safety-critical systems [21, 42]. Gannous et al. [43], demon-

strate how a testing framework built for safety-critical systems may be used to test

a portable insulin pump system, as well as looking at the framework’s applicability

and contribution to the certification process in the medical domain. The testing

framework was created and modeled using EFSMs and CEFSMs. The main goal

was to provide enough evidence for an efficient safety certification process; as a re-

15

sult, it incorporates modeling, safety analysis, and combinatorial testing techniques

to provide expanded testing activity outputs that generate a variety of evidence

types. A fail-safe testing technique was proposed by Gario et al. [46]. They provide

behavioral models using Communicating EFSMs (CEFSM) and a fault model with

fault trees for each probable failure. A compatibility procedure transforms the fault

trees into CEFSM representation, which is subsequently integrated into the behav-

ioral model. They build test paths for failures using various graph coverage criteria.

Li and Wong [70] introduce an automatic test generation methodology from system

specifications modeled with CEFSMs.

One issue with CEFSMs is reachability, that is whether a path is semantically

feasible. Hessel and Pettersson [54] propose a global algorithm to generate all feasible

test paths from a CEFSMs. They implemented and used this algorithm in different

experiments and a case study. Bourhfir et al. [30, 29] apply reachability analysis to

produce test cases from systems modeled in CEFSMs. They proposed an incremental

technique to generate tests and execute them for communication protocols modeled

by CEFSMs. Henniger et al. [53] describe the behavior of a system of asynchronous

CEFSMs for testing purposes. Mutation testing is used by Kovas et al. [65] to

automate test selection in an CEFSM model. To generate test cases in CEFSM

models, Boroday et al. [28] combine specification and fault coverage.

2.5 A Systematic Mapping Study of Testing Tech-

niques for Smart Homes that Use IoT

With the fast growth of the number of connected devices to the Internet, it

becomes very important to guarantee the reliability of these devices as a failure

16

could have a very negative impact, even endanger people’s lives. Our main objective

of this systematic mapping study is to identify and analyze the published work up

to October, 2021 in the field of software testing techniques for smart homes that use

IoT. This goal has been achieved by summarizing the current articles and discussing

the gaps and challenges in the field.

We begin this mapping study by describing the research method in Section 2.5.1,

followed by the study classification scheme in Section 2.5.2. We answer the research

question and analyze the results in Section 2.5.3. Section 2.5.4 discusses threats to

validity. We discuss our findings in Section 2.5.5. Conclusive remarks are in Section

2.5.6.

2.5.1 Research Method

This systematic mapping study follows the guidelines in Petersen et al. (2015)

[85] and Charters and Kitchenham (2007) [64]. Systematic mapping proceeds in

four main steps (see Fig 2.1), similar to the work by Asadollah et al. (2017) [78].

The following subsection will explain each step in more detail.

Definition of research questions

The overall objective of this study is to investigate and analyze the existing

publications (up to October 2021), in the field of software testing techniques for

smart home systems that use the Internet of things (IoT). The research questions

focus on categorizing the available solutions based on what testing techniques, tools

and environments are used in testing of smart home systems that use the IoT. Where

are these publications published and when. We also aim to discover research gaps

to understand what areas of solutions have not been researched thoroughly.

17

Figure (2.1) Research workflow

Based on that objective, this study attempts to answer the following research

questions:

• RQ1: What are the publication trends for testing smart home systems?

– RQ1.1: What is the annual number of publications in the field?

– RQ1.2: Which publications are the main publishers of works on testing

smart homes?

– RQ1.3: Which articles are more influential in terms of the number of

citations?

– RQ1.4: Which research groups have published articles?

• RQ2: What are the existing research gaps related to testing smart home sys-

tems?

18

– RQ2.1: What testing approaches have been used?

– RQ2.2: What testing types have been used?

– RQ2.3: What testing levels are addressed in functional testing?

– RQ2.4: What testing environments have been used?

Identification of search string and source selection

To find reliable peer-reviewed papers, we searched the following electronic databases:

• ACM Digital Library,

• IEEE Xplore,

• ScienceDirect – Elsevier,

• SpringerLink,

• Wiley Inter Science Journal Finder.

We developed a search string based on the requirements of each database. Some

databases have restrictions on the number of Boolean operators that can be used,

while others do not. Table 2.1 shows the search strings used for each database, and

this search string has been applied to all fields.

The number of search results per database can be found in Table 2.2. This study

considered all search results for the first three quarters of 2021 and before because

it was conducted in October 2021.

Study selection criteria

In this step, we selected the most relevant studies from the search results that

were collected in the previous step. We excluded articles based on titles and ab-

19

Database Search String

IEEE, SpringerLink, and Wiley (("Internet of things") AND
(cloud) AND (software testing
OR software validation) AND
("black box" OR "model based
testing" OR "system testing"
OR "functional testing") AND
("smart home" OR "smart homes"
OR "smart house" OR "smart
houses" OR "smart building"
OR "smart buildings" OR "home
automation") AND (technique OR
approach OR method OR tool OR
framework))

ACM ("Internet of things") AND (cloud)
AND (software testing OR software
validation) AND ("smart home"
OR "smart homes" OR "smart
house" OR "smart houses" OR
"smart building" OR "smart build-
ings" OR "home automation")

ScienceDirect - Elsevier ("Internet of things") AND (cloud)
AND (software testing OR soft-
ware validation) AND ("black box"
OR "model based") AND ("smart
home" OR "smart homes" OR
"smart house" OR "smart houses"
OR "smart building" OR "smart
buildings" OR "home automation")

Table (2.1) Search strings in databases

Database Search Results

IEEE 102
ScienceDirect - Elsevier 380
SpringerLink 69
Wiley 27
ACM 363

Table (2.2) Search results

20

stracts, then skimmed the paper, and if appropriate, read the full text. The following

are the inclusion criteria that were applied to titles and abstracts:

• Include papers that are peer reviewed.

• Include papers that are written in English.

• Include papers that can be fully accessed.

• Include papers that have smart homes as an IoT application.

• Include papers that test or validate the smart home systems using IoT.

The following exclusion criteria were applied:

• Studies presenting reviews or surveys.

• Studies that are not peer reviewed.

• Studies that written in languages other than English.

• Books.

• Studies that are not fully accessible.

• Studies of hardware systems.

• Studies that focused on security or network testing techniques.

Fig 2.2 shows the process of applying the inclusion/exclusion criteria and the number

of studies retained in each step. The explanation of the process is illustrated below:

1. We conducted the search using the selected database with the search strings

(mentioned in Section 2.5.1). We did not bound our search by dates, but

because the study was conducted in October 2021, we included all studies up

until October 2021. The total search results were 941.

21

2. Because the search was conducted using the electronic databases IEEE Ex-

plore, Wiley, ScienceDirect – Elsevier, SpringerLink, and ACM Digital Library,

we guaranteed that all references were peer-reviewed and in English and full

access was available online. In this step, we applied our first filter by selecting

conference or journal papers only (not books or magazine articles) that gave

us a total of 438 studies.

3. We read the title and the abstract of each study to consider whether the

paper is related to smart home systems using IoT, or the smart home as an

IoT application and whether it presents a testing or evaluation technique. In

this stage, we exclude all IoT papers with different applications than smart

homes (e.g., smart city, agriculture, health, etc.). The total number of selected

studies was 150.

4. As stated earlier, hardware systems were excluded at this stage. In addition,

if the main focus of the paper was on security features or network and infras-

tructure, the paper was excluded. The total number of selected papers after

this filter was applied was 125.

5. The remaining papers were skimmed. In this step, our concern was testing

and validation and how it was done in the study. At the end of this step, we

were left with 31 relevant references.

6. The forward and backward snowball approach was conducted to ensure that we

did not miss any relevant studies, as was recommended by Jalali and Wohlin

(2012)[61]. The forward snowball check assessed the references lists of each

selected paper and applied the inclusion and exclusion criteria, whereas the

backward snowball check assessed who cited all the selected papers and applied

22

the inclusion and exclusion criteria. We added five studies and we did a forward

and backward snowball check on them as well. In the end, we had a total of

36 studies.

Figure (2.2) Number of included papers during the study selection criteria

Data mapping

At this point, we had collected 36 studies covering all published work up to and

including October 2021. Using those papers, data mapping has been performed

with the following categorizations: ad-hoc and systematic testing, functional and

nonfunctional testing, method of evaluation, used test environment, test method,

and test level for functional testing only. Each chosen paper was then read in detail

and reviewed by two reviewers. Each of them categorized the paper. If they agreed

on the assigned category for a paper, they assigned that category to the paper. If

not, they reviewed the paper carefully. After this review, 7 papers were excluded

because they were not relevant. By the end of this stage, we had 29 papers.

23

2.5.2 Study classification scheme

In this section, we classified the selected papers based on several factors. Fig 2.3

shows the first way to categorize the selected papers based on testing approaches,

types, level, and methods. From the 29 selected research papers we found 22 papers

did only ad-hoc testing and 7 papers did systematic testing. From the 22 papers

slightly more than half of the papers did functional testing while the remaining did

non functional testing. The functional testing papers 83% of the studies focus on

system level testing and less than 20 % of the study did integration testing. 11

papers in both testing levels were black box testing and only one paper was white

box. From the 7 systematic testing papers we found 4 papers did functional testing

and 3 papers did non functional testing. 75% of the functional testing has been

conducted as system level testing while 25% was integration level testing. All the

systematic functional testing papers were black box testing.

• Testing approaches:

– Ad-hoc: when the testing is done randomly and does not follow a method,

or plan. Usually this type of testing does not have documentation or test

design methodologies to construct test cases.

– Systematic testing: when the testing has a fully detailed method, plan

and documentation.

• Testing types:

– Functional testing: when the functional requirements of parts of the sys-

tem are tested.

– Nonfunctional testing: when the nonfunctional requirements of parts of

the system are tested.

24

• Testing levels:

– Unit testing: when individual components of the system are tested sep-

arately.

– Integration testing: when individual components of the system are com-

bined and tested.

– System testing: when a complete system is tested.

• Testing methods:

– Black box: when the internal aspects of the item being tested are hidden

from the tester.

– White box: when the internal aspects of the item being tested are known

to the tester and used in developing tests.

Figure (2.3) First classification method based on testing approaches, types, level,
and methods

25

Another way to classify the selected papers was based on the research gaps and

challenges. According to Gaikwad et al. (2015) [41] below are the most common

challenges in smart homes that used IoT:

• Test Automation: How can researchers automate the testing process?

• Security: Testing security features (authentication, secure communication, pri-

vacy of data, etc.) is more critical for IoT systems because individuals do not

want an intruder to control the devices in their home.

• User interface: Usability is a challenge for any software development, and

it more complicated in IoT for smart homes because the data comes from

different devices, and these data from multiple devices in a smart home must

be visualized as one user-friendly visualization.

• Network availability: Connectivity is a major feature in IoT systems, and

it needs to be available at any time and in any location. The smart home

system’s operation in an IoT context should be done in real time, therefore,

network availability is another IoT challenge.

• Communication protocols: Choosing the proper connectivity protocol is an-

other issue. 3G services are used for Internet communication. However, it is

possible that there is a signal problem, in which case it will not connect every

time.

• Data centers: As the number of IoT applications grows, so does the volume of

data collected. The is a problem in storing the massive amounts of data col-

lected from these applications. This issue can be solved with a large database.

To extract meaningful data from it, artificial intelligence algorithms must be

used.

26

Test environments are another way to categorize the selected papers. After

building a system or proposing an approach or an architecture, researchers test

their systems or techniques on different environments. We classified the articles

based on test environments as follow:

• Real devices: The paper used the actual smart home for testing.

• Virtual devices: The paper used a virtual smart home for testing.

• Simulator: The paper used an environment model of the original system to

study and analyze the behavior of the real system.

• Emulator: The paper replicated the original system (hardware and software),

which means it can perform all the functionalities of the real system.

• Testbed: A real system (hardware, software, operating system, network con-

figuration, etc.) was used, that can be used to execute the tests and obtain

results.

Another classification was based on the following evaluation methods:

• Experiments: This quantitative research method is usually used to test and

prove a hypothesis.

• Case study: Part of the system or a special case of it is studied in depth.

• Use cases: A case study can have multiple use cases; however, use cases can

be a method to evaluate a system for different cases.

• Comparison: This is comparing state-of-the-art techniques to the proposed

one or comparing the results of testing two different algorithms.

27

One more categorization was based on the contribution in the selected paper,

which is what was proposed in each paper.

• New system: Some papers presented a new smart home system based on IoT,

then they tested that system.

• Architecture: Some papers proposed a new architecture that supports IoT for

a smart home, and others presented a current architecture and updated it to

fit with IoT for smart home requirements and then tested that architecture.

Under this category, we also included papers that presented a framework. Ar-

chitecture is an abstract design concept for an application, and the framework

is a pre-built architecture that is designed to build on or to extend.

• Approach: Some papers proposed an innovation approach to perform a specific

activity in the IoT for a smart home.

• Component: These papers that added a new component (for example, a de-

vice) to an existing system, then evaluated the new system after adding that

component.

• Tool: The papers that presented a testing tool and evaluated that tool.

• Testing technique: The papers that proposed a testing technique.

The last classification was regarding the bibliometrics of the selected papers

by counting number of publications per year, per country, per publisher, and per

number of citations.

28

2.5.3 Analysis of the results

The main objective of collecting the published studies in the previous steps is to

answer the research questions. In the following sections, we will present, analyze,

and discuss the results obtained from the selected papers and the possible answers

to the research questions.

Publication trends up to October 2021

Fig 2.4 shows the count of articles per year, and from that figure, we can confirm

that testing smart homes based on IoT is a recent subject. In fact, there are few

papers before 2016 (Ciabattoni et al. 2014 [34]; Sobeih et al. 2015 [97]; Yuan 2015

[107]). After that we clearly notice the rapid growth in the number of publications.

Figure (2.4) Distribution of the selected papers per year

29

Publication

Venue

Name of Publication Number

of Pa-

pers

Journal Procedia Computer Science 2

Journal Future Generation Computer Science 2

Journal Future Generation Computer Systems 2

Journal The Journal of Systems and Software 1

Journal Digital Investigation 1

Journal Computer and Electrical Engineering 1

Journal IEEE Internet of Things Journal 1

Journal IEEE Access 1

Journal ACM Transactions on Internet of Things 1

Total 12

Workshop ACM International Workshop on Testing Em-

bedded and Cyber-Physical Systems

1

Total 1

Conference ISoLA: International Symposium on Leverag-

ing Applications of Formal Methods

2

Conference ICA3PP: International Conference on Algo-

rithms and Architectures for Parallel Process-

ing

1

Conference International Conference on Internet of Things

and Cloud Computing

1

30

Publication

Venue

Name of Publication Number

of Pa-

pers

Conference 2nd IET International Conference on Tech-

nologies for Active and Assisted Living

(TechAAL 2016)

1

Conference 2018 IEEE 7th International Conference on

Adaptive Science & Technology (ICAST)

1

Conference 22nd Mediterranean Conference on Control

and Automation

1

Conference 2017 International Conference on Engineering,

Technology and Innovation (ICE/ITMC)

1

Conference 2017 International Conference on Mathemat-

ics and Information Technology (ICMIT)

1

Conference 2015 International Conference on Computa-

tional Intelligence and Communication Net-

works (CICN)

1

Conference 2017 IEEE 26th International Symposium on

Industrial Electronics (ISIE)

1

Conference 2017 6th ICT International Student Project

Conference (ICT-ISPC)

1

31

Publication

Venue

Name of Publication Number

of Pa-

pers

Conference 2015 IEEE International Conference on Com-

puter and Information Technology; Ubiqui-

tous Computing and Communications; De-

pendable, Autonomic and Secure Computing;

Pervasive Intelligence and Computing

1

Conference 2018 2nd International Conference on Data

Science and Business Analytics (ICDSBA)

1

Conference 2017 2nd International Conference on the Ap-

plications of Information Technology in Devel-

oping Renewable Energy Processes & Systems

(IT-DREPS)

1

Conference Knowledge-Based and Intelligent Information

& Engineering Systems: Proceedings of the

20th International Conference KES-2016

1

Conference The 9th International Conference on Ambient

Systems, Networks and Technologies (ANT

2018) / The 8th International Conference on

Sustainable Energy Information Technology

(SEIT-2018) / Affiliated Workshops

1

Conference 2019 IEEE 14th International Conference on

Computer Sciences and Information Technolo-

gies (CSIT)

1

32

Publication

Venue

Name of Publication Number

of Pa-

pers

Total 18

Table (2.3) List of publication venues

Table 2.3 lists all publication types (Journal, Workshop or Conference) and the

venue. Two papers were published in each of the following publisher venues: journals

(Procedia Computer Science, Future Generation Computer Science and Future Gen-

eration Computer Systems) and a conference (ISoLA: International Symposium on

Leveraging Applications of Formal Methods). All other journals, conferences, and

workshops published only one article. In total, the selected papers were published

in 27 venues including journals, conferences, and workshops. Of the publications,

12 were journal papers, 18 were conference papers, and one was a workshop pa-

per. However, two studies were published in both a journal and a conference. Fig

2.5 presents the publishers of these publication venues. It shows that slightly less

than half of the publications were published in IEEE venues, while about third of

the publications were published in Elsevier and about 10% of the publications were

published in each Springer and ACM. Finally, Wiley had no percentage at all.

To address the most influential articles, we examined the number of times the

papers had been cited. We used Google Scholar to find the number of citations for

each selected article. Fig2.6 shows the number of citations for the articles that have

been cited 10 times and more. It is interesting that most of the highly cited papers

were published with Elsevier and between 2016 and 2017. The most cited work was

by Chung et al. (2017) [33], published in the Digital Investigation journal (Elsevier),

having 93 citations up to October 2021. The ecosystem of the Amazon virtual as-

33

Figure (2.5) Distribution of publications in different publishers

sistance (Alexa) is covered in this paper’s discussion of digital forensics techniques.

This paper’s main contribution is a new, effective method for supporting real-world

digital investigations by fusing client-side (forensics for companion devices) and

cloud-native (forensics for primary devices) forensics. They use proof-of-concept

tool, Cloud-based IoT Forensic Toolkit (CIFT),which is based on a thorough un-

derstanding of the targeted ecosystem and facilitates the identification, acquisition,

and analysis of both native artifacts from the cloud and client-centric artifacts from

local devices (mobile applications and web browsers). Tao et al. (2017) [99] was

34

cited 53 times. This paper proposed a plan to manage and use of ontology-based

data semantics to reduce the impact of continuously rising amounts of heterogeneous

data in the smart home data arena. A general domain ontology model is created

by defining the relevant concepts based on a smart home system model abstracted

from the viewpoint of performing users’ household operations, and a logical data

semantic fusion model is created in accordance. A relational-database-based ontol-

ogy data decomposition storage method is then developed by thoroughly examining

existing storage modes, and the performance is demonstrated using a group of elab-

orated ontology data query and update operations. This is done in order to achieve

high-efficiency ontology data query and update in the implementation of the data

semantic fusion model. Next, Khan et al. [63] (2016) was cited 52 times. Building

Smart Home Systems is a big challenge, due to the high level of use of technologies

and tools within the smart homes. Consequently, the concept of a context-aware,

low-power, intelligent SmartHome (CLPiSmartHome) is presented in this study.

We suggest a communication paradigm for CLPiSmartHome that offers a standard

means of communication, such as a common language. Additionally, a suggested

architecture enables all electronic devices to communicate with each other through

a single platform service. Moreover, the viability and effectiveness of the suggested

solution are tested using a Hadoop single-node setup on a 3.2 GHz coreTMi5 ma-

chine running Ubuntu 14.04 LTS. Finally, Meana-Llorian et al. (2017) [76] was sited

45 times. In order to save energy and provide a more comfortable environment for

their users, this paper suggest a novel method of temperature regulation using the

Internet of Things along with its platforms and fuzzy logic addressing not only the

inside temperature but also the external temperature and humidity. Finally, they

drew the conclusion that the fuzzy technique enables us to save money and energy

by about 40%. Since the most cited papers did not have something in common, we

35

believe that they are mostly cited due to popularity of Elsevier and it is the second

most publisher in term of number of publication in the area.

Figure (2.6) The most cited papers

The selected papers have been written by authors from around the world. This

shows how this subject is of interest worldwide. We found contributions from all

continents. The highest contribution were from China (5), France (3), Spain (4),

Algeria (2), the UK (3), and the USA (2), while there was one from each of the fol-

lowing countries: Australia, Belgium, Brazil, Croatia, Czech, Ghana, Italy, Japan,

Jordan, Korea, Malaysia, the Netherlands, New Zealand, Pakistan, Singapore, Slo-

vakia, South Korea, Ukraine, and Vietnam. We also noticed that only seven articles

have been written by authors from two or three different countries.

Focus and potential gaps

Ad-hoc testing is software testing performed without a specific method, plan or

documentation. The majority of the selected papers were validated and tested with-

36

out a clear plan or documentation that led us to classify about 75 % of the papers as

having an ad-hoc testing approach. Only two papers (Yusri et al. 2017 [108]; Sowah

et al. 2018 [98]) presented a table of test cases and their results. We considered

them ad-hoc testing because there were insufficient details on what testing method

was used. Only seven papers used a systematic approach to test smart homes that

used IoT. Ahmad et al. (2016) [5] presented a model-based testing approach to test

services provided by IoT platforms. Martinez et al. (2018) [75] used a systematic

testing approach to present the results of automated testing of IoT using the TES-

TAR tool. Asensio et al. (2019) [26] validated the interoperability between the real

installation and the emulation of a smart home by checking the connection between

both the virtual and physical devices. Tulenkov et al. (2019) [101] investigated the

functional features of IoT services, as well as the criteria for their evaluation and

selection. A practical example of IoT services and cloud platforms usage for Smart

House and IoT was illustrated. Gesvindr et al. (2020) [48] evaluated an architec-

ture design of Prototype as a Service cloud application using generated prototypes

generated by the PaaSArch Cloud Prototyper tool. PaaSArch is a tool supporting

PaaS (Platform as a Service) application architects. The PaasArch tool aids soft-

ware architects in assessing the quality of PaaS cloud applications by using created

prototypes. The program allows for completely functional cloud apps to be auto-

matically built, cloud-deployed, and benchmarked [47]. The whole approach was

demonstrated and evaluated on a case study of a smart home as an IoT application.

Luo et al. (2020) [72] proposed Gait Recognition as a Service (GRaaS) model and

used a case study to evaluate this model in detail. GRaaS is an embodiment of the

traditional Sensing as a Service (SaaS) model. It is designed to recognize human gait

in smart spaces. They propose a RFID-based gait recognition service following the

GRaaS model. Rocha Filho et al. (2020) [90] proposed an intelligent decision system

37

based on fog computing for an efficient way to control home appliances. The term

"fog computing" refers to a decentralized computing architecture where computer

resources are located between the data source and the cloud or other data center

[88]. By proposing ImPeRIum a smart strategy to managing home surroundings.

ImPeRIum monitors and acts on the residential environment through the intercom-

munication of smart devices, taking into account the profile of residents. ImPeRIum

can detect and respond to unexpected events in order to retain the environment in a

predetermined state. An detailed analysis of many scenarios revealed ImPeRIum’s

practicality and efficiency in smart environments with limited resources. The pro-

posed solution is evaluated both in simulated and real environments and the results

of these evaluations were provided. The outcomes of this research were: A high suc-

cess rate with minimal decision-making latency, efficient information transfer with

minimal infrastructure overhead, and processing robustness with minimal energy

usage.

Out of 29 papers, 16 papers used functional testing, where the functional re-

quirements of the system have been tested (Ahmad et al. 2016 [5]; Alipour 2017

[11]; Asensio et al. 2017 [25]; Asensio et al. (2019) [26]; Balikhina et al. 2017

[27]; Chung et al. 2017 [33]; Ciabattoni et al. 2014 [34]; Guebli et al. 2016 [51];

Huang et al. 2018 [59]; Martinez et al. 2018 [75]; Meana-Llorian et al. 2017 [76];

Sobeih et al. 2015 [97]; Tulenkov et al. 2019 [101]; Yusri et al. 2017 [108]; Sowah

et al. 2018 [98]; Zouai et al. 2017 [111]). From the remaining papers, 13 covered

non-functional testing: different non-functional requirements were tested. Tao et

al. (2018) [100] tested performance by measuring the response time for two differ-

ent scenarios, whereas Yuan (2015) [107] validated performance by measuring the

processing time and by comparing an ordinary smart home system and a cloud-

computing smart home. De Buyser et al. (2016) [36] evaluated the feasibility and

38

the performance via calculating the time range for each series of instructions given

to the testers. Skocir et al. (2016) [96] evaluated the performance of two proposed

algorithms by testing them to check whether they efficiently detect the activities

in the smart home. Khan et al. (2016) [63] tested efficiency by analyzing given

datasets to check throughput and processing time, while accuracy was checked via

a specific algorithm. Hu et al. (2018) [57], tested performance by comparing cost

savings in the two proposed systems against six other traditional systems. Tao et al.

(2017) [99] tested accuracy and performance via user behavior reasoning. Nguyen

et al. (2018) [79] evaluated the abilities of gathering and monitoring data from mul-

tiple IoT sources and modeling the collected date in a central format. Rocher et al.

(2017) [91], tested quality and performance of the proposed framework to estimate

the gap between the observed and estimated behaviors of smart systems. Pitt et al.

(2017) [87] tested the power consumption in a smart house. Gesvindr et al. (2020)

[48], tested performance by measuring throughput, scalability and latency of the

generated prototypes, then evaluating the impact of the designed architecture of a

PaaS cloud application. Rocha Filho et al. (2020) [90] evaluated the performance in

terms of processing time of applications. This time considers the time spent between

sending the data and the response of the actuation. Luo et al. (2020) [72] tested the

performance by comparing attention-based Long Short-term Memory (At-LSTM)

model and traditional classification algorithms such as Sparse Representation Clas-

sification (SRC). An RFID-based gait recognition service were designed for user

identification in smart spaces utilizing commercial off-the-shelf RFID sensors, fol-

lowing the GRaaS (Gate Recognation as a Service) architecture. To accomplish

accurate recognition at the edge layer, an attention-based LSTM model is utilized

for training and classification of the input data. The service is registered with the

service provider layer, which gives clients with a cloud platform via which they can

39

access the server from any location. Authentication in smart spaces, for example,

can then be built in the application layer. The results were compared to recognition

accuracy of the gait recognition by using different classification algorithm Sparse

Representation Classification (SRC). As one of the state-of-the-art face recognition

algorithm [95]. Table 2.4 shows the 29 references that have been selected in the

study and classifies them based on the testing type.

Testing Types Selected Papers

Functional Testing [5], [11], [25], [26], [27], [33], [34],
[51], [59], [75], [76], [97], [98], [101],
[108], [111]

Nonfunctional Testing [36], [48], [57], [63], [72], [79], [87],
[90], [91], [96], [99], [100], [107]

Table (2.4) List of retrieved papers grouped by testing type

Most of the functional testing papers (13 out of 16) considered system-level

testing. Only three papers presented integration testing approaches. The work by

Ciabattoni et al. (2014) [34], Asensio et al. (2017) [25] and Asensio et al. (2019) [26]

focused on testing the interaction between components. Since most of the papers

used an ad-hoc testing approach, as we mentioned in the answer for RQ 2.1, some

papers mentioned that unit testing and integration testing had been done, but we

could not consider that classification due to a lack of detail.

In most of the papers (17 out of 29), testing used real devices, while two of

the papers only tested virtual devices. Four executed tests on simulators. Some

papers used more than one test environment (e.g., Hu et al. (2018) [57] started

the experiment with a simulation and conducted a case study using a real device).

Moreover, three papers (Alipour 2017 [11]; Ciabattoni et al. 2014 [34]; Nguyen et

al. 2018 [79]) used a combination of simulators and emulators in their tests. While

Asensio et al. (2019) [26] used virtual and physical devices and tested the integration

40

between the real installation and the emulation. Finally, Rocha Filho et al. (2020)

[90] tested some features in a real environment and others by simulation. Table 2.5

classifies the 29 papers by their testing environment.

Single Multiple

Real devices [5], [27], [33], [36], [59], [75],
[87], [91], [96], [97], [108],
[98], [99], [100], [48], [101],
[72]

(real and virtual) [90], [57]

Virtual devices [25], [63]
Simulator [51], [76], [107], [111] (simulator and emulator)

[11], [34],[79]
Table (2.5) List of retrieved papers classified by testing environment

2.5.4 Threats to Validity

In our systematic mapping study, we followed a systematic method to find,

analyze and classify the papers published in our field of interest. However, our study

has some threats to validity. One major threat is due to the inclusion and exclusion

criteria that were explained in Section 2.5.1. We might miss some important papers

that are written in languages other than English, or not available online, or not in

one of the selected libraries. In addition, we excluded papers related to IoT but not

to smart homes. This might lead to exclude some testing techniques that could be

proposed to test smart homes. The search string and the keywords were developed

systematically. However, we might have missed some keywords or synonyms that

could have resulted in additional relevant papers. Finally, some papers might be

excluded at early stages without fully skimming due to a misleading or unclear title

or abstract. Making decisions using multiple reviewers tried to mitigate this.

41

2.5.5 Discussion

Based on our analysis, we discovered that most of the papers did not propose a

systematic testing technique, and the majority proposed ad-hoc testing only. Those

papers need to include more details in how they tested their systems, which tech-

niques are used, which tools, as well as more documentation on the test cases and

results. Only one paper (Ahmad et al. 2016 [5]) proposed a Model-Based Testing

as a Service technique for IoT platforms. Two papers presented two different test-

ing tools. Martinez et al. 2018 [75] applied automated testing and presented the

result using the TESTAR tool, and Alipour (2017) [11] proposed an event-based

fault-injection tool. This is a new topic, as the concept of IoT was suggested first in

1999 [94]. Publications on Smart Homes using IoT started in 2014 according to our

finding. We expect more research in this field to be conducted in the future since

this area is new and the research it recent. However, our examination shows that

cost is one of the challenges facing testing smart homes that use IoT with devices.

A lack of simulation environments for smart homes might be another issue. That

could be one reason that few papers were published in this area.

Another finding is that the bibliometrics show that many countries and authors

are interested in this area of research. This topic is of interest to both engineers

and computer scientists. That makes the findings split between the two areas.

Because this is a new topic in computing we found much more work published in

conferences than journals. It appears that researchers in the area of smart homes

were more interested in building these systems, rather than presenting systematic

testing techniques for them, hence the prevalence of ad-hoc testing. While testing

is expensive and this new field is growing rapidly, testing is very important and

necessary. Therefore, researchers need to spend more effort to guarantee that sensors

42

in the smart home function well, and the data collected from them are handled

well, that device interactions work properly and the systems as a whole is also

systematically tested.

2.5.6 Conclusion

This systematic mapping study was done to provide an overview of current re-

search on software testing techniques for smart homes that use IoT. We analyzed

and summarized 29 articles published up to October 2021. The analysis showed

that there are very few systematic testing techniques. Only one study proposed

a model-based testing technique to test IoT platforms for smart homes. Another

paper was presenting the test automation results using the TESTAR tool in IoT.

On the other hand, the majority of the papers were proposing a new smart home

technology and they did not document the testing process in detail. In this study,

eight research questions have been answered. The main results are:

1. This is a new topic, no paper was published before 2014, and 2017 shows the

largest number of publications.

2. Most of the articles were published in conference proceedings (about 60%) and

a lot fewer in journals (about40%).

3. Publications were published by 27 different publishers.

4. Authors from 25 different countries have been working on these articles.

5. One paper proposed a model-based testing as a service technique to test IoT

platforms [5].

6. Two papers presented testing tools, one used the TESTAR tool [75], the other

paper used an event-based fault-injection tool with Selenium [11].

43

7. Three papers proposed various new components to be added to the smart

home, including Google glasses [97], smart grid [87], and headset [36].

8. Most of the selected papers in this study (28 out of 29) used black-box testing.

While there is quite an amount of published work on this field, most of the

testing was ad-hoc and the amount of information of how testing was done is sparse.

Considering the high demand of systematic testing this is a wide open area for

fruitful research.

44

Chapter 3

Reusable Test-Ready Models of

Smart Home Systems

3.1 Problem Statement

In this Chapter we propose reusable test-ready models of smart home systems

(SHS) using Extended Finite State Machines (EFSMs) [6, 24, 105] to model device

components (Sensor, Controller and Actuator), Communicating Extended Finite

State Machines (EFSMs) [68] to model single devices in the SHS and the interaction

between the devices. We adopted Al Haddad’s [10] FSMApp approach to model and

test the mobile application that controls the SHS. We noticed the difficulty to use

model-based testing in testing SHS due to the heterogeneity and dynamic nature

of devices. Therefore, we propose a set of reusable test-ready models which can be

used as-is or with minor modifications (See Chapter 5). This Chapter addresses the

following research question:

• Is it possible to develop a reusable test-ready models of a SHS that can be

used to test SHS at the device, device interaction and system level?

45

This Chapter is organized as follows: The used terminologies throughout this

proposal is presented in Section 3.2. Section 3.3 will give an outline of the proposed

approach. Section 3.4.1 provides the guidelines to model device components and

devices. Modeling the Mobile App is explained in Section 3.4.2. In Section 3.4.3 we

will show how to model interaction between devices and between devices and the

Mobile App.

3.2 Terminology

We used the following terminology:

SHS: Smart Home System.

IoT: Internet of Things.

Device: Any physical device within the SHS.

Device Component: Sensor, Controller, or Actuator.

Sensor: A device sensor is a part which detects or measures a physical property

and records, indicates, or otherwise responds to it.

Controller: A device controller is a system that handles the incoming and outgoing

signals of the sensor.

Actuator: A device actuator is the part that causes a device to operate based on

the controller decision.

System Controller: Mobile Application/s.

46

3.3 Proposed Approach

Our goal is to develop a turn-key black-box testing approach for Smart Homes.

Fig 3.1 shows the process of Phase 1. The entire approach proceeds in three phases:

Phase 1 builds a set of reusable test-ready models, Phase 2 generates tests from

these models, and Phase 3 show how these models are easily modifiable for new

device types. Phase 1 is discussed in this Chapter.

Figure (3.1) Phase 1: Build Test-Ready Models for Devices and System Controller

3.4 Reusable Test-Ready Models

We provide three types of reusable models:

• For the System Controller we use Al Haddad’s FSMApp [10] approach.

• Device Components (Sensors, Controllers, Actuators) are modelled as EFSMs.

• Device itself and Device Interactions (with each other and with the System

Controller) use CEFSM models.

Communication channels between models are added to the EFSM to exchange

messages and actions/commands, as illustrated in Fig 3.2.

Reusable Test-Ready Models = {FSMApp, CEFSMDev}

CEFSMDev = {EFSMSensor, EFSMController, EFSMActuator}

47

Figure (3.2) Overview of Reusable Test-Ready Models

3.4.1 Model Device Component and Devices:

To model the device components and devices in the SHS, we used the following

approach:

• Partition the SHS into devices. These are physical devices like a security

camera.

• Define device component and Input-Action constraints for each component.

Components are sensors, actuators, and controllers.

• Build CEFSMs for devices as a multi-level hierarchy including an Aggregate

FSM (AFSM).

48

Partition the SHS into Devices

To build a CEFSMDev, we need to divide the SHS into devices. In this step

we construct a behavioral model for each device component (Sensor, Controller

and Actuator) and a behavioral model for the entire device. These models are built

based on the system requirements and specifications. To build these models we used

EFSM to model device components individually. CEFSM is then used to model the

entire device. The input for this step is system requirements and specifications.

The output are EFSM models for device components and CEFSM models for single

devices.

Define Input-Action constraints for each Device.

Input for devices is different than inputs for Mobile apps or Web applications.

To illustrate the possible inputs for devices we look at the top-ten smart devices

on the market in 2022. According to Tom’s Guide [66], Table 3.1 shows the top

ten smart devices and lists all possible user inputs (Uinput) and environment inputs

(Einput) for each device. A device in the SHS can have different type of inputs: user

inputs when the user of the system interacts with the device directly; for example,

Amazon Echo Dot accepts voice commands directly from the user. Another type of

input is an environment input where the environment interacts with the device; for

instance, Amazon Echo Dot detects environmental sounds such if it hears broken

glass, fire alarms, or other suspicious sounds the device will act based on these

sounds and send an alert to the SHS owner. Finally, all devices get commands from

the Mobile application that controls the SHS. If there are no user or environmental

inputs, commands come only from the mobile app. Table 3.1 shows the user and

environment inputs for the top ten smart devices. Table 3.2 shows devices input

49

constraints R means required and O means optional. The order of input can be

either sequential or any order.

Device Name Uinput Einput

Amazon Echo Dot Voice commands (VC) Environment sounds:

(ES)

Click buttons (CB)

(+/-button)

broken glass,

(mic on/off button) or fire alarms

Nest Cam (battery) None Motion (M)

Sound (S)

Ecobee Smart Thermostat Voice commands (VC) Temperature (Temp)

Touch screen (TS) Occupied (Occupied)

Temperature Thresh-

old (TThreshold)

Threshold Level

(ThresholdLevel)

Philips Hue White A19

Starter Kit

Time Threshold

(TiThreshold)

Time (Time)

August Wi-Fi Smart Lock Open/Close the door

(Open)

Time (Time)

Lock/Unlock (Lock) DoorSense (DS)

Time Threshold

(TiThreshold)

Nest Doorbell Click button (Dbut-

ton)

Video recording (VR)

50

Device Name Uinput Einput

Motion (M)

Sound (S)

Wemo WiFi Smart Plug Voice commands (VC) Time (Time)

Click button (Pbut-

ton)

Nest Protect Smoke detector None Smoke and Carbon

monoxide sensor (CO)

Time (Time)

Temperature (Temp),

humidity (H) and oc-

cupied (Occupied)

Samsung SmartThings

Home hub

None None

Chamberlain MyQ garage

opener

None None

Table (3.1) Top Ten Smart Devices

Input Choice Order
Required (R) Sequence (S)
Optional (O) Any (A)

Table (3.2) Devices Input Constraints

To illustrate what components look like we analyze common components of the

top ten devices and what CEFSMDev input constraints would look like:

51

1. Voice command (VC) indicates what action will occur when the user speaks.

The action of the voice command is talk. The input constraint is R().

2. Click Button (CB) indicates what action will occur when the user click it.

The action of the button is a click. The input constraint is R().

3. Touch screen (TS) indicates what action will occur when the user touches

the device’s screen. The action of the touch screen is a touch. The input

constraint is R().

4. Close/open door (Open) indicates what action will occur when the user

opens or closes the door. The action of the close/open door is a door closed

or opened. The input constraint is R().

5. Lock/Unlock (Lock) indicates what action will occur when the user lock or

unlock the smart lock. The action of the lock/unlock door is a door lock or

unlock. The input constraint is R().

6. Environmental sounds (ES) allow the device to indicate indicates suspi-

cious sounds. The action of the environmental sound is listen to a fire alarm,

a broken glass or any suspicious sound accrue. When these sounds is heard an

alert will be sent to the user. The input constraint is R().

7. Motion (M) indicates what action will occur when motion is detected. The

action of the motion is a person walk, a pet walk or any movement within

defined area. When a motion is detected within environment device should

act based on the that. For example, lights turn on when a motion is detected.

The input constraint is R().

52

8. Sound (S) indicates what action will occur when a sound is heard. The action

of the sound is a person talk, a baby cries or any sound accrue. When sound is

heard within environment device should act based on the sound. For example,

camera start recording when a sound is detected. The input constraint is R().

9. Time (Time) indicates what action will occur when a predefined time is

reached. The action of the time is a specific time reached. Once a predefined

time is reached a device should act. For example, light turn on automatically

at specific time. The input constraint is R().

10. Temperature (Temp) indicates what action will occur when a predefined

temp is reached. The action of the temperature is a specific temp reached.

Once a predefined temp is reached a device should act. For example, ther-

mostat temp is increased or decreased automatically when a specific temp is

reached. The input constraint is R().

11. Occupied (Occupied) indicates what action will occur when a room is oc-

cupied. The action of the occupied to check if there is people in a room.

Once there is people in a room a device should act. For example, thermostat

temperature is decreased automatically when a room is occupied. The input

constraint is R().

12. DoorSense (DS) indicates what action will occur when someone open or

close the door. The action of the DoorSense is detection of someone open or

close the door. When DoorSense detect that someone open or close the door

it should notify the smart lock with the door status. The input constraint is

R().

53

13. Smoke and Carbon Monoxide Sensor (CO) indicates what action will

occur when Carbon Monoxide is detected. The action of the Carbon Monoxide

is detection of Carbon Monoxide. When Carbon Monoxide is detected an alert

will be sent to the user. The input constraint is R().

14. Humidity (H) indicates what action will occur when a predefined humidity

level is detected. The action of the humidity sensor is detection of humidity.

When humidity predefined level is detected the device should act. The input

constraint is R().

15. Final Decision (FD) indicates what action will occur when a final decision

is reached. The action of the final decision is based on the decision. When

final decision is reached the device should act based on that decision. The

input constraint is R().

16. Increase Temperature (IncreaseT) indicates what action will occur when

increase temperature is received. The action of increase temperature is increase

the temperature of the thermostat. When increase temperature is received the

device should rise the temperature of the thermostat. The input constraint is

R().

17. Decrease Temperature (DecreaseT) indicates what action will occur when

decrease temperature is received. The action of decrease temperature is de-

crease the temperature of the thermostat. When decrease temperature is re-

ceived the device should lower the temperature of the thermostat. The input

constraint is R().

18. Increase Volume (IncreaseV) indicates what action will occur when in-

crease volume is received. The action of increase volume is increase the vol-

54

ume of the device. When increase volume is received the device should rise

the volume of the speaker. The input constraint is R().

19. Decrease Volume (DecreaseV) indicates what action will occur when de-

crease volume is received. The action of decrease volume is decrease the volume

of the device. When decrease volume is received the device should lower the

volume of the speaker. The input constraint is R().

20. Mute Microphone (Mute) indicates what action will occur when mute mi-

crophone is received. The action of mute microphone is mute the microphone

of the device. When mute microphone is received the device should mute the

microphone. The input constraint is R().

21. Unmute Microphone (Unmute) indicates what action will occur when

unmute microphone is received. The action of unmute microphone is unmute

the microphone of the device. When unmute microphone is received the device

should unmute the microphone. The input constraint is R().

22. Display Live Video (Video) indicates what action will occur when display

video is received. The action of video is start live video streaming. When

display video is received the device should view live video. The input constraint

is R().

23. Idle (Idle) indicates what action will occur when idle is received. The action

of idle is stop live video streaming. When idle is received the device should

stop live video. The input constraint is R().

24. Lock Door(Lock) indicates what action will occur when lock is received.

The action of lock is lock the door. When lock is received the smart lock

should lock the door. The input constraint is R().

55

25. Unlock Door(Unlock) indicates what action will occur when unlock is re-

ceived. The action of unlock is unlock the door. When unlock microphone is

received the smart lock should unlock the door. The input constraint is R().

The transitions are between the nodes (the states of the system). We will annotate

the transitions between the nodes with input condition, user, and environmental

inputs to indicate what inputs, messages and actions lead to a change in state.

Device Models

Any device consists of three components (Sensor, Controller and Actuator). Fig

3.3 shows the analog sensor’s behavioral model where S1 is the initial state where

the sensor is idle (SIdle) and S2 is the final state where sensor is ready to collect

data (SActive). Transitions on the edge will be different based on the type of the

sensor.

Figure (3.3) Analog Sensor Behavioral Model

A controller is modeled in Fig 3.4 using EFSM where S5 is the initial state,

showing that the controller is ready (CReady). S9 is the final state, when data is

transmitted to the actuator the controller becomes idle (CIdle). S6 is the check state

56

(Check), in this state the controller compares the received data from the sensor with

the predefined threshold in the device. Based on the result of the comparison, the

controller can transit to S7 or S8. For example, in the smart thermostat S6 will check

if the received temperature from the sensor is less than or greater than a predefined

temperature. If the temperature is less than temperature threshold then state S7

(increase temperature) is reached. Otherwise, S8 (decrease temperature) is reached.

The corresponding states are specified in Table 3.3 the first column shows the state

id, the second column shows the state name, and the last column describe the state.

S1, S2 represents the state in the analog sensor, S3, S4 represents the state in the

binary sensor. S1 will be SIdle and S2 will be SActive, while an binary sensor will

have S3 as off and S4 as on. S5, S6 and S9 in the controller are similar for all type of

devices. S7 and S8 in the controller change based on the device type. For example,

if we have a light device the states will be lights should go on, and lights should

go off. On the other hand, in a thermostat device, the states will be temperature

should increase or decrease based on the check process in S4 (Check). Finally, the

actuators in all devices have the same states S10 (Device off), S11 (Device on).

An actuator is modeled in Fig 3.5 using EFSM where S10 is the initial state

where the device is off and S11 is the final state where the device is on.

Fig 3.6 shows the device behavioral model using CEFSM. During the integra-

tion of the three EFSM models, messages from sensor to controller and controller

to actuator are added. Instances of interactions and examples of their behavioral

messages are illustrated in Table 3.4. Message Channel M11 passes m11 the sensed

data (SData) from the sensor to the actuator. On the other hand, M12 sends m12

the decision taken by the controller (FD) to the actuator.

We model Ecobee Smart Thermostat, Amazon Echo Dot, Nest Cam (battery),

August Wi-Fi Smart Lock and Nest Protect Smoke detector devices in the following

57

Figure (3.4) Controller Behavioral Model

Figure (3.5) Actuator Behavioral Model

subsections, to show how to use the generic device model to build customized models.

Note that these are simply the reusable models for Sensors, Actuators, Controllers

and devices (Fig ?? - 3.6) what is device specific are the transitions.

Model Ecobee Smart Thermostat

Tom’s Guide [66] nominated the Ecobee Smart Thermostat as one of the ten best

smart devices in 2022. As any other smart thermostat the temperature will be ad-

justed according to the sensed temperature (Temp) and occupied (Occupied) in the

58

State State Name State
S1 SIdle Analog Sensor is idle
S2 SActive Analog Sensor is active
S3 CReady Controller is ready
S4 Check Check and compare
S5 On Device should go on
S6 Off Device should go off
S7 CIdel Controller idle
S8 Off Device off
S9 On Device on

Table (3.3) Device Components States

ID Between Message Example
M11 Sensor - Controller Send m11 "Sensed Data (SData)"
M12 Controller - Actuator Send m12 "Final Decision (FD)"

Table (3.4) Device’s CEFSM Message Example

room. Fig 3.7 shows the smart thermostat device CEFSM model. The different in-

puts and possible values are listed in Table 3.5. The Ecobee Smart Thermostat takes

voice commands (VC), touch screen (TS) and temperature threshold (TThreshold)

as user inputs. It takes two environmental inputs (temperature (Temp) and occupied

(Occupied)).

Uinput Input Domain Einput Input Domain
VC (Increase, Decrease) Temp [>68, <77]◦F
TS (⟳, ⟲) Occupied (True, False)
TThreshold [>60, <80]◦F 1

ThresholdLevel (Minimum, Basic,
Balanced, Super,
Maximum) 2

Table (3.5) Smart Thermostat Input Values

59

Figure (3.6) Device Behavioral Model

Figure (3.7) Smart Thermostat CEFSM Model

Table 3.6 lists the CEFSM transitions definitions for the Smart Thermostat. A

unique id for each transition is given in column 1 and the input action constraints

are shown in column 2. Table 3.6 presents 9 transitions (T1 - T9) and two message

channels (M11, M12) for the Smart Thermostat. The Ecobee Smart Thermostat con-

sists of two analog sensors: Temperature Sensor and Occupied Sensor, a controller

and an actuator. Both sensors are working as they are sensing the temperature and
1The manufacture of this device did not specified the possible range of temperature, so we

consider the average range is anywhere from 68 to 76 degrees Fahrenheit. We extend this range to
consider the wormiest at 80 and the coolest at 60.

2Minimum (0.5F) - Basic (1F) - Balanced (1.5F) - Super (2F) - Maximum (2.5F)

60

occupancy of the room they are installed in and they are pushing the sensed data

regularly to the controller. Every 15 seconds, the temperature sensor will update

its reading. Although such frequent updates are required for temperature, it is not

necessarily for occupancy. As a result, the update time for the occupancy is longer,

at 5 minutes [77].

ID Transition
T1 (SIdle, [Einput (Temp, Occupied)] OR [Uinput (VC= increase or

decrease, TS= ⟳ or ⟲)], -)/(SActive, Send m11 "SData"))
T2 (SActive, [After sending the collected data], -)/(SIdle, -)
T3 (CReady, [After receiving the sensed data], -)/(Check, -)
T4 (Check, [Temp < = TThreshold and/or Occupied = False

and/or VC= increase and/or TS= ⟳], -)/(Increase, Send m12

FD="Increase the temperature"))
T5 (Check, [Temp > TThreshold and/or Occupied = True

and/or VC= decrease and/or TS= ⟲], -)/(Decrease, Send m12

FD="Decrease the temperature")
T6 (Increase or Decrease, [After sending m12], -)/(Check, -)
T7 (Check, -)/(CIdle, -)
T8 (Decrease, [IncreaseT], -)/(Increase, -)
T9 (Increase, [DecreaseT], -)/(Decrease, -)
M11 Send m11 "Sensed Data (SData)"
M12 Send m12 "Final Decision (FD)"

Table (3.6) Smart Thermostat Transitions 3.7

• T1: This transition goes from state S1 (SIdle) to state S2 (SActive). It uses

the following inputs: (VC, TS, Temp, Occupied). Message on this transition

is send m11 "SData".

• T2: This transition goes from state S2 (SActive) to state S1 (SIdle). No inputs

or actions are needed for this transition. m11 must have been sent previously.

• T3: This transition goes from state S3 (CReady) to state S4 (Check). No

inputs or actions are needed for this transition. m11 should have been received.

61

• T4: This transition goes from state S4 (Check) to state S5 (Increase). It uses

the following inputs: (VC, TS, Temp, Occupied, TThreshold, ThresholdLevel).

Message on this transition is send m12.

• T5: This transition goes from state S4 (Check) to state S6 (Decrease). It uses

the following inputs: (VC, TS, Temp, Occupied, TThreshold, ThresholdLevel).

Message on this transition is send m12.

• T6: This transition goes from state S5 (Increase) or S6 (Decrease) to state S4

(Check). No inputs or actions needed for this transition. After sending m12.

• T7: This transition goes from state S4 (Check) to state S7 (CIdle). No inputs

or actions needed for this transition.

• T8: This transition goes from state S8 (Decrease) to state S9 (Increase) in the

actuator. The input of this transition is IncreaseT.

• T9: This transition goes from state S9 (Increase) to state S8 (Decrease) in the

actuator. The input of this transition is DecreaseT.

The first transition started with a S1 (SIdle) state which means the sensor is idle

before it becomes ready to collect data. It ends with S2 (SActive) state, i.e. the

sensor is active and ready to collect data. The condition for this transition to occur

is determined by user or environment inputs. Environmental inputs for the smart

thermostat are the sensed room temperature (Temp) and/or the sensed number

of people within the room (Occupied). Other possible inputs are from the user by

voice command (VC) to increase or decrease the temperature and/or by touching the

screen (TS) on the device clockwise to increase or counterclockwise to decrease the

temperature. The sensed data (SData) from the environment or the user or both are

62

sent to the controller via communication channel M11. After sending the collected

data the sensor goes back to S1 (SIdle) (no condition on this transition). T3 is a

transition in the controller model between S3 (CReady) and S4 (Check) nodes. m11

must be received in order for this transition to occur. State S4 (Check) is responsible

to check and compare the received data with the predefined variables TThreshold

(Temperature Threshold) or to check and compare the received user inputs VC

(Voice command) or TS (Touch Screen). If the sensed temperature is less than or

equal to the defined TThreshold then T4 moves the controller to state S5 (Increase)

and m12 (FD="Increase the temperature") is sent to the actuator to increase the

thermostat temp. If the sensed temperature is greater than the defined TThreshold

then T5 moves the controller to state S6 (Decrease) and m12 (FD="Decrease the

temperature") is sent to the actuator to decrease the thermostat temperature. T6

is the transition that moves the controller from the states S5 or S6 (Increase or

Decrease) back to state S4 (Check) and this transition has one condition, after

sending m12. T7 has no condition and it only changes the controller’s state from S4

(Check) to S7 (CIdle).

Model Amazon Echo Dot

Tom’s Guide [66] nominated the Amazon Echo Dot as the overall best smart

devices in 2022. Amazon Echo Dot is a sphere shape speaker that has a few buttons

on the top two of them control volume (+ to increase and - to decrease), mute

the speaker, and unmute it. It uses an artificially intelligent assistant called Alexa

which is capable to do multiple tasks. Alexa can play music, answer some questions

by searching the Internet, set alarms or timer, control other smart devices within

the SHS, play games, create a shopping list and many other tasks. Amazon Echo

Dot can get user input as voice commands (VC) or click on buttons (+/- , mic

63

on/off). Any voice command should start with Alexa then ask her your question,

for example, Alexa, what time is it?. Volume can be controlled by clicking on

+/- buttons. At any time you can mute the speaker by clicking on microphone

mute button or enable it by clicking on unmute button. This device can also get

environmental inputs when you choose to set it up on guard mode. When you are

away from home you may simply say Alexa, I am leaving. Alexa now will detect

environmental sounds (ES) such as smoke alarm and glass break sounds and will

notify the user through the smart phone application. Many other features can be

controlled via the smart phone application. Fig 3.8 shows the Amazon Echo Dot

device CEFSM model. The different inputs and possible values are listed in Table

3.7. The Amazon Echo Dot takes voice commands (VC) and click on buttons as

user inputs. It takes environmental sounds (ES) as environmental input.

Figure (3.8) Amazon Echo Dot CEFSM Model

Table 3.8 lists the CEFSM transitions definitions for the Amazon Echo Dot. A

unique id for each transition is given in column 1 and the input action constraints

are shown in column 2. Table 3.8 presents 9 transitions (T10 - T18) and two message

channels (M21, M22) for the Amazon Echo Dot. The device consists of an analog

64

Uinput Input Domain Einput Input Domain
VC ("Alexa, any com-

mand")
ES (Broken Glass sound,

Fire Alarm sound)
CB (+, -, mic on, mic off)

Table (3.7) Amazon Echo Dot Input Values

sensor (Sound Sensor), a controller and an actuator. When a sound detected the

sound sensor push the sensed data to the controller. The controller should search

the information in the Internet and send the answer to the actuator which push the

answer via the speaker.

ID Transition
T10 (SIdle, [Einput (ES= Glass broken, Fire alarm)] OR [Uinput (VC=

"Alexa, ...", CB= + or - or mic on or mic off)], -)/(SActive, Send
m21 "SData"))

T11 (SActive, [After sending the collected data], -)/(SIdle, -)
T12 (CReady, [After receiving the sensed data], -)/(Check, -)
T13 (Check, [CB = + and/or VC= "Alexa, increase the volume"], -

)/(Increase volume, Send m22 FD="Increase the volume"))
T14 (Check, [CB = - and/or VC= "Alexa, decrease the volume"], -

)/(Decrease volume, Send m22 FD="Decrease the volume")
T15 (Increase volume or Decrease volume, [After sending m22], -

)/(Check, -)
T16 (Check, -)/(CIdle, -)
T17 (Decrease volume, [IncreaseV], -)/(Increase volume, -)
T18 (Increase volume, [DecreaseV], -)/(Decrease volume, -)
M21 Send m21 "Sensed Data (SData)"
M22 Send m22 "Final Decision (FD)"

Table (3.8) Amazon Echo Dot Transitions 3.8

• T10: This transition goes from state S1 (SIdle) to state S2 (SActive). It uses

the following inputs: (VC, CB, ES). Message on this transition is send m21

"SData".

65

• T11: This transition goes from state S2 (SActive) to state S1 (SIdle). No inputs

or actions are needed for this transition. m21 must have been sent previously.

• T12: This transition goes from state S3 (CReady) to state S4 (Check). No

inputs or actions are needed for this transition. m21 should have been received.

• T13: This transition goes from state S4 (Check) to state S5 (Increase volume).

It uses the following inputs: (VC, CB, ES). Message on this transition is send

m22.

• T14: This transition goes from state S4 (Check) to state S6 (Decrease volume).

It uses the following inputs: (VC, CB, ES). Message on this transition is send

m22.

• T15: This transition goes from state S5 (Increase volume) or S6 (Decrease

volume) to state S4 (Check). No inputs or actions needed for this transition.

After sending m22.

• T16: This transition goes from state S4 (Check) to state S7 (CIdle). No inputs

or actions needed for this transition.

• T17: This transition goes from state S8 (Decrease volume) to state S9 (Increase

volume) in the actuator. The input of this transition is IncreaseV.

• T18: This transition goes from state S9 (Increase volume) to state S8 (Decrease

volume) in the actuator. The input of this transition is DecreaseV.

Nest Cam (battery)

Nest camera is a smart device that allows you to vision indoor or outdoor activity

within your smart home. You can install it easily and watch live view from your

66

phone. You can also talk from your phone to that camera by click on a microphone

button in the application and people in the room or on the door if the camera

installed outdoor can response to you directly. This device does not have any user

inputs, and it has two environmental inputs (Motion (M) and Sound (S)). Fig 3.9

shows the Nest cam device CEFSM model. The different inputs and possible values

are listed in Table 3.9. The Nest cam takes two environmental inputs Sound (S)

and Motion (M).

Figure (3.9) Nest Cam CEFSM Model

Uinput Input Domain Einput Input Domain
None - Sound (S) (True, False)

Motion (M) (True, False)
Table (3.9) Nest Cam Input Values

Table 3.10 lists the CEFSM transitions definitions for the Nest Cam. A unique

id for each transition is given in column 1 and the input action constraints are shown

in column 2. Table 3.10 presents 9 transitions (T19 - T27) and two message channels

(M31, M32) for the Nest Cam. The device consists of two analog sensors (Sound

67

Sensor and Motion Sensor), a controller and an actuator. When a sound or motion

detected the sound and motion sensor push the sensed data to the controller. The

received data should be presented on the user phone as a live view of the camera.

ID Transition
T19 (SIdle, [Einput (S= True or False, M= True or False)], -)/(SActive,

Send m31 "SData"))
T20 (SActive, [After sending the collected data], -)/(SIdle, -)
T21 (CReady, [After receiving the sensed data], -)/(Check, -)
T22 (Check, [S= True and/or M= True], -)/(Video, Send m32

FD="Video"))
T23 (Check, [S= False and/or M= False], -)/(Idle, Send m32

FD="Stop")
T24 (Video or Idle, [After sending m32], -)/(Check, -)
T25 (Check, -)/(CIdle, -)
T26 (Idle, [Video], -)/(Video, -)
T27 (Video, [Stop], -)/(Idle, -)
M31 Send m31 "Sensed Data (SData)"
M32 Send m32 "Final Decision (FD)"

Table (3.10) Nest Cam Transitions 3.9

• T19: This transition goes from state S1 (SIdle) to state S2 (SActive). It uses

the following inputs: (S, M). Message on this transition is send m31 "SData".

• T20: This transition goes from state S2 (SActive) to state S1 (SIdle). No inputs

or actions are needed for this transition. m31 must have been sent previously.

• T21: This transition goes from state S3 (CReady) to state S4 (Check). No

inputs or actions are needed for this transition. m31 should have been received.

• T22: This transition goes from state S4 (Check) to state S5 (Video). It uses

the following inputs: (S, M). Message on this transition is send m32.

• T23: This transition goes from state S4 (Check) to state S6 (Idle). It uses the

following inputs: (S, M). Message on this transition is send m32.

68

• T24: This transition goes from state S5 (Video) or S6 (Idle) to state S4 (Check).

No inputs or actions needed for this transition. After sending m32.

• T25: This transition goes from state S4 (Check) to state S7 (CIdle). No inputs

or actions needed for this transition.

• T26: This transition goes from state S8 (Idle) to state S9 (Video) in the actu-

ator. The input of this transition is Video.

• T27: This transition goes from state S9 (Video) to state S8 (Idle) in the actu-

ator. The input of this transition is Idle.

August Wi-Fi Smart Locks

August Wi-Fi Smart Locks have DoorSense, a sensor that gives the smart lock

the current status of your door if it is open or close. You can check if your door is

closed and locked or not from one click on your mobile phone. No more trips back to

check that or worrying if you closed it before you left or not. A notification come to

you on your phone if anything changes with the status of your door. You could also

set up an auto-lock option via the mobile app for any time between 30 seconds and

30 minutes. August knows that you have returned home and unlocks the door for

you via geo-fencing feature. With a click on your phone, you can remotely let people

to your home or even lock the door if you forgot to do. You can create temporary,

or recurring “keys” for friends, family, or others to unlock the door via the August

app. These keys can be set to only work during certain hours, or only work for a

limited period. You can get a record with the exact time of who get in and out of

the house from activity feed in the application. This device can take user inputs

which is physically lock or unlock the smart lock, open or close the door, and time

to auto-lock.

69

Fig 3.10 shows the August Wi-Fi Smart Lock device CEFSM model. The dif-

ferent inputs and possible values are listed in Table 3.11. The August Wi-Fi Smart

Lock takes three user inputs (Open/Close the door (Open), Lock/Unlock (Lock) and

Time Threshold (TiThreshold)) and two environmental inputs (DoorSense (DS) and

Time (Time)).

Figure (3.10) August Wi-Fi Smart Lock CEFSM Model

Uinput Input Domain Einput Input Domain
Open/Close
(Open)

(True, False) DoorSense (DS) (True, False)

Lock/Unlock
(Lock)

(True, False) Time (Time) [00:00:30 -
00:30:00]

Time Threshold
(TiThreshold)

[30 sec - 30 min]

Table (3.11) August Wi-Fi Smart Lock Input Values

Table 3.12 lists the CEFSM transitions definitions for the August Wi-Fi Smart

Lock. A unique id for each transition is given in column 1 and the input action

constraints are shown in column 2. Table 3.12 presents 9 transitions (T28 - T36) and

two message channels (M41, M42) for the August Wi-Fi Smart Lock. The device

consists of two analog sensors (Door Sensor and Time Sensor), a controller and an

actuator.

70

ID Transition
T28 (SIdle, [Einput (Time= Time, DS= True or False)] OR [Uinput

(Open= True or False, Lock= True or False and TiThreshold= [30
sec - 30 min])], -)/(SActive, Send m41 "SData"))

T29 (SActive, [After sending the collected data], -)/(SIdle, -)
T30 (CReady, [After receiving the sensed data], -)/(Check, -)
T31 (Check, [Open= False and Lock= False and/or Time== TiThresh-

old], -)/(Lock, Send m42 FD="Lock"))
T32 (Check, [Open= False and Lock= True], -)/(Unlock, Send m42

FD="Unlock")
T33 (Lock or Unlock, [After sending m42], -)/(Check, -)
T34 (Check, -)/(CIdle, -)
T35 (Unlock, [Lock], -)/(Lock, -)
T36 (Lock, [Unlock], -)/(Unlock, -)
M41 Send m41 "Sensed Data (SData)"
M42 Send m42 "Final Decision (FD)"

Table (3.12) August Wi-Fi Smart Lock Transitions 3.10

• T28: This transition goes from state S1 (SIdle) to state S2 (SActive). It uses

the following inputs: (Time, DoorSense, Open, Lock, TiThreshold). Message

on this transition is send m41 "SData".

• T29: This transition goes from state S2 (SActive) to state S1 (SIdle). No inputs

or actions are needed for this transition. m41 must have been sent previously.

• T30: This transition goes from state S3 (CReady) to state S4 (Check). No

inputs or actions are needed for this transition. m41 should have been received.

• T31: This transition goes from state S4 (Check) to state S5 (Lock). It uses

the following inputs: (Time, DoorSense, Open, Lock, TiThreshold). Message

on this transition is send m42.

71

• T32: This transition goes from state S4 (Check) to state S6 (Unlock). It uses

the following inputs: (Time, DoorSense, Open, Lock, TiThreshold). Message

on this transition is send m42.

• T33: This transition goes from state S5 (Lock) or S6 (Unlock) to state S4

(Check). No inputs or actions needed for this transition. After sending m42.

• T34: This transition goes from state S4 (Check) to state S7 (CIdle). No inputs

or actions needed for this transition.

• T35: This transition goes from state S8 (Unlock) to state S9 (Lock) in the

actuator. The input of this transition is Lock.

• T36: This transition goes from state S9 (Lock) to state S8 (Unlock) in the

actuator. The input of this transition is Unlock.

Nest Protect Smoke detector

Nest protect smoke detector is a smart detector that help you protect your home

from fire, by detecting smoke and carbon monoxide in a residential environment.

This device does not have any user inputs, and it has five environmental inputs

(Smoke and Carbon monoxide sensor (CO), Temperature (Temp), Humidity (H)

Occupied (Occupied) and Time (Time)). Fig 3.11 shows the Nest protect smoke

detector device CEFSM model. The different inputs and possible values are listed

in Table 3.13. All the input values range for different environmental inputs are from

google nest help center [88].

Table 3.14 lists the CEFSM transitions definitions for the Nest protect smoke

detector. A unique id for each transition is given in column 1 and the input action

constraints are shown in column 2. Table 3.14 presents 9 transitions (T37 - T45)

72

Figure (3.11) Nest protect smoke detector CEFSM Model

Einput Input Domain
Smoke and Carbon monoxide sensor (CO) [0-400] parts per million (ppm)
Temperature (Temp) [40◦F - 100◦F]
Humidity (H) [Up to 90% RH]
Occupied (Occupied) (True, False)
Time (Time) [0 - 300] minuets

Table (3.13) Nest protect smoke detector Input Values

and two message channels (M51, M52) for the Nest protect smoke detector. The

device consists of an analog sensor (Smoke and Carbon monoxide sensor (CO)),

a controller and an actuator. When certain level of smoke and carbon monoxide

detected the sensor push the sensed data to the controller. Based on the level of

parts per million of smoke and carbon monoxide in a room the alert will be sent

within specific time. Nest protect smoke detector user’s guide [1] states that the

American National Standard ANSI/UL 2034’s standards for alarm reaction time are

met by the Nest Protect CO sensor. The following are the standard alarm times:

73

• At 70 PPM, the unit must alarm within 60-240 minutes.

• At 150 PPM, the unit must alarm within 10-50 minutes.

• At 400 PPM, the unit must alarm within 4 to 15 minutes.

ID Transition
T37 (SIdle, [Einput (CO= [0-400], Temp= [40-100], H= Up to 90% RH,

Occupied= True or False, Time= [0-300])], -)/(SActive, Send m51

"SData"))
T38 (SActive, [After sending the collected data], -)/(SIdle, -)
T39 (CReady, [After receiving the sensed data], -)/(Check, -)
T40 (Check, [CO≥ 70], -)/(Alert, Send m52 FD="Alert"))
T41 (Check, [CO<70], -)/(NoAlert, Send m52 FD="NoAlert")
T42 (Alert or NoAlert, [After sending m52], -)/(Check, -)
T43 (Check, -)/(CIdle, -)
T44 (NoAlert, [Alert], -)/(Alert, -)
T45 (Alert, [NoAlert], -)/(NoAlert, -)
M51 Send m51 "Sensed Data (SData)"
M52 Send m52 "Final Decision (FD)"

Table (3.14) Nest protect smoke detector Transitions 3.11

• T37: This transition goes from state S1 (SIdle) to state S2 (SActive). It uses the

following inputs: (CO, Temp, Time, Occupied, H). Message on this transition

is send m51 "SData".

• T38: This transition goes from state S2 (SActive) to state S1 (SIdle). No inputs

or actions are needed for this transition. m51 must have been sent previously.

• T39: This transition goes from state S3 (CReady) to state S4 (Check). No

inputs or actions are needed for this transition. m51 should have been received.

• T40: This transition goes from state S4 (Check) to state S5 (Alert). It uses the

following inputs: (CO, Temp, Time, Occupied, H). Message on this transition

is send m52.

74

• T41: This transition goes from state S4 (Check) to state S6 (NoAlert). It

uses the following inputs: (CO, Temp, Time, Occupied, H). Message on this

transition is send m52.

• T42: This transition goes from state S5 (Alert) or S6 (NoAlert) to state S4

(Check). No inputs or actions needed for this transition. After sending m52.

• T43: This transition goes from state S4 (Check) to state S7 (CIdle). No inputs

or actions needed for this transition.

• T44: This transition goes from state S8 (NoAlert) to state S9 (Alert) in the

actuator. The input of this transition is Alert.

• T45: This transition goes from state S9 (Alert) to state S8 (NoAlert) in the

actuator. The input of this transition is NoAlert.

3.4.2 Model the Mobile Application (FSMApp Approach)

To model the Mobile Application that controls the SHS, we used the approach

described in [10]:

• Phase 1: Build a hierarchical model HFSM:

– Partition the mobile app into clusters (Cs).

– Define Logical App Pages (LAPs) and Input-Action constraints for each

page.

– Build FSMs for clusters as a multi-level hierarchy including an Aggregate

FSM (AFSM) to represent the top level of the application.

75

Partition the mobile app into clusters (Cs)

The term cluster refers to a group of software modules/application pages that

work together to perform a logical or user-level task. The mobile application is

divided into clusters in the first step. Clusters represent functions that can be

identified by users at the highest degree of abstraction. Hence, an HFSM = {FSMi}n

i=0 with a top level FSM0 = AFSM. Logical App Pages (LAPs) or clusters are

represented by nodes in each FSM. An FSM’s edges can be internal or external.

Cluster boundaries are crossed by external nodes. These nodes become internal

at the next higher FSM level. External edges can enter or exit a cluster FSM.

Clusters can be an individual device or commands that the app has to control

specific device. A page (screen) that is displayed to the user is an activity in a

mobile application. The activity includes a set of layouts for organizing the page’s

items. The site navigation layout, coupling relationships among the components,

and design information can all be used to identify clusters.

Define Logical App Pages (LAPs) and Input-Action constraints for each

page

According to Al Haddad [10], in Mobile apps, which consist of several screens,

we will consider screens as input components, or Logical Application Pages (LAPs).

XML forms are the major component of most of Mobile App screens. These forms

can be connected to a different back-end software module. We model theses app

screens as multiple LAPs to facilitate testing of these modules. A LAP is either

a physical app screen, physical app component, or the portion of an app activity

that accepts data from the user through a XML form, and then sends the data to

a specific software module. LAPs are abstracted from the presentation defined by

76

the XML and are described in terms of their sets of inputs and actions. All inputs

in a LAP are considered atomic: data entered to a text field is considered as one

user input symbol, regardless number of characters entered in the field. Input rules

are either be required, or optional and users can enter inputs in any order, or in a

specific order. Table 3.15 shows the input constraints, and the order of the inputs.

R means input must be entered. R(parm) means at least one value must be entered.

O means that an input is optional. C1 means that one option must be selected from

a list of choices, and Cn means that more than one option can be selected from a

list of choices.

Input Choice Order
Required (R) Sequence (S)
Required Value (R(parm)) Any (A)
Optional (O)
Single choice (C1)
Multiple choice (Cn)

Table (3.15) Mobile Application Input Constraints

To illustrate what components look like we explain common components of An-

droid applications and what FSMApp’s input constraints would look like:

1. A bottom sheet is a sheet of material that slides up from the bottom edge

of the screen. The action of the bottom sheet is a click. The input constraint

is R().

2. A button indicates what action will occur when the user touches. The action

of the button is click. The input constraints are R(), or select the button then

click C1(Select Button, Click).

3. A card is a sheet of material with unique related data that serves as an entry

point to more detailed information. The actions of the card are click, swipe,

77

scroll, and pick-up-and-move. The input constraint is C1(, , ,) and the list

of choices is provided to select one of them.

4. Chips represent complex entities in small blocks, such as a contact. The

action of the chip is a click. The input constraint is R(S(,)).

5. Data tables are used to represent raw data sets, and usually appear in desktop

enterprise products. The actions of the data tables are row hover, row selec-

tion, column sorting, column hover, and test editing. The input constraint is

C1(, , ,).

6. Dialogs inform users about critical information, require users to make deci-

sions, or encapsulate multiple tasks within a discrete process. The action of

the dialog is click. The input constraint is R().

7. Dividers group and separate content within lists and page layouts. The action

of the divider is click. The input constraint is R().

8. Grid lists are an alternative to standard list views. The actions of the grid

list are vertical scrolling or filtering. The input constraint is C1(,).

9. Lists present multiple line items in a vertical arrangement as a single contin-

uous element. It has a checkbox, a switch and a reader. The action of the list

is sort. The input constraint is R().

10. Menus allow users to take an action by selecting from a list of choices revealed

upon opening a temporary, new sheet of material. The actions of the menu

are scroll and click. The input constraint is C1(,).

78

11. Pickers provide a simple way to select a single value from a pre-determined

set. For example, time and date pickers. The actions of the pickers are drop-

down and click. The input constraint is C1(,).

12. Progress & activity indicators are visual indications of an app loading con-

tent. The action of Progress & Activity is loading. The input constraint is

R().

13. Selection Controls allow the user to select options. The action of selection

controls is click. The input constraint is R().

14. Sliders let the user select a value from a continuous or discrete range of values

by moving the slider thumb. The action of slider change is scrolling. The input

constraint is R().

15. Snackbars & toasts provide lightweight feedback about an operation by

showing a brief message at the bottom of the screen. The action of snackbars

& toasts is click. The input constraint is R().

16. Subheaders are special list tiles that delineate distinct sections of a list or

grid list and are typically related to the current filtering or sorting criteria.

The action of subheader is click. The input constraint is R().

17. Steppers convey progress through numbered steps. They may also be used

for navigation. The action of the steppers is to show the next steps. The input

constraint is R().

18. Tabs make an app easy to explore and switch between different views or

functional aspects of an app or to browse categorized data sets. The action of

tab is scroll. The input constraint is R().

79

19. Toolbars appear above the view affected by their actions. The action of

toolbars is scroll. The input constraint is R().

20. Tooltips are labels that appear on hover and focus when the user hovers over

an element with the cursor, focuses on an element using a keyboard (usually

through the tab key), or upon touch (without releasing) in a touch UI. The

actions of tooltips are click and hover. The input constraint is C1(,).

21. Text fields allow the user to input text, select text (cut, copy, paste), and

lookup data via auto-completion. The actions of text fields are lookup table,

select text, and write text. The input constraint is C1(, ,)

The transitions are between the nodes and the clusters. They are annotated with

input constraints to indicate what inputs and actions lead to the next node or

cluster.

Example: Nest Application

We illustrate our approach using the Nest application as an example. To build

FSMApp models, we need to divide the Mobile App into clusters and logical app

pages (LAPs). We will consider only testing the functionality of the SHS devices,

i.e. we will assume that all the devices are installed and running. Therefore, dividing

the Mobile App will be based on that assumption.

We divided the Nest application into clusters. Fig 3.12 shows the top level of

the Nest App, while Fig 3.13 to 3.19 show the other clusters of the Nest App with

one device installed (Thermostat). The Nest app has three main screens, the main

screen of the application is screen (A). It has two major functions: (1) Add a new

Nest product to the smart home as screen (not covered). (2) Control a Nest product

as screen (B) in Fig 3.13. We decomposed the main screen (A) into one cluster (B)

80

as shown in Fig 3.12. Cluster (B) has five subclusters: "Mode" in Fig 3.14, "Eco"

in Fig 3.15, "Fan" in Fig 3.16, "History" in Fig 3.17 and "Schedule" in Fig 3.18.

Finally, Fig 3.19 represent the set up schedule LAPs. Fig 3.12 shows the top level

of the Nest App. There is one main cluster: control a Nest product and exiting

the App. Figs 3.13 to 3.19 show the other clusters of the Nest App with a smart

Nest thermostat installed. The App screens are classified as: Screen (A) shows the

main screen of the application. It has two functions: (1) Add a new Nest device,

(2) Control an installed device (Screen (B)). We classify the main Screen (A) into

one cluster (B). The Exit node is a LAP. Fig 3.12 shows this as the AFSM for this

example. Cluster (B) has five subclusters: "Mode" in Fig 3.14, "Eco" in Fig 3.15,

"Fan" in Fig 3.16, "History" in Fig 3.17 and "Schedule" in Fig 3.18. The Main

Screen has one LAPs with a button to cancel and exit the application. In the Mode

cluster as Fig 3.14 shows, we have two LAPs with two buttons, cancel and select

mode. In Fig 3.15, we have two LAPs with two buttons, cancel and select eco mode.

While in fan cluster (illustrated in Fig 3.16), the user can select the fan speed from

a list of choices.There is a LAP node with a cancel button. In the History cluster

(Fig 3.17), we have two LAPs with two buttons, cancel and view history. Schedule

cluster in Fig 3.17 has a subcluster Set up a schedule and one LAP with a cancel

button. In the lowest level FSM, we have two LAPs with cancel and update buttons

as shown in Fig 3.19.

Next, we determine input-action constraints for these models. For example,

Fig 3.20 shows the Fan input-action constraints. In the Fan cluster, there are two

states: either you select the fan speed (FanSpeed) from multiple choices (High,

Medium, Low), or you cancel (with or without changing the fan speed). Incoming

and outgoing edges for this cluster connect to the parent cluster. They don’t require

any user actions.

81

Figure (3.12) Top Level FSM (Main)

Tables 3.16 to 3.23 show the transitions, explanation, and input action con-

straints. A unique id for each transition is given in column 1. An explanation of

the transition is given in column 2 and the input action constraints are shown in

column 3. In the caption of these tables the corresponding graphs are mentioned.

Table 3.16 shows 3 transitions for the main page cluster (AFSM). The transitions

connect the main page with one cluster and one LAP (Exit App). Table 3.17 shows

8 transitions for Control Thermostat cluster to connect with 5 clusters and one LAP

node (cancel). Table 3.18 shows 4 transitions for the Mode cluster to connect with

two LAP nodes (Select mode and cancel). Table 3.19 shows 4 transitions for the

Eco Mode cluster to connect with two LAP nodes (Select eco mode and cancel).

Table 3.20 shows 4 transitions for the Fan cluster to connect two LAP nodes (Select

fan speed and cancel). Table 3.21 shows 4 transitions for the History cluster to

connect with view history and the cancel LAP. Table 3.22 shows 4 transitions for

the Schedule cluster to connect with the set up schedule cluster and the cancel LAP.

Table 3.23 shows 2 transitions for the set up schedule cluster.

82

Figure (3.13) Lower Level FSM (Control)

Figure (3.14) Lowest-level FSM (Control (Mode))

83

Figure (3.15) Lowest-level FSM (Control (Eco))

Figure (3.16) Lowest-level FSM (Control (Fan))

84

Figure (3.17) Lowest-level FSM (Control (History))

Figure (3.18) Lowest-level FSM (Control (Schedule))

Figure (3.19) Lowest-level FSM (Control (Schedule Set Up))

85

Transition
ID

Explanation Input-Action Constraints

A1 Access control product page R (ManagePbutton)
A2 Back to home page R (Backbutton)
A3 Exit the application none

Table (3.16) Transitions for Top-level FSM (Home Page) Fig 3.12

Transition
ID

Explanation Input-Action Constraints

B1 Access control Thermostat page R (ManageTbutton)
B2 Access Mode page R (Modebutton)
B3 Access Eco page R (Ecobutton)
B4 Access Fan page R (Fanbutton)
B5 Access History page R (Historybutton)
B6 Access Schedule page R (Schedulebutton)
B7 Back to previous page none
B8 Back to home page R (Backbutton)
Table (3.17) Transitions for Lower-level FSM (Control Thermostat) Fig 3.13

Transition
ID

Explanation Input-Action Constraints

F1 Select Mode C1 (Cool, Heat)
F2 Back to Mode none
F3 Cancel to control thermostat S ((O (C1 (Cool, Heat))), R (CCT-

button))
F4 Back to home page R (Backbutton)

Table (3.18) Transitions for Lowest-level FSM (Control (Mode)) Fig 3.14

Transition
ID

Explanation Input-Action Constraints

G1 Select Eco Mode R (EMbutton)
G2 Back to Eco Mode none
G3 Cancel to control thermostat S (O (EMbutton), R (CCTbutton))
G4 Back to home page R (Backbutton)

Table (3.19) Transitions for Lowest-level FSM (Control (Eco)) Fig 3.15

86

Transition
ID

Explanation Input-Action Constraints

H1 Select Fan Speed C1 (High, Medium, Low)
H2 Back to Fan none
H3 Cancel to control thermostat S ((O(C1(High ,Medium, Low))), R

(Cancelbutton))
H4 Back to home page R (Backbutton)

Table (3.20) Transitions for Lowest-level FSM (Control (Fan)) Fig 3.16

Transition
ID

Explanation Input-Action Constraints

I1 Select View History R (VHbutton)
I2 Back to History none
I3 Cancel to control thermostat S (O (VHbutton), R (CCTbutton))
I4 Back to home page R (Backbutton)

Table (3.21) Transitions for Lowest-level FSM (Control (History)) Fig 3.17

Transition
ID

Explanation Input-Action Constraints

J1 Select Set up a schedule R (SSbutton)
J2 Back to Schedule none
J3 Cancel to control thermostat S (O (SSbutton), R (CCTbutton))
J4 Back to home page R (Backbutton)
Table (3.22) Transitions for Lowest-level FSM (Control (Schedule)) Fig 3.18

Transition
ID

Explanation Input-Action Constraints

K1 Set up a schedule R (Updatebutton)
K2 Back to set up a schedule none
K3 Cancel to control thermostat R (CCTbutton)
K4 Back to home page R (Backbutton)

Table (3.23) Transitions for Lowest-level FSM (Control (Set Up Schedule)) Fig
3.19

87

Figure (3.20) Annotated FSM for Fan Cluster of Table 3.20

3.4.3 Model the Interactions

Interactions in Smart Home Systems can be between any two devices or between

the device and the Mobile App that controls that device. These interactions will

be modeled using CEFSM. The next two sections explain how to model the two

different possible interactions within a SHS.

Interactions between devices

Fig 3.21 models the interactions between devices. Device1 and Device2 are mod-

eled based on the approach presented in Section 3.4.1. The messages on the tran-

sition between the devices send the status of each device. The device must act

according to the received message from the other device. Table 3.24 shows the

88

transitions and the messages sent between the devices. The first column has the

transition Id and the second explains the transition. The last column gives the

input-action constraints for that transition.

Figure (3.21) Devices Interaction

Tran
ID

Explanation Input-Action Constraints

DD1 Send Device1 status to Device2 R(Device1 status, Send M2)
DD2 Send Device2 status to Device1 R(Device2 status, Send M3)

Table (3.24) Transitions explanation for interactions between devices

Interactions between devices and Mobile Apps

Fig 3.22 models the interactions between a device and its controller (Mobile

App). Device1 and App1 are modeled based on the approach presented in Section

3.4.1 and Section 3.4.2 respectively. The messages on the transition between the

device and Mobile App are either a command from a user through a Mobile App

or the status of the device to update that in the application. Table 3.25 shows the

transitions and the messages sent between the device and the App.

For example, assume we have a smart lock installed on the main door and the

Mobile App controlling this smart lock has two commands. The user can send a

89

Figure (3.22) Device and Mobile App Interaction

Tran
ID

Explanation Input-Action Constraints

DA1 Send Device1 status to App1 R(Device1 status, Send M1)
DA2 User send a command to Device1

by clicking on X button, where X
can be for example, Unlock the
door button.

R(Xbutton)

Table (3.25) Transitions explanation for interactions between device and Mobile
App

command to lock or unlock the lock. The user can also set up an auto lock feature

after a certain amount of time (between 0 minute to 5 minute) from the app. The

user can check the status of the lock from their Mobile App. Therefore, the device

status must be sent to the application regularly. Fig 3.23 shows the interaction

between the smart lock device and the application controlling that device. We can

see three transitions between the app and the device. These transitions are defined

in Table 3.26. The first column shows the transaction Id and the second column

defines the transition. Finally, the last column shows the input-action constraint of

that transition. As we can see in Fig 3.23, there are three transitions between the

Smart Lock and the Mobile App that is controlling it. DA1 is the first transition

90

where the user sends a command to lock or unlock the Smart Lock device from

the Mobile App. Required input-action constraint for this transition is clicking on a

button from the App to send a command to the device. In this case, the lock/unlock

button (L/Ubutton) must be clicked. DA2 is the second transition and the status of

the Smart Lock is sent via M1 to update the device states on the App. DA3 is the

last transition where the user sends a command from the Mobile App to set up an

auto lock/unlock feature. The required input-action constraint for this transition

is clicking on an auto lock/unlock button (AL/Ubutton) from the App to send a

command to the device then select the time period from multiple available choices

(0, 1, 2, 3, 4, 5). The order of inputs in this transition is sequential.

Figure (3.23) Smart Lock and Mobile App Interaction

TID Explanation Input-Action Constraints
DA1 User command to Lock/Unlock

door from the app
R(L/Ubutton)

DA2 Device send the status upon
change

R(Device1 status, Send M1)

DA3 User command to Lock/Unlock
door automatically after certain
amount of time between 0 min to
5 min from the app

S(R (AL/Ubutton) C1(0, 1,2, 3,
4, 5))

Table (3.26) Transitions explanation for interactions between smart lock and Mo-
bile App

91

Chapter 4

Generate Tests from Reusable

Test-Ready Models

4.1 Problem Statement

After proposing reusable test-ready models of smart home systems (SHS) in

the previous Chapter, it is time to show how these models be used with existing

test generation approaches to create tests. We have models for device components,

devices and FSMApp, as well as the interaction between devices and the interaction

between devices and the system controller. This Chapter addresses the following

research question:

• Can we develop a MBT technique for these non heterogeneous reusable test-

ready models that includes testing criteria that can be used for device testing,

device interaction testing and system testing?

This Chapter is organized as follows: The proposed approach is explained in

Section 4.2. Section 4.2.1 provides the guidelines to test device components using

92

the device models. Testing the Mobile App is addressed in Section 4.2.2. Section

4.2.3 shows how to test interactions between devices and between devices and the

Mobile App.

4.2 Proposed Approach

Our objective is to provide an MBT approach using our reusable test-ready

models. Testing will be done on multiple levels: the Device level, the Interaction

level and the System level. For testing we use the reusable test-ready models as

follows: (1) we generate test paths from each model, (2) we aggregate the generated

test paths to form abstract test cases, (3) we apply input domains partitioning for

the inputs along these paths to convert the abstract test cases to concrete test cases,

(4) we make the concrete test cases executable, (5) we execute and validate these

test cases and report the findings and the results. Fig 4.1 shows the process of

testing the reusable test-ready models.

Figure (4.1) Phase 2: Testing Reusable Test-Ready Models

The reusable test-ready models make generating test process easy we will have

the same set of tests generated from the same models the only different are the

inputs we select along the transitions. These inputs are vary based on the devices.

93

4.2.1 Device Testing

Generate Test Paths

This contribution is published in the 22nd International Conference on Internet

Computing & IoT, (Albahli et al. [8]). A test path is a sequence of transitions

through a model. According to Offutt et. al [13] a path p, possibly of length zero,

that starts at some node in N0 and ends at some node in Nf . At device level we

will generate test paths from CEFSMs model and through each lower-level EFSMs.

We can generate test paths using any graph coverage criteria such as node coverage,

edge coverage, edge pair coverage, prime path coverage, simple round trip coverage,

complete round trip coverage, complete path coverage or specified path coverage [13].

We will first generate test paths through each EFSM model based edge coverage. We

generate the test sequences for entire device that satisfy Each Path coverage. Tables

4.1 to 4.4 show test paths for each sensor, controller, and actuator as sequences of

nodes. Device test paths are represented in Table 4.5. In this phase the inputs are

the reusable test-ready models for devices constructed in phase 1 (Chapter 3). The

output is a set of test paths for each component and a set of test paths of the entire

device.

Test Path
ID

Test Path Length

ASTP1 [S1
T1−→ S2

T2−→ S1] 3

Table (4.1) Analog Sensor Test Paths of Fig ??

Aggregate Test Paths

After we generate the test paths we should aggregate them. All combination

criteria [13] will be used to aggregate the test paths from different components.

94

Test Path
ID

Test Path Length

BSTP1 [S3 – S4 – S3] 3
Table (4.2) Binary Sensor Test Paths of Fig 3.3

Test Path
ID

Test Path Length

CTP1 [S3
T3−→ S4

T4−→ S5
T6−→ S4

T7−→ S7] 5

CTP2 [S3
T3−→ S4

T5−→ S6
T6−→ S4

T7−→ S7] 5

Table (4.3) Controller Test Paths of Fig 3.4

Test Path
ID

Test Path Length

ATP1 [S8
T8−→ S9

T9−→ S8] 3

Table (4.4) Actuator Test Paths of Fig 3.5

Test Path
ID

Test Path Length

1 [Sensor M11−−→ Controller] 2

2 [Controller M12−−→ Actuator] 2

Table (4.5) Device Test Paths of Fig 3.6

95

ATP
ID

Aggregated Test Path

ATP1 [S1
T1−→ S2

T2−→ S1]
M11−−→ [S3

T3−→ S4
T4−→ S5

T6−→ S4
T7−→ S7]

ATP2 [S1
T1−→ S2

T2−→ S1]
M11−−→ [S3

T3−→ S4
T5−→ S6

T6−→ S4
T7−→ S7]

ATP3 [S3
T3−→ S4

T4−→ S5
T6−→ S4

T7−→ S7]
M12−−→[S8

T8−→ S9
T9−→ S8]

ATP4 [S3
T3−→ S4

T5−→ S6
T6−→ S4

T7−→ S7]
M12−−→ [S8

T8−→ S9
T9−→ S8]

Table (4.6) Aggregated Test paths generated from single device CEFSM model

The aggregated test paths are abstract test paths (ATP). We need to generate test

data to transform these ATPs into executable test cases. We can use any input-

space partitioning such as all combination coverage, each choice coverage, pair wise

coverage, base choice coverage etc. [13]. We use the Each Choice Coverage (ECC)

coverage criteria where one value from each block for each characteristic must be

used in at least one test case [13]. We aggregate different component test paths

from Tables 4.1 to 4.4 based on the level of interaction between components. First,

we aggregate test paths between binary or analog sensor and controller resulting in

2 test paths. Then, these test paths will be aggregated with the actuator test path

and that will result in 2 test paths. Finally, we have total of 4 aggregated test paths

of all the device components. Table 4.6 shows all the aggregated test paths for the

CEFSM model for a single device.

Choose Input Domains

After generating a set of general test paths from a reusable test-ready model

of the devices, we will select specific inputs for a specific device to replace the

transitions definitions in the test sequence constructed in the previous step. The test

values are selected by the test designer. For example, the Ecobee Smart Thermostat

device modeled in Fig 3.7 consist of sensor, controller and actuator.

96

The test paths generated form that model are presented in Tables 4.1 4.3 and

4.4 and the aggregated test paths are showed in Table 4.6. To illustrate the input

selection process we will choice ATP1 from Table 4.6. Table 4.7 shows an example of

a thermostat aggregate test path with the input values. The first column shows the

transition id, the second column shows the input constraints, the third column shows

the possible values and finally the last column describe the transition. For example,

T1 in smart thermostat is the transition between the two states in the sensor (SIdle

(S1) to SActive (S2)). The input constraints to this transition are R(VC) or R(TS)

or R(Temp) or R(Occupied), which mean that it is required to receive one or more

of these data to switch from SIdle to SActive. The user command the Thermostat

to increase the temperature verbally by saying "Increase Temperature" or by touch

the screen of the thermostat clockwise or by the receiving the sensed temperature or

occupied. Possible inputs value for these are: verbal command "Increase Tempera-

ture" or "Decrease Temperature" to VC. Touch screen clockwise or counterclockwise

to TS. For temperature range could vary between 60◦ to 80◦. Finally, occupied as

true or false.

Create Executable Tests

The resulting sequences of test inputs can be made executable by transforming

them using MATTER, a tool for generating end-to-end IoT test scripts [84]. The

MATTER tool has been experimentally evaluated with two different IoT systems.

To verify the effectiveness of the generated test suites in discovering defects, the

MATTER tool has been used an ad-hoc validation framework based on Mutation

testing [81]. Moreover, the time it takes to run the created test suites was also taken

into account in the evaluation.

97

T ID Constraints Values Explain
T1 R(VC) OR R(TS)

OR R(Temp) OR
R(Occupied)

VC= "Increase Tem-
perature" OR TS= ⟳
OR Temp= 70◦ OR
Occupied= False

The user command
the Thermostat to in-
crease the tempera-
ture verbally OR by
touch the screen clock-
wise to increase the
temperature OR by
the sensed temper-
ature reached below
the TThreshold OR
the occupancy sensor
sense that room is not
occupied.

T2 - - This is an extra tran-
sition

M11 R(m11) m11 == (Temp= 70◦,
Occupied= False

Every 15 second the
temperature sensor
will send the sensed
temperature to the
controller and every 5
minutes the occupied
sensor will send the
data to the controller
[77]

T3 R(VC) OR R(TS)
OR R(Temp) OR
R(Occupied)

VC= "Increase Tem-
perature" OR TS= ⟳
OR Temp= 70◦ OR
Occupied= False

Once the data re-
ceived from the sen-
sor CReady will send
them to Check state

T4 R(VC == "Increase
Temperature") OR
R(TS == ⟳) OR
R(Temp ≤ 70◦) OR
R(Occupied ==
False)

VC= "Increase Tem-
perature" OR TS= ⟳
OR Temp= 69◦ OR
Occupied= False

We need to compare
the received data with
the defined Threshold

T6 - - This is an extra tran-
sition

T7 R(FD) FD= Increase Tem-
perature

The controller final
decision to the actu-
ator to increase the
temperature

Table (4.7) ATP1 with input values

98

Execute and Evaluate

Finally the executable test paths generated from the previous step can be exe-

cuted and the result can be evaluated. The execution can be done manually or using

any testbed or simulators. For example, the intelligent home project (IHome) [69]

or open smart home simulator (OpenSHS) [12]. The results should be presented in

a form of validation report to document the result of the test execution.

4.2.2 System Level Testing

Generate Test Paths

As a first step in testing the Mobile App we need to generate test paths. A

test path is a sequence of transitions through the aggregate FSM and through each

lower level FSM. FSMApp’s [10] first generates test paths through each FSM based

on edge coverage criteria [13]. We generate the test sequences for each cluster that

satisfy edge coverage. Tables 4.8 to 4.15 show test paths for each cluster as sequences

of nodes. The corresponding graphs are mentioned in the caption. Nodes in bold

indicate the node is a cluster node.

Test Path
ID

Test Path Length

1 [Home – Control – Home – Exit] 4
Table (4.8) Home Page Test Path of Fig 3.12

Aggregate Test Paths

At this step we will use the generated test paths from each FSM and aggregate

them into test sequences for the whole model. In [13] a number of aggregation

criteria have been proposed such as, all-combinations, each choice and base choice

99

Test Path
ID

Test Path Length

1 [Control – Control Thermostat – Mode – Control Ther-
mostat – Main Exit]

5

2 [Control – Control Thermostat – Eco – Control Ther-
mostat – Main Exit]

5

3 [Control – Control Thermostat – Fan – Control Ther-
mostat – Main Exit]

5

4 [Control – Control Thermostat – History – Control
Thermostat – Main Exit]

5

5 [Control – Control Thermostat – Schedule – Control
Thermostat – Main Exit]

5

Table (4.9) Control Thermostat Page Test Paths of Fig 3.13

Test Path
ID

Test Path Length

1 [Mode – Select Mode – Mode – Main Exit] 4
2 [Mode – Select Mode – cancel – Main Exit] 4

Table (4.10) Mode Page Test Paths of Fig 3.14

Test Path
ID

Test Path Length

1 [Eco – Select Eco Mode – Eco – Main Exit] 4
2 [Eco – Select Eco Mode – cancel – Main Exit] 4

Table (4.11) Eco Mode Page Test Paths of Fig 3.15

Test Path
ID

Test Path Length

1 [Fan – Select Fan Speed – Fan – Main Exit] 4
2 [Fan – Select Fan Speed – cancel – Main Exit] 4

Table (4.12) Fan Page Test Paths of Fig 3.16

100

Test Path
ID

Test Path Length

1 [History – View History – History – Main Exit] 4
2 [History – View History – cancel – Main Exit] 4

Table (4.13) History Page Test Paths of Fig 3.17

Test Path
ID

Test Path Length

1 [Schedule – Set up Schedule – Schedule – Main Exit] 4
2 [Schedule – Set up Schedule – cancel – Main Exit] 4

Table (4.14) Schedule Page Test Paths of Fig 3.18

Test Path
ID

Test Path Length

1 [Set up Schedule – Update – Set up Schedule – Main
Exit]

4

2 [Set up Schedule – Update – cancel – Main Exit] 4
Table (4.15) Set Up Schedule Page Test Paths of Fig 3.19

101

coverage. In our proposed approach we will apply all-combinations coverage despite

the fact that this is the most expensive aggregation coverage criteria. The input of

this step is the generated test paths and the output is a set of aggregated paths.

To show the process of aggregation procedure we adopted Algorithm 1 in FSMApps

approach [10]. It takes AFSMs test paths from previous Phase1 as an input and

output a set of aggregated test paths. The algorithm starts by saving AFSM test

paths into a new inputList. Line 2 loops through every test path in the inputList.

Line 3 takes one test path from the list. Then, we iterate through the nods in the

currentPath to check if the node is cluster node. If we found a cluster node, then a

new loop changes the cluster node by all the cluster paths to create new partially

aggregates.

Algorithm 1 Aggregated Test Paths
Input : AFMS and Cluster Test Paths
Result: outputList = Set of Aggregated Paths
inputList = AFSM paths
while inputList has next path do

currentPath = get one path from inputList
pathDone = true
for i = 1 to Length(currentPath) do

if nodei is cluster node then
for j = 1 to Length(Cluster paths) do

replace nodei with cluster pathj and add new path into inputList
end
add list paths to inputList
remove currentPath from inputList
i = length (currentPath) +1
pathDone = false

end
end
if pathDone is true then

Move currentPath into outputList
end

end

102

For example, we can aggregate the test path in the top level model AFSM [Home

- Control - Home - Exit] in Table 4.8 as follows: The bold node (Control) in the

test path is a cluster node. We should replace this node by the Control Thermostat

test paths from Table 4.9. This will result in new five test paths:

1. Home - Control - Control Thermostat - Mode - Control Thermostat - Main

Exit - Home - Exit

2. Home - Control – Control Thermostat – Eco – Control Thermostat – Main

Exit - Home - Exit

3. Home - Control – Control Thermostat – Fan – Control Thermostat – Main

Exit - Home - Exit

4. Home - Control – Control Thermostat – History – Control Thermostat –

Main Exit - Home - Exit

5. Home - Control – Control Thermostat – Schedule – Control Thermostat –

Main Exit - Home - Exit

The first test sill has one cluster node (Mode). While second test has (Eco) cluster

node. The third test has (Fan) cluster node. Forth test path has (History) cluster

node and the last test has (Schedule) cluster node. We will replace these cluster

nodes with the desired tests paths and the result will be as following:

1. Home - Control – Control Thermostat – Mode – Select Mode – Mode – Main

Exit – Control Thermostat – Main Exit - Home - Exit

2. Home - Control – Control Thermostat – Mode – Select Mode – cancel – Main

Exit – Control Thermostat – Main Exit - Home - Exit

103

3. Home - Control – Control Thermostat – Eco – Select Eco Mode – Eco – Main

Exit – Control Thermostat – Main Exit - Home - Exit

4. Home - Control – Control Thermostat – Eco – Select Eco Mode – cancel –

Main Exit – Control Thermostat – Main Exit - Home - Exit

5. Home - Control – Control Thermostat – Fan – Select Fan Speed – Fan – Main

Exit – Control Thermostat – Main Exit - Home - Exit

6. Home - Control – Control Thermostat – Fan – Select Fan Speed – cancel –

Main Exit – Control Thermostat – Main Exit - Home - Exit

7. Home - Control – Control Thermostat – History – View History – History –

Main Exit – Control Thermostat – Main Exit - Home - Exit

8. Home - Control – Control Thermostat – History – View History – cancel –

Main Exit – Control Thermostat – Main Exit - Home - Exit

9. Home - Control – Control Thermostat – Schedule – Set up Schedule –

Schedule – Main Exit – Control Thermostat – Main Exit - Home - Exit

10. Home - Control – Control Thermostat – Schedule – Set up Schedule – cancel

– Main Exit – Control Thermostat – Main Exit - Home - Exit

There is still one cluster node in test 9 and 10 and after replacing them we got:

1. Home - Control – Control Thermostat – Schedule – Set up Schedule – Update

– Set up Schedule – Main Exit – Schedule – Main Exit – Control Thermostat

– Main Exit - Home - Exit

2. Home - Control – Control Thermostat – Schedule – Set up Schedule – Update

– cancel – Main Exit – Schedule – Main Exit – Control Thermostat – Main

Exit - Home - Exit

104

3. Home - Control – Control Thermostat – Schedule – Set up Schedule – Update

– Set up Schedule – Main Exit – cancel – Main Exit – Control Thermostat –

Main Exit - Home - Exit

4. Home - Control – Control Thermostat – Schedule – Set up Schedule – Update

– cancel – Main Exit – cancel – Main Exit – Control Thermostat – Main Exit

- Home - Exit

Table 4.16 shows the aggregated test paths of the control thermostat in the Nest

App as sequences of nodes. The first column shows the test path id. The second

column shows the aggregated abstract test paths. The last column shows the length

of each test path in terms of number of nodes in that path. The length of all the

test paths in control thermostat is 144 nodes. Paths 9, 10, 11 and 12 is the longest

paths with 14 nodes, and the rest are the shortest with 11 nodes.

Choose Input Domains

To convert the abstract test paths generated in the previous step into executable

test, we should select inputs. At this step, test designers are free in how to select

test values. They could use specific input domain covering partitions or select input

values randomly from a possible list of inputs. The test designer chooses values

for related inputs. As a result of this step, we will have a set of executable tests

paths. Table 4.17 shows the set of inputs for test path 6. The first column shows

the transition id, the second column shows the constraint sequence, and the third

column shows the input values that meet the constraints. The last column has

explanation for each value.

Test 6 in Table 4.16 has no input and eight actions. The actions are select fan

speed from list of choices, click manage products button (ManagePbutton), click

105

ID Abstract Test Path Length
1 [Home - Control – Control Thermostat – Mode – Select

Mode – Mode – Main Exit – Control Thermostat – Main
Exit - Home - Exit]

11

2 [Home - Control – Control Thermostat – Mode – Select
Mode – cancel – Main Exit – Control Thermostat – Main
Exit - Home - Exit]

11

3 [Home - Control – Control Thermostat – Eco – Select
Eco Mode – Eco – Main Exit – Control Thermostat –
Main Exit - Home - Exit]

11

4 [Home - Control – Control Thermostat – Eco – Select
Eco Mode – cancel – Main Exit – Control Thermostat
– Main Exit - Home - Exit]

11

5 [Home - Control – Control Thermostat – Fan – Select
Fan Speed – Fan – Main Exit – Control Thermostat –
Main Exit - Home - Exit]

11

6 [Home - Control – Control Thermostat – Fan – Select
Fan Speed – cancel – Main Exit – Control Thermostat
– Main Exit - Home - Exit]

11

7 [Home - Control – Control Thermostat – History – View
History – History – Main Exit – Control Thermostat –
Main Exit - Home - Exit]

11

8 [Home - Control – Control Thermostat – History – View
History – cancel – Main Exit – Control Thermostat –
Main Exit - Home - Exit]

11

9 [Home - Control – Control Thermostat – Schedule – Set
up Schedule – Update – Set up Schedule – Main Exit
– Schedule – Main Exit – Control Thermostat – Main
Exit - Home - Exit]

14

10 [Home - Control – Control Thermostat – Schedule – Set
up Schedule – Update – cancel – Main Exit – Schedule
– Main Exit – Control Thermostat – Main Exit - Home
- Exit]

14

11 [Home - Control – Control Thermostat – Schedule – Set
up Schedule – Update – Set up Schedule – Main Exit –
cancel – Main Exit – Control Thermostat – Main Exit -
Home - Exit]

14

12 [Home - Control – Control Thermostat – Schedule – Set
up Schedule – Update – cancel – Main Exit – cancel –
Main Exit – Control Thermostat – Main Exit - Home -
Exit]

14

Table (4.16) Aggregated Abstract Test Paths

106

T ID Constraints Values Explain
A1 R(ManagePbutton) ManagePbutton=click Click on manage

product button to ac-
cess manage products
screen

B1 R(ManageTbutton) ManageTbutton=click Click on manage ther-
mostat button to ac-
cess manage thermo-
stat screen

B4 R(Fanbutton) Fanbutton=click Click on fan button
H1 C1(High, Medium,

Low)
High Select fan speed from

multiple choices to
change the fan speed

H3 S ((O(C1(High
,Medium, Low))), R
(Cancelbutton))

High
Cancelbutton=click

Select fan speed from
multiple choices then
click on the cancel
button or just click on
the cancel button to
cancel and ignore the
changes

H4 R(Backbutton) Backbutton=click Click on back button
to return to previous
screen

B7 none none Back to previous
screen without any
input constraint

B8 R(Backbutton) Backbutton=click Click on back button
to return to previous
screen

A3 none none Exit the app without
any input constraint

Table (4.17) Aggregated Test Path 6 with input values

107

manage thermostat button (ManageTbutton), click fan button (Fanbutton), click

cancel button (Canclebutton) to cancel and click back arrow to return to previous

screen and that used twice (buttonBack).

Execute and Validate

We can use any Mobile App automatic tool to run the generated test cases.

Selenium [2] is an open source to test Web and Mobile application. Selenium pro-

vides test domain-specific languages such as Java, Python, C, and PHP for writing

tests. Selenium is compatible with Windows, Linux, and Mac. Therefore we can

use Selenium to execute the tests and generate a reports of the results.

4.2.3 Interaction Testing

This contribution is published in the 2021 International Conference on Compu-

tational Science and Computational Intelligence, (Albahli et al. [8]. Interaction can

be done on two levels: Devices Interaction or Device-Mobile App Interaction and in

both cases we will generate test paths and aggregate them.

Devices Interaction

Fig 3.21 shows the model of devices interaction and Table 3.24 lists and explains

the transitions. We will generate tests from this model using edge coverage criteria

[13]. Table 4.18 shows the test paths generated from Fig 3.21. Device1 and Device2

consist of sensors, controllers and actuators and each device will be replaced with

the test paths generated as in Section 4.2.1. The only difference is that we will

consider the input constraints for this interaction, by sending the status of each

device to the other device via message on the transition.

108

Transition ID Test Path
DI1 [Device1, Device2, Device1]

Table (4.18) Test path for interactions between devices

Device and Mobile App Interaction

Fig 3.22 shows the model of device and Mobile App interaction and Table 3.25

lists and explains the transitions. We will generate test from this model using edge

coverage criteria [13]. Table 4.19 shows the test path generated from Fig 3.22.

Device1 consists of sensor, controller and actuator and each device will be replaced

with the test paths generated as in Section 4.2.1. While the Mobile App is explained

in Section 4.2.2, the only difference is that we will consider the input constraints for

this interaction.

Transition ID Test Path
DI1 [Device1, App1, Device1]

Table (4.19) Test path for interactions between device and Mobile App

109

Chapter 5

Smart Home Systems Evolution

5.1 Problem Statement

When a software is evolved, regression testing ensures that new and modified

features work properly and that existing features continue to function as expected.

The retest all strategy will require retesting the entire system, anticipating that

modifications could have affected and produced faults at any possible point in the

system. On the other hand, a selective regression testing technique implies that

only certain areas of the software were affected by the changes. The following is a

typical selective regression test procedure [93]:

• Recognize system changes.

• Determine whether old test cases, T will be valid for the new software version.

We get T’ from this set by removing all tests that are no longer applicable.

• T’ should be used to test the updated software.

• Create new set of test cases, T" to test aspects of the product that aren’t fully

covered by T’.

110

• Use T" to run the updated program.

5.2 Evolution in Smart Home System:

5.2.1 Recognize System Changes

Table 5.1 shows the possible evolution in smart home system. SHS can evolve

by adding new device into the system, updating an existing with newer version

or different brand or removing a device. Each one of these changes can happen

to devices with or without interactions with other devices. Changes also can be

classified as changes in the Mobile App or local in the device. This results in 12

possible evolution in total. We will address each change and show the changes in

models and test paths. All possible changes are classified as:

Type of Evolution Device Interaction Changes Location
Add New Device Without Device Interaction Mobile App
Modify Device With Device Interaction Local
Remove Device

Table (5.1) Evolution in SHS

1. Add a device.

(a) The new device does not interact with another device in SHS:

i. The new device needs a new mobile app.

ii. The new device will use existing app (with modification).

(b) The new device interacts with another device in SHS:

i. The new device needs a new mobile app.

ii. The new device will use existing app (with modification).

111

2. Modify a device.

(a) The modified device does not interact with another device in SHS:

i. The modified device uses a stand-alone mobile app.

ii. The modified device uses an existing app that control other devices.

(b) The modified device interacts with another device in SHS:

i. The modified device uses a stand-alone mobile app.

ii. The modified device uses an existing app that control other devices.

3. Remove a device.

(a) The removed device does not interact with another device in SHS:

i. The removed device uses a stand-alone mobile app.

ii. The removed device uses an existing app that control other devices.

(b) The removed device interacts with another device in SHS:

i. The removed device uses a stand-alone mobile app.

ii. The removed device uses an existing app that control other devices.

To illustrate this evolution and show how to efficiently and easily create models

and test artifacts when technology changes, we will build a smart home model of one

device. Then we will handle each case and evaluate how easily these changes can be

done using the proposed approach. We will show how these changes affect the current

models and the generated test paths. We will apply a selective black-box model-

based regression testing based on the change. Existing tests and test requirements

are classified as reusable, retestable, or obsolete [18, 20, 21]. We demonstrate how

obsolete tests can be corrected by partial regeneration, as well as how more tests

are generated to match coverage requirements of the modified model. We do not

112

have to distinguish between retestable tests (test that must rerun) and reusable

tests (tests that do not have to be rerun) when we adapt an existing set of models

and tests, because these tests are still working and need to be executed. Andrews

et al. [19], proposed a cost-benifit trade off framework for FSMWeb models that

helps choose between selective and brute force regression testing. We will adopt

this framework with modification since our models is different form FSMWeb and

they have interaction between models. Moreover, in our proposed models, changes

are only on transitions information not in the models themselves. Issues of using

[19] would mean simply no obsolete tests, if transition change means adding new

conditions or inputs. Moreover, new property would not be tested at all. Therefore,

we proposed general test rules for our models by first defining model changes and

then classifying tests after the changes:

Model changes:

1. Node change: add/remove a device will require add/remove nodes.

2. Transition change: modify in/out transition (modify transition inputs and/or

conditions), add in/out transition with or without a new node, and remove

in/out transition with or without a new node.

5.2.2 Classification of tests after model changes:

Based on the changes in the models, tests can be classified as obsolete, reusable,

or retestable.

Define T as the set of transitions t in a model and N as the set of nodes n.

T′ is then the set of modified transitions t′ in a model and N′ is the set of modified

nodes n′ . TP is the set of test paths tp.

113

Test classification rules:

• Obsolete Test Cases:

Test become obsolete when a node or transition removed. Let NO = {n|n ∈

N; n is removed } and the set of obsolete tests due to node changes becomes:

ON = {tpa| ∃ n ∈ NO: tpa visit n }.

Let TO = {t|t∈ T; t is removed} and the set of obsolete tests due to transition

changes becomes: OT = {tpa |tpa visit t ∈ TO }

The entire obsolete test OAT = ON ∪ OT

• Retestable Test Cases:

Tests become retestable when they are still valid and test portions of the

system that has changes in the current model that are close to the changes.

We need to define a coverage criterion to define which part of the model/test

need to be retestable. When a transition t modified, we will assume the start

and end nodes of the modified transition are affected. Therefore, the tests

visited these nodes are retestable. Let TR = {t|t ∈ T; t is changed } and the

affected nodes Ntm = {n|t′ ∈ T, t′ = (ns, ne) }.

The set of retestable tests due to transition changes is:

RT = {tp|∃ tpa ∈ Ntm : tpa visit t}

• Reusable Test Cases:

Reusable tests are neither obsolete nor retestable.

114

5.2.3 Examples of Smart Home Evolution

Case 1: Add New Device, Without device interaction, New Mobile App

Let’s start with a smart home system with a single device, for instant, smart

thermostat. We modeled this device in Chapter 3 and generate test paths from it

in Chapter 4. Fig 5.1 shows the model of the smart thermostat. Table 5.2 shows

the aggregated test paths generated from smart thermostat.

Figure (5.1) Smart Thermostat CEFSM Model

In this section we will add a new device that has no interactions with the existing

smart home system. We will see how this change affect the current models and which

test classification rules are needed.

115

Test Path
ID

Test Path

ATP1 [S1
T1−→ S2

T2−→ S1], [S3
T3−→ S4

T4−→ S5
T6−→ S4

T7−→ S7]

ATP2 [S1
T1−→ S2

T2−→ S1], [S3
T3−→ S4

T5−→ S6
T6−→ S4

T7−→ S7]

ATP3 [S3
T3−→ S4

T4−→ S5
T6−→ S4

T7−→ S7], [S8
T8−→ S9

T9−→ S8]

ATP4 [S3
T3−→ S4

T5−→ S6
T6−→ S4

T7−→ S7], [S8
T8−→ S9

T9−→ S8]

Table (5.2) Aggregated Smart Thermostat Test Paths

• Model Changes

Adding new device that has no interaction with the current system will be

just use a model from a reusable test-ready models built it Chapter 3. For

example, we decided to add Amazon Echo Dot to the smart home system.

Amazon Echo Dot is modeled in fig 3.8 and Table 5.3 shows the aggregated

test paths generated from that device.

Test Path
ID

Test Path

ATP5 [S1
T10−−→ S2

T11−−→ S1], [S3
T12−−→ S4

T13−−→ S5
T15−−→ S4

T16−−→ S7]

ATP6 [S1
T10−−→ S2

T11−−→ S1], [S3
T12−−→ S4

T14−−→ S6
T15−−→ S4

T16−−→ S7]

ATP7 [S3
T12−−→ S4

T13−−→ S5
T15−−→ S4

T16−−→ S7], [S8
T17−−→ S9

T18−−→ S8]

ATP8 [S3
T12−−→ S4

T14−−→ S6
T15−−→ S4

T16−−→ S7], [S8
T17−−→ S9

T18−−→ S8]

Table (5.3) Aggregated Amazon Echo Dot Test Paths

Fig 5.2 shows the block diagram of the SHS with two devices and the inter-

action between the Mobile apps and the devices. D1 is the existing device

(Thermostat) and D2 is the new added device (Amazon Echo Dot) and App1

and App2 are the two mobile applications that control them respectively. As

we mentioned these devices have no interaction between them.

116

Figure (5.2) Block Diagram of SHS After Adding New Device Without Interactions
(New App)

There are two models changes in this case:

1. Node change: Add new nodes for the new device and the new Mobile

App.

2. Transition change: Add in/out transitions with new nodes.

• Classification of tests after model changes

In this case we can keep the smart thermostat tests and we only need to add

the test paths for the new Amazon Echo Dot. Therefore, we do not have

117

any obsolete or retestable test cases. The smart thermostat test cases are

considered reusable test cases and the Amazon Echo Dot tests are new.

Case 2: Add New Device, Without device interaction, Use existing app

• Model Changes

In this case we add a new devices that has no interaction with other devices in

the current system, but it used an existing mobile app that controls another

existing device. For example, two different Nest devices using the same mobile

application to control them but there is no interaction between them.

Fig 5.3 shows the block diagram of the SHS with two devices and the interac-

tion between the Mobile apps and the devices. D1 is the existing device and

D2 is the new added device and App1 is the mobile application that controls

both devices. As we mentioned, these devices have no interaction between

them. Adding in model are in blue color modifications are in bold blue.

There are two models changes in this case:

1. Node Change: Add new nodes for device. Add new LAP and Cluster

nodes within the current app to control the new device.

2. Transition change: Add in/out transitions within the new nodes in device.

Add in/out transitions within the current app. Modify in/out transitions

(modify transition inputs and/or conditions) within the current app.

• Classification of tests after model changes

In this case we can keep the current devices tests and we only need to add the

test paths for the new device. As well as new tests for the new app screens that

control the new device. We do not have any obsolete test cases, any change

118

Figure (5.3) Block Diagram of SHS After Adding New Device Without Interactions
(Modified App)

in the transition and the start and end nodes of the modified transition are

affected and tests for these nodes are retestable, other tests are reusable.

Case 3: Add New Device, With device interaction, New Mobile App

• Model Changes

In this case we add a new device that has interaction with other devices in

the current system and it uses a new mobile app. For example, the current

smart home system has two devices (Smart Thermostat and Amazon Echo

Dot) we decided to add new device (Smart Lock) which possibly interact with

Amazon Echo Dot and has its own Mobile App to control it. August Wi-Fi

119

Smart Lock is a smart lock that you can easily install to your front door and

control it from a mobile application. Via the smart phone application you

can control smart lock in your home while you are in home or remotely when

you are away. You can automate lock after certain amount of time after door

close, and unlock automatically when you arrive home. At any time, you can

check your smart lock activity by one click on the smart phone application to

see all activities listed by time. Fig 5.4 shows the block diagram of the SHS

with three devices and the interaction between them. Also, the interaction

between the Mobile apps and the devices. D1 and D2 are the existing devices

(Thermostat and Amazon Echo Dot) respectively. D3 is the new added device

(Smart Lock). App1, App2 and App3 are the three mobile applications that

control these devices. As we mentioned D2 and D3 have interaction between

them. All the adding in the system are in blue color and the modifications are

in bold blue.

There are two models changes in this case:

1. Node Change: Add new nodes for the new device and new Mobile App.

2. Transition change: Add in/out transitions within the new nodes in device.

Add in/out transitions within the new nodes in the new Mobile App. Add

in/out transitions between the two devices for device interactions. Modify

in/out transitions within the nodes in the current device and Mobile App.

120

Figure (5.4) Block Diagram of SHS After Adding New Device With Interactions
(New App)

• Classification of tests after model changes

In this case we can keep the current device D1 tests. We need to add the test

paths for the new device D3. As well as new tests for the new app App3. We

do not have any obsolete test cases. Due to adding new transitions between

D2 and D3 we need to find all the affected transitions and the start and end

nodes in D2 and App2 and tests for these nodes are retestable.

Case 4: Add New Device, With device interaction, Use existing app

• Model Changes

In this case we add a new devices that has interaction with other device in

the current system and it uses a current device app. For example, the current

smart home system has two devices (Smart Thermostat and Amazon Echo

Dot) we decided to add new device (Smart Lock) witch possibly interact with

121

Amazon Echo Dot and has its own Mobile App to control it but also you can

control this device from Amazon Echo Dot App by adding this device in Alexa

App. You can easily ask "Alexa, is my front door open?" and Alexa should

check and answer your question. You can also ask Alexa to lock/unlock your

door and this should reflect necessarily information on both devices and Apps.

Fig 5.5 shows the block diagram of the SHS with three devices and the inter-

action between them. Also, the interaction between the Mobile apps and the

devices. D1 and D2 are the existing devices (Thermostat and Amazon Echo

Dot) respectively. D3 is the new added device (Smart Lock). App1 and App2

are the two current mobile applications that control the devices. As we men-

tioned D2 and D3 have interaction between them. D3 can be also controlled

via App2. All the adding in the system are in blue color and the modifications

are in bold blue.

Figure (5.5) Block Diagram of SHS After Adding New Device With Interactions
(Modified App)

122

There are two models changes in this case:

1. Node Change: Add new nodes for the new device. Add new LAP and

Cluster nodes within the current app to control the new device.

2. Transition change: Add in/out transitions within the new nodes in device.

Add in/out transitions between the two devices for device interactions.

Modify in/out transitions (modify transition inputs and/or conditions)

within the current app.

• Classification of tests after model changes

In this case we can keep the current devices D1, App1 and some of D2 tests.

We need to add the test paths for the new device D3. As well as new tests

for the new app screens in App2 that control the new device. We do not have

any obsolete test cases. Due to adding new transitions between D2 and D3 we

need to find all the affected transitions and the start and end nodes in D2 and

App2 tests for these nodes are retestable.

Case 5: Modify a device, Without device interaction, Uses stand-alone

App

In this case, the current smart home system has two devices not interacting;

we decided to upgrade one of the devices to a newer version or use a different

manufacturer. We will remove an existing device and replace it with a new device,

or we will need just to update the transition information (inputs and/or conditions).

• Model Changes

Fig 5.6 shows the block diagram of two devices D1 not changes and D2 is

modified to newer version. Modifying a device that has no interaction with

123

the current system will be changing the inputs and/or the conditions on the

transition. We do not need to change or add any nodes. For example, we

decided to upgrade our Amazon Echo Dot to Amazon Echo Dot with clock.

We will need to modify the inputs on some transitions on that device. All the

modifications in the system are in blue color and bold.

Figure (5.6) Block Diagram of SHS After Modifying a Device Without Interactions
(Stand-alone App)

124

There are two models changes in this case:

1. Node change: No node change for the device. Add new LAP and Clus-

ter nodes within the stand-alone app to control the new features in the

modified device.

2. Transition change: Modify in/out transition with inputs and/or condi-

tions in device and App.

• Classification of tests after model changes

In this case we can keep the current devices tests and we only need to retest

the retestable test cases which has the modified inputs/conditions transitions

and the visited start and end nodes of that transition in device and App. We

do not have any obsolete tests.

Case 6: Modify a Device, Without device interaction, Use existing app

• Model Changes

In this case we modify a devices that has no interaction with other devices

in the current system but it used an existing mobile app that control another

existing device. For example, two different Nest devices using the same mobile

application to control them but there is no interaction between them and you

decide to upgrade one of them to newer version.

Fig 5.7 shows the block diagram of the SHS with two devices and the interac-

tion between the Mobile apps and the devices. D1 is the existing device and D2

is the modified device and App1 is the mobile application that controls both

devices. As we mentioned these devices have no interaction between them.

All the modifications in the system are in blue color and bold.

125

Figure (5.7) Block Diagram of SHS After Modifying a Device Without Interactions
(Current App)

There are two models changes in this case:

1. Node Change: No new nodes for the device. Add new LAP and Cluster

nodes within the current app to control the new device.

2. Transition change: Modify in/out transition with inputs and/or condi-

tions in device and current App. Add in/out transition within the current

app.

126

• Classification of tests after model changes

In this case we can keep the current device tests and we only need to modify

the test paths for the modified device. As well as new tests for the current

app screens that control the new device. We do not have any obsolete test

cases, any change in the transition and the start and end nodes of the modified

transition are affected and tests for these nodes are retestable, other tests are

reusable.

Case 7: Modify a device, With device interaction, Uses stand-alone App

If we have a current smart home system with two devices interact with each other

then we decided to upgrade one of the devices to a newer version or use a different

manufacture. We will just need to update the transition information (inputs and/or

conditions) in the modified device. This will also affect the interaction between the

two devices as well as the other some transitions in the other device.

• Model Changes

Fig 5.8 shows the block diagram of two devices D1 with no changes and D2

with modifications. Modifying a device that has interaction with a current

device will be changing the inputs and/or the conditions on the transitions of

the modified device. We also might need to modify the interaction transitions,

and some transitions in D1. We do not need to change or add any nodes. All

the changes are in the information on the transitions. The changes in the

system are in blue color and bold.

127

Figure (5.8) Block Diagram of SHS After Modifying a Device With Interactions
(Stand-alone App)

There are two models changes in this case:

1. Node change: No node change for the device. Add new LAP and Clus-

ter nodes within the stand-alone app to control the new features in the

modified device.

2. Transition change: Modify in/out transition with inputs and/or condi-

tions in the modified device, App of the modified device, and interaction

between the devices. Add in/out transition with inputs and/or conditions

in the new App screens. Modify in/out transition with inputs and/or

conditions in the unmodified device and App.

128

• Classification of tests after model changes

In this case devices, Apps test paths are retestable for any change in the

transition and start and end nodes. Interaction test paths also retestable.

There are no obsolete tests.

Case 8: Modify a Device, With device interaction, Use existing app

• Model Changes

In this case we modify a devices that has interaction with other devices in the

current system but it used an existing mobile app that control another existing

device. Fig 5.9 shows the block diagram of the SHS with two devices and the

interaction between the Mobile apps and the devices. D1 is the existing device

and D2 is the modified device and App1 is the mobile application that controls

both devices. As we mentioned these devices have interaction between them.

All the changes in the system are in blue color and bold.

129

Figure (5.9) Block Diagram of SHS After Modifying a Device With Interactions
(Current App)

There are two models changes in this case:

1. Node Change: No new nodes for the device. Add new LAP and Cluster

nodes within the current app to control the new device.

2. Transition change: Modify in/out transition with inputs and/or condi-

tions in devices, current App and interaction between the devices. Add

in/out transition within the current app.

130

• Classification of tests after model changes

In this case we need to modify the test paths for the modified device, modified

app and interaction between devices. As well as new tests for the current

app screens that control the new device must be added. We do not have any

obsolete test cases, any change in the transition and the start and end nodes

of the modified transition are affected and tests for these nodes are retestable,

other tests are reusable.

Case 9: Remove a device, Without device interaction, Uses stand-alone

App

In this case, we have a current smart home system with two devices not interact

with each other then we decided to remove one of the devices. We will remove an

existing device and all the test paths related to that device. Other parts of the

system are not affected.

• Model Changes

Fig 5.10 shows the block diagram of two devices D1 and D2 and we decided

to remove D2 with the application control it. Changes with the red cross

represent removed parts.

There are two model changes in this case:

1. Node change: Remove all of the removed device nodes and the application

control that device nodes.

2. Transition change: Remove in/out transition in the removed device and

App.

131

Figure (5.10) Block Diagram of SHS After Removing a Device Without Interac-
tions (Stand-alone App)

• Classification of tests after model changes

In this case we can keep the current device and application tests. We only

need to consider the deleted device and application test paths are obsolete

tests. No retestable test cases.

Case 10: Remove a Device, Without device interaction, Use existing app

• Model Changes

In this case we remove a devices that has no interaction with other devices

in the current system but it used an existing mobile app that control another

existing device.

132

Fig 5.13 shows the block diagram of the SHS with two devices and the inter-

action between the Mobile apps and the devices. D1 is the existing device and

D2 is the removed device and App1 is the mobile application that controls both

devices. As we mentioned these devices have no interaction between them. All

the changes in the system are in blue color and bold. Red color is for removed

items.

Figure (5.11) Block Diagram of SHS After Removing a Device Without Interac-
tions (Current App)

There are two models changes in this case:

1. Node Change: Remove all of the removed device nodes. Remove some

LAP and Cluster nodes within the current app that control the removed

device.

133

2. Transition change: Remove in/out transition in the removed device. Re-

move in/out transition within the current app and between the appli-

cation and the removed device. Remove in/out transition between the

removed device and the application control it.

• Classification of tests after model changes

In this case we only need to remove the test paths for the removed device.

We also need to remove some test paths for the current app that control the

removed device. All the removed test paths are obsolete test cases. We need

to retest the application, the current device and interaction between them to

make sure that none of the tests affected by removing the removed device

controlling pages.

Case 11: Remove a device, With device interaction, Uses stand-alone

App

If we have a current smart home system with two devices interact with each

other then we decided to remove one of the devices. In this case we will remove an

existing device and all the test paths related to that device. We need to retest the

existing device or part of it because it might be affected by removing the interaction

transitions.

• Model Changes

Fig 5.12 shows the block diagram of two devices D1 and D2 and the interaction

between them. We decided to remove D2 with the application control it. As

well as the interaction transitions between the two devices. Removed tests

have red crosses and modified part of the system are shown in bold blue color.

134

Figure (5.12) Block Diagram of SHS After Removing a Device With Interactions
(Stand-alone App)

There are two models changes in this case:

1. Node change: Remove all of the removed device and application nodes.

2. Transition change: Remove in/out transition in the removed device and

App. Remove in/out transition for the interaction.

• Classification of tests after model changes

The current device D1 and its controller App1 are affected by removing D2

nodes therefore their tests are retestable. We need to consider the deleted

device and application test paths as obsolete tests.

135

Case 12: Remove a Device, With device interaction, Use existing app

• Model Changes

In this case we remove a device that interact with other device in the current

system but it used an existing mobile app that control another existing device.

Fig 5.13 shows the block diagram of the SHS with two devices and the in-

teraction between the Mobile apps and the devices. D1 is the existing device

and D2 is the removed device and App1 is the mobile application that controls

both devices. As we mentioned these devices interact with each other. All

the modification in the system are in blue color and bold. Red cross is for

removed items.

Figure (5.13) Block Diagram of SHS After Removing a Device With Interactions
(Current App)

136

There are two models changes in this case:

1. Node Change: Remove all of the removed device nodes. Remove some

LAP and Cluster nodes within the current app that control the removed

device.

2. Transition change: Remove in/out transition in the deleted device. Re-

move in/out transition within the current app and between the applica-

tion and the removed device. Remove in/out transition between the two

devices. Modify in/out transition in the current device and App.

• Classification of tests after model changes

In this case we need to remove the test paths for the removed device. As well

as removing tests for the current app that control the removed device. Also,

we remove the test paths between the two devices. All the removed test paths

are obsolete test cases. We need to retest the application to make sure that

non of the tests affected by removing the removed device controlling pages.

Table 5.4 summarizes the 12 cases of SHS evolution. The first column represents the

case number, the second column has the old system components, third column shows

the new system components, forth column has the model changes, fifth column shows

the transition changes, and finally the last column represents the test classifications.

137

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

A
d
d

N
ew

D
ev

ic
e

w
it

h
ou

t
In

te
ra

ct
io

n
B

et
w

ee
n

D
ev

ic
es

1
D

1
,A

pp
1

D
1
,

A
pp

1
,

D
2
,

A
dd

D
2
,A

pp
2

A
dd

ne
w

tr
an

si
ti

on
s

w
it

hi
n

D
2

-
A

dd
ne

w
tr

an
si

ti
on

s

w
it

hi
n

A
pp

2
-

A
dd

ne
w

tr
an

si
ti

on
s

be
tw

ee
n

D
2

an
d

A
pp

2

D
1

an
d

A
pp

1
te

st
s

ar
e

re
us

ab
le

-
In

te
ra

ct
io

n
be

-

tw
ee

n
D

1
an

d
A

pp
1

te
st

s

ar
e

re
us

ab
le

-
D

2
an

d
A

pp
2

te
st

s
ar

e
ne

w
-

In
te

ra
ct

io
n

be
tw

ee
n

D
2

an
d

A
pp

2
te

st
s

ar
e

ne
w

-
N

o
ob

so
le

te
te

st
s

or
re

te
st

ab
le

138

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

2
D

1
,A

pp
1

D
1
,

A
pp

1
,

D
2

A
dd

D
2

an
d

M
od

ify
A

pp
1

A
dd

ne
w

tr
an

si
ti

on
s

w
it

hi
n

D
2

-
A

dd
ne

w
tr

an
si

ti
on

s

w
it

hi
n

A
pp

1
-

M
od

ify
tr

an
-

si
ti

on
s

w
it

hi
n

A
pp

1
-

A
dd

ne
w

tr
an

si
ti

on
s

be
tw

ee
n

D
2

an
d

A
pp

1

D
1

an
d

A
pp

1
te

st
s

ar
e

re
us

ab
le

-
In

te
ra

ct
io

n
be

-

tw
ee

n
D

1
an

d
A

pp
1

te
st

s

ar
e

re
us

ab
le

-
D

2
an

d
so

m
e

of
A

pp
1

te
st

s
ar

e
ne

w
-

In
-

te
ra

ct
io

n
be

tw
ee

n
D

2
an

d

A
pp

1
te

st
s

ar
e

ne
w

-N
o

ob
-

so
le

te
te

st
s

A
d
d

N
ew

D
ev

ic
e

w
it

h
In

te
ra

ct
io

n
B

et
w

ee
n

D
ev

ic
es

139

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

3
D

1
,

A
pp

1
,

D
2
,A

pp
2

D
1
,

A
pp

1
,

D
2
,

A
pp

2
,

D
3
,A

pp
3

A
dd

D
3
,

A
pp

3

an
d

M
od

ify
D

2
,

A
pp

2

A
dd

ne
w

tr
an

si
ti

on
s

w
it

hi
n

D
3

-
A

dd
ne

w
tr

an
si

ti
on

s

w
it

hi
n

A
pp

3
-

A
dd

ne
w

tr
an

si
ti

on
s

be
tw

ee
n

D
3

an
d

A
pp

3
-

A
dd

ne
w

tr
an

si
ti

on
s

be
tw

ee
n

D
2
an

d
D

3
-M

od
ify

tr
an

si
ti

on
s

w
it

hi
n

D
2

an
d

A
pp

2
-

M
od

ify
tr

an
si

ti
on

s

be
tw

ee
n

D
2

an
d

A
pp

2

D
1

an
d

A
pp

1
te

st
s

ar
e

re
us

ab
le

-
In

te
ra

ct
io

n
be

-

tw
ee

n
D

1
an

d
A

pp
1
te

st
sa

re

re
us

ab
le

-D
3
an

d
A

pp
3
te

st
s

ar
e

ne
w

-
In

te
ra

ct
io

n
be

-

tw
ee

n
D

3
an

d
A

pp
3
te

st
sa

re

ne
w

-
In

te
ra

ct
io

n
be

tw
ee

n

D
2

an
d

D
3

te
st

s
ar

e
ne

w
-

So
m

e
of

D
2

an
d

A
pp

2
te

st
s

ar
e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
tw

ee
n

D
2

an
d

A
pp

2
te

st
s

ar
e

re
te

st
ab

le
-

N
o

ob
so

le
te

te
st

s

140

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

4
D

1
,

A
pp

1
,

D
2
,A

pp
2

D
1
,

A
pp

1
,

D
2
,

A
pp

2
,

D
3

A
dd

D
3

an
d

M
od

ify
D

2
,

A
pp

2

A
dd

ne
w

tr
an

si
ti

on
s

w
it

hi
n

D
3

-
A

dd
ne

w
tr

an
si

ti
on

s

w
it

hi
n

A
pp

2
-

A
dd

ne
w

tr
an

si
ti

on
s

be
tw

ee
n

D
3

an
d

A
pp

2
-

A
dd

ne
w

tr
an

si
ti

on
s

be
tw

ee
n

D
2
an

d
D

3
-M

od
ify

tr
an

si
ti

on
s

w
it

hi
n

D
2

an
d

A
pp

2
-

M
od

ify
tr

an
si

ti
on

s

be
tw

ee
n

D
2

an
d

A
pp

2

D
1

an
d

A
pp

1
te

st
s

ar
e

re
us

ab
le

-
In

te
ra

ct
io

n
be

-

tw
ee

n
D

1
an

d
A

pp
1

te
st

s

ar
e

re
us

ab
le

-
D

3
an

d
so

m
e

of
A

pp
2

te
st

s
ar

e
ne

w
-

In
-

te
ra

ct
io

n
be

tw
ee

n
D

3
an

d

A
pp

2
te

st
s

ar
e

ne
w

-
In

-

te
ra

ct
io

n
be

tw
ee

n
D

2
an

d

D
3

te
st

s
ar

e
ne

w
-

So
m

e

of
D

2
an

d
A

pp
2

te
st

s
ar

e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
-

tw
ee

n
D

2
an

d
A

pp
2

te
st

s

ar
e

re
te

st
ab

le
-

N
o

ob
so

le
te

te
st

s

M
od

if
y

D
ev

ic
e

w
it

h
ou

t
In

te
ra

ct
io

n
B

et
w

ee
n

D
ev

ic
es

141

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

5
D

1
,

A
pp

1
,

D
2
,A

pp
2

D
1
,

A
pp

1
,

D
2
,A

pp
2

M
od

ify
D

2
,

A
pp

2

M
od

ify
tr

an
si

ti
on

s
w

it
hi

n

D
2

-
M

od
ify

tr
an

si
ti

on
s

w
it

hi
n

A
pp

2
-

M
od

ify
tr

an
-

si
ti

on
s

be
tw

ee
n

D
2

an
d

A
pp

2

D
1

an
d

A
pp

1
te

st
s

ar
e

re
us

ab
le

-
In

te
ra

ct
io

n
be

-

tw
ee

n
D

1
an

d
A

pp
1
te

st
sa

re

re
us

ab
le

-
So

m
e

of
D

2
an

d

A
pp

2
te

st
s

ar
e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
tw

ee
n

D
2

an
d

A
pp

2
te

st
s

ar
e

re
te

st
ab

le
-

N
o

ob
so

le
te

te
st

s

142

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

6
D

1
,

A
pp

1
,

D
2

D
1
,

A
pp

1
,

D
2

M
od

ify
D

2
,

A
pp

1

M
od

ify
tr

an
si

ti
on

s
w

it
hi

n

D
2

-
A

dd
ne

w
tr

an
si

ti
on

s

w
it

hi
n

A
pp

1
-

M
od

ify
tr

an
-

si
ti

on
s

w
it

hi
n

A
pp

1
-

M
od

-

ify
tr

an
si

ti
on

s
be

tw
ee

n
D

2

an
d

A
pp

1
-

M
od

ify
tr

an
si

-

ti
on

s
w

it
hi

n
D

2
an

d
A

pp
2

-

M
od

ify
tr

an
si

ti
on

s
be

tw
ee

n

D
2

an
d

A
pp

2

D
1

te
st

s
ar

e
re

us
ab

le
-

In
-

te
ra

ct
io

n
be

tw
ee

n
D

1
an

d

A
pp

1
te

st
s

ar
e

re
us

ab
le

-

So
m

e
of

A
pp

1
te

st
s

ar
e

ne
w

-S
om

e
of

D
2

an
d

A
pp

1
te

st
s

ar
e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
tw

ee
n

D
2

an
d

A
pp

1
te

st
s

ar
e

re
te

st
ab

le
-

N
o

ob
so

le
te

te
st

s

M
od

if
y

D
ev

ic
e

w
it

h
In

te
ra

ct
io

n
B

et
w

ee
n

D
ev

ic
es

143

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

7
D

1
,

A
pp

1
,

D
2
,A

pp
2

D
1
,

A
pp

1
,

D
2
,A

pp
2

M
od

ify
D

2
,

A
pp

2
,D

1
,A

pp
1

M
od

ify
tr

an
si

ti
on

s
w

it
hi

n

D
2

-
M

od
ify

tr
an

si
ti

on
s

w
it

hi
n

A
pp

2
-

M
od

ify
tr

an
-

si
ti

on
s

be
tw

ee
n

D
2

an
d

A
pp

2
-

M
od

ify
tr

an
si

ti
on

s

be
tw

ee
n

D
1
an

d
D

2
-M

od
ify

tr
an

si
ti

on
s

w
it

hi
n

D
1

an
d

A
pp

1

So
m

e
of

D
1
,

A
pp

1
,

D
2

an
d

A
pp

2
te

st
s

ar
e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
tw

ee
n

D
1

an
d

A
pp

1
te

st
s

ar
e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
tw

ee
n

D
2

an
d

A
pp

2
te

st
s

ar
e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
tw

ee
n

D
1

an
d

D
2

te
st

s
ar

e
re

te
st

ab
le

-
N

o

ob
so

le
te

te
st

s

144

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

8
D

1
,

A
pp

1
,

D
2

D
1
,

A
pp

1
,

D
2

M
od

ify
D

1
,

D
2
,

A
pp

1

M
od

ify
tr

an
si

ti
on

s
w

it
hi

n

D
2

-
A

dd
ne

w
tr

an
si

ti
on

s

w
it

hi
n

A
pp

1
-

M
od

ify
tr

an
-

si
ti

on
sw

it
hi

n
D

1
an

d
A

pp
1
-

M
od

ify
tr

an
si

ti
on

s
be

tw
ee

n

D
1

an
d

D
2

So
m

e
of

A
pp

1
te

st
s

ar
e

ne
w

-
So

m
e

of
D

1
,D

2
an

d
A

pp
1

te
st

s
ar

e
re

te
st

ab
le

-
In

-

te
ra

ct
io

n
be

tw
ee

n
D

1
an

d

A
pp

1
te

st
s

ar
e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
tw

ee
n

D
2

an
d

A
pp

1
te

st
s

ar
e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
tw

ee
n

D
1

an
d

D
2

te
st

s
ar

e
re

te
st

ab
le

-
N

o

ob
so

le
te

te
st

s

R
em

ov
e

D
ev

ic
e

w
it

h
ou

t
In

te
ra

ct
io

n
B

et
w

ee
n

D
ev

ic
es

145

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

9
D

1
,

A
pp

1
,

D
2
,A

pp
2

D
1
,A

pp
1

R
em

ov
e

D
2
,

A
pp

2

R
em

ov
e

tr
an

si
ti

on
s

w
it

hi
n

D
2

-
R

em
ov

e
tr

an
si

ti
on

s

w
it

hi
n

A
pp

2
-R

em
ov

e
tr

an
-

si
ti

on
s

be
tw

ee
n

D
2

an
d

A
pp

2

D
1

an
d

A
pp

1
te

st
s

ar
e

re
us

ab
le

-
In

te
ra

ct
io

n
be

-

tw
ee

n
D

1
an

d
A

pp
1

te
st

s

ar
e

re
us

ab
le

-
D

2
an

d
A

pp
2

te
st

s
ar

e
ob

so
le

te
-

In
te

ra
c-

ti
on

be
tw

ee
n

D
2

an
d

A
pp

2

te
st

s
ar

e
ob

so
le

te

146

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

10
D

1
,

A
pp

1
,

D
2

D
1
,A

pp
1

R
em

ov
e

D
2

an
d

M
od

ify
A

pp
1

R
em

ov
e

tr
an

si
ti

on
s

w
it

hi
n

D
2

-
M

od
ify

tr
an

si
ti

on
s

w
it

hi
n

A
pp

1
-R

em
ov

e
tr

an
-

si
ti

on
s

be
tw

ee
n

D
2

an
d

A
pp

1

D
1

te
st

s
ar

e
re

us
ab

le
-S

om
e

of
A

pp
1

te
st

s
ar

e
re

te
st

ab
le

-
So

m
e

of
A

pp
1

te
st

s
ar

e

ob
so

le
te

-
In

te
ra

ct
io

n
be

-

tw
ee

n
D

1
an

d
A

pp
1
te

st
sa

re

re
te

st
ab

le
-
D

2
te

st
s

ar
e

ob
-

so
le

te
-

In
te

ra
ct

io
n

be
tw

ee
n

D
2

an
d

A
pp

1
te

st
s

ar
e

ob
so

-

le
te

R
em

ov
e

D
ev

ic
e

w
it

h
In

te
ra

ct
io

n
B

et
w

ee
n

D
ev

ic
es

147

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

11
D

1
,

A
pp

1
,

D
2
,A

pp
2

D
1
,A

pp
1

R
em

ov
e

D
2
,

A
pp

2

R
em

ov
e

tr
an

si
ti

on
s

w
it

hi
n

D
2

-
R

em
ov

e
tr

an
si

ti
on

s

w
it

hi
n

A
pp

2
-R

em
ov

e
tr

an
-

si
ti

on
s

be
tw

ee
n

D
2

an
d

A
pp

2
-

R
em

ov
e

tr
an

si
ti

on
s

be
tw

ee
n

D
1

an
d

D
2

-
M

od
-

ify
tr

an
si

ti
on

s
w

it
hi

n
D

1
-

M
od

ify
tr

an
si

ti
on

s
w

it
hi

n

A
pp

1
-

M
od

ify
tr

an
si

ti
on

s

be
tw

ee
n

D
1

an
d

A
pp

1

D
1

an
d

A
pp

1
te

st
s

ar
e

re
te

st
ab

le
-

In
te

ra
ct

io
n

be
-

tw
ee

n
D

1
an

d
A

pp
1
te

st
sa

re

re
te

st
ab

le
-

D
2

an
d

A
pp

2

te
st

s
ar

e
ob

so
le

te
-

In
te

ra
c-

ti
on

be
tw

ee
n

D
2

an
d

A
pp

2

te
st

s
ar

e
ob

so
le

te
-

In
te

r-

ac
ti

on
be

tw
ee

n
D

1
an

d
D

2

te
st

s
ar

e
ob

so
le

te
.

148

C
as

e
O

ld

M
od

el

N
ew

M
od

el

M
od

el
C

h
an

ge
T
ra

n
si

ti
on

C
h
an

ge
T
es

t
C

la
ss

ifi
ca

ti
on

12
D

1
,

A
pp

1
,

D
2

D
1
,A

pp
1

R
em

ov
e

D
2

an
d

M
od

ify
D

1
an

d

A
pp

1

R
em

ov
e

tr
an

si
ti

on
s

w
it

hi
n

D
2

-
M

od
ify

tr
an

si
ti

on
s

w
it

hi
n

A
pp

1
-R

em
ov

e
tr

an
-

si
ti

on
s

be
tw

ee
n

D
2

an
d

A
pp

1
-

R
em

ov
e

tr
an

si
ti

on
s

be
tw

ee
n

D
1

an
d

D
2

D
1

te
st

s
ar

e
re

te
st

ab
le

-

So
m

e
of

A
pp

1
te

st
s

ar
e

re
te

st
ab

le
-

So
m

e
of

A
pp

1

te
st

s
ar

e
ob

so
le

te
-

In
te

ra
c-

ti
on

be
tw

ee
n

D
1

an
d

A
pp

1

te
st

s
ar

e
re

te
st

ab
le

-
D

2

te
st

s
ar

e
ob

so
le

te
-

In
te

ra
c-

ti
on

be
tw

ee
n

D
2

an
d

A
pp

1

te
st

s
ar

e
ob

so
le

te
-

In
te

r-

ac
ti

on
be

tw
ee

n
D

1
an

d
D

2

te
st

s
ar

e
ob

so
le

te

Ta
bl

e
(5

.4
)

Su
m

m
ar

is
e

E
vo

lu
ti

on
’s

ca
se

s
in

SH
S

149

Chapter 6

Future Work

This dissertation could be extended in different ways as future work:

6.1 Model other components in the Smart Home

System

As well as device components, devices and Mobile Apps, there are different

components in the SHS that could be modeled in the future. Actors are one possible

component. The main actor of the system is the home owner. The home owner could

assign different actors in the SHS and give them different privileges. For example,

they could assign child access that allows children to control specific devices, or

prevents them from accessing some other devices such as smart kitchen devices or

devices with payments. Guest access is another temporary access that can be created

for a certain time. Frequent guest is another type of access that can be created for

close friends or family members who visit often.

150

6.2 New system domain

This dissertation is focused on SHS as one of IoT applications. We plan to apply

this approach in different IoT applications such as health monitoring, smart farming,

self-driving cars, fitness tracking and other IoT applications.

6.3 Automation

Automation tools might be built to automate models and tests generation pro-

cesses which could reduce the cost of generating the models and tests; choose the

transition information; and execute the generated tests. Currently, there is no tool

to generate reusable test-ready models of SHS or test sequences, and the process is

done manually.

6.4 Execution

The generated tests could be executed in the future using the suggested tool in

this dissertation.

6.5 Effectiveness

More case studies could be applied to study the effectiveness of reusable test-

ready models of smart home systems. The selective black-box model-based regres-

sion testing could be compared to the Brute-Force regression testing to show which

one is preferable in case of evolution in smart home system.

151

Chapter 7

Conclusion

This dissertation proposed Reusable Test-Ready Models of Smart Home Systems.

It models the devices components (Sensors, Controllers and Actuators) using Ex-

tended Finite State Machines (EFSM). The devices and device interactions are mod-

eled using Communicating Extended Finite State Machines (CEFSM). Finally, the

system controllers (mobile applications) are modeled using FSMApp. The Reusable

Test-Ready Models can be used for different devices within the smart home with

modification to the transition’s information. We developed a Model-Based Testing

technique for these non-heterogeneous Reusable Test-Ready Models which includes

testing criteria. Our proposed approach performs three levels of testing: device test-

ing, device interaction testing, and system testing. In this dissertation we consider

the rapid evolution in the SHS and the possibility of adding new devices within

the smart home system, update existing devices, and/or remove current devices.

We take into consideration that these changes might be in the device and/or the

mobile application. The evolution could be within devices that interact with each

other or in devices without interaction. We developed and validated a selective

black-box model-based regression testing based on the changes. Existing tests and

152

test requirements are classified as reusable, retestable, or obsolete depending on the

change in the SHS. We consider the different possible cases and for each case we first

define the changes in the models and then classify tests after model changes. As we

explained in the previous chapter, this dissertation can be extended in the future

to model different SHS components such as actors. Moreover, we can expand the

approach to test different IoT applications. Also, we can automate the process of

generating models and tests. Executing the current generated tests in this disserta-

tion is another possible future work. Finally, the effectiveness of reusable test-ready

models of smart home systems can be examined by conducting more case studies.

153

Bibliography

[1] Nest protect detects smoke and carbon monoxide (co) user’s guide. https:

//nest.com/support/images/misc-assets/Nest-Protect-(Wired-120V)

-User-s-Guide.pdf.

[2] Selenium. https://www.selenium.dev/. Accessed: 2022-01-30.

[3] M Abdelgawad, S McLeod, A Andrews, and J Xiao. On the Scalability of Con-

currency Coverage Criteria for Model-based Testing of Autonomous Robotic

Systems. In Proceedings of the International Conference on Software Engi-

neering Research and Practice (SERP), pages 3–9. The Steering Committee

of The World Congress in Computer Science, Computer . . . , 2018.

[4] Mahmoud Abdelgawad, Sterling McLeod, Anneliese Andrews, and Jing Xiao.

Model-based testing of real-time adaptive motion planning (RAMP). In 2016

IEEE International Conference on Simulation, Modeling, and Programming

for Autonomous Robots (SIMPAR), pages 162–169. IEEE, 2016.

[5] Abbas Ahmad, Fabrice Bouquet, Elizabeta Fourneret, Franck Le Gall, and

Bruno Legeard. Model-based Testing as a Service for IoT Platforms. In In-

ternational Symposium on Leveraging Applications of Formal Methods, pages

727–742. Springer, 2016.

154

[6] Vangalur S Alagar, Kasilingam Periyasamy, and Kasilingan Periyasamy. Spec-

ification of Software Systems. Springer, 2011.

[7] Afnan Albahli and Al Haddad Ahmed Andrews, Anneliese. Reusable Test-

Ready Models of Smart Home Systems. presented at The 23rd International

Conference on Internet Computing & IoT, 2022.

[8] Afnan Albahli and Anneliese Andrews. Model-Based Testing of Smart Home

Systems. presented at The 22nd International Conference on Internet Com-

puting & IoT, 2021.

[9] Afnan Albahli and Anneliese Andrews. Model-Based Testing of Smart Home

Systems Using EFSM and CEFSM. In 2021 International Conference on

Computational Science and Computational Intelligence (CSCI), pages 1824–

1829. IEEE, 2021.

[10] Ahmed Fawzi ALhaddad. Improvements of and Extensions to FSMWeb: Test-

ing Mobile Apps. PhD thesis, University of Denver, 2019.

[11] Mohammad Amin Alipour. Fault injection in the internet of things applica-

tions. In Proceedings of the 1st ACM SIGSOFT International Workshop on

Testing Embedded and Cyber-Physical Systems, pages 9–11. ACM, 2017.

[12] Nasser Alshammari, Talal Alshammari, Mohamed Sedky, Justin Champion,

and Carolin Bauer. Openshs: Open smart home simulator. Sensors,

17(5):1003, 2017.

[13] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge

University Press, 2016.

155

[14] Anneliese Andrews, Mahmoud Abdelgawad, and Ahmed Gario. Active World

Model for Testing Autonomous Systems Using CEFSM. In MoDeVVa@ MoD-

ELS, pages 1–10, 2015.

[15] Anneliese Andrews, Mahmoud Abdelgawad, and Ahmed Gario. Towards world

model-based test generation in autonomous systems. In 2015 3rd International

Conference on Model-Driven Engineering and Software Development (MOD-

ELSWARD), pages 1–12. IEEE, 2015.

[16] Anneliese Andrews, Mahmoud Abdelgawad, and Ahmed Gario. World model

for testing autonomous systems using petri nets. In 2016 IEEE 17th Inter-

national Symposium on High Assurance Systems Engineering (HASE), pages

65–69. IEEE, 2016.

[17] Anneliese Andrews, Mahmoud Abdelgawad, and Ahmed Gario. World model

for testing urban search and rescue (usar) robots using petri nets. In 2016

4th International Conference on Model-Driven Engineering and Software De-

velopment (MODELSWARD), pages 663–670. IEEE, 2016.

[18] Anneliese Andrews, Seif Azghandi, and Orest Pilskalns. Regression Testing

of Web Applications Using FSMWeb. In Proceedings of the International

Conference on Software Engineering and Applications, 2010.

[19] Anneliese Andrews and Hyunsook Do. Trade-off analysis for selective versus

brute-force regression testing in fsmweb. In 2014 IEEE 15th International

Symposium on High-Assurance Systems Engineering, pages 184–192. IEEE,

2014.

[20] Anneliese Andrews, Salwa Elakeili, and Ahmed Alhaddad. Selective regression

testing of safety-critical systems: a black box approach. In 2015 IEEE Inter-

156

national Conference on Software Quality, Reliability and Security-Companion,

pages 22–31. IEEE, 2015.

[21] Anneliese Andrews, Salwa Elakeili, and Salah Boukhris. Fail-Safe Test Gener-

ation in Safety Critical Systems. In 2014 IEEE 15th International Symposium

on High-Assurance Systems Engineering, pages 49–56. IEEE, 2014.

[22] Anneliese Andrews, Ahmed Gario, and Salwa Elakeili. A Testing Methodology

for Safety Critical Systems. Software Testing, Verification and Reliability,

2014.

[23] Anneliese A Andrews, Jeff Offutt, and Roger T Alexander. Testing Web

applications by modeling with FSMs. Software & Systems Modeling, 4(3):326–

345, 2005.

[24] Kelly Androutsopoulos, David Clark, Mark Harman, Robert M Hierons, Zheng

Li, and Laurence Tratt. Amorphous Slicing of Extended Finite State Machines.

IEEE Transactions on Software Engineering, 39(7):892–909, 2012.

[25] José A Asensio, Javier Criado, Nicolás Padilla, and Luis Iribarne. A safe ap-

proach using virtual devices to evaluate home automation architectures prior

installations. In 2017 International Conference on Engineering, Technology

and Innovation (ICE/ITMC), pages 140–145. IEEE, 2017.

[26] José Andrés Asensio, Javier Criado, Nicolás Padilla, and Luis Iribarne. Emu-

lating home automation installations through component-based web technol-

ogy. Future Generation Computer Systems, 93:777–791, 2019.

[27] Tatiana Balikhina, Ali Al Maqousi, AbdElkarim AlBanna, and Fadi Shhadeh.

System architecture for smart home meter. In 2017 2nd International Confer-

157

ence on the Applications of Information Technology in Developing Renewable

Energy Processes & Systems (IT-DREPS), pages 1–5. IEEE, 2017.

[28] Sergiy Boroday, Alex Petrenko, Roland Groz, and Yves-Marie Quemener. Test

Generation for CEFSM Combining Specification and Fault Coverage. In Test-

ing of Communicating Systems XIV, pages 355–371. Springer, 2002.

[29] C Bourhfir, E Aboulhamid, Rachida Dssouli, and Nathalie Rico. A test case

generation approach for conformance testing of SDL systems. Computer Com-

munications, 24(3-4):319–333, 2001.

[30] C Bourhfir, Rachida Dssouli, E Aboulhamid, and Nathalie Rico. A guided

incremental test case generation procedure for conformance testing for CEFSM

specified protocols. In Testing of Communicating Systems, pages 279–294.

Springer, 1998.

[31] Miroslav Bures, Tomas Cerny, and Bestoun S Ahmed. Internet of Things:

Current Challenges in the Quality Assurance and Testing Methods. In Inter-

national conference on information science and applications, pages 625–634.

Springer, 2018.

[32] Kwang-Ting Cheng and Avinash S Krishnakumar. Automatic Functional

Test Generation Using the Extended Finite State Machine Model. In 30th

ACM/IEEE Design Automation Conference, pages 86–91. IEEE, 1993.

[33] Hyunji Chung, Jungheum Park, and Sangjin Lee. Digital forensic approaches

for Amazon Alexa ecosystem. Digital Investigation, 22:S15–S25, 2017.

[34] Lucio Ciabattoni, Gionata Cimini, Massimo Grisostomi, Gianluca Ippoliti,

and Sauro Longhi. An interoperable framework for home automation design,

158

testing and control. In 22nd Mediterranean Conference on Control and Au-

tomation, pages 1049–1054. IEEE, 2014.

[35] Francesco Coda, Carlo Ghezzi, Giovanni Vigna, and Franca Garzotto. Towards

a software engineering approach to Web site development. In Proceedings

Ninth International Workshop on Software Specification and Design, pages

8–17. IEEE, 1998.

[36] E De Buyser, Elias De Coninck, Bart Dhoedt, and Pieter Simoens. Exploring

the Potential of Combining Smart Glasses and Consumer-grade EEG/EMG

Headsets for Controlling IoT Appliances in the Smart Home. 2016.

[37] Statista Research Department. Number of Smart Homes in the United States

2017-2025, Jul 2021.

[38] Giuseppe Di Guglielmo, Franco Fummi, Cristina Marconcini, and Graziano

Pravadelli. A Pseudo-Deterministic Functional ATPG Based on EFSM

Traversing. In 2005 Sixth International Workshop on Microprocessor Test

and Verification, pages 70–75. IEEE, 2005.

[39] Arilo C Dias-Neto and Guilherme H Travassos. A Picture from the Model-

Based Testing Area: Concepts, Techniques, and Challenges. In Advances in

Computers, volume 80, pages 45–120. Elsevier, 2010.

[40] Martin Fowler. UML distilled: a brief guide to the standard object modeling

language. Addison-Wesley Professional, 2004.

[41] Pranay P Gaikwad, Jyotsna P Gabhane, and Snehal S Golait. A survey based

on Smart Homes system using Internet-of-Things. In 2015 International Con-

159

ference on Computation of Power, Energy, Information and Communication

(ICCPEIC), pages 0330–0335. IEEE, 2015.

[42] Aiman Gannous and Anneliese Andrews. Integrating Safety Certification Into

Model-Based Testing of Safety-Critical Systems. In 2019 IEEE 30th Inter-

national Symposium on Software Reliability Engineering (ISSRE), pages 250–

260. IEEE, 2019.

[43] Aiman Gannous, Anneliese Andrews, and Lamees Alhazzaa. Robustness Test-

ing of Safety-critical Systems: A Portable Insulin Pump Application. In 2020

International Conference on Computational Science and Computational Intel-

ligence (CSCI), pages 1736–1742. IEEE, 2020.

[44] Jerry Z Gao, David Kung, Pei Hsia, Yasufumi Toyoshima, and Cris Chen. Ob-

ject state testing for object-oriented programs. In Proceedings Nineteenth An-

nual International Computer Software and Applications Conference (COMP-

SAC’95), pages 232–238. IEEE, 1995.

[45] Cristian González García, Daniel Meana-Llorián, Juan Manuel Cueva Lovelle,

et al. A review about Smart Objects, Sensors, and Actuators. International

Journal of Interactive Multimedia & Artificial Intelligence, 4(3), 2017.

[46] Ahmed Gario, Anneliese Andrews, and Seana Hagerman. Testing of safety-

critical systems: An aerospace launch application. In 2014 IEEE Aerospace

Conference, pages 1–17. IEEE, 2014.

[47] David Gesvindr and Barbora Buhnova. Paasarch: Quality evaluation tool for

paas cloud applications using generated prototypes. In 2019 ieee international

conference on software architecture companion (icsa-c), pages 170–173. IEEE,

2019.

160

[48] David Gesvindr, Ondrej Gasior, and Barbora Buhnova. Architecture design

evaluation of PaaS cloud applications using generated prototypes: PaaSArch

Cloud Prototyper tool. Journal of Systems and Software, 169:110701, 2020.

[49] Anna Katrina Gomez and SimiKamini Bajaj. Challenges of Testing Complex

Internet of Things (IoT) Devices and Systems. In 2019 11th International

Conference on Knowledge and Systems Engineering (KSE), pages 1–4. IEEE,

2019.

[50] Rinu Gour. Top 10 Uses of the Internet of Things, Nov 2018.

[51] Wassila Guebli and Abdelkader Belkhir. Providing Services in an Intelligent

Environment: Smart Home Simulator based WoT. In Proceedings of the In-

ternational Conference on Internet of things and Cloud Computing, page 61.

ACM, 2016.

[52] Jon D Hagar. Software Test Architectures and Advanced Support Environ-

ments for IoT. In 2018 IEEE International Conference on Software Testing,

Verification and Validation Workshops (ICSTW), pages 252–256. IEEE, 2018.

[53] Olaf Henniger, Miao Lu, and Hasan Ural. Automatic Generation of Test Pur-

poses for Testing Distributed Systems. In International Workshop on Formal

Approaches to Software Testing, pages 178–191. Springer, 2003.

[54] Anders Hessel and Paul Pettersson. A Global Algorithm for Model-Based

Test Suite Generation. Electronic Notes in Theoretical Computer Science,

190(2):47–59, 2007.

[55] Robert M Hierons. Reaching and Distinguishing States of Distributed Sys-

tems. SIAM Journal on Computing, 39(8):3480–3500, 2010.

161

[56] William E Howden. Methodology for the Generation of Program Test Data.

IEEE Transactions on computers, 100(5):554–560, 1975.

[57] Weizheng Hu, Yonggang Wen, Kyle Guan, Guangyu Jin, and King Jet Tseng.

iTCM: Toward Learning-Based Thermal Comfort Modeling via Pervasive

Sensing for Smart Buildings. IEEE Internet of Things Journal, 5(5):4164–

4177, 2018.

[58] JC Huang. An Approach to Program Testing. ACM Computing Surveys

(CSUR), 7(3):113–128, 1975.

[59] Tongcheng Huang, Xiao Liang, Liang Ronglong, and Wang Zhiqi. Design and

Development for Smart Home Control System Based on WeChat Platform. In

2018 2nd International Conference on Data Science and Business Analytics

(ICDSBA), pages 278–282. IEEE, 2018.

[60] IDC. IoT Growth Demands Rethink of Long-Term Storage Strategies, Jul

2020.

[61] Samireh Jalali and Claes Wohlin. Systematic literature studies: Database

searches vs. backward snowballing. In Proceedings of the 2012 ACM-IEEE

international symposium on empirical software engineering and measurement,

pages 29–38. IEEE, 2012.

[62] Abdul Salam Kalaji, Robert Mark Hierons, and Stephen Swift. Generating

Feasible Transition Paths for Testing from an Extended Finite State Machine

(EFSM). In 2009 international conference on software testing verification and

validation, pages 230–239. IEEE, 2009.

162

[63] Murad Khan, Sadia Din, Sohail Jabbar, Moneeb Gohar, Hemant Ghayvat, and

SC Mukhopadhyay. Context-aware low power intelligent Smarthome based on

the Internet of things. Computers & Electrical Engineering, 52:208–222, 2016.

[64] Barbara Kitchenham and Stuart Charters. Guidelines for Performing System-

atic Literature Reviews in Software Engineering. 2007.

[65] Gábor Kovács, Zoltán Pap, and Gyula Csopaki. Automatic test selection

based on CEFSM specifications. Acta Cybernetica, 15(4):583–599, 2002.

[66] Kate Kozuch. The best smart home devices in 2022. Tom’s Guide, May 2022.

[67] David Kung, Nimish Suchak, Jerry Gao, Pei Hsia, Yasufumi Toyoshima, and

Chris Chen. On object state testing. In Proceedings Eighteenth Annual In-

ternational Computer Software and Applications Conference (COMPSAC 94),

pages 222–227. IEEE, 1994.

[68] David Lee and Mihalis Yannakakis. Principles and methods of testing finite

state machines-a survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[69] Victor Lesser, Michael Atighetchi, Brett Benyo, Bryan Horling, Anita Raja,

Regis Vincent, Thomas Wagner, Ping Xuan, and Shelley XQ Zhang. The

intelligent home testbed. environment, 2:15, 1999.

[70] J Jenny Li and W Eric Wong. Automatic test generation from communi-

cating extended finite state machine (CEFSM)-based models. In Proceed-

ings Fifth IEEE International Symposium on Object-Oriented Real-Time Dis-

tributed Computing. ISIRC 2002, pages 181–185. IEEE, 2002.

[71] Knud Lasse Lueth. State of the IoT 2020: 12 billion IoT connections, surpass-

ing non-IoT for the first time. IoT Analytics, Nov 2020.

163

[72] Chengwen Luo, Jiawei Wu, Jianqiang Li, Jia Wang, Weitao Xu, Zhong Ming,

Bo Wei, Wei Li, and Albert Y Zomaya. Gait Recognition as a Service for Un-

obtrusive User Identification in Smart Spaces. ACM Transactions on Internet

of Things, 1(1):1–21, 2020.

[73] Somayya Madakam, R Ramaswamy, and Siddharth Tripathi. Internet of

Things (IoT): A Literature Review. Journal of Computer and Communi-

cations, 3(05):164, 2015.

[74] Chuck Martin. Smart home technology hits 69% penetration in u.s. MediaPost,

Sep 2019.

[75] Mirella Martínez, Anna I Esparcia-Alcázar, Tanja EJ Vos, Pekka Aho, and

Joan Fons i Cors. Towards Automated Testing of the Internet of Things:

Results Obtained with the TESTAR Tool. In International Symposium on

Leveraging Applications of Formal Methods, pages 375–385. Springer, 2018.

[76] Daniel Meana-Llorián, Cristian González García, B Cristina Pelayo G-bustelo,

Juan Manuel Cueva Lovelle, and Nestor Garcia-Fernandez. IoFClime: The

fuzzy logic and the Internet of Things to control indoor temperature regard-

ing the outdoor ambient conditions. Future Generation Computer Systems,

76:275–284, 2017.

[77] Hubert Miles. How do ecobee room sensors work (explained), 2021.

[78] Saad Mubeen, Sara Abbaspour Asadollah, Alessandro Vittorio Papadopoulos,

Mohammad Ashjaei, Hongyu Pei-Breivold, and Moris Behnam. Management

of Service Level Agreements for Cloud Services in IoT: A Systematic Mapping

Study. IEEE Access, 6:30184–30207, 2017.

164

[79] Binh Minh Nguyen, Huan Phan, Duong Quang Ha, and Giang Nguyen.

An Information-centric Approach for Slice Monitoring from Edge Devices to

Clouds. Procedia computer science, 130:326–335, 2018.

[80] Cu D Nguyen, Alessandro Marchetto, and Paolo Tonella. Combining model-

based and combinatorial testing for effective test case generation. In Proceed-

ings of the 2012 International Symposium on Software Testing and Analysis,

pages 100–110, 2012.

[81] A Jefferson Offutt and Roland H Untch. Mutation 2000: Uniting the orthog-

onal. Mutation testing for the new century, pages 34–44, 2001.

[82] A Jefferson Offutt, Yiwei Xiong, and Shaoying Liu. Criteria for generating

specification-based tests. In Proceedings Fifth IEEE International Confer-

ence on Engineering of Complex Computer Systems (ICECCS’99)(Cat. No.

PR00434), pages 119–129. IEEE, 1999.

[83] Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann. Generating

test data from state-based specifications. Software testing, verification and

reliability, 13(1):25–53, 2003.

[84] Dario Olianas, Maurizio Leotta, and Filippo Ricca. Matter: A tool for gener-

ating end-to-end iot test scripts. Software Quality Journal, pages 1–35, 2021.

[85] Kai Petersen, Sairam Vakkalanka, and Ludwik Kuzniarz. Guidelines for con-

ducting systematic mapping studies in software engineering: An update. In-

formation and Software Technology, 64:1–18, 2015.

[86] Simone Pimont and Jean-Claude Rault. A software reliability assessment

based on a structural and behavioral analysis of programs. In Proceedings

165

of the 2nd international conference on Software engineering, pages 486–491,

1976.

[87] Jeremy Pitt, Ada Diaconescu, and Aikaterini Bourazeri. Democratisation of

the SmartGrid and the active participation of prosumers. In 2017 IEEE 26th

International Symposium on Industrial Electronics (ISIE), pages 1707–1714.

IEEE, 2017.

[88] Brien Posey, Sharon Shea, and Ivy Wigmore. What is fog computing? -

definition from iot agenda, Oct 2021.

[89] ET Powner and F Yalcinkaya. From basic sensors to intelligent sensors: defi-

nitions and examples. Sensor Review, 1995.

[90] Geraldo P Rocha Filho, Rodolfo I Meneguette, Guilherme Maia, Gustavo

Pessin, Vinícius P Gonçalves, Li Weigang, Jó Ueyama, and Leandro A Villas.

A fog-enabled smart home solution for decision-making using smart objects.

Future Generation Computer Systems, 103:18–27, 2020.

[91] Gérald Rocher, Jean-Yves Tigli, and Stéphane Lavirotte. Probabilistic Mod-

els Toward Controlling Smart-* Environments. IEEE Access, 5:12338–12352,

2017.

[92] Philipp Rosenkranz, Matthias Wählisch, Emmanuel Baccelli, and Ludwig Ort-

mann. A Distributed Test System Architecture for Open-Source IoT Software.

In Proceedings of the 2015 Workshop on IoT challenges in Mobile and Indus-

trial Systems, pages 43–48, 2015.

[93] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection

techniques. IEEE Transactions on software engineering, 22(8):529–551, 1996.

166

[94] B Sasikala, M Rajanarajana, and B Geethavani. Internet of Things: A survey

on security issues analysis and countermeasures. system, 8:9, 2017.

[95] Yiran Shen, Wen Hu, Mingrui Yang, Bo Wei, Simon Lucey, and Chun Tung

Chou. Face recognition on smartphones via optimised sparse representation

classification. In IPSN-14 Proceedings of the 13th International Symposium

on Information Processing in Sensor Networks, pages 237–248. IEEE, 2014.

[96] Pavle Skocir, Petar Krivic, Matea Tomeljak, Mario Kusek, and Gordan Jezic.

Activity Detection in Smart Home Environment. Procedia Computer Science,

96:672–681, 2016.

[97] Tamir Sobeih, Nick Whittaker, and Liangxiu Han. DIVINE: Building a Wear-

able Device for Intelligent Control of Environment Using Google Glass. In

2015 IEEE International Conference on Computer and Information Technol-

ogy; Ubiquitous Computing and Communications; Dependable, Autonomic and

Secure Computing; Pervasive Intelligence and Computing, pages 1280–1285.

IEEE, 2015.

[98] Robert A Sowah, Kwaku O Apeadu, Abdul Ofoli, Koudjo Koumadi, Amevi

Acakpovi, and Stephen K Armoo. Interoperability of Heterogeneous Appli-

ances in Home Automation Using theAllJoyn Framework. In 2018 IEEE 7th

International Conference on Adaptive Science & Technology (ICAST), pages

1–9. IEEE, 2018.

[99] Ming Tao, Kaoru Ota, and Mianxiong Dong. Ontology-based data semantic

management and application in IoT-and cloud-enabled smart homes. Future

generation computer systems, 76:528–539, 2017.

167

[100] Ming Tao, Chao Qu, Wenhong Wei, Bin Zhou, and Shuqiang Huang. Hybrid

Cloud Architecture for Cross-Platform Interoperability in Smart Homes. In

International Conference on Algorithms and Architectures for Parallel Pro-

cessing, pages 608–617. Springer, 2018.

[101] Artem Tulenkov, Anzhelika Parkhomenko, and Aleksandr Sokolyanskii. Eval-

uation and Selection of IoT Service for Smart House System Big Data Pro-

cessing. In 2019 IEEE 14th International Conference on Computer Sciences

and Information Technologies (CSIT), volume 2, pages 124–129. IEEE, 2019.

[102] Mark Utting and Bruno Legeard. Practical model-based testing: a tools ap-

proach. Elsevier, 2010.

[103] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of

model-based testing approaches. Software testing, verification and reliability,

22(5):297–312, 2012.

[104] Jeff Voas, Rick Kuhn, and Phil Laplante. Testing IoT Systems. In 2018 IEEE

Symposium on Service-Oriented System Engineering (SOSE), pages 48–52.

IEEE Computer Society, 2018.

[105] Sieng Wong, Chia Yee Ooi, Yuan Wen Hau, Muhammad N Marsono, and Nasir

Shaikh-Husin. Feasible transition path generation for EFSM-based system

testing. In 2013 ieee international symposium on circuits and systems (iscas),

pages 1724–1727. IEEE, 2013.

[106] Xia Yin, Jiangyuan Yao, Zhiliang Wang, Xingang Shi, Jun Bi, and Jianping

Wu. Modeling and Testing of Network Protocols with Parallel State Ma-

chines. IEICE TRANSACTIONS on Information and Systems, 98(12):2091–

2104, 2015.

168

[107] Lin Yuan. Study of Smart Home System Based on Cloud Computing and the

Key Technologies. In 2015 International Conference on Computational Intel-

ligence and Communication Networks (CICN), pages 968–972. IEEE, 2015.

[108] Muhammad Mu’izzudeen Yusri, Shahreen Kasim, Rohayanti Hassan, Zubaile

Abdullah, Husni Ruslai, Kamaruzzaman Jahidin, and Mohammad Syafwan

Arshad. Smart mirror for smart life. In 2017 6th ICT International Student

Project Conference (ICT-ISPC), pages 1–5. IEEE, 2017.

[109] Justyna Zander, Ina Schieferdecker, and Pieter J Mosterman. Model-based

testing for embedded systems. CRC press, 2017.

[110] ZhiHao Zhang, DongMing Yuan, and HeFei Hu. Multi-Layer Modeling of

OpenFlow based on EFSM. In 2016 4th International Conference on Ma-

chinery, Materials and Information Technology Applications, pages 524–529.

Atlantis Press, 2017.

[111] Meftah Zouai, Okba Kazar, Belgacem Haba, and Hamza Saouli. Smart house

simulation based multi-agent system and internet of things. In 2017 Inter-

national Conference on Mathematics and Information Technology (ICMIT),

pages 201–203. IEEE, 2017.

169

	Model-Based Testing of Smart Home Systems Using EFSM, CEFSM, and FSMApp
	Recommended Citation

	Model-Based Testing of Smart Home Systems Using EFSM, CEFSM, and FSMApp
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1675731193.pdf.nW5Q0

