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Abstract

We will begin by discussing power graphs of Moufang loops. We are able to show

that as in groups the directed power graph of a Moufang loop is uniquely determined by

the undirected power graph. In the process of proving this result we define the generalized

octonion loops, a variety of Moufang loops which behave analogously to the generalized

quaternion groups. We proceed to investigate para-F quasigroups, a variety of quasigroups

which we show are antilinear over Moufang loops. We briefly depart from the context of

Moufang loops to discuss solvability in general loops. We then prove some results on the

cosets of subloops of Moufang loops. Finally, we investigate generalizations of the variety

of Moufang loops, the varieties of universally and semi-universally flexible loops.
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Kumosa.

Thank you, also, to my parents and sister Caitlin. Your unwavering support has meant

the world to me.

Most of all, thank you to Emily and Iris, I wouldn’t have been able to do this without

you two.

iii



Table of contents

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Definitions and basic results . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Magmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Multiplication groups . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.5 Quotient loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.6 Homotopy and isotopy . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.7 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.8 Inverse properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.9 Automorphic loops . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.10 Conjugacy closed loops . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.11 Bol loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.12 Generalizations of associativity . . . . . . . . . . . . . . . . . . . . 13
1.2.13 Moufang loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.14 Partitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Power graphs of Moufang loops 16
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Generalized quaternion groups . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Moufang loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.3 Power graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Chein’s construction . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Moufang p-loops with a unique subloop of order p . . . . . . . . . . . . . . 20
2.4 Generalized octonion loops . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Undirected power graphs determine directed power graphs . . . . . . . . . 24

2.5.1 Non-identity vertex connected to all others . . . . . . . . . . . . . . 25
2.5.2 Only identity connected to all others . . . . . . . . . . . . . . . . . 27

3 Para-F quasigroups 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Medial and F-quasigroups . . . . . . . . . . . . . . . . . . . . . . 29
3.1.2 Candidates for para-F . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Para-F quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Loop isotopes are Moufang . . . . . . . . . . . . . . . . . . . . . . . . . . 35

iv



3.3 Para-F quasigroups are antilinear over Moufang loops . . . . . . . . . . . . 42
3.4 Para-FG quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4 Solvability for loops 55
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 Q/Nuc(Q) an abelian group . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Q/Nuc(Q) a group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Further results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Inverses preserved by right inner mappings . . . . . . . . . . . . . 64
4.4.2 Right automorphic . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.3 Left nucleus and commutant . . . . . . . . . . . . . . . . . . . . . 66

4.5 Counterexamples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.1 Inn(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.2 Left and middle nuclei . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Cosets in Moufang loops 69
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Coset intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 A first approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 An iterative approach . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 An Equivalence Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Orbits of MltL(Q;S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Universally and semi-universally flexible loops 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Basic examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3 Central extensions of Moufang loops . . . . . . . . . . . . . . . . . . . . . 86
6.4 A UF loop which is not middle Bol . . . . . . . . . . . . . . . . . . . . . . 89

7 Future directions of research 90
7.1 Power graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 Future directions of research . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Para-F quasigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4 Solvability for loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.5 Cosets in Moufang loops . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.6 SUF loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 93

Appendix 97
Appendix A Automated proofs 97

A.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2 Para-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

v



A.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
A.2.2 PROVER9 proof of Proposition 3.12 . . . . . . . . . . . . . . . . . . 105

A.3 Q/Nuc(Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.3.1 PROVER9 proof of Theorem 4.25 . . . . . . . . . . . . . . . . . . . . 107

vi



List of tables

3 Para-F quasigroups 29
3.1 A quasigroup which is left but not right para-F . . . . . . . . . . . . . . . . 34
3.2 A quasigroup which is para-F but not F, paramedial, nor semimedial . . . . 34

4 Solvability for loops 55
4.1 Q/Z(Q) an abelian group and Q not RCC . . . . . . . . . . . . . . . . . . 66
4.2 Q/Nuc(Q) an abelian group but Rx,yTz ̸= TzRx,y . . . . . . . . . . . . . . 67
4.3 Associators and commutators in left and middle nuclei but InnR not abelian 68

5 Cosets in Moufang loops 69
5.1 Moufang loop with an intersection of cosets which cannot be translated to

a subloop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Moufang loop and subloop with trivial ∼H-classes . . . . . . . . . . . . . . 80

6 Universally and semi-universally flexible loops 85
6.1 A loop which is left SUF but not right SUF . . . . . . . . . . . . . . . . . 86
6.2 Loops checked for SUF IP and not Moufang . . . . . . . . . . . . . . . . . 88
6.3 A loop which is UF and not middle Bol . . . . . . . . . . . . . . . . . . . 89

vii



List of figures

2 Power graphs of Moufang loops 16
2.1 The (undirected) power graph of O16 . . . . . . . . . . . . . . . . . . . . . 24

3 Para-F quasigroups 29
3.1 Generalizations of medial and paramedial . . . . . . . . . . . . . . . . . . 32
3.2 Generalizations of medial and paramedial with para-F . . . . . . . . . . . . 44

7 Future directions of research 90
7.1 Generalizations of medial and paramedial with trimedial . . . . . . . . . . 91

viii



Chapter 1: Introduction

1.1 Overview

In this dissertation we will investigate Moufang loops and quasigroups related to them.

In particular, we will attempt to transfer results from group theory to the context of Moufang

loops and provide structural descriptions of varieties of quasigroups related to Moufang

loops.

Our first major result will be the extension of a result on the power graphs of groups to

Moufang loops. Namely, the undirected power graph of a group uniquely determines the

directed power graph. We are able to show that the same result holds for Moufang loops.

In the process we describe a class of loops, which we have termed the generalized octonion

loops, and prove several results showing that they behave analogously to the generalized

quaternion groups.

We will next investigate a variety of quasigroups related to Moufang loops, that we

have termed para-F quasigroups. The variety of medial quasigroups has been extensively

studied and has two natural generalizations: F-quasigroups and semimedial quasigroups.

The variety of paramedial quasigroups is defined analogously to the variety of medial

quasigroups and has also been generalized to semiparamedial quasigroups, the analogue

of semimedial quasigroups. We argue that our definition of para-F quasigroups is the cor-

rect analogue to F-quasigroups and prove analogous results to those that have been shown

for medial, paramedial, semimedial, semiparamedial, and F-quasigroups.

We will then depart from the setting of Moufang loops to investigate definitions of

solvability for general loops. The definition of solvability for groups is relatively easy

to work with, being based solely on subgroups generated by certain elements. It is well
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known that the definition of solvability for groups coincides with the definition arising

from universal algebra. We are able to find a sufficient condition under which this result

extends to loops. Namely, the definitions of solvability coincide if Q/Nuc(Q) is an abelian

group. Additionally, we are able to prove some results for loops Q such that Q/Nuc(Q) is

a group.

The proof of Lagrange’s Theorem for groups relies on the fact that cosets of a subgroup

partition the group. While it is known that Lagrange’s Theorem holds in Moufang loops

the proof relies on the classification of finite simple Moufang loops and does not explicitly

construct a partition of the loop. We attempted to adapt the proof of Lagrange’s Theorem

for groups to the context of Moufang loops by constructing a partition of the loop by cosets

or orbits of the relative left multiplication group. We were ultimately unsuccessful in this

endeavor, but were able to prove some intermediate results on the cosets of subloops of

Moufang loops.

Finally, we will investigate another variety of loops closely related to Moufang loops,

the semi-universally flexible (SUF) loops. Our goal was to construct a loop which is SUF

and has the inverse property but is not Moufang. We were ultimately unsuccessful, but

were able to negatively answer a conjecture that all universally flexible loops are middle

Bol.

1.2 Definitions and basic results

While we intuitively think of quasigroups and loops as being generalizations of groups,

a formal definition arises much more naturally by considering these objects as specific

varieties of magmas. So we will begin by defining magmas and proceed by discussing

successively more specific varieties.

1.2.1 Magmas.

Definition 1.1. A magma is a set Q along with a single binary operation · : Q×Q→ Q.

2



Definition 1.2. The multiplication table of a magma (Q, ·) is the table labeled with magma

elements xi such that the entry at position (i, j) in the table is xi · xj .

We use juxtaposition to denote the operation in a magma whenever convenient, and to

avoid excessive parentheses, juxtaposition binds more tightly than the explicit operation,

e.g., x · yz denotes x · (y · z).

Definition 1.3. For a magmaQ and x ∈ Qwe define the translation maps Lx, Rx : Q→ Q

by

Lx(y) = x · y,

Rx(y) = y · x.

1.2.2 Quasigroups.

Definition 1.4. A quasigroup (Q, ·) is a magma such that Lx, Rx are bijections for all

x ∈ Q.

Definition 1.5. A Latin square is an nxn table with entries x1, . . . , xn such that each xi

appears exactly once in each row and each column.

Considering only finite quasigroups we have the following characterization:

Definition 1.6. A finite quasigroup (Q, ·) is a magma whose multiplication table is a Latin

square.

It is frequently convenient to use infix notation for the inverses of the translation maps,

so we will also use the following equivalent definition of a quasigroup:

Definition 1.7. A quasigroup is a setQ along with three binary operations ·, \, / : Q×Q→

Q satisfying:

(x/y) · y = x, (x · y)/y = x,

3



x · (x\y) = y, x\(x · y) = y.

Intuitively, we can also think of quasigroups as being groups without associativity. This

intuition is formalized by the following result:

Fact 1.8. Let (Q, ·) be a quasigroup which is also associative. Then (Q, ·) is a group.

Standard references for quasigroup theory are [1, 2, 3, 4, 5].

1.2.3 Loops.

Definition 1.9. A loop (Q, ·, \, /, 1) is a quasigroup (Q, ·, \, /) with an element 1 ∈ Q

satisfying:

1 · x = x, x · 1 = x.

Basic references for loop theory are [6], [2], [3]. Any uncited facts in the discussion

that follows can be found in these references.

Definition 1.10. Let (Q, ·) be a loop. A subloop of Q is a subset of Q which is closed

under the operations ·, \, and / and contains the identity.

Definition 1.11. Let (Q, ·) be a loop and S ⊆ Q. Then the subset generated by S, ⟨S⟩, is

the smallest subloop of Q containing S.

1.2.4 Multiplication groups.

Definition 1.12. Let (Q, ·) be a quasigroup. The left multiplication group of Q is

MltL(Q) = ⟨Lx : x ∈ Q⟩.

The right multiplication group, MltR(Q) is defined dually.
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Definition 1.13. Let (Q, ·) be a quasigroup. The multiplication group of Q is

Mlt(Q) = ⟨Lx, Rx : x ∈ Q⟩.

Definition 1.14. Let (Q, ·, 1) be a loop. The left inner mapping group of Q is

InnL(Q) = {f ∈ MltL(Q) : f(1) = 1}.

The right inner mapping group is defined dually.

Definition 1.15. Let (Q, ·, 1) be a loop. The inner mapping group of Q is

Inn(Q) = {f ∈ Mlt(Q) : f(1) = 1}.

Elements of Inn(Q) are called inner mappings.

Fact 1.16. Each inner mapping group is a subgroup of the corresponding multiplication

group.

Fact 1.17. If (Q, ·, 1) is a group, then Inn(Q) is precisely the inner automorphism group of

Q.

Definition 1.18. Let (Q, ·) be a loop. For all x, y ∈ Q we define Lx,y, Rx,y, Tx : Q → Q

by:

Lx,y(z) = (xy)\(x · yz),

Rx,y(z) = (zx · y)/(xy),

Mx,y(z) = (y\(yz · x))/x,

Tx(z) = (xz)/x.

5



Note that for all x, y ∈ Q we have

Lx,y(1) = 1,

Rx,y(1) = 1,

Mx,y(1) = 1,

Tx(1) = 1.

So Lx,y, Rx,y,Mx,y, Tx ∈ Q for all x, y ∈ Q.

Definition 1.19. Define Inn∗(Q) = ⟨Lx,y, Rx,y,Mx,y : x, y ∈ Q⟩.

Informally, we think of Inn∗(Q) as being the group of all inner mappings measuring

associativity.

Fact 1.20. Lx,y, Rx,y, Tx ∈ Inn(Q). Further

Inn(Q) = ⟨Lx,y, Rx,y, Tx : x, y ∈ Q⟩,

InnL(Q) = ⟨Lx,y : x, y ∈ Q⟩,

and

InnR(Q) = ⟨Rx,y : x, y ∈ Q⟩.

1.2.5 Quotient loops.

Definition 1.21. Let (Q, ·) be a loop and S ≤ Q. Then S is a normal subloop of Q (S⊴Q)

if and only if

φ(S) = S ∀φ ∈ Inn(Q).

Definition 1.22. Let (Q, ·) be a loop and S ⊆ Q. Then the normal subloop generated by

S, Ng(S) is the smallest normal subloop of Q containing S.

6



Definition 1.23. Let (Q, ·) be a loop with normal subloop S. Then the quotient loop Q/S

is the loop with underlying set {qS : q ∈ S}, operation xS · yS = (x · y)S, and identity

element 1S = S.

Fact 1.24. The requirement that S be normal in the preceding definition ensures that Q/S

is a loop with a well-defined operation.

1.2.6 Homotopy and isotopy.

Definition 1.25. Let (Q, ·), (P,+) be magmas. A homomorphism is a map f : Q → P

satisfying:

f(x) + f(y) = f(x · y).

Definition 1.26. A bijective homomorphism is an isomorphism.

Definition 1.27. Let (Q, ·), (P,+) be magmas. A homotopy is a triple of maps (α, β, γ) :

Q→ P satisfying:

α(x) + β(y) = γ(x · y)

for all x, y ∈ Q.

Homotopy generalizes homomorphism in the following sense:

Fact 1.28. Let (Q, ·), (P,+) be magmas and f : Q → P be a homomorphism. Then

(f, f, f) is a homotopy.

Definition 1.29. A homotopy in which each of α, β, γ is a bijection is an isotopy.

Fact 1.30. For a finite quasigroup an isotopy is equivalent to permuting rows of the mul-

tiplication table by α, permuting columns of the multiplication table by β, and relabeling

elements by γ.

As above, isotopy is a generalization of isomorphism. Note that if two groups are

isotopic, then they are isomorphic.

7



Fact 1.31 ([2]). Suppose that (G, ·), (H,+) are groups and (α, β, γ) : G → H is an

isotopy. Then (G, ·), (H,+) are isomorphic.

Fact 1.32 ([2]). Let (Q, ·) be a quasigroup, (P,+) be a magma, and (α, β, γ) : (Q, ·) →

(P,+) be an isotopy. Then (P,+) is a quasigroup.

Definition 1.33. (Q, ·) and (P,+) are said to be istotopic if there exists an isotopy from Q

to P . Quasigroups isotopic to Q are said to be isotopes of Q.

Definition 1.34. Note that not all isotopes of a loop need be loops. Isotopes which happen

to be loops are called loop isotopes.

Definition 1.35. Let (Q, ·) be a loop. An isotope of (P,+) is principal if it has the same

underlying set, that is P = Q.

Fact 1.36 ([2]). Let (Q, ·) be a quasigroup, then up to isomorphism all principal loop

isotopes of (Q, ·) are of the form (Q,+), where

x+ y = (x/a) · (b\y)

for fixed a, b ∈ Q.

Remark. Note that together the preceding results tell us that up to isomorphism all loop

isotopes of (Q, ·) are of the form (Q,+), where x+ y = (x/a) · (b\y) for fixed a, b ∈ Q.

Definition 1.37. Let (Q, ·) be a quasigroup. A left isotope of (Q, ·) is (Q,+) with

x+ y = (x/a) · y

for fixed a ∈ Q.

Right isotope is defined dually.

8



Definition 1.38. A property of a loop (Q, ·) is universal if it holds in all loop isotopes of

Q.

Definition 1.39. A property of a loop Q is semi-universal if it holds in all left and right

isotopes of (Q, ·).

1.2.7 Linearity.

Definition 1.40. A quasigroup (Q, ·) is linear over a loop (Q,+) if there exist f, g ∈

Aut(Q,+), c ∈ Q such that

x · y = f(x) + (g(y) + c)

for all x, y ∈ Q.

As the following result shows, being linear over a loop is at least as strong as being

isotopic to a loop.

Proposition 1.41. Suppose that (Q, ·) is linear over (Q,+). Then (Q,+) is an isotope of

(Q, ·).

Proof. Suppose that x · y = f(x) + (g(y) + c) for all x, y ∈ Q, where f, g ∈ Aut(Q,+),

c ∈ Q. Let γ = id, α(x) = f(x), and β(x) = g(x) + c. It is immediate that α, β, γ are

bijections. Let x, y ∈ Q be given, then

α(x) + β(y) = f(x) + (g(y) + c)

= x · y by assumption

= γ(x · y)

Thus (α, β, γ) is an isotopy and (Q,+) is an isotope of (Q, ·).
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Note that the converse does not hold. Consider the following multiplication tables:

· 0 1 2 3
0 2 0 1 3
1 3 2 0 1
2 1 3 2 0
3 0 1 3 2

+ 0 1 2 3
0 0 1 2 3
1 1 0 3 2
2 2 3 1 0
3 3 2 0 1

Then (Q, ·) is isotopic to (Q,+) by x + y = (x/0) · (1\y). But (Q, ·) is not medial

since 10 · 00 = 3 ̸= 1 = 00 · 01. Since (Q,+) is an abelian group, this shows that (Q, ·)

cannot be linear over (Q,+), as we will see later.

1.2.8 Inverse properties.

Definition 1.42. A loop (Q, ·) has the left inverse property (LIP) if there exists a bijection

λ : Q→ Q such that for all x, y ∈ Q

λ(x) · xy = y

Definition 1.43. Similarly, a loop (Q, ·) has the right inverse property (RIP) if there exists

a bijection ρ : Q→ Q such that for all x, y ∈ Q

xy · ρ(y) = x

Note that LIP and RIP loop have two sided inverses. That is, in an LIP loop λ(x)x =

1 = xλ(x) and in an RIP loop ρ(x)x = 1 = xρ(x). So in an LIP or RIP loop λ(x) =

ρ(x) = 1/x = x\1. Further, note that λ(x)y = x\y and xρ(y) = x/y.
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Definition 1.44. A loop (Q, ·) which has both the left and right inverse properties is said

to be an inverse property loop (IP loop).

When it is the case that 1/x = x\1 we will frequently use the inversion map −1 : Q→

Q, where x−1 = λ(x) = ρ(x) = 1/x = x\1, instead of the left and right divisions.

Definition 1.45. An IP loop (Q, ·, −1) has the automorphic inverse property (AIP) if the

following equation holds for all x, y ∈ Q

(x · y)−1 = x−1 · y−1.

Definition 1.46. An IP loop (Q, ·, −1) has the antiautomorphic inverse property (AAIP) if

the following equation holds for all x, y ∈ Q

(x · y)−1 = y−1 · x−1.

Fact 1.47. All IP loops have the AAIP.

1.2.9 Automorphic loops.

Definition 1.48. A loop (Q, ·, 1) is left automorphic if

ϕ(x · y) = ϕ(x) · ϕ(y) ∀ϕ ∈ InnL(Q), x, y ∈ Q.

Right automorphic is defined dually.

Definition 1.49. A loop (Q, ·, 1) is automorphic if

ϕ(x · y) = ϕ(x) · ϕ(y) ∀ϕ ∈ Inn(Q), x, y,∈ Q.
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Remark. Note that ϕ is a bijection for all ϕ ∈ Inn(Q), so a loop is (left/right) automorphic

if and only if all (left/right) inner mappings are automorphisms.

1.2.10 Conjugacy closed loops.

Definition 1.50. A loop (Q, ·) is left conjugacy closed (LCC) if it satisfies

z · yx = ((zy)/z) · zx

for all x, y, z ∈ Q.

Right conjugacy closed (RCC) is defined dually.

Fact 1.51. A loop is left (right) conjugacy closed if and only if the set of left translations

is closed under conjugation [7].

Definition 1.52. A loop (Q, ·) is conjugacy closed (CC) if it is both left and right conjugacy

closed

1.2.11 Bol loops.

Definition 1.53. A loop (Q, ·) is left Bol if the following identity holds for all x, y, z ∈ Q

x · (y · xz) = (x · yx) · z.

Fact 1.54. (Q, ·) is left Bol if and only if it is universally LIP [8].

Right Bol loops are defined dually and have a dual characterization.

Definition 1.55. A loop (Q, ·) is middle Bol if the following identity holds for all x, y, z ∈

Q

x · (yz\x) = (x/z) · (y\x).

Fact 1.56. A loop (Q, ·) is middle Bol if and only if it is universally AAIP [8].
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1.2.12 Generalizations of associativity.

Definition 1.57. A power associative loop is a loop (Q, ·) having the property that ⟨x⟩ is a

group for all x ∈ Q.

Definition 1.58. A diassociative loop is a loop (Q, ·) having the property that ⟨x, y⟩ is a

group for all x, y ∈ Q.

Definition 1.59. A loop (Q, ·) is flexible if the following identity holds for all x, y ∈ Q

xy · x = x · yx.

Definition 1.60. A loop (Q, ·) is left alternative if the following identity holds for all x, y ∈

Q

x · xy = xx · y.

Right alternative is defined dually.

Definition 1.61. A loop (Q, ·) is alternative if it is both left and right alternative.

1.2.13 Moufang loops.

Definition 1.62. A Moufang loop is a loop which is both left and right Bol.

Equivalently, a Moufang loop is a loop satisfying any (and hence all) of the Moufang

identities:

z · (x · zy) = (zx · z) · y,

x · (z · yz) = (xz · y) · z,

zx · yz = (z · xy) · z,

zx · yz = z · (xy · z).
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Standard examples of nonassociative Moufang loops are the unit octonions with mul-

tiplication and the sphere S7 with octonion multiplication.

Fact 1.63 ([9]). All Moufang loops are IP loops.

Fact 1.64 ([9]). All Moufang loops are diassociative.

Fact 1.65 ([10]). All Moufang loops have the Lagrange property.

Definition 1.66 ([11]). Let (Q, ·) be a loop, the Moufang center of Q is

K(Q) = {a ∈ Q : (a+ a) + (x+ y) = (a+ x) + (a+ y),∀x, y ∈ Q}.

Fact 1.67 ([2]). The Moufang center of any loop (Q, ·) is a commutative Moufang subloop

of Q.

Definition 1.68 ([11]). An NK-loop is a loop (Q, ·) such that for all a ∈ Q there exists

n ∈ Nuc(Q), k in the Moufang center of Q such that

a = n · k.

Fact 1.69 ([11]). If (Q, ·) is an NK loop, then it is an automorphic Moufang loop.

1.2.14 Partitions.

Definition 1.70. Let A be a set, a partition of A is C ⊂ P(A) such that

⋃
C = A,

A ∩B = ∅ ∀A ̸= B ∈ C,

A ̸= ∅ ∀A ∈ C.

Definition 1.71. The elements of a partition are called blocks.
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Definition 1.72. A partition is uniform if all blocks have the same size.
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Chapter 2: Power graphs of Moufang loops

2.1 Introduction

Power graphs of both groups and semigroups have been widely studied, for example

in [12], [13], [14], [15], [16], [17], [18]. While the power graph of a quasigroup can be

defined analogously to that of a group, power graphs of quasigroups and loops have thus far

been little studied. In this paper we begin transferring results on the power graphs of groups

to the context of loops by addressing a question posed by Peter Cameron: if two Moufang

loops have isomorphic undirected power graphs, must they have isomorphic directed power

graphs? In [14] Cameron shows that two groups with isomorphic undirected power graphs

must have isomorphic directed power graphs. We are able to extend that result to Moufang

loops in our main theorem:

Theorem 2.1. Moufang loops with isomorphic undirected power graphs have isomorphic

directed power graphs.

Cameron’s proof in [14] relied on handling groups with multiple vertices connected to

all others in the power graph separately. Groups with such power graphs are either cyclic

or generalized quaternion. We take a similar approach here. In generalizing to Moufang

loops, a third type of loop with such a power graph arises; we have termed these generalized

octonion loops. We will investigate the structure of generalized octonion loops, yielding

the following characterization:

Theorem 2.2. A finite Moufang loop is generalized octonion if and only if it is a non-

associative Moufang loop having order a power of p for some prime p and a unique element

of order p.
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We will also construct explicit examples of generalized octonion loops.

2.2 Preliminaries

2.2.1 Generalized quaternion groups. In the process of proving Theorem 2.1 we will

investigate a class of loops which behave analogously to the generalized quaternion groups.

We recall some results on generalized quaternion groups to illustrate this similarity here.

Definition 2.3. The generalized quaternion groups are given by the presentation:

Q4n = ⟨a, b : an = b2, a2n = 1, b−1ab = a−1⟩

Fact 2.4. Let G be a group which is not cyclic. Then the following are equivalent:

• G is generalized quaternion.

• G is isomorphic to ⟨e iπ
n , j⟩ as a subgroup of the unit quaternions for some n [19].

• G is a finite p group in which every subgroup is cyclic [20].

• G is a finite p group with a unique subloop of order p [19].

Remark. A direct result of fact 2.4 is: A finite p-group with a unique subloop of order p is

either cyclic or generalized quaternion. We will show that this result extends very naturally

to Moufang loops.

Fact 2.5 ([21]). Let Q4n = ⟨a, b : an = b2, a2n = 1, b−1ab = a−1⟩. Then every element

x ∈ Q4n can be written uniquely as x = ak or x = akb for some k ∈ Z2n.

2.2.2 Moufang loops. We now present some fundamental results on Moufang loops which

we will need in later sections.

Theorem 2.6 (Moufang’s Theorem [9]). Suppose that M is a Moufang loop and x, y, z ∈

M are such that x · yz = xy · z. Then ⟨x, y, z⟩ is a group.

17



Proposition 2.7. Let M be a Moufang loop. Then

• M has the inverse property.

• M is diassociative (and thus power-associative and IP) [9].

• If M is finite, then for all x ∈M , |x| divides |M |.

• Suppose that |M | = pk for p prime, k ∈ Z+. Then there exists S ≤ M with

|S| = pk−1.

Regarding the last statement, note that the center of a Moufang p-loop is nontrivial [22]

[23]. So an inductive argument identical to that used to prove the last result for groups will

also prove the existence of such a subloop.

2.2.3 Power graphs. To maintain generality, in what follows let A = (A, ·) be a magma

with · a power-associative binary operation.

Definition 2.8. The directed power graph of A is the directed graph with vertex set A and

an edge x→ y if and only if xk = y for some k ∈ Z.

Definition 2.9. The undirected power graph of A is the graph with vertex set A and an

edge between x and y if and only if xk = y for some k ∈ Z or yk = x for some k ∈ Z.

So the undirected power graph of A is the underlying undirected graph of the directed

power graph of A. In the remainder of this paper, power graph will refer to the undirected

power graph unless otherwise specified.

We will use the following definition for generalized octonion loops in the interest of

closely following this characterization of generalized quaternion groups.

Definition 2.10. LetM be a nonassociative Moufang p-loop such that every abelian subloop

of M is cyclic, then we call M a generalized octonion loop.

18



2.2.4 Chein’s construction.

Theorem 2.11 ([24]). LetG be a group. For 1 ̸= c ∈ Z(G) and u an indeterminate. Define

(M, ·) by M = G ∪Gu and

g · h = gh,

g · (hu) = (hg)u,

gu · h = (gh−1)u,

gu · hu = ch−1g.

for all g, h ∈ G. Then M is a Moufang loop. Further, M is associative if and only if G is

abelian.

Throughout the paper we will denote loops arising from this construction by M(G, 2),

where G is the underlying group. We will show that the loops M(Q4n, 2), where Q4n is a

generalized quaternion group, are generalized octonion.

Theorem 2.12 ([24]). Suppose that M is a finite Moufang loop with a set of generators

{u, u1, . . . , un} such that

• u /∈ G = ⟨u1, . . . , un⟩,

• u2 ∈ N(⟨u2, G⟩),

• conjugation by u maps G into itself.

Let k be the smallest positive integer such that uk ∈ G. Then

• each element of M can be expressed uniquely as guα where g ∈ G and 0 ≤ α < k;

and

19



• multiplication of elements of M is given by

(g1u
α)(g2u

β) = [θ−β(θβ(g1)θ
β−α(g2))g

ϵ
0]u

ρ

where

θ(g) = u−1gu, g0 = uk ∈ G, ϵ = ⌊α + β

k
⌋, and ρ = α + β − ϵk

.

2.3 Moufang p-loops with a unique subloop of order p

We will begin by classifying Moufang p-loops M with a unique subloop of order p. In

the proof of Theorem 2.1, we will handle such loops separately. Note that every nontrivial

subloop of a Moufang loop of order pn with a unique subloop of order p also has a unique

subloop of order p by the last point of Proposition 2.7.

Theorem 2.13. A Moufang p-loop M with a unique subloop of order p is either a cyclic

group, a generalized quaternion group, or a generalized octonion loop. These last two only

occur when p = 2.

We will first handle the simpler case that p is an odd prime.

Lemma 2.14 ([25]). Let G be a group of order pn, p > 2 prime with a unique subgroup of

order ps for some 0 < s < n. Then G is cyclic.

Lemma 2.15. Let M be a Moufang loop of order pn for some prime p > 2 and n ∈ N such

that M has a unique subloop of order p. Then M is a cyclic group.

Proof. Let x, y, z ∈ M be given. If ⟨x, y⟩ = M , then M is a group by diassociativity

and we are done by Lemma 2.14. Otherwise ⟨x, y⟩ ⊊ M must be a p-group with a unique

subgroup of order p and thus cyclic by Lemma 2.14. Say ⟨x, y⟩ = ⟨g⟩ and x = gi, y = gj .
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Then x · yz = gi · gjz = gi+jz = xy · z by diassociativity. Hence in either case M is a

group and thus cyclic by Lemma 2.14.

We will now handle the case p = 2. In what follows, let M be a nonassociative

Moufang loop of order 2n with a unique subloop of order 2.

Lemma 2.16. For all x, y ∈M exactly one of the following holds:

• xy = yx,

• xy = y−1x and |x| = 4,

• xy = yx−1 and |y| = 4,

• |x| = |y| = 4.

Proof. If ⟨x, y⟩ is cyclic, then xy = yx, so assume that G = ⟨x, y⟩ = ⟨a, b|a2n = b4 =

1, ab = ba−1⟩ is generalized quaternion. All elements of G can be written in the form aib

or ai for some i ∈ N. If x = ai, y = aj , then xy = yx. If x = aib, then x2 = aibaib =

ba−iaib = b2. Similarly, if y = ajb, then |y| = 4. If x = ai, y = ajb, then xy = aiajb =

ajba−i = yx−1. Finally, if x = aib, y = aj , then xy = aibaj = a−jaib = y−1x.

2.4 Generalized octonion loops

To make the Theorem 2.2 more closely follow the result for groups we will investi-

gate the the generalized octonion loops. We will show that they behave analogously to

generalized quaternion groups.

Theorem 2.17. A finite Moufang loop is generalized octonion if and only if it is a non-

associative Moufang p-loop with a unique element of order p.

Proof. First let M be a finite non-associative Moufang p-loop with a unique subloop of

order p. Let S ≤M be an associative commutative subloop. Then S has a unique subloop

of order p and thus is cyclic by Lemma 2.14. Thus M is generalized octonion.
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Now let M be a generalized octonion loop. By Lemma 2.15 M must be a Moufang

2-loop. It is immediate that M has a subloop of order 2 by the elementwise Lagrange

property. We need only show that this subloop is unique. Suppose that S, T ≤ M with

|S| = |T | = 2 and S ̸= T . Say that 1 ̸= s ∈ S and 1 ̸= t ∈ T . Then ⟨s, t⟩ is a group in

which every commutative subgroup is cyclic and thus is either cyclic or generalized quater-

nion. But both cyclic 2-groups and generalized quaternion groups have unique elements of

order 2. Thus s = t and M is generalized octonion.

Theorem 2.18. M(Q4n, 2) is a generalized octonion loop.

Proof. It is shown in [24] that M is a nonassociative Moufang loop. So every associative

subloop of M is either cyclic or generalized quaternion and thus every commutative and

associative subloop of M is cyclic. Thus M is generalized octonion.

Let {1, e1, . . . , e7} be the standard basis for the octonions.

Theorem 2.19. The subloop of the unit octonions generated by {e
e1π
n , e3, e5} for some

n ∈ N. Is generalized octonion.

Proof. Let M = ⟨e
e1π
n , e3, e5⟩ and note that M is nonassociative. We will use Theorem 1

in [24] to show that this is precisely M(Q4n, 2), taking the presentation Q4n = ⟨e
e1π
n , e3⟩.

First note that e5 /∈ Q4n. Further, e25 = −1 ∈ N(⟨−1, Q4n⟩). Finally

e5e3e
−1
5 = (e

e1π
n )−1 ∈ Q4n

Thus Q4n is closed under conjugation by e5 and by Theorem 2.12, M is precisely

M(Q4n, 2). We showed in Theorem 2.18 that this is the same as M being a generalized

octonion loop.
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Lemma 2.20. Suppose that M is generalized octonion with S1 ⊴ S2 ⊴ . . . ⊴ Sm = M

where Si+1 satisfies Theorem 2.12 with G = Si. Then there exists such a sequence with

|u| = 4 in Theorem 2.12 at each stage.

Proof. Suppose that Sk is the first index at which |u| ≠ 4. Let s0 be the u in Theorem 2.12

at this stage. Then ⟨S1, s0⟩ is a generalized quaternion group since s0 commutes with all

elements of S1 by Theorem 2.7.

Now let 1 < i < k and si be the u in Theorem 2.12 for Si. Then |si| = 4 by assumption

so s2i is the unique element of order 2 in M and s2i ∈ N(M). Further, sis0 = s0si since

|s0| > 4. Thus conjugation by si maps ⟨Si−1, s0⟩ into itself. So the hypotheses of Theorem

2.12 are satisfied. So we have constructed a sequence ⟨S1, S0⟩⊴⟨S2, s0⟩⊴. . .⊴⟨Sk−1, s0⟩ =

Sk as needed. The same procedure can be repeated for any other stage at which |u| ̸= 4.

So the proof is complete.

Theorem 2.21. Let M be a generalized octonion loop. Then there exist S1⊴S2⊴ . . .⊴M

such that

1. Si+1 satisfies the hypotheses of Theorem 2.12 with G = Si.

2. S1 is a generalized quaternion group.

Proof. Suppose toward a contradiction thatM is a minimal counterexample and |M | = 2n.

By Theorem 2.7 there exists S ≤M with |S| = 2n−1. By the minimality of M there exists

S1⊴S2⊴. . .⊴Sk = S where Si+1 satisfies Theorem 2.12 withG = Si and S1 is generalized

quaternion. By Lemma 2.20 we can assume without loss of generality that at each stage

the u in Theorem 2.12 has order 4.

Let v ∈ M − S be given. Suppose first that vs = sv for all s ∈ S. Let ⟨s0⟩ be a

cyclic group of maximal order contained in S1. Then ⟨v, s0⟩ is a cyclic group of strictly

larger order. We will show that ⟨Si+1, v⟩ satisfies Theorem 2.12 with G = ⟨Si, v⟩ for all

1 ≤ i < k.
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Let u be as in Theorem 2.12 for Si+1. Then u2 is the unique element of order 2 in Si+1

and thus is in N(M) and so N(⟨Si, v
2⟩). Further conjugation by u maps Si into itself and

uv = vu, so conjugation by u maps ⟨Si, v⟩ into itself. Thus the hypotheses of Theorem

2.12 are satisfied.

Now suppose that us ̸= su for some s ∈ S. Then |u| = 4 by Lemma 2.16. Then S is

an index 2 subloop and thus normal in M , so conjugation by u takes S into itself. Further,

u2 is the unique element of order 2 in S since |u| = 4. Thus u2 ∈ N(⟨u2, S⟩) and the

hypotheses of Theorem 2.12 are satisfied.

Recall that the generalized quaternion group of order 4n can be presented as Q4n =

⟨a, b|an = b2, a2n = 1, b−1ab = a−1⟩. Viewing the generalized octonion loop of order

16 as O16 = M(Q8, 2) with this presentation yields the power graph of O16 presented

below. Note that the non-identity vertex a2 is connected to all other vertices. We will show

later that generalized octonion loops are the only nonassociative Moufang loops with this

feature.

a

a3

a2

1

a3b

ab

a2b

bu

au

a3u

a2u (a3b)u

(ab)u

(a2b)u

bu

Figure 2.1: The (undirected) power graph of O16

2.5 Undirected power graphs determine directed power graphs

With Theorem 2.21 at our disposal we can now translate the argument in [14] to the

Moufang case to show that two Moufang loops with isomorphic undirected power graphs
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must have isomorphic directed power graphs. As in [14] the proof is split into two cases

depending on whether the identity vertex is the only one connected to all other vertices. In

what follows, let M be a Moufang loop with power graph Γ.

2.5.1 Non-identity vertex connected to all others.

Lemma 2.22. Suppose that x ∈ M with x ̸= 1 and x is connected to all other vertices in

Γ and p is a prime divisor of Exp(M). Then M has a unique subgroup P of order p and

P = ⟨xn⟩ for some n.

Proof. Let |xp| = k and y ∈ M such that |y| = p be given. Such a y must exist because

p|Exp(M). Since x and y are connected in Γ, either x is a power of y or y is a power of

x. Suppose that yi = x. Then (p, i) = 1 and there exists j ∈ N such that xj = (yi)j = y.

Thus every element of Q of order p is a power of x.

Further 1 = yp = xjp = (xp)j and so k | j. Thus y = xj = (xk)m for some m ∈ N. So

every element of order p is contained in ⟨xk⟩, a cyclic subgroup of order p.

Thus if the power graph of a Moufang p-loop M has a non-identity vertex connected

to all others, then M is either cyclic, generalized quaternion or generalized octonion by

Theorem 2.2. We now handle the case that M does not have prime power order.

Lemma 2.23. Suppose that x ∈ M with x ̸= 1 and x is connected to all other vertices in

the power graph of M and |M | is not a prime power. Then M is a cyclic group.

Proof. Since M is not a p-loop, Exp(M) is not a prime power [26]. As in the proof of

Lemma 2.22, |x| is divisible by every prime divisor of Exp(M). Since Exp(M) has at least

two distinct prime factors so does |x|.

First let z ∈ M such that |z| = pn for some prime p be given. Note that either x is a

power of z or vice versa. But all non-identity powers of z have order a power of p while

x has composite order. So z must be a power of x, otherwise we would contradict that the

order of x is composite.
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Let z ∈M such that |z| is not a prime power be given. If z is a power of x then we are

done. We will show that z must be a power of x.

Suppose toward a contradiction that z is not a power of x. Then x = zk for some k.

Say |z| = pi00 · · · pimm , where this is a factorization into distinct primes and m ≥ 1. Then

zp
i1
1 ···pimm , . . . , zp

i0
0 ···pim−1

m−1 are all powers of x as elements ofM with prime power order. Thus

pi00 , . . . , p
im
m ||x| and |z|||x|. Then |x| = |zk| = |z|

gcd(k,|z|) and |x| = |z|. But then |⟨x⟩| = |⟨z⟩|

while ⟨x⟩ ⊊ ⟨z⟩, a contradiction since |x| is finite.

Hence every element of M is a power of x and M = ⟨x⟩ is a cyclic group.

We will now prove Theorem 2.1 in the case that a non-identity vertex is connected to

all others in Γ.

Proof. From Lemma 2.22 M has a unique subloop of order p for each prime divisor p of

|M |. Thus by Theorem 2.2 we have thatM is either a cyclic group, a generalized quaternion

group or a generalized octonion loop. If |M | is not a power of 2, then M is a cyclic group

and there is nothing to prove. So suppose that |M | = 2n. Let K be the largest complete

subgraph in Γ. We will split the proof into cases based on the size of K.

First suppose that |K| = 2n. Then M is a cyclic group and thus its directed power

graph is uniquely determined.

Now suppose that |K| = 2n−1. Then M is a generalized quaternion group and thus its

power graph i uniquely determined.

Finally, suppose that |K| < 2n−1. Then M is generalized octonion and there exist

S1 ⊴ S2 ⊴ . . . ⊴ Sk = M as in Theorem 2.21. Say S1 = Qm, the generalized quaternion

group of order m. Choose a subgraph, Λ, of Γ isomorphic to that of Qm and apply arrows

as in the case of Qm. Now let u ∈ M be a vertex not in Λ. By Theorem 2.21 and Lemma

2.20 we have that u2 is the unique element of order 2 and u3 = u−1 is distinct from u and

not contained in Λ.
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So each vertex outside Λ is connected to the identity, the unique element of order 2,

and one other vertex which also lies outside Λ. Arrows are directed toward the identity and

the unique element of order 2 and are bidirectional between elements outside of Λ. Thus in

this case the direction of each arrow is uniquely determined and the directed power graph

is determined by the directed in this case.

2.5.2 Only identity connected to all others. Note that we have shown that if there is

a non-identity vertex connected to all others in Γ, then M is either cyclic, generalized

quaternion, or generalized octonion. In each of these cases the directed power graph is

determined by the undirected power graph. So proceeding we will assume that M is not

cyclic, generalized quaternion, or generalized octonion, and so the only vertex connected

to all others in Γ is the identity.

In [14] the proof that the undirected power graph of a group with only the identity

vertex connected to all others determines the directed power graph only required power

associativity, the inverse property, and the element-wise Lagrange property. Since these

properties all hold in Moufang loops the proof in [14] shows that the undirected power

graph of a Moufang loop in which only the identity vertex is connected to all others deter-

mines the directed power graph. This completes the proof of Theorem 2.1. We present an

outline of the proof in [14] here for completeness.

Definition 2.24. Let x be a vertex in a graph. Then the closed neigborhood of x is the

collection of all vertices x is adjacent to along with x.

Proof. Define two equivalence relations on M :

x ≡ y if and only if the closed neighborhoods of x and y coincide,

x ≈ y if and only if ⟨x⟩ = ⟨y⟩.
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There are several key observations about these relations:

• Elements of ≡-classes are indistinguishable up to graph isomorphism.

• In the directed power graph there are bidirectional arrows between elements of the

same ≈-class.

• Between two≈-classes either there are no connections or all arrows go the same way.

• A ≈-class has size ϕ(n), where n is the order of its elements and ϕ is the Euler ϕ

function.

The proof proceeds by showing that each≡-class is a disjoint union of≈-classes of known

sizes. Since elements of ≡-classes are indistinguishable up to graph isomorphism we can

then partition ≡-classes into ≈-classes arbitrarily. But ≡-classes can be recognized with

only the undirected power graph, so this reduces the problem to that of deciding which

direction arrows between≈-classes point. This is handled by noticing that if two≈-classes

have different sizes, then arrows point from the larger to the smaller. If two ≈-classes have

the same size, then ϕ(m) = ϕ(n), where m,n are the orders of elements in the respective

classes. But this only occurs for ϕ when either m = n or 2m = n for m odd. If m = n the

classes cannot be joined. In the other case exactly one class is connected to a non-identity

singleton class and arrows go from this class to the other. Thus directions of arrows can

be determined using only information from the undirected power graph and the undirected

power graph determines the directed.
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Chapter 3: Para-F quasigroups

3.1 Introduction

It has been shown that medial quasigroups are linear over abelian groups and similar

results have been shown for semimedial and F-quasigroups. Similarly, paramedial quasi-

groups have been show to be linear over abelian groups and a similar result has been shown

for semiparamedial quasigroups. Our goal in this chapter will be to find the correct def-

inition of para-F quasigroups and prove an analogous linearity result. We will proceed

by investigating candidate defining identities for para-F quasigroups, showing that para-F

quasigroups are linear over Moufang loops, and finally proving a result analogous to the

linearity of F-quasigroups.

3.1.1 Medial and F-quasigroups. We will first present the definitions and linearity results

for medial, semimedial, F, paramedial, and semiparamedial quasigroups.

Definition 3.1. A quasigroup (Q, ·) is said to be a medial quasigroup (or entropic quasi-

group) if the following identity holds for all x, y, u, v ∈ Q:

xy · uv = xu · yv.

Theorem 3.2 (Bruck-Murdoch-Toyoda [27]). Every medial quasigroup (Q, ·) is linear over

an abelian group (Q,+) with the linearity given by

x · y = φ(x) + ψ(y) + a

where φψ = ψφ.
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Definition 3.3. A quasigroup (Q, ·) is said to be a semimedial quasigroup if the following

identities hold for all x, y, z ∈ Q:

xx · yz = xy · xz,

zy · xx = zx · yx.

Theorem 3.4 (Kepka [28]). Every semimedial quasigroup (Q, ·) is linear over a commuta-

tive Moufang loop (Q,+) with the linearity given by

x · y = φ(x) + (ψ(y) + c)

where φψ = ψφ.

Definition 3.5. A quasigroup (Q, ·) is said to be an F-quasigroup if the following identities

hold for all x, y, z ∈ Q:

x · yz = xy · (x\x)z,

zy · x = z(x/x) · yx.

Theorem 3.6 (Kepka, Kinyon, Phillips [11]). Every F-quasigroup (Q, ·) is linear over an

NK-loop (Q,+) with the linearity given by

x · y = φ(x) + ψ(y) + e

where φψ = ψφ and e ∈ Z(Q,+).

Note that since e is in the center, and thus the nucleus, we can omit parentheses from

the equation describing the linearity.
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Definition 3.7. A quasigroup (Q, ·) is said to be a paramedial quasigroup if the following

identity holds for all x, y, u, v ∈ Q:

xy · uv = vy · ux.

Theorem 3.8 (Kepka-Němec [27]). Every paramedial quasigroup (Q, ·) is linear over an

abelian group (Q,+) with the linearity given by

x · y = φ(x) + ψ(y) + g

where φφ = ψψ.

Definition 3.9. A quasigroup (Q, ·) is said to be a semiparamedial quasigroup if the fol-

lowing identities hold for all x, y, z ∈ Q:

xx · yz = zx · yx,

zy · xx = xy · xz.

Theorem 3.10 (Barnes, Kinyon [29]). Every semiparamedial quasigroup (Q, ·) is linear

over a commutative Moufang loop (Q,+) with the linearity given by

x · y = φ(x) + (ψ(y) + e)

where φφ = ψψ.

The relation between these equations is shown below.
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Medial
xa · by = xb · ay

Semimedial
xx · yz = xy · xz

and
zy · xx = zx · yx

F-quasigroups
x · yz = xy · (x\x)z

and
zy · x = z(x/x) · yx

Paramedial
ax · yb = bx · ya

Semiparamedial
xx · yz = zx · yx

and
zy · xx = xy · xz

Para-F
?

Figure 3.1: Generalizations of medial and paramedial

3.1.2 Candidates for para-F. As suggested by the above diagram we expect there to be a

variety arising by weakening the paramedial identity in an analogous way to how the medial

identity is weakened to define F-quasigroups. There are two natural ways to weaken the

paramedial identity, we will show that each yields a distinct variety. We will now present

these varieties and argue that one is the correct definition of para-F.

The first analogue is:

x · yz = z(x\x) · yx,

zy · x = xy · (x/x)z.

We will call quasigroups satisfying these identities quasigroups of type (*).

The other analogue is:

x · yz = zx · y(x/x),

zy · x = (x\x)y · xz.

We will call quasigroups satisfying these identities quasigroups of type (**).
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Proposition 3.11. Let Q be a quasigroup of type (*), then Q is semiparamedial and of type

(**).

Proof. This result was proved using PROVER9 [30]. The proof can be found in appendix

7.6.

This result indicates that the (*) identities are too strong to be an analogue of the F-

quasigroup identities. We will take the (**) identities as our defining para-F identities.

Proposition 3.12. LetQ be a quasigroup that is both semiparamedial and of type (**), then

Q is of type (*).

Proof. This result was proved using PROVER9 [30]. The proof can be found in appendix

7.6.

Together these results give us the following theorem:

Theorem 3.13. A quasigroups is of type (*) if and only if it is semiparamedial and of type

(*).

3.1.3 Para-F quasigroups.

Definition 3.14. A quasigroup (Q, ·) is said to be a para-F quasigroup if the following

identities hold for all x, y, z ∈ Q:

x · yz = zx · y(x/x) , (P1)

zy · x = (x\x)y · xz . (P2)

We will call a quasigroup satisfying only equation (P1) left para-F and a quasigroup

satisfying only equation (P2) right para-F. The following quasigroup is left para-F, but not

right para-F. Since these identities are dual this demonstrates that neither implies the other.
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· 0 1 2 3 4 5 6 7
0 1 0 4 2 5 3 7 6
1 3 2 1 7 0 6 5 4
2 0 6 2 3 4 5 1 7
3 2 4 7 6 1 0 3 5
4 5 3 0 1 6 7 4 2
5 7 1 5 4 3 2 6 0
6 4 5 6 0 7 1 2 3
7 6 7 3 5 2 4 0 1

Table 3.1: A quasigroup which is left but not right para-F

As we will show later in this chapter, para-F quasigroups are antilinear over Moufang

loops. We will use this antilinearity to explicitly construct a para-F quasigroup which is not

a semiparamedial, semimedial, nor F-quasigroup. Let D8 = ⟨a, b|a4 = b2 = 1, bab−1 =

a−1⟩ and define ϕ : D8 → D8 by ϕ(ab) = a3b, ϕ(a3b) = ab and ϕ fixes all other elements

of D8. Let ψ = ϕ. Then ϕ, ψ are antiautomorphisms of D8. Define a quasigroup (Q,+) by

x+ y = ϕ(x) · ψ(y) · a2

where · is the operation in D8. This quasigroup is para-F but not semiparamedial, semi-

medial or F. Its multiplication table is below. Note that (Q,+) is also neither medial nor

paramedial since it is neither semimedial nor semiparamedial.

+ 1 2 3 4 5 6 7 8
1 4 6 7 1 5 2 3 8
2 6 4 8 2 3 1 5 7
3 7 5 1 3 2 8 4 6
4 1 2 3 4 8 6 7 5
5 5 7 6 8 4 3 2 1
6 2 1 5 6 7 4 8 3
7 3 8 4 7 6 5 1 2
8 8 3 2 5 1 7 6 4

Table 3.2: A quasigroup which is para-F but not F, paramedial, nor semimedial
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Note that all of the varieties of loops in diagram 3.1, with the exception of para-F

quasigroups, have been shown to be linear over varieties of loops. Our goal in this chapter

will be to prove an analogous result for para-F quasigroups. We will first show that as

in the case of F-quasigroups, all loop isotopes of para-F quasigroups are Moufang. First

note that Moufang loops are isotopically invariant, so we need only show that every para-F

quasigroup has a Moufang loop isotope.

3.2 Loop isotopes are Moufang

In what follows let (Q, ·) be a para-F quasigroup. We will now prove a series of lemmas

which will allow us to prove Theorem 3.28.

Lemma 3.15. LxyRy/y = LyRx.

Proof. By the P1 we have

xy · z(y/y) = y · zx

LxyRy/y(z) = LyRx(z).

So the proof is complete.

Lemma 3.16. ((x\x)y · z)/x = (x\z) · y

Proof. By P2 we have that

(x\x)y · xz = zy · x

(x\x)y · z = (x\z)y · x substituting x←[ x\z

((x\x)y · x)/x = (x\z) · y right dividing by x.

So the proof is complete.

Lemma 3.17. (xy)/z = ((z/(x/x))\y) · x
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Proof. By P1 we have

zx · y(x/x) = x · yz

zx = (x · yz)/(y(x/x)) right dividing by y(x/x)

(z\y) · x = (xy)/(z · (x/x)) substituting y ←[ z, z ←[ z\y

((z/(x/x))\y) · x = (x · y)/z substituting z ←[ z/(x/x).

So the proof is complete.

Lemma 3.18. z · ((y\y)\x) = (x/x) · ((y\y)\(z · x))

Proof. By P2 we have

(x\x)y · xz = zy · x

x · yz = z((y\y)\x) · y substituting x←[ y, y ←[ (y\y)\x

(x · yz)/y = z · ((y\y)\x) right dividing by y (I)

(zx · y(x/x))/y = (x/x) · ((y\y)\(z · x)) substituting x←[ zx, z ← [ x/x

(x · yz)/y = (x/x) · ((y\y)\(z · x)) by P2

z · ((y\y)\x) = (x/x) · ((y\y)\(z · x)) by (I).

So the proof is complete.

Lemma 3.19. ((x · y)/z)/x = (z/(x/x))\y

Proof. By P1 we have

x · yz = zx · y(x/x)

(x · yz)/(y · (x/x)) = z · x right dividing by y · (x/x)
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(x · y)/(z · (x/x)) = (z\y) · x substituting y ← [ z, z ←[ z\y

(x · y)/z = ((z/(x/x))\y) · x substituting z ←[ z/(x/x)

((x · y)/z)/x = (z/(x/x))\y right dividing by x.

So the proof is complete.

Lemma 3.20. (y\y)\((x · y)/z) = (y\z)\x

Proof. By P2 we have

(x\x)y · xz = zy · x

(x\x)y · z = (x\z)y · x substituting z ← [ x\z

((y\y) · ((y\z)\x)) · z = x · y substituting x←[ y, y ←[ (y\z)\x

(y\y) · ((y\z)\x) = (x · y)/z right dividing by z

(y\z)\x = (y\y)\((x · y)/z) left dividing by y\y.

So the proof is complete.

Lemma 3.21. (z/(x/x))\(y · (z\z)) = z\(y · (x/x))

Proof. Substituting x←[ z, y ←[ x, z ←[ y · (x/x) in Lemma 3.16 we have

((z\z)x · y(x/x))/z = (z\(y · (x/x))) · x)

(x · y(z\z))/z = (z\(y · (x/x))) · x by P2

((x · y(z\z))/z)/x = z\(y · (x/x)) right dividing by x

(z/(x/x))\(y · (z\z)) = z\(y · (x/x)) by Lemma 3.19.

So the proof is complete.
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Lemma 3.22. (x/x)(y\x) · z = x · (z/y)(x/x) for all x, y, z ∈ Q.

Proof. Substituting x←[ y, y ←[ (y\y)\x in P2 we have

x · yz = z((y\y)\x) · y (I)

((z\z)((y\y)\x) · y)/z = (z\y) · ((y\y)\x)

substituting x←[ z, y ←[ (y\y)\x, z ←[ y

in Lemma 3.16

(x · y(z/z))/z = (z\y) · ((y\y)\x) by (I) (II)

(y · z(x\x))/y = ((x/(y/y))\(z · (x\x))) · y

substituting x←[ y, y ←[ z · (x\x), y ←[ x

in Lemma 3.17

(x\z) · ((z\z)\y) = ((x/(y/y))\(z · (x\x))) · y by (II)

(x\(z · (y/y))) · y = (x\z) · ((z\z)\y) from Lemma 3.21 (III)

(y · z(y/y))/x = ((x/(y/y))\(z · (y/y))) · y

substituting x←[ y, y ←[ z · (y/y), z ← [ x

in Lemma 3.17

(y · z(y/y))/x = ((x/(y/y))\z) · ((z\z)\y) by (III) (IV)

(x/x) · ((y\y)\(((z/(x/x))\y) · x)) = ((z/(x/x))\y) · ((y\y)\x)

substituting z ←[ (z/(x/x))\y

in Lemma 3.18

(x/x) · ((y\y)\(((z/(x/x))\y) · x)) = (x · y(x/x))/z by (IV)

(x/x) · ((y\y)\((x · y)/z)) = (x · y(x/x))/z by Lemma 3.17

(x/x) · ((y\z)\x) = (x · y(x/x))/z by Lemma 3.20
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((x/x) · ((y\z)\x)) · z = x · y(x/x) right multiplying by z

(x/x)(y\x) · z = x · (z/y)(x/x) substituting y ←[ z/y.

So the proof is complete.

Proposition 3.23. LxL
−1
y Lx = L(x/x)·(y/x)\x for all x, y ∈ Q.

Proof. By Lemma 3.22 we have

(x/x)(y\x) · z = x · (z/y)(x/x)

L(x/x)(y\x)(z) = LxRx/xR
−1
y (z)

L(x/x)(y\x)(z) = LxL
−1
yxLx(z) by Lemma 3.15

L(x/x)((y/x)\x)(z) = LxL
−1
y Lx(z) substituting y ←[ y/x.

So the proof is complete.

Proposition 3.24. RxR
−1
y Rx = Rx/(x\y)·(x\x).

Proof. The defining identity of para-F quasigroups is symmetric, so this result follows from

Proposition 3.23 by symmetry.

Lemma 3.25 ([29]). A loop (Q,+, 1) is left Bol if and only if for all x, y ∈ Q there exists

u ∈ Q such that

LxLyLx = Lu

.

This result was shown in [29] and was likely known previously. We present a proof

here to make this chapter self contained.

39



Proof. Suppose first that for all x, y ∈ Q there exists u ∈ Q such that LxLyLx = Lu.

Applying both sides of this equation to 1 we see that u = x+ (y + x). Thus

x+ (y + (x+ z)) = LxLyLx(z)

= Lu(z)

= Lx+(y+x)(z)

= (x+ (y + x)) + z.

Thus (Q,+) is left Bol.

Conversely, ifQ is left Bol then letting u = x+(y+x) we have LxLyLx = Lx+(y+x) =

Lu from the defining identity.

Proposition 3.26. All loop isotopes of a quasigroup (Q, ·) are left Bol if and only if for all

x, y ∈ Q there exists u ∈ Q such that

LxL
−1
y Lx = Lu.

This result was proved in [29]. We present a proof here to make this chapter self

contained.

Proof. All translations in this proof will be with respect to the quasigroup operation ·. Let

(Q,+) be a principal loop isotope of (Q, ·), where x+y = (x/a) · (b\y). Suppose first that

for all x, y ∈ Q there exists u ∈ Q such that LxL
−1
y Lx = Lu. Note that Lu is a bijection,

so for all x, y ∈ Q there exists u ∈ Q such that L−1
x LyL

−1
x = L−1

u . Consider

x+ (y + (x+ z)) = (x/a) · (b\(y + (x+ z)))

= (x/a) · (b\((y/a) · (b\(x+ z))))

= (x/a) · (b\((y/a) · (b\((x/a) · (b\z)))))
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= (x/a) · L−1
b Ly/aL

−1
b ((x/a) · (b\z))

= (x/a) · L−1
u1
((x/a) · (b\z)) for some u1 ∈ Q

= Lx/aL
−1
u1
Lx/a(b\z)

= Lu2(b\z)

= u2a+ z.

Thus by Lemma 3.25 (Q,+) is a left Bol loop and all loop isotopes of (Q, ·) are left Bol.

Now suppose that all loop isotopes of (Q, ·) are left Bol and let (Q,+) have the opera-

tion v + w = v · (y\w). Then for all x, y, z ∈ Q we have

x+ (y + (x+ z)) = (x+ (y + x)) + z

x · (y\(y · (y\(x · (y\z))))) = (x+ (y + x)) + z

x · (y\(x · (y\z))) = (x+ (y + x)) · (y\z)

x · (y\(x · z)) = (x+ (y + x)) · z, z ←[ yz

LxL
−1
y Lx(z) = Lx+(y+x)(z)

LxL
−1
y Lx = Lu.

So for all x, y ∈ Q there exists u ∈ Q such that LxL
−1
y Lx = Lu and the proof is complete.

Corollary 3.27. All loop isotopes of a quasigroup (Q, ·) are right Bol if and only if for all

x, y ∈ Q there exists u ∈ Q such that

RxR
−1
y Rx = Ru.

Proof. Dual to Proposition 3.26.
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Theorem 3.28. Every loop isotope of a para-F quasigroup is Moufang.

Proof. Note that Proposition 3.23 shows that in a para-F quasigroup (Q, ·) we have that for

all x, y ∈ Q there exists u ∈ Q such that LxL
−1
y Lx = Lu. Thus by Proposition 3.26 all

loop isotopes of a para-F quasigroup are left Bol. Dually, by Propositions 3.24 and 3.27 we

have that all loop isotopes of a para-F quasigroup are right Bol. Thus all loop isotopes of a

para-F quasigroup are Moufang.

3.3 Para-F quasigroups are antilinear over Moufang loops

While para-F quasigroups are not linear over loops in general, they are antilinear over

Moufang loops, which is an analogous property.

Definition 3.29. A quasigroup (Q, ·) is antilinear over a loop (Q,+) if there exists f, g

antiautomorphisms of (Q,+), c ∈ Q such that

x · y = f(x) + (g(y) + c)

for all x, y ∈ Q.

Theorem 3.30. Every para-F quasigroup (Q, ·) is antilinear over a Moufang loop (Q,+)

with the antilinearity given by

x · y = φ(x) + ψ(y) + c

where c ∈ Z((Q,+)) and φ, ψ are antiautomorphisms.

Proof. This result was proved using PROVER9. We will present an outline of the proof

here. Suppose that (Q, ·) is a para-F quasigroup and for all u ∈ Q define:

x+u y = (x/(u\u)) · ((u/u)\y).
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From Theorem 3.28 we have that (Q,+u) is a Moufang loop with identity 1u = (u/u) ·

(u\u) for all u ∈ Q. Expressing · in terms of +u we have that

x+u y = (x/(u\u)) · ((u/u)\y)

x · y = x(u\u) +u (u/u)y

x · y = (fu(x) +u Au) +u (Bu +u gu(y)),

where we set

fu(x) = x(u\u)−u 1u(u\u)

gu(y) = −u(u/u)1u +u (u/u)y

Au = 1u(u\u)

Bu = (u/u)1u.

Then fu(1u) = gu(1u) = 1u. We define Cu = Au + Bu and use PROVER9 to prove the

following sequence of results:

1. 1u·u = Cu,

2. Au, Bu, Cu are in the commutant of (Q,+u),

3. (x+x y) +x z = x+x (y +x z),

4. Au, Bu ∈ Nuc(Q,+u),

5. Au +y x = x+y Au,

6. Bu +y x = x+y Bu,

7. 1u +y x = x+y 1u,
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8. fy(x) +y fy(z) = fy(z +y x),

9. gy(x) +y gy(z) = gy(z +y x).

Thus

x · y = f(x) + C + g(y)

where C ∈ Z(Q,+) and f, g are antiautomorphisms.

Note that steps 5, 6, and 7 above make use of our approach of considering all loop iso-

topes of (Q, ·) of the form (Q,+u) simultaneously. These steps seem to be key in allowing

PROVER9 to find proofs of 8 and 9.

With this result all of the varieties of quasigroups in diagram 3.2 have been shown to

be linear or antilinear over varieties of Moufang loops.

Medial
xa · by = xb · ay

Semimedial
xx · yz = xy · xz

and
zy · xx = zx · yx

F-quasigroups
x · yz = xy · (x\x)z

and
zy · x = z(x/x) · yx

Paramedial
ax · yb = bx · ya

Semiparamedial
xx · yz = zx · yx

and
zy · xx = xy · xz

Para-F
x · yz = zx · y(x/x)

and
zy · x = (x\x)y · xz

Figure 3.2: Generalizations of medial and paramedial with para-F

3.4 Para-FG quasigroups

It is shown in [31] that the collection of F-quasigroups which are isotopic to groups

(called FG-quasigroups) form a variety characterized by two identities. We will now show

that a similar result holds for para-F quasigroups.

Definition 3.31. A para-FG quasigroup is a para-F quasigroup which is isotopic to a group.
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Note that all loop isotopes of a para-FG quasigroup must be groups.

Theorem 3.32. A quasigroup is para-FG if and only if it satisfies the following two identi-

ties

(x/x)y · zu = uy · z(x/x) (FG1)

xy · z(u\u) = (u\u)y · zx (FG2)

Lemma 3.33. Let (Q, ·) be a quasigroup satisfying FG1 and FG2. Then (Q, ·) satisfies

y(x/((y\y)\z)) = z\(xy)

Proof. By FG2 we have (x\x)y · zu = uy · z(x\x). Consider

(x\x)y · xz = zy · x substituting u←[ z, z ← [ x

x · yz = z((y\y)\x) · y substituting y ← [ (y\y)\x, x←[ y

z · y(x/((y\y)\z)) = xy substituting x←[ z, z ←[ x/((y\y)\z)

y(x/((y\y)\z)) = z\(xy) left dividing by z.

So the proof is complete.

Lemma 3.34. Let (Q, ·) be a quasigroup satisfying FG1 and FG2. Then (Q, ·) satisfies

x\y = (z/(y/x)) · ((y/(u\(xz)))/x).

Proof. By FG1 we have (x/x)y · zu = uy · z(x/x). Consider

x · yz = zx · y(x/x) substituting y ←[ x, z ←[ y, u← [ z
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(zx)\(x · yz) = y(x/x) left dividing by zx

x\(y · z(x/y)) = z(y/y) substituting z ←[ x/y, x←[ y, y ←[ z

x\(yz) = (z/(x/y)) · (y/y) substituting z ←[ z/(x/y). (I)

Again using FG1 we have

x · yz = zx · y(x/x)

substituting y ←[ x, z ← [ y, u← [ z

z · y(x/z) = x · y(z/z)

substituting z ←[ y, y ←[ z, x←[ x/z

z\(x · y(z/z)) = y(x/z)

left dividing by z

x\y = z · ((y/(z · (x/x)))/x)

substituting z ←[ x, y ← [ z, x←[ y/(z · (x/x))

x\y = (z/(y/x)) · ((y/((z/(y/x)) · (x/x)))/x)

substituting z ←[ z/(u/x)

x\y = (z/(y/x)) · ((y/(u\(xz)))/x)

by I.

So the proof is complete.

Lemma 3.35. Let (Q, ·) be a quasigroup satisfying FG1 and FG2. Then (Q, ·) satisfies

((xy)/(z/z)) · u = x · ((yz)/(u\z)).
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Proof. From FG1 we have

x · yz = zx · y(x/x) substituting y ← [ x, z ←[ y, u←[ z (I)

z · y(x/z) = x · y(z/z) substituting x←[ z, z ←[ x/z (II)

(x/x)y · zu = x · z((uy)/x) applying II to FG1. (III)

Further

xy · z = y · (z/(y/y))x substituting x←[ y, y ←[ z/(y/y), z ←[ x in I

y(x/z) = z\(x · y(z/z)) left dividing by z in II

x\((x/x)y · z) = (z/(y/y)) · (y/x) from the preceding two lines

x\(x · y((zu)/x)) = ((yz)/(u/u)) · (u/x) from III

y · ((zu)/x) = ((yz)/(u/u)) · (u/x)

x · ((yz)/(u\z)) = ((xy)/(z/z)) · u substituting x←[ u\z, y ←[ x, z ←[ y, u←[ z.

So the proof is complete.

Lemma 3.36. Let (Q, ·) be a quasigroup satisfying FG1 and FG2. Then (Q, ·) satisfies

z · (y\((u/w) · x)) = ((z · (y\u))/w) · x.

Proof. By FG1 we have (x/x)y · zu = uy · z(x/x). Consider

x · yz = (z · ((u/u)\x)) · y(u/u)

substituting x←[ u, y ←[ (u/u)\x, z ←[ y, u←[ z

(z · ((u/u)\x)) · y(u/u) = x · yz

(x · ((y/y)\z)) · u = z · (u/(y/y))x
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substituting z ←[ x, x← [ z, u← [ y, y ←[ u/(y/y) (I)

x · ((y/y)\z) = (z · (u/(y/y))x)/u right dividing by u

(z · (u/(y/y))x)/u = x · ((y/y)\z)

(x · (u/(y/y))((z/(y\(yu)))/y))/u = ((z/(y\(yu)))/y) · ((y/y)\x)

substituting z ←[ x, x← [ (z/(y\(yu)))/y

(x · (y\z))/u = ((z/(y\(yu)))/y) · ((y/y)\x) by Lemma 3.34

(x · (y\z))/u = ((z/u)/y) · ((y/y)\x). (I)

Note that by FG2 we have (x\x)y · zu = uy · z(x\x). Consider

(x\x)y · xz = zy · x

substituting u←[ z, z ← [ x

(x\x)((y/y)\z) · x((u/w)/y) = ((u/w)/y)((y/y)\z) · x

substituting y ← [ (y/y)\z, z ←[ (u/w)/y

(x\x)((y/y)\z) · x((u/w)/y) = ((z · (y\u))/w) · x

by I

z · (((x · ((u/w)/y))/(y/y)) · (x\x)) = ((z · (y\u))/w) · x

by I

z · (x · ((((u/w)/y) · y)/((x\x)\y))) = ((z · (y\u))/w) · x

by Lemma 3.35

z · (x · ((u/w)/((x\x)\y))) = ((z · (y\u))/w) · x

z · (y\((u/w) · x)) = ((z · (y\u))/w) · x

by Lemma 3.33.
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In what follows let (Q, ·) be a para-FG quasigroup and define x+u,v y = (x/u) · (v\y).

Lemma 3.37. (Q, ·) satisfies

x · (y\(z +w,y u)) = (x · (y\z)) +w,y y.

Proof. Consider

(xw +w,y z) +w,y u = xw +w,y (z +w,y u) by associativity of +w,y

(x · (y\z)) +w,y u = x · (y\(z +w,y u)) by definition of +w,y.

So the proof is complete.

Lemma 3.38. (Q, ·) satisfies

x · (y +x/x,u z) = (u\z)x · y.

Proof. Since Q is para-F we have

xy · z(y\y) = y · zx

xy · z = y · (z/(y/y))x substituting z ←[ z/(y/y)

(u\z)x · y = x · (y +x/x,u z) substituting x←[ u\z, y ← [ x, x←[ y.

So the proof is complete.

Lemma 3.39. (Q, ·) satisfies

(xy)/(yz) = (y\y) · (z\x).
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Proof. Since (Q, ·) is para-F we have

(x\x)y · xz = zy · x

(x\x) · y = (zy · x)/(xz) right dividing by xz

(y\y) · (z\x) = (xy)/(yz) substituting x←[ y, y ← [ z\x.

So the proof is complete.

Lemma 3.40. (Q, ·) satisfies

(z/(x/x))\y = ((xy)/z)/x.

Proof. From the proof of Lemma 3.38 we have

x · (y/(x/x))z = zx · y

xy = ((z/(x/x))\y)x · z substituting y ←[ z, z ←[ (z/(x/x))\y

(xy)/z = ((z/(x/x))\y) · x right dividing by z

((xy)/z)/x = (z/(x/x))\y right dividing by x.

So the proof is complete.

Lemma 3.41. (Q, ·) satisfies

x+z,r (v +w,(u+w,rv)/w z) = x+z,u/w y.

Proof. Consider

x+z,u (y +z,u w) = (x+z,u y) +z,u w
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x+z,u (y +z,u uw) = ((x+z,u y)/z) · w

substituting w ←[ uw

x+z,u ((y/z) · w) = ((x+z,u y)/z) · w

x+z,u ((y/z) · (((x+z,u y)/z)\w)) = w

substituting w ←[ ((x+z,u y)/z)\w

x+z,u (y +z,(x+z,uy)/z w) = w. (I)

Further

x+y,z u = (x/y) · (z\u)

(x/y)\(x+y,z u) = z\u left dividing by x/y

x+y,w/v (w +v,z u) = (x/y) · (z\u) by definition of +w,v

x+y,w/v (w +v,z u) = x+y,z u

x+z,r (v +w,(u+w,rv)/w z) = x+z,u/w y by I.

So the proof is complete.

Lemma 3.42. (Q, ·) satisfies

x+z\(uw),z y = x+w,u y.

Proof. Consider

x+z\(uw),z y = (x/(z\(uw))) · (z\y)

= (x/w) · (u\y) substituting z ← [ u

= x+w,u y.
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So the proof is complete.

Lemma 3.43. (Q, ·) satisfies FG2.

Proof. From (I) in the proof of Lemma 3.41 we have

x+u,w (y +u,(x+u,wy)/u z) = z

(x · (y\u)) +v,y (w +v,(u+v,yz)/v z) = x · (y\z)

applying the above to Lemma 3.37

(x · (y\u)) +v,u/v z = x · (y\z)

by Lemma 3.41

x+z,u/z y = (x/(w\u)) · (w\y)

substituting x←[ x/(w\u), y ←[ w, z ←[ y, v ←[ z

x+z,u/z y = x+w\u,w y

((w/(x/x))\z)x · y = x · (y +u\w,u z)

applying the above to Lemma 3.33

(((x · z)/w)/x)x · y = x · (y +u\w,u z)

by Lemma 3.40

((x · z)/w) · y = x · (y +u\w,u z)

(z\z)(w\x) · y = x · (y +u\(z·w),u z)

by Lemma 3.34

(x\x)(y\z) · u = z · (u+y,x x)

by Lemma 3.42

(x\x)y · z = uy · (z +u,x x)

substituting y ←[ u, z ←[ uy, u←[ z
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(x\x)y · zu = uy · z(x\x).

So (Q, ·) satisfies FG2 and the proof is complete.

Proof of Theorem 3.32. First suppose that (Q, ·) satisfies FG1 and FG2. It is immediate

that (Q, ·) is para-F. Further, by Lemma 3.36 we have

z · (y\((u/y) · x)) = ((z · (y\u))/y) · x

zy +y,y (u/y)x = ((zy +y,y u)/y) · x

zy +y,y (u+y,y yx) = (zy +y,y u) +y,y yx.

Thus (Q,+y,y) is a group and (Q, ·) is a para-FG quasigroup.

Now suppose that (Q, ·) is a para-FG quasigroup. Lemma 3.43 shows that (Q, ·) satis-

fies FG2. The proof that (Q, ·) satisfies FG1 is dual. So (Q, ·) is a para-FG quasigroup if

and only if it satisfies FG1 and FG2.

Theorem 3.44. Every para-FG quasigroup (Q, ·) is antilinear over a group (Q,+) with the

antilinearity given by

x · y = f(x) + g(y) + c

where f, g are antiautmorphisms of (Q,+) and c ∈ Z((Q,+)).

Proof. Let (Q, ·) be a para-FG quasigroup. Then by Theorem 3.30 there exists a Moufang

loop (Q,+), antiautomorphisms f, g : (Q,+)→ (Q,+), and c ∈ Z(Q) such that

x · y = f(x) + (g(y) + c).

By an analogous proof to that of Proposition 1.41 (Q, ·) is isotopic to (Q,+). But (Q, ·)

is a para-FG quasigroup and so isotopic to some group (Q, ∗). But then (Q, ∗) and (Q,+)
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are isotopic and (Q,+) must be a group. Thus (Q, ·) is antilinear over a group (Q,+) as

desired.
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Chapter 4: Solvability for loops

4.1 Introduction

Many properties from universal algebra have equivalent definitions specific to the con-

text of groups. This leads to the natural question: under what conditions can these group

definitions be extended to loops? In particular, we will be interested in the definitions of

nilpotence and solvability for groups.

Definition 4.1. Let A be a universal algebra. ϕ ⊆ A×A is a congruence on A if and only

if

1. ϕ is an equivalence relation.

2. For each n-ary operation f ofA and every a1, . . . , an, a′1, . . . , a
′
n ∈ A, a1ϕa′1 . . . anϕa

′
n

implies f(a1, . . . , an)ϕf(a′1, . . . a
′
n).

Definition 4.2. Let G be a group and N ≤ G. N is normal in G (N ⊴ G) if and only if

xNx−1 = N for all x ∈ G.

Remark. The only non-trivial inner mappings of a group G are Tx for x ∈ G, so this is a

special case of the definition of a normal subloop.

Fact 4.3. Let G be a group, then:

1. For every congruence ϕ on G there exists N ⊴G, namely the equivalence class of 1,

such that xϕy if and only if xy−1 ∈ N .

2. For N ⊴G the relation ϕ, where xϕy if and only if xy−1 ∈ N is a congruence [32]
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We now present some universal algebraic definitions and their equivalent definitions in

the context of groups. We will closely follow the definitions given in [33] for the universal

algebraic definitions.

Definition 4.4. Let A be a universal algebra and α, β, δ be congruences on A. Then α

centralizes β over δ if for every (n + 1)-ary term operation t, every pair aαb and every

u1βv1, . . . , unβvn we have

t(a, u1, . . . , un)δt(a, v1, . . . , vn) implies t(b, u1, . . . , un)δt(b, v1, . . . vn)

Definition 4.5. Let A be a universal algebra and α, β be congruences on A. Then the

congruence (universal algebraic) commutator of α and β is [α, β]C = δ, where δ is the

smallest congruence such that α centralizes β over δ.

Smallest here is in terms of the lattice of congruences of A with largest element 1A =

A× A and smallest element 0A = {(a, a) : a ∈ A}.

Definition 4.6. Let (Q, ·) be a quasigroup and x, y ∈ Q. The commutator of x and y is

[x, y] = (xy)/(yx).

Definition 4.7. Let (Q, ·) be a quasigroup and x, y, z ∈ Q. The associator of x, y, z is

[x, y, z] = (x · yz)/(xy · z).

Definition 4.8. Let (Q, ·) be a loop and Q′ be the smallest subloop such that Q/Q′ is an

abelian group. Then Q′ = [Q,Q] is the derived subloop of Q.

Definition 4.9. An algebra A is (congruence) solvable if γ(n) = 0A for some n, where

γ(0) = 1A, γ(i+1) = [γ(i), γ(i)]C
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.

Definition 4.10. A loop L with identity 1 is (classically) solvable if Ln = {1} for some n,

where

L0 = L, Li+1 = [Li, Li]

Fact 4.11. Classical and congruence solvability coincide in groups [33].

Fact 4.12. Classical and congruence solvability do not coincide in loops. [33].

Our goal in this chapter will be to find conditions under which these definitions of

solvability do coincide for loops. The main result of this chapter is the following theorem

providing a sufficient condition for classical and congruence solvability degrees to coin-

cide:

Theorem 4.13. IfQ/Nuc(Q) is an abelian group, then classical and congruence solvability

degrees of Q coincide.

Note that conjugacy closed loops satisfy this condition, so in particular classical and

congruence solvability degrees coincide for conjugacy closed loops.

Weakening our assumption on Q we are no longer able to show that classical and con-

gruence solvability degrees coincide, but we do obtain the following result about Inn∗(Q) =

⟨Lx,y, Rx,y,Mx,y : x, y ∈ Q⟩:

Theorem 4.14. If Q/Nuc(Q) is a group, then Inn∗(Q) is abelian.

4.2 Q/Nuc(Q) an abelian group

We will now show that if Q/Nuc(Q) is an abelian group, then the classical and con-

gruence definitions of solvability coincide. Denote the derived subloop of A⊴Q by [A,A]

and the congruence commutator by [A,A]C . Let Q be a loop such that Q/Nuc(Q) is an

abelian group.
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Lemma 4.15 ([34]). TxTy(a) = Txy(a) for all a ∈ Nuc(Q).

Proof. This is shown in Lemma 7.2 of [34].

Lemma 4.16 ([7]). [x, y]y = Tx(y) for all x, y ∈ Q

Proof. The mirror identity is proved in Lemma 2.4 of [7]. This lemma holds by duality.

Theorem 4.17. If Q/Nuc(Q) is an abelian group, then the classical and congruence solv-

ability degrees of Q are equal.

Proof. We will show by induction that the derived series are equal. First note that [Q,Q]C =

[Q,Q] so our base case holds [33]. We will show that given H ⊴ Q with H ⊆ [Q,Q] we

have that [H,H] = [H,H]C to complete the proof.

From [33] and [35] we have that [H,H]C = Ng(Wū(a)/Wv̄(b) : W ∈ W , a, u/v ∈

H), where W is a generating set for Inn(Q). We will take W = {Tx, Lx,y, Rx,y : x, y ∈

Q} as our generating set. Further, from [7] we have that Tx(y) = [x, y] · y. Finally,

since Q/Nuc(Q) is an abelian group we have that [Q,Q] ⊆ Nuc(Q) and in particular all

commutators are in the nucleus.

We will first show that [H,H] ⊆ [H,H]C . Let x, y ∈ H be given. Then [x, y] =

Tx(y) · y = Tx(y)/T1(y) ∈ [H,H]C . Thus [H,H]C contains all generators of [H,H] and

[H,H] ⊆ [H,H]C .

We will now show that [H,H]C ⊆ [H,H]. Let u1, v1, u2, v2, a ∈ Q such that

u1/v1, u2/v2, a ∈ H be given. Note that Lu1,u2(a) = Lv1,v2(a) = Ru1,u2(a) = Rv1,v2(a) =

1 since a ∈ H ⊆ Nuc(Q). So we need only consider T ∈ W . By Lemma 4.15 we have

that

Tu1(a)/Tv1(a) = (Tu1/v1(Tv1(a)))/Tv1(a)

= ([u1/v1, Tv1(a)]Tv1(a))/Tv1(a) by Lemma 4.16
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= [u1/v1, Tv1(a)]

∈ [H,H].

Thus [H,H]C ⊆ [H,H] so [H,H]C = [H,H] and by induction the derived series are

equal. So the classical and congruence solvability degrees of Q are equal.

4.3 Q/Nuc(Q) a group

Define Inn∗(Q) = ⟨Lx,y, Rx,y,Mx,y|x, y ∈ Q⟩. Intuitively inner mappings measure the

failure of elements to associate or commute, where M,L,R measure associativity and T

measures commutativity. With this intuition, the group Inn∗(Q) is the group of all inner

mappings measuring associativity.

Define

[x, y, z]R = x\Rz,y(x),

[x, y, z]L = z\Lx,y(z),

[x, y, z]M = y\Mz,x(y).

In what follows let (Q, ·, 1) be a loop and x, y, z ∈ Q be arbitrary.

Lemma 4.18. For any n ∈ Nuc(Q) Lx,y(zn) = Lx,y(z) · n and Rx,y(nz) = n ·Rx,y(z).

Proof. These are both immediate from the fact that n ∈ Nuc(Q) and the definitions of

Lx,y, Rx,y.

We will follow the argument proving Lemma 4.2 in [36] to show that [x, y, nz]M =

[x, y, z]M for any n ∈ Nuc(Q).

Lemma 4.19. [nx, y, z]M = [x, y, z]M for n ∈ Nuc(Q).

Proof. This follows from the fact that n ∈ Nuc(Q) and the definition of [x, y, z]M .
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Lemma 4.20. [yn, z, x]M = [y, nz, x]M for n ∈ Nuc(Q).

Proof. First note that Mx,y(z)\(y\(yz · x)) = x. Further (n\a)/(b\a) = n\b since n ∈

Nuc(Q). So

(n\(y\(yz · x)))/x = (n\(y\(yz · x)))/(Mx,y(z)\(y\(yz · x)))

= n\Mx,y(z). (†)

Further, since n ∈ Nuc(Q) we have that Mx,yn(z) = ((yn)\((yn · z) · x))/x =

((yn)\((y · nz) · x))/x. Then

Mx,yn(z) = ((yn)\((y · nz) · x))/x

= (n\(y\((y · nz) · x)))/x.

But by (†) we have that

Mx,yn(z) = (n\(y\((y · nz) · x)))/x

= n\Mx,y(nz).

So

z\Mx,yn(z) = z\(n\Mx,y(nz))

z\Mx,yn(z) = (nz)\Mx,y(nz) since n ∈ Nuc(Q)

[yn, z, x]M = [y, nz, x]M .

Lemma 4.21. If Nuc(Q) is normal in Q, then [y, nz, x]M = [y, z, x]M .
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Proof. This is immediate from the preceding two lemmas and the fact that since Nuc(Q)⊴

Q, we have yn = n′y for some n′ ∈ Nuc(Q).

Corollary 4.22. If Q/Nuc(Q) is a group, then Mx,y(nz) = n ·Mx,y(z) for n ∈ Nuc(Q).

Proof. Consider

Mx,y(nz) = nz · [y, nz, x]M

= nz · [y, z, x]M by Lemma 4.21

= n · z[y, z, x]M

= n ·Mx,y(z).

Now define

[x, y, z]R′ = Rz,y(x)/x,

[x, y, z]L′ = Lx,y(z)/z,

[x, y, z]M ′ =Mz,x(y)/y.

Theorem 4.23. If Q/Nuc(Q) is a group, then Inn∗(Q) is abelian.

Proof. First note that all 6 of the associators defined above lie in the associator subloop,

which is a subloop of the nucleus by assumption. Further by [7] Lemma 2.6 these associa-

tors commute. We will show that the generators of Inn∗(Q) commute.

Consider

Mx,y(Mu,v(z)) =Mx,y([v, z, u]M ′ · z)

= [v, z, u]M ′ ·Mx,y(z) by Corollary 4.22
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= [v, z, u]M ′ · [y, z, x]M ′z

= [y, z, x]M ′ · [v, z, u]M ′z as noted above

= [y, z, x]M ′ ·Mu,v(z)

=Mu,v([y, z, x]M ′z) by Corollary 4.22

=Mu,v(Mx,y(z)).

Further

Lx,y(Mu,v(z)) = Lx,y(z[v, z, u]M)

= Lx,y(z) · [v, z, u]M by Lemma 4.18

= [x, y, z]L′z · [v, z, u]M

= [x, y, z]L′ · z[v, z, u]M

= [x, y, z]L′ ·Mu,v(z)

=Mu,v([x, y, z]L′z) by Corollary 4.22

=Mu,v(Lx,y(z)).

Next consider

Rx,y(Mu,v(z)) = Rx,y([v, z, u]M ′z)

= [v, z, u]M ′ ·Rx,y(z) by Lemma 4.18

= [v, z, u]M ′ · [z, y, x]R′z

= [z, y, x]R′ · [v, z, u]M ′z from [7]

= [z, y, x]R′ ·Mu,v(z)

=Mu,v([z, y, x]R′z) by Corollary 4.22
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=Mu,v(Rx,y(z)).

Now consider

Lx,y(Ru,v(z)) = Lx,y(z[z, v, u]R)

= Lx,y(z) · [z, v, u]R by Lemma 4.18

= [x, y, z]L′z · [z, v, u]R

= [x, y, z]L′ · z[z, v, u]R

= [x, y, z]L′ ·Ru,v(z)

= Ru,v([x, y, z]L′z) by Lemma 4.18

= Ru,v(Lx,y(z)).

Next

Lx,y(Lu,v(z)) = Lx,y(z[u, v, z]L)

= Lx,y(z) · [u, v, z]L by Lemma 4.18

= z[x, y, z]L · [u, v, z]L

= z[u, v, z]L · [x, y, z]L from [7]

= Lu,v(z) · [x, y, z]L

= Lu,v(z[x, y, z]L) by Lemma 4.18

= Lu,v(Lx,y(z)).

Finally

Rx,y(Ru,v(z)) = Rx,y([z, v, u]R′z)
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= [z, v, u]R′ ·Rx,y(z) by Lemma 4.18

= [z, v, u]R′ · [z, y, x]R′z

= [z, y, x]R′ · [z, v, u]R′z from [7]

= [z, y, x]R′ ·Ru,v(z)

= Ru,v([z, y, x]R′z) by Lemma 4.18

= Ru,v(Rx,y(z)).

Thus all the generators of Inn∗(Q) commute and Inn∗(Q) is an abelian group.

4.4 Further results

We will now present some further results providing sufficient conditions for right inner

mappings to commute.

4.4.1 Inverses preserved by right inner mappings.

Definition 4.24. Let (Q, ·, 1) be a loop. A map ϕ : Q→ Q preserves inverses if

ϕ(1/x) = 1/ϕ(x)

for all x ∈ Q.

Theorem 4.25. Let Q be a loop such that right inner mappings preserve inverses and sup-

pose that associators are in the left and middle nuclei. Then right inner mappings commute.

Proof. This result was proved using PROVER9 [30]. The proof can be found in appendix

7.6.

4.4.2 Right automorphic.

Theorem 4.26. Let Q be a right automorphic loop and suppose that associators are in the

left nucleus. Then right inner mappings commute.
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Proof.

Ru,v(Rx,y(z)) = Ru,v(Rx,y(Ru,v(z) ·Ru,v(z)\z))

= Ru,v(Rx,y(Ru,v(z)) ·Rx,y(Ru,v(z)\z)))

since Rx,y is an automorphism

= Ru,v(Rx,y(Ru,v(z)) · (Ru,v(z)\z))

since Ru,v(z)\z is in the associator subloop and thus the left nucleus

= Ru,v([Ru,v(z), x, y]R′Ru,v(z) · (Ru,v(z)\z))

defining the associator [x, y, z]R′ = Rx,y(z) · z

= Ru,v([Ru,v(z), x, y]R′ ·Ru,v(z)(Ru,v(z)\z))

associators in left nucleus

= Ru,v([Ru,v(z), x, y]z)

= [Ru,v(z), x, y]R′Ru,v(z)

Ru,v is an automorphism and associators in the nucleus

= Rx,y(Ru,v(z))

by the definition of [·, ·, ·]R′ .

Below is a right automorphic loop with center {1, 2}, so Q/{1, 2} is an abelian group

(being of order 4). It is not an RCC loop. This shows that a right automorphic in which

all associators lie in the left nucleus need not be RCC. Thus the previous result is not a

statement solely about RCC loops.
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1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 2 1 4 3 6 5 8 7
3 3 4 1 2 7 8 5 6
4 4 3 2 1 8 7 6 5
5 5 6 7 8 1 2 3 4
6 6 5 8 7 2 1 4 3
7 7 8 5 6 4 3 2 1
8 8 7 6 5 3 4 1 2

Table 4.1: Q/Z(Q) an abelian group and Q not RCC

4.4.3 Left nucleus and commutant.

Theorem 4.27. Suppose that all associators are in the left nucleus and the commutant.

Then right inner mappings commute.

Proof. Note that since we assume all associators are in the left nucleus and commutant we

are free to use whichever associator we choose. For this proof define the associator to be

[x, y, z] = Rx,y(z)/z and let x, y, z, u, w ∈ Q be given. Then

Rx,y(Rz,u(w)) = Rx,y([z, u, w]w)

= [z, u, w]Rx,y(w) associators in Nucl(Q)

= [z, u, w][x, y, w] · w

= [x, y, w][z, u, w] · w associators in commutant

= [x, y, w]Rz,u(w)

= Rz,u([x, y, w]w) associators in Nucl(Q)

= Rz,u(Rx,y(w)).

Thus Rx,yRz,u = Rz,uRx,y and InnR(Q) is abelian.
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4.5 Counterexamples

4.5.1 Inn(Q). Theorem 4.23 does not directly extend to all of Inn(Q). The following is

the nonassociative CC loop of order 6 (there is only one) and in any CC loop Q/Nuc(Q)

is an abelian group. But in this loop the T’s do not commute with the R’s and in particular

Inn∗(Q) is not abelian.

0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 5 0 4
2 2 4 5 1 3 0
3 3 0 4 2 5 1
4 4 5 1 0 2 3
5 5 3 0 4 1 2

Table 4.2: Q/Nuc(Q) an abelian group but Rx,yTz ̸= TzRx,y

R1,1(T1(1)) = 3, while T1(R1,1(1)) = 4. There is an example in the same loop of T’s

not commuting with each other as well.

4.5.2 Left and middle nuclei. Theorem 4.26 does not directly extend to arbitrary loops.

The following is a loop in which the left and middle nuclei coincide, are normal, and are

isomorphic to S3. The factor by the left (equivalently middle) nucleus is Z4, so every asso-

ciator and commutator is in the left and middle nuclei. However, the right inner mapping

group is S3 × S3 × S3. So associators and commutators in left and middle nuclei is not

sufficient for right inner mappings to commute.
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· 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23
3 3 5 1 6 2 4 9 11 7 12 8 10 15 17 13 18 14 16 21 23 19 24 20 22
4 4 6 2 5 1 3 10 12 8 11 7 9 16 18 14 17 13 15 22 24 20 23 19 21
5 5 3 6 1 4 2 11 9 12 7 10 8 17 15 18 13 16 14 23 21 24 19 22 20
6 6 4 5 2 3 1 12 10 11 8 9 7 18 16 17 14 15 13 24 22 23 20 21 19
7 7 8 9 10 11 12 19 20 21 22 23 24 1 2 3 4 5 6 13 14 15 16 17 18
8 8 7 10 9 12 11 20 19 22 21 24 23 2 1 4 3 6 5 14 13 16 15 18 17
9 9 11 7 12 8 10 21 23 19 24 20 22 3 5 1 6 2 4 15 17 13 18 14 16
10 10 12 8 11 7 9 22 24 20 23 19 21 4 6 2 5 1 3 16 18 14 17 13 15
11 11 9 12 7 10 8 23 21 24 19 22 20 5 3 6 1 4 2 17 15 18 13 16 14
12 12 10 11 8 9 7 24 22 23 20 21 19 6 4 5 2 3 1 18 16 17 14 15 13
13 13 14 15 16 17 18 1 2 3 4 5 6 19 20 21 22 23 24 7 8 9 10 11 12
14 14 13 16 15 18 17 2 1 4 3 6 5 20 19 22 21 24 23 8 7 10 9 12 11
15 15 17 13 18 14 16 3 5 1 6 2 4 21 23 19 24 20 22 9 11 7 12 8 10
16 16 18 14 17 13 15 4 6 2 5 1 3 22 24 20 23 19 21 10 12 8 11 7 9
17 17 15 18 13 16 14 5 3 6 1 4 2 23 21 24 19 22 20 11 9 12 7 10 8
18 18 16 17 14 15 13 6 4 5 2 3 1 24 22 23 20 21 19 12 10 11 8 9 7
19 19 20 21 22 23 24 13 14 15 16 17 18 7 8 9 10 11 12 2 1 5 6 3 4
20 20 19 22 21 24 23 14 13 16 15 18 17 8 7 10 9 12 11 1 2 6 5 4 3
21 21 23 19 24 20 22 15 17 13 18 14 16 9 11 7 12 8 10 5 3 2 4 1 6
22 22 24 20 23 19 21 16 18 14 17 13 15 10 12 8 11 7 9 6 4 1 3 2 5
23 23 21 24 19 22 20 17 15 18 13 16 14 11 9 12 7 10 8 3 5 4 2 6 1
24 24 22 23 20 21 19 18 16 17 14 15 13 12 10 11 8 9 7 4 6 3 1 5 2

Table 4.3: Associators and commutators in left and middle nuclei but InnR not abelian

68



Chapter 5: Cosets in Moufang loops

5.1 Introduction

It has been shown that Lagrange’s Theorem holds in Moufang loops [10]. However,

the proof relies on the classification of finite simple Moufang loops, which in turn relies on

the classification of finite simple groups. The proof of Lagrange’s Theorem for groups is

much simpler because it uses the fact that cosets of a subgroup are a uniform partition of

the group. In general, the cosets of a subloop of a Moufang loop need not partition the loop.

However, based on extensive computational evidence (all Moufang loops of orders ≤ 64,

81, and 243 along with the Paige loop of order 120 checked [37]) we make the following

conjecture:

Conjecture 5.1. Let M be a Moufang loop, S ≤ M and S the family of all left cosets of

S. Then there exists A ⊂ S such that A is a partition of M .

That is, in Moufang loops there is always a collection of the family of all left cosets

of a subloop which do partition the loop. Proving this conjecture would provide a proof

of Lagrange’s Theorem for Moufang loops very similar to that for groups. In particular,

such a proof would be direct in the sense that it would not rely on the classification of finite

simple Moufang loops. We were ultimately unsuccessful, but each of our attempts did yield

results which are interesting in their own rights.

We will begin by attempting to construct such a uniform partition of cosets directly by

proving results on the intersections of distinct cosets and the existence of disjoint cosets.

When this approach does not prove fruitful we will try other approaches to proving
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Lagrange’s Theorem for Moufang loops directly by constructing a partition of the loop with

each block having order a multiple of the order of the subloop.

We will first define an equivalence relation on Q analogous to the natural equivalence

relation of coset membership in groups. This has the advantage of providing us with a

partition of Q, meaning we would need only show that each block of the partition has order

a multiple of the order of the subloop.

Finally, we will consider orbits of the relative left multiplication groups of S in Q.

These orbits are a different generalization of the definition of cosets in groups to the context

of loops. This strategy again has the advantage of providing us with a partition of the loop,

reducing the problem to that of showing that the order of each orbit is a multiple of the

order of the subloop.

5.2 Coset intersections

5.2.1 A first approach. Let G be a group with S ≤ G and x ∈ xS∩yS. Since left cosets

of S partition G, it is immediate that xS = yS and x−1(xS ∩ yS) = x−1xS = S ≤ G. So

in particular, x−1(xS ∩ yS) ≤ Q. The question of whether this result can be extended to

Moufang loops, that is: ”If Q is Moufang and x ∈ xS ∩ yS, is x−1(xS ∩ yS) a subloop of

S?” was posed in [38]. We are able to provide a negative answer:

Let

Q = MoufangLoop(48, 2) in the GAP LOOPS package [39], [37],

S = {1, 4, 8, 16, 25, 28, 32, 40},

x = 3,

y = 27

Then x ∈ yS (and so x ∈ xS ∩ yS), but x−1(xS ∩ yS) is not a subloop of S. In fact the

subloop generated by x−1(xS ∩ yS) is all of Q.
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Further, there is in general no translation of xS ∩ yS which is a subloop. Let Q be the

Moufang loop in the table below,

S = {1, 2, 3, 5, 13, 14, 15, 17},

X = 4S ∩ 6S = {16, 18, 19, 21}.

Then S ≤ Q but there is no x ∈ Q such that xX ≤ Q.

· 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
2 2 1 5 6 3 4 9 10 7 8 12 11 17 15 14 24 13 23 22 21 20 19 18 16
3 3 5 1 7 2 9 4 11 6 12 8 10 15 17 13 19 14 21 16 23 18 24 20 22
4 4 10 7 8 12 2 11 1 5 6 3 9 16 18 19 20 21 22 23 13 24 14 15 17
5 5 3 2 9 1 7 6 12 4 11 10 8 14 13 17 22 15 20 24 18 23 16 21 19
6 6 8 9 10 11 1 12 2 3 4 5 7 21 19 18 17 16 15 14 24 13 23 22 20
7 7 12 4 11 10 5 8 3 2 9 1 6 19 21 16 23 18 24 20 15 22 17 13 14
8 8 6 11 1 9 10 3 4 12 2 7 5 20 22 23 13 24 14 15 16 17 18 19 21
9 9 11 6 12 8 3 10 5 1 7 2 4 18 16 21 14 19 13 17 22 15 20 24 23
10 10 4 12 2 7 8 5 6 11 1 9 3 24 23 22 21 20 19 18 17 16 15 14 13
11 11 9 8 3 6 12 1 7 10 5 4 2 23 24 20 15 22 17 13 19 14 21 16 18
12 12 7 10 5 4 11 2 9 8 3 6 1 22 20 24 18 23 16 21 14 19 13 17 15
13 13 17 15 20 14 21 23 16 18 24 19 22 1 5 3 8 2 9 11 4 6 12 7 10
14 14 15 17 22 13 19 24 18 16 23 21 20 5 1 2 9 3 8 6 12 11 4 10 7
15 15 14 13 23 17 18 20 19 21 22 16 24 3 2 1 11 5 6 8 7 9 10 4 12
16 16 24 19 13 22 17 15 20 14 21 23 18 4 9 7 1 6 12 3 8 10 5 11 2
17 17 13 14 24 15 16 22 21 19 20 18 23 2 3 5 6 1 11 9 10 8 7 12 4
18 18 23 21 14 20 15 17 22 13 19 24 16 9 4 6 12 7 1 10 5 3 8 2 11
19 19 22 16 15 24 14 13 23 17 18 20 21 7 6 4 3 9 10 1 11 12 2 8 5
20 20 21 23 16 18 24 19 13 22 17 15 14 8 12 11 4 10 5 7 1 2 9 3 6
21 21 20 18 17 23 13 14 24 15 16 22 19 6 7 9 10 4 3 12 2 1 11 5 8
22 22 19 24 18 16 23 21 14 20 15 17 13 12 8 10 5 11 4 2 9 7 1 6 3
23 23 18 20 19 21 22 16 15 24 14 13 17 11 10 8 7 12 2 4 3 5 6 1 9
24 24 16 22 21 19 20 18 17 23 13 14 15 10 11 12 2 8 7 5 6 4 3 9 1

Table 5.1: Moufang loop with an intersection of cosets which cannot be translated to a
subloop

5.2.2 An iterative approach. Our next approach was to attempt to iteratively construct a

set of cosets partitioning the loop. The following series of lemmas provide restrictions on

the intersections of distinct cosets and guarantee the existence of cosets disjoint from given

sets.
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Lemma 5.2 ([40]). Let Q be a Moufang loop. Then for all x, y, z ∈ Q

xy · (z · xy) = x · (yz · xy).

A generalization of this result is proved in [40]. We present a proof of this version here

to make the dissertation self-contained.

Proof. Let x, y, z ∈ Q be given and consider

xy · (z · xy) = (xy · (z · xy))y−1 · y

= ((xy · z) · xy)y−1 · y since Q is diassociative

= (xy · (z · (xy · y−1))) · y since Q is Moufang

= (xy · zx) · y

= x(yz · x) · y since Q is Moufang

= (x · yz)x · y since Q is diassociative

= x · (yz · xy) since Q is Moufang.

So xy · (z · xy) = x · (yz · xy) as desired.

Proposition 5.3. Let Q be a Moufang loop with S ≤ Q. If x ∈ Sy ∩ Sz with y ̸= z, then

xy−1 · z ∈ Sy ∩ Sz. Further x ̸= xy−1 · z.

This result tells us that cosets in a Moufang loop cannot intersect in a single element.

If two cosets have nontrivial intersection, then the intersection must contain at least two

distinct elements.
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Proof. Note that (yx−1) · (xz−1)(yx−1) ∈ S since xy−1, xz−1 ∈ S because S is closed

under inversion. Then

y · (x−1 · xz−1)(yx−1) ∈ S by Lemma 5.2

y · z−1(yx−1) ∈ S

(y · z−1(yx−1))−1 ∈ S

(xy−1)z · y−1 ∈ S.

Thus xy−1 ·z ∈ Sy. Further xy−1 ∈ S, so xy−1 ·z ∈ Sz. So xy−1 ·z ∈ Sy∩Sz as desired.

Finally, note that if x = xy−1 · z, then xz−1 = xy−1 and y = z, a contradiction. So

x ̸= xy−1 · z.

Proposition 5.4. Let Q be a Moufang loop, S ≤ Q, and x ∈ Q such that xk is the least

power of x contained in S. Then S, Sx, Sx2, . . . , Sxk−1 are disjoint cosets of S.

Proof. Suppose toward a contradiction that y ∈ Sxi ∩Sxj for some i < j < k. Then there

exist s, s′ ∈ S such that sxi = s′xj . So

sxi = s′xj

s = s′xj · x−i since Q is an IP loop

s = s′xj−i since Q is diassociative

(s′)−1s = xj−i.

But S is a subloop, so in particular xj−i ∈ S. But this contradicts our assumption that xk is

the least power of x contained in S. Thus S, Sx, . . . , Sxk−1 are disjoint.
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Lemma 5.5. Let Q be a Moufang loop and x, y, z ∈ Q be given. Then

(u(yz)−1 · x−1)(xy · z(yu)−1) = y−1 .

Proof. We have

xy · z(yu)−1 = (xy · z(yu)−1)y · y−1 by the IP

= x(yz · (yu)−1y) · y−1 since Q is Moufang

= x(yz · (u−1y−1 · y)) · y−1 by the IP

= x(yz · u−1) · y−1 by the IP

= (u(yz)−1 · x−1)−1 · y−1 by the IP.

Multiplying both sides on the left by u(yz)−1 · x−1 and using the IP, we have the desired

result.

Lemma 5.6. Let Q be a Moufang loop, let S ≤ Q, and let a ∈ Q− S satisfy a2 ∈ S. The

following are equivalent.

1. Q = S ∪ Sa;

2. For every x ∈ Q, if x ̸∈ S, then Sx ∩ Sa ̸= ∅.

Proof. Assume (1) holds and assume x ∈ Q−S. Then x ∈ Sx∩Sa, and so Sx∩Sa ̸= ∅.

Conversely, assume (2) holds. Then for each u ∈ Q − S, there exists u′ ∈ Su ∩ Sa,

and so u′u−1, u′a−1, u(u′)−1, a(u′)−1 ∈ S. Let x ∈ Q− S be given.

For all y ∈ Q− S, we have

(y′a−1 · x′a−1)−1 · y′y−1 ∈ S . (5.1)
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Set y = a2(x′)−1a and suppose y ∈ Q− S. We have

y′y−1 = y′(a2(x′)−1a)−1

= y′(a−1x′a−2) by the IP

= y′(a−1 · x′a−1 · a−1) by diassociativity

= (y′a−1 · x′a−1)a−1 since Q is Moufang.

Thus by (5.1) and the IP,

(y′a−1 · x′a−1)−1 · (y′a−1 · x′a−1)a−1 = a−1 ∈ S .

This contradicts the assumption that a ̸∈ S, and so we must have a2(x′)−1a ∈ S. Since

a2 ∈ S and hence a−2 ∈ S, we use the IP again to get (x′)−1a ∈ S. Therefore

a−1x′ ∈ S . (5.2)

Next, for all y ∈ Q− S, we have

y(y′)−1 · (y′a−1 · x′x−1) ∈ S . (5.3)

Set y = ax · (a−1x′)−1. If y ̸∈ S, then using (5.3) and the IP, we have

(ax · (a−1x′)−1)(y′)−1 · (y′a−1 · x′(a−1 · ax)−1) ∈ S .

By Lemma 5.5 this implies a−1 ∈ S, and so a ∈ S. This is a contradiction, and so we must

have

ax · (a−1x′)−1 ∈ S . (5.4)
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Finally, by (5.2), (5.4) and the IP, we obtain ax ∈ S. Thus x ∈ a−1S and so x−1 ∈ Sa.

We have proven that for all x ∈ Q−S, x−1 ∈ Sa. Since x ∈ Q\S implies x−1 ∈ Q\S,

we conclude that for all x ∈ Q\S, x ∈ Sa. It follows thatQ = S∪Sa, that is, (1) holds.

Proposition 5.7. Let Q be a Moufang loop, S < Q, and assume there exists a ∈ Q − S

such that S ∪ Sa ⊊ Q. Then there exists b ∈ Q such that Sb ∩ S = Sb ∩ Sa = ∅.

Proof. Assume first that a2 ̸∈ S. Then by Proposition 5.4 we may take b = a2. Now

assume a2 ∈ S. If no such b exists, then for all x ∈ Q, Sx ∩ S ̸= ∅ or Sx ∩ Sa ̸= ∅. Note

that Sx ∩ S ̸= ∅ if and only if x ∈ S. Thus for all x ∈ Q, if x ̸∈ S, then Sx ∩ Sa ̸= ∅. By

Lemma 5.6 Q = S ∪ Sa, contradicting our assumption.

Lemma 5.8. Let Q be a commutative Moufang loop and x, y, z ∈ Q be given. Then

z · (y · x3) = x · (x · (yz · x))

Proof. Let x, y, z ∈ Q be given. Then

x · (x · (yz · x)) = x · (xy · zx), since Q is Moufang

= x · (xy · xz) Q is commutative

= (x · xy)x · z Q is Moufang

= (x3 · y) · z Q is diassociative and commutative

= z · (y · x3) Q is commutative.

So the proof is complete.

Lemma 5.9. Let Q be a commutative Moufang loop and S ≤ Q such that x2 ∈ S for all

x ∈ Q. Then S ⊴Q.
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Proof. First note that since Q is commutative Ty(x) = x and Ry,z(x) = Ly,x(x). So it is

sufficient to show that for all x ∈ S, y, z ∈ Q Ly,z(x) ∈ S. Suppose toward a contradiction

that there exist c1 ∈ S, c2, c3 ∈ Q such that Lc2,c3(c1) /∈ S. Then

x2c1 = x · c1x ∈ S x2 ∈ S for all x ∈ Q

(x · c1x) · y2 ∈ S

(xc1 · x) · y2 ∈ S

x · (c1 · (x · y2)) ∈ S Q is Moufang

x · (c1 · (y · xy)) ∈ S Q is commutative and diassociative

x−1 · (c1 · (y · xy)) ∈ S x−2 ∈ S

(xy)−1 · (c1 · (c1 · (xy · c1))) ∈ S, substituting x←[ xy, y ←[ c1

(xy)−1 · (x · (y · c31)) ∈ S by Lemma 5.8.

Lx,y(c
3
1) ∈ S

But by assumption Lc2,c3(c1) /∈ S and since Q is automorphic and x2 ∈ S we have

Lc2,c3(c1)
2 ∈ S. Thus Lc2,c3(c1) · Lc2,c3(c

2
1) = Lc2,c3(c

3
1) /∈ S, contradicting the last line

above. Hence, a contradiction and the proof is complete.

We freely use commutativity and diassociativity in what follows, especially in calcula-

tions of the form (xy)2 = x2y2.

Lemma 5.10. Let Q be a commutative Moufang loop, S < Q, and assume there exists

a, b ∈ Q− S such that a2, b2 ∈ S and Sa ∩ Sb = ∅. The following are equivalent:

1. Q = S ∪ Sa ∪ Sb,

2. For all x ∈ Q, if x ̸∈ S, then Sx ∩ (Sa ∪ Sb) ̸= ∅.

When these equivalent conditions occur, S is normal in Q.
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Proof. Assume (1) holds and let x ∈ Q − S be given. Then Sx ∩ S = ∅. By (1),

Sx ∩ (Sa ∪ Sb) ̸= ∅. Thus (2) holds.

Conversely, assume (2) holds and let x ∈ Q − S be given. Then there exists x′ ∈

Sx ∩ (Sa ∪ Sb). Thus x′x−1 ∈ S and x′a−1 ∈ S or x′b−1 ∈ S.

If x′a−1 ∈ S, then (x′)2a−2 = (x′a−1)2 ∈ S, and so (x′)2 ∈ S since a2 ∈ S. Similarly,

if x′b−1 ∈ S, then (x′)2 ∈ S since b2 ∈ S. In either case, we shown that (x′)2 ∈ S.

Now since x′x−1 ∈ S, we have (x′)2x−2 = (x′x−1)2 ∈ S, and thus x−2 ∈ S since

(x′)2 ∈ S. We have shown that for all x ∈ Q− S, we have x2 ∈ S. On the other hand, this

is also true for all x ∈ S. Therefore for all x ∈ Q, x2 ∈ S. By Lemma 5.9 S is a normal

subloop of Q and hence the cosets of S partition Q. Since there are no cosets disjoint from

S, Sa and Sb, we must have S ∪ Sa ∪ Sb = Q. Therefore (1) holds and we have also

established the initial assertion.

Proposition 5.11. Let Q be a commutative Moufang loop, S < Q, and assume there exists

a, b ∈ Q − S such that a2, b2 ∈ S, Sa ∩ Sb = ∅ and S ∪ Sa ∪ Sb ⊊ Q. Then there exists

c ∈ Q such that Sc ∩ S = Sc ∩ Sa = Sc ∩ Sb = ∅.

Proof. If no such c exists, then for all x ∈ Q, Sx∩S ̸= ∅ or Sx∩Sa ̸= ∅ or Sx∩Sb ̸= ∅.

Note that Sx∩S ̸= ∅ if and only if x ∈ S. Thus for all x ∈ Q, if x ̸∈ S, then Sx∩Sa ̸= ∅

or Sx ∩ Sb ̸= ∅. Equivalently, for all x ∈ Q, if x ̸∈ S, then Sx ∩ (Sa ∪ Sb) ̸= ∅. By

Lemma 5.10, Q = S ∪ Sa ∪ Sb, contradicting our assumption.

5.3 An Equivalence Relation

We previously attempted to partition the loop by sets known to have order a multiple

of that of the subloop. We will now instead start with a partition of the loop and attempt

to show that its blocks have orders multiples of that of the subloop. We will see that this

approach does not work, but the result is still of some interest.
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Proposition 5.12. For an IP loop Q, H ≤ Q the relation ∼H defined by x ∼H y if and

only if xy−1 ∈ H and H(yx−1) · x = Hy is an equivalence relation.

This proposition actually holds for arbitrary loops. However, we are primarily con-

cerned with Moufang loops here and using inversion instead of left and right division sub-

stantially simplifies notation, so we will prove it only for IP loops.

Proof. First note that xx−1 = 1 ∈ H and H(xx−1) ·x = H1 ·x = Hx. So∼H is reflexive.

Now suppose that x ∼H y. Then xy−1 ∈ H , so (xy−1)−1 = yx−1 ∈ H since IP loops

have the AAIP.

H(yx−1) · x = Hy x ∼H y

Hx = Hy yx−1 ∈ H

Hx = H(xy−1) · y xy−1 ∈ H .

Thus yx−1 ∈ H and H(yx−1) · x = Hy, so y ∼H x.

Finally, suppose that x ∼H y and y ∼H z. Then xy−1, yz−1 ∈ H , H(yx−1) · x = Hy,

and H(zy−1) · y = z. Then

x ∈ Hy = H(zy−1) · y (yz−1)−1 = zy−1 ∈ H

x ∈ Hz H(zy−1) · y = Hz

xz−1 ∈ H Q is IP.

Then

H(zx−1) · x = Hx zx−1 = (xz−1)−1 ∈ H

= H(yx−1) · x yx−1 = (xy−1)−1 ∈ H
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= Hy x ∼H y

= H(zy−1) · y zy−1 = (yz−1)−1 ∈ H

= Hz y ∼H z.

Thus xz−1 ∈ H and H(zx−1) · x = Hz. So x ∼H z completing the proof that ∼H is an

equivalence relation.

Note that it is possible that all equivalence classes other than the subloop itself are

singletons. The Moufang loop of order 12 below with subloop H = {1, 2, 7, 8} is one such

example.

· 1 2 3 4 5 6 7 8 9 10 11 12
1 1 2 3 4 5 6 7 8 9 10 11 12
2 2 1 4 3 6 5 8 7 12 11 10 9
3 3 6 5 2 1 4 9 10 11 12 7 8
4 4 5 6 1 2 3 10 9 8 7 12 11
5 5 4 1 6 3 2 11 12 7 8 9 10
6 6 3 2 5 4 1 12 11 10 9 8 7
7 7 8 11 10 9 12 1 2 5 4 3 6
8 8 7 12 9 10 11 2 1 4 5 6 3
9 9 12 7 8 11 10 3 4 1 6 5 2

10 10 11 8 7 12 9 4 3 6 1 2 5
11 11 10 9 12 7 8 5 6 3 2 1 4
12 12 9 10 11 8 7 6 5 2 3 4 1

Table 5.2: Moufang loop and subloop with trivial ∼H-classes

5.4 Orbits of MltL(Q;S)

Having been unable to prove Lagrange’s Theorem for Moufang loops directly using

cosets we will now try another approach.

Definition 5.13. Let Q be a loop, S ≤ Q and recall that MltL(Q) = ⟨Lx : x ∈ Q⟩. We

then define the relative left multiplication group of S in Q as

MltL(Q;S) = ⟨Lx : x ∈ S⟩ ≤ MltL(Q).
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Note that left translations in MltL(Q;S) act on all of Q, so MltL(Q;S) ̸= MltL(S).

For a group G with S ≤ G the orbits of MltL(G;S) are precisely the right cosets of S

in G. This observation suggests that perhaps in Moufang loops the proper generalization

of cosets to use to prove Lagrange’s Theorem directly is orbits of MltL(Q;S).

The orbits of MltL(Q;S) partition Q so we would need to show that the orders of

orbits of MltL(Q;S) are multiples of the order of S. We were not able to prove this result,

but we were able to show that if it holds in simple Moufang loops M , then it holds in all

Moufang loops. Additionally, we were able to show that the order of orbits of MltL(Q;S)

are multiples of |MltL(Q;S)|
InnL(Q)

.

Definition 5.14. Let S\Q be the set of orbits of MltL(Q;S) on the set Q.

Definition 5.15 ([5]). The action matrix of x ∈ Q, RS\Q(x), is the transition matrix of a

Markov chain on the state space of orbits of MltL(Q;S) where the probability of transition

from orbit X to orbit Y is
|X ∩R−1

x (Y )|
X

.

Informally, for fixed x ∈ Q this Markov chain represents applying Rx to an orbit X of

MltL(Q;S) and considering the probability that a randomly chosen element is sent to the

orbit Y .

Proposition 5.16. Suppose that RS\Q(x) = RS\Q(y), then x and y lie in the same orbit of

MltL(Q;S).

Proof. Let Q be a loop S ≤ Q. Let x, y ∈ Q such that RS\Q(x) = RS\Q(y). Suppose that

X is the orbit of MltL(Q;S) containing x.

Since RS\Q(x) = RS\Q(y) we have that |S ∩ R−1(y)(X)| = |S ∩ R−1(x)(X)| ≥ 1

by Theorem 4.1 in [5]. So there exists p ∈ S such that py ∈ X . By our choice of X there

exists ϕ ∈ MltL(Q;S) such that py = ϕ(x). But then y = L−1
p (ϕ(x)) and thus x, y lie in

the same orbit of MltL(Q;S).
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Definition 5.17. A partition is uniform if all blocks have the same size.

Proposition 5.18. The partition of Q into orbits of MltL(Q;S) is uniform if and only if all

action matrices are doubly stochastic.

Proof. Let sY (x) be the sum of entries in the column corresponding to Y in the matrix

RS\Q(x). Note that

sY (x) =
∑

Z∈S\Q

|R−1
x (Y ) ∩ Z|
|Z|

and since S\Q is a partition of Q and Rx is a permutation of Q we have

|Y | =
∑

Z∈S\Q

|R−1
x (Y ) ∩ Z|.

Suppose first that all action matrices are doubly stochastic and let x ∈ Q be given.

Suppose that X is the orbit of MltL(Q;S) containing x. From the previous proposition the

entry corresponding to row S and column X is a 1. Since RS\Q(x) is doubly stochastic the

remaining entries in this column are 0. Thus sY (x) =
∑

Z∈S\Q
|R−1

x (X)∩Z|
|Z| = |R−1

x (X)∩S|
|S| =

1 and |X| =
∑

Z∈S\Q |R−1
x (X)∩Z| = |R−1

x (X)∩S| = |S|. So for allX ∈ S\Q |X| = |S|

and the partition is uniform.

Now suppose that the partition S\Q is uniform and let x ∈ Q, Y ∈ S\Q be given. We

will show that sY (x) = 1. Consider

|Y | =
∑

Z∈S\Q

|R−1
x (Y ) ∩ Z| from the above

Dividing by |Y | we have

1 =
∑

Z∈S\Q

|R−1
x (Y ) ∩ Z|
|Y |

=
∑

Z∈S\Q

|R−1
x (Y ) ∩ Z|
|Z|

since the partition is uniform
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= sY (x) by definition.

Thus sY (x) = 1, so RS\Q(x) is doubly stochastic for all x ∈ Q.

Proposition 5.19. If there is a Moufang loopQwith subloop S and an orbitX of MltL(Q;S)

such that |S| does not divide |X|, then there is such a simple Moufang loop.

Proof. Note that |S| fails to divide |X| if and only if every representation of X as a union

of cosets contains at least 2 with nontrivial intersection. This passes directly to the quotient

loop.

The smallest Paige loop does have such a subloop and such an orbit. Using the repre-

sentation in the GAP LOOPS package let

Q = PaigeLoop(2)

S = {1, 2, 5, 6, 11, 12, 15, 16, 19, 20, 23, 24} ≤ Q

Then

X = {25, 29, 37, 39, 89, 91, 97, 99, 61, 63, 69, 71, 40, 38, 90, 92,

98, 100, 64, 62, 72, 70, 30, 105, 107, 113, 115, 85, 87, 77, 79, 106,

108, 114, 116, 88, 86, 80, 78, 31, 53, 55, 56, 54, 32, 27, 45, 47, 48,

46, 28, 26, 110, 112, 118, 120, 84, 82, 76, 74, 109, 111, 117, 119, 81,

83, 73, 75, 51, 49, 50, 52, 42, 44, 43, 41, 94, 96, 102, 104, 60, 58,

68, 66, 35, 36, 34, 33, 103, 101, 95, 93, 67, 65, 59, 57}

is an orbit of MltL(Q;S), but |X| = 96, which does not divide |L| = 120.
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Thus our conjecture that the orders orbits of relative left multiplication groups of

subloops of Moufang loops always divide the orders of the corresponding loops is false.

Proposition 5.20. Let Q be a Moufang loop with S ≤ Q and x ∈ Q. Then |MltL(Q;S)|
|InnL(Q)|

divides |OrbMltL(Q;S)(x)|.

Proof. Let G = MltL(Q;S) and define F : StabG(x) → InnL(Q) by F (ϕ) = Lx−1ϕLx.

First note that F is injective since Lx−1ϕLx = Lx−1ψLx implies ϕ = ψ. Further, F is a

homomorphism, since

F (ϕψ) = Lx−1ϕψLx

= Lx−1ϕLxLx−1ψLx

= F (ϕ)F (ψ).

and

F (ϕ−1) = Lx−1ϕ−1Lx

= (L−1
x ϕL−1

x−1)
−1

= (Lx−1ϕLx)
−1

= F (ϕ)−1.

Thus StabG(x) is isomorphic to some subloop of InnL(Q) and in particular |InnL(Q)|
|StabG(x)| =

n for some n ∈ N. So |OrbG(x)| = n · |G|
|InnL(Q)| .
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Chapter 6: Universally and semi-universally flexible loops

6.1 Introduction

We refer the reader to the introduction of this dissertation for definitions of flexibility

and isotope. In this chapter we will be concerned with loops which are universally flexible

and semi-universally flexible.

Definition 6.1. A loop (Q, ·) is universally flexible (UF) if all of its isotopes are flexible.

Definition 6.2. A loop (Q, ·) is semi-universally flexible (SUF) if all of its left and right

isotopes are flexible.

It was shown in [8] that every SUF IP loop is diassociative. It is conjectured that

there exists a SUF IP loop which is not Moufang, meaning that this result is not simply a

consequence of Moufang’s Theorem. However, no such example has yet been found. Our

attempt to construct such an example is described below.

Recall that left SUF loops are loops all of whose left isotopes are flexible, right SUF

loops are defined dually, and SUF loops are loops which are both left and right SUF. In

practice we will define these varieties of loops equationally. We now present identities

which define the varieties of SUF and UF loops:

Left SUF:

(x/u) · (y/u)x = (((x/u)y)/u) · x.

Right SUF:

x · (v\(y(v\x))) = x(v\y) · (v\x).
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Universally flexible:

(x/u) · (v\((y/u) · (v\x))) = (((x/u) · (v\y))/u) · (v\x).

6.2 Basic examples

Below is a loop of order 6 which is left SUF but not right SUF. By symmetry of the

definitions of left (right) SUF this shows that neither implies the other.

· 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 0 3 2 5 4
2 2 4 0 5 1 3
3 3 5 4 0 2 1
4 4 3 5 1 0 2
5 5 2 1 4 3 0

Table 6.1: A loop which is left SUF but not right SUF

Note that for some properties universality and semi-universality coincide. This is the

case for LIP, for example, a quasigroup is semi-universally LIP if and only if it is universally

LIP. We conjecture that this is not the case for flexibility, that is we conjecture that there

exists a SUF quasigroup which is not universally flexible. However such a quasigroup has

not yet been constructed.

6.3 Central extensions of Moufang loops

It is conjectured in [8] that there exists an SUF IP loop which is not Moufang, mean-

ing that the result in [8] showing that such loops are diassociative does not follow from

Moufang’s Theorem. However, no such loop has been found. Our goal in this chapter is to

construct such a loop. Naive searches with MACE4 up to order 20 were unsuccessful.

An approach allowing the constructing of SUF IP loops of larger order is to emulate

the central extension construction in [26].
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Definition 6.3. Let Q,K be loops, A ⊴ Q, A ≤ Z(Q) such that Q/A ≃ K. Then Q is a

central extension of A by K [26].

The advantage of this approach is that it allows us to construct SUF IP loops which

are much larger than those that can be investigated by MACE4. We were able to construct

SUF IP loops of orders up to 729. However, unlike MACE4 searches, we were not able to

exhaustively check all SUF IP loops of a given order using this approach. Following the

approach in [26] we will construct Q given A and K. The central extension construction

proceeds as follows:

Given:

(K, ·, 1) a loop,

(A,+, 0) an abelian group, and

f : K ×K → A satisfying f(1, k) = f(k, 1) = 0.

We construct (Q, ∗), where:

Q = K × A,

(x, a) ∗ (y, b) = (x · y, a+ b+ f(x, y)).

By Proposition 5 in [26] Q is a central extension of K by A. By imposing additional

conditions on K and f we can ensure that Q has properties we desire. In particular, by

choosing K SUF IP (and thus in practice Moufang) and imposing the conditions on f

given below we can ensure that Q is SUF and IP.

To ensure that Q is IP we require:

f(x, x−1) = 0,
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f(y, x) + f(yx, x−1) = 0,

f(x, y) + f(x−1xy) = 0.

To ensure that Q is SUF we require:

f(y, vx) + f(v, y · vx) + f(x, v · (y · vx))− f(v, y)− f(x, vy)− f(x · vy, vx) = 0.

Professor Vojtěchovský provided us with GAP code to efficiently carry out the con-

struction as described in [26]. This allowed us to search many SUF loops arising as central

extensions for one which is not Moufang. However, we were unable to find such a loop.

The Moufang library in the GAP LOOPS package provided us with an exhaustive list of

non-associative Moufang loops of orders ≤ 64 and 81 to serve as bases for our central

extensions. The extensions we searched are listed below.

K A
Moufang loops of order 16 by Z2

Central extensions of Moufang loops of order 16 by Z2 by Z2

Moufang loops of order 32 by Z2

Central extensions of Moufang loops of order 32 by Z2 by Z2

Moufang loops of order 64 by Z2

Moufang loops of order 81 by Z3

Central extensions of Moufang loops of order 81 by Z3 by Z3

Moufang loops of order 64 by Zp, p ≤ 13 prime

Table 6.2: Loops checked for SUF IP and not Moufang

Given the extent of loops checked we conjecture the following:

Conjecture 6.4. Let Q be an SUF IP loop which is also a central extension of a Moufang

loop by a cyclic group, then Q is a Moufang loop.
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6.4 A UF loop which is not middle Bol

It had been conjectured that all universally flexible loops are middle Bol. The central

extension approach did allow us to construct a UF loop which is not middle Bol. The

multiplication table of such a loop is below, it is a central extension of a middle Bol loop

of order 16 by Z2. The central extension structure can clearly be seen in the multiplication

table, K × {0} is the upper left quadrant.

In particular, this loop is universally flexible and does not have the AAIP and thus is

not middle Bol. Further, it is commutative and has the semiautomorphic inverse property

(xyx)−1 = x−1y−1x−1. Further, one of its isotopes has the AAIP, but being an isotope is

UF and not middle Bol.

· 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
2 2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23 26 25 28 27 30 29 32 31
3 3 4 7 8 9 10 11 12 13 14 1 2 15 16 5 6 27 28 23 24 31 32 19 20 29 30 17 18 25 26 21 22
4 4 3 8 7 10 9 12 11 14 13 2 1 16 15 6 5 28 27 24 23 32 31 20 19 30 29 18 17 26 25 22 21
5 5 6 9 10 1 2 14 13 3 4 16 15 8 7 12 11 21 22 25 26 17 18 29 30 19 20 31 32 23 24 27 28
6 6 5 10 9 2 1 13 14 4 3 15 16 7 8 11 12 22 21 26 25 18 17 30 29 20 19 32 31 24 23 28 27
7 7 8 11 12 14 13 1 2 16 15 3 4 6 5 10 9 23 24 27 28 29 30 17 18 31 32 19 20 21 22 25 26
8 8 7 12 11 13 14 2 1 15 16 4 3 5 6 9 10 24 23 28 27 30 29 18 17 32 31 20 19 22 21 26 25
9 9 10 13 14 3 4 16 15 7 8 6 5 12 11 2 1 31 32 29 30 27 28 25 26 23 24 21 22 19 20 17 18
10 10 9 14 13 4 3 15 16 8 7 5 6 11 12 1 2 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
11 11 12 1 2 16 15 3 4 6 5 7 8 10 9 14 13 19 20 17 18 25 26 27 28 21 22 23 24 31 32 29 30
12 12 11 2 1 15 16 4 3 5 6 8 7 9 10 13 14 20 19 18 17 26 25 28 27 22 21 24 23 32 31 30 29
13 13 14 15 16 8 7 6 5 12 11 10 9 1 2 3 4 30 29 32 31 24 23 22 21 28 27 26 25 18 17 20 19
14 14 13 16 15 7 8 5 6 11 12 9 10 2 1 4 3 29 30 31 32 23 24 21 22 27 28 25 26 17 18 19 20
15 15 16 5 6 12 11 10 9 2 1 14 13 3 4 7 8 26 25 22 21 20 19 32 31 18 17 30 29 28 27 24 23
16 16 15 6 5 11 12 9 10 1 2 13 14 4 3 8 7 25 26 21 22 19 20 31 32 17 18 29 30 27 28 23 24
17 17 18 27 28 21 22 23 24 31 32 19 20 30 29 26 25 13 14 11 12 7 8 5 6 16 15 3 4 2 1 9 10
18 18 17 28 27 22 21 24 23 32 31 20 19 29 30 25 26 14 13 12 11 8 7 6 5 15 16 4 3 1 2 10 9
19 19 20 23 24 25 26 27 28 29 30 17 18 32 31 22 21 11 12 5 6 16 15 3 4 1 2 13 14 9 10 8 7
20 20 19 24 23 26 25 28 27 30 29 18 17 31 32 21 22 12 11 6 5 15 16 4 3 2 1 14 13 10 9 7 8
21 21 22 31 32 17 18 29 30 27 28 25 26 24 23 20 19 7 8 16 15 13 14 2 1 11 12 9 10 5 6 3 4
22 22 21 32 31 18 17 30 29 28 27 26 25 23 24 19 20 8 7 15 16 14 13 1 2 12 11 10 9 6 5 4 3
23 23 24 19 20 29 30 17 18 25 26 27 28 22 21 32 31 5 6 3 4 2 1 13 14 9 10 11 12 7 8 16 15
24 24 23 20 19 30 29 18 17 26 25 28 27 21 22 31 32 6 5 4 3 1 2 14 13 10 9 12 11 8 7 15 16
25 25 26 29 30 19 20 31 32 23 24 21 22 28 27 18 17 16 15 1 2 11 12 9 10 5 6 8 7 3 4 13 14
26 26 25 30 29 20 19 32 31 24 23 22 21 27 28 17 18 15 16 2 1 12 11 10 9 6 5 7 8 4 3 14 13
27 27 28 17 18 31 32 19 20 21 22 23 24 26 25 30 29 3 4 13 14 9 10 11 12 8 7 5 6 16 15 1 2
28 28 27 18 17 32 31 20 19 22 21 24 23 25 26 29 30 4 3 14 13 10 9 12 11 7 8 6 5 15 16 2 1
29 29 30 25 26 23 24 21 22 19 20 31 32 18 17 28 27 2 1 9 10 5 6 7 8 3 4 16 15 13 14 11 12
30 30 29 26 25 24 23 22 21 20 19 32 31 17 18 27 28 1 2 10 9 6 5 8 7 4 3 15 16 14 13 12 11
31 31 32 21 22 27 28 25 26 17 18 29 30 20 19 24 23 9 10 8 7 3 4 16 15 13 14 1 2 11 12 5 6
32 32 31 22 21 28 27 26 25 18 17 30 29 19 20 23 24 10 9 7 8 4 3 15 16 14 13 2 1 12 11 6 5

Table 6.3: A loop which is UF and not middle Bol
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Chapter 7: Future directions of research

7.1 Power graphs

7.2 Future directions of research

The enhanced power graph of a group, which lies between the power graph and the

commuting graph as a subgraph, was recently defined in [41]. They were able to prove a

similar result, that two finite groups with isomorphic power graphs must have isomorphic

enhanced power graphs. One natural progression of our research would be to attempt to

transfer this result to the context of Moufang loops.

Definition 7.1. Let G be a graph, then the line graph of G has vertex set edges of G, with

two vertices adjacent if and only if the corresponding edges are incident in G

Definition 7.2. A graph is a line graph if it is the line graph of some graph

Definition 7.3. The proper power graph is obtained from the power graph by deleting all

vertices connected to all others

It is shown in [42] that the proper power graphs of generalized quaternion groups are

line graphs. We conjecture that this result can be extended to generalized octonion loops.

7.3 Para-F quasigroups

There are several outstanding problems regarding para-F quasigroups. The first is the

lack of a human readable proof that para-F quasigroups are affine over Moufang loops. An

example of a para-F quasigroup which is not paramedial is also still needed.

There is another generalization of medial quasigroups which we have not considered

above, the trimedial quasigroups. The relation of trimedial quasigroups to other varieties is
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shown in figure 7.1 [43]. It seems that the variety of quasigroups defined by the (*) iden-

tities in section 3.1.2 may be the analogous triparamedial quasigroups [43]. To formalize

this would require proving that a quasigroup satisfies (*) if and only if it is triparamedial.

Another natural next step would be to attempt to prove a linearity result for the triparame-

dial quasigroups.

Medial
xa · by = xb · ay

Trimedial
all 3-generated

subquasigroups medial

Semimedial
xx · yz = xy · xz

and
zy · xx = zx · yx

F-quasigroups
x · yz = xy · (x\x)z

and
zy · x = z(x/x) · yx

Paramedial
ax · yb = bx · ya

Triparamedial
all 3-generated

subquasigroups paramedial

Semiparamedial
xx · yz = zx · yx

and
zy · xx = xy · xz

Para-F
x · yz = zx · y(x/x)

and
zy · x = (x\x)y · xz

Figure 7.1: Generalizations of medial and paramedial with trimedial

7.4 Solvability for loops

In this chapter we succeeded in finding a sufficient condition for classical and congru-

ence solvability degrees to coincide in loops. A natural next step would be to attempt to

weaken this sufficient condition or find an equivalent condition for solvability degrees to

coincide.
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7.5 Cosets in Moufang loops

The question we set out to answer here, namely ”for any subloop of a Moufang loop

does there exist a subset of its cosets partitioning the loop?”, remains open. We conjecture

that the answer is positive.

7.6 SUF loops

The first open question to address here is whether there exists an SUF loop which is not

UF. We conjecture that such a loop does exist, but we have thus far been unable to construct

one.

There is also the remaining question of whether SUF and IP implies Moufang. As

above, it is conjectured that there is an SUF IP loop which is not Moufang, but none has

yet been constructed. Not that an affirmative answer to the first question would provide an

affirmative answer to this question as it is known [8] that a UF IP loop must be Moufang.
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Appendix A: Automated proofs

Notation

PROVER9 format = standard notation

0 = 1

x ∗ y = x · y

i(x) = x−1

R(x, y, z) = Rx,y(z)

L(x, y, z) = Lx,y(z)

T (x, y) = Tx(y)

A(x, y, z) = [x, y, z]

C(x, y) = [x, y]

Para-F

PROVER9 proof of Proposition 3.11. PROVER9 proof of Proposition 3.11

Proof. The following shows that the (*) identities imply one of the para-F identities. The

other para-F identity is dual.

1 ( x * y ) * z = ( ( z \ z ) * y ) * ( z * x ) #

↪→ l a b e l ( n o n c l a u s e ) # l a b e l ( g o a l ) . [ ] .

2 x * ( x \ y ) = y . [ ] .

3 x \ ( x * y ) = y . [ ] .
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4 ( x / y ) * y = x . [ ] .

5 ( x * y ) / y = x . [ ] .

6 x * ( y * z ) = ( z * ( x \ x ) ) * ( y * x ) . [ ] .

7 ( x * ( y \ y ) ) * ( z * y ) = y * ( z * x ) . [ 6 ] .

8 ( x * y ) * z = ( z * y ) * ( ( z / z ) * x ) . [ ] .

9 ( x * y ) * ( ( x / x ) * z ) = ( z * y ) * x . [ 8 ] .

10 ( ( c3 \ c3 ) * c2 ) * ( c3 * c1 ) != ( c1 * c2 ) * c3 .

↪→ [ 1 ] .

11 ( x / y ) \ x = y . [ 4 , 3 ] .

12 x / ( y \ x ) = y . [ 2 , 5 ] .

13 ( x * ( y \ y ) ) \ ( y * ( z * x ) ) = z * y . [ 7 , 3 ] .

14 x * ( y * ( z / ( x \ x ) ) ) = z * ( y * x ) . [ 4 , 7 ] .

15 ( x * ( y \ y ) ) * z = y * ( ( z / y ) * x ) . [ 4 , 7 ] .

16 ( x * ( y * z ) ) / ( y * x ) = z * ( x \ x ) . [ 7 , 5 ] .

17 ( x * ( y \ z ) ) * y = z * ( ( y / y ) * x ) . [ 2 , 9 ] .

18 ( ( ( x / x ) \ y ) * z ) * x = ( x * z ) * y . [ 2 , 9 ] .

19 ( x * y ) \ ( ( z * y ) * x ) = ( x / x ) * z . [ 9 , 3 ] .

20 ( ( x * y ) * z ) / ( ( z / z ) * x ) = z * y . [ 9 , 5 ] .

21 ( x * ( y \ y ) ) \ ( y * z ) = ( z / x ) * y . [ 4 , 1 3 ] .

22 x \ ( y * ( z * x ) ) = z * ( y / ( x \ x ) ) . [ 1 4 , 3 ] .

23 ( x * ( ( y / x ) * z ) ) / y = z * ( x \ x ) . [ 1 5 , 5 ] .

24 x * ( ( ( ( y / y ) * z ) / x ) * y ) = x * ( ( y / x ) *

↪→ z ) . [ 1 5 , 9 , 1 5 ] .

25 ( x * y ) / ( z * x ) = ( z \ y ) * ( x \ x ) . [ 2 , 1 6 ] .

26 x * ( ( y / y ) * ( z / ( y \ x ) ) ) = z * y . [ 4 , 1 7 ] .

27 ( x * ( ( y / y ) * z ) ) / y = z * ( y \ x ) . [ 1 7 , 5 ] .

28 ( x * ( ( ( x / x ) \ y ) \ z ) ) * y = z * x . [ 2 , 1 8 ] .

29 ( ( ( x / y ) * z ) / x ) * y = ( x / x ) * z .

↪→ [ 1 5 , 1 9 , 2 1 ] .

30 ( x * y ) / ( ( y / y ) * z ) = y * ( z \ x ) . [ 2 , 2 0 ] .

31 ( x * ( y \ y ) ) \ z = ( ( y \ z ) / x ) * y . [ 2 , 2 1 ] .
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32 ( x / y ) * ( z / ( y \ y ) ) = y \ ( z * x ) . [ 4 , 2 2 ] .

33 x * ( ( y / ( x * z ) ) / ( z \ z ) ) = z \ y . [ 4 , 2 2 ] .

34 ( ( x / y ) \ z ) * ( y \ y ) = ( y * z ) / x . [ 2 , 2 3 ] .

35 ( x \ ( y \ z ) ) * ( y \ y ) = z / ( x * y ) . [ 2 , 2 5 ] .

36 ( x / x ) * ( y / ( x \ z ) ) = z \ ( y * x ) . [ 2 6 , 3 ] .

37 ( ( x / x ) \ y ) * ( x \ z ) = ( z * y ) / x . [ 2 , 2 7 ] .

38 ( x / ( y \ y ) ) * ( z \ y ) = y * ( z \ x ) .

↪→ [ 1 4 , 2 7 , 2 7 ] .

39 x * ( ( ( x / x ) \ y ) \ z ) = ( z * x ) / y . [ 2 8 , 5 ] .

40 ( x / x ) * ( ( x / y ) \ z ) = ( z / x ) * y . [ 2 , 2 9 ] .

41 ( ( x / y ) * z ) / x = ( ( x / x ) * z ) / y . [ 2 9 , 5 ] .

42 x / ( ( y / y ) * z ) = y * ( z \ ( x / y ) ) . [ 4 , 3 0 ] .

43 ( x / y ) \ ( y \ ( z * x ) ) = z / ( y \ y ) . [ 3 2 , 3 ] .

44 ( x / ( y * z ) ) / ( z \ z ) = y \ ( z \ x ) . [ 3 3 , 3 ] .

45 ( ( x * y ) / z ) / ( x \ x ) = ( z / x ) \ y . [ 3 4 , 5 ] .

46 ( x \ ( y \ z ) ) \ ( z / ( x * y ) ) = y \ y . [ 3 5 , 3 ] .

47 ( ( ( x / x ) * y ) / z ) * x = ( x / z ) * y . [ 2 4 , 3 , 3 ] .

48 ( x / x ) \ ( y \ ( z * x ) ) = z / ( x \ y ) . [ 3 6 , 3 ] .

49 ( x * ( y \ ( z * u ) ) ) / u = ( z / ( u \ y ) ) * ( u \

↪→ x ) . [ 3 6 , 2 7 ] .

50 ( x / ( y \ y ) ) \ ( y * ( z \ x ) ) = z \ y . [ 3 8 , 3 ] .

51 ( x * ( y \ z ) ) / ( y \ x ) = z / ( x \ x ) . [ 3 8 , 5 ] .

52 ( x / ( y \ y ) ) * z = y * ( ( y / z ) \ x ) . [ 1 1 , 3 8 ] .

53 ( ( x / x ) \ y ) \ z = x \ ( ( z * x ) / y ) . [ 3 9 , 3 ] .

54 ( x / x ) \ ( ( y / x ) * z ) = ( x / z ) \ y . [ 4 0 , 3 ] .

55 ( ( ( x / y ) \ z ) * u ) * x = ( x * u ) * ( ( z / x ) *

↪→ y ) . [ 4 0 , 9 ] .

56 ( x / y ) * ( z \ y ) = ( y / y ) * ( z \ x ) . [ 1 2 , 4 0 ] .

57 ( ( x / x ) * y ) / ( z \ x ) = ( z * y ) / x . [ 1 2 , 4 1 ] .

58 x * ( ( y / ( x \ z ) ) \ ( u / x ) ) = u / ( z \ ( y *

↪→ x ) ) . [ 3 6 , 4 2 ] .
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59 ( x / y ) \ ( y \ z ) = ( z / x ) / ( y \ y ) . [ 4 , 4 3 ] .

60 ( x / y ) * ( ( x / x ) \ z ) = ( z / y ) * x . [ 2 , 4 7 ] .

61 ( x / ( y \ ( ( x / x ) * z ) ) ) * z = y * x . [ 1 2 , 4 7 ] .

62 ( x / x ) \ ( y \ z ) = ( z / x ) / ( x \ y ) . [ 4 , 4 8 ] .

63 x / ( y \ ( ( x * y ) / z ) ) = ( y / y ) \ z . [ 1 1 , 4 8 ] .

64 ( x / ( y \ z ) ) * ( z \ z ) = y * ( z \ x ) .

↪→ [ 4 8 , 3 5 , 4 2 , 5 ] .

65 ( x * ( y \ z ) ) / ( y \ y ) = z / ( x \ y ) .

↪→ [ 4 8 , 4 4 , 4 2 , 5 ] .

66 ( x / ( y \ z ) ) \ ( y * ( z \ x ) ) = z \ z .

↪→ [ 4 8 , 4 6 , 4 2 , 5 ] .

67 ( x / ( y \ y ) ) \ ( y * z ) = ( x / z ) \ y . [ 1 1 , 5 0 ] .

68 ( x * y ) / ( z \ z ) = ( z * y ) / ( x \ z ) . [ 3 , 5 1 ] .

69 ( x * y ) / ( ( z / y ) \ x ) = z / ( x \ x ) . [ 1 1 , 5 1 ] .

70 x * ( ( x / y ) \ ( ( x * z ) / u ) ) = ( ( u / x ) \ z ) *

↪→ y . [ 4 5 , 5 2 ] .

71 ( x / y ) \ ( z * x ) = ( x / x ) \ ( z * y ) . [ 5 , 5 4 ] .

72 ( x / x ) * ( y \ ( z * x ) ) = z * ( y \ x ) . [ 5 , 5 6 ] .

73 ( x * ( y / ( z \ u ) ) ) / z = ( u \ ( y * z ) ) / ( x \

↪→ z ) . [ 3 6 , 5 7 ] .

74 ( x * ( y \ z ) ) / y = z / ( x \ ( y * y ) ) .

↪→ [ 5 9 , 3 7 , 5 2 , 5 8 ] .

75 ( x / ( y \ z ) ) * z = y * ( ( z / z ) \ x ) . [ 1 2 , 6 0 ] .

76 x / ( y \ ( ( x / x ) * z ) ) = ( y * x ) / z . [ 6 1 , 5 ] .

77 ( x / y ) * ( z \ z ) = ( z / y ) * ( z \ x ) . [ 1 1 , 6 4 ] .

78 ( ( x * y ) / ( z \ x ) ) \ ( z * y ) = x \ x . [ 3 , 6 6 ] .

79 ( x * y ) / ( ( x * z ) \ ( x * z ) ) = ( ( x * z ) * y ) /

↪→ z . [ 3 , 6 8 ] .

80 ( ( x * y ) / ( z \ x ) ) * u = x * ( ( x / u ) \ ( z *

↪→ y ) ) . [ 6 8 , 4 0 , 4 0 , 5 2 ] .
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81 ( ( x * y ) * ( x \ x ) ) / ( ( z / y ) \ x ) = z / ( ( x *

↪→ y ) \ ( x * y ) ) . [ 6 7 , 6 9 ] .

82 ( x / x ) \ ( y * ( z \ x ) ) = z \ ( y * x ) . [ 1 2 , 7 1 ] .

83 x * ( ( ( y \ ( z * ( x * x ) ) ) / x ) * ( x \ x ) ) = z *

↪→ ( y \ ( x * x ) ) . [ 2 5 , 7 2 , 1 5 ] .

84 ( x * ( y \ z ) ) / ( u \ z ) = ( x / ( z \ y ) ) * ( z \

↪→ u ) . [ 7 2 , 5 7 , 4 9 ] .

85 x * ( ( x / ( x \ ( y / z ) ) ) \ ( x * z ) ) = y / ( ( x *

↪→ z ) \ ( x * z ) ) . [ 8 1 , 8 4 , 5 2 ] .

86 ( x * y ) / ( z \ ( x * x ) ) = ( z * y ) / x . [ 3 , 7 4 ] .

87 ( x / ( y \ ( z * z ) ) ) * z = y * ( z \ x ) . [ 7 4 , 4 ] .

88 ( x / ( y \ z ) ) \ ( y * ( ( z / z ) \ x ) ) = z . [ 7 5 , 3 ] .

89 ( x * y ) / ( z \ ( u * y ) ) = y / ( x \ ( u * ( z \

↪→ y ) ) ) . [ 7 2 , 7 6 ] .

90 x / ( y \ ( z * ( ( z * x ) \ x ) ) ) = z * ( ( z / x ) \

↪→ y ) . [ 7 8 , 6 9 , 8 4 , 8 0 , 6 7 , 8 9 ] .

91 x \ ( y * ( z * z ) ) = z * ( y / ( z \ x ) ) .

↪→ [ 2 5 , 8 2 , 3 1 , 5 2 , 6 2 , 4 9 , 6 5 , 1 1 ] .

92 x * ( y \ ( z * z ) ) = z * ( y \ ( x * z ) ) .

↪→ [ 8 3 , 9 1 , 7 3 , 4 ] .

93 ( ( x * y ) / z ) \ ( z * y ) = x \ ( z * z ) . [ 8 6 , 1 1 ] .

94 ( ( x * x ) / y ) / ( y \ z ) = x / ( y \ ( ( z * y ) /

↪→ x ) ) . [ 8 6 , 6 3 , 6 2 ] .

95 ( x / y ) * ( ( y / y ) \ z ) = y * ( ( y / ( y \ z ) ) \

↪→ x ) . [ 6 7 , 8 7 , 7 5 , 5 2 ] .

96 ( x / ( y \ ( ( y * y ) / x ) ) ) * ( y \ ( ( z * y ) / x ) )

↪→ = y * ( ( y / ( y \ x ) ) \ z ) . [ 8 8 , 8 7 , 9 5 , 5 3 , 5 3 ] .

97 ( x / ( y \ ( ( z * y ) / x ) ) ) * ( y \ u ) = ( x * ( z \

↪→ ( u * x ) ) ) / y . [ 9 2 , 3 7 , 6 2 , 9 4 ] .

98 x / ( y \ ( x * ( z \ x ) ) ) = x * ( ( x / ( x \ z ) ) \

↪→ y ) . [ 9 6 , 9 7 , 4 , 7 4 , 8 9 ] .
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99 x * ( ( x / ( x \ y ) ) \ ( x * z ) ) = x * ( ( x / z ) \

↪→ y ) . [ 9 3 , 6 9 , 8 9 , 9 8 , 8 9 , 9 0 ] .

100 x / ( ( y * z ) \ ( y * z ) ) = y * ( ( y / z ) \ ( x /

↪→ z ) ) . [ 8 5 , 9 9 ] .

101 ( ( x * y ) * z ) / y = ( ( y / x ) \ z ) * y .

↪→ [ 7 9 , 1 0 0 , 7 0 ] .

102 ( x * x ) * ( ( y / x ) * z ) = ( z * x ) * y .

↪→ [ 1 0 1 , 4 , 5 5 ] .

103 ( ( x \ y ) * z ) * x = ( ( x \ x ) * z ) * y .

↪→ [ 7 7 , 1 0 2 , 1 0 2 ] .

104 ( ( x \ x ) * y ) * ( x * z ) = ( z * y ) * x . [ 3 , 1 0 3 ] .

105 \$F . [ 1 0 4 , 1 0 ] .

The following shows that the (*) identities imply one of the semiparamedial identities.

The other semiparamedial identity is dual.

1 ( x * y ) * ( z * z ) = ( z * y ) * ( z * x ) #

↪→ l a b e l ( n o n c l a u s e ) # l a b e l ( g o a l ) . [ ] .

2 x * ( x \ y ) = y . [ ] .

3 x \ ( x * y ) = y . [ ] .

4 ( x / y ) * y = x . [ ] .

5 ( x * y ) / y = x . [ ] .

6 x * ( y * z ) = ( z * ( x \ x ) ) * ( y * x ) . [ ] .

7 ( x * ( y \ y ) ) * ( z * y ) = y * ( z * x ) . [ 6 ] .

8 ( x * y ) * z = ( z * y ) * ( ( z / z ) * x ) . [ ] .

9 ( x * y ) * ( ( x / x ) * z ) = ( z * y ) * x . [ 8 ] .

10 ( c1 * c2 ) * ( c3 * c3 ) != ( c3 * c2 ) * ( c3 * c1 ) . [ 1 ] .

11 ( c3 * c2 ) * ( c3 * c1 ) != ( c1 * c2 ) * ( c3 * c3 ) .

↪→ [ 1 0 ] .

12 ( x / y ) \ x = y . [ 4 , 3 ] .

13 x / ( y \ x ) = y . [ 2 , 5 ] .

14 ( x * ( y \ y ) ) \ ( y * ( z * x ) ) = z * y . [ 7 , 3 ] .
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15 x * ( y * ( z / ( x \ x ) ) ) = z * ( y * x ) . [ 4 , 7 ] .

16 ( x * ( y \ y ) ) * z = y * ( ( z / y ) * x ) . [ 4 , 7 ] .

17 ( x * ( y * z ) ) / ( y * x ) = z * ( x \ x ) . [ 7 , 5 ] .

18 ( x * ( y \ z ) ) * y = z * ( ( y / y ) * x ) . [ 2 , 9 ] .

19 ( x * y ) \ ( ( z * y ) * x ) = ( x / x ) * z . [ 9 , 3 ] .

20 ( ( x * y ) * z ) / ( ( z / z ) * x ) = z * y . [ 9 , 5 ] .

21 ( x * ( y \ y ) ) \ ( y * z ) = ( z / x ) * y . [ 4 , 1 4 ] .

22 x \ ( y * ( z * x ) ) = z * ( y / ( x \ x ) ) . [ 1 5 , 3 ] .

23 ( x * ( ( y / x ) * z ) ) / y = z * ( x \ x ) . [ 1 6 , 5 ] .

24 x * ( ( ( ( y / y ) * z ) / x ) * y ) = x * ( ( y / x ) * z ) .

↪→ [ 1 6 , 9 , 1 6 ] .

25 x * ( y * ( ( ( z / ( x \ x ) ) / y ) * u ) ) = z * ( y * ( ( x /

↪→ y ) * u ) ) . [ 1 6 , 1 5 , 1 6 ] .

26 ( x * y ) / ( z * x ) = ( z \ y ) * ( x \ x ) . [ 2 , 1 7 ] .

27 x * ( ( y / y ) * ( z / ( y \ x ) ) ) = z * y . [ 4 , 1 8 ] .

28 ( x * ( ( y / y ) * z ) ) / y = z * ( y \ x ) . [ 1 8 , 5 ] .

29 ( x * y ) \ ( z * x ) = ( x / x ) * ( z / y ) . [ 4 , 1 9 ] .

30 ( ( ( x / y ) * z ) / x ) * y = ( x / x ) * z . [ 1 6 , 1 9 , 2 1 ] .

31 ( x * y ) / ( ( y / y ) * z ) = y * ( z \ x ) . [ 2 , 2 0 ] .

32 ( x / ( y / ( z \ z ) ) ) * z = y \ ( z * x ) . [ 4 , 2 1 ] .

33 ( x / y ) * ( z / ( y \ y ) ) = y \ ( z * x ) . [ 4 , 2 2 ] .

34 ( ( x / y ) \ z ) * ( y \ y ) = ( y * z ) / x . [ 2 , 2 3 ] .

35 ( ( x * x ) * y ) * ( x * ( ( z / x ) * ( x \ x ) ) ) = ( z * y )

↪→ * ( x * x ) . [ 2 6 , 9 , 1 6 ] .

36 ( x / x ) * ( y / ( x \ z ) ) = z \ ( y * x ) . [ 2 7 , 3 ] .

37 ( ( x / x ) \ y ) * ( x \ z ) = ( z * y ) / x . [ 2 , 2 8 ] .

38 ( x / ( y \ y ) ) * ( z \ y ) = y * ( z \ x ) . [ 1 5 , 2 8 , 2 8 ] .

39 ( x / x ) * ( ( x / y ) \ z ) = ( z / x ) * y . [ 2 , 3 0 ] .

40 ( ( x / y ) * z ) / x = ( ( x / x ) * z ) / y . [ 3 0 , 5 ] .

41 ( ( x * y ) / z ) * ( x \ z ) = ( z / z ) * y . [ 1 3 , 3 0 ] .

42 x / ( ( y / y ) * z ) = y * ( z \ ( x / y ) ) . [ 4 , 3 1 ] .
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43 ( x / ( y / ( z \ z ) ) ) \ ( y \ ( z * x ) ) = z . [ 3 2 , 3 ] .

44 ( x / y ) \ ( y \ ( z * x ) ) = z / ( y \ y ) . [ 3 3 , 3 ] .

45 ( ( x * y ) / z ) / ( x \ x ) = ( z / x ) \ y . [ 3 4 , 5 ] .

46 ( ( ( x / x ) * y ) / z ) * x = ( x / z ) * y . [ 2 4 , 3 , 3 ] .

47 ( x * ( y \ ( z * u ) ) ) / u = ( z / ( u \ y ) ) * ( u \ x ) .

↪→ [ 3 6 , 2 8 ] .

48 ( x / ( y \ y ) ) \ ( y * ( z \ x ) ) = z \ y . [ 3 8 , 3 ] .

49 ( x * ( y \ z ) ) / ( y \ x ) = z / ( x \ x ) . [ 3 8 , 5 ] .

50 x * ( y \ ( z * ( x \ x ) ) ) = z * ( y \ x ) . [ 5 , 3 8 ] .

51 ( x / ( y \ y ) ) * z = y * ( ( y / z ) \ x ) . [ 1 2 , 3 8 ] .

52 ( x / y ) * ( z \ y ) = ( y / y ) * ( z \ x ) . [ 1 3 , 3 9 ] .

53 ( ( x / x ) * y ) / ( z \ x ) = ( z * y ) / x . [ 1 3 , 4 0 ] .

54 x * ( ( y / ( x \ z ) ) \ ( u / x ) ) = u / ( z \ ( y * x ) ) .

↪→ [ 3 6 , 4 2 ] .

55 ( x / ( ( x * y ) / ( z \ z ) ) ) \ ( ( x / x ) * ( z / y ) ) = z .

↪→ [ 2 9 , 4 3 ] .

56 ( x / y ) \ ( y \ z ) = ( z / x ) / ( y \ y ) . [ 4 , 4 4 ] .

57 x \ ( ( ( x * y ) / z ) * u ) = ( u / x ) * ( ( z / x ) \ y ) .

↪→ [ 4 5 , 3 3 ] .

58 ( x / y ) * ( ( x / x ) \ z ) = ( z / y ) * x . [ 2 , 4 6 ] .

59 ( x / ( y \ y ) ) \ ( y * z ) = ( x / z ) \ y . [ 1 2 , 4 8 ] .

60 ( x * y ) / ( z \ z ) = ( z * y ) / ( x \ z ) . [ 3 , 4 9 ] .

61 ( x * ( ( x / y ) \ z ) ) / y = z / ( x \ x ) . [ 1 2 , 4 9 ] .

62 x \ ( y * ( z \ z ) ) = z \ ( y * ( x \ z ) ) . [ 5 0 , 3 ] .

63 x * ( ( x / y ) \ ( ( x * z ) / u ) ) = ( ( u / x ) \ z ) * y .

↪→ [ 4 5 , 5 1 ] .

64 ( x / x ) * ( y \ ( z * x ) ) = z * ( y \ x ) . [ 5 , 5 2 ] .

65 ( x * y ) * ( ( z / x ) * ( u \ x ) ) = ( ( u \ z ) * y ) * x .

↪→ [ 5 2 , 9 ] .

66 ( x * ( y \ z ) ) / y = z / ( x \ ( y * y ) ) .

↪→ [ 5 6 , 3 7 , 5 1 , 5 4 ] .
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67 ( x / ( y \ z ) ) * z = y * ( ( z / z ) \ x ) . [ 1 3 , 5 8 ] .

68 ( ( x / y ) * z ) / ( x \ x ) = ( x * z ) / y . [ 1 2 , 6 0 ] .

69 ( x * ( ( x / y ) \ z ) ) / ( z \ z ) = ( z * y ) / ( x \ x ) .

↪→ [ 5 9 , 6 1 ] .

70 ( x / y ) \ ( z * ( x \ x ) ) = x \ ( z * y ) . [ 1 2 , 6 2 ] .

71 ( x * ( y \ z ) ) / ( u \ z ) = ( x / ( z \ y ) ) * ( z \ u ) .

↪→ [ 6 4 , 5 3 , 4 7 ] .

72 ( x / ( y \ ( x / z ) ) ) * ( y \ y ) = ( y * z ) / ( x \ x ) .

↪→ [ 6 9 , 7 1 ] .

73 ( x / ( y \ ( z * z ) ) ) * z = y * ( z \ x ) . [ 6 6 , 4 ] .

74 ( ( x * x ) * y ) / z = ( ( z / x ) \ y ) * x .

↪→ [ 6 8 , 6 6 , 5 7 , 6 5 , 5 ] .

75 ( x / y ) \ ( ( x / x ) * z ) = ( y / x ) * ( ( x / x ) \ z ) .

↪→ [ 4 1 , 7 0 , 5 7 ] .

76 ( ( ( x * y ) / ( z \ z ) ) / x ) * ( ( x / x ) \ ( z / y ) ) = z .

↪→ [ 5 5 , 7 5 ] .

77 ( x / y ) * ( ( y / y ) \ z ) = y * ( ( y / ( y \ z ) ) \ x ) .

↪→ [ 5 9 , 7 3 , 6 7 , 5 1 ] .

78 ( ( ( x \ x ) / y ) \ z ) * ( y \ ( x / z ) ) = x . [ 7 6 , 7 7 , 6 3 ] .

79 ( ( x \ x ) / y ) \ z = x / ( y \ ( x / z ) ) . [ 7 8 , 5 ] .

80 ( x * y ) * ( z * z ) = ( z * y ) * ( z * x ) .

↪→ [ 3 5 , 2 5 , 7 4 , 7 9 , 5 , 7 2 , 1 5 ] .

81 \$F . [ 8 0 , 1 1 ] .

PROVER9 proof of Proposition 3.12.

Proof. This proves one of the candidate (*) identities follows from semiparamedial and

para-F. The proof of the other (*) identity is dual.

1 x * ( y * z ) = ( z * ( x \ x ) ) * ( y * x ) #

↪→ l a b e l ( n o n c l a u s e ) # l a b e l ( g o a l ) . [ ] .
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2 x * ( x \ y ) = y . [ ] .

3 x \ ( x * y ) = y . [ ] .

4 ( x / y ) * y = x . [ ] .

5 ( x * y ) / y = x . [ ] .

6 ( x * x ) * ( y * z ) = ( z * x ) * ( y * x ) . [ ] .

7 ( x * y ) * ( z * y ) = ( y * y ) * ( z * x ) . [ 6 ] .

8 ( x * y ) * ( z * z ) = ( z * y ) * ( z * x ) . [ ] .

9 x * ( y * z ) = ( z * x ) * ( y * ( x / x ) ) . [ ] .

10 ( x * y ) * ( z * ( y / y ) ) = y * ( z * x ) . [ 9 ] .

11 ( x * y ) * z = ( ( z \ z ) * y ) * ( z * x ) . [ ] .

12 ( ( x \ x ) * y ) * ( x * z ) = ( z * y ) * x . [ 1 1 ] .

13 ( c3 * ( c1 \ c1 ) ) * ( c2 * c1 ) != c1 * ( c2 * c3 ) . [ 1 ] .

14 ( x / y ) \ x = y . [ 4 , 3 ] .

15 ( ( x \ y ) * ( x \ y ) ) * ( z * x ) = y * ( z * ( x \ y ) ) .

↪→ [ 2 , 7 ] .

16 ( ( x \ y ) * z ) * ( x * z ) = ( z * z ) * y . [ 2 , 7 ] .

17 ( x * y ) \ ( ( y * y ) * ( z * x ) ) = z * y . [ 7 , 3 ] .

18 ( x * x ) * ( ( y / x ) * z ) = ( z * x ) * y . [ 4 , 7 ] .

19 ( x * ( y \ z ) ) * ( y * y ) = z * ( y * x ) . [ 2 , 8 ] .

20 x * ( y * ( z / z ) ) = z * ( y * ( x / z ) ) . [ 4 , 1 0 ] .

21 ( ( x \ y ) * z ) * x = ( ( x \ x ) * z ) * y . [ 2 , 1 2 ] .

22 ( ( x \ x ) * y ) \ ( ( z * y ) * x ) = x * z . [ 1 2 , 3 ] .

23 ( ( x \ y ) * ( x \ z ) ) * z = ( ( x \ z ) * ( x \ z ) ) * y .

↪→ [ 2 , 1 6 ] .

24 ( x * y ) \ ( ( y * y ) * z ) = ( z / x ) * y . [ 4 , 1 7 ] .

25 ( ( x \ y ) * ( x \ y ) ) * z = y * ( ( z / x ) * ( x \ y ) ) .

↪→ [ 4 , 1 5 ] .

26 ( ( x \ y ) * ( x \ z ) ) * z = z * ( ( y / x ) * ( x \ z ) ) .

↪→ [ 2 3 , 2 5 ] .

27 ( x * ( y * z ) ) / ( y * y ) = z * ( y \ x ) . [ 1 9 , 5 ] .
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28 x * ( ( ( ( y / ( x \ x ) ) * z ) / x ) * ( x \ x ) ) = ( z * ( x

↪→ \ x ) ) * y . [ 2 1 , 1 8 , 2 6 ] .

29 ( ( x \ x ) * y ) \ ( z * x ) = x * ( z / y ) . [ 4 , 2 2 ] .

30 ( x * y ) \ ( ( z * y ) * u ) = ( ( ( u / y ) * z ) / x ) * y .

↪→ [ 1 8 , 2 4 ] .

31 ( x * y ) / ( z * z ) = ( z \ y ) * ( z \ x ) . [ 2 , 2 7 ] .

32 ( x / y ) * ( z \ y ) = ( y / y ) * ( z \ x ) . [ 2 0 , 2 7 , 3 1 , 3 ] .

33 ( ( ( x / y ) * z ) / ( x \ x ) ) * y = x * z . [ 5 , 2 9 , 3 0 ] .

34 ( ( x * y ) / z ) * ( x \ z ) = ( z / z ) * y . [ 3 , 3 2 ] .

35 ( x / x ) * ( ( x / y ) \ z ) = ( z / x ) * y . [ 1 4 , 3 2 ] .

36 ( x / ( y \ y ) ) * z = y * ( ( y / z ) \ x ) . [ 2 , 3 3 ] .

37 ( x * ( y \ y ) ) * z = y * ( ( z / y ) * x ) .

↪→ [ 2 8 , 3 6 , 3 4 , 3 5 ] .

38 \$F . [ 1 3 , 3 7 , 5 ] .

Q/Nuc(Q)

PROVER9 proof of Theorem 4.25.

Proof. 1 R( x , y , R( z , u ,w) ) = R( z , u , R( x , y ,w) ) #

↪→ l a b e l ( n o n c l a u s e ) # l a b e l ( g o a l ) . [ ] .

2 0 * x = x . [ ] .

3 x * 0 = x . [ ] .

4 x * ( x \ y ) = y . [ ] .

5 x \ ( x * y ) = y . [ ] .

6 ( x / y ) * y = x . [ ] .

7 ( x * y ) / y = x . [ ] .

8 L ( x , y , z ) = ( x * y ) \ ( x * ( y * z ) ) . [ ] .

9 ( x * y ) \ ( x * ( y * z ) ) = L ( x , y , z ) . [ 8 ] .

10 R( x , y , z ) = ( ( z * x ) * y ) / ( x * y ) . [ ] .

11 ( ( x * y ) * z ) / ( y * z ) = R( y , z , x ) . [ 1 0 ] .

107



12 T ( x , y ) = ( x * y ) / x . [ ] .

13 ( x * y ) / x = T ( x , y ) . [ 1 2 ] .

14 A( x , y , z ) = ( x * ( y * z ) ) / ( ( x * y ) * z ) . [ ] .

15 ( x * ( y * z ) ) / ( ( x * y ) * z ) = A( x , y , z ) . [ 1 4 ] .

16 C( x , y ) = ( x * y ) / ( y * x ) . [ ] .

17 ( x * y ) / ( y * x ) = C( x , y ) . [ 1 6 ] .

18 A(A( x , y , z ) , u ,w) = 0 . [ ] .

19 A( x ,A( y , z , u ) ,w) = 0 . [ ] .

20 R( x , y , 0 / z ) = 0 / R( x , y , z ) . [ ] .

21 0 / R( x , y , z ) = R( x , y , 0 / z ) . [ 2 0 ] .

22 R( c1 , c2 , R( c3 , c4 , c5 ) ) != R( c3 , c4 , R( c1 , c2 , c5 ) ) . [ 1 ] .

23 R( c3 , c4 , R( c1 , c2 , c5 ) ) != R( c1 , c2 , R( c3 , c4 , c5 ) ) . [ 2 2 ] .

24 0 \ x = x . [ 4 , 2 ] .

25 x / 0 = x . [ 6 , 3 ] .

26 ( x / y ) \ x = y . [ 6 , 5 ] .

27 x / x = 0 . [ 2 , 7 ] .

28 x / ( y \ x ) = y . [ 4 , 7 ] .

29 L ( 0 , x , y ) = y . [ 2 , 9 , 2 , 5 ] .

30 ( x * y ) * L ( x , y , z ) = x * ( y * z ) . [ 9 , 4 ] .

31 x \ ( y * ( ( y \ x ) * z ) ) = L ( y , y \ x , z ) . [ 4 , 9 ] .

32 L ( x , y , y \ z ) = ( x * y ) \ ( x * z ) . [ 4 , 9 ] .

33 x \ ( ( x / y ) * ( y * z ) ) = L ( x / y , y , z ) . [ 6 , 9 ] .

34 R( x \ y , z , x ) = ( y * z ) / ( ( x \ y ) * z ) . [ 4 , 1 1 ] .

35 ( ( x * y ) * ( y \ z ) ) / z = R( y , y \ z , x ) . [ 4 , 1 1 ] .

36 R( x , y , z ) * ( x * y ) = ( z * x ) * y . [ 1 1 , 6 ] .

37 R( x , y , z / x ) = ( z * y ) / ( x * y ) . [ 6 , 1 1 ] .

38 T ( x / y , y ) = x / ( x / y ) . [ 6 , 1 3 ] .

39 A( x , y , z ) * ( ( x * y ) * z ) = x * ( y * z ) . [ 1 5 , 6 ] .

40 ( ( x \ y ) * x ) / y = C( x \ y , x ) . [ 4 , 1 7 ] .

41 x / ( y * ( x / y ) ) = C( x / y , y ) . [ 6 , 1 7 ] .

42 R( x , y , 0 / z ) * R( x , y , z ) = 0 . [ 2 1 , 6 ] .
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43 R( x , y , 0 / z ) \ 0 = R( x , y , z ) . [ 2 1 , 2 6 ] .

44 ( x * ( y * z ) ) / L ( x , y , z ) = x * y . [ 9 , 2 8 ] .

45 ( x \ 0) * x = C( x \ 0 , x ) . [ 4 0 , 2 5 ] .

46 (C( x \ 0 , x ) * y ) / ( x * y ) = R( x , y , x \ 0) . [ 4 5 , 1 1 ] .

47 x * (0 / x ) = C( x , 0 / x ) . [ 2 6 , 4 5 , 2 6 ] .

48 0 / C( x , 0 / x ) = C(0 / x , x ) . [ 4 7 , 1 7 , 6 ] .

49 L ( x , R( y , z , 0 / u ) ,R( y , z , u ) ) = ( x * R( y , z , 0 / u ) ) \ x .

↪→ [ 4 2 , 9 , 3 ] .

50 R( x , y , z ) \ 0 = R( x , y , z \ 0) . [ 2 8 , 4 3 ] .

51 x * L ( y , y \ x , z ) = y * ( ( y \ x ) * z ) . [ 4 , 3 0 ] .

52 ( x * ( y * z ) ) \ ( x * ( y * ( z * u ) ) ) = L ( x , y *

↪→ z , L ( y , z , u ) ) . [ 3 0 , 9 ] .

53 ( x * ( y * z ) ) / ( y * L ( x , y , z ) ) = R( y , L ( x , y , z ) , x ) .

↪→ [ 3 0 , 1 1 ] .

54 L ( x , y , y \ 0) = ( x * y ) \ x . [ 3 , 3 2 ] .

55 L ( x , y , y \ ( x \ z ) ) = ( x * y ) \ z . [ 4 , 3 2 ] .

56 L ( x / y , y , y \ 0) = x \ ( x / y ) . [ 6 , 5 4 ] .

57 x / L ( x , y , y \ 0) = x * y . [ 5 4 , 2 8 ] .

58 C( x \ 0 , x ) \ ( x \ 0) = L ( x \ 0 , x , x \ 0) . [ 4 5 , 5 4 ] .

59 C( x , 0 / x ) \ x = L ( x , 0 / x , x ) . [ 4 7 , 5 4 , 2 6 ] .

60 ( ( x * y ) * z ) / ( ( R( y , z , x ) * y ) * z ) =

↪→ A(R( y , z , x ) , y , z ) . [ 3 6 , 1 5 ] .

61 (R( x , y , z ) * ( ( x * y ) * u ) ) / ( ( ( z * x ) * y ) * u ) =

↪→ A(R( x , y , z ) , x * y , u ) . [ 3 6 , 1 5 ] .

62 R( x , y , 0 / x ) = y / ( x * y ) . [ 2 , 3 7 ] .

63 R( x , y , ( z / y ) / x ) = z / ( x * y ) . [ 6 , 3 7 ] .

64 R( x , y , z / x ) \ ( z * y ) = x * y . [ 3 7 , 2 6 ] .

65 R( x , x \ y , 0 / x ) = ( x \ y ) / y . [ 4 , 6 2 ] .

66 R( x , y , 0 / x ) \ y = x * y . [ 6 2 , 2 6 ] .

67 (0 / x ) / C( x , 0 / x ) = R( x , 0 / x , 0 / x ) . [ 4 7 , 6 2 ] .

68 R( x , y , x ) = ( y / ( x * y ) ) \ 0 . [ 6 2 , 5 0 , 2 6 ] .
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69 x / L ( x / ( y * z ) , y , z ) = ( x / ( y * z ) ) * y . [ 6 , 4 4 ] .

70 ( x * ( ( y * z ) * u ) ) / L ( x , R( z , u , y ) , z * u ) = x *

↪→ R( z , u , y ) . [ 3 6 , 4 4 ] .

71 R(C( x , 0 / x ) ,L ( x , 0 / x , x ) ,C(0 / x , x ) ) = L ( x , 0 / x , x )

↪→ / x . [ 5 9 , 6 5 , 4 8 , 5 9 ] .

72 (0 / x ) * ( x * y ) = L(0 / x , x , y ) . [ 3 3 , 2 4 ] .

73 L(0 / x , x , x \ y ) = (0 / x ) * y . [ 4 , 7 2 ] .

74 (0 / x ) \ L(0 / x , x , y ) = x * y . [ 7 2 , 5 ] .

75 C(0 / x , x ) \ L (C(0 / x , x ) ,C( x , 0 / x ) , y ) = C( x , 0 / x )

↪→ * y . [ 4 1 , 7 4 , 4 7 , 4 8 , 4 7 , 4 7 ] .

76 ( x * y ) * ( y \ 0) = R( y , y \ 0 , x ) . [ 3 5 , 2 5 ] .

77 R( x , x \ 0 , y / x ) = y * ( x \ 0) . [ 6 , 7 6 ] .

78 C( x , 0 / x ) * x = R(0 / x , x , x ) . [ 4 7 , 7 6 , 2 6 , 2 6 ] .

79 R( x , x \ 0 , x ) = ( x \ 0) \ 0 . [ 6 8 , 7 6 , 7 6 , 4 , 2 5 ] .

80 ( x \ 0) * R(0 / x , x , x ) = 0 . [ 7 9 , 4 2 , 2 6 , 2 6 ] .

81 R(0 / x , x , x ) = ( x \ 0) \ 0 . [ 8 0 , 5 ] .

82 C( x , 0 / x ) * x = ( x \ 0) \ 0 . [ 7 8 , 8 1 ] .

83 A( x / y , y , z ) * ( x * z ) = ( x / y ) * ( y * z ) . [ 6 , 3 9 ] .

84 (A( x , y , z ) * u ) * w = A( x , y , z ) * ( u * w) . [ 1 8 , 3 9 , 2 ] .

85 ( x * A( y , z , u ) ) * w = x * (A( y , z , u ) * w) . [ 1 9 , 3 9 , 2 ] .

86 L (A( x , y , z ) , u ,w) = w. [ 8 4 , 5 , 9 ] .

87 (A( x , y , z ) * ( u * w) ) / w = A( x , y , z ) * u . [ 8 4 , 7 ] .

88 L (A( x , y , z ) * u , w, v5 ) = L ( u , w, v5 ) . [ 8 4 , 9 , 8 4 , 5 2 , 8 6 ] .

89 R( x , y ,A( z , u ,w) ) = A( z , u ,w) . [ 8 4 , 1 1 , 7 ] .

90 ( x * (A( y , z , u ) * (w * v5 ) ) ) / ( ( x * (A( y , z , u ) * w) )

↪→ * v5 ) = A( x ,A( y , z , u ) * w, v5 ) . [ 8 4 , 1 5 ] .

91 R( x , y , 0 / A( z , u ,w) ) = 0 / A( z , u ,w) . [ 8 9 , 2 1 ] .

92 L (A( x , y , z ) \ u , w, v5 ) = L ( u , w, v5 ) . [ 4 , 8 8 ] .

93 ( ( 0 / A( x , y , z ) ) * u ) * w = (0 / A( x , y , z ) ) * ( u * w) .

↪→ [ 9 1 , 3 6 ] .

94 (0 / A( x , y , z ) ) \ u = A( x , y , z ) * u . [ 9 1 , 6 6 ] .

110



95 A( x , y , z ) \ 0 = 0 / A( x , y , z ) . [ 9 1 , 7 9 , 2 6 ] .

96 C(0 / A( x , y , z ) ,A( x , y , z ) ) = 0 . [ 9 5 , 4 0 , 6 , 2 7 , 9 5 ] .

97 x / L ( x ,A( y , z , u ) ,0 / A( y , z , u ) ) = x * A( y , z , u ) .

↪→ [ 9 5 , 5 7 ] .

98 L ( x / A( y , z , u ) ,A( y , z , u ) ,0 / A( y , z , u ) ) = x \ ( x /

↪→ A( y , z , u ) ) . [ 9 5 , 5 6 ] .

99 L(0 / A( x , y , z ) , u ,w) = w. [ 9 5 , 9 2 , 2 9 ] .

100 ( ( 0 / A( x , y , z ) ) * u ) \ w = u \ (A( x , y , z ) * w) .

↪→ [ 9 9 , 5 5 , 9 4 ] .

101 (0 / A( x , y , z ) ) * u = A( x , y , z ) \ u . [ 9 9 , 7 3 ] .

102 (A( x , y , z ) \ u ) \ w = u \ (A( x , y , z ) * w) . [ 1 0 0 , 1 0 1 ] .

103 A( x , y , z ) \ ( u * w) = (A( x , y , z ) \ u ) * w.

↪→ [ 9 3 , 1 0 1 , 1 0 1 ] .

104 L ( x , 0 / A( y , z , u ) ,A( y , z , u ) * ( x \ w) ) = ( x * (0 /

↪→ A( y , z , u ) ) ) \ w. [ 9 4 , 5 5 ] .

105 ( ( x * (0 / A( y , z , u ) ) ) * w) / (A( y , z , u ) \ w) = R(0 /

↪→ A( y , z , u ) ,w, x ) . [ 1 0 1 , 1 1 ] .

106 L ( x ,A( y , z , u ) ,w) = w. [ 8 5 , 5 , 9 ] .

107 R(A( x , y , z ) , u ,w) = w. [ 8 5 , 1 1 , 7 ] .

108 A( x * A( y , z , u ) ,w, v5 ) = A( x ,A( y , z , u ) * w, v5 ) .

↪→ [ 8 5 , 1 5 , 8 5 , 9 0 ] .

109 x \ ( x / A( y , z , u ) ) = 0 / A( y , z , u ) . [ 9 8 , 1 0 6 ] .

110 x / (0 / A( y , z , u ) ) = x * A( y , z , u ) . [ 9 7 , 1 0 6 ] .

111 ( x * A( y , z , u ) ) \ w = A( y , z , u ) \ ( x \ w) . [ 1 0 6 , 5 5 ] .

112 ( x / A( y , z , u ) ) \ ( x * w) = A( y , z , u ) * w. [ 1 0 7 , 6 4 ] .

113 x * (0 / A( y , z , u ) ) = x / A( y , z , u ) . [ 1 0 9 , 4 ] .

114 L ( x , 0 / A( y , z , u ) ,w) = w. [ 1 0 9 , 3 1 , 1 0 1 , 1 1 2 , 4 , 1 0 9 ] .

115 ( x / A( y , z , u ) ) * w = x * (A( y , z , u ) \ w) .

↪→ [ 1 0 9 , 5 1 , 1 1 4 , 1 0 9 , 1 0 1 ] .

116 R(0 / A( x , y , z ) , u ,w) = w. [ 1 0 5 , 1 1 3 , 1 1 5 , 7 ] .
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117 ( x / A( y , z , u ) ) \ w = A( y , z , u ) * ( x \ w) .

↪→ [ 1 0 4 , 1 1 4 , 1 1 3 ] .

118 x / (A( y , z , u ) \ w) = ( x / w) * A( y , z , u ) .

↪→ [ 1 1 6 , 6 3 , 1 1 0 , 1 1 5 , 2 ] .

119 (A( x , y , z ) * u ) / w = A( x , y , z ) * ( u / w) . [ 6 , 8 7 ] .

120 A( x , y , z ) * R( u , w, v5 ) = R( u , w,A( x , y , z ) * v5 ) .

↪→ [ 8 7 , 3 7 , 8 4 , 1 1 9 , 1 1 ] .

121 L ( x / A( y , z , u ) ,w, v5 ) = L ( x ,A( y , z , u ) \ w, v5 ) .

↪→ [ 1 1 5 , 9 , 1 1 5 , 1 0 3 , 9 ] .

122 A( x / A( y , z , u ) ,w, v5 ) = A( x ,A( y , z , u ) \ w, v5 ) .

↪→ [ 1 1 5 , 1 5 , 1 0 3 , 1 1 5 , 1 5 ] .

123 A( x , y , z ) * (0 / u ) = A( x , y , z ) / u . [ 3 , 1 1 9 ] .

124 A( x , y , z ) * ( ( 0 / u ) * w) = (A( x , y , z ) / u ) * w.

↪→ [ 1 2 3 , 3 0 , 8 6 ] .

125 L (A( x , y , z ) / u , w, v5 ) = L(0 / u , w, v5 ) . [ 1 2 3 , 8 8 ] .

126 R(C( x , 0 / x ) , x , R( x , 0 / x , 0 / x ) ) = x \ 0 .

↪→ [ 6 7 , 6 3 , 8 2 , 2 8 ] .

127 L ( ( x / y ) * ( y * z ) , u ,w) = L ( x * z , u ,w) . [ 8 3 , 8 8 ] .

128 (A(R( x , 0 / x , 0 / x ) ,C( x , 0 / x ) , y ) / x ) * y = R( x , 0

↪→ / x , 0 / x ) * (C( x , 0 / x ) * y ) . [ 6 7 , 8 3 , 1 2 4 , 6 7 ] .

129 L ( L(0 / x , x , y ) , z , u ) = L ( y , z , u ) . [ 2 , 1 2 7 , 7 2 ] .

130 L ( x \ 0 , y , z ) = L(0 / x , y , z ) . [ 5 4 , 1 2 9 , 6 , 2 4 ] .

131 C( x \ 0 , x ) \ ( x \ 0) = 0 / x . [ 5 8 , 1 3 0 , 7 3 , 3 ] .

132 R(C( x , 0 / x ) , x , R( x , 0 / x , 0 / (0 / x ) ) ) = x .

↪→ [ 1 2 6 , 2 1 , 2 8 , 2 1 ] .

133 R(R( x , y , z ) * x , y , ( z * x ) / (R( x , y , z ) * x ) ) =

↪→ A(R( x , y , z ) , x , y ) . [ 6 0 , 3 7 ] .

134 A(R( x , 0 / x , 0 / x ) ,C( x , 0 / x ) , y ) / x = (R( x , 0 / x , 0

↪→ / x ) * (C( x , 0 / x ) * y ) ) / y . [ 1 2 8 , 7 ] .

135 ( ( x \ 0) \ 0) / x = C( x , 0 / x ) . [ 8 2 , 7 ] .
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136 ( x * ( ( y \ 0) \ 0) ) / (C( y , 0 / y ) * L ( x , C( y , 0 /

↪→ y ) , y ) ) = R(C( y , 0 / y ) ,L ( x , C( y , 0 / y ) , y ) , x ) .

↪→ [ 8 2 , 5 3 ] .

137 L ( x , 0 / x , x ) = 0 / (0 / x ) . [ 2 6 , 1 3 1 , 2 6 , 5 9 ] .

138 R(C( x , 0 / x ) ,0 / (0 / x ) ,C(0 / x , x ) ) = (0 / (0 /

↪→ x ) ) / x . [ 7 1 , 1 3 7 , 1 3 7 ] .

139 C( x , 0 / x ) * (0 / (0 / x ) ) = x . [ 1 3 7 , 3 0 , 4 7 , 6 , 3 ] .

140 C( x , 0 / x ) * T(0 / x , x ) = x . [ 3 8 , 1 3 9 ] .

141 ( x * y ) / (C( y , 0 / y ) * L ( x , C( y , 0 / y ) ,0 / (0 /

↪→ y ) ) ) = R(C( y , 0 / y ) ,L ( x , C( y , 0 / y ) ,0 / (0 /

↪→ y ) ) , x ) . [ 1 3 9 , 5 3 ] .

142 ( x * y ) / (C( y , 0 / y ) * L ( x , C( y , 0 / y ) ,T(0 / y , y ) ) )

↪→ = R(C( y , 0 / y ) ,L ( x , C( y , 0 / y ) ,0 / (0 / y ) ) , x ) .

↪→ [ 3 8 , 1 4 1 ] .

143 ( ( x * y ) * z ) / ( x * ( y * z ) ) = 0 / A( x , y , z ) .

↪→ [ 3 9 , 4 6 , 9 5 , 9 6 , 2 , 9 5 , 9 1 ] .

144 A( x , y , z ) \ x = R( y , z , x ) .

↪→ [ 1 4 3 , 6 9 , 1 2 1 , 2 9 , 1 1 , 1 4 3 , 1 1 5 , 2 ] .

145 x / R( y , z , x ) = A( x , y , z ) . [ 1 4 4 , 2 8 ] .

146 R( x , y , z ) / z = 0 / A( z , x , y ) . [ 1 4 4 , 6 5 , 9 1 , 1 4 4 ] .

147 ( x * y ) / (R( z , u , x ) * y ) = A( x , z , u ) .

↪→ [ 1 4 4 , 3 4 , 8 9 , 1 4 4 ] .

148 A(R( x , y , z ) , x , y ) = A( z , x , y ) .

↪→ [ 1 3 3 , 1 4 4 , 1 4 7 , 1 8 , 1 4 7 , 2 4 ] .

149 R( x , y , z \ 0) = z \ A( z , x , y ) . [ 1 4 5 , 5 6 , 5 0 , 8 6 , 1 4 5 ] .

150 x * R( y , z , x \ 0) = A( x , y , z ) . [ 1 4 5 , 7 7 , 5 0 , 8 9 , 5 0 ] .

151 (R( x , y , z ) / z ) * u = A( z , x , y ) \ u . [ 1 4 6 , 7 3 , 1 0 6 ] .

152 L ( x , R( y , z , u ) / u ,w) = w. [ 1 4 6 , 1 1 4 ] .

153 L (R( x , y , z ) / z , u ,w) = w. [ 1 4 6 , 1 2 5 , 1 2 1 , 8 6 ] .

154 L ( x , C( y , 0 / y ) , z ) = z . [ 7 9 , 1 5 2 , 1 3 5 ] .
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155 R(C( x , 0 / x ) ,0 / (0 / x ) , y ) = y .

↪→ [ 1 4 2 , 1 5 4 , 1 4 0 , 7 , 1 5 4 ] .

156 R(C( x , 0 / x ) , x , y ) = y . [ 1 3 6 , 1 5 4 , 8 2 , 7 , 1 5 4 ] .

157 C(0 / x , x ) \ y = C( x , 0 / x ) * y . [ 7 5 , 1 5 4 ] .

158 (0 / (0 / x ) ) / x = C(0 / x , x ) . [ 1 3 8 , 1 5 5 ] .

159 R( x , 0 / x , 0 / (0 / x ) ) = x . [ 1 3 2 , 1 5 6 ] .

160 R( x , 0 / x , 0 / x ) = x \ 0 . [ 1 2 6 , 1 5 6 ] .

161 A( x \ 0 ,C( x , 0 / x ) , y ) / x = ( ( x \ 0) * (C( x , 0 / x )

↪→ * y ) ) / y . [ 1 3 4 , 1 6 0 , 1 6 0 ] .

162 ( x * (C( y , 0 / y ) * z ) ) / z = x * C( y , 0 / y ) .

↪→ [ 1 5 4 , 4 4 ] .

163 R(C( x , 0 / x ) , y , z ) = z . [ 1 5 4 , 5 3 , 7 , 1 5 4 ] .

164 A( x \ 0 ,C( x , 0 / x ) , y ) / x = ( x \ 0) * C( x , 0 / x ) .

↪→ [ 1 6 1 , 1 6 2 ] .

165 A( x , C( y , 0 / y ) , z ) = 0 . [ 1 6 3 , 1 4 5 , 2 7 ] .

166 ( x \ 0) * C( x , 0 / x ) = 0 / x . [ 1 6 4 , 1 6 5 ] .

167 L (C( x , 0 / x ) , y , z ) = z . [ 7 9 , 1 5 3 , 1 3 5 ] .

168 A( x , y , z ) \ R( u , w, v5 ) = R( u , w,A( x , y , z ) \ v5 ) .

↪→ [ 1 5 3 , 7 0 , 1 5 1 , 1 0 3 , 1 0 3 , 1 1 , 1 5 1 ] .

169 (C( x , 0 / x ) * y ) * z = C( x , 0 / x ) * ( y * z ) .

↪→ [ 1 6 7 , 3 0 ] .

170 A(0 / (0 / x ) , x , 0 / x ) = C(0 / x , x ) . [ 1 5 9 , 1 4 5 , 1 5 8 ] .

171 A( x , x , 0 / x ) = C(0 / x , x ) . [ 1 5 9 , 1 4 8 , 1 7 0 ] .

172 A( x ,A( y , z , u ) * w, v5 ) = A( x , w, v5 ) .

↪→ [ 1 5 0 , 8 5 , 1 0 8 , 1 1 1 , 1 2 0 , 4 , 1 5 0 ] .

173 A( x ,A( y , z , u ) \ w, v5 ) = A( x , w, v5 ) .

↪→ [ 1 5 0 , 1 1 5 , 1 2 2 , 1 1 7 , 1 6 8 , 5 , 1 5 0 ] .

174 A( x * A( y , z , u ) ,w, v5 ) = A( x , w, v5 ) . [ 1 0 8 , 1 7 2 ] .

175 ( x \ 0) * (C( x , 0 / x ) * y ) = (0 / x ) * y .

↪→ [ 1 6 6 , 3 0 , 1 5 4 ] .
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176 A( x \ 0 ,C( x , 0 / x ) * y , z ) = A(0 / x , y , z ) .

↪→ [ 1 6 6 , 6 1 , 1 6 3 , 1 6 9 , 1 7 5 , 1 5 , 1 6 3 ] .

177 A( x , C( y , 0 / y ) * z , u ) = A( x , z , u ) . [ 1 7 1 , 1 7 3 , 1 5 7 ] .

178 A( x \ 0 , y , z ) = A(0 / x , y , z ) . [ 1 7 6 , 1 7 7 ] .

179 A(R( x , y , z \ 0) , u ,w) = A(R( x , y , 0 / z ) , u ,w) .

↪→ [ 2 1 , 1 7 8 , 5 0 ] .

180 A( x \ A( y , z , u ) ,w, v5 ) = A(0 / x , w, v5 ) .

↪→ [ 1 0 2 , 1 7 8 , 3 , 1 1 8 , 1 7 4 ] .

181 A(0 / (A( x , y , z ) / u ) ,w, v5 ) = A( u , w, v5 ) . [ 2 6 , 1 8 0 ] .

182 A(R( x , y , 0 / (A( z , u ,w) / v5 ) ) , v6 , v7 ) =

↪→ A(R( x , y , v5 ) , v6 , v7 ) . [ 4 9 , 1 8 0 , 8 6 , 1 2 0 , 1 2 3 , 2 1 ] .

183 A(R( x , y , 0 / z ) , u ,w) = A(0 / z , u ,w) . [ 1 4 9 , 1 8 0 , 1 7 9 ] .

184 A(R( x , y , z ) , u ,w) = A( z , u ,w) . [ 1 8 2 , 1 8 3 , 1 8 1 ] .

185 R( x , y , R( z , u ,w) ) = R( z , u , R( x , y ,w) ) #

↪→ l a b e l ( n o n c l a u s e ) # l a b e l ( g o a l ) .

↪→ [ 1 8 4 , 1 4 4 , 1 6 8 , 1 4 4 ] .

186 \$F . [ 1 8 5 , 2 3 ] .
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