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ABSTRACT

A Banach space T1(d, θ) with a Tsirelson-type norm is constructed on the top of the

topological Ramsey space T1 defined by Dobrinen and Todorcevic [6]. Finite approxima-

tions of the isomorphic subtrees are utilised in constructing the norm. The subspace on

each “branch” of the tree is shown to resemble the structure of an ℓn+1
∞ -space where the

dimension corresponds to the number of terminal nodes on that branch. The Banach space

T1(d, θ) is isomorphic to
(∑

n∈N⊕ ℓn+1
∞

)
p
, where d ∈ N with d ≥ 2, 0 < θ < 1, dθ > 1,

and dθ = d1/p. Banach spaces with analogous norms are also constructed on extensions of

the tree defined by Dobrinen and Todorcevic [6] and Trujillo [17]. They are shown to be

isomorphic to
(∑

n∈N⊕ ℓn+1
∞

)
p

as well.
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CHAPTER 1: INTRODUCTION

Let X be a linear space over the scalar field R. A norm ∥ · ∥ : X −→ [0,∞) on the

linear space X is a function such that

(1) ∥x∥ = 0 if and only if x = 0.

(2) for every λ ∈ R and for every x ∈ X, ∥λx∥ = |λ|∥x∥.

(3) for every x, y ∈ X, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

A linear space with a norm on it is called a normed space.

For a normed space
(
X, ∥ · ∥

)
, setting, for every x, y ∈ X , d(x, y) = ∥x − y∥ defines

a metric on X . The topology of X induced by ∥ · ∥ is the metric topology given by this

metric d. A Banach space is a normed space that is complete with respect to this metric, in

the sense that every Cauchy sequence in the space X converges to a point in X .

Here are some of the classical examples of Banach spaces.

Example. The scalar field R is a Banach space with the norm ∥x∥ = |x| for x ∈ R.

Example. c0 =
{
(xn)n∈N ∈ RN : limn−→∞ xn = 0

}
with the norm

∥∥(xn)n∈N
∥∥
c0

=

sup
{
|xn| : n ∈ N

}
.

Example. For 1 ≤ p < ∞, ℓp =
{
(xn)n∈N ∈ RN :

∑
n∈N |xn|p < ∞

}
with the norm∥∥(xn)n∈N

∥∥
p
=
(∑

n∈N |xn|p
)1/p

.

Example. ℓ∞ =
{
(xn)n∈N ∈ RN : supn∈N |xn| < ∞

}
with the norm

∥∥(xn)n∈N
∥∥
∞ =

sup
{
|xn| : n ∈ N

}
.
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There are normed spaces that are incomplete, though they must be infinite dimen-

sional. A typical example is the space c00 =
{
(xn)n∈N ∈ RN : ∃N ∈ N s.t. ∀n ≥

N, xn = 0
}

with the norm
∥∥(xn)n∈N

∥∥ = sup
{
|xn| : n ∈ N

}
. Indeed, take xn =(

1, 1
2
, 1
3
, . . . , 1

n+1
, 0, 0, . . .

)
∈ RN for each n ∈ N. Then (xn)n∈N is Cauchy in c00, and

yet it does not converge in c00.

While there are both complete and incomplete normed spaces, every normed space

X can be isometrically imbedded as a dense subspace into a complete space by taking

quotient of the set of all Cauchy sequences in X with respect to the equivalence relation that

two Cauchy sequences (xn)n∈N, (yn)n∈N are equivalent if limn−→∞ ∥xn − yn∥ = 0. This

complete space is called the completion of the normed space. Therefore every normed

space has a completion, and if a normed space is complete, then it is isomorphic to its

completion.

In 1974 Tsirelson [18] constructed a Banach space that did not contain a copy of c0

or any of ℓp, 1 ≤ p < ∞, answering a long standing question. This was one of the first

example of Banach spaces with the norm defined implicitly. Later in the same year, Figiel

and Johnson [8] gave an inductive definition of the norm of the dual of the space constructed

by Tsirelson, and this is what is known as the Tsirelson’s space. Their construction is

as follows: Writing E < F for max(E) < min(F ) where E,F ⊆ Z+ are finite and

nonempty, we say {Ei}ki=1 ⊆ [Z+]<∞ is admissible if {k} < E1 < E2 < · · · < Ek. Define

a sequence of norms for x ∈ c00 as

∥x∥0 = ∥x∥∞,

∥x∥n+1 = max

{
∥x∥n,

1

2
max

{ k∑
i=1

∥∥x↾Ei

∥∥
n
: {Ei}ki=1 is admissible

}}
, (⋆)

and finally set ∥x∥T = limn−→∞ ∥x∥n. The Tsirelson space is the completion of c00 with

respect to ∥ · ∥T .
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A few years later, Bellenot [4] (1985) modified Figiel and Johnson’s construction by

looking at a different definition of admissible sets and by changing the constant 1/2 in

equation (⋆) to a more general θ with 0 < θ < 1. Bellenot fixed a constant d ∈ N with

d ≥ 2 and defined the set {E1, . . . , Ed} to be admissible if E1 < E2 < · · · < Ed. He

defined the norm as Figiel and Johnson did in [8] and proved the surprising result that if

dθ > 1, then the space generated is isomorphic to ℓp for p satisfying dθ = d1/p . Argyros

and Deliyanni obtained the same result and some generalizations a few years later [1].

Recently, Arias, Dobrinen, Giron-Garnica, and Mijares [3] used similar ideas to con-

struct spaces Sk(d, θ), k ∈ N \ {0} using a special type of finitely branching tree with

unbounded heights defined by Dobrinen in [5]. When k = 1, S1(d, θ) is the space con-

structed by Bellenot. They proved that for k > 1, every infinite dimensional subspace

of Sk(d, θ) has a copy of ℓp, where p is given by dθ = d1/p, that the Sk(d, θ)’s are non-

isomorphic for different values of k, in the sense that there is no linear homeomorphism in

between the spaces, and that Sk(d, θ) embeds isometrically into Sk+1(d, θ).

Motivated by similar ideas on constructions of Banach spaces, we construct in this

work a Banach space T1(d, θ) based on the topological Ramsey Space T1 defined by Dobri-

nen and Todorcevich [6] (shown below).

( )

· · ·(5)

(5,
5)

(5,
4)

(5,
3)

(5,
2)

(5,
1)

(5,
0)

(4)

(4,
4)

(4,
3)

(4,
2)

(4,
1)

(4,
0)

(3)

(3,
3)

(3,
2)

(3,
1)

(3,
0)

(2)

(2,
2)

(2,
1)

(2,
0)

(1)

(1,
1)

(1,
0)

(0)

(0,
0)

Figure 1: The structure of the tree T1.

We will show that the top of the tree T1 is a topological Ramsey space. The Banach

space T1(d, θ) has an unconditional Schauder basis indexed by the top nodes of the tree.
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We will show that T1(d, θ) is isomorphic to
(∑

n∈N⊕ ℓn+1
∞

)
p
, where each component ℓn+1

∞

corresponds to the span of the top of the tree on the branch of (n).

The proof utilises continuous linear functionals on the space of T1(d, θ). They are

linear functions from T1(d, θ) to the scalar field R that are continuous. The continuity of

a linear function is equivalent to the condition that the image of the function on the closed

unit ball is bounded. In other words, a continuous linear functional, in general, is a linear

function f : X −→ R such that sup
{∣∣f(x)∣∣ : ∥x∥ ≤ 1

}
< ∞ where X is a normed space

over the scalar field R. The collection of continuous linear functionals on normed space is

itself a Banach space with the norm ∥f∥ = sup∥x∥≤1

∣∣f(x)∣∣. For each element in the space,

the Hahn-Banach theorem gives us a continuous linear functional of norm 1 whose value

at x is ∥x∥. In exploration of the isomorphism type of the space T1(d, θ), we construct, for

each x ∈ T1(d, θ), a set of linear functionals that attains the norm of x.

Finally we explore how our ideas can be applied to other trees with greater heights.

Each branch in T1 has a height of 2. We will extend the heights of the branches of the tree

and construct Banach spaces on them. The isomorphism types of the Banach spaces on

those extensions are to be examined.
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CHAPTER 2: TOPOLOGICAL RAMSEY SPACES

We will set N = {0, 1, 2, . . .} and denote, for a set A, A[n] =
{
B ⊆ A : |B| = n} and

A[<∞] =
⋃

n∈N A
[n].

We begin with illustrating an idea that we will use in this chapter. One day infinitely

many people decide to travel and stay at a hotel. Well, there are only finitely many hotels

in the world, and so we figure that somewhere in the world, there has to be a Hilbert’s

hotel that can fit infinitely many travelers in it. This is known as the pigeonhole principle.

Formally the pigeonhole principle states that for every d ∈ N, given a partition
{
Xj

}d
j=0

of

N, meaning Xj ̸= ∅,
⋃d

j=0Xj = N and Xi∩Xj = ∅ for i ̸= j, there is k ∈ {0, 1, 2, . . . , d}

such that Xk is infinite. Ramsey [14] extended this idea to consider a partition on all n-

element subsets of a countable set and stated that, for n ∈ N, given a finite partition of

the collection of all n-element subsets of N, there is an infinite subset M of N such that

all n-element subsets of M are contained in one of the sets from the partition. Thinking

of a partition as assigning a number (or a colour) to each set, we formulate the Ramsey’s

theorem in the following form:

Theorem 1 (Ramsey). [14] Let k, d ∈ N with k > 0. Then for every f : N[k] −→

{0, 1, 2, . . . , d}, there is an M ∈ N[∞] such that f ↾ M [k] is constant.

As a corollary to the Ramsey’s theorem, we have the finite version of this theorem.

Corollary 2. [16] For each k,m, d ∈ Z+, there is n ∈ Z+ such that for every n-element

set N and every f : N [k] −→ {0, 1, 2, . . . , d}, there is M ∈ N [m] such that f ↾ M [k] is

constant.
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One generalisation of the Ramsey’s theorem is to consider finite colourings on infinite

subsets of naturals numbers. Starting with 2-colouring, we may consider the question:

given U ⊆ N[∞], is there an X ∈ N[∞] such that X [∞] ⊆ U or X [∞] ∩ U = ∅? This

is not in general true for any collection of infinite subsets of N, so we may characterise a

collection of the natural numbers with this property as follows: a collection U ⊆ N[∞] is

said to be Ramsey if for every X ∈ N[∞], there is Y ∈ X [∞] such that either Y [∞] ⊆ U or

Y [∞] ∩ U = ∅.

For each A ∈ N[∞], we may list the elements of A in the increasing order A = {an}n∈N

Thus A corresponds to a sequence (an)n∈N ∈ NN. Thinking of infinite sets of Natural

numbers as increasing sequences in N, we induce a metric d on N[∞], namely, for A =

{an}n∈N and B = {bn}n∈N in increasing order, if A ̸= B, then d(A,B) = 1
2m

, where

m = min{n ∈ N : an ̸= bn} (d(A,B) = 0 if A = B). On the other hand, for each

a ∈ N[<∞], we consider the set [a] =
{
B ∈ N[∞] : a ⊑ B

}
, where a ⊑ B means a is

an initial segment of B. It is known that the collection
{
[a] : a ∈ N[<∞]

}
forms a basis

for the metric topology mentioned previously. In this topology, Nash-Williams showed

that clopen sets are Ramsey [12], Galvin showed that open sets are Ramsey [9], Silver

showed that analytic sets are Ramsey [15], and Galvin and Prikry showed that Borel sets

are Ramsey [10]. These prompted the explorations of the connections between topological

notions and Ramsey sets.

In contrast we may consider the set [a,B] =
{
A ∈ N[∞] : a ⊑ A ⊆ B

}
for a ∈ N[<∞]

and B ∈ N[∞]. The collection
{
[a,B] : a ∈ N[<∞] and B ∈ N[∞]

}
also forms a basis

of a topology, which we call the Ellentuck topology on N[∞]. Under these notions, a set

U ⊆ N[∞] is said to have the Ramsey property if for every nonempty set [a,B], there is

A ∈ [a,B] such that [a,A] ⊆ U or [a,A]∩U = ∅. U is said to be Ramsey null if for every

nonempty set [a,B], there is A ∈ [a,B] such that [a,A] ∩ U = ∅. Note that a Ramsey

set mentioned previously is a special case of a set having the Ramsey property by taking

6



a = ∅ for the set [a,B]. Ellentuck also characterised a set having the Ramsey property

as the following: a set X ⊆ N[∞] has the Ramsey property if and only if it has the Baire

property in the Ellentuck topology, and a set X is Ramsey null if and only if it is meager in

the Ellentuck topology [7]

Since then, Ramsey methods have provided fruitful results in various directions of

analysis [2]. Some notions such as fronts and barriers that were brought up in the proofs of

the Ramseyness of some topological sets also provides application in Banach spaces [13],

[3]. In addition, Todorcevic formulated the axioms of an (abstract) Ramsey space [16] to

generalise the connections between a topological space with the Ramsey property. Under

this framework, given a set R with a quasi-order (a relation that is reflexive and transitive)

that satisfies these axioms, a collection of subsets of R has the Ramsey property if and only

if it has the property of Baire in its Ellentuck topology, and a collection of subsets of R is

Ramsey null if and only if it is meager in its Ellentuck topology. Therefore abstract Ramsey

spaces axiomatise the works of Ellentuck in [7]. Ramsey spaces, in particular, include a

notion of finite approximation which generalises the idea of finite approximation of infinite

sequences in N. We will utilise these approximations in constructing new norms for our

spaces in later chapters.

Following the abstractions by Todorcevic [16], a Ramsey space is a structure of the

form
(
R,S,≤,≤0, r, s

)
that satisfies certain axioms which we will give below. R and S

can be identified with collections of infinite sequences. ≤ is a quasi-order on S , i.e. ≤ is a

subset of S × S that satisfies reflexivity and transitivity. This means that for each X ∈ S,

X ≤ X , and for each X, Y, Z ∈ S, X ≤ Y and Y ≤ Z implies X ≤ Z. ≤0 is a relation

on R × S such that ∀A ∈ R, ∀X, Y ∈ S, A ≤0 X and X ≤ Y implies A ≤0 Y . In

addition r : R × N −→ AR and s : S × N −→ AS are surjective functions onto some

sets AR and AS. We will denote rn(A) = r(A, n) and sm(X) = s(X,m). For each

7



n,m ∈ N, set ARn = {rn(A) : A ∈ R} and ASm = {sm(X) : X ∈ S}. We note that

AR =
⋃

n∈N ARn and AS =
⋃

m∈NASm.

The following axioms give us the structures of a Ramsey space so that AR and AS

contain finite sequences that approximate the elements of R and S respectively.

4 Sets of Axioms

A.1 (Sequencing)

(1) r0(A) = r0(B) for every A,B ∈ R, and s0(X) = s0(Y ) for every X, Y ∈ S.

(2) For every A,B ∈ R, A ̸= B implies rn(A) ̸= rn(B) for some n ∈ N, and for every

X, Y ∈ S, X ̸= Y implies sm(X) ̸= sm(Y ) for some m ∈ N.

(3) rn(A) = rm(B) implies n = m and rk(A) = rk(B) for each k ≤ n. si(X) = sj(Y )

implies i = j and sl(X) = sl(Y ) for each l ≤ i.

Definition 1. Let a, b ∈ AR and x, y ∈ AS . a ⊑ b if there are m ≤ n and A ∈ R such

that a = rm(A) and b = rn(A). Similarly x ⊑ y if there are j ≤ i and X ∈ S such that

x = sj(X) and y = si(X). We say x is an initial segment of y if x ⊑ y.

We call n the length of a ∈ AR if a = rn(A) for some A ∈ R, and denote length(a) =

n or simply |a|. Define and denote similarly the length of x ∈ AS.

Under the first set of axioms, we can identify elements A ∈ R and X ∈ S with

sequences
(
rn(A)

)
n∈N ∈ ARN and

(
sn(X)

)
n∈N ∈ ASN respectively.

A.2 (Finitisation)

There is a relation ≤0
fin⊆ AR×AS and a quasi-order ≤fin⊆ AS × AS such that the

following are satisfied.

(1) {a ∈ AR : a ≤0
fin x} and {y ∈ AS : y ≤fin x} are both finite for each x ∈ AS.

8



(2) A ≤0 X if and only if for every n ∈ N, there is m ∈ N such that rn(A) ≤0
fin sm(X).

(3) X ≤ Y if and only if for each n ∈ N, there is m ∈ N such that sn(X) ≤fin sm(Y ).

(4) For every a ∈ AR and for every x, y ∈ AS, a ≤0
fin x ≤fin y implies a ≤0

fin y.

(5) For every a, b ∈ AR and for every x ∈ AS , a ⊑ b and b ≤0
fin x implies there is

y ⊑ x such that a ≤0
fin y.

Notation. For a ∈ AR, x ∈ AS, m ∈ N and Y ∈ S, set

[a, Y ] =
{
A ∈ R : A ≤0 Y and ∃n ∈ N s.t. rn(A) = a

}
,

[x, Y ] =
{
X ∈ S : X ≤ Y and ∃n ∈ N s.t. sn(X) = x

}
,

and [m,Y ] = [sm(Y ), Y ].

For a ∈ AR, let [a] =
{
A ∈ R : r|a|(A) = a

}
.

Lemma 3.
{
[a] : a ∈ AR

}
forms a basis of the metric topology on R, where for A,B ∈

R, the metric d is defined as

d(A,B) =


1
2m

where m = min{n : rn(A) ̸= rn(B)} , if {n : rn(A) ̸= rn(B)} ≠ ∅

0 , if {n : rn(A) ̸= rn(B)} = ∅
.

Proof. We first show that d defined above is indeed a metric. Let A,B,C ∈ R. If A = B,

then rn(A) = rn(B) for each n ∈ N. So {n ∈ N : rn(A) ̸= rn(B)} = ∅, which means

d(A,B) = 0. If A ̸= B, then rn(A) ̸= rn(B) for some n ∈ N by axiom A.1(2). So {n ∈

N : rn(A) ̸= rn(B)} ≠ ∅, and m = min{n ∈ N : rn(A) ̸= rn(B)} ∈ N exists by the well-

ordering of N, and so d(A,B) = 1
2m

> 0. d(A,B) = d(B,A) is clear. Suppose d(A,B) =

1
2m

and d(A,C) = 1
2p

. If p ≤ m, then d(A,B) = 1
2m

≤ 1
2p

≤ d(A,C) + d(B,C).

9



Assume p > m. Since rn(A) = rn(C) for all n < p, we have rm(A) = rm(C). But

rm(A) ̸= rm(B). So d(B,C) ≥ 1
2m

. This means that d(A,B) = 1
2m

≤ d(A,C)+ d(B,C).

Take an open ball in the metric topology OBε(A) = {B ∈ R : d(A,B) < ε} for

A ∈ R and ε > 0. Let B ∈ OBε(A). Then d(A,B) = 1
2n

< ε for some n ∈ N. Take

m ∈ N such that 1
2m

< ε − 1
2n

. If C ∈ [rm(B)], then rk(C) = rk(B) for each k ≤ m. So

d(B,C) = 1
2p

for some p > m. So d(A,C) ≤ d(A,B) + d(B,C) < 1
2n

+ 1
2m

< ε. This

means that for every B ∈ OBε(A), there is m ∈ N such that B ∈ [rm(B)] ⊆ OBε(A).

Conversely for each element [a], let A ∈ [a]. Take ε < 1
2|a|

. Then for each B ∈ OBε(A),

d(A,B) = 1
2m

< ε < 1
2|a|

for some m ∈ N. This means that m = min{n ∈ N : rn(A) ̸=

rn(B)} > |a|, and so rk(A) = rk(B) for each k ≤ |a|. Hence B ∈ [a] and we have

OBε(A) ⊆ [a]. Therefore
{
[a] : a ∈ AR

}
generate the same topology as the metric.

Lemma 4. Suppose
(
R,S,≤,≤0, r, s

)
satisfies axioms A.1 and A.2. Then the set [a,X]

is closed with respect to the metric topology of R for every a ∈ AR and X ∈ S.

Proof. R \ [a,X] = {A ∈ R : A ≰0 X} ∪ {A ∈ R : rn(A) ̸= a∀n ∈ N} =(⋃
n∈N

{
[rn(A)] : rn(A) ≰0

fin sm(X)∀m ∈ N
})

∪
(⋃

b∈AR
{
[b] : b ̸⊑ a and a ̸⊑ b

})
,

which is a union of basis elements of the metric topology.

Before we get into the third set of axioms, we give the definition of the depth of an

element in AR into a sequence in S . The definition simplifies the expressions in the next

sets of axioms that relate a specific finite sequence with some other elements in S than the

one it approximates towards the Ramseyness of the space.

Definition 2. For a ∈ AR and Y ∈ S,

depthY (a) =


min{k : a ≤0

fin sk(Y )} , if ∃ k s.t. a ≤0
fin sk(Y )

∞ , otherwise.
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A.3 (Amalgamation)

(1) For every a ∈ AR and for every Y ∈ S , if depthY (a) < ∞, then [a,X] ̸= ∅ for

each X ∈ [depthY (a), Y ].

(2) For every a ∈ AR and for every X, Y ∈ S, if X ≤ Y and [a,X] ̸= ∅, then there is

Y ′ ∈ [depthY (a), Y ] such that [a, Y ′] ⊆ [a,X].

Lemma 5. Suppose
(
R,S,≤,≤0, r, s

)
satisfies A.1 and A.2. If a ⊑ b and if [b, Y ] ̸= ∅,

then [a, Y ] ̸= ∅ and depthY (a) ≤ depthY (b) < ∞.

Proof. Since [b, Y ] ̸= ∅, there is A ∈ R such that A ≤0 Y and rn(A) = b for some n ∈ N.

Since a ⊑ b, there is m ≤ n such that a = rm(A) by definition. So A ∈ [a, Y ] ̸= ∅. Also

there is p ∈ N such that b = rn(A) ≤0
fin sp(Y ) by axiom A.2(3). So depthY (b) < ∞. Set

p0 = min{p : b ≤0
fin sp(Y )}. Then b ≤0

fin sp0(Y ). By axiom A.2(5), there exists q ≤ p

such that a ≤0
fin sq(Y ). So depthY (a) ≤ depthY (b).

A.4 (Pigeonhole)

Suppose a ∈ AR has length j and O is a subset of ARj+1. Then for every Y ∈

S such that [a, Y ] ̸= ∅, there is an X ∈ [depthY (a), Y ] such that rj+1[a,X] ⊆ O or

rj+1[a,X] ∩ O = ∅.

Theorem 6. [16]
{
[a, Y ] : a ∈ AR, Y ∈ S

}
forms a basis for a topology.

Definition 3 (abstract Ellentuck topology). The topology that the basis
{
[a, Y ] : a ∈

AR, Y ∈ S
}

generates is called the (abstract) Ellentuck topology on R.

By lemma 4, the Ellentuck topology is finer than the metric topology since for each

a ∈ AR, [a] =
⋃

X∈AS
{
[a,X] : a ≤0

fin sm(X) for some m ∈ N
}

. In fact, it is strictly

finer since for each [a,X], X < Y for some Y ∈ S means that [a,X] is not a union of sets

of the form [b] for some b ∈ AR.
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In the special case that R = S, ≤ is ≤0, and r = s, we have the space on the triple

(R,≤, r) that satisfies the axioms given below, where R is a nonempty set, ≤ is a quasi-

order on R, and r : R× N −→ AR. We will still denote rn(A) = r(A, n) for A ∈ R and

n ∈ N. Setting ARn = {rn(A) : A ∈ R}, we have AR =
⋃

n∈N ARn.

Since the set of approximations AR in this special case is going to define our norm,

we will also give the axioms that are specified in this special case.

Axiom 1

(1) r0(A) = ∅ for every A ∈ R.

(2) For every A,B ∈ R, A ̸= B implies that rn(A) ̸= rn(B) for some n ∈ N.

(3) rn(A) = rm(B) implies n = m and rk(A) = rk(B) for each k ≤ n.

Axiom 2

There is a quasi-order ≤fin on AR that satisfies the following.

(1) For each b ∈ AR, {a ∈ AR : a ≤fin b} is finite.

(2) For every A,B ∈ R, A ≤ B if and only if for every n ∈ N, there is m ∈ N such that

rn(A) ≤fin rm(B).

(3) For every a, b, c ∈ AR, if a ⊑ b and b ≤fin c, then there is d ∈ AR such that d ⊑ c

and a ≤fin d.

Recall the definition

depthB(a) =


min{k : a ≤fin rk(B)} , if ∃ k s.t. a ≤fin rk(B)

∞ , otherwise.

for a ∈ AR and B ∈ R.
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Axiom 3

(1) For every a ∈ AR and B ∈ R, depthB(a) < ∞ implies that [a,A] ̸= ∅ for each

A ∈ [depthB(a), B].

(2) For every a ∈ AR, A,B ∈ R, if A ≤ B and [a,A] ̸= ∅, then there is A′ ∈

[depthB(a), B] such that [a,A′] ̸= ∅ and [a,A′] ⊆ [a,A].

Axiom 4

Suppose a ∈ AR is of length j and O is a subset of ARj+1. Then for every B ∈ R

such that depthB(a) < ∞, there is A ∈ [depthB(a), B] such that rj+1[a,A] ⊆ O or

rj+1[a,A] ∩ O = ∅.

If [b, B] ∩ [c, C] ̸= ∅, take A ∈ [b, B] ∩ [c, C]. Then there are p, q ∈ N such that

rp(A) = b and rq(A) = c. Also A ≤ B and A ≤ C. Take m = max{p, q}. Certainly

A ∈ [rm(A), A] by the reflexivity of the quasi-order ≤ on R. Let X ∈ [rm(A), A]. Then

there is n ∈ N such that rn(X) = rm(A) and X ≤ A. By axiom 1(3), n = m and rk(X) =

rk(A) for every k ≤ m. This means that rp(X) = rp(A) = b and rq(X) = rq(A) = c

since p ≤ m and q ≤ m. Also by the transitivities of the quasi-order, we have X ≤ B and

X ≤ C. So X ∈ [b, B] ∩ [c, C]. Therefore we get A ∈ [rm(A), A] ⊆ [b, B] ∩ [c, C].

From the above we see that the collection of the sets of the form

[a,B] =
{
A ∈ R : A ≤ B and ∃n ∈ N s.t. rn(A) = a

}
,

where a ∈ AR and B ∈ R forms a basis of a topology, which we still call the Ellentuck

topology.

Definition 4. A subset S of a topological space X is nowhere dense if for every open subset

O in X , there is a nonempty open subet U ⊆ O such that S ∩ U = ∅.
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A subset M of X is meager if M ⊆
⋃

n∈N Sn where
{
Sn

}
n∈N is a countable collection

of nowhere dense subsets of X .

The Ramseyness is generalised to an infinite quasi-ordered set satisfying the axioms

A.1 through A.4 as the following definition.

Definition 5. A set X ⊆ R is Ramsey if for every nonempty basic open set [a,A], there is

B ∈ [a,A] such that either [a,B] ⊆ X , or [a,B] ∩ X = ∅.

A set N ⊆ R is Ramsey null if for every nonempty basic open set [a,A], there is

B ∈ [a,A] such that [a,B] ∩N = ∅.

Definition 6. A subset X of R has the property of Baire if X = O△M for some open set

O ⊆ R and some meager set M ⊆ R. We call a set that has the property of Baire and

Baire set.

Definition 7.
(
R,≤, r

)
is a topological Ramsey space if every Baire set of R is Ramsey

and every meager set of R is Ramsey null.

We may identify the elements in R with the elements in ARN through the embedding

A ∈ R 7−→
(
rn(A)

)
n∈N ∈

∏
n∈N ARn. Note that the Ellentuck topology extends to the

topology on ARN induced by the first difference metric

d
(
(rn(A))n∈N, (rn(B))n∈N

)
=


1
2m

, if m = min{n ∈ N : rn(A) ̸= rn(B)} < ∞

0 , if {n ∈ N : rn(A) ̸= rn(B)} = ∅
.

Under these identifications, We have the following theorem, which will be utilised in the

next chapter. Recall that for a ∈ AR, [a] =
{
A ∈ R : a ⊑ A

}
.
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Theorem 7 (Abstract Ellentuck Theorem). [16] If
(
R,≤, r

)
is closed as an embedding into

ARN in the Ellentuck topology induced by the collection
{
[a,B] : a ∈ AR and B ∈ R

}
and if it satisfies axions A.1 through A.4, then

(
R,≤, r

)
forms a topological Ramsey space.

15



CHAPTER 3:
(
R(T1),≤, r

)
AS A TOPOLOGICAL RAMSEY SPACE

Let X be a set. Denote X<N as the collection of all finite sequences of elements of

X . For s = (s0, s1, s2, . . . , sn) ∈ X<N, we say n is the length of s and is denoted by

| s |. If i ∈ N with 0 ≤ i ≤ n, then αi(s) denote the sequence of first i elements of s,

namely αi(s) = (s0, s1, . . . , si). For s, t ∈ X<N, s is an initial segment of t if there exists

1 ≤ i ≤ | t | such that s = αi(t).

For a set T of finite sequences, cl(T ) is the set containing T and all the initial segments

of elements of T . T is a tree if T = cl(T ), and in this case we say T is closed under initial

segments. We identify each sequence in T as a node of the tree. A terminal node s is one

that whenever s is an initial segment of some node t, we have s = t. Here we look at a tree

that is bounded on height but is unboundedly branched. Below we give the definition of a

tree that we will call it T1.

Definition 8 (the tree of T1). [17] For i ∈ N, let

T1(i) = {( ), (i), (i, j) : 0 ≤ j ≤ i} ,

and set T1 =
⋃
i∈N

T1(i).

By the definitions and descriptions above, there is a simpler way to define a tree.

Namely, we may give the collection of terminal nodes of a tree and close the branches

downwards. By closing its branches, we mean including all of the initial segments of the

terminal nodes. Therefore T1 can also be defined by

T1 = cl
{
(i, j) : i, j ∈ N and 0 ≤ j ≤ i

}
.
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We will be mainly working with the top of the tree, or the collection of the terminal

nodes of T1, which we denote by [T1]. There is a natural order on [T1], the lexicographic

order: (i, j) < (k, l) if either i < k, or if i = k and j < l. Note that this defines a linear

order on [T1] of order type ω.

We look at the subtrees of T1 isomorphic to T1, i.e. those that have the same structure

as T1 itself. They are described by injective maps Ŝ : T1 −→ T1 that preserve the initial

segments and the lexicographic order, and often we will identify Ŝ by its range Ŝ(T1). An

example of a subtree isomorphic to T1 is illustrated below.
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Figure 2: An initial structure of a subtree of T1 isomorphic to T1.

Since the map preserves initial segments, it also preserves the length of the sequences.

Namely, Ŝ
(
( )
)
= ( ), Ŝ

(
(i)
)
= (j) and Ŝ

(
(i, j)

)
= (k, l). Moreover, if Ŝ

(
(i, j)

)
= (k, l)

then Ŝ
(
(i)
)
= (k).

The collection of all subtrees isomorphic to T1 is denoted by

R(T1) =
{
Ŝ(T1)

∣∣ Ŝ : T1 −→ T1 is injective and preserves ⊑ and ≤
}
.

On R(T1), define Ŝ ≤ Û if Ŝ ⊆ Û as their ranges. This subset relation is clearly reflexive

and transitive, and so ≤ is a quasi-order on R(T1).
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Dobrinen and Todorcevic [6] proved that
(
R(T1),≤, r

)
is a topological Ramsey space

with rn(Ŝ) = Ŝ ↾
⋃n−1

i=0 T1(i). Here we will only restrict our interest on the top of the

tree, namely [T1]. Therefore we take r : R(T1) × N −→
(
[T1]
)[<∞] by (Ŝ, n) 7−→

[
Ŝ ↾⋃n−1

i=0 T1(i)
]
. Analogously we will denote rn(·) = r(·, n). Then AR(T1) = {rn(Ŝ) :

n ∈ N, Ŝ ∈ R(T1)}. For a, b ∈ AR(T1), a ⊑ b if and only if there is Ŝ ∈ R(T1)

and m ≤ n such that a = rm(Ŝ) and b = rn(Ŝ). Also [a, Û ] =
{
Ŝ ∈ R(T1) :

Ŝ ⊆ Û and ∃n ∈ N s.t. rn(Ŝ) = a
}

. An example of an approximation would be

{(10, 2), (13, 5), (13, 9), (25, 3), (25, 20), (25, 23)} for n = 2 for the subtree in figure 2

above. In general, if the first point of an approximation is (i, j), then it cannot have any

other point with first coordinate as i. If the second point of the approximation is (k, l), then

it contains exactly two points that have k as their first coordinate. This restriction makes

approximations “thin” on large number branches of T1.

We will show that
(
R(T1),≤, r

)
is a topological Ramsey space with basic open sets of

the form [a, Û ]. By the abstract Ellentuck theorem formulated in the previous chapter, it is

enough to show that
(
R(T1),≤, r

)
satisfies the axioms A.1 through A.4, and is closed as

an embedding into the product space
(
AR(T1)

)N.

Proof. A.1.

(1) r0(Ŝ) = ∅, for every Ŝ ∈ R(T1).

(2) Ŝ ̸= Û implies that there is s ∈ T1 such that Ŝ(s) ̸= Û(s). Suppose s ∈ T1(n) for

some n ∈ N. Then
[
Ŝ ↾

⋃n
i=0 T1(i)

]
̸=
[
Û ↾

⋃n
i=0 T1(i)

]
. So rn+1(Ŝ) ̸= rn+1(Û).

(3) Suppose rn(Ŝ) = rm(Û). Then
[
Ŝ ↾

⋃n−1
i=0 T1(i)

]
=
[
Û ↾

⋃m−1
j=0 T1(j)

]
. By the

cardinality of either set, we must have n = m. Also for every k ≤ n, we have

Ŝ ↾
⋃k−1

i=0 T1(i) = Û ↾
⋃k−1

j=0 T1(j). Hence we derive rk(Ŝ) = rk(Û).
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A.2.

On AR(T1), define a ≤fin b if there are Ŝ, Û ∈ R(T1) and n,m ∈ N such that a =
[
Ŝ ↾⋃n−1

i=0 T1(i)
]
⊆
[
Û ↾

⋃m−1
i=0 T1(i)

]
= b. Note that if

[
Ŝ ↾

⋃n−1
i=0 T1(i)

]
⊆
[
Û ↾

⋃m−1
i=0 T1(i)

]
,

we must have n ≤ m by an argument on the cardinalities of the sets. Since for each

Ŝ ∈ R(T1) and for each n ∈ N,
[
Ŝ ↾

⋃n−1
i=0 T1(i)

]
⊆
[
Ŝ ↾

⋃n−1
i=0 T1(i)

]
, we have a ≤fin a

for every a ∈ AR(T1). Suppose a ≤fin b and b ≤fin c for a, b, c ∈ AR(T1). Then there are

Ŝ, Û, V̂ ∈ R(T1) and n,m, p ∈ N such that a =
[
Ŝ ↾

⋃n−1
i=0 T1(i)

]
⊆
[
Û ↾

⋃m−1
i=0 T1(i)

]
=

b and b =
[
Û ↾

⋃m−1
i=0 T1(i)

]
⊆
[
V̂ ↾

⋃p−1
i=0 T1(i)

]
= c. By the previous note, we have

n ≤ m and m ≤ p. Since the usual order ≤ on N and the subset relation are both transitive,

we have a =
[
Ŝ ↾

⋃n−1
i=0 T1(i)

]
⊆
[
V̂ ↾

⋃p−1
i=0 T1(i)

]
= c and thus a ≤fin c. Therefore we

see that ≤fin is a quasi-order on AR(T1).

(1) For each b ∈ AR(T1), since b is finite, there are at most finitely many subsets of b.

Therefore {a ∈ AR(T1) : a ≤fin b} is finite.

(2) Suppose Ŝ ⊆ Û and let n ∈ N. Then rn(Ŝ) =
[
Ŝ ↾

⋃n−1
i=0 T1(i)

]
⊆ Û as a

restriction of Ŝ. Since Û is isomorphic to T1 and Ŝ ↾
⋃n−1

i=0 T1(i) is isomorphic

to an initial segment of T1, there is m ∈ N such that
(
Ŝ ↾

⋃n−1
i=0 T1(i)

)
⊆
(
Û ↾⋃m−1

i=0 T1(i)
)
, as

⋃n−1
j=0 T1(j) is finite. So

[
Ŝ ↾

⋃n−1
i=0 T1(i)

]
⊆
[
Û ↾

⋃m−1
i=0 T1(i)

]
and we have rn(Ŝ) ≤fin rm(Û). Conversely suppose for each n, there is m(n) such

that
[
Ŝ ↾

⋃n−1
j=0 T1(j)

]
⊆
[
Û ↾

⋃m(n−1)
i=0 T1(i)

]
. This gives us

(
Ŝ ↾

⋃n−1
j=0 T1(j)

)
⊆(

Û ↾
⋃m(n−1)

i=0 T1(i)
)

as Ŝ and Û preserves initial segments. So Ŝ =
⋃

n∈N
[
Ŝ ↾⋃n−1

j=0 T1(j)
]
⊆
⋃

n∈N
[
Û ↾

⋃m(n−1)
i=0 T1(j)

]
⊆ Û .

(3) Let a, b, c ∈ AR(T1) and suppose a ⊑ b and b ≤fin c. Then there are Ŝ, Û ∈ R(T1)

and n ≤ m ≤ p such that a =
[
Ŝ ↾

⋃n−1
i=0 T1(i)

]
and b =

[
Ŝ ↾

⋃m−1
i=0 T1(i)

]
⊆
[
Û ↾⋃p−1

i=0 T1(i)
]
= c. This means that a ⊆ b and b ⊆ c, and thus we have a ≤fin c.
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A.3.

Define depthŜ(a) = min{n ∈ N : a ≤fin rn(Ŝ)} if the minimum exists, and ∞ otherwise.

(1) Assume a =
[
V̂ ↾

⋃m−1
i=0 T1(i)

]
for some m ∈ N. Suppose depthŜ(a) < ∞. Set

d = depthŜ(a). Let Û ∈
[
rd(Ŝ), Ŝ

]
. Then Û ⊆ Ŝ and there is n ∈ N such that[

Û ↾
⋃n−1

i=0 T1(i)
]
= rd(Ŝ). By the definition of r, n = d and rd(Û) = rd(Ŝ), and

since a ≤fin rd(Ŝ), we have m ≤ d and
[
V̂ ↾

⋃m−1
i=0 T1(i)

]
⊆
[
Û ↾

⋃d−1
i=0 T1(i)

]
. For

each p ≥ m, we may take Wp ⊆ Û ↾ T1

(
p + (d − m)

)
with

∣∣Wp

∣∣ = p. Then by

setting Ŵ =
[
V̂ ↾

⋃m−1
i=0 T1(i)

]
∪
(⋃∞

p=m Wp

)
, we have Ŵ ∈ R(T1) and Ŵ ⊆ Û .

So [a, Û ] ̸= ∅.

(2) Let a ∈ AR(T1). Assume a =
[
V̂ ↾

⋃m−1
i=0 T1(i)

]
for some m ∈ N. Suppose Û ⊆ Ŝ

and [a, Û ] ̸= ∅. Since [a, Û ] ̸= ∅, there is n ≥ m such that
[
V̂ ↾

⋃m−1
i=0 T1(i)

]
⊆[

Û ↾
⋃n−1

i=0 T1(i)
]
. Set d = depthŜ(a) and e = depthÛ(a). Since Û ⊆ Ŝ, there is

q ∈ N such that
[
Û ↾

⋃e−1
i=0 T1(i)

]
⊆
[
Ŝ ↾

⋃q−1
i=0 T1(i)

]
. So d < ∞ and we have

e ≤ d. Take Wp =
[
Û ↾ T1(p)

]
for each p ≥ d. Then Ŵ =

[
Ŝ ↾

⋃d−1
i=0 T1(i)

]
∪(⋃∞

p=d Wp

)
∈ R(T1). So Ŵ ∈ [rd(Ŝ), Ŝ] since Wp ⊆ Ŝ ↾ T1

(
k(p)

)
for each

p ≥ d, where k : N −→ N is increasing. Since depthŴ (a) = d and Ŵ ⊆ Ŝ, we

have [a, Ŵ ] ̸= ∅ by A.3 (1). Take Ŷ ∈ [a, Ŵ ]. Then
[
Ŷ ↾

⋃m−1
i=0 T1(i)

]
= a and

Ŷ ⊆ Ŵ . So for every j ∈ N, we have an increasing φ : N −→ N such that
[
Ŷ ↾⋃j

i=0 T1(i)
]
⊆
[
Ŵ ↾

⋃φ(j)
i=0 T1(i)

]
. Since

[
Ŷ ↾

⋃m−1
i=0 T1(i)

]
⊆
[
Ŵ ↾

⋃d−1
i=0 T1(i)

]
,

we have d = φ(m). So for every j ≥ m,
[
Ŷ ↾ T1(j)

]
⊆
[
Ŵ ↾ T1

(
φ(j)

)]
⊆
[
Û ↾

T1

(
φ(j)

)]
. Therefore Ŷ ⊆ Û .

A.4.

Let a ∈ AR(T1) with length(a) = j and let Ŝ ∈ R(T1). Suppose depthŜ(a) < ∞ and let

O ⊆ ARj+1(T1). Set d = depthŜ(a). For each m ∈ N, for each u ⊆
[
Ŝ ↾ T1(d + m)

]
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with |u| = j + 1, define

φd+m(u) =


0 , if a ∪ u ∈ O

1 , if a ∪ u /∈ O
.

Then this is a 2-colouring on the j + 1-element subsets of
[
Ŝ ↾ T1(d + m)

]
. By the

finite Ramsey theorem (corollary 2), there is N(0) > d + 1 such that for the set
[
Ŝ ↾

T1

(
N(0) − 1

)]
, there is WN(0) ⊆

[
Ŝ ↾ T1

(
N(0) − 1

)]
with

∣∣WN(1)

∣∣ = d + 1 such that

φN(0)−1 ↾
(
WN(0)

)[j+1] is constant. Recursively having chosen N(n) > N(n − 1) >

· · · > N(1) > N(0) > d + 1, there is N(n + 1) > N(n) such that for the set
[
Ŝ ↾

T1

(
N(n+ 1)− 1

)]
, there is WN(n+1) ⊆

[
Ŝ ↾ T1

(
N(n+ 1)− 1

)]
with

∣∣WN(n+1)

∣∣ = N(n)

such that φN(n+1)−1 ↾
(
WN(n+1)

)[j+1] is constant. These are possible by the finite Ramsey

theorem. Now, define

φ(n) =


0 , if φN(n)−1 ↾ WN(n) = {0}

1 , if φN(n)−1 ↾ WN(n) = {1}
.

By the pigeonhole principle, there is M ∈ N[∞] such that φ ↾ M is constant. Set M =

{p(n)}n∈N ⊆ N in the increasing order. For each n ∈ N, take Vn ⊆ Wp(n) with
∣∣Vn

∣∣ =
d+n+1. Set Û = a∪

(⋃
n∈N Vn

)
. Then Û ∈ R(T1) and note that Û ⊆ Ŝ by construction.

For each y ∈ rj+1

([
a, Û

])
, y = a∪ v for some v ∈ Vn for some n ∈ N and |v| = j+1. By

the construction above, either all of such y are in O or all of such y are in Oc. This means

that either rj+1

([
a, Û

])
⊆ O or rj+1

([
a, Û

])
∩ O = ∅.

Lastly take (xn)n∈N ∈
(
AR(T1)

)N \
∏

n∈NARn(T1). Then there is j ∈ N such that

xj ̸= rj
(
Ŝ
)

for any Ŝ ∈ R(T1). This means that xj = rk
(
Û
)

for some k ̸= j and

Û ∈ R(T1). So the ball centered at (xn)n∈N with the radius 1/
2j

contains no elements
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in
∏

n∈NARn(T1) since for every element (yn)n∈N ∈
∏

n∈N ARn(T1), yj = rj(Ŝ) for

some Ŝ ∈ R(T1). Therefore we see that
∏

n∈N ARn(T1) is closed in
(
AR(T1)

)N, and

correspondingly R(T1) is closed as an embedding in
(
AR(T1)

)N.
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CHAPTER 4: THE BANACH SPACE OF T1(d, θ)

The space of T1(d, θ) is a Banach space with the norm that will be defined in this

chapter.

For d ∈ N with d ≥ 2 and for m ≤ d, a collection of nonempty sets {Ei}mi=1 ⊆ AR(T1)

is said to be admissible if for each j = 1, 2, . . . ,m−1, we have maxEj < minEj+1, where

< is the lexicographic order on [T1], the top of the tree of T1 described in the previous

chapter.

Definition 9. By c00([T1]), we denote the set of all functions x : [T1] −→ R such that

the support set of each function x, denoted as supp(x) = {s ∈ [T1] : x(s) ̸= 0}, is

finite. Let {et}t∈[T1] denote the canonical basis of c00([T1]): for each x ∈ c00([T1]), x =∑
t∈[T1]

xtet =
∑u

t=⟨0,0⟩ xtet for some u ∈ [T1], where xt ∈ R for each t. If E ∈ AR(T1),

we set Ex =
∑

t∈E xtet.

Definition 10. Take 0 < θ < 1 with dθ > 1. For x =
∑

t∈[T1]
xtet ∈ c00([T1]), we define

the following sequence of norms:

∥x∥0 = sup
t∈[T1]

|xt| = max
t∈[T1]

|xt|,

and for each j ∈ N,

∥x∥j+1 = max

{
∥x∥j, θmax

{ m∑
i=1

∥∥Eix
∥∥
j
: 1 ≤ m ≤ d,

{
Ei

}m
i=1

is admissible
}}

.

Finally set ∥x∥T1(d,θ) = supj∈N ∥x∥j .

Note that since d ≥ 2, the support set is indeed split on each stage of the recursive

process in taking admissible sets.
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From now on, the underscript of the norm ∥ · ∥j would mean the j-th step in the

inductive definition of taking norms in Definition 10. If we ever want to indicate the norm

in the ℓp space, we will use the convention ∥ · ∥ℓp .

Now we show that this definition induces a norm on c00([T1]).

Lemma 8. ∥ · ∥T1(d,θ) defines a norm on c00([T1]).

Proof. We first show that ∥ · ∥j is a norm on c00([T1]) for each j ∈ N by induction on j.

Throughout the proof we let x, y be arbitrary elements from c00([T1]).

∥ · ∥0 is the usual sup-norm on c00([T1]), so is a norm.

Suppose for some j ∈ N, ∥ · ∥j is a norm defined on c00([T1]). Then ∥x∥j+1 is

chosen as the maximum of nonnegative values, so is nonnegative. ∥x∥j+1 = 0 means both

∥x∥j = 0 and
∥∥Eix

∥∥
j
= 0 for each i = 1, 2, · · · ,m and for every choice of admissible

collection {Ei}mi=1, which in turn implies x = 0 since ∥ · ∥j is a norm. If x = 0, then

∥x∥j = 0 and
∥∥Ex

∥∥
j
= 0 for each E ∈ AR(T1). So ∥x∥j+1 = 0 as it is chosen from

either a value of 0 or a sum of 0. For α ∈ R, either ∥αx∥j+1 = ∥αx∥j or ∥αx∥j+1 =

θmax
{∑m

i=1

∥∥Eix
∥∥
j
:
{
Ei

}m
i=1

is admissible
}

. For the first case, ∥αx∥j+1 = ∥αx∥j =

|α| ∥x∥j as ∥ · ∥j is a norm. For the latter case, since we have E(αx) =
∑

t∈E αxtet =

α
∑

t∈E xtet = α
(
Ex
)

for each E ∈ AR(T1), we see that

∥αx∥j+1 = θmax

{
m∑
i=1

∥∥Ei(αx)
∥∥
j
:
{
Ei

}m
i=1

is admissible

}

= θmax

{
m∑
i=1

∥∥α(Eix
)∥∥

j
:
{
Ei

}m
i=1

is admissible

}

= θmax

{
|α|

m∑
i=1

∥∥Eix
∥∥
j
:
{
Ei

}m
i=1

is admissible

}

= |α| · θmax

{
m∑
i=1

∥∥Eix
∥∥
j
:
{
Ei

}m
i=1

is admissible

}

= |α| ∥x∥j+1.
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In addition, either ∥x+y∥j+1 = ∥x+y∥j ≤ ∥x∥j+∥y∥j ≤ ∥x∥j+1+∥y∥j+1, or ∥x+y∥j+1 =

θmax
{∑m

i=1

∥∥Ei(x+ y)
∥∥
j
:
{
Ei

}m
i=1

is admissible
}

. Since we also have E(x + y) =∑
t∈E(xt + yt)et =

∑
t∈E xtet +

∑
t∈E ytet = Ex+ Ey, we see that

∥x+ y∥j+1 = θmax

{
m∑
i=1

∥∥Ei(x+ y)
∥∥
j
:
{
Ei

}m
i=1

is admissible

}

= θmax

{
m∑
i=1

∥∥Eix+ Eiy
∥∥
j
:
{
Ei

}m
i=1

is admissible

}

≤ θmax

{
m∑
i=1

∥∥Eix
∥∥
j
+

m∑
i=1

∥∥Eiy
∥∥
j
:
{
Ei

}m
i=1

is admissible

}

≤ θ

(
max

{ m∑
i=1

∥∥Eix
∥∥
j

}
+max

{ m∑
i=1

∥∥Eiy
∥∥
j
]

})
≤ ∥x∥j+1 + ∥y∥j+1.

Therefore ∥ · ∥j+1 is a norm, and by induction ∥ · ∥j is a norm for each j ∈ N.

Lastly, for each x ∈ c00([T1]), the sequence
(
∥x∥j

)
j∈N is increasing and bounded above

by the ℓ1([T1])-norm of x since on each stage of the recursion, the cardinality car
({

Ei ∩

supp(x) ̸= ∅ :
{
Ei

}m
i=1

is admissible
})

has to be less than or equal to car
(
supp(x)

)
.

Hence ∥x∥T1(d,θ) = supj∈N ∥x∥j < ∞. Also ∥x∥T1(d,θ) = supj∈N ∥x∥j ≥ 0 as ∥x∥j ≥ 0

for each j ∈ N. ∥x∥T1(d,θ) = 0 if and only if ∥x∥j = 0 for each j ∈ N if and only if

x = 0 since ∥ · ∥j is a norm for each j ∈ N. For α ∈ R, ∥αx∥T1(d,θ) = limj−→∞ ∥αx∥j =

limj−→∞ |α| ∥x∥j = |α| limj−→∞ ∥x∥j = |α| ∥x∥T1(d,θ), and ∥x+y∥T1(d,θ) = limj−→∞ ∥x+

y∥j ≤ limj−→∞ ∥x∥j + limj−→∞ ∥y∥j = ∥x∥T1(d,θ) + ∥y∥T1(d,θ) by the continuities of

addition, scalar multiplication, and taking norms.

25



The completion of c00([T1]) with respect to ∥x∥T1(d,θ) is a Banach space which is

denoted by
(
T1(d, θ), ∥ · ∥T1(d,θ)

)
, or simply by T1(d, θ). Often enough we drop the sub-

script T1(d, θ) of the norm and simply denote it by ∥ · ∥ in this context.

Notice that if x =
∑

t∈[T1]
xtet ∈ T1(d, θ), then

∥x∥ = max

{
∥x∥∞, θ sup

{ m∑
i=1

∥∥Eix
∥∥ : 1 ≤ m ≤ d,

{
Ei

}m
i=1

admissible
}}

,

where ∥x∥∞ = supt∈[T1] |xt|.

Notation. For k ∈ N, denote

T1[k] = {t ∈ [T1] : α1(t) = k},

where α1(t) gives us the length 1 initial segment of the node t, and set

T
(k)
1 = span{et : t ∈ T1[k]}.

The following lemma provides a critical observation for a method to find maximal

norms on admissible sets, and will be utilised in the proofs of the later properties.

Lemma 9. Let {Ei}mi=1 ⊆ AR(T1) be admissible and suppose for some k ∈ N, we have

Ej ∩ T1[k] ̸= ∅ for some j < m. Then Ej+1 ∩ T1[k] is either empty or a singleton.

Proof. By the admissibility of {Ei}mi=1, we have max(Ej) < min(Ej+1). So we have

α1

(
max(Ej)

)
≤ α1

(
min(Ej+1)

)
. If k < α1

(
max(Ej)

)
≤ α1

(
min(Ej+1)

)
or k ≤

α1

(
max(Ej)

)
< α1

(
min(Ej+1)

)
, then as α1

(
min(Ej+1)

)
≤ α1(t) for every t ∈ Ej+1,

we have k < α1(t) for every t ∈ Ej+1. Hence Ej+1 ∩ T1[k] = ∅. Otherwise k =

α1

(
max(Ej)

)
= α1

(
min(Ej+1)

)
. Since Ej+1 ∈ AR(T1), min(Ej+1) is the only node of

Ej+1 that is in T1[k]. So Ej+1 ∩ T1[k] is a singleton.
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Proposition 10. For a fixed k ∈ N, if x =
∑

t∈T1[k]
xtet ∈ T

(k)
1 , then

max
t∈T1[k]

|xt| ≤ ∥x∥ ≤ d− 1

1− θ
· max
t∈T1[k]

|xt|.

And therefore we have T
(k)
1

∼= ℓk∞.

Proof. We show that maxt∈T1[k] |xt| ≤ ∥x∥j ≤
(∑j

n=0 θ
n
) (

d− 1
)
maxt∈T1[k] |xt| for each

j ∈ N by induction. Note that since
(∑j

n=0 θ
n
)

≥ θ0 = 1 and d ≥ 2, the inequalities

make sense.

The base case j = 0 is clear: maxt∈T1[k] |xt| = ∥x∥0 ≤ θ0(d− 1) ·maxt∈T1[k] |xt| since

d− 1 ≥ 1.

Now suppose maxt∈T1[k] |xt| ≤ ∥x∥p ≤
(∑p

n=0 θ
n
)(
d − 1

)
· maxt∈T1[k] |xt| for each

p ≤ j for some j ∈ N. Then since {∥x∥j}∞j=0 is an increasing sequence for each x, we

have maxt∈T1[k] |xt| ≤ ∥x∥j+1. On the other hand, if ∥x∥j+1 = ∥x∥j , then this means that

∥x∥s = ∥x∥s+1 = · · · = ∥x∥j = ∥x∥j+1 = · · · for some s ≤ j. Hence by induction

hypothesis we have

∥x∥j+1 = ∥x∥s ≤

(
s∑

n=0

θn

)(
d− 1

)
· max
t∈T1[k]

|xt| ≤

(
j+1∑
n=0

θn

)(
d− 1

)
· max
t∈T1[k]

|xt|,

since s ≤ j. Otherwise ∥x∥j+1 = θ ·max
{∑m

i=1 ∥Eix∥j : {Ei}mi=1 admissible
}

. In order

to attain the maximum, we may assume that Ei ∩ T1[k] ̸= ∅ for all i = 1, 2, . . . ,m. By

lemma 9, the support set supp
(
Eix
)

are singletons for i = 2, 3, . . . ,m. Set Ei = {ti}

where ti ∈ T1[k] for each i = 2, 3, . . . ,m. Then we have

∥x∥j+1 = θmax

{∥∥E1x
∥∥
j
+

m∑
i=2

|xti |
}

≤ θ

(( j∑
n=0

θn
)(

d− 1
)
· max
t∈T1[k]

|xt|+
(
d− 1

)
· max
i=2,··· ,m

|xti |

)
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≤
( j∑

n=0

θn+1 + θ

)(
d− 1

)
· max
t∈T1[k]

|xt|

≤
( j+1∑

n=1

θn + 1

)(
d− 1

)
· max
t∈T1[k]

|xt|

=

( j+1∑
n=0

θn
)(

d− 1
)
· max
t∈T1[k]

|xt|.

Thus by induction we have the claim.

Now since ∥x∥ = supj∈N ∥x∥j , we see that

max
t∈T1[k]

|xt| = ∥x∥0 ≤ sup
j∈N

∥x∥j ≤
( ∞∑

n=0

θn
)(

d− 1
)
· max
t∈T1[k]

|xt| =
d− 1

1− θ
· max
t∈T1[k]

|xt|.

If x ∈ T1(d, θ), we can write it as x =
∑∞

n=0 anxn where for each n ∈ N, xn ∈

T
(n)
1 , normalised. So {xn}n∈N denote the normalised block sequences on T

(n)
1 for each

n ∈ N. We will show that ∥x∥ ≈ (
∑∞

i=0 ∥an∥p)
1/p. We divide the proof in two parts,

using Bellenot’s result (see below) to prove the lower bound, and Argyros and Deliyanni’s

method to prove the upper bound.

Let 0 < θ < 1 and 1 ≤ p < ∞. Take

x ∈ c00(N) = {(an)n∈N : an ̸= 0 for finitely many n ∈ N}.

Let {bn}n∈N be the canonical basis of c00(N), so that x =
∑N

n=0 anbn =
∑

n∈N anbn for

each x ∈ c00(N) where an = 0 for n ≥ N+1. For a sequence of subsets {Di}di=1 ⊆ N[<∞],

we say {Di}di=1 is Bel-admissible if maxDi < minDi+1 for i = 1, 2, . . . , d− 1. Bellenot
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defines the norm ∥ · ∥Bel as the following: for x =
∑

n∈N anbn,

∥x∥0 = sup
n∈N

∣∣an∣∣,
∥x∥j+1 = sup

{∥∥x∥∥
j
,
(
θ

d∑
i=1

∥∥Dix
∥∥p
j

)1/p
}
,

where the supremum is taken over all Bel-admissible sequences {Di}di=1, and finally

∥∥x∥∥Bel = lim
j→∞

∥∥x∥∥
j
= sup

{∥∥x∥∥
0
,
(
θ

d∑
i=1

∥∥Dix
∥∥p

Bel

)1/p
}
.

In addtion we have the following inequality that Bellenot derived to characterise the norm

with the ℓp-space.

Lemma 11 (Bellenot [4]). If dθ = d1/p > 1, then

θ2
( N∑

n=1

∣∣an∣∣p)1/p

≤
∥∥∥∥ N∑

n=1

anbn

∥∥∥∥
Bel

≤
( N∑

n=1

∣∣an∣∣p)1/p

for each N ∈ N.

Lemma 12. If for each k ∈ N, we take a specific ek ∈ T
(k)
1 , an element of the canonical

basis, then span{ek : k ∈ Z+} ∼= ℓp.

Proof. Let x =
∑N

k=0 akek. Given {Ei}mi=1 ⊆ AR(T1) admissible, assume for each i =

1, 2, . . . ,m that Ei consists of nodes of [T1] from T1[k
i
1], T1[k

i
2], . . . , T1[k

i
li
]. As {Ei}mi=1

is admissible, we see that ki
li

< ki+1
1 . Hence {Ei ∩ supp(x)}mi=1 forms a sequence of

Bel-admissible sets on {k : k ∈ N}. On the other hand, it is easy to see that for each Bel-

admissible sequence on {k : k ∈ N}, we can find an admissible sequence in AR(T1) that,

when restricted to the support of x, corresponds to the Bel-admissible sequence. Hence we
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get that
∥∥∥∑N

k=0 akek

∥∥∥ =
∥∥∥∑N

k=0 akek

∥∥∥
Bel

. Therefore, we obtain

θ2
( N∑

n=0

∣∣an∣∣p)1/p

≤
∥∥∥∥ N∑

n=0

anen

∥∥∥∥ ≤
( N∑

n=0

∣∣an∣∣p)1/p

for each N ∈ N,

and this completes the proof.

The goal here is to show that the space T1(d, θ) is isomorphic to
(∑

n∈N⊕ ℓn+1
∞

)
p
.

To this end we consider sequences in blocks where each block has support set on a single

branch of T1. Let x =
∑N

n=0 xn ∈ c00([T1]) where for each n = 0, 1, 2, . . . , N , xn ∈ T
(n)
1 .

Then we derive a lower bound of the norm of x in the following lemma.

Lemma 13.

∥x∥ ≥ θ2(1− θ)

d− 1

(
N∑

n=0

∥∥xn

∥∥p)1/p

.

Proof. For each n = 0, 1, 2, . . . , N , suppose xn =
∑n

t=0 antent and max{|ant |}t∈T1[n] =

|anmax|. Take Qnmax : T1(d, θ) −→ span{enmax} as the canonical surjection onto the closed

span of the basic element with maximal coefficient in each block. Set Q =
∑N

n=0Qnmax .

Since T1(d, θ) has a 1-unconditional basis, Q is a contractive surjection. By a previous

lemma we have
∣∣anmax

∣∣ ≥ 1−θ
d−1

∥∥xn

∥∥. Therefore we get

∥∥x∥∥ =

∥∥∥∥ N∑
n=0

xn

∥∥∥∥ ≥
∥∥∥∥Q( N∑

n=0

xn

)∥∥∥∥ =

∥∥∥∥ N∑
n=0

Qnmax

(
xn

)∥∥∥∥ =

∥∥∥∥ N∑
n=0

anmaxenmax

∥∥∥∥
≥ θ2

( N∑
n=0

∣∣anmax

∣∣p)1/p

≥ θ2
( N∑

n=0

(1− θ

d− 1

∥∥xn

∥∥)p)1/p

= θ2
((1− θ

d− 1

)p N∑
n=0

∥∥xn

∥∥p)1/p

=
θ2(1− θ)

d− 1

(
N∑

n=0

∥∥xn

∥∥p)1/p

.
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We now use techniques from Argyros and Delyanni [1] to show that

∥x∥ ≤ 2

θ

(∑
n∈N

∥xn∥p
)1/p

.

Definition 11. We say that a sequence of finite sets {Fi}mi=1 ⊆ 2([T1]), m ≤ d, is almost

admissible if there is admissible {Ei}mi=1 ⊆ AR(T1) such that Fi ⊆ Ei for each i ∈

{1, 2, . . . ,m}.

For a linear functional f : T1(d, θ) −→ R, we will call supp(f) = {t ∈ [T1] : f(et) ̸=

0} for simplicity.

Definition 12. Define inductively a sequence {Ks}s∈N of subsets of linear functionals from

the dual space of T1(d, θ) such that K0 =
{
± e∗t : t ∈ [T1]

}
, where e∗t is linear such that

e∗t (et) = 1 and e∗t (eu) = 0 for each u ̸= t and that for each s ∈ N

Ks+1 = Ks ∪

{
θ

m∑
i=1

fi : m ≤ d, fi ∈ Ks,
{

supp
(
fi
)}m

i=1
almost admissible

}
.

Set K =
⋃

s∈NKs. For convenience we call a sequence of functionals {fi}mi=1 successive

if {supp(fi)}mi=1 is almost admissible.

Lemma 14. For each f ∈ K, we have ∥f∥ ≤ 1. For each x ∈ c00([T1]), ∥x∥ =

supf∈K f(x).

Proof. For the first statement, we show that for every f ∈ Ks, s ∈ N, we have |f(x)| ≤

∥x∥. Let x ∈ c00([T1]). If f ∈ K0, then f = ±e∗t for some t ∈ [T1]. So |f(x)| =∣∣ ± e∗t (x)
∣∣ ≤ ∥x∥ by unconditionality. Suppose |f(x)| ≤ ∥x∥ for every f ∈ Ks. Take

f ∈ Ks+1. Either f ∈ Ks, in which case we are done, or f = θ
∑m

i=1 fi for m ≤ d, where

fi ∈ Ks for 1 ≤ i ≤ m, and
{

supp(fi)
}m
i=1

almost admissible. Take {Fi}mi=1 ⊆ AR(T1)
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admissible such that supp(fi) ⊆ Fi for each i. Then we have

∣∣f(x)∣∣ = ∣∣∣∣∣θ
m∑
i=1

fi(x)

∣∣∣∣∣ =
∣∣∣∣∣θ

m∑
i=1

fi(Fix)

∣∣∣∣∣ ≤ θ

(
m∑
i=1

|fi(Fix)|

)
≤ θ

(
m∑
i=1

∥∥Fix
∥∥)

≤ θ sup

{
M∑
i=1

∥∥Eix
∥∥ : 1 ≤ M ≤ d, {Ei}Mi=1 admissible

}
≤ ∥x∥.

By induction we establish that ∥f∥ = sup∥x∥≤1

∣∣f(x)∣∣ ≤ sup∥x∥≤1 ∥x∥ ≤ 1 for each

f ∈ K, and that supf∈K f(x) ≤ ∥x∥.

For the second statement, we show that ∥x∥s ≤ supf∈Ks
f(x) for each s ∈ N. For

the base case we have ∥x∥0 = supt∈[T1] |xt| = supt∈[T1]

∣∣ ± e∗t (x)
∣∣ = supf∈K0

f(x). Now

suppose ∥x∥s ≤ supf∈Ks
f(x) for each x ∈ c00([T1]). Then either ∥x∥s+1 = ∥x∥s ≤

supf∈Ks
f(x) ≤ supf∈Ks+1

f(x) as Ks ⊆ Ks+1, or ∥x∥s+1 = θ
∑m

i=1

∥∥Eix
∥∥
s

for {Ei}mi=1

admissible. By the induction hypothesis and the fact that the supremum is actually attained,

there is {fi}mi=1 ⊆ Ks such that supp(fi) ⊆ Ei and ∥Eix∥s ≤ fi(Eix) for each i. Setting

g = θ
∑m

i=1 fi, we have g ∈ Ks+1, and so ∥x∥s+1 = θ
∑m

i=1 ∥Eix∥s ≤ θ
∑m

i=1 fi(Eix) =

θ
∑m

i=1 fi(x) = g(x) ≤ supf∈Ks+1
f(x). Hence we have ∥x∥ ≤ supf∈K f(x).

Definition 13. For every φ ∈ Kl \ Kl−1, we define an analysis of φ as a sequence

{F s(φ)}ls=0 of subsets of K such that

(1) for each s, F s(φ) consists of successive elements of Ks and
⋃

f∈F s(φ) supp(f) =

supp(φ),

(2) If f ∈ F s+1(φ) then either f ∈ F s(φ), or there are successive f1, f2, . . . , fm ∈ F s(φ),

m ≤ d, such that f = θ
∑m

i=1 fi, and

(3) F l(φ) = {φ}.

Note. By the definition of K, every φ ∈ K has an analysis. Also given φ, if f ∈ F s(φ)

and g ∈ F s+1(φ), then either supp(f) ⊆ supp(g) or supp(f) ∩ supp(g) = ∅.
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Lemma 15. Let φ ∈ K. Then φ can be represented as
∑k

i=1 atie
∗
ti

with ati ̸= 0, where

{ti}ki=1 ⊆ [T1]. So supp(φ) = {t1, t2, . . . , tk}. Let E ⊆ [T1] be finite and set PE(φ) =∑
t∈E ∩ supp(φ) ate

∗
t . Then we have PE(φ) ∈ K.

Proof. We show PE(φ) ∈ K by induction on s ∈ N where φ ∈ Ks. If φ ∈ K0, this is

clearly true as φ = ±e∗t for some t ∈ [T1]. Assume that for every φ ∈ Ks, PE(φ) ∈ K.

Take φ ∈ Ks+1. Then either φ = f for some f ∈ Ks, and PE(f) ∈ K by induction

hypothesis, or φ = θ
∑m

i=1 fi where fi ∈ Ks for i = 1, 2, . . . ,m and {supp(fi)}mi=1 almost

admissible. So PE(φ) = PE

(
θ
∑m

i=1 fi

)
= θ

∑m
i=1 PE(fi) by the linearity of PE . By the

induction hypothesis PE(fi) ∈ K for each i = 1, 2, . . . ,m, and so PE(φ) ∈ K by the

definition.

The lemma allows us restricting the functional to any part that we want to focus on.

Lemma 16. Let {xn}n∈N be the normalised block sequence such that supp(xn) ∈ T
(n)
1 and

∥xn∥ = 1 for each n ∈ N. Let x =
∑N

n=0 anxn ∈ c00([T1]). Then we have

∥∥∥∥∥
N∑

n=0

anxn

∥∥∥∥∥ ≤ 2

θ

(
N∑

n=0

∣∣an∣∣p)1/p

, where dθ = d
1/p.

Proof. Throughout the proof, let {et}t∈[T1] denote the canonical basis of c00([T1]). Let

φ ∈ K, say φ ∈ Kl \ Kl−1 for some l ∈ N \ {0}. We want to find an upper bound for

φ(x). By lemma 15 we may assume that supp(φ) ⊆ supp(x) since Psupp(x)(φ) ∈ K. As

x ∈ c00([T1]) and {et}t∈[T1] is an unconditional basis, we may also assume that x and φ

have nonnegative coordinates. For each n = 0, 1, 2, . . . , N , set

sn = max

{
s ∈ N :

∣∣∣∣{f ∈ F s(φ) : supp(f) ∩ supp(xn) ̸= ∅
}∣∣∣∣ ≥ 2

}
,
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and sn = 0 if
∣∣∣∣{f ∈ F s(φ) : supp(f) ∩ supp(xn) ̸= ∅

}∣∣∣∣ ≤ 1 for every s. Hence for each

n = 0, 1, 2, . . . , N , there are gn(1), gn(2), . . . , gn(m), where 2 ≤ n(m) ≤ d, of successive

elements of F sn(φ) such that for each i = 1, 2, . . . ,m, supp(gn(i))∩ supp(xn) ̸= ∅. Define

the initial and the final parts, x′
n and x′′

n respectively, as

x′
n = xn ↾ supp(gn(1)) and x′′

n = xn ↾
m⋃
i=2

supp(gn(i)). (∗)

We show by induction on s that for every J ⊆ {1, 2, . . . , N} and for each f ∈ F s(φ), we

have

f

(∑
n∈J

anx
′
n

)
≤ 1

θ

∥∥∥∥∥∑
n∈J

anen

∥∥∥∥∥
Bel

and f

(∑
n∈J

anx
′′
n

)
≤ 1

θ

∥∥∥∥∥∑
n∈J

anen

∥∥∥∥∥
Bel

.

We first show the initial part. For f ∈ F 0(φ) this is clear: by the unconditionality we

have f
(∑

n∈J anx
′
n

)
= e∗t

(∑
n∈J anx

′
n

)
≤
∥∥atet∥∥ ≤

∥∥∑
n∈J anen

∥∥
Bel for some t ∈ [T1].

Suppose for every k ≤ s and for each f ∈ F k(φ), we have that f
(∑

n∈J anx
′
n

)
≤

1
θ

∥∥∑
n∈J anen

∥∥
Bel for every J ⊆ {0, 1, 2, . . . , N}. Let f ∈ F s+1(φ) and take an arbitrary

J ⊆ {0, 1, 2, . . . , N}. Either f ∈ F s(φ), in which case we are done, or f = θ
(∑m

i=1 fi
)

for m ≤ d and {fi}mi=1 ⊆ F s(φ) where the support set is almost admissible. Take {Ei}mi=1

admissible such that supp(fi) ⊆ Ei for each i = 1, 2, . . . ,m. Set

D =
{
n ∈ J :

∣∣∣{i : supp(fi) ∩ supp(x′
n) ̸= ∅

}∣∣∣ ≤ 1
}

and consider the sets

I =
{
i ∈
{
1, 2, . . . ,m

}
: supp(fi) ∩ supp(x′

n) ̸= ∅ for some n ∈ D
}

and

H =
{
n ∈ J :

∣∣∣{i : supp(fi) ∩ supp(x′
n) ̸= ∅

}∣∣∣ ≥ 2
}
.

34



Let n ∈ H and set i0 = min
{
i ∈ {1, 2, . . . ,m} : supp(fi) ∩ supp(x′

n) ̸= ∅
}

. We claim

that i0 + 1 /∈ I . Indeed, since n ∈ H , other than fi0 , there is fj ∈ F s(φ) such that

supp(fj)∩ supp(x′
n) ̸= ∅ for some j ≥ i0 + 1. By the definition of sn, we see that s ≤ sn.

So we may find g, h ∈ F sn(φ) such that supp(fi0) ⊆ supp(g) and supp(fj) ⊆ supp(h). By

(∗), we must have g = h, for otherwise supp(fj)∩ supp(x′
n) ⊆ supp(h)∩ supp(x′

n) = ∅ as

x′
n only takes on the support of one functional on F sn . (∗) also tells us that max supp(g) =

max supp(x′
n). Note that we have assumed that supp(f) ⊆ supp(φ) ⊆ supp(x) for

any f ∈ F s(φ). In particular the supports of fi0 , fi0+1, . . . , fj are nonempty and have

nonempty intersection with supp(x′
n). So by the almost admissibility, max supp(fi0+1) ≤

max supp(f) = max supp(x′
n) and min supp(fi0+1) > max supp(fi0) ≥ min supp(x′

n).

Therefore supp(fi0+1) ⊆ supp(x′
n) and we have i0 + 1 /∈ I .

As a result, the function G : H −→ {1, 2, . . . ,m} \ I defined by n ∈ H 7−→ min{i :

supp(fi)∩ supp(x′
n) ̸= ∅}+1 is an injection. Therefore

∣∣H∣∣ ≤ m−
∣∣I∣∣ ≤ d−

∣∣I∣∣ and we

have
∣∣I∣∣+ ∣∣H∣∣ ≤ d.

Thus we have

f
(∑

n∈J

anx
′
n

)
=

(
θ

m∑
i=1

fi

)(∑
n∈J

anx
′
n

)
= θ

m∑
i=1

(∑
n∈J

fi

(
anx

′
n

))

= θ

(
m∑
i=1

(∑
n∈D

fi

(
anx

′
n

))
+

m∑
i=1

(∑
n∈H

fi

(
anx

′
n

)))

= θ

(∑
i∈I

fi

(
Ei

∑
n∈D

anx
′
n

)
+
∑
n∈H

( m∑
i=1

fi

)(
anx

′
n

))

≤ θ

(∑
i∈I

1

θ

∥∥∥∥∥Ei

(∑
n∈D

anen

)∥∥∥∥∥
Bel

+
∑
n∈H

(
1

θ
f

)(
anx

′
n

))

≤ θ

(
1

θ

∑
i∈I

∥∥∥∥Ei

(∑
n∈D

anen

)∥∥∥∥
Bel

+
1

θ

∑
n∈H

∥∥∥anx′
n

∥∥∥)

=
∑
i∈I

∥∥∥∥Ei

(∑
n∈D

anen

)∥∥∥∥
Bel

+
∑
n∈H

∥∥∥anen∥∥∥
Bel

≤ 1

θ

∥∥∥∥∑
n∈J

anen

∥∥∥∥
Bel
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as
{
Ei

}
i∈I ∪

{
{en}

}
n∈H forms a sequence of Bel-admissible sets.

Now we show the inequality for the final part. By the unconditionality we have

f
(∑

n∈J anx
′′
n

)
= e∗t

(∑
n∈J anx

′′
n

)
≤
∥∥atet∥∥ ≤

∥∥∑
n∈J anen

∥∥
Bel for some t ∈ [T1] for

f ∈ F 0(φ).

Suppose for every k ≤ s and for all f ∈ F k(φ), we have that f
(∑

n∈J anx
′′
n

)
≤

1
θ

∥∥∑
n∈J anen

∥∥
Bel for each J ⊆ {1, 2, . . . , N}. Let f ∈ F s+1(φ) and J ⊆ {1, 2, . . . , N}.

Either f ∈ F s(φ), in which case we are done, or f = θ
(∑m

i=1 fi
)

for m ≤ d and

{fi}mi=1 ⊆ F s(φ) where the support set is almost admissible. Take {Ei}mi=1 admissible

such that supp(fi) ⊆ Ei for each i = 1, 2, . . . ,m. Set

D =
{
n ∈ J :

∣∣∣{i : supp(fi) ∩ supp(x′′
n) ̸= ∅

}∣∣∣ ≤ 1
}

and consider the sets

I =
{
i ∈
{
1, 2, . . . ,m

}
: supp(fi) ∩ supp(x′′

n) ̸= ∅ for some n ∈ D
}

and

H =
{
n ∈ J :

∣∣∣{i : supp(fi) ∩ supp(x′′
n) ̸= ∅

}∣∣∣ ≥ 2
}
.

Let n ∈ H and set i0 = min
{
i ∈ {1, 2, . . . ,m} : supp(fi) ∩ supp(x′′

n) ̸= ∅
}

. Since

n ∈ H , other than fi0 , there is j > i0 such that fj ∈ F s(φ) with supp(j) ∩ supp(x′′
n) ̸= ∅.

By the definition of sn, we see that s ≤ sn. So we may find g, h ∈ F sn(φ) such

that supp(fi0) ⊆ supp(g) and supp(fj) ⊆ supp(h). By the definition of the final part,

min supp(g) ≥ min supp(x′′
n). So from the above and the almost admissibility we have

min supp(x′′
n) ≤ min supp(g) ≤ min supp(fi0) ≤ max supp(fi0) < min supp(fj) ≤

max supp(x′′
n). Therefore supp(fi0) ⊆ supp(x′′

n) and we have i0 /∈ I .

As a result, the function G : H −→ {1, 2, . . . ,m} \ I defined by n ∈ H 7−→ min{i :

supp(fi) ∩ supp(x′′
n) ̸= ∅} is an injection. Therefore

∣∣H∣∣ ≤ m −
∣∣I∣∣ ≤ d −

∣∣I∣∣ and we

have
∣∣I∣∣+ ∣∣H∣∣ ≤ d.
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Thus we have

f
(∑

n∈J

anx
′′
n

)
=

(
θ

m∑
i=1

fi

)(∑
n∈J

anx
′′
n

)
= θ

m∑
i=1

(∑
n∈J

fi

(
anx

′′
n

))

= θ

(
m∑
i=1

(∑
n∈D

fi

(
anx

′′
n

))
+

m∑
i=1

(∑
n∈H

fi

(
anx

′′
n

)))

= θ

(∑
i∈I

fi

(
Ei

∑
n∈D

anx
′′
n

)
+
∑
n∈H

( m∑
i=1

fi

)(
anx

′′
n

))

≤ θ

(∑
i∈I

1

θ

∥∥∥∥∥Ei

(∑
n∈D

anen

)∥∥∥∥∥
Bel

+
∑
n∈H

(
1

θ
f

)(
anx

′′
n

))

≤ θ

(
1

θ

∑
i∈I

∥∥∥∥Ei

(∑
n∈D

anen

)∥∥∥∥
Bel

+
1

θ

∑
n∈H

∥∥∥anx′′
n

∥∥∥)

=
∑
i∈I

∥∥∥∥Ei

(∑
n∈D

anen

)∥∥∥∥
Bel

+
∑
n∈H

∥∥∥anen∥∥∥
Bel

≤ 1

θ

∥∥∥∥∑
n∈J

anen

∥∥∥∥
Bel

as
{
Ei

}
i∈I ∪

{
{en}

}
n∈H forms a sequence of Bel-admissible sets.

Therefore since

f

(
N∑

n=0

anxn

)
= f

(
N∑

n=0

anx
′
n +

N∑
n=0

anx
′′
n

)

= f

(
N∑

n=0

anx
′
n

)
+ f

(
N∑

n=0

anx
′′
n

)
≤ 2

θ

(
N∑

n=0

∣∣an∣∣p)1/p

for every f ∈ F s(φ) and for each φ ∈ K, we conclude that

∥∥x∥∥ = sup
φ∈K

φ

( N∑
n=0

anxn

)
≤ 2

θ

( N∑
n=0

∣∣an∣∣p)1/p

.

Combining proposition 10, lemma 13, and lemma 16, we understand the structure of

T1(d, θ) through the following theorem.
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Theorem 17. If dθ = d1/p, then we have

T1

(
d, θ
) ∼= (∑

n∈N

⊕ ℓn+1
∞

)
p

.
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CHAPTER 5: BANACH SPACE OF HIGHER HIERARCHY

There are two directions of extending the tree T1 along the lines of Ramsey spaces

constructed by Dobrinen and Todorcevic [6] and Trujillo in his dissertation [17]. One of

the examples increases the height [6], and the other increases the dimension of each branch

by taking tensor products [17]. Both extensions are of interests building Banach spaces

with Tsirelson-type norms by taking admissible sets from the finite approximations of the

trees. Here we give the definitions and look at their isomorphism types.

With the base case of T1, we may define recursively the higher levels of trees that the

maximal nodes attain. Recall that T1 = cl {(i, j) : i, j ∈ N and 1 ≤ j ≤ i}. Suppose for

some n ∈ N \ {0}, Tn has been defined. For each i ∈ N, set

Tn+1(i) =

{
( ), (i), (i)⌢s : s ∈ Tn(j), where

i(i+ 1)

2
≤ j <

(i+ 1)(i+ 2)

2

}
,

and Tn+1 =
⋃
i∈N

Tn+1(i).
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Figure 3: An Initial structure of T2.
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Figure 4: An Initial structure of T3.

We construct a Banach space on [Tn] (the set of terminal nodes of the tree) similarly for

each n ∈ N\{0, 1}. For d ∈ N with d ≥ 2 and for m ≤ d, we take a collection of admissible

sets
{
Ei

}m
i=1

⊆ AR(Tn) such that maxEj < minEj+1 for each j = 1, 2, . . . ,m−1, where

AR(Tn) is the collection of the terminal nodes of subtrees isomorphic to Tn and < is the

lexicographic order on [Tn]. Set c00([Tn]) =
{
x : [Tn] −→ R

∣∣∣ supp(x) is finite
}

. Take

the canonical basis {et}t∈[Tn] such that x =
∑

t∈[Tn]
xtet, xt ∈ R, for every x ∈ c00([Tn]).

For 0 < θ < 1 with dθ > 1, define a sequence of norms recursively by

∥x∥0 = sup
t∈[Tn]

|xt| = max
t∈[Tn]

|xt|,

and for each j ∈ N,

∥x∥j+1 = max

{
∥x∥j, θmax

{
m∑
i=1

∥∥Eix
∥∥
j
: 1 ≤ m ≤ d,

{
Ei

}m
i=1

is admissible

}}
.

For each x ∈ c00([Tn]), the sequence
(
∥x∥j

)
j∈N is increasing and bounded above by the

ℓ1([Tn])-norm of x. Therefore we may set ∥x∥Tn(d,θ) = supj∈N ∥x∥j . Completing c00(Tn)

with respect to this norm, we get a Banach space
(
Tn(d, θ), ∥ · ∥Tn

)
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On the other hand we may also give

T1 ⊗ T1 = cl

(⋃
n∈N

{(
(n, n), (i, j)

)
:
n(n+ 1)

2
≤ i, j <

(n+ 1)(n+ 2)

2

})
,

or in general for each m ∈ N with m ≥ 2,

⊗m T1 = cl

(⋃
n∈N

{(
(n, . . . , n), (i0, . . . , im−1)

)
∈ Nm × Nm :

})
,

where
n(n+ 1)

2
≤ i0, . . . , im−1 <

(n+ 1)(n+ 2)

2
.
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Figure 5: An Initial structure of T1 ⊗ T1.

Note that we could still define similarly the recursive definition of the norm on [⊗m T1]

for each m ∈ N \ {0, 1}. The completions also induce Banach spaces on the top of these

trees. We will examine the Banach spaces on these two different types of extensions of the

tree T1.

Let T be a fixed tree of one of these types. We denote for each k ∈ N that

T [k] = {t ∈ [T ] : α1(t) = k},

and T (k) = span{et : t ∈ T [k]}.
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For a fixed k ∈ N, we have maxt∈T [k] |xt| ≤ ∥x∥j for each j ∈ N for every x ∈ T (k).

For the upper bound of the norm, in the inductive step, the admissible sets Ei ∩ T [k]

would need to be singletons for i = 2, 3, . . . ,m by similar arguments as in Lemma 9 in

order to achieve maximal norm on ∥ · ∥j+1. So analogous arguments still give us that

∥x∥j ≤ d−1
1−θ

·maxt∈T [k] |xt|. Due to the definition of α1, there are more terminal nodes on

T [k] than T1[k] for each k ∈ N. For instances
∣∣∣T2[3]

∣∣∣ = 65,
∣∣∣( ⊗2T

)
[3]
∣∣∣ = 16. In each

extension, there is an increasing function g : N −→ N such that g(0) = 1 and g(k) is the

number of terminal nodes on T [k] for each k ≥ 1. Therefore combining the lower bound

and the upper bound, we obtain

T (k) ∼= ℓg(k)∞ .

Considering for each x ∈ T (d, θ) that x =
∑

k∈N akxk as block sequences where

xk ∈ T (k) for each k ∈ N, the norm of the linear sum of the block sequences is greater

than or equal to the norm of the sum of the canonical surjections from each block onto the

linear span of the node with the maximal coefficient in that block. Also the collection of

the nodes each of which is from a specific T [k] is Bel-admissible, and so ∥x∥ = ∥x∥Bel if

x is with non-zero coefficients on a single node from each T [k]. Since ∥x∥Bel is bounded

below by the p-norm of those coefficients, we have a lower bound for the block sequence:

∥x∥ ≥ θ2(1− θ)

d− 1

(∑
k∈N

∥xn∥p
)1/p

.

For the upper bound, we will again make use of the set K of linear functionals such

that each functional is the θ multiple of some of others in K that the support sets are

almost admissible . Going through similar proofs, we see that the norm can still be rep-

resented by these functionals, namely ∥x∥ = supf∈K f(x). For each φ ∈ K, we can
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still utilise the analysis on φ to show that every functional f in the analysis satisfies that

f
(∑N

n=0 anxn

)
≤ 2

θ

(∑N
n=0 |an|p

)1/p

.

Therefore for a tree T of one of these types of extensions, we may induce a Banach

space T (d, θ), and there is an increasing function g : N −→ N with such that

T
(
d, θ
) ∼= (∑

n∈N

⊕ ℓg(n)∞

)
p

.

We will now apply Pelczynsky’s decomposition method to obtain the result that each

of the Banach spaces constructed on the extensions of the tree T1 is in fact isomorphic to

the Banach space of T1(d, θ).

Theorem 18 (Pelczysky decomposition theorem). [11] Let X, Y be Banach spaces such

that X can be imbedded complementedly into Y and Y can be imbedded complementedly

into X . Suppose X ∼=
(∑

n∈N⊕ X
)
p
. Then X ∼= Y .

Proof. Since X is imbedded complementedly into Y , we have Y ∼= X ⊕W ∼= X ⊕p W

for some complete subspace W ⊆ Y . Also since Y is imbedded complementedly into X ,

we have X ∼= Y ⊕ V ∼= Y ⊕p V for some complete subspace V ⊆ X . Therefore we have

Y ∼= X ⊕p W

∼=

(∑
n∈N

⊕ X

)
p

⊕p W ∼= X ⊕p W ⊕p

(∑
n∈N

⊕ X

)
p

∼= Y ⊕p

(∑
n∈N

⊕ X

)
p

∼= Y ⊕p

(∑
n∈N

⊕
(
V ⊕p Y

))
p

∼=

(∑
n∈N

⊕
(
Y ⊕p V

))
p

∼=

(∑
n∈N

⊕ X

)
p

∼= X.
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Lemma 19. Let X be a Banach space and suppose Z =
(∑

n∈N⊕X
)
p
. Then Z ∼=(∑

n∈N⊕Z
)
p
.

Proof. Let N =
⋃

j∈N σj be a partition of N such that σj is infinite for each j ∈ N. Set

Φ :

(∑
n∈N⊕

(∑
m∈σn

⊕X
)
p

)
p

−→
(∑

k∈N⊕X

)
p∑

n∈N

(∑
m∈σn

x
(n)
m

)
7−→

∑
n∈N xn .

by taking xn =
∑

m∈σn
x
(n)
m for each n ∈ N. Then Φ is a linear bijection. Moreover

∥∥∥∥∥Φ
(∑

n∈N

( ∑
m∈σn

x(n)
m

))∥∥∥∥∥ =

∥∥∥∥∥∑
n∈N

xn

∥∥∥∥∥ =

(∑
n∈N

∥∥xn

∥∥p)1/p

=

(∑
n∈N

∥∥∥∥ ∑
m∈σn

x(n)
m

∥∥∥∥p
)1/p

=

(∑
n∈N

(( ∑
m∈σn

∥∥x(n)
m

∥∥p)1/p
)p)1/p

=

(∑
n∈N

( ∑
m∈σn

∥∥x(n)
m

∥∥p))1/p

=

∥∥∥∥∥∑
n∈N

( ∑
m∈σn

x(n)
m

)∥∥∥∥∥ .
So Φ provides an isometric bijection between

(∑
n∈N⊕Z

)
p

and Z.

Lemma 20.

T1(d, θ) ∼=

(∑
n∈N

⊕T1(d, θ)

)
p

.

Proof. We will apply the Pelczynsky decomposition method to show this isomorphism.

First T1(d, θ) imbeds complementedly into
(∑

n∈N⊕T1(d, θ)
)
p

since

(∑
n∈N

⊕T1(d, θ)
)
p
= T1(d, θ)⊕p

(∑
n∈N

⊕T1(d, θ)

)
p

.
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Secondly to imbed
(∑

⊕n∈N T1(d, θ)
)
p

into T1(d, θ), we note that

(∑
n∈N

⊕T1(d, θ)

)
p

∼=

(∑
m∈N

⊕
(∑

n∈N

⊕ ℓn+1
∞

)
p

)
p

∼=

(∑
m∈N

⊕
(∑

n∈N

⊕ ℓn+1
∞ (m)

)
p

)
p

,

where the m in the last expression is only to give each copy of ℓn+1
∞ an index ℓn+1

∞ (m) to

indicate the number of direct summand of that particular copy is in. We may order linearly

the elements (m,n) ∈ N2 by the following: (m1, n1) < (m2, n2) if m1 + n1 < m2 + n2

or if m1 + n1 = m2 + n2 and m1 < m2. Suppose φ : N2 −→ N provides this order with

φ(0, 0) = 0. Then ℓn+1
∞ (m) is imbedded complenemtedly into ℓ

φ(m,n)+1
∞ . (This is similar to

the diagonalisation argument in proving the bijectivity between N2 and N. Since

(∑
n∈N

⊕T1(d, θ)

)
p

∼=

(∑
m∈N

⊕
(∑

n∈N

⊕ ℓn+1
∞ (m)

)
p

)
p

∼=
(
ℓ1∞(0)⊕p ℓ

2
∞(0)⊕p ℓ

3
∞(0)⊕p · · ·

)
⊕p

(
ℓ1∞(1)⊕p ℓ

2
∞(1)⊕p ℓ

3
∞(1)⊕p · · ·

)
⊕p

(
ℓ1∞(2)⊕p ℓ

2
∞(1)⊕p ℓ

3
∞(1)⊕p · · ·

)
⊕p · · · ,

we may embed ℓ1∞(0) into ℓ1∞, ℓ2∞(0) into ℓ2∞, ℓ1∞(1) into ℓ3∞, ℓ3∞(0) into ℓ4∞, ℓ2∞(1) into

ℓ5∞, ℓ1∞(2) into ℓ6∞, etc..)

Lastly by Lemma 19, we have

(∑
n∈N

⊕T1(d, θ)
)
p

∼=
(∑

n∈N

⊕
(∑

m∈N

⊕T1(d, θ)
)
p

)
p

.

Therefore by the Pelczysky decomposition theorem, we have the result.
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Let T (d, θ) be a the Banach space constructed on one of the aforementioned extension

tree T . Note that we have

T1(d, θ) ∼=

(∑
n∈N

⊕ ℓn+1
∞

)
p

,

and T (d, θ) ∼=

(∑
n∈N

⊕ ℓg(n)∞

)
p

for some increasing function g : N −→ N.

Theorem 21. Let g : N −→ N be an increasing function with g(0) ≥ 1. Then

(∑
n∈N

⊕ℓg(n)∞

)
p

∼=

(∑
n∈N

⊕ℓn+1
∞

)
p

.

Proof. Since g is increasing,
(∑

n∈N⊕ ℓn+1
∞

)
p

can be embedded complementedly into(∑
n∈N⊕ ℓ

g(n)
∞

)
p

by embedding ℓn+1
∞ into ℓ

g(n)
∞ naturally and the remaining parts as the

complements for each n ∈ N, namely

(∑
n∈N

⊕ ℓg(n)∞

)
p

∼=

(∑
n∈N

⊕
(
ℓn+1
∞ ⊕p ℓ

g(n)−(n+1)
∞

))
p

∼=

(∑
n∈N

⊕ ℓn+1
∞

)
p

⊕p

(∑
n∈N

⊕ ℓg(n)−(n+1)
∞

)
p

.

Also
(∑

n∈N⊕ ℓ
g(n)
∞

)
p

can be embedded complemented into
(∑

n∈N⊕ ℓn∞

)
p

by com-

bining those dimensions in the range of g together and the others as the complement, specif-

ically (∑
n∈N

⊕ ℓn+1
∞

)
p

∼=

(∑
n∈N

⊕ ℓg(n)∞

)
p

⊕p

( ∑
⊕

n∈N\rng(g)

ℓn+1
∞

)
p

.
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Moreover we have

(∑
n∈N

⊕ ℓn+1
∞

)
p

∼=

(∑
m∈N

⊕
(∑

n∈N

⊕ ℓn+1
∞

)
p

)
p

by Lemma 20.

Therefore we induce that

(∑
n∈N

⊕ ℓg(n)∞

)
p

∼=

(∑
n∈N

⊕ ℓn+1
∞

)
p

by the decomposition theorem.

In conclusion, we see that

T (d, θ) ∼=

(∑
n∈N

⊕ ℓg(n)∞

)
p

∼=

(∑
n∈N

⊕ ℓn+1
∞

)
p

∼= T1(d, θ).
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