
University of Denver University of Denver

Digital Commons @ DU Digital Commons @ DU

Electronic Theses and Dissertations Graduate Studies

3-2023

A Unified Approach to Regression Testing for Mobile Apps A Unified Approach to Regression Testing for Mobile Apps

Zeinab Saad Abdalla
University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

 Part of the Software Engineering Commons

Recommended Citation Recommended Citation
Abdalla, Zeinab Saad, "A Unified Approach to Regression Testing for Mobile Apps" (2023). Electronic
Theses and Dissertations. 2170.
https://digitalcommons.du.edu/etd/2170

This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It
has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital
Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.

https://digitalcommons.du.edu/
https://digitalcommons.du.edu/etd
https://digitalcommons.du.edu/graduate
https://digitalcommons.du.edu/etd?utm_source=digitalcommons.du.edu%2Fetd%2F2170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=digitalcommons.du.edu%2Fetd%2F2170&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.du.edu/etd/2170?utm_source=digitalcommons.du.edu%2Fetd%2F2170&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jennifer.cox@du.edu,dig-commons@du.edu

A Unified Approach to Regression Testing for Mobile Apps A Unified Approach to Regression Testing for Mobile Apps

Abstract Abstract
Mobile Applications have been widely used in recent years daily all over the world and are essential in our
personal lives and at work. Because Mobile Applications update frequently, it is important that developers
perform regression testing to ensure their quality. In addition, the Mobile Applications market has been
growing rapidly, allowing anyone to write and publish an application without appropriate validation. A
need for regression testing has arisen with the growth of different Mobile Apps and the added
functionalities and complexities. In this dissertation, we adapted the FSMWeb [14] approach for selective
regression testing to allow for selective regression testing of Mobile Apps. We applied rules to classify
the original set of tests of the Mobile App into obsolete, retestable, and reusable tests based on the types
of changes to the model of Mobile Apps. New tests are added to cover portions that have not been
tested.

As regression test suites change, we want to ensure that required tests are included to satisfy testing
criteria, but also that redundant tests are removed, so as not to bloat the regression tests suite. In the
dissertation, we developed a test case minimization approach for FSMApp, based on concept analysis
that removes redundant test cases.

Next, we proposed an approach to prioritize test cases for Mobile Apps. Naturally, it is desirable to select
those test cases that are most likely to reveal defects in the App under test. We prioritized test paths for
Mobile Apps based on input complexity, since more inputs might be associated with a more complex
functionality which in turn would make it more fault-prone.

As we knew, regression testing is an important activity in software maintenance and enhancement.
Combining several regression testing techniques can lead to a more efficient and effective regression test
suite. In this dissertation, we presented guidelines for combining regression testing approaches based on
a systematic approach. We outlined all possible situations that can occur and showed how each of them
influences which combination to use.

Also, we validated the newly proposed regression testing approaches for Mobile Apps and the guidelines
for combining regression testing approaches via a case study. The results show that FSMApp approaches
are applicable, efficient, and effective.

Document Type Document Type
Dissertation

Degree Name Degree Name
Ph.D.

Department Department
Computer Science

First Advisor First Advisor
Kerstin Haring

Second Advisor Second Advisor
Anneliese Andrews

Third Advisor Third Advisor
Chris GauthierDickey

Keywords Keywords
Mobile applications, Regression testing

Subject Categories Subject Categories
Computer Sciences | Physical Sciences and Mathematics | Software Engineering

Publication Statement Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.

This dissertation is available at Digital Commons @ DU: https://digitalcommons.du.edu/etd/2170

https://digitalcommons.du.edu/etd/2170

A Unified Approach to Regression Testing for

Mobile Apps

A Dissertation

Presented to

the Faculty of the Daniel Felix Ritchie School of

Engineering and Computer Science

University of Denver

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

by

Zeinab Saad Abdalla

March 2023

Advisor: Dr. Kerstin Haring

© Copyright by Zeinab Saad Abdalla, 2023

All Rights Reserved

Author: Zeinab Saad Abdalla
Title: A Unified Approach to Regression Testing for Mobile Apps
Advisor: Dr. Kerstin Haring
Degree Date: March 2023

Abstract

Mobile Applications have been widely used in recent years daily all over the world

and are essential in our personal lives and at work. Because Mobile Applications

update frequently, it is important that developers perform regression testing to

ensure their quality. In addition, the Mobile Applications market has been growing

rapidly, allowing anyone to write and publish an application without appropriate

validation. A need for regression testing has arisen with the growth of different

Mobile Apps and the added functionalities and complexities. In this dissertation,

we adapted the FSMWeb [14] approach for selective regression testing to allow for

selective regression testing of Mobile Apps. We applied rules to classify the original

set of tests of the Mobile App into obsolete, retestable, and reusable tests based on

the types of changes to the model of Mobile Apps. New tests are added to cover

portions that have not been tested.

As regression test suites change, we want to ensure that required tests are in-

cluded to satisfy testing criteria, but also that redundant tests are removed, so as

not to bloat the regression tests suite. In the dissertation, we developed a test

case minimization approach for FSMApp, based on concept analysis that removes

redundant test cases.

Next, we proposed an approach to prioritize test cases for Mobile Apps. Natu-

rally, it is desirable to select those test cases that are most likely to reveal defects in

the App under test. We prioritized test paths for Mobile Apps based on input com-

ii

plexity, since more inputs might be associated with a more complex functionality

which in turn would make it more fault-prone.

As we knew, regression testing is an important activity in software maintenance

and enhancement. Combining several regression testing techniques can lead to a

more efficient and effective regression test suite. In this dissertation, we presented

guidelines for combining regression testing approaches based on a systematic ap-

proach. We outlined all possible situations that can occur and showed how each of

them influences which combination to use.

Also, we validated the newly proposed regression testing approaches for Mobile

Apps and the guidelines for combining regression testing approaches via a case study.

The results show that FSMApp approaches are applicable, efficient, and effective.

iii

Acknowledgements

I would like to express my gratitude to my advisor, Professor Anneliese Andrews

for the unlimited support and guidance she provided in my PhD study journey and

conducting research. You have invested a great effort in me and you have all my

respect and appreciation. Thank you so very much.

Special thanks to my second advisor Dr. Kerstin Haring for the support and

guidance she provided in the last year of my PhD study, and also for her believing

in me being a research assistant.

I would also like to thank Dr. Chris GauthierDickey and Dr. Chip Reichardt for

serving as my dissertation defense committee members.

Special thanks to the DiscoverU team, especially Dr. Daniel Pittman and Lombe

Chileshe for believing in me as a software tester for their project and for all the data

they gave me to help validate my work.

Also, I would like to express my sincere gratitude to the Computer Science

Department faculty and staff for their support.

Special thanks to my parents, my husband, kids, siblings, friends, and colleagues

for their fantastic support during my academic journey.

iv

Table of Contents

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Scope . 5
1.3 Research Agenda and Contribution 6

2 Background 9
2.1 Black-Box Model-Based Testing . 9

2.1.1 MBT Techniques for Mobile Apps 11
2.1.2 Black-Box Testing with FSMApp 17

2.2 Regression Testing . 25
2.2.1 Selective Regression Testing 26
2.2.2 Test Case Minimization . 28
2.2.3 Test Case Prioritization . 32
2.2.4 Regression Testing Techniques for Mobile Apps 42
2.2.5 Combination of Regression Testing Approaches 45

3 A Unified Approach to Regression Testing 50
3.1 Selective Regression Testing of Mobile Apps 52

3.1.1 Selective Regression Testing Process 54
3.1.2 Example Used to Illustrate Approach 59

3.2 Test Case Minimization . 81
3.2.1 Determine requirements and test cases based on selective re-

gression testing for FSMApp 82
3.2.2 Apply Concept Analysis . 85
3.2.3 Example to Illustrate Test Case Minimization of

FSMApp using Concept Analysis 90
3.3 Test Case Prioritization . 98

3.3.1 Test Case Prioritization Process 99
3.3.2 Example Used to Illustrate Approach 100
3.3.3 Example to Combining Test Case Prioritization with Selective

Regression Testing and Test Case Minimization 112

v

4 Guidelines for Combining Regression Testing Approaches 115
4.1 Combination of Regression Testing Strategies 117
4.2 Situations for Combining Regression Testing Approaches 120
4.3 Example for Using The Guidelines to Combining Three Types of Re-

gression Testing (Selective, Minimization, and Prioritization) 125

5 Validation via Case Study 132
5.1 Rationale for the Case Study . 132
5.2 Case Study Objective . 133
5.3 Preparation for Case Study . 134
5.4 Case Study Research Questions . 134
5.5 Units of Analysis . 135
5.6 Case Study General Descriptions . 136

5.6.1 First Version of the DiscoverU App (DiscoverUV 1) 138
5.6.2 Second Version of the DiscoverU App (DiscoverUV 2) 141
5.6.3 Third Version of the DiscoverU App DiscoverUV 3(APK1) . . 142
5.6.4 Fourth Version of DiscoverU App DiscoverUV 4(APK2) 144

5.7 Validation Results and Discussion . 146
5.7.1 Applicability . 146
5.7.2 Effectiveness . 148
5.7.3 Efficiency . 149

5.8 Threats to Validity . 155
5.9 Challenges and Successes in our Case Study 156

6 Future Work 158
6.1 Minimizing Test Cases with Guarantee of the Aggregation Test Re-

quirements . 159
6.2 Prioritizing Test Cases by weighting the Input Types 159
6.3 Applying our Proposed Approaches and Guidelines in Different Sys-

tem Domains . 160
6.4 Building Tools . 160
6.5 Finish and Execute Test Paths for the Case Study DiscoverU App

Automatically . 161

7 Conclusion 162

Bibliography 167

A Components of Android Apps 185

B DiscoverU Case Study Screens 192

vi

C DiscoverU Mobile App 202
C.1 Clusters and Nodes . 202

D DiscoverU Mobile App FSM Model 216
D.1 DiscoverU Mobile App HFSM Model 216
D.2 DiscoverU App Case Study Test Paths 233
D.3 DiscoverU App Inputs and Complexity of each Test path 239

vii

List of Tables

1.1 Publication . 8

2.1 Classification of Prioritization Regression Testing Techniques. 34
2.2 Approach comparison . 44
2.3 Summary of existing combination approaches to regression testing . . 46

3.1 The Notations and Conventions . 56
3.2 Transitions of Figure 3.3 (Main Page Cluster AFSM) 64
3.3 Transitions of Figure 3.4 (Modify task Cluster) 65
3.4 Transitions of Figure 3.5 (Add task Cluster) 65
3.5 Transitions of Figure 3.6 (Edit task Cluster) 66
3.6 Main Page Test Sequences of Figure 3.3 66
3.7 Modify Task cluster Test Sequences of Figure 3.4 67
3.8 Add Task cluster Test Sequences of Figure 3.5 67
3.9 Edit Task Cluster Test Sequences of Figure 3.6 67
3.10 The aggregated Test Paths of the To Do App 68
3.11 Test Path 1 with Input Values . 69
3.12 Main Page Test Sequences of Figure 3.8 76
3.13 Task cluster Test Sequences of Figure 3.9 76
3.14 Add Task cluster Test Sequences of Figure 3.10 77
3.15 Record Task cluster Test Sequences of Figure 3.11 77
3.16 The aggregated test paths of the To Do app 79
3.17 New Test Path 1 with Input Values 80
3.18 The abstract test paths of the To Do app 92
3.19 Test Requirements of To Do App . 93
3.20 Context Table . 94
3.21 The Table of Concepts . 94
3.22 Context Table . 96
3.23 Reduced Concepts . 96
3.24 Reduced Context Table . 97
3.25 Reduced Concepts . 97
3.26 The original Test Paths of the To Do App 102
3.27 The Input Types of the To Do App 103

viii

3.28 The selected and new test paths of the To Do app 106
3.29 The Complexity of the Test Path 1 108
3.30 The Complexity of the Test Path 2 109
3.31 The Complexity of the Test Path 3 109
3.32 The Complexity of the Test Path 4 110
3.33 The Complexity of the Test Path 5 110
3.34 The Complexity of the Test Path 6 111
3.35 The priority of the Test Paths . 112
3.36 The minimized Test Paths . 113
3.37 The priority of the Test Paths . 113

4.1 Strategies of Regression Testing Approaches 120
4.2 Situations for Combining Regression Testing Approaches 121
4.3 The selected and new test paths of the To Do app 128
4.4 The minimized Test Paths . 129
4.5 The Complexity of the Test Path 1 130
4.6 The priority of the Test Paths . 131

5.1 Units of Analysis . 136
5.2 Type of used techniques and the situations for each version 147
5.3 Defect Summary . 149
5.4 Summary of the Changes . 150
5.5 Model Size Summary . 151
5.6 Summary of Test Generation and Execution 153
5.7 Summary of Reducing and Minimizing Test Cases 154

A.1 Components of Mobile Application (LAPs) 186

C.1 Clusters and Nodes For Main . 202
C.2 Clusters and Nodes For Basecamp 203
C.3 Clusters and Nodes For Explore . 203
C.4 Clusters and Nodes For Journey . 203
C.5 Clusters and Nodes For Backpack 204
C.6 Clusters and Nodes For Menu . 204
C.7 Clusters and Nodes For How are feeling 205
C.8 Clusters and Nodes For Check in Now 205
C.9 Clusters and Nodes For Next . 205
C.10 Clusters and Nodes For Free Write 205
C.11 Clusters and Nodes For Add Free Write 206
C.12 Clusters and Nodes For Delete . 206
C.13 Clusters and Nodes For All Content 206
C.14 Clusters and Nodes For Filter . 206
C.15 Clusters and Nodes For Journey . 207

ix

C.16 Clusters and Nodes For All Journey 207
C.17 Clusters and Nodes For Rewords . 207
C.18 Clusters and Nodes For Resources 207
C.19 Clusters and Nodes For Menu-Favourites 208
C.20 Clusters and Nodes For Menu-favourites-Basecamp 208
C.21 Clusters and Nodes For Menu-Backpack 208
C.22 Clusters and Nodes For Menu-Backpack-Backpack 209
C.23 Clusters and Nodes For Menu-Tools 209
C.24 Clusters and Nodes For Menu-Tools-Journey 209
C.25 Clusters and Nodes For Menu-sub-menu 209
C.26 Clusters and Nodes For Sub-Menu-Journal-List 210
C.27 Clusters and Nodes For Sub-Free Write 210
C.28 Clusters and Nodes For sub-AddFreeW 210
C.29 Clusters and Nodes For Delete Free Write 211
C.30 Clusters and Nodes For Stress Log 211
C.31 Clusters and Nodes For Add Stress-Log 211
C.32 Clusters and Nodes For Delete Stress-Log 211
C.33 Clusters and Nodes For Grief Journal 212
C.34 Clusters and Nodes For Add Grief-Journal 212
C.35 Clusters and Nodes For Delete Grief-Journal 212
C.36 Clusters and Nodes For Emotion Reflections 213
C.37 Clusters and Nodes For Add Emotion-Reflection 213
C.38 Clusters and Nodes For Delete Emotion-Reflection 213
C.39 Clusters and Nodes For Check-ins 214
C.40 Clusters and Nodes For Week-Check-ins 214
C.41 Clusters and Nodes For Menu-Daily Check-in 214
C.42 Clusters and Nodes For Menu-Mood Check-in 214
C.43 Clusters and Nodes For Menu-Settings 215
C.44 Clusters and Nodes For Menu-Logout 215

D.1 Test Cases for the Versions of the DiscoverU App. 233
D.2 The Inputs and the Complexity of the Test Paths of the DiscoverU

App. 239

x

List of Figures

1.1 Software Maintenance Process . 3
1.2 Condition to Determine Combination of Regression Testing 4

3.1 Combining Regression Testing of FSMApp Process 51
3.2 Main Screens for To Do App . 60
3.3 Main page (AFSM) . 60
3.4 Modify Task Cluster . 61
3.5 Add Task Cluster . 61
3.6 Edit Task Cluster . 62
3.7 Annotated FSM for Add Task Cluster of Table 3.4 64
3.8 Modified Main Page (AFSM) . 71
3.9 Task Cluster . 71
3.10 Add Task Cluster . 72
3.11 Record Task Cluster . 72
3.12 Test case minimization using concept analysis 82
3.13 Main page of ToDo App . 90
3.14 Sub-clusters of the To Do App . 91
3.15 LAPs of the To Do App . 91
3.16 Concept Lattice . 95
3.17 Concept Lattice: First Minimization 97
3.18 Concept Lattice: Second Minimization 98
3.19 Test Case Prioritization of FSMApp Process 99
3.20 Original Model HFSM for ToDo App 101
3.21 Modified Model HFSM ′ for ToDo App 104

4.1 Process of Combining the Three Types of Regression Testing 119
4.2 Decision Tree for Combinations of Regression Testing 122
4.3 Modified Model HFSM ′ for ToDo App 127

B.1 Entry Page for DiscoverU App . 192
B.2 Main Screens for the DiscoverU App 193
B.3 How are you feeling Screens for DiscoverU App 194
B.4 Free Write Screens for DiscoverU App 194
B.5 Demo Theme for DiscoverU App . 195

xi

B.6 Explore Screens for DiscoverU App 195
B.7 Journey Screens for DiscoverU App 196
B.8 Backpack Screens for DiscoverU App 197
B.9 Menu Main Screens for DiscoverU App 198
B.10 Sub-Menu (Free Write) Screens for DiscoverU App 198
B.11 Sub-Menu (Stress Log) Screens for DiscoverU App 199
B.12 Sub-Menu (Grief Journal) Screens for DiscoverU App 199
B.13 Sub-Menu (Emotion Reflections) Screens for DiscoverU App 199
B.14 Sub-Menu (Goals) Screens for DiscoverU App 200
B.15 Sub-Menu (Check-ins) Screens for DiscoverU App 200
B.16 Menu (Daily Check-in, Settings, Logout) Screens for DiscoverU App . 201

D.1 Main Cluster (AFSM) for DiscoverU App 216
D.2 Basecamp Cluster for DiscoverU App 217
D.3 Explore Cluster for DiscoverU App 217
D.4 Journey Cluster for DiscoverU App 218
D.5 Backpack Cluster for DiscoverU App 218
D.6 Menu Cluster for DiscoverU App . 219
D.7 How Are You Feeling? Cluster for DiscoverU App 219
D.8 Check-in Now Cluster for DiscoverU App 220
D.9 Free Write Cluster for DiscoverU App 220
D.10 Add Free Write Cluster for DiscoverU App 221
D.11 Delete Cluster for DiscoverU App . 221
D.12 All Content Cluster for DiscoverU App 222
D.13 Filter Cluster for DiscoverU App . 222
D.14 Content Cluster for DiscoverU App 223
D.15 All Journeys Cluster for DiscoverU App 223
D.16 Embark Journeys Cluster for DiscoverU App 224
D.17 Trails Cluster for DiscoverU App . 224
D.18 Favorites-Backpack Cluster for DiscoverU App 225
D.19 Rewards-Backpack Cluster for DiscoverU App 225
D.20 Resoutces-Menu Cluster for DiscoverU App 226
D.21 Journal-SubMenu Cluster for DiscoverU App 226
D.22 Emotion Reflections Cluster for DiscoverU App 227
D.23 Add Emotion Reflections Cluster for DiscoverU App 227
D.24 Delete Emotion Reflections for DiscoverU App 228
D.25 Grief Journal Cluster for DiscoverU App 228
D.26 Add Grief Journal Cluster for DiscoverU App 229
D.27 Delete Grief Journal for DiscoverU App 229
D.28 Stress Log Cluster for DiscoverU App 230
D.29 Add Stress Log Cluster for DiscoverU App 230
D.30 Delete Stress Log for DiscoverU App 231

xii

D.31 Goals Cluster for DiscoverU App . 231
D.32 Check-ins Cluster for DiscoverU App 232
D.33 Check-ins Responses Cluster for DiscoverU App 232

xiii

Chapter 1

Introduction

1.1 Problem Statement

Almost all software products undergo maintenance cycles to correct faults, im-

prove performance, add new features, or adapt to a changed environment [34]. The

process of modifying a software system or component is called software maintenance.

The four types of software maintenance are [34]:

1. Corrective maintenance: Modification of a software product to correct defects

or improve code quality (e.g through refactoring).

2. Adaptive maintenance: Modification of a software product performed to keep

a software product compatible with a changed or changing environment.

3. Perfective maintenance: Modification of a software product to improve per-

formance or add new features.

4. Preventive maintenance: Modification of a software product to detect and

correct latent faults before they become effective faults.

1

Software maintenance includes a variety of tasks such as adding, deleting, ex-

tending, and modifying functions, rewriting documentation, improving performance

or improving ease of use. Maintenance can also include different processes for cor-

rection vs. enhancement, small changes vs. large changes, etc. According to the

IEEE standard, any maintenance request (MR) is classified as corrective, preven-

tive, adaptive, or perfective [34]. However, enhancement is not considered direct

maintenance. In some circumstances, we can consider enhancements as part of

development, in others as maintenance. Development refers to the main imple-

mentation of a new project. After the development project is completed and the

customer accepted it, the project moves into either maintenance or enhancement

as defined above. Research and surveys over the years have shown that over 80%

of the maintenance, the effort is related to non-corrective actions [89] [72]. Users

may request major enhancements to the system. The ISO Standard on Software

Maintenance [89] classifies Adaptive and Perfective maintenance as enhancements

and Corrective and Preventive maintenance as corrections.

Figure 1.1 shows the software maintenance process. Regression testing is a ma-

jor part of software maintenance and enhancement tasks. Regression testing ensures

new functionality works as planned and changes did not break existing functionality.

There are three types of regression testing, all of which aim to reduce the regression

testing burden. They are (1) selective regression testing, (2) test case prioritization,

and (3) test case minimization. This dissertation addresses regression testing for

Mobile Apps. We present a novel approach that combines all three approaches and

provides guidelines on how to apply and combine them based on the characteristics

of maintenance or enhancement tasks.

2

Figure (1.1) Software Maintenance Process

Mobile applications, or Apps, are becoming essential in our personal lives and at

work. Mobile Applications like any software, undergo maintenance and enhancement

cycles. Mobile Apps also tend to change frequently [9]. This puts a burden on

testers since regular regression testing is required. Mobile Applications differ from

desktop software in some ways [114]: they interact with other applications, they

allow sensor handling via touch screens and cameras, they reside on a multitude

of hardware devices and platforms, etc. They also share common technology with

other software, especially web applications. Testing Mobile Apps is more complex

than testing desktop applications because we need to deal with issues related to

mobility, as well as the same issues found in web applications.

According to Muccini et al. [81], [8] testing Mobile Apps differs from testing

traditional applications because Mobile connectivity needs to be tested for vari-

ous connectivity scenarios, networks, resource usage, and performance degradation,

possibly resulting in the incorrect system functioning. These items need to be eval-

uated, as does energy consumption. Varying device screen resolutions, dimensions,

etc. affect usability requiring usability testing. The large combination of platforms,

operating systems, diversity of devices, and rapid evolution is challenging for a tester.

Assessment of the performance is important because many of these testing needs

require that a functional test be executed for a number of specific environmental

scenarios, set-ups, and devices.

3

Our goal is to determine a set of regression testing techniques for black box

testing of Mobile Apps. Most work on regression testing uses only one of the three

approaches to regression testing we defined above. There are only a few papers

[111, 106, 107, 103] that try to propose a combination of regression testing (selective,

minimization, and prioritization) as more cost-effective [111].

Whether we need to apply multiple regression testing approaches depends on

what types of changes were made to the functionality. For example, during corrective

maintenance, we fix defects. There is no change in functionality and there are no

obsolete test cases so there is no need for selective regression testing because all test

cases are still valid. In this case, we use test case minimization and prioritization.

During enhancement when adding new functions and services, we could have

obsolete test cases, but we also need new tests, in this case, we need selective regres-

sion testing. Test case minimization may not work well if there are no retestable

test cases, but we can still prioritize tests. Figure 1.2 shows when to use which

combination of regression testing techniques. Since we are interested in Black-Box

model-based testing, changes in functionality equate to changes in the model used

for MBT.

Figure (1.2) Condition to Determine Combination of Regression Testing

4

Selective regression testing [15] is desirable when model changes are isolated, if

there are obsolete tests, and/or if additions have few overlaps with existing parts

of the model. Minimization is desirable to remove redundant tests to reduce effort.

Prioritization regression testing is desirable to maximize early fault detection [67].

This research contributes a regression testing approach for FSMApp which cur-

rently does not have one. We will provide a combination approach for regression

testing of Mobile Apps that combines all three types of regression testing (selective,

minimization, and prioritization) of Mobile Apps. Our research provides contri-

butions to cover the large gap for regression testing approaches of Mobile Apps

(only 4 research papers exist), and the large gap for the combination of regression

testing approaches (only 2 types of combinations are covered by existing research).

Also, there are no guidelines on how and when to select a particular combination of

regression testing approaches based on a systematic approach.

1.2 Research Scope

In this research, our scope is to focus on regression testing for Mobile Apps

during software maintenance and evolution. We will investigate how to best combine

selective regression testing, test minimization, and test prioritization. In order to

identify our scope, we developed a number of research questions. The following

research questions define the scope of our work:

• RQ1: What research exists for black-box model-based testing (MBT) for Mo-

bile Apps?

– RQ1.1: What are the existing MBT techniques for Mobile Apps?

– RQ1.2: What research exists for regression testing of Mobile Apps?

5

• RQ2: What research exists for black-box Regression Testing(selective, mini-

mization, and prioritization)?

• RQ3: What research exists for combining the three approaches for black-box

regression testing and how do these existing approaches and our approach

compare?

• RQ4: Can we extend an existing regression testing for FSMWeb [16] to selec-

tive regression testing for Mobile Apps?

• RQ5: How do we best minimize a test suite for Mobile Apps for black-box

regression testing?

• RQ6: What is the best way to prioritize test cases for Mobile Apps for regres-

sion testing?

• RQ7: Can we combine these approaches for a more efficient and effective

regression test suite?

• RQ8: Can we identify guidelines on how to combine them?

• RQ9: How can we validate our new approach?

1.3 Research Agenda and Contribution

Our work focuses on providing a robust Model-Based regression testing approach

for Mobile Applications that gives guidance for which combination of regression

testing should be used during the maintenance and evolution of Mobile Apps. This

work includes answers to our research questions as follows:

6

• For RQ1, RQ1.1, and RQ1.2: we reviewed the existing body of work related to

FSMWeb, MBT techniques for Mobile Apps, and regression testing of Mobile

Apps. (Section 2.1)

• For RQ2: we reviewed the existing body of work related to regression test-

ing with a focus on black-box regression testing (selective, minimization, and

prioritization). (Section 2.2)

• For RQ3: we reviewed the existing body of work related to combining regres-

sion testing approaches and compare the proposed approach to these existing

approaches. (subsection 2.2.5)

• RQ4: We provide a model-based black-box selective regression testing tech-

nique for Mobile Apps. (Chapter 3)

• RQ5: We provide a test case minimization approach based on concept analysis

for Mobile Apps. (Chapter 3)

• RQ6: We provide a test case prioritization approach for Mobile Apps. (Chap-

ter3)

• RQ7 and RQ8: We provide guidelines on how to combine the types of regres-

sion testing approaches. (Chapter4)

• RQ9: Validation of the new regression testing approaches of FSMApp (selec-

tive, minimization, and prioritization) for Mobile Apps and the guidelines for

combining regression testing approaches are performed. Also, we showed our

novel contribution to the portability web to Mobile App case study. (Chap-

ter5)

7

This document is organized as follows: Chapter 2 covers existing work for model-

based testing techniques for web applications and Mobile Apps, regression testing

for Mobile Apps, regression testing (selective, minimization, and prioritization), and

black-box testing with FSMApp. Chapter 3 explains our multi-faceted approach

to regression testing. Guidelines for combining regression testing approaches are

presented in Chapter 4. Validation of the new regression testing approaches for

Mobile Apps and the guidelines for combining regression testing approaches are

presented in Chapter 5. Future work is presented in Chapter 6 and finally, the

conclusion is in Chapter 7.

Table 1.1 shows the list of submitted and published papers and their location in

this dissertation.

Publication Venue Status Chapter

FSMApp: Testing Mobile Apps.

[8]

Advances in Com-

puters, Elsevier

Published Ch2.

Section

2.1.2

Regressing Testing of Mobile

Apps.[2]

CSCI’21 Published Ch. 3

Test Minimization for Mobile

App Testing with FSMApp. [3]

SERP’22 Published Ch. 3

Test Case Prioritization for Mo-

bile Apps [5]

CSCI’22 Published Ch. 3

Guidelines for Combining Regres-

sion Testing Approaches [4]

CSCI’22 Published Ch. 4

Table (1.1) Publication

8

Chapter 2

Background

2.1 Black-Box Model-Based Testing

Model-based testing techniques use a variety of models such as state charts

or sequence diagrams. Utting et al. [112] define six dimensions of Model-Based

Testing (MBT) approaches (a taxonomy) in their survey: model scope, character-

istics, paradigm, test selection criteria, test generation technology, and test exe-

cution. They defined MBT as an automatable derivation of concrete test cases

from abstract formal models and their execution. They classify MBT by notation

used, such as State-Based, History- Based, Functional, Operational, Stochastic, and

Transition-Based. This dissertation proposes a model-based black-box regression

testing technique that uses a state-based model (FSMApp [8]). Nguyen et al. [83]

define Model-Based Testing (MBT) as a method for generating test cases using

an abstraction of the system under test (SUT). The model provides an abstract

view of the SUT by focusing on specific system characteristics. Dias-Neto et al.

[39] present 219 model-based testing (MBT) approaches after analyzing 271 MBT

papers and describing methods that support the selection of MBT techniques for

9

software projects, including risk factors that may influence the use of these tech-

niques in the industry. This dissertation addresses the use of MBT for functional

regression testing of Mobile Applications.

Web Applications have many things in common with Mobile Apps, such as

screens, navigation, touch-based use, etc. This makes it important to see what ap-

proaches exist for Black-Box Model-Based Testing of Web Applications and whether

they could possibly be adapted to test Mobile Apps. Many Model-Based Testing

techniques exist for web applications such as [74, 78, 43, 92, 87, 66, 46, 84, 16, 17].

One of these techniques, FSMWeb [16] is the most promising, since it has been cited

extensively and provides not just for functional testing [16, 90], but has been eval-

uated for scalability [17], has been extended to allow for selective regression testing

[14, 15], and already has been adapted for testing Mobile Apps [8].

Andrews et al. [16] used FSM to model web applications, they proposed FSMWeb,

a black-box model-based testing approach for web applications. It is a hierarchical

approach that models both data and behavior. The FSMWeb approach [16] proceeds

in two phases. First phase: building a model of the web application, and achieved

by these steps: (1) an application is divided into clusters, (2) logical web pages are

defined, (3) FSMs are built for each cluster, and (4) for the web application top

level (AFSM). Second phase: generating a test suite from the model. It is achieved

in three steps: (1) generate test paths for each cluster (2) use path aggregation to

generate abstract test paths, and (3) inputs are selected for the abstract test paths.

Andrews et al. [17] study the scalability issues of the traditional FSM model of web

applications compared to FSMWeb.

The existing MBT approaches use different types of models, both formal and in-

formal, to model software behavior. Informal modeling includes UML State Charts,

Sequence and Activity diagrams, etc. Formal modeling includes Petri Nets (PNs),

10

Finite State Machines (FSMs), Extended Finite State Machines (EFSMs), Speci-

fication Description Language (SDL), and Communicating Extended Finite State

Machines (CEFSMs). A model is considered formal if its notation includes not only

syntax but formal semantics. Very few of these types of models are used to test

Mobile Apps. We will discuss these in the next section.

2.1.1 MBT Techniques for Mobile Apps

We focus on model-based testing of Mobile Apps. The Model-based testing

approach builds a model of the application under test and uses this model to generate

tests. In model-based testing, the model is created by the user manually or is

generated automatically by a tool. Tests are generated either manually or by tools

and then executed. Our interest is in the Black-Box functional testing of Mobile

Apps.

Sahinoglu et al. [98] introduce a mapping study of testing Mobile Applications.

They study the research issues in testing Mobile Apps and the most frequent test

type and test level of existing studies. In their study, they found only six model-

based testing studies out of 123 studied. They present the count of every classifi-

cation of test levels, test types, and research issues of each study, but they did not

discuss or reference the papers themselves. These few studies show a lack of MBT

techniques to test Mobile Apps. We focus on the use of a state-based behavioral

model.

Mendez-Porras et al. [77] discuss empirical studies of automated testing of Mo-

bile Apps in their systematic mapping study. The categories include Model-based

testing, Capture/replay, Model-learning, Systematic testing, Fuzz testing, Random

testing, and Script based testing. This dissertation focuses on Black- Box Model-

11

Based regression testing of Mobile Applications. Therefore, only the category of

Model-based testing is related to the scope of this dissertation. We are not inter-

ested in white-box testing, grey-box testing, testing security, data-flow analysis, and

life cycle testing of Mobile Apps, so these papers are excluded.

Zein et al. [117] present a mapping study of Mobile Application testing tech-

niques. They consider studies of Mobile testing techniques, services, security and

usability testing of Mobile Apps, and the challenges of testing Mobile Apps. The

used categories are: Usability testing, Test automation, Context-awareness, Secu-

rity, and a general category. The general category consists of all studies which are

not in the other areas. These defined categories are not directly speaking to the

scope of this dissertation. The category Test Automation includes two potentially

related subcategories: Model-based test automation and Black-box test automation.

The other categories are not related to our scope.

After analyzing the papers listed under Model-based testing and Black-box

testing in the above studies, we found the following papers fall into our scope

[37, 59, 70, 11, 36, 108, 19] in additionally to the FSMApp approach [8] which

we interested in adapting it for regression testing of Mobile Apps. We summarise

the papers that fall into our scope.

Alhaddad et al. [8] extend FSMWeb to FSMApp for testing Mobile Application.

FSMApp proceeds in four phases: Phase 1 build a hierarchical model of HFSM.

Phase 2 generates tests from the HFSM. Phase 3 selects the inputs Phase 4 compiles

and executes tests through automated Mobile testing tools. Since we are interested

in adapting the FSMApp approach for regression testing, We will explain FSMApp

in detail in the next subsection.

De Cleva Farto et al. [37] evaluate the use of MBT to verify and validate Mobile

Apps through automated tests. They use an Event Sequence Graph (ESG) to build

12

a test model of the App under test. An ESG expresses the requirements and the

functionality of the system under test. ESG is a directed graph that represents the

events (nodes) and possible sequences of events (edges). Their approach has three

stages: create the ESG model, generate and implement test cases from the ESG

model, and execute the test cases with Robotium and collect data. This approach

is the closest to FSMApp. It does not address regression testing. Alhaddad et al.

compared the FSMApp approach to the ESG approach by applying both approaches

to a number of Mobile Apps with FSMApp being more efficient.

Jing et al. [59] present a Model-based Conformance Testing Framework (MCTF)

for Android Applications. The model is generated manually from the requirements.

Their framework consists of four steps: System Modeling, Test Case Generation,

Test Case Translation, and Test Case Execution. The parameters and properties of

an App are derived by System Modeling, while abstract tests are generated auto-

matically by Test Case Generation with Alloy Analyzer (a language for describing

structures and exploring them). Test Case Translation converts abstract tests into

executable tests. Test Case Execution compiles executable test cases to generate

test packages. The Android apps or the operating system is then tested with the

packages.

Costa et al. [36] adopt a Pattern-Based GUI Testing (PBGT) technique for

testing Mobile Apps. Their technique is based on User Interface Test Patterns [82]

that are specifically developed for testing web apps. They aim to increase reusability

and reduce the effort of modeling and testing Mobile Apps. The PBGT approach

for Mobile Apps differs from the PBGT approach for web apps in the mapping

and interaction strategy and the fact that Mobile Apps can call other applications.

However, this approach does not include some gestures and components like swiping

and zooming which the FSMApp approach supports. Also, it does not support

13

components, varying screen sizes, and loops. It needs a separate model for every

function of the Mobile App. They cannot be connected to create a hierarchical

model to test the Mobile App.

Takala et al. [108] used a model-based testing tool (TEMA) to represent a test

automation solution for testing Android apps. The TEMA tool is a set of model-

based tools for distinct phases of MBT: design, generation, and debugging tests.

They used TEMA tools with state machines for testing Mobile Applications. In their

approach, the model can be divided into small components that are connected. Each

component has two levels: an action machine and a refinement machine. However,

the model is complex even for small apps because each component is a combination

of an action machine and a refinement machine of each function of a Mobile Appli-

cation. Further, the two levels make testing of large Mobile Apps difficult because

a refinement machine state model can only connect to one action machine. In the

FSMApp approach, hierarchical levels and clusters are used to mitigate the state

explosion problem and simplify the generation of a model for large Mobile Apps.

Baek et al. [19] propose a model-based black-box approach for testing Android

apps with a set of multi-level GUI Comparison Criteria (GUICC). It creates a di-

rected graph using ScreenNodes and EventEdges. The GUICC has five levels. They

develop a testing framework around GUICC. It consists of three modules: the com-

munication layer connects the desktop with the Mobile device, the EventAgent is

a tool to run the test on a Mobile device, and the testing Engine generates a GUI

graph with GUICC, test inputs, and test cases. However, their framework is not

open to the public and it is not explained in enough detail. This makes it unusable

for our purpose.

The next two approaches [70], [11] are based on a crawler, they use an algorithm

that traverses the app and searches for possible transitions. This is used to build

14

the model used for testing. Depending on the technique (and automated inputs)

used, the model may be incomplete, hence does not fit our needs.

Lu et al. [70] represent an activity page-based model to automate functional

testing for Mobile Apps. The Activity page-based model is a directed graph. An

activity page is like a screen and is modeled as a tuple to describe input constraints

and related actions. Edges represent a trigger event between the states. The model

can be generated either by using a tool (UIAutomation tool) or by creating a model

based on an image comparison for every event. They present two modeling methods

based on an activity page based model. Android apps contain activity components

that help to develop the user interface of an app. An app usually contains one or

more activity classes to provide GUI interfaces for the user. This is used to build an

activity page based model to automate functional testing for Mobile Apps. However

compared to the FSMApp approach, the description of the input constraints for this

approach is incomplete, especially related to dependencies between inputs and it is

unclear at which step the input constraints are resolved into values.

Amalfitano et al. [11] propose a GUI automated approach to test Android apps.

They implement their technique in a tool called Android Ripper. The technique is

based on a GUI Ripper: the software’s GUI is automatically traversed by opening

all its windows and extracting all its widgets, properties, and values. The ripping

generates a tree model. Compared to the FSMApp approach, the tool takes a long

time to generate test cases for large Mobile Apps, and it does not support some

inputs, such as sensors, but the FSMApp tests large apps and includes more input

types.

Alhaddad et al. [8] validate FSMApp for ten Mobile Applications. Their case

studies cover Mobile Apps from different domains and with different sizes. They

investigate the applicability, scalability, efficiency, and effectiveness of FSMApp for

15

testing Mobile Applications. They also compare the FSMApp approach to the

ESG approach [37] with respect to model building, test generation, input selection,

making tests executable, and test execution.

FSMApp can be applied to a variety of Mobile Apps in different application

domains and of different sizes, showing the applicability of the FSMApp approach.

They applied FSMApp to ten Mobile Applications from different categories. The

apps fall into five categories: Health and Fitness, Game, Music and Audio, Tools,

and Productivity. They were successfully able to apply FSMApp to all ten Mobile

Applications.

They also consider the scalability with regards to four phases: Generate the

Model, Generate the test sequences, Input selection, and Test execution and valida-

tion.

They also studied the efficiency of FSMApp. The efficiency is evaluated in the

test generation process, the length of test sequences, and the test execution effort

(time). Their study shows the efficiency of FSMApp compared to ESG.

Their case study executes the test cases and captures the number of defects.

They were not able to show the full effectiveness of FSMApp because all Mobile

Apps were professional, and related product contains very few faults.

Their comparison between the FSMApp and the ESG approach shows that

FSMApp and ESG have the same applicability. They compare the scalability of

FSMApp and ESG with the model size in terms of edges, model generation time,

number of test sequences, test sequences generation time, the total number of inputs

and actions, time to choose an input, test lines of code, and execution time. FSMApp

is more scalable compared to ESG. They compare the efficiency of FSMApp with

ESG. The efficiency is evaluated for all phases of test generation and execution. The

FSMApp model is almost half the size of the ESG model. Building the model for

16

FSMApp takes much less time than building the ESG model. The reason for this is

the model for FSMApp is much smaller than the model for ESG. The ESG model has

twice the number of nodes and more than double the edges compared to FSMApp.

There is a big difference in the number of test steps between FSMApp and ESG.

The FSMApp approach takes less than half the time of the ESG approach.

The case study also executes the test cases and captures the number of defects.

FSMApp and ESG each found one defect. However, the high quality of the apps

used in the case study makes conclusions related to effectiveness limited.

For these reasons, we conclude that FSMApp is more promising for adapting it

to regression testing of Mobile Applications. Next, we present the testing approach

for Mobile Apps, FSMApp [8] which we will extend for regression testing of Mobile

Apps.

2.1.2 Black-Box Testing with FSMApp

This subsection is a summary of the FSMApp approach for testing Mobile Ap-

plications [8] using Finite State Machines. FSMApp is an extension of FSMWeb

[16]. FSMApp proceeds in four phases:

Phase1: Build a hierarchical model HFSM for Mobile App:

1. Partition Mobile App into clusters.

Partitioning Mobile Applications into clusters, each of which is composed of

App pages and other clusters. The term cluster is referring to collections

of software modules/app pages that apply a logical or user level function.

Clusters represent functions that can be identified by users, at the highest

level of abstraction. The hierarchical model (HFSM) is a collection of models

for clusters (FSMi) and a top level model (AFSM). HFSM = {FSM}ni=0

17

with a top level FSM0 = AFSM . Each FSM has nodes that represent either

clusters or Logical App Pages (LAPs). Edges are internal or external to each

FSM. External nodes span cluster boundaries. (They become internal at the

next higher level.) External edges can either enter or leave a cluster FSM [8].

The clusters might be an individual Activity which is a screen that is shown to

the application user, and it contains a set of layouts that organizes the item on

the page, or software modules that represent a major function. Clusters can

be identified from the spot navigation layout, coupling relationships among

the components and design information [16].

2. Define logical app page and input constraints.

The Mobile Apps’ screens will be considered as input components, or logical

app pages (LAPs). There are several app actives (screens). They are mod-

eled as multiple Logical App Pages (LAPs). A Logical App Page is either a

physical app page, physical app component, or the portion of an app activ-

ity that receives data from the user via an XML form, and then sends the

data to a particular software module [8]. All inputs in a LAP are considered

atomic: data entered in a text field is only one user input, regardless of how

many characters are entered into the field. The inputs might have rules to

enter: some inputs may be required, others may be optional, users might be

permitted to enter inputs in any order, or a specific order may be required.

The constraints on inputs and the meaning of each are as follows:

• Required (R): required input must be entered.

• Required Value (R(parm)): one must enter at least one value.

• Optional (O): an input may or may not be entered.

18

• Single Choice (C1): one input should be selected from a set of choices.

• Multiple choice (Cm): more than one input should be selected from a set

of choices.

Mobile Apps can have a variety of components that can be modeled via input

constraints. Mobile Apps have many more input types than web applications.

The difference between the web input types and Mobile input types is swipe

(which means it is required to change the value of a component) and scroll

(which indicates that the input required is to scroll up or down the content).

Table A in (appendix A) shows how typical input types found in Mobile Ap-

plications are represented as input constraints on edges in an FSMApp model.

The variety of components of Mobile Applications can be modeled through

input constraints. Although Mobile Applications differ a little between differ-

ent Mobile operating systems, they also have many types of components in

common [33], [8]. We explain common components of Android applications

and what FSMApp’s input constraints would look like [1]:

• Bottom Sheet: this is a sheet of material that slides up from the bottom

edge of the screen. The action of the bottom sheet is a click. The input

constraint is R(<Click>).

• Button: indicates what action will occur when the user touches. The

action of the button is click. The input constraints are R(<Click>) or

select the button then click C1(Select Button, Click).

• Card: is a sheet of material with unique related data that serves as an

entry point to more detailed information. The actions of the card are

click, swipe, scroll, and pick-up-and-move. The input constraint is C1(

<Click>, <Swipe>, <Scroll>, <Pick>).

19

• Chips: represent complex entities in small blocks, such as a contact.

The action of the chip is a click. The input constraint is R(S(<Select

Button>, <Click>)).

• Data tables: are used to represent raw data sets, and usually appear

in desktop enterprise products. The actions of the data tables are row

hover, row selection, column sorting, column hover, and test editing. The

input constraint is C1(<Row hover>, <Selection>, <Sort>,<Column

hover>, <Edit>).

• Dialogs: inform users about critical information, require users to make

decisions, or encapsulate multiple tasks within a discrete process. The

action of the dialog is click. The input constraint is R(<Click>).

• Dividers: group and separate content within lists and page layouts. The

action of the divider is click. The input constraint is R(<Click>).

• Grid lists: are an alternative to standard list views. The actions of

the grid list are vertical scrolling or filtering. The input constraint is

C1(<Scroll>, <Filter>).

• Lists: present multiple line items in a vertical arrangement as a single

continuous element. It has a checkbox, a switch, and a reader. The action

of the list is sort. The input constraint is R(<Sort>).

• Menus: allow users to take an action by selecting from a list of choices

revealed upon opening a temporary, new sheet of material. The actions

of the menu are scroll and click. The input constraint is C1(<Scroll>,

<Click>).

• Pickers: provide a simple way to select a single value from a pre-determined

set. For example, time and date pickers. The actions of the pick-

20

ers are dropdown and click. The input constraint is C1(<Dropdown>,

<Click>).

• Sliders: let the user select a value from a continuous or discrete range

of values by moving the slider thumb. The action of slider change is

scrolling. The input constraint is R(<Scroll>).

• Snackbars & toasts: provide lightweight feedback about an operation

by showing a brief message at the bottom of the screen. The action of

snackbars & toasts is click. The input constraint is R(<Click>).

• Progress & activity: indicators are visual indications of an app loading

content. The action of Progress & Activity is loading. The input con-

straint is R(<Load>).

• Selection Controls: allow the user to select options. The action of selec-

tion controls is click. The input constraint is R(<Click>).

• Subheaders: these are special list tiles that delineate distinct sections

of a list or grid list and are typically related to the current filtering or

sorting criteria. The action of subheader is click. The input constraint is

R(<Click>).

• Steppers: convey progress through numbered steps. They may also be

used for navigation. The action of the steppers is to show the next steps.

The input constraint is R(<Follow>).

• Tabs: make an app easy to explore and switch between different views

or functional aspects of an app or to browse categorized data sets. The

action of the tab is scroll. The input constraint is R(<Scroll>).

• Toolbars: appear above the view affected by their actions. The action of

toolbars is scroll. The input constraint is R(<Scroll>).

21

• Tooltips: are labels that appear on hover and focus when the user hovers

over an element with the cursor, focuses on an element using a keyboard

(usually through the tab key), or upon touch (without releasing) in a

touch UI. The actions of tooltips are click and hover. The input constraint

is C1(<Click>, <Hover>).

• Text fields: allow the user to input text, select text (cut, copy, paste),

and lookup data via auto-completion. The actions of test fields are look

up the table, select the text, and write the text. The input constraint is

C1(<Lookup>, <Select>, <Write>).

Transitions connect the nodes and the clusters. They are annotated with

input constraints to indicate what inputs and actions lead to the next node or

cluster.

3. Build FSM for the clusters.

After an App application has been partitioned into clusters, a Finite State

Machine (FSM) for each cluster is derived. Ultimately, an Application Finite

State Machine (AFSM) will define the top level of the Mobile App. Each

cluster (except for the lowest level cluster) may contain both LAPs and cluster

nodes. We refer to this collection of FSMs as HFSM. Dummy nodes and

transitions are added to ensure each FSMi is single-entry, single-exit.

Phase 2: Generates tests from the HFSM,

1. Generates Paths through FSMs/AFSM.

In this phase of the FSMApp method, test sequences are generated. The

user can select coverage criteria such as node, edge, edge-pair, simple round

trip, and prime path coverage [12]. Test paths for clusters are generated by

22

applying standard graph criteria such as node coverage or edge coverage [12].

The result is a set of test paths for each FSMi. Ti = {Ti1 , ..., Tin}, i=0, ..., n.

2. Aggregate paths to form abstract tests.

The test paths are aggregated into test paths for the model as a whole. Several

aggregation criteria have been proposed: all-combinations, each choice, and

base choice coverage [12]. For example, if the path aggregation criterion is to

use each path at least once, this requires that we need to use each test t ∈ Ti

at least once when replacing Ci with t ∈ Ti. This means starting with the

top level model (AFSM), we replace a cluster node Ci in a path with one of

the test paths t ∈ Ti through it. This ultimately results in a test path from

the start node in AFSM to the end node in AFSM that only contains LAP

nodes. Aggregation criteria address which cluster paths need to be used. The

result of this process is a set of aggregate paths, the abstract tests. Algorithm

1 shows the procedure to aggregate test paths with their criterion. The inputs

to the algorithm are AFSM and cluster test paths. The output of algorithm

1 is a set of aggregated test paths (abstract tests). In line 1, the algorithm

put AFSM test paths into an input List. Then line 2 iterates through every

test path from the input List. Line 3 takes one test path from the input List.

Then, it sequentially checks each node in the path whether it is a cluster node.

If there is a cluster node in the path, then a loop replaces the cluster node

with each cluster path and creates as many new partially aggregated paths as

there are paths through this cluster node.

23

Input: AFSM and Cluster Test Paths
Result: outputList = Set of Aggregated Paths
1: inputList = AFSM Paths
2: while inputList has next path do
3: currentPath = get one path from inputList
4: pathDone = true
5: for i = 1 to Length(currentPath) do
6: if nodei is cluster node then
7: for j = 1 to Length(cluster paths) do
8: Replace nodei with cluster pathj and add new path into inputList
9: end for

10: add list paths to inputList
11: remove currentPath from inputList
12: i = length (currentPath) + 1
13: pathDone = false
14: end if
15: end for
16: if pathDone is true then
17: Move currentPath into outputList
18: end if
19: end while

Algorithm 1: Aggregated Test Paths for "Each path at least once" Criterion

3. Reduction Step

Dummy nodes and transitions were added in step 1 to ensure the FSMi are

single-entry, single-exit. The dummy nodes and transitions do not require

any inputs as they are not really testing steps. However, they increase the

length of the test paths. So, these dummy nodes, and transitions are removed.

We replaced each remaining node pair (edge) in an aggregate path with its

corresponding input action constraint.

Algorithm 2 shows the procedure for the reduction step. The input of algo-

rithm 2 is the set of Aggregated Paths and the number of paths. A sequence

of input constraints for each aggregated test path is the output of algorithm

2. There are two loops in algorithm 2: the first loop processes all test paths.

24

The second loop visits each node pair (edge) of the test path and adds the

constraint on the edge to the sequence if there is one.

Input: Set of Aggregated Paths, Number of Paths n
Result: Sequence of Input constraints for Each Aggregated Test Path
1: for i = 1 to n do
2: for j = 1 to Length(pathi)-1 do
3: if edge (nodej, nodej+1) has constraint then
4: add to constraint sequence forpathi

5: end if
6: end for
7: end for

Algorithm 2: Test Reduction Step and Input Constraint Sequence generation

Phase 3: Selects the inputs: choose inputs to create abstract tests.

Inputs are selected to replace the input constraints in the aggregated test path.

The test designer selects the test values. For example, the test designer can create

input values by covering partitions or randomly selecting values from a list of input

selection constraints that are met. The test designer selects values for related inputs.

Phase 4: Compiles and executes tests through automated Mobile testing tools.

In this phase, the test cases can be executed manually or we can use an automated

tool to execute them. For Mobile Apps, many automated tools are available to run

the test cases. For example, tests can be converted to Selenium [91].

2.2 Regression Testing

Regression testing (selective, minimization, and prioritization) plays an impor-

tant role in software maintenance. Regression testing is the process of validating

that the modifications introduced in a software system work and do not adversely

affect the unchanged part of the software system. The goal is to provide confidence

that changes were implemented correctly. There are three types of regression testing

25

techniques: selective regression testing, test case minimization (reduction), and test

case prioritization. In selective regression testing, a regression test suite is deter-

mined by selecting tests from the original test suite and adding new tests to test new

paths of the software. Test case minimization techniques attempt to reduce a test

suite, usually based on some objective function related to coverage criteria. Test

cases prioritization techniques rank and then prioritized the order in which tests are

executed to achieve required goals [28].

We are interested in Model-Based regression testing of Mobile Apps. That means

we will use the system model(s) for regression testing. The model is analyzed to

collect information related to modifications then this information is utilized for

determining a regression test suite. We will survey the three types of regression

testing approaches and review model-based approaches for each type to determine

potentially useful papers that fall in our scope.

2.2.1 Selective Regression Testing

Selective regression testing techniques reduce the cost of testing modified soft-

ware by reusing existing tests and identifying the portions of the modified software

that need new tests [94]. The test case selection problem is defined formally by

Rothermel and Harrold [94] as follows:

Given a program, P, a test suite, T (original test suite) to test P, and the modified

version of P, P′.

1) Identify changes produced to P by creating a mapping of the changes between P

and P′.

2) Select T ′ ⊆ T , a set of tests to execute on P′. T′ may reveal change-related faults

in P′.

26

3) Test P′ with T′.

4) Identify if any portions of P′ have not been tested adequately and require addi-

tional testing, and create T′′, a set of new tests for P′.

5) Use T′′ to test P′.

Existing techniques for Selective Regression Testing can be classified as follows:

Model-Based, Component-Based, Specification-Based, Requirement-Based, Search-

based, and Similarity-Based. Some of the selective regression testing techniques are

classified into multiple categories. We focus on black-box model-based regression

testing. There are many MBT selective regression testing techniques based on UML,

FSM, EFSM, etc such as ([14], [15] [110], [88], [45], [57], [52], [13], [53], [56], [51],

[73], [25], [68], [30], [86], [24], [23], [44]).

Chen et al. [30] describe regression tests as: A Targeted Test for testing function-

ality of the changed portions of the software, and a Safety Test for addressing risks.

They generate test cases utilizing UML activity diagrams. They categorize two types

of changes; code changes and system behavior changes. Orso et al. [86]proposed an

approach similar to Chen et al. [30], but instead of UML activity diagrams, they

used a Statechart diagram. Their approach compares the new and the old versions

of the state charts and finds test cases that are affected by the changes. Briand et

al. [24] [23]proposed a regression testing technique using use case, sequence, and

class diagrams. They describe the meaning of the types of changes in diagrams (e.g.

added/deleted attribute, added/deleted method) and use them to classify tests into

reusable, retestable, and obsolete. Iqbal et al. [44] present a regression test selection

approach utilizing UML state machines and class diagrams. We are not interested

to use UML model in our work.

27

Andrews et al. [14], [15] proposed an approach for selective regression testing of

web applications using FSMWeb and develop a cost-benefit tradeoff framework be-

tween brute force and selective regression testing. In regression testing of FSMWeb

[14], types of changes to the FSMWeb models are formalized based on changes to

the web application (its inputs, Logical Web Pages, and navigation between them).

Specifically, the selective regression testing approach identifies obsolete, reusable,

and retestable tests. Retestable tests need to be rerun (T′ in [94]). Finally, it

identifies new tests that are necessary to achieve required coverage (T′′ in [94]). In

[15] Andrews et al. proposed a tradeoff analysis framework to determine the best

regression testing technique by considering different cost factors that are related

to software artifact analysis and technique application. Their framework is based

on classifying tests as obsolete, reusable, and retestable. They apply the proposed

tradeoff framework by utilizing the FSMWeb model as the behavioral model, and an-

alyze the cost-benefit tradeoffs for the two regression testing techniques (brute force

and selective techniques), which vary with the amount of change and the impact of

model changes.

Since selective regression testing may produce redundant tests [26], test case

minimization may be helpful to eliminate them.

2.2.2 Test Case Minimization

Test case minimization techniques aim to identify redundant test cases and to

remove them from the test suite to reduce the size of the test suite while still meeting

all requirements [109]. The test minimization problem is equivalent to the minimum

set-cover problem [69].

28

Given: A test suite, T, a set of test requirements R {r1, ..., rn}, that must be

satisfied to provide the desired testing of the system, and subsets of T, {T1, ..., Tn},

such that Ti = {t|t ∈ T ∧ t tests ri}. In other words Ti contains tests that meet test

requirement ri.

Problem: Find a minimal cardinality subset of T that meets all test requirements

in R.

A classical approach for this problem [32, 35] uses a straightforward greedy al-

gorithm: Select the test cases that cover the most test requirements until all test

requirements are covered, removing redundant test cases along the way. In the fol-

lowing, let T = {t1, . . . , tm} be set test suite to be minimized. R = {r1, . . . , rn} is

the set of requirements covered by T. Ti = {t|t ∈ T, t covers ri}. The algorithm

selects test cases with the largest number of test requirements until all required ele-

ments are covered. First, it will select the test case that covers most requirements.

Second, it will remove these requirements that are covered by the selected test case.

Then, it will select new test cases that cover most of the remaining requirements.

This continues until all requirements are covered. Algorithm 3 shows the pseudo

code for this algorithm. This approach will not always produce a minimal set.

29

Input: T = {T1, . . . , Tn}, R = {r1,, rn}
Result: : minT : minimal test set
algorithm minT (T,R)
1: minT= empty
2: T = {t1, . . . , tn}
3: R = {R1,, Rn}
4: for i=1 to n do
5: Ri = {r|ti meets r ∈ R}
6: TR = {r1,, rm} = ∪Ri

7: end for
8: Find index k for which max(|Ri|)
9: T = T ∖ tk

10: minT = minT ∪ tk
11: R = R∖Ri

12: TR = TR∖Ri

13: if TR = empty then
14: return minT
15: else
16: for j=1 to n do
17: Rj = Rj ∖Ri

18: end for
19: minT = minT ∪mingreedy(T,R)
20: return minT
21: end if

Algorithm 3: minimal set

30

Harrold et al. [50] developed a variant of this greedy algorithm. It starts by

selecting t ∈ T that are included in the most Ti of a given size, and adds those ri

to the requirements covered until the largest set of Tis has been processed. If there

are any sets Ti from which no tests have been chosen, they are considered next.

Algorithm 4 (Reduce Test Suite) shows it.

Input: T = {T1, . . . , Tn}, R = {r1,, rn}
Result: : Tmin: a representative set of T1, T2, . . . , Tn

algorithm ReduceTestSuite (T,R)
1: Tmin= empty, CurCard= Min(Card(Ti))
2: T = {t1, . . . , tn}
3: R = {r1,, rn}
4: Ti = {t|t meets ri} i=1,..., m
5: for |Ti|=1 to m do
6: Tmin = Tmin ∪ Ti

7: Mark Ti

8: R = R∖ ri
9: ∀j, j ̸= i if t ∈ Ti is in Tj then

{Mark Tj

R = R∖Rj}
10: end for
11: Ci = 2 is cardinality of Ti

12: while R ̸= empty do
13: select Ti1Tik with cardinality Ci

14: determine tk such that tk occurs most often in Ti1Tik

15: if there is a tie, consider |Ti| = Ci + 1
16: if no decision, select tk randomly
17: Tmin = Tmin ∪ tk
18: ∀j : if tk ∈ Tj and Tj unmarked

Mark Ti , R = R∖ rj
Ci = Ci + 1

19: end while
20: return Tmin

Algorithm 4: Reduce Test Suite

This algorithm does not guarantee a minimal selection (e.g. when a test is se-

lected too early). Other approaches using a greedy algorithm to reduce the test

suite include Agrawal [7, 6] and Marre and Bertolino [76].

31

Tallam et al. [109] suggest using concept analysis. Concept analysis classifies

objects (tests) based on the overlap among their attributes (test requirements), to

obtain a heuristic for test suite minimization. They attempt to prevent selecting

a test too early which can cause non-minimized tests in [50, 109]. They present a

greedy heuristic algorithm for selecting a minimal subset of a test suite T that covers

all requirements covered by T. Similarly, Sampath et al. [99] present an approach for

user-session based testing of web applications using concept analysis. Specifically,

they are reducing user-session tests. These two approaches are promising to reduce

test cases for regression testing of FSMApp, but cannot be directly applied, since

FSMApp has two types of requirements: graph coverage requirements for individ-

ual cluster FSMs and path aggregation coverage requirements to form abstract test

cases. While we could simply use both types of requirements by combining them

into a large set of requirements R = Rgraph∪Raggregation, this ignores the relationship

between both types of requirements. We will discuss a more efficient approach in

Chapter 3.

2.2.3 Test Case Prioritization

Test case prioritization techniques schedule test cases for execution to increase

the rate of fault detection and provide faster feedback on the system under test

(SUT), so faults can be corrected earlier. Rothermel et al. [97] formally define the

test case prioritization problem as follows:

32

Given: T, a test suite; PT, the set of permutations of T; and f, a function from

PT to the real numbers.

Problem: Find T ′ ∈ PT such that (∀T ′′) (T ′′ ∈ PT) (T ′′ ̸= T ′) [f(T ′) ≥ f(T ′′)].

PT represents the set of all possible orderings of T, and f is a function that, when

applied utilized to any such ordering, produces an award value for that ordering.

Test case prioritization is an effective and practical technique that helps to in-

crease the rate of regression fault detection as software evolves. Test case priori-

tization (TCP) techniques aim to improve regression testing cost effectiveness, by

helping to reveal faults earlier in testing, which allows to start defect fixes earlier,

and provides earlier feedback to testers. Test cases are ranked or prioritized to

achieve required goals. The simplest test prioritization method is random test pri-

oritization where test cases are ordered randomly. For a test suite of size N, there

are N! possible test sequences. Random prioritization selects randomly one of these

sequences.

The existing prioritization techniques can be classified as follows: Model-Based,

Coverage-Based, Requirements-Based, Search-Based, Fault-based, History-based,

and Learning-based. We focus on test case prioritization for black-box model-based

regression testing. The exist model-based test case prioritization are: ([62], [61, 60],

[55], [20], [21], [75], [119, 120], [100, 101], [103] , [18], [63], [29], [64], [47], [49], [80],

[118], [54] , [105]).

33

Table (2.1) Classification of Prioritization Regression Testing Techniques.

Begin of Table

Study Approach Test type
Model

type

Evaluation

Metric

Korel et al.

[62], [61], [60]

model

dependence-

based test

prioritization

Black

box
EFSM

RP (Most

Likely Relative

Position)

Chen et al.

[29]

dependence

analysis

Black-

box

Business

model

(SOA)

Mariani et

al.[75]

component inte-

gration

White

box

Component-

Based

Belli et al.

[20], [21]

Fuzzy Cluster-

ing

White

box

Event

Sequence

Graphs

(ESG)

Huang et al.

[55]

weight-based

(scoring system)

Black

box

Event

flow graph

(EFG)

APFD

Sapna et al.

[100], [101]

weight-based

(scoring system)

White-

box

UML

Activity

Diagrams,

Use case

diagrams

Average Per-

centage of

Fault Detected

(APFD)

34

Continuation of Table 2.1

Study Approach Test type
Model

type

Evaluation

Metric

Zhang et al.

[119], [120]

JUnit test case

prioritization

White

box
UML

Average Per-

centage of

Fault Detected

(APFD)

Athira et

al.[18]
Paths analysis

Black-

box

UML

activity

diagram

Kundu et al.

[63]

weight-based

(scoring system)

White

box

UML se-

quence

diagrams

Filho et al.

[103]

Concern-based

(such as: risk,

change im-

pact, and other

user-defined

properties asso-

ciated to model

elements)

White-

Box
UML

Lachmann et

al. [64]

weight-based

prioritization

White

box

Component-

Based

Average Per-

centage of

Faults De-

tected (APFD)

35

Continuation of Table 2.1

Study Approach Test type
Model

type

Evaluation

Metric

Garg et

al.[47]

functionality de-

pendency graph

White

box

Control

flow graph

(CFG)

APFD

Han et al.

[49]
Heuristic-Based

Black-

box
EFSM

Most Likely

Average Posi-

tion

Morozov et

al. [80]

fault and error

propagation

analysis

Black-

box

Dual-

graph

Error

Propaga-

tion Model

(DEPM)

Hou et al.[54] Mutation
Black-

box

Component-

Based

Srikanth et al.

[105]

Historical infor-

mation to order

tests

black box
UML Use

Cases
APFD

End of Table

Korel et al. [62] introduce methods of test prioritization based on state-based

models after changes to the model and the system. They present an analytical

framework for the evaluation of test prioritization methods. In addition, Korel et

al. [61, 60], present model-based prioritization for modifications when models are

36

not modified, only the source code is modified. The method is based on identifying

elements of the model related to source-code modifications and collecting informa-

tion during the analysis of a model to use them to prioritize tests for execution.

They present two model-based test prioritization methods: selective test prioritiza-

tion and model dependence-based test prioritization. In selective test prioritization,

they assign a high priority to tests that test modified transitions in the modified

model. A low priority is assigned to tests that do not test any modified transition.

In model dependence-based test prioritization they use model dependence analysis

to identify different ways in which modified transitions interact with the remaining

parts of the model and use this information to prioritize high priority tests. Also,

they present some model-based heuristics: one of the heuristic methods is that tests

that test a higher number of modified transitions should be given a higher priority

than tests that test a smaller number of modified transitions. The idea of another

heuristic method is that tests with a higher frequency of testing of modified transi-

tions should be given a higher priority than tests with a lower frequency of testing

of modified transitions. And heuristic that each modified transition should have

the same opportunity to be tested during software retesting. This heuristic tries to

balance the number of testing of modified transitions. In this heuristic, a higher

priority is assigned to a test that tests a transition that has been tested the least

number of times at the given point of system retesting.

Chen et al. [29] present a dependence analysis-based test case prioritization

technique. They analyze the dependence relationship using control and data flow

information and construct a weighted graph. They do impact analysis to identify

modification-affected elements and prioritize test cases according to covering more

modification-affected elements with the highest weight.

37

Garg et al. [47] proposed an approach for automatically prioritizing and dis-

tributing test cases on multiple machines. Their approach is based on a functional

dependency graph (FDG) of a web application. They first construct a functional-

ity dependency graph (FDG) of the web application from its UML specification.

Then partition the complete test suite into test sets, each test set is associated

with a unique functional module or node in the FDG. Next, they prioritize the test

cases within each test set using the Control flow graph (CFG) of the corresponding

functional module.

Han et al. [49] present a model-based heuristic method to prioritize test cases

for regression testing. In their approach, they consider information collected during

the execution of the modified model on the test suite. The idea of this heuristic is a

test case that tests a larger number of modified transitions has a higher probability

of showing a fault and takes a higher priority.

Hou et al. [54] apply mutation on interface contracts. They mutate the interface

contracts of each black-box component. Their approach focuses on the faults that

could possibly happen when the component users integrated reusable components in

their applications. The approach uses mutation operators, which simulate various

types of faults in component composition to generate mutants, and uses a mutation

score, which defines the capability of killing mutants to measure the quality of test

suites. They prioritize test cases according to the mutation score.

Morozov et al. [80] present a method for the automatic prioritization of test

cases. Their method is based on two principles: first, a test case should stimulate

an error in an updated block. Second, the stimulated error should propagate to the

place where it can be detected. The idea of this method is that analyzes the original

model and the test suite and identify which test cases should be run first after an

update of a particular block. The result of the method is the Priority table.

38

Kundu et al. [63] present an approach, called System Testing for Object-Oriented

systems with test case Prioritization (STOOP) for the automatic generation of test

cases, and prioritization of these test cases. STOOP consists of four tasks. The input

to STOOP is a set of sequence diagrams. The first task converts a set of sequence

diagrams into a graph is called sequence graph (SG). Then test cases are generated

from the sequence graph. The output of these two tasks is input to the task that

prioritizes the test cases. Finally, STOOP ranked test cases from its preceding task

and generates test data. The test case prioritization uses message weight and edge

weight as metrics. The message weight of an edge between any two nodes in an SG

is defined as the number of messages that occurs between the two messages in the

sequence diagram. The edge weight of an edge between any two nodes in an SG

is defined as the number of paths in the SG, which include the edge. Computing

the values of prioritization metrics and these values are then associated with their

corresponding test cases. Test cases are then prioritized according to the decreasing

order of these values.

Srikanth et al. [105] present a process for prioritizing tests based on historical

field failures. They first, analyze historical data, then identify the rarity of use cases,

and tag use cases to provide meta-data. Next, they prioritize use cases which will

then become the ordered tests that are executed during the final testing phase. In

this step, they use historical data analysis and the tagged use cases to determine the

best order for running tests. Prioritization can be performed either on the number

of services involved in a use case or by the most fault-prone use cases first.

Athira et al. [18] present a model-based test prioritization using an activity di-

agram. Their approach identifies the difference between the original model and the

modified model and uses this information to identify the most promising paths.

39

The test case which covers these paths is considered the most beneficial test case,

and these test cases are assigned with high priority.

Huang et al. [55] design and analyze a GUI test-case prioritization approach

weights. They assign weights for each input and action, resulting in a scoring system

for test cases. The more important inputs have a higher weight. They proposed

three methods for assigning a weight to each input: equal weight, fault-prone weight,

and random weight. They used weight-based Event Flow Graph (EFG) methods to

prioritize the test cases. They consider the importance of each event. That is if the

event is more important and more faults could be detected, so they assign a high

weight to this event.

Belli et al. [20], [21] proposed a model-based approach to prioritizing test cases.

Their prioritized testing approach is based on the ESG-based testing and coverage

based. The ordering of the coverage event sequences (CESs) is based on their im-

portance degree which is defined by the estimation of events that are the nodes

of ESG. The groups of events are constructed by using a clustering algorithm and

then these groups are ordered on the importance degree according to the rule: The

greater the value of attributes the more important group. Finally, the CESs are

ordered based on the events which join the importance group(s). The test case has

the highest degree if it contains the events which belong to the group(s) with the

greatest importance degrees. The test case has the lowest degree if it contains the

events which belong to the group(s) that are within the lowest part of the group(s)

with the least importance degree.

Mariani et at. [75], proposed a technique to prioritize test suites. It is based

on a behavioral model that represents component interactions. They prioritize test

cases according to the complexity of the interactions between the system and the

target component that are caused by the test. High priority is assigned to test

40

cases that cover components that have more complexity of the interactions, and

then the priority of the remaining test cases is computed as the number of distinct

interactions between the system and the target component that are covered.

Lachmann et at. [64] proposed a fine-grained test case prioritization for inte-

gration testing for software product lines. Their approach is based on the analysis

of structural and behavioral deltas. Test cases are defined for all product variants

under test. They analyze the differences between state machines of an architecture

model for product variants to derive a behavioral component weight. They compute

behavioral component weights and compute structural component weights. Then

sum all weights of components contained in a test case to be prioritized.

Zhang et al. [119, 120] proposed an approach called Jupta for prioritizing JUnit

test cases in the absence of coverage information. Jtop prioritizes test cases based

on finding relevant test cases for certain elements of the program under test. A test

case that has more relevant elements has high priority.

Sapna P.G et al. [100, 101] proposed a prioritization technique based on UML.

The constructs of an activity diagram are used for test scenario prioritization. In

[100] Activity diagrams represent the scenarios of the system under test. A scenario

is a complete path through the activity diagram. They prioritize scenarios by assign-

ing weights to nodes and to edges then calculate the weight of the path(scenario).

They assign weights to each of these nodes based on the complexity and possibility

of the occurrence of defects. And they assign weights to each of these edges based on

the number of incoming dependencies of the node and outgoing dependencies of the

node. Their approach [101] is to prioritize use cases from UML use case diagrams.

The developer assigns the priority of each actor on a scale of 0-10. Then Compute

use case priority from the use case diagram. Next, obtain customer prioritization

of use cases. Customers rate uses cases as very low, low, medium, high, or very

41

high (scale 1-10). Finally, calculate use case priority. The priority of a use case is

computed as a weighted sum of Customer Priority and Technical Priority.

Filho et al. [103] proposed a model-based regression test prioritization approach

that selects test cases for regression testing based on different concerns. They illus-

trate how to support these concerns using TDE/UML, an extensible model-based

testing environment. Their approach includes different user-defined concerns such as

the last change date, requirements, risk, and features, are represented as properties

in the model. Furthermore, through traceability links between requirements, model,

test cases, and code artifacts, these concerns are used to automatically select and

prioritize test procedures, before they are used for code generation and execution.

Next, we present the regression testing approaches for Mobile Apps.

2.2.4 Regression Testing Techniques for Mobile Apps

Amalfitano et al. [10] use a crawler-based technique to generate tests for Android

apps. The crawler builds an event-based GUI tree and generates tests from this tree.

This is not the same as a behavioral model, as it does not allow for looping behavior

like for example FSMApp. When using this approach for regression testing, they

rerun previous tests and check whether program behavior has changed. This check

is based on comparing sequences of user interfaces obtained in both test runs. They

add specific assertions to the original tests for this purpose. This approach does not

fall into any of the regression testing approaches discussed in Sections (2.2.1, 2.2.2,

and 2.2.3).

Do et al. [41] provide an approach for limited selective regression testing of An-

droid apps based on code impact analysis and coverage information from rerunning

42

the original test suite. Impact analysis determines where the code has changed.

Coverage information for each test case determines whether they reached the code

that has changed and hence must be rerun. The implicit assumption is that none

of the test cases identified for re-execution have become obsolete. There is also no

attempt at determining new test cases.

By contrast, Chang et al. [27] emphasize repairing obsolete test scripts for

Android Apps. They build a model of the possible GUI event sequences semi-

automatically, first analyzing APK files of Android Apps, they extract information

on the screen, and widgets, and even building the base model; second they execute

the app to confirm the model. This uses base version test scripts to exercise the

app and mark observed behaviors as feasible; third, they manually check the model

to add missing behaviors. When changes to screens, widgets, or events occur, they

are extracted by analyzing changes to the binary files. They use test simulation to

identify which screens and widgets a test covers. This helps in identifying ranges

within test scripts that need to be repaired. Once specific test actions in a test

script have been identified as affected by changes, they are repaired. For added

functionality, test scripts are extended by a simple random approach, triggering

events on added widgets or screens. No coverage criteria are used.

Jiang et al. [58] aim to improve the safety of regression test selection. Safe

regression testing approaches ensure that in the test selection, no tests are removed

that would reveal a failure. Their approach concentrates on models of asynchronous

task invocations, but also considers native code. This is a white box approach

that uses impact analysis based on an inter procedural control flow graph that

models what is considered dangerous edges. Test case selection uses edge coverage

information for each of the original tests. Tests that cover edges flagged as dangerous

by the impact analysis are selected.

43

Table 2.2: Shows a comparison of the four approaches. None addresses all as-

pects of selective regression testing. Models are either built via reverse engineering

([10], [27]) or code is directly analyzed ([27], [58]). When coverage criteria are used,

they refer to white box coverage ([41], [58]). None of the papers address test prior-

itization or minimization.

Table (2.2) Approach comparison

Paper Approach Obsolete Retestable Reusable Rerun

tests

Coverage

Criteria

[10] Crawler x No

[41] Code impact

analysis, test

coverage ma-

trix

x Yes

[27] Byte code

analysis, test

coverage in-

formation

Repair No

[58] Inter proce-

dural control

flow graph,

impact anal-

ysis, test

coverage ma-

trix

x Yes

44

2.2.5 Combination of Regression Testing Approaches

So far we have only described regression testing using one of the three approaches.

Theoretically, they could be combined in four possible ways: three for combining

two approaches and one for combining all three. Table 2.3 summarizes the existing

work that combines regression testing approaches. There are two types of combina-

tions: combining test case prioritization and test case minimization [111, 106], and

combining selective regression testing and test case prioritization [107, 103]. All are

white-box techniques, hence not directly applicable to our research.

45

Table (2.3) Summary of existing combination approaches to regression testing

Paper Selective Minimization Prioritization type of

testing

[106] Minimizing the

test cases using

CMIMX, the

path coverage

is used

prioritize test cases by

giving high priority to the

test case that has a max-

imum number of changed

statements.

White-

Box

[111] code coverage-

based redun-

dant test cases

is used to min-

imize the test

cases

prioritize test cases by us-

ing statements coverage

(the test case that has

the maximum number of

cover statement has high

priority)

White-

Box

[107] Select test

cases based

on impact

analysis

using troubleshooting ca-

pabilities and coverage

abilities criterion to prior-

itize test cases.

White-

Box

[103] Select test

cases based

on impact

analysis

prioritize test cases

based on different at-

tributes such as: risk,

change impact, and other

user-defined properties

associated with model

elements.

White-

Box

46

Prioritization and Minimization

Rehman et al. [111] investigate the impact of test case reduction and prioriti-

zation techniques on software testing effectiveness by analyzing previous empirical

studies. They reviewed three experiential studies for test case reduction (coverage-

based techniques) [50], [116], [95] to investigate testing effectiveness of TCR. And

they reviewed [97], [42] coverage-based techniques, and [96],[40] distribution-based

techniques to investigate testing effectiveness of TCP. Also, they presented a case

study and suggested different useful combinations of these techniques. The first

combination starts with test case reduction (TCR) and then test case prioritiza-

tion (TCP). In this combination, first, they identify a set of test cases using TCR

techniques then they determine their execution order using TCP techniques. They

minimize the test suite by selecting the test case that covers the largest number of

statements, then selecting the test case that covers the largest number of statements

not covered by the first one, and so on. Next, they prioritize tests based on their

statement-coverage. This implies that a test with high statement-coverage has a

high probability of determining a fault. These priorities determine the execution

order of all test cases.

Next combination, they start with test case prioritization (TCP) followed by

test case reduction (TCR). In this combination, first, they identify high priority

test cases utilizing TCP techniques and finally they determine the representative

test cases utilizing TCR techniques from the prioritized test cases. From their ex-

perimental study, they observed some conditions, where the combination of these

techniques was also helpful to improve the overall testing process. They make the

following as conditions:

47

1. There is a risk of losing the fault-detection capability of test suites when

using reduction techniques. The tester can avoid that by using prioritization

techniques.

2. If there are limited testing resources and the project is behind schedule, TCR

techniques are a good choice.

3. If there is adequate available time to run more test cases and fault detection

is critical, prioritization techniques can be used.

In this study, they didn’t consider selective regression testing. In our proposed

approach we consider selective regression testing especially if there are obsolete tests

and /or if additions have few overlaps with existing parts of the software under test.

Srivastava et al. [106] proposed a combination of test case prioritization and test

case minimization techniques to improve the rate of fault detection and optimize

the set of test cases. They first prioritize the test cases based on their importance.

Prioritizing test cases by giving high priority to the test case that has a maximum

number of changed statements. They used path coverage as a testing criterion.

Next, they minimize the prioritized test cases by using the CMIMX procedure.

Nether [106], nor [111] considered selective regression testing as part of their com-

bination. [106] does not address guidelines on how and when to select a particular

combination of regression testing approaches.

Selective regression testing and Prioritization

Sun et al. [107] proposed an approach to combine selective regression testing with

test case prioritization. Test cases would be selected during test case selection. The

criterion of test case prioritization is coverage ability and troubleshooting capabilities

48

of test case. They first, select test cases to reduce the number of test cases based

on impact analysis of programs which has been modified. Then they prioritize the

selected test cases to improve the efficiency of finding faults.

Filho et al. [103] present a model-based regression testing and prioritization

approach that selects test cases based on different concerns. They illustrate how to

support these concerns using TDE/UML, an extensible model-based testing envi-

ronment. Their approach includes different user-defined concerns such as the last

change date, requirements, risk, and features, are represented as properties in the

model. Furthermore, through traceability links between requirements, model, test

cases, and code artifacts, these concerns are used to automatically select and prior-

itize test procedures, before they are used for code generation and execution.

Both [107] and [103] do not consider test case minimization as part of their

combination. Also, they do not address guidelines on how and when to select a

particular combination of regression testing approaches.

49

Chapter 3

A Unified Approach to Regression

Testing

Our approach for regression testing of Mobile Apps is FSMApp combining re-

gression testing. For that, we combined all three types of regression testing (se-

lective regression testing, test minimization, and test prioritization). We extended

the FSMApp approach [8] which is described in Subsection 2.3 and we adapted the

roles in regression testing of FSMWeb [14] for selective regression testing of Mo-

bile Apps. Figure 3.1 shows the combination of regression testing of the three of

FSMApp processes. It includes three main steps:

• (1) Selective Regression Testing of FSMApp

We performed selective regression testing in (Section 3.1).

• (2) Test Case Minimization of FSMApp

We performed test case minimization regression testing (Section 3.2).

• (3) Test Case Prioritization of FSMApp

We performed test case prioritization in (Section 3.3).

50

Figure (3.1) Combining Regression Testing of FSMApp Process

There is a connection between these steps. The output of the first step of the

selective regression testing is used as input for the second step. (we minimized the

selected test cases based on coverage criteria), and the output of the second step of

the test case minimization is used as input for the third step. (we prioritized the

minimized test suite based on the complexity of test cases).

51

3.1 Selective Regression Testing of Mobile Apps

We adapted the regression testing of FSMWeb [14] approach for selective regres-

sion testing for Mobile Applications. We applied rules to classify the original set of

tests into obsolete, retestable, and reusable tests based on the types of changes to

the model. New tests are added to cover portions of the App under test that have

not been tested.

Before we apply selective regression testing, first we need to identify the changes

in the model as:

1. No change in the model.

2. Localized change which means changes are isolated to a few partitions of the

model, or

3. Extensive change when there are changes in many partitions of the model.

Then we apply selective regression testing with respect to test coverage criteria

and aggregation coverage criteria. We need to identify what aggregation coverage

no longer meets the requirements. The test coverage criteria [85] defined the test

requirements, which then defined what parts of an FSM model should be tested

according to the used criterion. Then we generate test paths that satisfy all the

test requirements. A test path is a sequence of consecutive states that start with

an initial state and end with a final state, each test path can satisfy multiple test

requirements. Test paths can be constructed by creating one test path per test re-

quirement, or by satisfying multiple test requirements in the same path.

52

Offutt et al. [12] defined different test requirement criteria for graph coverage

that testers can use to produce test paths including: Edge-pair coverage, Prime path

coverage. Also, the coverage criteria include Node coverage, Edge coverage, Com-

plete coverage, and Specified path coverage. In our work, we used Edge coverage:

where each edge has to be covered in test paths.

Moreover, they define aggregation criteria which are used when we need to con-

sider multiple partitions at the same time, which is used for aggregation test re-

quirements. Aggregation criteria include: All combination coverage and at least

one coverage. In our work, we used at least one coverage. If the path aggregation

criterion is to use each path at least once, this requires that we need to use each test

t ∈ Ti at least once when replacing Ci with t ∈ Ti. This means starting with the

top level model (AFSM), we replace a cluster node Ci in a path with one of the test

path t ∈ Ti through it. This ultimately results in a test path from the start node

in AFSM to the end node in AFSM that only contains LAP nodes. Aggregation

criteria address which cluster paths need to be used.

Determine the amount of the changes as:

• Extensive change: when there are changes in many FSMi and/or at high lev-

els of the hierarchy (many parts of the model are changed), this is extensive

change and will consider full regeneration.

In this case, we need to rebuild the HFSM and identify test coverage criteria

and aggregation coverage criteria to generate new abstract test paths. Since

there is no test suite to classify or minimize it, the test case prioritization is a

better choice for regression testing of the App under test.

53

• No change: when there are no changes in the model, we need to identify parts

of the affected model to determine retestable tests.

In this case, If testers have no model changes that means testers have corrective

maintenance that we still need to identify the part that affects the model by

changes and then do selective regression testing in terms of retestable tests.

We don’t need to generate new tests, so the task of doing selective regression

testing is going to be easier because we classify the test cases and we only

select subsets that are retestable to rerun.

• Localized change: the case is when changes are isolated to a few FSMi (few

partitions of the model are changed). We will consider partial regeneration.

In this case, because of the hierarchical nature of the FSMApp models and the

associated stages of test generation, it is possible to use partial regeneration

to replace obsolete test cases. Selective regression testing will be used as

explained in the next section.

3.1.1 Selective Regression Testing Process

The regression testing approach for FSMWeb [14] is the basis of the Selective

Regression Testing approach for FSMApp. In regression testing of FSMWeb [14],

types of changes to the FSMWeb models are formalized based on changes to the web

application (its inputs, Logical Web Pages, and navigation between them). The ap-

proach represents an abstract test case as a sequence of states and input predicates.

An abstract test case ta is a test path through the HFSM. In the FSMApp model,

we adapted the classification roles in [14] as follows:

54

• Determine the type of changes:

– Node change: delete, modify (i. e. Change the node type from logical

app page (LAP) to cluster or from cluster to LAP). Node addition is

covered by edge changes.

– Edge change: modify in/out edge (i. e. modify the edge’s input-action

constraint), delete in/out edge, add in/out the edge with or without new

node.

– Classify model changes as path affecting (PC) or non-path affecting (NC)

change.

• Classify abstract test cases as obsolete, reusable, or retestable. Map this clas-

sification to the associated tests.

• Identify aggregation coverage criteria that no longer meet the requirements.

We will use at least one aggregation coverage criteria in our work because we

do not need to use aggregation coverage that limit minimizing the test cases

such as all combination.

• Rerun retestable tests. The set of retestable tests might provide duplicate

coverage for some coverage items. This may reduce the selected regression

tests.

• Identify new nodes and edges in HFSM that need to be covered. Regenerate

paths through changed FSM ′
i to cover uncovered edges.

• Determine new test cases and execute them. Reaggregate abstract tests that

contain the cluster node that stands for FSMi with the new paths.

55

The following Table 3.1 shows the notations and conventions used:

Table (3.1) The Notations and Conventions

Notations Explanation

e: an edge in one of the FSMs in an HFSM. E = {e}

is the set of all such edges.

n: a node in one of the FSMs in an HFSM. N = {n}

is the set of all such nodes.

e′: an edge in one of the FSMs of HFSM′ (created

through modifications to HFSM). E′ are all such

edges.

n′: a node in one of the FSMs of HFSM′ (created

through modifications to HFSM). N′ are all such

nodes.

nsource, nsink: source and sink nodes of the AFSM; i. e. nodes

in the AFSM that have either no incoming or no

outgoing edges.

ê: refers to an edge in one of the FSMs in HFSM that

is changed.

n̂: refers to a node in one of the FSMs in HFSM that

is changed.

tatours, e = (ni, nj): means that there is a subsequence ni; Iij;nj in ta

where (ni, nj) ∈ E is an edge from node ni to node

nj and Iij is the input constraint annotation on the

edge.

56

The test classification rules are as follows [14]:

Obsolete Test Cases

They are caused by node deletion and node modification. All paths that visit the

deleted node are affected. Node modification changes the type of node from LAP

to cluster node or vice versa. This type of change also affects paths, since either the

node needs to be replaced by a path through the FSM associated with the cluster

(change from LAP to cluster node) or a sequence of nodes corresponding to a path

through the cluster that was modified to a LAP node needs to be deleted for the

abstract test case to be valid for HFSM′.

Let No = {n|n ∈ N ; n is deleted or modified node}, then the set of obsolete

abstract test cases due to node changes is given by ON = {ta|∃n ∈ No : ta visits n}.

Edge deletion renders any path that visits the edge obsolete. Edge modification

involves modification of the input constraint associated with it. This could mean

adding or removing inputs, or modifying the type of input or action. Any of these

will make abstract test cases obsolete.

Let Eo = {e|e ∈ E; e is deleted or modified}, then the set of obsolete test paths

due to edge changes is given by OE = {ta|ta tours e ∈ Eo}. Hence, the set of obsolete

test cases is given by OAT = ON ∪OE .

Retestable Tests

Retestable tests are still valid and test parts of the application that might be

affected by the change. These are abstract test cases that visit changed parts of

the FSMApp model. For example, it would be reasonable that any node n that is

one edge away from a modified or deleted node must be retested, not including the

source and sink nodes of the AFSM:

Nrnode
= {n|∃e : (n̂, n)or(n, n̂); n̂ ∈ No;n ̸= nsource;n ̸= nsink}.

57

When edges are changed (deleted or modified), the beginning and ending nodes

of the changed edges are potentially affected and thus non-obsolete tests that visit

these nodes are retestable (Except the source and sink nodes of the AFSM):

Nredm = {n|ê ∈ Eo; ê = (ni, n) or ê = (n, ni);n ̸= nsource;n ̸= nsink}.

Likewise, when edges (and possibly nodes) are added, existing nodes at which

these new edges start, or end is considered potentially affected by the change and

thus non-obsolete tests that visit these nodes are retestable (Except for the source

and sink nodes of the AFSM):

Nrea = {n|∃ n′ ∈ N′: e′ = (n, n′) or e′ = (n′ , n);n ̸= nsource;n ̸= nsink}.

n appears in both HFSM and HFSM’ related to edge changes. The set of

retestable nodes is then given by Nr = Nrnode
∪Nredm ∪Nrea and the set of retestable

abstract test cases is RAT = {ta|ta visits n ∈ Nr OAT}.

Corresponding executable retestable tests are determined as a function of RAT

as before.

RT = {t|∃ta ∈ RAT : t ∈ Ta}.

Reusable Tests

Reusable tests are neither obsolete nor retestable.

UAT = AT (OAT ∪RAT)

UT = T (OT ∪RT).

New Tests

New tests are determined for edges that are not covered. since the existing test

cases do not cover each change, particularly edge and node additions, so need to

generate new test cases. Obsolete test cases leave gaps in coverage, so every obsolete

test case needs to be addressed with one or more new tests.

58

3.1.2 Example Used to Illustrate Approach

We used To Do App example to illustrate our selective regression testing ap-

proach. To Do is a simple app to make lists of tasks. The app has these services:

add tasks, modify tasks (delete tasks, edit tasks, mark for a task done or undo), and

search for a task.

We first applied the FSMApp approach for testing Mobile Apps which is ex-

plained in Subsection 2.1.2 to get abstract test cases for the original version of the

To Do App. Then we made some modifications to To Do App to apply our approach

of selective regression testing on the modified version.

1. FSMApp Model for To Do App Example:

Phase 1: Build Model

a) Partition the To Do app into Clusters:

The term cluster is referring to collections of software modules/app pages that

represent a logical or user level function. Clusters represent functions that can be

identified by users, at the highest level of abstraction. HFSM = {FSM}ni=0 with

a top level FSM0 = AFSM . Each FSM has nodes that represent either clusters

or Logical App Pages (LAPs). Edges are internal or external to an FSM. External

nodes span cluster boundaries. External edges can either enter or leave a cluster

FSM [8]. The clusters might be an individual Activity which is a screen that is

shown to the application user, or software modules that represent a major function

[16]. In this example, the app has three subsystem clusters. Figure 3.2 shows the

main screens for the To Do App. Figure 3.2 (Main Screen) shows the main screen

for the To Do App, Figure 3.2 (a) shows the screen to add tasks, Figure 3.2 (b)

shows the screen to modify the task, and Figure 3.2 (c) shows the screen to search

59

for a task. The main screen is classified into three clusters as shown in Figure 3.3.

The AFSM models entry and exit from the app as well as navigation between its

three main functions. The clusters (Add Task) and (Modify Task) are described in

detail. Figures 3.5 and 3.6 show the navigation among the LAPs.

Figure (3.2) Main Screens for To Do App

Figure (3.3) Main page (AFSM)

60

Figure (3.4) Modify Task Cluster

Figure (3.5) Add Task Cluster

61

Figure (3.6) Edit Task Cluster

b) Define Logical App Pages (LAPs) and Input-Action Constraints

The Mobile Apps’ screens will be considered as input components, or LAPs,

and the inputs and their constraints on these LAPs next. There are several app

actives (screens). A Logical App Page is either a physical app page, physical app

component, or the portion of an app activity that receives data from the user via an

XML form, and then sends the data to a particular software module [8]. The inputs

might have rules to enter: some inputs may be required, others may be optional,

users might be permitted to enter inputs in any order, or a specific order may be

required. Example constraints on inputs and their meaning are:

Required (R): required input must be entered.

Required Value (R(parm)): one must enter at least one value.

Optional (O): an input may or may not be entered.

Single Choice (C1): one input should be selected from a set of choices. Multiple

choices (Cn) are possible.

62

Mobile Apps can have a variety of components that can be modeled via input

constraints. The difference between the web input types and Mobile input types is

swipe and scroll. We explained the types of input (components) and what FSMApp’s

input constraints we need to use in our example. For the full list of input constraints

see Appendix A.

A button: the action of the button is click. The input constraints are R(< Click >

), or select the button then click C1(Select Button, Click). In our example need to

Click Add button to add a task.

Pickers: provide a way to select a single value from a pre-determined set. The ac-

tions of the pickers are dropdown and click. The input constraint is C1(< Dropdown >

,< Click >). In our example, time and date pickers for doing the task.

Lists: produce multiple line items in a vertical arrangement. The action of the list

is sort. The input constraint is R(< Sort >). In our example list of tasks.

A card: is a sheet of material with unique related data to show more detailed in-

formation. The actions of the card are: click, swipe, scroll, and pick-up-and-move.

The input constraint is C1(< Click >,< Swipe >,< Scroll >,< Pick >). In our

example need to swipe the task from right to left to edit or delete it.

Edges represent transitions that connect the nodes and the clusters. Transitions

are annotated with input constraints to indicate what inputs and actions lead to

the next node or cluster. Figure 3.7 shows the Add Task input-action constraints.

In the Add Task cluster, there are two states: either you enter the new task info

(parTask) and accept it (b-Add), or you cancel the new Task (with or without giving

the Task info). Incoming and outgoing edges for this cluster connect to the parent

cluster. They don’t require any user actions. We also added two dummy transitions

to keep the graph single-entry-single exit.

63

Figure (3.7) Annotated FSM for Add Task Cluster of Table 3.4

Tables 3.2 to 3.5 show the transitions, explanation, and input action constraints

for To Do App example. Column 1 identifies each transition. Column 2 shows an

explanation of the transition. Column 3 shows all input action constraints with all

required or optional inputs. The corresponding graphs are mentioned in the caption

of the tables. Table 3.2 shows five transitions for the main page cluster (AFSM).

The transitions connect the main page with three clusters and one LAP (Exit App).

Table (3.2) Transitions of Figure 3.3 (Main Page Cluster AFSM)

Transition Explanation Constraints

A1 Add new task R(buttonANT)

A2 Access Modify task R(Swiping the task from right to left)

A3 Exit the System R(buttonBack)

A4 Back to Main Page none

A5 Search R(b-search)

64

Table (3.3) Transitions of Figure 3.4 (Modify task Cluster)

Transition Explanation Constraints

B1 Mark task done/undo R(double tap the task)

B2 Edit the task O(Parname, partask) R(b-

Edit) S(Parname, partask,

b-Edit)

B3 Delete the task O(Parname, partask) R(b-

Delete) S(Parname, par-

task, b-Delete)

B4 Cancel to Previous

Page

O(Parname, partask) R(b-

Cancel) S(Parname, par-

task, b-Cancel)

B5 Back to Main Page none

Table (3.4) Transitions of Figure 3.5 (Add task Cluster)

Transition Explanation Constraints

D1 Accept the task O(Parname, partask) R(b-

Add) S(Parname, partask,

b-Add)

D2 Cancel to Previous

Page

O(Parname, partask) R(b-

Cancel) S(Parname, par-

task, b-Cancel)

D3 Back to Main Page none

65

Table (3.5) Transitions of Figure 3.6 (Edit task Cluster)

Transition Explanation Constraints

C1 Update the task O(task information) R(b-

update)

C2 Cancel to Previous

Page

O(Parname, partask) R(b-

Cancel) S(Parname, par-

task, b-Cancel)

C3 Back to Main Page none

Phase 2: Generate Test Sequences

a) Paths through FSMs/AFSM:

Here test sequences are generated. The user can select coverage criteria such

as node, edge, edge-pair, simple round trip, and prime path coverage [12]. A test

path is a sequence of nodes through the aggregate FSM and through each lower-level

FSM. In this example test sequences for clusters are generated by applying standard

graph criteria, edge coverage [12]. Tables 3.6 to 3.9 show test paths for each cluster

of the To Do App as sequences of nodes. Nodes in bold indicate the node is a cluster

node.

Table (3.6) Main Page Test Sequences of Figure 3.3

ID Test Sequence Length

1 [Main, Add Task, Main, Exit] 4

2 [Main, Modify Task, Main, Exit] 4

3 [Main, Search, Main, Exit] 4

66

Table (3.7) Modify Task cluster Test Sequences of Figure 3.4

ID Test Sequence Length

1 [Modify Task, Mark task done/ undo, Modify

Task, Delete, Modify Task, Cancel, Modify Task]

7

2 [Modify Task, Edit Task, Modify Task] 3

Table (3.8) Add Task cluster Test Sequences of Figure 3.5
ID Test Sequence Length
1 [Add Task, Accept, Add Task, Cancel, Add Task] 5

Table (3.9) Edit Task Cluster Test Sequences of Figure 3.6

ID Test Sequence Length

1 [Edit Task, Update, Edit Task, Cancel, Edit Task] 5

b) Path Aggregation

The test paths are aggregated into test sequences. Several aggregation criteria

have been proposed: all-combinations, each choice, and base choice coverage [12].

We assume that the path aggregation criterion is to use each path at least once,

which requires that aggregate paths from the start of the application to the termi-

nation of the application are formed such that every path generated for a lower-level

FSM is selected at least once on the same path [12]. The result of this process is

a set of aggregate paths named abstract tests. For example, the first test path in

AFSM [Main, Add Task, Main, Exit] in Table 3.6 can be aggregated as follows:

The test path has one cluster node (Add Task). The cluster node should be replaced

by the Add Task cluster test paths from Table 3.8. The result of this step is this

abstract test path: [Main, Add Task, Accept, Add Task, Cancel, Add Task, Main,

Exit].

67

Table 3.10 shows the aggregated test paths of the To Do app as sequences of nodes.

Table (3.10) The aggregated Test Paths of the To Do App

ID Test Sequence Length

1 [Main, Add Task, Accept, Add Task, Cancel,

Add Task, Main, Exit]

8

2 [Main, Modify Task, Mark task done/ undo,

Modify Task, Delete, Modify Task, Main,

Exit]

8

3 [Main, Modify Task, Edit, Update, Edit,

Cancel, Edit, Modify Task, Main, Exit]

10

4 [Main, Search, Main, Exit] 4

c) Reduction Step:

Dummy nodes and transitions are added when the model is built to ensure single-

entry and single-exit graphs. They do not require any inputs as they are not really

testing steps. So, these dummy nodes, and transitions will be removed while each re-

maining node pair (edge) is replaced with its corresponding input action constraint.

Phase 3: Selects the inputs to create abstract tests.

In this step, inputs are selected to replace the input constraints in the test

paths constructed above. The test designer selects values for related inputs. In

our example, we select inputs to replace the input constraints in the test sequence

constructed for To Do App. At the end of this step, we have a set of inputs for

the execution phase. Table 3.11 shows the set of inputs for test path1 of Table

3.10. Column one shows the edges, column two shows the constraint sequence,

column three shows the input values that meet the constraints, and the last column

68

explains each value. Test 1 has six inputs and five actions. The inputs are Task name

(parname) and Task (Date and time) (parD), (ParT) which occurs twice in test1.

The actions are to click Add New Task button (b-ANT), Click Accept button(b-

ANTA), Click Cancel (b-Cancel), and Click the back arrow to exit the Mobile App

(buttonBack).

Table (3.11) Test Path 1 with Input Values
Edge Constraint Value Explanation
A1 R(b-ANT) buttonANT=

Click
Push AddNewTask to
get screen of adding
task information.

D1 R(parm(name,
D, T), b-ANTA)
S(parm(name,
D, T), b-ANTA)

Taskname=”AA”
D=2/2/2022
T=12:00Pm b-
ANTA = Click

Enter info task then
Push button addnew-
task to accept adding
info of the task.

D2 O(parm(name,
D, T)),
R(b-Cancel)
S(parm(name,
D, T), b- Can-
cel)

TaskInfo=”AA”
D=2/2/2022
T=12:00Pm b-
ANTC = Click

Enter info task then
Push cancel button to
cancel adding info of
the task.

A4 R(buttonBack) buttonBack =
click

Push back arrow to
exit the app

2. Applying Selective Regression Testing of FSMApp for To Do example:

We modify the To Do App that we used in the example above to illustrate selec-

tive regression testing needs. We will enhance To Do App by adding a new feature

to the app, which is "record task".

Step 1: Identify and Classify Changes for To Do App

First, we will identify types of changes in the To Do App (additions, deletions,

or modifications) and determine what portions of the To Do App are affected. Then

classify existing test cases as retestable that means must be rerun, reusable will not

69

rerun them because they do not test parts of the To Do App that are affected by

the changes (but will still work), or obsolete, tests that do not work any longer. We

apply the rules to determine the type of changes for To Do App and rebuild the

modified parts of the To Do App.

Determine types of changes to To Do App: The modifications that we did to

enhance the app are as follows:

Modification 1: Node deletion, edge/node additions

We delete Add Task node. Then we add a new cluster node, that will give us

options to add new tasks by recording information about the task or by writing the

information about the task. So, the functionality changes require additional nodes

and edges that could not only be added task information but allow to record of

task information. Delete Add Task node, adding the new cluster node (Task), and

adding a new FSM for the Task cluster will make the abstract tests associated with

aggregate path AP1 in Table 3.10 effected path (PC). Figure 3.8 shows the main

model after the modification, and Figures 3.9 to 3.11 show the new clusters and

subclusters of the modified App.

Modification 2: Edges additions

Adding edges between cluster node Task and cluster node Modify Task. These

edges allow modifying tasks without returning to the main page of the App. This

modification makes aggregate paths AP2 and AP3 in Table 3.10 affected paths (PC).

Figure 3.8 shows this modification.

70

Figure (3.8) Modified Main Page (AFSM)

Figure (3.9) Task Cluster

71

Figure (3.10) Add Task Cluster

Figure (3.11) Record Task Cluster

We determine the types of changes for the To Do App and rebuild the modified

model. Also, we classify model changes as path affecting (PC)= 1 to 3 test paths

in Table 3.10, and non-path affecting (NC)= test path 4.

72

Step 2: Classify abstract test cases into: obsolete, retestable, and reusable.

We apply the set of rules from subsection 3.1.1. obsolete: deleted and modified

node makes any test paths that visit the node obsolete. In our example, We deleted

the Add Task node, So, No = [AddTask]. This makes the abstract tests associated

with aggregate path AP1 in Table 3.10 obsolete. Edge deletion and edge modifica-

tion make any test paths that visit the edge obsolete. In our example, we modify edge

A1. This renders test paths that visit this edge obsolete. Eo = (Main,AddTask),

in test case 1 in Table 3.10.

Retestable: retestable tests are defined as those that are still valid and test

portions of the App and visit part of the FSMApp model that are affected by the

changes. In our example E′ \E ={ (Task, ModifyTask), (ModifyTask, Task)}. Nrea

= {Task node, ModifyTask node}. So, the retestable tests are test cases 2 and3 in

Table 3.10.

Reusable: reusable tests are neither obsolete nor retestable . In our example,

reusable tests (test case4 in Table 3.10).

Algorithm 5 shows the procedure to classify the affected test paths into: obso-

lete and retestable test cases. The inputs of the algorithm are (deleted and modified

nodes) N′, (deleted and modified edges) E′, and the number and affected test paths

(that we got when we apply rules to determine the type of changes). The output

of the algorithm 5 are sets of test cases: obsolete and retestable. The first loop

in line 1, will go through all affected test paths. The loops in lines 3 and 4 iter-

ate through every test path to sequentially check each node in the path whether

it deleted or modified node. If there is a deleted or a modified node in the path,

then add this test path into obsoletList. In line 11 the algorithm will check whether

the path added to obsoleteList. If not added to obsoleteList, the algorithm will

73

go to the loops in lines 12 and 13 to check whether the path has a deleted or a

modified edge, then add it to obsoleteList, but if the test path does not have a

(deleted or modified) node or (a deleted or a modified) edge, the algorithm will add

this test path to retestableList. Then, the algorithm goes to check another affected

test path. The algorithm will continue this process until finish all affected test paths.

Input: N′ (nodes changes) and E′ (edges changes), affected paths (abstract
test cases)

Result: obsoleteList = obsolete test cases, retestableList= Retestable test
cases

1: for i = 1 to num do
2: Path = F
3: for j = 1 to Length(Pi) do
4: for k = 1 to num(No) do
5: if nodei == n′

k then
6: add Pi to obsoleteList
7: Path = T
8: end if
9: end for

10: end for
11: if Path ̸= T then
12: for x = 1 to Length(Pi)- 1 do
13: for m = 1 to num(Eo) do
14: if edge(nodex, nodex+1) == e′m then
15: add Pi to obsoleteList
16: Path = T
17: end if
18: end for
19: end for
20: else
21: add Pi to retestableList
22: end if
23: end for

Algorithm 5: Classify Test Cases

We applied the algorithm to classify affected test paths in our example To Do

App into obsolete and retestable tests. The algorithm will take every affected test

74

path and check if it obsolete or retestable test path. For example, it takes test

path 1 [Main, Add Task, Accept, Add Task, Cancel, Add Task, Main, Exit], then

the algorithm checks each node and edge in the test path 1 whether it (deleted or

modified node) or (deleted or modified edge). Since this path has a modified node

(Add Task), so the algorithm will move this test path into obsoletList. Then it gets

another test path to check if it (obsolete or retestable). The algorithm will continue

this process until checks all affected test paths. The output of the algorithm in our

example is:

• One obsolete test case: test case 1 in Table 3.10

• Two retestable test cases: test cases 2 and 3 in Table 3.10

Step3: Select Set of Retestable Test Cases

From the results, the retestable test cases for To Do app are: (test case2 and

3 in Table 3.10). We select the set of retestable test cases to use them to reveal

change-related faults in HFSM′ for To Do app. Retestable Test Cases are:

1. [Main, Modify Task, Mark task done/ undo, Modify Task, Delete, Modify Task,

Main, Exit]

2. [Main, Modify Task, Edit, Update, Edit, Cancel, Edit, Modify Task, Main, Exit]

Step4: Determine if any parts have not been tested in To Do app:

We needed to determine if any parts of the system have not been tested and

generate a new set of tests. The hierarchical characteristic of FSMApp allows doing

partial test path regeneration in the face of changes. Since the Obsolete test case

(test case1 in Table 3.10) leaves gaps in coverage, needs new tests. The paths of

the model that are not covered are related to the test path [Main, Task, Main,

75

Exit] in AFSM′. We needed to do partial regeneration for test paths. Since we

have a hierarchical set of models, and test generation proceeds in stages, so, the

partial regeneration can start at any of the regeneration steps: the finite state

machine levels, the path aggregation phase, or the input value selection phase. In

our example, we got an obsolete test case when the Add Task node changed from

a LAP node to a cluster node. The obsolete test cases related to Add Task can be

fixed by substituting paths through the new FSM Add Task for the old Add Task

node and regenerating the test from that point on (i. e. path generation through a

lower level FSM and path aggregation).

The paths that we needed to regenerate were related to the [Main, Task, Main,

Exit] on the main page. Tables 3.12 to 3.15 show the transitions, explanation, and

input action constraints for part of To Do App after the modification.

Table (3.12) Main Page Test Sequences of Figure 3.8

ID Test Sequence Length

1 [Main, Task, Main, Exit] 4

Table (3.13) Task cluster Test Sequences of Figure 3.9

ID Test Sequence Length

1 [Task, Add Task, Task] 3

2 [Task, Record Task, Task] 3

3 [Task, Modify Task, Task] 3

76

Table (3.14) Add Task cluster Test Sequences of Figure 3.10

ID Test Sequence Length

1 [Task, Add Task, Accept, Add Task, Cancel, Add

Task, Task]

7

Table (3.15) Record Task cluster Test Sequences of Figure 3.11

ID Test Sequence Length

1 [Task, Record Task, Accept, Record Task, Cancel,

Record Task, Task]

7

Then, we needed to apply the algorithm of aggregate test paths to get new

abstract test cases for the modification part of To Do App. To aggregate paths, we

assumed that the path aggregation criterion is to use each path at least once, which

requires that aggregate paths from the start of the application to the termination

of the application are formed such that every path generated for a lower-level FSM

is selected at least once on the same path [12]. Algorithm 6 shows the procedure

to aggregate test paths for new models. The inputs to the algorithm are AFSM ′

and cluster test paths. The output of algorithm 6 is a set of aggregated test paths

(abstract tests). In line 1, the algorithm put AFSM ′ test paths into an input List,

in our example it will put just one test path (test path1 in Table 3.12). Then line

2 iterates through every test path from the input List. Line 3 takes one test path

from the input List. Then, it sequentially checks each node in the path whether it

is a cluster node. If there is a cluster node in the path, then a loop replaces the

cluster node with each cluster path and creates as many new partially aggregated

paths as there are paths through this cluster node. The output of the algorithm is

4 new test paths as follows:

77

1. [Main, Task, Add Task, Accept, Add Task, Cancel, Add Task, Task, Main, Exit]

2. [Main, Task, Record Task, Accept, Record Task, Cancel, Record Task, Task,

Main, Exit]

3. [Main, Task, Modify Task, Edit, Update, Edit, Cancel, Edit, Modify Task, Task,

Main, Exit]

4. [Main, Task, Modify Task, Mark task done/ undo, Modify Task, Delete, Modify

Task, Cancel, Modify Task, Task, Main, Exit]

This set of new test cases covered the coverage gap left by the obsolete test case

1 in Table 3.10.

Input: AFSM’ and Cluster Test Paths
Result: outputList = Set of Aggregated Paths
1: inputList = AFSM’ affected Paths
2: while inputList has next path do
3: currentPath = get one path from inputList
4: pathDone = true
5: for i = 1 to Length(currentPath) do
6: if nodei is cluster node then
7: for j = 1 to Length(cluster paths) do
8: Replace nodei with cluster pathj and add new path into inputList
9: end for

10: add list paths to inputList
11: remove currentPath from inputList
12: i = length (currentPath) + 1
13: pathDone = false
14: end if
15: end for
16: if pathDone is true then
17: Move currentPath into outputList
18: end if
19: end while

Algorithm 6: Aggregated Affected Test Paths

78

Table 3.16 shows the abstract test cases (retestable tests, new tests) that we

need to test To Do App after the modification.

Table (3.16) The aggregated test paths of the To Do app
ID Test Sequence Length
1 [Main, Task, Add Task, Accept, Add Task,

Cancel, Add Task, Task, Main, Exit]
10

2 [Main, Task, Record Task, Accept, Record
Task, Cancel, Record Task, Task, Main,
Exit]

10

3 [Main, Task, Modify Task, Edit, Update,
Edit, Cancel, Edit, Modify Task, Task, Main,
Exit]

12

4 [Main, Task, Modify Task, Mark task done/
undo, Modify Task, Delete, Modify Task,
Cancel, Modify Task, Task, Main, Exit]

13

5 [Main, Modify Task, Mark task done/ undo,
Modify Task, Delete, Modify Task, Cancel,
Modify Task, Main, Exit]

10

6 [Main, Modify Task, Edit, Update, Edit,
Cancel, Edit, Modify Task, Main, Exit]

10

Now, we need to select inputs to replace the input constraints for the To Do

App. Then, we will have a set of inputs for the execution phase. Table 3.17 shows

the set of inputs for the new test path1 of Table 3.16. Test 1 has six inputs and

five actions. The inputs are Task name (parname), Task Date and time (ParD),

(ParT) which occurs twice in test1. The actions are to click Add New Task button

(b-ANT), Click Accept button(b-ANTA), Click Cancel (b-Cancel), and Click the

back arrow to exit the Mobile App (buttonBack).

79

Table (3.17) New Test Path 1 with Input Values
Edge Constraint Value Explanation

A1 R(b-Task) buttonTask=
Click

Push Task to select
adding task info or
record task info.

D1 C1(SelectAddInfo,
SelectRecodInfo)

SelectAddInfo=
ANT

select AddNewTask to
get screen of add.

DD1 R(Par(name,D,T),
b-ANTA)
S(Par(name, D,T),
b-ANTA)

name="AA"
Date=9/23/2021
Time=10:00 Am
b-ANTA= Click

Enter info of the task
then Push button
addnewtask to accept
adding info the task.

DD2 O(Par(name, D,
T), R(b-Cancel)
S(Par(name, D, T)
b- Cancel)

name="AA"
Date=9/23/2021
Time=10:00 Am
b-ANTC =Click

Enter info of the task
then Push cancel button
TO cancel adding info of
the task.

A4 R(buttonBack) buttonBack =
click

Push back arrow to exit
the app

Step 5: Execute retestable test cases and new test cases:

In this phase, the test cases can be executed manually or using an automatic

tool. For Mobile Apps, many automatic tools [31] are available to run the test cases.

For example, tests can be converted to Selenium [91] or any of the other candidate

execution environments. Selenium is an open-source software testing framework for

web and Mobile Applications. It provides a test domain-specific language to write

the tests such as Java, Python, and PHP. If we use Selenium, the Appium [48] [71]

server executes the Selenium code and reports results. Appium is open-source and

easy to set up.

Since we needed to apply the combination of regression testing approaches (selec-

tive, minimization, and prioritization) for Mobile Apps, we minimized the selected

test cases of the To Do App and prioritize them before executing them.

80

3.2 Test Case Minimization

As yet, FSMApp has not addressed regression testing in general, nor test case

minimization in particular. We developed a test case minimization approach for

FSMApp. FSMApp generates a test suite T that satisfies test requirements based

on graph coverage criteria and test aggregation criteria for its hierarchical model.

Together, these constitute a set of test requirements R. The method described in

this section solves the following problem.

Given a test suite T and a set of test requirements, R finds a minimal subset

of T that covers R [109]. Since this is known to be NP-complete [69], we cannot

always guarantee an optimal solution. Depending on the test requirements, it also

is not always possible to reduce the test suite T. This dissertation explores both

under which conditions minimization is not possible and what test coverage criteria

are likely to lead to no reduction in tests.

Figure 3.12 shows the process of minimizing a regression test suite. We assumed

that based on the original Mobile App and subsequent changes, a current FSMApp

model HFSM exists and that a current set of tests T and test requirements TR

for this HFSM is given. We also assumed that the test requirements are based on

graph coverage and aggregation coverage as specified in FSMApp [8]. Based on the

relationship between T and TR, a concept lattice is created which is subsequently

used to minimize the test suite T. We explained each step in a separate subsection.

81

Figure (3.12) Test case minimization using concept analysis

3.2.1 Determine requirements and test cases based on selec-

tive regression testing for FSMApp

As using that the HFSM for FSMApp has been built according to the process

described in Subsection (2.1.2), changes in the App lead to changes in the model.

This can lead to these situations:

• (a) Test paths become obsolete and are removed.

• (b) Test paths still work, some are affected by changes, and some are not.

• (c) New paths need to be generated.

In Section 3.1 we defined a selective regression testing approach that classifies

test paths as obsolete, retestable (affected by the change), and reusable (not affected

by changes). Specifically, we need to update test requirements based on the type of

changes as follows:

82

• Obsolete requirements: Node deletion affects test requirements related to the

deleted node, rendering them obsolete. Node modifications change the type

of node from LAP to a cluster node or from a cluster node to LAP. This

type of modification affects the test requirements as the node needs to be

replaced by another node or a sequence of nodes which means changing the

test requirements or adding new requirements. Thus, node deletions and node

modifications render test requirements that tour these nodes obsolete.

Similarly, edge deletion renders any test requirements that related to the edge

obsolete. Edge modification involves modification of the input constraint as-

sociated with it. This could mean adding or removing inputs, or modifying

the type of input or action. Any of these affect test requirements and make

them obsolete which is related to the modified edge.

• Retestable requirements: Retestable test requirements are those that still need

them after modifying the application, and they exist in portions of the appli-

cation that may be affected by the change. These are test requirements that

visit portions of the FSMApp model that are close to the changes. So, any

node n that is one edge away from a modified or deleted node must be retested

Except for the source and sink nodes of the AFSM. When edges are changed,

the set of retestable edges depends on the type of change (deleted or modified),

the starting and ending nodes of the changed edges are potentially affected

and hence non-obsolete test requirements that visit these nodes are retestable.

Similarly, when edges (and possibly nodes) are added, existing nodes at which

these new edges start, or end is considered potentially affected by the change

and hence non-obsolete test requirements that visit these nodes are retestable

(Except for the source and sink nodes of the AFSM).

83

• Reusable test requirements: Reusable test requirements are those that are

neither obsolete nor retestable. When new edges (and nodes) are added that

means new test requirements are added. Also, when the type of a node changes

from a logical app page (LAP) to a cluster, that means we add new test

requirements.

Therefore, we need to look to affected paths to update the test requirements

(remove obsolete requirements, add requirements, and modify requirements). Non-

path-affecting change leads to the same requirements.

Test Coverage Criteria

In our work, FSMApp generates a test suite T that satisfies test requirements

based on graph coverage criteria and test aggregation criteria for its hierarchical

model. Together, these constitute a set of test requirements TR.

Test coverage criteria define test requirements TR, they define which parts of a

FSM model should be tested according to the used criterion. Then we generate test

paths that meet all the test requirements. A test path is a sequence of transitions

through the application FSM and through each lower-level FSM. FSMApp’s test

generation method first generates paths through each FSM based on some graph

coverage criterion such as edge coverage which we used in our work. These paths

are then aggregated based on an aggregation criterion for each FSM’s paths, such

as all combinations or each path at least once which we used. All combinations

criterion is not applicable in our cases because it requires that every single path

should be covered, then we have less opportunity to minimize.

Aggregation criteria may limit the amount of minimization. Thus, the aggre-

gation criteria that we select have to be preserved for any minimization that we

will do. The stronger coverage criteria mean less minimization is possible. So, here

84

in our work, we assume that the path aggregation criterion is to use each path at

least once, which requires that aggregate paths from the start of the application to

the termination of the application are formed such that every path generated for a

lower-level FSM is selected at least once.

If we have edge coverage in each finite state machine FSM and if we do the

aggregation requirements, we automatically have the edge coverage preserved. The

following example shows that if we do the aggregation requirements, we automati-

cally have the edge coverage preserved.

Let test path T= n1, n2, c1, n3, n4, and let cluster C1 as:

C1= n3, n4, n3, n5, n3 and it satisfies edge coverage.

Let’s say that the edge e1= (n1, n2) is covered by T, and the edges e2= (n3, n4)

and e3= (n3, n5) are needed to check if they are covered, then the original path T

does preserve edge coverage.

Since the aggregation roles say that we have to substitute all paths for cluster

C1. So, we will substitute C1 to the test path T as follows:

T= n1, n2, n3, n4, n3, n5, n3, n4

Therefore, the edges e2= (n3, n4), and e3= (n3, n5) are covered by the test path

T, so it preserves the edge coverage.

At the end of this step, we have a test suite that meets all test requirements but

may include redundant tests. We now apply test case minimization to this set of

tests and test requirements.

3.2.2 Apply Concept Analysis

Concept Analysis is a hierarchical clustering technique [102, 22], for objects with

discrete attributes. In general, the input of concept analysis is a set of objects,

85

a set of attributes, and a relation named the context that relates objects to their

attributes. Let O be a set of objects. O = {o1, o2, . . . , on}

Let Ai be the attributes of oi. Then ∪n
i=1Ai = A, the set of all attributes.

Concept analysis creates a relation R between subsets of O and A.

Let c be a concept where c = (X, Y), X ⊆ O, Y ⊆ A and

Let C = {c1, c2, . . . , ck} be the concepts.

Let c1 = (x1, y1), c2 = (x2, y2) c1, c2 ∈ C. Then c1 ≤R c2 iff X1 ⊆ X2 or Y1 ⊇ Y2

Then (C, ≤) = R is a partial order

A relation R is called a partial ordering if it is reflexive, antisymmetric, and

transitive. That is mean, for all a, b, c ∈ P (partial ordering set), it must satisfy

[93]:

1. Reflexivity: a ≤ a, i.e. every element is related to itself.

2. Antisymmetric: if a ≤ b and b ≤ a then a = b, i.e. no two distinct elements

precede each other.

3. Transitivity: if a ≤ b and b ≤ c then a ≤ c.

A concept is an ordered pair (X, Y) where X ⊆ O is a set of objects and Y ⊆ A

is a set of attributes satisfying the property that X is the maximal set of objects

that are related to all the attributes in Y and Y is the maximal set of attributes

that are related to all the objects in X.

if C1 = (X, Y1) ∧ C2 = (X, Y2) ∧Y1 ⊆ Y2 then Y1 = Y2

The concepts as defined above induce a complete lattice on the concepts, called

the concept lattice (all subsets of a poset have a join and meet). The supremum

contains all objects and no attributes CTop = {O, ∅} while the infimum has all

attributes and no objects CBottom = {∅, A}.

86

Let C is the set of concepts in a context (O, A, R) [22], [99]. Formally, a lattice is

a partially ordered set in which every pair of elements has a unique supremum, also

called a least upper bound or join. And a unique infimum, also called a greatest lower

bound or meet. In other words, it is a structure with two binary operations: (Join,

Meet). For each (X1, Y1), (X2, Y2) ∈ (O,A,R), we have (X1, Y1) ≤ (X2, Y2)ifX1 ⊆

X2(or, equivalently, Y2 ⊆ Y1). The meet ∧ and join ∨ operators are defined by:

(X1, Y1) ∧ (X2, Y2) = (X1 ∩X2, Y1 ∨ Y2)

(X1, Y1) ∨ (X2, Y2) = (X1 ∨X2, Y1 ∩ Y2)

Where Y 1∨Y 2 (respectively, X1∨X2) is the set of elements of A (respectively, O)

in relation with all the elements of X1∩X2 (respectively, Y 1∩Y 2). The set system

{X ⊆ O (respectively, Y ⊆ A) such that (X, Y) is a concept of (O, A, R)} [79].

In our work, the concept analysis considers the test cases as objects O and the

requirements as attributes A.

T = {t1, t2, ..., tn}

TR = {r1, r2, ..., rm}

Let T = O, TR = A

Then Ai = {r|r ∈ TR : ti ∈ T ∧ ti meet r}

For every object (test) t ∈ T , there is a unique smallest concept in which it

appears. This concept c, the smallest concept for t, is labeled with t. Analogously,

for every attribute (test requirement) r ∈ TR, there is a unique largest concept in

which it appears. This concept c’ , the largest concept for r, is labeled with r.

Based on this labeling of concepts, we can use both object implication and

attribute implication to reduce the context table. An object implication ti ⇒ tj is

found when the concept labeled with ti appears lower in the lattice than the concept

labeled with tj. This implies that the row for tj can be safely removed because its

attributes (test requirements) are covered by ti [109].

87

Object Implication: Given two tests ti, tj ∈ T, ti ⇒ tj if and only if ∀r ∈ TR, (tj

R r) ⇒ (ti R r).

Object reduction rule: For two tests ti, tj, if ti ⇒ tj then all test requirements

covered by tj are also covered by ti. So, the row corresponding to the test tj can be

removed from the context table.

Attribute Implication: Given two test requirements ri, rj ∈ TR, ri ⇒ rj if and

only if ∀t ∈ T, (t R ri) ⇒ (t R rj).

An attribute implication ri ⇒ rj is found when the concept labeled with ri

appears lower in the lattice than the concept labeled with rj. Based on this implica-

tion, the column rj can be safely removed from the context table because when ri is

covered, it implies that rj is also covered [109]. We call this the attribute reduction

rule.

The process of reducing the context table continues until no further implications

are found. The minimized test suite is then selected from the final reduced context

table.

88

Algorithm 7 shows minimized test suite:

Input: ContextTable (test cases and test requirements)
Result: minimized test suite Tminum
Procedure MinumSet(ContextTable)
1: Tminum= empty, imp=false
2: while (not(imp) and (ContextTable ̸= empty)) do
3: imp= true
4: for each two objects ti, tj ∈ T do
5: if (∀r ∈ TR, (tjRr) ⇒ (tiRr)) then
6: ti ⇒ tj (Remove row for test case tj from ContextTable)
7: imp =false
8: end if
9: end for

10: for each two attributes ri, rj ∈ TR do
11: if (∀t ∈ T, (tRri) ⇒ (tRrj)) then
12: ri ⇒ rj (Remove column for test requirement rj from ContextTable)
13: imp =false
14: end if
15: end for
16: end while
17: while (ContextTable ̸= empty) do
18: Remove row for test case t from ContextTable and add t to Tminum
19: Tminum = Tminum ∪ {t}
20: end while
21: Return Tminum

end Procedure
Algorithm 7: Minimized Test Suite

89

3.2.3 Example to Illustrate Test Case Minimization of

FSMApp using Concept Analysis

We will use To Do App to illustrate our approach to minimize test cases of Mobile

Apps. To Do is a simple App to do lists of tasks. The app has these services: add

tasks, modify task (delete task, edit task, mark for a task done or undo), and search

for a task.

Determine requirements and test cases based on selective regression test-

ing for FSMApp

We used the example To Do App that we used to illustrate selective regression

testing of Mobile Apps [2] Section 3.1 . We assume that enhance To Do App by

adding new feature to the app, it’s record task. In this example here, we minimize

the selected test cases by using concept analysis. Figure 3.13 shows the top level

of the To Do App with the three main clusters (Task, Modify Task, Search) which

show the main services for To Do app, while Figures 3.14 and 3.15 show the details

for the other clusters of the To Do App.

Figure (3.13) Main page of ToDo App

90

(a) Task Cluster (b) Modify Task Cluster
Figure (3.14) Sub-clusters of the To Do App

(a) Add Task (b) Record Task (c) Edit Task
Figure (3.15) LAPs of the To Do App

After we modified this App and applied the classification rules [2] in Section 3.1

to determine affected paths and non-affected paths we obtained the test cases in

Table 3.18 (retestable and new test cases) for the modified To Do App. Details are

given in Subsection 3.1.2. We then used the concept lattice approach in an attempt

to minimize them. Table 3.19 shows the updated test requirements of the To Do

App.

91

Table (3.18) The abstract test paths of the To Do app

ID Test Sequence Length

1 [Main, Task, Add Task, Accept, Add Task, Cancel,

Add Task, Task, Main, Exit]

10

2 [Main, Task, Record Task, Accept, Record Task,

Cancel, Record Task, Task, Main, Exit]

10

3 [Main, Task, Modify Task, Edit, Update, Edit,

Cancel, Edit, Modify Task, Task, Main, Exit]

12

4 [Main, Task, Modify Task, Mark task done/ undo,

Modify Task, Delete, Modify Task, Task, Cancel,

Modify Task, Main, Exit]

13

5 [Main, Modify Task, Mark task done/ undo, Mod-

ify Task, Delete, Modify Task, Cancel, Modify

Task, Main, Exit]

10

6 [Main, Modify Task, Edit, Update, Edit, Cancel,

Edit, Modify Task, Main, Exit]

10

The test suite T ′ = {t1, t2, t3, t4, t5, t6}, and the set of requirements TR′ =

{r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15}. The coverage information for

each test case is shown by an X in the corresponding column in Table 3.20. Aggre-

gation Requirements:

R1 = {r1, r3, r4, r10, r11}, R2 = {r1, r3, r5, r12, r13}

R3 = {r1, r2, r3, r7, r14, r15}

R4 = {r1, r2, r3, r6, r8, r9}

R5 = {r2, r3, r6, r8, r9}

R6 = {r2, r3, r7, r14, r15}

92

Table (3.19) Test Requirements of To Do App
Requirements Edges Description

r1 A1 Access new task (add or record information of tasks)
r2 A2 Access modify task
r3 A3 Exit the system
r4 D1 Access add task
r5 D2 Access record task
r6 B1 Mark a task done/undo
r7 B2 Access Edit Task
r8 B3 Delete the task
r9 B4 Cancel to Previous Page
r10 DD1 Add the new task
r11 DD2 Cancel to Previous Page
r12 E1 Record the new task
r13 E2 Cancel to Previous Page
r14 C1 Update the task
r15 C2 Cancel to Previous Page

From the context table3.20, we constructed the concept lattice. First, we built

a table of the concepts which were objects (test cases of To Do App) and attributes

(test requirements of To Do App), then we constructed the concept lattice. For

example, a concept C1 is an ordered pair ({t1}, {r1, r3, r4, r10, r11}), X = {t1},

Y = {r1, r3, r4, r10, r11}. Table 3.21 shows the concepts of the To Do App. The

Top shows all test cases for the To Do App and no test requirements and the Bot-

tom shows all test requirements for the To Do App and no test cases. Figure 3.16

shows Concept Lattice.

93

Table (3.20) Context Table

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

t1 x x x x x

t2 x x x x x

t3 x x x x x x

t4 x x x x x x

t5 x x x x x

t6 x x x x x

Table (3.21) The Table of Concepts
Concept (objects, attributes)

Top ({t1, t2, t3, t4, t5, t6}, {})
C1 ({t1}, {r1, r3, r4, r10, r11})
C2 ({t2}, {r1, r3, r5, r12, r13})
C3 ({t3}, {r1, r2, r3, r7, r14, r15})
C4 ({t4}, {r1, r2, r3, r6, r8, r9})
C5 ({t1, t2, t3, t4}, {r1})
C6 ({t3, t4, t5, t6}, {r2})
C7 ({t1, t2, t3, t4, t5, t6}, {r3})
C8 ({t4, t5}, {r6})
C9 ({t3, t6}, {r7})
C10 ({t4, t5}, {r8})
C11 ({t4, t5}, {r9})
C12 ({t3, t6}, {r14})
C13 ({t3, t6}, {r15})

BOT ({}, {r1, r2, r3, r4, r5, r6, r7, r8, . . . , r15})

94

Figure (3.16) Concept Lattice

We then needed to reduce the size of the context table by applying object re-

ductions and attribute reductions. Based on the labeling of concepts, we can use

both object implication and attribute implication to reduce the context table. An

object implication ti ⇒ tj is found when the concept labeled with ti appeared lower

in the lattice than the concept labeled with tj. This implies that the row for tj can

be safely removed because its attributes are covered by ti.

Based on object implications, we found that t4 ⇒ t5 because it appears lower in

the lattice. Similarly, t3 ⇒ t6. Thus, both t5 and t6 can be safely removed from the

table.

95

An attribute implication ri ⇒ rj is found when the concept labeled with ri

appears lower in the lattice than the concept labeled with rj. Based on this impli-

cation, column rj can be safely removed from the context table because when ri is

covered, it implies that rj is also covered. For attribute implications, we found that

r1 ⇒ r3 and r2 ⇒ r3, hence we can safely remove test requirement r3. Table 3.22

shows a reduced context table. Table 3.23 shows the reduced concepts. Figure 3.17

shows a concept lattice based on the reduced concept table.

Table (3.22) Context Table
r1 r2 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

t1 x x x x
t2 x x x x
t3 x x x x x
t4 x x x x x

Table (3.23) Reduced Concepts
Concept (objects, attributes)

Top ({t1, t2, t3, t4}, {})
C1 ({t1}, {r1, r4, r10, r11})
C2 ({t2}, {r1, r5, r12, r13})
C3 ({t3}, {r1, r2, r7, r14, r15})
C4 ({t4}, {r1, r2, r6, r8, r9})
C5 ({t1, t2, t3, t4}, {r1})
C6 ({t3, t4}, {r2})

BOT ({}, {r1, r2, r3, r4, r5, r6, r7, r8, . . . , r15})

It is possible that after a reduction step, further reductions are possible. Specif-

ically, for attribute implications, we found that r4 ⇒ r1 and r14 ⇒ r2. We can

safely remove the test requirements r1 and r2. Table 3.24 shows a reduced context

table. Table 3.25 shows the reduced concepts. Figure 3.18 shows the corresponding

concept lattice.

96

Figure (3.17) Concept Lattice: First Minimization

Table (3.24) Reduced Context Table

r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

t1 x x x

t2 x x x

t3 x x x

t4 x x x

Table (3.25) Reduced Concepts
Concept (objects, attributes)

Top ({t1, t2, t3, t4}, {})
C1 ({t1}, {r4, r10, r11})
C2 ({t2}, {r5, r12, r13})
C3 ({t3}, {r7, r14, r15})
C4 ({t4}, {r6, r8, r9})

BOT ({}, {r4, r5, r6, r7, r8, . . . , r15})

97

Figure (3.18) Concept Lattice: Second Minimization

Since there were no new attribute reductions or object reductions found, the

minimized test suite T = {t1, t2, t3, t4}.

In our approach (test case minimization of FSMApp for Mobile Apps) here, we

did not guarantee aggregation test requirements. We plan in future work to enhance

our approach to guarantee aggregation test requirements.

Next, we need to prioritize these test cases. We will explain it in the next Section

3.3.

3.3 Test Case Prioritization

Since FSMApp has not addressed test case prioritization yet. In this section,

we presented a model-based approach to prioritize test cases for Mobile Apps. Due

to the resource and time constraints for regression testing, we may need to detect

faults in the modified Mobile App as early as possible. Test case prioritization seeks

to order test cases in such a way that early fault detection is maximized.

The test case prioritization problem is as follows [97]:

98

Given: T, a test suite; PT, the set of permutations of T; and f, a function from

PT to the real numbers.

Problem: Find T ′ ∈ PT such that (∀T ′′) (T ′′ ∈ PT) (T ′′ ̸= T ′) [f(T ′) ≥ f(T ′′)].

PT represents the set of all possible orderings of T, and f is a function that, when

applied utilized to any such ordering, produces an award value for that ordering.

3.3.1 Test Case Prioritization Process

The idea of our model-based test prioritization approach is to use the original

model and the modified model to identify a difference between these models. The

collected information is then used to prioritize the test suite. We suggested priori-

tizing tests based on input complexity since more inputs might be associated with

a more complex functionality which in turn would make it more fault-prone. Figure

3.19 shows test case Prioritization of FSMApp Process.

We prioritized the test suite based on the number of inputs (complexity) for

each test path. Identifying which test path that has the biggest number of inputs

(values and actions) and giving it a high priority. Then ordering the test paths in

descending order, so the test path (with more complexity of inputs) that has the

highest priority will execute first.

Figure (3.19) Test Case Prioritization of FSMApp Process

99

The steps of the process are as follows:

Step 1: Select a subset of tests from the existing test suite.

• Builds a hierarchical model HFSM’ for the modified Mobile App.

– Partition the Mobile App into clusters.

– Define logical App pages (LAP) and input constraints.

– Build FSM for the clusters.

• Identify a difference between the original model HFSM and the modified model

HFSM′.

• Select tests related to the modified parts of the model from the existing test

suite.

Step 2: Add new tests for uncovered parts.

• Generate new abstract test cases for uncovered parts.

Step 3: Prioritize the test suite based on the complexity of each test case.

• Determent complexity of each test case.

• Assign priority to each test case based on its complexity. Assign high priority

to test path that has the biggest number of inputs (values and actions).

• Ordering the test cases in descending order (high priority to low priority).

3.3.2 Example Used to Illustrate Approach

We used To Do App example to illustrate our approach of FSMApp test case

prioritization. To Do is a simple app to make lists of tasks. The app has these

100

services: add tasks, modify tasks (delete tasks, edit tasks, mark for a task done or

undo), and search for a task. For more details about the example see Sections 3.1,

3,2.

Figure 3.20 shows the original model HFSM for the ToDo App. Table 3.26 shows

the original test suite for the ToDo App.

Figure (3.20) Original Model HFSM for ToDo App

101

Table (3.26) The original Test Paths of the To Do App

ID Test Sequence Length

1 [Main, Add Task, Accept, Add Task, Cancel,

Add Task, Main, Exit]

8

2 [Main, Modify Task, Mark task done/ undo,

Modify Task, Delete, Modify Task, Main,

Exit]

8

3 [Main, Modify Task, Edit, Update, Edit,

Cancel, Edit, Modify Task, Main, Exit]

10

4 [Main, Search, Main, Exit] 4

Step1: Select a subset of tests from the existing test suite.

• Builds a hierarchical model HFSM’ for the modified Mobile App.

We used FSMApp approach [8] to build the hierarchical model HFSM’ for

the modified ToDo App. We Partitioned the ToDo Mobile App into clusters,

defined the logical App pages (LAP) and input constraints for it, then built

FSM for the clusters. The constraints on inputs for ToDo App are:

– Required (R): required input must be entered.

– Required Value (R(parm)): one must enter at least one value.

– Optional (O): an input may or may not be entered.

– Single Choice (C1): one input should be selected from a set of choices.

– Multiple choices (Cn) are possible.

102

We explained the input constraints and input types for ToDo App in detail

in Section 3.1. Table 3.27 shows input types for the ToDo App. Figure 3.21

shows the modified hierarchical model for ToDo Mobile App.

Table (3.27) The Input Types of the To Do App

Input Type The Action The Input Constraints

A button click R(< Click >), C1(Select

Button, Click)

Pickers drop-down and

click

C1(< Dropdown >,<

Click >)

Lists sort R(< Sort >)

A card click, swipe,

scroll, and pick-

up-and-move

C1(< Click >,< Swipe >

,< Scroll >,< Pick >)

• Identify a difference between the original model HFSM and the modified model

HFSM’.

Here we used the original model HFSM for ToDoApp in figure 3.20 and the

modified model HFSM’ in figure 3.21 to identify a difference between these

models.

103

Figure (3.21) Modified Model HFSM ′ for ToDo App

We identified the following modifications from the original model HFSM and

modified model HFSM′:

Modification 1: Node deletion, edge/node additions

Add Task node is deleted. Then a new cluster node is added, which gave

options to add new tasks by recording information about the task and by

writing the information about the task. Also, modify tasks by editing infor-

mation, deleting tasks, and marking done or undo of the task. Delete Add

Task node, adding the new cluster node (Task), and adding a new FSM for

the Task cluster caused the abstract test cases associated with test path 1 in

Table 3.26 affected paths.

104

Modification 2: Edges additions

Adding edges between cluster node Task and cluster node Modify Task. These

edges allow modifying tasks without returning to the main page of the App.

This modification makes test paths 2 and 3 in Table 3.26 affected paths (PC).

• Select tests related to the modified part of the model.

Here we used the collected information above to select tests from the existing

test suite in Table 3.26 that related to modified parts of the App which are

test cases 1, 2, and 3. But test case 1 is invalid.

Step2: Add new tests for uncovered parts

In this step, We determined if any parts of the system have not been tested and

generated a new set of tests. We used a partial generation to generate the test cases

because the changes in the model are localized, details about generated the new

tests in Section 3.1. Since the test case1 in Table 3.10 is not valid anymore, we need

new tests to cover untested parts.

The following four new abstract test cases covered the paths of the model that

are not covered by selected test cases.

1. [Main, Task, Add Task, Accept, Add Task, Cancel, Add Task, Task, Main, Exit]

2. [Main, Task, Record Task, Accept, Record Task, Cancel, Record Task, Task,

Main, Exit]

3. [Main, Task, Modify Task, Edit, Update, Edit, Cancel, Edit, Modify Task, Task,

Main, Exit]

4. [Main, Task, Modify Task, Mark task done/ undo, Modify Task, Delete, Modify

Task, Task, Main, Exit]

105

Table 3.28 shows the abstract test cases (selected set of tests, new tests) that we

need to test the modified version of the To Do App.

Table (3.28) The selected and new test paths of the To Do app

ID Test Sequence Length

1 [Main, Task, Add Task, Accept, Add Task, Cancel,

Add Task, Task, Main, Exit]

10

2 [Main, Task, Record Task, Accept, Record Task,

Cancel, Record Task, Task, Main, Exit]

10

3 [Main, Task, Modify Task, Edit, Update, Edit,

Cancel, Edit, Modify Task, Task, Main, Exit]

12

4 [Main, Task, Modify Task, Mark task done/ undo,

Modify Task, Delete, Modify Task, Task, Cancel,

Modify Task, Main, Exit]

13

5 [Main, Modify Task, Mark task done/ undo, Mod-

ify Task, Delete, Modify Task, Main, Exit]

8

6 [Main, Modify Task, Edit, Update, Edit, Cancel,

Edit, Modify Task, Main, Exit]

10

106

Step 3: Prioritize the test suite based on the complexity of each test

case.

In this step, we will prioritize test paths in Table 3.28 based on the complexity

of each test path.

• Determent complexity of each test case.

We will determine the complexity of each test path by determining the number

of input values and actions. For example, Test Path1 has six inputs and five

actions. The inputs are Task name (parname), Task Date and Time (ParD),

(ParT) which occurs twice in test path 1. The actions are click Add New Task

button (b-ANT), Click Accept button(b-ANTA), Click Cancel (b-Cancel), and

click back arrow to exit the Mobile App (buttonBack). The complexity for

this test path is (6+5=11).

C =
n∑

i=1

InpV aluei +
m∑
j=1

InpActionj

Where,

C: is the total complexity for the test path.

InpValue: is the input value.

InpAction: is the actions.

Tables 3.29 to 3.32 show the complexity for each test path. Column 1 shows

the transaction of the test path, column 2 is the Constraint of the input, col-

umn 3 is the number of the input values, column 4 is the number of actions,

and column 5 is the complexity of each transaction for the test path.

107

Table (3.29) The Complexity of the Test Path 1

Edge Constraint Input

Value

Actions Complexity

A1 R(b-Task) 0 1 1

D1 C1(SelectAddInfo,

SelectRecodInfo)

0 1 1

DD1 R(Par(name,D,T),

b-ANTA)

S(Par(name, D,T),

b-ANTA)

3 1 4

DD2 O(Par(name, D,

T), R(b-Cancel)

S(Par(name, D, T)

b- Cancel)

3 1 4

A3 R(buttonBack) 0 1 1

Total Complexity 11

108

Table (3.30) The Complexity of the Test Path 2

Edge Constraint Input

Value

Actions Complexity

A1 R(b-Task) 0 1 1

D2 C1(SelectAddInfo,

SelectRecodInfo)

0 1 1

E1 R((RecordInfo), b-

AR)

1 1 2

E2 O(RecordInfo),

R(b-Cancel)

1 1 2

A3 R(buttonBack) 0 1 1

Total Complexity 7

Table (3.31) The Complexity of the Test Path 3

Edge Constraint Input

Value

Actions Complexity

A1 R(b-Task) 0 1 1

A2 R(Swiping the task

from right to left)

0 1 1

B2 R((Par(name,D,T)),

b-Update)

3 1 4

B4 O(Par(name,D,T)),

R(b-Cancel)

3 1 4

A3 R(buttonBack) 0 1 1

Total Complexity 11

109

Table (3.32) The Complexity of the Test Path 4

Edge Constraint Input

Value

Actions Complexity

A1 R(b-Task) 0 1 1

A2 R(Swiping the task

from right to left)

0 1 1

B1 R(double tap the

task)

0 1 1

B3 R(selectTask),

R(b-Delete)

0 2 2

A3 R(buttonBack) 0 1 1

Total Complexity 6

Table (3.33) The Complexity of the Test Path 5

Edge Constraint Input

Value

Actions Complexity

A2 R(Swiping the task

from right to left)

0 1 1

B2 R((Par(name,D,T)),

b-Update)

3 1 4

B4 O(Par(name,D,T)),

R(b-Cancel)

3 1 4

A3 R(buttonBack) 0 1 1

Total Complexity 10

110

Table (3.34) The Complexity of the Test Path 6

Edge Constraint Input

Value

Actions Complexity

A2 R(Swiping the task

from right to left)

0 1 1

B1 R(double tap the

task)

0 1 1

B3 R(selectTask),

R(b-Delete)

0 2 2

A3 R(buttonBack) 0 1 1

Total Complexity 5

• Assign priority to each test case based on its complexity. Assign high priority

to test path that has the biggest number of inputs (values and actions).

In this step, the test case that has high complexity is assigned with high prior-

ity. The priority starts from 1 to N. one means the highest priority. The test

path that has priority (1) will execute first. If there are paths that have the

same priority, tester randomly chooses which one executes first. Table 3.35

shows the priority for each test path.

111

Table (3.35) The priority of the Test Paths

No Complexity Priority

1 11 1

2 7 3

3 11 1

4 6 4

5 10 2

6 5 5

• Ordering the test cases in descending order (high priority to low priority). The

test case that has high priority will be executed first.

The prioritized test suite is:

T = {t1, t3, t5, t2, t4, t6}

.

3.3.3 Example to Combining Test Case Prioritization with

Selective Regression Testing and Test Case Minimiza-

tion

Above we applied our test case approach to a modified version of the Mobile

App. Since our approach is a combination of regression testing, we also, used our

test case prioritization to prioritize test cases that we obtained from applying test

case minimization in Section 3.2. Table 3.36 shows the minimized test suite.

112

Table (3.36) The minimized Test Paths

No Test Paths Length

1 [Main, Task, Add Task, Accept, Add

Task, Cancel, Add Task, Task, Main,

Exit]

10

2 [Main, Task, Record Task, Accept,

Record Task, Cancel, Record Task,

Task, Main, Exit]

10

3 [Main, Task, Modify Task, Edit, Up-

date, Edit, Cancel, Edit, Modify Task,

Task, Main, Exit]

12

4 [Main, Task, Modify Task, Mark task

done/ undo, Modify Task, Delete,

Modify Task, Task, Cancel, Modify

Task, Main, Exit]

13

Here we applied step 3 which is the determent complexity of each test case, and

we assigned priority to each test case based on its complexity. Table 3.37 shows the

complexity and the priority for each test path.

Table (3.37) The priority of the Test Paths

No Complexity Priority

1 11 1

2 7 2

3 11 1

4 6 3

113

Next, we ordered the test cases in descending order (high priority to low priority).

The test case that has high priority will be executed first. The prioritized test suite

is: T = {t1, t3, t2, t4}.

114

Chapter 4

Guidelines for Combining Regression

Testing Approaches

Regression testing is an important activity in software maintenance and software

enhancement as it can help developers determine if changes made to the system are

handled appropriately without compromising efficiency. While not employed often,

it is possible to combine several regression testing techniques. Combining them

can lead to a more efficient and effective regression test suite. The three types of

regression testing, selective, minimization, and prioritization, can be combined in

four different ways: There are three ways to combine two of the approaches and one

way to combine all three. However, to efficiently and effectively employ regression

testing, it is crucial to select the appropriate combination for the software that is to

be tested. For example, the expected quality of the software, the kind of changes

made, or the criticality of the software heavily influence which strategies to combine

and in what order. So far, literature only addressed two types of combinations:

combining test case prioritization and test case minimization [111, 106] (neither

study [111, 106] did take selective regression testing into account and guidelines on

115

how and when to select a particular combination of regression testing approaches

are not addressed [106]), and combining selective regression testing and test case

prioritization [107, 103]. Both [107] and [103] did not consider test case minimization

as part of their combination. They also did not address guidelines on how and

when to select a particular combination of regression testing approaches, see Section

2 for more information. However, there is no systematic approach to combining

all regression testing approaches. As this could provide a path to more efficient

and effective testing, we aim to provide guidelines for combining regression testing

approaches systematically.

Mayrhauser et al. [113] presented regression testing support for Sleuth, a test

generation tool based on domain-based testing. They explained the rules for building

regression tests for a variety of possible regression testing strategies from retesting all

strategies to selective regression testing strategies. They described some situations

that may call for different types of regression testing approaches. We used their idea

in terms of combining regression testing approaches. We described some situations

that may call for different combinations of regression testing approaches. So, we can

choose which combination of regression testing approaches to use.

As software changes, regression testing is needed. After the maintenance process

or the enhancement process of any software, software testers tend to use one of the

three regression testing techniques to test the modified software: selective regression

testing, test case minimization, or test case prioritization. However, we observed

situations where combining these regression testing techniques could improve the

overall regression testing process making it more effective and efficient. Theoreti-

cally, selective regression testing, test case minimization, and test case prioritization

could be combined in four possible ways:

116

1. Selective regression testing, test case minimization, and test case prioritization.

2. Selective regression testing and test case prioritization.

3. Test case minimization and test case prioritization.

4. Selective regression testing and test case minimization.

We provided guidelines for combining regression testing approaches based on a

systematic approach. We outlined all possible situations that can occur and showed

how each of them influences which combination to use. Since the software mainte-

nance process, the types of maintenance, software enhancements, coverage criteria,

the impact of the changes on the model, time constraints, resource constraints, lev-

els of risk failure, and confidence in the quality of the prior version of the software

all are factors that influence which combination of regression testing approaches

are used, the combination of these situations needs to be taken into account when

selecting the combination of regression testing approaches.

4.1 Combination of Regression Testing Strategies

Several regression testing techniques can be used in combination for a more effi-

cient and effective regression test suite. The challenge is, however, to appropriately

combine the regression testing approaches as they each have different strategies and

depend on the software being tested. The three types of regression testing, selective,

minimization, and prioritization, can be combined using the following strategies:

1. Apply a selective regression testing technique: Identify the type of changes

and then classify test cases into obsolete, re-testable, and reusable test cases.

Add new test cases to cover untested parts. In this combination, the strong

coverage criteria are avoided to make minimization possible.

117

2. Apply a test case minimization technique: In this step the updated test cases

(re-testable, new test cases) and the updated test requirements from the se-

lective regression testing are used to build a coverage information table. The

test cases are reduced by removing redundant tests to get a minimized test

suite that meets all the requirements.

3. Apply a test case prioritization technique: Prioritize the minimized test suite

by assigning a priority to each test case based on some criteria such as the

complexity of each test case. Execute the prioritized test cases based on their

priority. A test case that has high priority is executed first.

There is a connection between these steps. The output of the first step, selective

regression testing, is used as the input for the second step where the selected test

cases based on coverage criteria are minimized. The output of the second step, the

test case minimization, is used as input for the third step where the minimized test

suite based on a specific matrix is prioritized.

How the combination of regression testing is applied depends on the software

that is being tested. For example, the combination of strategies is influenced by the

level of risk for software failure, the quality of the software, the coverage criteria,

and the time and resources available. Figure 4.1 shows an overview of the process

of combining regression testing approaches.

The strategy of combining selective regression testing and test minimization

combination is as follows: First, apply a selective regression testing technique, then

apply a test minimization technique to minimize the selected test suite. The strat-

egy of combining selective regression testing and test prioritization is outlined as

follows: First, apply a selective regression testing technique, then use a test prioriti-

zation technique to prioritize the selected test suite. The strategy of combining test

118

case minimization and test case prioritization is outlined as follows: First, apply

a test minimization technique, then apply a test prioritization technique to priori-

tize the minimized test suite. Within these combinations, we can use the existing

techniques for selective regression testing, test minimization, and test prioritization.

We distinguish between four different combinations of regression testing approaches.

Table 4.1 shows their corresponding strategies.

Figure (4.1) Process of Combining the Three Types of Regression Testing

119

Table (4.1) Strategies of Regression Testing Approaches

Combination Strategies to apply

Selective regression test-

ing, test case minimiza-

tion, and test case prior-

itization

(1) Selective regression testing

(2) Test case minimization

(3) Test case prioritization

Selective regression test-

ing and test case mini-

mization

(1) Selective regression testing

(2) Test case minimization

Selective regression test-

ing and test case prioriti-

zation

(1) Selective regression testing

(2) Test case prioritization

Test case minimization

and test case prioritiza-

tion

(1) Test case minimization

(2) Test case prioritization

4.2 Situations for Combining Regression Testing Ap-

proaches

The software maintenance process, software enhancements, the types of mainte-

nance, coverage criteria, the impact of the change on the model, time constraints,

available resources, level of risk failure, and confidence in the quality of the prior

version of the software are all factors that influence which combination of regres-

sion testing approaches are used. We described these situations that may call for

different combinations of regression testing approaches in Table 4.2.

120

Table (4.2) Situations for Combining Regression Testing Approaches

Situations

Combination

Regression

Testing

Coverage

Criteria

Model

Changes

Resources

or Time

Restrictions

Failure

Risk

Software

Quality

Selective

Minimization

Prioritization

Medium

Weak

Local Some Low High

Selective

Minimization

Medium

Weak

No-

Change

Local

Few Low High

Selective

Prioritization

Strong

Medium

Weak

Local Some Medium

Low

Medium

Minimization

Prioritization

Weak Local Few Low High

These factors can be used to help in making a decision about which combina-

tion is more efficient and effective for regression testing of a given system under

test. Figure 4.2 shows a decision tree for the combinations of regression testing

approaches. For example, if a system has undergone localized updates in which

changes are isolated to a few partitions of the system, the coverage criteria that is

used to generate test cases is not a strong coverage and there are time or resource

restrictions like a tight deadline or limited resources. In this case may combine

selective regression testing, test minimization, and test prioritization are better to

use, particularly when its old version quality or the quality of its existing test suite

121

is high, and the level of risk failure is low. That means we do not need to look at

these situations just as a single concern but also, as a combination of concerns. For

example, when we look at the situation of a tight deadline, our thinking will tend

to use reduction techniques (selective regression testing, test case minimization) to

minimize test cases so we can save time. But at the same time, we need to look at

other situations such as risk situations, if the system under regression test has high

risk, we can not use reduction techniques.

Figure (4.2) Decision Tree for Combinations of Regression Testing

122

1. Risk of the system under regression test: In a situation where a system under

test has a high-risk failure, it is advised to avoid combinations that have a test case

minimization. With a high-risk failure comes the risk of losing some of the fault-

detection capability in the test suites when using minimization techniques. For

example, if we test a safety-critical system, this could result in serious consequences

when a fault is missed.

Selective regressing testing may have a similar risk if we are using it to test a

system that has a high level of risk failure, such as a safety-critical system. We may

use selective regression testing to test a system that has a medium level of risk such

as a financial system.

The decision to regression test systems that have a high level of risk is designed

to avoid the combinations of regression testing that have reduction techniques (selec-

tive regression testing or test minimization). The test case prioritization approach

can be used for regression test systems that have a high level of risk.

2. Quality of Existing System: In the situation of the quality system, it is better

to avoid combinations that have test case minimization when the quality system

under test or the quality of its existing test suite is a concern (low quality) because

we do not need to minimize a lot of test cases, so we may get good quality software

which is reasonably bug or defects free.

Selective regression testing does not risk losing the quality so we can use selective

regression testing to test not just systems that have high quality but also systems

that have medium or low quality with using strong coverage criteria.

3. The Coverage Criteria: In the coverage criteria situation, when testers need

to use strong coverage criteria to generate test cases, they would not use the combi-

123

nations that have test case minimization because strong coverage criteria will limit

minimizing test cases.

The test coverage criteria [12] defined the test requirements, which then defined

what parts of a model should be tested according to the used criterion. We then

generate test paths that satisfy all the test requirements. There are different test

requirement criteria for graph coverage that testers can use to produce test paths

including: Edge-pair coverage, Prime path coverage, Node coverage, Edge coverage,

Complete coverage, and Specified path coverage. There are also aggregation crite-

ria that are used when we need to consider multiple partitions at the same time,

which are used for aggregation test requirements such as: All combination cover-

age (strong coverage criteria), and at least one coverage (weak coverage criteria).

There are no concerns about limiting the process of selective regression testing or

test case prioritization when using any of the coverage criteria to generate test cases.

4. The Impact of the Changes: In situations where the model changes, if the

impact of the changes is localized, we can use the combinations that have test case

minimization because the changes are isolated to some partitions of the model so

we can minimize test cases that are not related to the changed part and we do not

need them anymore.

In addition to localized change, selective regression testing can be used if there

are no changes in the model which means in case of corrective maintenance we fix

defects. Here we need to identify the affected parts related to the defects and use

selective regression testing in terms of retestable tests to test affected parts. There-

fore, the combination of selective regression testing and test case prioritization can

be used if there are no changes in the model.

124

If the impact of the changes is extensive and that required full regeneration, we

can not use any of the combinations of regression testing but we can use the test

case prioritization approach to prioritize test cases.

5. Time/Resources of Regression Testing: In situations of Time/Resources,

deadlines, and testing resources may restrict using any of the combinations depend-

ing on the other factors. For example, if there is adequate available time to run

more test cases and fault detection is critical, we need to avoid the combinations

that have test case minimization. But if the testers have tight deadlines or limited

resources, and the system under test is not safety critical (high risk), testers can use

the combination of selective regression testing, test case minimization, and test case

prioritization. In contrast, testers can not use the combinations that have reduction

techniques (selective regression testing, test case minimization) in case of the system

has high risk even if they have tight deadlines.

4.3 Example for Using The Guidelines to Combin-

ing Three Types of Regression Testing (Selec-

tive, Minimization, and Prioritization)

We used To Do Mobile App, which is a simple app to do lists of tasks. The

app has these services: add tasks, modify tasks (delete tasks, edit tasks, mark for a

task done or undo), and search for a task. We first applied FSMApp approach for

testing Mobile Apps to get abstract test cases for the original version of the To Do

App. Then We made some modifications to To Do App to apply a combination of

125

selective regression testing, test minimization, and test prioritization approach to

the modified version of To Do App. For more details about the example see Chapter

3.

We combined all three types of regression testing (selective regression testing,

test minimization, and test prioritization) as follows in three main steps: we per-

formed selective regression testing proposed in Chapter 3 (Section 3.1). We then

performed test case minimization regression testing proposed in Chapter 3 (Section

3.2). Finally, we performed the test case prioritization proposed in Chapter 3 (Sec-

tion 3.3). We used our guidelines to choose which combination of regression testing

to use. We looked at our situations. There is a localized change in the model of

the modified version of the ToDo App. The existing version has high quality so we

do not need to use strong coverage criteria. It is not a critical system so there is

no high risk. The app is under test behind schedule so we need to reduce the test

cases. Therefore, based on these situations, we can use selective regression testing,

test minimization, and test case prioritization combination. We need to apply the

three main steps of the combination on the modified version of the ToDo App:

Step 1: We applied the selective regression testing of FSMApp [2] on the mod-

ified version of the ToDo App. We rebuilt the hierarchical model HFSM ′ and then

identified and classified changes for the modified version of the To Do App. Fig-

ure 4.3 shows the modified model HFSM ′ for the ToDo App. Then we classified

abstract test cases into: obsolete, retestable, and reusable for To Do App based on

the type of changes and we selected the set of retestable test cases. Next, we deter-

mined if any parts have not been tested in To Do app. We used partial generation

to generate tests from the HFSM ′. Paths through FSMs/AFSM generated based

on edge coverage. In aggregated paths to form abstract tests, we used at least one

126

Figure (4.3) Modified Model HFSM ′ for ToDo App

127

path coverage (it is not a strong coverage criterion). At the end of this step, we

got a test suite (retestable and new tests) that meet all requirements but may have

redundant test cases. Table 4.3 shows the selected test suite.

Table (4.3) The selected and new test paths of the To Do app
ID Test Sequence Length
1 [Main, Task, Add Task, Accept, Add Task,

Cancel, Add Task, Task, Main, Exit]
10

2 [Main, Task, Record Task, Accept, Record
Task, Cancel, Record Task, Task, Main,
Exit]

10

3 [Main, Task, Modify Task, Edit, Update,
Edit, Cancel, Edit, Modify Task, Task, Main,
Exit]

12

4 [Main, Task, Modify Task, Mark task done/
undo, Modify Task, Delete, Modify Task,
Task, Cancel, Modify Task, Main, Exit]

13

5 [Main, Modify Task, Mark task done/ undo,
Modify Task, Delete, Modify Task, Main,
Exit]

8

6 [Main, Modify Task, Edit, Update, Edit,
Cancel, Edit, Modify Task, Main, Exit]

10

Step 2: We applied test case minimization of FSMApp [3] to minimize the

selected test suite. We determined the updated test requirements and test cases

based on selective regression testing for FSMApp in step 1 and used them to build the

context table (Coverage Information Table). Then we applied the concept analysis

to minimize test cases. In the concept analysis, we considered the test cases as

objects O and the test requirements as attributes A.

T = {t1, t2, ..., tn} , TR = {r1, r2, ..., rm}

Let T = O, TR = A. Then Ai = {r|r ∈ TR : ti ∈ T ∧ ti meet r}.

Next, we build a table of the concepts which are objects (test cases of the ToDo

App) and attributes (test requirements of the ToDo App) and construct the concept

128

lattice. The object implication and attribute implication is applied to reduce the

context table.

Object Implication: Given two tests ti, tj ∈ T, ti ⇒ tj if and only if ∀r ∈ TR, (tj R

r) ⇒ (ti R r).

Attribute Implication: Given two test requirements ri, rj ∈ TR, ri ⇒ rj if and only

if ∀t ∈ T, (t R ri) ⇒ (t R rj).

The process of reducing the context table continues until no further implications

are found. The minimized test suite is then selected from the final reduced context

table. Table 4.4 shows the minimized test suite.

Table (4.4) The minimized Test Paths

No Test Paths Length

1 [Main, Task, Add Task, Accept, Add Task,

Cancel, Add Task, Task, Main, Exit]

10

2 [Main, Task, Record Task, Accept, Record

Task, Cancel, Record Task, Task, Main,

Exit]

10

3 [Main, Task, Modify Task, Edit, Update,

Edit, Cancel, Edit, Modify Task, Task, Main,

Exit]

12

4 [Main, Task, Modify Task, Mark task done/

undo, Modify Task, Delete, Modify Task,

Task, Cancel, Modify Task, Main, Exit]

13

129

Step 3: We applied test case prioritization of FSMApp approach. Here we

prioritized the minimized test suite based on the complexity of each test case. We

determined the complexity of each test case by determining the number of input

values and actions. For example, Test Path1 has six inputs and five actions. The

inputs are Task name (parname), Task Date and Time (ParD), (ParT) which occurs

twice in test1. The actions are to click Add New Task button (b-ANT), Click Accept

button(b-ANTA), Click Cancel (b-Cancel), and click the back arrow to exit the

Mobile App (buttonBack). Table 4.5 shows the complexity of the test path1.

Table (4.5) The Complexity of the Test Path 1

Edge Constraint Input

Value

Actions Complexity

A1 R(b-Task) 0 1 1

D1 C1(SelectAddInfo,

SelectRecodInfo)

0 1 1

DD1 R(Par(name,D,T),b-

ANTA) S(Par(name,

D,T), b-ANTA)

3 1 4

DD2 O(Par(name, D, T), R(b-

Cancel) S(Par(name, D,

T) b- Cancel)

3 1 4

A3 R(buttonBack) 0 1 1

Total Complexity 11

Then we assigned priority to each test case based on its complexity. Assigned

high priority to test path that has the biggest number of inputs (values and ac-

tions). Table 4.6 shows the complexity and the priority for each test path.

130

Table (4.6) The priority of the Test Paths

No Complexity Priority

1 11 1

2 7 2

3 11 1

4 6 3

Lastly, we ordered the test cases in descending order (high priority to low prior-

ity). The test case that has high priority will be executed first. The prioritized test

suite is: T = {t1, t3, t2, t4}.

131

Chapter 5

Validation via Case Study

5.1 Rationale for the Case Study

So far we explained our work using a simple example of a Mobile App. As a

next step, we need to use Test-driven development (TDD) to evaluate our work

via a larger case study. The DiscoverU Mobile App was chosen for validation of

the regression testing approaches for Mobile Apps. DiscoverU App is a Mobile

Application for mental health education. It was chosen as it was under ongoing

development as a collaboration between a psychology and computer science team.

This means there were several design and code changes as the app development

moved from the initial prototype to a deployed Mobile Application. As an ongoing

student project at the University of Denver, this Mobile App also allowed me to have

access to all versions and full code without any restrictions that may be present for

commercial or proprietary Mobile Applications.

Test-driven development (TDD):

TDD is a process of software development that implements test cases before

the software is fully developed and, thus, repeatedly tests the software up until

132

completion. This requires access to each software version and with DiscoverU, I had

the necessary access to employ Test-driven development (TDD).

5.2 Case Study Objective

The objective of this case study was to show how to effectively and efficiently

apply the developed testing techniques in the different situations that can occur in

the Mobile App development process. It was important to test and show how our

guidelines (see Chapter 4) can help to efficiently choose which combination approach

to use. The proposed recommendations and guidelines from Chapter 4 are used in

a case study and we employ a regression test on a Mobile App that was in progress

and not yet released at the time of working on this dissertation. This enabled us

to use Test-driven development and evaluate our guidelines, and explore different

situations that can occur in a real development process. With time often being a

factor, the Case Study also highlighted the different situations that influence which

combinations of regression testing approaches can be used efficiently and effectively

to test software while in the ongoing development process. This is a challenging

approach. Often testing is performed on the final version of a code only there might

be limited access to software in development or developers who are willing to share

all of their code in the process. However, testing on the final code only has a

huge disadvantage: it does not highlight the situations where combined regression

testing could discover and alleviate problems early on in the development process.

We postulate that discovering errors in a Mobile Application early on can lead to

overall more efficient and effective coding if our regression testing approach is used

for each version, and save cost in the long run.

133

5.3 Preparation for Case Study

We need to analyze how the selected Mobile App for the case study works before

applying the regression testing approaches. We need to study the functions of the

DiscoverU Mobile App to understand all components and connections between the

Mobile screens before applying the regression testing approaches. This was done

so that the time for learning how the functions of the DiscoverU Mobile App work

would not confound or increase the testing time. This was achieved by connecting

with the Mobile App developer team. The App functions were discussed and an

understanding of how the App will work was supported by using the prototype that

the developing team designed in Figma [38] [65]. The Collaborative Interface Design

Tool Figma is a web-based graphics editing and user interface design app. Figma

is free in its basic version and works as an online user Interface (UI) prototyping

tool. It enables designers to create and collaborate on prototypes and facilitates

the hand-off to developers. Figma states that the users stay in the flow by editing,

creating, and collaborating in one end-to-end tool. While the prototype in Figma is

for a Mobile App, Figma itself is a web-based tool and works either in a browser or

a desktop version.

5.4 Case Study Research Questions

The research questions derived from the case study objectives are as follows:

• RQ1: Can we show that regression test for each of the versions of the in-

progress Mobile App using all of the variants described in Chapter 3?

• RQ2: Which of the situations described in the guidelines will occur and can

we successfully use the guidelines for testing?

134

• RQ3: Are the options for the testing criteria described in Chapter 3 effective?

• RQ4: How do test case minimization and test prioritization help to make

testing more efficient?

5.5 Units of Analysis

Table 5.1 shows the measurement units at every step of the regression testing

process. The first column presents the steps of regression testing of FSMApp that

need to be measured. The second column presents the measurements. It also de-

scribes the measurement of the percentage of reducing test cases by using selective

regression testing, the Percentage of minimizing test cases, and how many test cases

need to be applied to detect faults if test prioritization is not applied.

135

Table (5.1) Units of Analysis

Step Measurement

Determine Types of

Changes

Time to determine the changed parts of the

App under test (add, delete, modify)

Build Model Size (Num of Nodes, Num of Edge, Num of

Clusters), time to build the model

Generate Test Sequences Size (Number of test sequences, total test

steps), time to generate the test sequences

Input Selection Num of Inputs, Num of actions, Time to choose

input

Execute Test Paths Time of the execution

Selective Regression Testing Percentage(%) of reducing test cases

Test Case Minimization Percentage (%) of minimizing test cases

Test Case Prioritization How many test cases need to apply to detect

faults if we do not apply test prioritization

5.6 Case Study General Descriptions

DiscoverU is a mental health application for mental health education for adoles-

cents. It is developed in collaboration between a psychology and computer science

team. The goal of the DiscoverU Mobile App is to provide adolescents a no-cost,

scientifically-based mental health support that empowers them to learn about their

mental health and what they can do to improve it. The DiscoverU Mobile App devel-

opment is in progress at the time of working on this dissertation. It is expected that

the development of the software continues for at least two more years and that the

136

content development continues for several years after. The developing team consists

of undergraduate students and graduate students with team leads from Computer

Science (Dr. Kerstin Haring, University of Denver; Dr. Daniel Pittman, Metropoli-

tan State University) and psychology team lead (Dr. Vicki Tomlin, University of

Denver).

DiscoverU addresses various barriers to accessing mental health care in adoles-

cents. One way the Mobile App addresses this is by featuring multiple levels of

mental health education and support, while also providing various formats of user

activities including writing a journal, and engaging practices to implement in every-

day life. To appeal to the range of adolescents (i.e., a wide demographic aged 11–21

from various socioeconomic backgrounds), DiscoverU incorporates gamification to

encourage users to remain consistent in the app in a healthy manner. DiscoverU

also allows for personalized goals so the user can tailor their experience to their

personal goals and the Mobile App meets the user where they are at in their mental

health journey. The content of the DiscoverU app is created by the psychology team

and can be pushed to the Mobile App through a web-based custom created Content

Management System developed by the computer science team. This is expected to

facilitate new and updated content in the long run without requiring code changes

or updated versions of the Mobile App.

We have four versions of the DiscoverU Mobile App in addition to the original

version of the app. (The original version had the same functions as the first version

DiscoverUV 1 but it did not work correctly and had a lot of defects). We executed

the test cases for the first two versions of the app (DiscoverUV 1, and DiscoverUV 2)

on a simulation environment (test web-based), and the test cases for the second

two versions of the app (DiscoverUV 1(APK1), and DiscoverUV 2(APK2)) on a

Mobile device. Since we are working on a Mobile App in progress (not released

137

as a Mobile App), we applied test-driven development process to regression test

the versions of the DiscoverU Mobile App. We applied the FSMApp approach to

testing the original version of the DiscoverU app, then in each time the developer

team add any functions or features, we applied our regression testing approaches

and by using our guidelines, we choose which type of regression testing technique

or the combination of regression testing techniques to apply and then report the

evaluation to the developer team so that help to alleviate the problems early in the

development process.

It should be highlighted here that by employing TDD with regression testing

on a web-based version first and then migrating with the development team to a

mobile version, a novel contribution is to show the portability from a web

application to a Mobile App in this case study.

The next sections describe the versions that we regression tested by applying our

regression testing approaches and our guidelines to select the appropriate combina-

tion of regression testing to each version of the DiscoverU App.

5.6.1 First Version of the DiscoverU App (DiscoverUV 1)

The first version of the app (DiscoverUV 1) has the same functionality as the

original version of the DiscoverU App. In the first version of the app (DiscoverUV 1),

after the user creates an account, the user sees the main “DiscoverU” screen. The

main screen has four tabs (Basecamp, Explore, Journey, Backpack) represented by

an icon and a text description. The first tab (Basecamp) is activated with a click and

shows eight buttons, but just three of them are working. When the user clicks on

the first button ("How are you feeling"?), it takes the user to the screen for entering

the user’s feelings with the option to do this now or later in the day. Feelings can

138

be entered by selecting an emoji that represents the daily feelings best. When the

user clicks on the button "free writing", it takes the user to a screen where the

user can take a few minutes to free write in the user’s journal. Another button

is "Demo Theme" where the user can change the color of the screens of the App.

The development team designed the buttons that state actions like keep climbing

higher and start your next activity on the activity trail, read articles, 10 minutes of

meditation, yoga to release tension, and watch videos but they still did not work.

When clicking the second tab ("Explore"), the tab is supposed to expand to show

all content activities to the user (Read, video, image, listen, etc.) but there was an

issue that prevented the user from seeing the content or filter for these activities in

the content. The Third tab ("Journey") is supposed to show all journeys, but in this

first version the development was not finished and this was not an available action.

The fourth tab ("Backpack") expands with a click on the Backpack icon to a screen

with five tabs (Favorites, Rewards, Tools, History, and Extra Steps). Finally, in the

"Menu", the user can go through all services of the app by clicking on the menu

icon (Resources, Favorites, Backpack, Tools, Journal (sub-menu), Daily Check-in,

Settings, and Logout). The sub-menu (Journal) expands to several activities (Free

Write, Stress Log, Grief Journal, Emotion Reflections, Goals, and Check-ins). The

Computer Science team designed the menu and the sub-menu for this first version,

but not all services and actions were enabled yet. See Appendix B.

Since the original version did not work correctly and had several bugs, we applied

a regression test on it after the developer team made corrective maintenance for the

original version of the DiscoverU app without adding any new functions or features.

This means that there was no change in the model. We considered this as the first

version of the DiscoverU Mobile App (DiscoverUV 1). Here we applied the first set

of regression testing which is a retest of all the original test cases (full prioritization

139

regression testing using strong coverage criteria) after we prioritized them so we can

discover and alleviate problems early.

The situations for this version (DiscoverUV 1) were as follows: The quality of the

app was low, so a strong coverage criterion was required. There was no change in

the model, so it was chosen to do selective regression testing in terms of retestable

test cases (retesting just the test cases that related to the defects). The app is not a

critical system, so it does not have high risk. Since we aimed to develop and manage

the quality of the first version of the App (DiscoverUV 1) in a way to best ensure

that the first version meets the necessary developer requirements, we used strong

coverage criteria and avoided minimizing the test cases. Therefore, in this version

of the App (DiscoverUV 1), we applied a full prioritization regression testing. We

prioritized the original test suite before re-executing it.

Validation Report for the First Version of the App (DiscoverUV 1) :

In this version (DiscoverUV 1), we executed the test cases generated using full

prioritization regression testing and evaluated the results. The evaluation of the

results presented that: The first version of the app (DiscoverUV 1) has five failed

tests and 21 passed tests. Table 5.3 shows the execution results for the four versions

of the App and the number of defects. Column 1 shows the versions of the DiscoverU

App. Columns 2 and 3 show the number of tests that failed and passed, respectively.

The last column shows the number of defects. This version has a defect related to

the tab "Basecamp" in the "Free writing" button that allows the user to take a few

minutes to free write in his/her journal. The button did not work correctly, the

second defect found was the "Explore" tab, which had no content. It was unknown

if the filter for all content worked correctly or not. The next defect found was on

the path from the "Menu" to Favorites, Basecamp, and then "Free write". The free

write function did not work correctly. Another defect found is related to the "sub-

140

menu" (Journal). When the user goes to the "Menu", "Journal", "Checkins", it

displays the Daily Check-ins by the week but when selecting the week that the user

already completed check-in for, it did not display the result as expected. The last

defect is related to the "Menu", when we do logout, the down tabs is disappeared

in the app.

5.6.2 Second Version of the DiscoverU App (DiscoverUV 2)

The developer team made changes and added new functions to the Second version

of the DiscoverU app. In this version of the app (DiscoverUV 2), we were able to see

the content, and we could view the activities, journeys, and trails that were added

from the web application by the psychology team. Thus these new services were

added to the second version of DiscoverU app (DiscoverUV 2). Also, there were some

new services added to the "menu" such as "Free Write". So, these changes in the

second version of the app (DiscoverUV 2) required us to make changes in the model.

These modifications required adding new nodes and new edges in the model because

the type of some nodes changed from logical app pages (LAP) nodes into cluster

nodes. The change in the model was not an extensive change, as it was isolated to

a few partitions of the model.

Based on our guidelines proposed in Chapter 4, in version (DiscoverUV 2) we

selected a combination of regression testing (selective, minimization, and prioriti-

zation) to apply. The situations for the version (DiscoverUV 2) were: the quality

of the app was not low. We did not need to use strong coverage criteria, so there

was no limitation in using the test case minimization approach. There was a local

change in the model. There were some constraints on the time to give feedback to

the development team.

141

We first applied our selective regression testing approach proposed in Chapter

3. We determined the type of changes and classified the test cases into obsolete,

retestable, and reusable tests. The new test cases added to test uncovered parts

of the app. Then the selected test suite is minimized by applying our test case

minimization approach proposed in Chapter 3 to remove the redundant test cases.

Next, the minimized test suite is prioritized by applying our test case prioritization

approach, proposed in Chapter 3, to execute them.

Table 5.4 shows the classification of the tests based on the type of changes

and the number of all tests of each version of the DiscoverU App. In this version

(DiscoverUV 2), there are 11 new test cases, 8 retestable, and 16 reusable tests. In

this version, we executed 14 test cases that were generated by applying a combina-

tion of regression testing (selective, minimization, and prioritization).

Validation Report for the Second Version of the App (DiscoverUV 2) :

In version (DiscoverUV 2) we executed the test cases generated using a combi-

nation of regression testing (selective, minimization, and prioritization) approach

and evaluated the results. The evaluation of the results presented that the second

version of the app (DiscoverUV 2) has two failed tests and 12 passed tests. Table

5.3 shows the execution results for the four versions of the App and the number of

defects. There was a defect related to the content in the "Explore" tab. The video

in the content did not work. The other defect is related to the menu, when we do

"logout", the down tabs is disappeared in the app.

5.6.3 Third Version of the DiscoverU App DiscoverUV 3(APK1)

We put this version of the app (DiscoverUV 3(APK1)) on an android phone.

(Device name: moto z4, Android version: 10). The developer team made changes

142

and added new services to this version of the app (DiscoverUV 3(APK1)). These

changes caused an issue that prevented the end-user to see the content. In the second

tab "Explore" there was no content. Because of this change, we removed the nodes

and the edges related to this change and which resulted in obsolete tests. Also,

in the fourth tab "Backpack", the developers added a function called "Rewards".

That change required changing the type of some nodes from the logical app page

(LAP) into cluster nodes and adding new nodes and edges. And in the sub-menu

("Journal") the developers added the "Emotion Reflections" service.

Based on our guidelines proposed in Chapter 4, in version (DiscoverUV 3APK1)

we selected a combination of selective regression testing and test case prioritization

approach. The situations for this version (DiscoverUV 3APK1) were that the quality

of the app was not low. We did not need to use strong coverage criteria, so there

was no limitation to using the test case minimization approach. There also was a

local change in the model. In this case, there were no constraints on the time to

give feedback to the development team.

We first applied our selective regression testing approach proposed in Chapter

3. We determined the type of changes and classified the test cases into obsolete,

retestable, and reusable tests. The new test cases were added to test the uncovered

parts of the app. Then the selected test suite is prioritized by applying our test

case prioritization approach proposed in Chapter 3. We selected this combination

because we did not have constraints on the time the team needed feedback. We also

needed to be confident about the adaptive maintenance that was made by the team

to transform from the simulation environment to the Mobile device, so it does not

affect the existing parts of the app.

143

Validation Report for the Third Version of the App DiscoverUV 3APK1

In version (DiscoverUV 3APK1) we executed the test cases generated using a

combination of regression testing (selective and prioritization) approach and eval-

uated the results. The evaluation of the results presented that the third version

of the app (DiscoverUV 3APK1) has four failed tests and ten passed tests. Table

5.3 shows the execution results for the four versions of the App and the number of

defects. The first defect was that we could not create a new account. The app login

with the account is created in a different environment. The second defect was that

the "Explore" tab had no content. We could not see the activities and trails that

we intended to be there; thus, we could not know if they worked correctly or not

or if the content filter worked correctly or not. The other defect was related to the

sub-menu ("Journal"). When we go to the Menu, Journal, and Checkins, it displays

the Daily Check-ins sorted by weeks. However, when we selected the week that we

made a Check-in, it did not display the result as expected. These two defects are the

same defects that were present in the first version of the app (DiscoverUV 1). After

the development team made modifications to transform the software from web to

app, these defects happened again. Also, the same defect from the previous version

(DiscoverUV 2) related to the Menu was still not fixed: when we logged out of the

App, the down tabs still disappeared.

5.6.4 Fourth Version of DiscoverU App DiscoverUV 4(APK2)

We put the fourth version of App (DiscoverUV 4(APK2)) on a Mobile device

(android phone). (Device name: TCL Model: A509DL, Android version: 11). The

developer team made changes and added new services to this version of the app

(DiscoverUV 4(APK2)). They fixed the issue that prevented the user from seeing

144

some of the content. In this version, the second tab ("Explore") shows the intended

content. The team also added new services in the sub-menu ("Journal") where

they added the "Grief Journal", "Stress Log", and "Goals". That change required

changing the type of some nodes from the logical app page (LAP) into cluster nodes

and adding new nodes and edges.

Based on guidelines proposed in Chapter 4, in this version DiscoverUV 4(APK2)

we selected a combination of selective regression testing and test case prioritization.

The situation for this version (DiscoverUV 4(APK2)) was that the quality of the

app was medium. We did not need to use strong coverage criteria, so there was no

limitation to using the test case minimization approach. There was a local change

in the model. In this version, there were no constraints on the time to give feedback.

We first applied our selective regression testing approach as proposed in Chapter

3. We determined the type of changes and classified the test cases into obsolete,

retestable, and reusable tests. The new test cases were added to test uncovered

parts of the app. Then the selected test suite is minimized by applying our test case

minimization approach proposed in Chapter 3 to remove the redundant test cases.

Next, the minimized test suite is prioritized by applying our test case prioritization

approach proposed in Chapter 3 to execute them.

Validation Report for the Fourth Version of the App DiscoverUV 4APK2

In version (DiscoverUV 4APK2) we executed the test cases generated using a

combination of regression testing (selective, minimization, and prioritization) ap-

proach and evaluated the results. The evaluation of the results presented that

the fourth version of the app (DiscoverUV 4APK2) has six failed tests and 11

passed tests. Table 5.3 shows the execution results for the four versions of the

App and the number of defects found. The same defects from the previous version

(DiscoverUV 3(APK1)) were still not fixed. The defects were related to the "Lo-

145

gout", and to the "Check-ins" in the sub-menu ("Journal"). The other four defects

were found in the sub-menu ("Journal") and were related to "Free Write", "Emotion

Reflections", "Grief Journal", and "Stress Log".

5.7 Validation Results and Discussion

5.7.1 Applicability

RQ1: Can we show that we can regression test the various in-progress

versions using all of the variants described in Chapter 3?

We successfully regression tested the various in-progress versions using all the

variants that we described. We applied the three regression testing approaches and

the combination of regression testing approaches that we proposed to the various

in four progress versions of the DiscoverU App using all of the variants. We suc-

cessfully applied full prioritization regression testing for the first version of the App

(DiscoverUv1), a combination of selective regression testing, test case minimiza-

tion, and test case prioritization for the second version of the App (DiscoverUv2), a

combination of selective regression testing, and test case prioritization for the third

version of the App (DiscoverUv3(APK1)), and for the fourth version of the App

(DiscoverUv4(APK2)), we successfully applied a combination of selective regres-

sion testing, test case minimization, and test case prioritization. Table 5.2 shows

the types of techniques that we applied and the situations for each version of the

DiscoverU App. Tables 5.3 to 5.6 report our results for the four versions of the

DiscoverU App.

146

Table (5.2) Type of used techniques and the situations for each version

App Versions Techniques The Situations for Each Version

DiscoverUV 1 Full Prioritiza-

tion Regression

Testing/ Combi-

nation (sel, pri)

Low quality, Strong coverage crite-

ria, Low risk, No constraints, and No

model change

DiscoverUV 2 Combination of

(selective, min-

imization, and

prioritization)

High quality, No Strong coverage cri-

teria, Low risk, Some constraints on

the time, and Local change in the

model

DiscoverUV 3(APK1) Combination of

selective and pri-

oritization

High quality, Strong coverage crite-

ria, Low risk, No constraints on the

time, and Local change in the model

DiscoverUV 4(APK2) Combination of

selective, min-

imization, and

prioritization

Medium quality, No Strong coverage

criteria, Low risk, Some constraints

on the time, and Local change in the

model

RQ2: Will the various situations described by the guidelines occur and

can we successfully use the guidelines for testing?

We successfully used the guidelines for testing that we described in Chapter 4

and we successfully showed the various situations described by the guidelines that

may occur.

We used the recommendations and guidelines along a case study and we regres-

sion tested software that is in progress and not yet released. The DiscoverU Mobile

app enabled us to use test-driven software development and showed the different

147

situations that can occur. It also showed that the situations influenced which com-

bination of regression testing approaches can be used efficiently and effectively to

test software while in the ongoing development process. For example, we applied

a combination of selective regression testing, test case minimization, and test case

prioritization to the second version of DiscoverU App (DiscoverUv2) because the

situations in the second version of the DiscoverU App (DiscoverUv2) were that we

had a good quality version and we did not need to use strong coverage criteria, thus

we could use test case minimization. The DiscoverU App is not a critical system

and it does not have a high risk, thus we can use the reduction techniques (selective,

minimization). We had a tight timeline to give feedback to the developer team so

they can move to the next step for developing the app, therefore this combination

was preferred to save time by minimizing and prioritizing the test cases to relieve

the problems early in the development process for the DiscoverU App. Based on

our guidelines, we successfully selected the appropriate combination of regression

testing approaches for each version of the DiscoverU App. Table 5.2 shows the sit-

uations that guided us to choose the appropriate technique to apply to each of the

four versions of the DiscoverU App.

5.7.2 Effectiveness

RQ3: Are the options for testing criteria described in Chapter 3 ef-

fective?

The options for testing criteria described in Chapter 3 were effective. To evaluate

the effectiveness, we used strong coverage criteria and weak coverage criteria to

show that these different coverage criteria were effective to detect the defects in the

versions of the DiscoverU App. The case study executes the test cases and captures

148

the number of defects. We used different coverage criteria to generate abstract test

cases for the versions of the DiscoverU App, and they were effective. Applying our

proposed approaches and the coverage criteria that we used for the four versions

of the DiscoverU App, successfully showed the effectiveness. Table 5.3 shows the

execution results for the four versions of the DiscoverU App. Column 1 shows the

versions of the DiscoverU App. Columns 2 and 3 show the number of tests that

failed and passed, respectively. The last column shows the number of defects.

Table (5.3) Defect Summary

App Versions No of Failed No of Passed No of Defects

DiscoverUV 1 5 21 5

DiscoverUV 2 2 12 2

DiscoverUV 3(APK1) 4 10 4

DiscoverUV 4(APK2) 6 11 6

5.7.3 Efficiency

RQ4: How does minimization and prioritization help make testing

more efficient?

Using the combinations with minimization and prioritization helped make the

testing more efficient. To better investigate the efficiency of the combination of our

proposed approaches, we conducted a comparison between the versions of the case

study (DiscoverU Mobile App).

To evaluate the efficiency, the time to determine changes and classify tests, the

test generation process, the length of test sequences, and test execution effort (time)

are measured. Table 5.4 presents the classifications of the tests based on the changes

that were made for each version of the DiscoverU App during the development pro-

149

cess, the number of all tests for the full regression test of the four versions of the

DiscoverU App, and the time for determining the changes and classifying the tests.

Column 1 shows the versions of the App. Columns 2-5 show the test classification as

obsolete, retestable, reusable, and new tests, respectively. Column 6 shows the num-

ber of full regression tests. The last column shows the time to determine the changes

in minutes (the time is measured by the tester). The first version of the DiscoverU

App (DiscoverUV 1) has no changes in the model because the developer team made

only corrective maintenance to fix the defects. The time to determine the tests re-

lated to these defects was seven minutes. In the second version of the DiscoverU App

(DiscoverUV 2), the time to determine the changes and map them to related tests

was 12 minutes. In the third version of the DiscoverU App (DiscoverUV 3(APK1)),

the time to determine the changes and map them to related tests was 13 minutes.

In the fourth version of the DiscoverU App (DiscoverUV 4(APK2)), the time to

determine the changes and map them to related tests was 20 minutes.

Table (5.4) Summary of the Changes

App Versions Obsolete

Tests

Retestable

Tests

Reusable

Tests

New

Tests

Full

Tests

Time

DiscoverUV 1 0 16 10 0 26 7

DiscoverUV 2 3 8 16 11 35 12

DiscoverUV 3(APK1) 5 8 22 6 36 13

DiscoverUV 4(APK2) 0 14 22 8 44 20

Table 5.5 presents a summary for each version of the DiscoverU App for model

size and time for the model generation phase. Column 1 shows the version number

of the DiscoverU app. Columns 2-4 show the number of nodes, edges, and clusters

of the model, respectively. The last column shows the model generation time in

150

minutes. The model generation time is measured by the designer while drawing

the model. The first version of the DiscoveU App (DiscoverUV 1) has the smallest

model with 46 nodes and 116 edges and 32 clusters. The model generation time for

the first version of the DiscoveU App (DiscoverUV 1) is zero because there was no

change in the model. So, the model for the first version of the App (DiscoverUV 1)

is the same model for the original version of the DiscoverU App. The time for

generating the original model was 60 minutes. The fourth version of the DiscoverU

App (DiscoverUV 4(APK2)) has the largest model with 89 nodes, 234 edges, and

84 clusters. The time for generating the model of the fourth version of the Dis-

coverU App (DiscoverUV 4(APK2) was 15 minutes. The model generation time

of the three versions of the DiscoverU Apps (DiscoverUV 2, DiscoverUV 3(APK1),

(DiscoverUV 4(APK2)) took between 6 to 15 minutes.

The version that has more clusters takes the maximum model generation time

because the clusters require more time to identify and find the connection between

them. However, because the model was about the same App and all changes and

modifications were local, isolated to some parts of the app, it saved much time to

regenerate the model for the versions by editing and adding new parts for the same

model instead of completely regenerating the model.

Table (5.5) Model Size Summary

App Versions Nodes Edges Clusters Model Time

DiscoverUV 1 46 116 32 0

DiscoverUV 2 68 180 52 10

DiscoverUV 3(APK1) 72 187 53 6

DiscoverUV 4(APK2) 89 234 84 15

151

Table 5.6 shows the results of applying our techniques to the four versions of

the DiscoverU Mobile App. Column 1 indicates the versions of the DiscoverU app.

Columns 2-3 show the number of test cases, and the time (in minutes) for generating

the test sequence. The time is calculated by the tester. This includes the genera-

tion of cluster test paths and the aggregation test sequences. Columns 4–6 show the

number of input values, number of actions, and time to choose the inputs (in min-

utes) for the input selection phase. The time is calculated by the tester. The time

includes the identification of input boundaries and input selection to execute the

test sequences. Column 7 shows the execution time in minutes and Column 8 shows

the total time in minutes for all steps: Determine the changes and classify the tests,

model generation, test case generation, input selection, and test case execution.

The time for model generation and the time to generate tests for the first version

of the App (DiscoverUV 1) were zero because there was no change in the model.

Therefore, the total time for the first version of the App (DiscoverUv1) shows the

time to choose new inputs and the time to re-execute the original test suit.

The total time range for the three versions of the DiscoverU App (DiscoverUV 2,

DiscoverUV 3(APK1), and (DiscoverUV 4(APK2)) is between 97–126 minutes. We

applied a combination of regression testing (selective, minimization, and priori-

tization) for the second version of the app DiscoverUV 2, a combination of se-

lective regression testing, and test prioritization for the third version of the app

DiscoverUV 3(APK1), and a combination of regression testing (selective, minimiza-

tion, and prioritization) for the fourth version of the app DiscoverUV 4(APK2).

152

Table (5.6) Summary of Test Generation and Execution

App Versions Tests Time Inputs Action Choose

Time

Exe

Time

Total

Time

DiscoverUV 1 26 0 21 146 19 10 29

DiscoverUV 2 14 30 8 144 25 20 97

DiscoverUV 3(APK1) 14 25 9 112 33 12 89

DiscoverUV 4(APK2) 17 32 11 156 40 25 126

In the first version of the app (DiscoverUv1), When we applied selective regres-

sion testing in terms of rerun retestable test cases, we removed 10 tests from the full

regression testing test suite. It means that we executed 16 test cases instead of 26

test cases (execute 62% of all tests).

For the second version of the app (DiscoverUv2), when we applied selective re-

gression testing we removed 16 tests from the full regression testing test suite. It

means that we will execute 19 test cases instead of 35 test cases (execute 54% of all

tests). Then when we minimized the selected test cases, we removed five redundant

test cases from the selected test suite. It means that we will execute 14 test cases

instead of 35 test cases (execute 40% of all tests). The minimization makes the

test more efficient. For the third version of the app (DiscoverUv3(APK1)), when

we applied selective regression testing we removed 22 tests from the full regression

testing test suite. It means that we will execute 14 test cases instead of 36 test cases

(execute 39% of all tests). For the fourth version of the app (DiscoverUv4(APK2)),

when we applied selective regression testing we removed 22 tests from the full re-

gression testing test suite. It means that we will execute 22 test cases instead of

44 test cases (execute 50% of all tests in the test suite). Then when we minimized

the selected test cases, we removed five redundant test cases from the selected test

153

suite. It means that we will execute 17 test cases instead of 44 test cases (execute

39% of all tests). The minimization makes the test more efficient. Table 5.7 shows

the summary of reducing and minimizing test cases.

The comparison between applying full regression testing and applying selective

regression testing and test minimization for the versions of the DiscovrU app shows

the efficiency of the selected combination. Also, applying a test case prioritization

helps to make testing more efficient. For example, if we did not prioritize the test

suite for the second version of the app (DiscoverUv2) we would need to execute

seven test cases to find the first defect. But by applying test case prioritization, we

found the first defect after executing three test cases already. In the full regression

testing of the first version of the app (DiscoverUv1), without prioritizing the test

suite, we found one defect after executing three tests, and two more defects after

executing 12 test cases, and last two defects after executing 21 tests. By applying

test case prioritization, we found three defects after executing five test cases, and

two more defects after executing nine test cases. The prioritization helps make the

testing more efficient in terms of finding the defects earlier. We can conclude that

minimization and prioritization help to make testing more efficient.

Table (5.7) Summary of Reducing and Minimizing Test Cases
App Versions % Reducing Test Cases % Minimizing Test

Cases
DiscoverUV 1 62% -

(16 test cases instead of 26)
DiscoverUV 2 54% 40%

(19 test cases instead of 35) (14 test cases instead of
35)

DiscoverUV 3(APK1) 39% -
(14 test cases instead of 36)

DiscoverUV 4(APK2) 50% 39%
(22 test cases instead of 44) (17 test cases instead of

44)

154

5.8 Threats to Validity

We performed a case study with four versions to evaluate the applicability, ef-

fectiveness, and efficiency of our proposed approaches and guidelines to select an

appropriate combination of regression testing approaches. We tested the versions of

the DiscoverU Mobile App on two different environments: a simulation environment

on a desktop and an Android Mobile device.

Wohlin et al. [115] define external validity as the extent to which it is possible

to generalize the findings in a case study. The main threat to external validity we

encountered was a generalization. Even though our guidelines cover all possible

situations and help to select an appropriate combination of regression testing the

finding from the case study are not fully generalizable. While we consider the case

study a proof of concept, we cannot generalize the results to other platforms. For

example, we applied our proposed approaches to an Android Application only and

did not consider IOS where the same Mobile Application remains to be tested on a

different operating system. Generalizability is limited as with any case study. We

cannot guarantee that a future case performs well under the proposed guidelines

and gives the same result for other applications.

In Wohlin et al. [115], construct validity refers to the extent that the operational

measures reflect what the researcher had in mind. The internal threat was related

to the measurement. For example, as we keep creating the model, we are becoming

more familiar with it. It is likely that the time to evolve the model decreases as

we go on further. It is important to keep in mind that learning effects might bias

the times needed to test each Mobile App. The learning effect in this case describes

the time it takes to understand how all functions of the Mobile App work. If the

effect is left unchecked it could possibly lead to longer testing times for the first

155

testing method applied to an app than expected, together with the accompanying

effects that the developer might perceive testing as taking up too many resources

like time or overpromise on the time it takes to provide feedback back to them from

the testing process. To avoid this confounding factor, we studied the functions of the

DiscoverU Mobile Apps in detail to understand all components and the connections

between the Mobile screens, before applying the regression testing approaches. The

learning effects were controlled by carefully analyzing how the app worked before

applying the testing.

5.9 Challenges and Successes in our Case Study

This section is dedicated to the challenges, successes, impressions, and takeaways

we gained as software testers during the described case study. The impressions

here are not technological in nature, but they describe an often underestimated

challenge to software testing: The necessity to work in teams and to collaborate and

communicate with the developer team. During testing of the DiscoverU Mobile App,

we noticed challenges around the time constraints of the developer team, the (miss-)

communication with the team, and an initial lack of understanding of what testing

does or how it can be helpful. While this dissertation is dedicated to the importance

and contribution of testing, it is not always clear how to best manage teams to

understand this [12]. Over the course of testing, however, we noticed changes in

how the team perceived testing. After running the first test suites and summarizing

the results to the developer team, they started to recognize the contributions to their

efficiency and effectiveness as coders and started utilizing the report of validity as

a guide to uncover defects that were not prevalent in their ad-hoc testing, find the

code parts related to a defect and fix them in a more timely manner for the next

156

version. Offutt et al. [12] discussed the goals of testing in terms of the test process

maturity levels, of an organization, where the levels are characterized by the testers’

goals. For example, the lowest level is Level 0, where there is no difference between

testing and debugging.

The DiscoverU developer team was looking to test at level 0, viewing testing as

the same as debugging. This is not unexpected as, this view is naturally adopted

by many undergraduate computer sciences (CS) majors or less experienced coders,

especially when they encounter their first large-scale, multi-faceted project. In many

CS programming classes, students get their program to a state where it compiles, or

interprets without syntax errors, and then either debug their code if necessary and

then test the programs with a few inputs chosen either arbitrarily or provided by the

instructor. However, this model of testing does not distinguish between a program’s

incorrect behavior and mistake within the program and does very little to help

develop software that is reliable or safe. It has to be acknowledged that regression

testing often is out of the scope of anyone who is just learning how to code. Similar

to this test case, the developer team included undergraduate students and it was

only later on in the process that they acknowledge the purpose of testing and its

contributions to elevate their software to the next maturity level. In summary, many

of the initial human-related challenges we encountered is because there was no plan

for testing (Level 0) however the importance of the developer-tester collaboration

was recognized and appreciated further into the testing process.

157

Chapter 6

Future Work

This dissertation describes novel contributions to regression testing (selective,

minimization, and prioritization) for Mobile Apps and proposes new guidelines for

combining regression testing approaches. In our future work, we plan to continue to

extend our research contributions as follows: (1) Minimizing test cases for Mobile

Apps with a guarantee of the aggregation test requirements by minimizing FSMs

before aggregating test paths. (2) Prioritizing test cases for Mobile Apps by weight-

ing the input types. (3) Applying our proposed approaches of regression testing of

FSMApp (selective regression testing, test case minimization, and test case prior-

itization) and using the guidelines for combining regression testing approaches in

different system domains. (4) Building tools to generate FSMApp model and test

paths. (5) Execute test paths for the case study DiscoverU App automatically using

Appium.

158

6.1 Minimizing Test Cases with Guarantee of the

Aggregation Test Requirements

We proposed a new approach to minimize test cases of Mobile Apps, however,

this did not include a guarantee of the aggregation test requirements. We plan

to minimize test cases of Mobile Apps with a guarantee of the aggregation test

requirements by minimizing FSMs before we aggregate test paths. To achieve this,

we will minimize the FSM model to reduce the number of test paths in Mobile Apps.

Minimizing the FSM model means removing any equivalent states. The equivalence

differs from one technique to another in its meaning. For example, state equivalence

as State i = State j if and only if for every single input X the outputs and the

following states are the same. Removing the equivalence FSMs before aggregating

the test paths will positively affect the number of test paths. Our plan is to first

minimize the FSMs model by removing any equivalent states and examining the

effect of minimization on the generated number of test paths.

6.2 Prioritizing Test Cases by weighting the Input

Types

We plan to prioritize test cases by weighing the inputs for each test case and

then calculating the complexity for each test case. The test path that has the

highest weight has the highest complexity, and will be assigned a higher priority.

The test path that has the highest priority is executed first. Basically, this idea

works by assigning a weight value for each input and calculating the complexity of

these weight values for each test case. The most important input is the higher of the

159

weight values. For example, the importance of a menu-open action might be lower

than a button-click action because the former simply calls up a menu list, but the

button-click action might trigger one or more functions to change the state of the

app. Therefore, the relationships between input types and errors dictate how we will

set different weights for different input types. We will assume that higher-weighted

events will lead to higher rates of fault detection than lower-weighted inputs due to

their complexity.

6.3 Applying our Proposed Approaches and Guide-

lines in Different System Domains

This dissertation is focused on the Mobile Applications domain. We applied

our proposed approaches for regression testing of FSMApps (selective, minimiza-

tion, and prioritization) and guidelines on Mobile Apps. We plan to apply these

proposed approaches and guidelines for combining regression testing approaches in

different system domains such as safety-critical systems, robotics devices, and med-

ical systems. We also plan to apply them to Internet of Things (IoT) Applications

such as smart homes, smart cities, wearable devices, smart grids, connected health,

and connected cars.

6.4 Building Tools

So far, there is no tool to generate FSMApp model or test paths. An important

contribution to the field, therefore, is to build tools to automate model and test

phases. This would decrease the cost of generating the model, test paths, and

choosing the input and action, significantly increasing overall efficiency.

160

6.5 Finish and Execute Test Paths for the Case

Study DiscoverU App Automatically

We plan to finish regression testing for the following versions of the case study

DiscoverU and execute the final set of test cases for the app automatically. In our

case study, we executed the test paths manually. To achieve the goal of executing

test paths automatically, we plan to implement the code for Appium. Appium is

an open source test automation framework that is flexible, enabling testers to write

test scripts against multiple platforms such as iOS, Windows, and Android [104].

We also plan to use a partial regeneration approach [15] to cover the gaps that were

caused by obsolete tests, and when the edges change by changing the input types

and input constraints. Because of the hierarchical nature of FSMApp models and

the associated stages of test generation, it is possible to use partial regeneration to

replace obsolete test cases and make the testing process more efficient.

161

Chapter 7

Conclusion

This dissertation describes a unified approach to regression testing for Mobile

Applications. To achieve this goal, we proposed three novel approaches of regression

testing for Mobile Applications: selective regression testing, test case minimization,

and test case prioritization. We unified these approaches by proposing new guide-

lines to combine these regression testing approaches.

In the state of the art literature related to the regression testing of Mobile Ap-

plications there are several limitations in the techniques for regression testing. The

existing techniques so far did not address all aspects of selective regression testing,

and they also did not address test prioritization or test minimization for Mobile

Applications. In addition, the literature related to the combination of regression

testing approaches lacks the combination of all types of regression testing. There

was no systematic approach to how and when to select a particular combination

of regression testing approaches. This thesis addresses these limitations and closes

those gaps for the regression testing of Mobile Applications.

Mobile Applications tend to change frequently posing challenges for software de-

velopers to use regression testing efficiently. This dissertation presents regression

162

testing approaches for FSMApp, a black box testing technique for Mobile Applica-

tions. We addressed all aspects of selective regression testing in our new selective

regression testing approach. This did not exist in the state of the art literature

yet. So far, FSMApp has not addressed regression testing in general, nor has it

addressed test case minimization, or test case prioritization in particular. In this

thesis, we developed a test case prioritization of FSMApp and a test case mini-

mization of FSMApp for Mobile Applications. We also developed guidelines on how

and when to select a particular combination of regression testing approaches. With

those guidelines, we considered all possible combinations of all types of regression

testing approaches. The summary of this dissertation is as follows:

First, we proposed selective regression testing. We extended regression testing

of FSMWeb from a web-based approach to also test Mobile Applications. Based on

the changes to the behavioral model of Mobile Applications, the original set of tests

could be classified as obsolete, retestable, and reusable. This extended approach

covered the gap resulting from obsolete tests by generating new tests to achieve the

coverage. We also determined if any parts of the modified model had not been tested

yet, and if not we generated new tests for them. This means that we addressed all

aspects of selective regression testing. We also considered the coverage criteria in

our work where we used edge coverage criteria for individual FSMs and at least

one coverage criteria for aggregating test paths. In the following, we applied our

approach to an example of a Mobile Application.

Second, we proposed a test case minimization approach. It minimized the test

cases by removing redundant tests based on concept analysis. The test case min-

imization approach for FSMApp generates a test suite T for Mobile Applications

that satisfies the test requirements based on graph coverage criteria and a test ag-

gregation criteria for its hierarchical model. Together, these constitute a set of test

163

requirements R. This approach solves the following problem: Given a test suite T

and a set of test requirements R find a minimal subset of T that covers R. The

test case minimization of the FSMApp approach for Mobile Applications is based

on concept analysis and removes redundant test cases. It explores under which con-

ditions minimization is not possible and it explores what test coverage criteria are

likely to lead to no reduction in tests. In this dissertation, we applied our approach

to an example for a Mobile Application. We were able to reduce the set of tests

without losing the coverage of all test requirements.

Third, we proposed an approach to prioritize test cases for Mobile Applications

based on input complexity. It is most desirable to select test cases that are most

likely to reveal defects in the application under test. We applied our proposed

approach of prioritizing test cases to prioritize the test cases that we obtained from

the test minimization approach on a simple Mobile App as a proof of concept. We

prioritized tests based on the input complexity, since a higher complexity of inputs

often is associated with a more complex functionality which in turn would make it

more fault-prone.

Next, in this dissertation, we proposed guidelines for combining the three types

of regression testing (selective, minimization, and prioritization). Regression testing

is an important activity in software maintenance and software enhancement as it

can help developers to determine if changes made to the system are handled appro-

priately without compromising efficiency. While not employed often, it is possible to

combine several regression testing techniques. Combining them can lead to a more

efficient and effective regression test suite. The three types of regression testing can

be combined in four different ways: Three ways to combine two of the approaches

and one way to combine all three. However, to efficiently and effectively employ

regression testing, it is crucial to select the appropriate combination for the soft-

164

ware that is to be tested. The guidelines in this dissertation address exactly that.

For example, the expected quality of the software, the kind of changes made, or the

criticality of the software heavily influence which strategies to combine and in what

order. The guidelines presented in this dissertation combine regression testing ap-

proaches systematically. Additional to these conditions (software maintenance pro-

cess, software enhancements, and the types of maintenance), we outlined all possible

situations that can occur and showed how each of them influences which combination

to use. We present recommendations for combining regression testing approaches

and describe situations of different coverage criteria, the impact of changes, time

constraints, available resources, levels of risk failure, and confidence in the quality

of the software. All those factors influence which combination of regression testing

approaches can be used to be most effective and efficient. These situations are used

as guidelines to employ different combinations of regression testing approaches and

can be applied directly by developers and testers.

Finally, we validated the proposed approaches and the guidelines for combining

regression testing approaches with a case study. We applied our guidelines to a

Mobile Application (DiscoverU). DiscoverU is a mobile application in progress and

was not yet released at the time of writing this dissertation. Applying our proposed

approach to a mobile application in progress enabled us to use test-driven software

development and show the different situations that can occur in a real-world exam-

ple. It also highlighted the situations that influence which combination of regression

testing approaches is used efficiently and effectively to test Mobile Applications while

they are in the ongoing software development process. This posed several challenges,

that are also present in industry software development and testing. For example,

often there is limited access to software in the development process and developers

are not always willing to show all their code in the process. This has the consequence

165

that these approaches are tested on final software, which often has been extensively

tested otherwise before release, and in this case, testing a final version does not

highlight all the situations that combined regression testing could discover and also

problems it could alleviate early in the development process. This dissertation used

the case study to investigate the applicability, efficiency, and effectiveness of our

proposed regression testing approaches and our guidelines for combining regression

testing approaches for ongoing software development. We found that the combina-

tion of testing approaches helps to make the testing more efficient as less time is

needed to test, and more effective as defects are caught earlier in the development

process. In addition, we were able to show in our approach the portability from

a web application to a Mobile Application. In the case study, we showed this by

testing the software first on a simulation environment (desktop) and then, after the

developer team made adaptive maintenance, we tested the software on a mobile

device (Android).

We conclude that the use of FSMApp is a contribution to the body of knowledge

of Model-based regression testing that has been lacking so far in the literature.

FSMApp can be applied effectively and efficiently to minimize and prioritize test

cases for Mobile Applications. We were able to show that the use of a combination of

regression testing approaches had a positive impact on saving time and that defects

can be identified early in the software development process.

166

Bibliography

[1] Android. https://www.android.com/. Accessed: 2021-10-16.

[2] Zeinab Abdalla, Anneliese Andrews, and Ahmed Alhaddad. Regression testing

of mobile apps. In 2021 International Conference on Computational Science

and Computational Intelligence (CSCI), pages 1912–1917. IEEE, 2021.

[3] Zeinab Abdalla, Anneliese Andrews, and Ahmed Alhaddad. Test minimization

for mobile app testing with fsmapp. In 2022 International Conference on

Computer Science, Computer Engineering, & Applied Computing (CSCE’22).

Springer, 2022.

[4] Zeinab Abdalla, Anneliese Andrews, and Kerstin Haring. Guidelines for com-

bining regression testing approaches. In 2022 International Conference on

Computational Science and Computational Intelligence (CSCI). IEEE, 2022.

[5] Zeinab Abdalla, Kerstin Haring, and Anneliese Andrews. Test case prioriti-

zation for mobile apps. In 2022 International Conference on Computational

Science and Computational Intelligence (CSCI). IEEE, 2022.

[6] Hira Agrawal. Efficient coverage testing using global dominator graphs. In

Proceedings of the 1999 ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering, pages 11–20, 1999.

167

[7] Hiralal Agrawal. Dominators, super blocks, and program coverage. In Pro-

ceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 25–34, 1994.

[8] Ahmed Alhaddad, Anneliese Andrews, and Zeinab Abdalla. Fsmapp: Testing

mobile apps. In Advancing in Computers. Elsevier, 2021.

[9] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. Gui

crawling-based technique for android mobile application testing. In 2011 IEEE

Fourth International Conference on Software Testing, Verification and Vali-

dation Workshops, pages 252–261. IEEE, 2011.

[10] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio Tramontana. A gui

crawling-based technique for android mobile application testing. In 2011 IEEE

Fourth International Conference on Software Testing, Verification and Vali-

dation Workshops, pages 252–261, 2011.

[11] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Salvatore

De Carmine, and Atif M Memon. Using gui ripping for automated testing of

android applications. In 2012 Proceedings of the 27th IEEE/ACM Interna-

tional Conference on Automated Software Engineering, pages 258–261. IEEE,

2012.

[12] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge

University Press., 32 Avenue of the Americas, New York, NY 10013, USA,

first edition, 2008.

[13] Jeff Anderson, Saeed Salem, and Hyunsook Do. Improving the effectiveness of

test suite through mining historical data. In Proceedings of the 11th Working

Conference on Mining Software Repositories, pages 142–151, 2014.

168

[14] Anneliese Andrews, Seif Azghandi, and Orest Pilskalns. Regression testing of

web applications using fsmweb. In Proceedings of the International Conference

on Software Engineering and Applications, page 14, 2010.

[15] Anneliese Andrews and Hyunsook Do. Trade-off analysis for selective versus

brute-force regression testing in fsmweb. In 2014 IEEE 15th International

Symposium on High-Assurance Systems Engineering, pages 184–192. IEEE,

2014.

[16] Anneliese A Andrews, Jeff Offutt, and Roger T Alexander. Testing web appli-

cations by modeling with fsms. Software & Systems Modeling, 4(3):326–345,

2005.

[17] Anneliese A Andrews, Jeff Offutt, Curtis Dyreson, Christopher J Mallery,

Kshamta Jerath, and Roger Alexander. Scalability issues with using fsmweb

to test web applications. Information and Software Technology, 52(1):52–66,

2010.

[18] B Athira and Philip Samuel. Web services regression test case prioritization.

In 2010 International Conference on Computer Information Systems and In-

dustrial Management Applications (CISIM), pages 438–443. IEEE, 2010.

[19] Young-Min Baek and Doo-Hwan Bae. Automated model-based android gui

testing using multi-level gui comparison criteria. In Proceedings of the 31st

IEEE/ACM International Conference on Automated Software Engineering,

pages 238–249, 2016.

[20] Fevzi Belli, Mubariz Eminov, and Nida Gökçe. Coverage-oriented, prioritized

testing–a fuzzy clustering approach and case study. In Latin-American Sym-

posium on Dependable Computing, pages 95–110. Springer, 2007.

169

[21] Fevzi Belli, Mubariz Eminov, and Nida Gokce. Model-based test prioritizing–a

comparative soft-computing approach and case studies. In Annual Conference

on Artificial Intelligence, pages 427–434. Springer, 2009.

[22] Garrett Birkhoff. Lattice theory, volume 25. American Mathematical Soc.,

1940.

[23] Lionel C Briand, Yvan Labiche, Leeshawn O’Sullivan, and Michal M Sówka.

Automated impact analysis of uml models. Journal of Systems and Software,

79(3):339–352, 2006.

[24] Lionel C Briand, Yvan Labiche, and George Soccar. Automating impact anal-

ysis and regression test selection based on uml designs. In International Con-

ference on Software Maintenance, 2002. Proceedings., pages 252–261. IEEE,

2002.

[25] Emanuela G Cartaxo, Patrícia DL Machado, and Francisco G Oliveira Neto.

On the use of a similarity function for test case selection in the context of

model-based testing. Software Testing, Verification and Reliability, 21(2):75–

100, 2011.

[26] Cagatay Catal and Deepti Mishra. Test case prioritization: a systematic

mapping study. Software Quality Journal, 21(3):445–478, 2013.

[27] Nana Chang, Linzhang Wang, Yu Pei, Subrota K. Mondal, and Xuandong

Li. Change-based test script maintenance for android apps. In 2018 IEEE

International Conference on Software Quality, Reliability and Security (QRS),

pages 215–225, 2018.

170

[28] L. Chen, Z. Wang, L. Xu, H. Lu, and B. Xu. Test case prioritization for web

service regression testing. In 2010 Fifth IEEE International Symposium on

Service Oriented System Engineering, pages 173–178, 2010.

[29] Lin Chen, Ziyuan Wang, Lei Xu, Hongmin Lu, and Baowen Xu. Test case

prioritization for web service regression testing. In 2010 Fifth IEEE Inter-

national Symposium on Service Oriented System Engineering, pages 173–178.

IEEE, 2010.

[30] Yanping Chen, Robert L Probert, and D Paul Sims. Specification-based re-

gression test selection with risk analysis. In Proceedings of the 2002 Conference

of the Centre for Advanced Studies on Collaborative research, page 1, 2002.

[31] Shauvik Choudhary, Alessandra Gorla, and Alessandro Orso. Automated test

input generation for android: are we there yet? In Proceedings of the 30th

IEEE/ACM International Conference on Automated Software Engineering,

ASE ’15, pages 429–440. IEEE Press, 2015.

[32] Vasek Chvatal. A greedy heuristic for the set-covering problem. Mathematics

of Operations Research, 4(3):233–235, 1979.

[33] Ian G Clifton. Android user interface design: Implementing Material Design

for Developers. Addison-Wesley Professional, 2015.

[34] SES Committee et al. Ieee standard for software maintenance. IEEE Std,

pages 1219–1998, 1998.

[35] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms second edition. The Knuth-Morris-Pratt Algorithm,

2001.

171

[36] Pedro Costa, Ana CR Paiva, and Miguel Nabuco. Pattern based gui testing

for mobile applications. In 2014 9th International Conference on the Quality

of Information and Communications Technology, pages 66–74. IEEE, 2014.

[37] Guilherme de Cleva Farto and Andre Takeshi Endo. Evaluating the model-

based testing approach in the context of mobile applications. Electronic Notes

in Theoretical Computer Science, 314:3–21, 2015.

[38] Figma Design. Figma: the collaborative interface design tool.(2017). Retrieved

September, 17:2017, 2017.

[39] Arilo C Dias-Neto and Guilherme H Travassos. A picture from the model-

based testing area: concepts, techniques, and challenges. In Advances in

Computers, volume 80, pages 45–120. Elsevier, 2010.

[40] Hyunsook Do and Gregg Rothermel. A controlled experiment assessing test

case prioritization techniques via mutation faults. In 21st IEEE International

Conference on Software Maintenance (ICSM’05), pages 411–420. IEEE, 2005.

[41] Quan Do, Guowei Yang, Meiru Che, Darren Hui, and Jefferson Ridgeway.

Regression test selection for android applications. In 2016 IEEE/ACM Inter-

national Conference on Mobile Software Engineering and Systems (MOBILE-

Soft), pages 27–28, 2016.

[42] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G Mali-

shevsky. Selecting a cost-effective test case prioritization technique. Software

Quality Journal, 12(3):185–210, 2004.

172

[43] Juhan Ernits, Rivo Roo, Jonathan Jacky, and Margus Veanes. Model-based

testing of web applications using nmodel. In Testing of Software and Com-

munication Systems, pages 211–216. Springer, 2009.

[44] Qurat-ul-ann Farooq, Muhammad Zohaib Z Iqbal, Zafar I Malik, and Aamer

Nadeem. An approach for selective state machine based regression testing. In

Proceedings of the 3rd International Workshop on Advances in Model-Based

Testing, pages 44–52, 2007.

[45] Elizabeta Fourneret, Jérôme Cantenot, Fabrice Bouquet, Bruno Legeard, and

Julien Botella. Setgam: Generalized technique for regression testing based on

uml/ocl models. In 2014 Eighth International Conference on Software Security

and Reliability (SERE), pages 147–156. IEEE, 2014.

[46] Boni García and Juan Carlos Dueñas. Automated functional testing based on

the navigation of web applications. arXiv preprint arXiv:1108.2357, 2011.

[47] Deepak Garg and Amitava Datta. Parallel execution of prioritized test cases

for regression testing of web applications. In Proceedings of the Thirty-Sixth

Australasian Computer Science Conference-Volume 135, pages 61–68, 2013.

[48] Shankar Garg. Getting started with appium. In Appium Recipes, pages 1–18.

Springer, 2016.

[49] Xiaobo Han, Hongwei Zeng, and Honghao Gao. A heuristic model-based test

prioritization method for regression testing. In 2012 International Symposium

on Computer, Consumer and Control, pages 886–889. IEEE, 2012.

173

[50] M Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. A methodology for con-

trolling the size of a test suite. ACM Transactions on Software Engineering

and Methodology (TOSEM), 2(3):270–285, 1993.

[51] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Reducing the cost of model-

based testing through test case diversity. In IFIP International Conference on

Testing Software and Systems, pages 63–78. Springer, 2010.

[52] Hadi Hemmati, Andrea Arcuri, and Lionel Briand. Empirical investigation of

the effects of test suite properties on similarity-based test case selection. In

2011 Fourth IEEE International Conference on Software Testing, Verification

and Validation, pages 327–336. IEEE, 2011.

[53] Hadi Hemmati, Lionel Briand, Andrea Arcuri, and Shaukat Ali. An enhanced

test case selection approach for model-based testing: an industrial case study.

In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on

Foundations of Software Engineering, pages 267–276, 2010.

[54] Shan-Shan Hou, Lu Zhang, Tao Xie, Hong Mei, and Jia-Su Sun. Applying

interface-contract mutation in regression testing of component-based software.

In 2007 IEEE International Conference on Software Maintenance, pages 174–

183. IEEE, 2007.

[55] Chin-Yu Huang, Jun-Ru Chang, and Yung-Hsin Chang. Design and analysis

of gui test-case prioritization using weight-based methods. Journal of Systems

and Software, 83(4):646–659, 2010.

[56] Sheng Huang, Yang Chen, Jun Zhu, Zhong Jie Li, and Hua Fang Tan. An

optimized change-driven regression testing selection strategy for binary java

174

applications. In Proceedings of the 2009 ACM Symposium on Applied Com-

puting, pages 558–565, 2009.

[57] Muhammad Zohaib Z Iqbal, Zafar I Malik, Matthias Riebisch, et al. A model-

based regression testing approach for evolving software systems with flexible

tool support. In 2010 17th IEEE International Conference and Workshops on

Engineering of Computer Based Systems, pages 41–49. IEEE, 2010.

[58] Bo Jiang, Yu Wu, Yongfei Zhang, Zhenyu Zhang, and W.K. Chan. Retest-

droid: Towards safer regression test selection for android application. In 2018

IEEE 42nd Annual Computer Software and Applications Conference (COMP-

SAC), volume 01, pages 235–244, 2018.

[59] Yiming Jing, Gail-Joon Ahn, and Hongxin Hu. Model-based conformance test-

ing for android. In International Workshop on Security, pages 1–18. Springer,

2012.

[60] Bogdan Korel, George Koutsogiannakis, and Luay H Tahat. Model-based

test prioritization heuristic methods and their evaluation. In Proceedings of

the 3rd International Workshop on Advances in Model-Based Testing, pages

34–43, 2007.

[61] Bogdan Korel, George Koutsogiannakis, and Luay H Tahat. Application of

system models in regression test suite prioritization. In 2008 IEEE Interna-

tional Conference on Software Maintenance, pages 247–256. IEEE, 2008.

[62] Bogdan Korel, Luay Ho Tahat, and Mark Harman. Test prioritization using

system models. In 21st IEEE International Conference on Software Mainte-

nance (ICSM’05), pages 559–568. IEEE, 2005.

175

[63] Debasish Kundu, Monalisa Sarma, Debasis Samanta, and Rajib Mall. Sys-

tem testing for object-oriented systems with test case prioritization. Software

Testing, Verification and Reliability, 19(4):297–333, 2009.

[64] Remo Lachmann, Sascha Lity, Mustafa Al-Hajjaji, Franz Fürchtegott, and

Ina Schaefer. Fine-grained test case prioritization for integration testing of

delta-oriented software product lines. In Proceedings of the 7th International

Workshop on Feature-Oriented Software Development, pages 1–10, 2016.

[65] Nozdrina Larysa and Savka Marta. Design thinking approaches in it projects.

In CEUR Workshop Proceedings, pages 45–47, 2019.

[66] Franck Lebeau, Bruno Legeard, Fabien Peureux, and Alexandre Vernotte.

Model-based vulnerability testing for web applications. In 2013 IEEE Sixth In-

ternational Conference on Software Testing, Verification and Validation Work-

shops, pages 445–452. IEEE, 2013.

[67] David Leon and Andy Podgurski. A comparison of coverage-based and

distribution-based techniques for filtering and prioritizing test cases. In 14th

International Symposium on Software Reliability Engineering, 2003. ISSRE

2003., pages 442–453. IEEE, 2003.

[68] Hareton KN Leung and Lee J White. A cost model to compare regression test

strategies. In ICSM, volume 91, pages 201–208, 1991.

[69] Harry R Lewis. Michael r. πgarey and david s. johnson. computers and in-

tractability. a guide to the theory of np-completeness. wh freeman and com-

pany, san francisco1979, x+ 338 pp. The Journal of Symbolic Logic, 48(2):498–

500, 1983.

176

[70] Lu Lu, Yulong Hong, Ying Huang, Kai Su, and Yuping Yan. Activity page

based functional test automation for android application. In 2012 Third World

Congress on Software Engineering, pages 37–40. IEEE, 2012.

[71] Pradeep Macharla. Working with appium. In Android Continuous Integration,

pages 95–115. Springer, 2017.

[72] Naghmeh Mahmoodian, Rusli Abdullah, and Masrah Azrifah Azim Murad.

Text-based classification incoming maintenance requests to maintenance type.

In 2010 International Symposium on Information Technology, volume 2, pages

693–697. IEEE, 2010.

[73] Nashat Mansour, Husam Takkoush, and Ali Nehme. Uml-based regression

testing for oo software. Journal of Software Maintenance and Evolution: Re-

search and Practice, 23(1):51–68, 2011.

[74] Alessandro Marchetto, Paolo Tonella, and Filippo Ricca. State-based testing

of ajax web applications. In 2008 1st International Conference on Software

Testing, Verification, and Validation, pages 121–130. IEEE, 2008.

[75] Leonardo Mariani, Sofia Papagiannakis, and Mauro Pezze. Compatibility and

regression testing of cots-component-based software. In 29th International

Conference on Software Engineering (ICSE’07), pages 85–95. IEEE, 2007.

[76] Martina Marré and Antonia Bertolino. Using spanning sets for coverage test-

ing. IEEE Transactions on Software Engineering, 29(11):974–984, 2003.

[77] Abel Méndez Porras, Christian Ulises Quesada López, and Marcelo Jenk-

ins Coronas. Automated testing of mobile applications: A systematic map

and review. 2015.

177

[78] Huai-Kou Miao, Sheng-Bo Chen, and Hong-Wei Zeng. Model-based test-

ing for web applications. Jisuanji Xuebao(Chinese Journal of Computers),

34(6):1012–1028, 2011.

[79] Bernard Monjardet. The presence of lattice theory in discrete problems of

mathematical social sciences. why. Mathematical Social Sciences, 46(2):103–

144, 2003.

[80] Andrey Morozov, Kai Ding, Tao Chen, and Klaus Janschek. Test suite priori-

tization for efficient regression testing of model-based automotive software. In

2017 International Conference on Software Analysis, Testing and Evolution

(SATE), pages 20–29. IEEE, 2017.

[81] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. Software testing

of mobile applications: Challenges and future research directions. In 2012 7th

International Workshop on Automation of Software Test (AST), pages 29–35.

IEEE, 2012.

[82] Miguel Nabuco, Ana CR Paiva, Rui Camacho, and João Pascoal Faria. Infer-

ring ui patterns with inductive logic programming. In 2013 8th Iberian Con-

ference on Information Systems and Technologies (CISTI), pages 1–5. IEEE,

2013.

[83] Cu D Nguyen, Alessandro Marchetto, and Paolo Tonella. Combining model-

based and combinatorial testing for effective test case generation. In Proceed-

ings of the 2012 International Symposium on Software Testing and Analysis,

pages 100–110, 2012.

178

[84] Duc Hoai Nguyen, Paul Strooper, and Jörn Guy Süß. Automated function-

ality testing through guis. In Proceedings of the Thirty-Third Australasian

Conferenc on Computer Science-Volume 102, pages 153–162. 2010.

[85] Jeff Offutt, Shaoying Liu, Aynur Abdurazik, and Paul Ammann. Generating

test data from state-based specifications. Software Testing, Verification and

Reliability, 13(1):25–53, 2003.

[86] Alessandro Orso, Hyunsook Do, Gregg Rothermel, Mary Jean Harrold, and

David S Rosenblum. Using component metadata to regression test component-

based software. Software Testing, Verification and Reliability, 17(2):61–94,

2007.

[87] Tuomas Pajunen, Tommi Takala, and Mika Katara. Model-based testing with

a general purpose keyword-driven test automation framework. In 2011 IEEE

Fourth International Conference on Software Testing, Verification and Vali-

dation Workshops, pages 242–251. IEEE, 2011.

[88] Anjaneyulu Pasala, YLH Lew Yaw Fung, Fady Akladios, G Appala Raju, and

Ravi Prakash Gorthi. Selection of regression test suite to validate software

applications upon deployment of upgrades. In 19th Australian Conference on

Software Engineering (aswec 2008), pages 130–138. IEEE, 2008.

[89] Thomas M Pigoski. Practical Software Maintenance: Best Practices for Man-

aging your Software Investment. Wiley Publishing, 1996.

[90] Lihua Ran, Curtis Dyreson, Anneliese Andrews, Renée Bryce, and Christo-

pher Mallery. Building test cases and oracles to automate the testing of web

database applications. Information and Software Technology, 51(2):460–477,

2009.

179

[91] Margaret P Rayman. Selenium and human health. The Lancet,

379(9822):1256–1268, 2012.

[92] Hassan Reza, Kirk Ogaard, and Amarnath Malge. A model based testing

technique to test web applications using statecharts. In Fifth International

Conference on Information Technology: New Generations (itng 2008), pages

183–188. IEEE, 2008.

[93] Kenneth H Rosen and Kamala Krithivasan. Discrete Mathematics and Its

Applications: With Combinatorics and Graph Theory. Tata McGraw-Hill Ed-

ucation, 2012.

[94] Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection

techniques. IEEE Transactions on Software Engineering, 22(8):529–551, 1996.

[95] Gregg Rothermel, Mary Jean Harrold, Jeffery Von Ronne, and Christie Hong.

Empirical studies of test-suite reduction. Software Testing, Verification and

Reliability, 12(4):219–249, 2002.

[96] Gregg Rothermel, Roland H Untch, Chengyun Chu, and Mary Jean Harrold.

Test case prioritization: An empirical study. In Proceedings IEEE Interna-

tional Conference on Software Maintenance-1999 (ICSM’99).’Software Main-

tenance for Business Change’(Cat. No. 99CB36360), pages 179–188. IEEE,

1999.

[97] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.

Prioritizing test cases for regression testing. IEEE Transactions on Software

Engineering, 27(10):929–948, 2001.

180

[98] Mehmet Sahinoglu, Koray Incki, and Mehmet S Aktas. Mobile application

verification: a systematic mapping study. In International Conference on

Computational Science and Its Applications, pages 147–163. Springer, 2015.

[99] Sreedevi Sampath, Valentin Mihaylov, Amie Souter, and Lori Pollock. A

scalable approach to user-session based testing of web applications through

concept analysis. In Proceedings. 19th International Conference on Automated

Software Engineering, 2004., pages 132–141. IEEE, 2004.

[100] PG Sapna and Hrushikesha Mohanty. Prioritization of scenarios based on uml

activity diagrams. In 2009 First International Conference on Computational

Intelligence, Communication Systems and Networks, pages 271–276. IEEE,

2009.

[101] PG Sapna and Hrusikesha Mohanty. Prioritizing use cases to aid ordering of

scenarios. In 2009 Third UKSim European Symposium on Computer Modeling

and Simulation, pages 136–141. IEEE, 2009.

[102] Michael Siff and Thomas Reps. Identifying modules via concept analysis.

IEEE Transactions on Software Engineering, 25(6):749–768, 1999.

[103] Roberto S Silva Filho, Christof J Budnik, William M Hasling, Monica

McKenna, and Rajesh Subramanyan. Supporting concern-based regression

testing and prioritization in a model-driven environment. In 2010 IEEE 34th

Annual Computer Software and Applications Conference Workshops, pages

323–328. IEEE, 2010.

[104] Shiwangi Singh, Rucha Gadgil, and Ayushi Chudgor. Automated testing of

mobile applications using scripting technique: A study on appium. Interna-

181

tional Journal of Current Engineering and Technology (IJCET), 4(5):3627–

3630, 2014.

[105] Hema Srikanth, Mikaela Cashman, and Myra B Cohen. Test case prioritization

of build acceptance tests for an enterprise cloud application: An industrial case

study. Journal of Systems and Software, 119:122–135, 2016.

[106] Praveen Ranjan Srivastava, Mahesh Ray, Julian Dermoudy, Byeong-Ho Kang,

and Tai-hoon Kim. Test case minimization and prioritization using cmimx

technique. In International Conference on Advanced Software Engineering

and Its Applications, pages 25–33. Springer, 2009.

[107] Shiming Sun, Xiuping Hou, Can Gao, and Linlin Sun. Research on optimiza-

tion scheme of regression testing. In 2013 Ninth International Conference on

Natural Computation (ICNC), pages 1628–1632. IEEE, 2013.

[108] Tommi Takala, Mika Katara, and Julian Harty. Experiences of system-level

model-based gui testing of an android application. In 2011 Fourth IEEE Inter-

national Conference on Software Testing, Verification and Validation, pages

377–386. IEEE, 2011.

[109] Sriraman Tallam and Neelam Gupta. A concept analysis inspired greedy al-

gorithm for test suite minimization. ACM SIGSOFT Software Engineering

Notes, 31(1):35–42, 2005.

[110] Wei-Tek Tsai, Xinyu Zhou, Raymond A Paul, Yinong Chen, and Xiaoying

Bai. A coverage relationship model for test case selection and ranking for

multi-version software. In High Assurance Services Computing, pages 285–

311. Springer, 2009.

182

[111] Inayat ur Rehman, Saif Ur Rehman Malik, et al. The impact of test case reduc-

tion and prioritization on software testing effectiveness. In 2009 International

Conference on Emerging Technologies, pages 416–421. IEEE, 2009.

[112] Mark Utting, Alexander Pretschner, and Bruno Legeard. A taxonomy of

model-based testing approaches. Software Testing, Verification and Reliability,

22(5):297–312, 2012.

[113] Anneliese von Mayrhauser and Ning Zhang. Automated regression testing us-

ing dbt and sleuth. Journal of Software Maintenance: Research and Practice,

11(2):93–116, 1999.

[114] Anthony I Wasserman. Software engineering issues for mobile application

development. In Proceedings of the FSE/SDP Workshop on Future of Software

Engineering Research, pages 397–400, 2010.

[115] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Reg-

nell, and Anders Wesslén. Experimentation in software engineering. Springer

Science & Business Media, 2012.

[116] W Eric Wong, Joseph R Horgan, Saul London, and Aditya P Mathur. Effect

of test set minimization on fault detection effectiveness. Software: Practice

and Experience, 28(4):347–369, 1998.

[117] Samer Zein, Norsaremah Salleh, and John Grundy. A systematic mapping

study of mobile application testing techniques. Journal of Systems and Soft-

ware, 117:334–356, 2016.

183

[118] Ke Zhai, Bo Jiang, and WK Chan. Prioritizing test cases for regression test-

ing of location-based services: Metrics, techniques, and case study. IEEE

Transactions on Services Computing, 7(1):54–67, 2012.

[119] Lingming Zhang, Ji Zhou, Dan Hao, Lu Zhang, and Hong Mei. Jtop: Manag-

ing junit test cases in absence of coverage information. In 2009 IEEE/ACM

International Conference on Automated Software Engineering, pages 677–679.

IEEE, 2009.

[120] Lingming Zhang, Ji Zhou, Dan Hao, Lu Zhang, and Hong Mei. Prioritizing

junit test cases in absence of coverage information. In 2009 IEEE International

Conference on Software Maintenance, pages 19–28. IEEE, 2009.

184

Appendix A

Components of Android Apps

Table A.1 summarizes the components for Android Apps [8]. LAPs are at the

lowest model level. They can be an input type as defined in Table A.1 or a com-

ponent. For example, "card" is a component. A component can contain another

component. Column 1 shows the number of components. The (c) mark means that

the component can contain another component. Column 2 of Table A.1 shows the

name of the component. Column 3 shows the interface controls (i.e. the input types

for the mobile application or for the mobile component). Column 4 shows the input

constraints and transition information. Column 5 shows the effect of executing the

component, when entering inputs that satisfy the input constraint. The last column

represents the types of interface control: Text and Non-Text.

185

Table (A.1) Components of Mobile Application (LAPs)

No Components Interface Controls Actions Effect Input

Type

1
Bottom sheets

A. Button A. R(Button, click) Non-

Text

B. Link B. R(Button = X ,

click)

Close

2

Buttons

A. Floating action

button

A. R(Content,

click)

Search Non-

Text

B. Raised button B. R(Content,

click)

Save

C. Flat button C. R(Button, click)

D. R(Button, click) Show list or

select button

3

(c)

Cards A. Image A. R(Image, click) Display Text

B. Video B. R(Image, click) Change size

C. Textbox C. R(Video, click) Run

D. Text Area D. R(Textbox) Display text

E. Button E. R(Text Area) Display

many lines

of text

F. Links F. R(Button, click)

G. R(Link, click) Show other

website or

page

4

(c) Chips

A. Textbox A. R(Enter text) Save Text

Continued on next page

186

Table A.1 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

B. Cards B. R(Display con-

tent, choose)

Show details

C. R(Click on chip) Display card

5

(c)

Data Tables

A. Checkbox A. R(Select, select

dialog, add con-

tent)

Save Text

B. Link B. R(Select, click

button)

Delete Non-

Text

C. Textbox C. R(Click link) Transfer

D. Menu D. R(Select) Show card

E. Button

F. Card

6

(c)

Dialogs A. Button A. R(Show warn-

ing, click close)

Text

B. Textbox B. R(Select dialog,

input content)

Save Non-

Text

C. Date picker C. R(Select dialog,

click date picker,

choose date, close)

Save

D. Checkbox D. R(Select dialog,

click Time picker,

choose date, close)

Save

E. Time picker E. R(Click menu,

choose from list)

Close

F. Radio Box

G. Menu

Continued on next page

187

Table A.1 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

H. Bar slide input

7
Dividers

A. Images A. R(Show Divider) Show images Text

B. R(Show Divider) Show con-

tent

8

Grid lists

A. Images A. R(Select image,

zoom in)

Show images

list

Text

B. Text B. R(Select grid

list, scrolling)

Show text

list

C. R(Select title,

sort)

Sort text

9
Lists

A. images A. R(Select title,

sort)

Show title

list

Text

B. Text Sort title list

10

(c)

Menus

A. Button A. R(Select text,

copy)

Show list in a

menus

Text

B. Text B. R(Select com-

bobox, choose con-

tent)

Links of but-

ton to an-

other pages

Non-

Text

C. Combobox C. R(Select text,

write content)

D. Checkbox

E. Switch

F. Reorder

G. Ex-

pand/collapse

H. Leave-behinds

Continued on next page

188

Table A.1 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

11

(c)
Pickers

A. Dialog A. R(Select dialog,

choose info)

Save Non-

Text

B. R(Select dialog,

cancel)

12 Progress &

activity

A. Button A. R(Click button) Loading Non-

Text

13
Selection

controls

A. Checkbox A. R(Click check-

box, change behav-

ior of page)

Change the

behavior of

the page

Non-

Text

B. Radio Buttons B. R(Click radio

button, change be-

havior of page)

C. On/Off switches C. R(Change

switch, change

behavior of page)

14 Sliders A Slide bar A. R(Change slider,

effect on page)

Insert input

Change be-

havior of the

page

Non-

Text

15 Snackbars &

toasts

A. Button A. R(Click button,

display change)

Dismiss or

cancel the

action

Text

B. Text B. R(Show text) Non-

Text

Continued on next page

189

Table A.1 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

16
Subheaders

A. Button A. R(Click button,

change page)

Filtering or

sorting the

content

Text

B. Text

17

Steppers

A. Button A. R(Click button

= next, next step)

Show feed-

back of the

process

Non-

Text

B. R(Click button

= previous, previ-

ous step)

C. R(Click button

= cancel, cancel

process)

18
Tabs

A. Dropdown Menu A. R(Select tab) Show con-

tent

Text

B. Text label B. R(Select tab) Show drop

menu

19 Toolbars A. Button A. R(Click tool-

bars, display list,

click button)

Display the

list

Non-

Text

20 Tooltips A. Images A. R(Hover images) Show text Text

21

Text fields

A. Single-line text

field

A. R(Content,

click)

Save the con-

tent

Text

B. Floating Label

C. Multi-line text

field

Continued on next page

190

Table A.1 – continued from previous page

No Components Interface Controls Actions Effect Input

Type

D. Full-width field

text field with

Character counter

E. Multi-line with

character counter

F. Full-width text

field with character

counter

G. Auto-complete

text field

H. Inset auto-

complete

I. Full-width inline

auto-complete

J. In-line auto-

complete

191

Appendix B

DiscoverU Case Study Screens

Figure (B.1) Entry Page for DiscoverU App

192

Figure (B.2) Main Screens for the DiscoverU App

193

Figure (B.3) How are you feeling Screens for DiscoverU App

Figure (B.4) Free Write Screens for DiscoverU App

194

Figure (B.5) Demo Theme for DiscoverU App

Figure (B.6) Explore Screens for DiscoverU App

195

Figure (B.7) Journey Screens for DiscoverU App

196

Figure (B.8) Backpack Screens for DiscoverU App

197

Figure (B.9) Menu Main Screens for DiscoverU App

Figure (B.10) Sub-Menu (Free Write) Screens for DiscoverU App

198

Figure (B.11) Sub-Menu (Stress Log) Screens for DiscoverU App

Figure (B.12) Sub-Menu (Grief Journal) Screens for DiscoverU App

Figure (B.13) Sub-Menu (Emotion Reflections) Screens for DiscoverU App

199

Figure (B.14) Sub-Menu (Goals) Screens for DiscoverU App

Figure (B.15) Sub-Menu (Check-ins) Screens for DiscoverU App

200

Figure (B.16) Menu (Daily Check-in, Settings, Logout) Screens for DiscoverU App

201

Appendix C

DiscoverU Mobile App

C.1 Clusters and Nodes

Table (C.1) Clusters and Nodes For Main

Node Cluster/LAP Explanation

Main Main Page Main Screen of the mobile app

Basecamp Basecamp Page Check in feeling, free write, demo

theme

Explore Explore Page Explore the content and filter all

content

Journey Journey Page Show all journeys to learn from them

Backpack Backpack Page Show the personal favorites, trails

rewards, tools, history, and extra

steps

Menu Menu List Show list of services that user can do

Exit Exit app Exit the mobile application

202

Table (C.2) Clusters and Nodes For Basecamp
Node Cluster/LAP Explanation

Basecamp Basecamp Page Connection from main page
How are feeling Mood check in Infor-

mation
Page related to feeling infor-
mation

Free Write Add Free Write Page Page related to take min-
utes to free write in your
journal

Demo Theme Change Demo
Theme

Change the app color

Main Exit To main page Return to main page of mo-
bile application

Table (C.3) Clusters and Nodes For Explore
Node Cluster/LAP Explanation

Explore Explore Page Connection from main page
All Content All Content Page Page related to all activities

that pushed by psychology
team

Content Content Page Page related to types of activ-
ities

Cancel Cancel Cancel content
Main Exit To main page Return to main page of mobile

application

Table (C.4) Clusters and Nodes For Journey
Node Cluster/LAP Explanation

Journey Journey Connection from main page
All Journeys All Journeys Page Page related to Journeys in-

formation
Main Exit To main page Return to main page of mobile

application

203

Table (C.5) Clusters and Nodes For Backpack
Node Cluster/LAP Explanation

Backpack Backpack Page Connection from main page
Favorites Favorites Page Page related to personal Fa-

vorites information
Rewards Rewards Page Page related to personal Re-

wards information
Tools Tools Page Page related to personal

Tools information
History History Page Page related to personal

History Information
Extra Steps Extra Steps Page Page related to Extra Steps

information
Main Exit To main page Return to main page of mo-

bile application

Table (C.6) Clusters and Nodes For Menu
Node Cluster/LAP Explanation
Menu Menu List Connection from main page

Resources Resources Page Page related to Resource in-
formation

Favorites Favorites Page Page related to Favorites in-
formation

Backpack Backpack Page Page related to Backpack
Tools Tools Page Page related to Tools Infor-

mation (Journeys)
Journal Journal List Page related to Sub-menu

journal
Daily Check-in Daily Check-in Page Page related to feeling infor-

mation
Settings Settings Page Page related to settings infor-

mation
Logout Logout Page Logout the app and go to en-

try page
Main Exit To main page Return to main page of mo-

bile application

204

Table (C.7) Clusters and Nodes For How are feeling
Node Cluster/LAP Explanation

How are feeling How are feeling Page Connection from main page
Check in Now Check in Now Page Page related to check in feel-

ing information
Later Today Check in Later Return to main page of How

are feeling
Main Exit To main page Return to main page of mo-

bile application

Table (C.8) Clusters and Nodes For Check in Now
Node Cluster/LAP Explanation

Check in Now Check in Now Page Connection from main page
Next Feeling information Page related to check in feel-

ing information
Main Exit To main page Return to main page of mo-

bile application

Table (C.9) Clusters and Nodes For Next
Node Cluster/LAP Explanation
Next feeling Page Connection from main

page
Done More
about feeling

Add more information Page related to tell more
about feeling

Skip Skip add more infor-
mation

Skip add more informa-
tion about feeling

Main Exit To main page Return to main page of
mobile application

Table (C.10) Clusters and Nodes For Free Write
Node Cluster/LAP Explanation

Free Write Free Write Page Connection from main page
Add FW Add Free Write Page Page related to add free

write in your journal
Delete FR Delete Free Write Page related to delete free

write
Main Exit To main page Return to main page of mo-

bile application

205

Table (C.11) Clusters and Nodes For Add Free Write
Node Cluster/LAP Explanation

Add FW Add FW Page Connection from main
page

Adding FW Add FW information Submit free write infor-
mation

Delete Adding Cancel Adding FW
information

Cancel free write infor-
mation

Main Exit To main page Return to main page of
mobile application

Table (C.12) Clusters and Nodes For Delete
Node Cluster/LAP Explanation
Delete Delete Page Connection from main page

Delete FW Delete free write Delete free write informa-
tion

Cancel Cancel Delete FW Cancel delete free write in-
formation

Main Exit To main page Return to main page of mo-
bile application

Table (C.13) Clusters and Nodes For All Content
Node Cluster/LAP Explanation

All Content All Content Page Connection from main
page

Filter All content to Filter Page related to filter all
content

Back Back to previous
page

Return to the previous
page

Main Exit To main page Return to main page of
mobile application

Table (C.14) Clusters and Nodes For Filter
Node Cluster/LAP Explanation
Filter Filter Page Connection from main page

Filtering Filter information Page related to filter all con-
tent information

Cancel Cancel filter Cancel filtering all content
Main Exit To main page Return to main page of mo-

bile application

206

Table (C.15) Clusters and Nodes For Journey
Node Cluster/LAP Explanation

Journey Journey Page Connection from main page
A Journey A Journey information Page related to selected

journey information
Main Exit To main page Return to main page of mo-

bile application

Table (C.16) Clusters and Nodes For All Journey
Node Cluster/LAP Explanation
All Journey All Journey Page Connection from main

page
Embark on this
Journey

Trails information Page related to trails in-
formation for this journey

Main Exit To main page Return to main page of
mobile application

Table (C.17) Clusters and Nodes For Rewords
Node Cluster/LAP Explanation

Rewords Rewords Page Connection from main page
Badges Badges information Page related to Badges in-

formation
Journey Journeys information Page related to Journeys

completed information
Trails Trails information Page related to Trails re-

wards and completed infor-
mation

Main Exit To main page Return to main page of mo-
bile application

Table (C.18) Clusters and Nodes For Resources
Node Cluster/LAP Explanation

Resources Resources Page Connection from main page
Back Back Page Back to home Page (Base-

camp page)
Main Exit To main page Return to main page of mo-

bile application

207

Table (C.19) Clusters and Nodes For Menu-Favourites
Node Cluster/LAP Explanation

Favourites Favourites Page Connection from main page
Basecamp Basecamp Page Check in feeling, free write,

and demo theme
Main Exit To main page Return to main page of mo-

bile application

Table (C.20) Clusters and Nodes For Menu-favourites-Basecamp
Node Cluster/LAP Explanation
Basecamp Basecamp Page Connection from main

page
How Are You
Feeling

How Are You Feel-
ing Page

Page related to feeling
Information

Free Write Free Write Page Page related to Free
Write Information

Demo Theme Demo Theme Page Page related to change
color the App

Main Exit To main page Return to main page of
mobile application

Table (C.21) Clusters and Nodes For Menu-Backpack
Node Cluster/LAP Explanation

Menu-Backpack Menu-Backpack
Page

Connection from main page

Backpack Backpack Page Show the personal favorites,
trails rewards, tools, his-
tory, and extra steps

Main Exit To main page Return to main page of mo-
bile application

208

Table (C.22) Clusters and Nodes For Menu-Backpack-Backpack
Node Cluster/LAP Explanation

Backpack Backpack Page Connection from main page
Favourites Favourites Page Page related to Favourites

Information
Rewards Rewards Page Page related to Rewards In-

formation
Tools Tools Page Page related to tools infor-

mation
History History Page Page related to History in-

formation
Extra Steps Extra Steps Page Page related to Extra Steps

information
Main Exit To main page Return to main page of mo-

bile application

Table (C.23) Clusters and Nodes For Menu-Tools
Node Cluster/LAP Explanation

Menu-Tools Menu-Tools Page Connection from main page
Journey Journey Page Show all journeys

Main Exit To main page Return to main page of mo-
bile application

Table (C.24) Clusters and Nodes For Menu-Tools-Journey
Node Cluster/LAP Explanation

Journey Journey Page Connection from main
page

All Journeys All Journeys Page Page related to all Jour-
neys Information

Main Exit To main page Return to main page of
mobile application

Table (C.25) Clusters and Nodes For Menu-sub-menu
Node Cluster/LAP Explanation
Sub-Menu-
Journal

Sub-Menu-Journal
Page

Connection from main
page

Journal-List Journal-List Show list of services
Main Exit To main page Return to main page of

mobile application

209

Table (C.26) Clusters and Nodes For Sub-Menu-Journal-List
Node Cluster/LAP Explanation
Journal-List Journal-List Connection from main

page
Free Write Free Write Page Page related to Free Write

Information
Stress Log Stress Log Page Page related to Stress Log

Information
Grief Journal Grief Journal Page Page related to Grief Jour-

nal Information
Emotion Reflec-
tions

Emotion Reflections
Page

Page related to Emotion
Reflections Information

Goals Goals Page Page related to Goals In-
formation

Check-ins Check-ins Page Page related to Check-ins
Information

Main Exit To main page Return to main page of
mobile application

Table (C.27) Clusters and Nodes For Sub-Free Write
Node Cluster/LAP Explanation

Free Write Free Write Page Connection from main page
Add FW Add Free Write Page Page related to add free

write in your journal
Delete FR Delete Free Write Page related to delete free

write
Main Exit To main page Return to main page of mo-

bile application

Table (C.28) Clusters and Nodes For sub-AddFreeW
Node Cluster/LAP Explanation

Add FW Add FW Page Connection from main
page

Adding FW Add FW information Submit free write infor-
mation

Delete Adding Cancel Adding FW in-
formation

Cancel free write infor-
mation

Main Exit To main page Return to main page of
mobile application

210

Table (C.29) Clusters and Nodes For Delete Free Write
Node Cluster/LAP Explanation
Delete Delete Page Connection from main page

Delete FW Delete free write Delete free write informa-
tion

Cancel Cancel Delete FW Cancel delete free write in-
formation

Main Exit To main page Return to main page of mo-
bile application

Table (C.30) Clusters and Nodes For Stress Log
Node Cluster/LAP Explanation

Stress Log Stress Log Page Connection from main page
Add Stress-Log Add Stress-Log

Page
Page related to add stress-
log in your journal

Delete Stress-Log Delete Stress-Log Page related to delete
Stress-log

Main Exit To main page Return to main page of mo-
bile application

Table (C.31) Clusters and Nodes For Add Stress-Log
Node Cluster/LAP Explanation
Add Stress-Log Add Stress-Log Page Connection from main

page
Adding Stress-
Log

Add Stress-Log infor-
mation

Submit stress-log infor-
mation

Delete Adding Cancel Adding stress-
log information

Cancel stress-log infor-
mation

Main Exit To main page Return to main page of
mobile application

Table (C.32) Clusters and Nodes For Delete Stress-Log
Node Cluster/LAP Explanation
Delete Delete Page Connection from main page

Delete Stress-Log Delete Stress-Log Delete stress-log informa-
tion

Cancel Cancel Delete
Stress-log

Cancel delete stress-log in-
formation

Main Exit To main page Return to main page of mo-
bile application

211

Table (C.33) Clusters and Nodes For Grief Journal
Node Cluster/LAP Explanation

Grief Journal Grief Journal Page Connection from main
page

Add Grief-Journal Add Grief-Journal
Page

Page related to add
Grief-Journal in your
journal

Delete Grief-Journal Delete Grief-
Journal

Page related to delete
Grief-Journal

Main Exit To main page Return to main page of
mobile application

Table (C.34) Clusters and Nodes For Add Grief-Journal
Node Cluster/LAP Explanation
Add Grief-
Journal

Add Grief-Journal Page Connection from main
page

Adding Grief-
Journal

Add Grief-Journal infor-
mation

Submit Grief-Journal
information

Delete Adding Cancel Adding Grief-
Journal information

Cancel Grief-Journal in-
formation

Main Exit To main page Return to main page of
mobile application

Table (C.35) Clusters and Nodes For Delete Grief-Journal
Node Cluster/LAP Explanation
Delete Delete Page Connection from main

page
Delete Grief-
Journal

Delete Grief-Journal Delete Grief-Journal in-
formation

Cancel Cancel Delete Grief-
Journal

Cancel delete Grief-
Journal information

Main Exit To main page Return to main page of
mobile application

212

Table (C.36) Clusters and Nodes For Emotion Reflections
Node Cluster/LAP Explanation
Emotion Reflec-
tions

Emotion Reflections
Page

Connection from main
page

Add Emotion-
Reflections

Add Emotion-
Reflection Page

Page related to add
Emotion-Reflection in
your journal

Delete Emotion-
Reflection

Delete Emotion-
Reflection

Page related to delete
Emotion-Reflection

Main Exit To main page Return to main page of
mobile application

Table (C.37) Clusters and Nodes For Add Emotion-Reflection
Node Cluster/LAP Explanation
Add Emotion-
Reflection

Add Emotion-
Reflection Page

Connection from main
page

Adding
Emotion-
Reflection

Add Emotion-
Reflection information

Submit Emotion-
Reflection information

Delete Adding Cancel Adding
Emotion-Reflection
information

Cancel Emotion-
Reflection information

Main Exit To main page Return to main page of
mobile application

Table (C.38) Clusters and Nodes For Delete Emotion-Reflection
Node Cluster/LAP Explanation
Delete Delete Page Connection from main

page
Delete Emotion-
Reflection

Delete Emotion-
Reflection

Delete Emotion-
Reflection information

Cancel Cancel Delete
Emotion-Reflection

Cancel delete Emotion-
Reflection information

Main Exit To main page Return to main page of
mobile application

213

Table (C.39) Clusters and Nodes For Check-ins
Node Cluster/LAP Explanation

Check-ins Check-ins Page Connection from main
page

Daily-Check-ins Daily-Check-ins
Page

Page related to weekly
Daily-Check-ins in your
journal

Main Exit To main page Return to main page of
mobile application

Table (C.40) Clusters and Nodes For Week-Check-ins
Node Cluster/LAP Explanation

Daily-Check-ins Daily-Check-ins
Page

Connection from main
page

Week-Check-ins Week-Check-ins In-
formation

Page related to Check-
ins responses to selected
rang week in your jour-
nal

Main Exit To main page Return to main page of
mobile application

Table (C.41) Clusters and Nodes For Menu-Daily Check-in
Node Cluster/LAP Explanation

Daily Check-in Daily Check-in Page Connection from main
page

Mood Check-in Mood Check-in Page Page related to feeling
Information

Main Exit To main page Return to main page of
mobile application

Table (C.42) Clusters and Nodes For Menu-Mood Check-in
Node Cluster/LAP Explanation

Mood Check-in Mood Check-in
Page

Connection from main
page

Check-in Now Check-in Now Page Page related to Check-in
Now feeling Information

Later Today Check-in Later To-
day

Return to Home page
(Basecamp page)

Main Exit To main page Return to main page of
mobile application

214

Table (C.43) Clusters and Nodes For Menu-Settings
Node Cluster/LAP Explanation

Menu-Settings Menu-Settings Page Connection from main
page

Settings Settings Page Page related to Set-
tings Information

Main Exit To main page Return to main page
of mobile application

Table (C.44) Clusters and Nodes For Menu-Logout
Node Cluster/LAP Explanation

Menu-Logout Menu-Logout Page Connection from main
page

Logout Logout Page Return to entry page
of the app

Main Exit To main page Return to main page
of mobile application

215

Appendix D

DiscoverU Mobile App FSM Model

D.1 DiscoverU Mobile App HFSM Model

Figure (D.1) Main Cluster (AFSM) for DiscoverU App

216

Figure (D.2) Basecamp Cluster for DiscoverU App

Figure (D.3) Explore Cluster for DiscoverU App

217

Figure (D.4) Journey Cluster for DiscoverU App

Figure (D.5) Backpack Cluster for DiscoverU App

218

Figure (D.6) Menu Cluster for DiscoverU App

Figure (D.7) How Are You Feeling? Cluster for DiscoverU App

219

Figure (D.8) Check-in Now Cluster for DiscoverU App

Figure (D.9) Free Write Cluster for DiscoverU App

220

Figure (D.10) Add Free Write Cluster for DiscoverU App

Figure (D.11) Delete Cluster for DiscoverU App

221

Figure (D.12) All Content Cluster for DiscoverU App

Figure (D.13) Filter Cluster for DiscoverU App

222

Figure (D.14) Content Cluster for DiscoverU App

Figure (D.15) All Journeys Cluster for DiscoverU App

223

Figure (D.16) Embark Journeys Cluster for DiscoverU App

Figure (D.17) Trails Cluster for DiscoverU App

224

Figure (D.18) Favorites-Backpack Cluster for DiscoverU App

Figure (D.19) Rewards-Backpack Cluster for DiscoverU App

225

Figure (D.20) Resoutces-Menu Cluster for DiscoverU App

Figure (D.21) Journal-SubMenu Cluster for DiscoverU App

226

Figure (D.22) Emotion Reflections Cluster for DiscoverU App

Figure (D.23) Add Emotion Reflections Cluster for DiscoverU App

227

Figure (D.24) Delete Emotion Reflections for DiscoverU App

Figure (D.25) Grief Journal Cluster for DiscoverU App

228

Figure (D.26) Add Grief Journal Cluster for DiscoverU App

Figure (D.27) Delete Grief Journal for DiscoverU App

229

Figure (D.28) Stress Log Cluster for DiscoverU App

Figure (D.29) Add Stress Log Cluster for DiscoverU App

230

Figure (D.30) Delete Stress Log for DiscoverU App

Figure (D.31) Goals Cluster for DiscoverU App

231

Figure (D.32) Check-ins Cluster for DiscoverU App

Figure (D.33) Check-ins Responses Cluster for DiscoverU App

232

D.2 DiscoverU App Case Study Test Paths

Table (D.1) Test Cases for the Versions of the DiscoverU App.

Begin of Table

ID Test Sequence Length

1
[Entry Page, Sign In, Entry Page, Cancel, Entry Page,

Exit]
6

2
[Entry Page, Login, Entry Page, Cancel, Entry Page,

Exit]
6

3

[Main, Basecamp, How are you feeling, Check in Now,

Next, Check in Now, Done, Check in Now, Skip, Check

in Now, How are you feeling, Later Today, How are you

feeling, Basecamp, Main, Exit]

16

4

[Main, Basecamp, Free Write, Add, Adding Free Write,

Add, Delete, deleting, Delete, Cancel, Delete, Add, Free

Write, Basecamp, Main, Exit]

16

5

[Main, Basecamp, Free Write, Delete, deleting, Delete,

Cancel, Delete, Free Write, Basecamp, Demo Theme,

Basecamp, Main, Exit]

12

6 [Main, Basecamp, Demo Theme, Basecamp, Main, Exit] 6

7

[Main, Explore, All Content, Filter, Filtering Contents,

Filter, Cancel Filter, Filter, All Content, Back, All Con-

tent, Explore, Main, Exit]

14

8
[Main, Explore, Read, SelectReading, Read, Cancel,

Read, Explore, Main, Exit]
10

233

Continuation of Table D.1

ID Test Sequence Length

9
[Main, Explore, Video, SelectVideo, Video, Cancel,

Video, Explore, Main, Exit]
10

10
[Main, Explore, Image, SelectImage, Image, Cancel, Im-

age, Explore, Main, Exit]
10

11
[Main, Explore, Listen, SelectListen, Listen, Cancel,

Listen, Explore, Main, Exit]
10

12

[Main, Journey, a journey, Embark on this Journey,

Trails, Finish Trails, Trails, Embark on this Journey,

a journey, Journey, Main, Exit]

12

13

[Main, Backpack, Favorites, Explore, All Content, Fil-

ter, Filtering Contents, Filter, Cancel Filter, Filter, All

Content, Back, All Content, Explore, Favorites, Back-

pack, Main, Exit]

18

14

[Main, Backpack, Favorites, Explore, Content, Select-

Content, Content, Explore, Favorites, Backpack, Main,

Exit]

12

15
[Main, Backpack, Rewords, Badges, Rewords, Journey,

Rewords, Trails, Rewords, Backpack, Main, Exit]
12

16 [Main, Backpack, Tools, Backpack, Main, Exit] 6

17 [Main, Backpack, History, Backpack, Main, Exit] 6

18 [Main, Backpack, Extra Steps, Backpack, Main, Exit] 6

19 [Main, Menu, Resources, Menu, Main, Exit] 6

234

Continuation of Table D.1

ID Test Sequence Length

20

[Main, Menu, Favorites, Basecamp, How are you feeling,

Check in Now, Next, Check in Now, Done, Check in

Now, Skip, Check in Now, How are you feeling, Later

Today, How are you feeling, Basecamp, Favorites, Menu,

Main, Exit]

20

21

[Main, Menu, Favorites, Basecamp, Free write, Add,

Adding, Add, Delete, Del, Delete, Cancel, Delete, Add,

Free write, Basecamp, Favorites, Menu, Main, Exit]

20

22

[Main, Menu, Favorites, Basecamp, Free write, Delete,

Del, Delete, Cancel, Delete, Free write, Basecamp,

Demo Theme, Basecamp, Favorites, Menu, Main, Exit]

18

23

[Main, Menu, Backpack, BackpackPage, Favorites,

Explore, Content, Explore, Favorites, BackpackPage,

Backpack, Menu, Main, Exit]

14

24

[Main, Menu, Backpack, Backpack, Favorites, Explore,

All Content, Filter, Filtering, Filter, Cancel Filter, Fil-

ter, All Content, Back, All Content, Explore, Favorites,

Backpack, Backpack, Menu, Main, Exit]

22

25

[Main, Menu, Backpack, Backpack, Rewords, Badges,

Rewords, Journey, Rewords, Trails, Rewords, Backpack,

Backpack, Menu, Main, Exit]

16

26
[Main, Menu, Backpack, Backpack, Tools, Backpack,

Backpack, Menu, Main, Exit]
10

235

Continuation of Table D.1

ID Test Sequence Length

27
[Main, Menu, Backpack, Backpack, History, Backpack,

Backpack, Menu, Main, Exit]
10

28
[Main, Menu, Backpack, Backpack, Extra Steps, Back-

pack, Backpack, Menu, Main, Exit]
10

29

[Main, Menu, Tools, Journey, a journey, Embark on this

Journey, Trails, Finish Trails, Trails, Embark on this

Journey, a journey, Journey, Tools, Menu, Main, Exit]

16

30
[Main, Menu, Journal, Check-ins, Daily Check-ins,

Check-ins, Journal, Menu, Main, Exit]
10

31

[Main, Menu, Journal, Free Write, Add, Add FreeW,

Add, Delete, Del FreeW, Delete, Cancel, Delete, Add,

Free Write, Journal, Menu, Main, Exit]

18

32

[Main, Menu, Journal, Free Write, Delete, Del FreeW,

Delete, Cancel, Delete, Free Write, Journal, Menu,

Main, Exit]

14

33

[Main, Menu, Journal, Emotion Reflections, Add, Add

Emotion, Add, Delete, Del Emotion, Delete, Cancel,

Delete, Add, Emotion Reflections, Journal, Menu, Main,

Exit]

18

34

[Main, Menu, Journal, Emotion Reflections, Delete, Del

Emotion, Delete, Cancel, Delete, Emotion Reflections,

Journal, Menu, Main, Exit]

14

236

Continuation of Table D.1

ID Test Sequence Length

35

[Main, Menu, Journal, Grief Journal, Add, Add Grief,

Add, Delete, Del Grife, Delete, Cancel, Delete, Add,

Grief Journal, Journal, Menu, Main, Exit]

18

36

[Main, Menu, Journal, Grief Journal, Delete, Del Grife,

Delete, Cancel, Delete, Grief Journal, Journal, Menu,

Main, Exit]

14

37

[Main, Menu, Journal, Stress Log, Add, Add StressL,

Add, Delete, Del StressL, Delete, Cancel, Delete, Add,

Stress Log, Journal, Menu, Main, Exit]

18

38

[Main, Menu, Journal, Stress Log, Delete, Del StressL,

Delete, Cancel, Delete, Stress Log, Journal, Menu,

Main, Exit]

14

39
[Main, Menu, Journal, Goals, Add, Goals, Journal,

Menu, Main]
9

40

[Main, Menu, Check-in, Check in Now, Next, Check in

Now, Done, Check in Now, Skip, Check in Now, Check-

in, Later Today, Check-in, Menu, Main, Exit]

16

41

[Main, Menu, Settings, Account Settings, Save Change,

Account Settings, Back, Account Settings, Settings,

Menu, Main, Exit]

12

42

[Main, Menu, Settings, Personalization, Save Change,

Personalization, Back, Personalization, Settings, Menu,

Main, Exit]

12

237

Continuation of Table D.1

ID Test Sequence Length

43
[Main, Menu, Settings, Information, Save Change, Infor-

mation, Back, Information, Settings, Menu, Main, Exit]
12

44 [Main, Menu, Logout, EntryPage, Exit] 5

End of Table

238

D.3 DiscoverU App Inputs and Complexity of each

Test path

Table (D.2) The Inputs and the Complexity of the Test Paths of the DiscoverU
App.

Begin of Table

ID Edge Constraint Input Value and Ac-

tions

Comp

1

I1 R(Button-Entrypage) Button-Entrypage = click 1

L1 R(Parusername,

ParPassword, Button-

Login)

Parusername=

"zeinab@gmail.com",

ParPassword=" 1234",

Button-Login = click

3

I1 R(Button-Entrypage) Button-Entrypage = click 1

Total Complexity 5

2

I1 R(Button-Entrypage) Button-Entrypage = click 1

L2 R(Button-Signin) Button-Signin = click 1

LL1 R(Parusername,

ParPassword, Par-

ConfirmPW, Button-

CreateAccount)

Parusername=

"zeinab@gmail.com",

ParPassword=" 1234",

ParConfirmPW= " 1234",

Button-CreateAccount =

click

4

I1 R(Button-Entrypage) Button-Entrypage = click 1

Total Complexity 7

239

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

3 E1 R(Tab-Basecamp) Tab-Basecamp = click 1

M1 R(Button-HowAre) Button-HowAre=click 1

N1 R(Button-ChNow) Button-ChNow=click 1

NN1 R(SelectFeel, Button-

Next)

SelectFeel= "Good"

Button-Next=click

2

NN2 R(ParTell, Button-

Done)

ParTell= "I Feel Good

Now"

2

S(ParTell, Button-Done) Button-Done=Click

NN4 O(ParTell) R (Button-

Skip)

ParTell= "I Feel Good

Now"

2

S(ParTell, Button-Skip) Button-Skip=Click

M1 R(Button-HowAre) Button-HowAre=click 1

N2 R(Button-ChLater) Button-ChLater=click 1

E1 R(Tab-Basecamp) Tab-Basecamp = click 1

Total Complexity 12

4

E1 R(Tab-Basecamp) Tab-Basecamp = click 1

M2 R(Button-FreeW) Button-FreeW=click 1

P1 R(Button-Add) Button-Add=click 1

PP1 R(ParTitleW,ParFW,

Button-FW)

ParTitleW = "FirstFW" 3

240

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

S(ParTitleW,ParFW,

Button-FW)

ParFW = " I have

concerns...." Button-

FW=click

PP2 O(ParTitleW,ParFW)

R(Button-DeleteFW)

ParTitleW = "FirstFW" 3

S(ParTitleW,ParFW,

Button-DeleteFW)

ParFW = " I have

concerns...." Button-

DeleteFW=click

PPP1 R (Button-Delete) Button-Delete= click 1

PPP2 R (Button-Cancel) Button-Cancel= click 1

M2 R(Button-FreeW) Button-FreeW=click 1

E1 R(Tab-Basecamp) Tab-Basecamp = click 1

Total Complexity 13

5

E1 R(Tab-Basecamp) Tab-Basecamp = click 1

M2 R(Button-FreeW) Button-FreeW=click 1

P2 R(Button-Delete) Button-Delete=click 1

PPP1 R (Button-Delete) Button-Delete= click 1

PPP2 R (Button-Cancel) Button-Cancel= click 1

M2 R(Button-FreeW) Button-FreeW=click 1

E1 R(Tab-Basecamp) Tab-Basecamp = click 1

Total Complexity 7

6 E1 R(Tab-Basecamp) Tab-Basecamp = click 1

241

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

M3 R(Swap, Button-Demo) Swap up, Button-

Demo=click

2

E1 R(Tab-Basecamp) Tab-Basecamp = click 1

Total Complexity 4

7

E2 R(Tab-Explore) Tab-Explore = click 1

R1 R(Button-AllContent) Button-AllContent=click 1

RR1 R(Button-Filter) Button-Filter = click 1

RRR1 R(SelectSortby, Select-

Filtertopic, SelectFilte-

format, Button-Close)

SelectSortby = "A to Z",

SelectFiltertopic = "De-

pression", SelectFiltefor-

mat= "Articles" , Button-

close=click

4

R1 R(Button-AllContent) Button-AllContent=click 1

RR2 R (Button-Back) Button-Back= click 1

E2 R(Tab-Explore) Tab-Explore = click 1

Total Complexity 10

8 E2 R(Tab-Explore) Tab-Explore = click 1

R3 R(Button-Content) Button-Content=click 1

R5 R(Button-Read) Button-Read=click 1

R6 R(Button-Back) Button-Back=click 1

R3 R(Button-Content) Button-Content=click 1

E2 R(Tab-Explore) Tab-Explore = click 1

242

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

Total Complexity 6

9

E2 R(Tab-Explore) Tab-Explore = click 1

R3 R(Button-Content) Button-Content=click 1

R8 R(Button-Video) Button-Video=click 1

R9 R(Button-Back) Button-Back=click 1

R3 R(Button-Content) Button-Content=click 1

E2 R(Tab-Explore) Tab-Explore = click 1

Total Complexity 6

10

E2 R(Tab-Explore) Tab-Explore = click 1

R3 R(Button-Content) Button-Content=click 1

R11 R(Button-Image) Button-Video=Image 1

R12 R(Button-Back) Button-Back=click 1

R3 R(Button-Content) Button-Content=click 1

E2 R(Tab-Explore) Tab-Explore = click 1

Total Complexity 6

11

E2 R(Tab-Explore) Tab-Explore = click 1

R3 R(Button-Content) Button-Content=click 1

R14 R(Button-listen) Button-Listen=click 1

R15 R(Button-Back) Button-Back=click 1

R3 R(Button-Content) Button-Content=click 1

E2 R(Tab-Explore) Tab-Explore = click 1

Total Complexity 6

243

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

12 E3 R(Tab-Journey) Tab-Journey = click 1

S1 R(Button-AllJourney) Button-AllJourney=click 1

S3 R(Button-Embark) Button-Embark=click 1

S5 R(Button-Trail) Button-Trail=click 1

R7 R(Button-FinishT) Button-FinishT=click 1

R8 R(Button-BackT) Button-BackT=click 1

S1 R(Button-AllJourney) Button-AllJourney=click 1

E2 R(Tab-Journey) Tab-Journey = click 1

Total Complexity 8

13

E4 R(Tab-Backpack) Tab-Backpack = click 1

X1 R(Tab-Favorites) Tab-Favorites=click 1

XX1 R(Button-Activities) Button-Activities =click 1

R1 R(Button-AllContent) Button-AllContent=click 1

RR1 R(Button-Filter) Button-Filter = click 1

RRR1 R(SelectSortby, Select-

Filtertopic, SelectFilte-

format, Button-Close)

SelectSortby = "A to Z",

SelectFiltertopic = "De-

pression", SelectFiltefor-

mat= "Articles" , Button-

close=click

4

R1 R(Button-AllContent) Button-AllContent=click 1

RR2 R (Button-Back) Button-Back= click 1

E2 R(Tab-Explore) Tab-Explore = click 1

244

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

E4 R(Tab-Backpack) Tab-Backpack = click 1

Total Complexity 13

14

E4 R(Tab-Backpack) Tab-Backpack = click 1

X1 R(Tab-Favorites) Tab-Favorites=click 1

XX1 R(Button-Activities) Button-Activities =click 1

R3 R(Button-Content) Button-Content=click 1

R5 R(Button-Read) Button-Read=click 1

R6 R(Button-Back) Button-Back=click 1

R3 R(Button-Content) Button-Content=click 1

E2 R(Tab-Explore) Tab-Explore = click 1

E4 R(Tab-Backpack) Tab-Backpack = click 1

Total Complexity 9

15

E4 R(Tab-Backpack) Tab-Backpack = click 1

X2 R(Tab-Rewords) Tab-Rewords=click 1

X8 R(Button-BadgesR) Button-BadgesR =click 1

X9 R(Button-JourneyR) Button-JourneyR=click 1

X10 R(Button-TrailsR) Button-

ReTrailsRad=click

1

E4 R(Tab-Backpack) Tab-Backpack = click 1

Total Complexity 6

16

E4 R(Tab-Backpack) Tab-Backpack = click 1

X3 R(Tab-Tools) Tab-Tools=click 1

245

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

E4 R(Tab-Backpack) Tab-Backpack = click 1

Total Complexity 3

17

E4 R(Tab-Backpack) Tab-Backpack = click 1

X4 R(Tab-History) Tab-History=click 1

XX4 R(Button-

ActivityCalendar)

Button-ActivityCalendar

=click

1

X9 R(Button-

JourneyProgress)

Button-JourneyR=click 1

E4 R(Tab-Backpack) Tab-Backpack = click 1

Total Complexity 5

18 E4 R(Tab-Backpack) Tab-Backpack = click 1

X5 R(Button-ExtraSteps) Button-ExtraSteps=click 1

E4 R(Tab-Backpack) Tab-Backpack = click 1

Total Complexity 3

19

E4 R(Tab-Backpack) Tab-Backpack = click 1

X5 R(Tab-ExtraSteps) Tab-ExtraSteps=click 1

X8 R(Button-BadgesR) Button-BadgesR =click 1

X9 R(Button-JourneyR) Button-JourneyR=click 1

X10 R(Button-TrailsR) Button-

ReTrailsRad=click

1

E4 R(Tab-Backpack) Tab-Backpack = click 1

Total Complexity 6

246

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

20

E5 R(Button-Menu) Button-Menu = click 1

W1 R(Button-Resources) Button-Resources=click 1

B3 R(Button-BackHome) Button-BackHome =click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 4

21

E5 R(Button-Menu) Button-Menu = click 1

W2 R(Button-FavoritesM) Button-FavoritesM=click 1

M1 R(Button-HowAre) Button-HowAre=click 1

N1 R(Button-ChNow) Button-ChNow=click 1

NN1 R(SelectFeel, Button-

Next)

SelectFeel= "Good"

Button-Next=click

2

NN2 R(ParTell, Button-

Done)

ParTell= "I Feel Good

Now"

2

S(ParTell, Button-Done) Button-Done=Click

NN2 O(ParTell) R (Button-

Skip)

ParTell= "I Feel Good

Now"

2

S(ParTell, Button-Skip) Button-Skip=Click

M1 R(Button-HowAre) Button-HowAre=click 1

N2 R(Button-ChLater) Button-ChLater=click 1

E1 R(Tab-Basecamp) Tab-Basecamp = click 1

E4 R(Button-Menu) Button-Menu = click 1

Total Complexity 14

247

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

22

E5 R(Button-Menu) Button-Menu = click 1

W2 R(Button-FavoritesM) Button-FavoritesM=click 1

M2 R(Button-FreeW) Button-FreeW=click 1

P1 R(Button-Add) Button-Add=click 1

PP1 R(ParTitleW,ParFW,

Button-FW)

ParTitleW = "FirstFW" 3

S(ParTitleW,ParFW,

Button-FW)

ParFW = " I have

concerns...." Button-

FW=click

PP2 O(ParTitleW,ParFW)

R(Button-DeleteFW)

ParTitleW = "FirstFW" 3

S(ParTitleW,ParFW,

Button-DeleteFW)

ParFW = " I have

concerns...." Button-

DeleteFW=click

PPP1 R (Button-Delete) Button-Delete= click 1

PPP2 R (Button-Cancel) Button-Cancel= click 1

M2 R(Button-FreeW) Button-FreeW=click 1

E1 R(Tab-Basecamp) Tab-Basecamp = click 1

E4 R(Button-Menu) Button-Menu = click 1

Total Complexity 15

23

E5 R(Button-Menu) Button-Menu = click 1

W2 R(Button-FavoritesM) Button-FavoritesM=click 1

248

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

M2 R(Button-FreeW) Button-FreeW=click 1

P2 R(Button-Delete) Button-Delete=click 1

PPP1 R (Button-Delete) Button-Delete= click 1

PPP2 R (Button-Cancel) Button-Cancel= click 1

M2 R(Button-FreeW) Button-FreeW=click 1

E1 R(Tab-Basecamp) Tab-Basecamp = click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 9

24

E5 R(Button-Menu) Button-Menu = click 1

W3 R(Button-BackpackM) Button-BackpackM=click 1

X1 R(Tab-Favorites) Tab-Favorites=click 1

XX1 R(Button-Activities) Button-Activities =click 1

R1 R(Button-AllContent) Button-AllContent=click 1

P1 R(Button-Add) Button-Add=click 1

RR1 R(Button-Filter) Button-Filter = click 1

RRR1 R(SelectSortby, Select-

Filtertopic, SelectFilte-

format, Button-Close)

SelectSortby = "A to Z",

SelectFiltertopic = "De-

pression", SelectFiltefor-

mat= "Articles" , Button-

close=click

4

R1 R(Button-AllContent) Button-AllContent=click 1

RR2 R (Button-Back) Button-Back= click 1

249

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

E2 R(Tab-Explore) Tab-Explore = click 1

E4 R(Tab-Backpack) Tab-Backpack = click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 16

25

E5 R(Button-Menu) Button-Menu = click 1

W3 R(Button-BackpackM) Button-BackpackM=click 1

X1 R(Tab-Favorites) Tab-Favorites=click 1

XX1 R(Button-Activities) Button-Activities =click 1

R3 R(Button-Content) Button-Content=click 1

R5 R(Button-Read) Button-Read=click 1

R6 R(Button-Back) Button-Back=click 1

R3 R(Button-Content) Button-Content=click 1

E2 R(Tab-Explore) Tab-Explore = click 1

E4 R(Tab-Backpack) Tab-Backpack = click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 11

26

E5 R(Button-Menu) Button-Menu = click 1

W3 R(Button-BackpackM) Button-BackpackM=click 1

X2 R(Tab-Rewords) Tab-Rewords=click 1

X8 R(Button-BadgesR) Button-BadgesR =click 1

X9 R(Button-JourneyR) Button-JourneyR=click 1

250

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

X10 R(Button-TrailsR) Button-

ReTrailsRad=click

1

E4 R(Tab-Backpack) Tab-Backpack = click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 8

27

E5 R(Button-Menu) Button-Menu = click 1

W3 R(Button-BackpackM) Button-BackpackM=click 1

X3 R(Button-Tools) Button-Tools=click 1

X5 R(Button-ExtraStep) Button-ExtraStep =click 1

E4 R(Tab-Backpack) Tab-Backpack = click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 6

28

E5 R(Button-Menu) Button-Menu = click 1

W3 R(Button-BackpackM) Button-BackpackM=click 1

X4 R(Button-History) Button-History=click 1

XX4 R(Button-

Activitycalendar)

Button-Activitycalendar

=click

1

XX5 R(Button-

Journeyprogress)

Button-Journeyprogress

=click

1

E4 R(Tab-Backpack) Tab-Backpack = click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 7

251

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

29

E5 R(Button-Menu) Button-Menu = click 1

W4 R(Button-ToolsM) Button-ToolsM=click 1

S1 R(Button-AllJourney) Button-AllJourney=click 1

S3 R(Button-Embark) Button-Embark=click 1

S5 R(Button-Trail) Button-Trail=click 1

R7 R(Button-FinishT) Button-FinishT=click 1

R8 R(Button-BackT) Button-BackT=click 1

S1 R(Button-AllJourney) Button-AllJourney=click 1

E2 R(Tab-Journey) Tab-Journey = click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 10

30

E5 R(Button-Menu) Button-Menu = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

A1 R(Button-check-ins) Button-check-ins=click 1

A40 R(Button-DailyWeekR) Button-

DailyWeekR=click

1

A1 R(Button-check-ins) Button-check-ins=click 1

A41 R(Button-Back) Button-Back = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 8

31 E5 R(Button-Menu) Button-Menu = click 1

252

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

W5 R(Button-JournalM) Button-JournalM=click 1

A3 R(Button-FreeW) Button-FreeW=click 1

P1 R(Button-Add) Button-Add=click 1

PP1 R(ParTitleW,ParFW,

Button-FW)

ParTitleW = "FirstFW" 3

S(ParTitleW,ParFW,

Button-FW)

ParFW = " I have

concerns...." Button-

FW=click

PP2 O(ParTitleW,ParFW)

R(Button-DeleteFW)

ParTitleW = "FirstFW" 3

S(ParTitleW,ParFW,

Button-DeleteFW)

ParFW = " I have

concerns...." Button-

DeleteFW=click

PPP1 R (Button-Delete) Button-Delete= click 1

PPP2 R (Button-Cancel) Button-Cancel= click 1

M2 R(Button-FreeW) Button-FreeW=click 1

W5 R(Button-JournalM) Button-JournalM=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 15

32

E5 R(Button-Menu) Button-Menu = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

A3 R(Button-FreeW) Button-FreeW=click 1

253

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

P2 R(Button-Delete) Button-Delete=click 1

PPP1 R (Button-Delete) Button-Delete= click 1

PPP2 R (Button-Cancel) Button-Cancel= click 1

M2 R(Button-FreeW) Button-FreeW=click 1

W5 R(Button-JournalM) Button-JournalM=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 9

33

E5 R(Button-Menu) Button-Menu = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

A2 R(Button-Emotion) Button-Emotion=click 1

A10 R(Button-AddEmotion) Button-

AddEmotion=click

1

A13 R(ParTitleEmotion,

ParEmotion, Button-

AddEmotion)

ParTitleEmotion =

"FirstEmotion"

3

S(ParTitleEmotion,

ParEmotion, Button-

AddEmotion)

ParEmotion = " I have

concerns...." Button-

AddEmotion=click

A14 O(ParTitleEmotion,

ParEmotion) R(Button-

DeleteEmotion)

ParTitleEmotion =

"FirstEmotion"

3

254

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

S(ParTitleEmotion,

ParEmotion, Button-

DeleteEmotion)

ParEmotion = " I have

concerns...." Button-

DeleteEmotion=click

A17 R (Button-Delete) Button-Delete= click 1

A16 R (Button-Cancel) Button-Cancel= click 1

A2 R(Button-Emotion) Button-Emotion=click 1

W5 R(Button-JournalM) Button-JournalM=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 15

34

E5 R(Button-Menu) Button-Menu = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

A2 R(Button-Emotion) Button-Emotion=click 1

A11 R(Button-DeleteEM) Button-DeleteEM=click 1

A17 R (Button-Delete) Button-Delete= click 1

A16 R (Button-Cancel) Button-Cancel= click 1

A2 R(Button-Emotion) Button-Emotion=click 1

W5 R(Button-JournalM) Button-JournalM=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 9

35

E5 R(Button-Menu) Button-Menu = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

A4 R(Button-Grief) Button-Grief=click 1

255

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

A19 R(Button-AddGrief) Button-AddGrief=click 1

A22 R(ParTitleGrief,ParGrief,

Button-Grief)

ParTitleGrief = "First-

Grief"

3

S(ParTitleGrief,ParGrief,

Button-AGrief)

ParGrief = " I have

concerns...." Button-

AGrief=click

A23 O(ParTitleGrief,ParGrief)

R(Button-DeleteGrief)

ParTitleGrief = "First-

Grief"

3

S(ParTitleGrief,ParGrief,

Button-DeleteGrief)

ParGrief = " I have

concerns...." Button-

DeleteGrief=click

A26 R (Button-Delete) Button-Delete= click 1

A27 R (Button-Cancel) Button-Cancel= click 1

A4 R(Button-Grief) Button-Grief=click 1

W5 R(Button-JournalM) Button-JournalM=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 15

36

E5 R(Button-Menu) Button-Menu = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

A4 R(Button-Grief) Button-Grief=click 1

A20 R(Button-DeleteG) Button-DeleteG=click 1

A26 R (Button-Delete) Button-Delete= click 1

256

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

A27 R (Button-Cancel) Button-Cancel= click 1

A4 R(Button-Grief) Button-Grief=click 1

W5 R(Button-JournalM) Button-JournalM=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 9

37

E5 R(Button-Menu) Button-Menu = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

A5 R(Button-Stress) Button-Stress=click 1

A29 R(Button-AddsStress) Button-AddsStress=click 1

A32 R(ParTitleStress,

ParStress, Button-

AStress)

ParTitleStress = "First-

Stress"

3

S(ParTitleStress,

ParStress, Button-

AStress)

ParStress = " I have

concerns...." Button-

AStress=click

A33 O(ParTitleStress,

ParStress) R(Button-

DeleteStress)

ParTitleStress = "First-

Stress"

3

S(ParTitleStress,

ParStress, Button-

DeleteStress)

ParStress = " I have

concerns...." Button-

DeleteStress=click

A35 R (Button-Delete) Button-Delete= click 1

257

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

A36 R (Button-Cancel) Button-Cancel= click 1

A5 R(Button-Stress) Button-Stress=click 1

W5 R(Button-JournalM) Button-JournalM=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 15

38

E5 R(Button-Menu) Button-Menu = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

A5 R(Button-Stress) Button-Stress=click 1

A30 R(Button-DeleteStress) Button-

DeleteStress=click

1

A35 R (Button-Delete) Button-Delete= click 1

A36 R (Button-Cancel) Button-Cancel= click 1

A5 R(Button-Stress) Button-Stress=click 1

W5 R(Button-JournalM) Button-JournalM=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 9

39

E5 R(Button-Menu) Button-Menu = click 1

W5 R(Button-JournalM) Button-JournalM=click 1

A6 R(Button-Goals) Button-Goals=click 1

A38 R(Button-AddGoals) Button-AddGoals=click 1

A6 R(Button-Goals) Button-Goals=click 1

W5 R(Button-JournalM) Button-JournalM=click 1

258

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 7

40

E5 R(Button-Menu) Button-Menu = click 1

W6 R(Button-Daily) Button-Daily=click 1

M1 R(Button-HowAre) Button-HowAre=click 1

N1 R(Button-ChNow) Button-ChNow=click 1

NN1 R(SelectFeel, Button-

Next)

SelectFeel= "Good"

Button-Next=click

2

NN2 R(ParTell, Button-

Done)

ParTell= "I Feel Good

Now"

2

S(ParTell, Button-Done) Button-Done=Click

NN2 O(ParTell) R (Button-

Skip)

ParTell= "I Feel Good

Now"

2

S(ParTell, Button-Skip) Button-Skip=Click

M1 R(Button-HowAre) Button-HowAre=click 1

N2 R(Button-ChLater) Button-ChLater=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 13

41

E5 R(Button-Menu) Button-Menu = click 1

W6 R(Button-Settings) Button-Settings=click 1

y1 R(ParAccInfo, Button-

SaveChange)

ParAccInfo= " " Button-

SaveChange=click

1

259

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

y6 O(ParAccInfo)

R(Button-Cancel)

ParAccInfo= " " Button-

Cancel=click

1

W6 R(Button-Settings) Button-Settings=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 6

42 E5 R(Button-Menu) Button-Menu = click 1

W6 R(Button-Settings) Button-Settings=click 1

y2 R(ParPersonInfo,

Button-SaveChangeP)

ParPersonInfo=

" " Button-

SaveChangeP=click

1

y9 O(ParPersonInfo)

R(Button-Cancel)

ParPersonInfo= " "

Button-Cancel=click

1

W6 R(Button-Settings) Button-Settings=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 6

43

E5 R(Button-Menu) Button-Menu = click 1

W6 R(Button-Settings) Button-Settings=click 1

y3 R(ParGeneralInfo,

Button-

SaveChangeGeneralInfo)

ParGeneralInfo=

" " Button-

SaveChanGeneralInfo=click

1

y12 O(ParGeneralInfo)

R(Button-Cancel)

ParGeneralInfo= " "

Button-Cancel=click

1

260

Continuation of Table D.2

ID Edge Constraint Input Value and Ac-

tions

Comp

W6 R(Button-Settings) Button-Settings=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 6

44

E5 R(Button-Menu) Button-Menu = click 1

W7 R(Button-Logout) Button-Logout=click 1

E5 R(Button-Menu) Button-Menu = click 1

Total Complexity 3

End of Table

261

	A Unified Approach to Regression Testing for Mobile Apps
	Recommended Citation

	A Unified Approach to Regression Testing for Mobile Apps
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1681855836.pdf.nxO07

