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Abstract 

My thesis is divided into two parts. 

The first part is: “Optimal Power Flow Estimation Using One-Dimensional 

Convolutional Neural Network [1]“. Optimal power flow (OPF) is an important research 

topic in power system operation and control decisions. Traditional OPF problems are solved 

through dynamic optimization with nonlinear programming techniques. For a large power 

system with large amounts of variables and constraints, the solving process would take a 

long time. This paper presents a new method to quickly estimate the OPF results using a 

one-dimensional convolutional neural network (1D-CNN). The OPF problem is treated as a 

high-dimensional mapping between the load inputs and the generator dispatch decisions. 

Therefore, through training the neural network to learn the mapping between loads and 

generator outputs, we can directly predict the OPF results with the load information of a 

system. In this paper, we built and trained a 1D-CNN to learn the mappings between system 

loads and generator outputs, and the 1D-CNN model was tested using IEEE 30, 57, 118, and 

300 Bus systems. Extensive test and sensitivity study results have validated the 

effectiveness of using the 1D-CNN to estimate the OPF results. This part is from chapter 1 to 

chapter 6; 

The second part is: “Synthetic High Impedance Fault Data through Deep 

Convolutional Generated Adversarial Network [2]“. High impedance faults (HIFs) have 

always been significant challenges in the power grids. Researchers have developed some 

advanced protective methods to detect the HIFs. To test and validate these methods, large 

amounts of HIF data are required. This paper presents a synthetic HIF data generating 

method using the deep convolutional generated adversarial network (DCGAN). The DCGAN 

includes a generator module to create synthetic HIF waveform from random noises; and a 
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discriminator module to identify the flaws of those synthetic data, which ultimately helps 

improve the quality of the synthetic data created by the generator. To test the fidelity of the 

generated synthetic HIF data, two different HIF-detection methods have been applied. 

Extensive simulation results have validated the effectiveness of using the DCGAN to create 

synthetic HIF data. This part is from chapter 7 to chapter 11.  
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Chapter 1 Introduction 

(Part1): Power flow (PF) is one of the most important topics in the power system, as it 

determines the voltage magnitude and phase angle of each bus under steady state 

conditions. In the electricity market, the goal is even more comprehensive with minimizing 

the total operating cost while maintaining the system generation and demand balance, 

which can be further utilized by system operators to dispatch the corresponding resources. 

Nowadays, with the worldwide trend toward deregulation of the electricity market, the 

objective function of this optimization is becoming more complicated as it involves a lot of 

nonlinear constraints, such as generation capacity and transmission line limits, etc. 

Therefore, the optimal power flow (OPF) problem is becoming extremely complicated. 

In recent years, a number of dedicated methods have been proposed to solve the OPF 

problem [7, 8]. Since the OPF is a non-convex, nonlinear and high-dimensional optimization 

problem, it is very difficult to be solved directly. Therefore, most methods focus on how to 

solve the OPF more efficiently in an iterative way. The linear programming (LP) method is a 

common optimization algorithm and it is widely used in many areas [7]. The LP method can 

solve an economic dispatch problem efficiently where only linear constraints exist. However, 

an OPF problem consists lots of nonlinear constraints, which make it difficult for the LP 

method. Another disadvantage of the LP method is that it may lead to a locally optimal 

solution[9]. Nonlinear programming (NLP) and quadratic programming (QP) were then 

proposed as they can deal with nonlinear constraints [10, 11, 12, 13, 14, 15]. A classical 

algorithm called primal-dual interior-point was proposed in [16] and utilized maturely in 

MATPOWER software [17]. However, all these methods are time-consuming for 

convergence especially under a large-scale system, leading to a limited application in the 

real power market. The other famous iterative approach - Newton method in PF calculation 

was also proposed and utilized in [18] and an improved Newton-Raphson algorithm in a 
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multi-energy system was proposed in [19], [20]due to its fast convergence speed, but the 

convergence is not always guaranteed. As a result, it is challenging to obtain an efficient 

real-time OPF result using existing optimization methods. 

The goal of the OPF problem is to obtain the real and reactive power flows of each 

branch while minimizing the total operating cost under some system constraints. This 

indicates that there should be a relationship or mapping between the given system status 

and the OPF results. If this pattern can be learned efficiently, then the OPF problem becomes 

a straight-forward prediction rather than solving a complex optimization problem. Machine 

learning is usually used to learn the mapping between inputs and outputs. In [21, 22, 23, 24] 

proposed to use a machine learning approach to solve the AC-OPF problem. The inputs were 

the real and reactive loads at each bus, and the outputs were the real power and voltage 

settings of each generator. Through generating tens of thousands training data, the author 

successfully trained a multi-layer perceptron (MLP) model to estimate the OPF results. 

Similar work was also conducted in [22, 25]. The machine learning methods used in this 

work are based on traditional neural networks such as the MLP, which does not preserve 

the translation variance for the input data and may not work well for complex systems. In 

many research areas, the convolutional neural network (CNN) has shown its huge power in 

solving some formidable problems which are complex or even impossible using 

conventional methods, which will be continuously innovated with more state-of-the-art 

structures. With enough data trained by CNN, the mapping between network input and 

output can be learned effectively without consideration of the complicated character of the 

original problem. 

In this paper, we propose a one-dimensional CNN (1D-CNN) based OPF estimation 

approach to solve the issue of time-consuming in conventional methods. The input of the 

1D-CNN model is the load information at each branch, and the outputs are the generator’s 

real and reactive power. The 1D-CNN consisted of three convolutional layers, where 

convolutional function, pooling function, and nonlinear activation functions were engaged. 

The output layer of the 1D-CNN is a dense layer that was used to predict the estimated 
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generator power. To train the 1D-CNN model, we automatically generated tens of thousands 

of training data. The proposed 1D-CNN approach was tested on IEEE 30, 57, 118, and 300 

Bus test systems. Extensive simulation results have validated the effectiveness of using the 

1D-CNN to estimate the OPF results. 

The rest of the paper is organized as follows: Chapter 2 introduces the optimal power 

flow problems. In Chapter 3, introduce how to use CNN to solve the OPF problems. Chapter 

4 gives the principle of this neural network based OPF estimation method and data. Then 

Chapter 5 shows the experimental results. Finally, the conclusions of this paper are given in 

Chapter 6. 

(Part2):After a stable power system is established, the most significant thing is to 

guarantee the reliability of the constructed system, which brings the concept of power 

system protection. The development of variety of intelligent fault detection methods have 

made modern power grids much reliable. However, one existing challenge in power system 

protection is the high impedance fault (HIF). HIF is usually classified as a shortcircuit fault 

with a high impedance between the fault point and the ground, in which the short current 

maybe on the same level as the normal case. Therefore, the conventional overcurrent 

method cannot be easily applied to detecting the HIF [26]. However, because of the arcing 

and high-frequency components induced by the HIF, it can cause wild fires, electricity shock, 

and even some irreparable damage to human life. About 5% to 10% of faults happened in 

the distribution network are HIFs [27]; yet the true percentage tends to be higher since 

many HIF cases were not noticed or recorded. Therefore, solving the HIF challenge is very 

critical in ensuring the reliability and safety of modern power systems. 

Many HIF detection methods have been proposed in recent decades. The most popular 

detection technique is to extract and analyze the features of the HIF waveform. This kind of 

method focuses on the characteristics of the HIF mathematically, such as the no, n-linearity, 

non-stationary nature, randomness, and asymmetry [28]. Basically, the analysis domains for 
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this kind of HIF detection include four categories: time domain, frequency domain, time-

scale domain and time-frequency domain [29]. 

Time domain analysis takes advantages of the sudden variation of the HIF waveform, 

which focuses on the voltage or current data in the limited window. Although this method is 

not very accurate as it highly relies on the sampling of the data, it is still very popular for 

application due to the simplicity. Frequency domain analysis utilizes the frequency 

characteristics of the HIF waveform as the third harmonic components of HIFs can be 

exploited through Fast Fourier Transform (FFT) [30]. Sedighizadeh et al. used a high 

frequency method to detect the HIF by taking advantages of the rapid and sudden variation 

of HIF waveform [31, 32, 33, 34, 35, 36]. The challenge of the frequency domain analysis is 

to obtain the instantaneous frequency and localize the frequency components. Time-scale 

domain analysis is one of the most powerful technique for HIF detection. The well-known 

wavelet transform (WT) captures not only frequency information, but also time point of the 

specific frequency component. Siadatan et al. used time-frequency based algorithm to detect 

the HIF using real-world data under different weather conditions [37]. The challenge of the 

time-scale domain analysis is that determining the choice of mother wavelet used in the 

transform is usually difficult. Time-frequency domain analysis can be considered as an 

enhanced technique based on time-scale domain analysis [38]. However, the huge amount 

of computational efforts needed by this technique was an obstacle in previous years. 

Some other techniques have also been proposed for HIF detection in recent years [39, 40, 

41]. Khani et al. introduced a distribution network HIF detection method using an 

integrated enhanced particle swarm optimization-fuzzy model [40]. However, this method 

requires some extra information and the knowledge of large amounts of HIF data. Not to 

mention its implementation is relatively complex. Fan et al. presented a deep neural 

network based HIF detection method [41]. A 1-dimension convolutional neural network 

(CNN) was built and trained to differentiate the HIF from normal transients. This kind of 

method also requires a large amount of data during the training process. 
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The key for the aforementioned HIF fault detection methods is the HIF data. Large 

amounts of HIF data are either required during the training/designing process of these 

protective methods, or they are needed to test and validate those methods. To solve this 

problem, this paper presents a synthetic HIF data generating method using a deep 

convolutional generated adversarial network (DCGAN) [42]. DCGAN is a method of 

unsupervised learning, which has the advantage of no label information requirement than 

the supervised learning. In addition, other than traditional machine learning methods, 

DCGAN has two neural networks to improve the network performance through competition. 

Specifically, a DCGAN includes a generator module to create synthetic HIF waveform from 

random noises; and a discriminator module to identify the flaws of those synthetic data. 

Therefore, the generator and discriminator compete with each other and it results in 

performance improvements of both modules. To test the effectiveness of the synthetic HIF 

data generated by DCGAN, a third-harmonic based method in [43] and the neural network 

based method in [41] are applied to the generated data. 

The rest of this thesis is organized as follows: in Chapter 7, the HIF data and two 

detection methods are briefly introduced. The detailed proposed DCGAN-based method is 

illustrated in Chapter 8. Chapter 9 is the research results and discussions. Finally, Chapter 

10 presents the conclusions.  
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Chapter 2.   Optimal Power Flow Problem 

2.1    OPF Formulation 

The general optimal power flow problem has formulation: 

min f(u,x) (2.1.1) 

s.t. gp(u,x) = 0,p = 1,2,...,np (2.1.2) 

s.t. hm(u,x) ≤ 0,m = 1,2,...,nm (2.1.3) 

where f(x,u) is the objective function. x and u are the [44, 45, 46, 47, 48, 49] . The 

different type of buses have different decision and state variables: 

1) Load bus: decision variables are the real and reactive powers; State variables are 

voltage magnitude and angle. 

2) Generation bus: decision variables are generated real power and voltag e magnitude; 

State variables are generated reactive power and voltage angle. 

3) Reference bus: decision variables are voltage magnitude and angle; State variables are 

generated real and reactive power. 

2.2    Newton OPF Scheme 

The state variables and decision variables are described in the section above, to solve 

the problem, we first set up the Lagrangian: 

 ) (2.2.1) 

Where λ is the vector of the Lagrage multipliers. Then we make use of the fact that a 

necessary condition for a minimum is that: 
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▽L(x,u,λ) = 0 

For simplicity define 

(2.2.2) 

z = [x,u,λ]T (2.2.3) 

The goal then is to solve for a z∗ that minimizes the Lagrangian and hence solves: 

 ▽L(z∗) = 0 (2.2.4) 

To solve this equation, first express ▽L(z∗) with is Taylor expansion about some known(and 

presumably non-optimal) point z: 

 ▽L(z∗) = ▽L(z) + ▽2L(z) △ z + higher order terms (2.2.5) 

with △z = z∗ −z . If we ignore the higher order terms, we can directly solve for △z 

 ) (2.2.6) 

Since the higher order terms were ignored, z+△z is only an approximation of z∗. Hence we 

need to slove iteratively: 

  (2.2.7) 

To avoid having to continually write the gradient symbol, define: 

h(z) = ▽L(z) (2.2.8) 

W (z) = ▽2L(z) (2.2.9) 
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Chapter 3.   Proposed Approach 

In the traditional calculation method of optimal power flow, an initial guess is made for 

state variables and decision variables, and then the optimal solution is obtained through 

iteration. The disadvantage of this solution method is that with the increase of the number 

of buses and generators, the amount of calculation will become huge. In the real world, grid 

operators must solve OPF for the entire electric grid every 5 minutes, considering the 

changes in the power generation and loads. Therefore, it is very challenging to fulfill the 

computing requirement in such a short time. 

Therefore, in this paper, we propose to use a machine learning based approach to 

directly predict the OPF results without solving the optimization problem. The objective is 

to train a neural network to learn the mapping between the system information (as inputs) 

and the OPF results (as outputs). The machine learning method used in this study is the 1D-

CNN approach. 

3.1    1D-CNN Model 

CNN is a deep neural network model that is widely used in the fields of image and 

natural language processing. In 1999, Lecun [50] proposed a gradient-based back 

propagation algorithm for document recognition. In that neural network, the convolutional 

layer played a crucial role. CNN is a typical supervised learning method. It is suitable for 

identifying simple patterns in the data, and then using these simple patterns to generate 

more complex patterns at a higher level with the increasing computing power, some large 

CNN networks began to show great advantages in the field of images, therefore most of the 

existing applications of CNN are two-dimensional. However, CNN can also be applied to one-

dimensional data, such as time-series waveform or vector inputs. In the OPF problem, 
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because the power system load information can be treated as a vector, using 1D-CNN could 

be a feasible approach. 

 

Figure 3.1: Proposed 1D-CNN model for OPF estimation. 

The proposed 1D-CNN model is shown in Fig 3.1. As is known to all, CNN is often used 

for two-dimensional or higher-dimensional data processing, for the one-dimensional 

convolution layer, the biggest difference between the main convolution layer and the two-

dimensional convolution layer is that the convolution kernel of the one-dimensional 

convolution layer becomes one-dimensional. That is to say, local one dimensional sequence 

segments(i.e., sub-sequences) are extracted from the sequence according to a certain size 

window, and then dot product with weights, then output is a part of the new sequence. Then 

one-dimensional pooling layer was added to the model, one-dimensional pooling layer 

extracts one-dimensional sequence segments from input and outputs their maximum value 

or average value to reduce the length of one-dimensional input. The purpose of the pooling 

layer is to blur the result of convolution, and summarize the statistical features in the local 

region and the over-fitting is avoided by dimensionality reduction. The “he uniform” 

initialization was adopted in every convolutional layer, which helps find a good variance for 

the distribution from the initially drawn parameters. This variance is adapted to the 

activation function used and is derived without explicitly considering the type of the 

distribution [51, 52, 53, 54, 55]. In the process of network training, the gradient is easy to 

Conv Input 

256@128x1 

Conv Conv Conv 

Max-pool Max-pool Max-pool 
Max-pool 

Flatten Dense 

Dropout 

128@64 x 1 
64 @64x 1 

512@256x1 

Output 
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disappear (the gradient is extremely close to 0) and the gradient explosion (the gradient is 

extremely large), resulting in most of the gradients obtained by backpropagation are 

ineffective or counterproductive. The researchers hope to have a good weight initialization 

method: when the network is propagated forward or back, the output of the convolution 

and the gradient of the forward transmission are relatively stable. 

Using the proposed 1D-CNN model in Fig. 1, the OPF problem was turned into a 

regression task, where a mapping between the input and output is the key issue. In other 

words, we were estimating the OPF results (generator output PG,iand QG,i) from load 

information (PL,iand QL,i). The remaining voltage magnitude and angles can be directly 

solved with the estimated OPF results, thus they are not included here. In conclusion, the 

input to the 1D-CNN model are the real and reactive loads at each busX = 

[PL,1,··· ,XL,N,QL,1,··· ,QL,N], and the output are the generator real and reactive power Y = 

[PG,1,··· ,PG,M,QG,1,··· ,QG,M].The objective of the 1D-CNN is to learn the mapping: X → Y that 

minimize the mean-squared error between the predicted generator output Yˆ and the 

optimal generator setting (true value) Y . 

3.2    Test IEEE Systems and Data 

To train and test the proposed 1D-CNN approach, we have chosen several test systems 

with small, medium, and large scales. Specifically, the IEEE 30, 57, 118, and 300 Bus test 

systems were used in this study. For each IEEE test system with a load distribution of x, we 

randomly sampled the load distribution x with a range of [(1−δ)x,(1+δ)x]. To test the impact 

of data variation range (δ) on the accuracy of OPF estimation, we specifically selected two 

different to be 10% and 30%. In other words, there were two data-sets for each IEEE test 

system, one has a range of 90% to 110% of its original load distribution, the other has a 

range of 70% to 130% of its original load distribution. In addition, for each of the IEEE test 

systems (and each 10% and 30% data variation), we generated around 200,000 solved OPF 

cases, which gave us enough data for training and testing the 1D-CNN performance. Note 
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that not all the data were used to train the 1D-CNN model, and the training data-set and 

testing data-set were separate. In fact, when training the 1D-CNN model for each IEEE test 

system, we tested the impact of different numbers of training data on the accuracy of the 

proposed approach. Details were included in the following section. 

 

Figure 3.2: IEEE test case: 30-bus system[3] 
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Figure 3.3: IEEE test case: 57-bus system[4] 

 

Figure 3.4: IEEE test case: 118-bus system[5] 
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Figure 3.5: IEEE test case: 300-bus system[6] 
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Chapter 4.   Results and Discussions 

To test the performance of the proposed 1D-CNN approach, a traditional machine 

learning method was also implemented for comparison. The traditional machine learning 

method used a three-layer MLP model with 128, 64, 32 neurons for the respective layers. 

The average absolute mismatches of the OPF results were used as the criterion for 

evaluating the performances of the proposed 1D-CNN and transitional machine learning 

methods. 

4.1    Test Result of 1D-CNN and MLP 

In the first study, we trained the 1D-CNN and MLP models with 180,000 data for each 

IEEE test system. These data had a variation range [δ] of 10%. An example of the training 

losses for the 1D-CNN and MLP for the IEEE 57-Bus system is shown in Fig. 2. From the 

figure we could see that at the beginning the losses were very high for both models, 

however, the losses decreased as the training epochs increased. After a few hundred of 

training, the losses stabilized, which meant the training was completed. It was noticed that 

the 1D-CNN had a lower loss than the MLP method. Therefore, the 1D-CNN method 

provided better OPF estimation results than the MLP method. 

For each IEEE test system, separate 2,000 data were used to test the performance of the 

well-trained 1D-CNN and MLP models. The average absolute mismatches of the OPF results 

for the 1D-CNN and MLP predictions were summarized in Table I. From the comparison, we 

could see that the 1D-CNN had a higher accuracy in predicting the 

OPF results than the MLP method, which was in consistent with the training results 
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Figure 4.1: Training losses for the 1D-CNN and MLP methods 

Table 4.1: 1D-CNN and MLP result comparison 

Case ID CNN MR MLP MR 

case30 1.16% 2.25% 

case57 0.29% 2.57% 

case118 0.91% 3.15% 

case300 1.81% 7.26% 

 

showed in Fig. 2. The MLP method worked well for small systems, but the mismatches were 

high for the large systems. In contrast, the average mismatches for the 1D-CNN method 

stayed low regardless of the size of the system. Therefore, the proposed 1D-CNN approach 

could effectively predict the OPF results. 

4.2    10% Versus 30% Variation 

The previous results were based on OPF results with a 10% variation range of the IEEE 

test system. In this study, we would like to test the impact of load variation ranges on the 

performance of the 1D-CNN and MLP methods. Specifically, we compared the OPF 

prediction results of a 10% variation range with a 30% variation range for each IEEE test 

system. The number of training data for each IEEE test system and each variation range was 

still 180,000 pieces. Similarly, separate 2,000 data were used to test the performance of the 
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well-trained 1D-CNN and MLP models for each case. The results of the comparison are 

shown in Table 4.2. 

Note that the Case ID contained detailed information about the test case. For example, 

“case118 30%” means the test system is IEEE 118-Bus, and the load variation is from 70% 

to 130%. From Table 4.2 we could see that the load variation range indeed Table 4.2: 

Results of 10% vs 30% variation using 1D-CNN and MLP methods 

Case ID CNN MR MLP MR 

case30 10% 1.16% 2.25% 

case30 30% 2.46% 3.57% 

case57 10% 0.29% 2.57% 

case57 30% 0.79% 5.14% 

case118 10% 0.91% 3.15% 

case118 30% 1.25% 4.25% 

case300 10% 1.81% 7.26% 

case300 30% 2.55% 11.79% 

had an impact on the accuracy of the OPF prediction results. The average mismatch of a 30% 

variation range was higher than the mismatch of a 10% variation range for all the IEEE test 

systems, no matter whether the machine learning methods were used. The results were as 

expected because both 1D-CNN and MLP methods had to learn a wider range of outputs for 

the 30% variation situation. However, compared with the MLP results, the 1D-CNN still 

presented a much higher OPF prediction accuracy. The average mismatches for the 1D-CNN 

method were below 3% in all the cases. Therefore, the proposed 1D-CNN method could be 

used to accurately predict OPF results.  
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Chapter 5.   Sensitivity Study on Training Data Size 

 

Figure 5.1: Sensitivity studies for IEEE 30-Bus system with different training data size. 

 

Figure 5.2: Sensitivity studies for IEEE 57-Bus system with different training data size. 

It is well known that, machine learning methods require a large amount of training data 

to achieve a good performance. In this study, we investigated the impact of training data 

size on the performance of the proposed 1D-CNN method. Specifically, for each 
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Figure 5.3: Sensitivity studies for IEEE 118-Bus system with different training data size. 

 

Figure 5.4: Sensitivity studies for IEEE 300-Bus system with different training data size. 
IEEE test system, we randomly selected 20,000, 40,000, 60,000, 80,000, 100,000, 120,000, 

140,000, 160,000, and 180,000 pieces of training data to train the 1D-CNN model. After the 

1D-CNN model was well trained, similarly, separate 2,000 data were used to test the 

performance. Again, we used the average mismatch to evaluate the performance. The 

results of the 1D-CNN prediction mismatches for IEEE 30-, 57-, 118-, and 300-Bus systems 

were shown in Fig.5.1 to Fig.5.4, respectively. 

For either 10% or 30% load variation, we could see an obvious decline of the mismatch 

when the training data size increased for any IEEE test system. The result was reasonable as 

the increase in training data size would enhance the performance of machine learning 

methods. We also noticed that the mismatch of a 30% load variation was still higher than 

the 10% load variation situation, which was consistent with the conclusions we found in 
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Table II. We also noted that the results of the IEEE 30-Bus system were interesting, as its 

mismatch was very high (around 10%) when the training data size is small, while the 

mismatch could be significantly decreased with more training data. If we set a 2% mismatch 

as the goal, the required training data sizes were 150,000 for the 30-Bus system, 20,000 for 

the 57-Bus system, 100,000 for the 118-Bus system, and 140,000 for the 300-Bus system. 

The general trend was that the large the test system, the more training data were required 

to achieve good performance for the 1D-CNN method. 
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Chapter 6.   Conclusions for OPF Estimation 

In this thesis, we proposed a novel 1D-CNN based approach for predicting the OPF 

results. Compared with traditional machine learning method such as the MLP, the proposed 

1D-CNN approach have been proven to be more accurate. The superiority of the 1D-CNN 

method was validated using IEEE 30-, 57-, 118-, and 300-Bus with different load variations. 

Test results find that the increase in load variation will decrease the 1DCNN performance. A 

sensitive study has also shown that the accuracy of predicting OPF would significantly 

increase with more training data. The general trend was that the large the test system, the 

more training data were required to achieve good performance for the 1D-CNN method. 

In future work, we would explore methods to increase the performance of the 1D- 

CNN approach in situations with larger load variation and fewer training data. 
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Chapter 7.   HIF Data and Detection Methods 

7.1    HIF Data 

In this thesis, we used the HIF data in paper [41]. The nonlinear HIF data well 

represented the arcing effect and asymmetry characteristics. The pure fault current at the 

fault point is shown in Fig. 7.1(a). The fault current will only conduct when the phase 

voltage is higher than certain level; thus, it only occurs around the peak phase values. The 

current monitored by the distribution overcurrent relays are the line current at the terminal 

of feeders. During the HIF scenario, the measured current by the relays is shown in Fig. 

7.1(b). The original sinusoidal current waveform is distorted around the peaks (when the 

HIF occurs). However, the HIF does not significantly increase the magnitude of the 

measured current. As a result, the overcurrent relays cannot detect the existence of the HIF. 

In order to accurately detect HIFs, two protective techniques are introduced: the third-

harmonic-based method in [43] and the neural network-based method in [41]. We will also 

use these two methods to test the fidelity of the generated synthetic HIF data. 

7.2    Third Harmonics-Based HIF Detection Method 

One of the HIF features is that HIF owns higher second, third and fifth harmonic 

components than other harmonics. Therefore, this feature can be fully utilized in HIF 

detection. In addition, because the third harmonic component is dominant in all the 

harmonics, for easy implementation only the third harmonic component is used to detect 
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Figure 7.1: The HIF data at fault point and line terminal 

HIF in many cases. In this paper, we also use the difference in the third harmonic 

component between the normal transients and HIF data as a criterion of detecting HIFs. 

 

 

Figure 7.2: Example of FFT analysis for normal and HIF waveform 

( a) Fault points current 

( b) Faultline current 
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To find out the appropriate threshold of the third harmonic component, we randomly 

selected some HIF data and normal transients from capacitor switching, load changes, 

motor starts and transformer tap changes. Then, FFT analysis is applied to obtain the 

harmonic components of both normal and fault waveform. An example of the FFT analysis is 

shown in Fig. 7.2. Note that the third harmonic component in the HIF data is higher than 

that in the normal transient waveform. We tested 10 random normal transient samples and 

10 random HIF data samples. The FFT analysis results are shown in Table 7.1. 

Table 7.1: Percentage of third harmonics for normal and fault cases 

Samples  Fault case 

1 7.04% 14.01% 

2 6.98% 14.88% 

3 6.93% 13.60% 

4 8.81% 13.29% 

5 4.99% 11.34% 

6 6.53% 15.85% 

7 8.77% 13.62% 

8 6.55% 14.64% 

9 8.39% 12.32% 

10 6.34% 14.26% 

 

Results show that there is a clear boundary between the normal cases and fault cases. In 

the random normal transient samples, the third harmonic components are less than 9%; in 

contrast, the third harmonic components are larger than 12% for the HIF cases. Therefore, it 

is reasonable to use 10% or 11% as the boundary between the normal transient and fault 

cases. 

Normal case 
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7.3    Neural Network Based HIF Detection Method 

The fundamental theory of using neural network based method to detect HIF is to train a 

network to find out the mapping between input waveform and the corresponding labels 

(“fault” or “normal”). In this paper, we used the trained CNN model in [41] to test if the 

synthetic HIF data generated by our proposed method are qualified as “real HIF data”. The 

well-trained CNN consists of four CNN-layers and one dense layer. 

The activation functions are rectified linear unit (ReLU) and sigmoid functions for the 

hidden layers and the output layer, respectively. The trained network has an accuracy of 

99.5% to differentiate HIF data from normal transients like load change, switching, 

capacitor bank change, etc. Therefore, this network can be a good judge to test the 

generated synthetic HIF data.  
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Chapter 8.   Proposed Synthetic HIF Data Generation Approach 
 

In this thesis, we use a special generative adversarial network (GAN) to generate 

synthetic HIF data from scratches. GAN is a typical unsupervised learning method. It uses 

the powerful nonlinear fitting ability of neural network to learn the nonlinear mapping from 

an arbitrary prior noise distribution to the real data distribution, so as to enable the 

generator to generate realistic samples. A GAN has two neural network modules called 

discriminator and generator. The generator module creates synthetic data from random 

noises; and the discriminator module identifies the flaws of those synthetic data. The 

discriminator and generator of a traditional GAN are both made up of multi-layer 

perceptron networks (MLP). However, its training process is not stable and unexpected 

gradient explosion happened a lot. In this paper, we proposed to use a deep convolutional 

generative adversarial network, which is known as DCGAN. The difference between 

traditional GAN and DCGAN is that the DCGAN integrates the CNN into a traditional GAN. In 

other words, at least one MLP network is replaced by the CNN. Therefore, the DCGAN 

leverages the translation variance and feature capturing advantages of the CNN for a better 

training and testing performance. 

In this paper, we use a DCGAN where both the discriminator and generator are made up 

of CNN. The discriminator CNN has two convolutional layers and one dense layer, and the 

sizes of each layer are 40, 80 filters and 128 neurons, respectively. The generator CNN has 

one dense layer and three reversal convolutional layers, and the sizes are 960 neurons, 60, 

100 and 1 filters, respectively. The activation functions of 
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Figure 8.1: The structure of proposed DCGAN 

the hidden layers of the discriminator network is ReLU. The ReLU can better capture 

relevant features and avoid the gradient diminishing problem, resulting in a more stable 

and efficient training. The output layer activation function of the discriminator network is 

sigmoid, which classifies the inputs into two categories: 1 (real) and 0 (fake). The activation 

functions of the hidden layers of the generator network is leaky-ReLU, which is very similar 

to the ReLU. The only difference is that the gradient for x < 0 in ReLU is zero while it is 0.1 in 

leaky-ReLU. Using leaky-ReLU could result in a slightly better performance than ReLU, but 

the computational burden is heavier. Because training a generator network is usually more 

difficult than training the discriminator network, the leaky-ReLU activation is used here in 

spite of the heavier computational burden. 

The structure of the proposed DCGAN model is shown in Fig. 8.1. The generator will 

create some synthetic HIF data from random noises and try to match the real HIF data 

distribution. The generated synthetic data, together with real HIF data will be treated as 

inputs to the discriminate module, where the discriminator tries to tell the real data from 

synthetic (or fake) data. The DCGAN trains both the discriminator and generator through 
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competitions between the two modules. Specifically, the objective function of the 

discriminator module is 

 maxEx Pr[logD(x)] + Ex Pg[log(1 − D(x))] (8.0.1) 
D 

where D stands for the discriminator. Therefore, the discriminator will be optimized during 

the training process to find the best performance of differentiating the real and synthetic 

(fake) data. 

In contrast, the objective function of the generator module is 

 minEx Pr[logD(x)] + Ex Pg[log(1 − D(x))] (8.0.2) 
G 

where G stands for the generator. Therefore, the generator will be optimized during the 

training process to minimize the probability that the generated synthetic (fake) data being 

identified. 

The combined objective function of a DCGAN is 

 maxminEx Pr[logD(x)] + Ex Pg[log(1 − D(x))] (8.0.3) 
 G D 

The interpretation of the above objective function is that the discriminator will be 

optimized to find the flaws of the generator as much as possible; while the generator will be 

optimized to fool the discriminator as much as possible. During this competition process 

between the two modules, the discriminator will become better and better in identifying 

real HIF data from synthetic (fake) data. In return, the generator will be forced to become 

better and better at creating synthetic (fake) data that have almost the same distribution as 

real HIF data. Finally, when both modules of the DCGAN are well-trained, we can easily use 

the generator module to create large amounts of “high-fidelity” synthetic HIF data. 
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Chapter 9.   Results and Discussions 

9.1    Generated Synthetic HIF Data 

The proposed DCGAN network reached a steady performance after 2,500 iterations. It 

took about 30 minutes to well train the DCGAN network when using an GeForce RTX 2070 

GPU. We randomly generated 800 synthetic HIF data, and one example is shown in Fig. 9.1. 

The generated HIF data looks very like the real HIF data shown in 

Fig. 7.1(b). However, to determine whether the synthetic HIF data can be treated as “real” 

HIF data and used for research purpose, we need to test the synthetic data with the two HIF 

detection methods. 

 

Figure 9.1: An example of generated synthetic HIF waveform 

9.2    Test Results of Two HIF Detection Methods 

First, the third harmonic-based HIF detection method is applied. We conducted an FFT 

analysis on all the 800 randomly generated synthetic HIF data, and the distribution of the 

third harmonic component of the 800 data is shown in Fig. 9.2. Note that the majority of the 
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800 synthetic data have a higher-than 10% third harmonic components, indicating that 

most of the generated synthetic HIF data are classified as “real HIF data” by this HIF 

detection method. We did some further statistical analysis with the 800 synthetic data and 

the results are shown in Table 9.1. The mean and median third harmonic components are 

15.36% and 15.6%, respectively. If choosing 10% as the threshold to differentiate HIF data 

and normal transients, 787 out of all the 800 generated synthetic data can be classified as 

“real HIF data”. If using a threshold of 11%, then 768 out of all the 800 generated synthetic 

data can be classified as “real HIF data”. 

 

Figure 9.2: The distribution of the third harmonic component 

Table 9.1: Statistics of 800 generated synthetic HIF data 

3rd Harmonic Component Value 

Mean 15.36% 

Median 15.6% 

# > 10% 787 

# > 11% 768 

Then, the neural network based HIF detection method is applied to determine if the 

synthetic HIF data are qualified. We randomly generated three groups of synthetic HIF data, 

and each group contains 800 pieces of data. Note that the generator of the DCGAN network 

takes random noises as inputs; thus, the generated HIF data are also random. When using 

the neural network based HIF classifier in [41], the output is either “Positive” (means the 

input is HIF) or “Negative” (means the input is not HIF). The results of the neural network 

based method are shown in Table 9.2. All of the three groups of synthetic data show very 

good performance of the DCGAN. Averagely about 781 out of the 800 randomly generated 
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synthetic HIF data are classified as “real HIF data”, which represents a very high percentage 

(97.6%). 

Based on the waveform of the synthetic data shown in Fig. 9.1, and the extensive test  

Table 9.2: Accuracy Rate of Generated Fault Data Recognition 

Synthetic Data Positive Negative Accuracy 

Group I 783 17 97.8% 

Group II 786 14 98.3% 

Group II 774 26 96.8% 

Average 781 19 97.6% 

 

results of two different HIF detection methods, we can see that most of the generated 

synthetic HIF data can be treated as “real HIF data”. Therefore, using the DCGAN to generate 

HIF data is very promising in solving the data limitation problem of the HIF related 

researches.  
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Chapter 10.   Conclusions for HIF Detection 

This thesis presented a synthetic HIF data generation approach using the DCGAN. The 

DCGAN contains two CNN modules: the discriminator and generator. The competition 

between the two modules results in high-fidelity synthetic HIF data. The generated 

synthetic data have been tested using the third harmonic based and neural network based 

HIF detection methods. Extensive results have demonstrated that the synthetic HIF data 

generated by the DCGAN can be well qualified as “real HIF data”.  
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Chapter 11.   Overall Conclusions and Future Work 

In the thesis, I explored two deep learning applications in the power flow estimation and 

high impedance fault detection. 

Through the experiments of these two parts, it is proved that deep learning has strong 

advantages in power flow estimation and high Impedance fault detection, which is 

obviously better than traditional methods. In the experiment, the convenience and accuracy 

of deep learning have been confirmed. Because the model of deep learning is like human 

brain, it will become more accurate and efficient in continuous learning. 

In future work, we would explore more deep learning application scenarios, In the field 

of power systems, there are countless application scenarios where machine learning can be 

used to work, like the CNN, RNN and some others could be used in sequence 

analysis, voltage detection, high voltage line inspection, fault identification, peak and valley 

prediction and so on. 

I believe in the near future, with the increase of computing power and the evolution of 

models, machine learning will be even more brilliant in this field. 

  



33 

Bibliography 

[1] Kun Yang, Wei Gao, Rui Fan, Tianzhixi Yin, and Jianming Lian. Synthetic high 

impedance fault data through deep convolutional generated adversarial network. 

[2] Kun Yang, Wei Gao, and Rui Fan. Optimal power flow estimation using onedimensional 

convolutional neural network. In 2021 North American Power Symposium (NAPS), 

pages 1–6, 2021. 

[3] ILLINOIS Information Trust Institute. Illinois center for a smarter electric grid (icseg), 

ieee 30-bus system. 1961. 

[4] ILLINOIS Information Trust Institute. Illinois center for a smarter electric grid (icseg), 

ieee 57-bus system. 1961. 

[5] ILLINOIS Information Trust Institute. Illinois center for a smarter electric grid (icseg), 

ieee 118-bus system. 1961. 

[6] Yu-Shuai Li, Da-Zhong Ma, Hua-Guang Zhang, and Qiu-Ye Sun. Critical nodes 

identification of power systems based on controllability of complex networks. Applied 

Sciences, 5(3):622–636, 2015. 

[7] O. Alsac, J. Bright, M. Prais, and B. Stott. Further developments in lp-based optimal 

power flow. IEEE Transactions on Power Systems, 5(3):697–711, 1990. 

[8] M.A. Abido. Optimal power flow using particle swarm optimization. International 

Journal of Electrical Power Energy Systems, 24(7):563–571, 2002. 

[9] LineRoald and G¨oran Andersson. Chance-constrained ac optimal power flow: 

Reformulations and efficient algorithms. IEEE Transactions on Power Systems, 

33(3):2906–2918, 2018. 

 

   



34 

[10] Danny Pudjianto, S. Ahmed, and Goran Strbac. Allocation of var support using lp and 

nlp based optimal power flows. 2002. 

[11] Brian Stott, J.L. Marinho, and O. Alsac. Review of linear programming applied to power 

system rescheduling. pages 142 – 154, 06 1979. 

[12] K.R.C. Mamandur and R.D. Chenoweth. Optimal control of reactive power flow for 

improvements in voltage profiles and for real power loss minimization. Power 

Apparatus and Systems, IEEE Transactions on, PER-1:3185 – 3194, 08 1981. 

[13] S. Ahmed, G. Strbac, L. Yao, A. Dixon, A. Chebbo, A. Ekwue, and D.T.Y. Cheng. Method for 

green field security-constrained allocation of reactive support. Generation, 

Transmission and Distribution, IEE Proceedings-, 146:65 – 71, 02 1999. 

[14] Hua Wei, H. Sasaki, Junji Kubokawa, and R. Yokoyama. An interior point nonlinear 

programming for an interior point nonlinear programming for optimal power flow 

problems with a novel data structure. ieee trans power syst. Power Systems, IEEE 

Transactions on, 13:870 – 877, 09 1998. 

[15] Gerald F. Reid and Lawrence Hasdorff. Economic dispatch using quadratic 

programming. IEEE Transactions on Power Apparatus and Systems, PAS-92(6):2015– 

2023, 1973. 

[16] Rabih A. Jabr. A primal-dual interior-point method to solve the optimal power flow 

dispatching problem. Optimization and Engineering, 4:309–336, 2003. 

[17] Ray Daniel Zimmerman, Carlos Edmundo Murillo-S´anchez, and Robert John Thomas. 

Matpower: Steady-state operations, planning, and analysis tools for power systems 

research and education. IEEE Transactions on Power Systems, 26(1):12– 19, 2011. 

[18] Mohamed Ebeed, Salah Kamel, and Francisco Jurado. Chapter 7 - optimal power flow 

using recent optimization techniques. In Ahmed F. Zobaa, Shady H.E. Abdel 



35 

Aleem, and Almoataz Youssef Abdelaziz, editors, Classical and Recent Aspects of Power 

System Optimization, pages 157–183. Academic Press, 2018. 

[19] Yushuai Li, David Wenzhong Gao, Wei Gao, Huaguang Zhang, and Jianguo Zhou. 

 Double-mode energy management for multi-energy system via distributed dynamic       

event-triggered newton-raphson algorithm. IEEE Transactions on Smart Grid, 

11(6):5339–5356, 2020. 

[20] Yushuai Li, David Wenzhong Gao, Wei Gao, Huaguang Zhang, and Jianguo Zhou. A 

distributed double-newton descent algorithm for cooperative energy management of 

multiple energy bodies in energy internet. IEEE Transactions on Industrial Informatics, 

17(9):5993–6003, 2021. 

[21] Neel Guha, Zhecheng Wang, Matt Wytock, and Arun Majumdar. Machine learning for ac 

optimal power flow. ArXiv, abs/1910.08842, 2019. 

[22] Jubeyer Rahman, Cong Feng, and Jie Zhang. Machine learning-aided security 

constrained optimal power flow. 2020 IEEE Power & Energy Society General Meeting 

(PESGM), pages 1–5, 2020. 

[23] Stephen M. Frank and Steffen Rebennack. A primer on optimal power flow: Theory, 

formulation, and practical examples. 2012. 

[24] James Edward King, Samuel C. E. Jupe, and Philip C. Taylor. Network statebased 

algorithm selection for power flow management using machine learning. IEEE 

Transactions on Power Systems, 30:2657–2664, 2015. 

[25] Tianyu Zhao, Xiang Pan, Minghua Chen, Andreas Venzke, and Steven H. Low. Deepopf+: 

A deep neural network approach for dc optimal power flow for ensuring feasibility. 

2020 IEEE International Conference on Communications, Control, and Computing 

Technologies for Smart Grids (SmartGridComm), pages 1–6, 2020. 

[26] W Beaty. Ieee issues high-impedance fault detection report. Electric Light and 



36 

Power, 74(10), 1996. 

[27] B Don Russell. Detection of downed conductors on utility distribution systems. 

Institute of Electrical and Electronics Engineers, 1989. 

[28] Tammy Gammon and John Matthews. The historical evolution of arcing-fault models 

for low-voltage systems. In 1999 IEEE Industrial and Commercial Power Systems 

Technical Conference, pages 6–pp. IEEE, 1999. 

[29] Mark Adamiak, Craig Wester, Manish Thakur, and Chuck Jensen. High impedance fault 

detection on distribution feeders. GE Industrial solutions, 2006. 

[30] LD Mitchell. Improved methods for the fast fourier transform (fft) calculation of the 

frequency response function. 1982. 

[31] M Sedighizadeh, A Rezazadeh, and Nagy I Elkalashy. Approaches in high impedance 

fault detection a chronological review. Advances in Electrical and Computer Engineering, 

10(3):114–128, 2010. 

[32] N. Zamanan and J.K. Sykulski. Modelling arcing high impedances faults in relation to the 

physical processes in the electric arc. 01 2006. 

[33] D. Hou and Normann Fischer. Deterministic high-impedance fault detection and phase 

selection on ungrounded distribution systems. IEEE Industrial Commercial Power 

Systems Technical Conference, pages 1–10, 01 2007. 

[34] RE LEE and LA KILAR. Summary and status-report on research to detect and de-

energize high impedance faults on 3-phase, 4-wire distribution circuits. IEEE 

Transactions on Power Apparatus and Systems, 99:14–14, 01 1980. 

[35] Keng-Yu Lien and Shi-Lin Chen. Self-tuning of fault detection threshold for high 

impedance fault detection. 5:277–285, 11 1998. 

[36] Mehdi El-Hami. Distribution system fault location technique utilizing high frequency 

spectrum of fault current. 01 2023. 



37 

[37] A Siadatan, H Kazemi Karegar, and V Najmi. New high impedance fault detection. In 

2010 IEEE International Conference on Power and Energy, pages 573–576. IEEE, 2010. 

[38] Carl Benner, Pat Carswell, and B Don Russell. Improved algorithm for detecting arcing 

faults using random fault behavior. Electric Power systems research, 17(1):49–56, 1989. 

[39] Y. Liu, A. P. S. Meliopoulos, R. Fan, L. Sun, and Z. Tan. Dynamic state estimation based 

protection on series compensated transmission lines. IEEE Transactions on Power 

Delivery, 32(5):2199–2209, 2017. 

[40] Milad Khani, Reza Ghazi, and Behnam Nazari. Decision support system for optimal 

location of hifds in real distribution network using an integrated epso-fuzzy ahp model. 

IET Generation, Transmission & Distribution, 14(9):1616–1626, 2020. 

[41] Rui Fan and Tianzhixi Yin. Convolutional neural network and transfer learning for high 

impedance fault detection. arXiv preprint arXiv:1904.08863, 2019. 

[42] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David WardeFarley, 

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 

2014. 

[43] V Torres, JL Guardado, HF Ruiz, and S Maximov. Modeling and detection of high 

impedance faults. International Journal of Electrical Power & Energy Systems, 61:163–

172, 2014. 

[44] Xiang Pan, Tianyu Zhao, and Minghua Chen. Deepopf: Deep neural network for dc 

optimal power flow, 2019. 

[45] Benjamin Karg and Sergio Lucia. Efficient representation and approximation of model 

predictive control laws via deep learning. 06 2018. 

[46] Andreas Kettner and Mario Paolone. On the properties of the power systems nodal 

admittance matrix. IEEE Transactions on Power Systems, PP, 07 2017. 



38 

[47] Lanchao Liu, Amin Khodaei, Wotao Yin, and Zhu Han. A distribute parallel approach for 

big data scale optimal power flow with security constraints. pages 774–778, 10 2013. 

[48] Stephen Frank, Ingrida Steponaviˇce˙, and Steffen Rebennack. Optimal power flow: a 

bibliographic survey ii. Energy Systems, 3, 09 2012. 

[49] Stephen Frank, Ingrida Steponaviˇce˙, and Steffen Rebennack. Optimal power flow: a 

bibliographic survey i. Energy Systems, 3, 09 2012. 

[50] Yann LeCun, Patrick Haffner, L´eon Bottou, and Yoshua Bengio. Object recognition with 

gradient-based learning. In David A. Forsyth, Joseph L. Mundy, Vito di Gesu, and 

Roberto Cipolla, editors, Shape, Contour and Grouping in Computer Vision, Lecture 

Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence 

and Lecture Notes in Bioinformatics), pages 319–345. Springer Verlag, 1999. 

International Workshop on Shape, Contour and Grouping in Computer Vision 

; Conference date: 26-05-1998 Through 29-05-1998. 

 

[51] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: 

Surpassing human-level performance on imagenet classification. In 2015 IEEE 

International Conference on Computer Vision (ICCV), pages 1026–1034, 2015. 

[52] R.K. Srivastava, Jonathan Masci, S. Kazerounian, Faustino Gomez, and J. Schmidhuber. 

Compete to compute. Advances in Neural Information Processing Systems, 01 2013. 

[53] Forest Agostinelli, Matthew Hoffman, Peter Sadowski, and Pierre Baldi. Learning 

activation functions to improve deep neural networks. 12 2014. 

[54] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir 

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper 

with convolutions. 09 2014. 

[55] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, 

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander 



39 

Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. International 

Journal of Computer Vision, 115, 09 2014. 


	Deep Learning for Power Flow Estimation and High Impedance Fault Detection
	Recommended Citation

	Deep Learning for Power Flow Estimation and High Impedance Fault Detection
	Abstract
	Document Type
	Degree Name
	Department
	First Advisor
	Second Advisor
	Third Advisor
	Keywords
	Subject Categories
	Publication Statement

	tmp.1681954057.pdf.6Vm6i

