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ABSTRACT

We investigate correlations among six primary asset classes from January 1982

to December 2022. Our analysis extends existing literature, on the well-researched

stock-bond correlation (SBC), by encompassing 14 supplementary asset class dyads

and four correlational regimes. We challenge the archetype of correlational time-

invariance that underlies buy-and-hold asset allocation strategies by implementing

structural break tests and an innovative Wavelet Coherence (WC) methodology, where

our findings reveal temporal instability. Through a multi-method statistical approach,

we present robust and persuasive evidence of macroeconomic factors as determinants

of temporal change. Leveraging time-varying Granger causality, we unearth elusive

yet significant relationships. Our research pivots to practice, illustrating outperfor-

mance in portfolios constructed upon the principles of time-varying change, macro

drivers, and correlational regimes, thus enabling investors to make more informed

decisions, leading to superior risk-adjusted returns amid a dynamically evolving eco-

nomic landscape.
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CHAPTER 1: INTRODUCTION

In this paper, we explore correlational relationships, extending the scope of

existing literature beyond the extensively researched stock-bond correlation (SBC)

by incorporating 14 additional asset class dyads. Utilizing a comprehensive, multi-

method econometric analysis and portfolio construction approach, we confront the

paradigm of correlational stability that underpins the dogma of buy-and-hold strategic

asset allocation.

Our findings reveal that asset class correlations exhibit significant temporal

fluctuations, with discontinuities in correlational persistence informed by macroeco-

nomic factors. Moreover, our research examines regimes that combine asset class

correlations with market directionality, wherein we find significance in the impact of

macroeconomic determinants on these regimes. This facilitates our assessment of the

notions of time-varying change and regimes through the lens of portfolio construction.

Our analysis finds that persistency portfolios, constructed to test time-invariant,

correlational stability, produce an annualized Sharpe ratio of 0.901, underperforming

a standard 60/40 benchmark at a Sharpe of 1.078. This outcome implies that “chasing

returns” based on the assumption of correlational persistence results in suboptimal

performance. Conversely, we construct regime-switching portfolios, which incorporate

time-variance, macro determinants, and market information. These portfolios yield

an annualized Sharpe ratio of 1.128, offering a path to superior risk-adjusted returns

for investors.

In contemporary finance, the formative theories of Modern Portfolio Theory

(MPT), the Capital Asset Pricing Model (CAPM), Efficient Market Hypothesis
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(EMH), and the Random Walk Hypothesis, remain relevant and underpin modern

financial advice, where they have developed alongside other asset pricing models to

optimize portfolios, manage risk, and inform investment decisions. Predominantly

grounded in MPT, CAPM, EMH, and other evolutions, asset allocation is the process

of constructing portfolios of investments across various asset classes, including stocks,

bonds, and cash, within a portfolio to achieve an optimal balance between risk and

return (Bodie & Kane, 2020).

Correlation is arguably one of the most important inputs into the portfolio

construction process. Strategic asset allocation (buy-and-hold) presupposes a sub-

stantial market efficiency, implying a high level of correlational stability among asset

classes. However, despite the considerable persistence of correlations (Ilmanen, 2003),

they exhibit changes over time. Tactical asset allocation, on the other hand, permits

deviations from conventional allocations to exploit perceived market inefficiencies or

trends (Brinson et al., 1991). It relaxes assumptions around correlational stability

and embraces correlation change, where it endeavors to optimize risk and reward by

adjusting the weightings of distinct assets in a portfolio, aligning with short-term

market conditions and opportunities.

Through a rigorous empirical analysis, this research encompasses the central

inquiry of whether a more profound comprehension of the time-varying change among

asset classes, the macroeconomic determinants of those changes, and regimes based

on correlations and market information, contributes to better portfolio construction

through tactical allocation ultimately resulting in improved risk-adjusted returns. In

this pursuit, we offer five contributions to the literature.

First, we confirm the research on the stock-bond correlation (SBC) while noting

a dearth of research on other asset class correlations, which hold equal importance in

the realm of portfolio construction. In addition to large-cap stocks and US Treasuries

(i.e., SBC), we investigate four additional asset classes: small-cap stocks, international
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stocks, real estate investment trusts (REITs), and gold. By corroborating the extant

literature on the SBC and expanding it to encompass the resultant 14 additional asset

class correlations, we offer significant findings that some of the same drivers of SBC -

inflation, inflation expectations, leading indicators, and sentiment - inform behavior

and induce change in other asset class correlational pairings.

Second, we challenge the assumptions of strategic asset allocation, which posits

the persistence and temporal immutability of correlations. Across our 15 dyads, we

use correlational analysis with fitted linear regression to visualize and assess their

relationships. We add structural break tests where we uncover notable disturbances

in temporal stability across 11 of the 15 correlations examined. Our study then

employs the innovative Wavelet Coherence (WC) to incorporate additional frequencies

(i.e., rolling periods) and phase oscillations. Thus, we present substantial evidence

that correlations are, indeed, subject to temporal fluctuations, revealing the inherent

dynamism and evolving patterns among asset class relationships.

Our findings indicate that stock/stock relationships exhibit higher correlation

and stability. Treasuries relationships have intermittent stability, varying correlation,

and change over time. REITs exhibit distinct and different behaviors that depend on

which asset class they are paired with. Gold maintains its reputation as a volatile,

non-correlated, and non-additive asset. These results expose the fallacy of assuming

time-invariance and proffer a robust, statistically supported argument for embracing

the dynamic nature of change to enhance portfolio construction.

In light of correlations’ instability, we inquire into the factors driving their fluc-

tuations. Our third contribution to the literature involves exploring four macroe-

conomic determinants of SBC: inflation, inflation expectations, leading indicators,

and sentiment, where we add to the literature by including our 14 additional asset

pairings. We apply a distributed lag model (DL) in conjunction with vector autore-

gression (VAR) and Granger causality, where we present significant results on the
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influence of macroeconomic variables as determinants and how they drive change.

When causation breaks down due to temporal parameter instability, we address it

through the novel time-varying Granger causality method (TVGC). TVGC’s forward

expanding, rolling, and recursive evolving windows uncover 41 inferences of causality

and bidirectional causality between our macro variables and asset correlations that

eluded us in a traditional Granger method.

Our fourth contribution broadens our examination of macroeconomic indicators

by delving into the assessment of correlational regimes, which incorporate asset classes

dynamics with market behaviors. A logit/probit model establishes that macroeco-

nomic variables serve as pivotal determinants in 12 of the 16 combinations with the

aforementioned regimes, revealing the compelling nature of macroeconomic determi-

nants in driving time-varying correlational regimes.

Finally, we investigate whether insights gleaned from our study of time-varying

correlations, drivers of change, and regimes can enhance tactical asset allocation.

Our fifth contribution affirms the applicability of these insights by way of a practi-

cal framework. We develop naïve, buy-and-hold benchmarks in addition to optimized

portfolios using a Generalized Reduced Gradient (GRG) nonlinear optimizer, allowing

us to test persistence and regime-based tactical asset allocation. Through hypothet-

ical portfolio construction, we demonstrate that chasing returns is foolish. Whereas,

investors equipped with a comprehensive empirical understanding of correlational

time-variance, macroeconomic determinants, and regimes, can achieve superior risk-

adjusted returns, where a dollar invested in our regime-switching portfolio in January

of 1982 would have grown to $47.87 by December 2022, compared to a buy-and-hold,

60/40 benchmark at $30.61, while offering the same annualized standard deviation of

8.3%.
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CHAPTER 2: REVIEW OF THE LITERATURE

2.1. Modern Portfolio Theory

I think the most important thing that happened between 1959 and the
present is the notion of doing your analysis on asset classes in the first
instance. This has become part of the infrastructure that we now rely on.
In 1959, I had a theory. I had a rationale, and so on. Now, we have an
industry. — Harry Markowitz, (Markowitz, Savage, and Kaplan 2010)

Modern Portfolio Theory (MPT), also known as mean-variance analysis, consti-

tutes a rigorous mathematical framework for constructing a portfolio of assets that

optimizes the expected return subject to a specified level of risk. MPT extends and

formalizes the concept of investment diversification, which posits that holding vari-

ous financial assets reduces overall risk compared to owning a single type of asset.

By diversifying, investors aim to attenuate portfolio risk while attaining satisfactory

returns.

Harry Markowitz pioneered MPT in his 1952 doctoral dissertation, “Portfolio

Selection”, and subsequently expanded upon in a series of articles published in the

Journal of Finance during the early 1950s (Markowitz, 1952, 1959). In recognition of

his groundbreaking contributions to MPT, Markowitz was awarded the Nobel Memo-

rial Prize in Economic Sciences in 1990 (Nobel, 1990). The framework is predicated

on the normative principles of Daniel Bernoulli’s Expected Utility Theory (Tversky,

1975), which presumes that investors exhibit rational, risk-averse behavior in pursuit

of maximizing expected returns while minimizing risk. Moreover, MPT assumes that

investors can accurately gauge risk and return and freely transact any market asset

at a known price.
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As delineated by Markowitz (1952), portfolio construction entails a two-stage

process. Initially, investors must identify potential assets for inclusion, taking into

account factors such as expected returns, risk levels, the covariance of returns between

securities, and their individual preferences and projections concerning future perfor-

mance. Subsequently, investors can commence building their portfolio by estimating

each asset’s expected return based on historical data and informed speculation about

future performance. Variance, a measure of the anticipated fluctuations in an asset’s

return, is then computed for each asset, with higher variances signifying greater risk.

Having derived each asset’s expected return and variance, investors can proceed to

assemble their portfolio, striving to strike an optimal balance between risk and return.

In his seminal work, Markowitz (1959) introduced mean-variance optimization

as a methodology for investors to determine the optimal portfolio from a set of return

distributions over a single period (Elton & Gruber, 1997). Markowitz subsequently

termed the array of efficient mean-variance combinations as the Efficient Frontier

(Markowitz, 1999), which remains a cornerstone of modern financial practice. The

Capital Asset Pricing Model (CAPM) later integrated risk into the portfolio selection

process (Perold, 2004), further refining MPT. The theory has continued to evolve and

exert considerable influence on academic research and practical applications, with

recent advancements encompassing sophisticated mathematical models for portfolio

optimization, such as Monte Carlo simulation (Fabozzi et al., 2002) and machine

learning techniques (Ünlü & Xanthopoulos, 2021).

2.1.1. The Efficient Frontier

In addition to MPT, Harry Markowitz’s (1952) seminal article also introduced

the efficient frontier concept. MPT posits that a combination of assets is efficient if

it results in the highest possible return for a given level of risk. All possible combi-

nations of securities can be graphed in terms of risk and expected return resulting

in a collection of portfolios. This region is the opportunity set without the ability to
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hold a risk-free asset, where the efficient frontier is the upper boundary of this region,

represented by a hyperbolic curve (Merton, 1972).

Markowitz’s original article (Markowitz, 1952) assumed that all assets are risky.

Tobin (1958) introduced the concept of borrowing and lending at a default-free, risk-

free rate often approximated by a T-bill. This simplified the efficient frontier and

introduced risk-preference (Perold, 2004), laying the groundwork for the CAPM as a

better method to derive the efficient frontier.

The efficient frontier is a graphical representation for investors to select portfo-

lios that offer the best combination of return and risk. Financial analysts have also

used it to identify the optimal mix of assets for a given investment goal. In theory,

portfolios above the frontier cannot be achieved. More efficient portfolios dominate

portfolios below the frontier. The resultant asset allocation is the implementation of

an investment strategy that balances risk-reward by adjusting each asset’s percentage

in an investment portfolio based on risk preference, goals, and time frame. Originally

MPT’s efficient frontier was derived at the individual security level. However, various

asset allocations may be plotted according to return and risk to derive an asset-level

efficient frontier, where the focus is on the portfolio.

2.1.2. The Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) is an extension of MPT, serving as

a theoretical instrument to determine the required rate of return for an asset in a

well-diversified portfolio, considering the asset’s non-diversifiable risk (Treynor, 1962;

Sharpe, 1964; Lintner, 1965, 1975; Mossin, 1966). CAPM functions as a positive

theory, diverging from MPT’s normative nature.

The Sharpe-Lintner-Mossin theorem posits that investors will only hold assets

with expected returns equivalent to the CAPM risk premium under equilibrium con-

ditions (Sharpe, 1964; Lintner, 1965, 1975; Mossin, 1966). The model states that the
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expected return of a security or portfolio is the sum of the risk-free rate and a risk

premium determined by beta, a measure of systematic risk (Sharpe, 1964). During

this period, Sharpe introduced the Sharpe ratio in 1965, a metric of risk-adjusted

return including the risk-free return rate or a comparable benchmark Sharpe (1966).

Alpha, the measure of excess return, was first introduced by Jensen (1968).

The seminal contributions of the CAPM include: (1) delineating the relationship

between systematic risk and expected return for a portfolio; (2) incorporating the time

value of money by adding the risk-free rate; (3) introducing beta as a measure of risk;

and (4) differentiating between systematic risk (market risk), which is common to all

securities, and unsystematic risk, which is idiosyncratic and diversifiable.

While the CAPM remains relevant, its imperfections are often highlighted by

critics who point to its simplifying assumptions and occasional inaccuracies in predict-

ing security returns. Perold (2004) provides a summary of CAPM’s assumptions: (1)

investors are mean-variance optimizers who are risk averse and evaluate investments

based on expected return and standard deviation; (2) markets are efficient, securities

are infinitely divisible, carry no transaction costs, permit short selling, assume no

taxes, exhibit no information asymmetry, and are freely accessible to investors, with

all investors being able to borrow at the risk-free rate; (3) investment opportuni-

ties are ubiquitous, granting access to all investors; and (4) assumptions of expected

returns, standard deviations, and correlations are consistent across investors.

2.1.3. The Efficient Market Hypothesis & Random Walk

The notion that professional investors could not outperform the market was

first established by Cowles (1933) and Cowles & Jones (1937). The Efficient Market

Hypothesis (EMH) is a financial economics theory positing that asset prices reflect all

available information (Malkiel, 1999), thus rendering it impossible to “beat the mar-

ket.” EMH originates in the work of Bachelier, Mandelbrot, and Samuelson, who are

credited with formulating the random walk hypothesis (Bachelier, 1900; Mandelbrot,
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1967; Samuelson, 1973). The random walk hypothesis offers that financial markets

are efficient, with prices fluctuating randomly. This theory is grounded in the idea

that market participants consistently seek new information, which is promptly incor-

porated into prices.

Eugene Fama developed EMH during the 1960s (Fama, 1970), presenting three

efficiency tests: weak form, semi-strong form, and strong form. According to Fama

(1970), the weak form test examines past prices to determine their ability to predict

future prices. The semi-strong form test evaluates both past prices and public infor-

mation in predicting future prices. In contrast, the strong form test scrutinizes all

information, both public and private, for its predictive capacity.

Unwavering advocates of EMH have fueled the growth of an indexing industry,

with figures such as Jack Bogle, founder of Vanguard, staunchly defending EMH

(Bogle, 1999) until his passing in 2019. Likewise, Malkiel (2003) addresses critiques

of EMH, including sentiment, seasonality, momentum, fundamental valuation, equity

risk premium, bubbles, and crashes. The 1950s and 1960s witnessed numerous studies

highlighting a lack of predictability (Ball & Brown, 1968; Fama et al., 1969), with

Yen & Lee (2008) noting that empirical findings during the late 1970s and 1980s

were mixed, leading to an increase of return predictors from the 1980s to the mid-

2000s (Campbell & Shiller, 1988; Jegadeesh & Titman, 1993; Ang & Bekaert, 2007).

Since then, return predictability has grown more elusive (Timmermann & Granger,

2004) and not always performed effectively out-of-sample (Welch & Goyal, 2008).

Market inefficiency and predictability have been undermined by advancements

in trading technology, as Chordia et al. (2014) discover that price dislocations have

diminished in recent years. Factors contributing to the diverse views on efficiency

also encompass access to research (McLean & Pontiff, 2016) and learning (Martineau,

2021). Consequently, support for EMH has been revitalized, with Yen & Lee (2008)
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asserting that “the EMH is here to stay and will continue to play an important role

in modern finance for years to come.”

2.2. The Significance of Tactical Asset Allocation

Antonio: Believe me, no: I thank my fortune for it, My ventures are not
in one bottom trusted, Nor to one place; nor is my whole estate Upon the
fortune of this present year: Therefore my merchandise makes me not sad.
- Merchant of Venice, William Shakespeare

In the early days, the seminal work of Markowitz (1952), MPT, CAPM, and

other pricing models were primarily concerned with security selection (Treynor, 1961,

1962; Sharpe, 1964; Lintner, 1965, 1975; Mossin, 1966). However, as these theo-

ries evolved and synthesized concepts such as the EMH and the efficient frontier

(Canner et al., 1994; Tütüncü & Koenig, 2004), they have found broader applicabil-

ity at the asset level, leading to the increased study of asset allocation and its relevance

to practitioners.

Asset allocation constitutes an investment strategy that seeks to optimize risk

and reward by adjusting the weightings of different assets within an investment port-

folio. Drawing upon the notion that returns combine linearly, while risks combine

non-linearly (Sharpe, 1964, 1966), asset allocation decisions are composed at the as-

set class level. This allows for the combination of assets with divergent risk, return,

and correlation characteristics to create various portfolios tailored to distinct invest-

ment objectives. Similar to securities, these asset allocations lie along an efficient

frontier. Asset allocation decisions presuppose a modicum of efficiency, informed by

EMH. Otherwise, investment selection would disregard this level in favor of sector

and security selection, or other inefficiency-exploiting methods such as fundamental

analysis, technical analysis, quantitative analysis, and behavioral strategies. Often,

these methods are employed only after establishing a foundation through a more

conventional asset allocation framework.
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Various asset allocation strategies, grounded in investment goals, risk tolerance,

timeframes, and diversification, include strategic, dynamic, tactical, and core-satellite

allocations. Strategic asset allocation represents a normative approach that combines

assets through a mean-variance perspective based on expected rates (Campbell et al.,

2002). This approach emphasizes the investor’s time horizon and risk tolerance, as

these factors influence portfolio selection through goal-orientation while minimizing

concern for short-term risk (Brennan et al., 1997). Typically, strategic asset alloca-

tion assumes a time horizon exceeding ten years. Moreover, it is a passive strategy,

adhering more closely to a random walk and EMH framework, albeit with provisions

for time-based or drift-based rebalancing.

When investors deviate from a buy-and-hold policy, strategic asset allocation

transitions into an “active” or tactical form, wherein temporary deviations from the

investment policy aim to capitalize on capital market disequilibria concerning the

investment fundamentals underlying the policy mix (Brinson et al., 1991). Strategic

asset allocation contrasts with tactical asset allocation, which Brennan et al. (1997)

define as “a single period or myopic strategy which assumes that the decision maker

has a (mean-variance) criterion defined over the one period rate of return on the port-

folio.” Tactical asset allocation adopts a less normative stance and embraces active

management through a pseudo-market-timing component driven by current economic

conditions and concerns about short-term risks. Whereas strategic asset allocation

constitutes movement along the efficient frontier, tactical asset allocation represents

movement of the efficient frontier (Statman, 2000). The flexibility of tactical asset

allocation has spurred the development of quantitative approaches (Faber, 2007) and,

more recently, machine learning methods (Chakravorty et al., 2018).

Dynamic asset allocation addresses portfolio selection in uncertain multi-period

settings (Duffie, 2010) and operates under the assumptions of no-arbitrage, single-

agent optimization, and equilibrium. This approach entails purchasing appreciating
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assets during favorable economic environments and selling depreciating assets dur-

ing weakening conditions (Sørensen, 1999). Consequently, dynamic asset allocation

becomes a timing-based strategy driven by the business cycle (Munk & Sørensen,

2010), often referred to as cyclical asset allocation in the literature (Brocato & Steed,

1998) and among practitioners. Long-horizon predictability of asset returns, using

steady-state financial ratios, for instance, enhances dynamic asset allocation strate-

gies (Cardinale et al., 2014). These strategies further benefit from disciplined portfo-

lio management, such as risk-based rebalancing strategies (Kohler & Wittig, 2014).

Core-satellite asset allocation is a strategy that divides an investment portfolio

into two parts: the core, a portfolio of relatively safe investments, and the satellite,

a portfolio of more volatile investments. The core portfolio is designed to provide

stability and capital preservation, while the satellite portfolio aims to generate growth.

The two portfolios are combined to create an overall portfolio with a higher return

than the core portfolio alone. Amenc et al. (2004) also find that this approach offers

effective risk management by minimizing tracking error with respect to a benchmark.

In their groundbreaking study, Brinson et al. (1986) studied the effects of secu-

rity selection, market timing, and investment policy (benchmark buy-and-hold) on 91

pension plans from 1974 to 1983. They discovered that investment policy accounted

for 93.6% of the variance in total plan return. A subsequent 1991 study, which investi-

gated the period from 1977 to 1987, confirmed the original finding, attributing 91.5%

of the variance to investment policy while updating to account for the changing risk

characteristics of a portfolio based on asset class positioning (Brinson et al., 1991).

Hensel et al. (1991) contends that the decision to depart from benchmark policies

in favor of timing or security selection has the most significant impact on returns

and return variability. Building on the Brinson studies, Ibbotson & Kaplan (2000)

compared a five asset class allocation of indexes to mutual fund counterparts and

concluded that asset allocation (1) explained 40% of return variance across funds, (2)
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exhibited a 90% correlation between fund and index returns, and (3) accounted for

close to 100% of fund returns. Statman (2001) also advocates for the importance of

asset allocation but adds that tactical allocation by financial professionals can add

value.

2.2.1. Modern Portfolio Theory & Asset Pricing Models

. . . to withdraw is not to run away, and to stay is no wise action when
there’s more reason to fear than to hope; ’tis the part of a wise man to
keep himself today for tomorrow, and not venture all his eggs in one basket.
- Don Quixote by Miguel de Cervantes (1615)

Foundational theories like MPT and the CAPM have evolved significantly since

their inception. Financial economists in the early 1970s devised methods for guarding

against stock market losses, one of which was portfolio insurance. Leland et al. (1976)

pioneered this technique, which employs financial derivatives to shield an investor’s

portfolio from stock market declines. Despite gaining popularity in the 1980s, port-

folio insurance faced criticism for potentially exacerbating market declines, as seen

during the 1987 stock market crash (MacKenzie, 2004). However, institutions and

pension plans continue to employ portfolio insurance today (Dong & Zheng, 2019).

Postmodern Portfolio Theory (PPT) emerged in 1991 as a comprehensive frame-

work for analyzing and constructing portfolios (Rom & Ferguson, 1994). Contrary to

traditional portfolio theory, PPT accommodates a broader range of investor behav-

iors, rendering it more flexible and realistic for practitioners. PPT advocates argue

that investors have individualized target returns, risk is defined by the possibility of

falling below the target return rather than standard deviation, risk should be mea-

sured by downside deviation or the square of semivariance, and risk-adjusted return

should be measured by Sortino ratios instead of Sharpe (Kaplan, 2015).

Value at risk (VaR), a statistical technique for quantifying financial risk within

a firm or investment portfolio, was developed by JPMorgan and Banker’s Trust in
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the 1990s (Holton, 2002). VaR estimates the maximum loss that could be incurred

over a given period, typically based on the investment’s holding period (Jorion, 2000).

Although VaR is a crucial tool for managing financial risk, it is limited in that it does

not account for all risks and is backward-looking, necessitating its use alongside other

risk management tools.

In the realm of risk-based portfolio construction, Clarke et al. (2006) propose

the most efficient model as the minimum-variance portfolio, which lies at the left-most

tip of the mean-variance efficient frontier and is unique in that security weights are

independent of individual expected returns. Low beta (Frazzini & Pedersen, 2014)

and risk-parity (Asness et al., 2012) portfolios gained popularity but waned due to

long-term “Risk-On” and trending markets. Studies such as Lee (2011) discredited

these models, arguing that their empirical efficacy is counterbalanced by execution

challenges and the absence of a theory to predict performance relative to the markets.

Consequently, these models are relegated to a subset of the MPT paradigm.

Asset pricing models evolved along with MPT, with studies showing that CAPM

cannot explain market anomalies like size and value effects. Jegadeesh & Titman

(1993) investigated the profitability of momentum investing strategies and challenged

the EMH by demonstrating that these strategies can generate significant abnormal

returns.

Deviations from CAPM and EMH prompted a shift toward factor models in

order to explain EMH anomalies. Fama & French (1992) proposed three factors -

market excess return, the outperformance of small versus big companies (SMB), and

the outperformance of high book-to-market versus low book-to-market companies

(HML) - which better explained stock returns than CAPM. Carhart (1997) expanded

on the Fama-French Three-Factor Model (FFM3) by introducing a momentum factor

(MOM). Fama & French (2015) later extended their original FFM3 to include two

additional factors: profitability (RMW) and investment (CMA). The updated Fama-
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French Five-Factor Model (FFM5) was once again updated with a MOM factor by

a Ph.D. student of Eugene Fama, Cliff Asness of AQR Capital (Asness, 2014). The

evolution in asset pricing models is representative of the continuous refinement of

financial theories to better account for market complexities and investor behavior,

highlighting the dynamic nature of the field.

2.2.2. Evolution of Asset Allocation Theory & Practice

But divide your investments among many places, for you do not know
what risks might lie ahead. - Book of Ecclesiastes (935 B.C.)

MPT, CAPM, EMH, efficient frontier, and asset allocation have endured and

continue to underpin financial advice, despite ongoing theoretical and practical devel-

opments. In asset allocation research, the focus has predominantly been on whether

security selection, timing, sentiment, and momentum contribute to or detract from

benchmark policy performance. Bekkers et al. (2009) utilized mean-variance analysis

across ten asset classes, finding that real estate, commodities, and high-yield fixed

income significantly improved the efficient frontier over a naïve benchmark portfolio.

Moreover, Blitz & Van Vliet (2008) demonstrated out-of-sample excess performance

net of transaction costs by applying value and momentum strategies to twelve asset

classes.

While the literature has placed less emphasis on expanding asset classes in asset

allocation studies, focusing instead on factor and strategy-based research, practition-

ers have significantly broadened their scope. The 1980s witnessed an increase in

allocations to small-cap, mid-cap, and international assets in traditional stock/bond

portfolios. In 1992, Morningstar introduced the Style Box to aid investors and profes-

sionals in determining style and capitalization (Morningstar, 2022). The 1990s and

2000s saw further expansion into emerging markets, real estate, and commodities.
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More recently, there has been remarkable growth in alternative investments

(Alts), which encompass alternatives to traditional equity and fixed-income securi-

ties. Alts may include derivatives, options strategies, commodities, and managed

futures (Hoevenaars et al., 2008; Hurst et al., 2013). Furthermore, the Alts cate-

gory includes non-traded, non-market fixed income, private equity (Korteweg et al.,

2022), private debt, and private real estate (Demaria et al., 2021). Hedge fund strate-

gies have also evolved as another Alts subcategory, further subdivided into strategies

such as relative-value arbitrage (Gatev et al., 2006), long-short (Fung & Hsieh, 2011),

equity hedge (Asness et al., 2001), market neutral, global macro, and event-driven

(Ennis & Sebastian, 2003; Fung & Hsieh, 1999).

Presently, wealth and investment management services use MPT applications

through asset allocation models employing strategic, dynamic, tactical, or core-

satellite methods, where they express their Capital Market Assumptions (CMAs).

These CMAs provide realistic expectations for forward-looking risk and return

characteristics, enabling practitioners to reach the efficient frontier ex-ante rather

than ex-post. The number of recommended asset classes in practice often surpasses

those studied in academic literature. Wells Fargo Investment Institute (WFII, 2022)

and BlackRock (BlackRock, 2022) recommend allocating to more than 12. Goldman

Sachs Asset Management (GSAM, 2022) adopts a core-satellite approach for high

and ultra-high net worth clients, allocating to 20 classes, while Vanguard (Vanguard,

2022) suggests up to 10 asset classes in its strategic models. This demonstrates the

dynamic and increasingly complex evolution of asset allocation.

2.3. Correlational Change, Determinants, & Regimes

Correlation, a statistical technique that quantifies the strength of linear asso-

ciation between two variables, measures how the variables covary at a constant rate

(Barnett et al., 1994). The sample correlation coefficient, represented as ‘r,’ offers

a numerical assessment of the association’s strength (Pearson, 1895), and its statis-
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tical significance is frequently evaluated through hypothesis testing (Fisher, 1921).

While correlation is widely employed in statistical analysis to characterize simple

relationships, it should not be used to infer causality (Snee, 1977; Shmueli, 2010).

Additionally, correlation may be unsuitable for describing curvilinear associations

(Loehlin, 2004).

In the context of portfolio construction, correlation is a crucial element and was

a key component in Markowitz’s MPT. MPT utilizes correlation to assist investors

in diversifying their portfolios to reduce risk without compromising returns. Within

MPT, correlation measures the extent to which two or more assets move in unison.

A high positive correlation between two assets signifies that they tend to move in

the same direction, whereas a high negative correlation implies that they tend to

move in opposite directions. Low or zero correlation suggests that the assets move

independently of one another.

MPT aims to construct a portfolio with a low overall risk level, which can be

achieved by selecting assets with low, negative, or zero correlations. By combining

such assets, investors can create a more diversified and less risky portfolio. Numerous

empirical studies have demonstrated the benefits of diversification using correlation

within MPT. Bollerslev et al. (1992) examined the effects of volatility spillover across

different markets, discovering that these spillover effects are related to the correlation

between markets. The seminal work of Brinson et al. (1986) discovered that asset

allocation accounted for the majority of the variance in pension fund returns, with

the primary driver of this variation being the level of diversification in the portfolios.

17



2.3.1. Correlational Change Over Time

The four most dangerous words in investing are: ‘This time it’s different.’
- Sir John Templeton

The correlations among stocks, bonds, and other asset classes exhibit variabil-

ity over time, contingent upon prevailing market conditions and economic factors

(Chollete et al., 2009). Connolly et al. (2005) assert that stock market uncertainty

influences the return correlation between stocks and bonds. Under conditions of

heightened uncertainty, stocks and bonds consistently exhibit negative return corre-

lations. In contrast, a positive correlation emerges when uncertainty is low. This

underscores the significance of accounting for market uncertainty when examining

asset correlations.

Ilmanen (2003)’s observation of the transition from positive to negative stock-

bond correlations over time suggests that the persistence of these correlations is

subject to macroeconomic factors and evolving market conditions. The correla-

tion among international equity markets has increased over time (Baele et al., 2010)

and demonstrates greater persistence during episodes of extreme market volatility

(Longin & Solnik, 2001). This finding implies that diversification benefits become

constrained during turbulent periods due to the enduring nature of high correlations

among international equity markets.

Although correlations can persist for extended durations, such persistence is not

guaranteed. Investors ought to remain alert and continually assess the correlations

between various asset classes to ensure optimal portfolio management. Engle (2002)

introduces the Dynamic Conditional Correlation (DCC) model to capture these time-

varying correlations, furnishing a more accurate comprehension of their persistence.

Recognizing the potential for stock-bond and other asset correlations to change over

time due to numerous economic and market factors is crucial. Investors and portfolio
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managers should monitor these correlations and modify their investment strategies to

optimize diversification benefits and manage risk. A more profound understanding of

the macroeconomic drivers, coupled with an awareness of the prevailing correlational

regime, would contribute to more informed portfolio construction.

2.3.2. Determinants of Correlational Change

The correlation between asset classes is a focus of financial research, especially

the stock-bond correlation (SBC). Literature converges on several macroeconomic

drivers of SBC and how it changes over time. According to Andersson et al. (2008),

correlation is positively related to inflation and economic activity, as measured by

GDP, and negatively related to real interest rates. They also find that the correlation

is higher during periods of market stress, such as the 2008 financial crisis. Corre-

lation increases in bull markets but not in bear markets (Longin & Solnik, 2001).

Jacobsen & Scheiber (2022) reiterate these concepts and posit that financial crises

and fluctuations in inflation influence the correlation between stocks and bonds. They

further suggest that before 1997, a decline in economic growth was frequently accom-

panied by an increase in inflation, which led to both government bonds and stocks

losing value simultaneously. However, after 1997, there was a negative correlation

between government bonds and stocks, particularly during periods of decline in the

stock market, owing to the perception that inflation was stable.

Li (2002) notes that inflation expectations can affect the stock-bond correla-

tion because they influence the nominal interest rate, an important driver of bond

returns. Additionally, the author suggests that economic growth can play a role in

the SBC, as changes in economic growth expectations can lead to changes in stock

returns. Ilmanen (2003) examines the impact of macroeconomic factors on the cor-

relation between stocks and bonds. The study finds that: (1) rising inflation leads to

a negative SBC while falling inflation results in a positive SBC; (2) strong economic

growth expectations create a positive correlation, whereas weak growth expectations
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yield a negative correlation; (3) increasing interest rates cause a negative SBC, while

decreasing interest rates lead to rising bond prices and a positive SBC; (4) the SBC

correlation changes over time, necessitating diversification across various asset classes

for a well-balanced portfolio in an evolving correlation landscape. Johnson et al.

(2013) examines the relationship between stock and bond markets in the United

States from 1927 to 2012, suggesting that the SBC correlation is influenced by a

range of factors, including macroeconomic conditions, investor sentiment, and gov-

ernment policies. Pericoli (2018) finds that the correlation between stocks and bonds

is positively related to economic activity by measuring the growth of Gross Domestic

Product (GDP) by consensus estimates and industrial production. He also finds this

correlation to be positively related to inflation, indicating that the two markets move

together when inflation is high.

Bekaert & Engstrom (2010) examines the relationship between inflation and

the stock market, specifically investigating the “Fed Model,” which suggests that the

stock market’s earnings yield should be equal to the long-term government bond yield

minus expected inflation. They find that the relationship between the stock market

and inflation is complex and not easily explained by the Fed Model. Brixton et al.

(2023) posits that the SBC depends not on the level of inflation but on the relative

volatility of growth and inflation and the correlation between them.

In contrast, Shiller & Beltratti (1992) use vector autoregression to argue that

changes in the correlation between stock prices and bond yields have little to do with

changes in inflation rates. The relationship between these two asset classes can be

influenced by various factors such as macroeconomic conditions, monetary policies,

and market sentiment. During periods of high uncertainty, SBC tends to be posi-

tive (Connolly et al., 2005), while during periods of low uncertainty, the correlation

is negative. The VIX, or “fear index,” a measure of implied volatility in the stock

market, also explains SBC correlation. When the VIX is high, reflecting increased
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investor fear, the stock-bond correlation tends to be positive. This suggests that dur-

ing times of heightened market sentiment, both stocks and bonds may react similarly

to changing market conditions (Bekaert & Hoerova, 2014). Baker & Wurgler (2007)

argue that investor sentiment can influence asset prices, especially for stocks that are

harder to value or more speculative. When sentiment is positive, investors are more

likely to take on riskier assets like stocks, which could result in a negative correlation

with bonds. On the other hand, when sentiment is negative, investors may opt for

safer assets like bonds, potentially leading to a positive SBC. Inflation expectations

are supported as a strong determinant of SBC, where sentiment plays an indirect role,

as it can affect inflation expectations and investors’ perception of bonds as a hedge

against stocks (Campbell et al., 2009).

Other studies look at additional determinants of asset class correlations where

Bekaert et al. (2013) investigate the impact of monetary policy on risk, uncertainty,

and asset prices, including stock-bond correlations. They find that unconventional

monetary policy measures, such as quantitative easing, can affect asset prices and

the relationships between different asset classes. Longin & Solnik (2001) analyzed

the evolution of international stock market correlations between 1980 and 1999 and

found that correlations have increased significantly over time, indicating increased

global market integration. Correlation is not related to market volatility per se but

to the market trend. Another factor that has led to changes in correlations is the rise

of index-based investing, which has led to increased correlations between assets, as

many index-based portfolios include similar assets (Bollen & Busse, 2005; Wurgler,

2010).

In recent years, there have been changes in the financial landscape that have

led to changes in correlations between assets. For example, increased global intercon-

nectedness has led to an increased correlation between financial markets around the

world (Ang & Bekaert, 1999). This increased correlation means that events in one

21



market can have a significant impact on other markets. Forbes & Rigobon (2002)

offer that interdependence among stock markets, rather than contagion, is attributed

to economic fundamentals, investor sentiment, and monetary policy. On the other

hand, contagion refers to the idea that shocks in one market can cause other markets

to crash, independent of common factors. This has led to higher levels of risk for

portfolios that are not diversified globally.

2.3.3. Correlational Regimes

Correlational regimes pertain to distinct time intervals during which the corre-

lations between various financial assets display particular characteristics or patterns.

As these regimes are governed by the same macroeconomic drivers that underpin

the underlying correlations, they exhibit analogous patterns of persistence. A better

understanding of correlational regimes is crucial for portfolio management, as it en-

ables investors to optimize their risk diversification strategies. Several studies have

explored the existence and nature of correlational regimes.

Ang & Bekaert (2002) examine international allocations and identify the pres-

ence of regime shifts characterized by alterations in correlations among diverse asset

classes. Through a regime-switching model to capture shifts, they discover that op-

timal portfolio allocations are contingent upon the prevailing regime. Chollete et al.

(2009) employ a multivariate regime-switching copula approach to model the interna-

tional financial returns of stocks, bonds, and other asset classes. Their findings reveal

that correlations among these assets evolve over time depending on market conditions

and economic factors, substantiating the existence of correlational regimes.

Correlational regimes play a pivotal role in portfolio management and diversifi-

cation. By understanding and adapting to these regimes, investors can better manage

their portfolios and navigate various market conditions. Jacobsen & Scheiber (2022)

propose the existence of four correlational regimes: (1) Everyone-Wins: positive stock-

bond correlation (SBC) with rising markets; (2) Risk-On: negative or low SBC with
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rising markets; (3) Flight-to-Safety: negative SBC with declining markets; and (4)

Nowhere-to-Hide: positive SBC with declining markets.

Everyone-Wins regimes are typified by periods when markets are favorable, and

correlations are positive, leading to positive returns across asset classes. Utilizing a

regime-switching model to capture shifts in market conditions and asset correlations,

Guidolin & Timmermann (2005) investigate optimal portfolio choices under differ-

ent market regimes, including periods of positive returns and positive correlations,

assisting investors in optimizing their portfolios in response to propitious market

environments. During periods of positive returns, correlations change, and when

these correlations are high, investors benefit from holding a diverse range of assets

(Ang & Bekaert, 2002). Conversely, through wavelet analysis, Rua & Nunes (2009)

examine the international comovement of stock market returns and find that corre-

lations tend to be higher during periods of market expansion, limiting diversification

benefits during rising markets with positive relationships. Correlation risk is priced

in the market, so investors demand a premium for holding assets with high system-

atic risk during periods of increased correlation, presenting diversification challenges

during periods of rising markets with positive correlations (Driessen et al., 2009).

Risk-On regimes are characterized by periods when investors exhibit a height-

ened appetite for riskier assets, such as stocks, owing to favorable market conditions,

economic growth, or increased optimism. Accommodative monetary policies can pre-

cipitate Risk-On regimes, where investors have a higher appetite for riskier assets

due to increased optimism and low interest rates (Bekaert et al., 2013). Carry trade

strategies are associated with Risk-On, as they are exposed to global risk factors.

These exposures change over time, suggesting that investors need to monitor Risk-On

and risk-off regimes for successful carry trade strategies (Christiansen et al., 2011).

Neely et al. (2014) examine the predictive ability of technical indicators for the equity

risk premium, which can signal the presence of Risk-On or risk-off regimes. They find
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that certain technical indicators can help predict equity risk premiums, providing

valuable information for investors during Risk-On periods. The stock-bond return

relation is more positive during low uncertainty periods, which are typically associ-

ated with Risk-On regimes, and more negative during high uncertainty periods, which

correspond to risk-off regimes (Connolly et al., 2005).

Flight-to-Safety regimes are characterized by investors’ tendencies to reallocate

their investments from riskier assets to safer or higher-quality assets during periods

of market stress or uncertainty. In such periods, SBC exhibits distinct patterns, with

bonds serving as a safe-haven asset when equity markets experience significant down-

turns (Baur & Lucey, 2009). Geyer et al. (2004) find a similar effect when examining

yield spreads in European Monetary Union (EMU) government bonds, where they

discover evidence of Flight-to-Safety behavior during market stress, with investors

seeking refuge in higher-quality government bonds. In examining the influence of

political incumbency on financial market uncertainty in Australia, Smales (2015)

suggests that political uncertainty leads to an increase in Flight-to-Safety episodes as

investors seek safety in higher-quality assets.

Nowhere-to-Hide regimes are periods when markets experience negative returns,

and asset correlations are positive, limiting diversification opportunities for investors.

Seo (2023) investigates long-run inflation risk in correlated markets, which render

nominal bonds non-hedge assets, force regime shifts, and change the stock-bond

return correlation. This leads to a decline in diversification potential across asset

classes, resulting in sharply higher levels of investment risk (Cotter et al., 2018).

Forbes & Rigobon (2002) analyze stock market comovements and variance, where

they disentangle contagion from interdependence. They find that correlations be-

tween markets increase during periods of high volatility and negative returns, limiting

diversification opportunities and creating Nowhere-to-Hide situations for investors.

Hartmann et al. (2004) confirms this by demonstrating that asset class correlations
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increase significantly during periods of financial stress, thus limiting opportunities for

diversification.

Understanding correlational regimes is essential for effective portfolio manage-

ment and risk diversification. Investors must adapt to these regimes and continuously

monitor market conditions, asset correlations, and economic factors to optimize their

investment strategies and navigate various market environments.

2.4. Impact of Changing Correlations on Portfolio Construction

Tactical asset allocation is a fundamental aspect of investment management,

with the objective of maximizing expected returns while minimizing associated

risk. However, the changing correlations among asset classes can pose challenges

to the traditional methods of portfolio construction, making diversification and

asset allocation more complex. Accounting for changes in the correlation structure

among assets can significantly improve portfolio performance and risk management

(Guidolin & Timmermann, 2007). It is important to have a better understanding

of the role of macroeconomic factors and market conditions in driving correlation

changes and their influence on asset allocation decisions.

Changes in correlations can impact the effectiveness of asset diversification.

As assets that were once uncorrelated or negatively correlated become positively

correlated, the level of diversification in a portfolio may decrease, leading to higher

levels of risk (Brixton et al., 2023). To mitigate this risk, portfolio managers may

need to adjust their asset allocation strategies by reducing exposure to assets that

are becoming more positively correlated and investing in assets that are becoming

more negatively correlated. For example, a portfolio manager may reduce exposure

to US and European stocks if they are becoming more positively correlated and

increase exposure to emerging market stocks, which are becoming more negatively

correlated (DeMiguel et al., 2009). Dopfel (2003) finds that a lower SBC may require

investors to allocate a higher percentage of their portfolio to equities to achieve a
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desired level of risk and return. This highlights the importance of considering the

changing correlation between assets when making asset allocation decisions.

The impact of macroeconomic factors and market conditions on correlation

should be considered when constructing a diversified portfolio. Brixton et al. (2023)

suggests that traditional asset classes, such as stocks and bonds, may be more sus-

ceptible to these factors, whereas alternative asset classes, such as commodities, real

estate, private equity, and hedge funds, may provide additional sources of return and

diversification. The bidirectional causality between stocks and bonds suggests that

diversification across these two asset classes may not provide complete risk reduction

(Baz et al., 2019). Therefore, incorporating alternative asset classes may be necessary

to achieve a truly diversified portfolio. Ilmanen et al. (2014) find that commodities

tend to perform well during periods of inflation, while real estate tends to perform well

during periods of economic growth. They also find that equities tend to perform well

during periods of economic growth and low inflation, while bonds tend to perform well

during periods of economic slowdown and high inflation. Konno & Yamazaki (1991)

add that changes in correlation have important implications for portfolio construction,

where investors may need to revise strategies to ensure adequate diversification. This

may involve investing in a wider range of assets, including global assets, to reduce

portfolio risk.

As global interconnectedness continues to increase and new investment strategies

emerge, correlations between assets will continue to evolve (Ang & Bekaert, 1999).

Investors must be prepared to adapt their portfolio construction strategies in response

to these changes to ensure that their portfolios remain optimal. Embracing alterna-

tive asset classes and considering the impact of macroeconomic factors and market

conditions on asset correlations will be crucial for maintaining a well-diversified and

robust portfolio (Forbes & Rigobon, 2002).
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CHAPTER 3: DATA & METHODS

3.1. Data Collection

We use month-end index and price data for six primary asset classes, encom-

passing the period between January 1982 and December 2022, resulting in a total of

492 observations. The S&P 500 index (SP) represents US large-cap equities, while

the Russell 2000 index (R2 ) serves as a proxy for US small-cap equities. The MSCI

EAFE (EF )index is employed to approximate international equities. In accordance

with existing literature, the ICE BofA US Treasury index (UST ) is utilized for bonds.

These four indices are sourced from FactSet (2023). The month-end spot price for

gold (G) comes from MacroTrends (2023). For real estate, the FTSE Nareit US

Total Return Index (RE ) is adopted (Nareit, 2023). As for the risk-free rate, the

three-month T-bill rate is employed, which is obtained from the St. Louis FRED

economic database (FRED, 2023b). A comprehensive overview of asset class and

portfolio summary statistics is presented in Table 3.1.

For a fundamental measure of expected positive economic activity, we use the

CEIC’s Leading Indicators for the United States (CEIC ) (CEIC, 2023). Our psy-

chological variable for growth expectations is Sentiment (Sent) which comes from the

University of Michigan’s Index of Consumer Sentiment (UofM, 2023). As a measure of

inflation, we sourced one of the Federal Reserve’s preferred measures - the 12-month

Trimmed Mean PCE Inflation (π) also from CEIC (CEIC, 2023). Our other psycho-

logical variable, two-year Inflation Expectations (πe), come from St. Louis FRED

(FRED, 2023a).
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Table 3.1: Summary Statistics: Macros, Assets, & Portfolios

Summary statistics from January 1982 to December 2022. Macros: π (Inf_12M ), πe (ExpInf_2Y ),
Leading Indicators (CEIC ), Sentiment (Sent). Asset classes: S&P 500 (SP), US Treasuries (UST ),
MSCI EAFE (EF ), Russell 2000 (R2 ), REITs (RE ), and Gold (G). Benchmark portfolios: 0/100
(B0100 ), 20/80 (B2080 ), 40/60 (B4060 ), 60/40 (B6040 ), 80/20 (B8020 ), 100/0 (B1000 ). Op-
timized and persistency portfolios: Optimized Unconstrained (OptU ), Persistency Unconstrained
(POptU ), Optimized Semi-constrained (OptC ), Persistency Semi-constrained (POptC ), Optimized
Benchmark Constrained (OptB), Persistency Benchmark Constrained (POptB). Regime and regime-
switching: Everyone-Wins (EW ), Risk-On (RO), Flight-to-Safety (FTS ), Nowhere-to-Hide (NTH ),
Regime-switching (RS ) , Optimized Regime-switching (RSO).
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3.2. Correlational Analysis

To perform a comprehensive correlation analysis, we calculate all 15 asset class

correlational combinations, yielding rolling 12-month correlation matrices. We fit

linear regression lines to the data to aid in the visualization of the changing nature of

correlations over time. Figure 3.1 illustrates the rolling 1-year stock-bond correlation

(SBC) utilizing the returns of the S&P 500 and US Treasuries.

Figure 3.1: Correlation of the S&P 500 to US Treasuries

This chart portrays the rolling one-year correlation of S&P 500 index to the ICE BofA US Treasury
index from January 1982 to December 2022. A linear regression line has been fitted and indicates
that the correlation (ρ) has changed from positive (ρ = 0.4) to negative (ρ = −0.4).

Stationarity is a property of a time series where its statistical characteris-

tics, such as mean, variance, and autocorrelation, remain constant over time. Non-

stationarity implies that properties change over time, leading to issues in time series

analysis and forecasting, such as spurious regressions, unreliable parameter estimates,

inaccurate forecasts, and invalid hypothesis testing (Greene, 2003). To address these

issues, it is essential to test for stationarity and transform non-stationary time series
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into stationary ones. We use the Augmented Dickey-Fuller (ADF) to test for the

presence of a unit root in a time series (Dickey & Fuller, 1979; Said & Dickey, 1984).

The ADF test equation is:

∆yt = α + βt+ γyt−1 + δ1∆yt−1 + · · ·+ δp−1∆yt−p+1 + ϵt (3.1)

The null hypothesis (H0) of the ADF test assumes the presence of a unit root

(i.e., γ = 0), while the alternative hypothesis (H1) asserts the absence of a unit root

(i.e., γ < 0). The test statistic is computed and compared with the critical values to

determine whether the null hypothesis can be rejected.

The Schwarz Bayesian Information Criterion (SBIC) is a model selection crite-

rion used in statistical analysis to compare and select the best-fitting model from a

set of candidate models (Schwarz, 1978). It balances model complexity and goodness

of fit by incorporating both the likelihood of the data given the model and a penalty

term proportional to the number of parameters in the model. SBIC favors simpler

models with fewer parameters, as it helps to avoid overfitting and choose the most

parsimonious model that still adequately explains the data. We use SBIC in our

study to determine the optimal lag.

The persistent nature of the stock-bond correlation (SBC) has been well-

established in existing literature (Connolly et al., 2005; Ang & Bekaert, 2002),

leading to assumptions of stability that inform buy-and-hold strategic allocations.

However, it does not fully account for the complexities of asset correlations, which are

subject to change over time (Cappiello et al., 2006). Our study uses an autoregressive

model (AR) to assess the strength of the inherent time-series moving average of the

15 asset correlations.
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An autoregressive (AR) model is a type of linear model employed in econometrics

and finance to characterize the behavior of time series data. This model posits that

the current value of a variable is linearly dependent on its previous values, with the

addition of an error term. AR models are frequently utilized to analyze and forecast

time series data, such as stock prices, GDP, or inflation rates (Box et al., 2015).

An Autoregressive (AR) model of order p can be denoted by the subsequent

equation:

yt = c+ ϕ1yt−1 + ϕ2yt−2 + · · ·+ ϕpyt−p + ϵt (3.2)

In this representation, yt is the value of the variable at time t, c is a constant term,

ϕi are the autoregressive coefficients, and ϵt is an error term at time t.

AR models are valuable in investigating short-run and long-run relationships

between variables and have demonstrated the persistence of correlational relationships

(Malliaropulos, 1998).

Bansal & Yaron (2004) and Baele et al. (2010) use the Newey-West estimator

in their analyses of SBC. The Newey-West estimator is a technique for adjusting the

standard errors of Ordinary Least Squares (OLS) estimators to account for autocor-

relation and heteroskedasticity (Newey & West, 1987).

The Newey-West HAC estimator of the covariance matrix is given by:

VNW = (X ′X)−1X ′ΩX(X ′X)−1 (3.3)

where Ω is a consistent estimator of the long-run covariance matrix of the error

terms. The Newey-West estimator of Ω is given by:
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ΩNW =
L∑
l=0

[ω(l) ∗ (ϵϵ′)l] (3.4)

where ω(l) is a weighting function that depends on the lag l and (ϵϵ′)l denotes

the autocovariance matrix of the errors at lag l. The summation is taken from l = 0

to L, where L is the maximum lag chosen by the user.

The weighting function ω(l) is commonly chosen to be:

ω(l) = 1− (l + 1)

(L+ 1)
(3.5)

This weighting function helps to ensure that the contribution of autocovariances

decreases as the lag increases.

Our AR model will show a high R2 due to correlations being derived from moving

averages. Because we aim to demonstrate that correlations are not stable over time,

and are, in fact, time-varying, we test for structural breaks to demonstrate the time-

varying nature of correlations. A structural break test helps in identifying potential

breakpoints in a given dataset, which are points in time when the underlying struc-

ture or relationship between variables changes significantly. Structural break models

can integrate structural change through any of the model parameters. Bai & Perron

(1998) provide the standard framework for testing for multiple breaks in which some,

but not all, of the model parameters, are allowed to break at m possible breakpoints

as depicted by:

yt = x′
tβ + z′tδj + ϵt (3.6)

t = Tj−1 + 1, . . . , T, (3.7)
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where

• j = 1, . . . ,m+ 1

• yt is the dependent variable a linear combination of regressors with time-

invariant coefficients, x′
t, and Zt denotes the matrix of regressors with

time-variant coefficients.

The Bai & Perron (1998) method is a comprehensive approach for testing and

estimating structural breaks in time series data, providing valuable insights into the

dynamics and stability of economic and financial relationships.

We use correlational analysis to visualize the correlational relationships over

time. We apply ADF to test for stationarity in our time-series variables. SBIC offers

optimal lags where an AR model confirms the, by design, persistency of correlational

moving averages. NW estimator corrects for autocorrelation and heteroskedasticity.

Additionally, the Newey-West estimation technique is employed to address potential

autocorrelation and heteroskedasticity, providing a robust analysis of the persistent

nature of the correlations under investigation.

3.3. Wavelet Coherence

Correlational analysis and AR models offer insights into correlational relation-

ships and persistency, but they do not fully explain the changing nature of correla-

tions over time. Through applying a wavelet analysis, Rua & Nunes (2009) examine

the time-frequency dynamics of stock market comovements for a group of developed

countries and finds that comovements tend to increase in rising markets. Wavelet

Coherence (WC) serves as a statistical approach for scrutinizing the time-frequency

relationship between two sets of time-series data. In contrast, correlation is a time-

domain measure that quantifies the linear relationship between two variables without

considering their frequency content or phase relationship.
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Th WC technique gauges the extent of similarity and coherence between the

series in both time and frequency domains, which enables researchers to distinguish

localized regions of elevated comovements, phase relationships, and potential causal

connections between the series. WC is predicated on wavelet analysis, a mathematical

instrument for disassembling a time-series signal into an array of wavelet functions,

each denoting a specific time and frequency (Grinsted et al., 2004).

The WC method transforms two time series, X(t) and Y (t), into wavelets to

ascertain the degree of similarity in their time-frequency representations. The formula

for calculating wavelet coherence between time series X(t) and Y (t) at scale s and

time shift τ is as follows:

CWxy(s, τ) =
|S(Wxy(s, τ))|2

S(Wxx(s, τ)) · S(Wyy(s, τ))
(3.8)

In this formula:

• CWxy(s, τ): Wavelet coherence between time series X(t) and Y (t) at scale s and

time shift τ

• Wxy(s, τ): Cross-wavelet transform of X(t) and Y (t) at scale s and time shift τ

• Wxx(s, τ) and Wyy(s, τ): Individual wavelet transforms of X(t) and Y (t) at

scale s and time shift τ

• S(): Smoothing operator utilized for reducing noise and enhancing coherence

values in the numerator and denominator

Our analysis utilizes the innovative wavelet coherence technique to investigate

the evolving relationships between the 15 asset class correlations. Figure 3.2 displays

a representative output for the Russell 2000 and REITs (R2RE ).
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Figure 3.2: Wavelet Coherence: Russell 2000 & REITs

This figure shows the wavelet coherence (95% significance level) for the correlation of the Russell
2000 and REITs (R2RE ) from January 1982 to December 2022, denoted by the time Period 0 to 500
months on the x-axis. The right axis indicates coherence from 0.0 to 1.0, where red (≈ 1) represents
periods of high comovement, and blue (≈ 0) represents low comovement. The left axis indicates the
Scale for the frequency of the wavelet in months. Right arrows depict in-phase oscillation, and left
arrows depict anti-phase oscillation.

One can describe the time-frequency relationship between two time series using

wavelet coherence (Abdullah, 2016). The horizontal axis represents time, while the

vertical axis illustrates frequency. The wavelet coherence identifies regions within the

time-frequency space where the two time series exhibit covariance.

Significant interrelations between the time series are indicated by warmer colors

(red), whereas colder colors (blue) denote a lower degree of dependence. In addition,

blue regions extending beyond significant areas signify the absence of dependence

within the series at specific times and frequencies.
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The wavelet coherence plots also incorporate arrows to represent the lead/lag

phase relations between the time series under examination. A zero phase difference

implies that the two time series move in tandem on a specific scale. Arrows pointing

to the right or left signify that the time series are in phase or anti-phase, respectively.

In-phase time series move in the same direction, whereas anti-phase time series

move in opposite directions. Arrows oriented to the right-down or left-up indicate that

the first variable leads, while those pointing to the right-up or left-down demonstrate

that the second variable assumes the leading position.

3.4. Macroeconomic Determinants

The literature investigates factors causing fluctuations in the temporal stability

of correlations among asset classes, centering on macroeconomic variables such as

inflation and measures of economic activity. Shiller & Beltratti (1992) and Baz et al.

(2019) utilize a range of econometric methods, including vector autoregression

(VAR), Granger causality, and impulse response functions, to examine the causal

relationship between stock and bond returns, where they test the sensitivity of

independent variables to different lag lengths. Other researchers employ a range

of methodologies, including ADF and Johansen cointegration tests, VAR models,

distributed lag models (DL), Granger causality tests, variance decomposition, rolling

window correlation, dynamic conditional correlation (DCC) models, and ordinary

least squares (OLS) regression to scrutinize relationships between variables like

inflation, GDP, real interest rates, stock and bond returns, and their stationarity and

comovements over time (Bekaert & Engstrom, 2010; Pericoli, 2018; Brixton et al.,

2023; Andersson et al., 2008; Engle, 2002; Li, 2002; Campbell et al., 2009).

A distributed lag model (DL) is used in econometrics to model the relationship

between variables over time, where the effect of a change in an independent variable

on the dependent variable is distributed over multiple time periods. In essence, it
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captures the delayed effects of explanatory variables on the dependent variable (Sims,

1980).

Yt = α +

p∑
i=0

βiXt−i + ϵt (3.9)

In this equation, Yt is the dependent variable at time t, Xt is the independent

variable at time t, α is a constant term, βi are the coefficients of the lagged indepen-

dent variables, p is the maximum lag, and ϵt is the error term at time t.

Vector autoregression (VAR) is a multivariate time series model that captures

linear interdependencies among multiple time series variables, modeling each variable

as a linear combination of its lagged values and the lagged values of other variables.

VAR models are commonly employed for forecasting, impulse response analysis, and

variance decomposition (Sims, 1980).

A VAR model with p lags for a set of k time series variables can be written as:

Yt = A1Yt−1 + A2Yt−2 + · · ·+ ApYt−p + ut (3.10)

where:

• Yt is a k× 1 vector representing the values of the k time series variables at time

t.

• A1, A2, . . . , Ap are k×k coefficient matrices representing the linear relationships

between the variables at different lags.

• Yt−1, Yt−2, . . . , Yt−p are the lagged values of the time series variables.
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• ut is a k× 1 vector of error terms that are assumed to be white noise, meaning

they are uncorrelated over time and have a constant variance-covariance matrix.

• p is the number of lags included in the model.

Granger causality is a statistical hypothesis test used to determine whether

one time series variable can predict another variable more accurately than using the

past values of the predicted variable alone. It is important to note that Granger

causality does not imply true causality but rather helps to identify temporal relation-

ships between variables. Clive Granger introduced the concept in his seminal paper,

“Investigating causal relations by econometric models and cross-spectral methods”

(Granger, 1969).

To test if X Granger-causes Y , we can estimate the following two linear regres-

sion models:

Restricted Model:

Yt = α0 +

p∑
i=1

(αi ∗ Yt−i) + εt (3.11)

Unrestricted Model:

Yt = β0 +

p∑
i=1

(βi ∗ Yt−i) +

p∑
i=1

(γi ∗Xt−i) + ut (3.12)

Here:

• Yt and Xt are the values of time series Y and X at time t, respectively.

• α0 and β0 are the constant terms in the models.

• αi and βi are the coefficients of the lagged values of Y in the Restricted and

Unrestricted Models, respectively.
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• γi are the coefficients of the lagged values of X in the Unrestricted Model.

• εt and ut are the error terms in the Restricted and Unrestricted Models.

• p is the number of lags included in the models.

The null hypothesis for the Granger causality test is:

H0 : γ1 = γ2 = · · · = γp = 0 (3.13)

This hypothesis states that the coefficients of the lagged values of X in the

Unrestricted Model are jointly equal to zero, implying that X does not help predict

Y beyond the information contained in its own past values.

DL studies the delayed effects of independent variables on a dependent variable

by incorporating lagged values of the independent variables in the analysis, while

the Newey-West estimator addresses autocorrelation and heteroskedasticity in OLS

estimators. Vector autoregression models the interdependencies between multiple

time series, and Granger causality tests whether one time series can predict another.

Through a multi-method approach, we apply each of these techniques to study the

effect of macroeconomic variables on asset correlations.

We employ DL models for each macro/correlation relationship to study their

time series relationships. To address known persistency and autocorrelation, in addi-

tion to addressing heteroskedasticity in OLS estimators, we again use a Newey-West

estimator, where the lag length correction is determined by n1/4 (Newey & West,

1987) suggesting a correction of five lags. We then apply a VAR model to test the

interdependencies between the variables. As a final measure, our study adds Granger

to asses the predictive relationship between the macroeconomic variables and the

asset correlations in addition to the potential for a bicausal relationship. By employ-
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ing a variety of econometric techniques, we investigate the impact of macroeconomic

variables on asset correlations.

3.5. Time-Varying Granger Causality

Correlations exhibit periods of persistence and stability but also exhibit struc-

tural breaks attributed to macroeconomic variables giving rise to a time-invariant

nature. When breaks occur, parameter instability ensues, which can make the inter-

dependencies among time series variables difficult to asses through VAR and stan-

dard Granger causality models. As with other aspects of structural stability, Granger

causality may be supported over one time frame but may be fragile when alternative

periods are considered. To address this and to add an additional level of rigor to

our analysis of determinants, we utilize a Time-Varying Granger Causality (TVGC)

method.

TVGC is a method employed to assess the dynamic causal relationships among

multiple time series data. This method builds upon the traditional Granger causality

method by allowing for the possibility that the causal relationship between time series

may change over time (Thoma, 1994; Swanson, 1998; Psaradakis et al., 2005).

To allow for time variation in Granger causal orderings to evolve, recursive esti-

mation methods are required. Three algorithms generate a sequence of test statistics:

the forward expanding (FE) window, the rolling (RO) window, and the recursive

evolving (RE) window (Figure 3.3) (Thoma, 1994; Swanson, 1998; Phillips et al.,

2015; Baum et al., 2022).

1. In the FE algorithm, the Wald test statistic is first computed for a minimum

window length, τ0 = [Tr00] > 0, and the sample size then expands sequentially

by one observation until the final test statistic is computed using the entire

sample. The starting point of every subsample is the first data point. At the
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conclusion of the FE algorithm, a sequence of Wald test statistics, Tr1, r with

r1 = 0 and r ∈ [r0, 1], is obtained.

2. In the RO algorithm, a window [Tw] is rolled through the sample, advancing

one observation at a time and computing a Wald test statistic for each window.

The output from the RO algorithm is a sequence of test statistics Tr1,r with

r1 = r − w and r ∈ [r0, 1], where each test statistic is computed from a sample

of the same size, [Tw], with 0 < w < 1.

3. The RE algorithm computes a test statistic for every possible subsample of size

r0 or larger, with the observation of interest providing the common endpoint of

all subsamples. The procedure is repeated for each point in the sample, subject

only to the minimum window size. Therefore, every observation in the sample

beyond the first is associated with a set of Wald test statistics. Phillips, Shi, and

Yu (2015b) propose that inference be based on a sequence of supremum norms

of these statistics. The RE algorithm produces a sequence of test statistics

Tr1,r with r1 ∈ [0, r − r0] and r ∈ [r0, 1], which are the sup norms of the Wald

statistics at each observation.

Figure 3.3: Time-Varying Granger Causality Windows

Time-Varying Granger Causality: Forward Expanding (FE), Rolling (RO), and Recursive Evolving
(RE) windows. Adapted from Baum et al. (2022).

TVGC is used in our study to analyze the causal relationships between variables

in a dynamic system. Unlike traditional Granger causality, which assumes constant
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causal relationships over time, time-varying Granger causality allows for changes in

these relationships. This makes it particularly useful for studying complex systems,

where causal interactions may evolve over time due to factors like changing external

conditions or structural adaptations.

3.6. Testing Correlational Regimes

Understanding the evolution of correlations over time is crucial for informed

portfolio decision-making. Investors must identify the correlational regime in which

they operate to comprehend better the interplay between the autoregressive compo-

nent of asset correlations and the distributed lag component of lagged macro variable

determinants. Drawing from Jacobsen & Scheiber (2022), four correlational regimes

are defined as follows:

1. Everyone-Wins (EW ): positive SBC with rising markets;

2. Risk-On (RO): negative/low SBC with rising markets;

3. Flight-to-Safety (FTS ): negative SBC with declining markets;

4. Nowhere-to-Hide (NTH ): positive SBC with declining markets.

These regimes are determined based on the signs of the 12-month rolling averages

of the S&P 500 returns (indicating positive or negative markets) and the S&P 500 to

US Treasuries correlation (SPUST, signifying positive/negative SBC). Each regime is

binary coded as 1 (presence) or 0 (absence).

We use logistic regression to model the relationship between a binary dependent

variable and one or more independent variables. This method estimates the event oc-

currence probability based on independent variables using the logistic function (Cox,

1958), as expressed in the generalized equation:
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P (Y = 1 | X) =
1

1 + e−(α+β1X1+β2X2+···+βnXn)
(3.14)

where, P (Y = 1 | X) is the probability of the dependent variable Y being 1 (i.e.,

the event occurring) given the independent variables X1, X2, . . . , Xn. The parameters

α, β1, β2, . . . , βn represent the regression coefficients, and e is the base of the natural

logarithm.

For consistency, the same macroeconomic variables are tested on the presence of

positive regimes. As binary outcomes, a lagged logistic (logit) regression is performed,

with SBIC to determine optimal lags. The lagged logit equation is thus:

P (Yt = 1 | Xt) =
1

1 + e−(α+β1Xt−1+β2Xt−2+···+βpXt−p)
(3.15)

In this equation, P (Yt = 1 | Xt) is the probability of the dependent variable

Yt being 1 (i.e., the event occurring) at time t given the lagged independent vari-

ables Xt−1, Xt−2, . . . , Xt−p. The parameters α, β1, β2, . . . , βp represent the regression

coefficients, p is the maximum lag, and e is the base of the natural logarithm.

A probit regression (probit) is also conducted for robustness, as it is a statistical

method used to model binary or dichotomous outcome variables (Greene, 2003). The

probit model, a generalized linear model (GLM), estimates the probability of an

event occurring based on one or more independent variables. This model employs the

cumulative distribution function (CDF) of the standard normal distribution, known

as the probit function, as the link function to map the linear combination of the

independent variables to the probability of the outcome variable.
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3.7. Optimized, Persistency, & Regime Portfolios

3.7.1. Asset Classes & Benchmark Portfolios

To extend the literature beyond a naïve, two-asset stock-bond portfolio, we

construct asset allocation models composed of six asset classes. By reviewing the

current and long-term capital market assumptions and strategic asset allocations

of asset managers, broker/dealers, and research providers such as Vanguard (2022),

BlackRock (2022), Wells Fargo Investment Institute (WFII, 2022), Goldman Sachs

Asset Management (GSAM, 2022), and Morningstar (Kaplan, 2015), we develop six

asset allocation models of varying risk levels. These prudent allocations cater to

an investor’s risk tolerance and serve as benchmark buy-and-hold portfolios. These

benchmark portfolios are outlined in Figure 3.2.

Table 3.2: Benchmark Portfolios Asset Weightings

This table outlines the asset class weightings used to compose benchmark portfolios with scaled
risk objectives from 0/100 (low risk, 100% US Treasuries) to 100/0 (all risk assets, no treasuries).
Variable names are depicted in parentheses.

The expected return (E(Rp)) the benchmark portfolios is given by:

E(Rp) =
n∑

i=1

wiE(Ri) (3.16)

where:
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• E(Rp) is the expected return of the portfolio.

• wi is the weight of asset i in the portfolio.

• E(Ri) is the expected return of asset i.

• n is the number of assets in the portfolio.

The cumulative return (CR) is given by:

CR = (1 + r1)(1 + r2) · · · (1 + rn)− 1 (3.17)

where:

• CR is the total return of an investment over a given period,

accounting for all gains and losses;

• r1, r2, . . . , rn are the returns for each monthly period.

And the portfolio standard deviation σp for a six-asset portfolio is given by

(Markowitz, 1952):

σp =

√√√√ 6∑
i=1

6∑
j=1

wiwjσiσjρij (3.18)

, where:

• σp is the portfolio standard deviation;

• i and j are the indices for the six assets in the portfolio;

• wi and wj are the weights of assets i and j in the portfolio;
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• σi and σj are the standard deviations of assets i and j ;

• ρij is the correlation coefficient between the returns of assets i and j.

This allows for the computation of Sharpe ratios SR (Sharpe, 1966), which is a

measure of the risk-adjusted return of an investment and is given by:

SR =
E(Rp)−Rf

σp

(3.19)

where:

• E(Rp) is the expected return of the portfolio.

• Rf is the risk-free rate of return.

• σp is the standard deviation, which represents the portfolio’s risk.

Additional portfolio metrics include the Information Ratio, Sortino Ratio, and

Maximum Drawdown.

The Information Ratio (IR) (Treynor & Black, 1973) is a measure of the risk-

adjusted excess return of a portfolio relative to a benchmark and is given by:

IR =
E(Rp −Rb)

σp−b

(3.20)

where:

• E(Rp −Rb) is the expected excess return of the portfolio over the benchmark.

• Rp is the return of the portfolio.

• Rb is the return of the benchmark.
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• σp−b is the standard deviation of the excess return of the portfolio over the

benchmark, which represents the portfolio’s active risk.

The Sortino ratio (Sortino & Van Der Meer, 1991) is a measure of the risk-

adjusted return of an investment, which considers only the downside risk, and is

given by:

Sortino Ratio =
E(Rp)−Rf

σd

(3.21)

where:

• E(Rp) is the expected return of the portfolio.

• Rf is the risk-free rate of return.

• σd is the downside deviation or downside risk, which represents the volatility of

the portfolio’s negative returns.

The maximum drawdown (MDD) is defined as:

MDD = max
t

(
max
0≤s≤t

Ps − Pt

)
(3.22)

where Pt represents the asset price at time t.

These benchmark portfolios construct their own efficient frontier for a given

time period. By analyzing these portfolios and their associated metrics, investors

can make more informed decisions regarding asset allocation and risk management.

Furthermore, understanding the time-varying change of correlation and its effects

on different regimes allows for better portfolio optimization and potential regime-

switching strategies, which can lead to improved risk-adjusted returns. In addition
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to the performance metrics for the individual asset classes themselves, we use these

portfolios as “benchmarks” in testing optimized, persistency, regime, and regime-

switching portfolios.

3.7.2. Portfolio Optimization

The benchmark portfolios serve as reference points for further investigation into

correlational persistency and correlational regimes. To examine persistency, we utilize

the average 12-month rolling returns, 12-month standard deviations, and 12-month

correlations for each asset class to maximize the Sharpe ratio. 12-month periods

are used as they offer enough information to incorporate trends and relationships.

However, they are not so long as to allow markets to become too efficient. Although

we want to use historical data to inform portfolio construction, we need to operate

nimbly and within shorter windows in order to have portfolio outperformance.

The Solver optimization add-in was developed by Frontline Systems Inc (Solver,

2023). Solver provides several optimization methods for addressing different problem

types. Three primary categories of optimization are available:

Linear programming (LP) or “LP Simplex” is used for linear optimization prob-

lems where both the objective function and constraints are linear. As the risk vs.

reward function of portfolio construction is nonlinear (Perold, 2004), this method is

not appropriate for this study.

Nonlinear programming (NLP) addresses optimization where the objective func-

tion, constraints, or both are nonlinear. Solver offers multiple algorithms, such as the

Generalized Reduced Gradient (GRG) nonlinear method. GRG nonlinear is useful

for intricate portfolio optimization problems, where the relationship between the risk

and return of the assets in the portfolio is not linear (Lasdon et al., 1978).

The genetic algorithm (GA) is an evolutionary algorithm used for complex op-

timization problems that may not be suitable for traditional gradient-based meth-
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ods. Inspired by the process of natural selection, this algorithm can be applied to

both linear and nonlinear problems, including those with discontinuities and non-

differentiable functions (Golberg, 1989).

Both the GRG and GA methods were tested in our study. As the risk/return

function is curvilinear, the GRG method consistently yields globally optimal solutions,

whereas the GA method is slower and produces suboptimal solutions. Consequently,

the GRG method is chosen for portfolio optimization. The Solver/GRG method is

widely supported in the literature for broad asset allocation portfolio optimization

(Mun, 2010; Kulali, 2016).

The GRG nonlinear method works iteratively, adjusting the weights of the assets

in the portfolio to minimize or maximize the target vector, which is often a measure

of risk (e.g., portfolio variance) or a combination of risk and return (e.g., the Sharpe

ratio). The generalized nonlinear optimization problem can be formulated as follows:

Problem Formulation:

The nonlinear optimization problem can be formulated as follows:

Maximize: f(x) subject to

h(x) = 0 (equality constraints)

g(x) ≤ 0 (inequality constraints)

where f(x) is the objective function, h(x) represents equality constraints, and g(x)

represents inequality constraints.

GRG Algorithm:
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1. Decomposition: GRG decomposes the problem into a sequence of linearized

subproblems, which are solved iteratively. At each iteration, the algorithm

linearizes the constraints using a Taylor series expansion.

2. Reduced gradient: Reduced gradient is calculated as the gradient of the objec-

tive function with respect to the nonbasic (independent) variables, while the

basic (dependent) variables are expressed in terms of the nonbasic variables.

3. Line search: The algorithm performs a line search along the reduced gradient

direction to find an optimal step size that improves the objective function.

4. Update: The variables are updated based on the optimal step size, and the

algorithm checks for convergence.

5. Convergence: If the algorithm converges, the solution is considered optimal.

Otherwise, the algorithm continues with the next iteration.

Our target vector is the maximization of the Sharpe ratio. Solver optimizes the

weights of the asset classes to maximize the Sharpe using the GRG method for one

period at a time. To address this limitation, we code a Visual Basic macro to loop the

Solver over multiple periods. The output results in a combination of optimal returns,

standard deviations, and asset weights over all 492 monthly rolling periods.

Three optimal models are developed for all periods. The Optimized Uncon-

strained model (OptU ) allows for a range from 0% to 100% for all asset classes

(S&P 500, Russell 2000, EAFE, REITs, Gold, US Treasuries). The Optimized

Semi-constrained model (OptC ) allows a range of 0% to 100% for S&P 500 and US

Treasuries but restricts all other assets to an upper bound of 50%. The Optimized

Benchmark-constrained model (OptB) constrains the output weightings to fall along

the efficient frontier of the benchmark portfolios, where the 100% risk portfolio is

represented by 40% S&P 500, 20% EAFE, 20% Russell 2000, 20% REITs, 20% Gold,
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and the low risk portfolio is 100% US Treasuries. All models do not employ leverage

of any kind, nor do they allow shorting of assets. Figure 3.4 depicts the optimal asset

weights of OptU as they change over time.

Figure 3.4: Optimal Unconstrained Portfolio Asset Weights

This chart illustrates the asset weights for the optimal unconstrained model as they change from
January 1982 through December 2002. Asset weights for the S&P 500, EAFE, R2000, Gold, and
US Treasuries are determined by the GRG nonlinear optimization method applied through a Visual
Basic loop over 492 monthly periods.

As expected, the optimal portfolios exhibit significant outperformance in terms

of cumulative returns and risk-adjusted returns. This is discussed further in the

Results section and serves as an argument for examining correlational temporal change

and its potential to improve portfolio construction.

The outperformance of the optimal portfolios is noteworthy, albeit unattainable,

as it would require an investor to have foresight or, at minimum, perfect concurrent

information and the ability to act on it immediately. However, given the sizable

outperformance, an investor need not achieve such results precisely; instead, they

must achieve results close enough to outperform relative benchmarks and asset classes

still.
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3.7.3. Persistency Portfolios

The literature suggests that the momentum effect is driven by the underre-

action of investors to information (Lin, 2020), in addition to investors’ behavioral

biases, such as overconfidence and herding, and the slow diffusion of information in

financial markets (Chen et al., 2018). With the understanding that asset correlations

are constructed from moving averages and are, consequently, persistent, we construct

portfolios based on the premise that if the momentum of correlational persistency

holds, a “fast following” portfolio should still yield above-average performance. We

refer to these as persistency portfolios.

The persistency portfolios are simply constructed by purchasing the most recent

asset class weightings of the optimal portfolio. Each month the persistency portfolio

effectively holds the optimal portfolio with a one-month lag. The persistent portfolios

are constructed for each of the optimal portfolios and are denoted POptU, POptC, and

POptB, representing unconstrained, semi-constrained, and benchmark constrained,

respectively. They are represented by:

Unconstrained Persistency Portfolio Model:

POptU =wt−1SPOptU + wt−1USTOptU + wt−1EFOptU+

wt−1R2OptU + wt−1REOptU + wt−1GOptU

(3.23)

Semi-constrained Persistency Portfolio Model:

POptC =wt−1SPOptC + wt−1USTOptC + wt−1EFOptc+

wt−1R2OptC + wt−1REOptC + wt−1GOptC

(3.24)
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Benchmark Constrained Persistency Portfolio Model:

POptB =wt−1SPOptB + wt−1USTOptB + wt−1EFOptB+

wt−1R2OptB + wt−1REOptB + wt−1GOptB

(3.25)

where:

• wt−1SPOpt(U,C,B) is the one-month lagged weight of the S&P 500 for the

Opt(U,C,B) portfolios.

• wt−1USTOpt(U,C,B) is the one-month lagged weight of US Treasuries for the

Opt(U,C,B) portfolios.

• wt−1EFOpt(U,C,B) is the one-month lagged weight of the MSCI EAFE for the

Opt(U,C,B) portfolios.

• wt−1R2Opt(U,C,B) is the one-month lagged weight of the Russell 2000 for the

Opt(U,C,B) portfolios.

• wt−1REOpt(U,C,B) is the one-month lagged weight of REITs for the Opt(U,C,B)

portfolios.

• wt−1GOpt(U,C,B) is the one-month lagged weight of Gold for the Opt(U,C,B)

portfolios.

By analyzing the performance of these portfolios, we aim to determine whether

the observed outperformance of optimal portfolios can be partially replicated through

the use of persistency portfolios that rely on fast-following and correlational tempo-

ral stability. This approach could provide investors with a more feasible method

for capturing above-average performance without the need for perfect foresight or

the ability to act on information with immediacy. Alternatively, it could show that

chasing returns does not add value. Regardless, the results of this analysis can offer
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valuable insights for portfolio construction and asset allocation decisions based on the

persistence of asset correlations and the momentum effect in financial markets.

3.7.4. Regime Testing

Correlations among asset classes may endure for certain durations; however,

our research reveals that they fluctuate over time. Extant literature points to various

macroeconomic variables, such as inflation (π) (Ilmanen, 2003), inflation expectations

(πe) (Li, 2002), leading indicators (CEIC ) (Pericoli, 2018), and sentiment (Sent)

(Johnson et al., 2013), as factors that contribute to changes in correlations. Correla-

tional regimes, such as Everyone-Wins (EW ), Risk-On (RO), Flight-to-Safety (FTS ),

and Nowhere-to-Hide (NTH ), incorporate the effects of persistency disrupted through

structural breaks, while reflecting the influence of macroeconomic environments. We

use the binary coded regimes from our logit/probit regressions of macro variables and

apply relevant benchmark portfolios that best represent the characteristics of each

regime.

The EW regime is characterized by positive SBC and positive markets. As

all assets should respond positively in this environment, holding the most broadly

diversified, risk-adjusted portfolio should yield favorable results. When this regime is

present (EWp), we apply the “all-weather” 60/40 benchmark portfolio (B6040 ), where

60 signifies a 60% allocation to risk assets, and 40 denotes a 40% allocation to US

Treasuries. A negative EW regime (EWn) is allocated a 40/60 benchmark portfolio

(B4060 ).

During a RO period, investors tend to invest in higher-risk assets such as stocks

due to favorable market conditions or increased optimism. RO positive (ROp) receives

an allocation of the 80/20 benchmark (B8020 ), with a 20/80 (B2080 ) allocation when

RO is negative (ROn).
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In periods of market stress or uncertainty, investors often engage in a “flight

to safety” by reallocating their investments from riskier assets to more secure or

higher-quality assets. This behavior results in a surge in demand for low-risk assets,

such as government bonds, while causing a decrease in the value of riskier assets like

equities (Campbell & Taksler, 2003). These environments are transitory and typically

short-lived. An FTS positive environment (FTSp) receives an allocation of the 40/60

benchmark portfolio (B4060 ), with a 60/40 allocation (B6040 ) when FTS is negative

(FTSn).

Lastly, in a NTH correlation regime, markets experience negative returns, and

asset correlations exhibit positive trends, thus limiting diversification opportunities.

Such regimes are generally observed following a transition from an FTS regime

(Jacobsen & Scheiber, 2022). We allocate the most risk-off benchmark portfolio,

0/100 (B0100 ), to a positive NTH regime (NTHp), and a 40/60 allocation (B4060 )

when the regime is not present (NTHn).

An understanding of the optimal benchmark portfolio for each regime enables

the recombination of all four regimes into their chronological sequence from January

1982 to December 2022. Figure 3.5 illustrates the presence of regimes over time,

reinforcing the literature which suggests that the stock-bond correlation (SBC) has

evolved, with SBC being positive before 1997 (as shown by the EW regime) and

transitioning to negative after 1997 (as shown by the RO regime) (Brixton et al.,

2023). This observation also supports the argument of Jacobsen & Scheiber (2022)

that FTS is a brief, transitory regime.

The resultant regime-switching portfolio (RS ) applies the benchmark portfolio

tested in our binary regime models. Thus when the EW regime is becomes present,

a 60/40 (B6040 ) allocation is used. For RO we use 80/20 (B8020 ), for FTS, 40/60

(B4060 ), and we apply 0/100 (B0100 ) to NTH. The asset allocation is “switched”
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Figure 3.5: Correlational Regimes from January 1982 to December 2022

This figure illustrates the presence of the Everyone-Wins (EW, green), Risk-On (RO, blue), Flight-
to-Safety (FTS, yellow), and Nowhere-to-Hide (NTH, red) regimes from January 1982 to December
2022. The y-axis denotes correlation. Gray bars illustrate the stock-bond correlation (SPUST ),
with a fitted linear regression line in purple.

to its respective regime/allocation relationship one month after the regime becomes

present. This facilitates a real-time applicability of this portfolio.

In a final portfolio examination, our study forgoes applying the asset allocations

of optimal benchmark portfolios to the regimes and instead revisits the unconstrained

optimal portfolios (OptU ). Here, we calculate the average asset allocation for each

regime throughout the entire period from January 1982 to December 2022. Asset

weights for each regime are displayed in Table 3.6.

The “optimal asset weights” and applied one month after the regime becomes

present, similar to the regime-switching model, only not with benchmark portfolio

allocations. We refer to this model as an optimized regime-switching portfolio (RSO).

We study asset class correlations in different correlational regimes, such as

Everyone-Wins (EW ), Risk-On (RO), Flight-to-Safety (FTS ), and Nowhere-to-
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Figure 3.6: Asset Class Weights for Optimized Regime Portfolio

This figure shows the average asset class weightings per regime from January 1982 to December 2022
based on the output of the GRG-optimized portfolios.

Hide (NTH ), which are influenced by macroeconomic factors. Our analysis uses

binary-coded regimes individually and applies benchmark portfolios representative of

each regime’s characteristics. The regime-switching (RS ) portfolio reaggregates the

regimes into their temporal sequence and applies the respective benchmark portfolios

from the binary regime study. The optimized regime-switching (RSO) portfolio uses

the average asset allocation for each regime throughout the entire period.
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CHAPTER 4: RESULTS

In accordance with the structure and framework of the Review of the Literature

and Data & Methods sections, we present significant results that not only corroborate

the existing literature but also extend it with intriguing findings.

4.1. Correlational Analysis

Figures A.1, A.2, A.3, A.4, and A.5 display the rolling one-year correlations for

all 15-asset class combinations. Although correlations within such short intervals can

be noisy, the inclusion of linear regression lines provides a clearer representation of

the stability or fluctuations in these relationships over time. The correlation change

between the S&P 500 and US Treasuries (SPUST ) is in line with the literature, which

documents a shift from positive to negative correlations in the late 1990s (Baele et al.,

2010; Brixton et al., 2023; Jacobsen & Scheiber, 2022). Rolling average correlations

range between −0.40 ≤ ρ ≤ 0.40, with sharp positive turns during periods of market

stress, such as in 2008 and the more recent bear market for both stocks and bonds

in 2022. Similar patterns are observed between other US Treasuries and stock assets

like the MSCI EAFE and the Russell 2000 (USTR2 ), which have also experienced a

shift from positive to negative correlations, albeit with weaker relationships (USTEF,

−0.44 ≤ ρ ≤ 0.18 and USTEF, −0.45 ≤ ρ ≤ 0.22).

Treasuries and REITs exhibit a weak positive correlation over time that has

moderately declined, ranging from USTRE ρ = 0.02 to ρ = 0.21. A marginally

increasing, yet weaker, relationship is observed between Treasuries and Gold, where

USTG, 0.02 ≤ ρ ≤ 0.17.
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Strong relationships are found between stock assets. The correlation between

the S&P 500 and the Russell 2000 has remained relatively stable at SPR2, ρ ≈ 0.8,

while the correlation between the S&P 500 and the MSCI EAFE has fallen between

0.58 ≤ ρ ≤ 0.88 (SPEF ), increasing towards higher correlation over time.

Barring a few annual exceptions, REITs demonstrate a moderate and positive

relationship with stock assets. The SPRE correlation has increased from an average

of ρ = 0.56 to ρ = 0.61. For R2RE, the correlation lies in the average range of 0.61 ≤

ρ ≤ 0.59, and the REIT/EAFE correlation (EFRE ) has increased from ρ = 0.35 to

ρ = 0.57.

Gold, although characterized by low correlation and high volatility, exhibits an

unsteady relationship with the S&P 500 (SPG). Correlational peaks reach as high

as 0.72 and as low as -0.78, with an average ranging between −0.07 ≤ ρ ≤ 0.01.

Similarly, EFG falls between −0.01 ≤ ρ ≤ 0.08, and R2G ranges from −0.18 ≤ ρ ≤

0.02, with both displaying spikes in negative and positive correlation. These results

suggest that gold maintains its role as a low-correlation asset in the context of a

diversified portfolio.

The analysis of asset class correlations substantiates existing literature while

also providing new insights into the dynamic relationships among various asset classes.

The study confirms the transition of stock-bond correlations from positive to negative

in the late 1990s, as well as the presence of strong relationships between stock/stock

relationships. Furthermore, the results reveal the relatively weak but fluctuating

correlations between Treasuries, REITs, and gold, highlighting the potential benefits

of including these assets in a diversified portfolio.

4.2. Correlational Change & Structural Break Outcomes

The implementation of an AR is conducted and delineated in Table 4.1. This

approach begins with the determination of the optimal lag to test through SBIC. The
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Newey-West estimator is chosen due to its capacity to rectify heteroskedasticity issues

while incorporating n1/4 = 5 lags. All models are significant at 99%. The observation

of significant outcomes serves as an indication that historical values act as influential

factors in determining present values, thus substantiating the autoregressive and en-

during time-series characteristics of the correlations. However, this is by design, as

rolling correlations are determined through moving averages.

Table 4.1: AR Model & Structural Breaks

This table summarizes results for an AR model, while incorporating lags (max lag = 5) through
Newey-West estimator. Optimal lags are determined through SBIC. This yields high R2 values and
F-statistics at 99%. Structural breaks (Breaks) are indicated using Bai & Perron 95% Critical Values
(CV). Asset class correlation pairings are defined as: SPUST = S&P 500/US Treasuries SPEF, =
S&P 500/MSCI EAFE, SPR2 = S&P 500/Rusell 2000, SPRE = S&P 500/REITs, SPG = S&P
500/Gold, USTEF = US Treasuries/MSCI EAFE, USTRE = US Treasuries/REITs, USTR2 = US
Treasuries/Russell 2000.

Our primary focus is not on affirming the persistency of correlations but rather

on discerning if and when the time-series stability of these correlations falters. To

this end, we employ the methodology of Bai & Perron (1998) to identify structural

breaks at 95% critical values where. We observe significant breaks for 11 asset class

correlations. Specifically, SPEF, EFR2, EFRE, and R2G demonstrate single breaks
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between January 1982 and December 2022, while two or more breaks are found for

SPUST, SPR2, SPRE, SPG, USTRE, USTG, and EFG. Conversely, no breaks are

identified for USTEF, USTR2, R2RE, and REG. It is worth mentioning that corre-

lations involving gold exhibit comparatively lower F-values and R2 values. It is also

noteworthy that all correlations involving the S&P 500 exhibit at least one break,

where SPUST, representing the extensively studied stock-bond correlation (SBC),

displays the highest number of breaks at five.

Our results corroborate the extant literature on SBC by showing the endur-

ing nature of this correlation while adding that this persistence cannot be assumed.

Moreover, our study reveals the changing (non-changing) nature of 14 other asset

pairings. Each model generates high R2 values, suggesting that historical values can

elucidate a significant portion of the variance. However, this outcome is inherently

derived from the 12-month moving averages from which the correlations are calcu-

lated. Although these findings largely serve to substantiate prevailing knowledge, the

purpose of our AR model is not to confirm the persistency of correlations but rather

to provide a foundation for comparing instances where they break down. To this end,

we apply Bai & Perron (1998) structural breaks at 95% critical values, where we dis-

cover significant and multiple breaks in 11 of the 15 asset correlations. This evidence

indicates that the stability of asset class correlations over time cannot be taken for

granted, thereby challenging the fundamental premise of buy-and-hold strategic asset

allocation, which relies on time-invariant correlations.

4.3. Findings from Wavelet Coherence

We present the results of our wavelet coherence (WC) analysis, which scrutinizes

the evolving nature of comovements across 15 asset class combinations, are presented

in Appendix Figures A.6, A.7, A.8, A.9, and A.10. The WC values range from 0 to

1; values approaching 1 signify strong coherence (high comovement), whereas those

near 0 denote weak coherence (low comovement) between two time series at specific
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instances and frequencies. Rightward arrows display in-phase coherence. In other

words, the two asset class wavelet are synchronized. Leftward arrows exhibit anti-

phase coherence, meaning there is an asynchronous lead/lag relationship. Downward

arrows represent trending negative comovements, and upward arrows imply positive

comovements. The arrow’s quadrant indicates which time series precedes or follows

the other.

In the context of asset coherence, the horizontal axis signifies time by the number

of periods; for example, “400” denotes 400 months after January 1982. The scale

represents the time rolling period for consideration, with “16” corresponding to a

16-month coherence.

Interpreting the WC results for the SPUST coherence (Figure 4.1), the top-left

quadrant demonstrates strong comovements between treasuries and stocks for rolling

periods ranging from 1 to 8 months. This relationship between 1 and 8 months persists

relatively consistently. Rolling average correlations previously reported fall between

−0.40 ≤ ρ ≤ 0.40. Consequently, the WC output is anticipated to exhibit a fair

amount of blue to yellow, which is indeed observed. Phase shifts transpire during the

300 to 400 periods, indicating high coherence periods amid market stress, such as in

2008, 2020, and 2022. Leftward arrows represent anti-phase and signify asynchronous

relationships between treasuries and stocks, suggesting that one asset leads or lags the

other. Conversely, subsequent periods display rightward arrows, indicating in-phase

relationships where the oscillations of stocks and bonds synchronize.

SPR2 (Figure 4.2) reveals a high coherence relationship, as anticipated between

the S&P 500 and the Russell 2000. Correlations between these two indices average

≈ 0.80, with peaks nearing 1. The abundant red in the WC output for SPR2 confirms

a strong comovement relationship characterized by temporal stability and consistency

across short and long frequencies. Moreover, the rightward arrows demonstrate an

in-phase signal pattern, signifying the synchronous oscillation of the two assets.
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Figure 4.1: Wavelet Coherence: S&P 500 & US Treasuries
This figure shows the wavelet coherence (95% significance level) for the comovement of the S&P 500
to US Treasuries (SPUST ) from January 1982 to December 2022, denoted by the time Period 0 to 500
months on the x-axis. The right axis indicates coherence from 0.0 to 1.0, where red (≈ 1) represents
periods of high comovement, and blue (≈ 0) represents low comovement. The left axis indicates the
Scale for the frequency of the wavelet in months. Right arrows depict in-phase oscillation, and left
arrows depict anti-phase oscillation.

Examining the remaining WC method outputs (Figures A.6, A.7, A.8, A.9,

and A.10), strong coherent and comovement relationships are supported among the

balance of equity assets, such as SPEF and EFR2. Other treasury/stock relationships

(e.g., USTEF and USTR2 ) exhibit patterns similar to the SPUST output, with

moderate relatinships at low frequencies, weaker comovement as frequencies increase,

but relative stability throughout the 492 rolling time periods, albeit with instances

of high coherence during periods of market stress.
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Figure 4.2: Wavelet Coherence: S&P 500 & Russell 2000
This figure shows the wavelet coherence (95% significance level) for the comovement of the S&P 500
& Russell 2000 (SPR2 ) from January 1982 to December 2022, denoted by the time Period 0 to 500
months on the x-axis. The right axis indicates coherence from 0.0 to 1.0, where red (≈ 1) represents
periods of high comovement, and blue (≈ 0) represents low comovement. The left axis indicates the
Scale for the frequency of the wavelet in months. Right arrows depict in-phase oscillation, and left
arrows depict anti-phase oscillation.

The REIT/equity relationships, including SPRE, EFRE, and R2RE, display

patterns that lie between stock/stock relationships and stock/treasury relationships.

This observation is intuitive, as REITs possess the stable component of the under-

lying land or property expected to grow, generally offer yields or distributions, and

simultaneously exhibit sensitivity to fluctuations in inflation and interest rates.

Relationships between gold and equities (SPG, EFG, and R2G) are character-

ized by noise, low coherence, and isolated instances of high comovement, where phases

and oscillations frequently reverse. Stronger relationships are observed between gold
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and REITs (REG) and gold and Treasuries (USTG), particularly at higher frequen-

cies. However, gold’s relationship with all assets is sporadic, thus supporting its

classification as a non-correlated asset.

Our wavelet coherence analysis uncovers strong, dynamic relationships between

treasuries and stocks for 1 through 8-month rolling periods, displaying high coher-

ence during market stress. The S&P 500 and Russell 2000 exhibit strong coher-

ence, with assets oscillating synchronously. Equity assets display strong coherent

relationships, while treasury/stock relationships are moderate at low frequencies and

weaker at higher frequencies. REIT/equity relationships fall between stock/stock and

stock/treasury relationships, reflecting the unique characteristics of REITs. Gold’s

relationships with other assets are generally noisy and sporadic, supporting its role

as a non-correlated asset.

4.4. Results of Macroeconomic Determinants

In order to expand the existing literature beyond the conventional stock-bond

correlation (SBC) discourse, we investigate four macro variables: 12-month Trimmed

Mean PCE Inflation (π), inflation expectations (πe), leading indicators (CEIC ), and

sentiment (Sent). These variables are tested against all 15 asset class correlations.

Schwarz Bayesian Information Criterion (SBIC) tests up to 12 lags to determine the

optimal lag for our macro variables. Three regression models are utilized to examine

the impact of macro variables on correlations: a distributed lag model (DL) with

Newey-West estimator (NW), vector autoregression (VAR), and Granger causality

(Granger). The analysis uncovers intriguing and persuasive evidence that macro

variables influence the relationships between asset classes. The results are discussed

below.

4.4.1. Inflation

Our research supports the influence of inflation on SBC (Baele et al., 2010;

Connolly et al., 2005). Inflation (π) is tested on SBC (SPUST ) using a DL model
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with NW estimator, regressing the second lag as determined by SBIC. The model is

statistically significant at 99% and with an R2 of 0.258. Our VAR model results in a

significant one-way effect of π on SPUST at 99%, with Granger causality significant

at 99%.

Table 4.2: Macro Determinants of Correlations: Inflation

This table summarizes the multi-method approach to investigate 12-month Trimmed Mean PCE
Inflation (π) as a determinant of asset class correlations. Variables for each correlational relationship
(Corr) are shown on the left. SBIC determines optimal lags. F-statistics and R2 values are reported
for the DL model with NW estimator. A VAR model for the interdependencies of correlations and
π is summarized to demonstrate lags offering significant equations (P > z). χ2 results are reported
from our Granger model.

We follow the method above for π’s effects on the remaining 14 correlational

relationships, where we summarize the results in Table 4.2. Items of interest among

these tests follow. The DL models demonstrate significant effects of π on 9 of 15

correlational relationships.

Interestingly, we find that S&P 500/Russell 2000 (SPR2 ) correlation has a one-

way effect on π in our VAR model and Granger-causality at 99%, but there are no

significant effects of π on SPR2 in any model.
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π also shows no significant effects on REG through a DL model, but we do

find one-way effects through VAR at 95% and where π Granger-causes REG (95%

significance). Thus we cannot speak to π as a determinant of REIT/Gold correlations,

but we can conclude that there is a one-directional interdependency.

Our DL models show the significance at 99% of the effects of π on the treasury

correlations of USTEF, USTR2, and with notably high R2 values at 0.196 and 0.296,

respectively. π affects these two correlations at 99% one-way in our VAR models, and

we find one-way Granger-causality of π on USTEF at and of π on USTR2 both at

99%.

It is notable that the relationship of π with REIT correlations demonstrates

intermittent significance throughout our models. Nonetheless, we can conclude that

π as a macroeconomic determinant has the strongest effect on correlations with US

Treasuries.

4.4.2. Inflation Expectations

The impact of π as a determinant of correlations is pervasive, affecting sev-

eral correlations and operating significantly in two or three lags. Existing literature

posits that inflation expectations (πe) also play a crucial role in driving correlations

and changes in correlations (Li, 2002; Campbell et al., 2009). Continuing our multi-

method approach, we study examines the impact of πe on 15 asset correlations (Table

4.3).

πe on the SBC relationship (SPUST ) is investigated, revealing immediate and

substantial consequences. Our DL with NW estimator finds significance with at 99%,

and an R2 of 0.353. VAR models are bidirectional at 95% for SPUST and πe, where

we also find a significant two-way Granger-causality relationship at 99%.

Unlike π, where we find significance in 9 of 15 asset correlations in our DL mod-

els, πe yields 8 of 15, and in a few differing πe/correlation relationships. However,
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Table 4.3: Macro Determinants of Correlations: Inflation Expectations

This table summarizes the multi-method approach to investigate 2-year inflation expectations (πe)
as a determinant of asset class correlations. Variables for each correlational relationship (Corr) are
shown on the left. SBIC determines optimal lags. F-statistics and R2 values are reported for the
DL model with NW estimator. A VAR model for the interdependencies of correlations and πe is
summarized to demonstrate lags offering significant equations (P > z). χ2 results are reported from
our Granger model.

where they are similar is that πe affects all treasury correlations in addition to SBC

(SPUST ) as mentioned above. Further, regarding treasuries, DL models are signif-

icant for USTEF, USTR2, and USTRE, at 99%, where we find high R2 values for

USTEF (R2 = 0.264) and USTR2 (R2 = 0.361). A VAR model shows a one-way

relationship at 95% between πe and USTEF and where we find πe Granger-causes

USTEF at 95%. The πe relationship with USTR2 is bidirectional and bicausal where

πe Granger-causes USTR2, and Granger-causes USTR2 Granger-causes πe, both at

95%.

πe has a notable effect on the EAFE relationship with domestic stocks. Our

DL model for SPEF and EFR2 is significant at 99% with R2 = 0.132 and 0.009,

respectively. Further, it is a significant determinant of two gold correlations, R2G

(significant at 95%, R2 = 0.039) and REG (significant at 99%, R2 = 0.066).
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Our investigation into the effect of 2-year expected inflation (πe) on the SBC

(SPUST ) revealed a bicausal relationship with Granger causality in both directions.

We also find πe significantly impacts all treasury correlations and notably influences

the EAFE relationship with domestic stocks. Additionally, πe serves as a crucial

determinant for two gold correlations, suggesting the importance of considering πe in

macroeconomic analysis and asset allocation decisions.

4.4.3. Leading Indicators

Turning to our economic variables (Table 4.4), we report the results of leading

indicators (CEIC ) as a determinant for correlations. We do not find a significant

impact on the stock-bond correlation (SPUST ) in any of our models when tested

for two lags, as suggested by SBIC. We also find no relationship between treasury

correlations and the MSCI EAFE (USTEF ) and the Russell 2000 (USTR2 ). A DL

model shows a moderate relationship between CEIC and USTRE at 95% and with

R2 = 0.034.

We observe the impacts of CEIC is most pronounced with stock/stock and

stock/REIT correlations. SPEF, SPR2, and EFR2 are significant under at DL model

at 95%, albeit with low R2 values at 0.020, 0.074, and 0.062, respectively.

DL is significant at 99% the for stock/REIT correlations, SPRE, EFRE, R2RE,

but again demonstrating low R2 values at 0.039, 0.062, and 0.099, respectively. VAR

models yield mixed results for these three, where we do not find a significant result

for SPRE. At 99% CEIC has a one-way effect on EFRE. CEIC and R2RE, however,

are bidirectional at 95% through our VAR model and Granger shows bicausality at

95%.

Thus, leading indicators (CEIC ) do not affect relationships with treasuries.

The influence of CEIC is more pronounced in stock/stock and all REIT correlations

(including treasuries). The strongest relationship was found between CEIC and the
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Table 4.4: Macro Determinants of Correlations: Leading Indicators

This table summarizes the multi-method approach to investigate leading indicators (CEIC ) as a
determinant of asset class correlations. Variables for each correlational relationship (Corr) are shown
on the left. SBIC determines optimal lags. F-statistics and R2 values are reported for the DL model
with NW estimator. A VAR model for the interdependencies of correlations and CEIC is summarized
to demonstrate lags offering significant equations (P > z). χ2 results are reported from our Granger
model.

Russell 2000/REITs correlation (R2RE ), which exhibited a bidirectional and bicausal

relationship, suggesting that CEIC plays a crucial role in understanding stock and

REIT correlations.

4.4.4. Sentiment

Sentiment (Sent) from the University of Michigan’s Index of Consumer Sent

is used as a psychological measure for growth expectations (Johnson et al., 2013).

Results of our study of Sent as a determinant of correlations are found in Table 4.5).

Other than the US Treasury/REIT (USTRE ) correlation where a DL model is

significant at 95% where R2 = 0.037, Sent does not have any significant effects on

US Treasury correlations. However, Sent does have a significant and similar effect
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Table 4.5: Macro Determinants of Correlations: Sentiment

This table summarizes the multi-method approach to investigate sentiment (Sent) as a determinant
of asset class correlations. Variables for each correlational relationship (Corr) are shown on the
left. SBIC determines optimal lags. F-statistics and R2 values are reported for the DL model with
NW estimator. A VAR model for the interdependencies of correlations and Sent is summarized to
demonstrate lags offering significant equations (P > z). χ2 results are reported from our Granger
model.

on two stock/stock correlations SPR2 and EFR2, as well as three REIT correlations

(SPRE, EFRE, and R2RE ).

Sent ’s effects are significant at 99% for the Russell 2000 correlations SPR2 and

SPRE for both DL models, where it demonstrates a one-way relationship at 95%

determined through VAR and a one-way Granger-causality at 95% for SPR2 and

99% for SPRE. R2’s explain a high level of variance at R2 = 0.174 for SPR2 and

R2 = 0.308.

We find Sent on the relationships EFR2 and EFRE is significant, where DL is

significant at 99% for both. R2s are high at R2 = 0.100 for EFR2 and R2 = 0.280

EFR2. VAR and Granger-causality are significant of Sent on both, albeit at 99% for

EFR2 and 90% for EFRE.
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A DL model demonstrates significance at 99% and with R2 = 0.204 for Sent

on R2RE. It also demonstrates unidirectional effects through VAR at 99%, and Sent

Granger-causes R2RE, also at 99%.

We find parallels between leading indicators and sentiment where both do not

affect treasury relationships and are determinants of stock and REIT correlations.

Sentiment acts early but on fewer correlations. When it is a determinant of corre-

lations, its effects are stronger, as described by R2 values determining more of the

variance.

4.5. Results of Time-Varying Granger Causality

A causal or bicausal association between macroeconomic variables and asset

correlations might be anticipated. Although some of our Granger findings reveal sig-

nificant relationships, causal connections can break down due to structural breaks and

variations in underlying relationships between variables over time. To enhance the

rigor of our analysis, we employ a time-varying Granger causality (TVGC) method

that accounts for time-series parameter instability by permitting the coefficients’

structures and patterns to evolve.

4.5.1. Inflation

TVGC analysis conducted in our study unveils a significant relationship be-

tween π, and asset correlations, suggesting a dynamic and interdependent association

as demonstrated in Table 4.6. We find REIT correlations exhibit a dynamic rela-

tionship with π. In particular, π Granger-causes SPRE, and SPRE Granger-causes

π for rolling (RO) and recursive evolving (RE) windows, thus demonstrating a bi-

causal relationship at 95%. Furthermore, a bicausal relationship is observed where π

Granger-causes USTRE, and USTRE Granger-causes π for RE at 95%.

Additionally, a bicausal relationship is present in which π Granger-causes R2RE

and EFRE Granger-causes π for RO and RE windows at 95%, accompanied by a one-
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Table 4.6: Time-Varying Granger Causality: Inflation

This table summarized the results of time-variant Granger causality (TVGC) for the relationship be-
tween inflation (π) and asset class correlations. Columns illustrate Max-Wald statistics for Forward-
Expanding (FE), Rolling (RO), and Recursive Evolving (RE) windows. Rows demonstrate results
for the 95th and 99th percentile test statistics. The Granger-cause relationship (GC? ) being tested
is found in the left-hand column. Thus, the first four rows read left to right, test if π Granger causes
SPUST, and if SPUST Granger causes π.
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way relationship where π Granger-causes EFRE Granger-causes for RO and recursive

evolving (RE) at 99% significance. Bicausality exists between R2RE and π for RO

and RE windows at the 95%, with a one-way relationship where π Granger-causes

R2RE for forward expanding (FE) at 95% significance, and for RO and RE at the

99% significance.

Notable one-way relationships are observed among the stock/stock correlations

and π, wherein SPEF, SPR2, and EFR2 Granger-cause π for RO and RE at the

99% significance. Gold exhibits a bicausal relationship with π in its correlations

with the S&P 500 (SPG) and EAFE (EFG) for RO and RE at the 99% significance.

An intriguing discovery is the absence of a causal relationship in the stock-bond

correlation (SPUST ), yielding no significance when tested against π. This pattern

re-emerges with the Russell 2000/Treasury relationship (USTR2 ).

4.5.2. Inflation Expectations

TVGC results reveal that the correlations between πe, and asset dyads are less

dynamic compared to those among π. A summary of the findings is provided in Table

4.7. Despite the less dynamic nature, it is observed that USTEF Granger-causes πe

and πe Granger-causes USTEF for both rolling (RO) and recursive evolving (RE)

windows at 99% significance. The effects of πe are primarily unidirectional, with

several noteworthy findings.

Significant unidirectional relationships include SPUST Granger-causing πe for

forward expanding (FE), RO, and RE windows at 95%, and RO and RE at 99%.

Additionally, USTEF Granger-causes πe for RO and RE windows at 99%. Other

relationships include SPRE, SPRG, USTR2, USTRE, EFR2, EFG, and R2G Granger-

causing πe at various significance levels and window types.

We emphasize that the association with treasury correlations exhibits a more

pronounced presence than with π. Interestingly, numerous asset correlations maintain

74



Table 4.7: Time-Varying Granger Causality: Inflation Expectations

This table summarized the results of time-variant Granger causality (TVGC) for the relationship be-
tween inflation expectations (πe) and asset class correlations. Columns illustrate Max-Wald statistics
for Forward-Expanding (FE), Rolling (RO), and Recursive Evolving (RE) windows. Rows demon-
strate results for the 95th and 99th percentile test statistics. The Granger-cause relationship (GC? )
being tested is found in the left-hand column. Thus, the first four rows read left to right, test if πe

Granger causes SPUST, and if SPUST Granger causes πe.
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a causal relationship wherein they Granger-cause πe, yet πe does not reciprocate by

Granger-causing these correlations.

4.5.3. Leading Indicators

A salient finding of our analysis of leading indicators (CEIC ) and correlations

is the absence of bidirectional causation, as detailed in Table 4.8.

Similar to the case with πe, correlations Granger-cause CEIC more frequently

than CEIC Granger-causes correlations. Notable findings in this regard include

SPUST, SPR2, and EFR2 Granger-causing CEIC for rolling (RO) and recursive

evolving (RE) windows at a 95% significance. Furthermore, SPRE, EFRE, and R2RE

Granger-cause CEIC for forward expanding (FE), RO, and RE windows at a 99%,

as do REG and USTRE, with the exception of the FE window.

The TVGC analysis reveals significance in the one-way effects of CEIC Granger-

causing SPEF, USTEF, and USTR2 for RO and RE windows at a 95% significance.

A key takeaway from these results is that correlations more frequently Granger-cause

leading indicators than leading indicators Granger-cause correlations.

4.5.4. Sentiment

The relationship between sentiment (Sent) and asset class correlations exhibits

a unique and dynamic nature, as shown in Table 4.9. Our TVGC analysis uncovers

bidirectional Granger-causality in several relationships. Specifically, Sent and SPEF

demonstrate a bidirectional Granger-causal relationship for RO and RE windows at

95%. Similarly, Sent and SPRE, as well as Sent and EFRE, exhibit bidirectional

Granger-causality for RO and RE windows at a 95% significance.

In addition, Sent unilaterally Granger-causes SPR2 for all window types, and

at a 99% significance. Certain correlations that one-way Granger-cause Sent include

SPUST for RO and RE windows at a 95%, SPG for RO and RE windows at a 99%,
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Table 4.8: Time-Varying Granger Causality: Leading Indicators

This table summarized the results of time-variant Granger causality (TVGC) for the relationship be-
tween leading indicators (CEIC ) and asset class correlations. Columns illustrate Max-Wald statistics
for Forward-Expanding (FE), Rolling (RO), and Recursive Evolving (RE) windows. Rows demon-
strate results for the 95th and 99th percentile test statistics. The Granger-cause relationship (GC? )
being tested is found in the left-hand column. Thus, the first four rows read left to right, test if
CEIC Granger causes SPUST, and if SPUST Granger causes CEIC.
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Table 4.9: Time-Varying Granger Causality: Sentiment

This table summarized the results of time-variant Granger causality (TVGC) for the relationship
between sentiment (Sent) and asset class correlations. Columns illustrate Max-Wald statistics for
Forward-Expanding (FE), Rolling (RO), and Recursive Evolving (RE) windows. Rows demonstrate
results for the 95th and 99th percentile test statistics. The Granger-cause relationship (GC? ) being
tested is found in the left-hand column. Thus, the first four rows read left to right, test if Sent
Granger causes SPUST, and if SPUST Granger causes Sent.
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and both R2RE and R2G for FE windows at a 95% significance and RO and RE

windows at a 99%.

Our study examines the causal and bicausal relationships between macro vari-

ables and asset correlations. We utilized a time-varying Granger causality method to

account for parameter instability in time-series data, where we reveal 41 additional

significant relationships that eluded us in our macro variable study using standard

Granger. Our findings demonstrate significant relationships between π and asset cor-

relations. Furthermore, we observed various unidirectional and bidirectional relation-

ships involving REIT correlations and π, as well as stock/stock correlations and gold.

However, we found no causal relationship in the stock-bond correlation (SPUST )

when tested against π. In the case of πe, the associations were less dynamic but

still significant in some cases. Notably, we found that asset correlations more often

Granger-cause leading indicators than the reverse. Our analysis also reveals that

sentiment exhibits unique and dynamic relationships with asset class correlations,

highlighting the interdependencies of psychological variables with correlations.

4.6. Analysis of Macro Variables & Regimes

The persistence of correlations, combined with market movements, facilitates

the establishment of correlational regimes. We examine the binary outcome variables

Everyone-Wins (EWp), Risk-On (ROp), Flight-to-Safety (FTSp), and Nowhere-to-

Hide (NTHp) using logistic regression (logit). Summary results are presented in Table

4.10.

When analyzing the relationship between the binary outcome variable EWp and

inflation (π), the model is statistically significant at 99% with a Pseudo R2 of 0.0816,

indicating that it accounts for 8.16% of the variance. These results demonstrate that a

one-unit increase in the π variable is associated with approximately 2.15 times higher

odds of the EWp regime occurring, as evidenced by the statistically significant odds

ratio of 2.148 (95% CI: [1.721, 2.681]). We find similar results for the ROp regime
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Table 4.10: Macro Determinants of Correlational Regimes

This summarizes the results of lagged logit/probit regressions to determine the effects of the macroe-
conomic variables of inflation (π), inflation expectations (πe), leading indicators (CEIC ), and senti-
ment (Sent) on the Regimes (Y -variables), Everyone-Wins (EW ), Risk-On (RO), Flight-to-Safety
(FTS ), and Nowhere-to-Hide (NTH ) regimes. Optimal lags are determined by SBIC. For both the
logit and probit models, the results of the likelihood ratio chi-square test (LR χ2), p-value associated
with the chi-square test (P > χ2), and the Pseudo R2 are reported. “ns” = insignificant results for
α = 0.10.

at 99%, wherein a higher variance is explained by a Pseudo R2 of 0.232. The FTSp

regime is significant at 99% with a Pseudo R2 of 0.137. However, we do not find

significant results for the effects of inflation on NTHp.

The effects of inflation expectations (πe) on regimes yield similar results to

inflation, where EWp, ROp, and FTSp are significant at 99%. Pseudo R2 is higher

for EWp (Pseudo R2 = 0.181) and ROp (Pseudo R2 = 0.241), but lower for FTSp

with a Pseudo R2 = 0.053. However, we also discover that πe is a determinant of the

NTHp regime at 90%, albeit with a low Pseudo R2 of 0.011.
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Leading indicators (CEIC ) are significant for all regimes at 95%, but account

for small variances in EWp, ROp, and NTHp, where Pseudo R2s are below 0.030. In

the case of FTSp, CEIC exhibits a higher Pseudo R2 of 0.153.

Sentiment does have a significant effect on the ROp and NTHp regimes. We

find Sent is a determinant of EWp at 99% but with low explanatory power (Pseudo

R2 = 0.028). However, it does exert considerable effects on FTSp at 99% with a

Pseudo R2 of 0.195. Reinforcing the notion that psychological variables act earlier

than fundamental variables.

To ensure robustness, we examine all four macro variables on the four regimes

using a Probit model. The results are nearly identical, with only minor variations in

significance levels and explanations of variance. Therefore, the probit models confirm

the findings of the logit models discussed above.

4.7. Portfolio Construction & Testing

4.7.1. Asset Classes

We offer a better understanding of correlational relationships between asset

classes, how they are time-varying when they exhibit breaks, and their changing

nature over time. This enables the testing of macro variables to investigate the deter-

minants and causes of change. We then apply these macro variables to correlational

regimes that incorporate the correlational environment and the market environment.

This underpins our transition into a portfolio construction and testing framework,

where we seek to determine if our understanding of the nature of correlations can

improve tactical asset allocation and overall performance. Figure 4.3 illustrates the

cumulative performance of the six asset classes for the full time period of January

1982 to December 2022.

A heat map of performance and risk metrics for all asset classes and model

portfolios is located in Table 4.11. Cumulative returns discussed hereafter represent
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Figure 4.3: Cumulative Returns: Asset Classes

This figure illustrates the cumulative returns of the S&P 500 (SP), US Treasuries (UST ), MSCI
EAFE (EF ), Russell 2000 (R2 ), REITs (RE ), and Gold (G) from January 1982 to December 2022.

the growth of a dollar over the entire time period from January 1982 to December

2022. Thus, in the case of the S&P 500 (SP), $1 invested in January 1982 would

have grown to $85.20 by December 2022. Reviewing some of the key findings of the

individual asset classes as represented by the indices, S&P 500 (SP), US Treasuries

(UST ), MSCI EAFE (EF ), Russell 2000 (R2 ), FTSE Nareit (RE ), and Gold (G),

we offer the following observations.

SP exhibits the highest cumulative and annualized returns at CR = 85.2 and

Ra = .115, respectively. UST display the highest Sharpe ratio on an annualized basis

(SRa = 1.249), but coupled with a lower cumulative return at CR = 11.84. The

annualized standard deviation is highest for the R2 (SDa = .195), making it the

most volatile asset class.
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Table 4.11: Performance Heat Map: All Assets & Portfolios

This table summarizes the performance and risk metrics for the six asset classes, benchmark port-
folios, optimal and persistency portfolios, and regime and regime-switching portfolios from January
1982 to December 2022. Cumulative and annualized returns are listed first. Abbreviations: SD
= standard deviation (monthly & annualized), SR = Sharpe Ratio, Sortino = Sortino Ratio, IR
= Information Ratio (UST, 60/40, S&P 500 benchmarks), MDD = Maximum Drawdown, VaR =
Value-at-Risk. Green represents a more favorable outcome for the metric, and red represents a less
favorable outcome.

International stocks, as represented by EF, have a cumulative return of CR =

21.46 and an annualized return of Ra = 0.079, with a SRa = 0.538, placing them in the

middle of the six asset classes in terms of total returns and risk-adjusted returns. RE

is the third highest performing asset class in terms of cumulative returns (CR = 11.84)

and annualized returns of Ra = 0.960, but we point out that it demonstrates the

largest maximum drawdown (MDD = .679) of all assets.
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We draw attention to the fact that Gold offers little performance value over the

full period. It demonstrates the lowest CR = 21.46, lowest Ra = 0.079, and with a

high SDa = .150, resulting in the worst Sharpe among the six assets (SRa = 0.259)

We summarize the six assets by offering that the S&P 500 provides the highest

returns, whereas Treasuries offer the best risk-adjusted performance. International

stocks and REITs exhibit moderate returns and risk-adjusted performance compared

to other asset classes, with relatively high volatility. Gold underperforms in terms of

risk-adjusted returns, and the Russell 2000 demonstrates the highest volatility among

all asset classes.

4.7.2. Benchmark Portfolios

The benchmark portfolios are comprised of six primary asset classes, ranging

from low-risk to high-risk portfolios. The lowest risk portfolio, denoted as B0100,

consists of 100% US Treasuries, while the highest risk portfolio, B1000, is constructed

entirely of risk assets with a 0% allocation to treasuries. Four intermediate portfolios

(B2080, B4060, B6040, and B8020) are established between these two extremes,

offering varying levels of risk that lie along an efficient frontier. Figure 4.4 shows

the cumulative returns for the benchmark portfolios since January 1982.

Benchmark portfolios exhibit a trade-off between risk and return. High-risk

portfolios, such as B1000 (0% treasuries), yield higher annualized returns (Ra =

.099%) but lower annualized Sharpe ratios (SRa = 0.751) and larger maximum draw-

downs (MDD = 0.476). Conversely, low-risk portfolios like B0100 (100% treasuries)

generate lower annualized returns (Ra = .064) but higher annualized Sharpe ratios

(SRa = 1.249) and smaller maximum drawdowns (MDD = 0.184). Among all bench-

mark portfolios, B2080, a lower-risk option, has the highest annualized Sharpe ratio

(SRa = 1.506). Volatility, as measured by the annualized standard deviation, is lowest

for B0100 (SDa = .059) and highest for B1000 (SDa = 0.132).
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Figure 4.4: Cumulative Returns: Benchmark Portfolios

This figure illustrates the cumulative returns (growth of a $1) for the benchmark portfolios and
includes the six underlying asset classes from January 1982 to December 2022. B0100 is the lowest
risk portfolio representing 0/100, or 100% US Treasuries. B1000 represents a 100/0 combination of
all risk assets, no treasuries. 20/80 = B2080, 40/60 = B4060, 60/40 = B6040, 80/20 = B8020.

While individual asset classes have distinct return and risk characteristics, diver-

sified benchmark portfolios provide a spectrum of options for investors to balance risk

and return based on their preferences. Lower-risk portfolios have better risk-adjusted

performance but lower returns, while higher-risk portfolios offer higher returns but

also increased downside risk and volatility.

4.7.3. Optimal & Persistency Portfolios

Optimal portfolios are built using the GRG nonlinear method and encompass

three types: OptU (unconstrained), OptC (semi-constrained), and OptB (benchmark-

constrained). Our analysis reveals that the OptU portfolio, which permits any asset

class to be held at any weight ranging from 0% to 100%, attains the highest per-

formance among all portfolios and asset classes. The returns, CR = 362.70 and

Ra = 0.155, significantly surpass those of the all-equity benchmark (B1000) and
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the S&P 500 (SP). Moreover, the Sharpe ratio, SRa = 1.900, indicates exceptional

risk-adjusted returns.

The semi-constrained portfolio (OptC) allows the S&P 500 and US Treasuries

to range from 0% to 100% while constraining the other four asset classes to a range

of 0% to 50%. This portfolio also demonstrates respectable performance with CR =

303.134, Ra = 0.150, and SRa = 2.042. Our benchmark-constrained portfolio (OptB)

constrains the asset classes to the same ratios as the benchmark portfolios but allows

GRG to optimize freely across the spectrum of the efficient frontier. Although this

portfolio underperforms the other optimized models, it still delivers results that exceed

all benchmark portfolios, with returns of CR = 52.506 and Ra = 0.102, and a Sharpe

ratio of SRa = 1.303.

The optimal portfolios are designed with the benefit of hindsight, wherein an

investor would require perfect information and the ability to act upon it concurrently

to achieve the desired results. The purpose of the optimal portfolios is to test correla-

tional stability and time-invariance. To this end, we construct persistency portfolios

by purchasing the asset allocations of the optimal portfolios with a one-month lag.

Three portfolios are constructed to follow each optimal portfolio: POptU (uncon-

strained) follows OptU, POptC (constrained) follows OptC, and POptB (benchmark

constrained) follows OptB. If temporal stability is present, even though we may not

achieve the performance of the optimal portfolios, a “fast-following” persistency port-

folio could still produce meaningful results given the disparity in performance between

benchmark and optimal portfolios.

POptU results in CR = 28.096, Ra = 0.86, and SRa = 0.901, placing it notably

below its optimal counterpart. Additionally, it falls between the B4060 and B6040

in terms of returns, but with a SRa = 0.901, which is lower than both due to a

higher standard deviation. The performance of the PoptC and POptB portfolios is

even less remarkable, as shown in Table 4.4. Consequently, the persistence portfolios
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fail to capture the meaningful performance of their optimal counterparts. Some of

this underperformance can be attributed to model design and the inability to react

in a timely fashion due to monthly data. Nonetheless, the primary takeaway is that

chasing returns based on the assumption of time-invariance does not prove to be a

value-adding strategy. Figure 4.5 illustrates the cumulative returns of the optimal

and persistency portfolios.

Figure 4.5: Cumulative Returns: Optimal & Persistency Portfolios

This figure builds on Figures 4.3 and 4.4 by adding the cumulative returns of the optimal and
persistency portfolios from January 1982 to December 2022. OptU = Optimized Unconstrained,
POptU = Persistency Unconstrained, OptC = Optimized Semi-constrained, POptC = Persistency
Semi-constrained, OptB = Optimized Benchmark Constrained, POptB = Persistency Benchmark
Constrained.

4.7.4. Regime & Regime-switching Portfolios

Regime Portfolios

The correlation-based regime portfolios are classified into four distinct cate-

gories: Everyone-Wins (EW ), Risk-On (RO), Flight-to-Safety (FTS ), and Nowhere-

to-Hide (NTH ). The EW portfolio employs the asset allocation strategy of the B6040

benchmark, while the RO strategy incorporates the B8020 benchmark, the FTS
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strategy utilizes the B4060 benchmark, and the NTH strategy adopts the B0100

benchmark.

Juxtaposing the performance of the EW, RO, FTS, and NTH portfolios with

their benchmark counterparts, the EW portfolio yields an annualized Sharpe ratio

of SRa = 1.209, an annualized return of Ra = 0.083, and a cumulative return of

CR = 25.58, situating it between the 40/60 (B4060 ) and 60/40 (B6040 ) portfolios

as delineated in Table 4.11. Conversely, the RO portfolio generates Ra = 0.090,

CR = 33.36, placing it between a 60/40 (B6040 ) and 80/20 (B8020 ) in terms of

returns; nevertheless, with SRa = 1.287, it is closer to a 40/60 (B4060 ), thereby

exhibiting a favorable risk-adjusted performance in comparison to the benchmarks.

We find that the FTS portfolio demonstrates the lowest Sharpe ratio among the

regime-based models at SRa = 1.088, and its returns are relatively modest, falling

below the B6040 benchmark. While the NTH portfolio affords respectable returns at

Ra = 0.086, CR = 28.17, positioning it between the B4060 and B6040 benchmarks,

it exhibits the second-highest Sharpe ratio (SRa = 1.478) among all regime and

benchmark portfolios, attributable to a low standard deviation SDa = 0.058.

Three of the regime portfolios offer substantial risk-adjusted returns. Both EW

and NTH portfolios exhibit moderate risk profiles while surpassing the returns of

benchmarks with similar risk. The RO portfolio, on the other hand, provides higher

returns, albeit coupled with the risk levels of more moderate benchmarks.

Regime-Switching Portfolios

The regime-switching portfolio (RS ) is constructed by reassembling the four

correlation-based regime portfolios into their inherent chronological sequence. The

portfolio subsequently applies (“switches”) the respective benchmark portfolio alloca-

tions one month after the regime becomes present, thus offering real-time applicability.

In contrast, the optimized regime-switching portfolio (RSO) also employs the natural
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temporal occurrence of regimes. However, substitutes the average optimized alloca-

tion from January 1982 to December 2022 for each respective regime, as determined

by GRG nonlinear optimization. As with RS, RSO switches its allocation one month

after the regime becomes present and is, therefore, an executable, real-world strategy.

Figure 4.6: Regime-Switching Outperformance

This figure plots the difference between the rolling one-year returns of the regime-switching (RS )
portfolio and the benchmark portfolios (e.g., ∆B6040 represents the difference between RS and
the B6040 portfolio). The preponderance of positive values from January 1982 to December 2022
demonstrates the outperformance of RS.

In reference to Table 4.11, the RS portfolio exhibits substantial risk-adjusted

performance. With an annualized return of Ra = 0.100 and a cumulative return of

CR = 47.87, the returns surpass even the most aggressive benchmark, B1000, which

allocates 0% to US Treasuries. Remarkably, the portfolio achieves this feat with a

standard deviation identical to the B6040 at SDa = 0.082, yielding a Sharpe ratio

of SRa = 1.218. Figure 4.6 illustrates the outperformance of the RS portfolio in

comparison to the buy-and-hold benchmarks.
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The RSO portfolio, while offering a respectable return profile, underperforms

the RS portfolio on a total return basis. With an annualized return of Ra = 0.088

and a cumulative return of CR = 30.53, the returns closely resemble those of a B6040

benchmark. However, the portfolio achieves a standard deviation of SDa = 0.070 and

a Sharpe ratio of SRa = 1.263, outperforming the B6040 on a risk-adjusted basis,

thereby securing its position as a superior alternative to an all-weather benchmark.

Synthesizing the findings of our investigation, we offer Figure 4.7, which delin-

eates the cumulative returns for our portfolios constructed to examine persistency,

binary regimes, and regime-switching, as compared to buy-and-hold reference port-

folios. Furthermore, we encapsulate our performance metrics for the aforementioned

portfolios in Table 4.12 and in Figure 4.8, which plots the test portfolios against the

efficient frontier of the benchmark portfolios for our study’s full-time period.

We conclude that both the RS and RSO portfolios demonstrate enhanced risk-

adjusted performance compared to the benchmark portfolios. We thus conclude

that regime-switching models premised on an understanding of time-varying changes,

macroeconomic drivers, and their resulting correlational regimes can improve tactical

allocation models, leading to superior risk-adjusted returns for investors.
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Figure 4.7: Cumulative Returns: Portfolio Testing & Benchmarks

This figure illustrates the cumulative returns of all tested portfolios (persistency, regime, & regime-
switching) as compared to benchmarks from January 1982 to December 2022.
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Table 4.12: Performance Heat Map: Portfolio Testing & Benchmarks

This table summarizes the performance and risk metrics for our tested portfolios - persistency,
regime, and regime-switching - as compared to benchmark portfolios from January 1982 to December
2022. Cumulative and annualized returns are listed first. Abbreviations: SD = standard deviation
(monthly & annualized), SR = Sharpe Ratio, Sortino = Sortino Ratio, IR = Information Ratio
(UST, 60/40, S&P 500 benchmarks), MDD = Maximum Drawdown, VaR = Value-at-Risk. Green
represents a more favorable outcome for the metric, and red represents a less favorable outcome.
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Figure 4.8: Efficient Frontier: Portfolios vs. Benchmarks

This figure depicts the efficient frontier for the benchmark portfolios over the full period from January
1982 to December 2022. Persistency, regime, and regime-switching portfolios are plotted. RS, RO,
RSO, and NTH portfolios fall above the efficient frontier. This illustrates that knowledge of regimes,
time-varying correlations, and macro determinants of change can lead to better risk-adjusted returns
through tactical asset allocation.
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CHAPTER 5: DISCUSSION

In this study, we undertake a comprehensive examination of 492 month-end

index and price data observations spanning from January 1982 to December 2022,

encompassing six principal asset classes. US large-cap equities represented by the S&P

500 (SP), US small-cap equities represented by the Russell 2000 (R2 ), international

equities where we use the MSCI EAFE (EF ), bonds represented by the ICE BofA US

Treasury index (UST ), spot gold (G), and real estate represented by the Nareit Total

Return index (RE ). Our research seeks to ascertain whether a better understanding of

time-varying correlational shifts, determinants, and regimes can contribute to superior

portfolio construction through tactical asset allocation.

Our investigation of rolling one-year correlations for 15 asset class combinations

establishes that correlations are indeed subject to temporal variation. Correlational

analysis of asset dyads via rolling one-year periods and fitted linear regressions sub-

stantiates existing literature, revealing a transition from positive to negative correla-

tion between the S&P 500 and US Treasuries in the late 1990s. Extending this analysis

to encompass 14 other asset class dyads, we discern robust and moderately stable cor-

relational relationships among stock correlations. Treasury correlations with stocks

and REITs display volatility and have decreased over time with significant structural

breaks, while correlations between REITs and stocks are moderate but also exhibit

intermittent breaks, albeit with more asset class contingencies. Gold maintains its

status as a non-correlated asset.

Correlations are predicated on moving averages, signifying that much of the vari-

ance in determining their current values is attributable to persistency. Our AR model
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corroborates this notion. However, it is important not to assume time-invariance of

correlations, as structural breaks may transpire. Following Bai & Perron (1998), we

implement structural break tests, which yield significant findings indicating breaks

in 11 of the 15 correlational pairings under investigation. Notably, five breaks occur

in the extensively examined stock-bond correlation (SPUST ), while five additional

breaks are identified in the S&P 500/Russell 2000 (SPR2 ), S&P 500/REIT (SPRE ),

and treasury/REIT (USTRE ) correlations. Furthermore, seven other asset class pair-

ings exhibit one or more breaks.

Subsequent visualization through wavelet coherence analysis elucidates dynamic

and evolving relationships between the S&P 500 and treasuries, where coherence

amplifies during periods of market distress. This association is more potent in shorter

frequencies, and lead/lag phase relationships undergo frequent alterations. A high

coherence relationship is evident between stock/stock dyads. Other treasury/stock

comovements exhibit patterns akin to the SBC (SPUST ), demonstrating significant

shifts in the strength and direction of their relationships owing to frequency and

phase dynamics. REITs exhibit greater stability in their interactions with other

assets, albeit with lower coherence. Gold reasserts its reputation as a volatile, non-

correlated asset, which is confirmed through lower coherence.

Combining correlational analysis, an AR model in conjunction with structural

break tests, and visualization through wavelet coherence, we unveil substantial and

noteworthy findings that attest to the time-varying nature of correlations. This reve-

lation challenges the prevailing paradigm of efficiency and correlational stability that

undergirds portfolio construction via buy-and-hold, strategic asset allocation.

Owing to the time-varying nature of correlations, we endeavor to ascertain

the determinants of change. Through a rigorous econometric investigation employ-

ing a distributed lag model (DL) with a Newey-West estimator, vector autoregres-

sion (VAR), and Granger causality, we undertake a comprehensive analysis of four

95



macro variables — namely, inflation (π), inflation expectations (πe), leading indi-

cators (CEIC), and sentiment (Sent) — to determine their impact on correlational

shifts.

Our findings reveal significant evidence that macroe variables exert influence

on asset class correlational dyads. Our DL model demonstrates π affects nine corre-

lations, with optimal lags ranging from two to three periods. VAR models confirm

six uni-directional relationships only, where Granger-causality is also one-way. The

highest R2 values are observed for π as a determinant of US Treasury correlations. In

contrast, the effects of πe on seven correlations manifest more rapidly, typically within

the first lag, and exhibit higher R2 values in correlations where significance is shared

with π. Although πe exhibit fewer significant effects in VAR and Granger models, a

notable bidirectional, bicausal relationship emerges in the treasury correlation to the

S&P 500 and Russell 2000 (SPR2 ).

With regard to our measure of expected economic activity, we discern significant

influences of CEIC as drivers of seven correlations. However, the R2 values for CEIC

are the lowest among all examined macroeconomic variables. VAR and Granger

models exhibit no significance in several asset correlations that are deemed significant

in our DL models. Interestingly, unlike π and πe variables, CEIC has negligible impact

on treasury correlations, with significance predominantly found in stock and REIT

relationships. In comparison, Sent affects six correlations and mirrors the immediacy

and impact of inflation expectations, high R2 values relative to leading indicators.

Our VAR and Granger models demonstrate that Sent ’s influence is one-way, acting

solely on correlations without being affected by them.

We add rigor to our analysis by pushing deeper into the causal and bicausal

study of our macro variables and correlations. Through the forward expanding,

rolling, and recursive evolving windows of time-varying Granger causality, we find

significant effects in 41 additional relationships that remained undetected in using
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a standard Granger methodology. Our analysis highlights substantial relationships

between inflation (π) and asset correlations, with various unidirectional and bidi-

rectional associations involving REIT correlations, π, stock/stock correlations, and

gold. Interestingly, no causal relationship was found in the stock-bond correlation

(SPUST ) when tested against π. The connections with expected inflation (πe) were

less dynamic, yet significant in certain cases. Our findings also demonstrate that

asset correlations tend to Granger-cause leading indicators more frequently than the

opposite. Furthermore, we observed unique and dynamic relationships between senti-

ment and asset class dyads, emphasizing the interdependencies between psychological

variables and correlations.

Understanding the evolution of correlations over time is crucial for informed

portfolio decision-making. Following Jacobsen & Scheiber (2022), our study defines

four binary correlational regimes: (1) Everyone-Wins (EW ), (2) Risk-On (RO), (3)

Flight-to-Safety (FTS ), and (4) Nowhere-to-Hide (NTH ), where we use a logit/probit

model to examine the relationship between these binary regimes and our macro vari-

ables. Our findings indicate that π and πe significantly shape the EW, RO, and

FTS regimes, whereas their influence on the NTH regime is minimal. CEIC also

plays a role in accounting for the variation observed in all regimes, with the most

pronounced effect found in the FTS regime. Sent exerts a more selective influence,

primarily affecting the EW and FTS regimes and acting earlier than other funda-

mental variables. As with our study of macros on asset correlations, psychological

variables operate more swiftly and with a greater degree of explanation in variance

compared to fundamental variables. The robustness of these findings, as corrobo-

rated by the probit model analysis, emphasizes the importance of considering these

macroeconomic factors when evaluating and predicting correlational regimes in finan-

cial markets.
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Our study addresses another gap in the literature left by a multitude of empirical

studies that assert their research bears implications for portfolio construction and

investors. Yet, they provide no pragmatic solutions to address these implications.

To bridge this gap, we pivot to the practical realm, where we develop benchmark

portfolios and representative model portfolios tailored to scrutinize the constructs

of time-variance, macroeconomic impacts, and correlational regimes through tactical

allocation. We construct six benchmark asset allocation models with varying risk

levels as a basis for comparison and represent a pragmatic buy-and-hold strategic

asset allocation strategy. The all-weather 60/40 (B6040 ) yields an annualized return

of Ra = 8.8%, a cummulative return of CR = 30.614 and an annualized Sharpe

of SRa = 1.078. Our heat map depicting performance metrics for all asset classes

summarizes our results (Tables 4.11 and 4.12).

We devise optimal, albeit arguably unattainable, portfolios by maximizing the

Sharpe ratio for each of our 492 periods utilizing a GRG nonlinear optimizer. We

create three optimal models, including optimized unconstrained (OptU ), optimized

semi-constrained (OptC ), and optimized benchmark-constrained (OptB), each impos-

ing varying degrees of restrictions on asset allocations. These resulting optimal port-

folios exhibit considerable outperformance in terms of both return and risk-adjusted

return. The OptU portfolio yields an average annualized return of Ra = 15.5%, a

CR = 362.696, and an annualized Sharpe of SRa = 1.900, compared to the S&P 500

at Ra = 11.5%, a CR = 85.205, and SRa = 0.752.

Persistency portfolios (POptU, POptC, POptB) adhere to the optimal portfolio

asset weightings, with a one-month lag. They test “persistency” under the premise

that if correlations hold, so should performance. While our results reveal that these

portfolios offer lower standard deviations (e.g., POptU ’s SDa = 9.5%), they under-

perform in terms of returns and Sharpe (Ra = 8.6%, CR = 28.096, SRa = 0.901).
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Consequently, the pursuit of returns predicated on the assumption of correlational

temporal invariance does not yield additional value.

The persistency portfolios rely exclusively on the time-based stability of corre-

lations. On the other hand, the regime-based portfolios (EW, RO, FTS, and NTH )

incorporate macroeconomic determinants and market information. The RO regime,

which uses an 80/20 (B8020 ) upside, 40/60 downside allocation, performs well as

indicated by its moniker (Ra = 9.0%, CR = 33.362, SRa = 1.287). An NTH model

offers a conservative profile at, Ra = 8.6%, CR = 28.179, and SRa = 1.478. How-

ever, recombining all regimes into their natural temporal order allows us to construct

regime-switching (RS ) and optimized regime-switching portfolios (RSO) that result

in Ra = 10.0%, CR = 47.871, SRa = 1.218 for RS, and Ra = 8.8%, CR = 30.530,

SRa = 1.263 for RSO.

The regime and regime-switching portfolios demonstrate adaptability to cor-

relational change and market conditions, thereby exploiting opportunities via tac-

tical allocation. This well-informed methodology represents a practical application

of our empirical study and, ultimately, the culmination of our research endeavor.

Correlations serve as a fundamental component in the process of portfolio construc-

tion. By eschewing the prevailing orthodoxy of correlational stability, we can em-

brace time-varying changes. Through comprehension of determinants driving these

changes, we arrive at correlational regimes that also incorporate market information.

Informed through knowledge of the correlational temporal change, drivers of change,

and regimes, investors can indeed achieve superior risk-adjusted returns.

5.0.1. Implications, Limitations, & Future Directions

We have expanded upon the existing body of literature by illustrating that the

notion of time-varying change, macro determinants, and correlation regimes offer

value in finding a deeper understanding of asset class correlations, as it leads to

better portfolio construction. Moreover, our study discovers that the macroeconomic
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factors of inflation, inflation expectations, leading indicators, and sentiment, which

act as determinants of change for the stock-bond correlation, similarly affect changes

in 14 additional asset class pairings. Despite this study’s broad approach, it cannot

fully explain all of these relationships; and where it achieves breadth, it is limited

in depth. We suggest that many of these asset class correlational relationships are

worthy of further, more granular study.

There is an extensive body of research spanning multiple decades focusing solely

on stock-bond correlations. Despite its multifaceted approach, our study is incapable

of providing a comprehensive explanation for all extant relationships. The scope of

this investigation could be broadened by delving further into macro determinants that

apply to all correlational regimes. Simultaneously, a more profound and meticulous

examination of under-researched, under-utilized asset classes, as well as the imple-

mentation of additional statistical methodologies, would add rigor to this research.

The preliminary findings about correlational regimes are promising. In study-

ing the macro drivers of regimes, we not only corroborate the established litera-

ture but also propose novel avenues for the application and understanding of these

regimes, thereby facilitating more optimal portfolio construction. Future research

should encompass a more extensive evaluation of additional factors that influence

these regimes. Furthermore, a more nuanced comprehension of their functioning

within varying rolling windows is recommended for subsequent studies. The present

analysis confines the regimes to conventional positive/negative correlations in con-

junction with ascending/descending markets. Nonetheless, regimes could potentially

extend beyond these parameters to encompass economic factors, monetary and fiscal

policies, and political environments.

Our inquiry contributes to practical applications by demonstrating that the com-

prehension of correlational temporal fluctuations, macro drivers of change, and corre-

lational regimes need not be confined to empirical research and academia. Rather, we
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provide evidence of their real-world relevance to tactical asset allocation and portfolio

construction. However, our study is constrained by the trade-off between internal and

external validity. It would align better with the extant literature that uses three, five,

and ten-year rolling correlations. However, our ADF testing indicated the presence

of a unit root in many three and five-year correlations, exposing our study to non-

stationarity and spurious regressions. Concerning portfolio testing, we intentionally

select one-year correlations to manifest more pronounced effects that better inform the

implementation of tactical allocation shifts, typically executed over shorter temporal

horizons.

We are restricted to monthly data and conventional asset classes, encompassing

asset classes that exhibit suboptimal performance when assessed on a risk-adjusted

basis (e.g., gold). This constraint bears particular significance for the persistency

portfolios, which could potentially be augmented by embracing more granular time

intervals, such as weekly or daily, and incorporating a broader spectrum of asset

classes (e.g., commodities, emerging markets, high-yield debt, international debt,

private equity, etc.). Nevertheless, this would necessitate a more rigorous approach

to optimization methods. As such, we propose this as an additional avenue for future

investigation.
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CHAPTER 6: CONCLUSION

We offer a comprehensive examination of 492 month-end indices encompassing

six principal asset classes spanning from January 1982 to December 2022, where we

make significant strides in understanding the time-varying nature of correlations and

their implications for portfolio construction. We extend the discourse beyond the

traditional stock-bond correlation to encompass 14 other asset class relationships.

Our research demonstrates that correlations are subject to temporal variation, and

macroeconomic variables exert influence on asset class correlational dyads. By utiliz-

ing a range of advanced methodologies and incorporating macroeconomic variables,

the study sheds light on the determinants of correlational shifts and their effects on

various market regimes.

We employ time-series econometric methodologies such as autoregressive, dis-

tributed lag, and vector autoregression models, in addition to more rigorous structural

break tests, wavelet coherence, and time-varying Granger causality. We challenge the

prevailing paradigm of efficiency and correlational stability that is the mainstay of

portfolio construction via buy-and-hold, strategic asset allocation. In light of the

time-varying nature of correlations, we offer a deterministic framework to determine

the impact of macroeconomic variables on correlational shifts. Our findings reveal

that macro-level determinants, such as inflation, inflation expectations, leading indi-

cators, and sentiment, which impact the alteration in the stock-bond correlation, also

wield influence on other asset class dyads. However, the magnitude of these effects

varies depending on the particular correlation under examination.
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We provide pragmatic solutions by constructing benchmark portfolios and model

portfolios tailored to exploit an understanding of correlational time-variance, drivers

of change, and regimes through tactical allocation. Resultant regime-switching port-

folios demonstrate adaptability to fluctuating market conditions, thereby capitalizing

on opportunities spanning various asset classes.

By eschewing the prevailing orthodoxy of correlational stability and embrac-

ing time-varying change, macroeconomic determinants, and correlational regimes,

investors can attain superior risk-adjusted returns through the implementation of

tactical asset allocation strategies. This study contributes to the extant literature on

time-varying correlations and drivers of change while offering practical implications

for portfolio construction and risk management in the realm of finance.
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CORRELATIONS & WAVELET COHERENCE
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Figure A.1: Asset Class One-Year Correlations (1-3)

This figure demonstrates 1 through 3 rolling asset class correlation combinations from January 1982
to December 2022. SPUST = S&P 500/US Treasuries, SPEF = S&P 500/MSCI EAFE, SPR2 =
S&P 500/Russell 2000
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Figure A.2: Asset Class One-Year Correlations (4-6)

This figure demonstrates 4 through 6 rolling asset class correlation combinations from January
1982 to December 2022. SPRE = S&P 500/REITs, SPG = S&P 500/Gold, USTEF = US Trea-
suries/MSCI EAFE
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Figure A.3: Asset Class One-Year Correlations (7-9)

This figure demonstrates 7 through 9 rolling asset class correlation combinations from January 1982
to December 2022. USTR2 = US Treasuries/Russell 2000, USTRE = US Treasuries/REITs, USTG
= US Treasuries/Gold
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Figure A.4: Asset Class One-Year Correlations (10-12)

This figure demonstrates 10 through 12 rolling asset class correlation combinations from January
1982 to December 2022. EFR2 = MSCI EAFE/Russell 2000, EFRE = MSCI EAFE/REITs, USTG
= MSCI EAFE/Gold
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Figure A.5: Asset Class One-Year Correlations (13-15)

This figure demonstrates 10 through 12 rolling asset class correlation combinations from January
1982 to December 2022. R2RE = Russell 2000/REITs, R2G = Russell 2000/Gold, REG = RE-
ITs/Gold
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Figure A.6: Wavelet Coherence Asset Class Dyads (1-3)

This figure demonstrates wavelet coherence at 95% for asset dyads 1-3 from Jan-82 to Dec-22 (period
0 to 500 months). Right axis shows coherence (0.0 to 1.0), where red represents high comovement,
and blue represents low comovement. Left axis shows wavelet frequency in months. Right arrows
depict in-phase oscillation; left arrows depict anti-phase oscillation.
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Figure A.7: Wavelet Coherence Asset Class Dyads (4-6)

This figure demonstrates wavelet coherence at 95% for asset dyads 4-6 from Jan-82 to Dec-22 (period
0 to 500 months). Right axis shows coherence (0.0 to 1.0), where red represents high comovement,
and blue represents low comovement. Left axis shows wavelet frequency in months. Right arrows
depict in-phase oscillation; left arrows depict anti-phase oscillation.
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Figure A.8: Wavelet Coherence Asset Class Dyads (7-9)

This figure demonstrates wavelet coherence at 95% for asset dyads 7-9 from Jan-82 to Dec-22 (period
0 to 500 months). Right axis shows coherence (0.0 to 1.0), where red represents high comovement,
and blue represents low comovement. Left axis shows wavelet frequency in months. Right arrows
depict in-phase oscillation; left arrows depict anti-phase oscillation.
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Figure A.9: Wavelet Coherence Asset Class Dyads (10-12)

This figure demonstrates wavelet coherence at 95% for asset dyads 10-12 from Jan-82 to Dec-22
(period 0 to 500 months). Right axis shows coherence (0.0 to 1.0), where red represents high
comovement, and blue represents low comovement. Left axis shows wavelet frequency in months.
Right arrows depict in-phase oscillation; left arrows depict anti-phase oscillation.
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Figure A.10: Wavelet Coherence Asset Class Dyads (13-15)

This figure demonstrates wavelet coherence at 95% for asset dyads 13-15 from Jan-82 to Dec-22
(period 0 to 500 months). Right axis shows coherence (0.0 to 1.0), where red represents high
comovement, and blue represents low comovement. Left axis shows wavelet frequency in months.
Right arrows depict in-phase oscillation; left arrows depict anti-phase oscillation.
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