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Abstract Abstract 
While marker-based motion capture remains the gold standard in measuring human movement, accuracy 
is influenced by soft-tissue artifacts, particularly for subjects with high body mass index (BMI) where 
markers are not placed close to the underlying bone. Obesity influences joint loads and motion patterns, 
and BMI may not be sufficient to capture the distribution of a subject’s weight or to differentiate 
differences between subjects. Subjects in need of a joint replacement are more likely to have mobility 
issues or pain, which prevents exercise. Obesity also increases the likelihood of needing a total joint 
replacement. Accurate movement data for subjects with a higher BMI is of the utmost importance 
because it can be used to inform treatment options for people who have received joint replacements or 
are waiting to receive a replacement. Currently, movement data from this subgroup of people has error 
introduced due to soft tissue artifacts from markered motion capture, such as Vicon. By investigating 
ways of measuring movement with computer vision tools, the influence of soft tissue artifacts can be 
investigated further in movement data. The Azure Kinect DK is a depth camera that collects point cloud 
data of the surface of the person and automatically calculates joint centers. The objectives of this thesis 
were to 1) Design a fast and accurate procedure to generate a full-body point cloud with two Azure Kinect 
DK cameras; 2) Create subject-specific computational representations by fitting the Skinned Multi-Person 
Linear (SMPL) model to Kinect point cloud data. With IRB approval, 24 subjects consented to perform T-
pose , lunge, sit to stand, and walking activities while being recorded by two Azure Kinect DK depth 
cameras. For all activities except walking, one camera was facing the subject head on and the other 
recorded the right sagittal view. During walking, the subjects walked toward both cameras. Of these 24, 
point cloud and joint data from 16 subjects were used. This study uses exclusively data from the T-pose 
trial. 

Without post-processing, these two views of the T-pose do not produce complete data of the surface of a 
person. A technique was developed to recreate missing sections of the body and create a partial point 
cloud. Another method of collecting point cloud data was also explored using two cameras and a turn 
table. A synchronous capture is taken of the front and side, the person is rotated 180 degrees, and 
another capture is taken. An optimization pipeline was designed to fit the SMPL model to both types of 
data. The process created high-quality computational representations of each subject. During data 
collection, extensive anthropometric measures were recorded of each subject with a tailor’s tape and 
used to verify the accuracy of the model by comparing them to digitally recreated measures on each 
SMPL model. The validity of the model was quantified with a percent error calculation between subject 
manual and SMPL measurements. Subject manual and SMPL measurements are highly correlated with 

an R2 > 0.9 and p-value << 0.1. Across all measurements and subjects, there is an average absolute 
percent error of 4.71 ± 4.09% The average absolute percent error between any measurements never 
exceeds 10%. The largest absolute percent error is in the ankle with 9.80 ± 6.33% , and the smallest 
absolute percent error is in the floor to shoulder measurement with 1.17 ± 0.76%. 

This tool to create a subject-specific whole-body computational representation has a broad variety of 
applications. This model fitting process is ready to be deployed on the point cloud collection processes 
described and will be useful in creating subject-specific finite element models. The Azure Kinect DK gives 
the ability to perform markerless motion capture and surface point cloud collection in a clinical setting, 
such as a doctor’s office. These body models could be generated from data like this and allow for patient 
classification. The SMPL model’s ability to describe realistic body shapes could be used to accurately 
calculate the moment of inertia for many body segments. A standardized tool to measure body shape and 
habitus can allow for the discovery of correlations between body dimensions and movement patterns. 
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ABSTRACT 

While marker-based motion capture remains the gold standard in measuring 

human movement, accuracy is influenced by soft-tissue artifacts, particularly for subjects 

with high body mass index (BMI) where markers are not placed close to the underlying 

bone. Obesity influences joint loads and motion patterns, and BMI may not be sufficient 

to capture the distribution of a subject’s weight or to differentiate differences between 

subjects. Subjects in need of a joint replacement are more likely to have mobility issues 

or pain, which prevents exercise. Obesity also increases the likelihood of needing a total 

joint replacement. Accurate movement data for subjects with a higher BMI is of the 

utmost importance because it can be used to inform treatment options for people who 

have received joint replacements or are waiting to receive a replacement. Currently, 

movement data from this subgroup of people has error introduced due to soft tissue 

artifacts from markered motion capture, such as Vicon. By investigating ways of 

measuring movement with computer vision tools, the influence of soft tissue artifacts can 

be investigated further in movement data. The Azure Kinect DK is a depth camera that 

collects point cloud data of the surface of the person and automatically calculates joint 

centers. The objectives of this thesis were to 1) Design a fast and accurate procedure to 

generate a full-body point cloud with two Azure Kinect DK cameras; 2) Create subject-

specific computational representations by fitting the Skinned Multi-Person Linear 

(SMPL) model to Kinect point cloud data. With IRB approval, 24 subjects consented to 
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perform T-pose , lunge, sit to stand, and walking activities while being recorded by two 

Azure Kinect DK depth cameras. For all activities except walking, one camera was 

facing the subject head on and the other recorded the right sagittal view. During walking, 

the subjects walked toward both cameras. Of these 24, point cloud and joint data from 16 

subjects were used. This study uses exclusively data from the T-pose trial.  

 Without post-processing, these two views of the T-pose do not produce complete 

data of the surface of a person. A technique was developed to recreate missing sections of 

the body and create a partial point cloud. Another method of collecting point cloud data 

was also explored using two cameras and a turn table. A synchronous capture is taken of 

the front and side, the person is rotated 180 degrees, and another capture is taken. An 

optimization pipeline was designed to fit the SMPL model to both types of data. The 

process created high-quality computational representations of each subject. During data 

collection, extensive anthropometric measures were recorded of each subject with a 

tailor’s tape and used to verify the accuracy of the model by comparing them to digitally 

recreated measures on each SMPL model. The validity of the model was quantified with 

a percent error calculation between subject manual and SMPL measurements. Subject 

manual and SMPL measurements are highly correlated with an R2 > 0.9 and p-value << 

0.1. Across all measurements and subjects, there is an average absolute percent error of 

4.71 ± 4.09%   The average absolute percent error between any measurements never 

exceeds 10%. The largest absolute percent error is in the ankle with 9.80 ± 6.33% , and 

the smallest absolute percent error is in the floor to shoulder measurement with 1.17 ± 

0.76%.    
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This tool to create a subject-specific whole-body computational representation has 

a broad variety of applications. This model fitting process is ready to be deployed on the 

point cloud collection processes described and will be useful in creating subject-specific 

finite element models. The Azure Kinect DK gives the ability to perform markerless 

motion capture and surface point cloud collection in a clinical setting, such as a doctor’s 

office. These body models could be generated from data like this and allow for patient 

classification. The SMPL model’s ability to describe realistic body shapes could be used 

to accurately calculate the moment of inertia for many body segments. A standardized 

tool to measure body shape and habitus can allow for the discovery of correlations 

between body dimensions and movement patterns.  
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CHAPTER 1: INTRODUCTION 

1.1 Introduction and Motivation 

Human movement is quantified using marker-based motion capture systems, such 

as Vicon. These systems are considered the gold standard for motion capture, yet it can 

be time consuming to post-process data. Additionally, a Vicon camera system can cost as 

much as $75k, require an entire room and skilled technicians to keep it operational, and 

subjects need to sometimes travel a considerable distance for a data collection. Due to the 

introduction of soft tissue artifacts from the usage of marker-based motion capture, it is 

difficult to record the locomotion for patients with higher BMI.  Motion capture results 

have a moderate accuracy of 3-5mm and depend on how close the marker is placed to the 

underlying bone. These collection methods do not accurately capture the full shape of the 

human body. This is an important issue in biomechanics, and methods should be 

developed to define relationships between shape and movement patterns. Investigating 

this can enable novel research paths involving obesity, and implant design for obese 

populations. Obesity is reaching epidemic levels worldwide, recent studies have 

estimated almost 108 million children (5%) and 604 million adults (~12%) worldwide are 

obese. Obesity and increases the likelihood of needing a total joint replacement surgery 

[1].  The annual number of total hip replacements of people over the age of 45 doubled 

between 2000 and 2010 from 138,700 to 310,800. More young people are also needing 

joint replacements than ever before [2]. As the world becomes more overweight, 
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medicine needs to shift its focus to designing and evaluating implant performance on the 

growing obese populations and their altered movement patterns [3]. 

The introduction of soft tissue artifacts to motion capture data is a known 

problem, and more pathways to collecting movement data should be explored to gain a 

broader perspective of the issue. Computer vision-based systems trained to identify joint 

centers in segments of recorded activities are one such example of an alternative system. 

The Microsoft Azure Kinect DK is a depth camera capable of simultaneously recording 

point cloud data of a scene and body tracking information of multiple people in a frame. 

The validity of the data from technology like this is no longer dependent on inaccurate 

information from markers. In a study to quantify the accuracy of the Azure Kinect DK 

against markered activity, walking speed and stride length were highly correlated. The 

average difference in maximum knee flexion angles was 2.84° [4]. 

The ability to generate a detailed point cloud of the surface of a subject can offer 

the ability to address the need to investigate body shape beyond what markered work 

previously allowed.  Depth information from the Kinect cameras is accurate, but difficult 

to interpret on its own. A well described body model is needed to draw conclusions about 

the relationships between body habitus and movement patterns. The Skinned Multi-

Person Linear (SMPL) model, developed by the Max Planck Institute for Intelligent 

Systems, realistically describes 3D body shapes[5] using geometry created from the 

Archive of Motion Capture as Surface Shapes (AMASS) [6], which is an open-source 

database consisting of thousands of body scans. The SMPL model is defined by 10 shape 

parameters (ß) which are principal component scores describing variance in several 
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dimensions of the body. The body can be articulated with 63 pose parameters (θ), which 

control movement of the body in 3 dimensions for each of the model’s 23 internal joints. 

There are three SMPL models available: Male, Female, and Neutral.   

 The introduction of markerless motion capture and depth data may not 

immediately address the issue of soft tissue artifacts when collecting human movement, 

but it offers an alternative to the status quo that is fast and can capture surface geometry. 

This depth data allows for the implementation of a realistic body model, like the SMPL 

model, with joint centers placed in locations where limbs can be realistically articulated.  

1.2 Objectives 

The objectives of this thesis were to: 

1. Design a fast and accurate procedure to generate a full-body point cloud with two 

Azure Kinect DK cameras.  

2. Create subject-specific computational representations by fitting the Skinned 

Multi-Person Linear (SMPL) model to Kinect point cloud data. 

Previous work involved using 4 synchronized Azure Kinect depth cameras, and 

two laptops to gather a full-body point cloud of subjects [4]. The result created high 

quality representations, but data processing was time intensive and difficult. The 

workflow can be made more efficient if only one laptop and 2 cameras are used. Two 

methods were explored and implemented: a partial point cloud with reconstructions, and 

a full point cloud. The motivation behind collecting point cloud surface data of subject is 

to ultimately quantify body shape and improve understanding of relationships between 

habitus and movement patterns.
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction 

In the study of biomechanics, the gold standard for measuring human movement 

is passive marker-based motion capture systems, such as Vicon. When collecting human 

movement with a Vicon camera system, the subject is fitted with retroreflective markers 

on segments of the body of interest. The cameras emit pulses of infrared light that reflect 

off these markers and back to the cameras. The movement of each marker is calculated 

and used to describe the subject’s movement.  

When the marker is not placed close to the underlying bone or the subject has a 

higher body mass index (BMI), the accuracy of these systems is known to be influenced 

by soft-tissue artifacts. Obesity influences joint loads and motion patterns [7], [8], and 

BMI alone is not sufficient to capture the distribution of a person’s weight. Exploring 

markerless alternatives to quantify locomotion and body shape has clinical relevance, and 

can offer a new, streamlined way of conducting human movement trials.  

This literature review will first explore methods of motion capture, with an 

introduction to theory and historical uses, and a heavy focus on the Azure Kinect DK and 

its clinical uses. The depth data the Kinect generates is also of importance: the second 

part of this review will delve into the world of point cloud optimization. 
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2.2 Markerless Motion Capture 

The Azure Kinect DK is a recent development in markerless motion capture and 

point cloud technology. It first appeared on US markets in March 2020, and improves on 

previous generations of Kinect cameras. Work on this family of cameras was originally 

developed as a motion controller for the Xbox 360 and released in 2010. The Azure 

Kinect, like its predecessors, uses the Amplitude Modulated Continuous Wave (AMCW) 

Time-of-Flight (ToF) principle to generate depth images [9]. This principle measures 

distance by calculating the time a light pulse needs to travel from the camera, to an object 

in the scene, and back again [10]. If using more than one ToF camera, this system can be 

prone to error if the frequencies of the modulating light sources are not offset 

appropriately. Up to ten Azure Kinects can be used simultaneously if they are connected 

together with external sync cables. Interference between multiple cameras is avoided 

automatically through this syncing process if the appropriate firmware is installed, as the 

generated synching signal offsets the camera captures by 160μs.   

The built in computer vision framework inside the Azure Kinect is capable of 

tracking multiple people simultaneously. Other open-source methods have also been 

developed to perform 3D segmentation of human point clouds with methods similar to 

the Kinect. These processes include 3D semantic segmentation (differentiating a person 

from background noise), 3D instance segmentation (the potential to identify more than 

one person in a frame), and 3D multi-human body-part segmentation (dividing human 

instances into their body parts) [11].   
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The Kinect camera family’s ability to collect accurate [12] depth data and 

markerless motion capture makes it an ideal tool for quantifying human kinematics and 

body shape. This noninvasive, full-body, automated method of data collection allows for 

novel analysis of different aspects of walking, and how they are related to joint angles 

and kinematics of isolated body parts. This has proved particularly useful in analyzing the 

gait and arm swing of Parkinson’s Disease (PD) patients [13]. The use of the Kinect in 

this study allowed researchers to analyze arm swing in healthy and PD subjects relative to 

the trajectory of their center of mass. Uneven and atypical arm swing patterns are an early 

warning sign of the development of PD. The Kinect’s ability to easily capture and 

describe full-body movement simultaneously is superior to the data generated from 

wearable sensors, where movement described is limited only to parts of the body where 

markers are placed. In this study, a single camera was used. The portability of this motion 

capture system also allows human motion to be measured in scenarios outside a 

laboratory, like for instance in a home or a doctor’s office. The Kinect camera has been 

proposed as a remote method for monitoring Parkinson’s Disease [14]. This procedure 

was able to quantify statistically significant features of motor performance and easily 

monitor disease progression. Disease progression is typically monitored through regular 

doctor visits, but there is a need for more frequent assessment of patient health.   

The Azure Kinect is not the only depth camera available on the market: Intel 

manufactures a family of cameras comparable in quality. The stereo depth family 

includes 5 cameras with various uses, to gather point cloud data indoors and outdoors. 

These cameras have been used in numerous studies as a means of collecting information 
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about an experimental scene. The Intel RealSense technology has applications in clinical 

research and the measurement of health outcomes [15]. Specifically in rehabilitation, 

these camera systems allow for a low-cost and noninvasive way of evaluating the 

effectiveness of treatments. Depth cameras like the Intel RealSense are used most often to 

perform a 3D scan of an experimental environment. In addition to this, RealSense 

cameras have been used to track facial features and place facial key point locations, 

which can enable methods of automatically recognizing emotion. They have been used to 

create an automatic emotion-recognition framework to read the emotions of customers 

and gauge satisfaction [16].   

With advancements in computer vision, traditional motion capture can be 

replicated with two-dimensional video-based methods to analyze human motion. A few 

open-source models exist, such as OpenPose [17], Tensorflow MoveNet Lightning, 

Tensorflow MoveNet Thunder [18], and DeepLabCut [19]. Each model is pre-trained on 

millions of images of individuals performing daily activities. The results of their key 

point predictions will vary because each is trained on a unique dataset. These models 

were compared in a clinical setting with an existing dataset of healthy individuals 

walking with synchronous motion capture. Key point locations from each were used to 

calculate hip and knee angles. An absolute error was recorded between the angles 

calculated from the Vicon synchronous motion capture and computer vision method. 

OpenPose and MoveNet Thunder produced the lowest error over the gait cycle, while 

MoveNet Lighting and DeepLabCut produced the largest error [20].   



 

8 

 

The accuracy of OpenPose has been further validated with a similar experimental 

setup [21].  In comparing three-dimensional motion capture from walking healthy adults 

to kinematics predicted with OpenPose, it was found that OpenPose was able to perform 

with comparable accuracy to motion capture. Mean absolute errors between motion 

capture and OpenPose were 0.02s for temporal gait parameters and 0.049m for step 

lengths.    

2.3 Point Cloud Optimization Methods 

The Azure Kinect’s generation of point cloud data creates the need for intelligent 

post-processing procedures. This includes the down sampling of data, and a way of 

organizing and using data. Point cloud optimization is a broad topic useful in many areas 

of study.   

Mathematical optimization is a field of study to select the best design criterion in 

a system. This could be as concrete as selecting the best dimensions to minimize the 

weight of a shipping container, or as abstract as calculating the optimal path for a robot to 

take to perform a task. Optimization problems can be convex or non-convex, and 

constrained or unconstrained. Convex problems and methods for solving their 

constrained versions are well understood [22] with the application and refinement of 

steepest descent algorithms. Methods for solving non-convex problems are more diverse 

and the method used needs to be chosen based on the type of problem being solved.   

A point cloud is a collection of points that represent objects in 3D space using sets 

of Cartesian coordinates. Depth cameras, 3D scanners, and Lidar are all examples of 

technology that can create a point cloud. This data has applications, most notably in 
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robotics and computer vision, where information about a scene must be efficiently 

inferred from a discretized representation. In other fields, point cloud registration has 

become a valuable tool in digital documentation and conservation of cultural heritage 

sites. Special point cloud optimization processes have been created in the field of 

architectural heritage modeling to identify different dimensional features of buildings and 

other manmade structures and reduce cloud density in regions of low geometric 

complexity [23]. This research is concerned with reducing point cloud complexity, while 

other studies of point cloud optimizations are concerned with recreating missing or noisy 

data. For example, 3D trees can be reconstructed from a single laser scan through 

carefully tailored point cloud optimization. After a coarse tree skeleton is extracted from 

a terrestrial laser scan, an iterative optimization is employed to compute the dominant 

directions and densities of points and estimate new skeleton points. This is repeated until 

all regions of missing data are filled [24].   

There are certain optimization algorithms that are classically suited for point 

cloud data, such as the uses for Iterative Closest Point (ICP) and Coherent Point Drift 

(CPD) in point cloud registration and deformation. With a good initial guess, an ICP 

algorithm can iteratively guess translation and rotation to rigidly move a source cloud to a 

location near its correspondence in the target cloud [25]. ICP is improved with the use of 

point-to-plane and plane-to-plane metrics [26], which use surface normal to more 

accurately guess correspondence. Research has been conducted to uncover methods of 

registering point clouds in sparse-dense scenarios, where there is no direct 

correspondence between every point in the two clouds. The denser point cloud 
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environment is divided into cells, and the points contained are used to create one 

representative point of the local surface [27].   

In CPD, correspondences between two datasets are assigned point by point, and a 

transformation is defined to map each correspondence [28]. The most used CPD 

algorithms are based on motion coherence theory popularized in the late 80’s [29]. CPD 

can be easily scaled to large point sets because point-to-point correspondences are not 

assumed to be one-to-one [30].   

These algorithms together are used commonly to perform correspondence 

registration for statistical shape and intensity models. After meshing all subject bone 

geometries, ICP is used for rigid-body alignment, and CPD is used to deform the 

template mesh to each subject mesh. To account for irregular geometries, an additional 

non-rigid ICP algorithm is performed [31], [32].   

In other methods, radial basis functions are commonly used to morph meshes and 

establish correspondence. A radial basis function can be thought of as a single layer 

neural network with numerous inputs, but one output. The value depends on the distance 

between the inputs and a fixed point. Mesh morphing with radial basis functions has the 

benefit that it is mesh independent, thus does not rely on the density of the fixed or 

moving cloud.  The radial basis function morphs meshes by creating a deformation field 

from points of interest. This has applications in fields such as finite element analysis 

(FEA) or computational fluid dynamics (CFD), where structured meshes must be 

carefully adapted to different scenarios. With a radial basis network, correspondence 

between a target and source mesh can be quickly established. It is common for a template 
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mesh to be morphed to a new, similar shape. This is less computationally expensive 

compared to the alternative of generating a new complex mesh for each new 

experimental scenario.   

These methods have been similarly applied in the automotive design industry. 

Variables governing car structure design are traditionally simpler because of the 

computational expense of re-meshing CAD components and their connections. Radial 

basis function mesh morphing can be used to easily change mesh shape [33] in response 

to an optimization problem. The robustness of morphed meshes are verified by 

comparison to a baseline method of optimizing design variables to reduce intrusion into 

the passenger compartment of a car.   

By using radial basis functions to aid in mesh transformation, the peak 

acceleration and maximum intrusion are reduced. In cardiovascular research, radial basis 

functions are used to morph meshes in scenarios where the mesh boundary must change. 

A moving boundary problem is common when modeling heart valves, as the motion of 

the fluid and heart muscle must be simultaneously monitored. Radial basis functions can 

restructure nodes without remeshing geometry, which leads to a computationally efficient 

solution [34].   

2.4 Obesity and Kinematics 

There are significant and well documented correlations between obesity and 

changes in kinematics.  Obesity, most specifically a larger waist circumference, is 

correlated with a higher likelihood of spinal fatigue compression fracture compared to 

people with a smaller waist circumference [35]. This study was conducted by performing 
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a principal component analysis on the calf, thigh, waist, and upper arm circumference 

using a database from the National Health and Nutrition Examination Survey (NHANES) 

of 5852 obese individuals. Obesity shape distributions were defined as apple and pear 

shaped and applied to body models with parameterized shape modifications. A regression 

was created to correlate segmental masses at each spinal section. Spinal load was 

estimated with a validated musculoskeletal model.  

Obesity not only alters whole body kinematics and joint loading, but it also 

increases the risk of musculoskeletal injury and the potential to develop osteoarthritis 

(OA) in the lower limbs or disability. Excess adipose tissue drives biomechanical issues, 

but the whole-body effect of obesity also carries great influence. Obesity is a disease that 

affects musculoskeletal systems and organs. Even after an obese individual loses weight, 

they are still at risk of developing disability and lower extremity OA. This is because 

obesity triggers musculoskeletal adaptations that alter muscle power, structure, and 

recruitment pattern [36]. Further proof exists linking obesity to changes in biomechanical 

behavior. In a study to determine the gait differences between men and women and 

individuals with severe knee OA it was found that sex and obesity may affect 

biomechanics [37]. Knee and ankle kinematics were investigated in obese young 

individuals and compared to that of an age matched healthy cohort. There were large 

differences in knee and ankle function, more specifically less knee flexion, more knee ab-

adduction during a gait cycle, and reduced range of motion at the ankle joint. The obese 

cohort exhibited a knee flexion-extension at initial contact of 3.7 ± 4.0°, a max knee ab-
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adduction in swing of 28.0 ± 12.2, and an ankle dorsi-plantarflexion at IC of 0.2 ± 3.2°. 

In the control cohort these numbers were 4.4 ± 3.2°, 10.8 ± 7.5°, and -1.4 ± 2.4°[3].  

Obesity is a disease greatly affecting the adult population, but the rate of 

childhood obesity has also been steadily increasing in recent years. Studies have been 

performed to assess the impact this has on the adolescent population, but also how to 

most effectively halt the progression of the disease. A 13-week exercise program was 

designed for overweight and obese children and results from the study were compared to 

a control group. It was found that exercise halted the progression of gait alterations in 

these individuals. The problematic gait patterns of the control group continued to 

progress, while the exercise groups’ patterns did not advance further, but they also did 

not improve [38]. 

2.5 Patient Classification 

There are a variety of ways and reasons to classify an individual. In medicine, 

metrics like body mass index (BMI), waist circumference (WC), and a body shape index 

(ABSI) are used to try to predict the occurrence of chronic health conditions related to 

weight. ABSI is a number calculated by dividing waist circumference by an estimated 

regression calculated from weight and height. It is statistically independent of BMI. A 

generalized linear model evaluated the association of ABSI and BMI with various risk 

factors. Use of ABSI and BMI together in this model improved predictions of cardio-

metabolic risk factors [39]. In other work, ABSI was compared to WC and BMI with 

meta-analysis of literature. It was found to increase the prediction of hypertension, type 2 
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diabetes, cardiovascular disease, and mortality risk. ABSI was better at predicting 

mortality but worse at predicting chronic disease [40].  

The desire to classify body shape is also incredibly prevalent in the fashion 

industry. The objective of clothing manufacturers is to create attire that will appropriately 

fit people. There are ongoing projects to design dress form sizes that can accurately 

describe the body shape variation of the population. A Korean study designed to address 

this issue examined 63 anthropometric measurements from middle aged women to more 

efficiently classify body types. Four body types were identified and nine measurements 

most key in making these classifications were extracted using discriminant analysis [41]. 

The female body shape has been classified in similar ways in the fashion industry to try 

to solve a different problem: fabric utilization. A large cost of manufacturing clothing 

comes from the cost of fabric. A study was conducted to classify female body shapes and 

then correlate them with fabric usage in fitted trousers and a blouse. Three-dimensional 

body scans were recorded of young women and processed using principal component 

analysis and a K-Means ++ clustering algorithm. The clusters found body shapes of oval, 

circle, triangle, and rectangular. Fabric utilization was most efficient in a rectangular 

body type and least efficient for a circle body type [42].  

 Patient classification is also useful in orthopaedic medicine to predict the severity 

of arthritis. A famous way of classifying patients is the Walch classification. The Walch 

classification scale was created to distinguish different types of pathological glenoid 

differences in shoulder geometry and the progression of glenohumeral osteoarthritis. 

Classification into three main subcategories of shape and disease severity can assist in 
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preoperative planning and potential operative difficulties [43]. A new glenoid shape was 

proposed, Walch B0, and identified by studying humeral head subluxation. This is an 

additional way to identify patients at risk of developing glenohumeral osteoarthritis and 

create treatment plans to slow or halt the progression of the disease. The Walch B0 

glenoid appears to lead to more posterior wear of the glenoid, putting patients possibly at 

an increased risk of retroversion [44]
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CHAPTER 3: FULL-BODY POINT CLOUD  

WITH TWO AZURE KINECT DK CAMERAS 

3.1  Introduction 

This work is a continuation of a previous project to investigate the accuracy of the 

Kinect’s body tracking capabilities and document a process to generate full-body depth 

data of subjects. The accuracy of the Azure Kinect has been shown to be comparable to 

marker-based motion capture in dynamic activity. Walking speed and stride length 

between the two are highly correlated, and a minimal difference in maximum knee 

flexion angle has also been observed [4]. During this previous experiment, 4 cameras 

were used to capture a view from the front, back, and left and right sides. Using four 

cameras required 2 laptops set up with a remote desktop connection so one could trigger 

all four cameras at once. This setup worked well, but required extra, potentially 

unnecessary, post-processing to align all the captures into one coordinate system.  

These methods explore the collection of a full-body scan using two cameras and 

one computer to streamline this data collection process. The point cloud and joint center 

data the Kinects generate are valuable, and a quicker method of obtaining them is needed 

so this approach can have a broader application. The objective of the work described in 

this chapter is to streamline a previous method of capturing human movement with the 

Azure Kinect DK. This enables the capture and quantification of human body shape and 

could be used in the future for patient classification.  
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3.2 Methods 

Two data collection procedures were devised to create a full-body scan with two 

Kinect cameras. These methods do not capture dynamic movement well and are designed 

to capture a static T-pose. With approval of the University of Denver Institutional Review 

Board under Protocol: 1567600-2, 24 healthy subjects consented to perform a variety of 

activities in front of two Azure Kinect DK cameras including a T-pose, lunge, sit to 

stand, and walking. The T-pose data from 16 of these individuals is used exclusively in 

this work with average weight of 75.25 ± 18.89kg, height of 172.02 ± 10.51cm, and BMI 

of 25.14 ± 4.30 
𝑘𝑔

𝑚2. 

The first method of collecting a full-body scan takes two synchronous depth 

captures: facing the subject and facing the right sagittal plane of the subject. The two 

captures are stitched together into the same coordinate system using a transformation 

matrix created from a calibration capture. This data is missing large parts of the subject, 

so extensive post-processing is needed to generate data resembling a full scan. After 

processing, the missing left side of the person can be recreated, and the back is estimated.  

The second method creates a true full-body scan with two cameras and two 

synchronous captures. This procedure uses a turntable with a custom calibration object on 

it that the subject can stand on. One synchronous capture is taken with the subject facing 

the master camera, then the experimenter rotates them to take another synchronous 

capture of the back side of the subject. During the first synchronous capture, the 

subordinate camera records the left sagittal plane of the subject. When they are rotated, 

the right sagittal plane is recorded.  
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3.2.1 Partial Point Cloud 

The partial point cloud collection begins with two depth camera views stitched 

together into one coordinate system. Missing parts of the point cloud are recreated or 

estimated. The Kinect cameras were arranged such that their views were 90 degrees 

offset from each other. The subjects were asked to perform a T-pose with palms down 

facing the master Kinect camera, the subordinate camera recorded their right sagittal 

plane (Figure 3.1). The two cameras were set up to run synchronously with the use of an 

auxiliary cable, as described in Microsoft’s documentation. A 5-second capture was 

recorded from both views. The point cloud from the subordinate camera was transformed 

into the master camera’s coordinate system with the use of calibration objects: two floor 

tiles (Figure 3.2). The top corners from each view were identified and used to find the 

optimal translation and rotation matrix to align the current camera configuration. This 

was repeated for each new data collection to ensure the correct matrices were found. 

Figure 3.3 shows a comparison between the view from the master camera and the master 

and subordinate point clouds after being aligned. To preserve as much information as 

possible about the subject’s anatomy, the left side of the body is mirrored from the right 

and the back is estimated. The positioning of the subordinate camera shows only the right 

side of the subject (Figure 3.4), and one could reasonably assume the left side looks like 

the mirror image of this data. To achieve this, the master and subordinate point cloud 

were mean centered using the mean coordinates of the master point cloud. After centering 

using this view, the point cloud data from the subordinate camera were mirrored across 

the centerline of the body, recreating the unseen left side of the body. The trunk of the 
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point cloud was extracted using points found between the hip joint and the armpit. Both 

are coordinates that were either found or calculated from the Kinect joint centers.  Once 

the torso was isolated, it was divided into numerous slices, projected into the X-Z plane, 

and the back was estimated by connecting the most posterior points on the right point 

cloud and recreated left point cloud (Figure 3.5). The result of post-processing can be 

seen in Figure 3.6. 

3.2.2 Full Point Cloud 

A method of collecting a full-body scan was created using a large turntable and a 

new calibration object. Four subjects, S09(M), S11(F), S22(M), and S23(F) were 

recollected 10 months after their initial partial point cloud collection to generate a full-

body scan that could be used in the model fitting process. The calibration object was 

created by cutting the base of four foam spikes at an angle and hot gluing them to the 

corners of an aluminum plate angled away from the center of the plate (Figure 3.7). The 

object was placed on a turntable and the subjects stood with feet wider than shoulder 

width apart on the plate. It was necessary to create a calibration object that could rotate 

with the subject on the turntable. 

 First the subject was positioned in the same way on the turntable as for the data 

collection for the partial point cloud (Figure 3.8). As the subject faced the master camera, 

the subordinate camera viewed them from the side and a synchronous capture was taken 

(Figure 3.9). This will be referred to as the “original” view. Then, the subject remained 

stationary as the experimenter rotated them 180 degrees on the turn table until they faced 

directly away from the master camera and the subordinate camera viewed them from the 
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opposite side. Another synchronous capture was taken in this position (Figure 3.10). This 

will be referred to as the “rotated” view. 

The new calibration object was designed to work similarly to the calibration 

object used in the partial point cloud collections where corners of a common object in the 

master and subordinate view were used to align the point clouds into one coordinate 

system. With this new calibration object, three transformation matrices were found. The 

first transformation matrix was used to align the original subordinate view into the 

original master view, creating the original point cloud. The second transformation matrix 

was used to align the rotated subordinate view into the rotated master view, creating the 

rotated point cloud. The final transformation matrix aligns the rotated point cloud into the 

original point cloud, creating the final complete view of the subject.  

3.3 Results 

The full point cloud collection captures the back of subjects, while the partial 

collection can only estimate this segment. An estimated 80% of the point cloud for the 

back is missing from the partial data collection. This was calculated by cropping out 

sections from the back view of the full point cloud collection that are missing in the 

partial point cloud collection (Figure 3.11).  

In Figures 3.12, 3.13, 3.14, and 3.15 the partial point cloud collection can be 

directly compared to the full point cloud collection. On the left, there is the partial 

collection with all parts of the point cloud highlighted (front, left, right, and back 

section). There are clear pieces of the point cloud that are missing: the back of the legs 

and arms, and the upper back. On the right, the full collection is shown with the original 
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view (front and left side) highlighted in orange, and the rotated in yellow (back and right 

side). There are no missing sections of the body, and this created a high quality, full-body 

scan of each subject. Some joint centers can be seen outside the point cloud. This is 

visible because the location of the joints is averaged over the entire set of frames for the 

capture, yet the point cloud is from only one frame. The Kinect sometimes performs 

poorly predicting the joint locations in the extremities, but these miscalculations have no 

impact on the model fitting process because the joints are rarely used, and the model 

fitting relies only on the point cloud. 

3.4 Discussion 

Though the methods described in section 3.2.1. are capable of recreating most of a 

person’s anatomy, there are still large sections of the body that cannot be estimated or 

recreated. Most notably: the back of the legs, arms, and the upper back. The previous 

method of collecting depth data with four cameras is a desirable setup if the subject is 

engaged in a dynamic activity, however the subject can receive a full-body scan with two 

cameras if they can be rotated around. This is the idea behind the full point cloud data 

collection where the subject is rotated 180 degrees on a turntable. The turntable method is 

only appropriate if the subject is performing a stationary activity, like a T-pose. In terms 

of collection and processing time, as well as ease of implementation, the partial point 

cloud collection method is superior. Two synchronous captures are taken, and one 

transformation matrix is found to align the subordinate and master camera views. The 

other processing to add the left side and back is done automatically with prewritten code. 

Much of the work processing the data from the full point cloud would be difficult and 
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time consuming for a layperson to carry out. Not only does the alignment require more 

transformation matrices, but it is also more complicated to create them than the partial 

point cloud. 

In general, both methods create high quality scans of people with little effort. 

Using two Kinect cameras and one laptop significantly reduces the data collection setup 

time because a remote desktop connection does not need to be created to control all four 

cameras from one computer. Post-processing is relatively straightforward with the partial 

point cloud collection, because only one transformation matrix needs to be found to move 

the subordinate data into the master coordinate system. Code has already been generated 

to automatically recreate the left side of the subject and estimate the back. To process the 

data for the full point cloud collection, three transformation matrices need to be 

calculated. This is comparable to the old method of collecting data with four cameras, but 

the setup time for this new procedure is still quicker. The full point cloud collection could 

be made more efficient if a motorized device could spin the person and calibration object 

around during the 5 second capture using just one camera. This would reduce the 

likelihood of the subject moving during the capture and reduce the number of cameras 

used. To process this type of capture one would need to extract frames strategically of 

different angles of the body and align them in a way like the full point cloud collection 

that was deployed. The calibration object of the turn table method could also be improved 

for easier data processing. Foam spikes were used because they were the most readily 

available, but ideally a structure with thin shapes like the partial point cloud calibration 

object should be used. The foam spikes are difficult to crop out of the capture.  If the 



 

23 

 

capture is quick enough, the subject could be holding a triad of reflective Vicon markers 

or wearing a hat with an interesting and easily identifiable object on it. This method 

should only be used if it is certain the subject will not move considerably during the 

collection. Proceeding with the partial point cloud collection method is recommended 

because it is the most straightforward to collect and process. 

It is possible some accuracy is lost with the partial point cloud data collection 

method. One must assume the subject is symmetric when recreating the unseen left side 

of the subject, so this method cannot be directly applied to asymmetric individuals (e.g.: 

Amputees or those with significant differences between left and right limbs). The quality 

of the estimations and point cloud recreations is also dependent on the positioning of the 

subject. If they are not facing the master camera straight-on the method of mirroring the 

subordinate camera’s point cloud does not produce good results. In this situation, the 

subordinate camera does not capture a true sagittal view of the subject. Some errors were 

also introduced due to mistakes collecting data. Some subjects are standing with their 

legs too close to each other, and their point clouds do not show a clear distinction 

between the two legs. A “mermaid” tail is created that does not perform well in the 

optimization to create a subject-specific SMPL model. Additionally, a few subjects did 

not wear appropriate clothing for the data collection. For example, slightly reflective 

clothing or clothing that was not form fitting enough. Some data collections could not be 

used because of this issue.  

The full point cloud data collection was performed months after the partial point 

cloud data collection, and results are greatly improved. The faults of the partial data 
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collection were considered, and all subjects are standing with their legs an appropriate 

distance apart and are wearing clothing provided by the HDL. The method produces a 

complete scan of the person, but there are still some areas of the point cloud where there 

could be of issue. The subject is unlikely to move their legs or torso when they are being 

rotated, but it is difficult to keep their arms motionless. The changing position of the arms 

between the original and rotated capture is not of concern because only one subject holds 

their arms differently in each capture, and the shape and size of the arm is largely 

preserved.  
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3.5 Tables and Figures 

 

Figure 3.1 Aerial view of the partial point cloud data collection procedure. 

 

 

Figure 3.2 The master and subordinate view of the calibration objects used to align the 

two camera views.  
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Figure 3.3 The view from the master camera of S01 and the depth image created from 

aligning the master and subordinate depth data.  

 

Figure 3.4 The master and subordinate camera views of S01  
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Figure 3.5 (Left) The torso of S01 is shown in blue after recreating the missing left point 

cloud and the recreated back section is shown in orange. (Right) A slice of the back in the 

X-Z plane showing the method used to recreate the back.  

 

 

Figure 3.6 The partial point cloud of S01 after post-processing. 
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Figure 3.7 The calibration object used to align the depth captures from the original and 

rotated view to create a full point cloud capture.  

 

 

Figure 3.8 Aerial view of the full point cloud data collection procedure. 
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Figure 3.9 A subject standing in the original position for the full point cloud collection: 

facing the master camera with the subordinate camera viewing the left side. 

 

 

Figure 3.10 A subject standing in the rotated position for the full point cloud collection: 

facing away from the master camera with the subordinate camera viewing the right side. 
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Figure 3.11 The method used to calculate the percentage of the back missing in the partial 

point cloud collection 

 

 

Figure 3.12 A comparison between the partial and full point cloud collection for S23 
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Figure 3.13 A comparison between the partial and full point cloud collection for S22 

 

 

Figure 3.14 A comparison between the partial and full point cloud collection for S09 
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Figure 3.15 A comparison between the partial and full point cloud collection for S11
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CHAPTER 4: CREATING SUBJECT-SPECIFIC  

COMPUTATIONAL REPRESENTATIONS  

WITH THE SKINNED MULTI-PERSON LINEAR MODEL 

4.1 Introduction 

The current gold standard for capturing human movement is passive marker-based 

motion capture systems, such as Vicon. These systems measure human movement with 

reflective markers placed on the surface of the skin. The data from this is accurate only if 

the marker is placed closer to the underlying bone, otherwise soft tissue artifacts are 

introduced. Overweight populations have been underserved in medicine [45], [46] , and 

this is no exception. Movement data from obese subjects is inaccurate from the 

shortcomings of markered motion capture, and studies show that obesity influences joint 

loading and movement patterns [7], [8].  

There could be long lasting positive impacts for implant design and patient 

outcomes if movement studies were to pivot to a method of collecting data that is 

unbiased to the size of a person. This section describes a process to fit the SMPL model 

to Kinect point cloud data. Point cloud data of the surface of a person is an unbiased way 

of capturing movement and body shape.  

The SMPL model [5] can depict realistic body shapes and movement. The model 

is defined by 10 shape parameters (β) which are principal component scores describing 

variance in certain dimensions of the body. The body is articulated with 63 pose 

parameters (θ), which can move the model in three dimensions at each of the 23 internal 
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joints. There are three models available: Male, Female, and Neutral. The correlation 

between shape parameter value and magnitude of mesh movement was also investigated 

in this chapter. 

4.2 Methods 

The methods to create a subject-specific SMPL model are broken into four 

sections: rigid point cloud alignment, mesh morphing, initial SMPL model estimation, 

and an optimization step for final adjustments (Figure 4.1 and 4.2).  

To correlate shape parameter value and magnitude of nodal movement, a Monte 

Carlo simulation was conducted. The neutral version of the SMPL body model [5] was 

used to randomly generate 1,000 people to mimic the distribution of bodily features seen 

in the AMASS dataset [6]. This was done by randomly generating a number between -6 

and 6 for each of the parameters that control the shape of the body. This process of 

selecting numbers allows for visualization of the correlation between shape parameter 

value, and magnitude of nodal movement. More extreme nodal movement is captured in 

outlier shape parameter values.  

 Two pieces of information are stored after a person is generated: the value of their 

shape parameters, and the distance each node on the mesh has moved from the default 

mesh position (Figure 4.3).  This is combined to create a correlation matrix where only 

the correlations between shape parameters and nodal movements are considered (Figure 

4.4). 

The rigid point cloud alignment step is to position the Kinect point cloud and 

skeleton in the coordinate system of the SMPL body model. The later optimization steps 
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are concerned with articulating and morphing the SMPL model to best match the point 

cloud, so it is important to initially position the Kinect point cloud as close to the model 

as possible. The rigid transformation occurs in two steps: the Kabsch algorithm and the 

iterative closest point (ICP) algorithm. The Kabsch algorithm roughly positions the 

Kinect skeleton and point cloud using a rotation matrix defined by the Kinect and SMPL 

joints, and the ICP algorithm makes fine adjustments to the position of the Kinect point 

cloud and joints to better align them with the SMPL mesh.   

The method used to morph the SMPL model out to the Kinect point cloud is 

achieved with the use of a radial basis function (RBF) algorithm originally used to fix 

overclosures in meshes used for finite element analysis [47], [48]. The RBF algorithm is 

significantly faster and outperforms similar methods, such as a coherent point drift (CPD) 

algorithm. Morphing one template SMPL instance to a Kinect point cloud takes ~45 

minutes using CPD; however, the RBF algorithm can produce better results in only ~30 

seconds (Table 4.9). It is quick to train the radial basis functions, and the process is made 

quicker by originally decimating the mesh and gradually bringing the mesh density back 

to its original size. First, 10% of the SMPL mesh and Kinect point cloud each are kept 

and used to train the RBF and deform the SMPL model. Then, 50% is kept and used, and 

then finally the full density mesh is used.  The mesh reduction steps reduce the number of 

nearest neighbor calculations within the algorithm.   

The initial SMPL model estimation aims to recover a SMPL model most closely 

associated with the mesh deformed with the RBF algorithm. The shape of the model is 

controlled by principal component scores learned from the dataset used to create the 
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SMPL model. The eigenvectors associated with each principal component are available 

within the SMPL’s open-source python scripts. Quick math using this matrix and the 

RBF deformed SMPL model extracts a model that resembles the person represented in 

the Kinect scan.  

The optimization for final adjustments can be broken up into two phases: an 

initial pose estimation, and a computationally expensive optimization using k-nearest 

neighbor (KNN) calculations that calculate the distance between the SMPL mesh and 

Kinect point cloud. The latter optimization is highly non-convex, so the initial SMPL 

model shape and pose estimation create a starting point in a region for the steepest 

descent algorithm that will create an appropriate solution after many iterations. In the 

initial pose estimation, an objective function is posed to minimize the distance between 

the Kinect and SMPL joints. The SMPL model is articulated to align more closely to the 

Kinect skeleton. After this initial positioning, the optimization problem minimizes the 

distance between the SMPL mesh and Kinect point cloud by alternating optimizing the 

shape and pose parameters. 

4.2.1 Rigid Point Cloud Alignment 

To begin the process of creating a subject-specific body model, the template body 

model and subject point cloud data must be aligned in the same coordinate system. This 

is done using a Kabsch and an iterative closest point ICP algorithm. The SMPL model 

being aligned is the generic, average body model, and does not represent anything about 

the size or shape of the Kinect point cloud. This step is focused on alignment.  
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A Kabsch algorithm calculates the optimal rotation matrix to minimize the root 

mean squared deviation between two ordered sets of points. This is an ideal algorithm to 

use for two sets of point clouds with the same number of points in a similar shape. The 

rotation matrix is found by first translating both point clouds such that their centroids are 

the origin of the coordinate system. This is done by mean centering both point clouds: 

(1) 

 

 The covariance matrix, H, between the two points is calculated: 

(2) 

 
If the covariance matrix does not have an inverse, singular value decomposition 

(SVD) can be used to calculate the optimal rotation matrix. This method used SVD to 

find the rotation matrix to eliminate computational problems. With SVD, the covariance 

matrix can be represented with three matrices:  

(3) 

 
 Using this decomposition, the optimal rotation matrix R can be calculated as: 

(4) 
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The variable d is used to correct the rotation to account for a right-handed 

coordinate system. It is the sign of the determinant of the transpose of the left matrix 

multiplied by the right matrix.  

(5) 

 
This was used as a method of rough alignment to transform the Kinect point cloud 

and joints into the coordinate system of the SMPL body model before applying an ICP 

algorithm to make fine adjustments to the Kinect point cloud. The shoulders and hips 

from the Kinect body model and SMPL skeleton are selected to be the ordered pairs of 

points for the Kabsch algorithm (Figure 4.5).  After calculating and applying the 

transformation matrix to the Kinect points, the same transformation matrix is applied to 

the Kinect point cloud (Figure 4.6).  

The Kabsch algorithm aligns the two point clouds close enough for an ICP 

algorithm to work effectively. If the Kabsch algorithm was not used, the Kinect skeleton 

and point cloud would not be able to flip over, and the point clouds would be aligned 

with the Kinect head by the SMPL feet and the Kinect feet by the SMPL head. After 

applying the rotation and translation from the Kabsch algorithm, there is still a slight 

misalignment between the Kinect point cloud and the SMPL mesh (Figure 4.7). The ICP 

algorithm finds the best transformation to align the Kinect point cloud with the SMPL 

mesh and does not use the Kinect or SMPL joints. The algorithm is run until a 

correspondence convergence criterion is met. When the same nodes are found in the 

correspondence matrix two iterations in a row, the algorithm stops. Alignment is verified 

visually before proceeding.  
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4.2.2 Mesh Morphing 

The RBF algorithm is invariant to mesh density, as it uses the location of both the 

source and target nodes to calculate a deformation field. The algorithm performs three 

key steps: source to target and target to source KNN registration, calculating and storing 

vector distances between all registered target and source pairs, and training a set of radial 

basis functions to perform mesh deformation (Figure 4.8).  

The KNN registration step first finds the nearest neighbor in the source nodes for 

each point in the target nodes. For the partial point cloud data, this registration occurs 

between the point cloud and a SMPL mesh with vertices removed that correspond to 

incomplete point cloud data (Figure 4.9). Then, a vector is created between the source 

nodes and their nearest neighbor in the target nodes. This step is repeated, but by finding 

the nearest neighbor in the target nodes for each point in the source nodes. Both the target 

and source nodes are combined, along with the vectors between them. The nodal 

locations are used as inputs to an RBF network, which is trained to generate a 

deformation field that matches the calculated vectors between source and target nodes.  

To reduce computational overhead, the RBF network and mesh deformation 

happens in three stages, each with a different level of mesh decimation. First, the Kinect 

point cloud and SMPL mesh are down sampled to be 10% of their original size. The RBF 

algorithm is implemented, and a radial basis function is trained to deform the down-

sampled SMPL mesh to the down-sampled Kinect point cloud. Then, the RBF algorithm 

is trained again to morph the full mesh to the decimated and deformed mesh (Figure 

4.10). This process is done by creating vectors between the decimated and deformed 
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mesh and the corresponding nodes on the full mesh. The RBF algorithm can learn a new 

deformation field from these partial point clouds that can be quickly applied to the full 

point cloud. 

After the full mesh is morphed, this process starts over again, only now both the 

SMPL mesh and Kinect point cloud are down sampled to be 50% of their original size. 

The RBF algorithm learns a deformation field to morph the decimated mesh, then learns 

another deformation field to morph the full mesh to the decimated and deformed mesh 

(Figure 4.11).  Once the full mesh is morphed again, the process repeats one more time, 

but neither the SMPL mesh nor the Kinect point cloud is down sampled, and 100% of the 

mesh and point cloud are used (Figure 4.12). The same process can be repeated for the 

partial point cloud and the SMPL mesh with select vertices removed (Figure 4.13).  

Figures 4.14 and 4.15 show a comparison between the positioning of the SMPL mesh at 

each of these morphing steps.  

4.2.3 Initial SMPL Model Estimation 

Principal component analysis (PCA) is used as a method of performing 

dimensionality reduction on large datasets. After performing PCA, some accuracy is lost, 

but key dimensions of the data with their importance can be highlighted. The SMPL 

model can be manipulated using learned principal components of human anatomy. The 

model was created by registering a mesh with the same 6980 node topology to thousands 

of 3D scans of people, generating a large dataset of realistic body shapes described with 

6980 nodes. Performing PCA on this dataset reveals eigenvectors and eigenvalues of the 

NxN covariance matrix whose entries are the covariances of all possible pairs of samples 
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in the dataset, where N is the number of samples. The dimensionality reduction of PCA is 

achieved by compressing as much information as possible into these eigenvalue and 

eigenvector pairs. Each pair is uncorrelated, and the eigenvector with the largest 

eigenvalue associated with it contains the most information about the dataset. By 

arranging the eigenvectors in order of descending importance with their eigenvalue pair, 

the dimensions with the most to least variance can be extracted. If there are N variables in 

the dataset, there will be N pairs of eigenvectors and eigenvalues. Dimensionality is 

reduced by keeping only the eigenvectors with the highest eigenvalues. After preserving 

the most important eigenvectors, any member of the original dataset can be recreated 

using its principal component scores: 

(4) 

 

Or a new member of the population can be estimated with new principal 

component scores: 

(5) 

   

The eigenvectors from the dataset used to create the SMPL model can be found 

within its open-source python scripts. The shape parameters, Betas, are the eigenvalues or 

principal components that can be combined with the eigenvectors to create an instance in 

the population. The concepts of PCA allow for the creation of any person in the dataset 

used to create the SMPL model, but also allows for the creation of a person not in the 

dataset. The goal is to extract the principal component scores, or betas, associated with a 
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new instance. This can be achieved by reposing and rearranging (6). The following 

equation setup is used to generate SMPL models: 

(6) 

 

To isolate the Betas variable, the equation is manipulated by subtracting the 

template instance from the new instance, and multiplying by the pseudo inverse of the 

eigenvector matrix: 

(7) 

 

 

 

If the new instance is being estimated using the partial point cloud data, a 

modified version of this equation is used where mesh vertices associated with incomplete 

or missing point cloud data are removed from the eigenvector, new instance, and 

template instance matrices: 

(8) 

 

The eigenvector and template instance matrix is known in (8), and the mesh 

vertices of the new instance can be estimated using the RBF mesh morphing technique 
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described in section 4.2.2. The workflow for estimating a SMPL model from partial point 

cloud data is described in Figure 4.16, and in Figure 4.17 for a full point cloud. 

The principal component scores associated with the new instance may be slightly 

inaccurate if the person is not posed close enough to the default T-pose of the template 

instance, or if too many vertices of the SMPL model are removed. Due to this, any entries 

in the Betas vector that are larger than 3 are reset back to 3, and any that are smaller than 

-3 are reset to -3. This step is to ensure the SMPL model that initializes the optimization 

represents a realistic person. The frequency of this occurring depends on how close the 

person is to the default SMPL pose in their scan. 

4.2.4  Optimization 

The first optimization is a rough pose estimation to position the SMPL instance. 

This uses the Kinect joint centers and the SMPL skeleton. The idea of this 

computationally inexpensive initial step is to articulate the SMPL model so its mesh is 

closer to the Kinect point cloud. The structure of these skeletons differs slightly in the 

torso and hips, but the position of many joints like the wrists, elbows, shoulders, knees, 

ankles, and toes are similar. To formulate the objective function, a registry of these 

similar joints is created (Figure 4.18), SR and KR. Each is a 12x3 matrix where the ith 

row of each matrix is the coordinate of a similar joint. For example, the first row of the 

SR matrix is the coordinate of the SMPL left shoulder joint, and the first row of the KR 

matrix is the coordinate of the Kinect left shoulder joint. The objective function 

minimizes the distance between similar joints on the Kinect and SMPL skeletons, 
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essentially minimizing the distance between these two matrices. It is a function of the 63 

pose parameters that control the joint angles at each of the 21joints.  

(9) 

    

This, like all optimizations in this method, is a zeroth-order optimization problem. 

Only the value of the objective function is known, so the gradient must be numerically 

calculated at each step [49]. The gradient can be approximated by perturbing the current 

design point in random directions many times and recording the change in the objective 

function for each variable. First, a random direction in 63-dimensional space is 

constructed: 

(10) 

    
The current design vector is perturbed a small distance, 𝛿, in this random 

direction.  

(11) 

   
 

This is repeated 64 times and an average is taken to obtain a good estimation of 

the gradient. With every new estimation, a new random direction is selected.  

(12) 
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After calculating the gradient at the current design point, it is used in gradient 

descent to modify the joint angles to position the SMPL skeleton closer to the Kinect 

joint centers. There is a point where continuing the optimization gives little change in the 

position of the SMPL mesh. Fifteen iterations of gradient descent were arbitrarily 

selected because the SMPL mesh changes little when compared to one created from 50 

iterations (Figures 4.19 and 4.20). If less than 10 iterations are used the pose of the SMPL 

model does not change enough.  

(13) 

    
Once the SMPL pose and shape are estimated, the more computationally 

expensive KNN optimization can begin in a region of the design space that is more 

convex and a steepest descent algorithm is more likely to arrive at the correct solution.  

The objective function minimizes the distance between each node on the SMPL 

mesh and the nearest point in the Kinect point cloud. The objective function using the 

KNN algorithm contains three groups of node sets, each weighted differently to obtain a 

desirable result. The first node set is the entire SMPL mesh, or the partial mesh if using a 

partial point cloud. The second node set includes only the torso, and the third node set 

contains only nodes of the hands and feet (Figure 4.21).  

(14) 
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The node set with the entire mesh is for general shaping and posing. The node set 

with only the torso is weighted the highest to force the optimization to focus on 

minimizing the distance between the SMPL torso and the Kinect point cloud torso. The 

magnitude of the weight was determined experimentally. It was discovered that, without 

this term in the objective function, the SMPL model gets stuck in the steepest descent 

algorithm and the result is too large in the torso and hip area. The final node set with only 

the extremities is to balance the effects of the weighting on the torso. If this term is not 

included in the objective function, the algorithm focuses too much on fitting the torso, 

and the extremities are an afterthought. Including this term in the objective function 

ensures the arms and legs are not too short.  

This part of the optimization occurs in cycles, where the gradient alternates 

between being calculated with the shape parameters, and the pose parameters (Figure 

4.22). When the gradient is calculated with the shape parameters, an optimal step is 

calculated in this direction, and one iteration of gradient descent is performed. Then, 

when the gradient is calculated with the pose parameters, the gradient is calculated, the 

optimal step is calculated, and one iteration of gradient descent is performed. The 

gradient using the pose parameters is calculated in the same way as (12), and the gradient 

for the shape parameters is almost identical. The design vector, Betas, has 10 variables, 

so the gradient has 10 entries, and the random direction must have 10 entries: 

(15) 
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Adjusting the shape of the model moves the vertices of the mesh into a position 

that will be easier to articulate closer to the Kinect point cloud, and articulating the model 

allows the SMPL mesh to be positioned closer to the Kinect point cloud. Though the 

shape of the model is the desirable parameter, optimizing this alone will not arrive at the 

best solution. It was experimentally determined that 75 cycles of this process would 

occur, alternating shape and pose with each iteration. The choice of 75 cycles can be 

explained in Figure 4.23 where the objective function decrease is compared for multiple 

subjects. The objective function’s journey downhill is different for each subject, but the 

rate of decrease has generally leveled off by 75 cycles, or 150 iterations.   

To measure the accuracy of the generated SMPL model, extensive anthropometric 

measures of each subject were gathered with a tailor’s tape prior to gathering depth data. 

These include measurements of the circumference of different parts of limbs and the 

torso (Figure 4.24), and the lengths of limbs and height (Figure 4.25). It can be inferred 

from these images where and how to collect most of the measurements, but a few require 

explanation. All measurements were taken with the subject standing in a pose as close as 

possible to the default SMPL T-pose: feet shoulder width apart and arms outstretched 

with palms down. The subjects positioned the tailor’s tape for measurements of the hips, 

upper thigh, and chest measurements. Male subjects received just one measurement 

across the upper chest. Female subjects received two measurements: the “Cup Size” 
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measurement of the fullest part of the chest, and the “Band Size” measurement of the 

chest underneath the breasts where the band of a bra stretches around the ribs (Figure 

4.26). Measurements of the torso and legs were taken with special care to ensure the tape 

was parallel to the ground. This care was extended to measurements of the arms to keep 

the tailor’s tape perpendicular to the ground. The “Groin to Floor” measurement was 

collected by having the subject hold one end of the tailor’s tape at their groin, where the 

leg emerges from the torso. Then, they stood on an elevated platform in such a way that 

the other end of the tape could extend below the surface of the platform. The 

measurement from the groin to the surface of the platform was recorded as the “Groin to 

Floor” measurement. To be able to compare the subject-specific SMPL model to the 

subject it was created with, anthropometric measures were digitally recreated on the 

SMPL model (Figure 4.27). The correlation between manually collected and SMPL 

measurements was calculated, and a p test was performed to quantify the statistical 

significance of this relationship.   

The methods described in this section were applied to both partial and full point 

cloud data to produce 16 SMPL models representing subjects collected with the partial 

point cloud method, and 4 SMPL models representing subjects collected with the full 

point cloud method.    

4.3 Results 

There was a positive correlation between subject manual measurements and those 

generated from the optimized SMPL instance fit with the partial data with an R2 = 0.99 

and P << 0.01 (Figure 4.28). 
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The validity of the model was further quantified with a percent error calculation 

between subject manual and SMPL measurements. A Bland-Altman chart is used to 

quantify the agreement between the manual and model-based anthropometric 

measurements across all measures and subjects (Figure 4.29). Bland-Altman charts are 

also generated to further understand errors in the legs (Figure 4.30), arms (Figure 4.31), 

and torso (Figure 4.32). 

Across all measures, there is an average absolute percent difference of 4.71 ± 

4.10% and the average absolute percent error between any two measures never exceeds 

10%. The measurement with the best performance is the floor to shoulder measurement 

with 1.17 ± 0.76%, and the worst measurement is the ankle circumference with 9.80 ± 

6.33% (Table 4.1). Two exemplary subjects with the lowest absolute percent error across 

all measures are highlighted in Figures 4.33 and 4.34.  

The body models created from the full-body point cloud data were compared to 

those of the same subjects from the partial data in a variety of ways. An overlay was 

created between the model created from the full and partial point cloud (Figures 4.36 – 

4.39). Visually, most of the meshes are close, however the principal component scores 

used to create them are not appropriately similar (Tables 4.3 – 4.6). The full point cloud 

data does not produce more accurate SMPL models despite containing more information 

about the subject’s data, but measurements are still highly correlated (Figure 4.35) an R2  

= 0.99 and P << 0.01. The average absolute percent error between physical and SMPL 

measurements is 7.12 ± 5.62%. The measurement with the worst performance is the ankle 
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with 15.40 ± 3.70%, and the best is the floor to shoulder measurement with 1.42 ± 1.35% 

(Table 4.7).  

Though the SMPL models created with the full point cloud do not create a more 

accurate representation of the subject, they do perform better when inspecting the KNN 

error.  The total distance between SMPL mesh and Kinect point cloud is normalized to 

the number of nodes used in the calculation: 6890 for the full point cloud and 4136 for 

the partial point cloud. For the 4 subjects recollected, the full point cloud results in an 

SMPL model with the lowest normalized KNN error (Table 4.2).  

Correlations between shape parameter value and magnitude of nodal movement 

can be visualized on the neutral mesh to understand which areas of the body are 

controlled by each shape parameter (Figures 4.40 – 4.49). A heatmap has been created for 

each shape parameter. To read and understand these graphs fully, one must pay special 

attention to the colorbar legend. This shows the range in correlation across the entire 

mesh for a particular shape parameter. The darkest red is associated with the highest 

positive correlation between shape parameter and node movement, and the darkest blue is 

associated with the lowest correlation. Usually, the color bar indicates both positive and 

negative correlations. This means we can identify areas influenced by increasing the 

parameter (red) and areas influenced by decreasing the parameter (blue). Unfortunately, 

only the magnitude of mesh movement is known, not the direction.  

We are also able to gauge how important each parameter is in controlling the 

mesh by observing how strongly it is correlated with mesh movement. The first shape 

parameter has the highest correlation with mesh movement, and this correlation decreases 
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with each parameter. The maximum correlation for parameters 8, 9, and 10 all hover 

around 0.1. 

4.4 Discussion 

In general, this workflow using the partial point cloud data generated high quality 

computational representations of each subject. Percent error is relatively consistent across 

measures with a few exceptions. The model predicts measurements about the height, 

arms, and torso most accurately, while the predictions about leg measurements have more 

error. The band size measurement on women is the worst prediction.  

Contributions to this error must be recognized and addressed. A discrepancy 

between model-predicted and manually collected measurements could exist because the 

manual measurements were not collected consistently, or because the SMPL model was 

not measured well enough. Code was designed to measure the SMPL model at the 

locations where subjects were measured in the lab (Figure 4.27), but there are sometimes 

exceptions to the conditions used and the model is not measured accurately. Additionally, 

the way of measuring the model is an approximation from slicing through the nodes and 

elements that constitute the SMPL mesh. When measuring subjects in the laboratory, 

special care was taken to measure them consistently, but there are likely still a few 

centimeters of error that was introduced from the positioning of the measurement tape.  

The difference in prediction accuracy between the SMPL models fit with partial 

and full point cloud data is interesting (Figures 4.36 – 4.39). One would think the model 

would perform better when there is a more complete picture of the surface of the subject, 

and this is not the case. One contribution to this difference could be that the subject 
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measurements were not recollected when the full point cloud collection was conducted 10 

months after the initial partial point cloud acquisition. Some circumference 

measurements may differ, but in general the people should be about the same shape, and 

measurements of lengths of the body should not change. This explanation does not 

account for most of the errors. One would also expect the shape parameters to be more 

consistent between the full and partial point cloud groups. The observed differences in 

the parameters are likely a result of differences in the point cloud shape and uncertainty 

in the model fitting process, and likely warrants further investigation.  The alignment 

process to stitch the full point cloud together may introduce error. While the calibration 

object works as intended, the points of the foam spikes are sometimes difficult to 

identify, although all alignments were completed with a RMSE under 10%. One final 

explanation for the difference in accuracy is the design of the model fitting process. The 

entire procedure was created to work with the partial point cloud data collection method. 

It is possible something within the algorithm makes using the partial data more favorable. 

The weighting scheme of the objective function was tailored experimentally for use with 

this kind of data and may not work effectively with the full point cloud data.  

This work establishes a process for subject classification and future studies will 

investigate links to joint loading and movement patterns. Compared to BMI alone, this 

approach can support more realistic personalization of musculoskeletal models, 

particularly for representations of muscle anatomy and inertial properties of segments. 

Lastly, quantifying body habitus enables consideration of torso-thigh, thigh-calf and other 

soft tissue contacts, which are known to influence joint loading and kinematics.  
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4.5 Table and Figures 

 

Figure 4.1 "Reverse PCA" workflow with radial basis function (RBF) mesh deformation 

algorithm and partial point cloud data 

 

 

Figure 4.2 "Reverse PCA" workflow with radial basis function (RBF) mesh deformation 

algorithm and full point cloud data 
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Figure 4.3 The creation of the data used in the correlation matrix. 

 

 

 

Figure 4.4 The total correlation matrix and the segments used for analysis 
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Figure 4.5 The SMPL skeleton and Kinect joints before being aligned using a Kabsch 

algorithm. 
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Figure 4.6 The Kinect point cloud and joints are aligned into the SMPL coordinate 

system with a Kabsch algorithm. 

 

 

Figure 4.7 The mesh misalignment from the Kabsch algorithm is fixed with the 

application of ICP. 
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Figure 4.8 A diagram explaining the steps of the RBF mesh morphing algorithm. 

 

 

 

Figure 4.9 The indices removed from the SMPL mesh corresponding to missing sections 

of the partial point cloud. 
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Figure 4.10 (Left) Mesh Morphed using 10% of SMPL mesh and full Kinect point cloud. 

(Right) Unreduced point cloud morphed to reduced point cloud location. 

 

 

  

 

Figure 4.11 (Left) Mesh Morphed using 50% of the mesh from the 10% retrained SMPL 

mesh and full Kinect point cloud. (Right) Unreduced point cloud morphed to reduced 

point cloud location. 
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Figure 4.12 Mesh Morphed using 100% of the mesh from the 50% retrained SMPL mesh 

using the full point cloud.  

 

 

Figure 4.13 Mesh Morphed using 100% of the mesh from the 50% retrained SMPL mesh 

using the partial point cloud. 
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Figure 4.14 A comparison between the three steps of the RBF mesh morphing algorithm 

using the full point cloud. 

 

 

Figure 4.15 A comparison between the three steps of the RBF mesh morphing algorithm 

using the partial point cloud. 
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Figure 4.16 "Reverse PCA" explanation with sparse point cloud data 

 

 

Figure 4.17 "Reverse PCA" explanation with full point cloud data 



 

62 

 

 

Figure 4.18 The registry of similar joints used in the initial pose optimization. 

 

 

Figure 4.19 Objective function value of the initial pose optimization and iteration. The 

optimization stopping point is highlighted in red.   
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Figure 4.20 The SMPL models created from 50 and 15 iterations of initial pose 

optimization.  

 

 

Figure 4.21 The node sets used in the KNN objective function for the full and partial 

point cloud 
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Figure 4.22 The KNN optimization workflow 

 

 

Figure 4.23 Comparison of KNN optimization stopping locations for different subjects 
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Figure 4.24 The circumference measurements taken of each subject 
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Figure 4.25 The length measurements taken of each subject 
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Figure 4.26 The alternative chest measurements taken of female subjects 
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Figure 4.27 An example of accurate measurements measured from subject-specific 

SMPL models 

 

 

Figure 4.28 Model-predicted and manual anthropometric measures compared for all 

measures and subjects using partial point cloud data  
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Figure 4.29 Bland-Altman diagram of all model-predicted and physical anthropometric 

measures 

 

 

Figure 4.30 Bland-Altman diagram of leg measurements for model-predicted and 

physical anthropometric measures 
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Figure 4.31 Bland-Altman diagram of arm measurements for model-predicted and 

physical anthropometric measures 

 

 

Figure 4.32 Bland-Altman diagram of torso and height measurements for model-

predicted and physical anthropometric measures 
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Table 4.1 The average absolute percent error for every measure – partial point cloud 

 Mean SD 

Floor To Shoulder 1.17 0.76 

Height 1.47 0.80 

Butt 2.74 2.15 

Forearm 2.78 2.11 

Waist 3.29 2.46 

Armpit To Wrist 3.35 2.00 

Groin To Floor 3.66 2.88 

Wrist 3.71 3.20 

Cup Size 4.35 4.81 

Band Size 4.41 2.06 

Calf Upper 5.03 3.28 

Bicep Upper 5.26 4.09 

Thigh Upper 5.47 3.65 

Chest 5.61 2.35 

Bicep Lower 5.73 3.93 

Calf Largest 8.17 4.36 

Thigh Lower 9.19 5.12 

Ankle 9.80 6.33 
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Figure 4.33 Exemplary subject S05 with one of the the lowest total absolute percent 

errors between SMPL and anthropometrc measures 
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Figure 4.34 Exemplary subject S07 with one of the lowest total absolute percent errors 

between SMPL and anthropometrc measures 
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Figure 4.35 Model-predicted and manual anthropometric measures compared for all 

measures and subjects using full point cloud data 
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Table 4.2 The average KNN error between SMPL mesh and Kinect point cloud for 

models fit with partial and full point clouds 

 Average KNN Error – Full 

(cm) 

Average KNN Error – Partial 

(cm) 

S09 0.0211 0.0470 

S11 0.0232 0.0443 

S22 0.0227 0.0401 

S23 0.0214 0.0495 

 

 

 

 

 

Figure 4.36 A comparison between S09’s SMPL model created with the full and partial 

point cloud  

 

Table 4.3 The comparison between the shape parameters found from fitting with the 

partial and full point cloud for S09 

 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

Partial 0.46 1.45 3.40 -1.66 3.05 1.79 0.02 12.95 5.69 2.97 

Full -0.19 -0.34 1.96 -2.28 -0.15 1.62 -0.03 -1.15 0.35 2.09 
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Figure 4.37 A comparison between S11’s SMPL model created with the full and partial 

point cloud  

 

Table 4.4 The comparison between the shape parameters found from fitting with the 

partial and full point cloud for S11 

 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

Partial -0.82 -1.56 2.19 1.72 -0.65 -2.46 -0.39 2.62 -1.87 1.06 

Full -0.21 -1.44 2.54 0.49 1.51 -1.53 1.87 -1.56 0.60 2.02 
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Figure 4.38 A comparison between S22’s SMPL model created with the full and partial 

point cloud  

 

Table 4.5 The comparison between the shape parameters found from fitting with the 

partial and full point cloud for S22 

 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

Partial 1.61 -0.30 0.84 -0.79 -1.01 -2.60 -0.21 0.98 2.84 1.81 

Full 1.80 -0.40 2.47 -0.17 0.41 -0.25 1.02 0.50 2.60 -0.34 
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Figure 4.39 A comparison between S23’s SMPL model created with the full and partial 

point cloud  

 

Table 4.6 The comparison between the shape parameters found from fitting with the 

partial and full point cloud for S23 

 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

Partial 2.21 1.10 1.73 1.16 -0.09 -1.90 1.54 1.14 1.36 2.32 

Full 2.11 1.73 1.65 1.71 1.38 -2.36 1.34 0.91 -2.12 1.09 

 

 

Table 4.7 The average absolute percent error compared for only subjects collected with 

the partial and full method 

Partial Point Cloud  Full Point Cloud 

 Mean SD   Mean  SD 

Floor to Shoulder 0.85 0.31  Floor to Shoulder 1.42 1.35 

Height 1.46 0.96  Forearm 2.25 2.19 

Butt 1.82 2.04  Height 2.27 1.10 

Forearm 1.83 1.12  Armpit to Wrist 3.68 1.94 

Armpit to Wrist 3.94 2.34  Bicep Lower 4.19 6.78 
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Waist 4.08 4.34  Wrist 5.21 2.20 

Bicep Upper 5.18 3.43  Waist 5.79 4.05 

Band Size 5.33 1.38  Groin to Floor 5.91 2.65 

Thigh Upper 5.63 3.42  Bicep Upper 6.53 4.43 

Groin to Floor 5.65 3.50  Butt 6.69 4.89 

Bicep Lower 6.98 5.14  Cup Size 6.75 6.40 

Calf Upper 7.37 3.37  Calf Upper 8.54 6.37 

Wrist 7.41 2.63  Chest 9.16 4.21 

Chest 9.42 1.17  Band Size 9.97 4.56 

Thigh Lower 9.93 4.23  Thigh Upper 11.92 6.35 

Calf Largest 11.34 3.55  Thigh Lower 12.13 6.81 

Cup Size 12.10 3.46  Calf Largest 12.60 6.13 

Ankle 13.16 10.54  Ankle 15.39 3.69 

 

Table 4.8 The average distance between SMPL meshes fit with partial and full point 

cloud data 

 S09 S11 S22 S23 

Average 

distance (cm) 

3.54 1.93 1.33 0.910 

 

Table 4.9 Computational time of model fitting for S01 in seconds 

Rigid 

alignment 

Morphing Initial 

Model 

Estimation 

Pose 

Optimization 

KNN 

Optimization 

Final time 

4 29 0.01 3 264 300 
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Figure 4.40 Correlation between 1st shape parameter and magnitude of node movement 

 

Figure 4.41 Correlation between 2nd shape parameter and magnitude of node movement  
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Figure 4.42 Correlation between 3rd shape parameter and magnitude of node movement 

 

 

Figure 4.43 Correlation between 4th shape parameter and magnitude of node movement 
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Figure 4.44 Correlation between 5th shape parameter and magnitude of node movement 

 

 

Figure 4.45 Correlation between 6th shape parameter and magnitude of node movement 
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Figure 4.46 Correlation between 7th shape parameter and magnitude of node movement 

 

 

Figure 4.47 Correlation between 8th shape parameter and magnitude of node movement 



 

84 

 

 

Figure 4.48 Correlation between 9th shape parameter and magnitude of node movement 

 

 

Figure 4.49 Correlation between 10th shape parameter and magnitude of node movement



 

85 

 

 

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

This method was able to create accurate representations of human body shape. 

While there are variations in the accuracy of some areas of the model, the average 

absolute percent error between physical and SMPL model measurements is always under 

10%. Across a broad variety of body types, this method can recreate surface body shape 

accurately. The optimization is robust, and able to perform effectively on a sparse point 

cloud of only 6,890 points. Every aspect of the alignment, initial SMPL model 

estimation, and optimization is automated by code and requires no human intervention. 

The data collection methods explored are straightforward and could be conducted and 

processed by someone with little expertise.  

There is a large variety in the size of errors across body parts, and there does not 

seem to be a consistent region of the body where the optimization struggles. Code was 

created to automatically measure the SMPL models in the way the subjects were 

measured in real life, but there still exist variations to the way people were measured in 

the lab. Though care was taken to measure everyone the same, there are certain 

measurements that allow extra error to creep in, and it is difficult to recreate the same 

measurement technique on all subjects. The code to measure the SMPL model will have 

issue accurately measuring the body segments if the standard it is compared against 

changes slightly with each subject. For measurements like calf largest, the SMPL 
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measurement was taken by finding the largest part of the calf by looking from a side 

profile view. This view was hard to obtain and scrutinize when taking physical 

measurements because it is difficult to crouch on the ground and see it. This could also be 

another reason why the ankle measurement is not as accurate. The lower thigh 

measurement was collected at a location ~5in from the center of the knee and the 

placement for the tape was not as standardized as it was for other measurements. This 

made it difficult to recreate the location of the measurement in the SMPL model. The 

larger differences between the SMPL and physical measurements are driven largely by an 

inability to measure the SMPL model in the exact location the subject was measured in 

the lab.  

The optimization process could be improved by investigating global optimization 

methods because the objective function is not convex. These methods may lead to longer 

computational times and may render the initial SMPL model estimation useless. The 

workflow to process one subject is already quick, global optimization could be explored 

but not pursued if the computational time is not comparable to this method that already 

produces accurate body models. Future work should focus on refining the optimization 

further. It would be useful to pick more appropriate weights for the torso and extremities. 

The current weights work well enough, but more effort should be spent in finding optimal 

numbers. Currently, the extremity weight must be included in the objective function to 

keep the arms and legs from shrinking as the optimization focuses too heavily on the 

weight of the torso. This sometimes leaves the arms and legs unnaturally stretched. 

Additionally, the thighs could be weighted in a similar way to the torso to improve the 
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accuracy of the leg measurements. Adjusting weights or adding a more complex 

weighting scheme for different areas of the body would likely not add any computational 

time and only improve the model fitting results further.  

Additional improvements could be made by exploring ways of imposing 

constraints on the shape parameters. Sometimes the optimization can “run-away” and 

start pursuing unrealistic parameters. To prevent this, the optimization sets any shape 

parameters larger than 3 to 3, and any smaller than -3 to -3. This works well for 

individuals that have “regular” features, but performance suffers for people who have 

outlier features, for example, being tall or overweight. If the regular optimization is not 

working well on certain individuals, the constraints are lifted, and the performance 

usually improves. The optimization should be tailored to release these constraints when it 

is appropriate, or perhaps the constraints are not as crucial as originally believed. This is 

a weakness of the algorithm because it is at the discretion of the experimenter when to 

make the optimization unconstrained, and the results of both need to be known to make a 

decision about which results to keep. There are some features someone can possess that 

are undeniably outliers. It is easy to recognize the optimization should be switched to 

unconstrained for these cases. There are shape parameters of the SMPL model that 

describe these variations, but people can also be outliers in other combinations of shape 

parameters that may not be immediately apparent, and it would be difficult to know 

whether to unconstrain the optimization.  

A clear stopping criterion should be defined that can discern between a correctly fit 

model and an unconverged model. Each subject's point cloud is down sampled to the 
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same number, and the male, female, and neutral SMPL mesh all have the same number of 

nodes. The objective function is a summation of the same number of KNN distances for 

each subject, so there exists some number the function can reach where the mesh and 

point cloud are close enough to each other, and the algorithm can be considered 

converged.  

It would be advantageous to verify the accuracy of this body scan method in a 

setting outside the HDL, in a more clinical or casual setting. The point cloud data 

collection and processing procedures explored are not complicated and could be carried 

out easily by a layperson. The process created to fit the SMPL model to the Kinect point 

cloud is also completely automated. Some subjects were collected wearing skin-tight 

spandex attire, while others were wearing tighter street clothes like skinny jeans. It is not 

clear if the selection of clothing impacted the results of the model fit because there is a 

mix of people wearing street clothes and spandex in the final 16 individuals that data 

analysis was performed on. The subject that created the best SMPL model was wearing 

skinny jeans and a tight T-shirt, and the second-best model was created by a person 

wearing a sports bra and spandex shorts. The model fitting process appears to work fine 

regardless of what type of form fitting clothing the person wears. However, the scan 

taken of the person may not capture the person’s true surface geometry. For example, if 

the person is wearing extremely tight skinny jeans and a shirt that is too big, this will 

create a surface scan of the person where they are stuffed into pants and not accurately 

capture their torso region. At its current accuracy level, this method can work on people 
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wearing street clothes if these clothes fit appropriately and do not significantly alter the 

surface geometry of the person.  

Future work with this model fitting process could involve exploring the 

relationship between shape parameters, the distribution of weight, and how this affects 

movement patterns. It could be possible to identify a parameter, or combination of 

parameters, that indicates a subject is more likely to be at risk of unusual movement 

patterns that could cause problematic wear in implants. 

This is only the beginning for the use of the SMPL model in biomechanics studies 

at DU. This thesis allows for the creation of high-quality computational representations. 

The next step is to animate the body model to motion-capture data. This optimization 

process finds the principal component scores that describe the shape of the SMPL model, 

and these will not change during a dynamic trial. Only the pose parameters would need to 

be optimized to animate a model in a dynamic activity, which is a much easier problem 

than this one. Significant dynamic data was obtained of each subject performing a variety 

of activities with the partial point cloud collection method. This data includes three trials 

of each of the following: lunge, sit to stand from a high chair, sit to stand from a low 

chair, self-selected walking, and fast walking. The transformation matrices to align the 

two point clouds were already found for aligning the views for each T-pose, so post-

processing would just involve cropping the point cloud to the activity. The shape 

parameters of 16 subjects are already known, so the pose parameters for each frame of 

motion capture would need to be found to animate their SMPL model to the capture. 

Code to optimize the SMPL pose already exists because it was used in the cyclic KNN 
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optimization. A person would just need to take the prewritten steepest descent function, 

pass in a frame of the point cloud capture and let the optimization converge, then repeat 

with the next frame using the previous pose as a starting location for the optimization. 

This would be a good starting point for animating the model, but it is not clear yet if this 

method would create a smooth representation of the activity. If it does not, a person could 

take a select few frames, optimize the pose in these, and then interpolate the joint 

locations between the frames. With the data collected from this study, it could be difficult 

to quantify the accuracy of the SMPL body’s movements. A new study could be designed 

to capture dynamic activity while a subject wears some form of markered motion capture. 

Stride length, walking speed, and knee flexion angle calculated from SMPL joint centers 

could all be compared against Vicon data. The accuracy of the position of certain 

locations on the SMPL mesh through an activity could be compared to strategically 

placed markers in similar locations on the subject.  
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APPENDIX A. SUBJECT-SPECIFIC SMPL MODELS GENERATED FROM 

PARTIAL POINT CLOUD DATA 

 

 

Figure A.1. The SMPL Model generated using partial point cloud data from S01 

 

Table A.1 The shape parameters to generate the S01 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

0.13  1.29  1.86  -0.73  1.89  -2.90  -0.16  1.42  1.33  0.46 
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Figure A.2. The SMPL Model generated using partial point cloud data from S02 

 

Table A.2 The shape parameters to generate the S02 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.64  1.01  2.45  0.07  -0.55  -2.30  -2.13  1.86  1.10  2.36 
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Figure A.3. The SMPL Model generated using partial point cloud data from S03 

 

Table A.3 The shape parameters to generate the S03 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.79  0.33  2.06  1.97  -0.82  -2.79  -1.58  1.14  0.93  2.08 
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Figure A.4. The SMPL Model generated using partial point cloud data from S05 

 

Table A.4 The shape parameters to generate the S05 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.65  -0.51  0.92  0.19  3.26  8.02  -3.10  0.74  4.60  3.41 
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Figure A.5. The SMPL Model generated using partial point cloud data from S06 

 

Table A.5 The shape parameters to generate the S06 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.20  -1.22  2.68  0.96  0.41  2.17  -1.47  0.69  -1.62  1.40 
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Figure A.6. The SMPL Model generated using partial point cloud data from S07 

 

Table A.6 The shape parameters to generate the S07 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.30  0.28  -0.50  0.28  0.16  -2.07  -2.22  2.25  2.07  2.48 
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Figure A.7. The SMPL Model generated using partial point cloud data from S09 

 

Table A.7 The shape parameters to generate the S09 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

0.46  1.45  3.40  -1.66  3.05  1.79  0.02  12.95  5.69  2.97 

 



 

103 

 

 

 

Figure A.8. The SMPL Model generated using partial point cloud data from S10 

 

Table A.8 The shape parameters to generate the S10 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.60  1.77  0.66  -1.34  -1.49  -2.65  0.85  0.30  -1.50  0.29 
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Figure A.9. The SMPL Model generated using partial point cloud data from S11 

 

Table A.9 The shape parameters to generate the S11 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.82  -1.56  2.19  1.72  -0.65  -2.46  -0.39  2.62  -1.87  1.06 
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Figure A.10. The SMPL Model generated using partial point cloud data from S15 

 

Table A.10 The shape parameters to generate the S15 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-1.28  0.90  2.75  0.48  0.78  -1.55  0.86  2.55  -0.26  -2.64 
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Figure A.11. The SMPL Model generated using partial point cloud data from S16 

 

Table A.11 The shape parameters to generate the S16 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

0.62  0.66  2.00  0.93  0.42  -1.49  -1.24  1.08  -0.50  1.70 
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Figure A.12. The SMPL Model generated using partial point cloud data from S19 

 

Table A.12 The shape parameters to generate the S19 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.88  0.75  1.99  -0.06  1.42  -2.40  0.29  2.36  1.21  2.91 
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Figure A.13. The SMPL Model generated using partial point cloud data from S20 

 

Table A.13 The shape parameters to generate the S20 SMPL Model- partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.23  0.36  1.28  0.25  -1.88  -2.29  1.31  1.41  1.30  0.92 
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Figure A.14. The SMPL Model generated using partial point cloud data from S21 

 

Table A.14 The shape parameters to generate the S21 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-1.27  0.41  -0.09  -1.89  -0.24  -1.98  -1.47  1.85  2.27  2.29 
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Figure A.15. The SMPL Model generated using partial point cloud data from S22 

 

Table A.15 The shape parameters to generate the S22 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

1.61  -0.30  0.85  -0.80  -1.00  -2.60  -0.21  1.00  2.84  1.80 
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Figure A.16. The SMPL Model generated using partial point cloud data from S23 

 

Table A.16 The shape parameters to generate the S23 SMPL Model - partial point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

2.21  1.10  1.73  1.16  -0.09  -1.90  1.54  1.14  1.36  2.32 
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APPENDIX B. SUBJECT-SPECIFIC SMPL MODELS GENERATED FROM FULL  

POINT CLOUD DATA 

 

 

Figure B.1 The SMPL Model generated using full point cloud data from S09 

 

Table B.1 The shape parameters to generate the S09 SMPL Model – full point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.14  -0.14 1.30  -2.22  0.23  2.23  0.23  1.33  0.92 2.57 
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Figure B.2 The SMPL Model generated using full point cloud data from S11 

 

Table B.2 The shape parameters to generate the S11 SMPL Model – full point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

-0.21  -1.60  1.63  0.45  2.02  -2.88  1.70  -2.47  0.57  1.79 
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Figure B.3 The SMPL Model generated using full point cloud data from S22 

 

Table B.3 The shape parameters to generate the S22 SMPL Model – full point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

2.01  -0.23  2.14  -1.24  0.90  0.10  1.35  0.56  2.87  -0.16 
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Figure B.4 The SMPL Model generated using full point cloud data from S23 

 

Table B.4 The shape parameters to generate the S23 SMPL Model – full point cloud 

𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

1.99  1.78  2.61  1.51  1.47  -2.72  1.45  0.10  -2.30  0.03 
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APPENDIX C. CORRELATIONS BETWEEN BODY MEASUREMENT AND SMPL SHAPE PARAMETER 

Table C.1 Correlations between SMPL shape parameters found with the partial point cloud and physical anthropometric measurement 

(N=16). Strong correlations (>0.6) are indicated in red 

 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

Height 0.47 0.14 0.19 -0.16 0.42 0.56 -0.06 0.09 0.17 0.24 

Floor to Shoulder 0.46 0.15 0.13 -0.10 0.43 0.58 -0.03 0.06 0.16 0.22 

Bicep Upper 0.23 -0.40 0.14 0.22 0.36 0.69 -0.22 0.16 0.10 0.26 

Bicep Lower 0.27 -0.36 0.14 0.14 0.44 0.75 -0.32 0.12 0.15 0.29 

Forearm Upper 0.25 -0.31 0.19 0.04 0.51 0.75 -0.34 0.15 0.18 0.22 

Wrist 0.26 -0.28 0.09 -0.10 0.40 0.59 -0.32 -0.08 0.09 0.12 

Armpit to wrist 0.37 0.37 -0.04 -0.33 0.20 0.28 0.27 -0.03 -0.05 -0.06 

Thigh Upper 0.11 -0.43 0.25 0.40 0.42 0.70 -0.28 0.21 0.23 0.41 

Thigh Lower 0.18 -0.41 0.32 0.29 0.40 0.71 -0.44 0.19 0.12 0.40 

Calf Upper 0.21 -0.33 0.27 0.16 0.55 0.90 -0.35 0.24 0.36 0.41 

Calf Largest 0.23 -0.49 0.24 0.17 0.43 0.82 -0.37 0.19 0.27 0.46 

Ankle 0.42 -0.28 0.30 -0.09 0.50 0.75 -0.26 0.23 0.35 0.35 

groin to floor 0.53 0.28 -0.03 -0.01 0.26 0.29 0.12 -0.17 -0.01 0.06 

Hips 0.09 -0.51 0.20 0.38 0.43 0.78 -0.32 0.11 0.20 0.37 

Waist 0.23 -0.51 0.31 0.16 0.39 0.69 -0.10 0.28 0.11 0.16 
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Figure C.1 Correlations visualized between β6 found using the partial point cloud and the 

bicep upper measurement. 
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Figure C.2 Correlations visualized between β6 found using the partial point cloud and the 

bicep lower measurement. 

 

 

Figure C.3 Correlations visualized between β6 found using the partial point cloud and the 

forearm upper measurement. 
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Figure C.4 Correlations visualized between β6 found using the partial point cloud and the 

thigh upper measurement. 

 

Figure C.5 Correlations visualized between β6 found using the partial point cloud and the 

thigh lower measurement. 
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Figure C.6 Correlations visualized between β6 found using the partial point cloud and the 

calf upper measurement. 

 

 

Figure C.7 Correlations visualized between β6 found using the partial point cloud and the 

calf largest measurement. 
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Figure C.8 Correlations visualized between β6 found using the partial point cloud and the 

ankle measurement. 

 

 



 

122 

 

Figure C.9 Correlations visualized between β6 found using the partial point cloud and the 

hips measurement. 

 

 

Figure C.9 Correlations visualized between β6 found using the partial point cloud and the 

waist measurement. 
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Table C.2 Correlations between SMPL shape parameters found with the partial point cloud and physical anthropometric measurement 

– outlier removed 

(N=15). Strong correlations (>0.6) are indicated in red 

 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽8 𝛽9 𝛽10 

Height 0.56 0.27 0.28 -0.18 0.28 0.50 0.16 0.15 0.02 0.13 

Floor to Shoulder 0.57 0.30 0.23 -0.12 0.27 0.47 0.23 0.12 -0.03 0.10 

Bicep Upper 0.36 -0.31 0.29 0.25 0.09 0.51 0.08 0.29 -0.19 0.10 

Bicep Lower 0.43 -0.26 0.30 0.16 0.20 0.59 -0.05 0.25 -0.14 0.13 

Forearm Upper 0.39 -0.20 0.36 0.04 0.31 0.65 -0.10 0.27 -0.08 0.05 

Wrist 0.36 -0.19 0.19 -0.13 0.21 0.43 -0.12 -0.02 -0.14 -0.04 

Armpit to wrist 0.39 0.43 -0.01 -0.33 0.15 0.29 0.40 -0.01 -0.13 -0.12 

Thigh Upper 0.24 -0.35 0.47 0.48 0.14 0.44 0.03 0.37 -0.04 0.28 

Thigh Lower 0.27 -0.33 0.47 0.32 0.20 0.66 -0.27 0.29 -0.10 0.29 

Calf Upper 0.42 -0.21 0.55 0.19 0.31 0.82 -0.02 0.47 0.10 0.27 

Calf Largest 0.39 -0.43 0.45 0.20 0.16 0.72 -0.10 0.34 0.02 0.34 

Ankle 0.58 -0.17 0.47 -0.12 0.31 0.69 0.00 0.35 0.16 0.22 

groin to floor 0.57 0.35 0.00 -0.02 0.19 0.26 0.25 -0.15 -0.10 0.00 

Hips 0.25 -0.46 0.46 0.50 0.10 0.50 0.03 0.28 -0.15 0.20 

Waist 0.34 -0.45 0.45 0.17 0.19 0.63 0.17 0.39 -0.11 0.00 
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Figure C.10 Correlations visualized between β6 found using the partial point cloud and 

the forearm upper measurement – outlier removed. 

 

  

Figure C.11 Correlations visualized between β6 found using the partial point cloud and 

the thigh lower measurement – outlier removed. 
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Figure C.12 Correlations visualized between β6 found using the partial point cloud and 

the calf upper measurement – outlier removed. 

 

  

Figure C.13 Correlations visualized between β6 found using the partial point cloud and 

the calf largest measurement – outlier removed. 
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Figure C.14 Correlations visualized between β6 found using the partial point cloud and 

the ankle measurement – outlier removed. 

  

Figure C.15 Correlations visualized between β6 found using the partial point cloud and 

the waist measurement – outlier removed. 
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