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ABSTRACT

We characterize all residuated lattices that have height equal to 3 and show that the

variety they generate has continuum-many subvarieties. More generally, we study unilin-

ear residuated lattices: their lattice is a union of disjoint incomparable chains, with bounds

added. We give the characterization of all unilinear residuated lattices. By presenting the

constructions and axiomatizations for different classes of unilinear residuated lattices, we

conclude that the study of unilinear residuated lattices can be reduced to the study of the

⊤-unital ones. Using the classification of unilinear residuated lattices, the idempotent uni-

linear residuated lattices are studied and amalgamation property and strong amalgamation

properties are proved or disproved, depending on if there are extra constants in the lan-

guage. We give two general constructions of ⊤-unital unilinear residuated lattices, provide

an axiomatization and a proof-theoretic calculus for the variety they generate, and prove

the finite embeddability property for various subvarieties. Finally, we study the involu-

tive unilinear residuated lattices and give the characterization of a class of commutative

1-involutive compact unilinear residuated lattices. We present some open problems and

future work at the end.
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Chapter 1: Introduction

Residuated lattices are prominent ordered algebraic structures that generalize various

well-known structures such as lattice-ordered groups, the ideals of a unital ring, and rela-

tion algebras, among others. They also form algebraic semantics for various substructural

logics, such as classical, intuitionistic, relevance, linear and many-valued logic; as a result

further examples of residuated lattices include Boolean, Heyting, MV and BL-algebras. We

refer the readers to [12] for an introduction to residuated lattices and substructural logics.

A substantial amount of work has focused on the study of totally-ordered residuated

lattices (residuated chains) and the variety they generate (semilinear residuated lattices).

Here, we start our study by exploring the other extreme: residuated lattices whose elements

form an antichain, with two bounds added to obtain a lattice, which are called residuated

lattices on MX . Then we generalize the class and study the unilinear residuated lattices

(URL). URL allows us to combine the study of residuated chains (e.g. see [5]) and the

study of algebras of larger “width”, but in a controlled manner. Also, it provides a new

context to study the direct product H × K of a residuated chain H and a cancellative

monoid K, which is not a lattice.

The variety of residuated lattices is vast and it’s usually difficult to do general explo-

ration. So it’s helpful to study the subclasses of residuated lattices. URL provides concrete

examples for residuated lattices and allows the combination of other substructures into

it. For example, generally the union of two residuated lattices doesn’t give a universe of

another residuated lattice, but during the study of URL, we find it works with a ⊤-unital

residuated lattice and an integral residuated lattice as ingredients. This construction is like

the antithesis of the ordinal sum of integral residuated lattices.
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The whole study involves a lot of aspects of unilinear residuated lattices and some of

them are of independent interest. As a guide to the reader, we outline the content as follows.

In Chapter 3, we show that all residuated lattices of height 3 are precisely the ones con-

sisting of two parts: a zero-cancellative monoid and a semigroup of at most three elements,

and we specify the process for putting these two parts together.

In Chapter 4 we provide an axiomatization for the positive universal class of residuated

lattices of height up to three and of the variety M it generates. More generally, we consider

the class URL of unilinear residuated lattices: they are based on disjoint unions of incom-

parable chains with two additional bounds. We axiomatize the positive universal class URL

and the variety SRL of semiunilinear residuated lattices it generates. Moreover, we show

that the finitely subdirectly irreducible members of SRL are precisely the unilinear ones. In

the particular case of M, the simplicity of height-3 lattices directly gives the semisimplicity

of M, but we further show that the variety bM, containing algebras on the expanded lan-

guage that includes the bounds, is a discriminator variety. We conclude the chapter with a

discussion of the proof-theory of SRL. In particular we present a hypersequent calculus for

SRL that enjoys the cut-elimination property, thus resulting in an analytic system for SRL.

In Chapter 5 we show that there are continuum-many subvarieties of M. These are

actually subvarieties of CMG, the variety generated by height-3 unilinear residuated lattices

where the middle layer is an abelian group. In fact we show that subvarieties of CMG corre-

spond to ISPU-classes of abelian groups and we further present a completely combinatorial

characterization of the subvariety lattice of CMG (without any reference to group theory).

We extend this characterization a little further, by allowing the middle layer of the residu-

ated lattice to also include some semigroup elements, coming from the characterization in

Chapter 3.

Chapter 6 contains a proof of the finite embeddability property (FEP) for the variety

CMG, thus contrasting the complexity coming from the continuum-many subvarieties with

2



the fact that the universal theory of CMG is decidable. We also establish the FEP for more

subvarieties of SRL, which do not have the height-3 restriction. To be more precise, the

FEP holds for every subvariety of SRL that is axiomatized by equations in the language

of multiplication, join and 1, and satisfies any weak commutativity axiom and any knotted

rule; we establish this result by using the method of residuated frames.

In Chapter 7, we focus our attention on unilinear residuated lattices R where M :=

R \ {⊥,⊤} is a submonoid and the bounds are absorbing with respect to the elements of

M ; we call such unilinear residuated lattices compact. We provide two constructions of

compact residuated lattices, with the first one coming from a finite cyclic monoid. In the

second one M is the Cartesian product of a residuated chain and a cancellative monoid,

relative to a 2-cocycle; thus it is a generalization of the semidirect product of monoids.

Chapter 8 classifies the (bounded) URLs into various classes based on the structure of

the non-linear members of each class. These classes, which together cover all the URLs,

will be: B4, ⊤unital, B, TW and LW. Furthermore, by providing axiomatizations and

constructions of these classes, we show how the algebras in the three latter classes can

be constructed from algebras in ⊤unital, thus reducing the study of URLs to the study

of the ⊤-unital ones. At the end of this chapter, we present an application of the the

characterization of URL to a class called URL of type h4.1.

In Chapter 9 we focus on the class of idempotent URLs. We apply the classification in

Chapter 8 to this class. Moreover, since our characterization has no restriction on the resid-

uated chains, we apply the result in [5] about ⋆-involutive idempotent residuated chains to

study the amalgamation property (AP) and strong amalgamation property (sAP) of each

class. During the study, we realize the presence of constants ⊥ and ⊤ in the language

matters since AP and sAP are sensitive to the structures of subalgebras. We conclude this

chapter by showing any join of two of the varieties generated by the classes above fails AP.
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As we found in Chapter 8, the study of URLs can be reduced to the study of ⊤-unital

URLs. So in Chapter 10 we provide the classification of the commutative 1-involutive

URLs and then focus on the ⊤-unital ones. In the presence of involutivity, these URLs are

not just ⊤-unital, they are compact. If further the negation constant is 1, then the disjoint

chains form a group with the identity being the chain of 1. We give the characterization

of a class of commutative 1-involutive compact URL, whose chain of 1 is an odd Sugihara

chain and each chain is of finite order in the group. It turns out such URLs are precisely the

subalgebras of conucleus images of the direct product constructed by the chain of 1 and the

group, as mentioned in Chapter 7, up to isomorphism. Using this result, we characterize

all finite commutative 1-involutive ⊤-unital URLs.

Finally, in Chapter 11 we list some open problems and future work.
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Chapter 2: Preliminaries

The readers can find all the terminologies of this chapter in any textbook of Universal

Algebra and paper about residuated lattices and residuated frames. Here we use [12] and

[9] for reference.

2.1 Concepts from Universal Algebra

A language (or signature) L is the disjoint union of a set Lo of operation symbols and

Lr of relation symbols, each with a fixed non-negative arity. Operation symbols of arity 0

are called constant symbols.

For a set X , the L-terms over X is denoted by TmL(X) and defined as the smallest set

T such that X ⊆ T , and if f ∈ Lo has arity n and t1, . . . , tn ∈ T then f(t1, . . . , tn) ∈ T .

Note the terms are simply strings of symbols. We fix a countable set of symbols (disjoint

from L) called variables, and we denote the set of all L-terms over this set of symbols

simply as TmL.

An L-structure A = (A, (lA)l∈L) is a nonempty set A, called the universe, together

with an L-tuple of operations and relations defined on A, where lA has the same arity as l.

An operation of arity n on a set A is simply a map from An to A and that a relation of arity

n on a setA is a subset ofAn. An algebra is a structure without any relations. Two algebras

A and B are of the same type when both of them are L-structures for some language L. An

algebra is finite if the universe is a finite set, and is trivial if the universe is a singleton set.

A sublanguage K of a language L is simply a subset of L, where every symbol retains

its arity. The K-reduct of an L-structure A = (A, (lA))l∈L) is the K-structure (A, (lA))l∈K)

on the same universe, where K is a sublanguage of L. In this case A is called an expansion

of (A, (lA))l∈K). The K-reduct of A is also the M-free reduct of A, where M is the

5



complement of K of L. If K is clear from the context, we simply refer to the K-reduct as

the reduct of A.

A structure Q = (Q,≤) is a preordered set if ≤ is a binary relation on Q such that for

all x, y, z ∈ Q, the following hold:

x ≤ x (reflexivity)

x ≤ y and y ≤ z =⇒ x ≤ z (transitivity)

A structure P = (P,≤) is a partially ordered set, or a poset, if it is a preordered set and

for all x, y, z ∈ P

x ≤ y and y ≤ x =⇒ x = y (antisymmetry)

An algebra A = (A,∧,∨) is a lattice, if the binary operations, called meet and join

respectively, are commutative, associative and mutually absorptive, i.e., for all x, y, z ∈ A

the following hold:

x ∧ y = y ∧ x (commutativity of meet)

x ∨ y = y ∨ x (commutativity of join)

x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity of meet)

x ∨ (y ∨ z) = (x ∨ y) ∨ z (associativity of join)

x ∨ (x ∧ y) = x (absorption of meet by join)

x ∧ (x ∨ y) = x (absorption of join by meet)

6



An equivalence relation θ on a set A is a reflexive, symmetric and transitive binary

relation on A. For symmetry, we mean for all x, y ∈ A

xθy =⇒ yθx. (symmetry)

The set A is partitioned into equivalence classes [a]θ = {x ∈ A : aθx}. If for every n-ary

basic operation f , θ satisfies that

a1θb1, . . . , anθbn =⇒ f(a1, . . . , an)θf(b1, . . . , bn),

then we say that the operations are compatible with the equivalence classes. An equivalence

relation with this property is called a congruence, and the equivalence classes are called

congruence classes.

An assignment or valuation into an algebra A is a function h from the set of variables

to A. Any such function extends uniquely to a function (also denoted by h) from TmL to

A by defining h(f(t1, . . . , tn)) = fA(h(t1), . . . , h(tn)) for each operation symbol f ∈ Lo

with arity n.

Let Q be a set. A subset ⊢ of P(Q) × Q is called consequence relation over Q, if for

every subset X ∪ Y ∪ {x, z} of Q

• if x ∈ X , then X ⊢ x, and

• if X ⊢ Y and Y ⊢ z, then X ⊢ z,

where X ⊢ x stands for (X, x) ∈ ⊢ and X ⊢ Y stands for X ⊢ y for all y ∈ Y .

2.2 Residuated lattices

A residuated lattice is an algebra (R,∧,∨, ·, \, /, 1) where

• (R,∧,∨) is a lattice,

7



• (R, ·, 1) is a monoid, and

• xy ≤ z iff y ≤ x\z iff x ≤ z/y for all x, y, z ∈ R.

The last condition above is called residuation. Given posets P and Q, a map f : P →

Q is said to be residuated if there exists a map f ∗ : Q → P such that

f(x) ≤ y iff x ≤ f ∗(y)

for all x ∈ P and y ∈ Q.

The following result is folklore in the theory of residuated maps.

Lemma 2.1. A function g from a poset P to a poset Q is residuated if and only if the set

{x ∈ P : g(x) ≤ y} has a maximum for all y ∈ Q and g is order-preserving.

Proof. Let Sy = {x ∈ P : g(x) ≤ y} and we assume that g is residuated with residual g∗.

Note that g∗(y) ≤ g∗(y) yields g(g∗(y)) ≤ y so g∗(y) ∈ Sy. Also, for all x ∈ Sy, g(x) ≤ y

hence x ≤ g∗(y). Therefore, g∗(y) = maxSy.

If x1 ≤ x2, then since g(x2) ≤ g(x2) yields x2 ≤ g∗(g(x2)), we get x1 ≤ g∗(g(x2));

hence g(x1) ≤ g(x2). Therefore, g is order-preserving.

Now suppose Sy has a maximum for all y ∈ Q and g preserves the order. We define

g∗ : Q → P by g∗(y) = maxSy; clearly g∗ is order-preserving. If g(x) ≤ y for some

x ∈ P , y ∈ Q, then x ∈ Sy and x ≤ g∗(y) by definition. Conversely, if x ≤ g∗(y), then

g(x) ≤ g(g∗(y)) since g is order-preserving. Moreover, g∗(y) ∈ Sy so g(g∗(y)) ≤ y; thus

g(x) ≤ y.

We mention that if the assumption that {x ∈ P : g(x) ≤ y} has a maximum is

replaced by the demand that it has a join, then the order-preservation of g is not enough to

give residuation.
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Note that a lattice-ordered monoid supports a residuated lattice iff left and right multi-

plication are residuated. So Lemma 2.1 yields the following fact.

Corollary 2.2. A lattice-ordered monoid R is a reduct of a residuated lattice iff multi-

plication is order-preserving and for all x, z ∈ R, the sets {y ∈ R : xy ≤ z} and

{y ∈ R : yx ≤ z} have maximum elements. In such a case the expansion to a resid-

uated lattice is unique by x\z = max{y ∈ R : xy ≤ z} and z/x = max{y ∈ R : yx ≤ z}.

Corollary 2.3 ([12]). A complete lattice-ordered monoid R is a reduct of a residuated

lattice iff multiplication distributes over arbitrary joins.

In particular, multiplication distributes over the empty join, if it exists; so if there

is a bottom element ⊥, then x · ⊥ = ⊥ = ⊥ · x, for all x. For convenience, we set

xz := {y ∈ R : xy ≤ z} and z�x := {y ∈ R : yx ≤ z} for x, z ∈ R.

Remark 2.4. Let P = (P,∧,∨, ·,⊥,⊤) be a bounded lattice-ordered semigroup such that

⊥x = ⊥ for all x ∈ P . Then we have ⊥x = P , so ⊥\x = max⊥x = ⊤ for all x ∈ P .

Also, since x⊤ = P , x\⊤ = ⊤ for all x ∈ P . Similarly, x/⊥ = ⊤ and ⊤/x = ⊤ for all

x ∈ P .

A residuated lattice with bounds ⊥ and ⊤ is called rigorously compact if ⊤x = x⊤ =

⊤ for all x ̸= ⊥. In this case we also have that xy = ⊥ ⇒ x = ⊥ or y = ⊥, since

otherwise we get x ̸= ⊥ ≠ y, so ⊥ = ⊥⊤ = xy⊤ = x⊤ = ⊤, a contradiction. Note

that in rigorously compact residuated lattices we have ⊥\x = x/⊥ = ⊤ = x\⊤ = ⊤/x,

⊤\y = y/⊤ = ⊥, z\⊥ = ⊥ = ⊥/z for all x ∈ R, y ̸= ⊤, z ̸= ⊥.

Let ⊢ be a consequence relation on the set of L-formulas, for some language L, then a

matrix model of ⊢ is a pair (A, F ), where A is an L-algebra and F is a subset of A such

that for every assignment f into A, and for every set Φ ∪ {ψ} of L-formulas, such that

Φ ⊢ ψ, if f [Φ] ∈ F then f(ψ) ∈ F . In this case F called a ⊢-deductive filter of A, or a

deductive filter of A with respect to ⊢.
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Let A be a residuated lattice. For a, x ∈ A, we define the left conjugate λa(x) =

a\xa ∧ 1 and the right conjugate ρa(x) = ax/a ∧ 1 of x with respect to a. An iterated

conjugate of x is a composition γa1(γa2(. . . γan(x) . . . )), where n is a positive integer,

a1, a2, . . . , an ∈ A and γai ∈ {λai , ρai}, for all i ∈ {1, 2, . . . , n}. We denote the set of all

iterated conjugates of elements of X ⊂ A by Γ(X). In analogy with groups, a subset X of

A is called normal if for all x ∈ X and a ∈ A, λa(x), ρa(x) ∈ X .

We use [x, y] to denote the closed interval {u ∈ A : x ≤ u ≤ y}. As for posets,

we call S convex if [x, y] ⊆ S for all x, y ∈ S. Note that for a sublattice S of A the

property of being convex is equivalent to κu(x, y) ∈ S for all u ∈ A and x, y ∈ S, where

κu(x, y) = (u ∧ x) ∨ y. Thus a convex normal subalgebra is precisely a subalgebra of A

that is closed under the terms λ, ρ and κ.

For a, b ∈ A, we denote a ↔ b = a\b ∧ b\a ∧ 1 and a ↔′ b = b/a ∧ a/b ∧ 1; clearly

a↔ 1 = a\1 ∧ a ∧ 1. Moreover, for every subset X of A, we define the sets

X ∧ 1 = {x ∧ 1 : x ∈ X}

∆(X) = {x↔ 1 : x ∈ X}

Π(X) = {x1x2 · · ·xn : n ≥ 1, xi ∈ X} ∪ {1}

Ξ(X) = {a ∈ A : x ≤ a ≤ x\1, for some x ∈ X}

Ξ−(X) = {a ∈ A : x ≤ a ≤ 1, for some x ∈ X}

Note that the negative part A− = {a ∈ A : a ≤ 1} of A is closed under multiplication

and it contains 1, so it’s a submonoid of A.

Theorem 2.5 ([12]). For every residuated lattice A, the following properties hold.

1. If S is a convex normal subalgebra of A, M convex normal in A submonoid of A−,

θ a congruence on A and F a deductive filter of A, then
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(a) Ms(S) = S−, Mc(θ) = [1]−θ and Mf (F ) = F− are convex, normal in A sub-

monoids of A−,

(b) Sm(M) = Ξ(M), Sc(θ) = [1]θ and Sf (F ) = Ξ(F−) are convex normal subal-

gebras of A,

(c) Fs(S) = ↑S, Fm(M) = ↑M , and Fc(θ) = ↑[1]θ are deductive filters of A,

(d) Θs(S) = {(a, b) : a ↔ b ∈ S}, Θm(M) = {(a, b) : a ↔ b ∈ M} and

Θf (F ) = {(a, b) : a ↔ b ∈ F} = {(a, b) : a\b, b\a ∈ F} are congruences on

A.

2. (a) The convex, normal subalgebras of A, the convex, normal in A submonoids of

A− and deductive filters of A form lattices, denoted by CNS(A), CNM(A)

and Fil(A), respectively.

(b) All the above lattices are isomorphic to the congruence lattice Con(A) of A via

the appropriate pairs of maps defined above.

(c) The composition (whenever defined) of any two of the above maps gives the

corresponding map; e.g., Ms(Sc(θ)) =Mc(θ).

3. If X is a subset of A− and Y is a subset of A, then

(a) the convex, normal in A submonoid M(X) of A− generated by X is equal to

Ξ−ΠΓ(X);

(b) the convex, normal subalgebra S(Y ) of A generated by Y is equal to ΞΠΓ∆(Y );

(c) the deductive filter F (Y ) of A generated by Y ⊆ A is equal to ↑ΠΓ(Y ) =

↑ΠΓ(Y ∧ 1);

(d) the congruence Θ(P ) on A generated by a set of pairs P ⊆ A2 is equal to

Θm(M(P ′)), where P ′ = {a↔ b : (a, b) ∈ P}.
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2.3 Finite embeddability property and decidability

A class K of similar algebras is said to have the finite embeddability property (FEP) if

for every algebra A ∈ K and a finite subsetB ofA, there exists a finite algebra C ∈ K such

that the partial subalgebra B of A induced by B embeds in C. Note that a class satisfying

the finite embeddability property is generated by its finite members. Another consequence

of FEP is that every universal sentence that fails in the class also fails in a finite member

of the class. To see this, let K be a class satisfying FEP and φ be a universal sentence

and A ∈ K an algebra falsifying φ under a valuation v. Let P be the set of subterms of

φ. Clearly the image v[P ] ⊆ A is finite. Moreover, it gives rise to a partial algebra of A

with v(s) ∗ v(t) defined, as v(s ∗ t), if s ∗ t is a subterm of φ, where ∗ ranges over the

operations occurring in φ. By FEP, v[P ] can be embedded in a finite algebra D ∈ K and

it is easy to see that the valuation defined by sending each variable x occurring in φ to the

image of v(x) in D (and arbitrary for other variables) falsifies φ in D. Thus, if K is finitely

axiomatizable, then its universal theories are decidable.

2.4 Amalgamation property

Let K be a class of similar algebras. A V-formation in K is an ordered quintuple

(A,B,C, φB, φC), where A,B,C ∈ K and φB : A → B and φC : A → C are embed-

dings. Given a V-formation V = (A,B,C, φB, φC) in K and a class M of algebras in the

type of K, an amalgam of V in M is an ordered triple (D, ψB, ψC), where D ∈ M and

ψB : B → D and ψC : C → D are embeddings such that ψB ◦ φB = ψC ◦ φC. A class K

of similar algebras is said to have the amalgamation property in M if every V-formation

in K has an amalgam in M. The class K is said to have the amalgamation property if K

has the amalgamation property in K.

Note that for classes closed under isomorphisms, we can assume without loss of gen-

erality that A is a subalgebra of B and C, and φB and φC are inclusion maps.
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A class of similar algebras K has the strong amalgamation property if it has the amal-

gamation property and amalgams (D, ψB, ψC) may be selected so that (ψB ◦ φB)[A] =

ψB[B] ∩ ψC[C]. In this case, we say (D, ψB, ψC) is a strong amalgam.

It’s easy to see if the class K of similar algebras is closed under isomorphisms, then

the strong amalgamation property has an easier formulation: if B,C ∈ K intersect at a

common subalgebra A, there exists an algebra D ∈ K such that B and C are subalgebras

of D.

2.5 Residuated frames

A pogroupoid is a structure G = (G,≤, ·), where ≤ is a partial order on G and the

binary operation · is order-preserving. A residuated groupoid is a structure G = (G,≤

, ·, \, /) where ≤ is a partial order on G and the residuation property holds. It follows that

multiplication is order-preserving. If ≤ is a lattice order, then (G,∧,∨, ·, \, /) is said to be

an rl-groupoid, and if this algebra is extended with a constant 1 that is a multiplicative unit,

then it is said to be an rlu-groupoid.

For posets P and Q, the maps ▷ : P → Q and ◁ : Q → P form a Galois connection

if for all p ∈ P and q ∈ Q, q ≤ p▷ iff p ≤ q◁. A closure operator γ on P is an increasing,

monotone and idempotent map, i.e., x ≤ γ(x), x ≤ y implies γ(x) ≤ γ(y), and γ(γ(x)) =

γ(x) for all x, y ∈ P . Pγ denotes the poset of γ-closed sets, with underlying set the image

Pγ = γ[P ] = {γ(p) : p ∈ P}.

Given a relation R ⊆ A×B between sets A and B, for X ⊆ A and Y ⊆ B define

XRY iff xRy for all x ∈ X, y ∈ Y.

Note that a pair of maps ▷ : P(A) → P(B) and ◁ : P(B) → P(A) forms a Galois

connection iff there exists a relation R ⊆ A × B such that X▷ = {y ∈ B : XRy} and

Y ◁ = {x ∈ A : xRY }. In this case we have xRy iff x ∈ {y}◁ (iff y ∈ {x}▷) and (▷,◁ ) is
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called the Galois connection induced by R. The closure operator γR : P(A) → P(A) is

defined by γR(X) = X▷◁. For a closure operator γ on a complete lattice P, D ⊆ P is a

basis for γ if the elements in γ[P] are exactly the meets of elements in D.

Lemma 2.6 ([9]). Let A and B be sets.

1. If R is a relation between A and B, then γR is a closure operator on P(A).

2. If γ is a closure operator on P(A), then γ = γR for some R with domain A.

A nucleus on a pogroupoid G is a closure operator γ on G such that γ(x)γ(y) ≤ γ(xy)

for all x, y ∈ G. Now let G = (G,≤, ·) be a residuated pogroupoid, γ a nucleus on G, and

for all x, y ∈ G define x ·γ y = γ(x · y). Gγ = (Gγ,≤, ·γ) is called the γ-image of G.

Lemma 2.7 ([9]). (i) The nucleus image Gγ of a pogroupoid G is a pogroupoid and the

properties of lattice-ordering, being residuated and having a unit are preserved.

(ii) All equations and inequations involving {·,∨, 1} are preserved.

(iii) If G is a residuated lattice and γ is a nucleus on it, then the γ-image Gγ of G is a

residuated lattice.

Let (W, ◦) and (W ′, ·) be ternary relation structures. A relation N ⊆ W ×W ′ is called

nuclear on (W, ◦) if there exist ternary relations  ⊆ W×W ′×W ′ and � ⊆ W ′×W×W ′

such that for all u, v ∈ W , w ∈ W ′,

u ◦ vNw iff vNuw iff uNw�v.

Lemma 2.8 ([9]). If (W, ◦) and (W ′, ·) are ternary relation structures and N ⊆ W ×W ′,

then γN is a nucleus on P(W, ◦) iff N is a nuclear relation.

Now we introduce the concept of residuated frames.
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A residuated frame is a structure of the form W = (W,W ′, N, ◦,,�) where (W, ◦)

is a ternary relation structure and N ⊆ W ×W ′ is a nuclear relation on (W, ◦) with respect

to ,�. Concretely, this means

• N is a binary relation from W to W ′, called the Galois relation,

• ◦ ⊆ W 3,  ⊆ W ×W ′ ×W ′, � ⊆ W ′ ×W ×W ′ and

• (u ◦ v)Nw iff vN(uw) iff uN(w�v) for all u, v ∈ W and w ∈ W ′.

It follows above lemmas that P(W, ◦)γN is an rl-groupoid, called Galois algebra of

W.

Here is an instance of the application of residuated frame.

Let A be a residuated lattice and B be a partial subalgebra of A. Define (W, ◦, 1) to

be the submonoid of A generated by B. A unary linear polynomial of (W, ◦, 1) is a map

u on W of the form u(x) = v ◦ x ◦ w, for v, w ∈ W . Such polynomials are also known

as sections and we denote the set of all sections by SW . Let W ′ = SW × B and define

xN(u, b) by u(x) ≤A b. Given x, y ∈ W and u ∈ SW , define sections u′(x) = u(x ◦ y)

and u′′(y) = u(x ◦ y). We also use the notation u′ = u( ◦ y) and u′′ = u(x ◦ ). Now

define x(u, b) = {(u(x ◦ ), b)} and (u, b)�y = {(u( ◦ y), b)}. Then it’s easy to see

that WA,B = (W,W ′, N, ◦,,�) is a residuated frame and the map b 7→ {(id, b)}◁ is an

embedding of the partial subalgebra B of A into the residuated lattice W+
A,B.
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Chapter 3: Residuated Lattices on MX

Residuated lattices based on chains have been studied extensively. We start by looking

into residuated lattices based on an antichain, with extra top and bottom elements.

3.1 Properties

Given a set X , we denote by MX the lattice over the set X ∪ {⊥,⊤}, where ⊤ is the

top element, ⊥ is the bottom element, and x∨ y = ⊤ and x∧ y = ⊥, for distinct x, y ∈ X .

⊤

⊥

1

Figure 3.1: A residuated lattice over MX

The characterization of all residuated lattices based on MX where X is non-empty and

closed under multiplication, ⊥ is absorbing inMX and ⊤ is absorbing inX∪{⊤} is known

([12] p. 205): X is a cancellative monoid. We will characterize all residuated lattices based

on MX , even when X is not closed under multiplication.

Recall that in every bounded residuated lattice the bottom element is absorbing. Also,

in a residuated lattice based on MX we have ⊤x, x⊤ ∈ {x,⊤} for all x, since 1 ≤ ⊤

implies x ≤ ⊤x and x ≤ x⊤.

In a residuated lattice R on MX , we define

UR = {x ∈ R \ {⊥,⊤} : x⊤ = ⊤} and ZR = {x ∈ R \ {⊥,⊤} : x⊤ = x},
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the set of elements that behave as units for ⊤ and the set of elements that behave as zeros

for ⊤; when the residuated lattice is clear from the context we drop the subscript in UR and

ZR. Note that 1 ∈ U and U ∩ Z = ∅.

A monoid S with a zero (absorbing element) 0 is called 0-cancellative if for all x, y, z ∈

S,

xy = xz ̸= 0 ⇒ y = z

yx = zx ̸= 0 ⇒ y = z.

An element c in a residuated R lattice is called central if xc = cx, for all x ∈ R. Also,

we denote by ⊔ the disjoint union operation.

Theorem 3.1. If R is a residuated lattice based on MX , then

1. ⊤ is central in R and R = U ⊔ Z ⊔ {⊥,⊤}.

2. U⊤ = U ∪ {⊤} is a ⊤-cancellative submonoid of R.

3. Z⊥ = Z ∪ {⊥} is a subsemigroup of R with zero ⊥, |Z⊥| ≤ 3 and xy = ⊥ for all

distinct x, y ∈ Z⊥.

Also, either Z⊥ is idempotent, or Z⊥ = {b,⊥} with b2 = ⊥.

4. ab = ba = b for all a ∈ U and b ∈ Z.

Proof. (1) We will show that ⊤x = x⊤, for all x ∈ R. If x is ⊤,⊥ or ⊤, then ⊤x and x⊤

both are equal to ⊤,⊥, x, respectively. Also, if x is incomparable to 1, then x ∨ 1 = ⊤, so

⊤x = (1 ∨ x)x = x ∨ x2 = x(1 ∨ x) = x⊤.

Since ⊤ is central and x⊤ ∈ {x,⊤} for all x, we have that for every x ∈ R \ {⊥,⊤}

either x ∈ U or x ∈ Z, but not both.
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(2) If a, b ∈ U⊤, then ab · ⊤ = a · b⊤ = a⊤ = ⊤, so ab ∈ U⊤. Similarly, ba ∈ U⊤ and

⊤ is a zero for U⊤.

If x, y, z ∈ U⊤ and xy = xz ̸= ⊤, then x(y ∨ z) = xy ∨ xz = xy ̸= ⊤. So y ∨ z ̸= ⊤,

because x⊤ = ⊤; in particular, y ̸= ⊤ ̸= z. Also, since y, z ∈ U⊤ and ⊥ ̸∈ U⊤, we get

y ̸= ⊥ ̸= z; hence y, z ∈ X and y ∨ z ̸= ⊤. Since, R is based on MX , we get that y = z.

Similarly, we obtain the other implication of ⊤-cancellativity.

(3) If c, d ∈ Z⊥, then cd · ⊤ = c · d⊤ = cd. Also, cd ≤ c⊤ = c < ⊤; hence cd ∈ Z⊥.

Clearly, ⊥ is a zero for Z⊥.

Since Z⊥ ⊆ X ∪ {⊥}, for distinct x, y ∈ Z⊥, we have xy = xy ∧ xy ≤ x⊤ ∧ ⊤y =

x∧y = ⊥. So, if there were distinct x, y, z ∈ Z, then y∨z = ⊤ and x = x⊤ = x(y∨z) =

xy ∨ xz = ⊥ ∨⊥ = ⊥, a contradiction. Therefore |Z⊥| ≤ 3.

If b is a non-idempotent element of Z⊥ ⊆ X ∪ {⊥}, then b ̸= ⊥ and b2 ≤ b⊤ = b,

so b2 = ⊥. If c is an element of Z⊥ distinct from b and ⊥, then b2 = b2 ∨ ⊥ = b2 ∨ bc =

b(b ∨ c) = b⊤ = b, a contradiction. So, if Z⊥ is not idempotent, then Z⊥ = {b,⊥} and

b2 = ⊥.

(4) For a ∈ U and b ∈ Z, using the centrality of ⊤, we get

b = ⊤b = ⊤a · b = ⊤ · ab = ab · ⊤ = a · b⊤ = ab.

Similarly, we get ba = b.

It is straight-forward to see that that the possible options for the subsemigroup Z⊥,

mentioned in Theorem 3.1(3) are precisely the ones in Figure 3.2.

Note that if a residuated lattice based on MX is integral (i.e., it satisfies x ≤ 1), then

U = ∅. By taking into account all of the possibilities for Z⊥, it follows that the only integral

residuated lattices based on MX are the 2-element and 4-element Boolean algebras, the 3-
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⊥
⊥ ⊥ ,

⊥ b
⊥ ⊥ ⊥
b ⊥ b

,
⊥ b

⊥ ⊥ ⊥
b ⊥ ⊥

,

⊥ b1 b2
⊥ ⊥ ⊥ ⊥
b1 ⊥ b1 ⊥
b2 ⊥ ⊥ b2

.

Figure 3.2: Four multiplication tables

element Heyting algebra and the 3-element MV-algebra. The latter two, together with the

3-element Sugihara monoid, are the only 3-element residuated chains.

3.2 Construction and characterization

We now prove the converse of Theorem 3.1. Let A be a ⊤-cancellative monoid with

zero ⊤ and B a semigroup with zero ⊥, whose multiplication table is one of those in

Figure 3.2.

We define the lattice structure MX on the set R = A ∪ B, where X = R \ {⊥,⊤},

⊥ is the bottom and ⊤ is the top. Also, we define a multiplication on R that extends the

multiplications on A and B by: xy = yx = y, for all x ∈ A and y ∈ B. We denote by

RA,B the resulting algebra.

Theorem 3.2. If A is a ⊤-cancellative monoid with zero ⊤ and B is a semigroup with zero

⊥, whose multiplication table is one of those in Figure 3.2, then RA,B is the reduct of a

residuated lattice based on MX , where X = (A ∪B) \ {⊥,⊤}.

Proof. Since associativity holds in A and B and every element of B is an absorbing ele-

ment for A, we get that multiplication on R is associative.

Corollary 2.3 ensures that an expansion of MX by a monoid structure is a residuated

lattice iff multiplication distributes over arbitrary joins. Since ⊥x = x⊥ = ⊥ for all

x ∈ R, multiplication distributes over the empty join. Also, we observe every infinite join

is equivalent to a finite join, so it suffices to show x(y∨z) = xy∨xz and (y∨z)x = yx∨zx

for all x, y, z ∈ R and y ̸= z. Here we prove x(y ∨ z) = xy ∨ xz.
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If ⊥ ∈ {x, y, z}, then it is easy to check that this equation always holds, so we will

assume that ⊥ /∈ {x, y, z}. Since y ̸= z, we get y ∨ z = ⊤. Now we will verify that

x⊤ = xy ∨ xz.

If x ∈ B, then the left-hand side is x. If, further, y ∈ A or z ∈ A, then the right-hand

side is x ∨ xz = x or xy ∨ x = x, since xu ≤ x for all u ∈ R. If y, z ∈ B, then since

|B| ≤ 3 and y, z,⊥ are distinct, we get B = {y, z,⊥} and x = y or x = z. In this case,

xy ∨ xz = x ∨ ⊥ = x, so the equation holds.

If x ∈ A, then the left-hand side is equal to ⊤. If y ∈ B and z ∈ B, then the right-hand

side is y∨ z = ⊤, since y ̸= z. If y ∈ B and z ∈ A, then the right-hand side is y∨xz = ⊤,

since y ∈ B, xz ∈ A and ⊥ /∈ {x, y, z}. Likewise, if y ∈ A and z ∈ B, then the right-

hand side is ⊤. If y ∈ A and z ∈ A, then the right-hand side is xy ∨ xz = ⊤ since A is

⊤-cancellative.

Similarly, we can show (y ∨ z)x = yx ∨ xz for all x, y, z ∈ R.

By Corollary 2.2 the divisions are uniquely determined by x\z = max{y ∈ R : xy ≤

z} and z/x = max{y ∈ R : yx ≤ z}, and we give the precise values below.

It turns out that A ∪ {⊥} and B ∪ {⊤} are subalgebras of RA,B. In particular, B ∪

{⊤} is the 2-element generalized Boolean algebra, the 3-element generalized Brouwerian

algebra, 3-element generalized MV-algebra, or the 4-element generalized Boolean algebra,

corresponding to the tables in Figure 3.2. The divisions are given by Remark 2.4 and

a1\a2 =


a3 if a1a3 = a2

⊥ otherwise
a2/a1 =


a3 if a3a1 = a2

⊥ otherwise

for a1, a2, a3 ∈ A, where the a3 is guaranteed to be unique, when it exists. Finally, for

a ∈ A \ {⊤} and b ∈ B, any operation between a and b works the same as the operation

between 1 and b. For example, b\a = b\1, a ∧ b = 1 ∧ b, ab = 1b, etc.
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By combining Theorem 3.1 and Theorem 3.2, we obtain the following characterization.

Corollary 3.3. The residuated lattices based on MX are precisely the ones of the form

RA,B and the integral ones: the 2-element generalized Boolean algebra, the 3-element

generalized Brouwerian algebra, 3-element generalized MV-algebra, or the 4-element gen-

eralized Boolean algebra, where A is a ⊤-cancellative monoid with zero ⊤ and B is a

semigroup with zero ⊥, whose multiplication table is one of those in Figure 3.2.
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Chapter 4: Axiomatizations

In this section we will provide axiomatizations for the various classes we will be con-

sidering and also discuss their proof theory.

4.1 Axiomatization of residuated lattices based on MX

We start by giving an axiomatization for the variety M generated by all residuated

lattices based on MX , where X is a set; see Corollary 4.4. Since the lattice MX is simple,

when |X| ≥ 3, residuated lattices based on MX are also simple; if |X| ≤ 3 the residuated

lattice is simple, as well. It turns out (Corollary 4.7) that these are precisely the subdirectly

irreducible algebras in M and we will provide an axiomatization for them.

Actually, we can also expand the language of residuated lattices to include constants

which then evaluate as bounds. A bounded residuated lattice is an expansion of a residuated

lattice that happens to be based on a bounded lattice, by the addition of constants ⊥ and ⊤,

evaluating at these bounds (so ⊥ ≤ x ≤ ⊤, for all x). We will consider both cases where

the language includes the bounds or not, but opt for the axioms to be expressible without

the need for bounds. We can arrange for the axioms we will be considering to be positive

universal sentences, which is convenient for applying the correspondence provided in [8].

A (bounded) residuated lattice is called unilinear if it satisfies:

∀x, y, z, w (x ≤ y or y ≤ x or (x ∧ y ≤ w and z ≤ x ∨ y)) (URL)

Since the axiom (URL) is equivalent to

∀x, y, (x ≤ y or y ≤ x or ∀z, w (x ∧ y ≤ w and z ≤ x ∨ y)),
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a residuated lattice is unilinear iff it is linear or else the lattice is actually bounded and

every pair of incomparable elements joins to the top of the lattice and meets to the bottom

of the lattice. In other words the non-linear residuated lattices consist of two bounds and

the rest of the lattice is a disjoint union of totally incomparable chains; see Figure 4.1. For

these non-linear unilinear residuated lattices, we will be denoting these bounds by ⊥ and

⊤, even when the language does not include constants for the bounds. We denote by URL

and bURL the (positive universal) classes of unilinear and bounded unilinear residuated

lattices, respectively. Clearly, (bounded) residuated lattices on an MX are unilinear.

⊤

⊥

Figure 4.1: A non-linear unilinear residuated lattice

What distinguishes MX from other lattices is its height, so we axiomatize unilinear

residuated lattices whose height is no greater than a given number. We are careful to

formulate the first-order sentence so it has no implication in it and it remains a positive

sentence.

Proposition 4.1. Given a natural number n, a (bounded) unilinear residuated lattice has

height at most n if and only if it satisfies

∀x1, . . . , xn+1 ( OR
1≤m≤n

x1 ∨ · · · ∨ xm = x1 ∨ · · · ∨ xm+1). (hn)
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Also, it has width at most n if and only if it satisfies

∀x1, . . . , xn+1 ( OR
1≤i ̸=j≤n+1

xi ≤ xj). (wn)

Proof. Having height at most n is equivalent to saying that every subchain has at most n

elements. Now, every subchain always has the form a1 ≤ a1 ∨ a2 ≤ a1 ∨ a2 ∨ a3 ≤ · · · ≤

a1 ∨ · · · ∨ ak, where a1, . . . , ak are elements of the lattice and where the number of the

inequalities that are equalities determines the number of elements in the chain. So, having

height at most n is equivalent to stipulating that in every chain a1, a1∨a2, . . . , a1∨· · ·∨an+1,

at least two adjacent elements are equal.

Having width at most n is equivalent to having at most n pairwise incomparable ele-

ments.

We denote by URLn the subclass of URL axiomatized by (hn). In particular, (h3) is the

universal closure (which we often suppress) of

x1 = x1 ∨ x2 or x1 ∨ x2 = x1 ∨ x2 ∨ x3 or x1 ∨ x2 ∨ x3 = x1 ∨ x2 ∨ x3 ∨ x4.

Corollary 4.2. The (bounded) residuated lattices that are based on MX , for some X ,

together with the trivial algebra, are precisely the ones in the class URL3 (bURL3).

4.2 Equational basis for M

The class URL3 is axiomatized by positive universal sentences. We note that [8] pro-

vides a general method for axiomatizing the variety of residuated lattices generated by a

positive universal class. In detail, if

1 ≤ p1 or · · · or 1 ≤ pn
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is a positive universal formula, then the variety generated by the residuated lattices satisfy-

ing the universal closure of the formula is axiomatized by the infinitely many equations

1 = γ1(p1) ∨ · · · ∨ γn(pn)

where γ1, . . . , γn ∈ Γ(V ar), the set of all iterated conjugates. The left conjugate of a by x

is the term x\ax ∧ 1 and the right conjugate is xa/x ∧ 1; iterated conjugates are obtained

by repeated applications of left and right conjugates by various conjugating elements from

the set V ar of variables. If ϕ is a set of positive universal formulas, we denote by Vϕ

the variety axiomatized by the set Γϕ of all the equations corresponding to the positive

universal formulas in ϕ.

We consider the variety SRL generated by the class URL and we call its elements semi-

unilinear. Since URL is axiomatized by

x ≤ y or y ≤ x or (x ∧ y ≤ z and w ≤ x ∨ y),

which can be written as the conjunction of the two sentences

x ≤ y or y ≤ x or x ∧ y ≤ z, x ≤ y or y ≤ x or w ≤ x ∨ y,

and, in turn, as

1 ≤ x\y or 1 ≤ y\x or 1 ≤ (x ∧ y)\z, 1 ≤ x\y or 1 ≤ y\x or 1 ≤ w\(x ∨ y),

we get the following result.
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Corollary 4.3. The variety SRL of semiunilinear residuated lattices is axiomatized by the

infinitely many equations

1 = γ1(x\y) ∨ γ2(y\x) ∨ γ3((x ∧ y)\z) 1 = γ4(x\y) ∨ γ5(y\x) ∨ γ6(w\(x ∨ y)),

for all γ1, γ2, γ3, γ4, γ5, γ6 ∈ Γ(V ar).

Corollary 4.4. The variety M generated by the class URL3, of residuated lattices on an

MX , is axiomatized relative to SRL by : 1 =

γ1((x1 ∨ x2)\x1)∨ γ2((x1 ∨ x2 ∨ x3)\(x1 ∨ x2))∨ γ3((x1 ∨ x2 ∨ x3 ∨ x4)\(x1 ∨ x2 ∨ x3))

for all γ1, γ2, γ3 ∈ Γ(V ar).

The equational bases are not necessarily infinite. [12] gives an example of searching for

a finite equational basis of the variety RRL of representable residuated lattices. However,

the method there doesn’t work for our case. It’s still unknown if there are finite equational

bases for varieties SRL or M.

We denote by bM the corresponding variety of bounded residuated lattices. Also, we

can characterize the finitely subdirectly irreducible algebras in these varieties.

Theorem 4.5. The finitely subdirectly irreducible (FSI) semiunilinear residuated lattices

are precisely the unilinear residuated lattices: SRLFSI = URL. More generally, if ϕ is a

set of positive universal sentences, then the FSIs in SRL ∩ Vϕ are precisely the unilinear

residuated lattices that satisfy ϕ.

Proof. It follows from the proof of Theorem 9.73(2) of [8] that an FSI algebra satisfies the

unilinearity condition iff it satisfies the equations of Corollary 4.3, i.e., iff it is semiunilin-

ear. So, the semiunilinear FSIs are actually unilinear.
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Conversely, if an algebra is unilinear, then its negative cone ↓1 is a chain. There-

fore, the convex normal submonoids of the negative cone are nested and {1} cannot be the

intersection of two non-trivial convex normal submonoids; see [12] for the correspondence

between congruences and convex normal submonoids of the negative cone of residuated

lattices. Therefore, the trivial congruence is meet-irreducible and the algebra is FSI (and

semiunilinear, as it is unilinear).

Corollary 4.6. Every semiunilinear residuated lattice is a subdirect product of unilinear

ones.

Corollary 4.7. The subdirectly irreducibles in M are the same as the finitely subdirectly

irreducibles in M and as the simple ones in M and they are precisely the non-trivial residu-

ated lattices based on MX , for some X . The same holds for bM.

That every subdirectly irreducible in each of the varieties M and bM is actually simple

follows from the fact that its negative cone has two elements. Consequently, these varieties

are semisimple. For bM we can say a bit more.

We define the following terms

r(x) = (1 ∨ x)(1 ∧ x) ∧ (1 ∨ 1/x)(1 ∧ 1/x) x↔ y = x\y ∧ y\x ∧ 1

t(x, y, z) = r(x↔ y) · z ∨ (r(x↔ y)\⊥ ∧ 1) · x

Lemma 4.8. bM is a discriminator variety with discriminator term t.

Proof. If R ∈ bMSI then, by Corollary 4.7, R is a non-trivial bounded residuated lattice

based on MX for some X . Note that if x is incomparable to 1, then also 1/x is incompara-

ble to 1 or is equal to ⊥, so 1 ∧ x = 1 ∧ 1/x = ⊥, hence r(x) = ⊥. Also, if x ∈ {⊥,⊤},

then {x, 1/x} = {⊥,⊤}, so 1 ∧ x = ⊥ or 1 ∧ 1/x = ⊥, hence r(x) = ⊥. Finally, since

1/1 = 1, we have r(x) = 1, if x = 1 and r(x) = ⊥ otherwise.
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Note that for all x, y ∈ R, we have x ↔ y ≤ 1, i.e., x ↔ y ∈ {⊥, 1}. Moreover,

x↔ y = 1 iff 1 = x\y ∧ y\x∧ 1 iff 1 ≤ x\y ∧ y\x iff (1 ≤ x\y and 1 ≤ ∧y\x) iff (x ≤ y

and y ≤ x) iff x = y. Thus we have x↔ y = 1 if x = y and x↔ y = ⊥ if x ̸= y.

Therefore, t(x, y, z) = r(1) ·z∨ (r(1)\⊥∧1) ·x = 1 ·z∨ (1\⊥∧1) ·x = z∨⊥·x = z,

if x = y; and t(x, y, z) = r(⊥) ·z∨(r(⊥)\⊥∧1) ·x = ⊥·z∨(⊥\⊥∧1) ·x = (⊤∧1) ·x =

1 · x = x, if x ̸= y.

4.3 Including (or not) the bounds in the signature

Note that when axiomatizing classes of unilinear residuated lattices for which the

non-linear members are asked to satisfy a certain positive universal sentence, oftentimes

the axiomatization looks nicer in the case where the language includes constants for the

bounds. For example, the class of URLs whose non-linear members satisfy ⊤x = x⊤ is

axiomatized by the positive universal formula

u ≤ v or v ≤ v or x(u ∨ v) = (u ∨ v)x.

For non-linear bURLs this formula is equivalent to

x⊤ = ⊤x.

For the sake of readability, we will allow ourselves to denote the first of these sentences

as the more pleasing to the eye:

x⊤ = ⊤x.

We call a (bounded) unilinear residuated lattice ⊤-central, if it satisfies this formula.

28



More generally, if Φ is the sentence ∀x⃗ (φ(x⃗,⊤,⊥)), where φ is in the language of

URL, we denote by Φ the sentence

∀x⃗ (φ(x⃗,⊤,⊥)) := ∀u,∀v,∀x⃗ (u ≤ v or v ≤ u or φ(x⃗, u ∨ v, u ∧ v))

where u, v are fresh variables.

Likewise, we call a (bounded) unilinear residuated lattice ⊤-unital, if it satisfies the

formula

x = ⊥ or x⊤ = ⊤ = ⊤x,

since in the non-linear models every non-bottom element acts as a unit for the top. Note

that for non-linear bURLs being ⊤-unital is the same as being rigorously compact.

Lemma 4.9. Let φ be a positive universal formula in the language of URLs, let Φ be

∀x⃗ (φ(x⃗,⊤,⊥)) and let Φ be ∀x⃗ (φ(x⃗,⊤,⊥)).

1. The non-linear bURLs that satisfy Φ are precisely the non-linear bURLs that satisfy

Φ.

2. The non-linear URLs that satisfy Φ are precisely the bound-free reducts of the non-

linear bURLs that satisfy Φ.

3. The linear (bounded) URLs that satisfy Φ are precisely the (bounded) residuated

chains.

Proof. (1) If R is a non-linear bURL, then it satisfies Φ iff it satisfies it for all incomparable

elements u, v (as Φ automatically holds for comparable elements u, v) iff it satisfies Φ

(since when u, v are incomparable, we have u ∨ v = ⊤ and u ∧ v = ⊥).

(2) follows from the fact that all non-linear URLs are bounded, say b and t are the

bounds, and that for bounded non-linear URLs Φ is equivalent to ∀x⃗ (φ(x⃗, t, b)).
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(3) follows from the fact that Φ holds in all totally ordered algebras.

We note that there might be linear bURLs that satisfy Φ, but fail to satisfy Φ. This

happens for example when Φ is ⊤x = x⊤.

4.4 Proof theory for SRL

Certain varieties of residuated lattices admit a proof-theoretic analysis, which is often

complementary to their algebraic study and which often yields interesting results. Not all

varieties of residuated lattices admit a proof-theoretic calculus, but we show that SRL does

admit a hypersequent calculus. We present the hypersequent system, but we do not pursue

any further applications in this paper.

As a motivating example, we mention the equational theory of lattices, which is axiom-

atized by the standard basis of the semilattice and the absorption laws. New valid equations

can be derived from these axioms using the derivational system of equational logic, which

includes the rules of reflexivity, symmetry, transitivity, and replacement/congruence. This

system is not amenable to an inverse proof search analysis as, given an equation s = t,

to determine if it is derivable in the system one cannot simply go through all applica-

tions of these derivational rules that could have the equation as a conclusion and proceed

recursively: the transitivity rule s=t t=r
s=r

introduces (read upward) a new term that does not

appear in the equation. Also, using inequational reasoning, where for example s≤t t≤r
s≤r

is

used instead and the axioms are replaced by inequational axioms such as s ≤ s∨t, does not

make the problem go away: simply omitting this transitivity rule from the system changes

the set of derivable inequalities. However, a way to bypass this problem is to replace the

lattice axioms by inference rules; for example we replace s ≤ s ∨ t by the inference rule

r≤s
r≤s∨t . The axiom and the rule are equivalent in the presence of transitivity, but the rule

has elements of transitivity injected in it when compared to the axiom: the rule implies

the axiom by instantiation, but the axiom implies the rule only with the help of transitivity.

Moreover, the new rule does not suffer from the problem of transitivity as all terms in the
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numerator are already contained in the denominator; so it is safe to replace the axiom by the

rule. There is a way to inject transitivity into all the axioms, converting them to innocent

inference rules, such that in the new system the transitivity rule itself becomes completely

redundant. The resulting system can be used to show the decidability of lattice equations.

A similar approach works for certain subvarieties of residuated lattices; the axioms

in the subvariety may or may not be amenable to injecting transitivity to them. Also,

since there are more operations than in lattices, the above inequalities have to be replaced

by sequents. These are expressions of the form s1, s2, . . . , sn ⇒ s0, where the si’s are

residuated-lattice terms, and their interpretation is given by s1 · s2 · · · sn ≤ s0. The tran-

sitivity rule itself at the level of sequents takes the form or a rule called (cut) and the goal

is cut-elimination, in the same spirit as above, for lattices; we often write Γ ⇒ Π for

sequents, where Γ is a sequence of formulas and Π is a single formula. The corresponding

derivational systems/calculi define different types of substructural logics and varieties of

residuated lattices serve as algebraic semantics for them; see [12].

The variety of all residuated lattices admits a sequent derivation system, which leads

to the decidability of the equational theory of residuated lattices, among other things. The

variety of semilinear residuated lattices (generated by residuated chains) however, provably

does not admit a sequent calculus, due to the shape of its axioms. It does, however, admit

a hypersequent calculus. Hypersequents are more complex syntactic objects of the form

Γ1 ⇒ Π1 | Γ2 ⇒ Π2 | · · · | Γm ⇒ Πm, i.e., they are multisets of sequents. We denote

by HRL the basis hypersequent system for the variety of residuated lattices; additional

inference rules can be added in order to obtain systems for subvarieties.

We follow [3], which describes the process of injecting transitivity into hypersequents,

and we obtain a hypersequent system for the variety SRL that admits cut elimination. We

start with the axioms of URL, the positive universal class that generates SRL.
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First we convert the first axiom ∀x, y, z(x ≤ y or y ≤ x or z ≤ (x ∨ y)) to the equiva-

lent form ∀x, y, z, t1, t2, t3, s1, s2, s3

t1 ≤ x and y ≤ s1 and t2 ≤ y and x ≤ s2 and t3 ≤ z and (x ∨ y) ≤ s3

⇒ t1 ≤ s1 or t2 ≤ s2 or t3 ≤ s3

by injecting some transitivity. This then allows to remove the ∨ from the axiom, by rewrit-

ing it as ∀x, y, z, t1, t2, t3, s1, s2, s3

t1 ≤ x and y ≤ s1 and t2 ≤ y and x ≤ s2 and t3 ≤ z and x ≤ s3 and y ≤ s3

⇒ t1 ≤ s1 or t2 ≤ s2 or t3 ≤ s3

In the terminology of [3], the clause is linear and exclusive, so we eliminate the redundant

variables in the premise (noting that z appears only on the right side of inequations, while

x and y appear on both sides): we apply transitivity closure and removal of variables in the

premise of the clause. The procedure yields the equivalent clause ∀t1, t2, t3, s1, s2, s3

t1 ≤ s2 and t1 ≤ s3 and t2 ≤ s1 and t2 ≤ s3

⇒ t1 ≤ s1 or t2 ≤ s2 or t3 ≤ s3

We now instantiate sj by c\pj/d and use residuation to rewrite ti ≤ sj as ti ≤ c\pj/d and

as ctid ≤ pj . This results in the equivalent clause ∀t1, t2, t3, c, p1, p2, p3, d

ct1d ≤ p2 and ct1d ≤ p3 and ct2d ≤ p1 and ct2d ≤ p3

⇒ ct1d ≤ p1 or ct2d ≤ p2 or ct3d ≤ p3

Converting the clause to the corresponding hypersequent rule we get
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Ξ | Γ,Σ1,∆ ⇒ Π2 Ξ | Γ,Σ1,∆ ⇒ Π3 Ξ | Γ,Σ2,∆ ⇒ Π1 Ξ | Γ,Σ2,∆ ⇒ Π3

Ξ | Γ,Σ1,∆ ⇒ Π1 | Γ,Σ2,∆ ⇒ Π2 | Γ,Σ3,∆ ⇒ Π3

Likewise the second axiom of unilinearity gives the hypersequent rule

Ξ | Γ,Σ2,∆ ⇒ Π1 Ξ | Γ,Σ3,∆ ⇒ Π1 Ξ | Γ,Σ1,∆ ⇒ Π2 Ξ | Γ,Σ3,∆ ⇒ Π2

Ξ | Γ,Σ1,∆ ⇒ Π1 | Γ,Σ2,∆ ⇒ Π2 | Γ,Σ3,∆ ⇒ Π3

We refer to these hypersequent rules as (URL1) and (URL2), respectively.

Corollary 4.10. The extension of HFL with the rules (URL1) and (URL2) provides a

cut-free hypersequent calculus for the variety SRL by [3].

It is notable, that even though SRL has an infinite equational axiomatization involving

iterated conjugates, there are only two inference rules needed for the hypersequent calculus.

This is because hypersequent calculi have the ability to go directly to the level of (finitely)

subdirectly irreducibles (SRLFSI = URL in this case) and read off the axiomatization from

there.
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Chapter 5: Continuum-many subvarieties of M

Even though we have a fairly good understanding of the residuated lattices based on

MX , where X is a set, we now show that there are continuum-many subvarieties of M.

More precisely, we will prove that the variety MG generated by all the residuated lattices of

the form MG, where G is an (abelian) group, has continuum-many subvarieties. We start

with an equational basis for MG.

Proposition 5.1. The variety MG is axiomatized by the equations 1 = γ1(u\v)∨γ2(v\u)∨

γ3(x\(u ∧ v)) ∨ γ4((u ∨ v)\x) ∨ γ5(x(x\1)), where γ1,γ2, γ3, γ4, γ5 ∈ Γ(V ar).

Proof. The formula x = ⊥ or x = ⊤ or x(x\1) = 1 axiomatizes the FSIs in the variety, so

the result follows by Theorem 4.5.

It is known that there are continuum-many varieties of groups (for example, see [15])

and we can use this fact to show that there is a continuum of subvarieties of MG, as follows.

Starting with two varieties V1 ̸= V2 of groups, we can consider the free groups F1 and F2 on

countably many generators in these varieties; hence we have V(F1) = V1 ̸= V2 = V(F2).

Then, it is possible to show that V(MF1) ̸= V(MF2).

It is also well known that there are only countably-many varieties of abelian groups.

However, we are still able to show that the variety CMG of the commutative algebras in MG

also has continuum-many subvarieties. Actually, we give a full description of the subvariety

lattice of CMG.

We consider the direct power Nω of countably many copies of the chain (N,≤) and

its subset I of (not necessarily strictly) decreasing sequences that are eventually zero, such

as (4, 2, 1, 1, 0, 0, . . . ), (3, 2, 1, 1, 1, 0, 0, . . . ) etc. We will also denote these sequences by

34



(4, 2, 1, 1) and (3, 2, 1, 1, 1), respectively. It is easy to see that I defines a sublattice I of the

direct product. We also consider the subset I⊕ω of the direct product Iω of all sequences

of elements of I that are eventually the zero sequence. It is easy to see that this defines a

sublattice I⊕ω of the direct product Iω; it makes sense to call I⊕ω the direct sum of ω copies

of I. We use commas to separate the numbers in each sequence in I , but we use semicolons

to separate the sequences in each element of I⊕ω; this allows for dropping parenthesis, if

desired. Therefore, (2, 1; 3, 1, 1; 0; 2, 1, 1; 0; . . . ) is an example of an element of I⊕ω.

Now let P = 2 × I⊕ω, where 2 is the two-element lattice on {0, 1}. For a ∈ P , we

define exp(a) to be the maximum number appearing in a; e.g., exp(1; 3, 1; 0; 2; 0; . . . ) = 3

and exp(0; 1, 1, 1; 4, 1; 3, 2; 0; . . . ) = 4. Also, for a ∈ P we write a = (a0; a1; a2; . . .),

where a0 ∈ {0, 1} and an ∈ I , for n > 0; we define primes(a) = {n ∈ N : an ̸= 0}. For

T ⊆ P , we define exp(T ) = {exp(a) : a ∈ T} and primes(T ) =
⋃
{primes(a) : a ∈ T}.

A downset D of P is said to be Z-closed if for all a ∈ P ,

exp(D ∩ ↑a) or primes(D ∩ ↑a) is unbounded implies a ∨ (1; 0; 0; . . .) ∈ D.

For example, for a = (0; 1; 0; 0; 0; ...), this condition has the following consequences:

(0; 1; 1; 0; 0; . . .), (0; 1; 2; 0; 0; . . .), (0; 1; 3; 0; 0; . . .), . . . ∈ D

or

(0; 1, 1; 0; 0; . . .), (0; 2, 1; 0; 0; . . .), (0; 3, 1; 0; 0; . . .), . . . ∈ D

implies (1; 1; 0; 0; 0; . . .) ∈ D, because exp(D ∩ ↑a) is unbounded. Also,

(0; 1; 1; 0; 0; . . .), (0; 1; 0; 1; 0; . . .), (0; 1; 0; 0; 1; . . .), . . . ∈ D

implies (1; 1; 0; 0; 0; . . .) ∈ D, because primes(D ∩ ↑a) is unbounded. However,

(0; 1; 1; 0; 0; . . .), (0; 1; 1, 1; 0; 0; . . .), (0; 1; 1, 1, 1; 0; 0; . . .), . . . ∈ D

does not imply (1; 1; 0; 0; 0; . . .) ∈ D.

We denote the lattice of all Z-closed downsets of P by OZ(P).
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Theorem 5.2. The subvariety lattice of CMG is isomorphic to OZ(P).

Proof. Recall that a class of algebras is closed under HSPU iff it is axiomatizable by pos-

itive universal sentences. In other words, HSPU-classes coincide with positive universal

classes.

Let F be a congruence-distributive variety such that FFSI is a positive universal class.

We claim that the subvarieties of F are in bijective correspondence with HSPU-subclasses

of FFSI , where the correspondence is given by V 7→ VFSI and K 7→ HSP(K); further-

more, it is clear that this correspondence preserves and reflects the inclusion order. Indeed,

VFSI = V ∩ FFSI , so VFSI is axiomatized by positive universal sentences and the forward

map of the correspondence is well defined. To show that the two maps are inverses of

each other note that HSP(VFSI) ⊆ V ⊆ SP(VSI) ⊆ HSP(VFSI) and by Jónsson’s Lemma

K = KFSI ⊆ HSP(K)FSI ⊆ HSPU(K) = K.

Note that residuated lattices form a congruence distributive variety by [12] and, by

Theorem 4.5 and Proposition 5.1, (CMG)FSI = CMG ∩ SRLFSI is axiomatized by positive

universal sentences. So, by the preceding paragraph, the lattice of subvarieties of CMG

is isomorphic to the lattice of HSPU-classes of FSIs in CMG, which by Theorem 4.5 and

Proposition 5.1 are HSPU-classes of algebras of the form MG, where G is an abelian group.

Further note that H can be replaced by I. Indeed, every ultrapower of algebras of the

form MG, where G is an abelian group, is also an algebra of the same form (it satisfies the

same first-order sentences, hence also all positive universal sentences). Also, subalgebras

are also of the same form (where we also include the trivial algebra). Finally, since every

algebra of this form is simple (since their lattice reducts are simple), H does not contribute

any new algebras. So we are interested in ISPU-classes of algebras of the form MG, where

G is an abelian group.

We now prove that such classes are in bijective correspondence with ISPU-classes of

abelian groups, by showing that for every class K of abelian groups, we have ISPU({MH :
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H ∈ K}) = I{MG : G ∈ SPU(K)} and thus this class can be associated with ISPU(K);

clearly this correspondence preserves and reflects the order.

First we show IPU({MH : H ∈ K}) = I{MG : G ∈ IPU(K)}. For a residuated

lattice R, if R ∈ IPU({MH : H ∈ K}), then R satisfies all first-order sentences that

hold in the MH’s, where H ∈ K. In particular, R is commutative, unilinear, has height

at most 3, and all of its non-bound elements are invertible, closed under multiplication

and serve as units for the top. Therefore, R is isomorphic to MG for some abelian group

G. Also, clearly, all algebras in PU(K) are abelian groups. Therefore the classes on both

sides of the equation contain only algebras isomorphic to MG for some abelian group

G, and it is enough to focus on such algebras: we show that for every abelian group G,

MG ∈ IPU({MH : H ∈ K}) iff G ∈ IPU(K); we will identify the bounds in all algebras

to omit I.

If MG ∈ PU({MH : H ∈ K}), there exists an index set I , an ultrafilter U on I

and Hi ∈ K, i ∈ I , such that MG =
∏

MHi
/U . So, for every g ∈ G there exists

xg ∈
∏

MHi
such that g = [xg], the equivalence class of xg. We will use ⊤ and ⊥ to

denote the tuples (⊤)i∈I and (⊥)i∈I in
∏

MHi
respectively. Then for all g ∈ G, we have

g ̸= [⊤] and g ̸= [⊥], since g is invertible while [⊤] and [⊥] are idempotents different than

the identity. So we know {i ∈ I : xg(i) ̸= ⊤} ∈ U and {i ∈ I : xg(i) ̸= ⊥} ∈ U , hence

{i ∈ I : xg(i) ∈ H} = {i ∈ I : xg(i) ̸= ⊤} ∩ {i ∈ I : xg(i) ̸= ⊥} ∈ U . Now define

a tuple x in
∏

Hi by x(i) = xg(i), if xg(i) ∈ Hi, and x(i) = 1 otherwise. Then we have

g = [xg] = [x] ∈
∏
Hi/U , so G ∈ PU(K).

If G ∈ PU(K), then there exists an index set I , an ultrafilter U on I and Hi ∈ K,

i ∈ I , such that G =
∏

Hi/U . Using the same index set I and ultrafilter U on I , we know∏
MHi

/U is also of the form MK, where K is an abelian group. Since [⊤]∨[x] = [⊤∨x] =

[⊤] and [⊥] ∧ [x] = [⊥ ∧ x] = [⊥], we get [⊤MHi
] = ⊤∏

MHi
/U and [⊥MHi

] = ⊥∏
MHi

/U .

For [x] ∈ K, we have [x] ̸= [⊤MHi
] and [x] ̸= [⊥MHi

]. So {i ∈ I : x(i) ̸= ⊤MHi
} ∈ U
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and {i ∈ I : x(i) ̸= ⊥MHi
} ∈ U , hence {i ∈ I : x(i) ∈ Hi} = {i ∈ I : x(i) ̸=

⊤MHi
} ∩ {i ∈ I : x(i) ̸= ⊥MHi

} ∈ U ; so [x] ∈
∏
Hi/U = G and K ⊆ G. Conversely, if

[x] ∈
∏
Hi/U = G then [x] ∈ K, so G ⊆ K. Therefore MG ∈ PU({MH : H ∈ K}).

Again note that to show S(MH) = {MG : G ∈ S(H)} it is enough to focus on

algebras of the form MG, where G is an abelian group. If MG ∈ S(MH), then for all

x, y ∈ G, we have x ·G y = x ·MG
y = x ·MH

y = x ·H y and x−1G = x\MG
1 = x\MH

1 =

x−1H; so G ∈ S(H). Conversely, if G ∈ S(H), then for all x, y ∈ MG \ {⊥,⊤} we have

x ·MG
y = x ·G y = x ·H y = x ·MH

y, x\MG
y = x−1G ·G y = x−1H ·H y = x\MH

y and

y/MG
x = y ·mG

x−1G = y ·mH
x−1H = y/MH

x. Also, since MG is rigorously compact, the

operations on G and H also agree if one of x, y is in {⊥,⊤}. So MG ∈ S(MH).

Actually, given that every algebra is an ultraproduct of its finitely generated subalge-

bras, ISPU-classes of abelian groups are fully determined by their intersection with the class

of finitely generated abelian groups. Therefore, we are interested only in such intersections;

clearly this correspondence preserves and reflects the order.

By the fundamental theorem of finitely generated abelian groups we know that every

finitely generated abelian group is isomorphic to exactly one group of the form

Zm × (Z
p
n1,1
1

× · · · × Z
p
n1,m1
1

)× · · · × (Z
p
nk,1
k

× · · · × Z
p
nk,mk
k

)

for some m, k,m1, . . . ,mk, ni,j ∈ N, where ni,j ≥ ni,j+1 for all suitable i, j, and p1 <

p2 < · · · < pk < . . . is the listing of all primes. We denote by FA the set of all groups of

this form; also by fA we denote all the finite algebras in FA (i.e., where m = 0).

Since FA is a full set of representatives of the isomorphism classes of finitely gener-

ated abelian groups, instead of considering intersections of ISPU-classes of abelian groups

with the class of finitely generated abelian groups, we can instead focus on intersections of

ISPU-classes of abelian groups with FA. In other words, we have established that the sub-
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variety lattice of CMG is isomorphic to {K ∩ FA : K is an ISPU-class of abelian groups},

where the order is given by: K ∩FA ≤ L ∩ FA iff ISPU(K ∩FA) ⊆ ISPU(L ∩ FA). In

the following, we will write KFA for K ∩ FA.

To the abelian group displayed above, we associate the sequence

(m; (n1,1, . . . , n1,m1 , 0, . . .); . . . ; (nk,1, . . . , nk,mk
, 0, . . .); (0, . . .); . . .)

which is an element of the lattice N × I⊕ω. Also, note that the bijective correspondence

from FA to N× I⊕ω is actually a lattice isomorphism between N× I⊕ω and FA under the

order given by: G ≤FA H iff G ∈ IS(H).

Now, sets of the form KFA, where K is an ISPU-class of abelian groups, are of course

downsets of FA, but unfortunately not all downsets of FA are of this form. For example,

note that for r, s ∈ Z+, G ∈ fA and K an ISPU-class of abelian groups, we have: G×Zr ∈

K iff G× Zs ∈ K. (So, for example ↓{Z2} = {{1},Z2,Z} is a downset of FA that is not

of the form KFA.)

To prove this, it suffices to prove: if G × Z ∈ K then G × Zt ∈ K for all t ∈

Z+. Let U be a non-principal ultrafilter on N and consider the elements a = [1]U and

b = [(2, 22, 23, . . . )]U of ZN/U ; each has infinite order. Note that for all m,n ∈ N, the

set {i ∈ N : m · 1 = n · 2i} contains at most one element. Since U is not principal,

we get {i ∈ N : m · 1 = n · 2i} ̸∈ U , so ma ̸= nb. Thus ⟨a, b⟩ ∼= Z × Z and Z ×

Z ∈ PU(Z). Similarly, to show Zt ∈ PU(Z), it suffices to take ap1 = [(p1, p
2
1, p

3
1, . . . )]U ,

ap2 = [(p2, p
2
2, p

3
2, . . . )]U , . . . , apt = [(pt, p

2
t , p

3
t , . . . )]U , where p1, p2, . . . , pt are distinct

primes, and we have ⟨ap1 , . . . , apt⟩ ∼= Zt. More generally, we can show {G × Zt : t ∈

Z+} ⊆ PU(G× Z) for any G ∈ fA.

For this reason, it makes sense to identify G×Zr and G×Zs whenever r and s are both

non-zero. This can be done by considering the subset FA′ = fA ∪ {Z ×G : G ∈ fA}
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of FA. The set FA′ also forms a lattice (actually a sublattice of FA) isomorphic to

P = 2 × I⊕ω. Therefore, moving through the isomorphism, we can apply the definitions

of exp and primes also to downsets of FA′. To be more specific, a downset D of FA′ is

Z-closed if for all G ∈ fA, exp(D ∩ ↑G) or primes(D ∩ ↑G) being unbounded implies

that Z × G ∈ D. Also, by the fact established in the last paragraph we have a lattice

isomorphism between {KFA : K is a ISPU-class} and {KFA′ : K is a ISPU-class}, where

KFA′ = K ∩ FA′.

Clearly, if K is an ISPU-class of abelian groups, then KFA′ is a downset of FA′. Unfor-

tunately, still not every downset of FA′ is of this form. For example, {Zp : p is prime} is a

downset of FA′, but since Z ∈ PU({Zp : p is prime}), {Zp : p is prime} is not of the form

KFA′ . In the following we show that {KFA′ : K is an ISPU-class} is equal to the lattice of

Z-closed downsets of FA′.

First we note that for X ⊆ P , we have that exp(X) and primes(X) are bounded iff

there exist K,N ∈ N such that for all a ∈ X , k > K, n,m ∈ N, we have ak = 0 and

an,m ≤ N . Therefore, for X ⊆ FA′, we have that exp(X) and primes(X) are bounded iff

there exist K,N ∈ N such that the cyclic groups in the decomposition of groups in X are

among the Zpnk
, where k ≤ K and n ≤ N . This is in turn equivalent to asking that there is

M ∈ N such that all elements in all the finite groups in X have order at most M (by taking

M = (p1 · · · pK)N ).

Now, for an ISPU-class K of abelian groups, KFA′ is a downset of FA′. To show that

it is Z-closed, let G ∈ fA. If one of exp(KFA′ ∩ ↑G), primes(KFA′ ∩ ↑G) is unbounded,

there is no uniform bound in the order of the elements in the groups from KFA′; so, there is

an infinite subset {Hn : n ∈ N} of KFA′ ∩ ↑G such that Hn contains an element of order

greater than n, say hn. Therefore, the element [(hn)] in any fixed non-principal ultraproduct

H of {Hn : n ∈ N} has infinite order, and consequently H contains a copy of Z.

40



On the other hand, note that if G = {g1, . . . , gk}, then for every group A we have G ∈

IS(A) iff A ⊨ ϕG, where ϕG encodes the multiplication of G: ∃xg1 , . . . , xgk (
∧
{xgi ̸=

xgj : i ̸= j} ∧
∧
{xgixgj = xgigj : 1 ≤ i, j ≤ n}). Since, for all n, Hn contains a copy of

G, Hn satisfies ϕG; hence H also satisfies ϕG and H contains a subgroup isomorphic to

G. Therefore, Z×G ∈ IS(H) ⊆ IS(K) = K and so Z×G ∈ KFA′ .

Conversely, for a Z-closed downset D of FA′, we define KD = ISPU(D) and prove

that KD∩FA′ = D. Since D ⊆ KD and D ⊆ FA′, it suffices to prove KD∩FA′ ⊆ D. If

Zm×G ∈ KD∩FA′, wherem ∈ {0, 1} and G ∈ fA, then a copy of Zm×G is contained in

the ultraproduct
∏

Ai/U of some {Ai : i ∈ I} ⊆ D. Since
∏

Ai/U contains a copy of G,

it satisfies the sentence ϕG, so IG := {i ∈ I : G ∈ IS(Ai)} = {i ∈ I : Ai ⊨ ϕG} ∈ U . If

m = 1, then
∏

Ai/U contains a copy of Z, so it has an element of infinite order. Therefore,

there is no M such that
∏

Ai/U satisfies the sentence (∀x)(Mx = 0), so there is no M

such that {Ai : i ∈ IG} satisfy the sentence, so there is no uniform bound on the orders

of the elements of {Ai : i ∈ IG}; thus exp({Ai : i ∈ IG}) or primes({Ai : i ∈ IG})

is unbounded. Since, exp({Ai : i ∈ IG}) ⊆ exp(D ∩ ↑G), primes({Ai : i ∈ IG}) ⊆

primes(D ∩ ↑G) and D is a Z-closed downset, we get Zm ×G = Z×G ∈ D. If m = 0,

then we also have Zm ×G = G ∈ D.

Thus the lattice {KFA′ : K is a ISPU-class} is isomorphic to OZ(P), and hence the

lattice Λ(CMG) of subvarieties of CMG is isomorphic to the lattice OZ(P).

Corollary 5.3. The variety generated by {MZp : p is prime} has continuum-many subva-

rieties. Therefore the subvariety lattices of MG and of M have size continuum.

Proof. For every prime p, the variety V(MZp) corresponds to the principal downset of the

sequence (0; 0; . . . ; 0; 1; 0; . . .) in P, where the 1 is at the position of the prime p. The

variety generated by all MZp’s is the join of all of the V(MZp), where p is prime, and corre-

sponds to the Z-closed downset PN = {(1; 0; 0; . . .), (0; 1; 0; . . . ), . . . , (0; . . . ; 1; . . . ), . . . }
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in P. The Z-closed subdownsets of PN in the lattice OZ(P) is clearly isomorphic, as a lat-

tice, to P(N).

We denote by CMGZ the variety generated by the algebras in M that satisfy the formula

x⊤ = x or x(x\1) = 1. (ZGroup)

Let F be the poset on {0, 1, 2, 3}, where 0 < 1, 2, 3 and 1, 2, 3 are incomparable. For

a downset D of P × F and i ∈ F , we set Di = {a : (a, i) ∈ D}. A downset D of

P× F is called Z-closed if D0, D1, D2 and D3 are Z-closed downsets of P; we denote by

OZ(P× F) the lattice of all Z-closed downsets of P× F.

Theorem 5.4. The subvariety lattice of CMGZ is isomorphic to OZ(P× F).

Proof. By Theorem 4.5 and Corollary 3.3 the FSI members of CMGZ are unilinear residu-

ated lattices of the form R, R + 1, R + 2 or R + 3, where R = MG and G is an abelian

group, A is the ⊤-cancellative monoid on G ∪ {⊤}; R + 1 = RA,B1 , where B1 is the

⊥-semigroup based on {⊥, b} given in Figure 3.2 with b2 = ⊥; R+2 = RA,B2 , where B2

is the ⊥-semigroup based on {⊥, b1, b2} given in Figure 3.2; and R+3 = RA,B3 , where B3

is the ⊥-semigroup based on {⊥, b} given in Figure 3.2 with b2 = b; we define R+0 = R.

Note that R is a subalgebra of R+ i, for all i ∈ {0, 1, 2, 3}.

In the proof of Theorem 5.2, we saw that subvarieties of CMG are determined by the

Z-closed downsets of FA′. We now sketch how subvarieties of CMGZ are determined by

the Z-closed downsets of the poset MFA′ + F := {MG + i : G ∈ FA′, i ∈ F}, where

the order is given by MG + i ≤ MH + j iff G ≤FA′ H and i ≤F j; this poset is clearly

isomorphic to P × F, so the definition of Z-closed downsets of P × F can be transferred

here. More specifically, a downset D of MFA′ + F is Z-closed iff for all 0 ≤ i ≤ 3,

D ∩ (MFA′ + {i}) is isomorphic to a Z-closed downset of FA′.
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Every subvariety V of CMGZ is determined by its finitely generated FSI algebras. These

are finitely generated algebras of the form R, R+1, R+2 or R+3, where R ∈ (CMG)FSI ,

i.e., R = MG, and G is a finitely generated abelian group. So, VFSI is a downset of

MFA′ + F.

For 0 ≤ i ≤ 3, if G ∈ fA and exp(Di ∩ ↑G) or primes(Di ∩ ↑G) is unbounded,

where Di = {K ∈ FA′ : MK + i ∈ VFSI}, then by the proof of Theorem 5.2, we have

Z × G ∈ Di. So Di is a Z-closed downset of FA′ for 0 ≤ i ≤ 3 and hence VFSI is a

Z-closed downset of MFA′ + F.

By Corollary 3.3, for every downset D of MFA′ + F, the ultraproducts of algebras

from D are isomorphic to MG + i, for some 0 ≤ i ≤ 3. It can be easily shown that for

such ultraproduct MG + i, G is an ultraproduct of {H : i ≤F j,MH + j ∈ D}; since

D is a downset, actually G is an ultraproduct of {H : MH + i ∈ D}. (Also, conversely,

if G is an ultraproduct of {Hj : j ∈ J} and i ∈ F , then MG + i is isomorphic to an

ultraproduct of algebras in the downset {MKj
+ k : j ∈ J,Kj ≤FA′ Hj, k ≤F i} of

MFA′ + F.) So if D is a Z-closed, then G ∈ Di; hence MG + i ∈ D. Consequently, we

have ISPU(D) ∩ (MFA′ + F) = D, hence the subvariety lattice of CMGZ is isomorphic to

OZ(P× F).
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Chapter 6: The finite embeddability property

In this section we establish the finite embeddability property for certain subvarieties of

SRL.

Recall that a class K is said to have the finite embeddability property (FEP) if for every

algebra A ∈ K and a finite subset B of A, there exists a finite algebra C ∈ K such that the

partial subalgebra B of A induced by B embeds in C.

For varieties axiomatized by a finite set of equations, the valid universal sentences

form a recursively enumerable set. Also, if the variety has the FEP, then any universal

sentence that is not valid will fail in a finite algebra of the variety. By enumerating these

finite algebras (using the finite axiomatizability of the variety) we can thus enumerate the

universal sentences that fail in the variety. Therefore, recursively axiomatizable varieties

with the FEP have a decidable universal theory; moreover, they are generated as universal

classes (thus also as quasivarieties and as varieties) by their finite algebras.

Theorem 6.1. The variety CMG has the FEP.

Proof. First note that since the algebras in CMG are commutative, the conjugates in the

equational basis are not needed, so CMG has a finite equational basis.

To prove the FEP for CMG, we claim that the variety of abelian groups has FEP first.

By Theorem 5.1 of [14], an abelian group is subdirectly irreducible if and only if it is a

subgroup of a p-cyclic group, i.e., either it is a p∞-group or a cyclic group of order pn,

where p is a prime. So every finitely generated subdirectly irreducible abelian group is

finite. By Corollary 2 in [2] every finitely generated abelian group is residually finite. By

44



Theorem 1 in [4] this is equivalent to having the FEP, so the variety of abelian groups has

the FEP.

Note that the above characterization of the finitely generated subdirectly irreducibles

does not extend to algebras in CMG, since the notion of subdirectly irreducible is different.

Nevertheless, we can make use of the FEP for abelian groups.

It suffices to prove the FEP for the subdirectly irreducible algebras in CMG. Let G be

an abelian group and B a finite subset of MG. Without loss of generality, we can assume

⊥,⊤ ∈ B, where ⊤ and ⊥ denote the bounds of MG, so (B,∧,∨) is a sublattice of MG.

Then (B′, ·, 1) is a finite partial subgroup of G, where B′ = B \ {⊤,⊥}. By the FEP for

abelian groups, there exists a finite abelian group C′ such that (B′, ·, 1) can be embedded

into C′; without loss of generality we assume that B′ ⊆ C ′.

We consider the set C = C ′ ∪ {⊤,⊥} and define an order keeping the elements of C ′

incomparable and setting ⊥ < x < ⊤, for all x ∈ C ′. Also, we extend the multiplication

of C′ by stipulating that ⊤ is absorbing for C ∪ {⊤} and ⊥ is absorbing for C ′. Finally,

we define x → y = x−1 · y for x ∈ C ′, ⊤ → u = ⊥ = v → ⊥ for u ̸= ⊤ and v ̸= ⊥, and

w → ⊤ = ⊤ = ⊥ → w, for all w.

Since (B,∧,∨) is a sublattice of MG and B′ ⊆ C ′, (B,∧,∨) is a sublattice of

(C,∧,∨). For all x, y ∈ B′, if x ·B y ∈ B, then x ·B y = x ·B′ y = x ·C′ y =

x ·C y, since G is closed under multiplication; if x →B y ∈ B, then x−1B ∈ B and

x →B y = x−1B ·B y = x−1B′ ·B′ y = x−1C′ ·C′ y = x →C y, since G is also closed

under inverses. Finally, if x, y ∈ B and x ∈ {⊥,⊤} or y ∈ {⊥,⊤}, then the embed-

ding works since ⊥ →MG
a = ⊤ = a →MG

⊤, a⊥ = ⊥ = ⊥a for all a ∈ MG and

b→MG
⊥ = ⊥ = ⊤ →MG

c, b⊤ = ⊤ = ⊤b for all b ̸= ⊥ and c ̸= ⊤.

Corollary 6.2. The universal theory of the variety CMG is decidable.

We can actually prove the FEP for many more subvarieties of SRL, unrelated to GMG,

using a construction based on residuated frames.
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An equation is called knotted if it is of the form xm ≤ xn, where n ̸= m. Also,

we consider the following weak versions of commutativity. For every n ∈ Z+ and non-

constant partition a of n+ 1 (i.e., a = (a0, a1, . . . , an), where a0 + a1 + · · ·+ an = n+ 1

and not all ai’s are 1), we consider the (n+ 1)-variable identity (a):

xy1xy2 · · · ynx = xa0y1x
a1y2 · · · ynxan .

For example, (2, 0) is the identity xyx = xxy and (2, 0, 1) is the identity xyxzx = xxyzx.

We call all of these identities weak commutativity identities.

Theorem 6.3. If a subvariety of SRL is axiomatized by a knotted identity, a weak commu-

tativity identity and any additional (possibly empty) set of equations over {∨, ·, 1}, then it

has the FEP.

Proof. If V is such a variety, it suffices to prove the FEP for the subdirectly irreducible

algebras in V; so it suffices to prove it for unilinear residuated lattices. Let A be a unilinear

residuated lattice in V and B be a finite partial subalgebra of A.

Let W be the submonoid of A generated byB,W ′ = W×B×W and letN ⊆ W×W ′

be defined by: x N (y, b, z) if yxz ≤ b, then WA,B = (W,W ′, N, ·, 1) is a residuated frame

in the sense of [9] and the Galois algebra WA,B
+ = (γN [P(W )],∩,∪γN , ·γN , γ({1}), \, /)

is a residuated lattice, where X ∪γ Y = γ(X ∪ Y ), X ·γ Y = γ(X · Y ), X\Y = {z ∈ W :

zX ⊆ Y } and Y/X = {z ∈ W : Xz ⊆ Y }. Moreover, [9] shows that WA,B
+ satisfies

all {∨, ·, 1}-equations that A satisfies and that B embeds in WA,B
+. Also, [1] shows that

such WA,B
+ is finite, due to the knotted rule and the weak commutativity. So it suffices to

show that it is in SRL; we will show that WA,B
+ is actually unilinear.

Note that for all (y, b, z) ∈ W ′, we have a ∈ {(y, b, z)}◁ iff a N (y, b, z) iff yaz ≤ b iff

a ≤ y\b/z. Therefore, {(y, b, z)}◁ =↓ (y\b/z). By basic properties of Galois connections,

every element X of γN [P(W )] is an intersection of sets of the form {(y, b, z)}◁; actually
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X =
⋂
{{w}◁ : w ∈ X▷}. Therefore, X is an intersection of principal downsets of A.

Since A is unilinear, X is either equal to A itself or a linear downset of A.

Now, let X, Y ∈ γN [P(W )]; hence each of them is either equal to A or a linear subset

of A. If X ⊈ Y and Y ⊈ X , then none of them equals A, hence they are both linear

downsets. Since X ⊈ Y , there is an x ∈ X such that x ̸∈ Y . Since, Y ⊈ X , not every

element of Y is below x, so there exists y ∈ Y with y ̸≤ x. Since x ̸∈ Y and Y is a

downset, we get x ̸≤ y; therefore in this case A is not linear. By unilinearity of A, it has

a top ⊤ and ⊤ = x ∨ y ∈ X ∪γ Y , which is also a downset; hence X ∪γ Y = A. Also, if

z ∈ X ∩ Y , then z ≤ x, y and by the unilinearity of A, we get z = ⊥; so X ∩ Y = {⊥}.

Consequently, γN [P(W )] is unilinear.

Note that all knotted identities and all weak commutativity identities are equations

over {∨, ·, 1}. So, the theorem includes cases where multiple knotted and/or multiple weak

commutativity equations are included in the axiomatization.

Corollary 6.4. If a subvariety of SCRL is axiomatized by a knotted identity and any finite

(possibly empty) set of equations over {∨, ·, 1}, then its universal theory is decidable.

Proof. As for the case CMG, the variety SCRL is finitely axiomatizable, and so for these

subvarieties, then the results follows.
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Chapter 7: Constructing Compact URLs

A unilinear residuated lattice R is called compact if it is ⊤-unital (i.e., it satisfies:

x = ⊥ or x⊤ = ⊤ = ⊤x) and R \ {⊤,⊥} is closed under multiplication. In other

words, non-linear compact URLs are obtained by a partially-ordered monoid M that is a

union of chains by adding bounds that absorb all elements of M . We will provide some

constructions of compact URLs, but first we start by giving an axiomatization.

Lemma 7.1. The class of compact URLs is axiomatized by the sentences

∀x (x = ⊥ or x⊤ = ⊤ = ⊤x) and ∀x, y, z (x = ⊤ or x(y ∧ z) = xy ∧ xz).

Proof. By the definition of compactness, it suffices to show that, for every ⊤-unital non-

linear unilinear residuated lattice R, the second formula captures the fact thatR\{⊤,⊥} is

closed under multiplication. Note that if a, b ̸∈ {⊤,⊥}, then ab⊤ = a⊤ = ⊤, so ab ̸= ⊥.

Assume first that R satisfies the second formula, but there exist a1, a2 ∈ R \ {⊥,⊤}

such that a1a2 = ⊤. Since R is not linear, there exists an element a3 that is incomparable

to a1 or to a2; without loss of generality, a3 is incomparable to a2, so a3 ∈ R \ {⊥,⊤}.

Hence

⊥ = a1⊥ = a1(a2 ∧ a3) = a1a2 ∧ a1a3 = ⊤ ∧ a1a3 = a1a3,

a contradiction. Thus R \ {⊤,⊥} is closed under multiplication.

Now assume R \ {⊤,⊥} is closed under multiplication and that x, y, z ∈ R with

x ̸= ⊤. If x = ⊥, then the formula holds, so we assume that x ̸= ⊥. Also, if y and z are
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comparable, then x(y ∧ z) = xy ∧ xz holds since multiplication preserves the order; so we

assume that y and z are incomparable. In this case, xy ∨ xz = x(y ∨ z) = x⊤ = ⊤. Since

R \ {⊤,⊥} is closed under multiplication, xy and xz are incomparable, hence x(y ∧ z) =

x · ⊥ = ⊥ = xy ∧ xz.

It follows that an alternative second formula is ∀x, y, z (x = ⊤ or (y∧ z)x = yx∧ zx).

Corollary 7.2. The variety generated by the class of compact URL is axiomatized by

1 =γ1(u\v) ∨ γ2(v\u) ∨ γ3(x\(u ∧ v)) ∨ γ4((u ∨ v)\(x(u ∨ v) ∧ (u ∨ v)x))

1 =γ5(u\v) ∨ γ6(v\u) ∨ γ7((u ∨ v)\x) ∨ γ8((xu ∧ xv)\x(u ∧ v))

where γ1,γ2, γ3, γ4, γ5, γ6,γ7, γ8 ∈ Γ(V ar).

Lemma 7.3. If R is a compact URL, then the comparability relation ≡ on M, where

M = R \ {⊥,⊤}, is a congruence relation and the quotient monoid M/≡ is cancellative.

Also, [1]≡ defines a totally-ordered submonoid of M.

Proof. That the comparability relation ≡ is a congruence on M follows from the order-

preservation of multiplication and the unilinear order. For the cancellativity of M/≡, note

that if for x, y, z ∈M and y ∥ z, we have ⊤ = x(y ∨ z) = xy ∨ xz, and since M is closed

under multiplication, we get xy ∥ xz. Finally, [1]≡ is a totally-ordered submonoid of M

since x ≡ 1 and y ≡ 1 implies xy ≡ 1 · 1 = 1.

7.1 From a finite cyclic monoid

We show how to construct a compact URL starting from a finite cyclic monoid.

Given a finite cyclic monoid M generated by an element a of M , there is a smallest

natural number r, called the index, such that ar = ar+s for some positive integer s; the

smallest such s then is called the period. So M = {1, a, . . . , ar, . . . , ar+s−1} and |M | =
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r + s. Note that every natural number n > r can be written as n = r + ms + k for

unique m ∈ N and 0 ≤ k < s; we define [n]sr := r + k for n ≥ r + s and [n]sr := n

for 0 ≤ n < r + s. (We will write [n], when r, s are clear from the context.) Then the

multiplication on M is given by ai · aj = a[i+j]sr .

In particular, {ar, . . . , ar+s−1} is a subsemigroup of M and it is a group in its own right

with identity element at such that t ≡ 0 (mod s); so it is isomorphic to Zs.

We extend the multiplication of M to the set R = M ∪ {⊥,⊤} by ⊥x = x⊥ = ⊥

for all x ∈ R, and ⊤x = x⊤ = ⊤ for all x ̸= ⊥. Also we define an order on R by

⊥ ≤ x ≤ ⊤ for all x ∈ R and ai ≤ aj if and only if j = i + ns for some n ∈ N, where

0 ≤ i, j ≤ r+ s− 1; see Figure 7.1(left). It is easy to see that this yields a unilinear lattice

order; we denote by RM the resulting lattice-ordered monoid.

⊤

⊥

ar+s−2

ar−2

as

1

ar+s−1

ar−1

as+1

a

ar

as+2

a2

ar+s−4

a2s−2

as−2

ar+s−3

a2s−1

as−1

⊤

⊥

1

as

ar−2

ar+s−2

a

as+1

ar−1

ar+s−1

a2

as+2

ar

as−2

a2s−2

ar+s−4

as−1

a2s−1

ar+s−3

Figure 7.1: The two URLs based on a finite cyclic monoid

Theorem 7.4. If M is a finite cyclic monoid, then RM is the reduct of a residuated lattice.

Proof. Since both ⊤ and ⊥ are zero elements for M and ⊥⊤ = ⊤⊥ = ⊥, the associativity

of M easily extends to the associativity of RM. Since R is finite, by Corollary 2.3, it

suffices to show that multiplication distributes over binary joins; we will show distribution

from the left: x(y ∨ z) = xy ∨ xz, for all x, y, z ∈ R.

If any of x, y, z is ⊤ or ⊥, it easy to see that the equation holds, so we assume that

x, y, z ∈ M : x = ai, y = aj and z = ak for some 0 ≤ i, j, k ≤ r + s − 1. If y = aj
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and z = ak are incomparable, then j ̸≡ k (mod s) by definition, so we have i + j ̸≡

i + k (mod s) and hence xy ∥ xz. Thus we have x(y ∨ z) = x⊤ = ⊤ = xy ∨ xz. If

aj = y ≤ z = ak, we have k = j + ns for some 0 ≤ n ≤ ⌊(r + s − 1 − j)/s⌋; we

will show that xy = a[i+j] ≤ a[i+j+ns] = xz. This is true since for ℓ = i + j, we have

[ℓ + ns] = [ℓ] + ms, where m = n if ℓ + ns < r + s and m = ([ℓ + ns] − [ℓ])/s if

ℓ+ ns ≥ r + s.

The (commutative) residuated lattice based on RM is compact so we have ⊥ → x =

⊤ = x → ⊤, ⊤ → y = ⊥, z → ⊥ = ⊥ for all x ∈ RM , y ̸= ⊤, z ̸= ⊥. Also, the

remaining implications can be easily calculated to be as follows:

ai → aj =



⊥ if j < i ≤ r or j < r ≤ i ≤ r + s− 1

aj−i if i ≤ j < r

aj−i+⌊ r+s−1+i−j
s

⌋s if i < r ≤ j ≤ r + s− 1

ak if r ≤ i, j, k ≤ r + s− 1 and aiak = aj.

In particular, the subsemigroup {ar, . . . , ar+s−1} is closed under implication, but M is not.

It is easy to see that if we impose the dual order on the elements of M instead, then we

can obtain a different unilinear residuated lattice; see Figure 7.1(right). Residuation in this

second example works differently:

ai → aj =


aj−i if i ≤ j ≤ r + s− 1

aj−i+⌈ i−j
s

⌉s if j < i ≤ r + s− 1

In this case, M is closed under implication, but {ar, . . . , ar+s−1} is not.

51



Remark 7.5. Actually, we can prove that given a finite cyclic monoid M , these are the

only two ways where M ∪ {⊥,⊤} is the monoid reduct of a compact unilinear residuated

lattice.

Suppose M ∪ {⊥,⊤} is the monoid reduct of a compact URL R. Let ai and aj be

distinct group elements in M . If ai < aj , then e = aiak < ajak, where e is the identity

for the group elements in M and ak is the inverse of ai in the group. Then e < ajak <

(ajak)2 < · · · , so M contains an infinite ascending chain, contradicting the fact that M is

finite. Thus the group elements in M are pairwise incomparable.

We also observe that given 0 ≤ i < j < r + s,

ai < aj iff for all 0 ≤ k ≤ i, ai−k < aj−k

aj < ai iff for all 0 ≤ k ≤ i, aj−k < ai−k

(*)

The backward direction is trivial, so we just show the forward direction. Given 0 ≤ i < j <

r + s such that ai < aj and 0 ≤ k ≤ i, if ai−k ∥ aj−k, then ⊤ = ak⊤ = ak(ai−k ∨ aj−k) =

ai ∨ aj , so ai ∥ aj , a contradiction; if ai−k > aj−k, then ai > aj since multiplication is

order-preserving and ai is distinct from aj .

Finally, we know 1 ≡ e, since otherwise we would have ⊤ = e(1 ∨ e) = e ∨ e2 = e, a

contradiction.

Now let t be the smallest natural number such that at ≡ 1. If t = 0, then by (*), ai ∥ aj

for all 0 ≤ i < j < r + s; otherwise 1 ≡ aj−i where j − i > 0, a contradiction. Especially

we have e = 1 in this case, so M is a group and R is based on MX . Now we assume t > 0.

If 1 < at, then we have ar ≤ ar+t and both of them are group elements in M . Since all

group elements are pairwise incomparable, we know ar = ar+t, so t = s. Since s = t is

the smallest integer such that 1 < as, we know 1 ∥ ak for all 1 < k < s, thus by (*) ak ∥ al

for all 0 ≤ k ̸= l ≤ s − 1. Since 1 < as, we have 1 < as < a2s < · · · < ams, where

ms < r + s ≤ (m + 1)s. Hence ai < aj iff 1 < aj−i iff j = i + ns for some n ∈ Z+, so
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ai ≤ aj iff j = i + ns for some n ∈ N and R is of the form as the left in Figure 7.1(left).

Similarly we can prove R is of the form as the right in Figure 7.1(right) if at < 1.

7.2 From a semidirect product of a residuated chain and a cancellative monoid;

monoid extensions with 2-cocycles

We first provide a general construction of compact residuated lattices and then show

that under certain assumptions a compact residuated lattice is exactly of this form.

Let A be a residuated chain, K a cancellative monoid and φ : K → ResEnd(A)

a monoid homomorphism, where ResEnd(A) is the monoid of residuated maps on the

chain (A,≤) which are also endomorphisms of the monoid (A, ·, 1). If φ and ψ are in

ResEnd(A) with residuals φ∗ and ψ∗ respectively, then (ψ ◦ φ)(a) ≤ b iff φ(a) ≤ ψ∗(b)

iff a ≤ (φ∗ ◦ ψ∗)(b) for all a, b ∈ A; so ψ ◦ φ is also residuated. Thus, ResEnd(A) is

a submonoid of End(A). Consequently, the semidirect product A ⋊φ K of the monoid

reduct of A and K with respect to φ is also a monoid with multiplication given by

(a1, k1) · (a2, k2) = (a1φk1(a2), k1k2),

for all (a1, k1), (a2, k2) ∈ A × K, and identity (1A, 1K). We define an order on A ⋊φ K

by: for all (a1, k1), (a2, k2) ∈ A×K,

(a1, k1) ≤ (a2, k2) if and only if k1 = k2 and a1 ≤ a2.

Also, we extend the multiplication and order of A ⋊φ K to R = (A × K) ∪ {⊤,⊥} by:

⊥ ≤ x ≤ ⊤, ⊥x = x⊥ = ⊥ and ⊤y = y⊤ = ⊤ for all x ∈ R, y ̸= ⊥. It is clear that

this defines a lattice order; see Figure 7.2. We denote by A ⋊b
φ K the resulting bounded

lattice-ordered monoid.
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⊤

⊥

(a1, k1)

1

(a2, k1)

(a1, k2)

(a2, k2)

Figure 7.2: A URL based on a semidirect product

Theorem 7.6. If A is a residuated chain, K is a cancellative monoid and φ : K →

ResEnd(A) is a monoid homomorphism, then A⋊b
φ K is a residuated lattice.

The proof of the above theorem follows from a more general construction. Given a

monoid K, a totally-ordered monoid A and a map φ : K → ResEnd(A), then a function

f : K ×K → A is called a 2-cocycle with respect to K,A, φ, if it satisfies the following

conditions:

1. f(k1, k2) is invertible, for all k1, k2 ∈ K.

2. f(k, 1) = f(1, k) = 1, for all k ∈ K.

3. φ1K = idA and φk1k2(a) = f(k1, k2) · φk1φk2(a) · f(k1, k2)−1 for all k1, k2 ∈ K and

a ∈ A.

4. f(k1, k2k3)φk1(f(k2, k3)) = f(k1k2, k3)f(k1, k2), for k1, k2, k3 ∈ K.

Now, given a cancellative monoid K, a residuated chain A, a map φ from K into

ResEnd(A) and a 2-cocycle f : K ×K → A, we define multiplication on A×K by

(a1, k1) · (a2, k2) = (a1φk1(a2)f(k1, k2)
−1, k1k2)
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Also, we extend the multiplication to R = A×K ∪ {⊥,⊤} by making ⊥ absorbing for R

and ⊤ absorbing for R \ {⊥}, and we define a lattice ordering ≤ by: for all a, a1, a2 ∈ A

and k, k1, k2 ∈ K, ⊥ = ⊥ < (a, k) < ⊤ = ⊤ and

(a1, k1) ≤ (a2, k2) iff a1 ≤A a2 and k1 = k2.

We denote the resulting algebra by Rφ,f .

Theorem 7.7. If K is a cancellative monoid, A is a residuated chain, φ is a map from K

into ResEnd(A), and f : K ×K → A is a 2-cocycle with respect to K, A and φ, then

Rφ,f is the reduct of a residuated lattice.

Proof. In the following we use R for Rφ,f and M for A×K. Clearly, M is closed under

multiplication and (1, 1) is the identity. Also,

(a1, k1)(a2, k2) · (a3, k3)

=(a1φk1(a2)f(k1, k2)
−1, k1k2) · (a3, k3)

=(a1φk1(a2)f(k1, k2)
−1φk1k2(a3)f(k1k2, k3)

−1, k1k2 · k3)

=(a1φk1(a2)f(k1, k2)
−1 · f(k1, k2)φk1φk2(a3)f(k1, k2)

−1 · f(k1k2, k3)−1,

k1k2 · k3)

=(a1φk1(a2)φk1φk2(a3)f(k1, k2)
−1f(k1k2, k3)

−1, k1k2 · k3)

=(a1φk1(a2)φk1φk2(a3)φk1(f(k2, k3)
−1)f(k1, k2k3)

−1, k1k2 · k3)

=(a1φk1(a2φk2(a3)f(k2, k3)
−1)f(k1, k2k3)

−1, k1 · k2k3)

=(a1, k1) · (a2φk2(a3)f(k2, k3)
−1, k2k3)

=(a1, k1) · (a2, k2)(a3, k3)
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where we used the identities

φk1k2(a) = f(k1, k2) · φk1φk2(a) · f(k1, k2)−1

f(k1, k2k3)φk1(f(k2, k3)) = f(k1k2, k3)f(k1, k2)

and the assumption that φk is an endomorphism. Therefore M = (M, ·, (1, 1)) is a monoid.

Since both ⊤ and ⊥ are absorbing elements for M and ⊤⊥ = ⊥⊤ = ⊥, associativity holds

on R.

We now prove that multiplication is order-preserving: y ≤ z =⇒ (xy ≤ xz and yx ≤

zx) for all x, y, z ∈ R. If y = z or x, y, z is ⊥ or ⊤, then it it easy to see that the implication

holds; so we assume that ⊥ < x < ⊤ and ⊥ < y < z < ⊤. Also, we assume that

x = (a1, k1), y = (a2, k2) and z = (a3, k2) with a2 < a3. Using the order preservation of

φk1 (it is a residuated map) and of multiplication in A, we get

(a1, k1)(a2, k2) = (a1φk1(a2)f(k1, k2)
−1, k1k2)

≤ (a1φk1(a3)f(k1, k2)
−1, k1k2)

= (a1, k1)(a3, k2)

(a2, k2)(a1, k1) = (a2φk2(a1)f(k2, k1)
−1, k2k1)

≤ (a3φk2(a1)f(k2, k1)
−1, k2k1)

= (a3, k2)(a1, k1)

Next we show that the sets xz and z�x have maximum elements for all x, z ∈ R. By

Remark 2.4, we know ⊥z = z�⊥ = x⊤ = ⊤�x = R for all x, z ∈ R, so the

maximum element of all of these sets is ⊤. Also, by construction, x⊥ = ⊥�x = ⊤z =

z�⊤ = {⊥} for all x ∈ R \ {⊥} and z ∈ R \ {⊤}, so the maximum for all these sets
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is ⊥. We now assume that ⊥ < x, z < ⊤ and that x = (a, k) and z = (a′, k′) for some

(a, k), (a′, k′) ∈ A×K.

For all (a1, k1), (a2, k2) ∈ xz, we have (aφk(a1)f(k, k1)
−1, kk1) = (a, k)(a1, k1) ≤

(a′, k′) and (aφk(a2)f(k, k2)
−1, kk2) = (a, k)(a2, k2) ≤ (a′, k′), so kk1 = k′ = kk2 and

k1 = k2, by the cancellativity of K. Since, A is a chain, we get that (a1, k1) and (a2, k2)

are comparable; hence xz is a chain.

For all (a′′, k′′), we have that (a′′, k′′) ∈ xz if and only if (a, k)(a′′, k′′) ≤ (a′, k′)

if and only if (aφk(a
′′)f(k, k′′)−1, kk′′) ≤ (a′, k′) if and only if aφk(a

′′)f(k, k′′)−1 ≤

a′ and k′ = kk′′. Since multiplication is residuated, φk is residuated, say with residual

φ∗
k, and f(k, k′′) is invertible, we have: aφk(a

′′)f(k, k′′)−1 ≤ a′ if and only if φk(a
′′) ≤

a\Aa′f(k, k′′) if and only if a′′ ≤ φ∗
k(a\Aa′f(k, k′′)). Therefore, we have (a′′, k′′) ∈ xz

if and only if (a′′, k′′) ≤ (φ∗
k(a\Aa′f(k, k′′)), k′′). Consequently, max(xz) exists and it

is one of the elements ⊥, (φ∗
k(a\Aa′f(k, k′′)), k′′),⊤. Likewise, max(z�x) is one of the

elements ⊥, (a′f(k′′, k)/Aφk′′(a), k
′′),⊤. By Corollary 2.2, Rφ,f is the reduct of a compact

residuated lattice.

So Rφ,f is the reduct of a compact residuated lattice, which we will also denote by

Rφ,f and whose divisions are given by

x\y =


⊥ if x = (a1, k1), y = (a2, k2) and k2 /∈ k1K

(φ∗
k1
(a1\Aa2f(k1, k)), k) if x = (a1, k1), y = (a2, k1k)

y/x =


⊥ if x = (a1, k1), y = (a2, k2) and k2 /∈ Kk1

(a2f(k, k1)/Aφk(a1), k) if x = (a1, k1), y = (a2, kk1)

and the standard divisions involving ⊥ and ⊤ are given by Remark 2.4.
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Theorem 7.6 follows as the special case where the 2-cocycle is trivial, thus implying

that φ is a monoid homomorphism.

Corollary 7.8. If K is a cancellative monoid, A is a residuated chain, φ is a map from K

into ResEnd(A) and f : K ×K → A is the trivial 2-cocycle with respect to K, A and

φ, then φ is a homomorphism and Rφ,f = A⋊b
φ K.

In particular, when φ is trivial we get A×b K, where A is a residuated chain and K is

a cancellative monoid.

Note that the examples of section 7.1 are not embeddable into a residuated lattice of

the form A ×b K. For example, consider the URL R where R = {⊥, 1, a, a2,⊤} with

a3 = a and 1 < a2. If R were embeddable then we would have 1 7→ (1, 1), a 7→ (a1, k),

a2 7→ (a21, k
2) and a3 7→ (a31, k

3). So, (1, 1) < (a21, k
2) implies 1 < a21 and k2 = 1; thus

1 < a1 and k = 1. But then a1 ≤ a21 ≤ a31 = a1, so a21 = a1, hence (a21, k
2) = (a1, k), a

contradiction.

Even though not all compact URLs are of the form Rφ,f , we show that this holds when

the comparability relation on R \ {⊥,⊤} is an admissible congruence and the chain of 1 is

cancellative with respect to the factor monoid.

We say that the congruence ≡ on M is admissible if x[1]≡ = [x]≡ = [1]≡x, for all

x ∈ M . Also, we say H is K-cancellative if there exists a selection of representatives

− : K → M (i.e., for all x ∈ M , if k ≡ x then x ∈ k) satisfying 1K = 1M and the

left and right multiplications by k are injective on H . The terminology K-cancellative and

2-cocycle come from [13].

Proposition 7.9. If R is a compact unilinear residuated lattice, the comparability relation

≡ is an admissible congruence of M, where M = R \ {⊥,⊤}, and H is K-cancellative,

where H = [1]≡ and K = M/≡, then R ∼= Rφ,f for some map φ : K → ResAut(H)

and 2-cocycle f : K ×K → H with respect to H, K and φ.

58



Proof. Since H is K-cancellative, there exists a selection of representatives − : K → M .

We denote by Lx and Rx the left and right multiplication by x ∈ M , respectively. We

know that for all k ∈ K, the maps Rk, Lk : H → k are injective and since ≡ is an

admissible congruence on M and H = [1]≡, they are also surjective. So, for any k ∈ K,

the map φk : H → H given by φk(h) = R−1

k
Lk(h) is a well-defined bijection on H; hence

kh = φk(h)k.

Note that

φk(h1h2)k = k · h1h2

= kh1 · h2

= φk(h1)k · h2

= φk(h1) · kh2

= φk(h1) · φk(h2)k

= φk(h1)φk(h2) · k.

Since H is K-cancellative, we have φk(h1h2) = φk(h1)φk(h2). Now suppose h1 ≤ h2 for

some h1, h2 ∈ H . Since R is residuated, we get

φk(h1) ≤ φk(h2) iff R−1

k
Lk(h1) ≤ R−1

k
Lk(h2)

iff Rk(R
−1

k
Lk(h1)) ≤ Lk(h2)

iff Lk(h1) ≤ Lk(h2).

It follows from the order-preservation of Lk that φk is order-preserving. So φk is an auto-

morphism of the totally-ordered monoid H, and 1K = 1H yields φ1 = idH.
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Since ≡ is admissible on M and K = M/ ≡, we have

Hk1k2 = k1k2 = Hk1Hk2 = Hk1 k2.

Therefore there exist f(k1, k2) and g(k1, k2) in H such that

k1k2 = f(k1, k2)k1 k2, k1 k2 = g(k1, k2)k1k2

for all k1, k2 ∈ K. Since H is K-cancellative, it follows that f and g are well-defined

functions from K ×K to H . Moreover, since f(k1, k2)g(k1, k2) = g(k1, k2)f(k1k2) = 1

for all k1, k2 ∈ K, we get that f(k1, k2) and g(k1, k2) are invertible. By definition, we have

k2 = f(1K, k2)1K k2, k1 = f(k1, 1K)k1 1K.

Again by the K-cancellativity of H, we get f(1K, k) = f(k, 1K) = 1H for all k ∈ K.

Also, by the definition of f , we know

Lk1k2
= Lf(k1,k2)Lk1

Lk2
, Rk1k2

= Rk2
Rk1

Rf(k1,k2).

Thus by the K-cancellativity of H we have

φk1k2 = R−1

k1k2
Lk1k2

= R−1
f(k1,k2)

R−1

k1
R−1

k2
Lf(k1,k2)Lk1

Lk2

= R−1
f(k1,k2)

Lf(k1,k2)R
−1

k1
Lk1

R−1

k2
Lk2

= R−1
f(k1,k2)

Lf(k1,k2)φk1φk2
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for all k1, k2 ∈ K. So we get

φk1k2(h) = f(k1, k2) ·H φk1φk2(h) ·H f(k1, k2)
−1

for all h ∈ H .

Finally, we observe that

k1 · k2k3 = k1k2 · k3

iff f(k1, k2k3)k1 k2k3 = f(k1k2, k3)k1k2 k3

iff f(k1, k2k3)k1f(k2, k3)k2 k3 = f(k1k2, k3)f(k1, k2)k1 k2 · k3

iff f(k1, k2k3)φk1(f(k2, k3))k1 · k2 k3 = f(k1k2, k3)f(k1, k2)k1 k2 · k3.

So by the associativity of K and the K-cancellativity of H, we get

f(k1, k2k3)φk1(f(k2, k3)) = f(k1k2, k3)f(k1, k2)

for all k1, k2, k3 ∈ K. Therefore f is a 2-cocycle with respect to H, K and φ.

Finally, we define the map ψ : R → Rφ,f , given by ψ(⊥) = ⊥, ψ(⊤) = ⊤ and

ψ(x) = (hx, kx), where kx = [x]≡ is the chain to which x belongs and hx = R−1

kx
(x).

Since ≡ is admissible, H is K-cancellative and H is totally-ordered, Lkx
and Rkx

are order

isomorphisms between the sets H and kx, so ψ is well-defined. We will show that ψ is a

residuated-lattice isomorphism.

Suppose ψ(x) = ψ(y) for some x, y ∈ M . Then kx = ky and hx = hy, i.e., x ≡ y

and R−1

kx
(x) = R−1

ky
(y). Since Rkx

= Rky
is a bijection between H and kx, we have x = y.

For (h, k) ∈ H × K, let x = hk. Since Rk is a bijection, we know h = R−1

k
(x), so

ψ(x) = (h, k). Since ψ(⊥) = ⊥ and ψ(⊤) = ⊤ are uniquely defined, ψ is a bijection

between R and Rφ,f .
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Since Rkx
is an order isomorphism between H and the chain kx, x ≤R y iff kx = ky

and R−1

kx
(x) ≤H R−1

ky
(y), hence x ≤R y iff ψ(x) ≤Rφ,f

ψ(y) for all x, y ∈ M . Since

ψ(⊥) = ⊥ and ψ(⊤) = ⊤, ψ is a lattice isomorphism between R and Rφ,f .

Since kxy = kx ·K ky, we have kxy = kxky = f(kx, ky)kx ky, so for all x, y ∈M

ψ(xy) = (R−1

kxy
(xy), kxy) = (R−1

kx
R−1

ky
(xy)f−1(kx, ky), kxky).

On the other hand,

ψ(x)ψ(y) =(R−1

kx
(x), kx)(R

−1

ky
(y), ky)

=(R−1

kx
(x)φkx(R

−1

ky
(y))f−1(kx, ky), kxky)

=(φkx(L
−1

kx
(x))φkx(R

−1

ky
(y))f−1(kx, ky), kxky)

=(φkx(L
−1

kx
(x)R−1

ky
(y))f−1(kx, ky), kxky)

Since

xy = Lkx
L−1

kx
(x) ·Rky

R−1

ky
(y) = Rky

Lkx
(L−1

kx
(x)R−1

ky
(y)),

we have

L−1

kx
(x)R−1

ky
(y) = L−1

kx
R−1

ky
(xy).

So

R−1

kx
R−1

ky
(xy) = R−1

kx
(Lkx

L−1

kx
)R−1

ky
(xy) = φkx(L

−1

kx
R−1

ky
(xy)) = φkx(L

−1

kx
(x)R−1

ky
(y)),

hence

ψ(xy) = ψ(x)ψ(y).

62



Since R is compact, we know ψ(xy) = ψ(x)ψ(y) for all x, y ∈ R. So ψ is a lattice-ordered

monoid isomorphism. Since both of R and Rφ,f are residuated lattices, ψ is a lattice and

monoid isomorphism, and the divisions are definable by the order and multiplication, we

get that ψ is a residuated-lattice isomorphism.
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Chapter 8: Unilinear Residuated Lattices

We will now undertake a classification of unilinear residuated lattices. We will identify

four natural classes of URLs and show that these classes cover all URLs. We will provide

axiomatizations for these classes and, via a series of constructions, show that algebras in

three of these classes can be constructed from algebras in the fourth one.

Recall that a (bounded) URL is called ⊤-central if it satisfies

∀x (⊤x = x⊤) (⊤-central)

which is short for the formula

∀u1, u2, x (u1 ≤ u2 or u2 ≤ u1 or (u1 ∨ u2)x = x(u1 ∨ u2)).

By Lemma 4.9(3), ⊤-centrality imposes no restriction on the linear models, so we will

focus only on the non-linear models. Also, by Lemma 4.9(2) for these non-linear models

there is no real distinction between including the bounds in the language or not.

The following result shows all non-linear unilinear residuated lattices are ⊤-central.

Proposition 8.1. Every non-linear (bounded) unilinear residuated lattice is ⊤-central.

Proof. Let R be a non-linear unilinear residuated lattice. First we observe that ⊤ is central

in R iff ⊤x = x⊤ for all ⊥ < x < 1.

To prove this, we see that if x ≥ 1, then ⊤ = ⊤1 ≤ ⊤x and ⊤ = 1⊤ ≤ x⊤, so

⊤x = ⊤ = x⊤. Also, we know that ⊥⊤ = ⊤⊥ = ⊥. Finally, for x ∥ 1, we have

⊤x = (1 ∨ x)x = x ∨ x2 = x(1 ∨ x) = x⊤.
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Since R is non-linear, there exists d ∈ R such that d ∥ 1. Now let ⊥ < x < 1,

then we know dx ≤ d by order-preserving of multiplication. If dx = ⊥, then we have

⊤x = (1 ∨ d)x = x ∨ dx = x; if dx > ⊥, then we have dx ≡ d ∥ 1 and ⊤x = (1 ∨ d)x =

x ∨ dx = ⊤. So if ⊥ < x < 1, either ⊤x = x or ⊤x = ⊤; similarly we can show if

⊥ < x < 1, either x⊤ = x or x⊤ = ⊤.

Suppose there exists ⊥ < x, y < 1 such that ⊤x = x and ⊤y = y, then by x =

⊤x = (1 ∨ d)x = x ∨ dx we have dx ≤ x. Since dx ≤ d and d ∥ x, we know dx = ⊥

by unilinearity. Likewise we can show dy = ⊥. Now we have x = ⊤x = (y ∨ d)x =

yx ∨ dx = yx and y = ⊤y = (x ∨ d)y = xy ∨ dy = xy. Since x, y < 1, we get

x = yx ≤ y · 1 = y and y = xy ≤ x · 1 = x, so x = y, i.e., if there exists such element x

that ⊥ < x < 1 and ⊤x = x, then it’s unique. Similarly we can show if there exists such

element x that ⊥ < x < 1 and x⊤ = x, then it’s unique.

Finally, let x be the unique element such that ⊥ < x < 1 and ⊤x = x, then we

know dx = ⊥. By above proof we also know either x⊤ = ⊤ or x⊤ = x. By way of

contradiction, assume that x⊤ = ⊤, then ⊥ = ⊥⊤ = dx · ⊤ = d · x⊤ = d⊤ ≥ d, a

contradiction since d ∥ 1. Thus x⊤ = x and hence x is also the unique such element that

⊥ < x < 1 and x⊤ = x.

Therefore for all ⊥ < x < 1, either ⊤x = x⊤ = ⊤ or ⊤x = x⊤ = x, and the latter

case is unique.

8.1 Properties of non-linear unilinear residuated lattices

We focus on (bounded) unilinear residuated lattices whose lattice reduct is non-linear.

Here we use the notation a ≡ b to indicate that two elements a and b are comparable, i.e.,

that a ≤ b or b ≤ a.
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Given a non-linear unilinear residuated lattice R, we define

UR = U := {x ∈ R \ {⊤,⊥} |⊤x = ⊤}

ZR = Z := {x ∈ R \ {⊤,⊥} |⊤x = x}

WR = W := {x ∈ R \ {⊤,⊥} |x < ⊤x < ⊤}.

We will be dropping the subscript R, when it is clear from the context. Note that U ⊔ Z ⊔

W = R \ {⊤,⊥}.

The following result follows from [11].

Proposition 8.2. In any residuated lattice R with top ⊤, the set R⊤ = Z ∪ {⊤,⊥} is

a subalgebra of R with respect to all operations other than 1, and ⊤ is a multiplicative

identity for R⊤. Hence, R⊤ is an integral residuated lattice. If R is unilinear, then also R⊤

is unilinear.

An element a of a residuated lattice is called invertible if there is an element b such

ab = ba = 1. The following theorem provides useful insight in the structure of unilinear

residuated lattices.

Theorem 8.3. Let R be a non-linear unilinear residuated lattice.

1. U ∪ {⊤}, Z ∪ {⊥,⊤} and Z ∪ {⊥} are closed under multiplication.

Furthermore, ab = ba = b for all a ∈ U, b ∈ Z.

2. Z is either a chain or a 2-element antichain. Also, if Z = {b1, b2} is a 2-element

antichain, then b21 = b1, b22 = b2 and b1b2 = b2b1 = ⊥. In this case, Z ∪ {⊥,⊤} is a

1-free subalgebra of R and isomorphic to a 4-element Boolean algebra.

3. There is at most one b ∈ Z with b ≡ 1. If there is such an element b, then bx = xb =

⊥ for all x ∥ 1 and U = ↑b \ {b,⊤}. If there is no such b, then a ∥ b′ for all a ∈ U

and b′ ∈ Z.
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4. The chain of 1 (i.e., ↕ 1) is disjoint from W .

5. W forms a chain and c < b0 := c⊤ = cb0 = b0c = cc′ ∈ Z, for all c, c′ ∈ W . In

other words, W = ↓b0 \ {⊥, b0}. Also, if W ̸= ∅, then and (W ∪ {b0}, ·,≤) is a

totally-ordered null semigroup with zero element b0.

Moreover, xc, cx ≤ b0 for all x ∈ R, c ∈ W ; in particular, xc = cx = b0 when x ∥ 1.

6. For all a ∈ U and c ∈ W , we have a ∥ c.

7. If W ̸= ∅, then the set {b ∈ Z : b ∥ 1} ∪ {⊤} equals ↑b0 and is closed under

multiplication and divisions.

8. If W ̸= ∅, then all invertible elements are comparable with 1.

Proof. Below, we prove the statements in a convenient order.

(1) Note that since ⊤⊤ = ⊤ and ⊤⊥ = ⊥, we have U ∪ {⊤} = {x ∈ R : ⊤x = ⊤}

and Z ∪ {⊥,⊤} = {x ∈ R : ⊤x = x}. If a1, a2 ∈ U ∪ {⊤}, then ⊤ · a1a2 = ⊤a1 · a2 =

⊤a2 = ⊤, so a1a2 ∈ U ∪{⊤}. Also if b1, b2 ∈ Z∪{⊥,⊤}, then ⊤· b1b2 = ⊤b1 · b2 = b1b2,

hence b1b2 ∈ Z ∪ {⊥,⊤}. Finally, if b1, b2 ∈ Z ∪ {⊥}, then b1b2 ∈ Z ∪ {⊥,⊤} and

b1b2 ≤ b1⊤ = b1 < ⊤, so b1b2 ∈ Z ∪ {⊥}.

Now, for a ∈ U and b ∈ Z, using the centrality of ⊤, we have ab = a · b⊤ = ab · ⊤ =

⊤ · ab = ⊤a · b = ⊤b = b. Similarly we show that ba = b.

(4) If x ≥ 1, then ⊤x ≥ ⊤ · 1 = ⊤, so x ∈ U ∪{⊤}. If x < 1, then dx ≤ d, where d is

some fixed element inR\{⊥,⊤}, incomparable to 1; such a d exists, sinceR is non-linear.

If dx = ⊥, then ⊤x = (1 ∨ d)x = x ∨ dx = x ∨ ⊥ = x, so x ∈ Z ∪ {⊥}. If dx ̸= ⊥,

then since dx ≤ d, we get that dx is incomparable with 1 and so also with x. In this case

⊤x = (1 ∨ d)x = x ∨ dx = ⊤, thus x ∈ U . Therefore, every element of ↕ 1 is outside W .

(3) Let b ∈ Z such that b ≡ 1. Since R is non-linear, there exists x ∈ R such that

x ∥ 1. Since b = b⊤ = b(1 ∨ x) = b ∨ bx, we have bx ≤ b. Also, note that b < 1, since
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otherwise ⊤b = ⊤, so we get bx ≤ x; hence bx ≤ b ∧ x. Since x ∥ 1 ≡ b ̸∈ {⊤,⊥}, we

get x ∥ b by unilinearity, hence bx ≤ b ∧ x = ⊥; likewise, we have xb = ⊥. Likewise, for

every b′ with 1 ≡ b′ ∈ Z, we get xb′ = b′x = ⊥, so b′ = ⊤b′ = (b ∨ x)b′ = bb′ ∨ xb′ = bb′

and b = b⊤ = b(b′ ∨ x) = bb′ ∨ bx = bb′. Thus b′ = b.

Furthermore, every element of U is comparable to 1 in this case, since if there were

an a ∈ U with a ∥ 1, we would get ab = ba = ⊥ by the preceding paragraph, which

contradicts the fact ab = ba = b. Also, since U is upward-closed, we get b < a; hence

U ⊆ ↑b \ {b,⊤}. Conversely, by (4), no element of W is comparable to b, so since b is the

only element of Z that is comparable to 1, we get ↑b \ {b,⊤} ⊆ U .

Now suppose b ∥ 1 for all b ∈ Z. By way of contradiction, assume that a ≡ b′, for

some a ∈ U and b′ ∈ Z. Since b′ ∥ 1, we have a ∥ 1. Since U is upward-closed, we get

b′ < a. So, using (1), we get ⊤ = a⊤ = a(1 ∨ b′) = a ∨ ab′ = a ∨ b′ = a, a contradiction.

(5) If c, c′ are in W , they are incomparable to 1, by (4). By the definition of W , we

have c < c⊤ = c(1 ∨ c′) = c ∨ cc′ = c⊤ < ⊤. By unilinearity, c⊤ is join-irreducible, and

using c < c ∨ cc′ = c⊤ < ⊤, we get c < cc′ = c⊤ < ⊤; likewise, using the centrality of

⊤, we have c′ < cc′ = ⊤c′. So, cc′ is comparable to both c and c′ and since none of them is

⊥ or ⊤, by the unilinearity of R, we get that c and c′ are comparable; hence W is a chain.

Moreover, it follows from the above calculations that for any c1, c2, c3, c4 ∈ W we have

c1c2 = c1⊤ = c1c4 = ⊤c4 = c3c4 and we use b0 to denote the common value of all these

products. Furthermore, we have ⊤b0 = ⊤ · ⊤c1 = ⊤c1 = b0, so b0 ∈ Z ∪ {⊤}. Actually,

b0 ∈ Z because b0 = ⊤ implies c1⊤ = ⊤, contrary to the definition of W . Finally, we have

b0c = ⊤c · c = ⊤ · cc = ⊤b0 = b0 and cb0 = c · c⊤ = c2⊤ = b0⊤ = b0, where c ∈ W .

Note that for all x ∈ R and c ∈ W , we have xc ≤ ⊤c = b0 and cx ≤ c⊤ = b0. Finally,

if x ∥ 1 and c ∈ W , then b0 = c(1 ∨ x) = c ∨ cx and since b0 is join-irreducible, we get

b0 = c ∈ W or b0 = cx, so b0 = cx; likewise b0 = xc.
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(6) Given a ∈ U and c ∈ W , we have c ∥ 1 according to (3). So a ∨ ca = (1 ∨ c)a =

⊤a = ⊤. Since a ̸= ⊤ and ca ≤ b0a = b0 < ⊤, we have a ∥ ca by unilinearity. Finally,

since ⊥ < ca ≡ b0 ≡ c < ⊤, we get a ∥ c again by unilinearity.

(7) Suppose there exists c ∈ W and set Z ′ = {b ∈ Z : b ∥ 1}. By (4) and (5), we have

c2 = b0 ∈ Z ′, so Z ′ is not empty. If b ∈ Z ′, then b ∥ 1, so bc = b0 by (5). By (4), we have

c ∥ 1, so b = b⊤ = b(1 ∨ c) = b ∨ bc = b ∨ b0 and b0 ≤ b; thus Z ′ ⊆ ↑b0. Conversely, for

b0 ≤ x < ⊤, we have x ∥ 1, since 1 ∥ b0 and R is unilinear. Also, b0x ≤ b0⊤ = b0 ≤ x,

so ⊤x = (1 ∨ b0)x = x ∨ b0x = x and x ∈ Z ∪ {⊤}; hence x ∈ Z ′ ∪ {⊤}. Therefore

Z ′ ∪ {⊤} = ↑b0.

Now we show ↑b0 is closed under multiplication and divisions. For b, b′ ≥ b0, we have

bb′ ≥ b20 = ⊤c ·c⊤ = ⊤c2 ·⊤ = ⊤b0 ·⊤ = b0. Also, since b0 = b0⊤ = b0(1∨b) = b0∨b0b,

we have b0b ≤ b0 ≤ b′ and b0 ≤ b′/b, by residuation; likewise b0 ≤ b\b′.

(8) Assume that a1 is invertible: a1a2 = a2a1 = 1, for some a2. Note that if ⊤a1 = a1,

then ⊤ = ⊤1 = ⊤ · a1a2 = a1a2 = 1, which is a contradiction, so a1 /∈ Z ∪ {⊤,⊥}.

If a1 ∈ W , then also a1 = a1 · a1a2 = a21a2 = b0a2 = b0a1 · a2 = b0, which is also a

contradiction, so a1 /∈ W . Therefore, invertible element belong to U and a1, a2 ∈ U . If

a1 ∥ 1, then a2 ∥ 1 since ⊤ = ⊤a2 = (a1 ∨ 1)a2 = a1a2 ∨ a2 = 1 ∨ a2. If, further, c ∈ W ,

by (5) we get ca1 = ca2 = b0, so c = c · 1 = c · a1a2 = ca1 · a2 = b0a2 = b0, which is a

contradiction. Therefore a1 ≡ 1 and a2 ≡ 1 when W ̸= ∅.

(2) First note that for x, y ∈ Z we have xy ≤ x⊤ = x and xy ≤ ⊤y = y, so xy ≤ x∧y;

in particular, if x, y are incomparable, then xy = ⊥. Now suppose Z is not a chain and

x, y are incomparable elements of Z. Now, any z ∈ Z has to be incomparable to x or to

y; without loss of generality, z ∥ y. So x = x⊤ = x(y ∨ z) = xy ∨ xz = ⊥ ∨ xz =

xz ≤ ⊤z = z and z = z⊤ = z(y ∨ x) = zy ∨ zx = ⊥ ∨ zx = zx ≤ ⊤x = x, hence

x = z. Thus, if Z is not a chain, then it is a 2-element antichain: Z = {x, y}. In such a

case, x2 = x2 ∨ ⊥ = x2 ∨ xy = x(x ∨ y) = x⊤ = x and likewise y2 = y. Also, from
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above we know that xy = yx = ⊥. To show that Z ∪ {⊥,⊤} is a 1-free subalgebra of R

and isomorphic to a 4-element Boolean algebra, we compute the divisions involving x and

y, by distinguishing two cases.

If both x and y are incomparable to 1, then W = ∅ by (7). Since xa = ax = x and

ya = ay = y for all a ∈ U ∪ {⊤}, we know x\⊥ = x\y = y/x = ⊥/x = y and

y\⊥ = y\x = x/y = ⊥/y = x.

If x is comparable with 1, then y is not comparable to x or 1. So, x\⊥ = x\y = y/x =

⊥/x = y since xa = ax = x for all a ∈ U ∪ {⊤}; xc = cx = ⊥ for all c ∈ W ∪ {y} and

if W ̸= ∅, then c < y for all c ∈ W by proof in (4). Also, y\⊥ = y\x = x/y = ⊥/y = x

since ay = ya = y for all a ∈ U ∪ {⊤} and cy = yc = y for all c ∈ W ∪ {y} by proof in

(4).

8.2 Classification of unilinear residuated lattices

In the following we will make use of Theorem 8.3 to classify the (bounded) URLs

into various classes (along the lines of the properties mentioned in the theorem). As we

mentioned, it suffices to describe the structure of the non-linear members of each class.

These classes, which together cover all the URLs, will be: B4 (containing only the 4-

element Boolean algebra), ⊤unital, B, TW, LW. Furthermore, we show how the algebras

in the three latter classes can be constructed from algebras in ⊤unital, thus reducing the

study of URLs to the study of the ⊤-unital ones. Moreover, we provide axiomatizations for

each class.

We will also identify a subclass T of TW and a subclass L of LW that will play a role

later. Also, bounded versions of all of these classes can be considered without any change

in the axiomatization.

The culmination of the following exhaustive list of configurations of (bounded) URLs,

together with specific constructions presented in the following subsections, will result to

the following result.
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Corollary 8.4. Every (bounded) URL belongs to one of the classes: B4, ⊤unital, B, TW,

LW. Moreover, the algebras in the last three classes can be constructed from algebras in the

class ⊤unital.

8.2.1 The class Lin. The class Lin consists of all the residuated chains; we denote by

bLin the class of bounded residuated chains. Figure 8.1 illustrates integral and non-integral

chains. Clearly Lin is axiomatized by the sentence (∀u, v)(u ≤ v or v ≤ u). Moreover,

this class is contained in all of the others, as for the other classes we only pose restrictions

on their non-linear members.

1

b1

bn

⊥ ⊥

c

b

1

a1

an

⊤

c

b

1

a

Figure 8.1: Lin: R is linear, ⊤ is not necessarily central

8.2.2 The class B4. We consider the class where the non-linear members are integral. If

R is integral, then ⊤ = 1, so x⊤ = ⊤x = x for all x ∈ R; hence R = ZR ∪ {⊥,⊤}.

Since R is non-linear, by Theorem 8.3(2) we get that R is isomorphic to the 4-element

generalized Boolean algebra; see Figure 8.2(a).

This class is axiomatized by the formula: ⊤x = x = x⊤, which is short for

∀u, v, x (u ≤ v or v ≤ u or (u ∨ v)x = x = x(u ∨ v)).

8.2.3 The class ⊤unital. We consider the class of URLs whose non-linear members R

are non-integral, and have WR = ∅ and ZR = ∅. This is equivalent to the fact that R
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⊥

b1 b2

1

⊤

⊥

an

a1

1

a−1

a−m

a a′

Figure 8.2: (a) B4: non-linear and integral;
(b)⊤unital : W = ∅ and Z = ∅

satisfies x⊤ = ⊤x = ⊤ for all x ∈ R \ {⊥}, i.e., R is rigorously compact. Figure 8.2(b)

shows the general form of R. Therefore, the non-linear members of the class are exactly

the rigorously compact URLs, hence the class is axiomatized by the ⊤-unital axiom. We

use b⊤unital for the bounded version.

Chapter 7 contains general constructions that give algebras in this class. In the follow-

ing, we will prove that all of the remaining cases can be reduced to the ⊤-unital case, by

providing specific constructions for each class.

8.2.4 The class T. We denote by T the class of URLs whose non-linear members are

non-integral and satisfy: WR = ∅, ZR = {b ̸= b′} and b ≡ 1; all of the results also hold

for the corresponding class bT of bURLs. The name of the class is motivated that there are

elements of ZR and UR that are together in the same chain. Let R be a non-linear member

of T. Since WR = ∅, we have that R satisfies the formula

∀x (⊤x = ⊤ or ⊤x = x) (W∅)
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Since b ≡ 1 for some b ∈ ZR, Theorem 8.3(3) implies that UR = ↑b \ {b,⊤} is a

chain. By Theorem 8.3(3), b is the only element of ZR that is comparable to 1, so b′ is

incomparable to both 1 and b. By Theorem 8.3(2), ZR ∪ {⊥,⊤} is a 1-free subalgebra of

R and it isomorphic to the 4-element generalized Boolean algebra. Therefore, R has to be

ordered as in Figure 8.3(a). In particular, R satisfies (w2), as it has width at most 2.

By Theorem 8.3(1), b is the multiplicative zero for UR ∪ {⊤} and by Theorem 8.3(2),

b2 = b. So, ↑b is totally-ordered, closed under multiplication and contains 1. Moreover,

it is closed under divisions: since xb = bx = b ≤ a for all x ∈ ↑b and a ∈ UR, we get

b ≤ x\a, a/x ≤ ⊤; also b ≤ a\b and a′ ̸≤ a\b, for all a′ ∈ UR, hence a\b = b; and

b\b = b/b = ⊤. So ↑b is a ⊥-free subalgebra of R. By Theorem 8.3(1), xy = y = yx, for

x ∈ UR and y ∈ ZR. Therefore, we have a\b′ = b′/a = b′ and b′\a = a/b′ = b, for all

a ∈ UR. Note that given two incomparable elements in R, at least one of them is b′ and we

know b′\⊥ ∨ b′ = b ∨ b′ = ⊤. Therefore, R satisfies the sentence:

∀x, y (x ≤ y or y ≤ x or x\⊥ ∨ x = ⊤ or y\⊥ ∨ y = ⊤) (compl)

⊤

⊥

an

a1

1

a−1

a−m

b

b′ A

⊤

⊥

b

b′

Figure 8.3: (a) T: W = ∅, Z = {b, b′} and b ∥ b′;
(b) the construction
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We have shown that the non-linear members of the class T satisfy (URL), (W∅), (w2)

and (compl). We show now that, conversely, these sentences provide an axiomatization for

the class.

Theorem 8.5. The class T is axiomatized by (URL), (W∅), (w2) and (compl).

Proof. Let R be a non-linear residuated lattice satisfying (URL), (W∅), (w2) and (compl);

let d ∈ R such that 1 ∥ d, then d /∈ {⊥,⊤}. Since 1\⊥ ∨ 1 = ⊥ ∨ 1 = 1 ̸= ⊤, by

(compl) we get d\⊥ ∨ d = ⊤. Since d ̸= ⊥, we know d\⊥ ̸= ⊤, so d\⊥ ∥ d. Since UR is

closed under multiplication and elements in UR are multiplicative identities for ZR, d ∈ UR

implies d\⊥ = ⊥ then d\⊥ ≡ d, a contradiction; so we know d /∈ UR. Now, (W∅) gives

WR = ∅, hence d ∈ ZR. Also, by d\⊥ ≤ (d\⊥)⊤ ≤ d\(⊥⊤) = d\⊥, we have d\⊥ ∈ ZR.

By Theorem 8.3(2), we know now ZR = {d, d\⊥} being a 2-element antichain. By (w2)

we know the width of R is at most 2, and since d ∥ 1, d ∥ d\⊥, we can conclude that

d\⊥ ≡ 1.

We have shown that if R is a non-linear member of the class T, then ↑b is a bounded

residuated chain with top ⊤ and bottom b satisfying ⊤x = x⊤ = ⊤ for all x ̸= b (rigorous

compactness). Also, we know R = ↑b ⊔ {⊥} ⊔ {b′}, ⊥ is absorbing for R, bb′ = b′b = ⊥,

xb′ = b′x = b′ for all x ∈ R \ {⊥, b}, and b′ is only comparable to ⊤ and ⊥. We will show

in Corollary 8.7 that, conversely, if we have these ingredients (↑b,⊥ and b′) subject to the

above restrictions, there is an algebra in T whose ingredients are the given ones. Actually,

the construction we will describe is slightly more general even: it produces a residuated

lattice even if ↑b is not totally ordered (Theorem 8.6); the residuated lattice is unilinear iff

↑b is totally ordered.

Let A be a bounded residuated lattice with top ⊤ and bottom b that is rigorously com-

pact (⊤x = x⊤ = ⊤ for all x ∈ A \ {b}); then A \ {b} is closed under multiplication by

associativity. We consider the setRA,{b,b′} = A∪{⊥, b′}, where ⊥ and b′ are new elements,
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and we define a lattice ordering on it by: ⊥ < b′ < ⊤ and b′ is incomparable to all other

elements; see Figure 8.3(b). Also, we extend the multiplication of A by

xb′ = b′x = b′ if x ∈ RA,{b,b′} \ {⊥, b}

bb′ = b′b = ⊥

x⊥ = ⊥x = ⊥ for all x ∈ R.

We denote the resulting algebra by RA,{b,b′}.

Theorem 8.6. Let A be a bounded residuated lattice with top ⊤ and bottom b satisfying

⊤x = x⊤ = ⊤ for all x ∈ A \ {b}, and ⊥, b′ /∈ A are distinct elements. Then RA,{b,b′} is

the reduct of a (unique) residuated lattice, which denote in the same way. Furthermore, if

A is linear, then RA,{b,b′} is unilinear.

Proof. We set R := RA,{b,b′} for convenience. Since A \ {b} itself is a monoid, ⊥ and b′

are absorbing elements forA\{b}, ⊥ absorbs b′, and {b, b′,⊥} is a semigroup, associativity

holds in R.

We first prove that multiplication of R is order-preserving. Given that A ∪ {⊥} and

{⊥,⊤, b, b′} are residuated lattices, order preservation holds there. Also, and ⊥ is absorb-

ing, so the verification for the remaining cases is: b ≤ a ⇒ bb′ = ⊥ ≤ b′ = ab′ and

b′ ≤ ⊤ ⇒ ab′ ≤ ⊤ = a⊤, for all a ∈ A \ {b}, and likewise for multiplication on the left.

Now by way of contradiction, suppose xz does not have maximum, for some x, z ∈

R. In particular, ⊤ /∈ xz. By Remark 2.4, max⊥y = max y⊤ = ⊤ for all y ∈ R,

hence x ̸= ⊥ and z ̸= ⊤.

Assume that there exists a ∈ A \ {b,⊤} such that a ∈ xz; then x⊤ ≠ xa, since

otherwise we would have ⊤ ∈ xz. So x /∈ {b, b′,⊥,⊤}, i.e., x ∈ A \ {b,⊤}. Since

xa ≤ z, A \ {b} is closed under multiplication and b < a, b′ ∥ a for all a ∈ A \ {b,⊤}, we

have z ∈ A \ {b,⊤}. By definition of xz, we know xz = {y ∈ A : xy ≤ z} ∪ {⊥}.

75



Thus maxxz = x\Az, which is a contradiction. So we get xz ⊆ {⊥, b, b′}. Since

⊥ ∈ xz for all x, z ∈ R and xz has no maximum, we know xz = {⊥, b, b′}. Since

⊤ /∈ xz, we get x⊤ ̸= xb and x⊤ ̸= xb′, so x /∈ {⊥, b, b′}, or equivalently, x ∈ A \ {b}.

Since b ∈ xz and b′ ∈ xz, we get xb = b ≤ z and xb′ = b′ ≤ z, thus z = ⊤, which is

a contradiction. Therefore the maximum of xz exists for all x, z ∈ R, and likewise z�x

has a maximum. By Corollary 2.2, we get that R is a residuated lattice.

Corollary 8.7. The residuated lattices of the form RA,{b,b′}, where A is a rigorously com-

pact residuated chain, are up to isomorphism precisely the non-linear algebras in T.

8.2.5 The class B. We denote by B the class of URLs whose non-linear members satisfy:

R is non-integral, WR is empty, ZR = {b, b′} and {b, b′, 1} is a 3-element antichain. Let R

be a non-linear member of B; the results below hold also for bB, the bounded version. The

name of the class is motivated by the fact that ZR∪{⊥,⊤} forms a Boolean algebra. Since

WR = ∅, R satisfies the formula (W∅). Since ZR = {b, b′} and b ∥ b′, Theorem 8.3(2)

implies that ZR ∪ {⊥,⊤} is a 1-free subalgebra satisfying b2 = b, b′2 = b′ and bb′ = b′b =

⊥. Actually ZR ∪ {⊥,⊤} itself is a 4-element Boolean algebra, so R satisfies

∀x (⊤x = ⊤ or x\⊥ ∨ x = ⊤), (ZBoolean)

which is short for

∀u∀v∀x (u ≤ v or v ≤ u or (u ∨ v)x = u ∨ v or x\(u ∧ v) ∨ x = u ∨ v).

Since {b, b′, 1} is a 3-element antichain, Theorem 8.3(3) yields that a ∥ b for all a ∈ UR

and b ∈ ZR. By Theorem 8.3(1) we have ab = ba = b and also we have WR = ∅, so

a1\a2, a2/a1 ∈ UR ∪ {⊥} for all a1, a2 ∈ UR; thus UR ∪ {⊥,⊤} is a subalgebra of R. For
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the same reason R satisfies the formula

⊤\1 = ⊥, (b ∥ 1)

which is equivalent to

∀u,∀v (u ≤ v or v ≤ u or (u ∨ v)\1 = u ∧ v).

Finally, the remaining divisions are given by

a\b = b/a = b a\b′ = b′/a = b′

b\a = a/b = b′ b′\a = a/b′ = b,

for all a ∈ UR. The lattice structure of R is given in Figure 8.4(a). We now show that these

sentences provide an axiomatization.

Theorem 8.8. The class B is axiomatized by (URL), (W∅), (ZBoolean) and (b ∥ 1).

Proof. Suppose R is a non-linear residuated lattice that satisfies theses axioms. By (W∅)

we have WR = ∅ and by (ZBoolean) we know ZR ̸= ∅ and x ∈ ZR implies x ∥ x\⊥.

Similarly to the proof of Theorem 8.5, we can show that x\⊥ ∈ ZR for x ∈ ZR, so ZR is

a 2-element antichain. Finally, since R satisfies (b ∥ 1), if there exists b ∈ ZR such that

b ≡ 1, then ⊤\1 = b > ⊥ by Theorem 8.3(3), a contradiction, so b ∥ 1 and b′ ∥ 1, and

{1, b, b′} is a 3-element antichain in this case.

We now work in the converse direction and describe a general construction that will

help us characterize all non-linear algebras in B.

Let A be a bounded residuated lattice with top ⊤ and bottom ⊥ satisfying ⊤x = x⊤ =

⊤ for all x ∈ A\{⊥} and B be a bounded integral residuated lattice with top ⊤ and bottom
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Figure 8.4: (a) In B; (b) In L

⊥, such that A ∩ B = {⊥,⊤}. We consider the set RA,B = A ∪ B and the union of the

orders of A and of B, resulting in the lattice order of Figure 8.5.

Also, we extend the multiplication on A and B by stipulating that each element of B

is absorbing for A \ {⊥,⊤}. We denote the resulting algebra as RA,B.

Theorem 8.9. Let A be a bounded residuated lattice with top ⊤ and bottom ⊥ satisfying

⊤x = x⊤ = ⊤ for all x ∈ A \ {⊥}, and B be a bounded integral residuated lattice with

top ⊤ and bottom ⊥. Then RA,B is the reduct of a (unique) residuated lattice which we

denote the same way. If A and B are linear, then RA,B is unilinear.

Proof. We abbreviate RA,B as R for convenience. Since all elements in B are zero ele-

ments for those in A \ {⊥}, associativity holds.

Since both A and B are residuated, multiplication is order-preserving inside each of

them. Since elements in A \ {⊥,⊤} are multiplicative identities for those in B, multiplica-

tion between elements of A and B is order-preserving as well. So the multiplication on R

is order-preserving.

To show that R is a reduct of a residuated lattice, by Corollary 2.2 it suffices to show

that xz = {y ∈ R : xy ≤ z} has a maximum for all x, z ∈ R. By Remark 2.4, we know
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Figure 8.5: The algebra RA,B

⊥z = x⊤ = R for all x, z ∈ R, so max⊥z = maxx⊤ = ⊤. In the following we

assume that x > ⊥ and z < ⊤. Working toward a contradiction we assume that xz does

not have a maximum for some x, z ∈ R; in particular, ⊤ /∈ xz. Note that if there were an

a ∈ A \ {⊥,⊤} with a ∈ xz, then x⊤ ̸= xa (since otherwise we would get ⊤ ∈ xz),

so x /∈ B, or equivalently, x ∈ A \ {⊥,⊤}. Then, since a ∈ xz, A \ {⊥} is closed under

multiplication and elements in A \ {⊥,⊤} are incomparable with those in B \ {⊥,⊤}, we

get z ∈ A \ {⊥}, thus xz = {y ∈ R : xy ≤ z} = {y ∈ A : xy ≤ z}, and the maximum

of xz is x\Az, which is a contradiction. Hence xz is fully contained in B \ {⊤}. If

x ∈ A \ {⊥,⊤}, then xz = {y ∈ B : xy ≤ z} = {y ∈ B : y ≤ z} and since the

maximum does not exist, we get that z ∈ A and then xz = {y ∈ B : y ≤ z} = {⊥}, a

contradiction; so x ∈ B. Now, if z ∈ A, then xz = {y ∈ B : xy ≤ z} = {⊥} since B

is closed under multiplication, a contradiction; so z ∈ B. In this case xz has maximum

x\Bz, which again is a contradiction. Similarly for z�x = {y ∈ R : yx ≤ z}.

Corollary 8.10. If A is a bounded unilinear residuated lattice with top ⊤ and bottom ⊥

satisfying ⊤x = x⊤ = ⊤ for all x ∈ A \ {⊥}, and B is the 4-element Boolean algebra,
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then RA,B is a non-linear member in B. Moreover, all non-linear members of B are of this

form.

8.2.6 The class L. We denote by L the URL class in which the non-linear members are

non-integral with WR = ∅ and ZR is linear; the same results below hold for the corre-

sponding bURL class bL. The name of the class is motivated from the fact that ZR is

linear. Let R be a non-linear member in L. Since WR = ∅, we know that R satisfies (W∅).

Since R is non-linear and ZR is linear, b ∥ 1 for all b ∈ ZR, otherwise by Theorem 8.3(3)

UR = ↑b \ {⊥,⊤} and R is linear. Also by Theorem 8.3(3) we know b ∥ a for all a ∈ U .

Since ZR is linear and WR = ∅, R satisfies

∀x (⊤x = ⊤ or x\⊥ ≤ x or x ≤ x\⊥). (Zlinear)

Similar to the case for B, we can show thatUR∪{⊥,⊤} is a subalgebra andZR∪{⊥,⊤}

is a 1-free subalgebra, and that the divisions are given by

a\b = b/a = b, b\a = b\⊥, a/b = ⊥/b

for all a ∈ UR and b ∈ ZR.

Theorem 8.11. The class L is axiomatized by (URL), (W∅) and (Zlinear).

Proof. Suppose R is a non-linear residuated lattice satisfying these axioms. By (W∅) we

have WR = ∅. By (Zlinear) we get that if x ∈ ZR then x ≡ x\⊥. Since by Theorem 8.3(2)

x\⊥ ∥ x for all x ∈ ZR when ZR is a 2-element antichain, we know if ZR ̸= ∅ then it is

linear in this case; otherwise ZR = ∅ and R is in the class ⊤unital.

Note that the construction in Theorem 8.9 is general enough to apply to this case as

well, thus yielding the next characterization of all the nonlinear algebras in L.
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Corollary 8.12. If A is a bounded unilinear residuated lattice with top ⊤ and bottom ⊥

satisfying ⊤x = x⊤ = ⊤ for all x ∈ A \ {⊥}, and B is an integral residuated chain, then

RA,B is a nonlinear member in L. Moreover, all nonlinear members of L are of this form.

8.2.7 The class TW. We denote by TW the class of URL whose non-linear members R

are non-integral, ZR = {b ̸= b0} and b ≡ 1; the results below hold also for the bounded

version bTW. Let R be a non-linear member of TW. Since ZR = {b ̸= b0} and b ≡ 1,

Theorem 8.3(3) yields UR = ↑b \ {b,⊤} and that b is the unique element in ZR which is

comparable with 1, so b ∥ b0 and ZR is a 2-element antichain.

If WR = ∅, then R satisfies (W∅). Since UR = ↑b \ {b,⊤} and ZR = {b ̸= b0}, R also

satisfies (w2) and a ∥ b0 for all a ∈ UR, so x ∥ y implies x = b0 or y = b0 for all x, y ∈ R.

Since b0\⊥ = b and b0 ∥ b, we get that R satisfies (compl), so R is a member of the class

T by Theorem 8.5.

If WR ̸= ∅, then c2 ∈ ZR, c2 ∥ 1 and c ∥ 1 for all c ∈ WR by Theorem 8.3(4) and (5),

so c2 = b0. Also by Theorem 8.3(5) we know WR = ↓b0 \ {⊥, b0}, thus R satisfies (w2).

By Theorem 8.3(3), bc = ⊥ for all c ∈ WR. Since ac, ca ≤ b0 by Theorem 8.3(5) and

⊥ < ac, ca by associativity for all a ∈ UR = ↑b \ {b,⊤}, c\⊥ = b for all c ∈ WR. Since

c ∥ b, we know that c\⊥ ∨ c = b ∨ c = ⊤, hence R satisfies (compl).

Theorem 8.13. The class TW is axiomatized by (URL), (w2) and (compl).

Proof. Suppose R is a non-linear residuated lattice satisfying these axioms. Since R satis-

fies (compl), d ∥ 1 implies that d /∈ UR ∪ {⊥,⊤} since a\⊥ ∨ a = a < ⊤ for all a ∈ UR;

such d exists since R is non-linear. Also, since d\⊥ ≤ d\⊥ · ⊤ ≤ d\(⊥⊤) = d\⊥ and

d\⊥ ∨ d = ⊤, we know d\⊥ ∈ ZR. Now if d ∈ ZR, then ZR = {d, d\⊥} is a 2-element

antichain. Since R satisfies (w2) and 1 ∥ d, we know d\⊥ ≡ 1, so R is a nonlinear member

of TW. On the other hand, if d ∈ WR, then d2 = b0 ∈ ZR by Theorem 8.3(5). Since d < b0

and d\⊥ ∨ d = ⊤, we know d\⊥ ∨ b0 = ⊤. Since d\⊥ ∈ ZR, again ZR is a 2-element
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antichain. Since R satisfies (w2) and b0 ∥ 1 by Theorem 8.3(7), we know d\⊥ < 1, so R

is a non-linear member of TW.

⊤

⊥

an

a1

1

a−1

a−m

b

b0

cn

c0

c−m

Figure 8.6: TW: W ̸= ∅, Z = {b, b0} and b ≡ 1

Since all non-linear members of T satisfy the above axioms, we have that T is a sub-

class of TW. As in the case T, we can show that ↑b is a ⊥-free subalgebra of R ∈ TW and

that it is rigorously compact. Similarly, ZR ∪ {⊥,⊤} is a 1-free subalgebra and itself is a

4-element generalized Boolean algebra. If WR ̸= ∅, then WR ∪ {⊥, b0} is a totally-ordered

semigroup subreduct of R satisfying xy = b0 for all x, y ∈ WR ∪ {b0} by Theorem 8.3(5).

As we mentioned in the proof above, we have that ⊥ < ac, ca ≤ b0 and bc = cb = ⊥ for

all a ∈ UR, c ∈ WR, so the divisions among UR, ZR and WR are given by

a\b0 = b0/a = b0, b0\a = a/b0 = b

a\c = c/a ∈ WR ∪ {⊥}, c\a = a/c = b

b0\c = c/b0 = b, c\b0 = b0/c = ⊤

b\c = c/b = b0, c\b = b/c = b,

for all a ∈ UR, c ∈ WR.
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Moreover, sinceWR∪{⊥, b0} satisfies xy = b0 for all x, y ∈ WR∪{b0}, ac, ca ∈ WR∪

{b0} and b0 is a multiplicative zero for UR∪{⊤}, combined with the fact bb0 = b0b = ⊥, we

have that ↑b acts on WR∪{⊥, b0} from the left and the right. Also, since the multiplication

of R is residuated, the following properties hold.

• ⊤ · c = c · ⊤ = b0 for all c ∈ WR ∪ {b0}.

• a · b0 = b0 · a = b0 for all a ∈ UR ∪ {⊤}.

• If a · c = ⊥ or c · a = ⊥, then either a = b or c = ⊥ for all a ∈ ↑b and c ∈ ↓b0.

Conversely, we construct a residuated lattice based on a rigorously compact residuated

lattice, a bounded semigroup which is almost null and a bi-residuated bi-action. When

the given algebras are totally-ordered, we obtain a non-linear member of TW, as we show

below.

Let A be a rigorously compact residuated lattice with bottom b and top ⊤ and let C be

a bounded lattice-ordered semigroup with top b0 and bottom ⊥ satisfying xy = b0 for all

x, y ∈ C \ {⊥} and ⊥z = z⊥ = z for all z ∈ C. Suppose ∗ is a bi-residuated bi-action of

A on C, i.e.,

1 ∗ c = c, (a1a2) ∗ c = a1 ∗ (a2 ∗ c), (a1 ∗ c) ∗ a2 = a1 ∗ (c ∗ a2), c ∗ 1 = c, c ∗ (a2a1) =

(c ∗ a2) ∗ a1,

and there exist functions \l : A × C → C, /l : C × C → A, /r : C × A → C and

\r : C × C → A such that

a ∗ c1 ≤ c2 iff c1 ≤ a\lc2 iff a ≤ c2/
lc1

c1 ∗ a ≤ c2 iff c1 ≤ c2/
ra iff a ≤ c1\rc2
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for all a, a1, a2 ∈ A and c, c1, c2 ∈ C. Here we write ∗ for both the left ∗ : A × C → C

and right ∗ : C × A → C aspects of the action. Also, assume that the action respects top

elements and has no zero-divisors:

⊤ ∗ c = c ∗ ⊤ = b0 for all c ∈ C \ {⊥}

a ∗ b0 = b0 ∗ a = b0 for all a ∈ A \ {b}

If a ∗ c = ⊥ or c ∗ a = ⊥, then either a = b or c = ⊥ for all a ∈ A and c ∈ C

Note that the converse of the third condition above holds, given that ∗ is residuated.

Now we letRA,C,∗ = A∪C and define as order the union of the orders of A and C and

also making ⊥ and ⊤ the new bounds. This results in a lattice ordering as shown below,

where in the picture A includes ⊤ and b, and C includes ⊥ and b0.

A C

⊤

⊥

b

b0

Figure 8.7: RA,C,∗
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Also, we define multiplication on RA,C,∗ by

x · y =


x ·A y if x, y ∈ A

x ·C y if x, y ∈ C

x ∗ y if x ∈ A, y ∈ C or x ∈ C, y ∈ A.

We denote the resulting algebra by RA,C,∗.

Theorem 8.14. Let A be a rigorously compact residuated lattice with top ⊤ and bottom b

and C be a bounded lattice-ordered semigroup with top b0 and bottom ⊥ satisfying xy = b0

for all x, y ∈ C \ {⊥} and ⊥z = z⊥ = z for all z ∈ C. Suppose that A has a bi-residuated

bi-action on C that respects tops and has no zero divisors. Then RA,C,∗ is the reduct of a

residuated lattice, which we denote in the same way.

Proof. In the proof we use R as short for RA,C,∗.

For associativity, we first observe that {⊥,⊤, b, b0} is a 4-element Boolean algebra.

Also, by the definition of multiplication we have bc = cb = ⊥ for all c ∈ C and ⊥ is the

multiplicative zero for R. So we may focus on the multiplications between A and C that

do not involve b and ⊥. For a, a1, a2 ∈ A \ {b} and c, c1, c2 ∈ C \ {⊥}, the verification of

the nontrivial cases is as follows:

a1a2 · c = a1a2 ∗ c = a1 ∗ (a2 ∗ c) = a1 · a2c

a1c · a2 = (a1 ∗ c) ∗ a2 = a1 ∗ (c ∗ a2) = a1 · ca2

c1c2 · a = b0a = b0 = c1 · c2a

c1a · c2 = b0 = c1 · ac2

The remaining cases are similar or straightforward.
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Since A is residuated, multiplication on A is order-preserving. Since c1c2 = b0 for all

c1, c2 ∈ C \{⊥} and ⊥x = x⊥ = ⊥ for all x ∈ C, multiplication on C is order-preserving.

For other cases we show y ≤ z =⇒ xy ≤ xz. Since A has a bi-residuated bi-action ∗

on C, the multiplication is order-preserving if x ∈ A, y, z ∈ C or x ∈ C, y, z ∈ A. So the

remaining cases are

• y = ⊥, z ∈ A: xy = ⊥ ≤ xz for all x ∈ R.

• y ∈ C \ {⊥} and z = ⊤: If x ∈ A \ {b}, then xy ≤ b0 < ⊤ = xz; if x ∈ C \ {⊥},

then xy = b0 = xz; otherwise xy = ⊥ ≤ xz.

Similarly we can show y ≤ z =⇒ yx ≤ zx. Therefore the multiplication of R is

order-preserving.

To show that R is the reduct of a residuated lattice, we will show that xz = {y ∈

R : xy ≤ z} has maximum for all x, z ∈ R. Since ∗ is a bi-residuated action, there exist

functions \l : A× C → C, /l : C × C → A, /r : C × A → C and \r : C × C → A such

that

a ∗ c1 ≤ c2 iff c1 ≤ a\lc2 iff a ≤ c2/
lc1

c1 ∗ a ≤ c2 iff c1 ≤ c2/
ra iff a ≤ c1\rc2

for all a ∈ A, c1, c2 ∈ C. By Remark 2.4, we know ⊥z = x⊤ = R for all x and z,

so max⊥z = maxx⊤ = ⊤ in this case. In the following we assume that x > ⊥ and

z < ⊤. Working toward a contradiction we assume that xz has no maximum for some

x, z ∈ R, then ⊤ /∈ xz. First, since ⊥ ∈ xz, we know xz is not empty. If there

exists c ∈ C \ {⊥} such that c ∈ xz, then we have x⊤ ≠ xc, so x /∈ C, or equivalently,

x ∈ A. Since xc ≤ z < ⊤, xc ∈ C and elements in A \ {⊤} are incomparable with

those in C \ {⊥}, we get z ∈ C. According to the definition of xz and ∗, we know the
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maximum of xz is x\lz, which is a contradiction. Thus xz ⊆ (A ∪ {⊥}) \ {⊤}. Since

xz does not have a maximum and xz is downward closed, {⊥, b} is a proper subset

of xz, so there exists a ∈ A \ {b,⊤} such that a ∈ xz. Thus x⊤ ̸= xa implies that

x /∈ {⊥,⊤, b, b0}. If x ∈ A \ {b,⊤}, then we know z ∈ A \ {b,⊤} since A \ {b} is closed

under multiplication and elements in C \ {⊥} is incomparable with those in A \ {⊤}. In

this case, xz has a maximum x\Az by the residuation of A, which is a contradiction,

so we know x ∈ C \ {⊥, b0}. Furthermore, since xa ≤ z, xa ∈ C and elements in

A \ {⊤} are incomparable with those in C \ {⊥}, we know z ∈ C. In this case, xz

has a maximum x\rz since ∗ is bi-residuated, which is again a contradiction. Therefore,

xz has a maximum for all x, z ∈ R. Similarly for the existing of the maximum of

z�x = {y ∈ R : yx ≤ z}.

Corollary 8.15. If A is a rigorously compact residuated chain and C is a totally-ordered

semigroup with top b0 and bottom ⊥ satisfying xy = b0 for all x, y ∈ C \ {⊥} and

⊥z = z⊥ = z for all z ∈ C, then RA,C,∗ is in TW. Also, all non-linear members of TW

are either of this form when W ̸= ∅ or of the form RA,{b,b′} in Theorem 8.6 when W = ∅.

8.2.8 The class LW. We denote by LW the class of URLs whose non-linear members R

are non-integral, ZR is linear. Let R be a non-linear member of LW; the bounded version is

denoted by bLW. Since R is non-linear and ZR is linear, if WR ̸= ∅, then ZR = ↑b0 \ {⊤}

by Theorem 8.3(7), so b ∥ 1 for all b ∈ ZR; if WR = ∅, then R satisfies (URL), (W∅) and

(Zlinear), so R ∈ L by Theorem 8.11 and b ∥ 1 for all b ∈ ZR; thus a ∥ b for all a ∈ UR

and b ∈ ZR by Theorem 8.3(3). Note that in this case ZR does not need to have a least

element. If WR ̸= ∅, then R satisfies

∀x, ∀y (⊤x = ⊤ or ⊤y = ⊤ or x ≤ y or y ≤ x). (ZWlinear)
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Since ⊥ < ac, ca ≤ b0 for all a ∈ UR and c ∈ WR, every b ∈ ZR is a multiplica-

tive zero for UR and elements in UR are incomparable with those in ZR ∪WR, we know

UR ∪ {⊥,⊤} is a subalgebra of R. By Theorem 8.3(7), ↑b0 = ZR ∪ {⊤} is a (⊥, 1)-free

subalgebra of R and by Theorem 8.3(5) WR ∪ {⊥, b0} is a totally-ordered semigroup sub-

reduct satisfying xy = b0 for all x, y ∈ WR ∪ {b0}; in particular, in this case ZR has a least

element b0. Also, by Theorem 8.3(5), bc = cb = b0 and ca = ac = b0 for all b ∈ ZR,

c ∈ WR and a ∈ UR with a ∥ 1. For divisions, we know

a\b = b/a = b, b\a = a/b = ⊥

a\c = c/a ∈ WR ∪ {⊥}, c\a = a/c = ⊥

b\c = c/b = ⊥, c\b = b/c = ⊤,

for all a ∈ UR, b ∈ ZR and c ∈ WR.

Theorem 8.16. The class LW is axiomatized by (URL) and (ZWlinear).

Proof. Suppose R is a non-linear residuated lattice satisfying (URL) and (ZWlinear). By

(ZWlinear) we know that if x, y /∈ UR ∪ {⊤}, then x ≡ y. So if WR = ∅ then R satisfies

(Zlinear). If, further, we have ZR = ∅, then R is in ⊤unital; if ZR ̸= ∅, then R ∈ L.

If WR ̸= ∅, then ZR ̸= ∅ and ZR ∪WR = ↕b0 \ {⊥,⊤} by Theorem 8.3(5) and (7), so

ZR ∪WR is linear.

Notice that L is a subclass of LW, and just as the class L, UR∪{⊥,⊤} has a bi-residuated

bi-action on WR ∪ {⊥, b0} satisfying

• ⊤ ∗ c = c ∗ ⊤ = b0 for all c ∈ WR ∪ {b0};

• a ∗ b0 = b0 ∗ a = b0 for all a ∈ UR ∪ {⊤};
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Figure 8.8: LW: W ̸= ∅ and (Z ∪W,∧,∨) is a single chain

• If a ∗ c = ⊥ or c ∗ a = ⊥, then either a = ⊥ or c = ⊥ for all a ∈ UR ∪ {⊥} and

c ∈ WR ∪ {⊥}.

Similar to the case of TW, we also give a construction based on a rigorously compact

residuated lattice, an integral residuated lattice and a totally-ordered bounded semigroup to

obtain a residuated lattice. As a special case we obtain an algebra in LW.

Let A be a rigorously compact residuated lattice with bounds ⊥ and ⊤, C be a bounded

lattice-ordered semigroup with bottom ⊥ and top b0 satisfying xy = b0 for all x, y ∈

C \ {⊥} and ⊥z = z⊥ = ⊥ for all z ∈ C and let B be an integral residuated lattice with

bottom b0 and top ⊤. Also assume that A has a bi-residuated bi-action ∗ on C respecting

tops and without zero divisors:

⊤ ∗ c = c ∗ ⊤ = b0 for all c ∈ C \ {⊥}

a ∗ b0 = b0 ∗ a = b0 for all a ∈ A \ {⊥}

If a ∗ c = ⊥ or c ∗ a = ⊥, then either a = ⊥ or c = ⊥ for all a ∈ A and c ∈ C.
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We consider the set RA,B,C,∗ = A∪B ∪C and define a lattice order on it by extending the

orders of A, B and C and setting all of C below B and having ⊥ and ⊤ as the new bounds,

as can be seen in Figure 8.9.

A

B

C

⊤

⊥

b0

Figure 8.9: RA,B,C,∗

Also, we extend the multiplications on A, B and C by

x · y =



x ∗ y if x ∈ A, y ∈ C or x ∈ C, y ∈ A

x if x ∈ B, y ∈ A

y if x ∈ A, y ∈ B

b0 if x ∈ B, y ∈ C \ {⊥} or x ∈ C \ {⊥}, y ∈ B

⊥ if x = ⊥ or y = ⊥.

We denote the resulting algebra by RA,B,C,∗.

Theorem 8.17. Let A be a rigorously compact residuated lattice with bounds ⊥ and ⊤, C

be a bounded lattice-ordered semigroup with bottom ⊥ and top b0 satisfying xy = b0 for

all x, y ∈ C \ {⊥} and ⊥z = z⊥ = ⊥ for all z ∈ C and let B be an integral residuated

lattice with bottom b0 and top ⊤. Also assume that A has a bi-residuated bi-action ∗ on
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C respecting tops and without zero divisors. Then RA,B,C,∗ is the reduct of a residuated

lattice, which we denote also the same way. Furthermore, if A, B and C are linear, then

RA,B,C,∗ is in LW.

Proof. In the following we use R in short for R(A,B,C, ∗).

For associativity, since ⊥ is the multiplicative zero by definition, we focus on the cases

not involving ⊥. Among those cases, we observe that elements in A are multiplicative

identities for those in B and the products between elements of B and C are constant b0,

multiplicative zero for B ∪ C, so multiplication between B and C is associative. Also,

since ∗ is a bi-action and C \ {⊥} is a null-semigroup with zero b0, which also a zero for

A \ {⊥}, multiplication between A and C is associative. The left cases are

ab · c = bc = b0 = ab0 = a · bc

ac · b = b0 = ab0 = a · bc

ba · c = bc = b0 = b · ac

bc · a = b0a = b0 = b · ca

ca · b = b0 = cb = c · ab

cb · a = b0a = b0 = cb = c · ba

for all a, a1, a2 ∈ A \ {⊥}, b, b1, b2 ∈ B and c, c1, c2 ∈ C \ {⊥}. Other cases are similar or

straightforward. So the associativity holds on R.

For residuation, first we prove the multiplication is order-preserving. Since ⊥ is the

multiplicative zero for all elements in R, multiplication involving ⊥ is order-preserving.

Since A and B are residuated respectively, multiplications inside themselves are order-

preserving respectively. Also, according to the definition of multiplication, elements in

A\{⊥,⊤} are multiplicative identities of those in B. So the multiplication between A and
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B is order-preserving. Since C \ {⊥} is a null semigroup with zero b0, multiplication of C

is order-preserving. Since the action ∗ is bi-residuated, the multiplication between A and

C is order-preserving. Also, since the products between elements in B and C \ {⊥} are

constant b0, multiplication between B and C is order-preserving. Finally we show xy ≤ xz

for all x ∈ R \ {⊥} when ⊥ < y < b0 < z < ⊤. If x ∈ A \ {⊥}, then xy ≤ b0 < z = xz;

if x ∈ C \ {⊥}, then xy = b0 = xz; otherwise x ∈ B, then xy = b0 ≤ xz. Similarly

we can show yx ≤ zx for all x ∈ R \ {⊥} when ⊥ < y < b0 < z < ⊤. Therefore the

multiplication is order-preserving on R.

Now we want to prove xz = {y ∈ R : xy ≤ z} has maximum for all x, z ∈ R. First

we observe that there exist functions \l : A× C → C, /l : C × C → A, /r : C × A → C

and \r : C × C → A such that

a ∗ c1 ≤ c2 iff c1 ≤ a\lc2 iff a ≤ c2/
lc1

c1 ∗ a ≤ c2 iff c1 ≤ c2/
ra iff a ≤ c1\rc2

for all a ∈ A, c1, c2 ∈ C since ∗ is a bi-residuated bi-action. By Remark 2.4 we know

⊥z = x⊤ = R for all x, z ∈ R, so max⊥z = maxx⊤ = ⊤ in this case. In the

following we assume that x > ⊥ and z < ⊤. To prove toward contradiction we assume

that xz doesn’t have maximum for some x, z ∈ R, then we know ⊤ /∈ xz. Since

⊥ ∈ xz, we know xz is not empty. If there exists a ∈ A \ {⊥,⊤} such that a ∈ xz,

then x⊤ ≠ xa, so we know x /∈ B∪{⊥}. In this case, if x ∈ A\{⊥,⊤}, then z ∈ A\{⊥}

since A \ {⊥} is closed under multiplication and elements in A \ {⊥,⊤} is incomparable

with those in (B ∪ C) \ {⊥,⊤}. So xz has maximum x\Az, which is a contradiction.

Thus if there exists a ∈ A \ {⊥,⊤}, we know x ∈ C \ {⊥, b0}. Again by xa ≤ z we

know z ∈ (B ∪ C) \ {⊤}. If z ∈ C \ {⊥}, then xz ⊆ A \ {⊤} has maximum x\rz by

the definition of ∗, which is a contradiction. Thus we know z ∈ B \ {b0,⊤}. However,
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then we have x⊤ = b0 ≤ z and ⊤ ∈ xz, which is another contradiction. Hence we know

xz ⊆ (B ∪ C) \ {⊤}.

Since xz doesn’t have a maximum, {⊥} is a proper subset of xz, so there exists

u ∈ (B ∪ C) \ {⊥,⊤} such that u ∈ xz. Then x⊤ ≠ xu implies that x /∈ C. If we know

further that b0 /∈ xz, then xz ⊆ C \ {b0} since xz is downward closed. In this case

xb0 ̸= xc for some c ∈ C \ {⊥, b0} implies that x /∈ B ∪ C, so x ∈ A \ {⊥}. Thus we can

tell z ∈ C in this case, then xz ⊆ C has maximum x\lz, which is a contradiction. Hence

there exists b ∈ B \ {⊤} such that b ∈ xz. In this case, if x ∈ A \ {⊥}, then xb = b ≤ z

implies z ∈ B \ {⊤}, so xz has maximum z, which is a contradiction; if x ∈ C \ {⊥},

then xb = b0 ≤ z implies that z ∈ B \ {⊤}, so ⊤ ∈ xz and xz has maximum ⊤, which

is another contradiction. Thus we know x ∈ B and z ∈ B \ {⊤} since B is closed under

multiplication. In this case xz = {y ∈ B : xy ≤ z} ∪ C, so xz has maximum x\Bz, a

contradiction.

Therefore xz has maximum for all x, z ∈ R. Similarly for z�x = {y ∈ R : yx ≤ z}.

Hence R is a residuated lattice.

Corollary 8.18. All non-linear members of LW have the form RA,B,C,∗ in Theorem 8.17

when W ̸= ∅ or have the form RA,B in Theorem 8.9 when W = ∅.

8.3 Some ⊤-unital unilinear residuated lattices of height 4

As a small application of the the characterization of unilinear residuated lattices, we

can describe all residuated lattices whose lattice reducts are of the following form: i.e., all

maximal chains have 3 elements, except for one that has 4 elements. We refer to these

(residuated) lattices as of type h4.1. In Figure 8.11 we list all types of residuated lattices

coming from the characterization given in Corollary 8.4, except for the linear and 4-element

Boolean algebra case.
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⊥

Figure 8.10: Type h4.1
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Figure 8.11: The algebras of type h4.1 are in T, L, B, LW and ⊤unital, respectively.

We know that in the first four cases the algebra can be obtained by a ⊤unital algebra,

which actually has height 3, hence it is characterized in Chapter 3. So, we will give a

characterization of residuated lattices only of the latter type, where the algebra is ⊤unital.

We distinguish 3 subcases depending on the location of the multiplicative identity 1.

But first we give a property enjoyed by all subcases.

Proposition 8.19. If R is a non-linear ⊤-unital residuated lattice whose subchains are

finite, then R \ {⊥, 1} is closed under multiplication.

Proof. Since R \ {⊥} is closed under multiplication, to prove toward contradiction we

assume that there exist x, y ∈ R\{⊥, 1} such that xy = 1, then both x and y are invertible.

94



Since every subchain of R is finite, we know x ∥ 1 and if x and y are distinct then they are

incomparable; otherwise R contains a totally-ordered group, which is infinite. Since R is

⊤-unital, we have ⊤ = ⊤y = (1 ∨ x)y = y ∨ xy = y ∨ 1, so y ∥ 1. Let ⊥ < a′ < a < ⊤

be the unique long chain in R. Since a′ > a and y is invertible, we have ya > ya′ by

order-preservation of the multiplication. According to the lattice reduct and the fact that

R \ {⊥} is closed under multiplication, we know either ya = ⊤ or ya = a, ya′ = a′.

If ya = ⊤, then a = xy · a = x · ya = x⊤ = ⊤, a contradiction. If ya = a, then

⊤ = (1∨y)a = a∨ya = a, which is another contradiction. Therefore R\{⊥, 1} is closed

under multiplication.

Now we give the characterization of all the subcases.

8.3.1 1 is low in the long chain. We start with a ⊤unital residuated lattice of type h4.1

and 1 is low on the long chain, and characterize its structure.

⊤

⊥

a

1

Figure 8.12: 1 is low in the long chain

Proposition 8.20. If R is a ⊤unital residuated lattice of type h4.1 and 1 is low and a is

high on the long chain, then

(i) S = R \ {⊥, 1} gives a ⊤-cancellative semigroup;

(ii) for all x ∈ S, we have xa, ax ∈ {x,⊤};
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(iii) for all x ∈ S and y ∈ S \ {a}, we have

(x, xy), (xy, x), (x, yx), (yx, x) ∈ S2 \∆S\{⊤}

where ∆S\{⊤} = {(s, s) : s ∈ S \ {⊤}}.

Proof. (i) By Proposition 8.19, we know S is closed under multiplication. Let x, y, z ∈ S

such that y ̸= z. Since elements in S \ {⊤} are incomparable iff they are distinct, we know

y ∨ z = ⊤. Since R ∈ ⊤unital, we get ⊤ = x⊤ = x(y ∨ z) = xy ∨ xz, so xy = ⊤ or

xz = ⊤ or xy ∥ xz. If xy ∥ xz, then xy ̸= xz since S is closed under multiplication and

elements in S \ {⊤} are incomparable iff they are distinct. Thus we get y ̸= z =⇒ xy =

⊤ or xz = ⊤ or xy ̸= xz, which is equivalent to xy = xz ̸= ⊤ =⇒ y = z. Similarly for

yx = zx ̸= ⊤ =⇒ y = z.

(ii) Since a > 1 and ⊤ is the upper cover for all x ∈ S, we get xa, ax ∈ {x,⊤} by

order-preserving of the multiplication.

(iii) Let x ∈ S and y ∈ S \{a}, then either y = ⊤ or y ∥ 1 and hence y∨1 = ⊤. Since

R is ⊤-unital, we know ⊤ = x⊤ = x(y ∨ 1) = xy ∨ x, so x = ⊤ or xy = ⊤ or xy ∥ x, the

last of which implies to xy ̸= x. Thus (x, xy) ∈ (S2 \∆S) ∪ ({⊤} × S) ∪ (S × {⊤}) =

S2 \∆S\{⊤}. Similarly for (xy, x), (x, yx) and (yx, x).

Conversely we can construct a residuated lattice as above, given a special semigroup.

Let S be a semigroup with zero ⊤ satisfying

(i) S is ⊤-cancellative;

(ii) there exists a ∈ S \ {⊤} such that for all x ∈ S, we have ax, xa ∈ {x,⊤};

(iii) for all x ∈ S and y ∈ S \ {a}, we have

(x, xy), (xy, x), (x, yx), (yx, x) ∈ S2 \∆S\{⊤}
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where ∆S\{⊤} = {(s, s) : s ∈ S \ {⊤}}.

We consider the set RS,ℓ = S ∪ {⊥, 1} and define a lattice structure of type h4.1 on it

so that 1 is low and a is high in the long chain. Also, we extend the multiplication on S by

making 1 the unit and ⊥ an absorbing element. We denote by RS,ℓ the resulting algebra.

Theorem 8.21. If S is a semigroup with above properties, then RS,ℓ is the reduct of a

⊤unital residuated lattice of type h4.1 and 1 is low on the long chain. Moreover, this is a

characterization of the latter.

Proof. Since 1 is the multiplicative identity and ⊥ is the multiplicative zero, associativity

holds for the multiplication on R. For residuation, since the lattice reduct of R is complete,

it suffices for us to show the multiplication distributes over join. Since an arbitrary join in

R is equivalent to a finite joint, it suffices to show

x(y ∨ z) = xy ∨ xz

(y ∨ z)x = yx ∨ zx

for all x, y, z ∈ R with y ̸= z.

First, it’s easy to see the equation always holds if x ∈ {⊥, 1,⊤} or y ∈ {⊥,⊤} or

z ∈ {⊥,⊤}. So in the following we assume that x /∈ {⊥, 1,⊤} and y, z /∈ {⊥,⊤}. Also

we can tell that elements in S \ {⊤} form an antichain in R. If y = 1 and z = a, then

y ∨ z = a and xy = x, xz = xa. Since xa ∈ {x,⊤}, we know xa ≥ x for all x ∈ S, so

x(y ∨ z) = xa = xy ∨ xz. Similarly for the case when y = a, z = 1. Now assume y ∥ z,

then y ∨ z = ⊤, so we know x(y ∨ z) = ⊤. If y = 1, then xy ∨ xz = x ∨ xz. Since

z ∥ 1, we know z ̸= a. By assumption (iii) for S we get (x, xz) ∈ S2 \∆S\{⊤}, so x ̸= xz

and hence x ∨ xz = ⊤ since S is closed under multiplication. Similarly for the case when

z = 1. Finally, if y ̸= 1 and z ̸= 1, then xy ∨ xz = ⊤ by the ⊤-cancellativity of S.

Similarly we can prove (y ∨ z)x = yx ∨ zx. Therefore R is a residuated lattice.
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Figure 8.13: 1 is high in the long chain

8.3.2 1 is high in the long chain.

Proposition 8.22. If R is a ⊤unital residuated lattice of type h4.1 and 1 is high and a is

low on the long chain, then

(i) S = R \ {⊥, 1} is a ⊤-cancellative semigroup;

(ii) for all x ∈ S, we have xa = ax = x;

(iii) for all x ∈ S and y ∈ S \ {a}, we have

(x, xy), (xy, x), (x, yx), (yx, x) ∈ S2 \∆S\{⊤}

where ∆S\{⊤} = {(s, s) : s ∈ S \ {⊤}}.

Proof. The proof is almost the same as the case when 1 is low in the long chain. The only

difference is that xa = ax = x for all x ∈ S, which is the result of the facts that ⊥ < a < 1,

that multiplication is order-preserving and S is closed under multiplication.

Conversely, let S be a semigroup with zero ⊤ satisfying

(i) S is ⊤-cancellative;

(ii) there exists a ∈ S \ {⊤} such that for all x ∈ S, we have xa = ax = x;
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(iii) for all x ∈ S and y ∈ S \ {a}, we have

(x, xy), (xy, x), (x, yx), (yx, x) ∈ S2 \∆S\{⊤}

where ∆S\{⊤} = {(s, s) : s ∈ S \ {⊤}}.

As before we define an algebra RS,h, based on the set R = S∪{⊥, 1} with multiplica-

tion extending that of S by making 1 a unit and ⊥ bottom, but with a lattice structure where

1 is high and a is low on the long chain.

Theorem 8.23. If S is a semigroup with the above properties, then RS,h is the reduct of a

⊤unital residuated lattice of type h4.1 and 1 is low on the long chain. Moreover, this is a

characterization of the latter.

Proof. Similar to the proof of the case when 1 is low on the long chain.

⊤

⊥

1

a

a′

Figure 8.14: 1 is on a short chain

8.3.3 1 is on a short chain.

Proposition 8.24. If R is a ⊤unital residuated lattice of type h4.1 and 1 is on a short chain,

then

(i) for all x ∈ S = R \ {⊥, 1},

xa ̸= xa′ =⇒ xa = ⊤

ax ̸= a′x =⇒ ax = ⊤;
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(ii) for all x, y ∈ S, we have

(xy, x), (xy, y), (yx, x), (yx, y) ∈ T

(x, xy), (y, xy), (x, yx), (y, yx) ∈ T,

where T = S2 \ ({a, a′}2 ∪∆S\{⊤}) and ∆S\{⊤} = {(s, s) : s ∈ S \ {⊤}};

(iii) for all x ∈ S and (y, z) ∈ T , we have (xy, xz) ∈ T and (yx, zx) ∈ T .

Proof. (i) Let x ∈ S, then either x = ⊤ or x ∥ 1, so 1 ∨ x = ⊤. Since multiplication on R

is order-preserving and a ≥ a′, we have xa ≥ xa′. Suppose xa > xa′. Since S is closed

under multiplication, we know either xa = ⊤ or xa = a, xa′ = a′. If xa = a, xa′ = a′, then

we get ⊤ = ⊤a = (1 ∨ x)a = a ∨ xa = a, a contradiction. Thus xa ̸= xa′ =⇒ xa = ⊤.

Similarly for ax ̸= a′x =⇒ ax = ⊤.

(ii) First we show that s1 ∨ s2 = ⊤ is equivalent to (s1, s2) ∈ T for all s1, s2 ∈ S.

s1 ∨ s2 = ⊤ ⇔ s1 = ⊤ or s2 = ⊤ or s1 ∥ s2

⇔ s1 = ⊤ or s2 = ⊤ or (s1, s2) ∈ S2 \ ({(a, a′), (a′, a)} ∪∆S)

⇔ (s1, s2) ∈ T.

Now let x, y ∈ S, then we have x ∨ 1 = y ∨ 1 = ⊤, so ⊤ = ⊤y = (x ∨ 1)y = xy ∨ y. By

the equivalence above, we know (xy, y) ∈ T . Similarly for (xy, x) ∈ T, (yx, x) ∈ T and

(yx, y) ∈ T . The other parts come from the symmetry of T .

(iii) Let x ∈ S and (y, z) ∈ T , then we have y∨z = ⊤ by the equivalence in (ii). Since

⊤ = x⊤ = x(y ∨ z) = xy ∨ xz, we get (xy, xz) ∈ T . Similarly for (yx, zx) ∈ T .

Conversely, let S be a semigroup with zero ⊤ and assume there exist a, a′ ∈ S \ {⊤}

such that
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(i) for all x ∈ S,

xa ̸= xa′ =⇒ xa = ⊤

ax ̸= a′x =⇒ ax = ⊤;

(ii) for all x, y ∈ S, we have

(xy, x), (xy, y), (yx, x), (yx, y) ∈ T

(x, xy), (y, xy), (x, yx), (y, yx) ∈ T,

where T = S2 \ ({a, a′}2 ∪∆S\{⊤}) and ∆S\{⊤} = {(s, s) : s ∈ S \ {⊤}};

(iii) for all x ∈ S and (y, z) ∈ T , we know (xy, xz) ∈ T and (yx, zx) ∈ T .

We consider the set RS = S ∪ {⊥, 1} and define a lattice order of type h4.1 where 1 is

on a short chain, a′ is low and a is high on the long chain. Also, extend the multiplication

on S by making 1 a unit and ⊥ a bottom element.

Theorem 8.25. If S is a semigroup with the above properties, then RS is the reduct of

a ⊤unital residuated lattice of type h4.1 and 1 is on a short chain. Moreover, this is a

characterization of the latter.

Proof. As previous cases, it’s easy to see the associativity of multiplication on R holds.

For residuation, since the lattice reduct is complete and all infinite join is equivalent to a

finite join, it suffices to show

x(y ∨ z) = xy ∨ xz

(y ∨ z)x = yx ∨ zx
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for all x, y, z ∈ R with y ̸= z.

We assume that x /∈ {⊥, 1,⊤} and y, z /∈ {⊥,⊤}. If y = a′, z = a, then y ∨ z = a

and x(y ∨ z) = xa. In this case, if xa = xa′, then the equation holds; otherwise, by

condition (i), we have x(y ∨ z) = xa′ ∨ xa = xa′ ∨ ⊤ = ⊤ = xy ∨ xz. Similarly for

the case when y = a and z = a′. Now suppose y ∥ z, then we know y ∨ z = ⊤ and

x(y ∨ z) = ⊤. By the definition of the lattice reduct, we know s1 ∨ s2 = ⊤ iff (s1, s2) ∈ T

for all s1, s2 ∈ S. If y = 1, then z ∈ S and xy ∨ xz = x ∨ xz. Since (x, xz) ∈ T by

condition (ii), x∨xz = ⊤ holds. Similarly when z = 1 and y ∈ S. Otherwise y, z ∈ S and

(y, z) ∈ T . By condition (iii), we have (xy, xz) ∈ T , which is equivalent to xy ∨ xz = ⊤.

Therefore x(y ∨ z) = xy ∨ xz holds. Similarly for (y ∨ z)x = yx ∨ zx.

8.4 Distributivity of multiplication over meet

In this short section, we look into how different levels of distribution of multiplication

over meet in a unilinear residuated lattice R impacts the sets UR, ZR and WR.

Lemma 8.26. If multiplication distributes over meet in a non-linear URL R, then {x ∈ R :

⊤x = ⊤} is a chain.

Proof. If there exist a1, a2 in the set such that a1 ∥ a2, then ⊥ = ⊤(a1∧a2) = ⊤a1∧⊤a2 =

⊤, a contradiction.

Therefore, distribution of multiplication over meet is a very strong condition. We con-

sider the weaker sentence

∀x1, x2, x3 ( OR
1≤i≤3

⊤xi = xi or x1(x2 ∧ x3) = x1x2 ∧ x1x3). (·Z∧)

Theorem 8.27. Let R ∈ URL such that UR is non-linear. Then (·Z∧) holds if and only if

UR is closed under multiplication and WR = ∅.
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Proof. Assume (·Z∧) holds first. To prove toward contradiction suppose there exists c ∈

WR. Since R is non-linear, we know c ∥ 1 and c2 = b0 by Theorem 8.3 (4) and (5). Then

we get

⊥ = c(1 ∧ c) = c ∧ c2 = c ∧ b0 = c,

which is a contradiction. Now suppose there exist a1, a2 ∈ UR such that a1a2 = ⊤. Since

UR is non-linear, there exists a3 ∈ UR such that a1 ∥ a3 or a2 ∥ a2. Without loss of

generality, a2 ∥ a3, so

⊥ = a1(a2 ∧ a3) = a1a2 ∧ a1a3 = ⊤ ∧ a1a3 = a1a3.

But this yields ⊤ = ⊤a3 = ⊤a1 · a3 = ⊤ · a1a3 = ⊤⊥ = ⊥, another contradiction. Thus

U is closed multiplication and WR = ∅.

Now assume UR is closed multiplication and WR = ∅. Let x, y, z ∈ R such that

⊤x ̸= x and ⊤y ̸= y and ⊤z ̸= z, then x, y, z are not in ZR ∪ {⊥,⊤}. Since WR = ∅, we

know x, y, z ∈ UR. Without loss of generality, we show x(y∧ z) = xy∧xz here. If y ≡ z,

then x(y ∧ z) = xy ∧ xz holds since multiplication preserves ordering. Otherwise y ∥ z.

Since x(y ∨ z) = xy ∨ xz always holds, we know xy ∨ xz = ⊤. Since U is closed under

multiplication, we know xy ∥ xz. Thus x(y ∧ z) = x⊥ = ⊥ = xy ∧ xz.

Remark 8.28. By a similar proof we can show UR being closed under multiplication and

WR = ∅ iff

∀x1, x2, x3 ( OR
1≤i≤3

⊤xi = xi or (x2 ∧ x3)x1 = x2x1 ∧ x3x1), (∧·Z)

given that UR is non-linear in R. Therefore (·Z∧) is also equivalent to (∧·Z) when UR is

non-linear.
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Chapter 9: Idempotent unilinear residuated lattices

In this chapter we will focus on unilinear and semiunilinear residuated lattices that

are idempotent and study their structure. We denote the corresponding classes by IdURL

and IdSRL and their bounded analogues by bIdURL and bIdSRL. We will prove the congru-

ence extension property and identify natural subclasses that have the (strong) amalgamation

property. Recall that up to now the distinction between having the bounds in the language

or not was unimportant. However, since the amalgamation property is sensitive to subalge-

bra generation, we will see that the inclusion or not of the bounds in the language leads to

different amalgamation results.

We start with an important simplification on the unilinear structure when we restrict to

idempotent algebras.

Proposition 9.1. If R is an idempotent non-linear unilinear residuated lattice, then UR is a

subchain of the chain of 1 and WR is empty.

Proof. Since R is non-linear, there exists b ∈ R such that b ∥ 1, then we have b = b∨ b2 =

(1 ∨ b)b = ⊤b, so b ∈ ZR. Therefore UR ⊆ ↕1 and WR = ∅ by Theorem 8.3(4).

So by Theorem 8.3 every idempotent URL is the 4-element Boolean algebra, or it is

contained in one of the classes T, B and L; see Figure 9.1.

9.1 Congruence extension property

Given the language of bURL and variable y, first we define terms s and t by s(y) =

y ∧ yℓℓ ∧ yrr and t(y) = s(y) ∧ 1 where yℓ = 1/y and yr = y\1.

Lemma 9.2. If A is an algebra in (b)IdSRL, then
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Figure 9.1: Non-linear non-integral idempotent unilinear residuated lattices

1. s(y) ≤ xy/x, x\yx for all x, y ∈ A.

2. A deductive filter of A is closed under the term operations s and t.

Proof. (1) If A is linear then A is semiconic and Lemma 3.1 in [5] implies that s(y) ≤

xy/x, x\yx for all x, y ∈ A. We will now assume that A is nonlinear and consider cases

for the class that A belongs to.

If A is the 4-element generalized Boolean algebra, then ZA = {b, b′} and b ∥ b′. So

s(b) = b ∧ bℓℓ ∧ brr = b and b′b/b′ = b′\bb′ = b, hence s(b) ≤ b′b/b′, b′\bb′; similarly for

s(b′) ≤ bb′/b, b\b′b. Thus the equations hold for all x, y ∈ A.

If A ∈ T, then ZA = {b, b′} and b ≤ 1, b′ ∥ 1 by Theorem 8.5. Since ↕1 is the

universe of a subalgebra of A and ↕b′ itself is an integral residuated chain, by Lemma

3.1 in [5] we know the equations hold when x, y ∈ ↕1 or x, y ∈ ↕b′. Now let y = b′, then

s(b′) = b′∧b′ℓℓ∧b′rr = b′ since b′ℓℓ = b′rr = b′. If x ∈ UA∪{b,⊤}, then xb′/x = x\b′x = b′;

if x = ⊥, then ⊥b′/⊥ = ⊥\b′⊥ = ⊤, so s(b′) ≤ xb′/x, x\b′x for all x ∈ ↕1. Then let

x = b′. If y ∈ UA ∪ {⊤}, then b′y/b′ = b′\yb′ = ⊤ and the equations trivially hold. If
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y = b, then s(y) = b ∧ bℓℓ ∧ brr = b and b′b/b′ = b′\bb′ = b, so the equations also hold. If

y = ⊥, then s(y) = ⊥ so the equations trivially hold.

If A ∈ B, then ZA = {b, b′} and 1, b, b′ is an antichain by Theorem 8.8. Since ↕1 is

the universe of a subalgebra of A, by Lemma 3.1 in [5] we know the equations hold when

x, y ∈ ↕1. Let y = b, then s(b) = b ∧ bℓℓ ∧ brr = b since bℓℓ = brr = b. If x ∈ {⊥, b},

then xb/x = x\bx = ⊤, so the equations trivially hold; otherwise x ∈ U ∪ {b′,⊤}, then

xb/x = x\bx = b and equations also hold. Similarly for the case when y = b′. Now let

x ∈ {b, b′} and y ∈ ↕1. If y ∈ U ∪ {⊤}, then xy/x = x\yx = ⊤ for all x ∈ {b, b′}, so the

equation hold trivially. If y = ⊥, then s(⊥) = ⊥ and equations also trivially hold.

If A ∈ L, then ZA is totally-ordered. Since ↕1 is the universe of a subalgebra of A

and ZA ∪ {⊥,⊤} itself is an integral residuated chain, we know the equations hold when

x, y ∈ ↕1 or x, y ∈ ZA ∪ {⊥,⊤} by [5] Lemma 3.1. For the rest cases, first let x ∈ ↕1 and

y ∈ ZA. Then s(y) = y ∧ yℓℓ ∧ yrr = y ∧⊤ ∧⊤ = y = xy/x = x\yx. Finally let x ∈ ZA

and y ∈ ↕1. Then if y ̸= ⊥ then xy/x = x\yx = ⊤, so the equations trivially hold; if

y = ⊥ then s(y) = ⊥ and the equations also trivially hold.

(2) let F ⊆ A be a deductive filter. If A is linear, then by Lemma 3.1 in [5] F is closed

under s and t. So assume that A is nonlinear. First we observe that if there exists b ∈ F

such that b ∥ 1, then F = A since 1 ∧ b, so F is closed under s. So we assume that F is

a linear. Since 1 ∈ F , we know F ⊆ ↕1. Since ↕1 is a subalgebra of A, F = F ∩ ↕1 is a

deductive filter on ↕1, so by Lemma 3.1 in [5] again F is closed under s and t.

An algebra B has congruence extension property (CEP) if for any subalgebra A of B

and Θ ∈ Con(A), there exists Φ ∈ Con(B) such that Φ ∩ A2 = Θ. A class of algebras is

said to have CEP if each of its member has CEP.

Theorem 9.3. The varieties IdSRL and bIdSRL have the congruence extension property.
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Proof. By Theorem 3.47(2) in [12], we know the lattice of congruence of a residuated

lattice is isomorphic to the lattice of deductive filters. So it suffices for us to show that

for algebras A,B ∈ IdSRL (bIdSRL) with A ≤ B and a deductive filter F ⊆ A, there

exists deductive filter G ⊆ B such that F = G ∩ A. Let G be the deductive filter of B

generated by F , then we know F ⊆ G ∩ A. Now Let x ∈ G ∩ A, then x ∈ A and x is

in an upset of a product of iterated conjugates of elements in F . By Lemma 9.2(1), we

know y ∧ yℓℓ ∧ yrr ≤ zy/z, z\yz for all y ∈ F and z ∈ B, so x is in an upset of a product

of compositions of term operations t of elements in F . Since F is closed under meet,

multiplication and t, the product of those compositions of t’s is also in F . Since x ∈ A and

F is upward-closed in A, we know x ∈ F . Therefore F = G ∩ A and CEP holds in the

class IdSRL (bIdSRL).

9.2 Subclass of B4

It is shown in [5] that the class of idempotent residuated chains does not have the

amalgamation property (AP) but the class of ⋆-involutive idempotent residuated chains has

the strong amalgamation property (sAP). By Theorem 8.3 we know that in a non-linear

members of B and L the chain of 1 is a subalgebra and also that in non-linear members

of T the set ↑b is a ⊥-free subalgebra (in the language of bURL) or a subalgebra (in the

language of URL); also, ZR ∪ {⊥,⊤} is a 1-free subalgebra of the non-linear algebras in

all cases. This makes some of these subalgebras amenable to the results in [5] and our goal

is to extend them to the whole algebra.

In the following part we will axiomatize the subclasses of idempotent members in B4,

T, B and L which satisfy the natural condition given in [5]. Then we will give proofs and

counterexamples for the (strong) amalgamation property (AP/sAP) in each class.

The subclass of idempotent members of B4 is axiomatized by ∀x (⊤x = x = x⊤) and

∀x (x2 = x). (idem)
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So all the linear members in this class are Gödel chains and the only non-linear member

is the 4-element generalized Boolean algebra. We use B4i for the subclass of IdURL and

bB4i for the subclass of bIdURL. Let A be the 3-element Gödel chain, B be the 4-element

generalized Boolean algebra and C be the 4-element Gödel chain, then (A,B,C) is a

V-formation in B4i (bB4i). Since the 4-element generalized Boolean algebra is the only

non-linear member in B4i (bB4i), it’s impossible to find an amalgam for (A,B,C). Thus

both B4i and bB4i fail amalgamation property.

Unlike other cases following, we don’t explore the ⋆-involutive subclass of B4i and

bB4i, since 1 is the only ⋆-involutive element in an algebra in B4i (bB4i).

9.3 Subclass of T

Given a residuated lattice R and x ∈ R, we define

xℓ = 1/x, xr = x\1 and x⋆ = xℓ ∧ xr.

R is called ⋆-involutive if x⋆⋆ = x for all x ∈ R. In non-linear algebras in T we have

b′⋆⋆ = ⊤ ≠ b′, so ⋆-involutivity is not automatically satisfied for all elements. It turns out

that for extending the amalgamation results from chains to unilinear residuated lattices, we

only need to stipulate the ⋆-involutivity condition only for the elements comparable to 1, so

we consider this restricted notion of ⋆-involutivity, so as not to excluding algebras where

involutivity fails for some elements incomparable to 1.

We denote by Ti the class of idempotent algebras in T that satisfy involutivity for all

elements comparable to 1:

∀x, y (x ≤ y or ((x ∨ 1)⋆⋆ = x ∨ 1 and (x ∧ 1)⋆⋆ = x ∧ 1)) (⋆-inv↕1)

This axiom means if an element is comparable with 1, then it is either the ⊥ or ⋆-

involutive. For the convenience of following proofs, we prove a lemma first.
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Lemma 9.4. Let R be an idempotent residuated chain satisfying (⋆-inv↕1), then either

R \ {⊥} is the universe of a ⋆-involutive subalgebra of R or R is ⋆-involutive.

Proof. Since R is a residuated chain and satisfies (⋆-inv↕1), we know every x ̸= ⊥ is ⋆-

involutive. SupposeR\{⊥} is not the universe of a subalgebra of R, then there exist x, y ∈

R \ {⊥} such that x\y = ⊥ or x/y = ⊥, since the multiplication on R is conservative.

Without loss of generality, assume x\y = ⊥, then x > y and by Corollary 4.1 in [5] we

get ⊥ = x\y = xr ∧ y. Since y ∈ R \ {⊥} and R is linear, we know xr = ⊥, so

x⋆ = xℓ ∧ xr = ⊥. Since x is ⋆-involutive, we have x = x⋆⋆ = ⊥⋆ = ⊥ℓ ∧ ⊥r = ⊤, thus

⊥⋆⋆ = ⊤⋆ = x⋆ = ⊥ and hence R is ⋆-involutive.

9.3.1 Amalgamation property of bTi and Ti.

Now we will explore the amalgamation property on the class Ti. By Lemma 4.9, the

non-linear members of URL and bURL are identical. However, the subalgebras of them are

not. In our case such difference matters. We will see the existence of constants ⊥ and ⊤

help build sAP and missing of them leads to the failure of AP. To distinguish these two

cases, now we use Ti for the subclass of IdURL and bTi for the subclass of bIdURL, both of

which are axiomatized by axioms of T, (idem) and (⋆-inv↕1).

First let’s check bTi. Since ⊥ and ⊤ are constants in the language of bURL and b =

⊤\1, b′ = b\⊥, a subalgebra of a non-linear member of bTi is also a non-linear member

of bTi. The linear members of bTi are bounded residuated chains satisfying (idem) and

(⋆-inv↕1).

Theorem 9.5. The strong amalgamation property (sAP) holds on bTi.

Proof. Let (A,B,C) be a V-formation in bTi. Since bTi is a positive universal class, it is

closed under isomorphisms, so we can assume A is a subalgebra of B and C respectively

and A = B ∩ C.
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First assume that A, B and C are linear members of bTi. Since bTi satisfies (⋆-inv↕1),

either all of A, B and C are ⋆-involutive or ⊥ is not ⋆-involutive in one of them. In the latter

case, since ⊥ is a constant in the language, A = B ∩ C and A is a subalgebra of B and C

respectively, we know ⊥ is not ⋆-involutive in all of A, B and C, so by Lemma 9.4 A′, B′

and C′ are ⋆-involutive idempotent residuated chains, where A′ = A \ {⊥}, B′ = B \ {⊥}

and C ′ = C \ {⊥}.

Assume (A,B,C) is a V-formation of ⋆-involutive idempotent residuated chains, then

by Theorem 5.7 in [5], there exists a ⋆-involutive idempotent residuated chain D such that

D = B∪C and B and C are subalgebras of D respectively. Since ⊥,⊤ ∈ B∩C, D is also

bounded by them, so D ∈ bTi and it is a strong amalgam for the V-formation. Now suppose

(A′,B′,C′) is a V-formation of ⋆-involutive idempotent residuated chains, then again by

Theorem 5.7 in [5], there exists a ⋆-involutive idempotent residuated chain D′ such that

D′ = B′ ∪ C ′ and B′ and C′ are subalgebras of D′ respectively. Let D = D′ ∪ {⊥} and

define ⊥ ≤ x and ⊥x = x⊥ = ⊥ for all x ∈ D′, then B and C are subalgebras of D

respectively since ⊥ ∈ B∩C and ⊥b = ⊥ and ⊥c = ⊥ for all b ∈ B, c ∈ C; thus D ∈ bTi

is a strong amalgam for (A,B,C).

Next we suppose one of A, B and C is non-linear. As mentioned above, the subalgebra

of a non-linear member of bTi is also a non-linear member of bTi, so we know A, B and

C are non-linear since A is a subalgebra of B and C respectively. Since bTi satisfies the

axioms for T, we know b = ⊤\1 < 1, b is a cover of ⊥ and b′ = b\⊥ is incomparable with

1; these facts hold in A, B and C. Let A′ = ↑Ab, B′ = ↑Bb and C ′ = ↑Cb, then A′, B′ and

C′ are ⊥-free subalgebras of A, B and C respectively, so (A′,B′,C′) is a V-formation of ⋆-

involutive idempotent residuated chains. By Theorem 5.7 in [5], there exists a ⋆-involutive

idempotent residuated chain D′ such that D′ = B′ ∪ C ′ and B′, C′ are subalgebras of

D′. Since b,⊤ ∈ B ∩ C, D′ is also bounded by b and ⊤. Define D = RD′,{b,b′} given in

Theorem 8.6, then D is a non-linear member of bTi. Since b′,⊥ ∈ B ∩ C and elements in
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UB ∪{⊤}, UC ∪{⊤} are multiplicative identities for ⊥ and b′, B and C are subalgebras of

D, so D is a strong amalgam for (A,B,C) in bTi. See Figure 9.2 for the visualization of

the process.
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Figure 9.2: sAP of bTi

Corollary 9.6. The variety V(bTi) generated by bTi has strong amalgamation property.

Proof. By Theorem 4.5, we know the class of finitely subdirectly irreducible algebras in

V(bTi) is exactly bTi. Since the variety bIdSRL has the congruence extension property

by Theorem 9.3 and V(bTi) is arithmetical, V(bTi) has strong amalgamation property by

Theorem 4.8 in [6].

For the class Ti, first we note that a subalgebra of a non-linear member in Ti is not

necessarily non-linear, e.g., ↑b is a subalgebra of a non-linear member R ∈ Ti, and ↑b is
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isomorphic to a linear member of Ti. Based on this fact, we give a counter example for AP

in Ti.

Let A be the 3-element Sugihara monoid and B = R6,5
3,1, C = R5,4

2,2 in the list [10], as

shown in the Figure 9.3. Then A is a subalgebra of B and C respectively, so (A,B,C) is a

V-formation in Ti. Suppose there exists a tuple (D, ψB, ψC) such that D is an amalgam of

(A,B,C). Since 1 ∥ e in C and ψC is an embedding, we know ψC(1) ∥ ψC(e), so D is a

non-linear member of Ti. Since D is an amalgam of (A,B,C), we know ψB(a) = ψC(a).

However, since a = 1 ∨ e in C, we have ψB(a) = ψC(a) = ⊤D = ψB(g), contradicting

that ψB is an embedding. Therefore AP fails in Ti.
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Figure 9.3: Counterexample for AP of Ti

9.4 Subclass of B

We denote by Bi and bBi the subclasses of bIdURL and IdURL, respectively, that are

axiomatized by B, (idem) and (⋆-inv↕1).

Since Bi and bBi are subclasses of B, we know given the non-linear members R of

these classes, we have UR ∪ {⊥,⊤} = ↕1 is a subalgebra and ZR ∪ {⊥,⊤} is a 1-free

subalgebra, which is isomorphic to the 4-element Boolean algebra.

9.4.1 Amalgamation property of bBi and Bi.

Theorem 9.7. The amalgamation property holds in bBi.
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Proof. We consider a V-formation in bBi, suitable for the AP. Since bBi is a positive uni-

versal class, it is closed under isomorphisms, the V-formation consists of a common subal-

gebra A of B and C with A = B ∩ C. Let 1 be the identity element of A, which is also

the identity of B and C.

Let A′ = ↕A1, B′ = ↕B1 and C ′ = ↕C1. Since A is a subalgebra of B and C

respectively and A = B ∩ C, we know ↕A1 = ↕B1 ∩ A = ↕B1 ∩ B ∩ C = ↕B1 ∩ C =

↕B1 ∩ ↕C1, i.e., A′ = B′ ∩ C ′ and A′ is a subalgebra of B′ and C′ respectively. Similarly

to the proof of Theorem 9.5, there exists a strong amalgam D′ ∈ bTi for (A′,B′,C′) such

that D′ = B′ ∪ C ′ and B′ and C′ are subalgebras of D′ respectively.

We consider a copy Z ∪ {⊥,⊤} of the the 4-element Boolean algebra, where Z =

{b, b′} and define D = RD′,Z∪{⊥,⊤} as the non-linear member of bBi given by Theorem 8.9.

Also, we define gB : B → D and gC : C → D by extending the inclusions B′ ⊆ D′ ⊆ D

and C ′ ⊆ D′ ⊆ D, respectively, with gB(bB) = b = gC(bC) and gB(b′B) = b′ = gC(b
′
C),

where bB, b′B and also bC , b′C are the elements of B and C, respectively, that are not in B′

and C ′, if any. Since elements in ZD = Z are multiplicative zeros for those in UD ∪ {⊤}

and 1 ∥ x for all x ∈ ZD, we know the multiplications and divisions in B and C correspond

to those in D. Thus gB and gC are embedding. The process is shown in Figure 9.4.

On the other hand the strong amalgamation property fails in bBi. If we take A to be

the 3-element Sugihara monoid and B both C isomorphic to RA,Z∪{⊥,⊤}, with Z = {b, b′},

but set-theoretically B ̸= C, then every strong amalgam would contain B ∪ C, so it would

contain the antichain {1, bB, b′B, bC , B′
C}, so it cannot be an element of the class bBi. See

Figure 9.5.

For Bi, we give a counter example for AP. Let A be the 3-element Sugihara monoid

and B, C be non-linear idempotent ⋆-involutive as shown in the Figure 9.6. Then A is a

subalgebra of B and C respectively, and (A,B,C) is a V-formation in Bi. Suppose there

exists a tuple (D, ψB, ψC) in Bi such that D is an amalgam of (A,B,C). Since 1 ∥ d in
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Figure 9.4: AP of bBi

C and ψC is an embedding, we know ψC(1) ∥ ψC(d), so D is a non-linear member of Bi.

Since D is an amalgam of (A,B,C), we have ψB(a) = ψC(a). However, since a = 1 ∨ d

in C, we have ψB(a) = ψC(a) = ⊤D = ψB(f), contradicting that ψB is an embedding.

Therefore AP fails in Bi.

9.5 Subclass of L

Similar to previous case, we denote the subclass of bIdURL by bLi and the subclass of

IdURL by Li, both of which are axiomatized by the axioms for L, (idem) and (⋆-inv↕1)

Since bLi and Li are subclasses of L, we know given a non-linear member R of them

(their non-linear members identify), UR ∪ {⊥,⊤} = ↕1 is a subalgebra and ZR ∪ {⊥,⊤}

is a totally-ordered 1-free subalgebra of R.

9.5.1 Amalgamation property of bLi and Li.

Theorem 9.8. The strong amalgamation property holds on bLi.
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Figure 9.5: Counterexample for sAP of bBi

a
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a = ac = ca

1
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d = ad = da

e = ae = ea

f = fb = bf

a

1

b

g

h = fh = hf

i = fi = if

⊤
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A

C

B

D

ψC

ψB

Figure 9.6: Counterexample for AP of Bi

Proof. Let (A,B,C) be a V-formation in bLi such that A is a subalgebra of B and C

respectively and A = B ∩ C. Let 1 be the identity element of A, which is also the identity

of B and C.

Let A1 = ↕A1, B1 = ↕B1 and C1 = ↕C1. As mentioned before, A1, B1 and C1 are

subalgebras of A, B and C respectively. Since A is a subalgebra of B and C respectively

and A = B ∩ C, A1 is also a subalgebra of B1 and C1 respectively and ↕A1 = ↕B1 ∩

A = ↕B1 ∩ B ∩ C = ↕B1 ∩ C = ↕B1 ∩ ↕C1, i.e., A1 = B1 ∩ C1. Similarly to the

proof of Theorem 9.5, there exists a strong amalgam D1 ∈ bLi for (A1,B1,C1) such that

D1 = B1 ∪ C1 and B1 and C1 are subalgebras of D1 respectively.
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On the other hand, let A2 = ZA ∪ {⊥,⊤}, B2 = ZB ∪ {⊥,⊤} and C2 = ZC ∪

{⊥,⊤}. Since A2, B2 and C2 are 1-free subalgebras of A, B and C respectively and ⊤

is the multiplicative identity for elements in them, (A2,B2,C2) is a V-formation of Gödel

chains. Since A is a subalgebra of B and C respectively and A = B ∩C, we know A2 is a

subalgebra of B2 and C2 respectively and A2 = B2 ∩ C2. Since the class of Gödel chains

has strong amalgamation property, there exists a Gödel chain D2 such that B2 and C2 are

subalgebras of D2. Since ⊥,⊤ ∈ B2 ∩ C2, D2 is also bounded by them, so D2 is a strong

amalgam for (A2,B2,C2).

Now let D = RD1,D2 be the non-linear member of bLi given in Theorem 8.9. Since

UD = UD1 = UB ∪ UC , ZB ⊆ ZD, ZC ⊆ ZD and elements in U are the multiplicative

identities for Z, we know B and C are closed under multiplications and divisions in D,

thus D is a strong amalgam for (A,B,C) in bLi. The progress is shown in Figure 9.7.
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Figure 9.7: sAP for bLi

Corollary 9.9. The variety V(bLi) generated by bLi has strong amalgamation property.
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For Li, we give a counter example for AP here.

Let A be the 3-element Sugihara monoid and B = R6,5
3,2, C = R5,4

2,3 in the list [10] as

shown in the Figure 9.8. Then A is a subalgebra of B and C respectively, so (A,B,C) is a

V-formation in Li. Suppose there exists a tuple (D, ψB, ψC) in Li such that D is an amalgam

of (A,B,C). Since 1 ∥ e in C and ψC is an embedding, we know ψC(1) ∥ ψC(e), so D is a

non-linear member of Li. Since D is an amalgam of (A,B,C), we know ψB(a) = ψC(a).

However, since a = 1 ∨ e in C, we have ψB(a) = ψC(a) = ⊤D = ψB(g), contradicting

that ψB is an embedding. Therefore AP fails in Li.

a

1

b

a = af = fa

1

f

b

e = ae = ea

g = gb = bg

a

1

b

h

d = dg = gd

⊤

1

⊥
A

C

B

D

ψC

ψB

Figure 9.8: Counterexample for AP of Li

9.6 The joins of V(bTi), V(bBi) and V(bLi)

Note first that with the process mentioned in Section 4.2, all the varieties V(bTi),

V(bBi) and V(bLi) are equationally axiomatizable. So by [8], any join of them is also

equationally axiomatizable.

Theorem 9.10. The joins of any two of the varieties V(bTi), V(bBi) and V(bLi) fail amalga-

mation property. Even stronger, if a subvariety of bIdSRL that contains non-linear members

from at least two different classes from T, L,B,B4, then it does not have the AP.
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Proof. By Theorem 9.3, we know every join of the varieties above has the congruence

extension property. By Theorem 4.5, we know the class of finitely subdirectly irreducible

algebras of the varieties are precisely bTi, bBi and bLi. So by Theorem 3.4 of [6], to

show joins of V(bTi), V(bBi) and V(bLi) fail AP, it suffices to show they fail one-side

amalgamation property (1AP). Recall that a class K has 1AP if for every V-formation

(A,B,C, φB, φC) there exists D ∈ K, homomorphism ψB : B → D and embedding

ψC : C → D such that ψBφB = ψCφC .

Now we give counterexamples for 1AP of the 3 binary joins of V(bTi), V(bBi) and

V(bLi).

For V(bTi)∨V(bBi), let A be the 3-element Sugihara monoid, B ∈ bBi and C ∈ bTi be

as show in Figure 9.9(a), then (A,B,C) is a V-formation in V(bTi)∨V(bBi). Suppose there

exist (D, ψB, ψC) to be a one-side amalgam for (A,B,C). If ψB is a homomorphism and

ψC is an embedding, then ψB is also an embedding since B is simple, by the isomorphism

between the lattice of congruence and that of convex normal submonoids of negative cones

of a residuated lattice proved in [12]. In this case, {ψB(bB), ψ(b
′
B), ψC(bC)} ⊆ ZD is a 3-

element antichain, which is impossible. If ψC is a homomorphism and ψC is an embedding,

then the only non-injective non-trivial ψC has ψC(1) = ψC(bC). However, in this case

we get ψC(⊤) = ψC(bC\bC) = ψC(bC)\ψC(bC) = ψC(1)\ψC(1) = ψC(1\1) = 1, so

ψB(⊤) = ⊤ ≠ 1 = ψC(⊤), a contradiction. Thus V(bTi) ∨ V(bBi) fails 1AP.

For V(bTi) ∨ V(bLi), let A be the 3-element Sugihara monoid, both B ∈ bLi and

C ∈ bTi be as shown in Figure 9.9(b), then (A,B,C) is a V-formation in V(bTi) ∨

V(bLi). Suppose (D, ψB, ψC) is a one-side amalgam for (A,B,C). If ψB is a homo-

morphism and ψC is an embedding, then ψB is also an embedding since B is simple,

so {ψB(bB), ψB(b
′
B), ψC(bC)} ⊆ ZD with ψB(bB) < ψB(b

′
B) and ψC(bC) ∥ ψB(bB),

which is impossible. If ψC is a homomorphism and ψC is an embedding, then as the

case for V(bTi) ∨ V(bBi), the only non-injective non-trivial ψC has ψC(1) = ψC(bC),
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then ψC(⊤) = ψC(bC\bC) = ψC(bC)\ψC(bC) = ψC(1)\ψC(1) = ψC(1\1) = 1, so

ψB(⊤) = ⊤ ≠ 1 = ψC(⊤), a contradiction. Thus V(bTi) ∨ V(bLi) fails 1AP.

For V(bBi) ∨ V(bLi), let A be the 3-element Sugihara monoid, B ∈ bLi and C ∈ bBi

be as shown in Figure 9.9(c), then (A,B,C) is a V-formation in V(bBi)∨V(bLi). Suppose

(D, ψB, ψC) is a one-side amalgam for (A,B,C). Since both B and C are simple in this

case, (D, ψB, ψC) is an amalgam, so {ψB(bB), ψB(b
′
B), ψC(bC), ψC(b

′
C)} ⊆ ZD such that

ψB(bB) < ψB(b
′
B) and ψC(bC) ∥ ψB(bB) or ψC(b

′
C) ∥ ψB(bB), which is impossible. Thus

V(bBi) ∨ V(bLi) fails 1AP.
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Figure 9.9: Counterexamples for AP of (a) V(bTi) ∨ V(bBi); (b) V(bTi) ∨ V(bLi); (C)
V(bBi) ∨ V(bLi)
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Chapter 10: Involutive semiunilinear residuated lattices

A (bounded) residuated lattices called 1-involutive if it satisfies xℓr = x = xrℓ, where

xℓ = 1/x and xr = x\1. In this chapter we study compact commutative 1-involutive

unilinear residuated lattices multiplication and in particular, we characterize the finite ones.

Recall that a residuated lattice R based on MX , for some X , satisfies ⊤x = x for all x

iff R = UR ∪ {⊥,⊤}.

Theorem 10.1. In a residuated lattice R based on an MX , we have bℓr = b = brℓ for all

non-idempotent b ∈ ZR. Also, a residuated lattice R based on an MX is 1-involutive and

satisfies ⊤x = ⊤ iff X is closed under multiplication and it forms a group.

Proof. Let R be a residuated lattice based on an MX , then by Theorem 3.1(1) we have

X = UR∪ZR. If b ∈ ZR, then by Theorem 3.1(4) ab = b ̸≤ 1, for all a ∈ UR∪{⊤}; hence

br ∈ ZR ∪ {⊥}. Also, since b is non-idempotent, by Theorem 3.1(3) there exists b′ ∈ ZR

(possibly b′ = b) such that bb′ = ⊥ ≤ 1, hence br = b′ and likewise bℓ = b′. In both cases

where ZR has one or two elements, we get bℓr = b = brℓ for all b ∈ ZR.

If M is 1-involutive and it satisfies ⊤x = ⊤, then ZR is empty and X = UR. For all

a ∈ UR, if ar = ⊥, then we would get arℓ = ⊥ℓ = ⊤ ≠ a, a contradiction; so ar ̸= ⊥.

Also, if ar = ⊤, then arℓ = ⊤ℓ = ⊥ ≠ a, a contradiction. So, ar ∈ UR and likewise for

aℓ. Also, by aar ≤ 1 and the fact that no product of elements of UR gives ⊥, we get that

aar = 1, for all a ∈ UR, i.e., every element of X = UR is invertible, so X is closed under

multiplication and forms a group. Also, it is easy to see that if X is a group, then R is

1-involutive.
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Corollary 10.2. The 1-involutive residuated lattices on MX are precisely those of the form

RA,B in Corollary 3.3, where A is a monoid with zero ⊤ such that A \ {⊤} is a group and

B is the semigroup with zero ⊥ such that either B = {⊥, b} with b2 = ⊥ or B = {⊥, b, b′}

with b2 = b, b′2 = b′ and bb′ = b′b = ⊥.

The residuated lattice in the previous theorem is a non-linear 1-involutive compact

URL. However, it is not the case that in every finite non-linear 1-involutive compact URL

(U, ·, 1) is a subgroup. Here is a counterexample.

⊤

⊤

a

1

b

c

Figure 10.1: Counterexample: non-linear 1-involutive compact URL without subgroups

It satisfies ⊤x = ⊤ for all x ̸= ⊥ and the multiplication table is

· a b c

a a b c

b b b c

c c c b

From the table we can tell aℓ = ar = b, bℓ = br = a, cℓ = cr = c, so it is 1-involutive.

An element a in a residuated lattice is called n-potent, for some n ∈ Z+, if it satisfies

an+1 = an; it is called potent if it is n-potent for some n. A residuated lattice is called

n-potent, for some n ∈ Z+, if every element is n-potent; it is called potent if it is n-potent

for some n. Note that if a residuated lattice is potent, then each of its elements is potent (but
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not conversely, as no universal n might exist). Clearly, finite residuated lattices are potent.

The following result is not about unilinear residuated lattices, but rather about residuated

chains. However, it seems to have gone unnoticed up to now.

Lemma 10.3. Every 1-involutive residuated chain where every element is potent is actually

idempotent. In particular, every potent (hence also every finite) 1-involutive residuated

chain is idempotent. Consequently, the only commutative 1-involutive residuated chains

that are potent/finite/every element is potent are the odd Sugihara chains.

Proof. Let a ≤ 1 such that an+2 = an+1 for some n ∈ Z+, so an+1 is idempotent. If 1 <

a(an+1)r, then an ≤ ana(an+1)r = an+1(an+1)r = a2(n+1)(an+1)r ≤ an+1. If a(an+1)r ≤

1, then a ≤ (an+1)rℓ = an+1 ≤ a2 and so an ≤ an+1 by order-preserving. Thus if a is

negative, an+2 = an+1 implies an = an+1 for all n. Inductively, we get that for negative a,

we have a = a2.

Now for 1 ≤ a, we have aℓ = 1/a ≤ 1/1 = 1, hence aℓ is idempotent. Therefore,

a\a = (aℓa)r = (aℓ(aℓa))r ≥ (aℓ1)r = a, hence a2 ≤ a. Since 1 ≤ a implies a ≤ a2, we

get that a is idempotent.

Here we introduce some properties of a class of involutive rigorously compact unilinear

residuated lattice.

Theorem 10.4. Let R be a non-linear rigorously compact URL satisfying involutivity and

(·Z∧), then

1. M = R \ {⊥,⊤} is closed under multiplication and divisions, so R is compact;

2. the comparability relation ≡ is compatible with multiplication and divisions.

Proof. (1) Since R is rigorously compact, we know M = UR. Since R is nonlinear and

satisfies (·Z∧), M is closed under multiplication by Theorem 8.27. Let 0 denote the nega-

tion constant in R and let xℓ = 0/x, xr = x\0. Since R is involutive, xℓ, xr /∈ {⊤,⊥} for
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all x ∈ M , so M is closed under ℓ and r. Since x\y = xr + y = (yℓx)r for all x, y ∈ M ,

we know M is closed under left divisions; and similarly for right divisions.

(2) Since multiplication preserves the ordering in R, ≡ is compatible with the multi-

plication. Since R is involutive, we know x ≤ y iff yℓ ≤ xℓ iff yr ≤ xr for all x, y ∈ R,

thus ≡ is compatible with ℓ and r. Since x\y = (yℓx)r for all x, y ∈ R, ≡ is compatible

with divisions.

In an involutive residuated lattice, an element a is called periodic if there exists n ∈ Z+

such that xℓn = xr
n .

Theorem 10.5. Let R be a non-linear 1-involutive ⊤-unital URL, then

1. R is compact;

2. G = (M, ·, 1)/≡ is a group, where M = R \ {⊥,⊤};

3. if every element is periodic, then R is cyclic;

4. if every element in the chain of 1, H , is potent then H is isomorphic to an odd

Sugihara chain.

Proof. (1) Since R is non-linear and ⊤-unital, R \ {⊥} is closed under multiplication by

associativity. Since R is 1-involutive, xℓ = 1/x, xr = x\1 /∈ {⊤,⊥} for all x ∈ M , so

M is closed under ℓ and r. Now suppose there exists x, y ∈ M such that xy = ⊤, then

xℓ, yℓ ∈ M . Since R \ {⊥} is closed under multiplication, we have ⊥ < xℓx ≤ 1, so

⊤ = xℓ⊤ = xℓ(xy) = (xℓx)y ≤ y, contradicting the assumption that y ∈ M , hence R is

compact.

(2) By Theorem 10.4(2) we know the comparable relation is compatible with multi-

plication. Since M is closed under multiplication, G is a monoid. Since [x]≡ ·G [xr]≡ =

[x ·M xr] = [1]≡ for all x ∈M , G is a group.
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(3) For every x ∈ M we have xxℓ ≤ x(xℓ ∨ xr) = xxℓ ∨ xxr ≤ x/x ∨ 1 = x/x =

(xxr)ℓ. By Theorem 10.4(2) we know M is closed under multiplication and divisions, so

by unilinearity we get x(xℓ ∨ xr) ∈ M . Therefore, xℓ ∨ xr ̸= ⊤, hence xℓ ≡ xr. Now if

xℓ < xr, then xℓℓℓ < xℓ by 1-involution. Hence we can get . . . < xℓℓℓℓℓ < xℓℓℓ < xℓ <

xr < xrrr < xrrrrr < . . . inductively, contradicting the assumption that every element in R

is periodic. Likewise, xr < xℓ leads to a contradiction, so xr = xℓ for all x ∈M .

(4) Since 1 is the multiplicative identity and the lattice reduct is unilinear, H is closed

under multiplication, ℓ and r, so H is a subalgebra of M. By Lemma 10.3, H is idempotent;

and by (3), it is cyclic. Since H is a cyclic idempotent chain, it follows [5] that H is

isomorphic to an odd Sugihara chain.

Now we give a characterization of the commutative 1-involutive compact URLs whose

chain of 1 itself is a bounded odd Sugihara chain and the chains form a group in which every

element is of finite order. Let R be such a URL. We say an element x in M = R \ {⊥,⊤}

is lower if xnx ≤ 1; it is upper if xnx > 1, where nx ∈ Z+ is the order of the chain of x,

viewed as an element in the comparability group. We omit the subscript when it is clear in

the context.

Lemma 10.6. Let R be a commutative 1-involutive compact URL satisfying that the chain

of 1, H ∪ {⊥,⊤}, is a bounded odd Sugihara chain and that G := M/≡ is a group whose

elements are of finite orders, where M = R \ {⊥,⊤}. In the following we use xℓ for

x → 1. We use n and m for the orders of the chains of x and y respectively if they are not

comparable to 1, and make n = 2 if x is comparable to 1 (so that n− 1 is defined).

1. If the chain of x is g, then the chain of xℓ is g−1; both g and g−1 are of the same order.

2. Every chain in M contains a lower element.

3. If x ∈M is a lower element such that (xℓ)n ≤ 1, then (xℓ)n = xn.
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4. If x ∈ M is a lower element, then xℓx = xn; if x is an upper element, then xℓ is a

lower element and xℓx = (xℓ)n.

5. If x ∈M is an upper element, then (xn)ℓ = (xℓ)n.

6. If there exist elements x, y ∈ M such that x ≡ y and xn = yn, where n is the

order of x, then x = y. So for every element x ∈ M , the (·)-subreduct generated

by x is ⟨x⟩· = {x, x2, . . . , xn}, so it is a group isomorphic to Zn with identity xn.

Consequently, if x ≡ y and xs = ys, for some x, y ∈M and s ∈ Z+, then x = y.

7. For every element x ∈M , (xk)ℓxk = xℓx for all 1 ≤ k ≤ n.

8. If x ∈M is a lower element, then (xℓ)n > 1 iff xℓ > xn−1 iff (xn−1)ℓ > x; if x is an

upper element, then (xℓ)n < 1.

9. For a lower element x ∈ M , if xn−1 < xℓ, then (xk)ℓ = (xℓ)k for all 1 ≤ k ≤ n,

so the (·)-subreduct generated by xℓ is ⟨xℓ⟩· = {xℓ, (x2)ℓ, . . . , (xn)ℓ} and the (·,ℓ)-

subreduct generated by x is ⟨x⟩ = ⟨x⟩·∪⟨x⟩ℓ· = {x, x2, . . . , xn, xℓ, (x2)ℓ, . . . , (xn)ℓ}.

If xn−1 = xℓ, then ⟨xℓ⟩· = {x, x2, . . . , xn} and ⟨x⟩ = ⟨x⟩· ∪ ⟨x⟩ℓ· .

10. For an upper element x ∈ M , we have (xk)ℓ = (xℓ)k for all 1 ≤ k ≤ n, so the

(·,ℓ)-subreduct generated by x is ⟨x⟩ = ⟨x⟩· ∪ ⟨x⟩ℓ· .

11. For all x, y ∈M , we have (xiyj)ℓ = (xi)ℓ(yj)ℓ for all 1 ≤ i ≤ n and 1 ≤ j ≤ m.

12. For all x ∈M , we have ⟨x⟩ = ⟨xℓ⟩ = ⟨x⟩· ∪ ⟨x⟩ℓ· .

13. Let x, y ∈M be lower elements such that ym ≤ xn ≤ 1, then

xn−1 < xℓ and ym−1 < yℓ =⇒ (xy)s−1 < (xy)ℓ;

xn−1 = xℓ and ym−1 < yℓ =⇒ (xy)s−1 < (xy)ℓ;

xn−1 < xℓ and ym−1 = yℓ =⇒ (xy)s−1 = (xy)ℓ;
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xn−1 = xℓ and ym−1 = yℓ =⇒ (xy)s−1 = (xy)ℓ;

where s is the least common multiple of n and m.

14. If x, y ∈ M are lower elements and their chains gn and gm are in the same cyclic

subgroup ⟨g⟩ of G, then the (·,ℓ)-subreduct generated by x and y is ⟨x, y⟩ = ⟨xiyj⟩∪

⟨x⟩ ∪ ⟨y⟩, for some i, j ∈ Zs, where s ∈ Z+ is the order of g.

15. Let x, y ∈ M be lower elements in chains g1 and g2 respectively. If ⟨g1⟩ ∩ ⟨g2⟩ =

{1G}, then the (·,ℓ)-subreduct generated by x and y is ⟨x, y⟩ = (⟨x⟩·×⟨y⟩·)∪ (⟨x⟩·×

⟨y⟩·)ℓ.

16. For each element x ∈ M , if xn−1 = xℓ, then x is a maximum lower element in its

chain.

If x is the maximum lower element in its chain, then xℓ is the maximum lower ele-

ment in its chain when xn−1 = xℓ and the minimum upper element in its chain when

xn−1 < xℓ.

Proof. (1) Let x be in chain g and xℓ be in chain g′. Since xℓx ≤ 1, we know g′g = 1G, so

g′ = g−1; g and g−1 are of the same order by group theory.

(2) Let x ∈ M be an upper element, then we know xn > 1. Since xℓx ∈ H ,

x(xℓx) ≤ x, so (x(xℓx))n ∈ H . Since H itself is an odd Sugihara chain, we have

(x(xℓx))n = (xℓ)n(xn)2
id
= (xℓ)nxn = (xℓx)n

id
= xℓx ≤ 1, where id

= denotes the impli-

cation of idempotency, so x(xℓx) is a lower element in the same chain as x. Thus every

chain contains a lower element.

(3) Let x ∈ M be lower element such that (xℓ)n ≤ 1, then (xℓ)n−1 ≤ x by residu-

ation. By idempotency of (xℓ)n and order-preservation of multiplication, we get (xℓ)n =

((xℓ)n)n−1 = ((xℓ)n−1)n ≤ xn. Since x is a lower element, we know xn ≤ 1, so xn−1 ≤ xℓ

by residuation, and thus xn id
= (xn)n−1 = (xn−1)n ≤ (xℓ)n. Therefore (xℓ)n = xn.
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(4) Let x ∈M be a lower element. Since xℓx ≤ 1 and H is an odd Sugihara chain, we

know xℓx
id
= (xℓx)n = (xℓ)nxn ∈ {(xℓ)n, xn}. If xℓx = (xℓ)n, then (xℓ)n ≤ 1, so by (3)

we know xℓx = (xℓ)n = xn, therefore xℓx = xn always holds.

Now assume x is an upper element. Since xℓx id
= (xℓx)n = (xℓ)nxn ∈ {(xℓ)n, xn},

xn > 1 and xℓx ≤ 1, we get that (xℓ)n = xℓx, and xℓ is a lower element.

(5) Since (xℓ)nxn = (xℓx)n
id
= xℓx ≤ 1, we know (xℓ)n ≤ (xn)ℓ by residuation. Since

x(x→ x) = x for all x ∈M , we have xn → xℓx = (xn(xℓx)ℓ)ℓ = (xn(x→ x))ℓ = (xn)ℓ.

Since H is an odd Sugihara chain and xn > 1, we get (xn)ℓ = xn(xn)ℓ = xn(xn → xℓx) ≤

xℓx. Since (xℓ)n = xℓx by (4), we have (xn)ℓ ≤ (xℓ)n, hence (xn)ℓ = (xℓ)n.

(6) First assume that x is a lower element. Since yn = xn, y is also a lower element.

Since xℓx = xn by (4), we have (xn)ℓ
(4)
= (xℓx)ℓ = xℓ → xℓ, so xℓ = (xℓ → xℓ)xℓ =

(xn)ℓxℓ, which is equivalent to x inv
= ((xn)ℓxℓ)ℓ = xℓ → xn, where

(4)
= and inv

= denote the

application of (4) and 1-involution respectively; similarly we have y = yℓ → yn. Since

x ≡ y, we know 1 ≡ xℓy, so xℓy id
= (xℓy)n = (xℓ)nyn = (xℓ)nxn = (xℓx)n

id
= xℓx = xn,

hence y ≤ xℓ → xn = x; Similarly we have yℓx = yn, thus x ≤ yℓ → yn = y, therefore

x = y.

If x is an upper element, then xℓ is lower by (4) and (xn)ℓ = (xℓ)n by (5). Since yn =

xn, y is also an upper element and thus yℓ is lower and (yℓ)n
(5)
= (yn)ℓ = (xn)ℓ

(5)
= (xℓ)n. By

above proof, we conclude that xℓ = yℓ, so y = x.

If x is a lower element, then xn+k = xnxk ≤ xk for all 1 ≤ k ≤ n; if x is an

upper element, then xk ≤ xnxk = xn+k. So, in both cases we get xn+k ≡ xk. Using the

idempotency of xn, we have (xn+k)n = (xn)n+k id
= xn

id
= (xn)k = (xk)n, so xn+k = xk for

all 1 ≤ k ≤ n by above proof.

Thus ⟨x⟩· = {x, x2, . . . , xn} and xn is the identity element. Since xkxn−k = xn for all

1 ≤ k ≤ n, we know ⟨x⟩· is isomorphic to the group Zn.
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Finally, if x ≡ y and xs = ys, for some x, y ∈M and s ∈ Z+, where s = qn+ k, with

0 ≤ k < n, then xk = xnxk
id
= xqnxk = xs = ys = yqnyk

id
= ynyk = yk. Since xn−k and

yn−k are the group inverses of xk and yk respectively, xn−k = yn−k and xn = xk+(n−k) =

xkxn−k = ykyn−k = yk+(n−k) = yn, hence x = y.

(7) Since x(x → x) = x for all x ∈ M , we have (xk)ℓ = (xk(x → x))ℓ =

(xk(xℓx)ℓ)ℓ = xk → xℓx, so (xk)ℓxk ≤ xℓx for all 1 ≤ k ≤ n. Since ⟨x⟩· is isomor-

phic to Zn by (6), we have xℓ = (xn+1)ℓ = (xn+1(xk → xk))ℓ = (x(xk → xk))ℓ =

(x((xk)ℓxk)ℓ)ℓ = x → ((xk)ℓxk), so xℓx = (x → ((xk)ℓxk))x ≤ (xk)ℓxk and hence

xℓx = (xk)ℓxk for all 1 ≤ k ≤ n.

(8) If x is a lower element, then xn ≤ 1, so xn−1 ≤ xℓ and x ≤ (xn−1)ℓ by residuation.

By further invoking 1-involution, we get: xℓ > xn−1 iff (xn−1)ℓ > x.

Now assume xℓ = xn−1, then (xℓ)n = (xn−1)n = (xn)n−1 id
= xn ≤ 1, so xℓ = xn−1

implies xn ≤ 1. Since xn−1 ≤ xℓ, we know xn > 1 implies xn−1 < xℓ by contraposition.

If (xn−1)ℓ > x, then (xn−1)ℓ → x ≡ x → x ≡ 1. Since the set {y ∈ R : (xn−1)ℓy ≤

x} is closed downward, (xn−1)ℓ > x and R is unilinear, we know 1 /∈ {y ∈ R : (xn−1)ℓy ≤

x}, so (xℓ(xn−1)ℓ)ℓ = (xn−1)ℓ → x < 1, which is equivalent to 1 < xℓ(xn−1)ℓ by 1-

involution. Since x(xn−1)ℓ
(6)
= xn+1(xn−1)ℓ = x2(xn−1(xn−1)ℓ)

(7)
= x2(xℓx)

(4)
= x2xn

(6)
= x2,

we get xn((xn−1)ℓ)n = (x(xn−1)ℓ)n = (x2)n = (xn)2
id
= xn ≤ 1, so ((xn−1)ℓ)n ≤ (xn)ℓ

by residuation. By way of contradiction, if (xℓ)n ≤ 1, then (xℓ)n = xn = xℓx by (3), so

1 < xℓ(xn−1)ℓ and the idempotency of H implies that 1 < xℓ(xn−1)ℓ
id
= (xℓ)n((xn−1)ℓ)n =

xn((xn−1)ℓ)n ≤ xn(xn)ℓ ≤ 1, a contradiction. Therefore (xℓ)n > 1.

If x is an upper element, then (xℓ)n = xℓx ≤ 1 by (4). If (xℓ)n = 1, then by (5)

we know (xn)ℓ = (xℓ)n = 1, so xn = 1 and x is a lower element, a contradiction. Thus

(xℓ)n < 1 when x is an upper element.

(9) Let x be a lower element. First we show xn−1 < xℓ implies (xn)ℓ = (xℓ)n. By (4)

and the fact that xℓ(xℓ → xℓ) we get (xℓ)n(xn)ℓ
(4)
= (xℓ)n(xℓx)ℓ = (xℓ)n(xℓ → xℓ) = (xℓ)n.
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Since xn−1 < xℓ, we get (xℓ)n > 1 by (8), so 1 ≤ (xn)ℓ ≤ (xℓ)n, because 1 ≤ (xn)ℓ and H

is an odd Sugihara chain. On the other hand, since (xℓ)nxn = (xℓx)n
id
= xℓx ≤ 1, we have

(xℓ)n ≤ (xn)ℓ by residuation, thus (xn)ℓ = (xℓ)n.

Now let 1 ≤ k ≤ n. Since (xℓ)k−1xk = (xℓx)k−1x
id
= (xℓx)x

(4)
= xnx

(6)
= x, we obtain

xk ≤ (xℓ)k−1 → x by residuation. Set y := (xℓ)k−1 → x and note that xk ≤ y and

(xℓ)k−1y ≤ x. So, (xn)ℓyn = (xℓ)nyn
id
= ((xℓ)n)k−1yn = ((xℓ)k−1)nyn = ((xℓ)k−1y)n ≤

xn, thus yn ≤ (xn)ℓ → xn = xn
id
= (xk)n ≤ yn. Hence yn = (xk)n and by (6) we

conclude that y = xk. Therefore xk = (xℓ)k−1 → x = ((xℓ)k)ℓ and thus (xk)ℓ = (xℓ)k by

1-involution.

Since xn−1 < xℓ, we know (xℓ)n > 1 by (8), so xℓ is an upper element. By (6) we know

⟨xℓ⟩· is a group isomorphic to Zn, thus (xi)ℓ(xj)ℓ = (xℓ)i(xℓ)j = (xℓ)i+nj = (xi+nj)ℓ for

all i, j ∈ Zn. Finally, since (xi)ℓxj = (xℓ)ixj = (xℓx)ixn+j−i id
= (xℓx)xj−ni

(4)
= xnxj−ni

(6)
=

xj−ni, the (·,ℓ)-subreduct generated by x is ⟨x⟩ = {x, x2, . . . , xn, xℓ, (x2)ℓ, . . . , (xn)ℓ} =

⟨x⟩· ∪ ⟨x⟩ℓ· .

Now if xn−1 = xℓ, then (xℓ)k = (xn−1)k = xn−k for all 1 ≤ k ≤ n by (6), so ⟨xℓ⟩· =

{x, x2, . . . , xn}. Also we have (xi)ℓxj = ((xi)ℓxi)xj−ni
(7)
= (xℓx)xj−ni

(4)
= xnxj−ni

(6)
=

xj−ni. Therefore we know ⟨x⟩ ⊆ ⟨x⟩· ∪ ⟨x⟩ℓ· and ⟨x⟩ = ⟨x⟩· ∪ ⟨x⟩ℓ· .

(10) Since x is an upper element, we know xℓ is a lower element by (4) and ((xℓ)ℓ)n =

xn > 1, so ((xℓ)k)ℓ
(9)
= ((xℓ)ℓ)k

inv
= xk and hence (xℓ)k = (xk)ℓ for all 1 ≤ k ≤ n by

(9). Thus (xi)ℓ(xj)ℓ = (xℓ)i(xℓ)j = (xℓ)i+nj = (xi+nj)ℓ for all i, j ∈ Zn. By (6) we

know ⟨xℓ⟩· is also a group isomorphic to Zn with identity (xℓ)n
(9)
= (xn)ℓ. So we have

(xi)ℓxj
(6)
= (xℓ)ixj = (xℓ)n+ixj = (xℓ)n+i−j(xℓx)j

id
= (xℓ)i−nj(xℓx)

(4)
= (xℓ)i−nj(xℓ)n

(6)
=

(xℓ)i−nj = (xi−nj)ℓ, hence the (·,ℓ)-subreduct generated by x is ⟨x⟩ = ⟨x⟩· ∪ ⟨x⟩ℓ· .

(11) Without loss of generality, assume that the interval bounded by xn and (xn)ℓ is

a subset of that bounded by ym and (ym)ℓ, then xn → ym = (xn)ℓ → ym = ym and

xn → (ym)ℓ = (xn)ℓ → (ym)ℓ = (ym)ℓ. Let 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since
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(xi)ℓ(yj)ℓ(xiyj) = ((xi)ℓxi)((yj)ℓyj) ≤ 1, we have (xi)ℓ(yj)ℓ ≤ (xiyj)ℓ by residuation.

Since (xi)ℓ(yj)ℓ = (xiyj)ℓ is equivalent to xiyj = (xi)ℓ → yj by 1-involution, to prove the

former identity, it suffices to show xiyj is the maximum such element u that (xi)ℓu ≤ yj .

First we observe that (xi)ℓ(xiyj) = ((xi)ℓxi)yj ≤ yj , so xiyj ≤ (xi)ℓ → yj by residuation.

Let z ≥ xiyj such that (xi)ℓz ≤ yj . Let s be the least common multiple of n′ = n/(n, i) and

m′ = m/(m, j), where (n, i) and (m, j) are the greatest common divisors, then (xiyj)s =

(xi)s(yj)s
id
= xnym = ym. Since (xi)ℓz ≤ yj and multiplication is order-preserving, we get

((xi)ℓ)szs = ((xi)ℓz)s ≤ (yj)s, so zs ≤ ((xi)ℓ)s → (yj)s
id
= ((xi)ℓ)n

′ → ym = ym since

((xi)ℓ)n
′
= xn or (xn)ℓ by (9) and (10). Since z ≥ xiyj , we know zs ≥ (xiyj)s = ym,

hence zs = (xiyj)s. By (6), we know z = xiyj and hence xiyj = (xi)ℓ → yj and

(xi)ℓ(yj)ℓ = (xiyj)ℓ by 1-involution.

(12) By (9) and (10), we know if xℓ ̸= xn−1, then (xk)ℓ = (xℓ)k, so xk = ((xℓ)ℓ)k =

((xℓ)k)ℓ for all 1 ≤ k ≤ n by 1-involution, hence ⟨xℓ⟩ = ⟨xℓ⟩· ∪ ⟨xℓ⟩ℓ· = ⟨x⟩ℓ· ∪ ⟨x⟩· = ⟨x⟩.

If xℓ = xn−1, then ⟨x⟩· = ⟨xℓ⟩· and ⟨x⟩ℓ· = ⟨xℓ⟩ℓ· , so ⟨x⟩ = ⟨xℓ⟩.

(13) Let x and y be such lower elements. Since the chains of xℓ and yℓ are also of

orders n and m respectively, so by (11) we have ((xy)ℓ)s
(11)
= (xℓyℓ)s = (xℓ)s(yℓ)s

id
=

(xℓ)n(yℓ)m = (yℓ)m. The last equation comes from the assumption that ym ≤ xn ≤ 1.

Then the results follows.

(14) We know the subgroup generated by gn and gm is ⟨gn, gm⟩ = ⟨g(n,m)⟩, where

(n,m) is the greatest common divisor of n and m. By Bézout’s identity, there exists

i, j ∈ Z such that (n,m) = in + jm. Note that Bézout’s identity also holds in Zs, so

without loss of generality we assume that i, j ∈ Zs. In the following we show ⟨x, y⟩ =

⟨xiyj⟩ ∪ ⟨x⟩ ∪ ⟨y⟩. First we prove for the (·)-subreduct we have ⟨x, y⟩· = ⟨xiyj⟩· ∪

⟨x⟩· ∪ ⟨y⟩·. Since x ∈ gn and y ∈ gm, we know xs/(s,n) ≡ ys/(s,m) ≡ 1. First we

assume that ys/(s,m) ≤ xs/(s,n) ≤ 1. Since in +s jm = (n,m), we know xiyj ∈ g(n,m),

so (xiyj)m/(n,m) ∈ gm and hence (xiyj)m/(n,m) ≡ y. To show (xiyj)m/(n,m) = y, it
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suffices to show ((xiyj)m/(n,m))s = ys by (6). For this we have ((xiyj)m/(n,m))s =

(xs)im/(n,m)(ys)jm/(n,m) id
= xsys

id
= xs/(s,n)ys/(s,m) = ys/(s,m) id

= ys, thus y ∈ ⟨xiyj⟩·.

Let p, q ∈ Zp, then xp(xiyj)q ∈ gpngq(n,m) = gpn+q(n,m) = g(pn/(n,m)+q)(n,m). Since

(xiyj)pn/(n,m)+q ∈ g(pn/(n,m)+q)(n,m), we know (xiyj)pn/(n,m)+q ≡ xp(xiyj)q. Since we

know (xp(xiyj)q)s = (xs)p+iq(ys)jq
id
= xsys = ys and similarly ((xiyj)pn/(n,m)+q)s =

xsys = ys, (xiyj)pn/(n,m)+q = xp(xiyj)q by (6), so xp(xiyj)q ∈ ⟨xiyj⟩· and hence ⟨x, y⟩· =

⟨x⟩· ∪ ⟨xiyj⟩·.

Since y ∈ ⟨xiyj⟩·, we know yℓ ∈ ⟨xiyj⟩·∪⟨xiyj⟩ℓ· = ⟨xiyj⟩. Let p, q, r ∈ Zs and denote

xiyj by z. Since (xp)ℓxq = ((xp)ℓxp)xq−sp
(7)
= (xℓx)xq−sp

(4)
= xnxq−sp

(6)
= xq−sp ∈ ⟨x⟩· by

(7) and xqzr ∈ ⟨z⟩· by proof above, we know ⟨x⟩ℓ· · ⟨x⟩· ⊆ ⟨x⟩· and ⟨x⟩· · ⟨z⟩· ⊆ ⟨x⟩·, so

⟨x⟩ℓ· · ⟨z⟩· ⊆ ⟨z⟩· and hence (xr)ℓzt ∈ ⟨z⟩·. Since (zp)ℓxq = (zp−snq/(n,m)znq/(n,m))ℓxq =

(zp−snq/(n,m))ℓ(znq/(n,m))ℓxq, znq/(n,m) ≡ xq and (znq/(n,m))s = ys ≤ xs = (xq)s, we

know (znq/(n,m))ℓxq ∈ ⟨z⟩ℓ· , thus (zp)ℓxq ∈ ⟨z⟩ℓ· . Since (xp)ℓ(zq)ℓ = (xpzq)ℓ by (11) and

xpzq ∈ ⟨z⟩·, we know (xp)ℓ(zq)ℓ ∈ ⟨z⟩ℓ· . Since y, yℓ ∈ ⟨z⟩, we know xpyq, xp(yq)ℓ, (xp)ℓyq

and (xp)ℓ(yq)ℓ are in ⟨z⟩. Therefore ⟨x, y⟩ = ⟨xiyj⟩ ∪ ⟨x⟩.

If ys/(s,m) ≤ xs/(s,n) ≤ 1, then similarly we can show ⟨x, y⟩ = ⟨xiyj⟩ ∪ ⟨y⟩.

(15) Since ⟨g1⟩ ∩ ⟨g2⟩ = {1G}, we know ⟨x⟩· ∩ ⟨y⟩· is empty if xn ̸= ym and is

singleton otherwise, thus ⟨x, y⟩· = ⟨x⟩· × ⟨y⟩·. Without loss of generality assume that

ym ≤ xn ≤ 1, then (xi)ℓyj ≡ xn−iyj . Since [xn, (xn)ℓ] ⊆ [ym, (ym)ℓ] in H, we know

((xi)ℓyj)s = ((xi)ℓ)sys = ys
id
= (xn−i)s(yj)s = (xn−iyj)s, where s is the least common

multiple of n and m, thus (xi)ℓyj = xn−iyj ∈ ⟨x, y⟩·. Similarly we can show (yi)ℓxj ∈

⟨x, y⟩ℓ· . Therefore ⟨x, y⟩ = ⟨x, y⟩· ∪ ⟨x, y⟩ℓ· = (⟨x⟩· × ⟨y⟩·) ∪ (⟨x⟩· × ⟨y⟩·)ℓ.

(16) Let x ∈ M satisfying xn−1 = xℓ, then xn = xn−1x = xℓx ≤ 1, so x is a lower

element. Suppose there exists a lower element y ∈ M such that y ≥ x, then yℓ ≤ xℓ =

xn−1 ≤ yn−1 by 1-involution and order-preservation of multiplication. Since y is lower, we

know yn−1 ≤ yℓ, so yℓ = xℓ and y = x. Thus x is the maximum lower element in its chain.
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Now assume that x is the maximum lower element in its chain. If x ∈ H , then x = 1,

so the statement holds. So we assume that x ∥ 1. Suppose xn−1 = xℓ, then xℓ is a lower

element by (4) and x = (xn−1)n−1 = (xℓ)n−1 by (6). Let y be a lower element such that

y ≥ xℓ, then yn−1 ≥ (xℓ)n−1 = x. Since y is a lower element, so is yn−1. Since x is the

maximum lower element in its chain, we know yn−1 = x, thus y
(6)
= (yn−1)n−1 = xn−1 = xℓ

and hence xℓ is the maximum lower element in its chain. Now suppose xn−1 < xℓ, then xℓ

is an upper element by (8). Let y be an upper element such that y ≤ xℓ, then yℓ is a lower

element by (4) and yℓ ≥ x by 1-involution. Since x is the maximum lower element in its

chain, we know yℓ = x, so y = xℓ and xℓ is the minimum upper element in its chain.

Recall that Corollary 7.8 shows in particular that if H is a 1-involutive residuated chain

and G is a group then H×b G is a compact URL; see Section 7.2. We improve this result,

by observing that in this case the result is 1-involutive.

Lemma 10.7. If H is a 1-involutive residuated chain and G is a group then H ×b G is a

1-involutive compact URL. In particular, if H is an odd Sugihara chain and G an abelian

group, then H×b G is a commutative 1-involutive compact URL.

The next theorem shows that every commutative 1-involutive compact URL can be

obtained from such an H ×b G by a small modification. In a later result we get an even

more precise characterization.

Recall that a conucleus σ on a residuated lattice R is a contracting (σ(x) ≤ x) mono-

tone (x ≤ y =⇒ σ(x) ≤ σ(y)) idempotent (σ(σ(x)) = σ(x)) operator that satisfies

σ(x)σ(1) = σ(1)σ(x) = σ(x) and σ(x)σ(y) ≤ σ(xy), the latter of which is equivalent to

σ(σ(x)σ(y)) = σ(xy).

Theorem 10.8. Let R be a commutative 1-involutive compact URL such that the chain of

1, H ∪ {⊥,⊤}, is a bounded odd Sugihara chain and M/≡ ∼= G, where G is an abelian
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group where every element has finite order and M = R \ {⊥,⊤}. Then R is isomorphic

to a subalgebra of a conucleus image of H×b G.

Proof. Since, by Theorem 10.4(1), M is a (·,→, 1)-subreduct of R and since (R,∧,∨) is

unilinear, in the following we focus on M. By Lemma 10.6(2) we know every chain in M

contains lower elements, so for each chain in M either all lower elements satisfy xn−1 < xℓ

or there exists a lower element satisfying xn−1 = xℓ, in which case that x is the maximum

lower element in its chain, by Lemma 10.6(16). IfG1 denotes the set of chains whose lower

elements satisfy xn−1 < xℓ and G2 denotes the set of chains which contain a lower element

x satisfying xn−1 = xℓ, then G = G1 ⊔ G2. By Lemma 10.6(13), each one of G1 and G2

is closed under multiplication. Also by Lemma 10.6(16), G2 is closed under inverses, so

G1 is also closed under inverses. Since 1 ∈ G2, we know G2 is a subgroup of G. Now we

show that for every chain g ∈ G1, the map ψg : g → H defined by ψg(x) = xn, where n is

the order of g in the group G, is an order embedding and ψg[g] a multiplicative ideal of H

which is also closed under ℓ, so Ig := H \ ψg[g] is equal to (eg, e
ℓ
g) or to [eg, e

ℓ
g] for some

negative eg ∈ H .

Since the multiplication on M is order-preserving, if x, y ∈ g with x ≤ y then ψg(x) =

xn ≤ yn = ψg(y). Now suppose ψg(x) ≤ ψg(y) for some x, y ∈ g; then xn ≤ yn. If

y < x, then yn ≤ xn, so xn = yn and using Lemma 10.6(6), we get x = y, contradicting

y < x; thus ψg(x) ≤ ψg(y) implies x ≤ y, so ψg is an order-embedding. Now for x ∈ g

and a ∈ H , we have a ≡ 1 so ax ≡ x, i.e. ax ∈ g. Therefore, aψg(x) = axn
id
=

anxn = (ax)n = ψg(ax) ∈ ψg[g], hence ψg[g] is a multiplicative ideal of H. Finally,

since all lower elements in g satisfy xn−1 < xℓ, Lemma 10.6(9) and (10) entail that for all

x ∈ g and all 1 ≤ k ≤ n, we have (xk)ℓ = (xℓ)k and also that ⟨x⟩· and ⟨xℓ⟩· are both

isomorphic to Zn. Also, xn−1 < xℓ implies x < (xn−1)ℓ by 1-involutivity, so (xn−1)ℓ ∈ g

and ψg(x)
ℓ = (xn)ℓ

(9)
= (xℓ)n

id
= ((xℓ)n−1)n

(9)
= ((xn−1)ℓ)n = ψg((x

n−1)ℓ), hence ψg[g] is

closed under ℓ.
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Now let Ig = H \ ψg[g] and a, b, c ∈ Ig such that a < b < c and a, c ∈ H . If

b /∈ Ig, then b ∈ ψg[g]. Since ψg[g] is an ideal of H, we know ab, bc ∈ ψg[g]. Since the

multiplication on H is conservative, we get ab = b = bc, contradicting that H is an odd

Sugihara chain; so Ig is convex. Since ψg[g] is closed under ℓ, Ig is also closed under ℓ.

Finally, 1 ∈ Ig, since otherwise 1 ∈ ψg[g], so there exists x ∈ g such that 1 = xn, hence

xℓ = 1 · xℓ = xnxℓ = xn−1(xℓx)
(4)
= xn−1xn

(6)
= xn−1, contradicting the assumption that

xn−1 < xℓ for all x ∈ g. Therefore Ig = (eg, (eg)
ℓ) or Ig = [eg, (eg)

ℓ] for some negative

eg ∈ H .

For g ∈ G2, let ug denote an element in g satisfying ung−1
g = uℓ, where ng is the order

of chain of g; note that there is a unique such element because, by Lemma 10.6(16), ug is

the maximum lower element in g. Note that Jg := (u
ng
g , (u

ng
g )ℓ] is a subset of H . We define

M0 := (H×G)\((
⋃

g∈G1

I◦g ×{g})∪(
⋃

g∈G2

Jg×{g})), where I◦g = (eg, (eg)
ℓ) for all g ∈ G1.

Now we show that M b
0 =M0 ∪ {⊥,⊤} is a conucleus image of H ×b G.

To show that M b
0 is closed under multiplication, we consider (h1, g1), (h2, g2) ∈ M0.

If g1, g2 ∈ G1, then h1 ∈ H \ I◦1 and h2 ∈ H \ I◦2 , where I1 and I2 are short for Ig1 and

Ig2 respectively. By the definition of I1 and I2, there exist x ∈ g1 and y ∈ g2 such that

h1 = xn and h2 = ym, where n and m are the orders of g1 and g2 respectively. Since

G1 is closed under multiplication, ψg1g2 is well-defined and ψg1g2(xy) = (xy)s = xsys
id
=

xnym = h1h2, where s is the least common multiple of n and m, thus (h1h2, g1g2) ∈ M0.

If g1, g2 ∈ G2, then h1 ∈ H \ (un1 , (un1 )ℓ] and h2 ∈ H \ (um2 , (um2 )ℓ]. Since G2 is a subgroup

of G, Jg1g2 is well-defined and Jg1g2 = ((u1u2)
p, ((u1u2)

s)ℓ] by Lemma 10.6(13). Since

(u1u2)
s = us1u

s
2

id
= un1u

m
2 ∈ {un1 , um2 }, we know Jg1g2 = Jg1 or Jg2 . Since h1h2 ∈ {h1, h2},

we know h1h2 /∈ Jg1 and h1h2 /∈ Jg2 , thus h1h2 /∈ Jg1g2 and hence (h1h2, g1g2) ∈ M0. If

g1 ∈ G1 and g ∈ G2, then h1 ∈ H \ (e1, e
ℓ
1) and h2 ∈ H \ (um, (um)ℓ]. When e1 ≤ um,

h1h2 /∈ (e1, e
ℓ
1) and by Lemma 10.6(13) we know g1g2 ∈ G1 and I◦g1g2 = (e1, e

ℓ
1), so

h1h2 ∈ H \ I◦g1g2 and (h1h2, g1g2) ∈ M0. When um < e1, h1h2 /∈ (um, (um)ℓ] and again
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by Lemma 10.6(13) we know g1g2 ∈ G2 and Jg1g2 = (um, (um)ℓ], so h1h2 ∈ H \ Jg1g2 and

(h1h2, g1g2) ∈M0. Finally, if g1 ∈ G2 and g2 ∈ G1, then similarly to the previous case we

can show (h1h2, g1g2) ∈M0.

Since the lattice reduct of M is unilinear and ⊥,⊤ ∈ M b
0 , M b

0 is closed under ∨.

Finally, for all (h, g) ∈ H × G, if (h, g) /∈ M0, then either h ∈ I◦g for some g ∈ G1 or

h ∈ Jg for some g ∈ G2. If h ∈ I◦g for some g ∈ G1, then ↓(h, g) ∩M0 has maximum

element (eg, g) ∈M0; if h ∈ Jg for some g ∈ G2, then ↓(h, g)∩M0 has maximum element

(u
ng
g , g) ∈M0. ThereforeM b

0 is a conucleus image ofH×bG and the conucleus σ is defined

by σ(⊤) = ⊤ and σ(⊥) = ⊥ and if g ∈ G1, then σ(h, g) =


(h, g) if h /∈ (eg, e

ℓ
g)

(eg, g) if h ∈ (eg, e
ℓ
g)

;

if g ∈ G2, then σ(h, g) =


(h, g) if h /∈ [u

ng
g , (u

ng
g )ℓ]

(u
ng
g , g) if h ∈ [u

ng
g , (u

ng
g )ℓ]

. By [7], we know M b
0 is the

universe of a residuated lattice.

Now we show that R can be embedded into Mb
0. Define φ : R → M b

0 by φ(⊤) = ⊤,

φ(⊥) = ⊥ and φ(x) = (xng , g), where g is the chain of x and ng is the order of g. We

omit the subscript when it is clear in the context. For all x, y ∈ M , if x ≤ y, then x and y

belong to the same chain and xn ≤ yn by the order-preserving of multiplication on M, so

φ(x) = (xn, g) ≤ (yn, g) = φ(y). Conversely if φ(x) ≤ φ(y), then x ≡ y and xn ≤ yn.

If y < x, then yn ≤ xn, so yn = xn, so by Lemma 10.6(6), we get x = y, a contradiction;

thus x ≤ y and φ is an order-embedding. Since multiplication on M is compatible with ≡,

we know gxgy = gxy, so φ(x)φ(y) = (xn, gx)(y
m, gy) = (xnym, gxy). Since the order s of

gxgy is the least common multiple of those of gx and gy, we know φ(xy) = ((xy)s, gxy) =

(xsys, gxy)
id
= (xnym, gxy) = φ(x)φ(y). Since G1 and G2 are closed under multiplication

and inverse respectively, we know if the chain of x is in a chain of G1, so is the chain

of xℓ; similarly for x in a chain of G2. First assume that x is in a chain of G1, then
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φ(xℓ) = ((xℓ)n, gxℓ) = ((xn)ℓ, g−1). Since g ∈ G1, we know xn /∈ I◦g by the definition of

Ig, so φ(x)ℓσ = σ((xn, g)ℓH×bG) = σ((xn)ℓ, g−1) = ((xn)ℓ, g−1) = φ(xℓ). Now assume x

is in a chain of G2. If x satisfies xn−1 < xℓ, then by the proof in the previous case we can

show φ(xℓ) = φ(x)ℓσ . So we assume that x satisfies xn−1 = xℓ, then by Lemma 10.6(16), x

is the maximum lower element ug in its chain. Now φ(uℓg) = φ(un−1
g ) = ((un−1

g )n, gn−1) =

(ung , g
n−1) and φ(ug)ℓσ = σ((ung , g)

ℓ
H×bG) = σ((ung )

ℓ, g−1) = (ung , g
n−1) = φ(uℓg) by the

definition of σ. Therefore φ is an embedding from R into Mb
0.

The following theorem strengthens Theorem 10.8 by showing that we only need to

consider conuclei that fix the chain of 1.

Theorem 10.9. Let H be an idempotent residuated chain, G a group whose elements are

of finite orders and σ a conucleus on H ×b G such that σ(⊥) = ⊥, and σ(⊤) = ⊤. Then

σ[H × G] = σ[σ′[H]× G], where σ′[H] is the projection of σ[H × {1G}]. If H is an odd

Sugihara chain, G is abelian and σ[H × G] is σ(1H, 1G)-involutive, then σ′[H] is also an

odd Sugihara chain.

Proof. Let (h, g) ∈ σ[H ×b G] such that the chain g is of order n. Since σ is a conucleus

on H ×b G and H is idempotent, we have (h, 1) = (hn, gn) = (h, g)n ∈ σ[H ×b G]. By

the definition of σ′, we know h ∈ σ′[H], so (h, g) ∈ σ′[H] ×b G. Since σ is idempotent,

we get (h, g) ∈ σ[σ′[H] ×b G]. Thus if σ(k, g) > ⊥ for some (k, g) ∈ H × G, then

σ(k, g) ∈ σ[σ′[H]×bG], therefore σ[H×G] ⊆ σ[σ′[H]×G]. The other direction is trivial.

Now assume that H is an odd Sugihara chain, G is abelian and σ[H×G] is σ(1H, 1G)-

involutive. Since H is a subalgebra of H×bG and σ′[H] is the projection of σ[H×{1G}],

we know σ′[H] is also a subalgebra of σ[H×bG]. Since σ[H×bG] is σ(1H, 1G)-involutive,

σ′[H] is σ′(1H)-involutive by definition of σ′. Since H is commutative and idempotent,

σ′[H] is also commutative and idempotent. Hence σ′[H] is an odd Sugihara chain.
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Note that Theorem 10.8 and Theorem 10.9 do not provide a converse to Lemma 10.7,

because conuclei images of H×bG may fail to be 1-involutive. Interestingly, connecting to

Theorem 10.11, if the conucleus fixes the chain of 1, then the resulting URL is 1-involutive.

Lemma 10.10. Assume H is a commutative 1-involutive chain, G is a group where every

element has finite order and σ is a conucleus on H ×b G such that σ is the identity on

H×{1}∪{⊥,⊤}. If σ(h0, g0) = ⊥ for some h0 ∈ H and g0 ̸= 1, then σ[H×{g0}] = {⊥}.

Also, G′ is a subgroup of G andG⊥G
′ ⊆ G⊥, whereG⊥ := {g ∈ G : σ[H×{g}] = {⊥}}

and G′ := G \G⊥. Therefore σ[H ×G] = σ[H ×G′].

Proof. Suppose there exists (h0, g0) ∈ H × G such that σ(h0, g0) = ⊥. Since σ is

monotone, we know σ(h, g0) ≤ σ(h0, g0), so σ(h, g0) = ⊥ for all h ≤ h0. Without

loss of generality, assume that h0 ≤ 1. Since σ is the identity map on H, we have

(h0, 1)σ(h, g0) = σ(h0, 1)σ(h, g0) ≤ σ(h0h, g0) = σ(h0, g0) = ⊥ for all h ∈ [h0, h
ℓ
0].

Since H × G is closed under multiplication, we get σ(h, g0) = ⊥ for all h ∈ [h0, h
ℓ
0]. If

h > hℓ0, then hℓ < h0 and so σ(hℓ, g0) = ⊥. Hence (hℓ, 1)σ(h, g0) = σ(hℓ, 1)σ(h, g0) ≤

σ(hhℓ, g0) = σ(hℓ, g0) = ⊥, thus σ(h, g0) = ⊥ for all h ∈ H , i.e., σ[H × {g0}] = {⊥}.

Since g0 is of finite order n ∈ Z+, we know g−1
0 = gn−1

0 and g0 = (g−1
0 )n−1, so (1, g0) =

(1, (g−1
0 )n−1) = (1, g−1

0 )n−1. Thus (σ(1, g−1
0 ))n−1 ≤ σ((1, g−1

0 )n−1) = σ(1, g0) = ⊥,

therefore σ(1, g−1
0 ) = ⊥ and σ[H × {g−1

0 }] = {⊥}. Hence G⊥ is closed under inverse.

Since σ ↾H×{1}= idH×{1}, we know 1 ∈ G′. Since G⊥ is closed under inverse, G′

is also closed under inverse. Now let g1, g2 ∈ G′, then σ[H × {g1}] ∩ {⊥} = ∅ and

σ[H × {g2}] ∩ {⊥} = ∅. Since σ(h, g1)σ(1, g2) ≤ σ(h, g1g2), we know σ(h, g1g2) > ⊥

for all h ∈ H , so G′ is a subgroup of G.

Finally, let g1 ∈ G⊥ and g2 ∈ G′, then σ[H × {g1}] = {⊥} and σ[H × {g2}] ∩

{⊥} = ∅. Since G′ is closed under inverse, we know σ[H × {g−1
2 }] ∩ {⊥} = ∅, so

σ(h, g1g2)σ(1, g
−1
2 ) ≤ σ(h, g1) = ⊥ implies that σ(h, g1g2) = ⊥. Therefore G⊥G

′ ⊆

G⊥.
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Theorem 10.11. If H is an odd Sugihara chain, G is an abelian group where every element

has finite order and σ is a conucleus on H ×b G such that σ is the identity on H × {1} ∪

{⊥,⊤}, then σ[H×b G] is a commutative 1-involutive compact URL.

Proof. By Lemma 10.10, we can assume that σ(h, g) > ⊥ for all (h, g) ∈ H × G. Since

H×bG is a commutative 1-involutive compact URL and σ is a conucleus, we know σ[H×b

G] is a commutative URL. Since σ(⊤) = ⊤, σ(⊥) = ⊥ and σ(h, g) > ⊥ for all (h, g) ∈

H × G, we know σ[H × G] is closed under multiplication since H × G is closed under

multiplication, hence σ[H×bG] is compact. Now we show that σ[H×bG] is 1-involutive.

Since σ(h, g) > ⊥ for all (h, g) ∈ H × G, there exists eg ≤ 1 such that σ(1, g) =

(eg, g) for all g ̸= 1. Since σ is idempotent, we know σ(eg, g) = (eg, g). Since g is of

order n for some n ∈ Z+, we know g−1 = gn−1 and g = (g−1)n−1. Let σ(1, g−1) =

(e, g−1) for some e ≤ 1, then (e, g−1) = σ(1, g−1) = σ(1, gn−1) = σ((1, g)n−1) ≥

(σ(1, g))n−1 = (eg, g)
n−1 = (eg, g

−1), so e ≥ eg. By (eg, g) = σ(1, g) = σ(1, (g−1)n−1) ≥

(σ(1, g−1))n−1 = (e, g−1)n−1 = (e, g), we have eg ≥ e, thus e = eg.

Now for h ∈ H\[eg, eℓg], we have (h, g) = (h, 1)(eg, g), so σ(h, g) ≥ σ(h, 1)σ(eg, g) =

(h, 1)(eg, g) = (h, g) ≥ σ(h, g), thus σ(h, g) = (h, g) for h ∈ H \ [eg, eℓg]. Also, since σ is

monotone, we have (eg, g) = σ(eg, g) ≤ σ(h, g) ≤ σ(1, g) = (eg, g), so σ(h, g) = (eg, g)

for all h ∈ [eg, 1]. Now let h ∈ (1, eℓg), then (eg, g) = σ(1, g) ≤ (h′, g) = σ(h, g) ≤

σ(eℓg, g), so eg ≤ h′ ≤ h < eℓg. Suppose h′ > eg, then h′ > 1 by the monotonicity of

σ. In this case we have (h, g) = (h, 1)(h′, g), so (h′, g) = σ(h, g) ≥ σ(h, 1)σ(h′, g) =

(h, 1)(h′, g) = (h, g) ≥ σ(h, g) = (h′, g), thus σ(h, g) = (h, g). On the other hand,

since 1 < h < eℓg, we get e < hℓ < 1 by 1-involution, so (hℓ, g) = (hℓ, 1)(h, g) and

hence (eg, g) = σ(hℓ, g) ≥ σ(hℓ, 1)σ(h, g) = (hℓ, 1)(h, g) = (hℓ, g) ≥ σ(hℓ, g) =

(eg, g), thus hℓ = eg, contradicting eg < hℓ. Therefore h′ = eg and σ(h, g) = (eg, g)

for all h ∈ [eg, e
ℓ
g). Since σ(1, g−1) = (eg, g

−1), similarly we can show σ(h, g−1) =

(eg, g
−1) for all h ∈ [eg, e

ℓ
g). Also, by above proof we can tell σ(eℓg, g) is either (eg, g)
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or (eℓg, g) and σ(eℓg, g
−1) is either (eg, g

−1) or (eℓg, g
−1). Since g is of finite order in

G, g−1 = gn−1 and g = (g−1)n−1 for some n ∈ Z+. So (eℓg, g) = (eℓg, g
−1)n−1 and

hence σ(eℓg, g) ≥ (σ(eℓg, g
−1))n−1; similarly we have σ(eℓg, g

−1) ≥ (σ(eℓg, g))
n−1. Thus if

σ(eℓg, g) = (eg, g) then σ(eℓg, g
−1) = (eg, g

−1); if σ(eℓg, g
−1) = (eg, g

−1) then σ(eℓg, g) =

(eg, g), i.e., σ(eℓg, g) = (eg, g) iff σ(eℓg, g
−1) = (eg, g

−1); hence σ(eℓg, g) = (eℓg, g) iff

σ(eℓg, g
−1) = (eℓg, g

−1). If σ(eℓg, g) = (eg, g), then σ(h, g) =


(h, g) if h /∈ [eg, e

ℓ
g]

(eg, g) if h ∈ [eg, e
ℓ
g]

and

σ(h, g−1) =


(h, g−1) if h /∈ [eg, e

ℓ
g]

(eg, g
−1) if h ∈ [eg, e

ℓ
g]

. In this case, if h /∈ [eg, e
ℓ
g], then (σ(h, g))ℓσℓσ =

(h, g)ℓσℓσ = (σ(hℓ, g−1))ℓσ = (hℓ, g−1)ℓσ = σ(h, g). If h ∈ [eg, e
ℓ
g], then (σ(h, g))ℓσℓσ =

(eg, g)
ℓσℓσ = (σ(eℓg, g

−1))ℓσ = (eg, g
−1)ℓσ = σ(eℓg, g) = (eg, g) = σ(h, g).

Finally, if σ(eℓg, g) = (eℓg, g), then σ(h, g) =


(h, g) if h /∈ (eg, e

ℓ
g)

(eg, g) if h ∈ (eg, e
ℓ
g)

, σ(h, g−1) =


(h, g−1) if h /∈ (eg, e

ℓ
g)

(eg, g
−1) if h ∈ (eg, e

ℓ
g)

. In this case, if h /∈ (eg, e
ℓ
g), then (σ(h, g))ℓσℓσ = (h, g)ℓσℓσ =

(σ(hℓ, g−1))ℓσ = (hℓ, g−1)ℓσ = σ(h, g). If h ∈ (eg, e
ℓ
g), then (σ(h, g))ℓσℓσ = (eg, g)

ℓσℓσ =

(σ(eℓg, g
−1))ℓσ = (eℓg, g

−1)ℓσ = σ(eg, g) = (eg, g) = σ(h, g).

Corollary 10.12. The commutative 1-involutive ⊤-unital URLs R such that the chain of

1, H ∪ {⊥,⊤}, is a bounded odd Sugihara chain and M/≡ ∼= G, where G is an abelian

group whose each element has finite order and M = R \ {⊥,⊤} are (up to isomorphism)

precisely the subalgebras of conucleus images of H ×b G, where the conucleus fixes the

chain of 1.

Now we say a commutative 1-involutive ⊤-unital URL is (n, k)-potent if there exist

n ∈ Z+ such that every element satisfies xn+k = xk for all 1 ≤ k ≤ n. Since the chain
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of 1 in such URL is a subalgebra, by Lemma 10.3 we know the chain of 1 itself is an odd

Sugihara chain. Also, such URLs include those whose G is an abelian group of order n.

Corollary 10.13. Every (n, k)-potent/finite commutative 1-involutive compact URL R is

isomorphic to a subalgebra of a conucleus image of H×b G, where H is the chain of 1 in

M = R \ {⊥,⊤}, G = M/≡ and the conucleus fixes the chain of 1; these are precisely

all the (n, k)-potent/finite commutative 1-involutive compact URLs.

Corollary 10.14. Here are all the commutative 1-involutive URL: the ⊤-unital ones; the

non-⊤-unital ones in the class LW in which W = ∅, Z ∪ {⊥,⊤} is an integral residuated

chain, such that ⊤-unital subalgebra is 1-involutive and the 1-free subalgebra Z ∪ {⊥,⊤}

is ⊥-involutive; the ones in B whose ⊤-unital subalgebra is 1-involutive.

Proof. Here we show the non-linear non-⊤-unital ones are as described above. Let R

be a non-linear commutative URL in TW such that R is not ⊤-unital, then there exists

b, b0 ∈ ZR such that b < 1 and b0 ∥ b by Theorem 8.13. Since bℓ0 = b and bℓ = ⊤, R is not

1-involutive.

Let R be a non-linear commutative URL in LW such that R is not ⊤-unital and

WR ̸= ∅, then there exists an idempotent b0 ∈ ZR such that b0 = c2 for all c ∈ WR

by Theorem 8.3(5). Since bℓ0 = ⊥ and ⊥ℓ = ⊤, such R is not 1-involutive.

Let R be a non-linear commutative URL in LW such that R is not ⊤-unital and WR =

∅, then R ∈ L and UR ∪ {⊥,⊤} is a subalgebra, ZR ∪ {⊥,⊤} is a 1-free subalgebra and

b→ 1 = b→ ⊥. Thus R is 1-involutive iff UR ∪ {⊥,⊤} is 1-involutive and ZR ∪ {⊥,⊤}

is ⊥-involutive.

Finally, let R be a non-linear commutative URL in B such that R is not ⊤-unital, then

UR ∪ {⊥,⊤} is a subalgebra and ZR ∪ {⊥,⊤} = {b, b′,⊥,⊤} is isomorphic to the 4-

element generalized Boolean algebra by Theorem 8.8. Since bℓ = b′ and b′ℓ = b, R is

1-involutive iff UR ∪ {⊥,⊤} is 1-involutive.
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Chapter 11: Open problems and future work

Finally we end this thesis by listing some open problems.

1. The forgoing chapters classify the class of unilinear residuated lattices into classes

B4, Tunital, B, TW, and LW and give the axiomatizations and constructions respec-

tively. We can conclude that the class Tunital is at the center of the study of unilinear

residuated lattices. Even though we present 2 constructions of ⊤-unital URLs in

Chapter 7, we hope to find more constructions.

2. In the chapter of involutive SRLs, we focus on the class of commutative 1-involutive

⊤-unital URLs whose chain of 1 is an odd Sugihara chain and the chains are of finite

orders in the group of chains. We hope to generalize the characterization there. For

example, what if the chains form an arbitrary abelian group, like Z? We have see such

an example, MZ, in previous chapters and we hope to generalize the characterization.

3. We characterize the URLs axiomatized by the equation x2 = x in Chapter 9. We

would to explore the classes axiomatized by the equations like x ≤ x2∨1 or xn ≤ xm

for some m,n ∈ Z+.

4. Finally, note that the non-bound elements in a URL are join-irreducible and meet-

irreducible. We hope to understand the residuated lattices whose non-bound elements

are only join-irreducible (or meet-irreducible). This is motivated by the fact that in

the proof of characterization of URLs, we only use the join-irreducibility of non-

bound elements in the most cases.
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