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Abstract 

This study demonstrates an effective and innovative approach to measuring the 

latent athletic abilities and capacities of professional golfers. I used nonlinear mixed 

effects growth modeling (e.g., Dynamic Measurement Modeling) to measure professional 

golfers’ ability levels and capacities for improvement. I accomplished this using a two-

stage modeling approach. First, a crossed linear mixed effects model estimated each 

player’s ability level in each year. In the second stage, I used the results from the first 

stage to estimate several candidate nonlinear growth trajectories for players’ abilities over 

time. The quadratic growth trajectory was the best-fitting of these trajectories and was 

used to estimate each player’s individual-level capacity (maximum predicted ability). 

Validation results indicate that the ability estimates from stage one can outperform 

existing unidimensional measures of golfing ability and that the capacity estimates from 

the second stage are reliable and provide better forecasts of players’ future abilities than 

do single-timepoint estimates. This study demonstrates the applicability of latent variable 

statistics and longitudinal growth models to the study of sports, provides a novel 

statistical method to estimate player abilities and capacities in professional golf, and 

provides a tutorial for estimating Dynamic Measurement Models (DMM) using R.  
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Chapter One: Introduction 

 

Background 

Golf is a sport played, in simplest terms, by trying to hit a ball on the ground with 

a stick (or ‘club’) into a small hole in the ground, which is typically hundreds of yards 

away. The golfer tries to minimize the number of times that he or she hits the ball (called 

‘shots’ or ‘strokes’). This process is then repeated 18 times to complete one round of 

golf.1 Golfers with greater ability generally require fewer shots to complete the 18-hole 

round of golf than do golfers with less ability.  

For decades, scholars (and golfers and golf coaches) have attempted to measure 

golfing ability quantitatively. At the amateur ranks (i.e. for golfers not on a professional 

tour), this is typically done either through the player’s average score above or below par 

or through a handicap rating system. For professional golfers, the average score above or 

below par is also frequently used (e.g. J. Baker S. Horton & Deakin, 2006), as are more 

skill-specific measurements, such as average driving distance, percentage of putts made 

within 20 feet, etc. (e.g. Nix & Koslow, 1991). More quantitatively sophisticated ways of 

measuring golf performance have also arisen in recent years, improving upon the more 

traditional methods of measuring golfing ability (e.g. Stigler & Stigler, 2018;  

 
1 A complete description of how golf is played, including a list and definition of golf-related terms, can be 

found in Appendix A.  



2 

 

Broadie & Rendleman Jr, 2013; Connolly & Rendleman Jr, 2012; Elmore & 

Urbaczewski, 2018). However, both the more traditional measurements and the newer, 

more sophisticated methods suffer from one or more of several potential deficiencies.  

Perhaps most notably (from a statistical perspective), most measurements of golf 

performance and ability are treated as observed variables. Inherently, though, golfing 

ability is a latent variable. It exists—some golfers have more ability than others—but is 

not something that humans can easily observe or measure precisely by watching a golfer 

or by looking at his or her scores. By using observed variables as proxies for the latent 

ability, researchers and practitioners are making untested assumptions about how 

effectively those proxies measure the true latent ability. Thus, if golfing ability is a latent 

variable, it would likely be more effective to treat it as such statistically by using a latent 

variable statistical model to estimate golfing ability. 

Second, many ways of measuring golfing ability force researchers to make the 

assumption that all golf courses are created equal. For example, if we assume that 

average driving distance measures golfing ability (or at least a specific skill or dimension 

of golfing ability such as “power” or “strength”), we assume that those skills would 

manifest equally across courses. However, not all individuals play the same courses, and 

different courses are likely to have different characteristics that affect average driving 

distance. One course might be drier than another, allowing the ball to roll further. A 

course at a higher altitude would allow the ball to travel further through the air. One 

course might be narrower than another, encouraging players to sacrifice some distance in 

favor of accuracy. This might not be overly problematic if all golfers played the same 
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courses. However, that is certainly not the case, even among professional golfers. No 

player chooses to play every week—each player chooses which tournaments to play and 

which weeks to take off. Furthermore, there are many different professional golf tours, 

and two players on different tours are not likely to play in the same tournaments as each 

other very often, if at all. Amateur and recreational golfers are even less likely to play the 

same courses as each other—they are far more likely to play courses near their place of 

residence than those further away. Thus, by condensing the measurement of the ability 

down to an average over a given time period, there is potential measurement error and 

bias.  

Third, most existing ways of measuring golfing ability assume that each shot of a 

given length is equally difficult. For example, if we use the percentage of putts made 

within 20 feet to represent a golfer’s ability (or at least a specific skill or dimension of 

golfing ability such as “putting ability”), we assume that each player has an equal 

distribution of difficulty within 20 feet. However, some golfers might have more putts 

within the lower end of the range (e.g. more putts from one to eight feet) while another 

might have more putts within the higher end of the range (e.g. 12 to 20 feet). 

Additionally, even at a given length, some shots are going to be harder than others. A 

straight uphill putt from 10 feet is likely to be much easier than a downhill 10-foot putt 

that curves (or “breaks”) a foot to the left or right. If these are non-randomly distributed 

across players, then measuring golfing ability by looking at the observed variable of 

putting percentage will be misleading.  
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Fourth, from a more practical perspective, many (though not all) of the measures 

that are used to measure golfing ability require detailed shot-by-shot data. For example, 

Strokes Gained, which is the current state-of-the-art in measuring golfing ability, requires 

one to know how far away from the hole the ball was before the shot, the surface it was 

on before the shot (fairway, rough, pine straw, sand, etc.), how far away from the hole it 

ended up after the shot, and the surface on which it ended up after the shot. This is far 

beyond the level of detail typically tracked by recreational golfers, and it is even beyond 

the scope of data provided by most professional golf tours. Thus, even if this were the 

optimal way to measure golfing ability, it may not be feasible in many cases.  

 Fifth, many advanced statistics across sports require comparison to a reference 

group such as the “average” player or a “replacement level” player. Strokes Gained 

follows this same logic: it is measuring the strokes gained above what the average player 

would be expected to achieve. This requires defining who the average golfer is for each 

scenario. For a professional golf tour, this may seem straightforward: the average golfer 

on that tour. Even in that scenario, however, a different average could be chosen: the 

average player across all professional tours, for example. For recreational golfers, it is 

even less clear who the reference golfer should be. Is it the average recreational golfer 

worldwide? The average recreational golfer in his or her country? The average 

recreational golfer in his or her state? The average recreational golfer with the same 

handicap? The average recreational golfer of the same age? There is no clear correct 

answer to this question.  
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Sixth, some of the ways that golfing ability has been measured impose an implied 

factor structure on the data. They assume that putting is one ability, chipping and pitching 

is another, approaching the green is another, etc. These assumptions are based on logical 

and reasonable theories about the structure of golfing ability, but they are just 

assumptions. They have not been tested in a systematic way. Because of this, there may 

be additional dimensions that have been under-studied and under-represented in the study 

of golfing ability. Similarly, some golfing outcomes that have been presumed to measure 

different abilities may actually be indicators of the same underlying latent ability.  

Finally, most ways of measuring golfing abilities that recognize multiple 

dimensions treat these dimensions as if they are totally distinct from each other. 

However, in the way that they are measured as observed variables, these variables are 

likely to be correlated with each other, and some outcomes may even be measuring 

multiple abilities simultaneously. For example, one frequently used way of measuring a 

player’s ability from sand traps is his or her sand save percentage (the percentage of the 

times in a greenside sand trap that a player saves par). Undoubtedly, part of what 

determines this percentage is indeed how well the player hits shots from the sand trap. 

However, a player’s putting ability likely also affects this statistic, as a player that makes 

more putts will be able to save par from further distances (or more frequently from the 

same distance). Thus, untested assumptions about which indicators measure which 

abilities and how different abilities are correlated with each other may lead to 

measurement error.  
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These issues and resulting biased ability estimates can lead to misunderstandings 

among players, coaches, media members, sponsors, and fans. Players and coaches may 

identify the wrong strengths and weaknesses and may therefore use their time and 

training efforts inefficiently. Sponsors may choose the wrong players to sponsor, leading 

to suboptimal marketing spending. Fans may have unrealistic expectations for their 

favorite players, and they may have even selected their favorite players using inaccurate 

information. Members of the media may be inadvertently presenting incomplete and 

misleading stories, further exacerbating these other problems.  

Moving Toward Latent Variable Measurement 

In this project, I have addressed many of these issues and have improved on the 

existing methods of measuring golfing ability. I developed new measures of golfing 

ability using latent variable statistics applied to the publicly available results of elite 

professional golfer tours. In addition to measuring a golfer’s ability at a fixed time point, 

I also created a new quantity of interest—professional golfers’ capacities—that measures 

players’ capacities for ability in the future. In total, I addressed four related research 

objectives.  

Research Objective 1: To review and synthesize the extant research on estimating 

golfing ability. 

The vast majority of research on the measurement of golfing ability has treated 

golfing ability as an observed variable (or as a set of observed variables) rather than as a 

latent ability. However, there have been some recent movements toward using advanced 

statistical measurement techniques to measure golfing ability. Chapter Two reviews and 



7 

 

synthesizes the extant research on the estimation of golfing ability, including both the 

observed variable approaches and the latent variable approaches.   

Research Objective 2: To estimate the ability levels of professional golfers as a 

latent ability. 

In this stage, I have measured golfing ability among professional golfers as a 

unidimensional latent ability. I used a crossed linear mixed effects model with random 

effects for course, date/round, course-year, player, and player-year. The outcome variable 

was the player’s score in the given round. The sum of the random effects for the player 

and for the player-year thus provide an estimate for how many golf strokes per round 

above or below average that player is for the particular year. Though we do not always 

think of mixed effects models as being latent variable measurement models, the 

conceptualization of a random effect as measuring the unobserved effect of some 

grouping variable is effectively the same as the measurement of latent abilities in more 

conventional measurement models.  

One additional benefit at this stage is the random effect for course. This random 

effect provides a measure of how difficult each course is. Although it is not a specific 

objective of this dissertation, this could provide a more accurate and more cost-effective 

way to measure course difficulty. Current methods require expert evaluators to visit each 

course.  

This model to measure a professional golfer’s ability is similar to the SBSE 

(“Score-based Skill Estimate”) model (Broadie & Rendleman Jr, 2013). The new version 

in this project included a few additional components: the inclusion of positional 
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variables, the nesting of a player’s ability in a given year within a broader player-ability 

random effect, and nesting a course-round difficulty measure within a broader course 

difficulty random effect. Nonetheless, the logic is the same: a player’s score in a given 

round of golf is determined by situational factors (course difficulty, weather, etc.), the 

player’s ability, and random variation.   

I validated the ability level estimates produced from the linear mixed effects 

model and confirmed their accuracy and utility. To do this, I assessed the strength of the 

correlations between the newly produced ability level estimates, one alternative measure 

(a pooled, age-invariant measure of ability), and three existing unidimensional measures 

of golfing ability—the Official World Golf Rankings (OWGR), Total Strokes Gained 

(the current state-of-the-art unidimensional measure of golfing ability), and the SBSE 

model. Ideally, the new estimates should be positively but not perfectly correlated with 

all of these other measures (hypothesized correlations of between 0.6 and 0.8). I also 

compared the predictive ability (lowest mean square error) of the new estimates to the 

predictive abilities of the other unidimensional measures of golfing ability. To 

demonstrate validity, the new ability estimates needed to perform at least as well as the 

existing measures of ability, and they did so.  

Research Objective 3: To assess the shape of longitudinal ability growth of 

professional golfers. 

To accomplish this objective, I utilized the scores for golfers over time produced 

in Objective 2 above. I then used these longitudinal scores to estimate multiple shapes of 

nonlinear mixed effect growth curves: two S-shaped growth trajectories, two J-shaped 
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growth trajectories, and a quadratic growth trajectory. Each of these models was 

estimated first as a marginal model (i.e., fixed effects only). I then compared the fits of 

these models using Bayesian Information Criterion (BIC) and mean square error (MSE) 

to decide which one provided the best explanation for how golfing ability grows over the 

course of professional golfers’ careers. The best-fitting of these trajectories (the quadratic 

model) was then used in future stages.  

Research Objective 4: To estimate the capacity scores for professional golfers. 

Dynamic Measurement Modeling (DMM) provides a conceptualization of 

nonlinear mixed effects models as measurement models, providing estimates of a 

person’s “capacity” for future growth (Dumas et al., 2020;McNeish & Dumas, 2017). In 

other words, these models take a person’s existing scores over time to estimate the 

maximum possible ability level that the person could achieve in the future in the specific 

domain. To date, these DMM capacity estimates have primarily been estimated using a 

random effect on the upper asymptote parameter in S-shaped and J-shaped growth 

curves, but a similar logic could apply to quadratic growth and other growth trajectories 

as well. In some of these growth trajectories (such as a quadratic model), the capacity 

would be represented by the individual-level estimate for the maximum value of the 

function, while the time at which the function reaches its maximum may also be of 

substantive interest. Using the quadratic growth trajectory, which fit best in the previous 

stage, I added random effects to some of the parameters. Most importantly, the player-

level random effect for the maximum was used to estimate the capacity value for each 

golfer.  
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To validate these results, I ran the DMM model on restricted datasets formed of 

only early-career ability estimates. In many practical uses, DMM models will be used to 

estimate capacity scores for individuals before the individuals have reached their 

capacities. Thus, to be viewed as a valid measurement model, a DMM model should be 

able to produce useful capacity estimates from only those pre-maximum datapoints. I ran 

the restricted model using two different age thresholds (both of which are below the 

model-average age at which players reach their capacities): a dataset of only ages under 

25 and a dataset of only ages under 30. I then compared these capacity score estimates to 

the capacity score estimates estimated by the full model, assessing the extent to which the 

estimated restricted-model capacity scores deviate from the full-model capacity scores. 

There should be a relatively strong positive correlation between the restricted-model 

capacity scores and the full-model capacity scores, and results confirm this strong 

correlation. Along similar lines, I also used a variation of 10-fold cross-validation to 

validate the results by assessing the extent to which the results are consistent across 

subsamples of the data.  

The second step in the DMM validation compared the model fit of the final DMM 

model selected to that of a baseline, naïve linear growth trajectory. Linear growth is not 

desirable from a DMM perspective because each individual’s capacity score would be 

infinite. However, it is still theoretically possible that linear growth could be the best 

fitting growth trajectory. To provide evidence that the DMM growth trajectory is valid, I 

compared model fit statistics (BIC and MSE) for the selected DMM model and 
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theoretical linear growth. As expected, the DMM model provided a better fit (lower BIC 

and MSE).  

As a final validation step for the DMM model, I compared the capability for 

DMM capacity estimates to predict future performance to that of other estimates of 

ability that are captured by single-timepoint estimates. One benefit of DMM capacity 

estimates is that they reduce the reliance on single-timepoint scores as implicit indicators 

of future success. This benefit has been shown in educational settings, and I tested 

whether it holds true in the measurement of golfing ability. In the case of golfing ability, 

single-timepoint estimates took the form of latent ability estimates at a single age (age 28, 

or age 25, for example). To demonstrate validity and utility, DMM capacity estimates 

should be more effective at predicting future ability than any single-timepoint estimates, 

and results confirmed this.   

Contributions 

This dissertation makes several contributions. First, it further demonstrates the 

utility of applying latent variable statistical models to the study of sports. There have 

been some tepid attempts to move in this direction across sports analytics, but most 

statistical analyses in sports still rely on observed variables. This dissertation provides a 

template for utilizing latent variable models and applying them to the domain of sports 

analysis.  

Second, the mixed effects model(s) demonstrate an improved method for 

estimating golfing ability without using shot-level data. This may be particularly relevant 

for estimating ability levels for college golfers, recreational golfers, and golfers on 
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smaller professional tours. Instead of being forced to rely on statistically dubious 

measures of golfing ability, this new measure provides a statistically valid way to 

measure golfing ability without requiring onerous data collection requirements. Results 

indicate that the models in this study also outperform existing unidimensional measures 

of golfing ability, so this benefit should be relevant even to golfers with greater access to 

data.   

 Third, the nonlinear growth model provides the first quantitative method in the 

literature to forecast future golf ability. This may be of particular interest to sponsors 

when deciding which young professional golfers to sponsor, to college coaches when 

deciding which high school players to recruit, and to tournament organizers when 

deciding which young players to provide with entries into tournaments.  

Fourth, the use of DMM capacity estimates provides one of the few examples of 

DMM being applied to a real-world dataset. Most DMM research to date has been 

conducted to show the method’s efficacy and benefits as opposed to substantive 

implementations in which the researcher or practitioner is actually interested in the 

estimates themselves. Thus, this is one of the first studies to use DMM as an extant 

method of generating meaningful capacity estimates on a dataset of substantive interest—

one in which the subjects are not anonymous. This may be a relevant contribution to the 

DMM literature, helping the method move more into the mainstream of latent variable 

statistical methods.  

Fifth, this is likely the first study to apply DMM outside of the sphere of 

educational measurement. Because DMM has been developed in the context of 
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educational measurement, its applications have exclusively been in this realm: reading 

ability (e.g., Dumas & McNeish, 2018), mathematics ability (e.g., Dumas, McNeish, 

Sarama, et al., 2019), medical licensing exams (e.g., Dumas, McNeish, Schreiber-

Gregory, et al., 2019), etc. By applying this modeling paradigm to a substantive area 

outside of education, this dissertation demonstrates the conceptual and statistical efficacy 

of this type of model to other fields of research. In sports statistics specifically, 

forecasting a player’s future growth is of natural interest to many teams, coaches, players, 

and fans. This study provides a demonstration of a new and improved way to do this in 

the future.  

Sixth, all previously published DMM models have been conducted using SAS. I 

demonstrate that these models can also be conducted using existing packages in R. Since 

R is free and open source, the ability to implement these models in R should increase 

access to DMM models, particularly for researchers and practitioners who do not have 

institutional access to SAS. I demonstrated the code used, providing a tutorial on how to 

run these models in R so that readers can use this code as a guide for their own future 

research.  

Seventh, this study continues the expansion of curve shapes that can be 

incorporated into the framework of DMM. Most previously published DMM studies have 

primarily focused on either J-shaped or S-shaped growth curves. Both of these growth 

curve shapes have an upper asymptote parameter that can, once a random effect is added 

on this parameter, effectively measure an individual’s capacity. However, these growth 

curve shapes inherently assume that individuals never lose the ability being studied. This 
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may make sense in an education context: individuals in this context are all likely 

increasing their ability, so it may not make sense to model any decrease in ability. In 

practice, however, most latent abilities do actually decrease eventually. Individuals’ 

mathematics ability may decrease after high school or college as many adults end up 

using only certain math skills in their careers. Reading ability may decrease later in life 

due to cognitive decline. I demonstrated this in the context of golfing ability: we can still 

estimate an individual’s future capacity while also using a growth shape that allows us to 

model the eventual decline of an individual’s skill after reaching his or her peak. I 

included quadratic growth to demonstrate this possibility.  

Eighth, a by-product of the mixed effects model to estimate individual golfers’ 

ability levels is an estimate of each course’s difficulty. In fact, this is analogous to the 

estimate of an item’s difficulty in item-response theory (IRT). Just as an IRT model 

simultaneously estimates each individual’s ability and each item’s difficulty, the model in 

stage one of this project estimates each individual’s ability and each course’s difficulty. 

This demonstrates a statistically valid way of measuring course difficulty, and it may 

represent a more accurate and cost-effective way of evaluating courses than the current 

way that courses are evaluated under the handicap rating system. In this new way of 

measuring course difficulty, the difficulty value would be determined statistically using 

the actual observed scores of individuals playing that course.  

Ninth, this dissertation provides an alternative to the current handicap rating 

system for evaluating the abilities of recreational golfers. The current handicap system 

rates each course based on factors such as length, altitude, number of sand traps, etc. 
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Each player’s handicap rating is then based on how they perform relative to the 

expectations of those difficulty ratings. However, the mixed effects model in stage one of 

this study estimates players’ abilities and course difficulties simultaneously. Thus, this 

provides an alternative to the current system: each player’s estimated ability level and 

each course’s estimated difficulty rating would be continually updating with every round 

of golf played. No more trips or subjective ratings by course raters would be necessary.  

Finally, the models used in this dissertation allow for the statistical comparison of 

players across tours and levels. There are many professional golfing tours, and many of 

the players on these tours never play against the players on other tours. It is therefore 

difficult to compare the ability levels of these golfers. By linking the tours statistically 

using any cross-pollination between the tours, both the ability and capacity estimates are 

on the same scales across tours. This allows for the current ability levels and the future 

capacity estimates to be compared for two players who have never been on the same 

continents as each other.  
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Chapter Two: Literature Review 

In the United States alone, the value of golf club memberships sold in the 1990’s 

was over $3,200,000,000. Worldwide, there are tens of thousands of golf courses, and 55 

million people play the sport. Academically, there are 11 distinct golf science disciplines 

and hundreds (perhaps thousands) of academic papers published on the study of golf 

(Farrally, Cochran & Thomas, 2003). Golf matters to people in the world, and the study 

of golf matters to scholars.  

This literature review proceeds in two broad sections, each with two major 

subsections. The first broad section is the measurement of golfing ability. Within it, 

previous research is separated into those studies that have treated golfing ability as an 

observed ability (or set of abilities) and those studies that have treated golfing ability as a 

latent ability (or set of abilities) to be measured statistically. The second broad section 

addresses the statistical methods that are utilized in this dissertation. Within this section, 

previous research is separated into that on the use of mixed effects modeling broadly and 

that on the use of Dynamic Measurement Modeling (DMM) specifically.  

Measuring Golfing Ability 

Golfing Ability as Observed Variable(s) 

Using Counting Variables to Measure Golfing Ability  
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In the context of golf research, Leahy (2014) differentiates between performance 

assessment and performance analysis. Under this bifurcation, performance assessment 

research focuses on creating new statistics, measures, or quantities and then re-ranking 

golfers based on the scores of the newly created values. Performance analysis, on the 

other hand, seeks to identify which skills or sets of skills are most important in predicting 

or explaining golfers’ performance and success (Leahy, 2014, p. 20-30). They differ in 

that the performance analysis family of research typically treats golfing abilities as 

independent variables while the performance assessment family of research attempts to 

measure golfing abilities for their own sake. However, both types of research inherently 

must decide, whether explicitly or implicitly, how golfing ability should be measured. As 

such, both categories of research are included in this section.  

At least as early as 1986, scholars were measuring golfing ability using observed 

variables. Many of these early studies used separate observed variables as proxies for 

separate golfing abilities, using them as predictor variables with the goal of 

understanding which individual abilities mattered the most in terms of certain outcomes 

such as scoring average or earnings. In 1991, Nix and Koslow (1991) found that they 

were able to explain 87% of the variance in average round scores and 50% of the 

variance in prize money earned using four observed variables: average driving distance, 

the proportion of greens hit in regulation (GIR), the number of putts per round, and sand 

save percentage.  

This style of research has been very popular among those studying golfing ability. 

Moy and Liaw (1998) used a similar approach, but they focused more on the relative 
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predictive importances of these variables for PGA Tour golfers. To measure driving 

distance, they used the average number of yards that a player’s drives travel throughout 

the season. To measure driving accuracy, they used the percentage of drives that land on 

the fairway on par 4 holes and par 5 holes. They used GIR as a measure of approach shot 

quality. To measure putting, they used the average number of putts a player uses per GIR 

for the PGA and Senior PGA tours. For the LPGA tour, they used the average number of 

putts per 18 holes (presumably due to data availability limitations). Finally, they used the 

percentage of the time that a player gets the ball into the hole in two shots or less from a 

greenside bunker to measure ability from the sand. They found that all but one of these 

abilities have statistically significant relationships with a player’s prize money earnings 

in a given year on the PGA Tour. The one exception was ability from the sand, which did 

not achieve statistical significance. On the Senior PGA Tour, all of the variables were 

statistically significant, while, on the LPGA Tour, ability from the sand was statistically 

significant, but the two driving-related variables (driving distance and driving accuracy) 

were not.  

Other studies have found similar results. Perhaps the earliest example of this type 

of research, Davidson and Templin (1986) found almost identical results to Moy and 

Liaw (1998) and Nix and Koslow (1991): GIR, putting ability, and driving distance are 

all important predictors of success (in that order), while ability from the sand is not. They 

found that those predictors could explain 86% of the variance in player results, which is 

very similar to the 87% found by Nix and Koslow (1991). Sharma and Reilly (2013) used 

a different dependent variable (percentage of tournaments in which a player finishes in 
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the top 10) and found the same rank order of importance: GIR, then putting ability, then 

driving distance. Driving accuracy was not a useful predictor.  

Shmanske (1992) found that putting ability, driving distance, and approach shot 

quality are all important factors, and they go in that order: putting ability is more 

important than driving distance, which is more important than approach shot quality. He 

found that driving accuracy and ability from the sand were not statistically significant 

predictors of earnings. Fried et al. (2004) similarly found the same ranked order of skills: 

putting ability is most important, followed by driving distance, followed by approach shot 

ability (GIR). They also found that that relationship does not hold for the Senior PGA 

Tour or for the LPGA Tour. Callan and Thomas (2007) also found that putting is the 

most important skill for predicting a player’s earnings; they found that driving distance, 

driving accuracy, GIR, and ability from the sand all matter as well. Stemen (2002) found 

that GIR is relatively more important than driving accuracy, which is relatively more 

important than driving distance.  Rinehart (2009) found that not only are GIR, putting 

ability, and ability from the sand the most important predictors of earnings, but they are 

the only relevant ones: driving distance and driving accuracy have no significant effect 

on earnings for PGA Tour golfers. Focusing on a much smaller professional tour, Botha 

et al. (2021) found that GIR and putting ability are consistently more important skills 

than driving accuracy at all quantiles of the ability distribution on South Africa’s 

Sunshine Tour. However, because this tour does not track driving distance, they were 

unable to compare driving distance to GIR and putting ability. In addition to more 

commonly used measures of ability like driving distance and putting ability, Finley and 
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Halsey (2004) found evidence supporting the importance of less commonly used 

observed variables—scrambling ability and bounce-backs—both of which may 

inadvertently be measuring some aspect of mental fortitude.  

Watkins (2008) found that driving distance and driving accuracy have negligible 

marginal effects on earnings across the board. In this study, putting ability, GIR, and skill 

around the green (chipping and pitching) were found to have the greatest marginal returns 

to skill. Kahane (2010) found similar results, although GIR was at least as important as 

putting ability in this study. The three most important skills were GIR, putting ability, 

and ability from the sand. He found that driving distance does have a statistically 

significant relationship with earnings, but its effect is much smaller than the other three. 

He also found that driving accuracy is not a relevant predictor of earnings: it was 

statistically nonsignificant and had the opposite sign than expected. Interestingly, he 

found that the marginal return to driving distance was higher for players of lower overall 

ability, while the marginal return to GIR and putting ability was higher for players of 

higher overall ability. This implies a differential recommendation for improvement to 

players, rather than a universal one: the area on which to focus most for improvement 

depends upon one’s existing ability level. Rinehart (2009) found an identical rank order 

of skill importance and also found that the relative importance of these skills has not 

shifted over time.  

Conversely, other studies have found shifts over time in the relative importance of 

these observed skills. For example, Heiny (2008) found that driving accuracy used to 

matter (roughly before 2000) but it does not have a statistically significant impact on 
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earnings anymore. He also found that GIR, putting, and ability around the green 

(chipping and pitching) are the most important skills, while driving distance also matters. 

Another study looked at changes in the relative importance of abilities over time and 

found that driving distance replaced putting ability as the most important ability starting 

in 2011 (Baugher et al., 2016). Engelhardt (1995) used total driving (a combination of 

driving distance and driving accuracy) to show that ability off the tee is more important 

than GIR and that this effect is increasing over time. Engelhardt (2002) confirmed this 

finding while also demonstrating that total driving ability as a combined metric is a more 

effective predictor of performance than either driving accuracy or driving distance 

separately. Bliss (2021) observed that driving distance ability has increased in recent 

years, but its relative effect on scoring has not: the effect of being able to drive the ball 

further than other competitors remains the same.  

On the other hand, Alexander and Kern (2005) found that while the relative 

importance of driving distance has increased over time, it is still less important than 

putting ability. Wiseman and Chatterjee (2006) also found that putting remains more 

important than driving distance, but they found that the relative importance of driving 

distance has decreased over time due to its increasingly negative correlation with driving 

accuracy: because players who hit the ball further than other players are becoming, on 

average, less accurate, the potential gains of the increased distance are being offset by the 

penalties of missing the fairway. Broadie and Ko (2009) similarly found, using a 

simulation model, that much of the benefit of long drives is offset by the decreased 

accuracy. They concluded that, especially for players who already have above-average 
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distance, driving accuracy may be more important. Heiny and Heiny (2012) also found 

that driving accuracy trumps driving distance in terms of importance.  

Focusing on the LPGA Tour instead of the PGA Tour, Chae et al. (2021) found 

that GIR and putting ability are the most important skills, followed by driving distance 

and driving accuracy, both of which are still more important than ability from the sand. 

They then used these variables to predict tournament winners, finding that their artificial 

neural network performed better than their discriminant model, better than their 

classification trees model, and better than their logistic regression model. This finding 

likely has relevance for those trying to use current ability estimates to forecast future 

performance. Kim and Chae (2021) had similar results, but they specified that putting is 

relatively more important than GIR on the LPGA Tour. Park and Lee (2012) also focused 

on the LPGA Tour, finding that GIR was the most important predictor of success, 

followed by putting ability, followed by driving distance, driving accuracy, and ability 

from the sand, respectively.  

Other studies have found differing relative importance rankings among golfing 

skills depending on the tour. Moy and Liaw (1998) found that ability from the sand 

matters on the senior PGA tour, but it does not have any effect on the regular PGA Tour. 

Similarly, they found that ability from the sand is statistically significant on the LPGA 

Tour while driving accuracy and driving distance are not. Jiménez and Fierro-Hernández 

(1999) found that all of the skills that they measured (driving distance, total driving 

ability, GIR, and ability from the sand) were statistically significantly different for the 

top-ranked players and the bottom-ranked players on the European Tour. Conversely, a 
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different study applied the same methodology to the PGA Tour and found that only 

driving distance and total driving ability were statistically significantly different between 

the top-ranked players and the bottom-ranked players (Engelhardt, 1997). Engelhardt 

(1999) suggests that these differences imply that the PGA Tour is likely more 

competitive and has more parity than the European Tour does. Manwaring (2016) found 

that driving distance is more important on the PGA Tour, approach shot ability (GIR) is 

more important on the European Tour, and that putting ability is important on both tours.  

Unsurprisingly, a player’s earnings are strongly affected by the player’s 

performance in the most prestigious events such as major championships and playoff 

events (Ohn et al., 2012). However, this is somewhat endogenous: the biggest and most 

prestigious events (i.e. the major championships) also offer the greatest prize money, so it 

should not be surprising to see success in these events correlated strongly with annual 

prize money. Ohn et al. (2012) also found that putting ability is a better predictor of 

earnings than GIR, which is a better predictor of earnings than driving distance, though 

all three are have statistically significant effects. Similarly, Hamel et al. (2016) found that 

putting ability is the most consistent predictor of earnings and scoring average. Perhaps 

more interestingly, Hamel used these results to provide evidence that the PGA Tour has 

significant barriers to entry and that there are players on other tours who would fare well 

on the PGA Tour if they were not being excluded from participating by entry rules and 

requirements.  

Most of these early studies using observed variables have found that putting 

and/or GIR are the most important skills across professional golf tours, at least before 
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2011. After 2011, the results are more mixed, with driving distance possibly becoming 

more important.  However, these are not universal findings. Dorsel and Rotunda (2001) 

found that driving accuracy was the most important predictor of success, while driving 

distance, GIR, and putting are all relevant, statistically significant predictors as well. 

Belkin et al. (1994) found the same thing, and they additionally found that these results 

are stable over time. Shmanske (2008) found that using tournament-level data rather than 

season-level data improved the predictive power of the model significantly. In this model, 

he also found that driving distance was the most important skill for predicting earnings, 

followed by putting ability, GIR, and driving accuracy (in that order).  

Other researchers have focused specifically on putting. Rather than treating 

putting as a single ability, they have tried to break it up into separate abilities. Karlsen 

and Nilsson (2008) did so by measuring green reading ability and technique separately. 

They found that 60% of the variability in the distance remaining to the hole after a putt 

can be attributed to green reading ability, 34% to technique, and 6% to green 

inconsistencies (i.e. random error). Bouvet (2011) focused, instead, on putts of different 

lengths. Bouvet found that short putts (those under five feet) and long putts (those over 

25 feet) were both stronger predictors of success than the medium-length putts between 

five and 25 feet. Bouvet also found that, in addition to the different lengths of putts, 

driving distance positively affects performance while driving accuracy has no effect.  

In addition to those using separate measures for various (assumedly) distinct 

abilities, some studies have used unidimensional measures of golfing ability. Baker et al. 

(2006) used annual scoring average itself as a measure of skill rather than as a dependent 
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variable to be predicted by other skills. Clark III (2006) found a noticeably weak (𝑟 =

0.17) correlation between winning match play matches and world ranking, implicitly 

using world ranking position as a measure of ability, and Coate and Toomey (2014) used 

a player’s position on the money list as a proxy for skill in the context of assessing the 

performance of caddies. Sen (2012) took a different approach, creating his own measure 

of composite golfing ability using arithmetic and some logical assumptions. His measure 

takes the form of the equation: 𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

𝑏𝑖𝑟𝑑𝑖𝑒 % 𝑤ℎ𝑒𝑛 𝐺𝐼𝑅

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑜 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒 %
1−𝐺𝐼𝑅 %

𝐺𝐼𝑅 %

, which can be simplified to a 

slightly more mathematically approachable (though perhaps less intuitive from a golfing 

perspective) form: 𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
(𝑏𝑖𝑟𝑑𝑖𝑒 % 𝑤ℎ𝑒𝑛 𝐺𝐼𝑅)(𝐺𝐼𝑅 %)

(𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑡𝑜 𝑠𝑐𝑟𝑎𝑚𝑏𝑙𝑒 %)(1−𝐺𝐼𝑅 %)
 . He found that this measure 

is more strongly correlated with a player’s annual earnings than any other single observed 

measure of golfing ability. However, this ignores the possibility that the other measures 

combined might still be better predictors (through a multiple linear regression, for 

example). Hoegh (2011) created a measure called the ‘performance coefficient’ that 

attempts to measure a player’s performance relative to his or her potential using 

simulation methods.  

The Movement to Strokes Gained 

In the early 2000s, some golf researchers began to question the ways that they had 

previously been measuring golfing ability. The ‘old’ way of using basic observed, 

season-level descriptive statistics as assumed measures of ability still continues, but the 

critiques have led to something of a modernization (perhaps even a ‘revolution’) of golf-

related measurement. These critiques began in 2002 with Ketzcher and Ringrose (2002) 
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arguing that previous academic measurements of golfing ability had incorrectly been 

treating different observed variables as independent of each other. For example, they 

pointed out that GIR as an observed proportion can be attributed to skill with driving 

distance (it is easier for a player to hit the green if he is closer to it), driving accuracy (it 

is easier for a player to hit the green if he is approaching it from the fairway), and 

approach shot ability (players will be more likely to hit the green if they have greater 

ability at approaching the green).2 Thus, the common usage of GIR as solely a 

representation of approach shot ability may be misleading. Similarly, scholars had 

previously assumed that the  average number of putts per round represented putting 

ability. However, Ketzcher and Ringrose (2002, p. 218) point out that the number of putts 

is likely to also be affected by a player’s proximity to the hole rather than just his putting 

ability: a player making it into the hole in two putts from 72 feet has surely demonstrated 

greater putting skill than a player making it into the hole in two putts from 11 feet, though 

the naïve measure of total putts per round will obscure this.  

They suggest, therefore, that measures such as the average number of putts per 

round or the average number of putts per green in regulation actually measure multiple 

skills simultaneously. As such, these measures might be acceptable as some composite 

measure of multiple skills, but the naming conventions of previous studies have seemed 

to imply that each of these is a measure of a specific ability. This is conceptually 

 
2 Because this study focuses on the most elite male professional golf tours, I proceed from this point by 

using traditionally male (he/him/his) pronouns when referring to a generic golfer. However, it is worth 

noting that there are a few women that have also played in male events, and they are included in the dataset 

discussed in Chapter Three. For example, Lexi Thompson played two rounds at the 2023 Shriners 

Children’s Open in Las Vegas. Although she did not make the cut to proceed to the final two rounds, she 

did finish with a better score than 33 of the men and tied with 11 others.  
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problematic: if we are unclear about what skills our measures are actually measuring, it 

becomes difficult to draw coherent and accurate conclusions (Ketzcher & Ringrose, 

2002, p. 218). 

 Importantly, Ketzcher and Ringrose (2002) did not conclude that there is an easy 

solution to this problem. Indeed, they argue that it is quite difficult to disentangle existing 

measures of playing style and abilities. Nonetheless, despite the difficulties in doing so, 

they argue that scholars of golf research must move in this direction if they want to draw 

conclusions about the relative importance of separate skills or if they want to use 

measures of skill and playing style for prediction. Their first movement towards 

addressing these issues was to construct a model with a random intercept for the 

tournament, implying that different tournaments have different difficulties. This 

potentially reduces bias in the estimated relationships between measures of ability and 

outcomes of interest (earnings, scoring, etc.). This was the first tepid movement among 

scholars studying golfing ability toward mixed effects modeling.  

 James (2007) similarly critiqued the literature on measuring golfing 

ability/performance, suggesting that simple statistics like GIR are not sufficient. He 

argued that we should only use measures that isolate individual skills rather than ones 

that represent a composite of multiple skills (James, 2009). However, his proposed 

alternatives still rely heavily on observed variables, so they do not represent particularly 

satisfying solutions. One possible exception is the proposal to use approach shot accuracy 

rather than GIR as a measure of approach shot ability (James & Rees, 2008).  
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Broadie (2008) further critiqued the existing measures of golfing ability in much 

the same way that Ketzcher and Ringrose (2002) did, arguing that existing measures have 

at least two limitations. First, he pointed out that most existing statistics measuring 

golfing ability actually measure a combination of different skills rather than a single skill. 

Second, many existing statistics involve proportions and do not characterize the extent of 

a mistake. For example, if a player misses the green in regulation, simply adding that to 

the denominator of the GIR calculation does not identify by how much the player missed 

the green. Surely, missing the green by four inches shows more skill than missing the 

green by 40 yards, but the GIR statistics cannot account for this. Unlike previous 

critiques, however, Broadie (2008) proposed a more radical solution. He proposed 

isolating each shot as the unit of analysis rather than the hole, round, or season. By 

looking at each individual shot, one could estimate how much that particular shot 

improved or hurt a player’s scoring ability on the hole.  

Although Broadie (2008) did not yet use this term, this was the very beginning of 

the movement towards Strokes Gained. Since its creation, Strokes Gained as a metric has 

revolutionized the way that golfing ability is measured. It began as a book chapter, but 

the idea has spread in the academic literature; it is now so mainstream that it is reported 

on the PGA Tour’s website, and television commentators reference it casually with the 

assumption that audiences and players know what it means. The basic idea is that, before 

a shot, a player has an expected number of shots to get the ball into the hole (based on 

distance to the hole, playing surface, etc.). After the shot, this number can be recalculated 

and used to calculate how effective the shot was. For example, imagine that, at a certain 
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point on the course, a shot has an expected strokes remaining value of 4.2 strokes before 

the shot. Then the player hits the shot, and the expected strokes remaining is now 3.0 

strokes. The golfer used one stroke, but his/her position is now 1.2 strokes better than 

before. Thus, the golfer “gained” 0.2 strokes with that shot. These strokes gained, 

importantly, can be summed across a round, tournament, or season.  

Of course, this method requires detailed shot-by-shot data that is not always going 

to be available, especially at lower levels. It is also still inherently based on observed 

variables rather than latent measures of ability. Nonetheless, it represented (and still 

represents) an important movement towards disentangling the different dimensions of 

golfing ability and measuring golfing abilities in an unbiased manner. Broadie’s (2008) 

conclusions were relatively muted in this study, but he used this new measure to show 

that previous studies that had putting as the most important component of golfing ability 

may have been biased and misleading. He found that driving distance is easily the most 

important skill on the PGA Tour.  

Fearing et al. (2011) were perhaps even more critical of the state of golf research 

than Broadie (2008) and Ketzcher and Ringrose (2002) were, arguing that the existing 

statistical analyses of golf were not useful and that no existing method was able to 

quantitatively measure how good or bad a particular shot was. They listed three particular 

drawbacks from which golf research suffered. First, they pointed out that the PGA Tour 

(and other professional golf tours) only reported a limited number of aggregate statistics, 

so fans and researchers are forced to rely on them. Second, they pointed out the same 

issue that other researchers have: the statistics that are reported by the PGA Tour often 
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are produced by multiple distinct skills and are ineffective for disentangling the different 

abilities that golfers may possess. Third, they argued that the aggregate statistics are 

strongly biased by the difficulty of the courses played, since players all choose to play 

different sets of tournaments/courses throughout a season.  

Fearing et al. (2011) then explicitly built on Broadie (2008) to create a statistical 

method of quantifying the value of individual shots. Instead of all shots, however, they 

focused specifically on putts. Using a Markov chain statistical technique, they combine 

logistic regression for the probability of making a putt with gamma regression for the 

distance remaining after the putt. They also included dummy variables for the hole and 

for the player, which is another small movement towards the mixed effects modeling 

framework. The result of their efforts is a metric that they call “putts gained per round,” a 

measure of putting ability that eliminates the bias and confounding present in prior 

measures of putting ability (Fearing et al., 2011, p. 7). Although it is still based directly 

on an observed variable framework rather than on a latent variable framework, it 

represented (like Strokes Gained more broadly) a monumental improvement in the 

measurement of golfing abilities. They also showed that this is not just an academic 

exercise: the differences produced between the new measure and the more traditional 

measures of putting ability are notable. For example, they point out that Vijay Singh 

ranked 8th according to “putting average” from 2003-2008, but he ranked 218th in the new 

Putts Gained metric (Fearing et al., 2011, p. 34). This is likely due to Singh possessing 

some superior skills other than putting: he was getting the ball so close to the hole that he 
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didn’t use very many putts, but, once putting ability alone is isolated, he does not appear 

to be a particularly adept putter (relative to others on the PGA Tour).  

In 2012, Broadie built upon his previous research to formalize the Strokes Gained 

formula (Broadie, 2012). This article introduced Strokes Gained formally for the first 

time (since he did not use that term in his prior research) and presented the math behind 

its calculations. To determine the exact average value of each shot from a given distance 

and surface, he used polynomial regression with course-round random effects to represent 

the difficulty of each round played. It was at this point that Strokes Gained began to 

receive widespread recognition and use beyond academia. It quickly became the state-of-

the-art method for assessing player abilities on the PGA Tour. Unfortunately, the PGA 

Tour is the only professional golf tour to track and provide shot-level data, so this 

measure has still only gained widespread adoption on the PGA Tour. Other tours still rely 

on more traditional statistics.  

Additionally, it is worth pointing out that Stroked Gained still has some 

limitations. Most importantly, even if Strokes Gained has partially solved the degrees of 

freedom problem of multiple abilities being measured at the same time, it is still possible 

for a player’s ability in one domain of golfing ability to influence his or her Stroked 

Gained values in another. For example, imagine a player that is so good in terms of 

driving ability and approach shot ability that he hits the ball to 2 inches from the hole 

every single time. Because every player would be expected to make a 2-inch putt every 

single time, his Putts Gained will be 0, implying that he is exactly average at putting. In 

reality, though, we have no idea what his putting ability is: he could actually be well 
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above average or well below average, and we would have no way of knowing. The true 

ability is entirely attenuated toward zero in the measure of golfing ability. This, of course, 

is an extreme example, but it shows a potential weakness of Strokes Gained. In practice, 

of course, nobody is going to hit the ball to two inches every time, so our estimates would 

never be this ambiguous. Nonetheless, because Strokes Gained is additive, it is a real 

issue. Broadie (2012) found that the correlations between different skills (e.g. putting, 

driving, approach shots) using the Strokes Gained approach are low, which may provide 

at least some evidence that this problem is not prohibitive or insurmountable.  

A second weakness of Strokes Gained as it is typically implemented is that it 

implicitly assumes a factor structure. For example, the PGA Tour provides data on 

Strokes Gained total, Strokes Gained Off-the-Tee, Strokes Gained Around-the-Green, 

Strokes Gained Tee-to-Green, Strokes Gained Approaching the Green, and Strokes 

Gained Putting. These are logical ways to divide individual golf shots, but such divisions 

are still made entirely by assumption. No rigorous empirical analyses have been 

employed to demonstrate that these are distinct skills, that they are the only distinct skills, 

or that they provide a good fit to the shot-level data. Thus, anyone who uses these Shots 

Gained calculations (other than the “total” category) is accepting an untested assumption.  

A few small variations to Strokes Gained have arisen in recent years. Heiny and 

Heiny (2014) followed the same logic as Strokes Gained, but they used a Markov chain 

rather than polynomial regression to model the number of strokes that is expected from 

specific distances and locations. Similarly, Chimka and Talafuse (2016) used Poisson 

regression instead of polynomial splines to model the number of strokes that is expected 
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from specific distances and locations. Drappi and Co Ting Keh (2019) used machine 

learning instead of the polynomial splines to predict the remaining number of strokes to 

complete the hole, and they introduced Smoothed Strokes Gained, which adds a penalty 

to the Strokes Gained formula for long hole-outs due to the likelihood that long hole-outs 

are due in part to luck rather than skill.  

Drappi and Co Ting Keh (2019) also provided perhaps the clearest argument 

against the prior generation of research that used individual observed variables as proxies 

for different abilities. They argued that these older studies made a very reasonable 

assumption that traditional PGA golfer aggregate skills could be used as measures of 

ability and then used to predict performance. However, Drappi & Co Ting Keh (2019) 

also argued that the inconsistencies in the findings from these studies point to some 

underlying problem with this assumption: “one has to question the variability of the 

coefficients of the regressions and the variability in which skill factors are most important 

across these studies” (Drappi & Co Ting Keh, 2019, p. 66). Their explanation was that 

the highly correlated nature of the observed aggregate statistics and their overlapping 

nature produced unstable results. Thus, Strokes Gained represents a huge improvement. 

Drappi and Co Ting Keh (2019) confirm this outright, crediting Broadie’s (2008; 2012) 

Strokes Gained metric as a massive improvement over the previous generation of golf 

measurement studies.  

Perhaps the most significant proposed alteration or improvement to the Strokes 

Gained measure has been the proposal of the ISOPAR Method for measuring an 

individual golf shot’s value. It relies on the same logic as Strokes Gained—that the 
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difference between the expected number of strokes before a shot and after the shot can 

represent the quality of that shot. However, whereas the Strokes Gained metric attempts 

to generalize (or average) the expected number of strokes remaining given a certain 

distance and a certain surface across holes and courses by controlling for the effects of all 

relevant factors statistically in a regression setting, the ISOPAR Method requires and 

creates a unique map for each hole with bars similar to a map of barometric pressure or to 

a topographical map. Thus, for a particular hole, the ISOPAR method can capture 

whether it is better to miss the fairway to the left or the right, whether it is better to miss 

the green in the sand trap or in the rough, etc. This does not need to be generalized to all 

holes; it can be unique to that specific hole. This idea was first introduced by Stöckl et al. 

(2011) and Stöckl et al. (2012). From a conceptual perspective, it is an appealing 

improvement to Strokes Gained that very much follows the same logic. However, from a 

practical perspective, it would require large amounts of shot-level location data from 

every shot played on every hole on every golf course to create the maps in the first place, 

and it would require similarly detailed data to then calculate a shot value for each shot for 

each player and then aggregate these to calculate an ability value. That goes beyond 

Strokes Gained in its data collection requirements, which are already onerous enough that 

only one professional tour tracks it. This may be why the ISOPAR Method has not gained 

much traction. Even its creators have mostly applied it only on the greens rather than for 

the entire course (e.g., Stöckl et al., 2011; Lamb et al., 2011).  

 Since the creation and popularization of the Strokes Gained metric, several 

studies have used players’ Strokes Gained values as explanatory variables. Heiny and 
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Frisby (2018) used Strokes Gained values in an ordinal logistic regression to predict 

players’ scores on individual holes. Aparicio et al. (2021) used Strokes Gained values in a 

survival model to predict how long it will take before a given player on the PGA Tour 

wins his first tournament. They found that power/driving distance is the most important 

factor, followed by putting ability, followed by approach shot ability. Korpimies (2020) 

used season-level Strokes Gained averages to predict players’ performance in future 

seasons and evaluate which prediction model is most effective. The results showed that 

the random forest model performed better than the logistic regression model.  

Due to the relatively recent popularization of Strokes Gained, relatively fewer 

studies have used these metrics as predictor variables thus far compared to the number of 

studies that have utilized counting statistics. Among those that have, however, one 

noteworthy feature is that they consistently show that power/driving distance is the most 

important skill. Theoretically, this may be due to changes in the game of golf. However, 

it is likely that this improved consistency is due at least in part to the decrease in 

measurement error and multicollinearity that has resulted from the shift from aggregated 

season-level observed statistics to Strokes Gained. Nonetheless, the more traditional 

metrics are still commonly used, especially in the context of smaller tours that do not 

provide or calculate Strokes Gained.  

Golfing Ability as Latent Variable(s) 

Classical Test Theory Approaches 

Although it was not directly framed this way, the first effort to treat golfing ability 

of professional golfers as a latent variable was published in 1995. Making an analogy 
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between items on a test and golf holes, Clarke et al. (1995) used the methods of Classical 

Test Theory to assess the discrimination of individual golf holes and the reliability of 18-

hole rounds of golf and 72-hole tournaments of golf. They found that individual holes 

were not very effective at discriminating between better and worse golfers, at least with 

the population restricted to those who have already achieved the status of being 

professional golfers. Given this result, it is not surprising that they also found that 18-hole 

rounds of golf and 72-hole tournaments were not very reliable measures of golfing 

ability. From a viewership and marketing perspective, this may actually be desirable—if 

fans already knew which player was going to win ahead of time, they may not bother 

watching. However, from a measurement perspective, this is less desirable, as it means 

that a relatively large proportion of the variability in players’ scores on a given day can 

be attributed to random variation rather than to true golfing ability. 

 Indeed, Clark III et al. (2008) also applied Classical Test Theory logic to 

individual golf holes, and they confirmed the finding from Clarke et al. (1995) that 

individual holes are not very effective at discriminating between the abilities of 

professional golfers. Interestingly, though, they found that the opposite was true for 

highly-skilled amateur golfers and club professionals (individuals who work as golf 

instructors at golf courses rather than competing on a professional tour): golf holes do 

effectively discriminate between these players. Thus, the lack of capability to discern 

players’ abilities on the professional tours was likely due to a restriction in range rather 

than an actual lack of capability for discrimination. The professional golfers on the PGA 

Tour are so good, and their ability levels so similar (compared to the entire population of 
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golfers), that scores on individual holes are due more to random variation than variation 

in golfing ability. However, once the range of ability level is widened somewhat (though 

not entirely, as the authors still focused on golfers with well-above-average ability 

levels), then scores on individual holes become more useful as indicators of a golfer’s 

ability level.  

 Among the early scholars to treat golfing ability as a latent variable, Sachau et al. 

(2009) perhaps most coherently made the case for why this is necessary and most 

explicitly adopted the language and techniques of Classical Test Theory. They used an 

example from the 1974 U.S. Open tournament. The course was set up to be so hard that 

week that that event is known as the ‘massacre at Winged Foot.’3 One of the players, 

Hale Irwin, commented on the difficulty of the course that year by suggesting that the 

USGA (the organization that runs the tournament) was “trying to embarrass the best 

players in the world.” USGA official Frank Tatum responded directly: “we had no 

intention of confounding the best players in the world. We simply wanted to identify who 

they were.” This is the exact logic of a test from the perspective of educational 

measurement—if the test is too easy (or, less commonly, too hard), then it will not be 

very effective at identifying the ability of interest (i.e., discriminating). Thus, Sachau et 

al. (2009, p. 52) argue that “Mr. Tatum’s retort illustrates the USGA’s view that the 

purpose of a tournament is to sort the greatest players from the not quite as great. In this 

regard, the U.S. Open is a type of test.” By explicitly treating a golf tournament as a test, 

 
3 Winged Foot is the name of the course on which the tournament was played that year. It is located just 

outside of New York City.  
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they were able to utilize some of the typical statistical techniques that are regularly 

applied to academic tests.  

 In particular, Sachau et al. (2009) utilized Classical Test Theory to estimate the 

validity of each course/tournament as a test of a golfer’s ability. They used the golfer’s 

mean score over a large number of golf rounds as an analog to the “true score” in 

Classical Test Theory (Sachau et al., 2009, p. 55). They then used the score during a 

particular tournament as the test performance measure. Then, they calculated the 

correlation between the test performance measure and the “true score.” This value then 

represented the validity coefficient: “just as test developers typically reduce measures of 

criterion-related validity to a simple correlation between a test score and a measure of 

competence, the validity of a tournament can be measured by the correlation between 

PGA scoring average and tournament score” (Sachau et al., 2009, p. 55). They then 

performed a linear regression for each tournament, using tournament scores to predict 

“true” scores. The slope of this line is equivalent to the discrimination parameter in 

educational measurement, and the intercept is equivalent to the difficulty parameter. 

Among the regressions, they found strong positive correlations between intercept, slope, 

and validity: harder courses do a better job of identifying golfing ability than do easier 

courses/tournaments.   

 In practice, Sachau et al. (2009) might have been better off using a single mixed 

effects model rather than a separate regression for each tournament. Nonetheless, their 

methods and results are compelling. Perhaps more important than the results themselves, 

Sachau et al. (2009) explicitly (and successfully) modeled a golf tournament as a test and 
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considered golfing ability to be a latent variable that each test (golf tournament) was 

attempting to measure.  

Advanced Latent Variable Approaches 

Fisher (1998) became the first to move beyond Classical Test Theory into the 

more modern logic of true latent variable models. He applied a many-facet Rasch model 

that simultaneously estimated player ability, the relative difficulty of each hole, and the 

relative difficulty of each of the four rounds to the 1990 US Open tournament. Because 

the model used was a variant of a Rasch model, each hole is assumed, mathematically, to 

have the same discrimination value—they each provide an equal amount of information 

about golfing ability. He found that the players that have the greatest ability according to 

the model were also the ones near the top of the leaderboard in the tournament, indicating 

some validity for the measurements coming from the model. Fisher’s (1998) conclusion 

was mostly just about feasibility: golfing ability and golf scores can, in fact, be 

effectively modeled using latent variable models that are common in the field of 

educational measurement.  

 A number of other scholars have moved less explicitly towards treating golfing 

ability as a latent variable (and, inherently, each hole or round as a test of that ability). 

Connolly and Rendleman Jr (2008) used a crossed mixed effects model to measure player 

ability and course-round difficulty simultaneously. Essentially, they used round scores as 

the dependent variable with separate random effects for the player and for the course-

round. The values from the random effects then represented player ability and course-

round difficulty, respectively. Interestingly, the authors were most interested in whether 
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there was evidence of streaky play from round to round within players (positive 

autocorrelation); they found that there was such evidence. They also found an error term 

with standard deviation of 2.69, which is quite large. This means that even after 

accounting for all player skill and course difficulty, a given score would vary on average 

by 2.69 strokes from the “true” score, or average predicted score. Phrased differently, to 

encompass 95% of the possible score outcomes for a given player on a given day, one 

would need a margin of error of 5.38 strokes. If that player’s “true” expected score for 

that day (based on his ability level and the course’s difficulty) for the given round is 69.5, 

we would be 95% confident that he would score between 64.12 and 74.88. That is a very 

wide range, and it demonstrates that there is a lot of random variation in individual golf 

scores. They are not particularly reliable measures of golfing ability. Berry (2001) 

presented a very similar model, with random effects for player ability and course 

difficulty. He found a random error term with a standard deviation of 3.12, which is even 

larger than the one found by Connolly and Rendleman Jr (2008). This is likely due to the 

use of a course-level random effect rather than the round-level course-round random 

effect used by Connolly and Rendleman Jr (2008): the additional variation in scores that 

could be explained by measuring differences in the difficulties in individual days/rounds 

on the same course is moved to the error term. Berry (2001) also found that the standard 

deviation of the intrinsic abilities of golfers was 2.10 in his model, indicating that the 
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effect of random variation often has a larger effect on a player’s score than his ability, at 

least in this particular model.4   

 Shmanske (2009) used dummy variables for course difficulty and player ability, 

which is a slightly less sophisticated modeling technique than using a true mixed effects 

model. Nonetheless, the logic is similar: the dummy variables for each course create a 

single estimate of the course’s effect on scoring (i.e., its difficulty) while the dummy 

variables for each player estimate the player’s effect on scoring (i.e., the player’s ability). 

In their early movement towards Strokes Gained as an observed-variable approach to 

measuring golfing ability (mostly just putting ability), Fearing et al. (2011) used a similar 

approach at the hole-level: dummy variables for each hole and for each player. Pope and 

Schweitzer (2011) use this same hole-level dummy variable approach while measuring 

loss aversion among professional golfers. In her efforts to measure the incentive effects 

of being paired with specific playing partners, Brown (2011) similarly used dummy 

variables for each player-course combination.  

 More statistically sophisticated mixed effects models (with random effects rather 

than dummy variables) have become more common in recent years. In his formalization 

of Strokes Gained, Broadie (2012) used a course-round random effect to account for the 

 
4 Note that, in many measurement models, standardized residuals and variance components are the norm. 

This is at least partially due to the lack of any naturally meaningful scale for the latent variables that they 

represent. However, most measurement models that measure golfing ability are left in a raw, or 

unstandardized, form. This is because there is a naturally interpretable and meaningful scale for golfing 

ability, which is the number of strokes. Thus, we can interpret the residual error term as the average number 

of shots that an observed score will deviate from the score predicted by the model, and we can use a 

random effect’s standard deviation to calculate how many shots apart from each other randomly selected 

players are, etc. I follow this convention of leaving the random effects and residuals in unstandardized form 

as well in later chapters.  
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varying difficulties across golf courses and the varying difficulties across days/rounds at 

each course. Although Heiny and Heiny (2012b) were operating primarily from an 

observed variable perspective, they did add a player-level random effect to their model. 

Because they also included observed variables for driving distance and driving accuracy, 

they interpreted the player-level random effect as representing a player’s ability outside 

of driving distance and driving accuracy. Heiny and Heiny (2012a) followed the same 

logic; because they already measured and accounted for total driving ability using 

observed variables, they interpreted the player-level random effect as representing an 

amalgamation of the player’s other skills, such as putting ability, approach shot ability, 

etc. Similarly, Heiny and Frisby (2018) used a player-level random effect as a measure of 

how well a given player performs at the Master’s tournament specifically (an affinity 

measure, in other words), since they were already accounting for player ability using 

Strokes Gained components as predictor variables. In the context of trying to discern 

whether streakiness, ‘hot hands,’ and ‘cold hands’ exist in golf, Elmore and Urbaczewski 

(2018) also implemented player-level random effects to denote player ability.  

  Connolly and Rendleman Jr (2012) implemented perhaps the most complicated 

and comprehensive version of a mixed effects model of golfing ability. They included 

round-course random effects to capture the difficulty of that particular day of golf,5 they 

implemented player-course random effects to capture a player's affinity with a particular 

course, they implemented time-varying player-level random effects, and (naturally) they 

 
5 Note that this would be equivalent to a random effect simply for the round if every tournament were 

played on a single course. However, there are a few tournaments that are played on multiple courses, so 

specifying that it is the course-round rather than just the round is relevant.  
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had an error term that they interpreted as luck. These time-varying effects not only 

measured player ability, but they also allowed that ability to change over the course of 

time. Since they used a relatively long time period in their sample (2003-2009), it makes 

sense that an individual’s ability level could change over this period, so the time-varying 

random effects are an interesting addition. In a related study, the authors employed the 

same model to show that reasonable deviations in the current (as of 2012) format of the 

year-end playoff format known as the FedEx Cup would not yield any improved 

efficiency in terms of rewarding better players (Connolly & Rendleman Jr, 2012).  

 Broadie and Rendleman Jr (2013) provided the clearest explanation for how a 

mixed effects model can work as a latent variable measurement model for golfing ability. 

They called this their “Score-based Skill Estimate,” or SBSE (Broadie & Rendleman Jr, 

2013, p. 130). They described this estimate as providing “an estimate of [a player’s] 

mean 18-hole score played on a ‘neutral’ course in which the common effects of round-

to-round variation in scoring due to differences in intrinsic course difficulty, course setup, 

weather, etc. have been (statistically) removed” (Broadie & Rendleman Jr, 2013, p. 130). 

Thus, any difference between players’ estimated ability levels predicts the mean 

difference in their scores on a given course on a given day. As such, this estimate can 

very clearly be interpreted as an estimate of a player’s golfing ability. One key benefit of 

this method is that it “allows golfers who never play on the same course to be ranked on a 

single scale as long as there are other golfers to link them together” (Broadie & 

Rendleman Jr, 2013, p. 131). This is analogous to the scoring of tests in educational 

measurement: two individuals can take different tests (or different forms of a test) and 
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still receive valid scores on the same scale as each other because the tests either have 

items linking them (the same item on both tests/forms) or individuals linking them (the 

same individual taking both tests/forms). In this case, it is the latter. Because of this 

benefit, the model can incorporate players from multiple tours together into a single 

rating system.  

Although the Official World Golf Rankings (OWGR) attempt to rank players 

from different tours as well, Broadie and Rendleman Jr (2013) show that these rankings 

are biased. Specifically, they are generally biased against the players on the PGA Tour 

(the most prestigious and elite tour in the world) by an average of 26-37 spots—a 

statistically significant difference. This effect is strongest, they found, for players with 

SBSE rankings between 40 and 120. Thus, using a latent variable method such as SBSE 

is likely a more effective way to measure golfing ability than simply looking at the 

OWGR. Indeed, it may not be surprising that the OWGR system is biased, as its creators 

have an incentive to encourage players to play more tournaments, as this drives revenue. 

As such, they may reward players who play more tournaments with more points and 

subsequently higher rankings. However, the number of tournaments played by a given 

player should, statistically, be unrelated to his ability level.  

The model presented by Broadie and Rendleman Jr (2013) is relatively 

parsimonious: 𝑆𝑖𝑗 = µ𝑖 + 𝑗 + 𝑖𝑗 , where 𝑆𝑖𝑗 is a player’s score in a given round, µ𝑖 is a 

player’s ability level, 𝑗  is the course-round difficulty, and 𝑖𝑗 is the error term (random 

variation). They provided the clearest argument for and explanation of this type of model. 

However, they explicitly cite Broadie (2012), Connolly and Rendleman Jr (2008), and 
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Connolly and Rendleman Jr (2011) as previous examples/originators of this type of 

model. Stigler and Stigler (2018) later implemented an even simpler version of this 

model, eliminating the course-round random effect so that the intercept in the model 

represented mean player ability and the player-level random effect represented how far 

above or below average that player is compared to that intercept.  

Methods Literature 

Mixed Effects Modeling 

What are Mixed Effects Models? 

Mixed effects modeling is, perhaps confusingly, known by many different names. 

The models produced using this statistical technique are sometimes called multilevel 

models, mixed-effects models, random-effects models, random-coefficient regression 

models, covariance component models, and hierarchical models (Raudenbush & Bryk, 

2002, pp. 5–6). The two most common of these are probably “hierarchical” models and 

“multilevel” models, as they describe the nature of the data as well as the characteristics 

of the statistical model. The data on which one might apply a hierarchical model or a 

multilevel model are structured in a way that has some sort of grouping of 

observations/individuals within broader categories of observations/individuals. Education 

is a classic example of this: students are nested within teachers, who are nested within 

schools, which are nested within districts, which are nested within states, etc. Similarly, 

college graduates may be grouped or nested within their universities or within their 

majors (or both). Nesting or grouping can occur in many other settings as well. For 

example, country-year observations in political science are probably nested within the 
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broader category of country, hospital patients may be nested within hospitals and/or 

within regions, and individual dogs may be nested within breeds.  

 Regardless of name and context, the format of mixed effects models is essentially 

universal: these models “were introduced mainly for modeling responses of individuals 

that have the same global behavior with individual variations” (Kuhn & Lavielle, 2005, p. 

1020). Using these models may be useful for testing specific hypotheses about cross-level 

effects and for partitioning variance among the different levels/categories (Raudenbush & 

Bryk, 2002, p. 7). For example, one could estimate the effect of the teacher on student 

performance relative to the effect of the school district. In these cases, the researcher’s 

explicit interest in the multilevel structure of the data makes mixed effects modeling a 

logical choice. However, despite the frequency with which social science research and 

data have some sort of nesting or hierarchical structures, past studies have very often 

neglected to address these structures adequately (or at all) in their modeling approaches. 

At least part of this neglect has been due to the historical difficulty in estimating these 

models (Raudenbush & Bryk, 2002, p. 5). Fortunately, modern statistical software can 

handle these models relatively easily, so this is no longer as much of a barrier.  

Additionally, even if one is not directly interested in the nesting structures of the 

data, it is important to account for them in the statistical analysis of data that are 

generated with a natural nesting or hierarchical structure. Without accounting for the 

nesting structure, the results of the traditional statistical model—typically a linear 

regression model or a generalized linear regression model (GLM) such as logistic 

regression—have the potential to be biased. In many ways, this is similar to the logic of 
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omitted variable bias: if there is a variable that is related to both the predictor and the 

outcome, then running a regression (or t-test or ANOVA, etc.) will attribute some of the 

effects of the omitted variable to the included predictor variable, leading to biased 

estimates for the true effect of the predictor variable. Similarly, if the hierarchical 

structure of the data is ignored, then some of the effects that occur due to that structure 

may be incorrectly attributed to other factors, and the results will therefore be biased 

(Tuerlinckx et al., 2006, p. 226).   

Thus, one of the most important (though sometimes overlooked) uses of mixed 

effects modeling is to reduce bias in the context of regression analysis. Gelman and Hill 

(2006, pp. 6–7) call this use of mixed effects modeling “analysis of structured data.” This 

use sounds very generic. It basically means that a researcher may not be directly 

interested in the structuring/multilevel/nesting mechanisms, but the researcher still uses 

mixed effects modeling to get the most accurate, unbiased estimates in the presence of 

(possible) hierarchical structures.  

There are two primary ways to conceptualize what a mixed effects model is 

actually doing. First, one could think of a mixed effects model as a regression model in 

which “each of the levels in [the] structure is formally represented by its own sub-model” 

(Raudenbush & Bryk, 2002, pp. 6–7). This takes the form of various coefficients in the 

primary regression model also being modeled as dependent variables as part of a separate 

sub-model; the sub-models can then all be combined to create a single comprehensive 

model (Gelman & Hill, 2006, p. 235). Conceptualizing and writing mixed effects models 
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in this way is useful from a conceptual or pedagogical perspective, particularly when 

there is only one grouping variable or when the grouping variables are entirely nested.  

However, a second (mathematically equivalent) conceptualization of mixed 

effects models is often more efficient from a practical perspective. From this perspective, 

we may think of mixed effects models as “extensions of regression in which data are 

structured in groups and coefficients can vary by group” (Gelman & Hill, 2006, p. 237). 

This is where the terminology gets a bit confusing. The coefficients that we allow to vary 

in the mixed effects model “are sometimes called random effects, a term that refers to the 

randomness in the probability model for the group-level coefficients” (Gelman & Hill, 

2006, p. 245). The term “fixed effects” is used in contrast to random effects, but the term 

unfortunately is not used consistently. In some cases, “fixed effects” refers to the 

components of a model that do not vary by group: a particular mixed effects model may 

have some variables that have only “fixed effects” (no random effects) and other 

variables that have both “fixed effects” and random effects. In other cases, however, the 

term “fixed effects” may refer to the use of dummy variables for each level/category of 

some grouping variable. For example, if the authors of a study describe using “country 

fixed effects,” this likely means including a dummy variable for each country (except for 

one, which is excluded as a reference category to prevent perfect collinearity). Even more 

confusingly, then, is when researchers take these different parameter-level definitions of 

“fixed effects” and use them to describe the entire model. Does a “fixed effects model” 

mean one in which dummy variables for categories were used? Does it mean one in 

which no coefficient varies by group (i.e., no random effects)?  
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This confusion leads Gelman and Hill (2006, pp. 245–246) to conclude that we 

should try to avoid the use of the terms “fixed effects” and “random effects.” They much 

prefer the terms “hierarchical models” and “multilevel models” instead: they end up 

selecting “multilevel model” as their preferred term, while Raudenbush and Bryk (2002) 

end up using the term “hierarchical models.” I use the terms “multilevel models,” 

“hierarchical models,” and “mixed effects models” interchangeably, though I mostly use 

“mixed effects models” when possible. Thus, at the model level, I mostly follow Gelman 

and Hill’s (2006) lead and avoid the use of “fixed effects” and “random effects.” 

However, at the parameter level, there is sometimes a need to refer to a specific 

effect/parameter/coefficient and indicate whether or not it varies by group/category. In 

these cases, I refer to a “random effect” as a parameter that is modeled as varying by 

group or category. Thus, in an educational context, a “school-level random effect” would 

mean that each school gets its own value for that particular parameter, modeled as a 

single draw from a probability distribution. Conversely, I use the term “fixed effect” to 

mean a parameter that is equal for all values/levels of the grouping variable.  

In the regression modeling context, it is common for a variable to have both a 

fixed effect and a random effect. In this case, the fixed effect represents the average 

effect of that independent variable on the dependent variable across the different 

categories or groups, while the random effect represents the deviation from that average 

effect for a particular group or category This type of model and this interpretation are 

widely accepted: “the notion that individuals’ responses all follow a similar functional 

form with parameters that vary among individuals seems to be appropriate in many 
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situations” (Lindstrom & Bates, 1990, p. 673). Similarly, though slightly more formally, 

Rabe-Hesketh et al. (2004, pp. 167–168) view this in terms of unobserved heterogeneity 

between groups: random intercepts represent heterogeneity between clusters in the 

overall level of the dependent variable, while random effects on coefficients represent 

heterogeneity between clusters in the relationship between the given independent variable 

and the dependent variable.  

Although some research does indeed use dummy variables to represent group or 

category membership, such a model is never going to perform better (in terms of 

efficiency, accuracy, etc.) than a true mixed effects model. As such, Gelman and Hill 

(2006, pp. 245–246) give the advice to always use mixed effects modeling, even though 

the literature gives varying and contradictory advice. In many ways, the two options are 

similar, with one important difference: in the mixed effects context, the coefficients are 

themselves modeled—sometimes by a relatively simple shared probability distribution 

and sometimes by a more complex regression model that incorporates predictors from 

other levels (Gelman & Hill, 2006, p. 252). Even in its simplest form (where the group-

level coefficients are modeled simply as random draws from a probability distribution), 

this provides two benefits over the dummy variable approach. First, all levels/groups can 

be modeled, and we do not need to exclude one as the reference category. This eases the 

interpretation of the group-level values and no longer requires the researcher to select 

which group to use as the reference category. Second, it allows for borrowing of 

information between observations/individuals within a group or category and across 

groups. This improves the efficiency of the estimation, and it allows for models in which 
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some groups have as few as one or two observations (Gelman & Hill, 2006, p. 276). As 

such, Gelman and Hill (2006, p. 9) recommend mixed effects modeling in almost all 

regressions using observational or structured data. 

Lee et al. (2020) provide a nice demonstration of the benefits of the information 

‘borrowing’ discussed by Gelman and Hill (2006). They show that a mixed effects 

growth model grouping outbreaks of COVID-19 by country outperforms existing models 

that were based on individual countries separately. They directly credit this to the 

information borrowing capabilities: “because the proposed model takes advantage of 

borrowing information across multiple countries, it outperforms an existing country-

based model” (Lee et al., 2020, p. 1).   

In contrast to many in the fields of psychological and educational statistics, 

Gelman and Hill (2006) do not recommend model or variable selection based on 

statistical significance, nor are they particularly worried (statistically) about parsimony 

and over-fitting. Instead, they argue that the main constraints are actually human 

limitations and software limitations, rather than any statistical or mathematical need for 

parsimonious models: the main reasons not to use extremely complicated models with 

random effects on every coefficient are human inability to interpret such complicated 

models and software inability or inefficiency in estimating such models  (Gelman & Hill, 

2006, p. 271). In other words, such complex models with many variables, many levels, 

and many random effects are likely to be statistically valid, even if software may struggle 

to actually estimate them and humans may struggle to be able to interpret the results. 

Raudenbush and Bryk (2002, p. 384) are somewhat more skeptical of these complex 



52 

 

models, but this is mostly due to concerns about software estimation and whether the 

researcher will have sufficient data to estimate them.  

Mixed Effects Models as Measurement Models 

Mixed effects modeling also forms the basis for most latent variable statistical 

models, even though many users of these methods may not be aware of this. In effect, the 

random effects that are utilized in mixed effects modeling end up representing latent 

variables. Latent variables that are measured in educational statistics are often just 

random effects in a mixed effects model, and most random effects in mixed effects 

models can be interpreted as latent variables: “in reality, [the entire field of hierarchical 

models] may be viewed as dealing with latent variables” (Raudenbush & Bryk, 2002, p. 

337).  

Indeed, many scholars have pointed out that existing latent variable measurement 

models are simply reformulations of mixed effects models (or vice versa). Bauer (2003) 

and Curran (2003) both showed that linear mixed effects models can be respecified as 

structural equation models (SEMs), which are typically used, at least in part, as latent 

variable measurement models. In fact, Curran (2003, p. 529) argued that the equivalence 

between SEM growth models and mixed effects growth models has been known since the 

1980’s among statisticians. Curran (2003, p. 565) also discusses this in the broader types 

of models beyond growth models, indicating that latent variable measurement models 

(the original domain of SEM) can be run as both SEMs and as mixed effects models, and 

so can regressions with random effects (the original domain of mixed effects modeling) 

be run in both ways. Thus, we may be approaching the conclusion that SEM and mixed 
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effects modeling may differ only in their historical origins and the software used to 

estimate them rather than in the underlying statistical models themselves (Curran, 2003, 

p. 565). In other words, the differences between these models no longer exist 

mathematically (if such differences ever existed at all). Rabe-Hesketh et al. (2004) would 

agree with that assessment of mathematical similarities despite historically different 

origins, pointing out that the techniques have notable similarities and function similarly, 

despite being developed in parallel. Most importantly, one of these similarities is the 

direct inclusion of latent variables in both types of model.   

A specific class of frequently-used latent variable measurement models is known 

as item response theory (IRT) models. Like other latent variable measurement models, 

they can be respecified as mixed effects models (Rijmen et al., 2003; Van den Noortgate 

et al., 2003; Adams et al., 1997; Tuerlinckx et al., 2006; Kamata, 2001).  Rabe-Hesketh et 

al. (2004) presented a unifying framework for measurement models and mixed effects 

models, and they built a package to convert between the two in Stata. Rijmen et al. 

(2003) argued that the transferability between the two classes of models is useful for 

those wanting to conduct IRT models; as almost any statistical software can run mixed 

effects models, scholars and practitioners would no longer need any special software or 

packages to use IRT models. Van den Noortgate et al. (2003) argues that reformulating 

IRT models as mixed effects models may even be a better option than their traditional 

formulation, though it would change some of the interpretations of certain parameters.  

An important point is that mixed effects models already are, mathematically, 

equivalent to latent variable measurement models. Thus, the random effects in mixed 
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effects models are already measuring latent variables, whether we conceptualize them 

that way or not. By choosing to do so, we allow our mixed effects models to also serve, 

simultaneously, as measurement models. Indeed, even though it is not necessarily 

obvious to those using mixed effects models simply to reduce bias, many scholars have 

pointed out that random effects in the mixed effects modeling framework are equivalent 

to latent variables in the measurement context. In this vein, Rabe-Hesketh et al. (2004, 

pp. 167–168) pointed out the equivalence between latent variables and random effects. 

They also observed that a similar interpretation of random effects is common in 

biostatistics and biometrical genetics (Rabe-Hesketh et al., 2004, p. 168).  Tuerlinckx et 

al. (2006, p. 226) also followed this equivalence: “the cluster-specific parameters in 

mixed models are also called random effects or, as in the literature on item response 

theory (IRT), latent traits or latent variables.” Thus, it is justified and accepted to treat 

random effects in a mixed effects model as estimates of latent variables.  

Types of Mixed Effects Models 

Mixed effects models can follow three broad forms: linear mixed effects models, 

generalized linear mixed effects models, and nonlinear mixed effects models. Linear 

mixed effects models are similar to linear regression with random effects added to certain 

parameters to account for grouping effects. Generalized linear mixed effects models are 

analogous to generalized linear models, where the outcome variable is not continuous 

(e.g., logistic regression for binary outcomes, negative binomial regression or Poisson 

regression for count data, etc.), so the assumptions of linear regression (normally 

distributed residuals, most notably) are likely to be violated. In these models, the linear 
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predictor (
0

+ 
1

∗ 𝑥1 …) is wrapped inside of a mean function to produce predicted 

values on the scale of the outcome variable.6 These models are technically nonlinear, but 

they are transformations of the linear model (i.e. “linear in the parameters”), so they are 

readily understood by those familiar with linear modeling. As with the linear models, it is 

easy to conceptualize how to add random effects to particular parameters in these models 

to convert the models into mixed effects models.  

True nonlinear models—those that are not linear in the parameters and can 

therefore not be represented as simple transformations of a linear predictor—are often 

(though not exclusively) used in the context of growth models over time. In these 

nonlinear models, parameters are able to take on special interpretations beyond being 

simple multiplicative weights/coefficients for variables: they can represent asymptotes, 

midpoints, vertices, inflection points, etc. Random effects on these parameters allow for 

individuals to each have their own unique estimates for these values—their own 

estimated upper or lower asymptote, their own estimated inflection point, etc. Raket 

(2020) used this type of model—an exponential decay model specifically—to estimate 

individual cognitive decline over time in the context of Alzheimer's diagnosis. Jonsson et 

al. (2000) showed that nonlinear mixed effects models more accurately capture the 

effects of pharmacological drugs at different doses than do linear or generalized linear 

models, especially at levels of dosage outside the range of those directly tested.7 Lee et al. 

 
6 These can be alternatively conceptualized with a link function, which is just the inverse of the mean 

function—it wraps the outcome variables inside of a function to convert them to a linear format.  

 
7 Note that this is not a growth model over time, but rather a growth model with respect to the dosage.  
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(2020) used a mixed effects Richards growth curve model to model the outbreak of 

COVID-19 cases over time in separate countries. Furthermore, all of the DMM studies 

mentioned in the next subsection would fall into this category as well.  

A final subcategory within mixed effects models is crossed models. Crossed 

models occur when there is more than one grouping variable, and neither is entirely a 

subset of the other. In the earlier example of students nested inside of schools, which are 

themselves nested inside of school districts, the model is not crossed: each student exists 

entirely within one school and each school exists entirely within one school district. 

Thus, the “nesting” label is appropriate. However, if one is interested in students being 

grouped within schools and within neighborhoods, there may be some crossover: some 

students from a neighborhood may attend one school while others from the same 

neighborhood attend another school. Thus, two students may live in the same 

neighborhood but attend different schools, or they may live in different neighborhoods 

but attend the same school. In the context of golf, of course, each round of golf may be 

nested both within the player who achieved that score and within the course on which it 

was achieved, etc. Crossed models may also be called “non-nested models” (Gelman & 

Hill, 2006, p. 244) or “cross-classified models” (Raudenbush & Bryk, 2002). Regardless 

of terminology, the key point is that units at lower levels can share in one grouping 

characteristic but differ in another. Visually, both crossed models and pure nested models 

could be conceptualized using Euler diagrams; in the crossed model, the two shapes 

would partially overlap, whereas in the pure nesting model, one shape would exist 
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entirely inside of the other (representing the nature of one set being entirely a subset of 

another).  

Dynamic Measurement Modeling (DMM) 

 Within the category of nonlinear mixed effects models, dynamic measurement 

modeling (DMM) has relatively recently emerged as a specific type of educational 

measurement model. More traditional psychometric models (e.g., item-response theory 

models) are quite effective at generating estimates of an individual's ability at a single 

point in time. However, researchers and practitioners are often interested in an 

individual's capacity for future development of an ability instead of or in addition to the 

level of ability that the individual has at a fixed timepoint (Sternberg et al., 2002, p. 142). 

Without a good way to measure this, researchers and practitioners have often made the 

assumption, whether implicitly or explicitly, that current ability is a proxy for future 

capacity. Those developing the tests may not intend for the tests' results to be used in this 

manner, but it nonetheless seems to be true that “student scores from single-

administration assessments are often interpreted not only as pertaining to past and present 

student performance but also as indicators of student potential to learn in the domain 

being assessed” (Dumas & McNeish, 2018, p. 612). 

 This assumption, however, can be problematic. The assumption is often untested, 

and it can yield distributional biases in high-stakes testing environments, which in turn 

may harm disadvantaged populations. If certain populations have had fewer opportunities 

to access important educational resources, individuals from these groups may be likely to 

have achieved lower levels of ability as reflected on important educational indicators 
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(e.g., SAT scores, etc.). This can be true even if these individuals have the same level of 

capacity to learn these abilities in the future as do individuals from other socioeconomic 

groups. Thus, “abilities measured at a single point in time, no matter how reliably 

measured or sophisticatedly modeled, are not synonymous with potential,” even though 

they are often treated as such (McNeish & Dumas, 2017, p. 61). In addition to the 

potentially harmful consequences of these biases, this also means that the results are 

simply less accurate—the results of the assessments are not accurately reflecting the 

constructs and goals for which they are being used, yielding a threat to utility and to 

construct validity. 

 This issue is of particular importance in educational testing, but it is not unique to 

that field. In the field of medical diagnostics, for example, Raket (2020) explicitly argued 

for the use of mixed effects growth/decay modeling in Alzheimer's diagnosis. He argued 

that an individual’s cognitive ability (which is used to diagnose Alzheimer’s Disease) at 

any given point in time is partially a function of that person’s maximum cognitive ability: 

patients with greater cognitive abilities before the onset of the disease are also likely to 

score better on cognitive tests in the early stages of having the disease than are those 

patients with lower starting cognitive abilities. Therefore, testing at a single time-point 

may over-diagnose those patients who had lower starting cognitive capabilities and 

under-diagnose those who had higher starting cognitive capabilities, indicating a 

significant inadequacy with single-timepoint testing (Raket, 2020, p. 1).  

 In the field of education, several attempts have been made to rectify this by 

moving beyond single-time-point assessments. In the decades after World War II, 
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dynamic assessment was developed as a way to assess the child survivors of 

concentration camps (Feuerstein et al., 1979; 2015). Students were tested multiple times 

with targeted learning opportunities in between assessments. The improvement over time 

was plotted to identify a capacity value representing the expected future ability once the 

construct of interest was fully developed. The use of dynamic assessment continues today 

in certain contexts such as second language acquisition (Lantolf & Poehner, 2011), 

students with intellectual disabilities (McLaughlin & Cascella, 2008), intellectually gifted 

students (Kirschenbaum, 1998), and others. 

 While dynamic assessment directly addresses the problem inherent in single-

administration tests, it is also difficult to implement on a large scale due to the high level 

of resource commitment required. The targeted learning opportunities in between 

assessments call for one-on-one instruction, requiring significant amounts of time and 

funding. Not only is this difficult to scale to large populations, it also makes instructional 

standardization difficult. Furthermore, dynamic assessment has typically used descriptive 

plots of individual student growth rather than any formalized statistical model or growth 

curve (McNeish & Dumas, 2019; McNeish et al., 2020), which also makes scaling up to 

large populations difficult and resource-intensive. 

 More recently, DMM models, building on the conceptual framework of dynamic 

assessment, were developed as a solution to the problem. Like dynamic assessment, they 

use longitudinal data to directly estimate an individual's capacity. Unlike dynamic 

assessment, though, they rely on statistical models rather than on descriptive plots. DMM 

models therefore build on dynamic assessment by incorporating dynamic assessment's 
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conceptualization of student growth capacity within a statistical model; DMM models 

seek to estimate student capacity as in dynamic assessment, but they aim to do so with 

large longitudinal datasets and without the need for personalized one-on-one 

interventions or instruction (Dumas et al., 2020, p. 286). 

 With multiple datapoints (scores) over time, the model estimates a non-linear 

growth trajectory (the shape of which is typically specified by the user). The capacity is 

then typically conceptualized as the upper asymptote to this growth trajectory. By adding 

a random effect on this asymptote, each individual can have his or her own asymptote 

and therefore his or her own capacity estimate. Thus, DMM models are effectively 

nonlinear mixed effects models with a random effect on an upper asymptote parameter. 

This individual-level capacity estimate is equivalent to the capacity estimate from 

dynamic assessment, but it is estimated directly by the model, allowing thousands of 

students to each receive such an estimate without clinicians needing to subjectively 

analyze each individual's growth trajectory. DMM models can therefore more readily be 

scaled and used with large groups of students, with a relatively smaller resource 

commitment, than dynamic assessment. 

 Even though DMM models are specified in a way that mimics a typical nonlinear 

growth model, their application and interpretation are much more like an item-response 

theory (IRT) model: each individual has an unobserved capacity for learning the 

particular ability of interest. The random effect on the upper asymptote estimates this 

latent capacity for each individual. DMM models can also have various other individual-

level random effects, depending on the shape. These can include growth rate parameters, 
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midpoint parameters, and inflection point parameters. However, since the goal is 

typically to estimate a student's capacity, the random effect on the upper asymptote (or 

some other parameter representing the function’s maximum value) is the most 

substantively important of these estimates in the DMM context. Due to their original 

intent of providing a capacity estimate for students' growth on a given educational ability, 

DMM models are typically implemented and interpreted in this educational context. 

However, such models could theoretically be applied to any situation in which a capacity 

estimate (an individual-level upper asymptote) on a nonlinear growth trajectory would be 

of substantive interest (e.g., estimating an individual's maximum skill in a particular 

sport, estimating a tree's maximum height at maturity, estimating a puppy's eventual 

weight as an adult dog, or estimating a student pilot's capacity for flying ability). 

 Importantly, in the educational context, these models have been shown to improve 

consequential validity in comparison to single-administration scores. Specifically, DMM 

capacity scores have been more weakly correlated with demographic variables than 

single-administration scores are. Dumas and McNeish (2017) demonstrated this in the 

context of mathematics ability, while Dumas and McNeish (2018) demonstrated a similar 

result with reading ability: socioeconomic status (SES) predicted about 20% of the 

variance in reading scores at individual time points (𝑅2 0.20), while SES predicted only 

3.4% of the variance in capacity estimates (𝑅2 0.034) produced by a DMM model. 

Thus, the DMM capacity estimates are potentially less susceptible to the biases that exist 

in high-stakes single-administration tests. 
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 Dumas and McNeish (2017) also showed that the capacity estimates from DMM 

models are reliable over time. When they removed the last time point and re-ran the 

analysis, the restricted-model capacity score estimates correlated well above 0.90 with 

the full-model capacity score estimates. This evidence of reliability is important, as it 

demonstrates that the capacity score estimates are not heavily dependent on which time 

points are available. Thus, the capacity score estimates are not just computationally 

expensive noise; they are instead likely measuring an extant construct of capacity. 

Further evidence of this comes from McNeish et al. (2020), who showed that adult scores 

on a verbal ability test were much more accurately predicted by the capacity scores from 

a DMM model of adolescent scores than by a longitudinal IRT model (𝑅2 of 0.43 versus 

0.16). 

 Since their relatively recent inception, DMM models have been applied in several 

educational contexts. These include verbal ability (McNeish et al., 2020), mathematics 

assessment (Dumas & McNeish, 2017; Dumas et al., 2020;Dumas, McNeish, Sarama, et 

al., 2019; Dong et al., 2022), reading ability (Dumas & McNeish, 2018), summer learning 

loss (McNeish & Dumas, 2021), and medical education (Dumas, McNeish, Schreiber-

Gregory, et al., 2019). Further research has created additional quantities of interest that 

can be calculated from a DMM model. Dong et al. (2022) developed an individual-level 

trajectory deviance index (TDI) that can be used to assess how well a DMM model fits 

for each individual in the dataset. McNeish and Dumas (2018) developed a conditional 

reliability measure for DMM, allowing researchers and practitioners to assess the 

consistency of estimates from DMM models. 



63 

 

 DMM growth curves have typically followed two broad classes of growth 

trajectories. The J-shaped growth trajectories exhibit growth in which the estimated 

scores are always increasing smoothly at a decreasing rate as a function of time. Thus, for 

the J-shaped curves, the low end of the curve is conceptualized as an intercept (predicted 

score at time zero). The S-shaped growth trajectories, by contrast, have both lower and 

upper asymptotes and exhibit an inflection point somewhere in between the starting score 

and the upper asymptote. The low end of the curve is conceptualized as a lower 

asymptote rather than as an intercept for these S-shaped curves. 

 McNeish et al. (2020) identified six different curve trajectories that can be 

parameterized to have an upper asymptote. Four of these (Michaelis-Menten, 

Exponential, Gompertz, and Morgan-Mercer-Flodin) are J-shaped curves with an 

intercept parameter, while the other two (Logistic and Weibull) are S-shaped curves with 

lower asymptotes. Even within a given shape, there are multiple different 

parameterizations that could be used (see Preacher & Hancock, 2015; Tjørve & Tjørve, 

2017). 

 For the purposes of illustration, four of these DMM growth curve shapes are 

shown in Table 1 below: two J-shapes and two S-shapes. The two included J-shaped 

curves are Michaelis-Menten and Exponential, while the two included S-shaped curves 

are Logistic and Weibull. The exact parameterizations and parameter definitions for each 

of these shapes can be found in Table 1. Note that, due to the many parameterization 

options for each trajectory, some parameterizations listed here may differ slightly from 
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those used in previous DMM implementations and from those in other nonlinear growth 

models more generally. 

 

  

Table 1: Example of DMM Growth Trajectories 

Curve Parameterization Parameter 

Definitions 

Michaelis-Menten 


0
+

(
𝑐

− 
0

) ∗ 𝑡


𝑚

+ 𝑡
 


0
: Intercept 


𝑐
: Capacity 


𝑚

: Midpoint 

𝑡: Time 

 

Exponential 
0

+ (
𝑐

− 
0

)(1 − 𝑒𝑟∗𝑡) 
0
: Intercept 


𝑐
: Capacity 


𝑟
: Growth rate 

𝑡: Time 

 

Logistic 


𝐿
+


𝑐

− 
𝐿

1 + 𝑒𝑟∗(𝑡−𝑚)
 


𝐿
: Lower Asymptote 


𝑐
: Capacity 


𝑟
: Slope at midpoint 


𝑚

: Midpoint 

𝑡: Time 

 

Weibull 
𝑐

+ (
𝐿

− 
𝑐
) ∗ (1 − 𝑒−𝑒𝑟∗(ln(𝑡)−ln(𝑖))

) 

 


𝐿
: Lower Asymptote 


𝑐
: Capacity 


𝑟
: Growth rate 


𝑖
: Inflection Point 

𝑡: Time 
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 Each of these shapes contains either a lower asymptote (
𝐿
) or an intercept (

0
). 

Even though they technically have different substantive interpretations, in many settings 

they are effectively equivalent, since they both represent the lowest value of the vertically 

scaled outcome value that we would expect to see. The Michaelis-Menten and Logistic 

trajectories both have midpoint parameters (
𝑚

), which represent the point on the time 

scale where the outcome is halfway between the upper asymptote and either the lower 

asymptote (Logistic) or intercept (Michaelis-Menten). All of the trajectories except for 

Michaelis-Menten have a growth rate parameter (
𝑟
); in the Logistic curve, this takes on 

particular meaning as the slope at the midpoint. The Weibull trajectory is the only one 

with an inflection point parameter—although there is an inflection point in the Logistic 

trajectory, it is not directly estimated as a parameter. Implied by the nature of DMM, all 

four shapes have an upper asymptote representing capacity. 

 The parameters listed in Table 1 all represent fixed effects. They represent the 

estimated average for that parameter across the participants. For example, if 
𝐿

= 3, then 

the average estimated lower asymptote for the participants is three. Regardless of the 

trajectory, each of the parameters in that curve can be given a random effect. This allows 

each individual to have his or her own estimated value for that parameter. Since Time is 

not a parameter to be estimated, it cannot have a random effect. 

It is up to the researcher/practitioner to decide (whether a priori or based on 

model fit) which parameters should be given random effects. However, the entire concept 

of DMM relies on each individual being given his or her own capacity score. It is 

therefore highly recommended that the 
𝑐
 parameter receive a random effect, while the 
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decision to utilize a random effect on the other parameters may depend on theory, model 

fit, and/or model convergence. 

 Similarly, the choice of which DMM trajectory to use may be inductive or 

deductive. Deductively, the researcher/practitioner may have a priori expectations about 

the shape of the growth curve, particularly about whether to expect a J-shaped curve, an 

S-shaped curve, or some other trajectory. A specific growth trajectory may also be 

preferred for various other reasons (interpretability, presence of a particular parameter, 

etc.) as well. This approach was taken by McNeish and Dumas (2019), who decided a 

priori to use a Michaelis-Menten trajectory due to its ease of interpretation. Conversely, 

because DMM users are primarily interested in the capacity estimates on the upper 

asymptote, the researcher/practitioner may not have much preference or expectation 

concerning which trajectory to use. In this case, the researcher/practitioner may try each 

of the trajectories (possibly along with different combinations of random effects) to see 

which ones are able to achieve convergence and which one has the best fit. McNeish et 

al. (2020) employed this technique, using BIC to compare the fit of Michaelis-Menten, 

Exponential, Logistic, and Weibull models. 

To date, all of these DMM models and associated quantities of interest have been 

estimated using SAS® PROC NLMIXED (SAS Software, n.d.).8 However, nonlinear 

mixed effects models can be conducted in R (Team, 2022; R Core Team, 2022) as well 

by using the nlme package (J. Pinheiro et al., 2022; J. C. Pinheiro & Bates, 2000) and/or 

 
8 SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 

SAS Institute Inc. in the USA and other countries. ® indicates USA registration. 
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its relative, the lme4 package (Bates et al., 2015), each of which has thousands of 

citations. The main benefit of this is that R is free and open-source, providing access to 

those who may not have the resources or institutional backing to access SAS software.  

In addition to the monotonically increasing J-shaped and S-shaped growth curves 

that have traditionally been implemented in DMM models, other growth curve shapes are 

possible. For example, “the linear growth model is the most commonly fit growth model 

in the social sciences” (Grimm et al., 2016, p. 201). However, a linear growth model 

cannot have a meaningful measure of capacity, as each person’s ability estimate will 

simply continue to increase at a constant rate as a function of time, thereby leaving each 

individual with an infinite capacity estimate. Nonetheless, some other shapes can be 

reinterpreted as DMM models. For example, quadratic growth does not have an upper 

asymptote, but it does have a maximum or minimum value at the vertex of the quadratic 

function. With a random effect on the vertex, each individual could have his or her own 

value for the vertex (both his or her own point in time at which the vertex occurs and his 

or her own maximum or minimum value). This could readily be interpreted as a capacity 

estimate. Along these lines, McNeish et al. (2022) discuss the relationship between 

quadratic growth functions and DMM models; they end up building a piecewise growth 

function that combines a quadratic growth function on the left side of the maximum 

knotted with a horizontal linear function beginning at the maximum. Although the 

authors discuss this model as borrowing aspects of dynamic measurement (as opposed to 

being a DMM model itself), one could reasonably view this as a new variant of DMM. 

The maximum ability level is directly estimated by the model and receives a random 
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effect, allowing it to be interpreted as an individual-level capacity estimate. A pure 

quadratic model would have this same characteristic: with the right parameterization, the 

maximum ability level can be directly estimated and can receive a random effect, 

allowing each individual to have his/her own capacity estimate. 

Grimm et al. (2016) used the standard form equation to represent quadratic 

growth: 𝑌𝑡𝑖 = 𝑏1𝑖 + 𝑏2𝑖 ∗ 𝑡 + 𝑏3𝑖 ∗ 𝑡2 + 𝑢𝑡𝑖 (Grimm et al., 2016, p. 203). However, this 

version of the equation does not directly show the vertex as a parameter, so it is not 

possible to add a random effect on it. Instead, other parameterizations would be more 

helpful from a DMM perspective. McNeish et al. (2022) discuss some options for 

parameterizing quadratic growth functions. Conceptualizing the quadratic growth 

equation in vertex form would be one useful option from a DMM perspective: 𝑌𝑡𝑖 =

𝑎𝑖(𝑡 − ℎ𝑖)2 + 𝑘𝑖.
9 Now the ℎ and 𝑘 parameters would represent the time at which the 

function reaches its vertex (presumably a maximum) and the value of that maximum, 

respectively. In the context of DMM, then, they would represent the time/age at which an 

individual reaches his or her capacity and the value of that capacity, respectively.  

 

 
9 Note that this is similar to, but slightly different from, the parameterization selected by McNeish et al. 

(2022). 
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Chapter Three: Methods 

 

To measure each golfer’s ability in a given year, I used a linear mixed effects 

model with a player’s score in a given round as the outcome variable. I extracted the 

estimates for each player’s ability in a particular year from this model. Thus, almost all 

players received multiple ability estimates over time. I then used the multiple longitudinal 

player-level estimates to estimate multiple longitudinal growth trajectories that allow for 

a capacity parameter to be directly estimated, selected the best-fitting of these (the 

quadratic model), and created a Dynamic Measurement Model using the selected growth 

trajectory. Finally, I used this DMM model to create actual capacity estimates for specific 

professional golfers and validated the results.    

Data 

 All data that were used are publicly available. I collected the names and scores of 

all participants in official events on the PGA Tour from 2007 to 2023. I also collected the 

names and scores of all participants in official events on professional golf tours that are 

frequently crossed with the PGA Tour (i.e. there is significant overlap between these 

tours, with players frequently moving between them and/or playing events on both tours): 

the Korn Ferry Tour (previously called the Nike Tour, the Buy.com Tour, the Nationwide 

Tour, and the Web.com Tour), PGA Tour Champions (previously called the Senior PGA 

Tour and the Champions Tour), PGA European Tour (also called the DP World Tour and 
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the European Tour), and LIV Golf (founded in 2021 as a direct competitor to the PGA 

Tour). For each player with at least four rounds of golf in the dataset, I also collected (or 

attempted to collect) his date of birth in order to calculate age. Additionally, for each 

round of golf played, I collected the name of the golf course. Thus, for any given player-

round observation, the only variables collected are the player’s name, the name of the 

golf course, the player’s date of birth (to calculate age), the date/round number in which 

the round takes place, and the player’s score in that round. All of these data are publicly 

available online and are not private; no interaction with participants was required.   

 The final dataset resulted in 866,539 rounds of golf played by 8,397 professional 

golfers across 528 golf courses. This yielded a mean number of rounds per player of just 

over 103 rounds. This also yielded 33,236 player-year combinations. However, this 

number decreased slightly after dropping players with fewer than four rounds of golf in 

the dataset and dropping those whose dates of birth could not be ascertained. The result 

was 29,423 player-year combinations across 5,225 players, yielding an average of about 

5.6 years in the dataset per golfer.  

Summary of Variables 

 For the primary analyses, I collected only six variables: the name of the player, 

the year in which the round occurred, the course on which the round occurred, the round 

number within the tournament (first round, second round, etc.), the score that the player 

shot in the round, and the player’s date of birth. Two variables were directly calculated 

using these six variables: the number of shots behind the lead a player was after the 

previous round and the player’s age. Two other variables were collected for the purposes 
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of validation: the player’s OWGR ranking at the end of the previous year and the player’s 

(total) Strokes Gained per round at the end of the previous year. Two variables were 

estimated by the primary analyses in this study: player-year ability estimates from the 

linear mixed effects model and player capacity estimates from the DMM model. Finally, 

several variables were estimated by ancillary models used for validation: ability estimates 

from the SBSE model, pooled age-invariant player ability level estimates, and player 

capacity estimates from restricted early-career models. A summary of all of the variables 

collected, calculated, or estimated for use in primary analyses can be found in Table 2.  

Linear Mixed Effects Model to Measure Golfing Ability 

Primary Analysis 

 The linear mixed effects model to measure each player’s golfing ability in a 

particular year took the form of a crossed linear mixed effects model. The unit of analysis 

was a round of golf, with the outcome variable being the score that the player achieved in 

that round. In its most basic form, such a mixed effects model could include merely a 

fixed effect intercept term with random effects for the player and the course. However, 

such a model would assume that each course does not vary in difficulty from round to 

round. Thus, it is likely necessary to include an additional random effect for the course-

day or course-round to account for variations in course difficulty from day to day arising 

from course setup, weather, etc. Such a model would be similar to the SBSE (“Score-

based Skill Estimate”) Model presented by Broadie and Rendleman Jr, (2013).10  

 
10 Although their notation is consistent with a mixed effects model, Broadie & Rendleman Jr (2013) 

actually appear to have used dummy variables instead. The logic of the model is the same, however. I used 

the true mixed effects version.  
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Table 2: Variables Collected or Calculated for Primary Analyses 

Variable Name Description Level of 

Measurement 

Data Source Primary Use 

Player Name The player 

playing the 

given round of 

golf 

Round Public data 

(internet) 

Grouping variable 

to create player-

level ability 

estimates and 

player-level 

capacity estimates 

Year The year in 

which the 

round was 

played 

Round Public data 

(internet) 

Grouping variable 

to create player-

year ability 

estimates and 

course-year 

difficulty 

estimates 

Course The course on 

which the 

round was 

played 

Round Public data 

(internet) 

Grouping variable 

to create course-

level and course-

round difficulty 

estimates 

Round Number Which round of 

the tournament 

is being played 

Round Public data 

(internet) 

1. Grouping 

variable to 

estimate course-

round difficulty 

estimates 

2. Fixed effect for 

interaction terms 

with shots behind 

lead 

Round Score The score 

achieved by the 

player in the 

given round 

Round Public data 

(internet) 

Outcome variable 

in linear mixed 

effects model 

Date of Birth The player’s 

date of birth 

Player Public data 

(internet) 

Used to calculate 

player’s age 

Shots behind 

Lead 

The number of 

shots behind 

the lead a 

player is at the 

conclusion of 

the previous 

round 

Round Calculated based 

on previous round 

score and 

minimum score 

within tournament-

year 

Predictor variable 

in linear mixed 

effects model 

 

Age The player’s 

age 

Player-year Calculated based 

on Year and 

player’s Date of 

Birth 

Used as input 

variable in DMM 

model 

Player-Year 

Ability 

Estimated 

ability level for 

the player in 

the given year 

Player-year Estimated by the 

linear mixed 

effects model 

Used as outcome 

variable for DMM 

model 
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However, I also added fixed effects for how far behind the leader a player was 

before starting a round, the squared version of this variable, and the interaction of both of 

these with the round number. This allows the model to account for the possibility that 

players might outperform or underperform their ability levels due to stress and nerves (if 

they are near the leader) or apathy (if they are far away from the leader) as well as the 

possibility that these effects will vary depending on how early or late it is in the 

tournament. Even if these variables were to have been statistically nonsignificant 

predictors, then there would have been no harm in including them: their inclusion would 

not have biased the estimates of the random effects. However, their inclusion prevented 

the possible bias that may have resulted from these effects being misattributed to player 

ability.  

  I also included three additional random effects. First, I added a player-year 

random effect, which allows player ability to vary from year to year instead of running an 

entirely separate model for each year or for each two-year period.  Second, I included a 

course random effect to supplement the course-round random effect. This provided an 

overall measure of each course’s mean difficulty level, allowing the course-round random 

effect to represent deviations from this overall mean difficulty due to weather conditions 

or course conditions. Third, because these deviations in course difficulty may be more 

similar to each other within a given year than they are across years, I also added a course-

year random effect. The resulting linear mixed effects model that I used took the 

following form: 
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𝑆𝑖𝑐𝑑𝑦 = 
0

+ 
1

𝐿𝑖𝑐𝑑𝑦 + 
2

𝐿𝑖𝑐𝑑𝑦
2 + 

3
𝑅𝑑𝑦 + 

4
(𝐿𝑖𝑐𝑑𝑦 ∗ 𝑅𝑑𝑦) + 𝐵5(𝐿𝑖𝑗𝑑𝑦

2 ∗ 𝑅𝑑𝑦) + 𝑐 +

𝑐𝑑 + 
𝑐𝑦

+ 𝑖𝑦 + 𝑖 + 𝑖𝑐𝑑𝑦    

 

In this equation, subscript 𝑖 represents the individual golfer, subscript 𝑐 represents 

the course, subscript 𝑑 represents the day or round, and subscript 𝑦 represents the year. 

Thus, 𝑆𝑖𝑐𝑑𝑦 as the outcome variable means the score of player 𝑖 on course 𝑐 and 

day/round 𝑑 of year 𝑦. Thus, the random effect 𝑐 represents a golf course’s mean 

difficulty, 𝑖 represents a player’s mean ability level across years, and 𝑖𝑦 represents a 

player’s deviation from that mean ability level in a particular year. Given this, a player’s 

ability level in a particular year can be represented by 𝑖 + 𝑖𝑦 , where lower values 

represent higher ability (because lower scores are better in golf).  

The beta coefficients represent the fixed effects. 
0
 represents the mean score of an 

average player who is 0 shots behind the lead in (the theoretical) round 0. 
1
 and 

2
 

represent the increase or decrease in the score from the mean per shot that a player is 

behind the leader and per squared shot that a player is behind the leader, respectively. 
3
 

represents the increase or decrease in score as the tournament progresses—this is not of 

much use on its own, but it is included because it is later used in interaction terms. 
4
 and 


5
 represent the extent to which the effect of 

1
and 

2
 vary depending on the round 

number (how late or early it is in the tournament).  

 From this model, I extracted the estimates of each player’s ability in each year 

(𝑖 + 𝑖𝑦). Since most people intuitively think of higher values as being qualitatively 
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better in terms of ability, I multiplied these values by negative one so that  −(𝑖 + 𝑖𝑦) 

now represents an ability measurement where higher abilities are represented by larger 

(positive) numbers. Unlike those from many measurement models, these ability values 

actually are on a substantively meaningful scale: the number of strokes above or below 

average a player is. Thus, an ability level of -.56 would mean that the player’s ability 

level is about half a shot per round worse than the average professional golfer on a major 

tour.  

Validity Analysis 

I validated the player-year ability level estimates in two ways. First, I calculated 

the correlations between the new scores and three existing unidimensional measures of 

golfing ability—the Official World Golf Rankings (OWGR), Total Strokes Gained (per 

round), and estimates from the SBSE model created by Broadie and Rendleman (2013)—

as well as with pooled, age-invariant player ability estimates created by estimating a 

separate model with only player-level random effects (no player-year random effects). 

The OWGR began in the 1980’s and encompasses all professional golf tours, and SBSE 

and the pooled, age-invariant estimates can be estimated for any time period, allowing 

both of these measures to be calculated for the entire sample. However, the PGA Tour is 

the only tour to track Strokes Gained, meaning that this correlation was performed on a 

restricted sample limited to golfers playing enough rounds of golf on the PGA Tour in a 

given year for the PGA Tour to provide Strokes Gained data. The expectation was that 

the newly estimated player-year ability scores would be positively, but not perfectly, 
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correlated with the existing unidimensional measures (hypothesized magnitudes in the 

0.6 to 0.8 range). Such correlations would provide evidence of convergent validity.  

The new score estimates and the SBSE estimates are naturally player-year level 

estimates, and total Strokes Gained is provided at this level as well (in addition to being 

provided at more granular player-round or player-tournament levels). However, OWGR 

fluctuates weekly based on the most recent tournament results. As such, it requires a bit 

of adjustment to be comparable to the other measures. To deal with this, I treated the last 

OWGR of the season as the official player-year level measure of ability for the given 

year.  

Second, I compared the predictive ability of the new estimates to the predictive 

abilities of the existing unidimensional measures of golfing ability. This took the form of 

multiple linear mixed effects regressions. These regressions still had random effects for 

course, course-round, etc, as did the primary analysis in this stage, but these validation 

analyses used the respective measures of ability from the previous year rather than any of 

the player-level random effects. For example, the five ability measures (including the 

new estimates from the primary analysis) from 2010 were used to predict player scores in 

2011. The predictive ability of each measure was assessed using mean square error—

lower mean square error of prediction values indicate better predictive ability. For the 

new score estimates to be accurate, they should perform at least as well as the other 

existing measures of ability at predicting future performance. This would provide 

evidence of predictive validity as well as of incremental validity. Dong and Dumas 

(2024) discuss this idea of incremental validity as a critical component of DMM validity. 
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Dynamic Measurement Model(s) To Estimate Players’ Capacities 

Primary Analysis 

 In the second stage of the analysis, I took the player-year ability level estimates 

from the previous stage and used them in DMM models that are able to estimate each 

player’s capacity—the highest possible ability level that the player is predicted to 

achieve. For some players, this value may be in the past. From the standard DMM 

models, I estimated two J-shaped curves (Michaelis-Menten and Exponential) and two S-

shaped curves (Logistic and Weibull).  

In addition to the more common DMM shapes that monotonically increase or 

decrease, I also used quadratic growth. Quadratic growth allows for ability to first 

increase and then decrease, which may be useful for modeling golfing ability, as we may 

expect individuals to reach their capacities at a relatively young age. Even though it has 

rarely been previously used in DMM models, quadratic growth is a commonly used 

longitudinal growth curve shape (Grimm et al., 2016). Grimm et al. (2016) use the 

standard form equation to represent quadratic growth: 𝑌𝑡𝑖 = 𝑏1𝑖 + 𝑏2𝑖 ∗ 𝑡 + 𝑏3𝑖 ∗ 𝑡2 + 𝑢𝑡𝑖 

(Grimm et al., 2016, p. 203). However, I used a different quadratic parameterization that 

shows the coordinates of the vertex directly as parameters: 𝑌𝑡𝑖 = 𝑎𝑖(𝑡 − ℎ𝑖)2 + 𝑘𝑖. This is 

more helpful from a DMM perspective, as the value at the vertex represents the 

individual-level maximum ability (i.e. capacity). Converting this even further so that the 

parameterization looks more like the more traditional DMM equations, we could write 

this as  𝑌 = 
𝑟
(𝑡 − 

𝑎
)2 + 

𝑐
, where 

𝑟
 is a growth rate parameter, 

𝑎
 is the time at the 

vertex (i.e. the age at which a player reaches his capacity), and 
𝑐
 is the player’s capacity 
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estimate. This is similar, but not identical, to the quadratic parameterization that McNeish 

et al. (2022) used as a portion of a piecewise nonlinear growth trajectory. I estimated 

these DMM models in R, and I provide the R code for doing so in Chapter Four,11 

providing a tutorial for future DMM users. The parameterization of each of the growth 

trajectories to be estimated can be found in Table 3.  

Table 3: Growth Trajectories to be Estimated 

Curve Parameterization Parameter 

Definitions 

Michaelis-Menten 


0
+

(
𝑐

− 
0

) ∗ 𝑡


𝑚

+ 𝑡
 


0
: Intercept 


𝑐
: Capacity 


𝑚

: Midpoint 

𝑡: Time 

Exponential 
0

+ (
𝑐

− 
0

)(1 − 𝑒𝑟∗𝑡) 
0
: Intercept 


𝑐
: Capacity 


𝑟
: Growth rate 

𝑡: Time 

Logistic 


𝐿
+


𝑐

− 
𝐿

1 + 𝑒𝑟∗(𝑡−𝑚)
 


𝐿
: Lower Asymptote 


𝑐
: Capacity 


𝑟
: Slope at midpoint 


𝑚

: Midpoint 

𝑡: Time 

Weibull 
𝑐

+ (
𝐿

− 
𝑐
) ∗ (1 − 𝑒−𝑒𝑟∗(ln(𝑡)−ln(𝑖))

) 

 


𝐿
: Lower Asymptote 


𝑐
: Capacity 


𝑟
: Growth rate 


𝑖
: Inflection Point 

𝑡: Time 

Quadratic 
𝑟
(𝑡 − 

𝑎
)2 + 

𝑐
 

𝑟
: Growth rate 


𝑎
: Time at capacity 


𝑐
: Capacity 

𝑡: Time 

 
11 Demonstrating R code in the body of the text for future reference by readers is similar to the approach 

taken by Carsey & Harden (2013).  
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Before estimating the true DMM model, I began by estimating the marginal (i.e. 

fixed effects only) model for each growth trajectory. The best-fitting of these marginal 

models (the quadratic model) was selected for further analysis with random effects. This 

inductive approach is similar to that of McNeish et al. (2022). The best-fitting model was 

selected using two criteria: Bayesian Information Criterion (BIC) and Mean Square Error 

(MSE). Lower values of each of these represent better fit. Both of these criteria have been 

used previously to select DMM trajectories: McNeish et al. (2022) used MSE to select a 

growth trajectory, while McNeish et al. (2020) used BIC to select a growth trajectory.  

 Once the best-fitting growth trajectory had been selected, I converted it into a true 

DMM model by adding random effects to each parameter. I then iteratively dropped 

random effects (except for the capacity parameter), noting which models achieve 

convergence and which have the best fit. The best fitting model that achieved 

convergence was selected. Consistent with the conceptual underpinnings of DMM, I 

always retained a random effect on the capacity parameter. The best-fitting DMM model 

then became the final model used to estimate player-level capacity scores.  

Validity Analysis 

 To validate the DMM model as a measurement model, I followed many of the 

suggestions of Dong and Dumas (2024). In particular, they argued for the importance of 

incremental validity in the context of Dynamic Measurement. From this perspective, 

validity may be thought of as improved predictive ability beyond what has been provided 

by existing measures or models. Thus, the primary goal of this DMM validation was to 

assess whether the DMM model added value in the form of improved predictive ability 
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compared to existing measures of golfing ability/capacity. I proceeded with three distinct 

validation steps: assessing the relationship between the full-model DMM capacity 

estimates and those of restricted models, comparing the fit of the nonlinear DMM growth 

trajectory to that of a more naïve linear growth trajectory, and testing whether DMM 

capacity scores can outperform three baseline models in forecasting players’ future 

capacities.  

Correlation with Restricted Models 

With 17 years of data in the sample in this project, the sample captured the entire 

careers of some players, while it likely only included the beginnings or the ends of the 

careers for other players. From a practical perspective, however, many future DMM users 

will only have data from the early datapoints in an individual’s growth; they will want to 

predict future capacity using these early values. Thus, a valid DMM model should be able 

to forecast future capacity accurately without access to data at those future time points. 

To assess the extent to which this was occurring, I ran the same model on a restricted-

sample (early career) dataset, and I calculated the correlation between the restricted-

sample capacity estimates and the full-sample capacity estimates. A strong positive 

correlation provided evidence for the utility and validity of the capacity score estimates, 

demonstrating that the estimates are not solely dependent on which datapoints are 

available.  
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Similarly, I also performed a modified version of 10-fold cross-validation.12 This 

method of validation splits the dataset into 10 subsets. In a typical k-fold cross-validation 

context, one of the 10 datasets is withheld, the model is run on the other nine datasets, 

and then it is tested on the withheld dataset. This is then repeated for each of the 10 

subsets. However, with a DMM model, there is no good way to ‘test’ the capacity 

estimates for the withheld dataset, especially if any given player’s rounds are not 

distributed across the 10 subsets. This is a difficulty with mixed-effects models in 

general. Because of this, I ran a modified version of the cross-validation. For each of the 

subsets of data, I ran the same model as the full-model, extracted capacity estimates, and 

calculated the correlation between these new capacity estimates and the full-model 

capacity estimates (dropping any player that did not appear in both datasets). As with the 

correlation between the full-model capacity scores and the age-based restricted model, a 

strong correlation between the full-model capacity scores estimates and the k-fold 

capacity score estimates provided evidence of predictive validity.  

Comparison to Linear Growth Trajectory 

A linear growth model cannot produce individual-level capacity scores (as they 

would all be infinite), but it is still possible that such a growth model would provide a 

good description of players’ growth trajectories over the course of their careers. Since 

such models are significantly less complex to run, a nonlinear DMM model would ideally 

provide noticeable improvements over a linear model in order to make it worth the extra 

 
12 For k-fold cross-validation, k=5 or k=10 is recommended by Kuhn and Johnson (2013) and James et al. 

(2021). Carsey and Harden (2013, pp. 259–262) provide example R code for performing cross-validation.  
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human effort and extra computational effort. To test this, I applied a linear growth model 

to the longitudinal ability scores, including random effects for the slope and the intercept. 

I then compared the model fit of the selected DMM model to that of the linear growth 

model. In the end, the DMM model and the linear model showed roughly equal fit, 

though the linear model did not converge in R. Although this was weaker-than-expected 

support for the DMM model over the linear model, the DMM model was still somewhat 

preferable to the linear growth model.  

Comparison to Single-Timpeoint Estimates of Capacity 

One benefit of DMM capacity estimates is that they reduce the reliance on single-

timepoint scores as implicit indicators of future success. This has been shown in 

educational settings, and I tested whether it holds true in the measurement of golfing 

ability. I tested the capability for the capacity scores produced by the DMM model to 

forecast future ability in comparison to single-timepoint early-career ability estimates.  

The ages/years to be used in the restricted model were selected based on the 

results from the DMM model. Because players reached their peak around age 32 (on 

average) according to the DMM model, I used ages 30 and lower for the validation. I 

used each age as a separate single-timepoint predictor: the ability for age 18 scores to 

predict the player’s maximum player-year ability, the ability for age 25 scores to predict 

the player’s maximum player-year ability, etc.  

Each of these was treated as an independent variable in a basic linear regression 

with the player’s highest player-year ability score estimate from the linear mixed effects 

models used as the dependent variable. I ran similar basic linear regressions with each 
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possible pre-maximum age as the independent variable and compared each of them to a 

model in which the DMM capacity scores were used to predict the player’s maximum 

player-year ability level from stage one. To show incremental improvement in validity 

over these single-timepoint estimates of capacity, the DMM capacity score needed to 

demonstrate a higher predictive ability (higher 𝑅2) than the single-timepoint estimates, 

especially when the capacity score estimate was generated on an age-restricted dataset.  

Similarly, I followed the same procedures using single-year OWGR and single-

year Total Stroked Gained values from early in players’ careers as single-timepoint 

measures of ability/capacity. Each of these was used as the predictor variable in basic 

linear regressions, with the player’s highest player-year ability estimate as the dependent 

variable. The DMM capacity estimate needed to produce a higher 𝑅2 than these single-

timepoint measures of ability/capacity in order to provide validation.  

Tutorial for Conducting DMM in R 

 While estimating the DMM portions of the analysis, I embedded R code and 

output into the body of the text to demonstrate that the DMM models can be run in in R 

and to provide a tutorial for  how to conduct DMM models in R for the benefit of future 

DMM users. DMM models to date have been run almost exclusively in SAS, making the 

ability to run them in R a significant step forward. I have also provided commentary on 

the code and syntax being used, the options being selected, and the output being 

produced. The embedding of code and output will be enabled by R Markdown, which 

allows for the creation of PDF, HTML, and MS Word documents with R code and output 

embedded (Baumer & Udwin, 2015).  
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 Although it would be possible to embed R code for all primary and validation 

analyses as well, many of these procedures (e.g. linear regression) are well-documented 

and frequently used in R. Thus, there is no need for a new tutorial on these methods, and 

my inclusion of such syntax would not provide much added benefit. For the sake of 

parsimony, then, I have only provided coding tutorials for the DMM portions of the 

analyses.  
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Chapter Four: Results 

 

 The results are provided in two broad sections, each representing one of the two 

stages of the analysis. The first section, providing the results of the stage one analysis, 

shows the results of the linear mixed effects model and the validation of this model. This 

stage used professional golfers’ scores to estimate their ability levels in specific years and 

then validated these results. The results were favorable: the player-year estimates were 

correlated with existing measures of golfing ability, but they provide better predictions 

(lower MSE) of the observed scores.  

The second section provides the results of the DMM model and the rest of stage 

two. In this stage, multiple potential longitudinal growth models were fit as marginal 

models (fixed effects only), and the best-fitting of these was used as the trajectory for the 

DMM model, which adds random effects to the marginal model. Each potential trajectory 

had a parameter that can be conceptualized as a capacity score. By adding a random 

effect to it, each individual golfer can receive his own capacity score representing his 

maximum forecasted ability level throughout his career. These results were then 

validated.  

The results indicate that a quadratic model is the best fitting growth trajectory 

according to both BIC and MSE, that the capacity score estimates from this model are 

reliable (not dependent on particular timepoints), that the quadratic DMM model provides 
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(slightly) better fit than a baseline linear mixed effects growth model, and that the 

capacity scores from the DMM model are better able to predict player-year maximum 

scores from stage one than are single-timepoint early-career estimates of ability.  

Stage One: Linear Mixed Effects Model 

Primary Analysis 

  The primary goal of stage one was to generate player-year ability estimates that 

could then be used in stage two. This was accomplished via the estimation of a crossed 

linear mixed effects model. Nonetheless, the model itself produced results that may 

provide some insight into the factors that affect a player’s score in a given round of golf. 

Results from this model can be found in Table 4.  

 All of the fixed effects achieved statistical significance, indicating that situational 

factors, such as the number of shots behind the leader a player is at a given point in the 

tournament, can affect a player’s performance. However, because of the interaction 

effects, the magnitude of these effects is easier to see in a graph or table. Table 5 shows 

the magnitude of these effects by showing the expected score for an average professional 

golfer on a major tour on a course of average difficulty in different situations.  
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Table 4: Stage One Linear Mixed Effects Model 

 

 

While these effects are statistically significant, Table 5 shows that their magnitude 

is relatively small. Even the smallest expected score (a player leading the tournament in 

round 4) and the greatest expected score (a player 25 shots behind the lead in round 2) are 

less than a full shot apart. Thus, statistical significance here is likely due in part to the 

large sample size and does not necessarily indicate substantive significance. However, 

the fixed effects were included primarily as control variables to eliminate bias, so their 

substantive interpretation is less important.  
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Table 5: Expected Scores in Various Situations 

 Round 1 Round 2 Round 3 Round 4 

Leader 73.82 73.75 73.67 73.59 

1 Shot Behind  73.77 73.68 73.60 

2 Shots Behind  73.79 73.70 73.60 

3 Shots Behind  73.82 73.71 73.60 

4 Shots Behind  73.84 73.72 73.60 

5 Shots Behind  73.86 73.73 73.61 

7 Shots Behind  73.90 73.76 73.61 

10 Shots Behind  73.97 73.79 73.62 

15 Shots Behind  74.07 73.85 73.64 

20 Shots Behind  74.17 73.91 73.65 

25 Shots Behind  74.26 73.96 73.66 

 

More importantly, the random effects show that the player’s ability level and 

random variation (luck) are by far the most important factors determining the score in a 

given round of golf. The random effect for player accounts for a variance of 5.6093, 

much greater than all of the other random effects other than the residual. The standard 

deviation (the square root of the variance) is more interpretable: a player who is one 

standard deviation above average would be expected to score 2.3684 better, on average, 

than an average professional golfer on a major tour. The residual standard deviation is 

even larger: on average, a player would be expected to deviate from his “true” expected 
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score in a given round by over 2.8 shots just due to random variation. This is consistent 

with prior studies showing residual standard deviations between 2.69 and 3.12.  

These residuals appear to be approximately normally distributed (see Figure 1), 

and Figure 2 shows that there does not appear to be any pattern in the residuals across the 

years in the dataset (2007-2023). Both of these provide confidence that the model 

assumptions and conditions for inference have been met and lend credibility to the 

predictions that the model has generated. I therefore proceeded with generating player-

year ability estimates from the model and performing more formal validation steps.  

Figure 3 shows the distribution of player-year ability estimates (after multiplying 

by negative one so that positive values indicate greater ability) from the linear mixed 

effects model. Interestingly, there is a clear skew to the left in the distribution, indicating 

that a small proportion of player-year observations in the dataset are significantly ‘worse’ 

(lower ability) than the rest of them. These may be players who received sponsors 

invitations into tournaments and did not qualify through performance. Conversely, the 

best player-year observations are relatively closer to the median, indicating that the 

differences between the elite players and the average players are relatively small. 
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Figure 1: Stage One Residuals Histogram 

 

Figure 2: Stage One Residuals by Year 
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Figure 3: Distribution of Player-Year Ability Estimates 

 

Validity Analysis 

 To validate the results from the crossed linear mixed effects model in stage one, I 

performed two validation checks. First, I calculated the correlation between the player-

year ability estimates and several other unidimensional measures of golfing ability: a 

player’s ranking in the Official World Golf Rankings (OWGR), total Strokes Gained, the 

player’s ability estimate from the SBSE (“Score-based Skill Estimate”) model (Broadie 

& Rendleman Jr, 2013), and the player’s ability estimate from a pooled model that 

considers only player ability and not player-year ability. All of these estimates are scaled 

so that higher values indicate greater ability. These correlations (found in Table 6) show 

that, as expected, the stage one player-year estimates are positively correlated with all of 
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the other measures of ability. Some of these correlations are in the expected range of 

magnitudes. However, others are larger than expected. I hypothesized that these 

correlations would be between 0.6 and 0.8. The results indicate correlations ranging from 

0.68 (correlation with OWGR ranking) to 0.979 (correlation with the pooled, age-

invariant model). Correlations among the other measures are also presented in Table 6.  

 The strong correlations provided strong evidence of convergent validity, as the 

player-year ability estimates produced by the crossed linear mixed effects model are 

clearly correlated with existing measures of golfing ability. On the other hand, the 

unexpectedly high correlations that strongly demonstrate convergent validity provide 

more limited evidence of incremental validity. Because they are quite strongly correlated, 

one could do almost as well by using one of those existing measures instead of the newly 

created estimated values.  

The second validation check in this stage may mitigate this concern somewhat, 

fortunately. In this validation check, I used each of the unidimensional measures of 

golfing ability in Table 6 as predictor variables in separate linear mixed effects 

regressions. Each was used to replace the player-level and player-year random effects in 

the original linear mixed effects model (course-related random effects were still 

included), with each round of golf’s score serving as the dependent variable. I then 

assessed the predictive capability of each of these models using Mean Square Error 

(MSE).  
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Table 6: Stage One Validation Correlations 

 Stage 1 

Estimate 

OWGR 

Ranking 

Total 

Strokes 

Gained 

SBSE 

Estimate 

Age-

Invariant 

Estimate 

Stage 1 

Estimate 

1     

OWGR 

Ranking 

0.680 1    

Total 

Strokes 

Gained 

0.878 0.729 1   

SBSE 

Estimate 

0.955 0.562 0.658 1  

Age-

Invariant 

Estimate 

0.979 0.584 0.659 0.981 1 

  

 Results (found in Table 7) provide support for the linear mixed effects model in 

stage one. The model using the player-year ability estimates from this model 

outperformed the other models. When performed on the entire dataset, the model using 

the stage one player-year ability estimates yielded an MSE of 7.7375, which is lower than 

the other models in this validation check except for the model using total Strokes Gained 

(MSE=7.48549). However, Strokes Gained are only tracked by the PGA Tour—no other 

professional golf tour provides the shot-by-shot tracking data needed to calculate Strokes 

Gained. Thus, the model using the stage one player-year ability estimates was run on a 

dataset of n=866,147 while the Strokes Gained model was run on a dataset less than a 

third of the size (n=256,942). The smaller dataset is also likely a non-random subset of 

the full dataset, containing players of greater ability (because the PGA Tour is the most 

prestigious professional golf tour) and players who average more rounds of golf 

(observations) upon which to estimate ability. To counter this, I also ran the model using 
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the stage one player-year ability estimates as the predictor variable on the restricted 

dataset of players from the OWGR model. The results indicate that the MSE of the stage 

one player-year ability estimates did indeed decrease to 7.4248, lower than that of the 

Strokes Gained model.  

Overall, these results provide convincing evidence for the validity of the stage one 

model. The estimates produced by the model are strongly correlated with the other 

estimates of ability, and they demonstrated modest improvements in predictive ability 

compared to the estimates from the other models/measures. Thus, there is evidence to 

support convergent, predictive, and incremental validity.  

 

Table 7: Predictive Ability of Unidimensional Ability Estimates 

 Stage 1 

Estimate 

(n=866,147) 

Stage 1 

Estimate 

(n=256,942) 

OWGR 

Ranking 

Total 

Strokes 

Gained 

SBSE 

Estimate 

Age-

Invariant 

Estimate 

MSE 7.7375 7.4248 7.9925 7.48549 8.1683 8.1397 

 

Stage Two: Dynamic Measurement Model(s) 

Primary Analysis 

Marginal Model 

To decide which growth trajectory to use for the Dynamic Measurement Model 

(DMM), I first estimated the five growth trajectories as marginal models (fixed effects 

only). The model with the best (lowest) BIC and MSE was selected to proceed to the 

DMM stage. This ended up being the quadratic model, which was the clear winner in 

terms of both BIC and MSE. The Weibull model was the second-best fitting of the 
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models, followed by the logistic model, then the exponential model, and, finally, the 

Michaelis-Menten model as the worst-fitting growth trajectory. The BIC and MSE values 

can be found in Table 8. The code used to estimate the marginal models and calculate the 

fit statistics is included as part of the R tutorial later in this chapter. Figure 4 shows the fit 

of the marginal model graphically.  

 

Table 8: Marginal Model Fit Statistics 

Model BIC MSE 

Quadratic 113,312.9 2.7508 

Michaelis-Menten 115,145.8 2.9276 

Exponential 115,145.7 2.9276 

Logistic 114,122.3 2.8265 

Weibull 113,811.4 2.7968 

 

Figure 4: Scatterplot with Marginal Quadratic Model 
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True DMM Model 

I proceeded with the quadratic model as the growth trajectory for the DMM 

model. This model has three parameters to be estimated and therefore three parameters 

that can receive random effects. These are a growth rate parameter (𝐵𝑟), a parameter for 

the age at which a player reaches his maximum (𝐵𝑎), and a capacity parameter (𝐵𝑐). The 

model with random effects on all three did not converge. Among the quadratic models 

with two random effects, the combination of random effects with the best fit (lowest BIC) 

was the model with random effects on 𝐵𝑎 and 𝐵𝑐 and not on 𝐵𝑟. Table 9 presents the 

results from this model.  

 The 𝐵𝑎 = 32.19 fixed effect estimate implies that, on average, players reach their 

capacities between the ages of 32 and 33. The random effect on this parameter had a 

relatively large standard deviation of 7.3686, meaning that, on average, players deviate 

from the fixed effect value by about seven years. In other words, although the ‘average’ 

player reaches his maximum in his early thirties, there is a wide distribution of ages at 

which players are estimated to reach their maxima.     

Table 9: DMM Quadratic Model 
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The 𝐵𝑐 parameter appears to have a smaller standard deviation. However, the unit 

on this random effect is strokes rather than years. Thus, since the standard deviation of 

the 𝐵𝑐 parameter is 1.7462, players’ capacities deviate an average of about 1.75 shots per 

round from the average (fixed effect) capacity score of 1.133. This means that 

approximately 95% of professional golfers playing on a major tour are estimated to have 

capacities between -2.290 and 4.556 strokes above average. Substantively, this seems to 

be a large difference from player-to-player in terms of capacity scores, which may 

provide some evidence of the utility of estimating such a quantity. 

The correlation between the random effects for 𝐵𝑎 and 𝐵𝑐 represents the latent 

correlation between individual golfers’ capacities and the age at which they reach their 

capacities. Because the correlation is positive, golfers with greater capacities are expected 

to reach their capacities at older ages. This implies that observers may find it difficult to 

tell from the earliest portions of a player’s career how successful that career will be. This 

latent correlation is moderately strong, implying that it is certainly not determinative, but 

it is also unlikely to be due simply to sampling variability—it is likely the case that 

players with the highest capacities do indeed reach their capacities later than other 

players.  

 

The DMM model can be used to ascertain which players in the dataset have the 

greatest capacities. One way to conceptualize this is as which player(s) would be most 

likely to win if all players in the dataset played each other at the peaks of their respective 
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careers. The 11 players with the highest estimated ability levels are shown in Table 10 

below.  

 

Table 10: Top Capacity Estimates According to DMM Model 

Player Country Capacity Score 

Jon Rahm Spain 5.8337 

Rory McIlroy Northern Ireland 5.6887 

Scottie Scheffler United States 5.4032 

Patrick Cantlay United States 5.3594 

Viktor Hovland Norway 5.3364 

Xander Schauffele United States 5.2990 

Justin Thomas United States 5.2970 

Collin Morikawa United States 5.2534 

Dustin Johnson United States 5.1864 

Steve Stricker United States 5.1541 

Tiger Woods United States 5.0854 
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Without considering the order of these players, these results are not particularly 

surprising. All of these players have been ranked in the top three in the world rankings at 

some point, and seven of them have won multiple major championships. However, the 

order is potentially surprising, with Tiger Woods having only the 11th highest capacity 

score in the dataset despite being widely recognized as the best golfer of the current 

generation of players. Further investigation would be needed to determine whether this is 

a strength of the model (providing unexpected inferences and conclusions) or a weakness 

(providing inaccurate conclusions or too much uncertainty).  

DMM Tutorial 

In this subsection, I present demonstration code for conducting DMM models in 

R. I present the code to run the marginal models for all five growth trajectories, to plot 

the marginal growth trajectory, to estimate the best-fitting growth trajectory (quadratic) 

as a true DMM model (including using the marginal models to set starting values for the 

DMM model), and to calculate BIC and MSE for the DMM model. I also present the full 

code for a true DMM model in each of the other growth trajectories in Appendix B. 

Many of these do not achieve convergence on this particular dataset, but the code 

nonetheless may be useful to future researchers in conducting their own DMM models. 

To get the code into a format that is ready to be copied into an MS Word document, I use 

R Markdown, which can create PDF, HTML, and MS Word documents with R code and 

output embedded (Baumer & Udwin, 2015).  
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In this tutorial, I have broken the code up into smaller chunks. These are more 

digestible for those learning DMM and/or R for the first time. This also allows me to 

provide commentary on the code and results in between the code chunks.  

###### Quadratic Marginal Model ####### 
library(foreign) 
data.dmm<-read.csv("C:/Users/macwe/OneDrive/Dissertation/Datasets
/player-year.csv", sep="") 
data.dmm[c(1:10),] 

##            PLAYER Year      sum1 Age 
## 6     A Ilyassyak 2007 -1.884216  42 
## 7     A Ilyassyak 2008 -1.211551  43 
## 8     A Ilyassyak 2009 -1.320875  44 
## 14     A Siddikur 2010  2.453366  26 
## 15     A Siddikur 2011  2.552817  27 
## 22    A.J. Crouch 2022  2.896804  29 
## 23    A.J. Crouch 2023  2.295983  30 
## 24    A.J. Elgert 2008  1.837466  26 
## 25    A.J. Elgert 2010  2.270091  28 
## 27 A.J. McInerney 2017  2.453366  24 

In this first chunk of code, I used the library(foreign) command to load 

the foreign package. This package allows one to load datasets from other (non-R) file 

formats. In this case, I am loading a dataset in a .csv format from a specific file path. If 

one does not know the file path for the dataset desired, he or she can use the command 

read.csv(file=file.choose()) instead, which will then open a file explorer 

so that he or she can find and select the file on his or her computer. Finally, the last line 

of code in the chunk above simply displays the first 10 rows of the dataset. The sum1 

variable represents the player-year ability estimates from the stage one model.  

 

data.dmm$Age2<-(data.dmm$Age)^2 #creating quadratic term 
mod.q<-lm(sum1~Age+Age2, data=data.dmm) #regular linear regressio



101 

 

n 
summary(mod.q) 

##  
## Call: 
## lm(formula = sum1 ~ Age + Age2, data = data.dmm) 
##  
## Residuals: 
##      Min       1Q   Median       3Q      Max  
## -13.3380  -0.9106   0.2056   1.1122   5.5456  
##  
## Coefficients: 
##               Estimate Std. Error t value Pr(>|t|)     
## (Intercept) -1.587e+00  9.831e-02  -16.15   <2e-16 *** 
## Age          1.972e-01  5.224e-03   37.74   <2e-16 *** 
## Age2        -2.794e-03  6.428e-05  -43.47   <2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 1.659 on 29420 degrees of freedom 
## Multiple R-squared:  0.09124,    Adjusted R-squared:  0.09118  
## F-statistic:  1477 on 2 and 29420 DF,  p-value: < 2.2e-16 

 The chunk of code above creates a quadratic term and then runs a quadratic 

marginal model using the lm function, which is used for simple linear regressions. This 

works in this case because the quadratic model can be modeled as a transformation of a 

linear model. This will not work for the other marginal models, as they cannot readily be 

converted into transformations of a linear model, but it does work for the quadratic 

model. The summary function then displays the results of the model (coefficients, 

standard errors, 𝑅2, etc.). Although not strictly necessary in this stage, since we only need 

to compare the fit statistics (BIC and MSE), it is often advisable to view the results of the 

model and understand what it is saying.  

BIC(mod.q) 

## [1] 113312.9 
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mean((mod.q$residuals)^2) 

## [1] 2.750795 

 These two lines of code calculate the two fit statistics upon which the choice of 

growth trajectory is being made. The first, of course, calculates the BIC for the quadratic 

marginal model, while the second provides the mean of the squared residuals, also known 

as the mean square error (MSE). Because the quadratic model ends up being the best-

fitting of the marginal models, I return to it below to plot it and then convert it into a true 

DMM model. For now, however, I move on to the marginal versions of the other growth 

trajectories.  

### Michaelis-Menten 
library(drc) 

## Loading required package: MASS 

##  
## 'drc' has been loaded. 

## Please cite R and 'drc' if used for a publication, 

## for references type 'citation()' and 'citation('drc')'. 

##  
## Attaching package: 'drc' 

## The following objects are masked from 'package:stats': 
##  
##     gaussian, getInitial 

mod.mm<-drm(sum1~Age,data=data.dmm,fct=drc::MM.3(fixed=c(NA,NA,NA
), names=c("B0","Bc","Bm"))) 
summary(mod.mm) 

##  
## Model fitted: Shifted Michaelis-Menten (3 parms) 
##  
## Parameter estimates: 
##  
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##                   Estimate  Std. Error t-value p-value     
## B0:(Intercept)  2.4692e+00  3.1998e-02 77.1671  <2e-16 *** 
## Bc:(Intercept) -6.5454e+02  5.2998e+02 -1.2350  0.2168     
## Bm:(Intercept)  2.4249e+04  1.9615e+04  1.2363  0.2164     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 
##  
##  1.711113 (29420 degrees of freedom) 

 Here, I loaded the drc package (Ritz et al., 2015) to run the marginal Michaelis-

Menten model. Alternatively, one could use the nls function in the stats package. 

The drm function inside the drc package provides a couple of benefits to users, though. 

First, it does not require the user to code the functional formula for the nonlinear model. 

Instead, the user can choose between many built-in functions. In this case, the MM.3 

portion of the code tells the drm function that it should use the 3-parameter Michaelis-

Menten growth trajectory. Second, using the drc package means that the user does not 

need to specify or think about starting values. Selecting good starting values (sometimes 

called initial values) is a nontrivial difficulty that sometimes arises in nonlinear modeling 

situations. The choice of starting values can affect whether the model achieves 

convergence and can affect the parameter estimates. This may be a legitimate barrier to 

non-technical users wanting to implement DMM models, so using the drc package 

provides a way to avoid this barrier, at least for the marginal model.13  

 
13 The drm function in the drc package can actually handle random effects as well, so one could 

theoretically conduct a full DMM model using this package. However, the quadratic growth trajectory is 

not one that is built-in to the package, so that will not work for the purposes of this study.  
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The fixed=c(NA,NA,NA) portion of the code simply allows all three 

parameters to be estimated freely by the model rather than being held constant at a 

specific value. The sum1~Age portion of the code tells the drc function to use the 

variable named ‘Age’ as the independent/time/dosage variable to predict the variable 

named ‘sum1’ that serves as the dependent/response variable. Finally, the data= 

argument tells the function which dataset object to use—where to find the variables and 

data to be used, in other words.   

BIC(mod.mm) 

## [1] 115145.8 

mean((residuals(mod.mm))^2) 

## [1] 2.927609 

 The code above demonstrates the code to calculate the fit statistics for the 

Michaelis-Menten model. We can see that both the BIC and the MSE are higher than 

those for the quadratic model, indicating that the Michaelis-Menten model does not fit as 

well as the quadratic model did. Indeed, the Michaelis-Menten model ends up being the 

worst-fitting of all of the growth trajectories. The code for the exponential growth 

trajectory is shown next.  

### Exponential 
mod.exp<-drm(sum1~Age,data=data.dmm,fct=drc::EXD.3(fixed=c(NA,NA,
NA),names=c("B0","Bc","Br"))) 
summary(mod.exp) 

##  
## Model fitted: Shifted exponential decay (3 parms) 
##  
## Parameter estimates: 
##  
##                   Estimate  Std. Error t-value p-value     
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## B0:(Intercept) -3.3925e+02  2.0499e+02 -1.6550 0.09794 .   
## Bc:(Intercept)  2.4711e+00  3.1974e-02 77.2850 < 2e-16 *** 
## Br:(Intercept)  1.2589e+04  7.5660e+03  1.6639 0.09614 .   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 
##  
##  1.711111 (29420 degrees of freedom) 

 

 To model the exponential growth curve, I used the EXD.3 function in the drc 

package. Other than switching from the MM.3 function to the EXD.3 function, the rest of 

the code is the same. It is worth noting that the creators of the package named this an 

exponential decay function, but the parameterization can handle both exponential growth 

and exponential decay.14 The sign (positive or negative) on the 𝐵𝑟 parameter determines 

this. The code below demonstrates the calculation of BIC and MSE for the exponential 

model.  

BIC(mod.exp) 

## [1] 115145.7 

mean((residuals(mod.exp))^2) 

## [1] 2.927604 

 From these results, we can see that the exponential model fits slightly better than 

the Michaelis-Menten model, but the difference is quite small. The difference for MSE 

only occurs at the sixth decimal point, and the difference for BIC is only 0.1. Thus, the 

 
14 The parameterization used by the EXD.3 function is slightly different from the parameterization that I 

presented early. However, both are exponential models, and both can handle exponential decay and 

exponential growth depending on the value of the 𝐵𝑟  parameter.  
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quadratic model is still the best-fitting model so far. The code below demonstrates the 

same process for the logistic model.  

mod.l<-drm(sum1~Age,data=data.dmm,fct=drc::L.4(fixed=c(NA,NA,NA,N
A), names=c("Br","B0","Bc","Bm"))) 
summary(mod.l) 

## Warning in sqrt(diag(varMat)): NaNs produced 

##  
## Model fitted: Logistic (ED50 as parameter) (4 parms) 
##  
## Parameter estimates: 
##  
##                   Estimate  Std. Error t-value   p-value     
## Br:(Intercept)  8.5466e-02  2.2797e-03   37.49 < 2.2e-16 *** 
## B0:(Intercept) -3.3001e+02         NaN     NaN       NaN     
## Bc:(Intercept)  1.8139e+00  1.6022e-02  113.21 < 2.2e-16 *** 
## Bm:(Intercept)  1.2426e+02         NaN     NaN       NaN     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 
##  
##  1.681344 (29419 degrees of freedom) 

 The logistic model (using the L.4 function), unlike the ones before it, produces a 

warning (not the same as an error) that ‘NaNs produced.’ This warning message is 

essentially telling us that our model is too complicated for the data and/or not a very good 

fit for the data. When this happens, some of the standard errors are effectively infinitely 

large. The drc package is handling this by reporting them as nonexistent (‘NaN’) and 

sending us a warning message. Interestingly, the other parameters and any fit statistics 

can still be validly interpreted when this happens. Thus, even though we already have 

reasons to suspect that this model does not fit particularly well, we can still proceed with 

calculating BIC and MSE.  
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BIC(mod.l) 

## [1] 114122.3 

mean((residuals(mod.l))^2) 

## Warning in sqrt(diag(varMat)): NaNs produced 

## [1] 2.826532 

 We once again get the same warning message, but the values can still be 

calculated and interpreted. Perhaps surprisingly, the fit of the logistic model is actually 

better than those of the Michaelis-Menten and exponential models (lower values of BIC 

and MSE). The quadratic model remains the best-fitting model tested so far. The code 

below runs the fifth and final growth trajectory: the Weibull model.  

mod.w<-drm(sum1~Age,data=data.dmm,fct=drc::W2.4(fixed=c(NA,NA,NA,
NA), names=c("Br","B0","Bc","Bi"))) 
#summary(mod.w) 
BIC(mod.w) 

## [1] 113811.4 

mean((residuals(mod.w))^2) 

## [1] 2.796827 

 The code here is very similar to that of the previous three models using the drm 

function. It uses the W2.4 function to use one of two different 4-parameter Weibull 

parameterizations included in the drc package. This time, I put a ‘#’ in front of the 

summary function, which tells R not to run this code (commonly known as ‘commenting 

out’ that line of code). I also included the BIC and MSE calculations in the same chunk 

of code. The results indicate that the Weibull model is the best-fitting of the S-shaped and 

J-shaped growth trajectories that were estimated using the drc package, but it still does 

not fit as well as the quadratic model.  
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Thus, the quadratic model becomes the selected model for the true DMM model. I 

proceed below by first plotting the marginal model graphically, as seen earlier in this 

chapter. I then use the marginal model to identify reasonable starting/initial values for the 

nonlinear DMM model. This requires manipulating the coefficients a bit to convert them 

from standard form into vertex form. I then specify the form of the quadratic model to be 

run in vertex form (𝐵𝑟(𝐴𝑔𝑒 − 𝐵𝑎)2 + 𝐵𝑐) so that we get interpretable parameters for 

capacity and age at capacity.  

plot(data.dmm$Age,data.dmm$sum1,xlab="Age",ylab="Ability") 
curve((-0.002794307*(x^2))+0.197165434*(x)-1.587405578 ,add=T,col
=93) 
legend("bottomright",legend="Ability",fill=93) 

 

mod.q$coefficients 

##  (Intercept)          Age         Age2  
## -1.587405578  0.197165434 -0.002794307 

-1*mod.q$coefficients[2]/(2*mod.q$coefficients[3]) 
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##      Age  
## 35.27984 

Ba<- -1*mod.q$coefficients[2]/(2*mod.q$coefficients[3]) 
(mod.q$coefficients[3]*(Ba^2))+(mod.q$coefficients[2]*Ba)+mod.q$c
oefficients[1] 

##     Age2  
## 1.890577 

 The coefficient on the quadratic term (-0.002794307) can remain as the starting 

value for the 𝐵𝑟 term. To convert these parameters into an estimate for the 𝐵𝑎 parameter, 

I take the opposite of the linear term and divide it by double the quadratic term: 

−0.197165434

2∗−0.002794307
= 35.27984. Finally, to get the starting value for the capacity term, I enter 

the 𝐵𝑎 estimate into the Age variable: (−0.002794307 ∗ (35.279842)) +

(0.197165435 ∗ 35.27984) − 1.587405578 = 1.890577.  

nform<- ~0+Br*((input-Ba)^2)+Bc 
nfun<-deriv(nform, namevec=c("Br","Ba","Bc"), function.arg=c("inp
ut", "Br", "Ba","Bc")) 

 I created the nform object to represent the functional form of a quadratic growth 

function in vertex form: 𝐴𝑏𝑖𝑙𝑖𝑡𝑦 = 𝐵𝑟(𝐴𝑔𝑒 − 𝐵𝑎)2 + 𝐵𝑐. In this object, “input” is used 

for the age variable. The nfun object uses the deriv function to take the equation from 

nform and calculates the partial derivatives for the function. This is a requirement for 

the nlmer function that is used below to actually estimate the DMM model.  

c.dmm<-nlmerControl(optimizer="bobyqa",tolPwrss=10^-9,optCtrl=lis
t(rhobeg=0.001,rhoend=10^-8,maxfun=40000)) 

 

 In the code above, I set various control settings (also known as hyperparameters) 

for the DMM estimation. From past experience, these settings provide a good 
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combination of convergence rates, accuracy, and speed for DMM models. The lme4 

package provides various optimizer options. For linear mixed effects models, the default 

optimizer is the “bobyqa” optimizer. For generalized linear models, the default in the 

package is a combination of “Nelder-Mead” and “bobyqa.” For true nonlinear models, 

the default optimizer is “nloptwrap.” All of these optimizers are known to be good 

options; I select “bobyqa” due to my past experience with its ability to balance 

convergence, accuracy, and speed. The tolPwrss hyperparameter tells the optimizer 

how confident it needs to be in its estimate to ‘accept’ the solution (i.e. how close to a 

maximum of the likelihood function it needs to be). Lower values (closer to zero) lead to 

greater precision but also slower estimation and more convergence problems. The 

maxfun setting tells the optimizer how many iterations to attempt before aborting the 

estimation: if an acceptable solution is found before reaching this number, then the 

optimizer will stop anyway. This number represents the number of iterations at which the 

optimizer will ‘give up’ if it has not yet found a solution. The rhobeg and rhoend 

hyperparameters control how big of “steps” the optimizer takes when it tries a new 

solution. The rhobeg hyperparameter controls the initial step from the starting values, 

and the rhoend hyperparameter controls the size of the step as the optimizer nears the 

maximum number of iterations.  

 Some of these settings are specific to the particular optimizer. For example, 

rhoend and rhobeg are specific to the ‘bobyqa’ optimizer; if I had selected a different 

optimizer, there would have been other settings that could be changed. However, many 

users may not feel confident changing the values of these hyperparameters. Fortunately, 
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the lme4 package provides reasonable defaults for all of these, so someone running a 

DMM model for the first time could reasonably try the defaults first and then only change 

settings if convergence is not achieved. Below, I run the true DMM model.  

model.dmm.q<-nlmer(sum1~nfun(Age,Br,Ba,Bc)~Br+Ba+Bc+(0+Ba+Bc | PL
AYER), data=data.dmm, start = c(Br=-.002794,Ba=35.27984,Bc=1.8906
), control=c.dmm) 
summary(model.dmm.q) 

## Nonlinear mixed model fit by maximum likelihood  ['nlmerMod'] 
## Formula: sum1 ~ nfun(Age, Br, Ba, Bc) ~ Br + Ba + Bc + (0 + Ba 
+ Bc |   
##     PLAYER) 
##    Data: data.dmm 
## Control: c.dmm 
##  
##      AIC      BIC   logLik deviance df.resid  
##  54142.8  54200.8 -27064.4  54128.8    29416  
##  
## Scaled residuals:  
##     Min      1Q  Median      3Q     Max  
## -6.6713 -0.4918 -0.0064  0.5131  4.9955  
##  
## Random effects: 
##  Groups   Name Variance Std.Dev. Corr 
##  PLAYER   Ba   54.2963  7.3686        
##           Bc    3.0492  1.7462   0.55 
##  Residual       0.1652  0.4064        
## Number of obs: 29423, groups:  PLAYER, 5225 
##  
## Fixed effects: 
##      Estimate Std. Error t value 
## Br -1.661e-03  3.467e-05  -47.91 
## Ba  3.219e+01  2.505e-01  128.54 
## Bc  1.133e+00  2.489e-02   45.53 
##  
## Correlation of Fixed Effects: 
##    Br     Ba     
## Ba -0.212        
## Bc -0.162  0.241 
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 Using the nlmer function in the lme4 package, I use the sum1 ~ nfun(Age 

, Br , Ba , Bc) ~ Br + Ba + Bc + (0 + Ba + Bc | PLAYER) 

expression to specify the quadratic functional form. The nfun function was already 

specified earlier as being an R object with a quadratic form along with partial derivates 

calculated by R. When I created the nfun function, I specified that 

function.arg=c("input" , "Br" , "Ba" , "Bc" )). This tells it that 

these are the inputs or parameters that are used to generate the outcome. Thus, the 

nfun(Age,Br,Ba,Bc) argument now mimics that format, replacing “input” with the 

name of the input variable in the data.dmm dataset (“Age”). Because the other values are 

parameters to be estimated rather than actual inputs from the dataset, they do not change 

names. The next part of the expression details the fixed and random effects to be 

estimated. The Br + Ba + Bc portion outside of parentheses indicates the fixed 

effects to be estimated, while the (0 + Ba + Bc | PLAYER) portion indicates that 

random effects should be estimated for the 𝐵𝑎 and 𝐵𝑐 parameters (and that the grouping 

variable within which they are varying is defined by the PLAYER variable in the 

dataset). The zero indicates that no additional intercept term should be estimated. The rest 

of the code specifies the starting values, control settings, and name of the dataset. The 

code below calculates the BIC and MSE of this model that are used below during 

validation and demonstrates how to extract the individual-level random effect values 

from the model.  

BIC(model.dmm.q) 

## [1] 54200.8 
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mean(residuals(model.dmm.q)^2) 

## [1] 0.1307608 

 Finally, the code below is used to extract the individual-level random effects. It 

then adds the individual-level capacity random effect estimates to the capacity fixed 

effect in order to obtain the overall capacity estimate for each player. It then shows the 

first 10 rows of the resulting dataset that includes total capacity estimates.   

r.d<-ranef(model.dmm.q) 
r.d2<-r.d$PLAYER 
r.d2[c(1:10),] #shows the first 10 rows 

##                         Ba         Bc 
## A Ilyassyak     -5.7433766 -2.1138154 
## A Siddikur       2.8573574  1.4499253 
## A.J. Crouch      2.8298545  1.4714604 
## A.J. Elgert      2.2864904  0.9884012 
## A.J. McInerney   2.7506917  1.4779002 
## Aadil Bedi      -2.5705819 -1.4461048 
## Aaron Baddeley   1.4427813  2.5742180 
## Aaron Black     -5.4168317 -2.2644922 
## Aaron Cockerill  3.9981883  1.8128985 
## Aaron Goldberg   0.8008481  1.4943871 

r.d2$Capacity<-fixef(model.dmm.q)[3]+r.d2$Bc 
r.d2[c(1:10),] 

##                         Ba         Bc   Capacity 
## A Ilyassyak     -5.7433766 -2.1138154 -0.9806722 
## A Siddikur       2.8573574  1.4499253  2.5830685 
## A.J. Crouch      2.8298545  1.4714604  2.6046035 
## A.J. Elgert      2.2864904  0.9884012  2.1215444 
## A.J. McInerney   2.7506917  1.4779002  2.6110434 
## Aadil Bedi      -2.5705819 -1.4461048 -0.3129616 
## Aaron Baddeley   1.4427813  2.5742180  3.7073612 
## Aaron Black     -5.4168317 -2.2644922 -1.1313490 
## Aaron Cockerill  3.9981883  1.8128985  2.9460417 
## Aaron Goldberg   0.8008481  1.4943871  2.6275303 
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Validity Analysis 

 The validation analysis consists of three components: estimating restricted-sample 

DMM models and comparing the estimates from these to the estimates from the full 

model, estimating a linear growth trajectory with random effects and comparing the fit of 

this model to that of the DMM model, and comparing the predictive ability of single-

timepoint estimates to the predictive ability of the capacity estimates from the DMM 

model. The results generally confirmed the benefits of the DMM model. The estimates 

from the restricted models show very strong correlations with those from the full model, 

indicating strong reliability for the model: the estimates are not dependent on particular 

timepoints, and they are not dependent on having late-career datapoints and scores. The 

DMM capacity estimates, both from the full model and from early-career restricted 

models, were far more effective than OWGR and total Strokes Gained at predicting 

players’ highest year ability scores. Conversely, the DMM capacity scores show only 

relatively small predictive improvements over single-timepoint estimates estimated by 

the linear mixed effects model in stage one.  

Correlations with Restricted Samples 

In this portion of the DMM validation, I calculated the correlations between the 

full-model capacity scores and capacity scores from two types of restricted model. First, I 

ran the DMM model on two age-restricted datasets: one in which only player-year 

observations under the age of 30 were included and another in which only player-year 

observations under the age of 25 were included. Second, I used a modified version of 10-

fold cross-validation. I divided the dataset into 10 different, randomly selected subsets, 
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ran the DMM model on each subset, and calculated the correlation between the capacity 

scores from the full model and the capacity scores from the subsets.  

 The capacity scores from the age-restricted models show very strong correlations 

with the full-model capacity scores. When the dataset was restricted to observations when 

players were under 30 years old, the capacity scores correlated with the full-model 

capacity scores at 𝑟 = 0.9934. When the dataset was further restricted to only those 

player-year observations under age 25, the strength of the correlation decreased only 

slightly to 𝑟 = 0.9876. The strength of these correlations is remarkable, providing strong 

evidence for the reliability of the capacity scores—they are not dependent on particular 

timepoints in general or on having late-career timepoints specifically.  

 The modified 10-fold cross-validation provided similarly strong evidence for the 

reliability of the capacity scores. Each randomly selected subset of the dataset produced 

capacity scores that correlated with the full-model capacity scores between 𝑟 = 0.98 and 

𝑟 = 0.99. The lowest correlation for any of the 10 datasets was 𝑟 = 0.9807 and the 

greatest was 𝑟 = 0.9824. Thus, not only does this support the reliability and validity of 

the results of the DMM model in this study, but it also may provide some evidence that 

capacity scores from DMM models more broadly can be considered reliable.  

Comparison to Linear Growth 

In this portion of the validation, I compared the fit of the quadratic DMM model 

to that of a baseline linear growth model. In this portion of the validation, the results were 

not quite so clearly positive. The linear model did not converge, which should provide 

some skepticism about its estimates. Nonetheless, the non-converged linear model could 
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still generate fit statistics The quadratic DMM model produced a lower BIC than the 

linear model, though the two BIC values were similar (see Table 11). The MSE, on the 

other hand, produced the opposite result: the mean square error was similar for the two 

models, but the linear model actually had the slightly lower MSE, indicating better fit.  

This is somewhat confusing, as a linear model should be nested within a quadratic 

model, making it theoretically impossible for the linear model to have a better MSE than 

the quadratic model. This result is possibly due in part to the non-convergence of the 

linear model. More likely, however, is that the DMM parameterization of the quadratic 

model in vertex form was not performing as well as a version in standard form would 

have.15 Accordingly, I confirmed this by estimating a quadratic mixed effects growth 

model in standard form. Similarly to the DMM model, the model did not converge when 

it had random effects on all three parameters. A model with two random effects (one on 

the linear term and one on the constant term) does indeed show that it outperforms the 

linear model.  

 

Table 11: Linear vs Quadratic Fit 

 BIC MSE 

DMM Quadratic Model 54,200.8 0.1308 

Standard Form Quadratic 

Model 

53,460.5 0.1183 

Linear Model 54,275.4 0.1195 

 
15 Without random effects, they would be equivalent. However, with random effects added, one could 

provide better fit than the other.  
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   The support for the validity of the quadratic DMM model is more tepid in this 

stage of the validation. Its fit does not provide much, if any, improvement over a linear 

growth model. Nonetheless, because the linear model did not converge in R and because 

the DMM model provides the benefit of the readily interpretable capacity parameter, it 

likely still provides some benefit above the linear model in terms of convergence and 

parameter desirability. Similarly, because all three models fit similarly, it may be 

beneficial to select the DMM parameterization of the quadratic model over the standard 

form quadratic model. This may sacrifice a small improvement in fit (compared to the 

standard form quadratic), but it has the benefit of the interpretable capacity parameter.  

Comparison to Single-Timepoint Estimates of Ability 

The final portion of the validation compares the predictive ability of the DMM 

model to the predictive abilities of various single-timepoint measures of ability. I tested 

the capacity estimates from the full DMM model, the capacity estimates from age-

restricted DMM models, the single-timepoint ability estimates from the linear 

measurement model in stage one of this study, single-timepoint OWGR rankings, and 

single-timepoint Strokes Gained values. For any given age, the OWGR rankings, the 

Strokes Gained values, and the stage one latent ability estimates simply used the value at 

that age for the particular golfer. For the restricted-age DMM model, the model was 

estimated on all datapoints for that age and younger (e.g. if I was testing the predictive 

ability at age 27, all players at all ages less than and equal to 27 would be included in a 

dataset that was then used to estimate a DMM model and calculate a capacity score). For 

each measure of ability at each age, I ran a simple linear regression with a player’s 
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maximum estimated ability from stage one as the dependent variable. The 𝑅2 for each 

regression represents the predictive power of the single-timepoint measure of ability to 

forecast future ability. Table 12 displays the results.  

The latent measurements of ability and capacity produced in this study clearly 

outperformed the existing single-timepoint measures of golfing ability at forecasting 

future maximum player-level ability values. The full-model DMM capacity estimates, the 

restricted-model DMM capacity estimates, and the single-timepoint latent ability 

estimates from stage one all were very effective predictors of players’ maximum ability 

levels: they all had 𝑅2 values greater than 0.9, making them very effective predictors. By 

comparison, OWGR rankings and total Stroked Gained were less effective predictors of a 

player’s maximum future ability level.  

However, among the latent variable measures of ability, the DMM models 

provided only marginal improvements in forecasting accuracy compared to the single-

timepoint latent ability estimates from stage one. Interestingly, some of the age-restricted 

DMM models actually outperformed the full-model DMM model. This is possibly due to 

selection effects: the only players in the dataset at particularly young ages are the ones 

who end up having more successful, more predictable careers. Regardless, this portion of 

the validation provides strong evidence for the benefits of latent variable models over 

observed-variable models, while there is some evidence for DMM models (or 

longitudinal models more broadly) over single-timepoint latent measurements, but this 

evidence is not as strong.  
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Table 12: Predictive Ability (R2) of DMM vs Single-Timepoint Estimates of Ability 

Age DMM Full 

Dataset 

𝑫𝑴𝑴 

Restricted-Age 

Stage One 

Model 

OWGR Total SG 

Full Dataset 0.9544     

30  0.9552 0.918 0.464 0.4775 

29  0.9537 0.9204 0.4745 0.4814 

28  0.9520 0.9184 0.429 0.4992 

27  0.9522 0.9252 0.4322 0.5811 

26  0.9459 0.9257 0.4233 0.6178 

25  0.9422 0.9174 0.3661 0.4167 

24  0.9393 0.9185 0.348 0.4925 

23  Did not 

converge 

0.9315 0.3117 0.5684 

22  Did not 

converge 

0.9464 0.2161 0.4417 

21  Did not 

converge 

0.9500 0.1855 0.4066 

20  Did not 

converge 

0.9518 0.1597 n too 

small 

19  Did not 

converge 

0.953 0.0006 n too 

small 

18  Did not 

converge 

0.9414 0.1493 n too 

small 

   

Conclusions 

 The results broadly indicate that modeling the latent abilities and latent capacities 

of professional golfers was successful. This study had four research objectives: to 

summarize and synthesize the literature on the quantitative measurement of golfing 

abilities, to estimate the abilities of professional golfers as a latent variable, to assess the 

longitudinal shape of ability growth over time, and to measure the latent capacities of 
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professional golfers. The literature was synthesized in Chapter Two. Stage one of this 

chapter accomplished the second objective by using a crossed linear mixed effects model. 

The resulting player-year ability estimates from this model were shown to be positively 

correlated with existing measures of golfing ability while still being better able to predict 

players’ scores than those existing measures.  

Stage two of this chapter addressed the third and fourth research objectives. The 

quadratic growth model fit better than any of the alternative DMM growth trajectories 

according to both measures of model fit. The quadratic DMM model successfully 

estimated player capacities. These capacity estimates were shown to be highly reliable: 

they were consistent and highly correlated across various subsets of the data, and early-

career capacity estimates were shown to be nearly perfectly correlated with capacity 

estimates from all data points. These capacity estimates (both from the full model and 

from early-career age-restricted models) were also much more effective at forecasting 

future ability than existing single-timepoint observed-variable measures golfing ability. 

However, these estimates provided only small improvements over latent single-timepoint 

estimates from the measurement model in stage one of this study, and the quadratic 

DMM model did not provide much improvement in fit from a baseline linear growth 

model.  

Although the DMM model from stage two provides only moderate improvements 

over other latent variable models and approaches to measuring capacity, it still provides 

significant improvements over any existing observed-variable approach to measurement. 

Thus, this study has provided evidence that the statistical benefits of treating golfing 
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ability as a latent variable rather than as an observed variable are clear and unambiguous. 

The estimates from both latent variable models (the crossed linear mixed effects model in 

stage one and the quadratic DMM model in stage two) consistently outperformed any of 

the unidimensional observed variable measures of golfing ability, including Strokes 

Gained, the current state-of-the-art measure of golfing ability. The latent variable 

approaches presented here have shown high reliability, convergent validity, predictive 

validity, and incremental validity; the results from those models are both trustworthy and 

improve upon existing methods and measures.  
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Chapter Five: Discussion 

In this study, I have presented evidence for treating golfing ability as a latent 

variable rather than as an observed variable, synthesized the existing literature on the 

measurement of golfing ability and on mixed effects models used as measurement 

models, developed novel latent variable statistical models to measure golfing ability at 

individual timepoints and to measure a player’s capacity for future ability growth, and 

validated these models. The latent variable approaches developed and presented in this 

study unambiguously outperformed all unidimensional observed variable approaches to 

the measurement of golfing ability, including Strokes Gained. As Strokes Gained is 

widely accepted as the current state-of-the-art method for measuring golfing ability, this 

was a high bar to clear. In this chapter, I proceed by discussing the limitations of the 

study, the contributions that the study has made to two different audiences, and 

recommended directions for future research.  

Limitations 

Unidimensionality 

 Despite its success in demonstrating the improvement in measurement that can be 

made by switching to latent variable methods to measure golfing ability (which is 

inherently a latent ability), the study does still have several limitations. First, and perhaps 

most notably, the measures of golfing ability and capacity that I have created in this study 
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are both still unidimensional measures of golfing ability. They implicitly assume that 

golfing ability is a single monolithic ability that can be measured using a single number 

for any given time point. This is a strong assumption, and it remains untested.  

 It is quite plausible that golfing ability might be better conceptualized as 

multidimensional, with players having different combinations of skills such as driving 

ability, putting ability, approach shot ability, etc. Previous research has pursued this path 

using observed variable approaches to the measurement of golfing ability, but such 

studies have at least two weaknesses. First, they have used observed variable approaches, 

and the research in my study has shown that observed variable approaches—even 

sophisticated ones—are not likely to be as effective as latent variable approaches. 

Second, instead of ascertaining the dimensionality of golfing ability inductively or by 

hypothesizing a certain structure or dimensionality of golfing ability and then testing it, 

previous multidimensional studies of golfing ability have assumed a given factor 

structure and never tested it. These assumed structures are based on subject-matter 

understandings of golf as a sport, and they represent logical and reasonable theories, but 

they remain just assumptions that have not been tested.  

 As such, the extant research on golfing ability as a multidimensional construct has 

not been particularly sophisticated statistically. No known study has yet combined a true 

latent variable approach to the measurement of golfing ability with a multidimensional 

mindset. Nonetheless, it is entirely possible that this would provide the best description of 

reality and therefore be the most effective way to model golfing ability. For now, though, 

it remains solely a direction for future research.  
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 Fortunately, the assumption that golfing ability is unidimensional, even if 

inaccurate, seems intellectually more defensible than assuming a different factor structure 

without testing the accuracy of such a structure. In some situations, we must first define 

our latent construct and decide that it does exist before proceeding to understand its 

dimensionality. Just as it would be difficulty to measure the dimensionality of 

intelligence if we do not already know or agree that the construct of ‘intelligence’ exists, 

it would potentially be difficult to measure golfing ability as a latent multidimensional 

construct if we did not first establish that latent golfing ability exists. This study, despite 

the potential limitation of assuming that golfing ability is unidimensional, does provide 

evidence that latent golfing ability exists and can be measured. Assessing its factor 

structure will be a direction for future research.  

Arbitrary Definition of “Average” 

 One weakness or limitation of existing studies on golfing ability is that many of 

them must arbitrarily define an “average” golfer as a reference category to which others 

can then be compared. This is sometimes accomplished quantitatively (e.g. Strokes 

Gained) and sometimes it is done by human definition of expectations (e.g. handicap 

rating systems and comparisons to “par”). The problem with this is that it makes the 

quantitative value placed on each individual’s ability level seem less substantively 

meaningful, less substantively interpretable, and less transferable across populations. For 

example, if a professional golfer on the PGA Tour plays a tournament and has negative 

two Strokes Gained relative to the field of other professionals, and I play a tournament at 

my local golf course and have positive three Strokes Gained relative to the other players, 
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how do I compare my positive three Strokes Gained with the professional’s negative two 

Strokes Gained? They are in relation to different populations.  

It is easy enough to fix this problem and simply define a single point on the ability 

spectrum to which everyone would be compared. For example, if an amateur calculates 

his or her Strokes Gained for a round and finds that he or she has negative 18 Strokes 

Gained relative to the average professional golfer, that would solve the problem of 

comparing to different populations. However, it would still be an arbitrary choice for 

where to anchor that reference point.  

The measures of golfing ability that I have created in this study suffer from this 

same arbitrariness. Because my population was professional golfers on major tours (PGA 

Tour, PGA Tour Champions, DP World Tour, Korn Ferry Tour, and LIV Golf), the 

reference point to which all golfers in the dataset were compared became the average 

ability level among golfers on major tours. This is arbitrary, though. If I had included 

some of the smaller golf tours, such as the Canadian Tour or the Japanese Tour, the 

average ability level in the dataset would have dropped, which would then have raised the 

estimated ability level for those already in the current dataset. Thus, the player-level 

ability levels estimated by both the stage one and stage two models are only partially 

meaningful in an absolute sense.16  

Fortunately, though, they remain meaningful and useful in a relative sense, 

regardless of the interpretation in an absolute sense. This is common in quantitative 

 
16 More formally, this means that we could think of the ability estimates as operating on an interval scale 

rather than on a ratio scale.  
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measurement—in many cases, ability estimates are simply on a standard deviation scale 

with no substantively meaningful units. An ability of 0.98 would simply mean 0.98 

standard deviations above average. The models in this study do at least have meaningful 

units (golf strokes) on the ability variables, but these values, as with many measurement 

models, are dependent on the definition of the population at hand. For substantive users 

of these measures, this may be less satisfying, even if it is not particularly problematic 

statistically.  

Equally Informative Golf Courses 

 Like a Rasch model in the context of Item Response Theory, in which each item 

on a test is assumed to be equally discriminating in relation to the underlying latent 

ability, the models used in this study inherently assume that a round of golf played on one 

golf course provides the same amount of information about a player’s ability as a round 

of golf played on another golf course. It is theoretically possible, however, that some golf 

courses do a better job of measuring latent golfing ability than do other golf courses. 

Thus, the use of this implicit statistical assumption may lead to scores from less 

discriminating courses having too great of an effect on players’ estimated ability levels 

while scores from more discriminating courses receive less weight than they ideally 

should.  

 There are benefits to this more Rasch-like approach, however, in terms of 

interpretability and computing time. The stage one model in this study already took 

almost 24 hours to run on a computer with a powerful Intel Core i7 Processor. Adding 

additional random effects for course-level discriminations/weights/loadings would almost 
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certainly slow down the estimation of the model further, and it would make the functional 

form of the model and the ability estimates less readily interpretable. The stage one 

model in its current form can be written in a simple additive linear format with two of the 

estimated parameters combining to create the player-year ability estimates. Allowing the 

discriminations/weights/loadings to vary would complicate this functional form and 

would make it more difficult to understand the model’s parameters.  

 Nonetheless, it is possible that such a model would provide improved fit and 

therefore more accurate player ability estimates. Fortunately, the stage one model 

performed quite well, as its estimates proved to be better predictors of golf scores than 

other existing unidimensional measures of golfing ability. Thus, the assumption of equal 

discriminations, while potentially sub-optimal conceptually, does not appear to be 

causing significant problems from a practical standpoint.  

Two-Stage Dynamic Measurement Model 

 The original conceptualization of DMM models involved the simultaneous 

estimation of single-timepoint estimates and capacity scores in a single model. DMM 

models are measurement models, so the estimated ability level at any point on the growth 

curve can be considered the individual’s estimated ability level at that point in time. It is 

therefore redundant, theoretically, to first estimate individuals’ ability levels at single 

timepoints from one model and then use these estimates in a separate model to estimate 

the longitudinal growth trajectory. Not only is it redundant, but it also ignores uncertainty 

in the stage one estimates by treating them as observed variables during the second stage. 

A player-year ability estimate from stage one that is based on two rounds of golf (or two 
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test items, etc.) will be treated with equal confidence as a player-year ability estimate 

from stage one that is based on one hundred rounds of golf (or one hundred test items, 

etc.). Because we have (and, by extension, the model has) more information about the 

second player-year, we should expect it to have a greater effect on the shape of the 

longitudinal growth trajectory.  

With a model in which the ability estimates and the growth trajectory are 

estimated simultaneously, this would happen. However, in the two-stage model, these 

two player-year observations will be treated as equally informative during stage two. This 

may lead to inefficient estimates from the stage two DMM model. Thus, in an ideal 

world, one would use the original conceptualization of DMM models as measuring 

timepoints and capacity simultaneously instead of estimating two separate models.  

However, two-stage models have become the norm in DMM research for practical 

reasons, even among the original creators of the DMM modeling framework. The simple 

reason for this is that it takes a significant amount of time and computing power to 

estimate the DMM model in a single model as the creators of DMM originally 

envisioned. The crossed linear mixed effects model used in stage one of this study took 

almost 24 hours to converge. Building a nonlinear growth trajectory overlay onto this in 

the same model would likely increase computing time significantly. Thus, if one needs 

the ability estimates in a timely manner (or if one needs his or her computer to perform 

other tasks), such a model may be impractical, and the two-stage model may provide a 

more practical alternative. Nonetheless, this is still a limitation of the study, as it is still 

theoretically a sub-optimal modeling approach.  
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Golf Scores are Noisy Measures of Golfing Ability 

 As other studies and researchers have noted, players’ results from individual golf 

holes, individual rounds of golf, and individual tournaments are not perfect indicators of 

golfing ability. The best player does not win every tournament, does not always have the 

lowest score in a round, and does not always perform the best on every hole. During the 

years included in the dataset in this study, the most consecutive tournament wins by a 

single player was five by Tiger Woods in 2007-2008. Even the best players have bad 

days, lose tournaments, etc.  

The crossed linear mixed effects model from stage one was very successful at 

predicting scores better than existing measures of player ability. However, the model still 

had a residual standard deviation of over 2.8 shots, indicating that, even after accounting 

for the player’s ability level, the course’s difficulty on that particular day, etc., a player’s 

score in a particular round would be still be expected to deviate from its “true” score by 

over 2.8 shots on average. Because of this, seeing a single round of golf in which one 

player shoots 75 and another shoots 69 tells us almost nothing, statistically, about which 

of those two is a better golfer. This is a situation where humans might be tempted to over-

interpret such a result, but the statistical model is better suited to assessing what this 

actually tells us.  

 As such, the models presented in this study inherently are large-n methods. They 

are not going to do a particularly good job of assessing an ability level or a capacity for 

players who only have a few rounds in the dataset. They will be much more effective and 

accurate for players with hundreds of rounds in the dataset.  
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 In some cases, researchers interpret a large residual variance in a mixed effects 

model as meaning that the model is not doing a very effective job of fitting the data. 

However, Carsey & Harden (2013) differentiate between fundamental uncertainty and 

estimation uncertainty. In any statistical model that is used for statistical inference, there 

is going to be some uncertainty because the model is using sample data to draw 

inferences about a population. This uncertainty is known as estimation uncertainty, and it 

is unavoidable without having the entire population in the dataset. Because estimation 

uncertainty is unavoidable, we often interpret residual errors as denoting estimation 

uncertainty—if we only built a better, more sophisticated model, we could continue to 

reduce the residual variance term.  

This may true in many cases, but there is also another source of error that contributes 

to the residual variance or standard deviation term: fundamental uncertainty. Some data-

generating processes in the real world may have some randomness built into them. In the 

golf context, three players could all hit their drives into the same tree. One of them could 

get a favorable bounce off the tree into the fairway, another could get a neutral bounce 

off the tree into the rough, and the third could find that his ball gets stuck in the tree and 

is unplayable. These differences in outcome are not based on any skill or ability—it is not 

the case that any of them tried to hit the tree, nor is it the case that the differences in 

outcome come from which player is better at ricocheting the ball off of the tree. Since 

these differences in position are likely to affect the players’ scores on that golf hole, a 

random process will have affected the players’ scores.  
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Such random processes exist in life and in golf. To the extent that the residual 

standard deviation is capturing these fundamental uncertainties that occur in the data 

generating process of playing golf rather than capturing estimation uncertainty, the large 

residuals may not be entirely concerning conceptually. From a measurement perspective, 

however, they are still not particularly desirable, and they represent a limitation to the 

study as they make it more difficult to accurately measure ability and require larger 

numbers of observations to obtain reliable estimates.   

Barriers to DMM 

 Although I provided a tutorial for conducting Dynamic Measurement Models in 

R, it was likely not as simple as some users would like it to be, and there are still 

relatively high barriers to conducting DMM models in either SAS or in R. Both software 

require writing code/commands, providing starting values, understanding how to write 

the equation form of the growth trajectory into the command, etc. Note that these second 

two barriers are different from linear models and generalized linear models: even in R, 

the user does not need to write the equation of the model into the command, nor does the 

user need to specify starting values for linear models or generalized linear models. Thus, 

to conduct DMM models, one must already possess or be willing to learn at least a basic 

understanding of programming (writing code) and the mathematical formula for a 

specific growth trajectory. For some researchers and practitioners, these may constitute 

enough of a reason to select a different type of model.  

Some Tournaments Excluded from Dataset 
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 A few tournaments were excluded from the dataset due to having nontraditional 

scoring. For example, match play events could not be included, because there is no 

player-round score that results from these tournaments. Instead, one player simply beats 

his opponent for the day and then moves on to the next opponent. If they played all 18 

holes, it might be possible to calculate a score equivalent for each player. However, in 

many cases, they will not finish the round once one player has already won.17 Similarly, a 

few tournaments have used a scoring system known as a Stableford system which uses 

points rather that strokes and rewards good scores more than it punishes bad ones 

(effectively a nonlinear scoring system). Finally, there are occasional team events in 

which players alternate shots with a partner. Because these cannot be compared on the 

same scale as regular golf scores, these three categories of events were excluded from the 

dataset.  

 As long as players’ performance in these events is ‘caused’ by the same latent 

underlying ability as the performance in stroke play events, then the omission of these 

tournaments should not cause bias. Nonetheless, this is an untested assumption. 

Additionally, more observations are always better, especially when trying to create 

accurate measurements in the context of high residual variance, so losing any 

observations is generally not desirable.  

DMM Model’s Modest Improvements 

 
17 Match play tournaments typically track how many holes a player wins rather than overall number of 

strokes for the entire round.  
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  While this study overall demonstrated clear evidence that measuring golfing 

ability as a latent ability provides an improvement over existing measures of golfing 

ability, the quadratic DMM model in stage two provided only modest improvements in fit 

over a baseline linear growth model and only modest improvements in predictive ability 

over latent single-timepoint estimates from stage one. The stage two model runs much 

more quickly than the stage one model (measured in seconds rather than hours), so these 

modest improvements may still be justifiable and worth the computational effort. The 

question is not whether the quadratic model was the right choice for this study given the 

alternatives tested. Nonetheless, the relatively modest improvements may provide some 

doubt about the ‘true’ shape of longitudinal ability growth over time for professional 

golfers on major tours.  

Contributions 

 This study makes contributions to two distinct audiences and bodies of literature: 

the literature on the measurement of golfing abilities and the literature on dynamic 

measurement modelling. There is certainly some overlap between these contributions, but 

it makes sense to organize the contributions by the audience that will be most interested 

in each. I proceed first with the contributions to golf measurement and then follow them 

with the contributions to the field of DMM research.  

Golf Measurement 

Applicability of Latent Variable Statistical Models 

Perhaps most importantly, this study has demonstrated the efficacy and 

applicability of latent variable statistical models to the study of golf specifically and to 
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the study of sports more generally. There have been a handful of previous studies to do 

this, but the vast majority of sports statistics, even within advanced analytics, still rely on 

observed variable data and models. This study has demonstrated that a latent variable 

approach can outperform even the most advanced observed variable approaches.  

 In Stage one, the estimates of latent golfing ability from the linear mixed effects 

model showed a strong correlation with total Strokes Gained (𝑅2 = 0.878), providing 

convergent validity for the estimates of latent ability, but the estimates from the model 

proved to be better predictors (lower MSE) of players’ scores than did total Strokes 

Gained (once they were run on the same set of data). Similarly, the stage one single-

timepoint estimates and the stage two capacity estimates both proved to be much better 

predictors of players’ future maximum ability levels than did total Strokes Gained. This is 

despite the fact that total Strokes Gained consistently showed that it was more effective 

than the Official World Golf Rankings at prediction and forecasting.  

 Strokes Gained is widely accepted by scholars, television commentators, and 

players as the most modern, advanced, and state-of-the-art way of measuring golfing 

ability. It is so ubiquitous as a statistic in the professional golf industry that players are 

asked about it during interviews, commentators mention it during broadcasts, and the 

website for the Official World Golf Rankings reports Strokes Gained along with players’ 

official rankings. This is fairly impressive for a statistical measure of ability that was first 

published as a book chapter in 2008 (not even called “Strokes Gained” yet) and then 

more widely disseminated in a 2012 journal article that used the term Strokes Gained for 

the first time.  
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 Strokes Gained arose as a solution to the problem of previous observed variable 

statistics being inadequate. It is still based on observed variable logic, but it is a much 

more sophisticated measure of golfing ability. Thus, outperforming Strokes Gained is a 

significant achievement and provides strong evidence for the utility of latent variable 

statistical models (like the ones that I have presented in this study) to the study of golf 

and to the study of sports more broadly.  

The Models in this Study do not Require Shot-Level Data 

Unlike Strokes Gained and other advanced statistical measures of golfing ability, 

the methods presented in this study do not require shot-level data. The collection of shot-

level data is fairly onerous—so much so that only one professional tour tracks data 

granularly enough to calculate Strokes Gained for its players and fans. Other professional 

tours do not have this level of data; college teams, high school teams, and recreational 

golfers are also unlikely to have this level of data. Because of this, many who would be 

interested in tracking ability levels, via Strokes Gained or similar measures, for 

themselves or for others are unable to do so.  

 The measures of golfing ability in this study not only are potentially more 

accurate than Strokes Gained, but they also require significantly lower levels of data 

collection. Instead of collecting four pieces of data for every shot as Strokes Gained 

would require, only a single number is needed for the entire round: the score for that 

round. Most players are naturally collecting their score for the round anyway, so there is 

likely no new data collection needed. This method provides a much more accessible way 

for recreational golfers, amateur golfers, and lower-level professional golfers to track 
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their ability levels. Because this study shows that it can outperform Strokes Gained 

anyway, these golfers need not even sacrifice accuracy.  

Goes Beyond Single-Timepoint Measures of Ability 

Existing measures of golfing ability inherently measure ability at a single point in 

time. No existing measure was designed to forecast future ability growth. The DMM 

model from stage two of this study changes this. In this stage, I tested several candidate 

growth trajectories, selected the best-fitting trajectory, and then implemented a model 

than can be used to forecast player abilities at a specific point in the future, and, perhaps 

more interestingly, can be used to estimate each player’s capacity, or the player-level 

maximum ability that is modeled to occur in the future or the past.  

Especially for those in the golf industry who are using measures of golfing ability 

to make decisions about the future, the implementation of a capacity estimate may be of 

particular interest. For example, if a college coach is trying to decide which players to 

recruit, he or she would be able to use the DMM model to forecast each player’s capacity 

rather than solely the player’s current ability. Alternatively, if players’ capacities tend to 

occur in their early thirties, maybe the college coach cares less about the capacity 

estimate and less about the current timepoint estimate at age 16. Instead, maybe the 

college coach would use the model to estimate each player’s forecasted ability at age 21 

to decide whom to recruit. Similarly, sponsors and tournament organizers may also be 

particularly interested in players’ capacity estimates when they decide which players to 

sponsor or admit to their tournaments—even if a player has lower ability at the current 

time, they may want to plan for the future by building relationships with those players 
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who will develop greater ability in the future. Finally, just as DMM can be used in the 

education context to reduce the influence of demographic factors on estimates of future 

ability and identify students with high capacities even if they have lower current ability, a 

DMM model in the context of golf may be able to identify young players from 

underserved countries and communities who may not have as high of current ability 

levels but who show promise for future ability growth. These players could then be 

targeted with scholarships and opportunities for instruction to help grow their skillset for 

the future.  

Provides Valid Comparisons across Professional Tours 

The latent variable models presented in this study provide the ability to 

simultaneously estimate different players’ abilities on the same scale even if they have 

never played in the same tournaments or on the same courses as each other. The model 

accomplishes this by using cross-pollination between tours and courses to link other 

players and courses. This provides a statistically valid means of comparing the ability 

levels of golfers across time and space.  

The OWGR try to do this as well, as the rankings rank players from various tours 

into the same ranking system. However, previous research has shown that the OWGR are 

biased against the best players (Broadie & Rendleman Jr, 2013). Additionally, the 

OWGR (like many ranking systems in sports) incentivizes players to play more 

tournaments. In the case of the OWGR, players’ rankings are punished if they do not play 

at least 20 events per year. This makes sense from a financial perspective, but it makes 

less sense from a measurement perspective: the player has the same ability level whether 
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he plays 18 events or 21 events in a year. Thus, the rankings may be more accurately 

thought of as a measure of recent accomplishment rather than as a measure of ability.  

Furthermore, the OWGR strongly favor players who win tournaments over others 

who finish near the leader. The winner receives 100% of the tournament’s “value,” while 

the second-place finisher receives only 60% of the tournament’s “value.” However, from 

a statistical perspective, a player winning a tournament and a player finishing one shot 

behind the leader have displayed very similar levels of ability, so the OWGR’s emphasis 

on winning alone is likely due to some other goal than solely the measurement of golfing 

ability. Thus, providing a more statistically-based and statistically-valid way to compare 

player ability levels across tours should be an improvement over currently available 

options like the OWGR.   

Improvement to Course and Handicap Rating Systems 

The existing handicap rating system requires expert evaluators to visit each golf 

course periodically and assess its difficulty and discrimination (“course rating” and 

“slope,” respectively) based on their semi-subjective assessments of how it would be 

played by players of varying ability levels. Then, when players play the course, their 

performance is judged against the baseline expectation that the evaluators created, 

earning the player a handicap—how many strokes above par the given player would be 

expected to score on an average day at an average course. If the evaluators misjudge a 

certain course, this then can create bias in individual players’ handicaps. For example, if 

the evaluators judge a course to be too easy, then a certain score will appear to display 
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less ability than would actually be required to shoot that score, so the player would 

receive an artificially high (less skilled) handicap rating.  

The latent variable models presented in this study—particularly the linear mixed 

effects model from stage one—effectively model player ability and course difficulty 

simultaneously. This type of model could be used to more accurately and more affordably 

rate courses and players.18 This would eliminate biased ratings, would eliminate the need 

for evaluators to visit courses, and would allow players’ handicaps (ability estimates) to 

update when they have new scores (as they do with the current system). This would 

require players to enter their scores for every round that they play, which sounds like a 

potential burden, but this is already a requirement for the handicap rating system, so the 

new method would not add any new burden onto recreational players.  

Dynamic Measurement Modeling 

Provides a Tutorial for Conducting DMM Models in R 

Most importantly, the tutorials in Chapter Four and Appendix B have 

demonstrated that DMM models can be estimated in R. Previously, all DMM models 

have been estimated using SAS. However, there are significant barriers to using SAS, as it 

is quite expensive. For scholars and practitioners who do not have institutional access to 

SAS, it is likely not a realistic option. Thus, if SAS were the only way to estimate a DMM 

model, many scholars and practitioners would be unable to use these models. This study 

not only demonstrates that DMM models can be run in R, but it provides example code 

 
18 An example of these difficulty ratings can be found in Appendix C, which shows the 10 easiest courses 

and 10 most difficult courses according to the model.  
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on how to do so, including explanations of what the code is doing and what some of the 

optional settings are.  

 Because R is free and open source, anyone can download it and use it. Providing a 

tutorial on how to conduct DMM models in R should lower (though not eliminate) the 

barriers to conducting such models for others. This should help increase access to these 

models and may help them to become more widespread.  

Applicability beyond the Field of Education 

This study has also demonstrated the applicability of DMM models beyond the 

field of educational measurement. DMM models were created and originally designed 

with educational measurement in mind. Thus, this field has dominated the applications 

of, discussions about, and innovations to DMM in the literature. This makes sense, as the 

idea of measuring students’ capacities in a given domain rather than their current abilities 

in that domain is naturally appealing.  

Nonetheless, there are plenty of other scenarios and other fields of research to 

which such models may also be useful. This study demonstrates that DMM models can 

also be successfully applied to sports statistics in order to forecast latent player abilities in 

the future and to estimate their individual-level latent capacity scores. The same logic 

could naturally be able to be applied to other sports as well. Even beyond sports, this 

study has demonstrated that DMM’s applicability is not limited to the field of education. 

This may help it spread to other fields outside of education and even outside of sports 

statistics. Such spread would increase the prominence and acceptance of this modeling 

technique. To the extent that DMM models provide benefits over other preexisting 
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measurement models for some goals, more widespread knowledge and adoption of this 

technique is desirable.  

Extends the Types of DMM Growth Trajectories 

Most previous DMM models have been conducted using models with an upper 

asymptote to represent the player’s capacity. In this study, a quadratic model provided a 

better fit than the more traditional S-shaped and J-shaped models with upper asymptote 

parameters. Thus, I used a vertex form parameterization of a quadratic growth model to 

estimate each player’s capacity and the time at which the player is estimated to achieve 

this capacity. This implementation shows that quadratic growth models specifically can 

be parameterized and conceptualized as having a capacity parameter; they can therefore 

readily be used as DMM models. More generally, this demonstrates that DMM models 

should not be limited to the J-shaped and S-shaped growth trajectories that have been 

used in the past. Any function that has a finite maximum value (likely occurring at a 

single time point rather than repeatedly) in which the maximum value can be estimated 

directly as a parameter in the function should be able to be used for the purposes of 

DMM. Furthermore, in cases when researchers or practitioners are agnostic about the 

shape of the growth trajectory and simply want to generate reliable and useful capacity 

scores, this study has demonstrated that they may want to consider a quadratic model as 

one of their candidate growth trajectories to be tested for best fit.  

Continued Demonstration of Benefits of DMM 

By showing that the capacity estimates from the DMM model are better at 

forecasting a player’s future maximum ability level than are other single-timepoint 
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estimates of ability, this study has added to the growing literature on the benefits of 

DMM as a modeling technique. The DMM model’s improvement over single-timepoint 

observed variable measures was large, while its improvement over single-timepoint latent 

measures of ability was much smaller. However, even if the improvement was small, the 

DMM model did still improve upon the latent single-timepoint measure of ability, 

providing further evidence for previous findings that DMM capacity scores are better 

able to measure/predict future maximum abilities than are single-timepoint measures.    

Future Directions 

 Based on the models and results presented in this study, there are several 

directions in which research could proceed from this point. Some of these are 

methodological while others are substantive. In each case, the new direction would build 

upon or clarify the results in this study.  

Assess the Dimensionality of Golfing Ability 

 The methods and results that I have presented assume that golfing ability is a 

unidimensional construct. However, this assumption remains untested in any formal 

sense, and it is entirely plausible that golfing ability has multiple dimensions (driving 

ability, putting ability, etc.). Thus, it would be statistically and conceptually valuable to 

assess the dimensionality of golfing ability using established methods. Such studies 

would likely use some form of exploratory factor analysis, exploratory item response 

theory, or structural equation modeling.  

 If golfing ability does have multiple dimensions, then golf courses should have 

multiple characteristics as well. Certain courses may favor players who putt better, while 
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other courses may favor players who have greater driving accuracy, etc. These could then 

be assessed using two-stage mixed effects models like the process I used in this study or 

by using structural equation modeling. Modeling the dimensional structure of golfing 

ability and the differing characteristics of individual courses would naturally be of 

substantive interest to golf researchers. It would also likely provide a better fit for 

quantitative models, improving the forecasting ability of models like the ones that I 

presented.  

 From a DMM perspective, if golfing ability is multidimensional, then a player 

could have multiple different capacities that could be estimated using DMM models. 

These also might occur at different ages. It seems likely that, as they age, players would 

likely lose their driving distance before their putting ability, and we would be able to 

model this difference if we had longitudinal data on these different constructs.  

Assess Course-Level Discriminations 

 Even for the unidimensional model presented in this study, it may be useful to 

assess the discriminations of each course in the dataset rather than assume that they are 

equally informative. This would require a more complex mixed effects model that would 

take longer to run, but it would be of both substantive and statistical interest. From a 

substantive perspective, it would be interesting to know which courses are most effective 

and least effective at measuring golfing ability, and we could then test whether players 

seem to (consciously or unconsciously) know this by looking at which tournaments 

higher-ranked players choose to enter versus those that lower-ranked players choose to 

enter. Statistically, if some courses are more effective at measuring ability than others 
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are, modeling this would further improve the accuracy and precision of the ability 

estimates produced by the model.  

Compare Predictive Ability to Multidimensional Measures 

 In this study, I showed that the unidimensional latent measures of golfing ability 

produced by the models in the study outperform existing unidimensional measures of 

golfing ability. Because this included total Strokes Gained, it was already a high bar to 

clear. It did clear those metaphorical bars, but there would be an even harder test in the 

form of existing multidimensional measures of golfing ability. In particular, total Strokes 

Gained is often divided into different dimensions, such as Strokes Gained off the tee, 

Strokes Gained approaching the green, Strokes Gained putting, etc. If the unidimensional 

estimates from the models in this study could still outperform the (potentially) more 

nuanced multidimensional Strokes Gained in terms of prediction, this would yield even 

further credibility to the latent variable models that I have presented.  

Further Analysis to Explain Surprising Tiger Woods Result 

 The DMM model showed that Tiger Woods, widely regarded as one of the two 

best players of all time, had only the 11th highest capacity score in the dataset. This is a 

surprising result. Surprising results themselves are not a problem; indeed, part of the 

reason for quantitative analyses is to uncover and/or to explain unexpected relationships. 

However, they do often warrant further examination and explanation. It might be an 

entirely valid statistical conclusion that Tiger Woods’ maximum ability was actually not 

as high as that of some of the other players. This may imply that the media and fans over-

hyped his achievements and/or that he played in an era when the competition was weak, 
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allowing him to dominate. However, a second option would be that this result is due to 

some quirk of the data or the model, and that model re-specification or further testing 

would change the estimate. One possibility in this vein is that scores have generally 

gotten lower over time due to technology or some factor other than player improvement. 

If true, the year- and day-varying course difficulty ratings should still capture this. 

Nonetheless, it would be worth testing. A third option would be that this result is simply 

due to sampling variability: that the result is a valid conclusion for this particular sample 

of data but a different (theoretical) sample of data would provide a different conclusion.  

 Further testing to understand this surprising result would be useful for its own 

sake and, more importantly, to further confirm the validity of the model. However, the 

DMM model has already shown its validity. The DMM model did show high reliability 

during validation, and the correlation between different subsamples and the full sample 

was high, indicating that option number three is not particularly likely. Similarly, the 

ability for the DMM model to effectively predict players’ maximum ability levels from 

the stage one model implies that its capacity estimates are valid. Thus, the most likely 

reason for this surprising result is simply that humans did not understand the world as 

well as they thought. Nonetheless, further testing could confirm this.  

Try Different Growth Trajectories 

 Now that the quadratic DMM model has been established as a legitimate DMM 

growth trajectory, further variations of this type of model could be tried. They could be 

tried with this particular dataset to see if they fit better than the quadratic model, or they 

could be applied in future DMM studies. For example, one could try an asymmetric 
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piecewise quadratic function knotted at the vertex, an absolute value function, a 

piecewise function with an S-shaped growth curve knotted to a quadratic curve at the 

vertex of the quadratic curve, etc. Buit-in functions in R might struggle to find the 

derivatives of the piecewise options, but these derivatives could be found by hand. The 

idea of the asymmetric piecewise quadratic function knotted at the vertex is particularly 

appealing, as it would allow the player’s ability levels to increase and decrease at 

different rates on the two sides of the vertex. Additionally, two of the three (vertex form) 

parameters would be the same for the two sides of the piecewise function, so it would 

only add one new parameter to be estimated. This would be similar to the logic of the 

model estimated by McNeish et al. (2022); they used a quadratic model on the left side of 

the vertex knotted to a linear function on the right side of the vertex.  

Create an R Package to Estimate DMM Models 

 Finally, a major direction forward would be to create an R package to estimate 

DMM models. In this study, I provided a tutorial for estimating DMM models in R. This 

is a significant contribution, but it relies on existing packages that were not originally 

intended specifically for DMM models. It also still requires the user to be able to write 

the functional form of the model into R code and figure out reasonable starting values for 

the estimation. A new R package that only required the user to specify the shape of 

growth curve (exponential, Weibull, quadratic, etc.) from a fixed menu of options rather 

than coding the equation with all parameters themselves would further lower the barriers 

to estimating DMM models. This would allow for further implementation by users who 

want the substantive, statistical, and consequential benefits of DMM models but are not 
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as comfortable with advanced statistical software or writing code. This, in turn, would 

assist with the further spread of DMM models.  

Concluding Remarks 

This study has demonstrated the efficacy of using linear and nonlinear mixed 

effects models as latent variable measurement models to measure quantities of interest 

among professional golfers. In particular, this study has measured the latent abilities of 

professional golfers in specific years using a crossed linear mixed effects model. The 

player-year ability estimates from this model were then used to estimate a nonlinear 

Dynamic Measurement Model (DMM) to estimate player capacities: the maximum 

ability that a player is predicted to have during his career. The results from both stages 

were successfully validated—the latent measurements consistently outperformed existing 

observed variable measures of player ability, including Strokes Gained, both in terms of 

predicting scores at a single timepoint and in terms of forecasting future maximum 

ability. Furthermore, the resulting estimates showed strong reliability by being consistent 

across subsamples of the dataset.  

These results are noteworthy. By outperforming even the best, most commonly 

used, and heavily cited existing measures of golfing ability, this study has exceeded a 

high bar for predictive accuracy. Those wanting to measure golfing ability in the future 

for its own sake or to be used as independent or dependent variables in future studies 

would be advised to consider the methods and results detailed in this study. Further 

refinement in the form of multidimensionality and/or relaxed assumptions can only 

improve on these estimates.  
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In addition to the substantive results for golf measurement, these results 

contribute to the growing methodological literature on Dynamic Measurement Modeling, 

a relatively new family of latent variable measurement models. Along the way, the study 

also utilized a new DMM growth trajectory and presented a brief tutorial for future DMM 

users on how to conduct DMM models using R. This provides a new alternative to SAS 

for estimating these models, potentially expanding the universe of potential DMM users 

and helping these methods gain more widespread recognition and adoption.   
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Appendix A: Golf Terminology 

 

Golf is a sport played by trying to hit a ball on the ground with a stick (or ‘club’) 

into a small hole in the ground, which is typically hundreds of yards away. The golfer 

tries to minimize the number of times he or she hits the ball (called ‘shots’ or ‘strokes’). 

This process is then repeated 18 times to complete one round of golf. The goal is to 

minimize the number of shots that it takes to complete all 18 holes.  

The first shot on each hole is hit from the tee box, a patch of grass that is typically 

cut shorter than the surrounding areas. It has two tee markers, and the golfer can select 

where between these markers to place the ball before hitting the shot. After this shot, the 

ball lands on the green, fairway, rough, or sand trap. Wherever it lands, the player has to 

play the next shot from the position in which the ball comes to rest.  

Each golf hole is given a par value, which is, in theory, the expected number of 

shots that it would take a ‘competent’ golfer to get the ball into the hole. In practice, 

however, the par value is based mostly on the length of the hole rather than its true 

difficulty. Par 3 holes are short enough that a single good shot should be able to put the 

ball on the green. A par 4 will generally require two good shots to get the ball on the 

green. A par 5 will generally require three good shots or two excellent ones to get onto 

the green.  

Once on the green (which has the shortest grass on the course), a player is putting. 

A putt is a shot in which the ball leaves the clubface immediately rolling along the 

ground without flying through the air first. If the player is near the green, but not in it, he 
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or she will be chipping or pitching (shots that do not require full swings) to get the ball 

near the hole. Once a hole is complete, the player moves on to the next hole.    

 

The following terms may be useful for understanding the sport of golf: 

  

Approach Shot: See approaching the green.  

 

Approaching the Green: An approach shot is a shot from the fairway, rough, or fairway 

bunker on a par 4 or par 5 or from the tee box on a par 3 that is intended to get the ball 

onto the green. Approach shot ability refers to the skill that a player is able to utilize to 

accomplish this task.  

 

Ball: the golf ball used under the rules of golf is restricted in several ways. It can be at 

most 1.62 ounces. It must be spherical (although small indentations called “dimples” are 

allowed), and it must be symmetric. Golf balls are traditionally white, though other colors 

are allowed and used occasionally.  

 

Bounce back: A bounce back occurs when a player immediately follows an over-par 

hole with an under-par hole.  

Bunker: See sand trap 
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Chipping: A chip is a shot from near the green that is intended to get the ball near the 

hole by allowing the ball to cover a significant percentage of the distance on the ground 

rather than through the air. Correspondingly, these shots stay low to the ground, and the 

golfer typically does not break his or her wrists. This is in contrast to pitching.  

 

Club: The object used by the player to strike the ball. Players utilize clubs of different 

lengths and lofts depending on the needs of the particular shot. The maximum number of 

clubs that a player can carry in a particular round is 14.  

 

Cup: See hole 

 

Cut: “cut” can mean two different things in the context of golf. First, it can refer to the 

scenario in which a player hits the ball with sidespin that causes the ball to spin left to 

right (for a right-hander) or right to left (for a left-hander). The second way that “cut” is 

used refers to the winnowing of the field in golf tournaments between the second and 

third round. On the PGA Tour, most tournaments allow the top 65 players and ties to 

make the cut, while those further behind the leader are cut.  

 

Driving: In the context of golf, driving refers to the tee shot (first shot of the hole) on par 

4 and par 5 holes.  
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Fairway: A portion of the hole in between the tee box and the green. The grass is 

typically cut shorter than the rough but longer than on the green or on the tee box. The 

fairway is generally considered a desirable landing spot for a tee shot on par 4 and par 5 

holes because it makes the approach shot to the green easier.  

 

Green: The area closest to the hole. The grass is cut the shortest on this part of the course 

so that the player is able to roll the ball without hitting it through the air (“putting”). 

 

Green in Regulation (GIR): A green in regulation refers to a situation in which a player 

hits the ball onto the green in two less than the par of the hole. Thus, a green in regulation 

would mean getting the ball onto the green in one shot on a par 3, in two shots (or fewer) 

on a par 4, and in three shots  (or fewer) on a par 5. 

 

Handicap Rating System: A system used to rate the relative skill levels of golfers, 

mostly used for amateur golfers rather than professional golfers. A player with a handicap 

rating of 13 would be expected to finish the round 13 strokes above par on a course of 

average difficulty. This system allows golfers of varying abilities to compete on a 

theoretically level playing field.  

 

Hole: A golf hole refers to two different concepts. First, the “hole” refers to the physical 

hole in the ground into which players try to hit the ball. This may also be called the 

“cup.” Second, the “hole” refers to the entire area from tee box to the green. The golf 
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hole begins by hitting a tee shot from the tee box. The player is allowed to use a tee for 

this first shot and can choose the spot from which to hit (between the two tee markers). 

The player then hits subsequent shots until getting the ball in the hole. Most holes are par 

3s, par 4s, or par 5s. A complete round of golf consists of 18 holes, with the round score 

being the sum of the 18 individual hole scores.  

 

LPGA Tour: The Ladies Professional Golf Association. This is the most prestigious and 

lucrative of the women’s professional golf tours. Most, though not all, tournaments are 

held in the United States.  

 

Money List: A method of ranking players based solely on their prize money earnings in a 

given season. It was frequently used in the past, but it has mostly been replaced by more 

formal rankings systems.  

 

Official World Golf Rankings (OWGR): A points-based system that ranks players on 

multiple tours.  

 

Par: The number of shots in which a proficient golfer would be expected to complete a 

hole. This is based in large part on the length of the hole. For example, a “Par 3” would 

be a hole in which a proficient golfer would be expected to take 3 shots to get the ball 

from tee box into the hole. Almost all golf holes have a par value of 3, 4, or 5.  
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PGA European Tour: The main professional golf tour based in Europe, it is also called 

the DP World Tour, among other names. Most, though not all, tournaments take place in 

Europe.  

 

PGA Tour: The most prestigious of the men’s professional golf tours. Most, though not 

all, tournaments take place in the United States.  

 

PGA Tour Champions: The most prestigious of the men’s professional golf tours 

dedicated to golfers of age 50+. Most, though not all, tournaments take place in the 

United States.  

 

Pitching: A pitch is a shot from near the green that is intended to get the ball near the 

hole by carrying a significant percentage of the distance through the air rather than on the 

ground. Correspondingly, these shots have relatively high loft, and the golfer typically 

uses more wrist action than when chipping. 

 

Putting: Shots when the ball is on the green 

 

Rough: The area on a golf hole surrounding the fairway. The grass is longer than the 

fairway, and this is considered a less desirable location from which to approach the green 

(and therefore a less desirable landing spot for a tee shot) on par 4 and par 5 holes 
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Round: A round of golf consists of 18 holes, often divided into a “front 9” and “back 9.” 

A player’s score for the round is the sum of the 18 individual hole score. 

 

Sand Save: When a ball is in a greenside sand trap, a player is said to have a sand save if 

the player is able to get the ball into the hole in two shots (or less). Sand save percentage 

refers to the percentage of the time that a player is able to accomplish this.   

 

Sand Traps: Also known as “bunkers.” These are portions of a golf hole that are covered 

in sand. The ground is typically also somewhat below the level of the surrounding 

fairway, rough, or green. A Greenside bunker is one next to the green. A fairway bunker 

is one that is not next to the green.  

 

Scrambling: Scrambling refers to saving par (or better) on a hole when the player does 

not get the ball onto the green in regulation. Scrambling percentage refers to the 

percentage of the time that a player is able to achieve this.  

 

Shot/Stroke: When a player swings with the club and attempts to make contact with the 

ball, this counts as one shot or one stroke.   

 

Sunshine Tour: A developmental golf tour based in South Africa. As a lower-level tour, 

most players try to “graduate” from this tour to the European Tour.  
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Tee: In addition to referring to the tee box, a tee is a small wooden or plastic stand on 

which a golfer is allowed to put the ball on the first shot of each hole.  

 

Tee Box: The start of a hole, usually with grass cut lower than that of the surrounding 

areas. The tee box has two tee markers, and players get to choose from where between 

those markers they would like to hit the first shot.  

 

Tee Shot: A shot from the tee box. Similar to driving, but it also includes the first shot on 

par 3 holes.  

 

Tournament: A golf tournament is played over 3-5 rounds (usually 4). The player with 

the lowest total score over these rounds wins the tournament. Often, after the second 

round, the field is cut.  
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Appendix B: Example Code for other DMM Trajectories 

 

library(foreign)   
data.dmm<-read.csv("C:/Users/macwe/OneDrive/Dissertation/Datasets
/player-year.csv", sep="") 
data.dmm[c(1:10),] #same dataset as in Chapter 4 

##            PLAYER Year      sum1 Age 
## 6     A Ilyassyak 2007 -1.884216  42 
## 7     A Ilyassyak 2008 -1.211551  43 
## 8     A Ilyassyak 2009 -1.320875  44 
## 14     A Siddikur 2010  2.453366  26 
## 15     A Siddikur 2011  2.552817  27 
## 22    A.J. Crouch 2022  2.896804  29 
## 23    A.J. Crouch 2023  2.295983  30 
## 24    A.J. Elgert 2008  1.837466  26 
## 25    A.J. Elgert 2010  2.270091  28 
## 27 A.J. McInerney 2017  2.453366  24 

###### Michaelis-Menten Model 
library(drc) 
mod.mm<-drm(sum1~Age,data=data.dmm,fct=drc::MM.3(fixed=c(NA,NA,NA
), names=c("B0","Bc","Bm"))) 
summary(mod.mm) 

##  
## Model fitted: Shifted Michaelis-Menten (3 parms) 
##  
## Parameter estimates: 
##  
##                   Estimate  Std. Error t-value p-value     
## B0:(Intercept)  2.4692e+00  3.1998e-02 77.1671  <2e-16 *** 
## Bc:(Intercept) -6.5454e+02  5.2998e+02 -1.2350  0.2168     
## Bm:(Intercept)  2.4249e+04  1.9615e+04  1.2363  0.2164     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 
##  
##  1.711113 (29420 degrees of freedom) 
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library(lme4) 
nform<- ~0+B0+(((Bc-B0)*input)/(Bm+input)) 
nfun<-deriv(nform, namevec=c("B0","Bc","Bm"), function.arg=c("inp
ut", "B0", "Bc","Bm")) 
c.dmm<-nlmerControl(optimizer="bobyqa",tolPwrss=10^-9,optCtrl=lis
t(rhobeg=0.001,rhoend=10^-8,maxfun=40000)) 
#model.dmm.mm<-nlmer(sum1~nfun(Age,B0,Bc,Bm)~B0+Bc+Bm+(0+Bc | PLA
YER), data=data.dmm, start = c(B0=2.4692,Bc=-0.065454,Bm=24249),c
ontrol=c.dmm) 
# Does not converge 
 
##### Exponential Model 
mod.exp<-drm(sum1~Age,data=data.dmm,fct=drc::EXD.3(fixed=c(NA,NA,
NA),names=c("B0","Bc","Br"))) 
summary(mod.exp) 

##  
## Model fitted: Shifted exponential decay (3 parms) 
##  
## Parameter estimates: 
##  
##                   Estimate  Std. Error t-value p-value     
## B0:(Intercept) -3.3925e+02  2.0499e+02 -1.6550 0.09794 .   
## Bc:(Intercept)  2.4711e+00  3.1974e-02 77.2850 < 2e-16 *** 
## Br:(Intercept)  1.2589e+04  7.5660e+03  1.6639 0.09614 .   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 
##  
##  1.711111 (29420 degrees of freedom) 

library(lme4) 
nform<- ~0+B0+(Bc-B0)*(1-exp(Br*input)) 
nfun<-deriv(nform, namevec=c("B0","Bc","Br"), function.arg=c("inp
ut", "B0", "Bc","Br")) 
c.dmm<-nlmerControl(optimizer="bobyqa",tolPwrss=10^-9,optCtrl=lis
t(rhobeg=0.001,rhoend=10^-8,maxfun=40000)) 
#model.dmm.e<-nlmer(sum1~nfun(Age,B0,Bc,Br)~B0+Bc+Br+(0+Bc | PLAY
ER), data=data.dmm, start =c(B0=-339.25,Bc=2.4711,Br=(-1/12589)),
control=c.dmm) 
#Does not Converge 
 
#### Logistic 
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mod.l<-drm(sum1~Age,data=data.dmm,fct=drc::L.4(fixed=c(NA,NA,NA,N
A), names=c("Br","B0","Bc","Bm"))) 
summary(mod.l) 

## Warning in sqrt(diag(varMat)): NaNs produced 

##  
## Model fitted: Logistic (ED50 as parameter) (4 parms) 
##  
## Parameter estimates: 
##  
##                   Estimate  Std. Error t-value   p-value     
## Br:(Intercept)  8.5466e-02  2.2797e-03   37.49 < 2.2e-16 *** 
## B0:(Intercept) -3.3001e+02         NaN     NaN       NaN     
## Bc:(Intercept)  1.8139e+00  1.6022e-02  113.21 < 2.2e-16 *** 
## Bm:(Intercept)  1.2426e+02         NaN     NaN       NaN     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 
##  
##  1.681344 (29419 degrees of freedom) 

################# Did not run DMM version because marginal model 
already too complex 
######### 
#library(lme4) 
#nform<- ~0+BL+((Bc-BL)/(1+exp(Br*(input-Bm)))) 
#nfun<-deriv(nform, namevec=c("BL","Bc","Br","Bm"), function.arg=
c("input", "BL", "Bc","Br","Bm")) 
#c.dmm<-nlmerControl(optimizer="bobyqa",tolPwrss=10^-9,optCtrl=li
st(rhobeg=0.001,rhoend=10^-8,maxfun=40000)) 
#model.dmm.l<-nlmer(sum1~nfun(Age,BL,Bc,Br,Bm)~BL+Bc+Br+Bm+(0+Bc 
| PLAYER), data=data.dmm, start = c(B0=0,Bc=0,Br=0,Bm=0,control=c
.dmm) 
 
#### Weibull 
mod.w<-drm(sum1~Age,data=data.dmm,fct=drc::W2.4(fixed=c(NA,NA,NA,
NA), names=c("Br","B0","Bc","Bi"))) 
summary(mod.w) 

##  
## Model fitted: Weibull (type 2) (4 parms) 
##  
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## Parameter estimates: 
##  
##                 Estimate Std. Error  t-value   p-value     
## Br:(Intercept) -4.929984   0.588907  -8.3714 < 2.2e-16 *** 
## B0:(Intercept) -1.612795   0.435576  -3.7027 0.0002137 *** 
## Bc:(Intercept)  1.725544   0.011187 154.2503 < 2.2e-16 *** 
## Bi:(Intercept) 56.305278   1.686485  33.3862 < 2.2e-16 *** 
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## Residual standard error: 
##  
##  1.672485 (29419 degrees of freedom) 

nform<- ~0+Bc+(BL-Bc)*(1-exp(-exp(Br*(log(input)-log(Bi))))) 
nfun<-deriv(nform, namevec=c("BL","Bc","Br","Bi"), function.arg=c
("input", "BL", "Bc","Br","Bi")) 
c.dmm<-nlmerControl(optimizer="bobyqa",tolPwrss=10^-9,optCtrl=lis
t(rhobeg=0.001,rhoend=10^-8,maxfun=40000)) 
#model.dmm.ww<-nlmer(sum1~nfun(Age,BL,Bc,Br,Bi)~BL+Bc+Br+Bi+(0+Bc 
| PLAYER), data=data.dmm, start = c(BL=-1.612795,Bc=1.725544,Br=-
4.929984,Bi=56.305278),control=c.dmm) 
### Does not Converge 
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Appendix C: Example Course Difficulties 

 

 

Table 13: Hardest Courses 

 

 

Table 14: Easiest Courses 
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