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Abstract 

Total Knee Arthroplasty (TKA) is a widely performed surgical procedure aimed at 

alleviating pain and restoring function in patients with severe knee osteoarthritis. Despite 

its general success, disparities in postoperative outcomes have been observed across 

different racial and ethnic groups, with minority populations often experiencing less 

favorable results. One potential avenue for improving the generalizability of orthopaedic 

implants is using Statistical Shape and Intensity Models (SSIMs), which can be used to 

incorporate patient variability directly into the orthopaedic medical device development 

workflow through population-based finite element analysis.  

This work aimed to construct an SSIM from a diverse subject set, incorporating male 

and female subjects of various ages from Asian, Hispanic, Black or African American, 

Native American, and White racial or ethnic groups using a novel registration method. 

Through t-tests and Analysis of Variance (ANOVA), significant differences in both shape 

and material properties across these demographic groups were detected. Notably, the 

analysis revealed literature-supported differences in bone size between the sexes and 

changes in bone material quality with age. While significant differences in bone 

morphology and bone quality among racial and ethnic groups were observed, further 

validation with a more balanced and robust training set is needed to confirm these 

findings. Finally, an innovative application to facilitate the utilization of these findings in 



iii 

 

the development of orthopedic devices was created. This work represents a significant 

step towards greater inclusivity and personalized care in orthopedic device development.   
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1.  Introduction 

1.1  An Overview of the Clinical Landscape 

1.1.1  Osteoarthritis 

Osteoarthritis (OA), once thought to affect only the articular cartilage of diarthrodial 

joints, is now recognized as a group of overlapping joint disorders involving the entire 

joint. OA is classified by its causes as either primary, which lacks a known cause and is 

associated with risk factors such as increasing age, genetics and, as recently suggested, 

low grade systemic inflammation, or secondary, which arises due to known causative 

factors such as trauma, surgery on the joint structures, or abnormal joints or joint loading 

(Martel-Pelletier et al. 2016). The common thread linking the disorders of OA is a failure 

of joint repair following alterations in one or more of the joint tissues that ultimately 

leads to joint failure.  

OA typically progresses slowly over several years. Among the structural damages to 

the joint are cartilage degradation, osteophyte formation, subchondral bone changes, and 

meniscal alterations, which manifest as symptoms like pain, morning stiffness, and joint 

crepitus (a grating sensation during joint movement) (Martel-Pelletier et al. 2016), with 

pain being the most prevalent symptom (Perrot 2015). Pouli et al. conducted 24 

structured interviews with 17 women and 7 men with physician-diagnosed knee OA with 

the aim of gaining insight into the daily experience of people living with knee OA. Pain 

emerged as the focal point of the subjects’ OA experience, with many expressing a
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constant awareness of it, describing it as a perpetual presence. Their accounts highlighted 

how pain dominates their lives, intertwining with their very existence and becoming their 

primary concern (Pouli et al. 2014). Mary (pseudonym), a 72-year-old participant, 

poignantly described her struggle with knee OA:  

“I describe the pain as living with misery ...it makes you feel miserable ...makes you 

feel that if this is all ...it is for the rest of your life ...and I have always been a really 

independent person and now I’ve got to be dependent on someone else ...and that’s 

been killing me”  (Mary, 72 years) (Pouli et al. 2014). 

Mary's words encapsulate the profound impact of knee OA on individuals' lives. With 

lived experiences like these, and estimates projecting the annual incidence of 

symptomatic knee OA at 240 per 100,000 patients per year (Varacallo, Luo, and 

Johanson, n.d.), it is perhaps unsurprising that osteoarthritis has a significant impact on 

disability in adults. In the Global Burden of Disease Study 2010, musculoskeletal 

disorders like OA were among the top causes of years lived with disability (YLDs) 

among all conditions. Knee OA was among the top 25 causes of YLDs globally 

(Varacallo, Luo, and Johanson, n.d.). In 2019 about 528 million people worldwide were 

living with osteoarthritis, an increase of 113% since 1990 (Long et al. 2022). As 

populations age and obesity rates increase, prevalence of OA is projected to continue 

rising (Leifer, Katz, and Losina 2022). 

Despite its widespread impact, to date, OA remains a challenging condition to 

manage (Martel-Pelletier et al. 2016). Currently, medical management primarily focuses 

on relieving symptoms, as there's no pharmacologic therapy available to prevent disease 

onset or progression (Shahid and Singh 2016). Non-pharmacological interventions play a 

crucial role and often involve education, exercise, weight management with realistic 
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goals, and regular monitoring. These approaches can be complemented with 

pharmacological interventions targeting pain relief. Options include topical treatments 

like capsaicin, oral medications such as NSAIDs, paracetamol, selective COX2 

inhibitors, and opioids for patients unable to tolerate NSAIDs. Injectable treatments like 

intra-articular corticosteroids and hyaluronic acid are also available, though the efficacy 

of the latter is subject to debate (Martel-Pelletier et al. 2016). 

1.1.2  Total Knee Arthroplasty 

When non-surgical options prove ineffective for treating patients with severe end-

stage OA, surgical options become necessary to maintain function and alleviate pain 

(Shahid and Singh 2016). Total Knee Arthroplasty (TKA) is the most common surgical 

intervention for knee OA (Martel-Pelletier et al. 2016), as it delivers reliable outcomes 

for OA patients, relieving pain, restoring function, and enhancing quality of life 

(Varacallo, Luo, and Johanson, n.d.). Recently, there has been a renewed interest in using 

Unilateral Knee Replacements (UKAs) to treat patients with end stage unicompartmental 

OA (typically medial) with the aim of preserving more of the knee’s natural anatomy. 

However, the procedure’s adoption has been limited by its higher revision rates relative 

to TKA (Atik, Hangody, and Turan 2023). Broadly, both procedures entail removing and 

replacing damaged compartments of the knee joint with artificial components—UKA 

replacing one and TKA replacing all compartments. Annually, approximately 400,000 

primary knee replacement surgeries are conducted in the US, with the primary clinical 

diagnosis associated with this procedure being primary, end-stage, tri-compartmental 

osteoarthritis (Varacallo, Luo, and Johanson, n.d.).  
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TKA is widely acknowledged as an effective treatment for end-stage OA, providing 

rapid and significant relief from pain, improved functional status, and enhanced overall 

health-related quality of life in approximately 90% of patients who undergo the procedure 

(“NIH Consensus Statement on Total Knee Replacement” 2003). The success of TKA in 

addressing what is anticipated to become a more prevalent condition suggests an 

anticipated surge in its usage. Between 1991 and 2010, the annual primary TKA volume 

in the US Medicare population alone surged by 161.5%, escalating from over 93,000 to 

more than 226,000 cases (Varacallo, Luo, and Johanson, n.d.). Projections indicate that 

this upward trend will persist; compared to 2005 rates, annual TKA utilization in the 

USA is forecasted to soar by 673% by the year 2030 (Kurtz et al. 2007). 

Given the current and projected prevalence of TKA in treating OA, it is essential to 

address the procedure's limitations. Despite being a dependable and consistently 

successful surgery for patients with severe knee OA, studies indicate that as many as 1 in 

5 patients who undergo primary TKA are still dissatisfied with the outcome (Varacallo, 

Luo, and Johanson, n.d.). This suggests that TKA is not achieving its goal of relieving 

pain and restoring function in a substantial proportion of patients. Patient dissatisfaction 

post-TKA is linked to a range of factors, including unmet expectations, certain 

preoperative conditions like older age and living alone, and postoperative complications 

necessitating hospital readmissions (Bourne et al. 2010). 

While research has shown that sex does not significantly impact the outcomes of 

TKA (Ritter et al. 2008), differences in outcomes following TKA have been observed 

across different racial and ethnic groups, with minority groups often experiencing 
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disproportionately poorer results (Shahid and Singh 2016). In a comprehensive review 

examining racial/ethnic disparities in Total Joint Arthroplasty utilization and outcomes, 

Shahid et al. found that in the US, Black patients undergoing TKA faced higher rates of 

hospital readmissions, longer hospital stays, increased non-infection and infection-related 

complications, worse postoperative functional status, more pain, and elevated revision 

rates compared to White patients (Shahid and Singh 2016). The results of a review by 

Rudisill et al. concurred, finding also that Black patients had higher rates of non-home 

discharges and mortality following TKA compared to White patients (Rudisill et al. 

2023). These disparities persist even within equal-access healthcare systems; Ibrahim et 

al. revealed that Black veterans receiving TKA through the Veterans Health 

Administration (VHA) experienced higher complication rates than their White 

counterparts, despite the VHA offering care to veterans regardless of race, ethnicity, 

income, or other socio-economic factors (Ibrahim et al. 2005). Hispanic patients also 

exhibited higher rates of complications, prolonged hospital stays, and non-home 

discharges following TKA relative to other patient groups, while Asian patients showed 

lower complication rates, but a higher likelihood of non-home discharge compared to 

White patients. Additionally, studies involving American Indian/Alaska Native (AIAN) 

and Pacific Islander patient cohorts indicated longer hospital stays and, for AIAN 

patients, higher inpatient mortality rates compared to White patients (Rudisill et al. 

2023).  
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1.1.3  Lack of Diversity in Medical Device Development 

The higher rates of complications and less significant improvements in patient-

reported outcomes among minority groups likely stem from a multitude of complex 

factors. These may include patient factors (e.g. presence of medical comorbidities, status 

of preoperative mental health, socioeconomic status), provider and healthcare system 

factors (e.g. provider bias, provider and healthcare system quality, disparities in 

healthcare coverage), and societal factors (e.g. institutional and structural racism, racial 

residential segregation) (Hu et al. 2022). Another potential contributor to disparities in 

orthopedic outcomes is a lack of research equity. Despite efforts to address the 

underrepresentation of women and historically marginalized populations in U.S.-based 

clinical trials and research by federal agencies like the NIH Office of Research on 

Women’s Health and the FDA Office of Minority Health and Health Equity, 

underrepresentation of these groups persists across various medical fields and diseases, 

including cardiology, oncology, Alzheimer’s Disease, and HIV/AIDS (Committee on 

Improving the Representation of Women and Underrepresented Minorities in Clinical 

Trials and Research et al. 2022). Orthopaedics is no exception. In a systematic review of 

randomized controlled trials in three leading orthopaedic journals, Cwalina et al. found 

that the racial and ethnic distribution of participants skewed heavily towards white 

individuals, with fewer Black, Hispanic, and Asian participants compared to their 

representation in the general population according to the 2019 United States Census 

(Cwalina et al. 2022). Similar findings were reported by Issa et al. in trials specifically 

focused on high-risk orthopaedic medical devices, where White participants were 



 

7 

overrepresented, while Black, Asian, and Hispanic participants were significantly 

underrepresented (Issa et al. 2023). Given that research has shown that groups often 

excluded from clinical trials may have unique disease presentations or health conditions 

that impact their response to treatments (Committee on Improving the Representation of 

Women and Underrepresented Minorities in Clinical Trials and Research et al. 2022), an 

absence of racial and ethnic diversity in orthopaedic clinical trials could restrict the 

generalizability of orthopaedic solutions like TKA to minority populations and perpetuate 

disparities in treatment use, complications, and functional outcomes (Cwalina et al. 

2022). 

Clinical trials, such as those used to validate medical devices like the implants 

utilized in TKA, represent just one stage in the medical device design process where 

diversity, or lack thereof, can have significant implications. Alongside the Validation 

step, which assesses if the right product has been built after the device is designed, the 

highly regulated medical device development process also includes a pre-clinical 

Verification step, questioning whether the right product is being built during the design 

phase itself. Methods for design verification encompass risk analysis, rapid prototyping, 

and finite element analysis (FEA) (Aitchison et al. 2009). 

FEA has played a crucial role in orthopedic biomechanics for over four decades, 

aiding in the understanding of bone-implant systems' behavior to facilitate implant design 

and pre-clinical testing. However, traditional FEA approaches like comparative or 

parametric study designs often rely on models based on a single representative bone or 

joint (Taylor and Prendergast 2015), neglecting population variability and limiting the 
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generalizability of results (Galloway et al. 2013). Recent advancements have introduced 

statistical methods, notably probabilistic analyses, which enable the simultaneous 

exploration of multiple design and environmental parameters, including patient-to-patient 

variability (Taylor and Prendergast 2015).  

Earlier attempts to incorporate patient variability in FE models involved manually 

modeling a small cohort of subjects or scaling the size and/or material properties of a 

single bone. An alternative approach employs statistical shape and/or intensity models, 

which are statistical representations of the morphology and material properties of the 

bone segment or joint. These models can be used to generate hundreds to thousands of 

synthetic instances for population-based FE models based on a smaller training set of 

bones or joints (Taylor and Prendergast 2015). Importantly, the demographic makeup of 

this training set influences anatomic variability in the synthetic subject pool, emphasizing 

the necessity of considering the diversity of the training set for the probabilistic analyses 

to yield generalizable results.  

Including demographic diversity in research requires careful consideration of 

responsible practices. Unlike physiological variables such as age and sex, racial and 

ethnic identities are socially constructed and historically fluid concepts, lacking 

biological basis (Cwalina et al. 2022). Most scholars across disciplines like evolutionary 

biology and anthropology agree that racial distinctions are not genetically discrete, 

reliably measured, or scientifically meaningful in a biological context (Smedley and 

Smedley 2005). Therefore, when including racial and ethnic diversity in scientific 

research, particularly in studies aiming to highlight differences between groups, it is 



 

9 

imperative to avoid the errors of 19th-century racialized science, which viewed races as 

phenotypically distinct subdivisions of the human species based on ancestral geographic 

origins (Smedley and Smedley 2005). The Canadian Medical Association Journal 

underscores this in its updated guidance on reporting race and ethnicity in research 

articles, emphasizing that race should not be presented as a surrogate for biological or 

genetic variation (Stanbrook and Salami 2023).  

However, this does not negate the importance of including racially and ethnically 

diverse subjects and reporting their demographics. While race lacks biological 

significance, social race remains a significant determinant of access to societal resources 

and barriers to full inclusion, as with the presence of racial and ethnic disparities in health 

care. The fact of inequality means that race and ethnicity continue to matter in important 

ways (Smedley and Smedley 2005). Consequently, representation by self-identified race 

and ethnicity remains crucial for the generalizability of study findings (Committee on 

Improving the Representation of Women and Underrepresented Minorities in Clinical 

Trials and Research et al. 2022). Researchers should therefore strive to ensure diversity in 

their subject population while adhering to established best practices outlined by reputable 

sources. This includes reporting race and ethnicity alongside other pertinent biological 

and social factors to gain a comprehensive understanding of study results (Cwalina et al. 

2022; Stanbrook and Salami 2023). By doing so, researchers ensure consideration and 

understanding of all critical factors, both genetic and non-genetic, essential for 

generalizing findings to the broader population (Committee on Improving the 
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Representation of Women and Underrepresented Minorities in Clinical Trials and 

Research et al. 2022). 

 

1.2  Objectives 

 As the incidence of knee OA continues to rise, the demand for effective and 

personalized treatment options becomes increasingly critical. Despite the success of TKA 

in many patients, significant challenges remain, including disparities in outcomes across 

different demographic groups. To address these issues, it is essential to understand 

variation in the population and to incorporate demographic diversity into the 

development and validation of orthopedic devices, ensuring that treatments are effective 

across varied populations. Accordingly, the objectives of this thesis were: 

1) to develop a Statistical Shape and Intensity Model (SSIM) to quantify shape and 

material property variation in the femur and tibia in a diverse population using a 

novel general regression neural network-based registration workflow, 

2) to use this model to investigate the impact of gender, race, and age on knee shape 

and material properties, 

3) to build upon a previously developed graphic user interface (GUI) to facilitate the 

use of both the SSM and SIM portions of the model to support medical device 

development workflows. 
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1.3  Thesis Organization 

Chapter 2 provides an overview of the literature related to bone morphology and 

material properties considering factors of gender, age, and ethnicity. Chapter 3 provides 

background on the development of statistical shape and intensity models. Chapter 4 

describes generalized methods that were utilized to create the statistical shape and 

intensity models; some methods were previously developed, while others were advanced 

in the current work. Chapter 5 shares and discusses the results related to the 

morphological outcomes of the model, while Chapter 6 focuses on the material property 

outcomes. Chapter 7 discusses a GUI tool to support interfacing with the models, while 

Chapter 8 captures overall conclusions, limitations, and potential future work.  
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2.  Literature Review 

2.1  Overview 

The literature review section delves into three key areas concerning knee morphology 

and material properties: sexual dimorphism, age-related differences, and racial/ethnic 

disparities, providing a comprehensive overview of current research in these domains, 

highlighting key findings, and identifying gaps in knowledge. 

2.2  Sexual Dimorphism in Knee Morphology and Material Properties 

Many studies have investigated the role of gender in knee morphology, which has led 

to the identification of now well-established anatomic differences in the knees of males 

and females. For example, females have been shown to have narrower mediolateral to 

anteroposterior aspect ratios, less pronounced anterior condyles, and greater quadriceps 

angle (Kim et al. 2017). Traditionally, these investigations into sexual dimorphism in 

knee morphology have focused on various anatomical features, including distance 

features, angular features, and curvature features. Asseln et al. conducted a 

comprehensive study aiming to compare the anatomical features of the femur and tibia 

between the sexes, utilizing a dataset of 412 femurs and tibias (248 female and 164 

male). Their findings underscored the presence of gender-specific differences in certain 

parameters, emphasizing the need for parametric implant designs tailored separately for 

the AP and ML directions to provide adequate coverage for all patients (Asseln et al. 

2018).  



 

13 

Statistical shape models have also been used to assess sexual dimorphism in knee 

morphology. Wise et al. explored the association between sex and the shape of outlines of 

the distal femur and proximal tibia derived from 2D radiographs using a statistical shape 

model. Their study, involving 339 femurs and 340 tibias without osteoarthritis, confirmed 

previous observations of sexual dimorphism in knee shape and extended the 

understanding of such differences through an analysis centered on 2D shape rather than 

anatomic measurements (Wise et al. 2016). Audenaert et al. expanded the investigation 

using statistical shape models capturing full 3D morphology. Their findings emphasized 

significant differences in knee width between male and female samples (Audenaert et al. 

2019). Importantly, the agreement between the results of feature-based studies and 

statistical model-based studies lends validity to the statistical shape modeling approach in 

investigating morphological variation between populations in the knee (Wise et al. 2016). 

In addition to morphological differences, researchers have also investigated sexual 

dimorphism in bone quality, particularly within the realm of understanding osteoporosis. 

The interplay of body size adds complexity to studying sex-related bone mineral density 

(BMD) variations, with males generally being larger than females. An analysis of 

NHANES data revealed that when correcting for differences in height and weight, femur 

BMD disparities between males and females in younger adults were nullified. However, 

in older adults, sex-related differences in BMD persisted even after such statistical 

corrections. Other studies have reported sex-differences in bone material properties 

following size correction, with Nieves et al. reporting greater BMD at the hip and distal 

tibia, as well as greater tibial cortical thickness in males. Conversely, several other 
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studies have reported that gender-related differences in bone mass disappear following 

correction for body size in both adults and children (Nieves et al. 2005).  Given the 

importance of bone quality to the early fixation and long-term survivability of TKA 

implants, characterization of the material property variation in the bones of the knee 

remains a valuable area of investigation. 

Despite this, there has been limited utilization of statistical intensity modeling to 

characterize variations in material properties within the femur and tibia. Bah et al. 

employed this approach to develop gender-based statistical shape and intensity models of 

the femur. Subsequent analysis involving the generation of 1000 new male and female 

geometries, respectively, revealed significant differences in gross anatomical 

measurements between genders, particularly in clinically relevant parameters such as 

femoral canal definition, bone densities, femoral head offsets, anteversion, among others 

(Bah et al. 2015). Although this study primarily focused on the proximal femur, it 

demonstrates and validates the process of using statistical intensity modeling to explore 

variations in material properties. Bruce et al. contributed to this line of inquiry by 

characterizing geometry and density variations within the tibial-fibular complex using 

statistical shape and appearance models. The results of their model were leveraged to 

conduct finite element analyses, shedding light on factors contributing to sex disparities 

in stress fractures. Their findings revealed differences in cortical density and cortical 

thickness between male and female tibias (Bruce et al. 2022; Bruce and Edwards 2023). 

To the author’s knowledge, no work has yet investigated sex-related bone quality 

differences in both the proximal tibia and femur. 
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2.3  Age-Related Differences in Knee Morphology and Material Properties 

In the context of age, significant changes in bone size have been documented. A 

comprehensive cross-sectional study involving 373 men and 323 women aged 20 to 97 

years revealed that both sexes experienced an increase in bone area by approximately 

15% over their lifetimes, suggesting ongoing periosteal bone growth throughout adult life 

(Riggs et al. 2004). This change in size has often confounded studies like that by Han et 

al, who analyzed 2D morphological parameters derived from Magnetic Resonance 

images of 535 patients (273 males and 262 females). The study identified significant age-

related differences in several femoral parameters: femoral width, the distance from the 

distal and posterior cartilage surface to the medial/lateral epicondyle, medial posterior 

condylar offset, and posterior condylar angle (all P < 0.001) but was not able to 

determine whether these changes were related to shape or size for many parameters. No 

significant differences were found in lateral posterior condylar offset and medial/lateral 

tibial slopes. Additionally, a significant interaction between gender and age groups was 

noted in most parameters (Han et al. 2016). 

Morphometric analyses, such as Principal Component Analysis (PCA), have been 

instrumental in distinguishing age-related shape differences independent of size. For 

example, Li et al. Found significant differences in the 3D morphometric measurements of 

the distal femur between the age groups in a Chinese Han population (K. Li et al. 2018a). 

This trend proved true across racial and ethnic groups, with Cavaignac et al. finding 

analogous results in a population of White subjects (Cavaignac et al. 2017).  
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The decline in bone quality with age is well-documented, with changes in volumetric 

bone mineral density (vBMD) playing a critical role. The aforementioned cross-sectional 

study from Riggs et al. found marked decreases in vBMD with age. Cortical vBMD 

remained stable until approximately 50 years of age before declining in both sexes, while 

trabecular vBMD began to decrease even in young adulthood, with continual loss 

observed throughout life. These decreases in vBMD were more pronounced in women 

than in men, aligning with the effects of menopause and the subsequent near-complete 

estrogen deficiency in women (Riggs et al. 2004). Despite extensive research on age-

related changes in bone quality, statistical intensity models have yet to be leveraged to 

comprehensively investigate these changes. This novel analytical approach could provide 

fresh insights into how bone material properties evolve with age. 

2.4  Racial and Ethnic Differences in Knee Morphology and Material Properties 

To date, investigations into knee morphology have primarily focused on gender-

related differences, with comparatively less emphasis on race and ethnicity. Existing 

literature primarily focusses on variations in morphometric data within or between White 

and Asian cohorts (Kim et al. 2017), with studies like those by Vaidya et al. (Vaidya et 

al. 2000), Li et al. (K. Li et al. 2018b), and Kwak et al. (Kwak et al. 2012) contributing to 

this discourse by shedding light on knee morphology variations in Indian, Chinese, and 

Korean populations, respectively.   

To consolidate the findings of individual studies like those mentioned above, Kim et 

al. conducted a systematic review of the PubMed database to investigate the differences 

in morphologic features of the distal femur and proximal tibia among and within various 
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racial and ethnic groups. Their analysis of 23 studies involving East Asian patients, 11 

studies with White patients, three studies of Indian patients, and three studies of Black 

patients unveiled key differences in knee morphology relevant to TKA. They found that 

White patients had larger femoral anterior-posterior measurements and a smaller femoral 

aspect ratio compared to East Asian patients. They also demonstrated that White patients 

had a larger tibial aspect ratio compared to Black patients (Kim et al. 2017). Perhaps 

most importantly, this work highlighted the scarcity of studies detailing anthropometric 

variations across historically underrepresented populations, with the authors noting that 

Black and Indian populations were underrepresented in their work, and African and 

Middle Eastern populations were not represented at all due to a lack of available data 

(Kim et al. 2017). While the work did not include other groups present in the US 

population such as Hispanic, Native American, and Pacific Islander groups, it is likely 

that they are similarly underrepresented in works like these, hindering a comprehensive 

analysis of ethnic and racial variation in knee morphology.  

The authors of the aforementioned review note the importance of aligning TKA 

components with resected bony surfaces to minimize complications and extend implant 

survival. They note also that it is “conceivable” that ethnic and racial variability in knee 

morphology could potentially lead to suboptimal outcomes if not adequately addressed 

(Kim et al. 2017). Other studies assert a more direct link between ethnic and racial 

morphological variability and disparities in TKA clinical outcomes. Ho et al., in a study 

comparing the morphology of Asian knees with currently available TKA prostheses in 

Asia, suggested that the existing prosthetic designs may not accurately match the femoral 
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aspect ratio of Asian knees, thereby resulting in mediolateral component overhang among 

Chinese patients (Ho, Cheng, and Liau 2006).  

As with those investigating the effects of gender, previous studies have mainly 

focused on comparing morphometric measurements across different racial and ethnic 

groups to understand variations in knee shape. The use of statistical models, in addition to 

providing a comprehensive 3D analysis of shape, provides the advantage of also 

supporting implant design through instance generation for pre-clinical FE modeling. 

However, statistical shape models considering diverse populations are limited, with 

Mahfouz et al. standing out as the only such model considering the knee. Their study 

compared 1000 adult knees from African American (n = 80), East Asian (n = 80), and 

White patients of European descent (n = 840) with the aim of identifying shape 

differences not only between racial and ethnic groups but also between genders within 

each race. They found (unsurprisingly) that males tended to have larger knees across all 

races and ethnicities. Moreover, African American females displayed distinct 

characteristics, such as a deeper patellar groove compared to their Caucasian 

counterparts, while African American males exhibited larger femoral and tibial 

dimensions compared to East Asian males (Mahfouz et al. 2015).  

Beyond morphology, emerging evidence suggests differences in bone mineral density 

(BMD) across racial and ethnic groups. Non-Hispanic Black adults, for instance, exhibit 

higher BMD and lower rates of bone loss compared to other ethnicities. US Asian adults, 

on the other hand, may display lower BMD compared to non-Hispanic White adults, 

although data remains limited and inconclusive in some cases. It has also been noted that 
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the directionality of these differences may vary by skeletal site. For example, Mexican 

American adults showed higher mean BMD of the proximal femur compared with Non-

Hispanic White adults, despite having a lower mean BMD for the total body and other 

sites (Noel, Santos, and Wright 2021). Despite these findings, there has been little 

research using statistical models to explore material property variation in the bones of the 

knee across ethnic and racial groups. To the author’s knowledge, no statistical intensity 

models of the knee have been created from a racially and ethnically diverse training set, 

nor has any such model been leveraged to investigate the material properties of the tibia 

and femur across these groups, although Bah et al. noted that these methods can be used 

to assess anatomical variation between racial and ethnic groups, if training datasets can 

be accessed (Bah et al. 2015). Given the importance of bone quality to the success of 

TKA implants, this highlights a key area for future research to explore. 
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3.  Theory and Background Related to Statistical Shape and Intensity Modeling 

3.1  Overview 

This section explores the fundamental concepts involved in the of construction of 

statistical shape and intensity models defining shape, shape registration, material property 

registration, dimension reduction, and statistical model evaluation, elucidating their 

significance and methodologies. 

3.2  Defining Shape 

Decisions about objects are often made using their sizes and shapes. For example, a 

patient’s tumor might be treated using different protocols depending on its size. 

Similarly, a facial recognition program might allow (or deny) someone access depending 

on the shape of their face. Size and shape analysis has relevance in a wide variety of 

disciplines including biology, chemistry, medicine, image analysis, archaeology, 

bioinformatics, geology, particle science, genetics, geography, law, pharmacy, and 

physiotherapy (Dryden and Mardia 2016). The analysis of size and shape is an area with 

far-reaching implications and developing methods for doing so is therefore of significant 

importance.  

In practice, the analysis of size and shape requires a way of describing shape, some 

notion of distance between two shapes, and methods for the statistical analysis of shape 

(Dryden and Mardia 2016). We begin first with the concept of shape and how it is 

defined and measured. In this text the definition of Shape by Dryden and Mardia is 
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adopted; “Shape: All of the geometrical information that remains when location, scale, 

and rotational effects are removed from an object” (Dryden and Mardia 2016). In other 

words, two objects have the same shape if they can be translated, rotated, and scaled to 

each other so that they match exactly. This concept is illustrated in Figure 3-1, where 

each of the hands depicted is a transformation (consisting of a translation, scale, and/or 

rotation) of the other.  

 

 

Figure 3-1: Four hand shapes with different locations, scales, and rotations. Taken from 

Stegmann and Gomez (Stegmann and Gomez, n.d.). 

 

A practical way to describe the shape of an object is through a finite set of points on 

the surface of the object in question (Figure 3-2). These points, which summarize key 

geometrical information, are referred to as landmarks. The landmarks that describe a 

shape can be defined in several ways. Scientific landmarks are assigned to points that 

meaningfully correspond between objects (Dryden and Mardia 2016). For example, if the 

shape of an eye is being described, anatomical points like the center of the pupil or the 
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inner corner of the eye might be used as scientific landmarks. Mathematical landmarks 

correspond to points located on an object according to some mathematical or geometrical 

property like the extremum of a curvature. If more landmarks are required than can be 

obtained through scientific or mathematical methods, pseudo-landmarks can be 

constructed on an object, either around the boundary of the object or in between scientific 

or mathematical landmarks (Stegmann and Gomez, n.d.).  

 

 

Figure 3-2: Example of a set of landmarks describing the shape of a hand. Taken from 

Stegmann and Gomez (Stegmann and Gomez, n.d.). 

 

The landmarks that describe a shape can be acquired through manual point 

identification. However, this method is impractical when defining shapes through many 

landmarks or when dealing with highly deformable objects. Instead, these point sets are 
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generally acquired using imaging devices such as 3D scanners, manual modeling 

software, or from images processed via segmentation or isosurfacing (van Kaick et al. 

2011). Once these landmarks are established and their coordinates are identified, the 

shape can be described mathematically by a point set. For example, an n-point shape in k 

dimensions could be described by concatenating each dimension into an nk-vector. The 

vector representation for a planar (k = 2) shape S would be:  

S = [x1, y1, x2, y2, …, xn, yn]T  

where x and y are the 2D coordinates of each of the n points describing the shape (van 

Kaick et al. 2011). 

 

3.3  Shape Registration 

While defining shape has its applications (i.e. in facial recognition), often the ultimate 

goal is to depict or describe the size and shape changes in a class of objects (Dryden and 

Mardia 2016). Before extracting this information from a set of shapes, some essential 

pre-processing steps must be completed. The goal of this preprocessing, termed 

registration, is to assign meaningful correspondences between the point sets describing 

the shapes in a class (Myronenko and Xubo Song 2010). The problem of registration can 

be generally stated as: “Given input shapes S1, S2,…,SN, find a meaningful relation R 

between their elements” (van Kaick et al. 2011).  

Defining a meaningful correspondence between shapes is the challenging part of 

registration. In some cases, the geometry of the shape can provide enough information 

and correspondence can be established between elements of two or more shapes that 
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possess similar structure in terms of shape and local context (van Kaick et al. 2011), as 

with the top of the fin or the eye of the fish in Figure 3-3. In other cases, however, the 

geometry and number of corresponding parts of the shape, as well as the topology 

between these elements, may vary greatly. Correspondence problems between these types 

of shapes involve understanding both the structure (and possibly function) of the shapes 

at the local and global levels (van Kaick et al. 2011). 

 

Figure 3-3: Point Set Registration. Taken from van Kaick et al (van Kaick et al. 2011). 

Registration can be further differentiated based on the type of correspondence needed. 

First, depending on the inclusion properties of the relation R, the type of registration can 

be categorized either as full or partial. A full correspondence is defined for the entirety of 

the shape, while a partial correspondence is defined only for a subset of elements. The 

density of the relation is another way in which registration can be classified. In a dense 

correspondence, the relation is defined for all elements of a shape. In contrast, a sparse 

correspondence is defined for only a small number of pre-selected elements. Finally, 

group correspondence involves computing correspondences between the shapes in a 
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group. This can be done either by registering all the pairs of shapes in the group or by 

registering all the shapes simultaneously, a process that is less straightforward but has its 

advantages (van Kaick et al. 2011).  

Once the type of correspondence problem is defined, correspondence can be 

established. Correspondence can be obtained directly through feature matching, or it can 

be obtained through rigid or non-rigid alignment. In feature matching, the similarity 

between pairs of feature points is estimated by optimizing an objective function 

composed of two terms: one which maximizes the similarity between shape descriptors 

and one which minimizes distortion between the shapes (Figure 3-4b).This method can 

be applied whenever it is possible to compute a set of descriptors for the shape’s 

elements. An alternative method for establishing correspondence involves first aligning 

the shapes and then deriving correspondence from the proximity of the aligned elements 

(Figure 3-4c and Figure 3-4d) (van Kaick et al. 2011). In this project, a dense 

correspondence problem between a group of full shapes defined by point elements is 

considered. The correspondence between these shapes is obtained through alignment, a 

process discussed in depth in the next section. This correspondence problem will hereon 

be referred to as ‘Registration’.   
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Figure 3-4: Correspondence between the shapes shown in (a) could be established using 

feature matching (b) or by first rigid body aligning the shapes (c) and then non-rigidly 

deforming one onto the other (d). Taken from van Kaick et al. (van Kaick et al. 2011). 

3.3.1  Alignment 

3.3.1.1  Rigid Alignment  

Registration begins by establishing a coordinate reference with respect to position, 

scale, and rotation. In practice, this coordinate reference is usually defined using the 

template point set – often the median shape within the set of shapes being compared. The 

remaining point sets, termed instances, are rigidly aligned to the template, bringing them 

into shape space (Dryden and Mardia 2016). Per van Kaick et al., the problem of rigid 

alignment can be posed as: find the rigid transformation that maximizes the number of 

points in S1 that align to the points in S2 (van Kaick et al. 2011). To understand this 

definition, two terms must be further defined. Rigid transformation is defined as a 

transformation in which the distances between points are preserved and no deformation 

occurs (Figure 3-6). It is parametrized by the variables of rigid body motion: translation 

and rotation (Golyanik 2020). Alignment is defined as a certain threshold of proximity 

between points; when two points are close enough, they can be considered aligned with 

each other. A measure of alignment can be given either through the largest common point 
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set method, in which the best alignment is considered as the one with the largest number 

of points aligned or through geometric distance, which minimizes the sum of squared 

distances between points and their nearest neighbor (van Kaick et al. 2011). Thus, rigid 

alignment can be thought of as the process of translating and rotating one shape so that its 

points most closely match the points of the second shape.  

The Iterative Closest Point algorithm (ICP) is a classical method for rigid registration 

first proposed in 1992 by Besl and McKay (Besl and McKay 1992). Broadly, ICP 

consists of two main steps: a correspondence step and an alignment step. In the 

correspondence step, ICP establishes point-to-point relationships between two sets of 

points (Figure 3-5a) by pairing each point in one set with the closest point in the other set 

(Figure 3-5b). This initial matching forms the basis for subsequent alignment. Following 

correspondence, the alignment step seeks to minimize the distances between 

corresponding points by finding an optimal transformation. This transformation is then 

applied to adjust the positions of the points (Figure 3-5c). The correspondence and 

alignment steps are then repeated (“iterated”) until the corresponding point to point 

distances converge within a specific tolerance (Figure 3-5d) (Cyrill Stachniss 2020).   

 

Figure 3-5: Steps involved in the Iterative Closest Point algorithm. Adapted from Kim 

(Jangseob Kim 2020). 
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This iterative nature of ICP ensures convergence, making the algorithm widely adopted 

for its simplicity and reliability. However, the limitations of ICP require practical 

considerations. The success of ICP relies strongly on a good initial alignment, and the 

algorithm is sensitive to outliers and partial overlaps in the data (Biham 2022). Refining 

the data to remove outliers and preprocessing the data into a consistent local coordinate 

system can help mitigate issues with the implementation of ICP. 

 

3.3.1.2  Nonrigid Alignment 

Once they are aligned in shape space, the correspondence between point sets can be 

established. This is accomplished through non-rigid alignment (Golyanik 2020), 

informally known as “deformation” or “morphing”. The simplest nonrigid transformation 

is affine, which allows for anisotropic scaling and skews (Myronenko and Xubo Song 

2010). Affine transformations preserve collinearity and ratios of distances between points 

on a line and can be thought of as the linear “stretching” of a shape (Figure 3-6). 

However, when there are more than k + 1 landmarks in k dimensions, affine 

transformations will not yield an exact fit and a non-affine shape deformation is required 

(Dryden and Mardia 2016). Non-affine shape transformations allow for arbitrary 

deformations within the constraint that point topology is preserved (Figure 3-6). This 

constraint prevents intersections between the displacements of the points and self-

intersections of the surfaces (or volumes) represented by point sets (Golyanik 2020).  
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Figure 3-6: Types of deformation used in point set registration. Taken from Temerinac-

Ott (Temerinac-Ott 2012). 

 

There are various approaches to non-affine shape deformation, including the use of thin-

plate splines, transformation grids, finite element methods, biorthogonal grids, and 

kriging (Dryden and Mardia 2016). Two deformation methods are of interest to this 

project: the Coherent Point Drift (CPD) Algorithm and Generalized Regression Neural 

Networks (GRNN). 

CPD approaches the problem of non-rigid deformation by treating the point sets as 

probability distributions, with one point set representing the Gaussian Mixture Model 

(GMM) centroids and the other representing the data points. It seeks a smooth 

transformation that maximizes the likelihood of the GMM centroid given the data point. 

It does this iteratively through the Expectation-Maximization (EM) algorithm, where in 
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each iteration, it estimates the probability of correspondence between points and adjusts 

the transformation parameters accordingly. A key aspect of CPD is its ability to enforce 

coherent movement of data as a group, preserving the topological structure of point sets 

and ensuring smooth deformation (Myronenko and Xubo Song 2010). CPD's strength lies 

in its ability to reliably handle complex transformations of large data sets. Its probabilistic 

framework allows it to incorporate uncertainty in the data, making it robust even in the 

face of noise, outliers, and missing points. However, its accuracy comes with tradeoffs in 

terms of large RAM requirements and computational time. To mitigate these issues, a 

low-rank matrix approximation can be employed, reducing computational time with only 

a moderate loss of accuracy (Myronenko and Xubo Song 2010). 

Radial Basis Function (RBF) Networks have also been used to successfully address 

non-rigid deformation problems (Zhang, Ackland, and Fernandez 2018; Qingqiong Deng, 

Zhou, and Wu 2010), having demonstrated the ability to deform meshes with errors that 

are significantly smaller than the mesh resolution, even when dealing with complex 

anatomical structures (Zhang, Ackland, and Fernandez 2018). Generalized Regression 

Neural Networks (GRNN) are a type of artificial neural network belonging to the RBF 

family. These networks have gained attention in addressing non-rigid deformation 

challenges, particularly in mesh deformation tasks. Recently, Andreassen et al. proposed 

a GRNN-based method for deformation, which demonstrated improved performance 

compared to existing RBF algorithms. This approach tackles non-rigid deformation 

through two main steps: correspondence and deformation. Like ICP, correspondence is 

established by proximity, employing methods like k-nearest neighbor (KNN) or projected 
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distance search to find the nearest points between two sets. A displacement field created 

from the correspondence is then used to train a GRNN, which predicts desired nodal 

displacements. Following application of the nodal displacements, this iterative process 

continues until convergence is achieved. By initially applying this process to 

downsampled point sets and then using the results to deform the original denser meshes, 

the algorithm can efficiently handle high-density meshes with minimal computational 

overhead (Andreassen et al. 2024). While the decreased computational time of the 

GRNN-based approach presents a significant advantage over CPD, especially in the 

context of meshes with 3D element types, it is worth noting the user involvement 

necessary to tune parameters when using this algorithm. 

 

3.3.2  Establishing Correspondence 

Once the template has been deformed onto the instance, proximity between points on 

each shape can be used as a measure of correspondence (van Kaick et al. 2011). In other 

words, the template points correspond to whichever instance points are closest to them 

post-deformation. Ultimately, the goal of obtaining correspondence is to describe the 

shape of each object using a consistent set of landmarks, allowing for each of the shapes 

to be described in a mathematically consistent manner. This process yields a matrix 

whose columns correspond to the S-vectors describing the shape of each respective object 

in the set. This matrix is termed the Shape Register. 
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3.4  Material Property Registration  

Until now, the construction of statistical models has been discussed primarily in the 

context of shape, which tends to be more straightforward to grasp. However, the 

foundational concept of creating consistent descriptions for comparison is equally 

applicable to bone material properties. Correspondence between the internal locations of 

a bone (or any shape) is assigned by deforming a volumetric mesh with internal nodes 

onto each instance (Grassi, Väänänen, and Isaksson 2021). The elements of this mesh 

serve an analogous role to the points that describe the surface of a shape. For each 

specimen, the pixel or voxel intensities from the Computed Tomography (CT) scan, 

given in Hounsfield Units (HU), corresponding to each element are captured and 

processed. This process results in a matrix where each column consistently describes the 

material properties of a subject (Grassi, Väänänen, and Isaksson 2021): the Material 

Property Register. 

In the realm of Statistical Intensity Models and other FEA related applications, bone 

material properties are typically represented as bone mineral density (BMD), which 

measures the amount of bone mineral per volume of bone (Grassi, Väänänen, and 

Isaksson 2021). To assign these material properties from a CT scan, the relationship 

between BMD and HU must be established. This process is commonly referred to as CT 

Scan Calibration. 

The gold standard of CT scan calibration involves the use of a calibration phantom —

a physical object containing known concentrations of substances like calcium 

hydroxyapatite (CaCO3 or CaHA) or hydrogen dipotassium phosphate (K2HPO4 or 
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KHP) (Figure 3-7a). This phantom is scanned alongside the patient (Figure 3-7b). By 

comparing the known BMD values of mineral samples within the phantom with their 

corresponding HU values obtained from the CT scan, a calibration curve is generated. 

This curve serves as a reference for determining the BMD values of bone structures in the 

scan (Eggermont et al. 2019). 

 

Figure 3-7: (a) CT calibration phantom. Taken from Montaseri et al. (Montaseri, 

Alinaghizadeh, and Mahdavi 2012). (b) Transverse slice of a CT scan taken with a 

calibration phantom 

 

Unfortunately, the use of calibration phantoms in clinical CT scans is not a 

widespread practice due to their limited availability and high cost. To address this issue, a 

phantomless calibration method can be employed to assign material properties from scans 

lacking a phantom. Several approaches have been proposed for phantomless calibration. 

Some studies utilize a calibration function derived from a separate scan containing a 

calibration phantom. Others determine calibration factors based on CT scans with a 

calibration phantom and then apply these factors to scans without phantoms. In these 

cases, BMD can be calculated using a regression model based on previous phantom 

calibration (Eggermont et al. 2019). 
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Another method, like that proposed by Eggermont et al., utilizes scan-specific HU 

values of external air and tissues like fat and muscle for calibration. This involves 

extracting peaks for air, fat, and muscle tissue from a histogram of the HU within a 

standardized region of interest encompassing the patient's leg and surrounding air. These 

CT peaks are then linearly fitted to reference "BMD" values of the corresponding tissues 

to obtain a calibration function (Eggermont et al. 2019). Studies comparing phantom 

calibration with phantomless methods have demonstrated comparable results (Eggermont 

et al. 2019), making phantomless calibration a valuable tool for integrating clinical CT 

scans into statistical intensity models. 

3.5  Dimension Reduction 

Consider now, for a moment, the number of points you would need to accurately 

describe a shape. For a simple two-dimensional (2D) shape like a triangle, you may only 

need a few (read: three) points. However, when considering an irregular three-

dimensional (3D) shape, like the Stanford Bunny in Figure 3-8, tens or even hundreds of 

thousands of points may be needed. Considering that a shape register consists of (n points 

x k dimensions) x p shapes, it is clear how comparisons across multiple instances of a 

complex shape can quickly result in a large dataset.  
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Figure 3-8: The “Stanford Bunny” as described by a point cloud. Taken from the 

Standford 3D Scanning Repository (“The Stanford 3D Scanning Repository,” n.d.). 

 

Understanding and interpreting the contents of a large dataset can be overwhelming, 

impractical, or even impossible. In such cases, reducing the dataset's size can be helpful, 

although care must be taken to minimize information loss. One option for reducing a 

dataset is to choose a subset of the original variables that adequately represent the entire 

pool. An alternative strategy is to build a smaller number of new variables from the 

original ones, so that each of the new variables is constructed from the original ones. 

Although this approach may seem less intuitive than choosing a subset, it offers the 

advantage of achieving a greater reduction in dimensionality for the same amount of 

information loss (Jolliffe 1990). 

Principal Component Analysis (PCA) is the simplest of these variable-building 

techniques, often forming the mathematical basis for dimension reduction of the large 

datasets involved in Statistical Shape and Intensity Models. Its simplicity lies in the fact 
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that each new variable, known as a principal component (PC), is a linear combination of 

the original variables. The first principal component is the linear function that captures 

the maximum possible variance in the data. Subsequently, the second PC is derived to 

maximize variance while ensuring it is uncorrelated with the first PC. Similarly, the third 

PC maximizes variance while being uncorrelated with the first and second PCs, and so 

forth (Jolliffe 1990). Practically, each of these PCs represents a dominant pattern of 

variation in the original data. In the context of shape, each PC signifies a distinct "way" 

in which the shape varies across the dataset, with the first PC explaining the most 

significant way the shape changes and subsequent PCs representing other ways the shape 

changes in order of decreasing importance. The results are analogous when considering 

material properties.  

3.6  Statistical Model Evaluation 

The accuracy of statistical models is dependent on the quality and accuracy of the 

data used to create them, which is impacted by the image resolution and quality, and the 

segmentation and registration processes. The performance of these models is typically 

assessed with compactness, a measure of how much variability is explained in early 

modes, and with a leave-one-out evaluation, which assess the ability of the model to 

describe the behavior of a left-out-subject. Building on these prior measures, Audenaert 

et al. recently introduced a comprehensive set of metrics to assess the effectiveness of 

statistical models: 

• Model compactness: Compactness refers to the variability or dispersion in the 

shape data captured by the statistical model. A compact model suggests that the 
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shape variations within the dataset are well-represented by a small number of 

principal components or shape modes. Compactness is quantified as the 

cumulative explained variance of the Mth eigenmode obtained from the model’s 

covariance matrix decomposition. 

• Model accuracy: Considering the ability to represent instances within the training 

set, this test determines the minimum number of PCs needed to reproduce an 

instance within a specified accuracy threshold, answering questions about how 

much variance is sufficient to build a “good” model. It is computed as the average 

absolute difference between the model description and the original instance for 

each training set subject. 

• Model Generalizability: Like the leave-one-out evaluation, this test evaluates 

whether the sample size of the training set is adequate by assessing how well the 

models can classify unseen data beyond the training set. It involves a series of 

leave-one-out tests on the training data, reporting the average reconstruction error 

of the unseen instance.  

• Model Specificity: Specificity measures the realism of new instances randomly 

generated by the statistical model. It is assessed by generating a large set 

(typically 1000) of virtual instances and computing the difference between each 

virtual instance and its respective closest real sample in the training set. 

The integration of these evaluation metrics enhances understanding of the capabilities 

and limitations of statistical models generated, giving credibility to the claim that they 
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represent a given population and ensuring that they serve their intended purpose in 

practical applications, like medical device development (Audenaert et al. 2019). 
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4.  General Methods 

4.1  Overview 

This section provides a comprehensive overview of the methodologies used in 

constructing and analyzing the statistical shape and intensity model. It covers subject 

selection, scan processing, shape and material property registration, and post-processing. 

While this work builds on previously developed methods, novel methods are highlighted, 

including the development of the New Mexico Decedent Image Database (NMDID)-to-

register pipeline and the GRNN-based registration method. 

4.2  Subject Selection 

The New Mexico Decedent Image Database (NMDID) is a comprehensive dataset 

containing whole-body CT scans and associated metadata for over 15,000 individuals 

who died in New Mexico between 2010 and 2017 (Edgar et al. 2020). This dataset offers 

an invaluable resource for accessing a diverse population of scans. For this work, an 

effort was made to gather a sample representative of the United States population (Barton 

et al., n.d.), including equal number of males and females of various ages from Black or 

African American, Native American, Asian, and Hispanic backgrounds. A sample of 

White subjects were obtained from the training set of an SSIM previously developed at 

the University of Denver (Bayoglu et al. 2020). The NMDID race and ethnicity metrics 

were self-reported by the decedents in the 2010 census. It is important to note that for the 

purposes of this work, "Hispanic" refers to decedents who identified as racially Hispanic, 
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reflecting the usage in the 2010 census where many New Mexicans selected Hispanic as 

an "Other" race option (Edgar et al. 2020). The inclusion criteria for this study required 

subjects to be aged between 25 and 80 years, with a body mass index (BMI) of less than 

40, based on cadaver height and weight. Subjects were excluded if they had a recorded 

history of cancers, tumors, or malignancies, any recorded injuries to the lower limbs, a 

manner of death that could result in lower limb injuries, cadaver decomposition, or severe 

osteoarthritis (OA). 

4.3  Preliminary Scan Assessment 

Each subject file downloaded from the NMDID database contained 26 CT scans. 

Among these, three scans held importance for this project: the “thin bone torso” and “thin 

bone lower extremity” scans, utilized to acquire subject bony geometry, and the “thin, 

soft-tissue lower extremity” scans, used to obtain the subject bony material properties. 

Before processing, a preliminary assessment of each subject's respective scans was 

conducted to check for factors that may render the subject unsuitable for our model’s 

purposes, including the presence of moderate to severe osteoarthritis in the knee joints, 

intraosseous cannulae (typically in the proximal tibia) or orthopedic implants in the lower 

extremity under consideration, or scan artifacts within regions of interest. Both of the 

subject’s lower extremities were considered for use. Only one leg was included per 

subject. However, if neither leg proved appropriate for use, the subject was subsequently 

excluded from further analysis. 
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4.4  Scan Screening and Material Property Calibration 

Pre-processing started by calibrating the "thin soft-tissue lower extremity" scan. Since 

phantoms aren't included in scans from the NMDID database, we utilized a phantomless 

air-fat-muscle calibration method, similar to the one described by Eggermont et al. 

(Eggermont et al. 2019). The process was automated using a MATLAB (MathWorks, 

Natick, MA) script. First, we imported DICOM files. Then, nine slices were chosen for 

calibration. The first slice was the most superior one of the lower extremities that did not 

contain buttock or genital, followed by eight slices inferior to it. On each of these 

selected slices, a square region of interest was defined, encompassing the tissue of one 

leg and some surrounding air (Figure 4-1a). These regions were combined into a volume 

of interest (Figure 4-1b).  

 

Figure 4-1: A visual depiction of the (a) square region of interest selected on each slice 

and (b) the resulting volume of interest from which the scan is calibrated. 

A combined histogram of all Hounsfield units (HU) in the volume of interest was 

generated to identify peaks for air, fat, and muscle tissue (Figure 4-2a). These values 
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were then linearly fitted to the reference "BMD" values for air, fat, and muscle as 

outlined in Eggermont et al. (840, -80, and 30 respectively) (Eggermont et al. 2019), 

resulting in a calibration curve from which the relationship between HU and BMD could 

be derived (Figure 4-2b). 

 

Figure 4-2: (a) An example of a combined histogram of all HU in a volume of interest 

and (b) the resulting air-muscle-fat calibration curve. 

 

The phantomless calibration method was compared to a traditional phantom-based 

calibration approach by applying both methods to calibrate a representative scan. 

Although both methods yielded generally comparable results, small differences were 

observed in the calibration curves, especially in regions with higher pixel intensity 

(Figure 4-3). The maximum difference between the BMD values generated for each pixel 

of the scan using both methods was 96 kg/m^3, occurring in the area of highest bone 

density (Figure 4-4b). This discrepancy is expected, as the phantomless calibration 

method exhibited progressively higher BMD values with increasing pixel intensity 
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compared to the traditional approach (Figure 4-4a). Consequently, it is anticipated that 

the phantomless calibration method will provide denser readings, particularly in the 

cortical regions of the bone. The average difference across all pixel densities in the scan 

was found to be 28 kg/m^3 (Figure 4-4b), which was deemed acceptable. Intersubject 

differences in the calibration curves were also observed using the air-fat-muscle approach 

and similar in magnitude to the differences between the phantom and phantomless 

calibration approaches. 

 

Figure 4-3: Calibration curves generated for a representative scan using both a phantom 

and phantomless calibration method. 
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Figure 4-4: (a) Correlation Plot and (b) Bland-Altman Plot comparing the BMD values 

derived from the phantom and phantomless calibration methods for all pixels in a 

representative scan. 

Calibration was performed as the initial step of pre-processing to avoid wasting time 

processing subjects whose scans could not be calibrated due to homogeneity in HU of 

their fat and muscle. While the use of a soft tissue-specific scan helped mitigate this 

issue, it did not eliminate it. These subjects were excluded from further analysis.  

4.5  Segmentation 

After evaluating and calibrating the scan, the subject's bony geometry was segmented 

from the "thin bone torso" (proximal femur) and "thin bone lower extremity" (distal 

femur, tibia, distal fibula) scans using ScanIP software (Synopsys, Mountain View, CA). 

CT image thresholds were adjusted interactively to isolate the desired tissue, with any 

identified gaps manually reconnected and artifacts removed. Subsequently, the cavities 

were filled, and smoothed masks for each bone were generated. These masks underwent 
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visual inspection to identify and address any artifacts. They were then exported from 

ScanIP as STL files.  

4.6  Landmark Assignment  

The location of nine landmarks necessary for the creation of local coordinate systems 

for the femur and tibia were identified in HyperMesh (Altair, Troy, MI). These landmarks 

provided both local descriptions around the knee, such as the femoral epicondyles and the 

tibial plateaus, and global descriptions of overall alignment, including the hip center and 

ankle center. The center of the femoral head was approximated as the center of a sphere 

surface generated from four manually selected points on its surface (Figure 4-5). To 

identify the medial and lateral epicondyles of the femur, the distal femur was examined in 

the coronal plane, with these landmarks determined as the most medial and lateral points, 

respectively, on the bone's surface (Figure 4-6). The most anterior and posterior edges of 

the tibial medial and lateral plateau were identified through visual inspection of the 

proximal tibia (Figure 4-7). The ankle center was defined as the midpoint of a line 

between the most medial point on the medial malleolus of the distal tibia and the most 

lateral point on the lateral malleolus of the distal fibula when viewed in the coronal plane 

(Figure 4-8). Additionally, although not utilized in coordinate system generation, the 

femur anterior cortex point, marking the transition from convex to concave curvature on 

the anterior surface of the distal femur, was also identified (Figure 4-6). The author notes 

that due to her limited experience in manual landmark identification, there might be 

significant variability in the recorded location of this point. For each instance, landmark 

coordinates were documented in a text file and saved alongside the original HyperMesh 
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file for future reference. It is important to consider potential error resulting from manual 

landmark identification if utilizing this data for purposes beyond local coordinate system 

establishment. Following this, subjects were grouped into “batches” for processing. Each 

"batch" folder housed STL files, landmark text documents, and DICOMs for the included 

subjects, alongside an Excel file containing metadata for all subjects in the batch. 

 

Figure 4-5: A proximal femur viewed in the coronal plane with a sphere whose center 

approximates the center of the femoral head.  
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Figure 4-6: A distal femur viewed in the coronal plane with the anterior cortex point, 

lateral, and medial condyle landmarks identified.  

 

 

Figure 4-7: A proximal tibia viewed in the transverse plane with the posterior and 

anterior landmarks identified on the medial and lateral plateaus. 
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Figure 4-8: A distal fibula and tibia viewed in the coronal plane with the ankle center 

identified.  

4.7  Creation of Local Coordinate Systems 

In a process fully automated in a previously developed MATLAB script, local 

anatomical coordinate systems were created for each of the tibias and femurs in the batch 

using the previously identified landmarks. Left instances and their landmarks were 

mirrored across the sagittal plane. The tibial anatomical coordinate system for each 

instance was established by first defining the medial and lateral plateau centers were 

calculated as the midpoint between the medial-anterior (1) and medial-posterior (2) and 

lateral-anterior (3) and lateral-posterior (4) landmarks, respectively. The origin was 

defined as the midpoint between the two centers and the mediolateral (ML) x-axis as the 

vector from medial plateau center to lateral plateau center. The superior-inferior (SI) z-

axis was defined from the estimated ankle joint center (5) to the origin and pointed 

superiorly. The anteroposterior (AP) y-axis was obtained by crossing the x- and z-axes. 
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The femoral anatomical coordinate system was established based on three bony 

landmarks that were extracted from the template surface geometry: hip joint center (1), 

medial epicondyle (2), and lateral epicondyle (3). The origin was defined as the midpoint 

between the epicondyle landmarks, and the mediolateral (ML) x-axis as the vector from 

medial epicondyle to lateral condyle. The superior-inferior (SI) z-axis was defined as the 

vector passing through the origin and hip joint center and pointed superiorly. The 

anteroposterior (AP) y-axis was obtained by crossing the z- and x-axes. The nodes 

describing the surfaces of the tibia and femur, imported into MATLAB as the previously 

exported STLs, were transformed from the global CT coordinate system into their 

respective anatomical coordinate system along with their corresponding landmarks. The 

transformation matrices defining the transformation between the CT and anatomical 

coordinate systems were retained for future use. This script also processed the relevant 

metadata from the excel sheet into MATLAB, storing it within the same organized 

structure containing the transformed surface data, transformed landmark data, and 

transformation matrices, hereon known as the Prepared Training Set Structure.  

4.8  Template Selection and Meshing 

In a previously built SSIM (Bayoglu et al. 2020), median right tibia and femur were 

selected as the templates and aligned in their local coordinate systems as described above. 

Tibial template meshes were constructed for surfaces (triangular (tri), 0.95 ± 0.16 mm 

edge length, 20,296 nodes and 40,588 tri elements) and solids (tetrahedral (tet), 0.96 ± 

0.14 mm edge length, 239,903 nodes and 1,364,343 tetrahedral elements). The diaphysis 

of the template geometry was resected at a ratio of 1.38 between SI length and ML 
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condylar width. Femoral template meshes were constructed for surfaces (2D, 0.82 ± 0.19 

mm edge length, 49,767 nodes and 99,530 tri elements) and solids (3D, 1.03 ± 0.16 mm 

edge length, 418,569 nodes and 2,337,654 tetrahedral elements). The diaphysis of the 

template geometry was resected at a ratio of 1.74 between SI length and ML condylar 

width. The same tibial and femoral template meshes were used in the construction of the 

current SSIM.  

4.9  Shape Registration 

Shape registration was also conducted in batches using a MATLAB script to fully 

automate the process, employing separate scripts for femurs and tibias. The template 

(data as an Abaqus .inp file) and instance (Prepared Training Set Structure) tri meshes 

were imported into the MATLAB workspace. Since our model is concerned only with the 

proximal and distal portions of the tibia and femur, respectively, the template resection 

ratio was applied to trim the shaft of the instance. This step ensured precise establishment 

of the 1-to-1 correspondence in the shaft region of the bone. While the entire tibia was 

segmented in the NMDID subjects, there were instances where femurs lacked "sufficient 

shaft" to meet the required aspect ratio due to segmentation being done across two scans. 

These cases were subsequently excluded from further analysis. 

After adjusting the instance to the correct SI length, an ICP-based algorithm (Kroon 

2024) was used to first rigidly align the instance to the template and then affinely deform 

the template onto the instance. Following the methods outlined by Andreassen et al. 

(Andreassen et al. 2024), a Generalized Regression Neural Network (GRNN)-based 

algorithm completed the morphing of the template onto the instance. Initially, the 
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algorithm generated reduced point clouds of both the template and the instance by down 

sampling each mesh. Then, the reduced template point cloud was morphed onto the 

reduced instance point cloud through an iterative correspondence and deformation 

process. A GRNN, trained on the nodal displacements between the original reduced 

template and its final morph, was utilized to deform the original template mesh. This 

deformed template mesh was further morphed onto the original instance mesh until 

convergence between the meshes was achieved. The nodal coordinates of the final 

deformed template mesh were recorded as the registered instance tri mesh. Morphing 

error was quantified as the root mean square (RMS) error of the distances between the 

deformed template points and their respective closest point in the instance mesh. 

Following that, another GRNN was trained on the nodal displacements between the 

original template triangular mesh and its final morph. This GRNN was then used to 

predict the nodal displacements of the template tetrahedral (tet) mesh, yielding a one-to-

one correspondence between the triangular mesh and the surface nodes on the tetrahedral 

mesh. This deformation process was carried out incrementally, with continuous updates 

and retraining of the GRNN to ensure the preservation of element integrity throughout 

the process and in the final product. Additionally, to reduce the memory requirements of 

the algorithm, the tet mesh was divided into four quadrants, which were morphed one at a 

time before being recombined into the final morphed tetrahedral mesh, whose nodal 

coordinates were recorded as the registered instance tetrahedral mesh. The morphing 

algorithm can be visualized in Figure 4-10. Morphing error was quantified as the root 

mean square (RMS) error of the distances between the surface points of the deformed 
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template tetrahedral mesh and their respective closest point in the instance tri mesh. Mesh 

quality was evaluated using MATLAB's meshQuality function, which returns a row 

vector of values ranging from 0 to 1 representing the shape quality of all elements in the 

mesh, with 1 indicating optimal element shape. The final mesh quality was reported as 

the number of elements with a shape quality less than or equal to 0.5. The surface 

register, tetrahedral register, original triangular and tetrahedral template meshes, 

landmarks, coordinate system transformations, and metadata were saved in an organized 

structure hereon known as the Shape Register.  
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Figure 4-9: GRNN-based algorithm used to morph the triangular and tetrahedral 

meshes. 
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4.10  Material Property Registration 

Material properties were derived from the CT scan of each instance and were 

assigned to the respective registered tetrahedral meshes using a previously developed 

MATLAB script. Registered meshes were first transformed back into global CT space 

using the established transformations. Material properties for each element were reported 

as apparent bone mineral density. To calculate this, the intensity of the voxel nearest to 

each node was identified and averaged for the nodes in each element. The average 

intensity was then converted to BMD using the subject-specific conversion of HU to 

BMD determined during the scan calibration process and then further converted to 

apparent density using the established relationships shown in the Equations 4-1 to 4-3 

below: 

𝐵𝑀𝐷  =  𝑎 + 𝑏 ⋅ 𝐻𝑈                                 Equation (4-1)   

𝜌𝑎𝑠ℎ   =  𝑘𝑎𝑠ℎ ⋅ 𝐵𝑀𝐷 + 𝑙𝑎𝑠ℎ                            Equation (4-2) 

𝜌𝑎𝑝𝑝  =  
𝜌𝑎𝑠ℎ

𝑚𝑎𝑝𝑝
                                       Equation (4-3) 

where HU is Hounsfield unit, BMD is bone mineral density, a and b are calibration 

constants, 𝜌𝑎𝑠ℎ  and 𝜌𝑎𝑝𝑝 denote the ash and apparent densities, respectively. Conversion 

factors 𝑘𝑎𝑠ℎ , 𝑙𝑎𝑠ℎ , and 𝑚𝑎𝑝𝑝 were adapted from existing literature (J. H. Keyak, Lee, and 

Skinner 1994; Schileo et al. 2007; Joyce H Keyak et al. 2005) and are shown in Table 4-

1. As with the nodal coordinate information, the element material properties for each 

instance were combined into a matrix: the Material Property Register. Figure 4-10 

visualizes the entire registration process from segmentation to Material Property Register 

creation. 
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Table 4-1: Conversion factors used to convert HU to BMD in the Tibia and Femur.  

Value Source Value Source

kash 0.953 Keyak et al. 1994 0.887 Keyak et al.  2005

lash 45.7 Keyak et al. 1994 63.3 Keyak et al.  2005

mapp 0.55 Keyak et al. 1994 0.593 Schileo et al. 2008

Tibia Femur

Conversion Factors



 

 

5
6
 

 

Figure 4-10: Visualization of the registration process from subject segmentation (left) to register creation (right). 
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4.11  Morphological Parameter Calculation 

Morphological parameters were calculated for each tibia and femur instance using 

fully automated, previously developed MATLAB codes based on work from Mahfouz et 

al. (Mahfouz et al. 2012) and Ma et al. (Ma et al. 2017). Parameters calculated for the 

tibia and femur are visualized in Figure 4-11 and Figure 4-12, respectively. These 

measures are further defined in Table 4-2. 

 

 

Figure 4-11: Morphological parameters calculated for the femur. “O” indicates the 

origin. Table 4-2 lists abbreviation and definitions for the illustrated parameters. Taken 

from Bayoglu et al. (Bayoglu et al. 2020).  
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Figure 4-12: Morphological parameters calculated for the tibia. “O” indicates the 

origin. Table 4-2 lists abbreviation and definitions for the illustrated parameters. Taken 

from Bayoglu et al. (Bayoglu et al. 2020). 

 

Table 4-2: Morphological parameters calculated for the tibia and femur instances. Taken 

from Bayoglu et al. (Bayoglu et al. 2020). 

Abbreviation Measurement Definition 

     TIBIA PARAMETERS 

tML 
Mediolateral length of the 
proximal tibia plateau 

Length of the transverse section taken on the proximal tibia 
along the ML axis. The transverse section is perpendicular to 
the SI axis, and the depth of cut is 8 mm below the highest 
plateau center. 

tAP 
Anteroposterior length of the 
proximal tibia plateau 

Length of the transverse section taken on the proximal tibia 
along the AP axis. 

tMAP 
Anteroposterior length of the 
medial proximal tibia plateau 

Length of the line drawn on the transverse section passing 
through the estimated center of the medial tibia plateau and 
directing along the AP axis. 

tLAP 
Anteroposterior length of the 
lateral proximal tibia plateau 

Length of the line drawn on the transverse section passing 
through the estimated center of the lateral tibia plateau and 
directing along the AP axis. 

MPTS Medial tibial posterior slope 
Angle between the tangent line to the medial plateau and the 
AP axis projected on the sagittal plane. 

LPTS Lateral tibial posterior slope 
Angle between the tangent line to the lateral plateau and the 
AP axis projected on the sagittal plane. 
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CS Coronal slope 
Angle between the line passing through medial and lateral 
plateau centers and the ML axis projected on the coronal 
plane. 

PO Posterior overhang 
Angle between the most posterior points of the proximal and 
distal tibia projected on the sagittal plane. 

AS Asymmetry 
Ratio of the anteroposterior lengths of the medial and lateral 
proximal tibia plateaus. 

TMLO Tubercle mediolateral offset 
Mediolateral distance between the most anterior point of the 
proximal tibia (tubercle) and the origin. 

TAPO 
Tubercle anteroposterior 
offset 

Anteroposterior distance between the most anterior point of 
the proximal tibia (tubercle) and the origin. 

TSIO 
Tubercle superior-inferior 
offset 

Superior-inferior distance between the most anterior point of 
the proximal tibia (tubercle) and the origin. 

WS Tibial Spine Width  
Distance between 1mm medially from Lateral Center Point and 
1mm laterally from Medial Center point in ML direction, along 
Tibial Spine.  

WMTP Medial Plateau Width 
Distance from the most medial point of the tibial spine to the 
most medial point of the tibia.  

WLTP Lateral Plateau Width 
Distance from the most lateral point of the tibial spine to the 
most lateral point of the tibia.  

      

     FEMUR PARAMETERS 
TEA Transepicondylar axis length Distance between the medial and lateral epicondyles 

APH 
Anteroposterior height 

Distance between the most anterior aspect of the cortex and 
the midpoint between the most posterior points on the medial 
and lateral condyles 

MAP 
Medial anteroposterior 
height 

Distance between the most anterior and posterior aspects of 
the medial condyle 

LAP 
Lateral anteroposterior 
height 

Distance between the most anterior and posterior aspects of 
the lateral condyle 

AML 
Anterior mediolateral length 

Distance between the two most anterior aspects of the medial 
and lateral condyles 

PML 
Posterior mediolateral length 

Distance between the two most posterior aspects of the 
medial and lateral condyles 

MCW 
Medial condylar mediolateral 
width 

Length of the medial condyle in the mediolateral direction 

LCW 
Lateral condylar mediolateral 
width 

Length of the lateral condyle in the mediolateral direction 

MACOAP 
Medial flange 
anteroposterior offset 

Anteroposterior offset between the most anterior aspect of 
the medial condyle and the most anterior aspect of the cortex 

LACOAP 
Lateral flange 
anteroposterior offset 

Anteroposterior offset between the most anterior aspect of 
the lateral condyle and the most anterior aspect of the cortex 

MACOML 
Medial flange mediolateral 
offset 

Mediolateral offset between the most anterior aspect of the 
medial condyle and the most anterior aspect of the cortex 

LACOML 
Lateral flange mediolateral 
offset 

Mediolateral offset between the most anterior aspect of the 
lateral condyle and the most anterior aspect of the cortex 

PCA 
Posterior condylar angle 

Angle between a line passing through the most posterior 
aspects of the medial and lateral condyles and the ML axis 
projected on the transverse plane 

ACA 
Anterior condylar angle 

Angle between a line passing through the most anterior 
aspects of the medial and lateral condyles and the ML axis 
projected on the transverse plane 

NW Notch width Intercondylar notch width 
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PRMFC 
Posterior radius of medial 
femoral condyle  

Radius along the posterior portion of the medial femoral 
condyle  

ARMFC 
Anterior radius of medial 
femoral condyle  

Radius along the anterior portion of the medial femoral 
condyle  

PARMFC 
Patella radius of medial 
femoral condyle  

Radius along the patellar portion of the medial femoral 
condyle  

HRMFC 
Horizontal radius of medial 
femoral condyle  

Radius along the horizontal portion of the medial femoral 
condyle  

CRMFC 
Coronal radius of medial 
femoral condyle  

Radius along the coronal portion of the medial femoral 
condyle  

PRLFC 
Posterior radius of lateral 
femoral condyle  

Radius along the posterior portion of the lateral femoral 
condyle  

ARLFC 
Anterior radius of lateral 
femoral condyle  

Radius along the anterior portion of the lateral femoral 
condyle  

PARLFC 
Patella radius of lateral 
femoral condyle  

Radius along the patellar portion of the lateral femoral 
condyle  

HRLFC 
Horizontal radius of lateral 
femoral condyle  

Radius along the horizontal portion of the lateral femoral 
condyle  

CRLFC 
Coronal radius of lateral 
femoral condyle  

Radius along the coronal portion of the lateral femoral 
condyle  

PGRFC 
Patella groove radius of 
femoral condyles  

Radius along the patellar groove of the femoral condyles  

ADMFC 
Angle of divergence medial 
femoral condyle  

Angle found for divergence of the medial femoral condyle  

ADLFC 
Angle of divergence of lateral 
femoral condyle  

Angle found for divergence of the lateral femoral condyle  

 

4.12  SSIM Creation 

The Shape Registers, Material Property Registers, and morphological parameters 

from all batches were consolidated into two SSIM superstructures: one for the Tibia and 

another for the Femur. These SSIM superstructures include triangular and tetrahedral 

template data, a triangular shape register (in both matrix and column formats), a 

tetrahedral shape register (also in both matrix and column formats), and a material 

property register, as well as mesh quality parameters, morphological parameters, 

landmark coordinates, transformation matrices, and metadata for all instances. From here, 

principal component analysis was performed individually on both the tri surface registers 

and material property registers, yielding Statistical Shape Models and Statistical Intensity 

Models of the Proximal Tibia and Distal Femur, respectively.  
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4.13  Result Generation and Statistical Analysis 

For each model, metrics including accuracy, compactness, generalizability, and 

specificity were computed across various levels of principal component (PC) inclusion to 

evaluate model quality (Audenaert et al. 2019). Visualization of the first four modes of 

shape and intensity variation in each model was achieved by adjusting the average 

geometry or material properties within +/- 3.0 standard deviations. Additionally, 

correlation coefficients were determined to explore the relationships between modes of 

variation and morphological parameters, among different morphological parameters 

themselves, and between the first ten shape and intensity modes. 

To quantify interpopulation variances in PC scores and morphological parameters, 

unpaired two-sample t-tests were conducted across different sex and race groups, 

including Male/Female (M/F), Asian/Black (A/B), Asian/Hispanic (A/H), Asian/Native 

American (A/NA), Asian/White (A/W), Black/Hispanic (B/H), Black/Native American 

(B/NA), Black/White (B/W), Hispanic/Native American (H/NA), Hispanic/White (H/W), 

and Native American/White (NA/W). Subjects were further categorized into age groups: 

"young" (ages 25-39), "middle" (ages 40-59), and "old" (ages 60-80), with subsequent 

two-sample t-tests performed to compare young age/middle age (YA/MA), young age/old 

age (YA/OA), and middle age/old age (MA/OA). Box plots were employed to visually 

represent distributions of the first four PC scores and select morphological parameters. 

Further, an Analysis of Variance (ANOVA), a statistical method for identifying 

significant differences among group means, was also conducted to investigate inter-group 

differences. The ANOVA method compares the variance within each group to the 
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variance between the groups. If the variance between the groups is significantly greater 

than the variance within the groups, it suggests that there are meaningful differences 

between the group means (Kim 2014). This method allows for the investigation of inter-

group differences while accounting for imbalances in population sizes. The independent 

variables considered in our ANOVA included sex, race, age, height, and BMI, with the 

latter three being continuous variables.   
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5.  Shape Morphology Variation Considering Diverse Populations 

5.1  Introduction 

While patient sex does not significantly impact the outcomes of Total Knee 

Arthroplasty (TKA) (Ritter et al. 2008), differences in outcomes following TKA have 

been observed across different racial and ethnic groups, with minority groups often 

experiencing disproportionately poorer results (Shahid and Singh 2016). The higher rates 

of complications and less significant improvements in patient-reported outcomes among 

minority groups likely stem from a multitude of complex factors, including patient 

factors, provider and healthcare system factors, and societal factors (Hu et al. 2022).   

One potential avenue for improving the generalizability of orthopaedic implants is 

through pre-clinical evaluations that consider patient variability. Finite element analysis 

(FEA) is a common tool utilized in the pre-clinical design phase of orthopedic implants to 

gain insights into bone-implant system behavior. One method to incorporate patient 

variability in FEA models is by employing statistical shape models (SSMs), which are 

statistical representations of the morphology of the bone segment or joint. These models 

help capture variability within a training set of bones or joints, enabling the generation of 

numerous synthetic instances to support population-based FE models (Taylor and 

Prendergast 2015). Importantly, the demographic makeup of this training set influences 

anatomic variability in the synthetic subject pool, emphasizing the necessity of 
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considering the diversity of the training set for the probabilistic analyses to yield results 

representative of the entire population. 

While SSMs have been used with success to compare the morphology of the tibia and 

femur between the sexes (Audenaert et al. 2019; Wise et al. 2016; Bah et al. 2015), the 

difficulty of obtaining population-specific CT scans has limited the construction of SSMs 

based on ethnically and racially diverse training sets. Mahfouz et al. stands out as one of 

few models considering a large diverse population of knees. Their study compared 1000 

adult knees from African American (n = 80), East Asian (n = 80), and White patients of 

European descent (n = 840) using an SSM and identified shape differences not only 

between racial and ethnic groups but also between genders within each race. African 

American females displayed distinct characteristics, such as a deeper patellar groove 

compared to their Caucasian counterparts, while African American males exhibited larger 

femoral and tibial dimensions compared to East Asian males. Moreover, they found that 

males tended to have larger knees across all races and ethnicities (Mahfouz et al. 2015).  

With the goal of continuing to improve the representation of diverse populations, the 

present study focuses on the development of a statistical shape and intensity model of the 

proximal tibia and distal femur based on a diverse library of CT scans, encompassing 

individuals of both sexes from Black or African American, Native American, Hispanic, 

Asian, and White backgrounds. In addition to presenting the model outcomes, key 

anatomic parameters are measured and compared between both sex and racial and ethnic 

groups.  
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5.2  Methods 

5.2.1  Subject Selection 

The New Mexico Decedent Image Database (NMDID) is a comprehensive dataset 

containing whole-body CT scans and associated metadata for over 15,000 individuals 

who died in New Mexico between 2010 and 2017 (Edgar et al. 2020). This dataset offers 

an invaluable resource for accessing a diverse population of scans. For this work, an 

effort was made to gather a sample representative of the United States population (Barton 

et al., n.d.), including equal numbers of males and females of various ages from Black or 

African American, Native American, Asian, and Hispanic backgrounds. A sample of 

White subjects were obtained from the training set of an SSIM previously developed at 

the University of Denver (Bayoglu et al. 2020). The NMDID race and ethnicity metrics 

were self-reported by the decedents in the 2010 census. It is important to note that for the 

purposes of this work, "Hispanic" refers to decedents who identified as racially Hispanic, 

reflecting the usage in the 2010 census where many New Mexicans selected Hispanic as 

an "Other" race option (Edgar et al. 2020). The inclusion criteria for this study required 

subjects to be aged between 25 and 80 years, with a BMI of less than 40, based on 

cadaver height and weight. Subjects were excluded if they had a recorded history of 

cancers, tumors, or malignancies, any recorded injuries to the lower limbs, a manner of 

death that could result in lower limb injuries, cadaver decomposition, or severe 

osteoarthritis. 
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5.2.2  Bone Model Generation 

Each subject file downloaded from the NMDID database contained 26 CT scans. 

Among these, three scans held importance for this project: the “thin bone torso” and “thin 

bone lower extremity” scans. Before processing, a preliminary assessment of each 

subject's respective scans was conducted to check for factors that may render the subject 

unsuitable for our model’s purposes, including the presence of moderate to severe 

osteoarthritis in the knee joints, intraosseous cannulae (typically in the proximal tibia) or 

orthopedic implants in the lower extremity under consideration, or scan artifacts within 

regions of interest, or movement artifacts between the torso and lower extremity scans. 

Both of the subject’s lower extremities were considered for use. Only one leg was 

included per subject. However, if neither leg proved appropriate for use, the subject was 

subsequently excluded from further analysis.  

Subject's bony geometry was then segmented from the "thin bone torso" (proximal 

femur) and "thin bone lower extremity" (distal femur, tibia, distal fibula) scans using 

ScanIP software (Synopsys, Mountain View, CA) and the location of nine key landmarks 

on the femur (hip center, femur medial and lateral epicondyles) and tibia (anterior medial 

plateau, posterior medial plateau, anterior lateral plateau, posterior lateral plateau, ankle 

center) were identified in HyperMesh (Altair, Troy, MI). Left instances were mirrored 

across the sagittal plane. Local anatomical coordinate systems were created using the 

landmarks for each femur and tibia in an automated MATLAB script. The nodes 

describing the surfaces of the tibia and femur were transformed from the global CT 

coordinate system into their respective anatomical coordinate system along with their 
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corresponding landmarks. The transformation matrices defining the transformation 

between the CT and anatomical coordinate systems were retained for future use. 

5.2.3  Template Selection and Meshing 

Using a workflow similar to Fugit et al. (in review), median right tibia and femur 

were selected as the templates and aligned in their local coordinate systems as described 

above. A template mesh was constructed for tibial surfaces (triangular (tri), 0.95 ± 0.16 

mm edge length, 20,296 nodes and 40,588 tri elements) and femoral surfaces (triangular, 

0.82 ± 0.19 mm edge length, 49,767 nodes and 99,530 tri elements). The diaphyses of the 

tibial and femoral template geometries were resected at a ratio of 1.38 and 1.74, 

respectively, between SI length and ML condylar width.  

5.2.4  Mesh Registration and Morphing 

Registration of the instances was fully automated in a MATLAB script, employing 

separate scripts for femurs and tibias. The shafts of the instances were first resected per 

the template aspect ratio. While the entire tibia was segmented in the NMDID subjects, 

there were instances where femurs lacked "sufficient shaft" to meet the required aspect 

ratio due to segmentation being done across two scans. These cases were subsequently 

excluded from further analysis.  

After adjusting the instance to the correct Superior-Inferior length, an Iterative 

Closest Point-based algorithm (Kroon 2024) was used to first rigidly align the instance to 

the template and then affinely deform the template onto the instance. Following the 

methods outlined by Andreassen et al., a Generalized Regression Neural Network 

(GRNN)-based algorithm completed the morphing of the template onto the instance 
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(Andreassen et al. 2024), with nodal coordinates of the final deformed template mesh 

recorded as the registered instance tri mesh.  Each instance served as a row in a matrix 𝑅  

of the form: 𝑅  =  [𝑋1,  𝑋2, … , 𝑋𝑛], where 𝑋𝑖 is a single vector of length 3𝑛  that defines 

the 𝑖 th instance and contains the nodal coordinates (x, y, z) of the 𝑛  nodes describing the 

registered instance. Morphing error was quantified as the root mean square (RMS) error 

of the distances between the deformed template points and their respective closest point 

in the instance mesh. 

5.2.5  Model Generation 

Principal component analysis was performed on the registers, yielding SSMs of the 

proximal tibia and distal femur, respectively. Metrics of accuracy, compactness, 

generalizability, and specificity were computed across various levels of principal 

component (PC) inclusion to evaluate SSM model quality (Audenaert et al. 2019). 

5.2.6  Anatomic Parameter Measurements 

Morphological parameters. Similar to those reported by Mahfouz et al. (Mahfouz et 

al. 2012) and Ma et al. (Ma et al. 2017), were calculated for each tibia and femur instance 

using fully automated MATLAB scripts. Parameters calculated for the tibia and femur 

are visualized in Figure 5-1 and Figure 5-2, respectively. These measures are further 

defined in Table 5-1. 
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Figure 5-1: Morphological parameters calculated for the femur. “O” indicates the 

origin. Table 5-1 lists abbreviation and definitions for the illustrated parameters. Taken 

from Bayoglu et al. (Bayoglu et al. 2020). 
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Figure 5-2: Morphological parameters calculated for the tibia. “O” indicates the origin. 

Table 5-1 lists abbreviation and definitions for the illustrated parameters. Taken from 

Bayoglu et al. (Bayoglu et al. 2020). 

 

Table 5-1: Morphological parameters calculated for the tibia and femur instances. Taken 

from Bayoglu et al. (Bayoglu et al. 2020). 

Abbreviation Measurement Definition 

     TIBIA PARAMETERS 

tML 
Mediolateral length of the 
proximal tibia plateau 

Length of the transverse section taken on the proximal tibia 
along the ML axis. The transverse section is perpendicular to 
the SI axis, and the depth of cut is 8 mm below the highest 
plateau center. 

tAP 
Anteroposterior length of the 
proximal tibia plateau 

Length of the transverse section taken on the proximal tibia 
along the AP axis. 

tMAP 
Anteroposterior length of the 
medial proximal tibia plateau 

Length of the line drawn on the transverse section passing 
through the estimated center of the medial tibia plateau and 
directing along the AP axis. 

tLAP 
Anteroposterior length of the 
lateral proximal tibia plateau 

Length of the line drawn on the transverse section passing 
through the estimated center of the lateral tibia plateau and 
directing along the AP axis. 

MPTS Medial tibial posterior slope 
Angle between the tangent line to the medial plateau and the 
AP axis projected on the sagittal plane. 
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LPTS Lateral tibial posterior slope 
Angle between the tangent line to the lateral plateau and the 
AP axis projected on the sagittal plane. 

CS Coronal slope 
Angle between the line passing through medial and lateral 
plateau centers and the ML axis projected on the coronal 
plane. 

PO Posterior overhang 
Angle between the most posterior points of the proximal and 
distal tibia projected on the sagittal plane. 

AS Asymmetry 
Ratio of the anteroposterior lengths of the medial and lateral 
proximal tibia plateaus. 

TMLO Tubercle mediolateral offset 
Mediolateral distance between the most anterior point of the 
proximal tibia (tubercle) and the origin. 

TAPO 
Tubercle anteroposterior 
offset 

Anteroposterior distance between the most anterior point of 
the proximal tibia (tubercle) and the origin. 

TSIO 
Tubercle superior-inferior 
offset 

Superior-inferior distance between the most anterior point of 
the proximal tibia (tubercle) and the origin. 

WS Tibial Spine Width  
Distance between 1mm medially from Lateral Center Point and 
1mm laterally from Medial Center point in ML direction, along 
Tibial Spine.  

WMTP Medial Plateau Width 
Distance from the most medial point of the tibial spine to the 
most medial point of the tibia.  

WLTP Lateral Plateau Width 
Distance from the most lateral point of the tibial spine to the 
most lateral point of the tibia.  

      

     FEMUR PARAMETERS 
TEA Transepicondylar axis length Distance between the medial and lateral epicondyles 

APH 
Anteroposterior height 

Distance between the most anterior aspect of the cortex and 
the midpoint between the most posterior points on the medial 
and lateral condyles 

MAP 
Medial anteroposterior 
height 

Distance between the most anterior and posterior aspects of 
the medial condyle 

LAP 
Lateral anteroposterior 
height 

Distance between the most anterior and posterior aspects of 
the lateral condyle 

AML 
Anterior mediolateral length 

Distance between the two most anterior aspects of the medial 
and lateral condyles 

PML 
Posterior mediolateral length 

Distance between the two most posterior aspects of the 
medial and lateral condyles 

MCW 
Medial condylar mediolateral 
width 

Length of the medial condyle in the mediolateral direction 

LCW 
Lateral condylar mediolateral 
width 

Length of the lateral condyle in the mediolateral direction 

MACOAP 
Medial flange 
anteroposterior offset 

Anteroposterior offset between the most anterior aspect of 
the medial condyle and the most anterior aspect of the cortex 

LACOAP 
Lateral flange 
anteroposterior offset 

Anteroposterior offset between the most anterior aspect of 
the lateral condyle and the most anterior aspect of the cortex 

MACOML 
Medial flange mediolateral 
offset 

Mediolateral offset between the most anterior aspect of the 
medial condyle and the most anterior aspect of the cortex 

LACOML 
Lateral flange mediolateral 
offset 

Mediolateral offset between the most anterior aspect of the 
lateral condyle and the most anterior aspect of the cortex 

PCA 
Posterior condylar angle 

Angle between a line passing through the most posterior 
aspects of the medial and lateral condyles and the ML axis 
projected on the transverse plane 
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ACA 
Anterior condylar angle 

Angle between a line passing through the most anterior 
aspects of the medial and lateral condyles and the ML axis 
projected on the transverse plane 

NW Notch width Intercondylar notch width 

PRMFC 
Posterior radius of medial 
femoral condyle  

Radius along the posterior portion of the medial femoral 
condyle  

ARMFC 
Anterior radius of medial 
femoral condyle  

Radius along the anterior portion of the medial femoral 
condyle  

PARMFC 
Patella radius of medial 
femoral condyle  

Radius along the patellar portion of the medial femoral 
condyle  

HRMFC 
Horizontal radius of medial 
femoral condyle  

Radius along the horizontal portion of the medial femoral 
condyle  

CRMFC 
Coronal radius of medial 
femoral condyle  

Radius along the coronal portion of the medial femoral 
condyle  

PRLFC 
Posterior radius of lateral 
femoral condyle  

Radius along the posterior portion of the lateral femoral 
condyle  

ARLFC 
Anterior radius of lateral 
femoral condyle  

Radius along the anterior portion of the lateral femoral 
condyle  

PARLFC 
Patella radius of lateral 
femoral condyle  

Radius along the patellar portion of the lateral femoral 
condyle  

HRLFC 
Horizontal radius of lateral 
femoral condyle  

Radius along the horizontal portion of the lateral femoral 
condyle  

CRLFC 
Coronal radius of lateral 
femoral condyle  

Radius along the coronal portion of the lateral femoral 
condyle  

PGRFC 
Patella groove radius of 
femoral condyles  

Radius along the patellar groove of the femoral condyles  

ADMFC 
Angle of divergence medial 
femoral condyle  

Angle found for divergence of the medial femoral condyle  

ADLFC 
Angle of divergence of lateral 
femoral condyle  

Angle found for divergence of the lateral femoral condyle  

 

 

5.2.7  Result Generation and Statistical Analysis 

Visualization of the first four modes of shape and intensity variation in each model 

was achieved by adjusting the average geometry or material properties within +/- 3.0 

standard deviations. Correlation coefficients were determined to explore the relationships 

between modes of variation and morphological parameters and the among different 

morphological parameters themselves.  

To quantify interpopulation variances in PC scores and morphological parameters, 

unpaired two-sample t-tests were conducted across different sex and race groups, 
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including Male/Female (M/F), Asian/Black (A/B), Asian/Hispanic (A/H), Asian/Native 

American (A/NA), Asian/White (A/W), Black/Hispanic (B/H), Black/Native American 

(B/NA), Black/White (B/W), Hispanic/Native American (H/NA), Hispanic/White (H/W), 

and Native American/White (NA/W). Subjects were further categorized into age groups: 

"young" (ages 25-39), "middle" (ages 40-59), and "old" (ages 60-79), with subsequent 

two-sample t-tests performed to compare young age/middle age (YA/MA), young age/old 

age (YA/OA), and middle age/old age (MA/OA). Box plots were employed to visually 

represent distributions of the first four PC scores and select morphological parameters.  

Further, a series of Analysis of Variance (ANOVA) tests were conducted to 

investigate inter-group differences while accounting for imbalances in population sizes. 

The independent variables included sex, race, age, height, and BMI, with the latter three 

being continuous variables. Although the results of this statistical test are preliminary, 

this analysis is important when considering multiple independent variables that could 

potentially impact bone morphology. 

 

5.3  Results 

5.3.1  Femur 

5.3.1.1  Subject Demographics 

Initially, an equal number of scans were identified for each demographic 

category, ensuring balanced representation by sex, race, and a range of ages. However, 

the training set was unevenly reduced due to issues with scan quality, such as limited 
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field of view or poor tissue differentiation for material property assignment, and the 

presence of severe osteoarthritis or osteophytes. 

The resulting training data for the femur represented 111 cases, 55 female and 56 

male, with an average age of 52.8 (+/- 17.3) and 54.7 (+/- 19.1) years, respectively. 

Subjects obtained from the NMDID database (n = 70) came from Asian (n = 13), Black 

or African American (n = 16), Hispanic (n = 18), and Native American (n = 10) 

backgrounds. The remaining subjects (n = 41) included White (n = 38), Hispanic (n = 1), 

and Pacific Islander (n = 1) subjects were derived from a cadaveric training set previously 

developed at the University of Denver. The distribution of the overall subject 

demographics is shown in Table 5-2. Subject age, height, and BMI data by demographic 

are shown in Figure 5-3, Figure 5-4, and Figure 5-5, respectively.
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Table 5-2: Subject demographics for the Femur SSM training set. 

Asian Black or African American Hispanic Native American Pacific Islander White Total
Female 7 12 8 10 0 18 55

Age (Years) 45.7 +/- 19.3 44.3 +/- 12.9 45.1 +/- 17.6 46.5 +/- 10.4 68.2 +/- 12.5 52.8 +/- 17.3
Height (cm) 161.6 +/- 7.3 164.4 +/- 7.9 160.7 +/- 7.7 166.2 +/- 9.6 161.7 +/- 5.6 163.0 +/- 7. 4
BMI (kg/m2) 25.5 +/- 7.6 27.8 +/- 5.7 27.0 +/- 5.6 27.8 +/- 5.5 23.7 +/- 5.9 26.0 +/- 6.0

Male 6 4 11 14 1 20 56
Age (Years) 47 +/- 10.0 50.5 +/- 16.8 41.4 +/- 13.7 39.3 +/- 11.7 77 +/- 0 74.9 +/- 6.3 54.7 +/- 19.1
Height (cm) 171.3 +/- 8.7 174.6 +/- 4.4 172.5 +/- 4.1 175.7 +/- 9.4 165.1 +/- 0 174.4 +/- 8.1 173.9 +/- 7.6
BMI (kg/m2) 25.9 +/- 3.3 27.7 +/- 4.7 28.0 +/- 5.6 29.3 +/- 5.7 29.3 +/- 0 20.5 +/- 4.6 25.4 +/- 6.1

Total 13 16 19 24 1 38 111
Age (Years) 46.3 +/- 15.1 45.8 +/- 13.7 42.9 +/- 15.1 42.3 +/- 11.5 77 +/- 0 71.7 +/- 10.2 53.8 +/- 18.2
Height (cm) 166.1 +/- 9.2 167.0 +/- 8.3 167.5 +/- 8.3 171.8 +/- 10.4 165.1 +/- 0 168.4 +/- 9.4 168.5 +/- 9.3
BMI (kg/m2) 25.7 +/- 5.8 27.8 +/- 5.3 27.5 +/- 5.5 28.6 +/- 5.5 29.3 +/- 0 22.0 +/- 5.4 25.7 +/- 6.1
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Figure 5-3: Distribution of subject age by demographic. 
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Figure 5-4: Distribution of subject BMI by demographic. 
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Figure 5-5: Distribution of subject height by demographic. 

 

5.3.1.2  Model Quality 

Measures of accuracy, compactness, generalizability, and specificity were computed 

to assess model quality. The accuracy of the Femur SSM improved with the inclusion of 

a greater number of principal components (Figure 5-6). Achieving a clinically relevant 

submillimeter distance error of 0.6 mm required the incorporation of five principal 

components. Accuracy achieved by inclusion of the first ten principal components is 

outlined in Table 5-3. Figure 5-7 depicts the cumulative compactness of the Femur SSM, 

indicating that seven principal components were necessary to encompass at least 95% of 

the model variance. The distribution of variance across the first ten principal components 
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is reported in Table 5-3. The generalizability of the model with increasing numbers of 

training set samples is shown in Figure 5-8. With 111 instances, the generalizability and 

specificity of the model were found to be 0.33 +/- 0.06 mm and 0.94+/-0.15 mm, 

respectively (Table 5-4). 

 

Figure 5-6: Accuracy of the Femur SSM with the progressive addition of principal 

components to the model. 
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Figure 5-7: Cumulative compactness of the Femur SSM with increasing number of PC 

modes included.   

 

Table 5-3: Accuracy, variance explained, and cumulative compactness for the first ten 

PCs of the Femur SSM. Desired accuracy and compactness thresholds are highlighted.  

 

Num PCs Accuracy (mm) Variance Explained (%) Cumulative (%)
1 0.86 +/- 0.21 86.10 86.10
2 0.75 +/- 0.17 3.46 89.56
3 0.69 +/- 0.16 1.53 91.09
4 0.64 +/- 0.14 1.24 92.34
5 0.59 +/- 0.11 1.18 93.52
6 0.55 +/- 0.10 0.99 94.51
7 0.52 +/- 0.09 0.53 95.04
8 0.49 +/- 0.09 0.47 95.51
9 0.47 +/- 0.07 0.41 95.92

10 0.45 +/- 0.07 0.34 96.26
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Figure 5-8: Generalizability of the Femur SSM with the progressive addition of training 

samples to the register. 

 

Table 5-4: Generalizability and specificity for the Femur SSM. 

Number of Instances 111
Generalizability (mm) 0.33 +/- 0.06

Specificity (mm) 0.94 +/- 0.15  

 

5.3.1.3  Model Outcomes 

The first four modes of shape variation of the Femur SSM are visualized by 

perturbing the mean geometry at +/- 3.0 standard deviations. Correlation coefficients 
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between modes of variation and morphological parameters (Table 5-5) and between 

morphological parameters (Table 5-6) were calculated. 

Mode 1 (Figure 5-9) described uniform scaling and was highly correlated with 

transepicondylar axis length; medial, lateral and centerline anteroposterior height; 

anterior and posterior mediolateral length; medial and lateral condylar mediolateral 

width; medial flange of anteroposterior offset; anterior, patellar, and coronal radii of the 

medial femoral condyle; coronal, horizontal, and patellar groove radii of the lateral 

femoral condyle, and the angle of divergence of the medial femoral condyle (Table 5-5). 

Mode 2 (Figure 5-10) described a change in the radius in the region of transition from the 

metaphysis to diaphysis and a complementary change in shaft size. It was not highly 

correlated with any morphological parameters but was significantly correlated (p < 0.05) 

with midline and lateral posterior height, medial condylar mediolateral width, notch 

width, and the angle of divergence of the lateral femoral condyle (Table 5-5). Mode 3 

(Figure 5-11) described a change in the anteroposterior size of the condyles, independent 

of the shaft size and width of the condyles, as well as capturing a possible change in 

distal femur angle. Mode 3 was not highly correlated with any morphological parameters 

but was significantly correlated (p < 0.05) with medial, lateral, and centerline 

anteroposterior height, the patellar radius of the lateral femoral condyle, and the angle of 

divergence of the medial and lateral condyles (Table 5-5). Mode 4 (Figure 5-12) 

described primarily the curvature of the posterior portion of the condyles in the transverse 

plane (either towards the midline or away from it). While Mode 4 was not highly 

correlated with any morphological parameters, it was significantly correlated (p < 0.05) 
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with anterior and posterior mediolateral length, the medial condylar mediolateral width, 

the lateral flange mediolateral offset, the posterior and anterior condylar angles, and the 

posterior radius of the medial femoral condyle (Table 5-5).  

 

Figure 5-9: Shape variation in Mode 1 of the Femur SSM. Variation is shown to +/- three 

standard deviations from the mean. 
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Figure 5-10: Shape variation in Mode 2 of the Femur SSM. Variation is shown to +/- 

three standard deviations from the mean. 

 

Figure 5-11: Shape variation in Mode 3 of the Femur SSM. Variation is shown to +/- 

three standard deviations from the mean. 

 

 

Figure 5-12: Shape variation in Mode 4 of the Femur SSM. Variation is shown to +/- 

three standard deviations from the mean. 
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Table 5-5: Correlation coefficients (R) between PC scores and morphological 

parameters. Only statistically significant (p<0.05) correlations are shown. High 

correlations (R> 0.65) are bolded. 

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7
TEA 0.99
APH 0.87 0.21 0.26
MAP 0.90 0.26
LAP 0.89 0.23 0.27
AML 0.68 0.28
PML 0.93 0.24

MCW 0.65 0.36 0.19
LCW 0.79

MACOAP 0.86
LACOAP -0.26 -0.22

MACOML 0.48 0.29
LACOML 0.53 0.20 0.25

PCA 0.55 0.22 -0.33 -0.23
ACA 0.28 -0.19 0.56 0.26
NW 0.21 0.54 0.28

PRMFC 0.56 0.41 -0.23
ARMFC 0.86

PARMFC 0.68
HRMFC 0.60
CRMFC 0.78
PRLFC 0.69
ARLFC 0.82 0.22

PARLFC 0.33 -0.31 -0.31 0.21
HRLFC 0.65
CRLFC 0.86
PGRFC 0.82
ADMFC 0.70 0.19 -0.22
ADLFC -0.28 0.19 -0.26 -0.21
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Table 5-6: Correlation coefficients (R) between morphological parameters. Only statistically significant (p<0.05) correlations are 

shown. High correlations (R> 0.65) are bolded. 

TEA APH MAP LAP AML PML MCW LCW MACOAP LACOAP MACOML LACOML PCA ACA NW PRMFC ARMFC PARMFC HRMFC CRMFC PRLFC ARLFC PARLFC HRLFC CRLFC PGRFC
TEA
APH 0.85
MAP 0.89 0.94
LAP 0.87 0.91 0.92
AML 0.68 0.48 0.52 0.63
PML 0.92 0.80 0.84 0.82 0.68

MCW 0.61 0.62 0.66 0.67 0.60 0.66
LCW 0.77 0.69 0.70 0.72 0.63 0.70 0.46

MACOAP 0.86 0.76 0.81 0.80 0.67 0.86 0.61 0.76
LACOAP 0.27 0.19
MACOML 0.47 0.26 0.38 0.53 0.70 0.48 0.46 0.43 0.51 0.39
LACOML 0.51 0.33 0.37 0.52 0.87 0.54 0.52 0.51 0.53 0.73

PCA 0.57 0.46 0.48 0.43 0.63 0.52 0.35 0.47 0.52 0.42 0.19
ACA 0.27 0.22 0.35 0.27 0.33 0.33 -0.24 0.32 0.30
NW 0.22 -0.59 0.42 0.25 -0.49 0.48

PRMFC 0.58 0.47 0.48 0.46 0.35 0.72 0.42 0.39 0.20 0.38
ARMFC 0.85 0.84 0.86 0.85 0.58 0.80 0.65 0.70 0.80 0.39 0.45 0.45 0.29 0.44

PARMFC 0.65 0.64 0.66 0.66 0.38 0.66 0.41 0.63 0.64 0.38 0.31 0.28 0.21 0.32 0.57
HRMFC 0.60 0.61 0.66 0.58 0.31 0.56 0.47 0.59 0.61 0.22 0.21 0.36 0.25 0.58 0.51
CRMFC 0.75 0.69 0.70 0.72 0.59 0.70 0.46 0.97 0.74 0.19 0.42 0.47 0.46 0.71 0.67 0.60
PRLFC 0.66 0.55 0.54 0.61 0.57 0.60 0.38 0.90 0.63 0.25 0.39 0.45 0.46 0.56 0.57 0.46 0.90
ARLFC 0.79 0.79 0.81 0.82 0.55 0.79 0.65 0.66 0.79 0.44 0.43 0.42 0.27 0.43 0.84 0.58 0.59 0.67 0.54

PARLFC -0.23 -0.26 0.20 -0.29 -0.27
HRLFC 0.65 0.61 0.63 0.70 0.59 0.61 0.46 0.58 0.59 0.21 0.57 0.54 0.32 0.22 0.30 0.58 0.49 0.38 0.55 0.53 0.57
CRLFC 0.87 0.76 0.80 0.78 0.64 0.86 0.59 0.72 0.89 0.50 0.51 0.50 0.31 0.46 0.75 0.64 0.54 0.71 0.64 0.71 0.62
PGRFC 0.82 0.72 0.78 0.74 0.61 0.79 0.52 0.75 0.87 0.43 0.45 0.54 0.28 0.39 0.74 0.58 0.58 0.73 0.64 0.66 0.57 0.88
ADMFC 0.68 0.81 0.73 0.69 0.31 0.67 0.40 0.60 0.61 0.34 0.43 0.63 0.61 0.55 0.61 0.53 0.63 0.46 0.63 0.57
ADLFC -0.22 -0.55 -0.27 -0.27 -0.57 -0.82 -0.32 -0.30 0.26 -0.23 -0.23 0.39 -0.35
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5.3.1.4  Interpopulation Comparisons  

The sex and racial distribution of the scores pertaining to the first four principal 

components are depicted in Figure 5-13 (PC1 and PC2) and Figure 5-14 (PC3 and PC4). 

To quantify interpopulation differences in PC scores and morphological parameters, 

unpaired two-sample t-tests and a series of ANOVA tests were conducted. Table 5-7 

displays the p-values resulting from t-tests with significant differences (p < 0.05) between 

two populations. Boxplots illustrating the distribution of PCs one through four and select 

morphological populations across sex, race, and age categories are shown in Figure 5-15 

through Figure 5-41. Significant differences (p < 0.05) in these plots are indicated by a 

red bar. Table 5-8 displays significant p-values (p < 0.05) resulting from a series of 

ANOVA tests for each PC or morphological parameter considering sex, race, age, height, 

and BMI. 



 

88 

 

Figure 5-13: Sex and racial distribution of PC 1 and PC 2 scores of the Femur SSM. 

 

Figure 5-14: Sex and racial distribution of PC 3 and PC 4 scores of the Femur SSM. 

Table 5-7: P-values derived from unpaired two-sample t-tests indicating significant 

differences (p < 0.05) between populations. Highly significant differences (p < 0.001) are 

shown in bold.  
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M/F A/B A/H A/NA A/W B/H B/NA B/W H/NA H/W NA/W YA/MA YA/OA MA/OA
PC 1 5.06E-21 3.60E-02 1.09E-02 3.18E-02 8.55E-03
PC 2 3.50E-02 4.91E-02
PC 3 6.98E-03 4.09E-02
PC 4
PC 5 4.95E-02
PC 6 3.61E-02
PC 7
TEA 1.14E-22 4.92E-02 2.31E-02 4.25E-02 1.87E-02
APH 8.56E-12 1.11E-02 2.51E-02
MAP 4.42E-13 2.44E-02 4.63E-02
LAP 2.11E-12 9.50E-03
AML 1.11E-12 2.01E-02
PML 7.76E-18 1.52E-02 1.77E-02

MCW 2.52E-07
LCW 1.44E-13 1.92E-02 2.78E-03 3.36E-03 1.68E-03

MACOAP 2.08E-20 1.64E-02 4.32E-02
LACOAP

MACOML 1.83E-05
LACOML 1.12E-05 1.76E-02 5.77E-03

PCA 3.97E-12
ACA
NW 4.29E-02

PRMFC 3.31E-06 3.31E-02
ARMFC 1.06E-13 6.33E-03 2.56E-03 3.47E-02

PARMFC 5.89E-09 2.69E-02 1.18E-03 3.30E-02 4.87E-03
HRMFC 7.57E-08 4.94E-02 1.38E-02
CRMFC 1.58E-12 8.16E-03 1.07E-03 3.34E-02 4.04E-03 1.81E-03
PRLFC 3.59E-13 1.98E-02 4.24E-02 3.27E-02 4.80E-03 1.56E-02 4.73E-03

ARLFC 3.43E-13 9.63E-03 2.18E-02

PARLFC

HRLFC 6.44E-08

CRLFC 8.31E-17 1.42E-02

PGRFC 2.28E-16 4.92E-02 1.98E-02

ADMFC 3.85E-06 4.34E-03 3.87E-02 1.61E-04 1.94E-02 3.15E-02

ADLFC 1.65E-02 1.22E-03 9.58E-03
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Figure 5-15: Femur SSM PC 1 score by subject sex. 

 

 

Figure 5-16: Femur SSM PC 1 score by subject age. 
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Figure 5-17: Femur SSM PC 1 score by subject race. 
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Figure 5-18: Femur SSM PC 2 score by subject sex. 

 

 

Figure 5-19: Femur SSM PC 2 score by subject age. 
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Figure 5-20: Femur SSM PC 2 score by subject race. 
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Figure 5-21: Femur SSM PC 3 score by subject sex. 

 

 

Figure 5-22: Femur SSM PC 3 score by subject age. 
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Figure 5-23: Femur SSM PC 3 score by subject race. 
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Figure 5-24: Femur SSM PC 4 score by subject sex. 

 

 

Figure 5-25: Femur SSM PC 4 score by subject age. 
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Figure 5-26: Femur SSM PC 4 score by subject race. 
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Figure 5-27: Transepicondylar axis length by subject sex. 

 

 

Figure 5-28: Transepicondylar axis length by subject age. 
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Figure 5-29: Transepicondylar axis length by subject race. 
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Figure 5-30: Posterior radius of the medial femoral condyle by subject sex.  

 

 

Figure 5-31: Posterior radius of the medial femoral condyle by subject age. 
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Figure 5-32: Posterior radius of the medial femoral condyle by subject race. 
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Figure 5-33: Anterior radius of the medial femoral condyle by subject sex. 

 

 

Figure 5-34: Anterior radius of the medial femoral condyle by subject race. 
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Figure 5-35: Anterior radius of the medial femoral condyle by subject race.
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Figure 5-36: Posterior radius of the lateral femoral condyle by subject sex. 

 

 

Figure 5-37: Posterior radius of the lateral femoral condyle by subject age. 
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Figure 5-38: Posterior radius of the lateral femoral condyle by subject race. 
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Figure 5-39: Anterior radius of the lateral femoral condyle by subject sex. 

 

 

Figure 5-40: Aneterior radius of the lateral femoral condyle by subject age. 
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Figure 5-41: Anterior radius of the lateral femoral condyle by subject race. 
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Table 5-8: ANOVA-derived p-values indicating significant differences (p < 0.05) between 

populations. Highly significant differences (p < 0.001) are shown in bold. 

Sex Age Race Height BMI
PC 1 2.09E-11 3.10E-02 5.40E-06
PC 2 5.39E-05 2.08E-03 2.89E-02 2.22E-04
PC 3
PC 4
PC 5
PC 6
PC 7 4.94E-02
TEA 9.82E-13 3.02E-02 5.98E-05
APH 1.59E-04 4.53E-05
MAP 1.02E-04 2.17E-06
LAP 1.22E-04 1.26E-06
AML 8.06E-06 4.26E-03
PML 1.33E-09 2.12E-04
MCW 1.89E-10
LCW 9.94E-07 1.00E-02 1.42E-02
MACOAP 1.69E-11 9.14E-03
LACOAP
MACOML 3.19E-02 1.83E-02
LACOML 2.94E-02 1.74E-02
PCA 1.22E-06
ACA
NW
PRMFC 1.25E-03
ARMFC 4.23E-05 7.38E-07
PARMFC 6.12E-04 1.29E-02
HRMFC 9.10E-06 4.23E-03
CRMFC 4.27E-06 4.48E-02 9.02E-03
PRLFC 2.61E-07 4.91E-02
ARLFC 3.80E-05 1.24E-06
PARLFC
HRLFC 2.13E-03 2.23E-02
CRLFC 5.11E-08 2.73E-03
PGRFC 4.38E-09
ADMFC 1.37E-02 2.81E-02
ADLFC
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5.3.2  Tibia 

5.3.2.1  Subject Demographics 

Initially, an equal number of scans were evaluated for each demographic 

category, ensuring balanced representation by sex, race, and a range of ages. However, 

the training set was unevenly reduced due to issues with scan quality, such as limited 

field of view or poor tissue differentiation for material property assignment, and the 

presence of severe osteoarthritis or osteophytes. 

The resulting training data for the tibia represented 115 cases, 58 female and 57 

male, with an average age of 52.7 (+/- 16.9) and 54.1 (+/- 18.5) years, respectively. 

Subjects obtained from the NMDID database (n = 72) came from Asian (n = 13), Black 

or African American (n = 17), Hispanic (n = 18), and Native American (n = 26) 

backgrounds. The remaining subjects (n = 42) included White (n = 41) and Hispanic (n = 

1) subjects and were derived from a cadaveric training set previously developed the 

University of Denver. The distribution of the overall subject demographics is shown in 

Table 5-9. Subject age, height, and BMI data by demographic are shown in Figure 5-42, 

Figure 5-43, and Figure 5-44, respectively



 

 

1
1
0
 

 

 

 

Table 5-9: Subject demographics for the Tibia SSM training set. 

 

 

Asian Black or African American Hispanic Native American White Total
Female 7 13 7 11 20 58

Age (Years) 45.7 +/- 19.3 46.6 +/- 15.0 41.0 +/- 14.3 46.5 +/- 9.9 66.6 +/- 12.7 52.7 +/- 16.9
Height (cm) 161.6 +/- 7.3 164.8 +/- 7.6 159.9 +/- 8.0 165.7 +/- 9.2 162.0 +/- 6.4 163.0 +/- 7.5
BMI (kg/m2) 25.5 +/- 7.6 27.6 +/- 5.5 25.8 +/- 4.9 28.1 +/- 5.3 24.6 +/- 6.9 26.2 +/- 6.2

Male 6 4 11 15 21 57
Age (Years) 47 +/- 10.0 43.0 +/- 6.2 41.4 +/- 13.7 41.2 +/- 13.5 74.0 +/- 6.2 54.1 +/- 18.5
Height (cm) 171.3 +/- 8.7 174.0 +/- 3.3 172.5 +/- 4.1 175.2 +/- 9.3 174.8 +/- 8.0 174.0 +/- 7.5
BMI (kg/m2) 25.9 +/- 3.3 26.2 +/- 3.7 28.0 +/- 5.6 29.1 +/- 5.5 21.0 +/- 4.9 25.3 +/- 6.0

Total 13 17 18 26 41 115
Age (Years) 46.3 +/- 15.1 45.8 +/- 13.4 41.2 +/- 13.5 43.5 +/- 12.2 70.4 +/- 10.5 53.4 +/- 17.7
Height (cm) 166.1 +/- 9.2 167.0 +/- 7.8 167.6 +/- 8.5 171.2 +/- 10.2 168.5 +/- 9.6 168.5 +/- 9.3
BMI (kg/m2) 25.7 +/- 5.8 27.2 +/- 5.1 27.1 +/- 5.3 28.7 +/- 5.4 22.8 +/- 6.2 25.8 +/- 6.1
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Figure 5-42: Distribution of subject age by demographic. 
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Figure 5-43: Distribution of subject BMI by demographic. 
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Figure 5-44: Distribution of subject height by demographic. 

 

 

5.3.2.2  Model Quality 

As with the Femur SSM, the accuracy of the Tibia SSM improved with the inclusion 

of a greater number of principal components (Figure 5-45). Achieving the clinically 

relevant submillimeter distance error of 0.6 mm required the incorporation of four 

principal components. Accuracy achieved by inclusion of the first ten principal 

components is outlined in Table 5-10. Figure 5-46 depicts the cumulative compactness of 

the Femur SSM, indicating that 14 principal components were necessary to encompass at 

least 95% of the model variance. The distribution of variance across the first ten principal 
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components is reported in Table 5-10. The generalizability of the model with increasing 

numbers of training set samples is shown in Figure 5-47. With 115 instances, the 

generalizability and specificity of the model were found to be 0.34 +/- 0.04 mm and 0.87 

+/-0.15 mm, respectively (Table 5-11). 

 

 

Figure 5-45: Accuracy of the Tibia SSM with the progressive addition of principal 

components to the model. 
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Figure 5-46: Cumulative compactness of the Tibia SSM for increasing number of PCs 

included. 
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Table 5-10: Accuracy, variance explained, and cumulative compactness for the first ten 

PCs of the Tibia SSM. Desired accuracy and compactness thresholds are highlighted. 

 

Num PCs Accuracy (mm) Variance Explained (%) Cumulative (%)
1 0.77 +/- 0.17 82.06 82.06
2 0.69 +/- 0.12 3.72 85.78
3 0.64 +/- 0.11 1.99 87.77
4 0.60 +/- 0.10 1.44 89.21
5 0.57 +/- 0.09 1.11 90.33
6 0.54 +/- 0.08 0.98 91.31
7 0.51 +/- 0.07 0.94 92.25
8 0.49 +/- 0.06 0.55 92.80
9 0.48 +/- 0.06 0.48 93.28

10 0.46 +/- 0.06 0.45 93.73
11 0.44 +/- 0.05 0.43 94.16
12 0.43 +/- 0.05 0.38 94.54
13 0.42 +/- 0.05 0.35 94.89
14 0.40 +/- 0.04 0.29 95.19
15 0.39 +/- 0.04 0.26 95.44
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Figure 5-47: Generalizability of the Tibia SSM with the progressive addition of training 

samples to the register. 

 

Table 5-11: Generalizability and specificity for the Tibia SSM. 

Number of Instances 115
Generalizability (mm) 0.34 +/- 0.04

Specificity (mm) 0.87 +/- 0.15  

 

5.3.2.3  Model Outcomes 

The first four modes of shape variation of the Tibia SSM were visualized by 

perturbing the mean geometry at +/- 3.0 standard deviations. Correlation coefficients 



 

118 

between modes of variation and morphological parameters (Table 5-12) and between 

morphological parameters (Table 5-13) were calculated. 

Mode 1 (Figure 5-48) depicted uniform scaling and exhibited strong correlations with 

various morphological parameters, including the size of the proximal tibia plateau, 

medial and lateral tibial posterior slopes, tubercle anteroposterior offset, tibial spine 

width, and medial plateau width (Table 5-12). Mode 2 (Figure 5-49) described a change 

in the “neck” of the tibia and a corresponding change in shaft size. While not highly 

correlated with any morphological parameters, Mode 2 was significantly correlated (p < 

0.05) with posterior overhang and tubercle anteroposterior offset (Table 5-12). Mode 3 

(Figure 5-50) described the sagittal plane "shelfiness" of the tibia and a lateralization of 

the tubercle. Although not strongly correlated with any morphological parameters, Mode 

3 showed significant correlations (p < 0.05) with the anteroposterior length of the 

proximal tibia plateau, medial slope of the tibial plateau, posterior overhang, tubercle 

position, and the width of the medial and lateral plateaus (Table 5-12). Mode 4 (Figure 

5-51) primarily described a medialization of the tubercle and was significantly correlated 

(p < 0.05) to the anteroposterior length of the proximal tibial plateau, the lateral tibial 

posterior slope, tibial asymmetry, anteroposterior and superior-inferior tubercle offset, 

and the lateral plateau width (Table 5-12).  
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Figure 5-48: Shape variation in Mode 1 of the Tibia SSM. Variation is shown to +/- three 

standard deviations from the mean. 

 

 

Figure 5-49: Shape variation in Mode 2 of the Tibia SSM. Variation is shown to +/- three 

standard deviations from the mean. 
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Figure 5-50: Shape variation in Mode 3 of the Tibia SSM. Variation is shown to +/- three 

standard deviations from the mean. 

 

 

Figure 5-51: Shape variation in Mode 4 of the Tibia SSM. Variation is shown to +/- three 

standard deviations from the mean. 

 



 

121 

Table 5-12: Correlation coefficients (R) between PC scores and morphological 

parameters. Only statistically significant (p < 0.05) correlations are shown. High 

correlations (R > 0.65) are bolded. 

 

 

Table 5-13: Correlation coefficients (R) between tibia morphological parameters. Only 

statistically significant (p < 0.05) correlations are shown. High correlations (R > 0.65) 

are bolded. 

 

 

5.3.2.4  Interpopulation Comparisons 

The sex and racial distribution of the scores pertaining to the first four principal 

components are depicted in Figure 5-52 (PC1 and PC2) and Figure 5-53 (PC3 and PC4). 

PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9 PC 10 PC 11 PC 12 PC 13 PC 14
tML -0.99
tAP -0.84 -0.20 0.19 -0.18

tMAP -0.90
tLAP -0.86 0.21 -0.19
MPTS 0.35 -0.21 0.22 -0.21 -0.37 0.25
LPTS -0.19 0.22 -0.27 -0.27
CS 0.40 -0.29 -0.46 0.19
PO 0.28 -0.36 0.21 -0.24 0.19 0.25 -0.21
AS -0.27 0.20 0.30 0.35

TMLO -0.27 -0.28 -0.20 0.26
TAPO -0.85 -0.23 -0.19 0.24
TSIO -0.40 0.19
WS -0.40 -0.32 0.19 0.27

WMTP -0.86 -0.27
WLTP -0.64 -0.18 0.26 0.20 -0.20

tML tAP tMAP tLAP MPTS LPTS CS PO AS TMLO TAPO TSIO WS WMTP WLTP
tML
tAP 0.82

tMAP 0.88 0.82
tLAP 0.84 0.83 0.83
MPTS -0.33 -0.40 -0.31 -0.32
LPTS 0.20 0.19 0.23
CS -0.22
PO -0.23
AS 0.24 -0.34 0.33

TMLO 0.27 0.25 0.26 0.24 0.23
TAPO 0.82 0.81 0.77 0.78 -0.22 0.24 0.27
TSIO 0.22 0.19
WS 0.40 0.24 0.29 0.24 0.41 0.35

WMTP 0.86 0.68 0.84 0.73 -0.28 0.34 0.68 0.18
WLTP 0.66 0.63 0.59 0.64 -0.29 -0.40 0.28 0.55 -0.36 0.55
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To quantify interpopulation differences in PC scores and morphological parameters, 

unpaired two-sample t-tests and a series of ANOVA tests were conducted. Table 5-14 

displays the p-values resulting from t-tests with significant differences (p < 0.05) between 

two populations. Boxplots illustrating the distribution of PCs one through four and select 

morphological populations across sex, race, and age categories are shown in Figures 5-49 

to 5-75. Significant differences (p < 0.05) in these plots are indicated by a red bar. The 

sex and racial distribution of the anteroposterior and mediolateral lengths of the proximal 

tibial plateau are shown in Figure 5-81. Table 5-15 displays significant p values (p < 

0.05) resulting from ANOVA tests for each PC or morphological parameter considering 

sex, race, age, height, and BMI. 

 

 

Figure 5-52: Sex and racial distribution of PC 1 and PC 2 scores of the Tibia SSM. 
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Figure 5-53: Sex and racial distribution of PC 3 and PC 4 scores of the Tibia SSM. 

Table 5-14: P-values derived from unpaired two-sample t- tests indicating significant 

differences (p < 0.05) between populations. Highly significant differences (p < 0.001) are 

shown in bold. 

M/F A/B A/H A/NA A/W B/H B/NA B/W H/NA H/W NA/W YA/MA YA/OA MA/OA
PC 1 3.10E-25 4.05E-02
PC 2 3.08E-02 4.28E-02 4.04E-02
PC 3 4.40E-02 2.60E-02
PC 4
PC 5 3.18E-02
PC 6
PC 7 4.04E-02
PC 8 6.17E-03 2.33E-03 3.05E-02 2.81E-02 3.72E-02
PC 9

PC 10 3.50E-02 1.07E-02
PC 11 5.37E-03 4.10E-04
PC 12 8.19E-03 4.73E-03 2.83E-02 2.12E-05 2.07E-03 1.49E-03
PC 13 1.80E-02
PC 14 3.20E-02 2.77E-02

tML 5.64E-26 4.91E-02
tAP 1.32E-12 3.94E-02

tMAP 1.80E-15 4.43E-02 4.59E-02 3.15E-02
tLAP 1.00E-12
MPTS 7.86E-05 3.25E-02
LPTS 3.66E-02 2.89E-03 1.90E-03
CS 4.02E-02 4.24E-02
PO 4.61E-02 3.52E-02
AS 2.54E-02 3.84E-02

TMLO 2.48E-02
TAPO 1.87E-12 2.19E-02 6.98E-03

TSIO 3.55E-02 7.02E-05 3.36E-02 3.15E-02 5.72E-03

WS 3.94E-04 2.49E-02 4.30E-02

WMTP 1.38E-16 4.58E-02

WLTP 8.93E-10 4.07E-02
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Figure 5-54: Tibia SSM PC 1 score by subject sex. 

 

 

Figure 5-55: Tibia SSM PC 1 score by subject age. 
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Figure 5-56: Tibia SSM PC 1 score by subject race. 
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Figure 5-57: Tibia SSM PC 2 score by subject sex. 

 

 

Figure 5-58: Tibia SSM PC 2 score by subject age. 
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Figure 5-59: Tibia SSM PC 2 score by subject race. 
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Figure 5-60: Tibia SSM PC 3 score by subject sex. 

 

 

Figure 5-61: Tibia SSM PC 3 score by subject age. 
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Figure 5-62: Tibia SSM PC 3 score by subject race. 
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Figure 5-63: Tibia SSM PC 4 score by subject sex. 

 

 

Figure 5-64: Tibia SSM PC 4 score by subject age. 



 

131 

 

Figure 5-65: Tibia SSM PC 4 score by subject race. 
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Figure 5-66: Anteroposterior length of the tibial plateau by subject sex. 

 

 

Figure 5-67: Anteroposterior length of the tibial plateau by subject age. 



 

133 

 

Figure 5-68: Anteroposterior length of the tibial plateau by subject race. 
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Figure 5-69: Mediolateral length of the tibial plateau by subject sex. 

 

 

Figure 5-70: Mediolateral length of the tibial plateau by subject age. 
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Figure 5-71: Mediolateral length of the tibial plateau by subject race. 
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Figure 5-72: Posterior overhang (in degrees) by subject sex. 

 

 

Figure 5-73: Posterior overhang (in degrees) by subject age. 
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Figure 5-74: Posterior overhang (in degrees) by subject race. 
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Figure 5-75: Medial tibial posterior slope by subject sex. 

 

 

Figure 5-76: Medial tibial posterior slope by subject age. 
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Figure 5-77: Medial tibial posterior slope by subject race. 
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Figure 5-78: Lateral tibial posterior slope by subject sex. 

 

 

Figure 5-79: Lateral tibial posterior slope by subject age. 
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Figure 5-80: Lateral tibial posterior slope by subject race.  
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Figure 5-81: Sex and racial distribution of the anteroposterior and mediolaterial lengths 

of the proximal tibia plateau.  
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Table 5-15: ANOVA-derived p-values derived indicating significant differences (p < 

0.05) between populations. Highly significant differences (p < 0.001) are shown in bold. 

 

5.4  Discussion 

Prior to discussing the outcomes of the model, it is important to first consider: “Is this 

model a valid representation of the training set population?” This question is addressed 

using four metrics: accuracy, compactness, generalizability, and specificity. 

Sex Age Race Height BMI
PC 1 3.61E-14 3.27E-07
PC 2 2.20E-06 2.55E-02 3.30E-05
PC 3
PC 4
PC 5
PC 6
PC 7
PC 8 6.43E-03
PC 9
PC 10 2.55E-02
PC 11 4.47E-03
PC 12 3.08E-02
PC 13
PC 14
tML 2.33E-15 8.06E-06
tAP 4.18E-04 1.17E-06
tMAP 5.07E-06 1.26E-05
tLAP 1.13E-04 1.77E-05
MPTS 3.83E-02
LPTS 1.59E-02
CS
PO 3.56E-02
AS
TMLO 1.86E-02 4.02E-03
TAPO 8.67E-05 1.96E-04
TSIO
WS 2.67E-03
WMTP 2.08E-07 1.65E-04
WLTP 4.94E-04 4.27E-03
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Both the femur and tibia models successfully recreated subjects with a clinically 

relevant submillimeter (image resolution size) distance error of 0.6 mm, using five (Table 

5-3) and four (Table 6-3) principal components, respectively. Additionally, both models 

demonstrated compactness (Figure 5-7 and Figure 6-6), requiring seven (femur) and 

fourteen (tibia) principal components to encompass 95% of the variance in the data. For 

both models, the first and most dominant principal component (PC) represented size, 

explaining 86.10% (femur) and 82.06% (tibia) of the variance in the training set. This 

finding is in line with those of previous SSMs (Audenaert et al. 2019; Fugit, Bayoglu, 

and Laz (in review)). Subsequent PCs explained decreasing amounts of variance, with no 

single PC accounting for more than 4% of the variance in either the Femur (Table 5-3) or 

Tibia (Table 5-10) SSM.  

Generalization accuracy was assessed through a leave-one-out analysis, which 

evaluated how well the model represented other unseen bones in the same class. With 

111 femur and 115 tibia subjects, the generalization accuracy for the Femur SSM (0.33 ± 

0.06 mm) and Tibia SSM (0.34 ± 0.04 mm) was below the 0.6 mm threshold. However, it 

should be noted that the number of subjects included in each model is below the 200 

subjects required for convergence of the generalizability (Audenaert et al. 2019), and this 

is reflected in the lack of clear convergence of the reconstruction error even when the full 

training set was included (Figure 5-8 and Figure 5-47). This indicates that while our 

model is generalizable within clinically relevant accuracy, the inclusion of more subjects 

is necessary to sufficiently capture the true population variance, particularly given the 
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diverse populations included in our model. Both models also demonstrated the ability to 

generate realistic new bone instances, as evidenced by sub-millimeter specificity ( 

Table 5-4 and Table 5-11). 

T-tests revealed significant size differences (PC 1) between the sexes in both the tibia 

(p = 3.10E-25) and femur (p = 5.06E-21). This agreed with the results of the ANOVA (p 

= 1.08E-11 and p = 3.61E-14 for the femur and tibia, respectively) and was consistent 

with the findings of Audenaert et al. (Audenaert et al. 2019). Size showed strong 

correlations with morphometric distance parameters in both the femur (Table 5-5) and 

tibia (Table 5-12). Consequently, it is unsurprising that significant sex differences were 

also found in these parameters using both t-tests (Table 5-7 and Table 5-14) and ANOVA 

(Table 5-8 and Table 5-15), such as TEA of the femur (Figure 5-27) and the AP (Figure 

5-66) and ML (Figure 5-69) lengths of the tibial plateau. 

Differences between racial and ethnic groups, while present, were less pronounced. 

Scatter plots for the PC scores, Figure 5-13 and Figure 5-14 for the femur and Figure 

5-52 and Figure 5-53 for the tibia did not show strong trends with race. In the femur, t-

tests revealed significant (p < 0.05) size differences between Asian subjects and White 

subjects, Blacks or African American subjects and White subjects, Asian subjects and 

Native American subjects, and Blacks or African American subjects and Native 

Americans subjects in the femur (Figure 5-17). These size differences translated into 

differences in morphometric parameters, with the TEA length differing significantly 

between these groups (Figure 5-29). In contrast to the t-tests, ANOVA did not reveal 

size-based differences between racial groups (Table 5-8 and Table 5-15); the differences 
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in the findings of the statistical tests are likely influenced by the small sample sizes and 

differences in sex composition in the subgroups. The ANOVA results agreed with the 

findings of Mahfouz et al., who found no significant difference in TEA length between 

Asian subjects and White subjects or Black or African American subjects and White 

subjects (Mahfouz et al. 2012). T-tests also identified differences between Black or 

African American and White subjects in APH, MAP, and PML (Table 5-7), which were 

not shown by ANOVA or by Mahfouz et al. (2012). However, differences in tibial 

metrics tML and tAP found by Mahfouz et al. were confirmed by t-tests (Table 6-6), as 

were femoral metric differences between Asians and Whites (APH, MAP, LAP, and 

PML) (Mahfouz et al. 2012). ANOVA found no racial differences between these or any 

other distance morphometric parameters in either the femur (Table 5-8) or tibia (Table 

5-15). 

T-tests showed statistically significant differences in parameters related to the radii of 

curvature of the femoral condyles across sex and racial and ethnic groups, particularly 

between Asian and White subjects and Black or African American and White subjects ( 

 

Table 5-6). These measures are important for implant development and sizing, 

suggesting significant implications for the femoral component of TKA. Mahfouz et al. 

also found curvature differences between these populations, although their method for 

defining curvature differed from ours, preventing a direct comparison (Mahfouz et al. 

2012). While ANOVA did not identify differences in the same radii of curvature as the t-

tests, significant inter-group racial differences were found in the horizontal radius of the 
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medial femur condyle and in the angle of divergence of the medial femur epicondyle 

(Table 5-8). 

In the tibia, t-tests identified significant differences (p < 0.05) in posterior overhang 

were found between Black or African American subjects and Hispanic and Asian 

populations, respectively (Figure 5-74), which were not confirmed using ANOVA (Table 

5-15). While the medial tibial posterior slope showed no differences between racial 

groups (Figure 5-77), Native American subjects exhibited significant differences from 

Black and African American, Asian, and White subjects in the angle of their lateral tibial 

posterior slope (Figure 5-80). Inter-race differences were also found in this metric using 

ANOVA (Table 5-15). Since the tibial plateau slope guides the angle of the resection cut 

for the tibial component in TKA, this finding may be particularly noteworthy. 

While bone size changes with age are well documented (Riggs et al. 2004), t-tests 

found no significant age differences in PC 1 of either the femur (Figure 5-16) or the tibia 

(Figure 5-55). Conversely, ANOVA did find that PC 1 of the Femur varied significantly 

(p < 0.05) with age (Table 5-8). Age-related t-test differences were observed in Femur PC 

2, the width of the femoral condyles, and the posterior radius of the femoral condyle, but 

not in the transepicondylar axis or the posterior condylar angle as found by Han et al. 

(Han et al. 2016). In contrast, ANOVA identified significant age-related differences with 

age in TEA, lateral condylar width, the coronal radius of the medial femoral condyle, and 

the posterior radius of the lateral femoral condyle (Table 5-8). In the tibia, t-test 

differences were found in the medial posterior tibial slope between middle age and old 

age, but not in the lateral posterior tibial slope (Table 5-14). Conversely, Han et al. found 
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differences between these same groups in the lateral posterior tibial slope rather than the 

medial side (Han et al. 2016). ANOVA identified only significant age-related differences 

in the tubercle medial lateral offset of the tibia (Table 5-15). 

Our study has several limitations. Our training set includes a broader range of 

demographics than most studies of this type and is the only known model to the authors 

that includes Native American and Hispanic subjects. However, when considering the US 

population, it neglects Native Hawaiian/Pacific Islander and ethnically middle eastern 

populations. It is also crucial to recognize that racial identities are socially constructed 

and lack a biological basis (Cwalina et al. 2022). Without including detailed genetic data 

from rigorous genomic testing or accounting for potential confounding factors such as 

BMI or socioeconomic status, our results cannot definitively attribute the observed 

differences in our models to race. Nevertheless, race remains a significant determinant of 

access to societal resources and barriers to full inclusion, as with the presence of racial 

and ethnic disparities in TKA. The fact of inequality means that race and ethnicity 

continue to matter in important ways (Committee on Improving the Representation of 

Women and Underrepresented Minorities in Clinical Trials and Research 2022).  

Furthermore, while we observed statistically significant differences in the size and 

morphology of the distal femur and proximal tibia, our intra-group sample sizes average 

about 20 subjects per racial background, which is insufficient to fully capture the 

variation within each demographic. In the future, we hope to investigate differences in 

the knee with a larger training set to comprehensively capture population variation. 

Nonetheless, this work represents a step forward in incorporating demographic diversity 
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into the development and validation of orthopedic devices, ensuring that treatments like 

TKA are effective across varied populations. 
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6.  Material Property Variation in the Knee Considering Diverse Populations 

6.1  Introduction 

Total Knee Arthroplasty (TKA) is a widely performed surgical procedure aimed at 

alleviating pain and restoring function in patients with severe knee osteoarthritis 

(Varacallo, Luo, and Johanson, n.d.). Despite its general success, disparities in 

postoperative outcomes have been observed across different racial and ethnic groups, 

with minority populations often experiencing less favorable results (Shahid and Singh 

2016). A major cause for TKA revision is mechanical loosening or loss of implant 

fixation (Bozic et al. 2010). Early migration of the implant is a strong predictor of clinical 

failure (Albrektsson et al. 1981), often leading to revisions due to mechanical instability 

(Pijls et al. 2012). One crucial factor linked to this early migration is lower bone quality 

(Anderson et al. 2020). 

Emerging evidence points to differences in bone mineral density (BMD) across racial 

and ethnic groups; for instance, non-Hispanic Black adults typically exhibit higher BMD 

and lower rates of bone loss compared to other ethnicities (Noel, Santos, and Wright 

2021). Conversely, US Asian adults may have lower BMD than non-Hispanic White 

adults, although the data on this remains limited and sometimes inconclusive. The 

directionality of these BMD differences also appears to vary by skeletal site. For 

example, Mexican American adults show higher mean BMD of the proximal femur 
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compared to non-Hispanic White adults, despite having a lower mean BMD for the total 

body and other sites (Noel, Santos, and Wright 2021). 

Although age-, site-, and sex-specific high-resolution peripheral quantitative 

computed tomography (HR-pQCT) reference data for bone density in various populations 

has been developed (Koy et al. 2022; Alvarenga et al. 2022; Yu et al. 2020; Hung et al. 

2015), significant population gaps remain. Further, there has been limited work 

leveraging statistical models to explore material property variation in the bones of the 

knee across ethnic and racial groups, despite the noted suitability of these methods for the 

task (Bah et al. 2015). To the author’s knowledge, no statistical intensity models of the 

knee have been created from a racially and ethnically diverse training set, nor has any 

such model been leveraged to investigate the material properties of the tibia and femur 

across these groups.  

Accordingly, the objective of this work is to develop a statistical intensity model of 

the knee using a diverse training set. This model aims to investigate differences in tibia 

and femur bone quality across sex, racial and ethnic, and age groups. A secondary aim is 

to explore the relationship between bone quality and shape, providing a comprehensive 

understanding of how these factors interplay in the bones of the knee. 

6.2  Methods 

6.2.1  Subject Selection 

The New Mexico Decedent Image Database (NMDID) is a comprehensive dataset 

containing whole-body CT scans and associated metadata for over 15,000 individuals 

who died in New Mexico between 2010 and 2017 (Edgar et al. 2020). This dataset offers 
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an invaluable resource for accessing a diverse population of scans. For this work, an 

effort was made to gather a sample representative of the United States population (Barton 

et al., n.d.), including equal numbers of males and females of various ages from Black or 

African American, Native American, Asian, and Hispanic backgrounds. A sample of 

White subjects were obtained from the training set of an SSIM previously developed at 

the University of Denver (Bayoglu et al. 2020). These race and ethnicity metrics were 

self-reported by the decedents in the 2010 census. It is important to note that for the 

purposes of this work, "Hispanic" refers to decedents who identified as racially Hispanic, 

reflecting the usage in the 2010 census where many New Mexicans selected Hispanic as 

an "Other" race option (Edgar et al. 2020). The inclusion criteria for this study required 

subjects to be aged between 25 and 80 years, with a BMI of less than 40, based on 

cadaver height and weight. Subjects were excluded if they had a recorded history of 

cancers, tumors, or malignancies, any recorded injuries to the lower limbs, a manner of 

death that could result in lower limb injuries, cadaver decomposition, or severe 

osteoarthritis. 

6.2.2  Bone Model Generation 

Each subject file downloaded from the NMDID database contained 26 CT scans. 

Among these, three scans held importance for this work: the “thin bone torso” and “thin 

bone lower extremity” scans, utilized to acquire subject bony geometry, and the “thin 

soft-tissue lower extremity” scans, used to obtain the subject bony material properties. 

Before processing, a preliminary assessment of each subject's respective scans was 

conducted to check for factors that may render the subject unsuitable for our model’s 
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purposes, including the presence of moderate to severe osteoarthritis in the knee joints, 

intraosseous cannulae (typically in the proximal tibia) or orthopedic implants in the lower 

extremity under consideration, or scan artifacts within regions of interest. Both of the 

subject’s lower extremities were considered for use. Only one leg was included per 

subject. However, if neither leg proved appropriate for use, the subject was subsequently 

excluded from further analysis. 

Pre-processing started by calibrating the "thin soft-tissue lower extremity" scan. Since 

phantoms are not included in scans from the NMDID database, we utilized a phantomless 

air-fat-muscle calibration method, similar to the one described by Eggermont et al. 

(Eggermont et al. 2019). The calibration process was automated using a MATLAB 

(MathWorks, Natick, MA) script. Subjects for which phantomless calibration failed due 

to homogeneity in Hounsfield Units of their fat and muscle were excluded from further 

analysis.  

After evaluating and successfully calibrating the scan, the subject's bony geometry 

was then segmented from the "thin bone torso" (proximal femur) and "thin bone lower 

extremity" (distal femur, tibia, distal fibula) scans using ScanIP software (Synopsys, 

Mountain View, CA) and the location of nine key landmarks on the femur (hip center, 

femur medial and lateral epicondyles) and tibia (anterior medial plateau, posterior medial 

plateau, anterior lateral plateau, posterior lateral plateau, ankle center) were identified in 

HyperMesh (Altair, Troy, MI). Left instances were mirrored across the sagittal plane. 

Local anatomical coordinate systems were created using the previously identified 

landmarks for each femur and tibia in an automated MATLAB script. The nodes 
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describing the surfaces of the tibia and femur were transformed from the global CT 

coordinate system into their respective anatomical coordinate system along with their 

corresponding landmarks. The transformation matrices defining the transformation 

between the CT and anatomical coordinate systems were retained for future use. 

6.2.3  Template Selection and Meshing 

Using a workflow similar to Fugit et al. (in review), median right tibia and femur 

were selected as the templates and aligned in their local coordinate systems as described 

above. Tibial template meshes were constructed for surfaces (triangular (tri), 0.95 ± 0.16 

mm edge length, 20,296 nodes and 40,588 tri elements) and solids (tetrahedral (tet), 0.96 

± 0.14 mm edge length, 239,903 nodes and 1,364,343 tetrahedral elements). The 

diaphysis of the tibial template geometry was resected at a ratio of 1.38 between SI length 

and ML condylar width. Femoral template meshes were constructed for surfaces (2D, 

0.82 ± 0.19 mm edge length, 49,767 nodes and 99,530 tri elements) and solids (3D, 1.03 

± 0.16 mm edge length, 418,569 nodes and 2,337,654 tetrahedral elements). The 

diaphysis of the femoral template geometry was resected at a ratio of 1.74 between SI 

length and ML condylar width.  

6.2.4  Mesh Registration and Morphing 

Registration of the instances was fully automated in a MATLAB script. First, since 

the model is concerned only with the proximal and distal portions of the tibia and femur, 

respectively, the template resection ratio was applied to trim the shaft of the instance. 

While the entire tibia was segmented in the NMDID subjects, there were instances where 

femurs lacked "sufficient shaft" to meet the required aspect ratio due to segmentation 
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being done across two scans. These cases were subsequently excluded from further 

analysis. 

After adjusting the instance to the correct height, an ICP-based algorithm (Kroon 

2024) was used to first rigidly align the instance to the template and then affinely deform 

the template onto the instance. Following the methods outlined by Andreassen et al. 

(Andreassen et al. 2024), a Generalized Regression Neural Network (GRNN)-based 

algorithm completed the morphing of the tri template onto the tri instance. The nodal 

coordinates of the final deformed template mesh were recorded as the registered instance 

tri mesh. Morphing error was quantified as the root mean square (RMS) error of the 

distances between the deformed template points and their respective closest point in the 

instance mesh. The template tet mesh was subsequently morphed onto the tri instance 

mesh using GRNN trained on the displacements of the template tri mesh. The nodal 

coordinates of the final morphed tetrahedral mesh were recorded as the registered 

instance tetrahedral mesh. Morphing error was quantified as the root mean square (RMS) 

error of the distances between the surface points of the deformed template tetrahedral 

mesh and their respective closest point in the instance tri mesh. Tetrahedral mesh quality 

was evaluated using MATLAB's meshQuality function. 

6.2.5  Material Property Assignment 

Material properties were derived from the CT scan of each instance and were 

assigned to the respective registered tetrahedral meshes in MATLAB. Registered meshes 

were first transformed back into global CT space using the established transformations. 

Material properties for each element were reported as apparent bone mineral density. To 
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calculate this, the intensity of the voxel nearest to each node was identified and averaged 

for the nodes in each element. The average intensity was then converted to BMD using 

the subject-specific conversion of HU to BMD determined during the scan calibration 

process and then further converted to apparent density using the established relationships 

shown in the Equations 6-1 to 6-3 below: 

𝐵𝑀𝐷  =  𝑎 + 𝑏 ⋅ 𝐻𝑈                                  Equation (6-1)   

𝜌𝑎𝑠ℎ   =  𝑘𝑎𝑠ℎ ⋅ 𝐵𝑀𝐷 + 𝑙𝑎𝑠ℎ                              Equation (6-2) 

𝜌𝑎𝑝𝑝  =  
𝜌𝑎𝑠ℎ

𝑚𝑎𝑝𝑝
                                         Equation (6-3) 

where HU is Hounsfield unit, BMD is bone mineral density, a and b are calibration 

constants, ρ_ash and ρ_app denote the ash and apparent densities, respectively. 

Conversion factors k_ash, l_ash, and m_app were adapted from existing literature (J. H. 

Keyak, Lee, and Skinner 1994; Schileo et al. 2007; Joyce H Keyak et al. 2005) and are 

shown in Table 6-1. As with the nodal coordinate information, the element material 

properties for each instance were combined into a matrix: the Material Property Register. 

Figure 6-1 visualizes the entire registration process from segmentation to Material 

Property Register creation. 

Table 6-1: Conversion factors used to convert HU to BMD in the Tibia and Femur. 

 

 

Value Source Value Source

kash 0.953 Keyak 1994 0.887 Keyak 2005

lash 45.7 Keyak 1994 63.3 Keyak 2005

mapp 0.55 Keyak 1994 0.593 Schileo 2008

Tibia Femur

Conversion Factors



 

 

1
5
7
 

 

Figure 6-1: Visualization of the registration process from subject segmentation (left) to register creation (right). 
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6.2.6  Model Generation 

Using the registered shape and material property data, a combined Statistical Shape 

and Intensity Model can be developed. Prior studies have shown that the variability in 

shape and material property data were not strongly correlated (Burton et al. 2019; 

Taghizadeh et al. 2017). As such, it is possible to decouple the models, which allows the 

independent consideration of variation in shape and material property maps.  

Principal component analysis was therefore performed individually on both the tri 

surface registers and material property registers, yielding Statistical Shape Models and 

Statistical Intensity Models of the Proximal Tibia and Distal Femur, respectively. Metrics 

of accuracy, compactness, generalizability, and specificity were computed across various 

levels of SIM principal component (PC) inclusion to evaluate SIM model quality 

(Audenaert et al. 2019). 

6.2.7  Statistical Analysis 

Visualization of the first four modes of intensity variation in each model was 

achieved by adjusting the average material properties within +/- 3.0 standard deviations 

and superimposing them onto a mean geometry generated from the SSM. Correlation 

coefficients between the first ten shape and intensity modes were calculated to investigate 

the relation between shape and material properties. 

To quantify interpopulation variances in SIM PC scores, unpaired two-sample t-tests 

were conducted across different sex and race groups, including Male/Female (M/F), 

Asian/Black or African American (A/B), Asian/Hispanic (A/H), Asian/Native American 

(A/NA), Asian/White (A/W), Black or African American/Hispanic (B/H), Black or 
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African American/Native American (B/NA), Black or African American/White (B/W), 

Hispanic/Native American (H/NA), Hispanic/White (H/W), and Native American/White 

(NA/W). Subjects were further categorized into age groups: "young" (ages 25-39), 

"middle" (ages 40-59), and "old" (ages 60-80), with subsequent two-sample t-tests 

performed to compare young age/middle age (YA/MA), young age/old age (YA/OA), 

and middle age/old age (MA/OA). Box plots were employed to visually represent 

distributions of the first four PC scores and select morphological parameters. 

Further, a series of Analysis of Variance (ANOVA) tests were conducted to 

investigate inter-group differences while accounting for imbalances in population sizes. 

The independent variables included scan source, sex, race, age, height, and BMI, with the 

latter three being continuous variables. Although the results of this statistical test are 

preliminary, this analysis is important when considering multiple independent variables 

that could potentially impact bone material properties. 

 

6.3  Results 

6.3.1  Femur 

6.3.1.1  Subject Demographics  

Initially, an equal number of scans were evaluated for each demographic 

category, ensuring balanced representation by sex, race, and a range of ages. However, 

the training set was unevenly reduced due to issues with scan quality, such as limited 

field of view or poor tissue differentiation for material property assignment, and the 

presence of severe osteoarthritis or osteophytes. 
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The resulting training data for the femur represents 111 cases, 55 female and 56 male, 

with an average age of 52.8 (+/- 17.3) and 54.7 (+/- 19.1) years, respectively. Subjects 

obtained from the NMDID database (n = 70) came from Asian (n = 13), Black or African 

American (16), Hispanic (18), and Native American (n = 10) backgrounds. The 

remaining subjects (n = 41) included White (n = 38), Hispanic (n = 1), and Pacific 

Islander (n = 1) subjects and came from the training set of an SSIM previously developed 

at the University of Denver. The distribution of the overall subject demographics is 

shown in Table 6-2. Subject age, height, and BMI data by demographic are shown in 

Figure 6-2, Figure 6-3, and Figure 6-4, respective
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Table 6-2: Subject demographics for the Femur SSIM training set. 

Asian Black or African American Hispanic Native American Pacific Islander White Total
Female 7 12 8 10 0 18 55

Age (Years) 45.7 +/- 19.3 44.3 +/- 12.9 45.1 +/- 17.6 46.5 +/- 10.4 68.2 +/- 12.5 52.8 +/- 17.3
Height (cm) 161.6 +/- 7.3 164.4 +/- 7.9 160.7 +/- 7.7 166.2 +/- 9.6 161.7 +/- 5.6 163.0 +/- 7. 4
BMI (kg/m2) 25.5 +/- 7.6 27.8 +/- 5.7 27.0 +/- 5.6 27.8 +/- 5.5 23.7 +/- 5.9 26.0 +/- 6.0

Male 6 4 11 14 1 20 56
Age (Years) 47 +/- 10.0 50.5 +/- 16.8 41.4 +/- 13.7 39.3 +/- 11.7 77 +/- 0 74.9 +/- 6.3 54.7 +/- 19.1
Height (cm) 171.3 +/- 8.7 174.6 +/- 4.4 172.5 +/- 4.1 175.7 +/- 9.4 165.1 +/- 0 174.4 +/- 8.1 173.9 +/- 7.6
BMI (kg/m2) 25.9 +/- 3.3 27.7 +/- 4.7 28.0 +/- 5.6 29.3 +/- 5.7 29.3 +/- 0 20.5 +/- 4.6 25.4 +/- 6.1

Total 13 16 19 24 1 38 111
Age (Years) 46.3 +/- 15.1 45.8 +/- 13.7 42.9 +/- 15.1 42.3 +/- 11.5 77 +/- 0 71.7 +/- 10.2 53.8 +/- 18.2
Height (cm) 166.1 +/- 9.2 167.0 +/- 8.3 167.5 +/- 8.3 171.8 +/- 10.4 165.1 +/- 0 168.4 +/- 9.4 168.5 +/- 9.3
BMI (kg/m2) 25.7 +/- 5.8 27.8 +/- 5.3 27.5 +/- 5.5 28.6 +/- 5.5 29.3 +/- 0 22.0 +/- 5.4 25.7 +/- 6.1
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Figure 6-2: Distribution of subject age by demographic. 
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Figure 6-3: Distribution of subject BMI by demographic. 
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Figure 6-4: Distribution of subject height by demographic. 

 

6.3.1.2  Model Quality 

Measures of accuracy, compactness, generalizability, and specificity were computed 

to assess model quality. The accuracy of the Femur SIM improved with the inclusion of a 

greater number of principal components (Figure 6-5). Accuracies achieved by inclusion 

of selected numbers of principal components are outlined in Table 6-3. Figure 6-6 depicts 

the cumulative compactness of the Femur SIM, indicating that 79 principal components 

were necessary to encompass at least 95% of the model variance. The distribution of 

variance across selected principal components is reported in Table 6-3. The 

generalizability of the model with increasing numbers of training set samples is shown in 
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Figure 6-7. With 111 instances, the generalizability and specificity of the model were 

found to be 101.81 +/- 16.71 kg/m3 and 180.49 +/- 19.69 kg/m3, respectively (Table 6-4). 

 

Figure 6-5: Accuracy of the Femur SIM with the progressive addition of principal 

components to the model. 
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Figure 6-6: Cumulative compactness of the Femur SIM for increasing number of PCs 

included.   
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Table 6-3: Accuracy, variance explained, and cumulative compactness for select PCs of 

the Femur SIM. The PC at which the desired compactness threshold is reached is 

highlighted. 

 

Num PCs Accuracy (Apparent Density, kg/m^3) Variance Explained (%) Cumulative (%)
1 195.24 +/- 64.54 34.60 34.60
2 141.91 +/- 24.65 19.76 54.36
3 138.45 +/- 24.33 4.87 59.23
4 134.09 +/- 20.49 2.71 61.94
5 131.85 +/- 19.71 2.17 64.11
6 130.30 +/- 18.49 1.75 65.86
7 128.94 +/- 16.44 1.55 67.40
8 127.58 +/- 15.96 1.35 68.75
9 125.82 +/- 15.26 1.15 69.90

10 124.55 +/- 15.14 1.04 70.94
20 112.31 +/- 11.72 0.54 77.93
30 102.14 +/- 14.35 0.40 82.48
40 92.66 +/- 16.55 0.31 85.97
50 83.41 +/- 18.55 0.26 88.81
60 73.88 +/- 19.54 0.23 91.26
70 63.31 +/- 21.29 0.20 93.43
79 53.59 +/- 21.39 0.19 95.18

110 1.34E-12 +/- 5.88E-13 0.121 100
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Figure 6-7: Generalizability of the Femur SIM with the progressive addition of training 

samples to the register. 

 

Table 6-4: Generalizability and specificity for the Femur SIM. 

Number of Instances 110
Generalizability (Apparent Density, kg/m3) 101.81 +/- 16.71

Specificity (Apparent Density, kg/m3) 180.49 +/- 19.69  

6.3.1.3  Model Outcomes 

The first four modes of variation in the Femur SIM are visualized by perturbing the 

mean geometry at +/- 3.0 standard deviations and displaying the resulting material 

properties in select cut planes, shown in Figure 6-8. Mode 1 (Figure 6-9) described an 

overall change in bone quality. Mode 2 (Figure 6-10) appeared to capture changes in 
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thickness of the cortical wall, while also potentially capturing the edge artifact due to air 

surrounding the bone in material property assignment, which can be influenced by the 

segmentation process. Mode 3 (Figure 6-11) described primarily a change in trabecular 

bone density. Finally, Mode 4 (Figure 6-12) captures variation in cortical thickness and a 

small complementary change in trabecular density. 

Correlation coefficients between the first ten SSM (from Chapter 5) and SIM modes 

were calculated, and significant correlations were reported (Table 6-5). Notably, none of 

the correlations between the shape and intensity modes of the femur were greater than 0.5 

or strong, thereby supporting the approach to decouple the SSM and SIM. 

 

Figure 6-8: Cut planes used to visualize material properties in the femur. 
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Figure 6-9: Material property variation in Mode 1 of the Femur SIM. Variations 

extending to +/- three standard deviations from the mean are displayed along key 

anatomical planes, including the coronal midline, sagittal midline, transverse shaft, 

sagittal medial condyle, and sagittal lateral condyle. 
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Figure 6-10: Material property variation in Mode 2 of the Femur SIM. Variations 

extending to +/- three standard deviations from the mean are displayed along key 

anatomical planes, including the coronal midline, sagittal midline, transverse shaft, 

sagittal medial condyle, and sagittal lateral condyle. 
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Figure 6-11: Material property variation in Mode 3 of the Femur SIM. Variations 

extending to +/- three standard deviations from the mean are displayed along key 

anatomical planes, including the coronal midline, sagittal midline, transverse shaft, 

sagittal medial condy 
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Figure 6-12: Material property variation in Mode 4 of the Femur SIM. Variations 

extending to +/- three standard deviations from the mean are displayed along key 

anatomical planes, including the coronal midline, sagittal midline, transverse shaft, 

sagittal medial condyle. 
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Table 6-5: Correlation coefficients (R) between Femur SSM and SIM PC scores. Only 

statistically significant (p<0.05) correlations are shown. High correlations (R> 0.65) are 

bolded. 

 

 

6.3.1.4  Interpopulation Comparisons 

The sex and racial distribution of the scores pertaining to the first four principal 

components are depicted in Figure 6-13 (PC1 and PC2) and Figure 6-14 (PC3 and PC4). 

In Figure 6-13, differences were observed in the scatter of PC 2 for the White population; 

this population was derived from a cadaveric dataset at DU instead of from the NMDID 

database and the observed differences may be due to the scan source and segmentation 

process. 

To quantify interpopulation differences in PC scores and morphological parameters, 

unpaired two-sample t-tests and a series of ANOVA tests were conducted. Table 6-6 
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displays the p-values resulting from t-tests with significant differences (p < 0.05) between 

two populations. Boxplots illustrating the distribution of PCs one through four across sex, 

race, and age categories are shown in Figures 6-10 to 6-21. Significant differences (p < 

0.05) in these plots are indicated by a red bar. Table 6-7 displays significant p values (p < 

0.05) resulting from ANOVA tests for the first ten PCs considering factors of scan 

source, sex, race, age, height, and BMI. 

 

Figure 6-13: Sex and racial distribution of PC 1 and PC 2 scores of the Femur SIM. 
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Figure 6-14: Sex and racial distribution of PC 3 and PC 4 scores of the Femur SIM. 

 

Table 6-6: P-values derived from unpaired two-sample t-tests indicating significant 

differences in PC scores one to ten (p < 0.05) between populations. Highly significant 

differences (p < 0.001) are shown in bold.  

 

M/F A/B A/H A/NA A/W B/H B/NA B/W H/NA H/W NA/W YA/MA YA/OA MA/OA
PC 1 3.13E-02 1.09E-03 7.58E-03 6.70E-03 1.73E-04 1.81E-02
PC 2 2.70E-02 3.10E-06 8.60E-11 1.62E-02 8.73E-08 1.39E-15 1.40E-10 1.28E-07
PC 3 1.24E-03
PC 4 2.95E-03 5.80E-03 7.79E-03 3.90E-04 7.48E-04
PC 5 4.25E-05
PC 6 4.18E-03 8.10E-03 4.70E-02 1.17E-02 1.37E-02 1.32E-02 9.11E-04
PC 7
PC 8 1.68E-03 3.80E-02 1.16E-02 3.85E-02
PC 9 1.81E-03

PC 10
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Figure 6-15: Femur SIM PC 1 score by subject sex. 

 

 

Figure 6-16: Femur SIM PC 1 score by subject age. 
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Figure 6-17: Femur SIM PC 1 score by subject race. 
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Figure 6-18: Femur SIM PC 2 score by subject sex. 

 

 

Figure 6-19: Femur SIM PC 2 score by subject age. 
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Figure 6-20: Femur SIM PC 2 score by subject race. 
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Figure 6-21: Femur SIM PC 3 score by subject sex. 

 

 

Figure 6-22: Femur SIM PC 3 score by subject age. 
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Figure 6-23: Femur SIM PC 3 score by subject race. 
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Figure 6-24: Femur SIM PC 4 score by subject sex. 

 

 

Figure 6-25: Femur SIM PC 4 score by subject age. 
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Figure 6-26: Femur SIM PC 4 score by subject race. 

 

Table 6-7: ANOVA-derived p-values indicating significant differences (p < 0.05) between 

populations. Highly significant differences (p < 0.001) are shown in bold. 

 

 

Sex Age Race Height BMI Source
PC 1 8.77E-03 7.94E-03 3.47E-02 2.41E-02
PC 2 1.63E-02 9.33E-03
PC 3 1.49E-02 2.03E-04
PC 4 1.55E-02
PC 5 1.37E-04 4.75E-03
PC 6 2.71E-02
PC 7
PC 8 1.59E-02 3.57E-02
PC 9 4.55E-02 1.50E-02
PC 10 2.03E-02
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6.3.2  Tibia 

6.3.2.1  Subject Demographics 

Initially, an equal number of scans were evaluated for each demographic 

category, ensuring balanced representation by sex, race, and a range of ages. However, 

the training set was unevenly reduced due to issues with scan quality, such as limited 

field of view or poor tissue differentiation for material property assignment, and the 

presence of severe osteoarthritis or osteophytes. 

The resulting training data for the tibia represents 115 cases, 58 female and 57 male, 

with an average age of 52.7 (+/- 16.9) and 54.1 (+/- 18.5) years, respectively. Subjects 

obtained from the NMDID database (n = 72) came from Asian (n = 13), Black or African 

American (n = 17), Hispanic (n = 18), and Native American (n = 26) backgrounds. The 

remaining subjects (n = 42) included White (n = 41) and Hispanic (n = 1) subjects and 

came from the training set of an SSIM previously developed at the University of Denver. 

The distribution of the overall subject demographics is shown in Table 6-8. Subject age, 

height, and BMI data by demographic are shown in Figure 6-27, Figure 6-28, and Figure 

6-29, respectively.
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Table 6-8: Subject demographics for the Tibia SSIM training set. 

Asian Black or African American Hispanic Native American White Total
Female 7 13 7 11 20 58

Age (Years) 45.7 +/- 19.3 46.6 +/- 15.0 41.0 +/- 14.3 46.5 +/- 9.9 66.6 +/- 12.7 52.7 +/- 16.9
Height (cm) 161.6 +/- 7.3 164.8 +/- 7.6 159.9 +/- 8.0 165.7 +/- 9.2 162.0 +/- 6.4 163.0 +/- 7.5
BMI (kg/m2) 25.5 +/- 7.6 27.6 +/- 5.5 25.8 +/- 4.9 28.1 +/- 5.3 24.6 +/- 6.9 26.2 +/- 6.2

Male 6 4 11 15 21 57
Age (Years) 47 +/- 10.0 43.0 +/- 6.2 41.4 +/- 13.7 41.2 +/- 13.5 74.0 +/- 6.2 54.1 +/- 18.5
Height (cm) 171.3 +/- 8.7 174.0 +/- 3.3 172.5 +/- 4.1 175.2 +/- 9.3 174.8 +/- 8.0 174.0 +/- 7.5
BMI (kg/m2) 25.9 +/- 3.3 26.2 +/- 3.7 28.0 +/- 5.6 29.1 +/- 5.5 21.0 +/- 4.9 25.3 +/- 6.0

Total 13 17 18 26 41 115
Age (Years) 46.3 +/- 15.1 45.8 +/- 13.4 41.2 +/- 13.5 43.5 +/- 12.2 70.4 +/- 10.5 53.4 +/- 17.7
Height (cm) 166.1 +/- 9.2 167.0 +/- 7.8 167.6 +/- 8.5 171.2 +/- 10.2 168.5 +/- 9.6 168.5 +/- 9.3
BMI (kg/m2) 25.7 +/- 5.8 27.2 +/- 5.1 27.1 +/- 5.3 28.7 +/- 5.4 22.8 +/- 6.2 25.8 +/- 6.1
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Figure 6-27: Distribution of subject age by demographic. 
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Figure 6-28: Distribution of subject BMI by demographic. 
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Figure 6-29: Distribution of subject height by demographic. 

6.3.2.2  Model Quality 

Measures of accuracy, compactness, generalizability, and specificity were computed 

to assess model quality. The accuracy of the Tibia SIM improved with the inclusion of a 

greater number of principal components (Figure 6-30). Accuracies achieved by inclusion 

of selected numbers of principal components are outlined in Table 6-9. Figure 6-31 

depicts the cumulative compactness of the Femur SIM, indicating that 82 principal 

components were necessary to encompass at least 95% of the model variance. The 

distribution of variance across selected principal components is reported in Table 6-9. 

The generalizability of the model with increasing numbers of training set samples is 

shown in Figure 6-32. With 115 instances, the generalizability and specificity of the 
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model were found to be 101.81 +/- 16.71 kg/m3 and 180.49 +/- 19.69 kg/m3, respectively 

(Table 6-4). 

 

Figure 6-30: Accuracy of the Tibia SIM with the progressive addition of principal 

components to the model. 
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Figure 6-31: Cumulative compactness of the Tibia SIM for increasing number of PCs 

included. 
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Table 6-9: Accuracy, variance explained, and cumulative compactness for select PCs of 

the Tibia SIM. The PC at which the desired compactness threshold is reached is 

highlighted. 

 

Num PCs Accuracy (Apparent Density, kg/m3) Variance Explained (%) Cumulative (%)
1 217.20 +/- 66.80 36.10 36.10
2 169.60 +/- 33.23 14.02 50.12
3 168.03 +/- 32.71 4.45 54.58
4 165.90 +/- 31.20 3.29 57.86
5 164.05 +/- 29.91 2.43 60.29
6 162.10 +/- 28.70 2.01 62.30
7 159.45 +/- 27.20 1.63 63.92
8 157.54 +/- 25.61 1.28 65.20
9 154.72 +/- 24.34 1.12 66.32

10 153.23 +/- 24.06 1.10 67.42
20 137.61 +/- 16.71 0.65 75.44
30 125.14 +/- 16.14 0.45 80.68
40 113.48 +/- 17.56 0.35 84.62
50 101.77 +/- 18.85 0.29 87.79
60 89.80 +/- 22.05 0.25 90.48
70 77.21 +/- 24.06 0.22 92.79
80 64.11 +/- 25.29 0.19 94.81
82 61.39 +/- 25.50 0.18 95.18

114 1.40E-12 +/- 6.65E-13 0.11 100.00
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Figure 6-32: Generalizability of the Tibia SIM with the progressive addition of training 

samples to the register. 

 

Table 6-10: Generalizability and specificity for the Tibia SIM. 

Number of Instances 114
Generalizability (Apparent Density, kg/m3) 114.55 +/- 1870

Specificity (Apparent Density, kg/m3) 218.18 +/- 20.71  

  

6.3.2.3  Model Outcomes 

The first four modes of variation of the Tibia SIM were visualized by perturbing the 

mean geometry at +/- 3.0 standard deviations and displaying the resulting material 

properties in select cut planes, shown in Figure 6-33. Mode 1 (Figure 6-34) described an 
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overall change in bone quality. Mode 2 (Figure 6-35) appeared to capture changes in 

thickness of the cortical wall, while also potentially capturing the edge artifact due to air 

surrounding the bone in material property assignment, which can be influenced by the 

segmentation process. Mode 3 (Figure 6-36) described a change in trabecular density and 

in the cortical thickness at the tubercle. Finally, Mode 4 (Figure 6-37) captured variation 

in overall anterior and tubercle cortical density alongside a complementary trabecular 

variation. 

Correlation coefficients between the first ten SSM (from Chapter 5) and SIM modes 

were calculated, and significant correlations were reported (Table 6-11). As similarly 

observed in the Femur, none of the correlations between the shape and intensity modes of 

the tibia were greater than 0.5 or strong, thereby supporting the approach to decouple the 

SSM and SIM. 

 

Figure 6-33: Cut planes used to visualize material property variation in the tibia. 
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Figure 6-34: Material property variation in Mode 1 of the Tibia SIM. Variations 

extending to +/- three standard deviations from the mean are displayed along key 

anatomical planes, including the coronal midline, sagittal midline, transverse shaft, and 

a clinically relevant transverse resection plane. 
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Figure 6-35: Material property variation in Mode 2 of the Tibia SIM. Variations 

extending to +/- three standard deviations from the mean are displayed along key 

anatomical planes, including the coronal midline, sagittal midline, transverse shaft, and 

a clinically relevant transverse resection plane. 
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Figure 6-36: Material property variation in Mode 3 of the Tibia SIM. Variations 

extending to +/- three standard deviations from the mean are displayed along key 

anatomical planes, including the coronal midline, sagittal midline, transverse shaft, and 

a clinically relevant resection plane.  
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Figure 6-37: Material property variation in Mode 4 of the Tibia SIM. Variations 

extending to +/- three standard deviations from the mean are displayed along key 

anatomical planes, including the coronal midline, sagittal midline, transverse shaft, and 

a clinically relevant transverse resection plane. 
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Table 6-11: Correlation Coefficients (R) between Tibia SSM and SIM PC scores. 

Only statistically significant (p<0.05) correlations are shown. High correlations (R> 

0.65) are bolded. 

 

 

6.3.2.4  Interpopulation Comparisons 

The sex and racial distribution of the scores pertaining to the first four principal 

components are depicted in Figure 6-38 (PC1 and PC2) and Figure 6-39 (PC3 and PC4). 

Similar to the femur results, differences were observed in the scatter of PC 2 (Figure 

6-38) for the White population; this population was derived from a cadaveric dataset at 

DU instead of from the NMDID database and the observed differences may be due to the 

scan source and segmentation process. 

To quantify interpopulation differences in PC scores and morphological parameters, 

unpaired two-sample t-tests and a series of ANOVA tests were conducted. Table 6-12 
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displays the p-values from t-tests with significant differences (p < 0.05) between two 

populations. Boxplots illustrating the distribution of PCs one through four across sex, 

race, and age categories are shown in Figures 6-30 to 6-41. Significant differences (p < 

0.05) in these plots are indicated by a red bar. Table 6-13 displays significant p values (p 

< 0.05) resulting from a series of ANOVA tests for the first ten PCs considering factors 

of scan source, sex, race, age, height, and BMI. 

 

Figure 6-38: Sex and racial distribution of PC 1 and PC 2 scores of the Tibia SIM. 
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Figure 6-39: Sex and racial distribution of PC 3 and PC 4 scores of the Tibia SIM. 

 

Table 6-12: P-values derived from unpaired two-sample t-tests indicating significant 

differences in PC scores one to ten (p < 0.05) between populations. Highly significant 

differences (p < 0.001) are shown in bold.  

 

M/F A/B A/H A/NA A/W B/H B/NA B/W H/NA H/W NA/W YA/MA YA/OA MA/OA
PC 1 7.30E-03 1.54E-02 6.67E-04 2.75E-02 2.07E-02 4.73E-06 2.33E-03
PC 2 5.11E-05 3.26E-07 3.89E-05 5.26E-11 2.35E-06 2.74E-06
PC 3 6.77E-04 1.12E-02
PC 4 9.78E-05 1.36E-03 1.73E-02
PC 5 4.76E-02 4.61E-02
PC 6 2.69E-02 2.60E-02 1.11E-02
PC 7 2.27E-04 3.23E-03 1.77E-02 1.08E-02
PC 8 1.24E-03 1.09E-02 2.05E-02
PC 9 1.44E-02 5.49E-03

PC 10
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Figure 6-40: Tibia SIM PC 1 score by subject sex. 

 

 

Figure 6-41: Tibia SIM PC 1 score by subject age. 



 

203 

 

Figure 6-42: Tibia SIM PC 1 score by subject race. 
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Figure 6-43: Tibia SIM PC 2 score by subject sex. 

 

 

Figure 6-44: Tibia SIM PC 2 score by subject age. 
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Figure 6-45: Tibia SIM PC 2 score by subject race. 
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Figure 6-46: Tibia SIM PC 3 score by subject sex. 

 

 

Figure 6-47: Tibia SIM PC 3 score by subject age. 
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Figure 6-48: Tibia SIM PC 3 score by subject race. 



 

208 

 

Figure 6-49: Tibia SIM PC 4 score by subject sex. 

 

 

Figure 6-50: Tibia SIM PC 4 score by subject age. 
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Figure 6-51: Tibia SIM PC 4 score by subject race. 

 

Table 6-13: ANOVA-derived p-values indicating significant differences (p < 0.05) 

between populations. Highly significant differences (p < 0.001) are shown in bold. 

 

 

Sex Age Race Height BMI Source
PC 1 4.24E-03 1.64E-04 4.44E-03
PC 2 7.46E-03 3.47E-05
PC 3 4.37E-03
PC 4 7.42E-03 1.13E-02 1.83E-02 1.36E-02
PC 5 1.39E-02 2.80E-02
PC 6 4.11E-02
PC 7
PC 8 3.56E-02
PC 9
PC 10
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6.4  Discussion 

This work importantly quantifies the variability in bone property distribution for a 

population considering diversity in gender, race and ethnicity, and age. The quality of the 

statistical model can be evaluated in the context of four metrics: accuracy, compactness, 

generalizability, and specificity. Material property values assigned to the bones were 

physiologic and comparable to commonly reported values for the apparent density of 

cortical and cancellous bone (Szabo and Rimnac 2022; B. Li and Aspden 1997). With all 

PCs included, the model recreated register subjects with a sub-unit accuracy of 1.34E-12 

+/- 5.88E-13 kg/m3 (Femur) and 1.40E-12 +/- 6.65E-13 kg/m3 (tibia). Unlike the SSM 

models describing shape, neither of the SIM models was compact (Figure 6-6 and Figure 

6-31), requiring 79 (femur) and 82 (tibia) PCs to account for 95% of the variance in the 

model. This could indicate the model “overfitted” the data, creating intensity modes 

based on noise. Generalization accuracy was assessed through a leave-one-out analysis, 

which evaluated how well the model represented other unseen bone maps in the same 

class. With 111 femur and 115 tibia subjects, the generalization accuracy was 101.81 +/- 

16.71 kg/m3 for the Femur SIM and 114.55 +/- 18.70 kg/m3 for the Tibia SIM. Given that 

the reconstruction error did not converge with the full set of training samples in either the 

Femur (Figure 6-7) or Tibia (Figure 6-32) SIM, and that the number of subjects included 

in each model is below the 200 subjects required for the convergence of shape 

generalizability (Audenaert et al. 2019), it is likely that the addition of more subjects to 

the training set would improve the generalizability of these models. Both models 

demonstrated the ability to generate realistic new material property maps with a 
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specificity of 180.49 +/-19.69 kg/m3 for the Femur SIM and 218.18 +/-20.71 kg/m3 for 

the Tibia SIM. 

The first principal component encapsulates an overall change in bone quality across 

both the femur (Figure 6-9) and tibia (Figure 6-34). Interestingly, neither the t-tests or 

ANOVA found significant disparities in PC 1 scores between males and females in the 

Tibia SIM (Figure 6-40). This observation supports the idea that gender-related 

distinctions in bone mass diminish after adjusting for body size (Nieves et al. 2005). 

While no t-test differences were found in PC 1 scores between the sexes in the Femur 

SIM (Figure 6-15), ANOVA did identify significant differences in this mode of variation 

between males and females (Table 6-7). Significant differences (p < 0.05) were detected 

in PC1 between White subjects and those of Hispanic, Black or African American, and 

Asian descent in both the Femur and Tibia SIMs, with White subjects having a lower 

average overall bone quality (Figure 6-17 and Figure 6-42). Additionally, differences in 

PC 1 were identified between Black or African American and Asian subjects in the Tibia 

SIM (Figure 6-42), as well as between Native American and Asian subjects in the Femur 

SIM (Figure 6-17). Inter-race differences in PC 1 were also identified by ANOVA in 

both the Femur (Table 6-7) and Tibia (Table 6-13) SIMs. Both t-tests and ANOVA 

identified significant differences in Mode 1 between age groups in the Femur (t-test, 

young age/old age, middle age/old age) and the Tibia (t-test, all age groups). This may be 

related to the overall decrease in bone density expected as we age (Riggs et al. 2004). 

Similarly, t-test analysis of PC 3, primarily associated with trabecular bone density in 

both Femur (Figure 6-11)  and Tibia (Figure 6-36) SIMs, revealed notable differences 
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between young and old cohorts (Figure 6-22 and Figure 6-47). These findings were 

confirmed by ANOVA in the femur (Table 6-7), but not in tibia (Table 6-13). This is in 

line with the continual loss of trabecular volumetric bone density observed throughout 

life (Riggs et al. 2004). Lastly, PC 4, related to overall cortical thickness in the Femur 

SIM (Figure 6-12) and anterior cortical thickness in the Tibia SIM (Figure 6-37), 

exhibited significant disparities between males and females, with females having greater 

overall cortical thickness in the femur (Figure 6-24) and males having greater anterior 

cortical thickness in the tibia (Figure 6-49). ANOVA confirmed the presence of sex 

related differences in PC 4 of both models (Table 5-8 and Table 5-15). T-test distinctions 

were also apparent between White cohorts and both Black or African American and 

Asian cohorts in this mode for the Femur SIM (Figure 6-26). Race-related PC 4 

differences were not confirmed found using ANOVA (Table 5-8 and Table 5-15).  

It is important to note that the training set of these models draws from two distinct 

data sources, namely the NMDID and a prior DU SSM dataset. While consistency is 

maintained in the methods within each group, differences exist between them. Notably, 

subjects from the previous SSM dataset underwent calibration using a phantom, while 

NMDID subjects were calibrated using a phantomless method. Studies comparing 

phantom calibration with phantomless methods have demonstrated comparable results 

(Eggermont et al. 2019), so it is expected that this should not have a significant effect on 

the results. Accordingly, the distribution of the subjects in the PC1 (overall bone quality) 

scatter plots, where one would expect calibration-related differences to manifest, does not 

indicate a strong difference between the phantom and phantomless calibration subjects 
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(Figure 6-10 and Figure 6-35), although significant (p<0.05) differences were found 

between White (DU) subjects and subjects from other racial or ethnic backgrounds 

(NMDID). The differences in PC 1 could also be due to a notable age discrepancy 

between the two subject sets, as subjects from the previous SSM dataset tended to be 

older on average compared to those from the NMDID (Table 6-2 and Table 6-8). 

Moreover, segmentation quality may vary between these groups due to potential 

human error. This discrepancy is likely evident in the distribution of PC 2 scores, which 

described cortical wall thickness but may be impacted by the edge artifact when 

differentiating bone and surrounding air (Figure 6-10 and Figure 6-35). Previous SSM 

subjects tend to exhibit more air in their material property maps compared to NMDID 

subjects, leading to an uneven distribution of PC2 scores (Figure 6-13 and Figure 6-38). 

In addition to segmentation quality, these inconsistencies could also be due to differences 

in scan parameters, although the slice thickness and pixel size in both groups of scans 

were comparable. Since the White subject group exclusively comprises individuals from 

the previous SSM dataset, the calibration method, age, and segmentation quality 

represent confounding factors with White racial identity. 

Our training set includes a broader range of demographics than most studies of this 

type and is the only known model to the authors that includes Native American and 

Hispanic subjects. However, when considering the US population, the lack of Native 

Hawaiian/Pacific Islander and ethnically middle eastern populations is a limitation. It is 

also crucial to recognize that racial identities are socially constructed and lack a 

biological basis (Cwalina et al. 2022). Without including detailed genetic data from 
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rigorous genomic testing or accounting for potential confounding factors such as 

socioeconomic status, our results cannot definitively attribute the observed differences in 

our models to race. Nevertheless, race remains a significant determinant of access to 

societal resources and barriers to full inclusion, as with the presence of racial and ethnic 

disparities in TKA. The fact of inequality means that race and ethnicity continue to 

matter in important ways (Committee on Improving the Representation of Women and 

Underrepresented Minorities in Clinical Trials and Research 2022).   

Furthermore, while we observed statistically significant differences in the bone 

material properties of the distal femur and proximal tibia, our intra-group sample sizes 

average about 20 subjects per racial background, which is insufficient to fully capture the 

variation within each demographic. In the future, a more robust training set will be 

needed to investigate differences in the knee with a larger training set to comprehensively 

capture population variation. 

In closing, significant differences in bone material property modes of variation were 

identified between sex, racial and ethnic, and age groups. Further work with a larger 

training set is needed to improve the quality of the model and the robustness of the 

results.  
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7.  Application: SSIM Graphical User Interface 

Quantifying bone shape is essential for assessing the fit, coverage, and sizing of 

implant designs. Likewise, accurate representations of bone material properties are 

crucial for computational evaluations of initial fixation and micromotion in bone-implant 

constructs. Given the ability of SSIMs to do both, medical device developers are keenly 

interested in tools that seamlessly integrate the outcomes of these models into their 

development workflows. 

Previously, a Graphical User Interface (GUI)-based model interface was developed to 

streamline the creation of FEA-ready tibia and femur meshes using SSM outcomes. This 

tool effectively addressed questions concerning bone shape, enabling the generation of 

bones representative of various population subsets and of "worst-case" scenarios through 

user-defined mode adjustments. However, this GUI left crucial inquiries about bone 

quality variation and its impact on bone-implant systems unanswered. Accordingly, a 

new GUI-based model interface was created to apply material property maps to shape 

model instances, building on the previous interface to support consideration of anatomic 

variation in implant design evaluation. 

The SIM portion of the GUI utilized the GRNN-based morphing algorithm developed 

by Andreassen et al. to register a tetrahedral mesh to user-defined shape instances. Pre-

defined material properties could then be assigned to these registered tetrahedral meshes 
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and exported as ready-to-use files for FEA. The main panel of the SSIM GUI is shown in 

Figure 7-1. 

 

Figure 7-1: Main panel of the SSIM GUI. 

From this panel, users create new instances by manually adjusting SSM modes or 

parsing populations based on gender and ethnicity. These new instances can be exported 

as STLs or as job files for Abaqus (.inp) or ANSYS (.ans). The new SIM subpanel is 

accessible through the "Export to SIM" button in the bottom right of the main panel of 

the DU SSIM. Upon pressing the button, the SIM subpanel appears, shown in Figure 7-2. 
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Figure 7-2: The SIM subpanel of the SSIM GUI, which is used to assign material 

properties. Portions of the panel are grayed out and become accessible as the user 

progresses through the process. 

 

The SIM subpanel simplifies the complex process of generating a tetrahedral mesh 

and assigning material properties by guiding users through the process via the "Status" 

bar. The GUI assists users with SIM File Selection, Save Path Selection, Tetrahedral 

Mesh Generation, and Material Property Assignment. Since SIM modes are less intuitive 

than SSM modes, users are provided with six and seven material property maps for the 

Tibia and Femur, respectively, categorized into three groups: 

1) AVERAGE: Represents the average bone quality from the SIM training set. 
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2) LOW and HIGH: Represents instances with the lowest and highest bone quality in 

the SIM training set. 

3) CLUSTERS: Based on a k-means cluster analysis of the first three SIM modes. 

While changes in SSM modes are relatively intuitive, pre-defined material maps 

provided an intuitive alternative to the not-so-intuitive process of toggling SIM 

modes. 

This tool was developed in partnership with DePuy Synthes, a leading orthopaedic 

implant manufacturer. It exemplifies the practical application and relevance of SSIMs in 

orthopedic implant design, underscoring the role these models can play in enhancing 

implant design, and ultimately, the outcomes of TKA and UKA for a diverse patient 

population. 
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8.  Concluding Remarks 

8.1  Future Work 

While the SSIM developed in this project represents a step towards inclusion in 

orthopaedic devices, the work is far from complete. First, the models are limited by the 

size of their training set, with an average of only 20 subjects per racial or ethnic 

population included. Additionally, the model included only one subject from Pacific 

Islander/Native Hawaiian ancestry and none from ethnically middle eastern backgrounds. 

These factors affect the generalizability of the models, meaning that they cannot 

accurately represent population variation. Ideally, as per metrics set by Audenaert et al., 

the training set should include 200 instances per population. Achieving this is challenging 

due to the time-consuming nature of the registration pipeline. However, the NMDID 

database plans to develop a database of segmented subjects, which could streamline the 

database-to-register workflow. 

In the current work, statistical analyses were performed using a series of t-test 

comparisons. While this approach is likely appropriate for the comparisons of gender 

with two groups, an Analysis of Variation (ANOVA)-based approach (Kim 2014) would 

be better when evaluating the statistical differences between the multiple racial and ethnic 

and age groups. Therefore, further exploration of the ANOVA results is needed to draw 

credible conclusions from either the SSM or SIM work. 
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Additionally, unexpected issues arose when incorporating data from the previously 

developed SSIM. Several subjects had segmentation issues, such as oversmoothing or 

undersmoothing, while others showed moderate to severe osteoarthritis, including the 

presence of osteophytes. While edge artifacts are a known challenge when creating 

material property maps, the quality of segmentation of these prior subjects could be 

improved. This problem could be addressed by re-segmenting a subset of the models or 

incorporating White subjects from the NMDID database if the current models are too 

osteoarthritic to segment successfully. 

Once robustly constructed, it would be interesting to evaluate whether the 

anthropometric differences identified in the models are meaningful for the fit of modern 

TKA systems. For example, virtual implantations could be conducted to assess overhang 

and underhang, helping to assess the sufficiency of the implant sizing range. The SSM 

models could also be used to investigate new or personalized implant designs by 

predicting the knee kinematics associated with the different radii of curvature identified 

by the SSM to see if they yield any significant differences in the knee mechanics TKA 

systems aim to replicate.  

In the current work, we developed individual SSM modes of the femur and tibia. We 

recognize the development of joint-level models that consider the relative alignment of 

multiple structures could also be valuable. The as-scanned position of the limb in the 

NMDID dataset was not well controlled, making it difficult to identify the lower limb 

alignment, e.g., the hip-knee-ankle (HKA) angle. However, aligning the joint based on 



 

221 

anatomical landmarks (Wang et al. 2023; Gielis et al., n.d.) could offer additional 

insights, particularly for surgical planning applications.  

In addition to the HKA angle, other morphological parameters relevant to Total Knee 

Arthroplasty (TKA) pre-planning and implantation, such as the angle formed by a line 

connecting the most distal points on the femur condyles to the mechanical axis in the 

coronal plane or a metric for the angle of the femoral shaft in the coronal or sagittal 

planes, could be considered. Incorporating these parameters may contribute to a more 

comprehensive understanding of the modes of variation in the SSMs. 

While the new GRNN-based registration workflow has been validated in the 

construction of these models, the selected parameters tuned to register some bones were 

not robust enough to morph all instances in the training set. Parameters were selected 

considering morphing accuracy and also computation time. Although a user familiar with 

the program can mitigate this issue, it would be preferable for the algorithm to function 

without intervention for all bones. This may require further refinement of the parameters, 

the algorithm, or a hybrid approach where CPD deforms the triangular mesh and a 

GRNN morphs the tetrahedral mesh based on the CPD morph. 

Finally, the GUI based on the new GRNN morphing process successfully streamlines 

the process of creating FEA-ready bone models, its lengthy processing time makes it less 

attractive to users. This limitation could be addressed by tweaking the GRNN morphing 

parameters or adopting an alternative tetrahedral shape statistical model approach. In this 

approach the files imported into the app would contain a register of tetrahedral meshes 

matching that of the tri register. Constructing a new tetrahedral mesh for material 
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property assignment would no longer involve morphing a tetrahedral template onto a 

triangular instance. Rather, the tetrahedral mesh could be constructed as a new instance 

of the tetrahedral shape model, a rapid and computationally inexpensive process. 

8.2  Concluding Remarks 

The SSIM developed in this project represents a significant advancement in 

personalized care and inclusivity for orthopedic medical devices. Notably, it is the first 

model to include Native American and Hispanic subjects and compare these groups with 

three other racial and ethnic backgrounds. Although the current training set is not robust 

enough to draw definitive conclusions about differences between these groups, or among 

sex and age groups, this project successfully validated an NMDID database-to-register 

workflow that can be used to construct a more comprehensive model in the future
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