Spring 2013

GIS Analysis of Placer Gold Mining Potential in the Yuba River Watershed, California

J. D. Chandler

Follow this and additional works at: https://digitalcommons.du.edu/geog_ms_capstone

Part of the Geographic Information Sciences Commons

Recommended Citation
Chandler, J. D., "GIS Analysis of Placer Gold Mining Potential in the Yuba River Watershed, California" (2013). Graduate Student Capstones. 32.
https://digitalcommons.du.edu/geog_ms_capstone/32

This Capstone Project is brought to you for free and open access by the Department of Geography & the Environment at Digital Commons @ DU. It has been accepted for inclusion in Graduate Student Capstones by an authorized administrator of Digital Commons @ DU. For more information, please contact jennifer.cox@du.edu.
GIS Analysis of Placer Gold Mining Potential in the Yuba River Watershed, California

By J.D. Chandler

University of Denver, Colorado | Department of Geography

GEOG 4993: MS GIS Capstone | Spring 2013
Purpose

Can a Geographic Information System (GIS) be used to analyze and locate precise geographic locations along rivers and creeks that have high potential for placer gold extraction in the Sierra Nevada Mountains, California?
The study area is centered on the town of Downieville, California, in the northern Sierra Nevada Mountains, California, and encompasses the Yuba River watershed.

Much of the watershed falls within the bounds of the Tahoe National Forest.
In January 1848, James Wilson Marshall discovered gold along the American River northeast of present-day Sacramento, CA.

The location of Marshall's discovery was in the present day city of Coloma, California which is a small town nestled in the Sierra Nevada foothills.)
Background

- Placer gold deposits represent the most attractive targets for small-scale prospectors.

- Placer mining is the mining of alluvial deposits of sand and gravel in modern or ancient stream beds.

- There are many different methods used to extract gold. Panning, sluicing, and dredging are the most popular.

- These methods involve using water to sort the gold from other materials. Gold is much more dense than rock so it settles to the bottom of...
Background
Methods

• The primary deposits usually consist of gold-quartz veins in metamorphic rocks and are associated with the intrusion of the Sierra Nevada batholith.

• A geologic compilation polygon dataset was obtained.

• The geologic unit and rock type "Granodiorite-Quartz Monzonite" was selected from the geology compilation layer.

• A 10 meter Digital Elevation Model (DEM)
Methods

• The ArcGIS Inverse Distance Weighted geoprocessing function was used to create a statistical raster GRID surface from the MRDS point location dataset.

• Segments of the Yuba River were clipped to Quartz polygons and converted to points and Z-values were obtained for the point data segments of the Yuba River.

• A DEM raster
Methods

- Only those pixel values greater than or equal to 20 degrees are shown identifying steep falls.

- The raster calculator tool was used to identify pixels from the IDW raster surface where the value was greater than 2.5.

- Placer gold deposits are more frequently found along the inside of sharp bends in a river where sand bars may accumulate or below steep drops and falls.
Results

• 40 point locations have the highest probability of success for placer gold extraction within the Yuba River watershed.

• 14 out of 40 locations are significant steeps slopes or drops in the river and 26 of these locations represent sharp bends in the river geometry.

• All 40 point locations have a forest service road very close, within walking distance, for
Conclusion

• All of the parameters for this analysis can and should be adjusted. GIS modeling using python scripting or model builder would be a great tool for running models with varying input parameters and variables.

• The resulting maps could be beneficial to the public or private small-scale mining companies.

• These maps can help to lessen the time spent randomly searching areas to mine for gold.

• GIS has the potential to be a valuable tool for the assessment of mineral extraction potential.
Works Cited

