Models for Discrete Quantum Gravity

S. Gudder

Follow this and additional works at: https://digitalcommons.du.edu/math_preprints

Part of the Mathematics Commons

Recommended Citation

This Article is brought to you for free and open access by the Mathematics at Digital Commons @ DU. It has been accepted for inclusion in Mathematics Preprint Series by an authorized administrator of Digital Commons @ DU. For more information, please contact jennifer.cox@du.edu,dig-commons@du.edu.
Models for Discrete Quantum Gravity

Comments
The final version of this article published in Reports on Mathematical Physics is available online at: https://doi.org/10.1016/S0034-4877(13)60010-5

This article is available at Digital Commons @ DU: https://digitalcommons.du.edu/math_preprints/35
MODELS FOR DISCRETE QUANTUM GRAVITY

S. Gudder
Department of Mathematics
University of Denver
Denver, Colorado 80208, U.S.A.
sgudder@du.edu

Abstract

We first discuss a framework for discrete quantum processes (DQP). It is shown that the set of \(q \)-probability operators is convex and its set of extreme elements is found. The property of consistency for a DQP is studied and the quadratic algebra of suitable sets is introduced. A classical sequential growth process is “quantized” to obtain a model for discrete quantum gravity called a quantum sequential growth process (QSGP). Two methods for constructing concrete examples of QSGP are provided.

1 Introduction

In a previous article, the author introduced a general framework for a discrete quantum gravity [3]. However, we did not include any concrete examples or models for this framework. In particular, we did not consider the problem of whether nontrivial models for a discrete quantum gravity actually exist. In this paper we provide a method for constructing an infinite number of such models. We first make a slight modification of our definition of a discrete quantum process (DQP) \(\rho_n, n = 1, 2, \ldots \). Instead of requiring that \(\rho_n \) be a state on a Hilbert space \(H_n \), we require that \(\rho_n \) be a \(q \)-probability operator on \(H_n \). This latter condition seems more appropriate from a probabilistic viewpoint and instead of requiring \(\text{tr}(\rho_n) = 1 \), this condition normalizes the
corresponding quantum measure. By superimposing a concrete DQP on a
classical sequential growth process we obtain a model for discrete quantum
gravity that we call a quantum sequential growth process.

Section 2 considers the DQP formalism. We show that the set of
q-probability operators is a convex set and find its set of extreme elements.
We discuss the property of consistency for a DQP and introduce the so-
called quadratic algebra of suitable sets. The suitable sets are those on
which well-defined quantum measures (or quantum probabilities) exist.

Section 3 reviews the concept of a classical sequential growth process
(CSGP) [1, 4, 5, 6, 8, 9]. The important notions of paths and cylinder sets
are discussed. In Section 4 we show how to “quantize” a CSGP to obtain
a quantum sequential growth process (QSGP). Some results concerning the
consistency of a DQP are given. Finally, Section 5 provides two methods for
constructing examples of QSGP.

2 Discrete Quantum Processes

Let $(\Omega, \mathcal{A}, \nu)$ be a probability space and let

$$H = L_2(\Omega, \mathcal{A}, \nu) = \left\{ f: \Omega \rightarrow \mathbb{C}, \int |f|^2 \, d\nu < \infty \right\}$$

be the corresponding Hilbert space. Let $\mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots \subseteq \mathcal{A}$ be an increasing
sequence of sub σ-algebras of \mathcal{A} that generate \mathcal{A} and let $\nu_n = \nu \mid \mathcal{A}_n$ be the
restriction of ν to \mathcal{A}_n, $n = 1, 2, \ldots$. Then $H_n = L_2(\Omega, \mathcal{A}_n, \nu_n)$ forms an
increasing sequence of closed subspaces of H called a filtration of H. A
bounded operator T on H_n will also be considered as a bounded operator
on H by defining $Tf = 0$ for all $f \in H_n^\perp$. We denote the characteristic
function χ_{Ω} of Ω by 1. Of course, $\|1\| = 1$ and $\langle 1, f \rangle = \int f \, d\nu$ for every
$f \in H$. A q-probability operator is a bounded positive operator ρ on H that
satisfies $\langle \rho 1, 1 \rangle = 1$. Denote the set of q-probability operators on H and
H_n by $\mathcal{Q}(H)$ and $\mathcal{Q}(H_n)$, respectively. Since $1 \in H_n$, if $\rho \in \mathcal{Q}(H_n)$ by our
previous convention, $\rho \in \mathcal{Q}(H)$. Notice that a positive operator $\rho \in \mathcal{Q}(H)$ if
and only if $\|\rho^{1/2}1\| = 1$ where $\rho^{1/2}$ is the unique positive square root of ρ.

A rank 1 element of $\mathcal{Q}(H)$ is called a pure q-probability operator. Thus
$\rho \in \mathcal{Q}(H)$ is pure if and only if ρ has the form $\rho = |\psi\rangle\langle\psi|$ for some $\psi \in H$
satisfying

$$\|\langle 1, \psi \rangle\| = \left| \int \psi d\nu \right| = 1$$
We then call ψ a q-probability vector and we denote the set of q-probability vectors by $\mathcal{V}(H)$ and the set of pure q-probability operators by $\mathcal{Q}_p(H)$. Notice that if $\psi \in \mathcal{V}(H)$, then $\|\psi\| \geq 1$ and $\|\psi\| = 1$ if and only if $\psi = \alpha 1$ for some $\alpha \in \mathbb{C}$ with $|\alpha| = 1$. Two operators $\rho_1, \rho_2 \in \mathcal{Q}(H)$ are orthogonal if $\rho_1 \rho_2 = 0$.

Theorem 2.1. (i) $\mathcal{Q}(A)$ is a convex set and $\mathcal{Q}_p(H)$ is its set of extreme elements. (ii) $\rho \in \mathcal{Q}(H)$ is of trace class if and only if there exists a sequence of mutually orthogonal $\rho_i \in \mathcal{Q}_p(H)$ and $\alpha_i > 0$ with $\sum \alpha_i = 1$ such that $\rho = \sum \alpha_i \rho_i$ in the strong operator topology. The ρ_i are unique if and only if the corresponding α_i are distinct.

Proof. (i) If $0 < \lambda < 1$ and $\rho_1, \rho_2 \in \mathcal{Q}(H)$, then $\rho = \lambda \rho_1 + (1 - \lambda) \rho_2$ is a positive operator and

$$\langle \rho_1, 1 \rangle = \langle (\lambda \rho + (1 - \lambda) \rho_2)1, 1 \rangle = \lambda \langle \rho_1, 1 \rangle + (1 - \lambda) \langle \rho_2, 1 \rangle = 1$$

Hence, $\rho \in \mathcal{Q}(H)$ so $\mathcal{Q}(H)$ is a convex set. Suppose $\rho \in \mathcal{Q}_p(H)$ and $\rho = \lambda \rho_1 + (1 - \lambda) \rho_2$ where $0 < \lambda < 1$ and $\rho_1, \rho_2 \in \mathcal{Q}(H)$. If $\rho_1 \neq \rho_2$, then rank(ρ) $\neq 1$ which is a contradiction. Hence, $\rho_1 = \rho_2$ so ρ is an extreme element of $\mathcal{Q}(H)$. Conversely, suppose $\rho \in \mathcal{Q}(H)$ is an extreme element. If the cardinality of the spectrum $|\sigma(\rho)| > 1$, then by the spectral theorem $\rho = \rho_1 + \rho_2$ where $\rho_1, \rho_2 \neq 0$ are positive and $\rho_1 \neq \alpha \rho_2$ for $\alpha \in \mathbb{C}$. If $\rho_1, \rho_2 \neq 1$, then $\langle \rho_1, 1 \rangle, \langle \rho_2, 1 \rangle \neq 0$ and we can write

$$\rho = \langle \rho_1, 1 \rangle \frac{\rho_1}{\langle \rho_1, 1 \rangle} + \langle \rho_2, 1 \rangle \frac{\rho_2}{\langle \rho_2, 1 \rangle}$$

Now $\langle \rho_1, 1 \rangle^{-1} \rho_1, \langle \rho_2, 1 \rangle^{-1} \rho_2 \in \mathcal{Q}(H)$ and

$$\langle \rho_1, 1 \rangle + \langle \rho_2, 1 \rangle = \langle \rho_1, 1 \rangle = 1$$

which is a contradiction. Hence, $\rho_1, 1 = 0$ or $\rho_2, 1 = 0$. Without loss of generality suppose that $\rho_2, 1 = 0$. We can now write

$$\rho = \frac{1}{2} \rho_1 + \frac{1}{2} (\rho_1 + 2 \rho_2)$$

Now $\rho_1, 1 \neq 0$, $(\rho_1 + 2 \rho_2), 1 \neq 0$ and as before we get a contradiction. We conclude that $|\sigma(\rho)| = 1$. Hence, $\rho = \alpha P$ where P is a projection and $\alpha > 0$. If rank(P) > 1, then $P = P_1 + P_2$ where P_1 and P_2 are orthogonal nonzero projections so $\rho = \alpha P_1 + \alpha P_2$. Proceeding as before we obtain a contradiction. Hence, rank(P) $= 1$ so $\rho = \alpha P$ is pure. (ii) This follows from the spectral theorem. \qed
Let \(\{H_n : n = 1, 2, \ldots \} \) be a filtration of \(H \) and let \(\rho_n \in \mathcal{Q}(H_n) \), \(n = 1, 2, \ldots \). The \textit{n-decoherence functional} \(D_n : \mathcal{A}_n \times \mathcal{A}_n \rightarrow \mathbb{C} \) defined by

\[
D_n(A, B) = \langle \rho_n \chi_B, \chi_A \rangle
\]

gives a measure of the interference between \(A \) and \(B \) when the system is described by \(\rho_n \). It is clear that \(D_n(\Omega_n, \Omega_n) = 1 \), \(D_n(A, B) = D_n(B, A) \) and \(A \mapsto D_n(A, B) \) is a complex measure for all \(B \in \mathcal{A}_n \). It is also well-known that if \(A_1, \ldots, A_r \in \mathcal{A}_n \) then the matrix with entries \(D_n(A_j, A_k) \) is positive semidefinite. We define the map \(\mu_n : \mathcal{A}_n \rightarrow \mathbb{R}^+ \) by

\[
\mu_n(A) = D_n(A, A) = \langle \rho_n \chi_A, \chi_A \rangle
\]

Notice that \(\mu_n(\Omega_n) = 1 \). Although \(\mu_n \) is not additive, it does satisfy the \textit{grade-2 additivity condition}: if \(A, B, C \in \mathcal{A}_n \) are mutually disjoint, then

\[
\mu_n(A \cup B \cup C) = \mu_n(A \cup B) + \mu_n(A \cup C) + \mu_n(B \cup C) - \mu_n(A) - \mu_n(B) - \mu_n(C)
\]

(2.1)

We say that \(\rho_{n+1} \) is \textit{consistent} with \(\rho_n \) if \(D_{n+1}(A, B) = D_n(A, B) \) for all \(A, B \in \mathcal{A}_n \). We call the sequence \(\rho_n, n = 1, 2, \ldots, \) \textit{consistent} if \(\rho_{n+1} \) is consistent with \(\rho_n \) for \(n = 1, 2, \ldots \). Of course, if the sequence \(\rho_n, n = 1, 2, \ldots, \) is consistent, then \(\mu_{n+1}(A) = \mu_n(A) \) \(\forall A \in \mathcal{A}_n, n = 1, 2, \ldots \). A \textit{discrete quantum process} (DQP) is a consistent sequence \(\rho_n \in \mathcal{Q}(H_n) \) for a filtration \(H_n, n = 1, 2, \ldots \). A DQP \(\rho_n \) is \textit{pure} if \(\rho_n \in \mathcal{Q}_p(H_n), n = 1, 2, \ldots \).

If \(\rho_n \) is a DQP, then the corresponding maps \(\mu_n : \mathcal{A}_n \rightarrow \mathbb{R}^+ \) have the form

\[
\mu_n(A) = \langle \rho_n \chi_A, \chi_A \rangle = \|\rho_n^{1/2} \chi_A\|^2
\]

Now \(A \mapsto \rho_n^{1/2} \chi_A \) is a vector-valued measure on \(\mathcal{A}_n \). We conclude that \(\mu_n \) is the squared norm of a vector-valued measure. In particular, if \(\rho_n = |\psi_n\rangle \langle \psi_n| \) is a pure DQP, then \(\mu_n(A) = |\langle \psi_n, \chi_A \rangle|^2 \) so \(\mu_n \) is the squared modulus of the complex-valued measure \(A \mapsto \langle \psi_n, \chi_A \rangle \).

For a DQP \(\rho_n \in \mathcal{Q}(H_n) \), we say that a set \(A \in \mathcal{A} \) is \textit{suitable} if \(\lim \langle \rho_j \chi_A, \chi_A \rangle \) exists and is finite and in this case we define \(\mu(A) \) to be the limit. We denote the set of suitable sets by \(\mathcal{S}(\rho_n) \). If \(A \in \mathcal{A}_n \) then

\[
\lim \langle \rho_j \chi_A, \chi_A \rangle = \langle \rho_n \chi_A, \chi_A \rangle
\]

so \(A \in \mathcal{S}(\rho_n) \) and \(\mu(A) = \mu_n(A) \). This shows that the algebra \(\mathcal{A}_0 = \cup \mathcal{A}_n \subseteq \mathcal{S}(\rho_n) \). In particular, \(\Omega \in \mathcal{S}(\rho_n) \) and \(\mu(\Omega) = 1 \). In general, \(\mathcal{S}(\rho_n) \neq \mathcal{A} \) and \(\mu \)
may not have a well-behaved extension from \mathcal{A}_0 to all of \mathcal{A} [2, 7]. A subset \mathcal{B} of \mathcal{A} is a quadratic algebra if $\emptyset, \Omega \in \mathcal{B}$ and whenever $A, B, C \in \mathcal{B}$ are mutually disjoint with $A \cup B, A \cup C, B \cup C \in \mathcal{B}$, we have $A \cup B \cup C \in \mathcal{B}$. For a quadratic algebra \mathcal{B}, a q-measure is a map $\mu_0 : \mathcal{B} \to \mathbb{R}^+$ that satisfies the grade-2 additivity condition (2.1). Of course, an algebra of sets is a quadratic algebra and we conclude that $\mu_n : \mathcal{A}_n \to \mathbb{R}^+$ is a q-measure. It is not hard to show that $\mathcal{S}(\rho_n)$ is a quadratic algebra and $\mu : \mathcal{S}(\rho_n) \to \mathbb{R}^+$ is a q-measure on $\mathcal{S}(\rho_n)$ [3].

3 Classical Sequential Growth Processes

A partially ordered set (poset) is a set x together with an irreflexive, transitive relation $<$ on x. In this work we only consider unlabeled posets and isomorphic posets are considered to be identical. Let \mathcal{P}_n be the collection of all posets with cardinality n, $n = 1, 2, \ldots$. If $x \in \mathcal{P}_n$, $y \in \mathcal{P}_{n+1}$, then x produces y if y is obtained from x by adjoining a single new element to x that is maximal in y. We also say that x is a producer of y and y is an offspring of x. If x produces y we write $x \rightarrow y$. We denote the set of offspring of x by $x \rightarrow$ and for $A \subseteq \mathcal{P}_n$ we use the notation

$$A \rightarrow = \{ y \in \mathcal{P}_{n+1} : x \rightarrow y, x \in A \}$$

The transitive closure of \rightarrow makes the set of all finite posets $\mathcal{P} = \bigcup \mathcal{P}_n$ into a poset.

A path in \mathcal{P} is a string (sequence) x_1, x_2, \ldots where $x_i \in \mathcal{P}_i$ and $x_i \rightarrow x_{i+1}$, $i = 1, 2, \ldots$. An n-path in \mathcal{P} is a finite string $x_1 x_2 \cdots x_n$ where again $x_i \in \mathcal{P}_i$ and $x_i \rightarrow x_{i+1}$. We denote the set of paths by Ω and the set of n-paths by Ω_n. The set of paths whose initial n-path is $\omega_0 \in \Omega_n$ is denoted by $\omega_0 \Rightarrow$. Thus, if $\omega_0 = x_1 x_2 \cdots x_n$ then

$$\omega_0 \Rightarrow = \{ \omega \in \Omega : \omega = x_1, x_2 \cdots x_n y_{n+1} y_{n+2} \cdots \}$$

If x produces y in r isomorphic ways, we say that the multiplicity of $x \rightarrow y$ is r and write $m(x \rightarrow y) = r$. For example, in Figure 1, $m(x \rightarrow y) = 3$. (To be precise, these different isomorphic ways require a labeling of the posets and this is the only place that labeling needs to be mentioned.)
If \(x \in \mathcal{P} \) and \(a, b \in x \) we say that \(a \) is an ancestor of \(b \) and \(b \) is a successor of \(a \) if \(a < b \). We say that \(a \) is a parent of \(b \) and \(b \) is a child of \(a \) if \(a < b \) and there is no \(c \in x \) such that \(a < c < b \). Let \(c = (c_0, c_1, \ldots) \) be a sequence of nonnegative numbers called coupling constants [5, 9]. For \(r, s \in \mathbb{N} \) with \(r \leq s \), we define

\[
\lambda_c(s, r) = \sum_{k=r}^{s} \binom{s-r}{k-r} c_k = \sum_{k=0}^{s-r} \binom{s-r}{k} c_{r+k}
\]

For \(x \in \mathcal{P}_n, y \in \mathcal{P}_{n+1} \) with \(x \rightarrow y \) we define the transition probability

\[
p_c(x \rightarrow y) = m(x \rightarrow y) \frac{\lambda_c(\alpha, \pi)}{\lambda_c(n, 0)}
\]

where \(\alpha \) is the number of ancestors and \(\pi \) the number of parents of the adjoined maximal element in \(y \) that produces \(y \) from \(x \). It is shown in [5, 9] that \(p_c(x \rightarrow y) \) is a probability distribution in that it satisfies the Markov-sum rule

\[
\sum \{p_c(x \rightarrow y) : y \in \mathcal{P}_{n+1}, x \rightarrow y \} = 1
\]

In discrete quantum gravity, the elements of \(\mathcal{P} \) are thought of as causal sets and \(a < b \) is interpreted as \(b \) being in the causal future of \(a \). The distribution \(y \mapsto p_c(x \rightarrow y) \) is essentially the most general that is consistent with principles of causality and covariance [5, 9]. It is hoped that other theoretical principles or experimental data will determine the coupling constants. One suggestion is to take \(c_k = 1/k! \) [6, 7]. The case \(c_k = c^k \) for some \(c > 0 \) has been previously studied and is called a percolation dynamics [5, 6, 8].

We call an element \(x \in \mathcal{P} \) a site and we sometimes call an \(n \)-path an \(n \)-universe and a path a universe. The set \(\mathcal{P} \) together with the set of transition probabilities \(p_c(x \rightarrow y) \) forms a classical sequential growth process (CSGP).
which we denote by \((\mathcal{P}, p_c)\) \([4, 5, 6, 8, 9]\). It is clear that \((\mathcal{P}, p_c)\) is a Markov chain and as usual we define the probability of an \(n\)-path \(\omega = y_1y_2 \cdots y_n\) by

\[
p^n_c(\omega) = p_c(y_1 \rightarrow y_2)p_c(y_2 \rightarrow y_3) \cdots p_c(y_{n-1} \rightarrow y_n)
\]

Denoting the power set of \(\Omega_n\) by \(2^{\Omega_n}\), \((\Omega_n, 2^{\Omega_n}, p^n_c)\) becomes a probability space where

\[
p^n_c(A) = \sum \{p^n_c(\omega) : \omega \in A\}
\]

for all \(A \in 2^{\Omega_n}\). The probability of a site \(x \in \mathcal{P}_n\) is

\[
p^n_c(x) = \sum \{p^n_c(\omega) : \omega \in \Omega_n, \omega \text{ ends at } x\}
\]

Of course, \(x \mapsto p^n_c(x)\) is a probability measure on \(\mathcal{P}_n\) and we have

\[
\sum_{x \in \mathcal{P}_n} p^n_c(x) = 1
\]

Example 1. Figure 2 illustrates the first two steps of a CSGP where the 2 indicates the multiplicity \(m(x_3 \rightarrow x_6) = 2\). Table 1 lists the probabilities of the various sites for the general coupling constants \(c_k\) and the particular coupling constants \(c'_k = 1/k!\) where \(d = (c_0 + c_1)(c_0 + 2c_1 + c_2)\).

![Figure 2](image-url)
For $A \subseteq \Omega_n$ we use the notation

$$A \Rightarrow = \cup \{\omega \Rightarrow: \omega \in A\}$$

Thus, $A \Rightarrow$ is the set of paths whose initial n-paths are elements of A. We call $A \Rightarrow$ a cylinder set and define

$$\mathcal{A}_n = \{A \Rightarrow: A \subseteq \Omega_n\}$$

In particular, if $\omega \in \Omega_n$ then the elementary cylinder set $\text{cyl}(\omega)$ is given by $\text{cyl}(\omega) = \omega \Rightarrow$. It is easy to check that the \mathcal{A}_n form an increasing sequence $\mathcal{A}_1 \subseteq \mathcal{A}_2 \subseteq \cdots$ of algebras on Ω and hence $\mathcal{C}(\Omega) = \cup \mathcal{A}_n$ is an algebra of subsets of Ω. Also for $A \in \mathcal{C}(\Omega)$ of the form $A = A_1 \Rightarrow$, $A_1 \subseteq \Omega_n$, we define $p_c(A) = p^n_c(A_1)$. It is easy to check that p_c is a well-defined probability measure on $\mathcal{C}(\Omega)$. It follows from the Kolmogorov extension theorem that p_c has a unique extension to a probability measure ν_c on the σ-algebra \mathcal{A} generated by $\mathcal{C}(\Omega)$. We conclude that $(\Omega, \mathcal{A}, \nu_c)$ is a probability space, the increasing sequence of subalgebras \mathcal{A}_n generates \mathcal{A} and that the restriction $\nu_c | \mathcal{A}_n = p^n_c$. Hence, the subspaces $H_n = L^2(\Omega, \mathcal{A}_n, p^n_c)$ form a filtration of the Hilbert space $H = L^2(\Omega, \mathcal{A}, \nu_c)$.

4 Quantum Sequential Growth Processes

This section employs the framework of Section 2 to obtain a quantum sequential growth process (QSGP) from the CSGP (\mathcal{P}, p_c) developed in Section 3. We have seen that the n-path Hilbert space $H_n = L^2(\Omega, \mathcal{A}_n, p^n_c)$ forms a filtration of the path Hilbert space $H = L^2(\Omega, \mathcal{A}, \nu_c)$. In the sequel, we assume that $p^n_c(\omega) \neq 0$ for every $\omega \in \Omega_n$, $n = 1, 2, \ldots$. Then the set of vectors

$$e^n_\omega = p^n_c(\omega)^{1/2} \chi_{\text{cyl}(\omega)}, \omega \in \Omega_n$$

<table>
<thead>
<tr>
<th>x_i</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p^{(n)}_c(x_i)$</td>
<td>1</td>
<td>$\frac{c_1}{c_0+c_1}$</td>
<td>$\frac{c_0}{c_0+c_1}$</td>
<td>$\frac{c_1(c_1+c_2)}{d}$</td>
<td>$\frac{c_1}{d}$</td>
<td>$\frac{3c_0c_1}{d}$</td>
<td>$\frac{c_0c_2}{d}$</td>
<td>$\frac{c_1^2}{d}$</td>
</tr>
<tr>
<td>$p^n_c(x_i)$</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{3}{14}$</td>
<td>$\frac{1}{7}$</td>
<td>$\frac{3}{7}$</td>
<td>$\frac{1}{14}$</td>
<td>$\frac{1}{7}$</td>
</tr>
</tbody>
</table>

Table 1
form an orthonormal basis for H_n, $n = 1, 2, \ldots$. For $A \in \mathcal{A}_n$, notice that
\[\chi_A \in H \quad \text{with} \quad \|\chi_A\| = p^n(A)^{1/2}. \]

We call a DQP $\rho_n \in \mathcal{Q}(H_n)$ a quantum sequential growth process (QSGP). We call ρ_n the local operators and $\mu_n(A) = D_n(A, A)$ the local q-measures for the process. If $\rho = \lim \rho_n$ exists in the strong operator topology, then ρ is a q-probability operator on H called the global operator for the process. If the global operator ρ exists, then $\hat{\mu}(A) = \langle \rho \chi_A, \chi_A \rangle$ is a (continuous) q-measure on \mathcal{A} that extends μ_n, $n = 1, 2, \ldots$. Unfortunately, the global operator does not exist, in general, so we must be content to work with the local operators $[2, 3, 7]$. In this case, we still have the q-measure μ on the quadratic algebra $\mathcal{S}(\rho_n) \subseteq \mathcal{A}$ that extends μ_n, $n = 1, 2, \ldots$. We frequently identify a set $A \subseteq \Omega_n$ with the corresponding cylinder set $(A \Rightarrow) \in \mathcal{A}_n$. We then have the q-measure, also denoted by μ_n, on 2^{Ω_n} defined by $\mu_n(A) = \mu_n(A \Rightarrow)$. Moreover, we define the q-measure, again denoted by μ_n, on \mathcal{P}_n by
\[\mu_n(A) = \mu_n\{\omega \in \Omega_n: \omega \text{ end in } A\} \]
for all $A \subseteq \mathcal{P}_n$. In particular, for $x \in \mathcal{P}_n$ we have
\[\mu_n\{x\} = \mu_n\{\omega \in \Omega_n: \omega \text{ ends with } x\} \]

If $A \in \mathcal{A}_n$ has the form $A_1 \Rightarrow$ for $A_1 \subseteq \Omega_n$ then $A \in \mathcal{A}_{n+1}$ and $A = (A_1 \Rightarrow) \Rightarrow$ where $A_1 \Rightarrow \subseteq \Omega_{n+1}$. Let $\rho_n \in \mathcal{Q}(H_n)$, $\rho_{n+1} \in \mathcal{Q}(H_{n+1})$ and let
\[D_n(A, B) = \langle \rho_n \chi_B, \chi_A \rangle, \quad D_{n+1}(A, B) = \langle \rho_{n+1} \chi_B, \chi_A \rangle \]
be the corresponding decoherence functionals. Then ρ_{n+1} is consistent with ρ_n if and only if for all $A, B \subseteq \Omega_n$ we have
\[D_{n+1}[\omega \Rightarrow, (\omega' \Rightarrow)] = D_n(A \Rightarrow, B \Rightarrow) \quad (4.1) \]

Lemma 4.1. For $\rho_n \in \mathcal{Q}(H_n)$, $\rho_{n+1} \in \mathcal{Q}(H_{n+1})$ we have that ρ_{n+1} is consistent with ρ_n if and only if for all $\omega, \omega' \in \Omega_n$ we have
\[D_{n+1}[\omega \Rightarrow, (\omega' \Rightarrow)] = D_n(\omega \Rightarrow, \omega' \Rightarrow) \quad (4.2) \]

Proof. Necessity is clear. For sufficiency, suppose (4.2) holds. Then for every $A, B \subseteq \Omega_n$ we have
\[D_{n+1}[\omega \Rightarrow, (\omega' \Rightarrow)] = \sum_{\omega \in A} \sum_{\omega' \in B} D_n(A \Rightarrow, B \Rightarrow) \]
and the result follows from (4.1). \(\square\)
For \(\omega = x_1 x_2 \cdots x_n \in \Omega_n \) and \(y \in P_{n+1} \) with \(x_n \rightarrow y \) we use the notation \(\omega y \in \Omega_{n+1} \) where \(\omega y = x_1 x_2 \cdots x_n y \). We also define \(\rho_c(\omega \rightarrow y) = \rho_c(x_n \rightarrow y) \) and write \(\omega \rightarrow y \) whenever \(x_n \rightarrow y \).

Theorem 4.2. For \(\rho_n \in Q(H_n) \), \(\rho_{n+1} \in Q(H_{n+1}) \) we have that \(\rho_{n+1} \) is consistent with \(\rho_n \) if and only if for every \(\omega, \omega' \in \Omega_n \) we have

\[
\langle \rho_n e^\omega_n, e^\omega_n \rangle = \sum_{x \in P_{n+1}} \sum_{y \in P_{n+1}} p_c(\omega' \rightarrow x)^{1/2} p_c(\omega \rightarrow y)^{1/2} \left\langle \rho_{n+1} e^{\omega' x}_n, e^{\omega y}_n \right\rangle \quad (4.3)
\]

Proof. By Lemma 4.1, \(\rho_{n+1} \) is consistent with \(\rho_n \) if and only if (4.2) holds. But

\[
D_n(\omega \Rightarrow, \omega' \Rightarrow) = \langle \rho_n \chi_{\omega' \Rightarrow}, \chi_{\omega \Rightarrow} \rangle = \langle \rho_n \chi_{\text{cyl}(\omega')}, \chi_{\text{cyl}(\omega)} \rangle
\]

\[
= p^\omega_n(\omega')^{1/2} p^\omega_n(\omega)^{1/2} \langle \rho_{n+1} e^\omega_{n+1}_n, e^\omega_n \rangle
\]

Moreover, we have

\[
D_{n+1} [(\omega \rightarrow) \Rightarrow, (\omega' \rightarrow) \Rightarrow] = \langle \rho_{n+1} \chi(\omega' \rightarrow), \chi(\omega \rightarrow) \rangle
\]

\[
= \sum_{x \in P_{n+1}} \sum_{y \in P_{n+1}} \langle \rho_{n+1} \chi_{\omega' x \rightarrow}, \chi_{\omega y \Rightarrow} \rangle
\]

\[
= \sum_{x \in P_{n+1}} \sum_{y \in P_{n+1}} \langle \rho_{n+1} \chi_{\text{cyl}(\omega' x)}, \chi_{\text{cyl}(\omega y)} \rangle
\]

\[
= \sum_{x \in P_{n+1}} \sum_{y \in P_{n+1}} p^\omega_n(\omega' x)^{1/2} p^\omega_n(\omega y)^{1/2} \left\langle \rho_{n+1} e^{\omega' x}_{n+1}_n, e^{\omega y}_n \right\rangle
\]

\[
= p^\omega_n(\omega')^{1/2} p^\omega_n(\omega)^{1/2} \sum_{x \in P_{n+1}} \sum_{y \in P_{n+1}} p_c(\omega' \rightarrow x) p_c(\omega \rightarrow y)^{1/2} \left\langle \rho_{n+1} e^{\omega' x}_{n+1}_n, e^{\omega y}_{n+1} \right\rangle
\]

The result now follows. \(\square \)

Viewing \(H_n \) as \(L_2(\Omega_n, 2^{\Omega_n}, p^\omega_c) \) we can write (4.3) in the simple form

\[
\langle \rho_n \chi(\omega'), \chi(\omega) \rangle = \langle \rho_{n+1} \chi(\omega' \rightarrow), \chi(\omega \rightarrow) \rangle \quad (4.4)
\]

Corollary 4.3. A sequence \(\rho_n \in Q(H_n) \) is a QSGP if and only if (4.3) or (4.4) hold for every \(\omega, \omega' \in \Omega_n, n = 1, 2, \ldots \).
We now consider pure q-probability operators. In the following results we again view H_n as $L^2(\Omega_n, \sigma^\Omega_n, p_c^n)$.

Corollary 4.4. If $\rho_n \in \mathcal{Q}_p(H_n)$, $\rho_{n+1} \in \mathcal{Q}_p(H_{n+1})$ with $p_n = |\psi_n\rangle\langle\psi_n|$, $\rho_{n+1} = |\psi_{n+1}\rangle\langle\psi_{n+1}|$, then ρ_{n+1} is consistent with ρ_n if and only if for every $\omega, \omega' \in \Omega_n$ we have

$$\langle\psi_n, \chi_{\{\omega\}}\rangle\langle\chi_{\{\omega'\}}, \psi_n\rangle = \langle\psi_{n+1}, \chi_{\omega\rightarrow}\rangle\langle\chi_{\omega'\rightarrow}, \psi_{n+1}\rangle \quad (4.5)$$

Corollary 4.5. A sequence $|\psi_n\rangle\langle\psi_n| \in \mathcal{Q}_p(H_n)$ is a QSGP if and only if (4.5) holds for every $\omega, \omega' \in \Omega_n$.

We say that $\psi_{n+1} \in \mathcal{V}(H_{n+1})$ is strongly consistent with $\psi_n \in \mathcal{V}(H_n)$ if for every $\omega \in \Omega_n$ we have

$$\langle\psi_n, \chi_{\{\omega\}}\rangle = \langle\psi_{n+1}, \chi_{\omega\rightarrow}\rangle \quad (4.6)$$

By (4.5) strong consistency implies the consistency of the corresponding q-probability operators.

Corollary 4.6. If $\psi_{n+1} \in \mathcal{V}(H_{n+1})$ is strongly consistent with $\psi_n \in \mathcal{V}(H_n)$, $n = 1, 2, \ldots$, then $|\psi_n\rangle\langle\psi_n| \in \mathcal{Q}_p(H_n)$ is a QSGP.

Lemma 4.7. If $\psi_n \in \mathcal{V}(H_n)$ and $\psi_{n+1} \in H_{n+1}$ satisfies (4.6) for every $\omega \in \Omega_n$, then $|\psi_{n+1}\rangle \in \mathcal{V}(H_{n+1})$.

Proof. Since $\psi_n \in \mathcal{V}(H_n)$ we have by (4.6) that

$$|\langle\psi_{n+1}, 1\rangle| = \left| \sum_{\omega \in \Omega_n} \langle\psi_{n+1}, \chi_{\omega\rightarrow}\rangle \right| = \left| \sum_{\omega \in \Omega_n} \langle\psi_n, \chi_{\{\omega\}}\rangle \right| = |\langle\psi_n, 1\rangle| = 1$$

The result now follows.

Corollary 4.8. If $||\psi_1|| = 1$ and $\psi_n \in H_n$ satisfies (4.6) for all $\omega \in \Omega_n$, $n = 1, 2, \ldots$, then $|\psi_n\rangle\langle\psi_n|$ is a QSGP.

Proof. Since $||\psi_1|| = 1$, it follows that $\psi_1 \in \mathcal{V}(H_1)$. By Lemma 4.7, $\psi_n \in \mathcal{V}(H_n)$, $n = 1, 2, \ldots$. Since (4.6) holds, the result follows from Corollary 4.6.

Another way of writing (4.6) is

$$\sum_{\omega \rightarrow x} p_c^{n+1}(\omega x)\psi_{n+1}(\omega x) = p_c^n(\omega)\psi_n(x) \quad (4.7)$$

for every $\omega \in \Omega_n$.

11
5 Discrete Quantum Gravity Models

This section gives some examples of QSGP that can serve as models for
discrete quantum gravity. The simplest way to construct a QSGP is to form
the constant pure DQP $\rho_n = |1\rangle\langle 1|$, $n = 1, 2, \ldots$. To show that ρ_n is indeed
consistent, we have for $\omega \in \Omega_n$ that

$$\sum_{\omega \to x} p_c^{n+1}(\omega x) = \sum_{\omega \to x} p_c^n(\omega)p_c(\omega \to x) = p_c^n(\omega) \sum_{\omega \to x} p_c(\omega \to x) = p_c^n(\omega)$$

so consistency follows from (4.7). The corresponding q-measures are given
by

$$\mu_n(A) = |\langle 1, \chi_A \rangle|^2 = p_c^n(A)^2$$

for every $A \in A_n$. Hence, μ_n is the square of the classical measure. Of
course, $|1\rangle\langle 1|$ is the global q-probability operator for this QSGP and in this
case $S(\rho_n) = A$. Moreover, we have the global q-measure $\mu(A) = \nu_c(A)^2$ for
$A \in A$.

Another simple way to construct a QSGP is to employ Corollary 4.8. In
this way we can let $\psi_1 = 1$, ψ_2 any vector in $L_2(\Omega_2, 2^{\Omega_2}, p_c^2)$ satisfying

$$\langle \psi_1, \chi_{\{x_1x_2\}} \rangle + \langle \psi_2, \chi_{\{x_1x_3\}} \rangle = \langle \psi_1, \chi_{\{x_1\}} \rangle = 1$$

and so on, where x_1, x_2, x_3 are given in Figure 2. As a concrete example, let $\psi_1 = 1$,

$$\psi_2 = \frac{1}{2} \left[p_c^2(x_1x_2)^{-1}\chi_{\{x_1x_2\}} + p_c^2(x_1x_3)\chi_{\{x_1x_3\}} \right]$$

and in general

$$\psi_n = \frac{1}{|\Omega_n|} \sum_{\omega \in \Omega_n} p_c^n(\omega)^{-1}\chi_{\{\omega\}}$$

The q-measure μ_1 is $\mu_1(\{x_1\}) = 1$ and μ_2 is given by

$$\mu_2(\{x_1x_2\}) = |\langle \psi_2, \chi_{\{x_1x_2\}} \rangle|^2 = \frac{1}{4}$$
$$\mu_2(\{x_1x_3\}) = |\langle \psi_2, \chi_{\{x_1x_3\}} \rangle|^2 = \frac{1}{4}$$
$$\mu_2(\Omega_2) = |\langle \psi_2, 1 \rangle|^2 = 1$$

In general, we have $\mu_n(A) = |A|^2 / |\Omega_n|^2$ for all $A \in \Omega_n$. Thus μ_n is the square
of the uniform distribution. The global operator does not exist because there
is no q-measure on \mathcal{A} that extends μ_n for all $n \in \mathbb{N}$. For $A \in \mathcal{A}$ we have

$$\langle \psi_n, \chi_A \rangle = \int \psi_n(\chi_A d\nu_c = \frac{|A \cap \{\text{cyl}(\omega) : \omega \in \Omega_n\}|}{|\Omega_n|}$$
Letting $\rho_n = |\psi_n\rangle\langle\psi_n|$ we conclude that $A \in S(\rho_n)$ if and only if
\[
\lim_{n \to \infty} \frac{|A \cap \{\text{cyl}(\omega) : \omega \in \Omega_n\}|}{|\Omega_n|}
\]
events. For example, if $|A| < \infty$ then for n sufficiently large we have
\[
|A \cap \{\text{cyl}(\omega) : \omega \in \Omega_n\}| = |A|
\]
so $A \in S(\rho_n)$ and $\mu(A) = 0$. In a similar way if $|A| < \infty$ then for the complement A', if n is sufficiently large we have
\[
|A' \cap \{\text{cyl}(\omega) : \omega \in \Omega_n\}| = |\Omega_n| - |A|
\]
so $A' \in S(\rho_n)$ with $\mu(A') = 1$.

We now present another method for constructing a QSGP. Unlike the previous method this DQP is not pure. Let $\alpha_\omega \in \mathbb{C}$, $\omega \in \Omega_n$ satisfy
\[
\left| \sum_{\omega \in \Omega_n} \alpha_\omega p^n_c(\omega)^{1/2} \right| = 1 \quad (5.1)
\]
and let ρ_n be the operator on H_n satisfying
\[
\langle \rho_n e^n_\omega, e^n_{\omega'} \rangle = \alpha_\omega \overline{\alpha_{\omega'}} \quad (5.2)
\]
Then ρ_n is a positive operator and by (5.1), (5.2) we have
\[
\langle \rho_n 1, 1 \rangle = \left\langle \rho_n \sum_{\omega} p^n_c(\omega)^{1/2} e^n_\omega, \sum_{\omega'} p^n_c(\omega')^{1/2} e^n_{\omega'} \right\rangle = \sum_{\omega \omega'} p^n_c(\omega)^{1/2} p^n_c(\omega')^{1/2} \langle \rho_n e^n_\omega, e^n_{\omega'} \rangle = \left| \sum_{\omega} p^n_c(\omega)^{1/2} \alpha_\omega \right|^2 = 1
\]
Hence, $\rho_n \in \mathcal{Q}(H_n)$. Now
\[
\Omega_{n+1} = \{\omega x : \omega \in \Omega_n, x \in \mathcal{P}_{n+1}, \omega \rightarrow x\}
\]
and for each $\omega x \in \Omega_{n+1}$, let $\beta_{\omega x} \in \mathbb{C}$ satisfy
\[
\left| \sum_{\omega x \in \Omega_{n+1}} \beta_{\omega x} p_c^{n+1}(\omega x)^{1/2} \right| = 1
\]

Let ρ_{n+1} be the operator on H_{n+1} satisfying
\[
\langle \rho_{n+1} e^{n+1}_{\omega x}, e^{n+1}_{\omega' x'} \rangle = \beta_{\omega' x'} \beta_{\omega x} \quad (5.3)
\]

As before, we have that $\rho_{n+1} \in \mathcal{Q}(H_{n+1})$. The next result follows from Theorem 4.2.

Theorem 5.1. The operator ρ_{n+1} is consistent with ρ_n if and only if for every $\omega, \omega' \in \Omega_n$ we have
\[
\alpha_{\omega'} \overline{\alpha_{\omega}} = \sum_{x' \in P_{n+1}} \beta_{\omega' x'} p_c(\omega' \rightarrow x')^{1/2} \sum_{x \in P_{n+1}} \overline{\beta_{\omega x}} p_c(\omega \rightarrow x)^{1/2} \quad (5.4)
\]

A sufficient condition for (5.4) to hold is
\[
\sum_{x \in P_{n+1}} \beta_{\omega x} p_c(\omega \rightarrow x)^{1/2} = \alpha_{\omega} \quad (5.5)
\]

The proof of the next result is similar to the proof of Lemma 4.7.

Lemma 5.2. Let $\rho_n \in \mathcal{Q}(H_n)$ be defined by (5.2) and let ρ_{n+1} be the operator on H_{n+1} defined by (5.3). If (5.5) holds, then $\rho_{n+1} \in \mathcal{Q}(H_{n+1})$ and ρ_{n+1} is consistent with ρ_n.

The next result gives the general construction.

Corollary 5.3. Let $\rho_1 = I \in \mathcal{Q}(H_1)$ and define $\rho_n \in \mathcal{Q}(H_n)$ inductively by (5.3). Then ρ_n is a QSGP.

References

