Hilltop Archaeology: Ceremony and Ritual at the Site of Cerro Santa Rita, Chao Valley, Peru

Richard A. Busch

University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

Part of the Archaeological Anthropology Commons

Recommended Citation

Busch, Richard A., "Hilltop Archaeology: Ceremony and Ritual at the Site of Cerro Santa Rita, Chao Valley, Peru" (2009). Electronic Theses and Dissertations. 103.
https://digitalcommons.du.edu/etd/103

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact jennifer.cox@du.edu, dig-commons@du.edu.
HILLTOP ARCHAEOLOGY:
CEREMONY AND RITUAL AT THE SITE OF CERRO SANTA RITA
CHAO VALLEY, PERU

A Thesis Presented to
The Faculty of Social Sciences
University of Denver

In Partial Fulfillment of the Requirements for the Degree
Master of the Arts

by
Richard A Busch
June 2009
Dr. Lawrence Conyers
ABSTRACT

The Site of Cerro Santa Rita is located in the mid-valley region of the Chao Valley on the North Coast of Peru. Occupied by people during the Gallinazo, Moche and Chimú time periods, Cerro Santa Rita fulfilled a role similar to that of a *huaca*, or temple. The people of pre-Hispanic Peru were deep set in their traditions, many of these traditions are still practiced by Peruvians today. The traditions of ancestor veneration and feasting are no exceptions to this. Cerro Santa Rita was a burial complex that had plazas and courtyards associated with the tombs of ancestors. Not as elaborate or large as the *huacas* to the north in the Moche and Chicama Valleys, which served as regional, administrative and religious centers, Cerro Santa Rita was more oriented to local ceremony. Ceramic and biological evidence suggests that parts of Cerro Santa Rita were unitized as designated areas for food and beverage production, these areas lack plazas and demonstrate a limited variability in ceramic morphologies. These practices demonstrate that public ceremony and feasts provided the social cohesion on a local level that was required in the outlying valleys, such as the Chao. This was necessary if Gallinazo, Moche and Chimú power centers to the north were going to maintain access to and influence over trade networks.
Acknowledgements

I would first like to thank my grandparents for providing me with the financial support to complete this project and my degree, sadly, neither of them lived to see it completed. I would also like to thank my parents for their love and care as I traveled back and forth to Peru, pursuing my studies. This work would not have been possible without the knowledge, support, constructive criticism and trust of my friend and colleague Dr. Jonathan Kent, who allowed me to work at his site use his resources and run my own project at Cerro Santa Rita. I would also like to thank by mentor and colleague at the Denver Museum of Nature & Science, Jeff Stephenson for his encouragement and keen interest in my work, his enthusiasm to learn kept me going over the last 6 years. Next, Victor Vasquez Sanchez and Theresa Rosales Tham with the Universidad Nacional de Trujillo were extremely helpful with the artifact analysis portion of this project, I could not have completed it without them. Finally, I want to recognize all of my friends for being there for me, pushing me through at times when I wanted to quit. Alison for reading and copy editing at all hours of the night, Jennie for encouraging me not to lose faith in my advisor, Greg for giving me a hard time for not finishing sooner and all of you others who kept me sane over the last few years. Finally, I want to thank Dr. Larry Conyers for teaching me to write and who never stopped believing that I could finish this thesis. Thank you all for all you have done for me.
Table of Contents

Chapter 1 – Introduction………………………………………………………………….1
 The Moche………………………………………………………………………..5
 The North Coast of Peru…………………………………………………………11
 The Chao Valley…………………………………………………………………15
 Archaeological Sites in the Chao Valley………………………………………..17
 History of Work in the Chao Valley……………………………………………..18
 Cerro Santa Rita………………………………………………………………….20

Chapter 2 – Major Archaeological Components of the North Coast of Peru………...…..23
 The Cupisnique and the Importance of the Initial Period………………………..26
 Cupisnique Architecture………………………………………...……….28
 Cupisnique Iconography………………………………………………..30
 Cupisnique Ceramics…………………………………………………….31
 The Gallinazo and the Beginning of the Early Intermediate Period……………..32
 Gallinazo Architecture at the Gallinazo Group Site………………………34
 Gallinazo Ceramics……………………………………………………….35
 The Problem with Gallinazo………………………………………………37
 The Moche and the Early Intermediate Period…………………..………………39
 The Recuay: Highland Contemporaries of the Moche……………………..……43
 The Chimú and Their Origins…………………………………………………49

Chapter 3 - Traditions of Power and Social Cohesion:
 The Architecture of Power……………………………………….………………59
 Plazas and Power……………………………………………………….………..64
 Ceremony and the Creating of Iconography……………………………………..68
 Sacrifice, Food and Ancestor Worship…………………………………………..72

Chapter 4 – Previous and Ongoing Archaeological Projects in the Chao Valley…..……85
 Mercedes Cardenas Survey………………………………………………………86
 Chavimochic Inter-Valley Canal Survey……………………………………...…87
 Cerro la Cruz…………………………………………………………………...88
 Santa Rita ‘B’……………………………………………………………………90
 Cerro Pucarachico…………………………………………………….………….95
 Huasaquito……………………………………………………………………….96
 Cerro Santa Rita………………………………………………………………...107
 Investigations at Cerro Santa Rita and in the Chao Valley…………………………111
LIST OF TABLES

Table 2.1 Peruvian North Coast Chronology…………………………………24
Table 6.1 Radiocarbon Dated from Zone 3 of Cerro Santa Rita………………163
List of Figures

Figure 1.1	The North Coast of Peru	2
Figure 1.2	The Sites of Cerro Santa Rita and Santa Rita ‘B’	5
Figure 1.3	Moche Stirrup-Spout Bottle	9
Figure 1.4	The middle Chao Valley and its Archaeological sites	16
Figure 1.5	Aerial Photo of Cerro Santa Rita and Zone 3	21
Figure 2.1	Huaca de los Reyes – Precermaic Period	29
Figure 2.2	Cupisnique, Feline-themed Ceramic	31
Figure 2.3	Castillo Tomoval at the Gallinazo Group	33
Figure 2.4	Diagram of Castillo Modelled Ceramic	36
Figure 2.5	Gallinazo Negative Ceramic	36
Figure 2.6	Key Moche sites in the Moche and Chicama Valleys	41
Figure 2.7	Map of the center of the Recuay Culture	43
Figure 2.8	Architectural Zones on Cerro Santa Rita	46
Figure 2.9	Recuay Ceramic	47
Figure 2.10	Melted Adobe Bricks at Huaca Cao Viejo	48
Figure 2.11	Key Chimú sites in the Moche and Jequetepeque Valleys	50
Figure 2.12	Plan Map of the site of Chan Chan	53
Figure 2.13	Chimú Ceramic	54
Figure 3.1	Chavin de Huantar	59
Figure 3.2	Maker’s Marks at Huaca de la Luna	61
Figure 3.3	Plaza at Chan Chan	64
Figure 3.4	Plan Map of Huaca de la Luna	65
Figure 3.5	Sunken Courtyard at Salinas de Chao	66
Figure 3.6	Moche Fineline Painting of the Deer Hunt	71
Figure 3.7	Moche Sacrifice Ceremony Fineline Painting	74
Figure 3.8	The Lord of Sipán	75
Figure 3.9	Moche painting of the Dance of the Dead	78
Figure 3.10	Moche paining of Mortuary Offerings	79
Figure 3.11	Mummy Bundle of the Señora de Cao	81
Figure 3.12	Child Burial at Santa Rita ‘B’	83

Figure 4.1	Archaeological sites of the middle Chao Valley	86
Figure 4.2	Cerro la Cruz	89
Figure 4.3	Plan map of Santa Rita ‘B’	91
Figure 4.4	Complejo Arquitectonico 3 (CA-3) at Santa Rita ‘B’	93
Figure 4.5	R-1 of CA-3 with human burials	94
Figure 4.6	Citadel of Huasaquito from Cerro Santa Rita	96
Figure 4.7	Aerial Photo of Huasaquito	97
Figure 4.8	Looted human burials at Huasaquito ‘C’	98
Figure 4.9	Gallinazo ceramic at Huasaquito ‘C’	99
Figure 4.10	Faced stone architecture on Huasaquito	100
Figure 4.11 Platforms and room blocks at Huasaquito ‘B’ 101
Figure 4.12 Citadel of Huasaquito ‘A’ .. 102
Figure 4.13 Adobe burial chamber atop Huasaquito ‘A’ 102
Figure 4.14 Fishnet remains at Huasaquito ‘A’ .. 103
Figure 4.15 Human metatarsal and fishing net weight at Huasaquito ‘A’ 103
Figure 4.16 Recuay ceramic at Huasaquito ‘A’ .. 104
Figure 4.17 Maize offerings on Huasaquito ... 106
Figure 4.18 Empty shrine on Huasaquito .. 106
Figure 4.19 Filled in shrine on Huasaquito .. 107
Figure 4.20 Cerro Santa Rita divided into VanHeukelem’s zones 108
Figure 4.21 VanHeukelem’s map of Zone 3 ... 110
Figure 4.22 Gallinazo face-necked jars from Cerro Santa Rita 111

Figure 5.1 Modern structure at south base of Cerro Santa Rita 115
Figure 5.2 Base map of Zone 3 of Cerro Santa Rita 117
Figure 5.3 Zone 3 showing the excavation units 119
Figure 5.4 Map of Unit 1 and Unit 1 Ext. 1 .. 126
Figure 5.5 Map of Unit 2W ... 129
Figure 5.6 Floor with Post holes and hearth in Unit 2W 132
Figure 5.7 Map of Unit 3 ... 133
Figure 5.8 Textile in Unit 3 ... 135
Figure 5.9 Textile with skeletal remains of frog 135
Figure 5.10 Purple textile in Unit 3 .. 137
Figure 5.11 Modern burial of human infant.................................137
Figure 5.12 Infant burials in Unit 3.................................138
Figure 5.13 Map of Unit 4.................................139
Figure 5.14 Shell beads from Unit 4.................................140
Figure 5.15 Moche floor in base of Unit 4.................................142
Figure 5.16 Moche post holes and hearth in Unit 4.................................143
Figure 5.17 Moche Hearth in Unit 4.................................143
Figure 5.18 Map of Unit 5.................................145
Figure 5.19 West wall profile of Unit 5.................................146
Figure 5.20 Map of Unit 6 and Unit 6 Ext. 1.................................148
Figure 5.21 West wall profile of Unit 6.................................150
Figure 5.22 Child burial in Zone 3.................................154
Figure 5.23 Deciduous tooth with hypoplasia.................................155
Figure 5.24 Eye orbits exhibiting periostitus.................................155
Figure 5.25 South wall profile of Unit 6.................................156
Figure 5.26 Map of Unit 7.................................157
Figure 5.27 Wall lines in Unit 7.................................158
Figure 5.28 Charcoal on faced stone wall in Unit 7A.................................159
Figure 5.29 Camelid vertebrae with leaves.................................161
Figure 6.1 Distribution of Ceramics in Zone 3.................................165
Figure 6.2 Moche and Chimu Construction Events in Zone 3.................................167
Figure 6.3 Typical Moche ceramic from Zone 3.................................168
Figure 6.4 Ceramics on surface of Cerro Santa Rita……………………………169
Figure 6.5 Vessel morphologies recovered from Cerro Santa Rita………………175
Figure 6.6 Burnt maize cobs in Unit 1………………………………………..176
Figure 6.7 Algorrobo seeds from Unit 2W……………………………………179
Figure 6.8 Biologic remains from area of Moche Floor in Unit 4………………179
Figure 6.9 Moche Fineline painting of the Deer Hunt…………………………181
Figure 6.10 East wall profile of Unit 6……………………………………………183
Figure 6.11 East wall profile of Unit 7 with radiocarbon dates……………………183
Figure 6.12 Painted Moche shoulder ceramic sherd……………………………184
Figure 6.13 River rock construction on South slopes of Cerro Santa Rita……186
Figure 6.14 Faced stone construction on north slopes of Cerro Santa Rita……187
Figure 6.15 Chimú llama effigy vessel…………………………………………..189
Figure 6.16 Moche maize deity effigy vessel……………………………………189
Figure 6.17 Fragment of copper placard………………………………………..193
Figure 6.18 Moche mannequins in Sipán museum…………………………….193
Figure 6.19 Moche Fineline painting showing clubs…………………………..194
Figure 6.20 Moche ceramic club………………………………………………..195
Figure 6.21 Walls lines in Zone 3 of Cerro Santa Rita………………………..198
Chapter 1
Introduction to the North Coast of Peru and Cerro Santa Rita

During what archaeologists refer to the Early Intermediate Period (EIP), a time period between 200 B.C. and A.D. 600, a regional, state formed on the North Coast of Peru. This state, centered in the Moche Valley (Figure 1.1), was occupied by a people known archaeologically as the Moche. The Moche state was possibly one of the earliest to have developed in the Andean region of South America (Bawden 2002:371). At its greatest extent, around A.D. 600, the Moche occupied, or influenced, approximately 400 km of Peru’s desert North Coast between the Lambayeque Valley in the north and the Huarmey Valley in the south (Figure 1.1) (Bawden 1999:8; Brennan, 1980:1)
Figure 1.1 The North Coast of Peru with the Lambayeque and Huarmey Valleys, in bold print. This is the known extent of the Moche influence. The arrow points at the Chao Valley.
The Moche are known archaeologically for being one of the first expansive state level societies on the North Coast of Peru. Monumental adobe pyramids and platform mounds that were built by the Moche still stand today and have been the subject of much archaeological investigation (Alva, 2001; Bawden 1999; Donnan, 1986; Moseley, 2001; Quilter, 2002). These archaeological projects have mostly focused on large sites within the valleys of the North Coast (Figure 1.1) and have largely not addressed the non-elite participants in the Moche system.

Among the valleys on the North Coast is the Chao Valley (Figure 1.1), a comparatively short valley running between the Andean highlands and the Pacific Ocean. Far from the center of the Moche state to the north, the Chao remains a vastly understudied valley. It contains many archaeological sites that clearly demonstrate that it was occupied during Moche times. This is evidenced by ceramic assemblages, radiocarbon dates and burial patterns. Within the Chao, a hilltop site called Cerro Santa Rita appears to have been an administrative and/or ceremonial center for an immediately adjacent trade center known as Santa Rita ‘B’ (Kent et al. 2001; VanHeukelem, 2003). This thesis investigates the utilization of Cerro Santa Rita. This is of interest because the Chao Valley and Cerro Santa Rita are a considerable distance from the center of the Moche state. Developing an understanding of what the Moche influence over a port-of-trade in outlying communities looked like will add to the archaeological understanding of the commoner class during pre-Hispanic occupations of the North Coast of Peru.

The hilltop archaeological site of Cerro Santa Rita (Figure 1.2) was excavated as part of this thesis during the summers of 2004 and 2005. The primary research
questions focused on how the occupations on the hill related to the site of Santa Rita ‘B’, located at the eastern base of the hill (Figure 1.2). I supervised excavations dug by a multi-national crew made up of students from the field school run by the California Institute for Peruvian Studies from Berkley, California alongside Peruvian excavators from the town of Chao and the Universidad Nacional de Trujillo and the Pontificia Universidad Católica in Lima. Botanical, faunal and ceramic analysis of excavated materials was performed at the Universidad Nacional de Trujillo. Radiocarbon dates were run at BETA Analytic and the University of Arizona to ensure dates determined were accurate. Finally, human osteological reports on burials were completed by Dr. Catherine Gaither from the Metropolitan State College of Denver.
The Moche

The Moche were one of several cultural traditions in the history of the North Coast of Peru. People had been forming communities and settling on the coast of Peru for thousands of years prior to the Moche (Burger, 1995). In some cases, huge earthen mounds were constructed. According to Trigger (1990), the construction of large scale architecture indicates that there was an established and complex group consciousness. Along the North Coast of Peru, monumental architecture emerged prior to the intensification of agriculture (Burger, 1995:27) indicating that people already had an
ideology, prior to becoming sedentary. This is evidence of the deep rooted traditions
that permeate Andean communities even today.

A culture group known archaeologically as the Gallinazo was one of these
proto-state level societies. Centered in the Virú Valley, just north of the Chao, this
group of people was linked with the later Moche culture in ways that are still under
investigation (Moseley, 2001). The Gallinazo polities were the precursor to the
consolidation of power within the northern valleys, which occurred during Moche
times. During Gallinazo times, starting around 200 B.C., power was shared by
administrative centers. Several centers have been found within a valley (Willey, 1946).
It was by using a similar political arrangement, building similar settlements and putting
their own elite in administrative positions, that the Moche first consolidated power
within a valley, the Moche Valley, near the modern city of Trujillo. Once Moche rule
was established under one administrative center in the Moche Valley, the Moche lords
then continued to consolidate power in additional valleys and bring them under Moche
control. As this system created contiguous settlements and polities it developed into
what archaeologists refer to as the Moche state, which reached its height between 400
and 600 A.D (Bawden, 19999; Moseley, 2001).

Prior to introducing the reader entirely to the North Coast of Peru, the Moche
and this project, it is necessary to expose some endemic archaeological biases before I
start discussing the Moche. Northern Coast archaeology in Peru has historically focused
on large sites with abundant evidence for gold, silver, copper and other exotic goods,
goods that were not necessarily representative of a cross-section of society. It is
therefore entirely possible that Moche archaeology has, unintentionally, been the
archaeology of an elite class (Bawden 1999:4). Therefore, I must clarify in this thesis that when I discuss Moche I am referring to an “archaeological culture defined by distinctive characteristics in form, spatial and temporal dimensions” (Quilter; 2002:152), not just an elite, governing body.

The Moche were a highly centralized and extensively organized political state (Bawden 2002:4). Carneiro (1970:735-6) hypothesizes that this was achieved by primarily militaristic means, where state expansion was accomplished through invasion and coercive force. An alternative hypothesis suggests that political organization was a product of the need to build and maintain irrigation canals (Bawden, 2002:371). I believe that in discussing the formation of the state, archaeologists cannot merely ascribe one cause of the consolidation of power during the Early Intermediate Period. People, as a whole, are too unpredictable and too vested in their own self interests to develop, as the result of a singular impetus, an entirely new political organization. It is erroneous for archaeologists to interpret just one cause for the development of the state. For me, the Moche political consolidation must have been more complicated than just warfare, or necessary management strategies of irrigation canals. There must have been a mechanism to create public “buy-in” to a centralized government. I suggest that this was achieved was through a common ideology and the adoption of practices and ceremonies that served to create a group ideology, in this case the ideology of the Moche state.

Archaeologists over the years have used ceramics to describe, identify and date Moche occupations and this continues to be the case today (Quilter 2002:152). The Moche are known in the archeological community for producing extremely fine
ceramics, the stirrup spout vessel arguably the most recognizable of these (Figure 1.3). Other typical fine ceramics produced by the Moche consist of a white slip with crimson or black images depicting both everyday and ceremonial activities (Donnan; 1992:56). These depictions, known as fineline paintings, are the only resource left by the Moche as a “first-hand” account of their own culture, as there was no written language.

This thesis is not based solely on ceramics, however, understanding the contrasts between ceramic assemblages found at different sites and from different cultural groups, are integral to understanding the source of Moche power and their trade networks. The physical attributes of ceramics can be indicative of function and how long they were intended to last, in other words, their “use-life” (Shott, 1996). In this thesis, ceramics are used both to assist in the identification of activity areas and determine the timing of cultural occupations and interactions.
In addition to fine ceramics the Moche constructed huge, monumental, flat-topped pyramids known today as *huacas*. The largest of these are the Huaca de la Luna and Huaca del Sol in the Moche Valley and Huaca Cao Viejo and Huaca Cortada in the Chicama Valley (Figure 1.1). Together, the Moche and Chicama Valleys make up what is considered to be the “heartland” (Quilter; 2002:153) of the Moche state. The *huacas* that the Moche constructed were, and in some cases still are today, covered with colorful friezes, which stood out in stark contrast to the beiges and browns of the desert. *Huacas* were the focal point of Moche communities (Bawden; 1999:64-5). They contained ceremonial plazas, some private and some public, and smaller secluded
rooms and chambers for more private rituals (Uceda; 2000). Among these ceremonies and rituals was human sacrifice.

The act of human sacrifice gave the Moche rulers, or lords, great prestige within the community (Bawden 1999:154). Human sacrifice appears to have been the center of Moche ritual cycles (Bawden 1999:154) which may have had additional ties to ancestor veneration (Lau, 2002) and agricultural cycles (Maxwell, 1956). Life-giving blood was taken and offered to the earth, or perhaps more correctly, returned to the earth and to the gods so that life in the natural world could be sustained (Bawden, 1999:154). This is demonstrative of the Moche’s connection to the land and their dependence on the earth to produce resources necessary for their survival (Bawden; 1999:154). These mythic aspects of human sacrifice were enhanced by iconography and perhaps spread by propaganda. In this case, images placed in friezes on temple walls and distributed on ceramics were used to create public recognition of Moche iconography. These images included a cast of anthropomorphic characters made up of deities such as Ai-Apaec, the decapitator deity, and humans, some of whom are identifiable individuals (Donnan, 1992).

The Moche were also skilled craftsmen and metallurgists. These artisans produced intricate gold, silver and copper amulets, such as those excavated at Sipan and Pacatnamu in the Lambayeque Valley (Alva, 2000; Donnan, 1986) (Figure 1.1). Many of the gold amulets artisans produced were delicately inlayed with turquoise, jet and Spondylus shell, a type of oyster from the waters off Ecuador (Alva 2000). Combined technology, artisanship, trade routes, the human sacrifice ceremony, the use of color and the huacas may have made the Moche lords and other elite into gods that walked the
earth in the eyes in commoners. This demonstrated to other social classes and cultures in northern Peru that the Moche were indeed powerful and god-like. By 450 A.D. the Moche would centralize power on the North Coast of Peru (Bawden, 1999).

The North Coast of Peru

The Moche inhabited a desert, a rain shadow between the Pacific Ocean and the Andes, a region where one would not expect to see the development of state level societies due to the limited availability of arable land in a desert environment. However, this may be the very reason the Andean state developed as it did. Because of the desert environment, agriculture was only possible in the narrow strips of land on either side of small rivers in the coastal river valleys (Bawden, 1999:87). Water runoff from the Andes could come in quantities too small to produce a crop of sufficient yield, or in flash floods, washing out canals, fields and towns (Bawden, 1999:58). In spite of this, agriculture was practiced, intensified, relied upon and eventually became a staple form of subsistence for coastal societies (Bawden, 1999:88). This allowed for population growth and led to the need for more arable land, which in turn increased irrigation canal construction. Perhaps the intensification of agriculture, the construction and maintenance of irrigation canals and allocation of water led to the consolidation of power and the development of the state (Bawden, 2002:137).

Moisture from the Pacific Ocean typically passes over the coastal lands of Peru and does not precipitate from the air until it is lifted and cooled by the Cordillera Negra Range of the Andes Mountains. From there, the water precipitates out from the clouds and is transported downhill to the Pacific Coast by rivers that cut across the desert.
The North Coast of Peru is considered to be an area of 470km bounded by the Piura valley in the north, to the Huarmey Valley (Figure 1.1) in the south (Brennan, 1980:1; Bawden, 1999:9), the Pacific Ocean on the west and the Cordillera Negra of the Andes on the east. This region is crosscut by 11 major river valleys. These river valleys flow with the moisture that is precipitated in the highlands to the east flowing as much as 40 km across the coastal plain into the Pacific Ocean. It was in these valleys that populations began to agglomerate as early as 3000 B.C. (Burger 1995:27).

The Humboldt Current in the Pacific Ocean counters the low carrying capacity for humans of the North Coast. Along the coast of Peru, north to the Ecuadorian border, the Humboldt Current up-wells, or surfaces from deep oceanic trenches, bringing with it a plethora of plankton and krill which, when surfaced, attract a rich diversity of marine fish and mammals (Burger, 1995:29) this created a second source of nutrition for coastal Peruvian cultures. As a result, the intensification of agriculture was not necessary to support large populations. From pre-Moche to modern times Peruvians have exploited this resource (Sandweiss et al., 2001). Michael Moseley has calculated that the schools of small fish, like sardines, alone could have supported a prehistoric population of 6,500,000 using only 60% of the carrying capacity of the human accessible marine environment (Moseley, 1983).

The life-giving Humboldt Current brings with it a down side as well. For reasons not yet understood the current migrates away from the coast of Peru every few years and when this happens, the cold surface waters are replaced by warm tropical waters, which are more conducive to storm formation (ONERN, 1985) During these years the otherwise dry coast is subjected to massive El Niño Southern Oscillation
(ENSO) rain events (Bawden; 1999:58). These events are capable of washing modern towns from the map and severely flooding major cities, as experienced by the modern city of Trujillo in February of 1998. The amount of rain that fell in the afternoon of 10 February 1998 on Trujillo caused an earthen dam to give way. This washed out roads and the Mampuesto Cemetery, many caskets were seen floating through the streets of Trujillo (La Industria, 1998:A10). One can only imagine what affect an ENSO event would have had on a Pre-Columbian civilization like the Moche (Keefer and Moseley, 2004). Evidence can be seen on the Huaca Cao Viejo in the Chicama Valley (Figure 1.1) for these events in the form of mud from dissolving adobe bricks, drizzled like icing over the colorful friezes. Also at Huaca de la Luna in the Moche Valley (Figure 1.1) were many human sacrifices were found in huge mud deposits, indicating that the people were dispatched during a period of heavy rain, perhaps as a plea to the gods to make the rains stop. The El Niño rains are capable of destroying modern towns and highways, they would have been more devastating to the people of the North Coast in pre-Columbian times.

Another threat to population throughout pre-Columbian history of the North Coast of Peru was the potential for catastrophic earthquakes Moseley, 1983). The Nazca geologic plate is being subducted (Moseley, 2001:25) under the South American Plate, causing earthquakes as it moves, creating an earthquake potential for all of Peru. For example, on August 15, 2007 an earthquake measuring 8.0 on the Richter scale, struck the modern coastal town of Ica, south of Lima. This earthquake killed hundreds when modern adobe buildings collapsed. Until the August earthquake, the strongest historic earthquake on record in Peru was a 7.8 on the Richter scale, which occurred off the
coast of the Santa Valley, on the North Coast, on May 31, 1970. When earthquakes such as these occurred in Pre-Columbian times, the resulting damage to communities would have been devastating. Perhaps the biggest threat to coastal agriculture may have been the change in grade of irrigation canals. Canals would not have been effective if the slope of the canal bed was altered to a flat or uphill gradient, water cannot flow uphill, and this would have cut off vital waters to any crops that may have survived the floods (Moseley, 1983).

Consolidating power in a tremulous environment like this one would not have been easy and yet, the Moche were arguably the first state level society to form on the North Coast of Peru. I have already presented one hypothesis for the formation of the state being rooted in people’s need to manage extensive irrigation systems that could support a growing population. Another hypothesis for the Moche’s rise to power considers their ability to have controlled material goods and control trade (Kent et al., 2007). For example, *Spondylus* is only found in ritual and elite contexts (Heyerdahl; 1995:61) at Moche sites, so this would be considered a controlled commodity. The entry and dispersion of these goods into and around the Moche sphere of influence would have been controlled and supervised at specific access points in the trade routes and therefore been kept under Moche auspices from the very moment that it entered the Moche’s sphere of influence.

One valley that may have been such an access point on the North Coast is the Chao Valley (Kent et al. 2007). There is evidence within the Chao Valley indicating that a major trade center was once located in the mid-valley, or *unga*, region of the Chao. This site, currently being excavated by Dr. Jonathan Kent of The Metropolitan
state College of Denver, working with the California Institute for Peruvian Studies, has been named Santa Rita ‘B’ (Kent et al., 1998).

Reliable radiocarbon dates have been recovered from Santa Rita ‘B’, which demonstrate that this area was extensively occupied during the height of the Moche occupation, between A.D. 400 and 600. At that time in history the “heartland”, or core, of Moche power had been completely consolidated in the Moche and Chicama Valleys (Quilter; 2002:153). The other valleys along the North Coast may have fallen then into peripheral roles to the Moche state, including the Chao Valley.

The Chao Valley

The Chao Valley (Figure 1.3) is the shortest drainage between the highlands and the Pacific Ocean on the North Coast. The river known as the Chao is actually the combination of three individual rivers that converge just to the east and west of the present day town of Buena Vista (Figure 1.4), in the *unga*, or middle, region of the valley. The convergence point of the rivers was an ideal location to monitor the flow of trade goods into the Chao Valley because it had direct lines of sight up the drainages.
From March through September the rivers are mostly dry arroyos, or *quebradas*, and even during the wet season from September through February, very little water flows in them (Silva and Zavaleta; 1999:7). The water that does flow, transforms the Chao Valley from a barren boulder field to a lush landscape of xeric vegetation.

There is evidence for extensive Moche canal systems in the Santa Valley (Figure 1.1), to the south of the Chao, which would have brought water from the upper valley of the Santa to the lower valley for redistribution into irrigation canals to sustain agriculture (Lao, 1999). However to date, archaeological surveys have not found evidence for Pre-Columbian canal systems in the Chao. There are, however, a few check-dams (Kent et al. 2004, 2005) crosscutting *quebradas* indicating that an attempt
was made by Pre-Columbian occupants of the valley to reclaim some land for agriculture.

In addition to these check-dams, we do know of a few ancient agricultural fields. These were found in 2004 when colleagues and I walked west for a few kilometers from Santa Rita ‘B’. From this limited data, archaeologists in the Chao Valley do not have evidence that agriculture was practiced extensively in the Chao Valley during Moche times.

Two possible implications result from the lack of agricultural evidence, (1) there was not a large population in the Chao Valley during Moche times and/or (2) there was an additional means of subsistence. Neither of these hypotheses are mutually exclusive. These two attributes fit the interpretation that the middle Chao Valley was a port-of-trade. It may have had small supporting population that had access to large varieties of goods, including foodstuffs as caravans moved though the valley.

Archaeological Sites in the Chao Valley

Archaeological sites ranging from small clusters of buildings, to mounds, and ancient cemeteries dot the entire Chao Valley. Most of the architecture is oriented slightly to the northeast (Silva and Zavaleta; 1999, Kent; 2001) and occasionally structures were built in a grid-like pattern oriented this way (Figure 1.4) indicating that some forethought and planning occurred prior to construction. However, there are no large Moche *huacas* or *huaca* complexes as seen in many of the valleys to the north of the Chao. Instead, the most extensive and complex architecture seems to occur on several large hilltop and hillside sites that flank the north, south and central parts of the
valley. Only one of these hills, Cerro de la Cruz, has received extensive archaeological investigations (Vogel, 2005). It is located just east of the Rio Cerro Blanco (Figure 1.3), on the west side of the unga region. Two kilometers west of the convergence of the Rio Tutomo and the Rio Huarmanzaña lies Cerro Santa Rita, which is the only other prominent hill rising from the valley floor in the middle of the Chao Valley. Other than reconnaissance survey and a few test excavations (Cardenas, 1976; Kent et al., 2006; Silva and Zavaleta, 1999; VanHeukelem, 2004; Vogel, 2003), the Chao Valley has seen very little archaeological investigation.

History of Work in the Chao Valley

The first archaeological survey that occurred in the Chao Valley was completed in 1976 by Mercedes Cardenas, an archaeology student at the Pontifica Universidad Católica del Peru in Lima. Her project was a comprehensive, systematic survey of all the visibly locatable sites in the Chao Valley (Cardenas 1976). In 1998 the Instituto Nacional de Cultura (INC) commissioned a more intensive survey of the Chao Valley prior to the building of the Chavimochic inter-valley irrigation canal. Jose Carcelen Silva and Orlando Angulo Zavaleta, both of the INC, produced a report for approximately half of the Chao Valley (Silva and Zavaleta, 1999), which recorded any site that was going to be affected by the construction of the canal or its secondary canals. Silva and Zavaleta’s survey area included everything from just west of the unga region to the Pacific coast (Silva and Zavaleta, 1999). They briefly discussed material remains found on the surface and in test units from which they ascribed a cultural affiliation to the site.
In 1998 Dr. Jonathan Kent began a field school at the site of Santa Rita ‘B’ (Fig 1.3). Located in the *unga* region of the Chao, Santa Rita ‘B’ is approximately 1 km up valley from where Silva and Zavaleta’s 1999 survey began (Figure 1.3). Kent (1999, 2000, 2001) excavated several structures in the middle Chao Valley and found numerous corrals that were used over long periods of time to keep camelids (llamas and alpacas). These animals were used extensively to move trade goods (Moseley; 1999:30) especially in the Andes. Kent has also recovered ceramics from highland cultures and several human sacrifice burials (Kent; 2004, 2005, 2006).

Melissa Vogel excavated the site of Cerro de la Cruz, a hilltop fortification visible to the west of Santa Rita ‘B’ in 2003 (Figure 1.3). Vogel was studying the time period after the Moche between 600 and 1000 A.D. (Vogel, 2003:6). This was a time of political instability when many small polities developed along the coast of Peru. Vogel found that Cerro de la Cruz was a walled community, which had fortified walls and piles of sling stones. She describes the time after the Moche as being politically unstable and she suggested that in some cases localized warfare ensued (Vogel, 2003).

Research and excavations I completed for this thesis follow the work of Michelle VanHeukelem (2003) who did her masters thesis at the site of Cerro Santa Rita, just to the southwest of Santa Rita ‘B’, in 2004 (Figure 1.4). At Cerro Santa Rita VanHeukelem (2003) excavated and described evidence for trade with other culture groups along the North Coast of Peru. After completing a series of test excavations, the first excavations ever to be dug at Cerro Santa Rita, VanHeukelem offered a hypothesis that Cerro Santa Rita was originally inhabited by people were living on the hill and
farming the land below and that over time, perhaps it shifted to a location of elite residences.

Cerro Santa Rita

This thesis is concerned with the archaeology of Cerro Santa Rita (Figure 1.2). My analysis of archaeological material from Cerro Santa Rita suggests that this hill once had a unique role in the Moche ceremony and/or administration. Ceramics, floral and faunal remains indicate that the people that once inhabited the top of Cerro Santa Rita had access to goods from many different regions and ecozones. In addition, calibrated radiocarbon dates from Cerro Santa Rita indicated that this site was occupied between A.D. 400 and 600, the height of the Moche State. So, it is possible that Cerro Santa Rita was the site of a ceremonial and/or administrative center over a port-of-trade in a peripheral valley during the height of Moche influence.

Excavations for this project were conducted in an area of Cerro Santa Rita termed “Zone 3” (Figure 1.5) by VanHeukelem (2004). During the summers of 2004 and 2005 I excavated seven units exposing evidence of cooking and beverage preparation, copper adornments, ceremonial clubs and a human burial. This suggests that the people that inhabited Zone 3 possibly filled a supporting role in ceremonies that took place elsewhere on Cerro Santa Rita.
Unlike Moche administrative and ceremonial centers in the Moche and Chicama Valleys that were built of adobe bricks, Cerro Santa Rita is a natural hill. However, this hill was modified (Figure 1.5) by the construction of at least 28 separate platforms. These platforms either once supported structures, or were the location of ceremonial plazas where people would have gathered for public events. There is evidence of post holes in Zone 3 (Figure 1.5), which supports the hypothesis that these were foundations for structures. However, more of these platforms must be excavated to test the hypothesis of ceremonial platforms. These two functions are not mutually exclusive as pre-Hispanic North Coast architecture often pairs structures with at least patios, if not courtyards and plazas (Burger, 1995:38).
What I demonstrate in this thesis is that perhaps Cerro Santa Rita was not a place of permanent residence, rather a specialized place for ceremony and ritual that had discrete areas of activity while occupied. Excavations for this thesis were focused on Zone 3 and as a result cannot be used to interpret the entire hill. However, we can pair them with what we know about the hill and make some general comparisons, which increase our understanding about the hill and the people that used it. My excavations provide us with a thorough analysis of the activities that took place there over time in Zone 3. In the case of the Chao Valley, we cannot think solely in terms of culture groups, but need to consider a preexisting group of people that was affected and influenced through interaction with the power structures to the north. It is therefore helpful to interpret Cerro Santa Rita and Santa Rita ‘B’ as exhibiting a continuum of occupations, as opposed to one that is uniquely Gallinazo, or Moche. Likewise, ideology and iconography are deeply rooted in the Andean region. Certain ideologies and iconographies do not just belong to the Gallinazo, or the Moche, they are culmination of history to that point and time and in many cases continue beyond the collapse of societies. This thesis places Cerro Santa Rita into this context of Andean tradition as a place of local ceremony and ancestor veneration.
CHAPTER 2
Major Archaeological Components of the North Coast of Peru

This chapter outlines a brief cultural history of the archaeology along the North Coast of Peru. Here, I present five major archaeological cultures represented at the site of Cerro Santa Rita in the Chao Valley. This cultural history includes reviewing the literature on the architecture and iconography of the pre-contact North Coast and their interpretations to date. This background research, when paired with results from my excavations, led to the recognition of common themes in iconography, which reflects a people’s ideology, and architecture, which, reflects people’s concepts of place.

Exploration of these relationships can lead to a better understanding of how Cerro Santa Rita interacted with the surrounding Chao Valley and within the larger Moche state. In the following pages, I will present and discuss the simplified chronology presented in Table 2.1. The chronology and cultures presented do not include all the archaeological cultures identified on the North Coast of Peru, but rather address the major occupations of the Chao Valley, Cerro Santa Rita and Santa Rita ‘B’.
Table 2.1. Cultural Chronology of the North Coast of Peru. (Adapted from Bawden, 1999)

<table>
<thead>
<tr>
<th>Archaeological Culture</th>
<th>Time Span</th>
<th>Chronological Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1500</td>
<td>Colonial Period</td>
</tr>
<tr>
<td>Chimú</td>
<td>1000</td>
<td>Late Horizon</td>
</tr>
<tr>
<td></td>
<td>500</td>
<td>Late Intermediate Period</td>
</tr>
<tr>
<td>Sican</td>
<td>500</td>
<td>Middle Horizon</td>
</tr>
<tr>
<td>Moche</td>
<td>A.D.</td>
<td>Early Horizon</td>
</tr>
<tr>
<td></td>
<td>B.C.</td>
<td>(Chavin)</td>
</tr>
<tr>
<td>Gallinazo</td>
<td>500</td>
<td>Initial Period</td>
</tr>
<tr>
<td>Cupisnique</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

At the site of Cerro Santa Rita, specifically in Zone 3 (Fig. 1.5), archaeological excavation and radiocarbon dates have shown that the Moche and Chimú occupations of the hill were the most significant and widespread. However, ceramic analysis (Chiguala, 2005; VanHeukelem, 2002) has shown that in addition to these two occupations, ceramics from the Cupisnique, Gallinazo and Recuay cultures are also present on the hill (VanHeukelem, 2002). Together, these five ceramic traditions make up the ceramic assemblage found on Cerro Santa Rita and represent the archaeological cultures discussed in this chapter.

The central goal of this thesis is to provide a working hypothesis of the activities that occurred on Cerro Santa Rita during its occupation. The five archaeological cultures I am about to discuss are all evidenced in Zone 3 and are common in the
material culture found all over the hill. To understand the relationship between the material remains and the Cerro itself, I will first discuss the culture groups listed above and the time periods in which these cultures existed in the following sections.

In 1926, an amateur archaeologist by the name of Rafael Larco Hoyle, now considered to be one of the founding fathers of Andean archaeology, opened a new museum in Lima, the Museo Rafael Larco Herrera, named after his father. This museum displayed pre-contact ceramics from across Peru. In doing so, Larco educated himself in ceramic technologies and styles and proposed the first ceramic seriation for the North Coast of Peru in the mid 1920’s (Larco, 1948). After his museum’s opening, Larco traveled into the field to complete some of the first excavations done on the North Coast of Peru (1941). Through his work, Larco would identify one of the earliest known ceramic traditions on the North Coast of Peru, the Cupisnique.

During his excavations on the North Coast of Peru in 1929, Hoyle identified a ceramic tradition similar to the highland tradition known as Chavín (Table 2.1), but because it was distinct in its own right, he named it Cupisnique (Figure 2.3) (Larco 1941). For years, archaeologists thought that the Cupisnique tradition was restricted to the Lambayeque region, in and around the Lambayeque Valley (Figure 1.1), and that inter-valley variances were the result of temporal differences (Burger 1995:90). However, today, the archaeological community generally accepts that the Cupisnique ceramic tradition stretched from the Lambayeque Valley to the Virú Valley (Burger 1995:91) and the variations in decoration and styles are regional variations based on commonly recognized iconography and basic design elements.
Why are the Cupisnique important to Peruvian archaeology on the North Coast? If we view the Cupisnique as being the coastal manifestation of the Chavín, then we are really inquiring as to the importance of the Chavin culture. Richard Burger from the Yale Peabody Museum has compared it to studying Rome or Jerusalem (1998:19). The iconography and the architecture in of the Chavín is some of the first in Peru to suggest a large-scale ideology, namely religion. The ideology that developed at the site of Chavin de Huantar was administered by an elite class who used it to consolidate people and motivate a labor force, a tradition which would become a staple of governance practices throughout Peru. Later, during the Early Intermediate Period, the Moche would adopt these practices and I believe that there is evidence for such practices throughout the Chao Valley and on Cerro Santa Rita.

Archaeologists who have worked in the Chao Valley, including myself, have recovered occasional sherds of Cupisnique pottery (Kent, 2004; VanHeukelem, 2002), however, we are still unsure if these are a testament to the longevity of human occupation of the Chao Valley, or if they were brought into the valley later. Either way, we are seeing Cupisnique iconography and recovering Cupisnique ceramics further south than previously documented - in the Chao Valley and on Cerro Santa Rita. This suggests that the Cupisnique tradition was known over a vast area and that Cupisnique people may have been utilizing the trade networks that moved through the Chao Valley.

The Cupisnique and the Importance of the Initial Period (1500-500 B.C.)

From 1500 to 500 B.C. on the North Coast complex, sedentary society began to develop (Burger 1995:57) and pottery, the main diagnostic tool at any archaeological
site in Peru today, was produced for the first time. Also by Cupisnique times, subsistence patterns along the North Coast of Peru had developed into a system reliant on both maritime and agricultural resources (Burger 1995:97) Small maritime communities existed on the shorelines and traded inland to the larger, more agriculturally based centers in the mid-valley regions (Pozorski, 1979:165). There is extensive archaeological evidence (Vogel, 2003; Kent et al., 1999, 2000, 2001 and 2002) of maritime resources, in the form of fish vertebra and maritime mollusks being moved into the middle of the Chao Valley. Strangely though, both highland foodstuffs and corn do not appear in the archaeological record in any great abundance (Burger 1995:97) during the Initial Period. However, burials of camelids, a highland animal, have been uncovered (Strong and Evans 1952; Pozorski 1983) indicating that some contact between highland and coastal peoples existed during the Initial Period, perhaps because of the highlands origins of the Cupisnique ideological tradition.

During the early part of the Initial Period, camelids were primarily hunted as a food source, however, by the end of this period, they were domesticated (Pozorski 1983). The fact that this domestication occurred towards the end of the Initial Period may indicate that coast-to-highland trade routes, such as those suggested by VanHeukelem (2002), had been established by the end of the Initial Period, perhaps to move resources and trade goods between the new population centers that were emerging along the North Coast.

During the Pre-ceramic, communities were small and dispersed up and down the coast. In the Initial Period, however, these little villages began to coalesce into larger communities and there was a noticeable shift of settlement patterns from the
coast to more inland locations suggesting that while marine subsistence was still of importance, people began to rely more on agriculture to support the population. (Burger 1995:57).

Cupisnique Architecture

The settlement pattern shift discussed at the end of the last section can be illustrated by looking at sites in the Chicama, Rimac and Casma Valleys (Figure 1.1). Sites that date from the early part of the Initial Period are located on the coast, like Huaca Prieta in the Chicama Valley. Huaca Prieta and other early Initial Period coastal sites were similar to the tels of the Middle East. These features were built up overtime into mounds, occupational layer upon occupational layer (Bird, 1985). The sites in the Rimac and Casma Valleys also represent mound architecture, however, in these cases a labor force was organized to intentionally create the mounds. These styles of architecture flourished during the early part of the Initial Period, however, simple mounds would soon be made larger and more complex. What is most important about the Rimac and Casma mounds is that they represent the beginning of monumental architecture on the North Coast of Peru. It was during late Cupisnique times, monumental architecture began.

Later in Cupisnique times, more complex, inland sites were constructed. People during these times were among the first to build large rectangular platform complexes, such as the sites of Caballo Muerto (Figure 2.1) in the lower Moche Valley and Purulén in the Zaña Valley (Burger 1995:92) (Figure 1.1). The public architecture of the Cupisnique typically consisted of low terraced platforms, large central stairways and rectangular forecourts. When completed, the Cupisnique centers often formed a
distinctive U-shaped pattern (Fig. 2.4), where the center of the ‘U’ was a large forecourt surrounded by structures on the low platforms (Burger, 1995:92). These forecourts were presumably for large public gatherings where people would assemble to witness activities on the raised platforms. This may well have been the beginning of a plaza feature that persisted through Inca times, which is seen at Cerro Santa Rita.

These activities were most likely ceremonial in nature and revolved around a set of mythical characters (DeMarris et. al, 1996:17). These characters were a set of supernatural beings that persist in iconography through the history of the North Coast.
(Donnan, 1976), but first appear on gourds, pots and friezes during the Initial Period (Burger, 1995:90; Larco, 1941).

Cupisnique Iconography

Perhaps the most meaningful and longest lasting effect the Cupisnique had on the prehistory of the North Coast was the introduction of the feline cult. Two steatite vessels were excavated at the site of Limoncarro in the Jequetepeque Valley, which had incised depictions of a feline and a spider, both dangerous to humans on the North Coast (Burger 1995:93) and known for the decapitation of their prey, a means later used to dispatch humans in a sacrifice ceremony. These are some of the first examples of these two characters in North Coast ideology. Today, the feline remains one of the most common alternate identities assumed by shamans, or *cuanderros*, along the coast of Peru (Burger, 1995:95; Urton, 1981). Often these two animals are anthropomorphized and/or are associated with human trophy heads and severed limbs when seen in Cupisnique contexts (Burger, 1995:95), a practice that was implemented in the real-life sacrifice ceremonies during later Moche times (Bourget and Millaire, 2000). Underscoring these later practices, the feline and the spider are also prevalent ideological symbols on pottery during Moche times and can be seen on friezes at the Moche Huaca de la Luna and Huaca Cao Viejo in the Moche and Chicama Valleys (Figure 1.1) (Uceda 2004). There are examples of pottery that exhibit the feline at both Santa Rita ‘B’ and Cerro Santa Rita, however, I am presently unaware of any ceramics from the Chao that depict spider images.
Cupisnique Ceramics

The Cupisnique, following the traditions of Chavín, produced some of the first stirrup-spout vessels on the North Coast (Figure 2.2). These were made by pressing clay into a mold, removing the unfired vessel from the mold when the clay has dried and then firing it in either an oxygen-rich, or oxidizing environment, for a red ceramic, or an oxygen-deficient, or reducing environment, for a black ceramic (Donnan, 1992; 16-17). This was a means of mass producing ceramics – many virtually identical ceramics could be made from the same mold. If, for example, the ceramic being produced was of a feline, then this process was also a way of mass-producing and distributing iconography and ideology.

Most of these stirrup spouted vessels had thick, tubular spouts that created an arch with a small opening. The upper part of the spout was short and often had a flared
lip. These vessels often had a low-relief design that will, on occasion encroach onto the curved arch of the spout (Donnan, 1992:32). Most of the Cupisnique material that I have seen and recovered also tends to have been fired in a reducing environment and then had a black, or dark brown slip applied.

There have been several archaeological cultures identified between the time of the Cupisnique and the time of the next culture described in this chapter, the Gallinazo. These cultures are not necessarily unimportant to the history of the North Coast, but rather have no relevance to this thesis and, therefore, are not discussed. Many of the architecture styles and iconographic themes that the Cupisnique and Chavin cultures introduced to the North Coast of Peru persist though time in the following sections.

The Gallinazo and the Beginning of the Early Intermediate Period (200 B.C. – 600 A.D.)

The Early Intermediate Period for coastal Peru was the time period that state level society bourgeoned (Moseley, 2001:173). In the Virú Valley an archaeological culture known as the Gallinazo developed a series of city-states. These city-states, albeit smaller than those we see in western history, were centers in which architecture was concentrated around one or more adobe pyramid mound. Perhaps the most studied of these is the Gallinazo Group, including Castillo Tomoval (Figure 2.3) in the middle Virú Valley.
Wendell Bennett, of the American Museum of Natural History, first investigated the Gallinazo occupation of the Virú in 1939. However, Bennett’s findings were merely a listing of what he found at each of the 37 sites. In the fall of 1945 Bennett first proposed a more in-depth study of the Virú Valley to Julian Steward of the Smithsonian Institute and Gordon Willey of Harvard’s Peabody Museum (Vogt and Levanthal, 1983).

By 1946 Willey had assembled a team of archaeologists, which included: W.D. Strong, Clifford Evans, James Ford, Junius Bird and Don Collier, archaeologists who laid the foundation for modern Andean archaeology. “The Virú Valley Project was an attempt to coordinate various aspects of anthropology around a central problem, the study of human cultural adaptation within the confines of a small area over a long period of time” (Ford and Willey 1949:5). As part of this study, Ford further refined Larco’s ceramic seriation for the North Coast, identifying phases and styles within the Gallinazo grouping (Ford and Willey, 1949). The Virú Valley Project revolutionized
the way archaeologists interpret archaeological evidence and utilized architectural
patterns to understand and interpret settlement patterns.

Gallinazo Architecture at the Gallinazo Group Site

The Gallinazo Group is located in the Virú Valley (Figure 1.1) as is, to date, the
largest known cluster of Gallinazo architecture anywhere along the North Coast of Peru.
There are approximately 30 sites within a 3.2km by 4km area, which are oriented
toward a general north-south, east-west axis (Bennett 1950:18-19). Included on the 30
sites are eight “principle mounds” according to Bennett (1950).

These mound’s architecture are more advanced than can be seen at Cupisnique
sites. The Gallinazo made their platform mounds out of adobe bricks. Today these
bricks have weathered so that the mounds resemble conical hills with deep grooves
running longitudinally. Based on density and area, Bennett (1950:68) calculated that
there were once 30,000 room blocks associated with the Gallinazo Group Site. This
number has since been rejected as too low (Fogel, 1993:114). Fogel (1993:114) rejects
Bennett’s number on the basis that Bennett did not account for areas between some of
the room blocks that are now believed to have been inhabited. No new quantity of
rooms has yet been suggested.

Finally, Bennett noted that most of his test excavations at the “principle
mounds” at the Gallinazo Group did not uncover many ceramics. The one exception to
this pattern was at mounds he called V-152 and V-153 that made a large U-shaped
structure (Bennett 1950). This is an example of the U-shaped structures that the
Cupisnique used through time and which became an architectural tradition on the North
Coast of Peru. Bennett’s finding at V152 and V-153 may be an indicator that where Gallinazo ceramics are concentrated, are places of greater social/communal importance.

These architectural traditions are interesting because in the Chao Valley to the south, the architecture is densest around platform mounds that were constructed with stone. This is also true of for the area around the base of Cerro Santa Rita (Figure 1.4). The Gallinazo idea of the use of space and how urban centers were laid out may be an indicator that the middle Chao Valley was developed and organized during Gallinazo times and, perhaps, when Cerro Santa Rita was first occupied. To reinforce this hypothesis, there is strong ceramic evidence that there was a Gallinazo occupation on Cerro Santa Rita (VanHeukelem, 2002).

Gallinazo Ceramics

There seems to have been multiple groups of Gallinazo people producing ceramics during Gallinazo times (Ford and Willey, 1949). These fit into two larger, general, groups: Castillo Modelled (Bennett, 1950; Collier, 1955; and Strong and Evans, 1952) (Figure 2.4) and Gallinazo Negative (Ford and Willey, 1949:64) (Figure 2.5). The relationship between these ceramic groupings is vague and poorly understood and understudied. Both of these ceramic types are found in the middle Chao valley, including Santa Rita ‘B’ and Cerro Santa Rita.
The Castillo Modelled (Figure 2.4) wares were typically brick-red, dark reddish orange, or reddish brown paste color and were fired in an oxidizing environment. They were only occasionally smoothed on exterior surfaces and have a tendency to degrade easily over time. The common motifs exhibit triangular punctates in zones on the
exterior with modeled adornments, especially ones representing the human head, with a modeled nose or button-like eyes and a low relief central point for pupil. Modeled animal heads, monkeys, felines and foxes are also common (Strong and Evans, 1952).

The Gallinazo Negatives (Figure 2.5) are much finer ceramics with relatively thin wall thickness. This ceramic type gets its namesake from the negative style of decoration. A design would be painted on the surface of a vessel in wax. The vessel would then be fired in an oxidizing environment, but the wax would create a localized reducing environment. The finished product would result in an orange ceramic with a black, negative design where the wax had been. The wax would melt off during the firing process.

The Problem with Gallinazo

Many initial reactions to these two types of ceramic is to hypothesize that the fine wares, the Gallinazo Negatives, belonged to an elite class and the coarser wares, the Castillo wares, were utilized by a lower social class. This assumption is partially accurate, but other archaeological evidence and associations have to be considered.

Both styles of ceramics continue to be found in contemporaneously with Moche occupations. In fact, the *Señora de Cao*, a burial of a woman with status at Huaca Cao Viejo, at the site of El Brujo in the Chicama Valley, was buried during the height of Moche times, between 400 and 600 A.D, was interred with at least one Castillo face-necked bottle. This is true at other sites around the North Coast of Peru (Castillo, 2003, 2005; Donnan, 2005). In the Chao Valley, almost exclusively where there is a Gallinazo site, there is also a Moche site (Kent, 1999, 2000, 2001; Silva and Zavaleta, 1999).
Those working in the Chao Valley are left to wonder if these were indeed different cultural groups, different social classes or some more complex mixture of the two.

At a conference held in 2005 in Trujillo, Dr. Christopher Donnan proposed that we should begin to consider the possibility of what he called a “folk culture”. A folk culture can be considered to consist of a group of people that have an oral tradition and a localized sense of place and group consciousness. This is what Donnan (2005) proposed existed along the North Coast of Peru and perhaps only the Gallinazo Negatives are truly Gallinazo and that the Castillo wares are representative of this folk culture. Donnan (2005) argued that Castillo Modeled do not represent the activities of a distinct cultural entity but rather could be considered indicative of domestic activities used by "commoners" along the northern coast of Peru. In such a scenario, Donnan suggested that the indicator of a distinct Gallinazo culture would be the negative-painted wares used by the elite members of that society, rather than the Castillo types mentioned earlier. Following this argument, the Castillo wares found in Moche households represented a “commoner” class. However, there is a problem. If the Castillo wares are “commoner” markers, then what are the undecorated ceramics found in at Santa Rita ‘B’ and Cerro Santa Rita that have been identified as Moche commoner, or utilitarian wares? And why are Castillo, Gallinazo, Moche, and plain wares found associated in the same context? Were Gallinazo and Moche commoners living together in the Chao Valley?

Jean-François Millaire of McGill University gave a paper at the 2004 Dumbarton Oaks Symposium in Lima which may help shed some light on the ceramic relationship between the Gallinazo and the Moche. Millaire (2004) presented a paper on
the most extensive textile collection ever recovered from the North Coast. This collection is from the Huaca Santa Clara in the middle Virú Valley (Millaire 2004). Millaire (2004), after comparing the iconography and weaving technology to Moche groups, hypothesized an alternative explanation that addressed the relationship between Gallinazo and the Moche, which supports Donnan’s (2005) concept of a “folk culture” hypothesis and begins to explain the assemblages in the Chao Valley. He proposes that the Virú Valley was not under Moche control until the middle of the Early Intermediate Period. Conversely to the Moche state hypothesis, Millaire believes that the North Coast was affected by an “endemic competition between [Gallinazo] hegemonic city-states” (Millaire, 2004). Millare’s model removes the need for competition between large, centralized opposing powers, but rather suggests the emergence of several polities of a common, or similar, cultural origin (Millaire, 2004), which would have sprung from similar ideologies and traditions. It is these common ideologies that existed in the “folk culture” and been present during the Gallinazo and Moche cultural periods. As a result these ideologies and ceramic traditions would have been interspersed with Gallinazo and Moche traditions as well.

The Moche and the Early Intermediate Period (200 B.C. – 600 A.D.)

Beginning around A.D. 1, a new style began to enter the ceramic seriation of the Moche Valley. Simultaneously, a period of decades long drought came to an end and populations once again began to boom. Population at the site of Moche (Figure 2.6), nestled against the base of Cerro Blanco in the Moche Valley (Figure 1.1), grew particularly quickly. Once the administrators at Moche had incorporated peoples and
smaller centers in the Moche valley, they began to seek “political integration” with the Chicama Valley (Figure 2.6), immediately to the north (Moseley 2001:78), an act that would nearly double the land that the Moche controlled. Robert Canerio (1970:735) argued that this was primarily a militaristic venture on the part of the Moche, where the defeated community would have been made politically subordinate to the victor. More recently, however, Michael Moseley (2001:78) hypothesizes that this was, at least in the case of the Chicama and Moche Valleys, done ecumenically through intermarriage and the establishment of trade networks. Extremely similar styles in architecture, iconography and settlement patterns indicate that the Moche political organization was a voluntarily adopted system of government in the Chicama Valley (Moseley 2001:78). Today, this hypothesis seems the more supportable of the two and fits with Millaire’s (2005) hypothesis, since according to that model an original ethnic relationship would have already existed. However, Andean archaeologists begin to disagree as to the nature of the Moche state after the Chicama and Moche Valleys were consolidated under Moche administration.
Debate exists as to the extent of the adoption of the new Moche corporate system of government. Michael Moseley and Jane Day (1982) have hypothesized that once the Moche and the Chicama Valleys were incorporated, the Moche became a conquest state, similar to Canerio’s (1970:735) model, and spread throughout the North Coast. In contrast, Louis Jaime Castillo and Christopher Donnan (1994), while recognizing some form of expansive state, have proposed that the Moche core was centered in the Moche and Chicama Valleys and its influence extended no farther than
the Casma Valley in the south. Further, Castillo and Donnan (1994) cite architectural variants and propose that another, distinct, Moche polity occupied the northern valleys of the Jequetepeque, Zaña Lambayeque, and Vicús. Walter Alva (2001) has added yet a third hypothesis proposing that Moche never achieved inter-valley statehood along the North Coast of Peru, but implemented corporate rule in individual polities centered in each valley, like the sites of Sipan and Tucume. Despite the debate on the socio-political mechanics of its origin, as of the *Art, the Arts and the Archaeology of the Moche* conference in Austin, Texas in November 2003, the idea that at its climax, the Moche were an inter-valley, corporate state was generally accepted within the Andean archaeological community. One of the questions that is being explored by Moche archaeologists is what allowed the Moche state to develop as it did.

One of the hypotheses that I, along with Dr. Jonathan Kent and Dr. Cathy Gaither, have presented (2005) is the Moche control of trade. If the Moche power base was built on the control of tradable products and material, it would have allowed the Moche to gain an influential status along the North Coast of Peru. One of the inter-valley trade goods we see in the Santa Rita ‘B’ are ceramics from a culture known as the Recuay. Other than Moche, Gallinazo and Chimú material, these ceramics are the next most common ceramic type we see in Santa Rita ‘B’ and Cerro Santa Rita. Centered in the highlands to the east and south of Santa Rita ‘B’, the Chao Valley connected the coast of Peru directly with the Recuay (Figure 2.7) heartland.
The Recuay: Highland Contemporaries to the Moche

The Recuay occupied land at the head waters of the Santa River (Figure 2.8), a valley south of the Chao, between A.D. 200 and 500 (Donnan, 1992:75). Julio Tello (1929) was the first to recognize the presence of the Recuay in the middle valley region of the Santa, very similar to where Cerro Santa Rita sits in the Chao. Starting in the middle valley, Tello noticed that the amount and concentrations of Recuay material increase as you move east into the highlands and argued for a highland origin of the
Recuay (Tello, 1929). However, Larco-Hoyle, proposed that the Recuay were of coastal origin since Recuay material culture was recovered from the middle valley region of the Santa (Larco-Hoyle, 1962). Today, most archaeologists consider the Recuay’s “center” to be in the highlands of the Cordillera Negra (Figure 2.8)(Lau, 2001). However, Andean archaeologists dispute the true nature of Recuay political organization. The correct answer to this may influence how we interpret the interaction of the Recuay and Moche peoples and their relationship with Cerro Santa Rita.

Most scholars regard the Recuay as dispersed polities, which became more numerous in the highlands moving up from the Santa Valley (Lau, 2001:25). Wegner (1988) compared this to a cacique system, meaning the polities were independent and autonomous and gave institutionalized responsibilities to certain individuals. Others, like Izumi Shimada (1987), postulate that the Recuay had a centralized power that competed, with other cultures like the Moche, for resources. Shimada also proposes that they may have had control over the uppermost irrigation canal intakes (Shimada, 1994:258). Control of these areas would have led to a considerable about of Recuay influence over the Moche in the valleys below.

Because of the nature of the archaeological evidence produced in the middle Chao valley, my research supports Wegner’s (1988) view of the Recuay. It seems unlikely that a large political power, like that of a Moche, would have allowed such subjugation to another culture group. A platonic, symbiotic relationship seems more plausible if a society was going to allow another to occupy the source of water in the highlands and, therefore, have the means to affect crop yields and food production on the desert coast.
Recuay ceramics have been found on Cerro Santa Rita (VanHeukelem, 2002), particularly concentrated in an area VanHeukelem designated as Zone 1 (Figure 2.8). We cannot yet determine if this was similar to a Recuay barrio, or just a cache of Recuay ceramics. Zone 1 is on a relatively prominent part of the hill, so it is possible that these fine Recuay ceramics are part of a residence of higher status people who would have had access to more exotic trade goods, or a household of Recuay people group who had these ceramics. If we are to accept VanHeukelem’s (2002) argument that Cerro Santa Rita was part of a vast trade network and that a person, or persons were residing in Zone 1, then Wegner’s (1988) hypothesis of a Recuay system that utilized a cacique-type system fits better. A cacique system is a type of government system that used local leaders to administer to a local population rather than occupying an area especially an outlying area, with a fully fledged administration center. It is possible that the Recuay were more centralized as Shimada (1994:258) suggests instead of dispersed polities. However, in the middle Chao Valley, there is no evidence that would indicate conflict or competition during Moche and Recuay times. This does not fit Shimada’s (1994:258) view of the Recuay as competitors of the Moche. Perhaps the Moche and Recuay were filling two different niches and both benefiting from established trade routes and networks.
Recuay ceramics on Cerro Santa Rita, as well as elsewhere in the middle Chao Valley, can be easily differentiated from the Moche ceramics. Different from most of the Moche ceramics found on Cerro Santa Rita, Recuay ceramics (Figure 2.9) are usually made of brilliant white clay. This is because they were crafted from kaolinite clay, found only in the Northern Highlands (Donnan, 1992:75). However, in the mid-
valley regions along the coast, they were made out of terracotta clay like everything else, but finished with a white slip, to give the appearance that they were made with a white clay (Donnan, 1992:75). The tradition of a white slip over a terracotta paste was also used by the Moche to create the red-on-white and black-on-white fineline depictions and art seen on many of the finer vessels associated with elite contexts. Often, these white ceramics were painted with red and black geometric designs or molded into effigy vessels with red and black highlights (Donnan, 1992:79).

Towards the end of Moche and Recuay times the climate began to shift back from a drier, to a wetter, less stable climate pattern (Moseley, 1999). Evidence for this climate change can be seen for this at Huaca Cao Viejo at the site of El Brujo in the Chicama Valley (Figure 2.6 and Figure 2.10). These Moche friezes were covered with melted adobe runoff and there are multiple layers of paint over this adobe melt indicating that these walls had been repainted rapidly and often indicating that the rain was coming in large quantities and quite often. Not much is known about how this possible climate change affected the Recuay in the highlands, however, to have floods
on the coast, it must have rained or snowed excessive amounts in the highlands. On the coast, archaeologists are relatively certain it led to, or at least contributed to, the collapse of Moche society (DeVries et. al., 1997; Moseley, 2004.)

Figure 2.10. Adobe melt and drip lines at Huaca Cao Viejo in the Chicama Valley

After the collapse of the Moche state, the North Coast saw the rise and fall of many smaller, often valley-specific polities, very similar to when the USSR collapsed in 1991. Many regional, but bounded states were formed. In the Chao, about 3km to the west of Cerro Santa Rita another hill, Cerro de la Cruz, was occupied as part of this phase. Excavated by Melissa Vogel for her Ph.D. in 2003, Cerro de la Cruz contains ceramics associated with the Casma polity (Vogel, 2003), slightly south of the Chao valley. Unlike Cerro Santa Rita, Cerro de la Cruz has fortified walls and piles of sling stones ready at these walls (Vogel, 2003). Similar to European castles of the Middle Ages, these walls surrounded an urban center (Vogel, 2003). This indicates that there was a need for defense from outside attackers during post-Moche time. Of interest though, to date none of these characteristics have been found on Cerro Santa Rita and in
addition, no Casma ceramics have been recovered from the hill. Indicating that for some reason Cero Santa Rita was unoccupied, or not permanently occupied during that time. Rather, the next occupation of Cerro Santa Rita seems to have been by a culture known as the Chimú.

The Chimú and their Origins

The collapse of the Moche marked the end of the Middle Horizon and the beginning of the Late Intermediate Period (Table 2.1), a series of localized polities developed within the river valleys of the North Coast (Vogel, 2003). With the environment unstable and crop yields uncertain, elite control of power and social control was strained. Local conflicts occurred at sites like that of Cerro de la Cruz in the Chao Valley (Vogel, 2003). Both the northern and southern coasts were in upheaval as individual polities attempted to once again consolidate power.

To the north, in the Lambayeque Valley (Figure 2.11), a proto-Chimú culture known as Sicán (Moseley, 2001:262) existed. Accounts of this culture existed at the time of Spanish contact. These accounts told of a lord by the name of Naymlap arriving from across the seas in an armada of balsa wood boats. He brought with him an entourage of his own elite – or so the story goes. Naymlap founded a city called Chot, today suspected to be the site of Chotuna (Moseley 2001:262) (Figure 2.10). Naymlap had 12 sons, each of whom founded new Sicán settlements in the Lambayeque Valley (Moseley 2001:262). Within eyesight of the large, now defunct, Moche center known as Pampa Grande to the south, one of these sons founded the city of Batán Grande (Figure 2.11). Izumi Shimada’s work (1994) documents graves in the tens of thousands.
Batán Grande and compels us to wonder if more people were buried at Batán Grande than actually resided there. Perhaps Batán Grande was a funerary complex. Material recovered from these graves demonstrate that the Sicán people were master metallurgists. Copper pieces, possibly “currency” from the Ecuadorian region, suggest that the coastal trading networks were vast (Moseley 2001:266). This metallurgy trade is further demonstrated by the intricate copper adornments recovered from Cerro Santa Rita and Santa Rita ‘B’, however, these date to the later Chimú Period.

Figure 2.11 Locations of important Sicán and Chimú sites
Radiocarbon dates have placed the second major occupation of Cerro Santa Rita at 1000-1300 A.D., the height of the Chimú Empire. If we are to accept VanHeukelem’s (2002) trade hypothesis for Santa Rita ‘B’ Cero Santa Rita and the rest of the middle Chao Valley, then it is entirely possible that Cerro Santa Rita was, in some way, incorporated into these trade networks. Unfortunately for the Chimú, northern sites were decimated by a major El Niño flood around 1100 A.D. and the center of power shifted down valley to the site of Tucume and what is known today as the site of Pacatnamú (Moseley2001:266) (Figure 2.9).

Archaeologically, after that El Niño devastation about 1100 A.D., the people buried at these new sites began to show signs of anemia and other health problems indicating a decline in population and general distress (Moseley 2001:266). This allowed the Chimú general Pacatnamú, for whom the site is named, an opportunity to conquer the northern Sicán and Lambayeque territories, and found the first regional administrative center since Moche times. The site that bears his name, Pacatnamú, was the first recognizably Chimú center (Figure 2.12) on the North Coast (Donnan and Cock, 1986). The site of Pacatnamú was a former Moche administrative center (Donnan and Cock, 1986) that the Chimú reoccupied and used to administer the northern valleys. The reuse of Moche sites was common for the Chimú, as evidenced at Cerro Santa Rita and Santa Rita ‘B’ in the Chao Valley.

About 1155 A.D. (Conrad 1990:229), in the Moche Valley, the Chimú founded the site of Chan Chan (Figures 2.11 and 2.12), what is today a UNESCO World Heritage Site and one of the largest sites on the entire North Coast of Peru. At its
greatest extent, after three episodes of expansion (Mackey and Klymyshyn, 1990), the first of which was begun by Pacatnamú, the Chimú empire incorporated nearly 1,000 km of Peru’s North Coast controlling nearly two-thirds of all arable land (Moseley 2001:262). Next to the Inca empire, the Chimú empire was the second largest pre-contact empire in the Andes for which a written account exists (Moseley 2001:262). In 1465, the Inca had begun to militaristically conquer and incorporate the Chimú. When the Spanish conquistadores arrived in 1532, there were still pockets of Chimú culture that had not yet been conquered by the Inca, however, Chan Chan had fallen just prior to the Spanish arrival.
Figure 2.12. Archaeological Map of Chan Chan (From Moseley 2001). Each of the nine complexes, or ciudadelas, was built by successive rulers between 1155 and 1465 A.D.
Typical Chimú ceramics (Figure 2.13) were fired in a reducing environment to produce a black or dark brown final product. The vessels were often produced using a mold, or a paddle and anvil, and incorporate aspects of Moche, Sican and the highland culture, Huari iconography in the form of monkeys, birds and occasionally foxes (Donnan 1992:62). Another common attribute of Chimú pottery is piel de ganso, or “goose bumps”. These are raised bumps, that can vary in size between vessels, but are usually the same size on any one vessel, the piel de ganso design was applied either through use of a mold or by an paddle and anvil method. The Chimu pottery found at Santa Rita ‘B’ and Cerro Santa Rita is generally lighter in color with larger goose bumps, however, recovering highly polished and finely decorated vessels is not uncommon.

Figure 2.13 Chimu ceramic showing piel de ganso. From the Museo Nacional de Cultura y Arquelogia in Lima

The Chimú occupation of the Chao valley is very definable in the archaeological record. Incorporated in the first wave of expansion around 1130 A.D.(Mackey and Klymshin, 1990), the Chimú seem to have reused pre-existing Moche
structures (Kent, 2002) at the sites in the middle Chao Valley as evidenced by radiocarbon dates on Cero Santa Rita.

I have presented here a partial chronology of the North Coast of Peru. There are few key points that are critical to this thesis. First, the North Coast of Peru has a long history of occupation that was initially based on maritime resources, then agriculture, but later, through the development of intricate trade relations, utilized resources from all regions in the Andes. The second attribute is the role that ideology appears to have played in organizing people and labor. The ability to motivate and organize labor parties and projects will help interpret architecture at Cerro Santa Rita and Santa Rita ‘B’.

Additionally, I have presented the types of ceramics that these culture groups are known to have produced. These ceramics have been and continue to be the primary tool used by archaeologists to identify cultural occupations in Peru. This is true for Cerro Santa Rita and Santa Rita ‘B’, however, the ceramic assemblages recovered and analyzed from these sites deviate from these “typical” cultural markers presented in this chapter. This difference may be a key indicator of a different pattern of use and activity in the middle Chao Valley. Ceramics can be identified as “Moche” or “Gallinazo”, however, there is a ubiquity of other, utilitarian ceramics that suggest a more homogeneous blend of these cultures of the North Coast of Peru.

In Chapter 3, I will discuss some of the iconography and architectural styles that form the basis of power and are the mechanism of social cohesion for the pre-Columbian Andes. These characteristics are imitated and replicated in the middle Chao Valley and at Cerro Santa Rita. Often these strategies and symbols transcend time and space and cross-archaeological cultures not only on the North Coast, but also across the
Peru. I want to present these aspects of the materialization of power in conjunction with
the cultures mentioned in this chapter before I discuss cultures and iconography in the
Chao Valley because they form the framework for social organization in Peru. Where,
because of its location and role in trade, Cerro Santa Rita and Santa Rita ‘B’ are more
variations on a theme, rather than representative of any one culture.
Along the North Coast the sites that have been the most extensively investigated generally exhibit monumental architecture and represent the elite social class of culture (Alva, 2002; Bird, 1985 Castillo and Donnan, 1994; Donnan and Cock, 1986; Ford and Willey, 1949; Menzel, 1977; Squire, 1877; Tello, 1956; Uhle, 1913; Uceda, 2004, 1999). Historically, archaeologists have excavated and interpreted large, monumental sites, omitting the smaller sites that may represent lower social groups. As a result, archaeologists have a great understanding of the elite class and their practices. For instance, many studies have focused on what Moche power looked like and where it was administered from (Alva, 2001; DeMarris at al., 1996; Donnan and Cock, 1986; Bawden, 1982; Uceda, 2004). These projects have increased the understanding of temples, or *huacas*, and the areas surrounding them (Uceda, 2004). However, few projects have studied how Moche power manifested outside of the major administrative centers like Moche or El Brujo, resulting in an incomplete understanding of the North Coast during the Early Intermediate Period as well as rest of pre-Columbian history.

This is why the Chao Valley is of interest, because we know of no large-scale administrative centers within the valley, at least none on the scale of ones farther to the north. The Chao Valley, Cerro Santa Rita and Santa Rita ‘B’ offer an opportunity to apply what archaeologists have learned about the power structures on the North Coast.
of Peru from the excavations at the *huacas* to a rural community on the edge of Moche influence and test whether these ideas may be accurate. Gaining an understanding for how these large administrative and ideological powers interacted with outlying communities will help archaeologists better understand the interregional politics of state level societies on the North Coast and how they were able to expand their influence.

Upon arriving at Cerro Santa Rita and Santa Rita ‘B’, the first thing of note is the architecture and the lack of large, overtly monumental structures. However, many of the natural hills in the Chao Valley have been extensively modified, using available stones to create platforms and terraces on their slopes and summits. The wall lines that remain from structures that once stood there are, compared to the eloquent stone walls of Huaca de la Luna in the Moche Valley, seem crude and irregular, but still create series of intricate walls and room blocks, suggesting that the people that constructed them were well organized and supervised. If this was the case, then there necessarily would have been a local community member, perhaps a person of higher status, who would have had to direct and manage these construction projects. At this point in time archaeologists in the Chao Valley have not identified this person from material remains, nor do archaeologists know what allowed them to rise to an administrative role. In the Moche and Chicama Valleys, administrative power seems to have been closely tied to ideology and administered from the *huaca* complexes like that of the Moche site and the site of El Brujo (Alva, 2000, Uceda, 2004). It seems reasonable to hypothesize that the residences and the architectures of the social elite would have been more elaborate than those of commoner status. Therefore, I will begin this chapter with a discussion on the architecture of power in the Andes.
The Architecture of Power

Nothing demonstrates power and greatness as overtly as large-scale constructions. Humans still today build skyscrapers as testaments to a country’s achievement: the Empire State Building in New York, the Sears Tower in Chicago, the Petronas Towers in Kuala Lumpur and the Burj Dubai in Dubai are just a few examples. This concept was not foreign to the peoples of pre-Hispanic Peru. Starting with the site of Chavín de Huantar (Figure 3.1), people began to build large structures to demonstrate power.

Figure 3.1. Monumental Architecture at the Site of Chavín de Huantar

There is no better demonstration of power, than to show that labor can be controlled (Trigger, 1990:128). For an elite, or group of elite individuals, to build a construction which, “exceeds the scale and elaboration of any practical function that a building is expected to perform” (Trigger, 1990:119), a labor force must first be organized and then motivated. In the Chao Valley and at Cerro Santa Rita, there is evidence that the hill was modified beyond what was necessary and practical for habitation. However, the lack and any large, on the scale of Moche or El Brujo, urban
centers in the Chao Valley (Cardenas, 1976; Silva and Zavaleta, 1999), suggest that the population was perhaps smaller in the Chao. As a result the organization of labor would have been more local in origin and degree of “monumentality” would have been, therefore, decreased when compared to sites like Huaca de la Luna. Regardless of inter-valley variations and construction techniques, once finished, monumental architecture serves as a visual experience, often overwhelmingly so, to large audiences, (DeMarris et al., 1996:18) even before that audience attends any events, or has access to the structure. In essence then, monumental architecture speaks for itself (Kolb, 1994), DeMarris et al. (1996:18) has called it an “elemental message”.

In addition to building monumental structures, landscapes were also transformed, such as in the case of places like Machu Picchu and the Nazca lines, creating a type of domestication of the wild environment and symbolizing the appropriation of space and territory (DeMarris et al., 1999:19). Modification of landscapes, including hillsides like Cerro Santa Rita, also requires huge amounts of labor input (Abrams, 1989). Labor must be organized and motivated, just like constructing monumental architecture, either passively or forcefully, to complete projects of these magnitudes. In the Andes a form of labor tax or mit’a was used.

Oversimplified, mit’a is taxation paid from the commoner class to the elite and/or ruling class in the form of labor (Moseley, 2001:55). However, it is the more nuanced manifestations of its implementation that make it socially complex and, most importantly to the elite, effective. For example, similar to how we sign our name to fill out income tax forms, pre-Hispanic workers marked their products such that they could receive credit for their labor. For this discussion I will use the Moche site of Huaca de la
Luna in the Moche Valley. When molding the adobe bricks for use in Huaca de la Luna, different labor groups would press a symbol, or set of symbols, into their bricks marking them as having been produced by that labor group, these are known as maker’s marks (Figure 3.2).

![Adobe bricks from Huaca de la Luna showing maker’s marks, representing different mit’a labor groups](image)

In addition to the over 100 makers’ marks at Huaca de la Luna, there are also three different soil types used to produce the adobe bricks (Moseley, 1975:192) indicating that soil was being extracted from different regions, inferring additional groups of people, external from the Moche Valley. This means that people were tapped from interregional locations to participate in the construction of Huaca de la Luna. Whether they brought the soil with them and produced the brick on site, or transported the finished bricks to the site archaeologists do not know. According to Moseley’s (1975)
studies, there is no good correlation between makers’ marks and soil types. There are a limited number of makers’ marks that only occur in adobe brick made of a specific soil type. However this phenomenon does not apply to all 100 types of known marks (Moseley 1975:192) indicating that perhaps it was just the soil that brought into the valley and then distributed to different labor groups.

Social groups in the pre-Hispanic Andes were divided into corresponding labor groups during construction projects. Each group was charged with a repetitive task that they would perform to completion. In addition, more than one labor group could be assigned the same repetitive task. For example, in the case of Huaca de la Luna, 100 different labor groups made the bricks, but they were each responsible for producing and laying their own bricks, within the huaca, as bricks with the same makers’ marks are found together (Moseley, 1975:194).

Large-scale projects, like the construction of monumental structures, were subdivided into many smaller repetitive tasks, each completed by a different labor force, and therefore distinct, social group. Finally, these labor groups were not only of separate social classes and groups, but also geographically and territorially distinct. Spatially distinct communities were responsible for different aspects of a project (Moseley, 1975:191). This suggests that the Moche power structure allowed the elite to motivate labor from interregional populations to complete Huaca de la Luna. Not only did this demonstrate Moche influence over a given region, but it also would have given the population of that region a psychological connection to Huaca de la Luna and the elite that utilized it.
Currently there are no known adobe bricks imbued with markers marks on them in the Chao Valley or Cerro Santa Rita. In fact, very few adobe structures are known to exist in the middle Chao Valley, nearly all the construction is stone. However, the existence of these groups at the large centers, like Huaca de la Luna, and their documentation by the Spanish priests during Inca times allow for it to be inferred that a similar *mit'a* arrangement was present over time throughout the North Cast of Peru. In Chao, where there does not appear to have been the degree of Moche influence, it is possible that smaller community based labor groups were formed and utilized by local elites to carry out construction projects in the Chao Valley.

Once these labor forces completed a monumental structure, in the case of Huaca de la Luna (an adobe pyramid) or in the case of the Chao Valley a modified hillside, it allowed the elite to demonstrate ownership of public facilities and to dictate what functions they served. In effect, this allowed them to control the surrounding landscape by providing visual surveillance, as well created a venue for public ceremonies (Bech and Olsen, 1985), which allowed elite control of, and interpretation of, ideology. Further, these spaces were also utilized as formal burial grounds for lords and their servants, meaning the lords and elite had control of the space not only in life, but also retained rights to it in death (DeMarris et al., 1996:19). Burial practices such as these allowed following generations to claim power by demonstrating that they were of the same lineages of the ancestral lords. Such claims could be made public, in an acceptable way by public ceremonies, ritual and feasts (Deitler, 1996). These activities showcased the elite’s or lord’s generosity as well as demonstrated power. Further, the ceremonies were spectacles that aggrandized the elite in front of lower social classes.
who had gathered in courtyards and plazas to witness and sometimes participate in the lavish events (Moore, 1996:790).

Plazas and Power

Monumental architecture served another function, other than just being an awe-inspiring, overt symbol of power. It was also a place of public and private ceremony (Quilter, 2003:173). Walking around huacas from different time periods, such as Chavín de Huantar, Huaca de la Luna, Batan Grande, Huaca Cao Viejo, Sipan even the later Chimú cuidadelas at Chan Chan, one notices the ubiquity of open spaces, or plazas (Figures 3.3 - 3.4)

Figure 3.3. Main ceremonial Ppaza in the Tschudi Complex at Chan Chan. This plaza could have held hundreds of people
Plazas have their origins in sunken courtyard architecture, or *plaza hundidas*, (Figure 3.5) of the Preceramic. There are sites in the Chao Valley, notably that of Salinas de Chao, that exhibit this same type of architecture (Moseley 2001:119), where this *plaza hundida* tradition is evidenced. This is again a testimony to the longevity of organized, human occupation of the valley. Often paired with platform mound architecture, the *plaza hundidas* may have been related to Andean origin stories where people ascend from within the earth to the normal plane of existence, then up to a platform representing the division between the natural and the supernatural (Moseley 2001:119).
Over time, as populations got larger, these pairing were abandoned in preference for platform mounds, which overlooked large plazas and sometimes plazas themselves became platforms mound overlooked by yet taller platforms. This setup allowed for a more “public-oriented doctrine of civic-ceremonial activity” (Moseley 2001:119). An understanding of how public a ceremony, or ritual was intended to be can be interpreted based on size of the plaza. Smaller plazas indicate more intimate and personal communication (Moore, 1996:791).

The larger the gathering space, the more reliance has to be placed on nonverbal communication (Moore, 1996:791, allowing for the spectacle of the ceremony to increase. Notice that in Figures 3.3, 3.4, and 3.5 the variability in number and size of the platforms, this indicates that these complexes served many different sizes of audiences.

Cerro Santa Rita has many plazas and platforms of varying sizes, similar to the ones depicted in this chapter, perhaps indicating similar range of public displays of ritual and ceremony. Like most attributes of pre-Columbian cultures on the North Coast
and as noted above, these plaza traditions have their origins in the Pre-ceramic of the Andes and persisted through time and were still utilized by Inca Empire, a testament their importance in maintaining social cohesion.

By making platform mounds and plazas the focal point of ceremony and ritual, elites, through time, were able to manipulate ideology, create trans-valley networks of influence and maintain social cohesion (Lau, 2002:279). However, it is important to distinguish that just because a place like the *huacas* in the Moche heartland had a high degree of symbolic power, *huacas* did not necessarily have direct political control of their hinterlands or neighboring valleys (Quilter 2002:180). It was more of a passive control, which utilized the services and loyalties of local elites in outlying areas. Not to make the mistake of interpreting too much of a Western sociopolitical structure on the Andean coast, but we can think of this arrangement in terms similar to the Catholic Church today. Except for designated seats of administration placed around the world, the Vatican and its dioceses, there are very few direct ways the Catholic Church can influence politics, but yet the Catholic religion is extremely widespread. Bawden (2001) and Quilter (2002) suggest that this was the case on the North Coast of Peru and it helps inform the interpretation of the Chao Valley, Santa Rita ‘B’ and Cerro Santa Rita where there is ubiquitous evidence for Gallinazo, Moche and Chimú material culture, but no large administrative, or religious center. Perhaps there was one, or more locations in the Chao Valley that served as a place were both political and ideological values could be reinforced by an individual, or set of individuals that represented the Moche administrators. These places may be identified by locating numerous plazas and courtyards at sites within the Chao Valley at sites like Cerro Santa Rita.
In the remainder of this chapter, I will abandon the Preclassic traditions, as beyond origins of architectural traditions because to date they have not significantly evidenced in archaeological excavations on Cerro Santa Rita or in the Chao Valley. Instead I discuss what these ceremonies and rituals were, the evidence for them, and how ceremony functioned to incorporate and materialize ideology. My aim is to create an idea of what activities took place on the huacas in the Moche heartland, to inform the archaeological record and assemblages seen in the Chao Valley. My work on Cerro Santa Rita seems to indicate that the hill was used as a place where such ceremonies may have occurred. While not as elaborate as the ones I will discuss below, those on Cerro Santa Rita are perhaps of the same ideological origin and spring from ideas about the dead and ancestor veneration.

Ceremony and the Creating of Iconography

In many societies, ceremonial events arose to mark designated points in the year, relying on seasonal cycles (Maxwell, 1956) and beliefs that were already in place and recognized by a number of culture groups (DeMarris et al, 1996:17). This serves to strengthen the hypothesis that perhaps the Gallinazo represented a folk culture and the Moche represent an elite society (Donnan 2005) as discussed in Chapter 2. If the Moche were utilizing and manipulating a previously existing belief system it would have been easier to gain allegiance from other regions, like the Chao Valley. In addition, this tactic would have made the acceptance of a new administration easier if the commoners already felt comfortable with the new system’s core values.
Ceremonial events, while capable of reaching large audiences with a shared, similar experience, tend to be less personal than private ritual and, therefore, their lasting impact is diminished. For these reasons, it then is necessary to repeat ceremonies in regular cycles to sustain and traditionalize their effect on society (DeMarris et al 1996:17). Ceremonies and other public gatherings would have served a more critical role in places such as the Chao Valley where the population was not routinely exposed to the grandness of the large administrative and ideological centers like that of Huaca de la Luna and the Huaca del Sol and the symbology that accompanied them. Local elites would have had to rely on the repetition of ritual and ceremony to ingrain an extra-valley ideology into the population. Incorporating aspects of a “folk culture” would have made this easier.

Another by-product of ceremony that has implications at Cerro Santa Rita, is the contrast between ceremony and ritual. Ceremonies are generally public and auspicious, while rituals are more private and personal in nature. Once an idea is generated and traditionalized publicly, people begin to practice it privately as long as it is reinforced on a prescribed basis. There is no evidence that the ceremonies of the middle Chao Valley were as lavish as the ones at, for example, Huaca de la Luna. However, the general staples of food and drink and location were the same and are evidenced on Cerro Santa Rita. Being geographically separated from the northern centers of power and social and religious administration may have led to the dilution of ideology, but not removed it entirely. This would have allowed some aspects of local tradition to be incorporated into the northern ideologies. While far to the north of the Chao Valley, ceremonies, such as those at Huaca de la Luna, El Brujo and Chan-Chan did have
tangible objects could be disseminated away from these and other ideological and administrative centers. These included ceramics depicting individuals and scenes of elaborate ceremony (Donnan, 1992; Donnan and McClelland, 1999) and ritual, and served as ideological propaganda and defined who the Moche and Chimú lords were and their symbols of power and divinity.

Eric Wolf, in his book *Envisioning Power: Ideologies of Dominance and Crisis* (1999), defines one of the types of power as “structural power” (Wolf 1999:5). This correlates with the Moche and perhaps the Chimú basis of power. “Structural power” is the power that manifests for an individual, or set of individuals to dictate what things are and who can have access to them and when (Wolf, 2001:375). In essence, this type of power is the control of iconography, symbology and elite goods. For the Moche, this was of utmost importance, since there was no written language. The ideology of the Moche was left to be spread by word of mouth and by familiar, yet specialized iconography.

This iconography often was produced and disseminated through pottery and friezes on the sides of huacas. We can also interpret these images as a way to influence populations both on site at the huacas to enhance the effects of monumental architecture, and during public ceremony, but also as a way to reach communities that were some distance away. By creating images on ceramics and textiles that related to the ideologies of the Moche, these goods could then have been transported away from the large administrative centers via trade routes, to other regions where the ceramics and iconography functioned as propaganda for the Moche state. Trade routes such as those in the middle Chao Valley would have ideal for moving goods like these.
Christopher Donnan published a landmark study entitled *Moche Art and Iconography* in 1976. Here, Donnan argued that what archaeologists had, for years, interpreted as just images of fish, plants and people, were actually part of a religious iconographic system. Thus, when a supernatural being is hunting deer (Figure 3.6), or fishing, that act is more than just depicting food resource procurement, but also it is creating a religious meaning behind that activity.

![Figure 3.6. Fineline Moche Painting depicting a deer hunting scene. (From Donnan and McClelland, 1999)](image)

This art is one manifestation of dual meaning the in the Andes. From these dualities in the meaning of art, to dualities in social groups, communities divided into two moieties (Moseley: 1992:82). I assert that this tradition also extends to architecture. Looking at the site of Huaca de la Luna, it is directly opposed by the unexcavated site of Huaca del Sol, in the Chicacama Valley at the site of El Brujo Huaca Cao Viejo is opposed by the site of Huaca Cortada. In addition, the meaning behind huacas may be two fold as well. In a sense they are places and temples of
administration, however, they are reminiscent of hills as well. We may never know the exact ideology of the Gallinazo, Moche and Chimú, but we can look at the dual meaning of their art and infer that this world view had other manifestations in their society.

Andean archaeologists must rely on interpreting art and architecture as there was no written language in pre-Hispanic times. For example, archaeologists and ceramic specialists have worked together to identify the “real life” counterparts of the individuals depicted in some of the Moche themes (Alva, 200:70). Archaeologists also know now, as a result of excavations at the sites of Sipán (Alva, 2000) and San José del Moro (Jime-Castillo and Donnan, 1994), that some of the ceramics depict actual events and ceremonies. At Santa Rita ‘B’ and Cerro Santa Rita we have evidence for some of these practices like ceremonies and activities that included food, drink and the dead.

Sacrifice, Food and Ancestor Worship

In the following section I highlight some of the activities that have been depicted in Moche art that we have evidence for having actually occurred during Moche times. While the elaborateness of these ceremonies and rituals described in this section far exceed anything that is evidenced to have occurred in the Chao Valley they do develop a framework for being able to connect the less elaborate sites like that of Cero Santa Rita with the Moche Heartland to the north. As discussed in Chapter 4, there is evidence of human sacrifice at the site of Santa Rita ‘B’ (Kent et al., 2007) and evidence for a great number of burials on Cerro Santa Rita (VanHeukelem, 2003)
making the process and meaning sacrifice and the subsequent treatment of the dead a relevant topic for discussion.

Perhaps some of the most popularly publicized burials on the North Coast of Peru may be the most significant to identifying figures in Moche iconography. Tombs at Sipán, San José de Moro and now Cao Viejo were found to be those of some of the figures depicted in the “Sacrifice Ceremony” (Figure 3.7) scene on a stirrup-spout vessel (Alva, 200:70; Castillo, 1992, 2000). To summarize the Sacrifice Ceremony: it depicts a Warrior Priest, labeled individual 1, who is being handed a cup by individual 2, the bird or owl priest. After these two main characters follows a woman, individual 3, now known as the Priestess, carrying a covered cup and finally, individual 4, who is noticeably larger than individual 3. This individual is sometimes nameless (Quilter 2002:163) or is sometimes referred to as Ai-Apaec (Castillo 2000:57), the decapitator god who appears on the walls of Huaca de la Luna and elsewhere on ceramics, defined by his feline-esque fangs. Below them defeated warriors are sacrificed by anthropomorphic deities with feline heads. Felines seem to play a key role in the iconography of sacrifice during Moche times. Generally, for Moche art and iconography the larger the individual is, the more important and integral to the theme they are.
The sacrifice ceremony was originally painted on a stirrup-spout bottle and is an example of one of the hybrid themes that mix the natural world and the supernatural world. In 1988, Walter Alva excavated one of the most elaborate tombs known in Peru at the site of Sipán in the Lambayeque Valley. Here, Alva unearthed the Lord of Sipán (Figure 3.8), a male who was buried with all the regalia that the Warrior Priest wears in the depiction of the sacrifice ceremony (Alva, 2000). The green staining in Figure 3.8 is from oxidized copper. On Cerro Santa Rita, I recovered a small placard of copper, or perhaps *tumbaga*, a surface depleted copper alloy of gold or silver and copper (Lectman, 1984), similar to what was recovered from the Sipán tomb. I am not suggesting that a burial this elaborate, or this important is located on Cerro Santa Rita. However, I am suggesting is that Cerro Santa Rita may have been a place that a lesser elite had access to and utilized. At San José de Moro, archaeologists found a female individual with the paraphernalia associated with the priestess, including the cup, which was found to have residue from human blood (Bourget, 2003), indicating that perhaps the warrior priest, or lord, would have actually ingested the collected blood.
There is debate as to how the depiction of the sacrifice ceremony should be viewed. Quilter (2002:165) suggests that we should interpret this as a myth being reenacted, rather than ceremony. Personally, I feel that this distinction cannot be made, not with any amount of evidence, because we will never know how the individual dressed as the warrior priest thought of himself. All that we can say is that this scene played out, probably in front an audience. However, we still have no real idea who the sacrificed or the dead were. Many of the individuals found in the sacrifice plaza at Huaca de la Luna did not live long enough to be sacrificed. Their skeletons exhibit an arm fracture, known as a parry fracture where the arm is raised in defense and is broken.
as a blow lands (Bourget, 2001). Created perimortem, these types of wounds indicate that they were killed in battle.

Bourget (2001) notes that nearly three-quarters of all the cervical (neck) vertebrae recovered at Huaca de la Luna exhibit cut marks, the other common fatal injury was blunt-force trauma to the skull, in other words a crack upside the head (Bourget, 2001:97). These scenes must have conjured an enormous emotional response. The human reaction to, as Quilter (2002:197) puts it, “watching fellow human beings transformed into chunks of rotting flesh, flayed skins and dismembered carcasses.” The remains of the victims were then cut up, dismembered and manipulated.

This included seemingly degrading behavior was enacted towards the corpses, feet were placed in chest cavities, jaws were removed, faces were flayed and then they were left to decay in the open (Verano, 2001:119). Again, none of this would be considered, in Western society, as proper treatment for an honorable sacrifice, rather spiteful revenge on an enemy, thus the debate continues, and remarkably, we see some of these practices, such as the burial of disassociated body appendages, in the Chao Valley in Santa Rita ‘B’, however, to date, not on Cerro Santa Rita. However, before we go into the details of what has been recovered in the Chao, I want to offer a few insights, which may simultaneously illuminate and complicate interpretations of what the treatment of corpses and human remains may have meant to people along the coast of Peru. This insight deals with understanding the concept of connecting with the dead, a practice that permeates Pre-Columbian Central and South America.

The first, and perhaps the most foreign to Western society, is that of keeping trophies of the vanquished. Trophy heads permeate the Coast of Peru (Silverman,
1993:218) and they are quite common in Moche art. The purpose of taking and keeping a person’s head (Note the trophy heads the litter is sitting on in (Figure 3.9) is based on the magical power the head possesses, rather than the idea of the head as a “trophy” (Tello, 1918). Perhaps, even more grotesque was the Moche practice of reanimating the dead, the practice of making the dead seem to live once again.

Fine-line depictions of ceramics have depicted the dance of the dead, or animated skeletons, on numerous occasions (Figure 3.9). Until recently, however, archaeologists felt that this was a supernatural depiction, however, in recent years evidence at Huaca de la Luna indicates that this may have been an actual occurrence (Bourget, 2004). At Huaca de la Luna skeletons have been found that have cut marks which, indicate that they were mostly defleshed. In some cases, tendons and cartilage was left in place and in others, holes were drilled in the distal and proximal ends of bones and then they were tied, back together as they were articulated in life. This paints a macabre image of skeletons on display, or even used as life-sized marionettes (Bourget, 2004). One can only assume that these “reanimated” dead were used in public assemblies of some kind. Exactly what they were meant to convey, we do not know. The depictions on the ceramics show skeletal figures doing very human things, dancing, feasting, and playing musical instruments. The idea of animated dead doing everyday things, conjures aspects of celebrating the Day of the Dead in modern Hispanic culture: as they were in life, so they are in death.
In modern times Day of the Dead, *Dia de los Muertos*, is celebrated on the first and second of November. Admittedly, this is concurrent with the Catholic holidays of All Saints Day and All Souls Day, but the idea of ancestor worship has been a staple in Central and South American cultures for thousands of years (Lau, 2002). Today, *Dia de los Muertos* is a holiday that celebrates loved ones that have passed on. Often there are papier-mâché offerings that are burnt and food that is left as a way of giving the spirits of the deceased some of the things that they enjoyed in life. This is what ancestor worship has become in modern Hispanic America. We know from artistic representations and excavations (Alva, 2002, Uceda, 2000) that food was often included in Moche burial chambers (Figure 3.10) and we know today that large quantities of food is associated with *Dia de los Muertos*. Therefore, it is safe to infer that feasting was probably associated with the events around burials and ancestor recognition. We also know that *chicha*, a corn beer, was consumed both ritually and at feasting events throughout the Andes (Rowe, 1946:292) and the labor involved in making the necessary amount would have been great, so it would have been a community affair, perhaps in the form of a *mit’a* tax to honor and/or recognize ancestors, which in turn buttressed the elite’s claim to power.
It is necessary to separate mortuary offerings, offerings made at the time of death, from “ancestor veneration”, the repeated acknowledgement, celebration and seeking help or guidance from deceased people (Morris, 1991). Often these would have involved copious amounts of food and drink. Ceremonies such as these were tied closely with the socio-political and socio-religious agendas and institutions of The Moche, Chimú and Inca states (Dillehay, 1995). In addition, ceremonies and rituals could occur on any number of levels. From being small in scale: families visiting and caring for ancestors and seeking advice or help, to large extravagant feasts with hundreds of people. A site like that of Cerro Santa Rita may have been a place for both scales of events, with platforms and plazas for varying sizes. These public feasts were crucial to the elite for maintaining, challenging, and promoting the differential distribution of social power (Potter 2000:471).

Contemporaneous with the Moche on the South Coast, the Nasca people were creating and interring mummy bundles at sites like Chuachilla and Cahuachi (Sliverman, 1993). Mummy bundles were wrapped in many layers of textile and then
interred in open rooms that were dug into the ground and lined with stone, or adobe brick (Silverman 1993:198). Mummy bundles offered a unique opportunity for ancestor veneration, they could be easily moved and brought out on special occasions (Moseley, 1999). This allowed greater public access and in some cases the actual participation of the bundle in ceremony (Rowe, 1946).

Mummy bundles have been found on the North Coast of Peru, however, the most famous came out of the ground at Huaca Cao Viejo in 2005. Unlike any previous elite burial on the North Coast, this burial was wrapped (Figure 3.11) in several layers and contained a woman of higher status, now called the Señora de Cao. Even the Priestess at San José de Moro was not given this elaborate of a burial. Upon unwrapping, the bundle yielded gold, silver and copper decorations and most interestingly, two war clubs. To date, women have not been associated with combat. Also to add further complexity, she was buried with numerous fine Moche ceramics, but also two Gallinazo, face-necked jars. A burial like this is very unusual for the Moche, but it does pose some interesting questions regarding access to and preservation of the body. The point that I want to emphasize is that bundles, by their nature, are more conducive to accessing the deceased at points after their internment than a simple pit burial. In addition, in a society where lineages are important, a bundle allows for the tangible preservation of lines of decent, which can be publicly displayed in ceremony or ritual.
Figure 3.11. The mummy bundle of the Señora de Cao. Note the retainer, or sacrifice, burial of a young woman, to the left of the bundle.

In other cases at Huaca Cao Viejo and Sipán, the elite individuals were not buried in mummy bundles. In cases like these where mummy bundles were not utilized like bones still show wear that would be consistent with being taken out, post burial, used and then reburied (Franco, et al. 2001; Verano, 1997). Yet another attribute of elite burials is that they were often interred with a retainer, or sacrifice, burial, and offering meant to serve them in the afterlife. Retainer sacrifices were not always human. They could be animals, such as camelids or canines as well (Alva, 2002).

These cases demonstrate that treatment of deceased ancestors was one of the pillars of the Moche ideology. The ability to access, venerate and seek assistance from
the dead clearly was very important to these people. This idea may have been one of the traditionally rooted concepts in a “folk culture” along the entire coast of Peru, one that the Moche were able to manipulate to their advantage. In the Chao Valley, sacrifice and ancestor worship may have taken on a slightly less elaborate form, perhaps one more traditional.

At the site of Santa Rita ‘B’ in the Chao Valley, we are not dealing with such elite burials or mummy bundles. However, elite status in the Chao Valley may have looked different than in the Moche heartland. Kent (2004, 2005, 2006) have excavated a burial of a principal individual who was accompanied with six retainer burials and a camelid. The interesting aspect about the principal individual, (Figure 3.12) is that it is a child, possibly male, about 12 years of age at the time of death. This child exhibits cranial deformation, in the form of occipital flattening, indicating that he was a member of elite society. There is also a correlation between the principal individual and the age of the camelid. Gaither et al. (2006) have made a convincing argument that incorporates sites from across Peru, they call it the like-with-like principal. This principal is based on the idea of dualities in the Andes. Gaither et al. (2006) have recognized that, for example if a child dies, then a camelid of the same developmental age will be sacrificed and interred with the child. In the case of a tomb at the site of Farfán, in the Jequetepeque Valley, three women were interred in mummy bundles. These women included an adolescent and an older woman, about 40 years of age at the time of death. The adult was interred holding a neonate. On top of these mummy bundles were three camelids, each corresponding, developmentally, to the ages of the individuals in the tombs (Kent and Mackey 2004).
This chapter has outlined some of the basic tenants of Moche ideology. These understandings are derived from the archaeological interpretation of large sites that exhibit monumental architecture along the North Coast of Peru. The problem becomes matching these practices with the evidence archaeologists have recovered from the Chao Valley. We can reasonably accept that fineline depictions on Moche ceramics approximate actual activities, even if they have a supernatural element to them. Using these depictions as a guide, in conjunction with the archaeological evidence for these activities from the larger sites, we can begin to see similarities in practice and form between the Chao Valley and the Moche centers to the north, such as the burial and sacrifices recovered from Santa Rita ‘B’ and the plazas on Cerro Santa Rita.
In order to further contextualize Cerro Santa Rita, Santa Rita ‘B’ and the Chao Valley within the Moche sphere of influence we must examine other sites and archeological data that have been obtained from the valley. Other sites in the Chao Valley exhibit similarities to the Moche administrative centers to the north, these characteristics include plazas and cemeteries. There are also architectural similarities between sites within the Chao Valley, which may indicate the similar in functions, or define labor groups. These sites and previous projects are discussed in Chapter 4.
Chapter 4
Previous and Ongoing Archaeological Projects in the Chao Valley

Here I discuss the archeological investigations of the Chao Valley (Figure 4.1), and identify analogous occurrences of architecture and community layout with the Moche heartland to the north. There have been few scientific investigations in the Chao Valley and, as a result, the data set is incomplete at best. Some of the sites mentioned have had not been excavated archaeologically, but rather only surface surveyed. Because there was no collection permits issued for these sites, the data I present are only from a visual survey. At the end of this chapter, I discuss how the data recovered during my excavations on Cerro Santa Rita fits within the broader context of the Chao Valley.
In 1976 Mercedes Cardenas completed a complete survey of the Chao Valley for her dissertation at the Pontificia Universidad Catolica del Peru. This survey not only included archeological sites, but also made notes of the flora, fauna and climate (Cardenas, 1976). As part of her work, Cardenas assigned official Instituto Nacional de Cultura (INC) site numbers (Cardenas, 1976:24-36) to areas exhibiting archaeological material. She identified all of the sites discussed in this section. However, her work was not comprehensive, as it is only a surface survey of the Chao Valley. Cardenas executed only a handful of excavations as part of her project. Her work, however, did attract the attention of Dr. Walter Alva, who in 1980 excavated the site of Salinas de Chao (Alva, 1986). Salinas de Chao, a Late Preceramic site, is a series of monumental platform mounds and was the first site in the Chao Valley to demonstrate that complex society occupied this valley. Alva, after his excavations at Salinas de Chao, was the first to
recognize the potential importance of the Chao Valley as route into the highlands and an integral component to the history of the North Coast of Peru.

Chavimochic Inter-valley Canal Survey

The Chavimochic Inter-valley Canal is an irrigation canal that brings water north from the Santa River, to the Chao, Virú, Moche and Chicama valleys. The canal was completed in the early 2000’s. Before ground was broken on this project, the INC realized that the only existing body of work for the Chao Valley was Cardenas’ 1976 survey. In addition, Cardenas’ survey counted 187 sites, where the INC only had 136 sites on record. As a result the INC commissioned an archaeological survey of the Chao Valley (Silva and Zavaleta, 1999). Cerro Santa Rita and Santa Rita ‘B’ were not part of this survey. The project only affected areas around the mother canal and areas downstream and Cerro Santa Rita and Santa Rita ‘B’ are well up valley from the mother canal. This survey identified sites and assigned them basic cultural affiliation (i.e. Gallinazo, Moche, Chimú, etc.). It also identified several adobe and earthen mounds. None of them, however, are on the same scale as Salinas de Chao or, the ones in the Viru, Moche, Chicama, or Jequetepeque. The plan maps generated by this project show the architecture and mounds that were identified were constructed oriented in a slightly northwest direction (Silva and Zavaleta, 1999) indicating that an idea of city planning had taken place prior to the construction of these sites, most of which date to between 200 B.C. and 1400 A.D. (Silva and Zavaleta, 1999).
Cerro la Cruz

Between 1977 and 1980 John and Theresa Topic completed a survey of fortifications in several valleys along the North Coast of Peru (Topic and Topic, 1978). During this project the Topics identified several features which they considered to define a fortification. Following this criteria Theresa Topic (1990:185) identified Cerro la Cruz (Figure 4.2) as major hilltop fortification in the Chao Valley, describing a series of three concentric walls that ring the hillside and piles of sling stone lying nearby. Following the Topic’s work, Dr. Melissa Vogel (2003) excavated the site for three seasons, exploring the relationship of the people that once inhabited Cerro la Cruz had with the Casma polity to the south and the Chimú Empire to the north. The presence of the defensive walls and sling stones indicate that it was a tumultuous period in the Chao Valley.
Cerro la Cruz dates to post Moche times and represents (Vogel, 2003) the Casma culture. Casma was a polity that arose after the Moche collapse around 900 A.D. Vogel (2003:311) speculates that the Casma maybe were able to move into the Chao after the Moche collapse, but unable to expand further north because of the developing Chimú empire. This would have placed the Chao Valley in a kind of border zone between the Casma and Chimú, explaining the fortifications and Cerro la Cruz. By 1130 A.D. the Chimú had successfully incorporated the Chao Valley in their first wave of conquest (Topic, 1990:184). Interestingly, there is no evidence, as of yet, of Casma ceramics on Cerro Santa Rita, or that Cerro Santa Rita was ever fortified as Cerro la Cruz once was. We know now, both from ceramic data and radiocarbon data that Cerro
Santa Rita was occupied both before this time period and after. Why evidence for the Casama-Chimú strife not evidenced on this hill, but is present on Cerro la Cruz is still an open question. To date, no data are available to answer this question as no Casma material, or dates have ever come from Cerro Santa Rita.

Santa Rita ‘B’

Designated 17f-14M-8, or site 59 by Cardenas (1976:27), Santa Rita ‘B’ was first professionally excavated in 1998 by Dr. Jonathan Kent from the Metropolitan State College of Denver working in conjunction with the California Institute for Peruvian Studies. Starting with an intensive survey of approximately 6 square kilometers in 1998, Kent and his students have been working on projects in the Chao Valley for the last 10 years. Cardenas initially described the area of Santa Rita ‘B’ as a population center, probably looking at the central complex of nine rooms (Figure 4.3), but she never did any excavations at the site, describing the archaeological record as very disturbed from looters and “fragmentary”.

90
Over the past ten years Dr. Kent, Dr Victor Vásquez Sánchez, Dr. Teresa Rosales Tham, Dr. Catherine Gaither and students from across the US and Peru have worked together to gain a better understanding of the population center of Santa Rita ‘B’. Kent et al. (2001) have identified two corrals that have extensive layers of camelid coprolites, indicating not only that camelids were kept in the Chao Valley, but also because of the quantity, perhaps a developed husbandry program was in place (Kent, 2001). camelids, specifically llamas, were the main pack animal for trade in the Andes and the long-term keeping of these animals may be evidence of a trade network.
Kent et al. (2004) have also uncovered evidence of human sacrifice at Santa Rita ‘B’. At a structure within Santa Rita ‘B’, CA-3 (Architectural Complex 3) (Figure 4.4), one of the rooms is the final resting place of a sub-adult, found with its arm around a llama of approximately the same developmental stage and at least five retainer burials (Figure 4.5), each showing osteological evidence for sacrifice (Gaither, 2004, 2005). This is an interesting indicator that similar practices were being performed here as in the north, such as in the Moche Valley. It is reasonable to assume that there were other examples of common ideologies, which manifest themselves archaeologically in material remains, such as architecture and ceramics, some of which may be evidenced on Cerro Santa Rita.
Figure 4.4. The site of CA—3. Where Dr. Jonathan Kent and his students worked between 2002 and 2007. The burials were located in the room just to the north of the label R-2.
Finally, through the middle of Santa Rita ‘B’ site running nearly, northwest to southeast, is a structure known as the Muralla Pircada, or the (see Figure 4.3) stacked stone wall. The function of this structure is not known. Kent has had engineers look at it who have declared it a dam to protect against El Niño floods. However, the Muralla is still standing today and in 1988 the modern town of Santa Rita was nearly obliterated by an El Niño event, so I remain to be convinced that it is a dam, since it did not protect the town of Santa Rita. An alternate, however, non-exclusive hypothesis to the dam suggestion, is a raised road. George Lau (2001), in his dissertation makes reference to raised streets, or roads in the Santa Valley that are associated with the Recuay culture. However, not enough evidence exists to support or negate this hypothesis.
All of the above mentioned areas of Santa Rita ‘B’ can be seen and are within an easy walk from Cerro Santa Rita. It seems logical to hypothesize that a relationship existed between the people that inhabited Cerro Santa Rita and those that lived in the valley below, in Santa Rita ‘B’. VanHeuklem (2003:108) discussed Cerro Santa Rita as a place of “domestic habitation” and discussed it as a place where elite could have had control over trade routes, which fed into Santa Rita ‘B’ and San Leon (Figure 4.3). In addition, I propose that we instead begin to look at the elites of Cerro Santa Rita as following the basic power structures and practices of valleys where power consolidated at major administrative centers, like that of the Moche Valley to the north.

Cerro Pucarachico

Not much is known about Cerro Pucarachico (Figure 4.3). I first visited the site in 2002 with a group of fellow students. We noted some large terraces or platforms built of angular rock and many sherds of Chimú ceramics. The site is tucked into a narrow ravine that faces west-southwest out onto the middle Chao Valley. Cerro Santa Rita and Huasaquito are clearly visible from it. Dr. Jon Kent has recently started excavating at this site, and has recovered Chimú ceramics. However, context is poor due to its location on the slope, water runoff from the surrounding hills wash ceramics and biological remains out of the site. Unfortunately, the site is nearly barren from this erosional process and other than a few architectural features very little cultural material remains (Kent, personal communication, August 2008).
Huasaquito

Huasaquito (Figures 4.1 and 4.6-7)) is a major site in the mid Chao Valley and is a conspicuous landmark visible from Cerro Santa Rita (Figure 4.6). The same can be said of Cerro Santa Rita. VanHeukelem (2003) noted the importance of viewsheds in her thesis. A viewshed is the area that can be seen and observed from a specific location. From anywhere on Cerro Santa Rita Huasaquito is fully visible. This allows for the possibility of line-of-sight communication between the two sites as well as other hilltop sites in the middle Chao Valley, which could indicate that the permanent residents of these hilltop sites had an interest in activities at other sites around the Chao Valley.

Figure 4.6 The citadel of the site of Huasaquito clearly visible as a knob at the base of Cerro Huasaquito as seen looking west from Zone 8 of Cerro Santa Rita.
Cardenas (1976) divided Huasaquito into 3 separate sites, Huasaquito A – C (Figure 4.7) and attributed them all to the Middle Horizon (A.D. 500-1000). The main citadel (A) she called a population center, then downhill and to the west of the citadel she classified as a cemetery (B), finally downhill and to the east of the citadel she called a village (C). In 2004 a group of fellow archaeologists and myself climbed up to the citadel. During our visual survey we found some interesting artifacts that correlate strongly with the material culture found on Cerro Santa Rita. We were also able to confirm Cardenas’ (1976) classification of the site type. However, we identified material that was much earlier than the Middle Horizon, as we were finding Gallinazo ceramics. While Huasaquito was almost assuredly occupied during the Late Intermediate Period, it was likely founded much earlier than that.

![Figure 4.7. Areal photo of Huasaquito. Cardenas’ 1976 classifications appear on the map. Note the ubiquity of the wall-lines visible.](image)

As we climbed through the inactive sand dune turned burial ground (Figures 4.7 and 4.8) of Huasaquito C on our way to Huasaquito A we made note of the ubiquitous Gallinazo ceramics (Figure 4.9) that looters had tossed out of the looted graves. Many
of the graves had been rich with copper, evidenced from the green staining on the human remains that had been left on the surface. Copper is not often seen at Cerro Santa Rita and the ceramics were of a higher quality than anything ever recovered from Cerro Santa Rita. These artifacts presence at Huasaquito indicated to me that the elite of Huasiquito were of a different, perhaps higher, order than those at Cerro Santa Rita. More work has to be done on the site of Huasaquito, but evidence suggests that Huasaquito may have been the major administrative center for the Chao Valley during Gallinazo and Moche times.

Figure 4.8 Huasaquito C and looted human burials.
As we worked our way onto the slopes up to Huasaquito A I noticed that the wall-lines were made of angular rock (Figure 4.10) just like those found on the northern slopes of Cerro Santa Rita. However, here they are associated with Gallinazo ceramics. As a result of this, evidence it seems to indicate that the Gallinazo people built these walls, as VanVanHeukelem (2003) suggested of the walls on Cerro Santa Rita. On Cerro Santa Rita, however, radiocarbon dates and ceramic evidence indicates that the walls date to Moche and Chimú time periods.

As we moved over the walls, into Huasaquito A, we noticed that many of the walls seemed to make huge platforms and other made room blocks, (Figure 4.11). This demonstrates two things: (1) platforms and plazas were being constructed on hillsides in the Chao Valley and (2) that large-scale labor forces had been employed to create these structures and to modify the hillside. If this was true here at Huasaquito, then it could also, plausibly, be true for Cerro Santa Rita. The platforms created on Cerro Santa Rita, whether as construction surfaces or as patios and plazas would have required long-term
investment of time and labor. Consequently, the population in the Chao Valley, therefore would have had to have large enough to not only commit hundreds of workers to a common task, but also then to support and provide sustenance for those workers who were dedicated to that project. This eliminates the idea that Santa Rita ‘B’ was solely a port-of-trade for the area. The population of the valley had to be large enough to commit long-term workers to projects like that of Huasaquito, Cerro Santa Rita and other hilltop settlements.

Figure 4.10. Walls made from the angular rock found on Cerro Huasaquito, analogous to those found on Cerro Santa Rita.
Upon reaching the citadel (Figure 4.12) of Huasaquito, several unique observations were made. The first observation being that the structure that sat atop the knoll was made of adobe (Figure 4.13), unlike the angled rock walls that we had seen on the way up and unlike anything on Cerro Santa Rita. Second, we noticed, although not surprisingly, that it had been looted, but what remained was very intriguing. Evidence of fishing nets (Figure 4.14) associated with the looted remains as well as fishing weights (Figure 4.15) were found as well as few fragments of Recuay pottery (Figure 4.16). This area seemed to have been one large burial chamber, with the principal individual being associated with items from both the highlands and from the coast evidenced by the Recuay pottery and the fishing weights.
Figure 4.12. The citadel of Huasaquito ‘A’ from Huasaquito ‘B’

Figure 4.13. Adobe burial chamber atop of the citadel of Huasaquito ‘A’.
Figure 4.14. Fishing net remains eroding out of the side of the burial chamber of Huasaquito A. Also note the occupational layers.

Figure 4.15. Human Metatarsal and fragment of a fishing weight found on the surface in a looters hole at Huasaquito A.
I feel that we can assume that the individual that was once interred here was a member of the elite. The Recuay pottery and the fishing weight and net together also show some connection to both the coast and the highlands. Perhaps this individual facilitated, or was otherwise involved in, the trade between the two regions. If this hypothesis is accepted, it may create the framework for understanding elites that inhabited Cerro Santa Rita and provide a basis for a model of understanding how the Gallinazo and Moche imported exotic goods into their civilizations.

The use of local lords, or caciques to facilitate the trade into and out of their sphere of influence would have allowed the Gallinazo and Moche nearly maintenance free control of access to privileged goods and eased the process of redistribution of domestic and utilitarian products. The only relationship and contact the Gallinazo or Moche elite would have needed to maintain was that of the cacique and not the entire populace of the valley. A system similar to this was used highly effectively by the Inca
hundreds of years later (Moseley, 2001:70). In the case of the Inca, the elite would place a loyal Inca lord as head of the town and leave the previously existing infrastructure in place. The town was then just subject to the new governing Inca and paying a tax, via goods or services, to the Incan Empire (Moseley, 2001:70). A similar, proto-process, may have been in place in the middle Chao Valley during Gallinazo and Moche times.

Finally, a couple of people from our party decided to climb the rest of the way up Huasaquito, beyond and to the south of Huasaquito A (Figure 4.7). What they saw on their way up was integral to interpreting hills on the North Coast of Peru very unusual according to previous exploration in the Chao Valley. Dr. Catherine Gaither and Aaron Theiss found what appear to be offerings of maize (Figure 4.17). Maize has not traditionally been found in the Chao Valley and is often seen depicted on Moche effigy vessels indicating that it has some iconographic importance. Here we found corn halfway up a steep mountainside. Perhaps, hills and mountains were seen to possess some supernatural quality, something that required an offering of corn to be left.

In 2004, in conjunction with these burnt maize cobs on Huasaquito are small structures that appear to be either tombs, or shrines of some kind, some filled in, others empty (Figure 4.18 and Figure 4.19). The fact that these structures are high on a mountainside, overlooking a major cemetery, village and population center (Cardenas, 1976) is significant to me, guiding how we should, perhaps, be looking at hilltop occupations. Other interpretations than fortifications, like in the case of Cerro la Cruz, and administrative and/or ceremonial centers like those of Huasaquito and Cerro Santa Rita, may not be enough to understand them completely. We may have to begin to think
of the occupation of these natural features as symbolic on some level spiritual for the pre-Columbian cultures of the North Coast of Peru.

Figure 4.17. Burnt maize cob offering on Cerro Huasaquito, above Huasaquito A.

Figure 4.18. Empty shrine or tomb above Huasaquito A on Cerro Huasaquito
Cerro Santa Rita

During her 1976 survey, Mercedes Cardenas first identified Cerro Santa Rita as a looted cemetery. Without conducting any excavations, she gave it the designation of 17f-14M-5, or site number 61. Cardenas also made note that the material culture that remained on Cerro Santa Rita was fragmentary (Cardenas, 1976:28) and did not make mention of cultural affiliation.

Although students from the California Institute for Peruvian Studies field school under Dr. Jonathan Kent had been walking up and looking at the surface material on Cerro Santa Rita for years, Michelle VanHeukelem (2003) was the first to scientifically map and excavate on its summit and slopes in 2002. She noted that the architectural
remnants seem to be concentrated on terraces or “plateaus” (VanHeukelem 2003:112) that were built to stabilize the slope. To each of these plateaus, VanHeukelem assigned a zone number. Her designations are show below (Figure 4.20).

![Figure 4.20 Cerro Santa Rita divided into Zones 1 through 9 (From VanHeukelem 2003:62)](image)

VanHeukelem mapped five of the nine zones with a chain and tape and then excavated five units in Zones 1, 2 and 4 (VanHeukelem, 2003:72). From these maps and excavations, VanHeukelem was able to establish a basic chronology and a general assemblage type for Cerro Santa Rita. With these findings, she, noted a few features, produced several maps, and formulated several hypotheses, which proved to be integral to my research at this site.
The first of these is her concluding hypothesis, that Cerro Santa Rita had a major role as a “port-of-trade” in the central Chao Valley (VanHeukelem, 2003:121). Citing evidence such as the trade of *Spondylus sp.* pieces from Ecuador to the north, Obsidian from the Santa Valley, fish from the coast, and Recuay Pottery from the highlands, VanHeukelem speculates that Cerro Santa Rita had visual control of the Chao Valley. Furthermore, elites living on the top of Cerro Santa Rita could have monitored, and therefore controlled, the movement of trade goods into and out of the valley (VanHeukelem, 2003:122).

Second, VanHeukelem (2003:68) produced a map of Zone 3, the part of Cerro Santa Rita that I excavated (Figure 4.21) for this project. This map and subsequent personal communications about the site helped me formulate my preliminary hypotheses about investigating structures on the top of Cerro Santa Rita as well as at the base of its slopes. Despite setbacks in the field, VanHeukelem’s maps assisted me a great deal in orienting myself on Cerro Santa Rita, as she had produced the only detailed maps of Cerro Santa Rita. The maps aided me in finding the walls that she had seen in, and that defined Zone 3.
Finally, VanHeukelem (2003) noted two critical things in her thesis. One, the ubiquity of Moche and Gallinazo ceramics (Figure 4.22) found in the same context. She viewed these ceramics as defining the point in time when the Moche elite moved into the Chao Valley and replaced the Gallinazo who were living on the hill (VanHeukelem, 2003:110). I disagree with this interpretation based on the Gallinazo-Moche relationship presented earlier in this thesis and new radiocarbon dates, which I will present in subsequent chapters.

Second, VanHeukelem (2003:110) noticed two distinct types of architecture, one made of rounded river rocks and a second made of angular rocks of the same material that makes up the bedrock at Cerro Santa Rita. She reasons that the Gallinazo built the structures with the angled rock, because they look like the ones recorded by Willey (1953) at the Gallinazo Group in the Virú Valley. I am not convinced by this
interpretation, however, I cannot reject it either. In my interpretation and discussion of my excavations and observations on Cerro Santa Rita, I will tie evidence together from other sites and present an alternative hypothesis as to the nature of these two, distinct, architectural styles.

Figure 4.22. Sherds of Gallinazo Face-Necked Jars From Cerro Santa Rita

Investigations at Cerro Santa Rita and in the Chao Valley

The more the Chao Valley is explored, the more questions archaeologists develop. However, even after over 30 years of investigation, there are still very few answers to these questions. The simple fact of the matter is that not enough projects have taken place to solidly answer any one question. Excavations at Cerro Santa Rita have yielded some interesting similarities between sites, such as the faced-stone architecture on Cerro Santa Rita, Cerro Pucarachico and Cerro Huasaquito. However, there are notable differences, like the lacking of fortified walls, or Casma ceramics, that are seen on Cerro la Cruz and the lack of Moche and Gallinazo material on Cerro Pucarachico. In addition to these, there are ways in which Cerro Santa Rita is totally unique, for example it is the only known hilltop settlement that overlooks what is thought to be a port-of-trade. Does this evidence suggest that Cerro Santa Rita was a type of administrative center? If so, then why is it not as extensive, or elaborate as
Huasaquito? While I will not be able to definitely answer all of these questions in this thesis, these are the topics that I considered while excavating, analyzing and synthesizing the recovered evidence and below, I will be able to present some new information and begin to suggest answers to the questions I have posed above.
Chapter 5
Methods and Excavations on Cerro Santa Rita:
2004 and 2005 Field Seasons

Having previously worked with Michelle VanHeukelum in 2002 during her field season on Cerro Santa Rita and reading her master’s thesis (2003), I had some familiarity with the Chao Valley and the archaeology of Peru. During personal communications with VanHeukleum, I learned of a structure situated at the southwestern base of the Cerro. This structure struck VanHeukelem as slightly different from the rest of the architecture on the Cerro as it was in the shape of the letter ‘D’.

I did not have the opportunity to see this structure for myself in 2002, so my knowledge about the site when designing my project was based upon VanHeukelem’s description and maps of the structure. In reading her thesis, I noted that in Zone 3 there was also a ‘D’-shaped structure that she had mapped in Zone 3 (VanHeukelem, 2003:68). ‘D’-shaped, semicircular, and rounded structures were quite common in Cupisnique and Chavin times (Burger, 1995 83 and 119) at sites like Moxeke and Huaricoto. I hoped that by comparing these two structures, through archaeological investigation to explore the function of these buildings.

Over the course of two field seasons I planned, to identify the activities that took place in both structures, one at the base and one on top of Cerro Santa Rita. Through research I hoped to be able to identify social or cultural differences between those living on the Cerro and those living at its base.
June 4th 2004 was my project’s first day in the field. An archaeology student by the name of Doug Lynn who had previous CRM experience and was with the California Institute for Peruvian Studies field school and a Peruvian, Francisco Cruz-Aguirre who had worked on multiple archaeology projects along the North Coast joined me on my first venture to the Cerro. Since VanHeukelem had not taken a picture, sketched, or taken a GPS reading on the ‘D’-shaped structure at the base of the hill we had very little to go on, beyond that it was a ‘D’-shaped structure. We knew we were to look “near” the modern cemetery, but no one was quite sure, nor remembered exactly what “near” was. Therefore, for the better part of the day we searched the lower slopes of Cerro Santa Rita, creating a 250-meter radius from the modern cemetery, looking for a ‘D’-shaped structure. Not surprisingly, we drew attention from local farmers and eventually were visited by a few. The farmers and their children were just curious as to what we were doing and with the help of Francisco Cruz-Aguirre, my Peruvian crew member, we explained our project to them. I also took the opportunity to ask them if they knew of any such ‘D’-shaped structure or structures on the Cerro and they replied “no”. My heart sank a little.

After a late lunch we hiked up to Zone 3, to see if we could locate the second ‘D’-shaped structure. This one was slightly easier and I found that VanHeukelem’s maps helpful. However, they were too neat and clean and did not reliably represent reality. They were straight lines on paper that sometimes connected to walls that were no longer there or were complete when in actuality they were not. The structure, we finally decided was there, but it had been looted and was now more of an open circle. Stones had been tossed everywhere and the shape was not completely intact. Satisfied
that we could identify this area again, we returned to the southwestern slope, feeling a little reinvigorated, now that we had an idea of what we were looking for. We finally came across a closed structure, right at the base of the Cerro, about 50 meters from the cemetery (Figure 5.1). It was not ‘D’-shaped, but it was all we could find that approximated a ‘D’. Looking at it closely the architecture was haphazard and sloppy. The walls were made up of piled stones of all kinds, and occasionally piles of earth were used to complete walls. This was unlike anything we has seen on Cerro Santa Rita. In addition, it was constructed across a small ravine that water had cut as it ran off the hillside and it seemed to be catching all types of ceramics that washed down from Cerro Santa Rita during rain events. Discussing this discovery amongst my team, we determined that this structure was not built in antiquity, but was rather a modern modification of the hillside to prevent water from eroding the cemetery.

Figure 5.1 The only structure found at the base of Cerro Santa Rita, now considered to be a modern modification of the hillside.
Once back at the house we were staying at in Chao, I showed Dr. Jonathan Kent from the Metropolitan State College of Denver and Dr. Victor Vasquez Sanchez and Dr. Teresa Rosalas Tham, both from the Universidad Nacional de Trujillo the pictures that we had taken earlier in the day. They agreed with our field assessment that the structure on the southwestern slope was not an ancient structure. However, they did point out that it may have been the site of a pre-Columbian, or Colonial structure at one point, but now that it had been disturbed, there would be no way of solidly comparing these two structures. So, I was left with a problem: How could I compare two structures when I only had one?

To begin with, Zone 3 needed a better map. So, with two tape measures, compass and a plum bob, I and another student from the field school set off and mapped every rock in Zone 3 producing the map shown below (Figure 5.2). Three major wall complexes (MC for muro complejo) were discovered when we looked at the final map and named MC-1, MC-2 and MC-3, north to south. On the east there is an abrupt lack of data, this is due to a very steep slope which (1) was not a stable enough surface for material remains to stay on and was not safe to stand on and (2) had very little, in the way of architecture remaining on it.
In addition to the three wall complexes, the position of the walls also seemed to suggest either large, open interior spaces, or a large patio, or plaza areas. That evening I contemplated new questions about Zone 3 and intended to spend the weekend discussing these questions about Cerro Santa Rita, Zone 3 and the Chao Valley with my colleagues from the various institutions. One constraining factor was that I only had excavation permits from the Instituto Nacional de Cultura (INC) for Zone 3 and the southwestern slope of the Cerro (Appendix E). I was also somewhat constrained by my masters proposal to investigate on the southwestern slope and Zone 3, but it seemed a waste of time and resources to excavate a highly disturbed site. As a result, I decided to focus my investigations on Zone 3 (Figure 1.5; Figure 5.2).
In contrast to VanHeukelem’s test units, which sampled small portions of key zones, I planned my excavations to produce enough data to compare the Cerro to other sites in the Chao Valley. As a result of my excavations we now have a complete picture of the activities that took place in Zone 3 and what archaeological cultural occupations they were associated with. I can now compare the archaeological material from Zone 3 of Cerro Santa Rita with other parts of Cerro Santa Rita and other sites in the Chao Valley and beyond. Therefore, this thesis aims not to create and test a hypothesis, rather to explore terra incognita within a historical framework, and, at the end, present a hypothesis that can be both a guide for, and be tested by, future work at the site of Cerro Santa Rita.

Excavating Zone 3

I first set a datum point for Zone 3. Excavating on Cerro Santa Rita would provide me with plenty of challenges, however, setting the datum was my first. I needed a high place to survey from, yet a place that could not be altered by mischief-makers and looters, which is a grave problem in Peru. I ended up choosing a small exposure of bedrock, which could not be moved or tampered with, near the eastern center of Zone 3 (Figure 5.3). This proved to be somewhat problematic since half of the zone lay uphill from the datum. As a result, we mapped unit datum heights in positives rather than negatives, a relatively simple adjustment. From the site datum, a baseline was laid out aligned with true north. This baseline spanned the entire width of the site, approximately 10.3 meters.
Figure 5.3 Map of the Northern Architectural Area of Zone 3 showing topographic lines and excavated units. The scale of the topographic lines is arbitrary and not tied into GPS readings of elevation.
Locations of units (Figure 5.3) were chosen primarily on the basis of where walls were located. I wanted areas that were in context with wall lines so, if evidence of a specific activity was found, that evidence could be associated with one of the walls, which presumably indicate a spatial division. In addition, I was hoping that the walls would have acted like a catchment traps for debris washing over the side of Cerro Santa Rita during rain events, in which case the items themselves would have been in a secondary, depositional context. However, since the size of Zone 3 is so small, and is a knob, nothing foreign could wash into the same from elsewhere on the hill and the objects would not be far removed from their original context.

Looters and other mischief-makers, in the words of my Peruvian crew, *niños malos*, make precise excavating difficult. For example, we could not leave any excavating supplies on Cerro Santa Rita over night. Unit string lines and chaining pins would be stolen if left. To avoid the pointless and wanton consumption of the minor, yet finite equipment, it was necessary to take the string lines and pins down every night and set them up the next morning. This unavoidably introduces errors into measurement, even though we attempted to set them up as close to the previous day as we could. The introduction of some error was inevitable.

Units being tampered with in our absence continued to be an interesting challenge for excavating. We could not leave anything exposed in the units to come back to the next day. On a couple of occasion we left large ceramic scatters to be extracted the following day and when we arrived at the site we would find them gone, or in once case, a giant boulder dumped in the unit, smashing whatever was in there.
Therefore, in some cases, excavation of important items was hurried, or we worked late until we got everything we needed to out of the ground.

Arriving in the mornings to the excavations, it was not uncommon to find rocks and garbage dumped in the units. In addition, this vandalism also usually caused the collapse of unit walls, so getting complete profiles of the walls drawn early and often was a priority for me. Oddly though, there was not much differentiation in the unit profile of the units. Most of the non-cultural material we excavated through was windblown, aeolian deposits. The only features we encountered were floors, fill levels between floors and charcoal lenses. This allowed us to excavate in 10-centimeter levels until we encountered a noticeable change in sediment, or sediment compaction. I was relieved to have had Francisco Cruz-Aguierre on my crew since some of the sediments can be compacted by precipitation and look like a floor, but having worked on the North Coast for 10 years, Cruz was able to tell these layers apart from actual occupation levels.

These occupational surfaces would have meant little to this investigation without ceramic assemblages and dates to place them in the historical context of the Chao Valley and the North Coast of Peru. One of the big parts of this thesis project, which I felt was lacking from previous investigations both on Cerro Santa Rita and Santa Rita ‘B’, was to obtain well provenienced radiocarbon dates and a reliable and repeatable assemblage of ceramics for the occupation of Cerro Santa Rita.
Lab Analysis Methods

Radiocarbon dates

Fortunately, I was able to take advantage of a National Science Foundation (NSF) Grant that the University of Arizona had received to date carbon based samples using Atomic Mass Spectrometry. After a brief application process I was able to submit up to ten samples and have the University of Arizona date them for no charge. There were two samples though that I was extremely interested in radiocarbon dating. The first was a bamboo post which protruded from one of the occupational levels and the other were rib fragments of an intact human skeleton which was recovered. I sent additional samples of both the bamboo and the ribs to Beta Analytic Inc., located in Miami, Florida. My hope was to be able to have results from two independent labs, a blind test, to compare and validate the ages of these two items. I also sent an additional eight carbon samples, collected from Zone 3 at various levels, to the University of Arizona for dating. These helped me get the relative age of additional occupational levels and construction events.

Ceramic Analysis

For six years, the California Institute for Peruvian Studies had been employing a man by the name of Jorge Chiguala to perform ceramic analysis. Unfortunately, Chiguala’s typical report only identified a count of each type of ceramic from a unit, disassociated with provenience, catalog number and vessel type. For example, Unit 3 of Cerro Santa Rita (VanHeukelem, 2003:138) produced three fragments of a Moche cooking pot. This information is not sufficient for making any kind of interpretation of
which culture occupied the area at a given time, and small scale activity areas could not be defined with such data set

As it turned out, Chiguala had been producing an entire Excel spreadsheet for each lot of diagnostic ceramics. From this he performed a final tally and that was what he submitted to the various projects that hired him. Perhaps his fear was that if he gave us all the information, we would learn to identify the ceramics for ourselves and no longer require his services. After much negotiation and a slight increase in his service fee, we were able to convince him to provide us with the Excel spreadsheet he produced.

With the spreadsheet in hand, I was able to quantify the amount of each type of diagnostic vessel recovered as I now had catalog numbers. Diagnostic sherds are defined as a piece pottery either that we can identify an archaeological culture from, or a vessel type, in many cases both can be determined. Byrd and Owens (1997) point out that ceramics do not break in equal parts, an olla for example, can break in two pieces, or fifty. Therefore, a large sherd should not have the same quantitative value as a small sherd. However, the analysis system used by this project did not allow for counts of surface areas. If I had collected this data it would have been incomparable to other projects, which had relied on sherd counts. For my ceramic synthesis I will only present information on diagnostic ceramics, ceramics that we can identify vessel morphology, cultural affiliation or both, in percentages that reflect the sherd count. While many, many more sherds were recovered that were non-diagnostic they tell us almost nothing about culture or activities.
Skeletal Analysis

I came into this project knowing that there was a chance of encountering burials during excavations. The local towns people of Santa Rita have told us of burials on Cerro Santa Rita and being of an archaeological mind and going on only surface reconnaissance, I figured these were relegated to Zones, 1, 4 and 8, where most of the looted graves were. However, I did encounter several burials in Zone 3, despite the fact that the surface showed very little evidence of looter activity. However, only one of these burials, for reasons I will explain below required complete skeletal analysis.

Dr. Catherine Gaither assisted in the excavation of this skeleton, which was packed for transport and documented it in the lab. She used a combined method, to determine its age at the time of death. At the time, she was completing her dissertation at Tulane University under Dr. John Verano. For her dissertation, Gaither (2005) had adjusted Dr. Douglas Ubelaker’s (1999) method for aging human remains to reflect the unique environmental circumstances found in Peru. Gaither’s report (Appendix A) presents results from Ubeleaker’s method as well as Gaither’s results from her dissertation.

Working with a multinational, multi-institutional group of archaeologists, I felt that I had all the support I needed to proceed with excavations. I began excavations in Zone 3 of Cerro Santa Rita seeking to collect data on who lived in Zone 3 of Cerro Santa Rita and what types of activities were taking place. Elsewhere in the Chao Valley and specifically at the site of Cerro de la Cruz, hilltops were documented as fortifications (Vogel, 2006) Topic and Topic (1978) had also described hilltop such as these settlements as fortifications. I also knew, through VanHeukelem’s excavations
(2003) that Cerro Santa Rita did not fit those models. Beyond these basic models and information, I was in terra incognita.

The Excavations in Zone 3 of Cerro Santa Rita

Unit 1

After completing the base map for Zone 3, I realized that there were several, distinct areas. These areas were locations where two walls abutted. Not many of these junctures remained due largely to slope erosion, however, there was one situated near the center of Zone 3. At this point we laid out Unit 1 and began to excavate (Figure 5.4). I was also hoping that by avoiding the main slopes of Cerro Santa Rita that the energy of water flowing over the surface during the wet season would be less, resulting in minimal secondary deposition and erosion of primary context of artifacts and features.
In the first few centimeters of Level 1 of Unit 1, we unearthed some rim and neck fragments of a Moche *olla*, a cooking pot and a *cántaro*, a vessel used to decant liquid. The soil also started to have a noticeable charcoal content, indicating that a fire pit or a refuse pile that contained ash and cinders was nearby. In Level 1, we also recovered shells of *Scutalus proteus*, a freshwater gastropod and *Donax obesulus* a littoral marine mollusk. Also, mixed in with this ashy sediment were rat and a few camelid bones. We tried, through Level 2 of Unit 1 to define the edges of the ashy sediment, but to no avail. We recovered more *cántaro* sherds and a sherd of what
appeared to be a Cupisnique sherd along with more camelid bones and a marine limpet shell.

Before starting level 3 I decided to divide the unit in half because I did not want to disassociate artifacts too much if this ashy layer ran out, so we divided the unit in half north to south, and began to dig level 3 in a 10-centimeter level. Level 3 yielded very little, another Scutalus shell and 37 fragments of camelid bones, they looked like they had been smashed and splintered, most of these were recovered in the 1/8” screen. Everything at that point was pointing towards the interpretation of this unit as a refuse pile, until we cleaned up the south wall of the unit to draw a profile. As we cleaned we were able to define a lenticular “dip” of a darker charcoal deposit. It was a fire pit and perhaps the source of the ash we had been seeing. We extended Unit 1 a square meter to the south and excavated that unit in stratigraphic levels.

Unit 1 Extension 1

This unit proved to be quite interesting for one reason: it contained *Zea mays*, corn kernels that had been burnt along with the cobs. We had to leave these in the ground due to end-of-the-field-season time constraints. This unit perhaps was the most diverse in its fauna of any unit excavated. We recovered 3 bone fragments of *Odiocoleus verginianus*, the white tailed deer, which we know was ceremoniously hunted by Moche elites, another group of broken camelid bones, exoskeleton fragments of *Hypollobocera sp.*, a genus of freshwater crab, along with the standard Scutalus and Donax shells. The ceramics from this unit included more Moche cantáro fragments, a Gallinazo sherd and another Cupisnique sherd.
Unfortunately, funding did not allow for carbon samples to be sent from this unit so we were only able to identify this area by dating the associated ceramics. Using this method, we dated the area as being possibly from the Gallinazo and/or Moche time period. This interpretation assumes that tools and household materials tend to be stored closer to walls, which are more out of the way than the center of the room, which is often the center of activity (Kent, 1984). I was hoping to interpret this activity area based on artifacts. However, it seems at this time that perhaps the most telling evidence as to this areas use came from the flora and fauna.

The area of Unit 1 and Unit 1 Extension 1 has foodstuff evidence that suggests that the occupants had access to both terrestrial and marine resources. Perhaps most importantly, however, the occupants had prepared both deer and camelids for consumption, an act historically associated with the elite classes. Before any judgments or interpretations are made, evidence first must be considered from other units.

Unit 2 and 2 West

Unit 2 (Figure 5.5) was originally laid out as a 3-meter by 3-meter unit. I placed it near the structure that had been described as ‘D’-shaped by VanHeukleum (2002) to both capture any debris that had been dug up and tossed out by looters and provide some idea of the stratigraphy that may present on the interior of the structure. Looters tend to leave items that they do not consider valuable, or think that they cannot sell, tossing these items to the side of their hole. However, archaeologically, these items often provide some clues as to what was once in that now looted space. During Level 1 of Unit 2 we realized that we would not be able to safely excavate the eastern half of the
unit due to the severity of the slope of the hill and the loose compaction of the deposits, so we decided to halve the unit north to south and we excavated in Unit 2 West.

Figure 5.5. Zone 3 of Cerro Santa Rita Showing location of Unit 2 in red and its relationship to Unit 1 in back

Unit 2 West (2W) held the first occupational level that we encountered in Zone 3. The small square of floor we located in the southwest corner of the unit was covered in peanut (*Arachis hypogaea*), algarrobo (*Prosopis chilensis*), crook-neck squash (*Curcurbita moschata*) and corn (*Zea mays*) seeds. The floor fragment was only about
30 centimeters square and was not present anywhere else in the unit. Elsewhere in the unit at this level we recovered a fragment of Chimú pottery and a fragment of Moche pottery.

In Level 3, I began to see our first evidence of Moche and Gallinazo material culture appearing together. A Moche olla, and cantáro, were found in context with a fragment of a Gallinazo face-necked jar, a cantáro. While found in the same level, these ceramic pieces did not exhibit a great deal of association, however, the fact that they were deposited near each other seems to indicate that they were deposited around the same time and must have been subject to the same depositional event. Peanuts (Arachis hypogaea) and bottle gourds (Lagenaria siceraria) along with corn (Zea mays) and wild cane (Gynerium sagittatum) are also found in this level. Level 3 was the first level in this unit to have faunal remains located, Scutalus shells along with marine mussel (Semimytilus algosus) shells were found along with Camilidae remains, highlighting the highland-coast relationship that Cerro Santa Rita played a role in.

In Level 4 I recovered more Camilidae remains as well as the remains of two organisms, not from Peru. Both Spisula adamsi (a variety of clam) and Acacia macrocantha (Long-Spine Acacia) are native to regions to the north. More specifically, the Spisula clam is from the shores of Costa Rica and the Long-Spine Acacia is native to the Caribbean Coast (ITIS). This evidence transcends hypotheses that Cerro Santa Rita was just connected to local, Andean trade resources, but rather saw and participated in the exchange of goods that were entirely exotic to Andean peoples.

In the final levels of Unit 2W I continued to find unassociated camelid remains, and the usual botanical remains, peanut, corn, Acacia, and bottle gourd. Finally, as I
was cleaning the unit walls, to plot profiles, three very interesting things happened. The first, was the location of two Moche ceramic fragments, one from a cantáro, and another from a different unidentified vessel. As we collected these from the north wall of the unit, we noticed that they had been in a lens of charcoal, which we had not noticed excavating but could clearly see in the profile. Next, we cleaned up on the northern most wall of Unit 2W. In doing this, we accidentally dug down into the floor of the unit and realized that less than a centimeter below where we had stopped excavating there was a full, intact occupational surface. I collected a piece of carbon from the wall that we then knew contacted the floor and once back in the U.S. sent it to the University of Arizona Radiocarbon Lab for dating. The lab determined the date to be 1,591 ± 38 calibrated radiocarbon years before present (rcybp) (CSR-74-2 and AA66025) putting it roughly at 414 A.D. the Early Intermediate Period, the height of Moche times. The third event was that we discovered that this floor had postholes from posts of a wood, or cane supported structure. (Figure 5.6). I wanted to place a unit to the north of 2W, to expose the rest of these features, but that got postponed because of another item that was discovered while cleaning the west wall for profiling.

While cleaning up and brushing off the wall to draw a stratigraphic profile, Francisco, one of my Peruvian crewmembers, had uncovered a fragment of textile. We quickly drew the profile and then laid out Unit 3 directly to the west of Unit 2W to expose the rest of this textile. Because textiles are more friable and delicate than the occupational surface, we lightly covered the floor to prevent degradation and would return to investigate the hearth and floor later.
Unit 3

We concentrated on excavating the textile before the local kids vandalized the units at night. I knew we would not be able to get to the textile that day or the next, so we covered it with back fill dirt and a small rock, hoping that it would go unnoticed by the miscreants. It was avoided.

Unit 3 was a 2-meter by 2-meter unit laid out on the same grid-line as unit 2W (figure 5.7) to effectively capture the space between two rock walls. This was an area of additional interest because in 2002, VanHeukleum (2002:79) had found a large cache of *Scutalus* shells in a “storage area” between two structures, I was curious to know if something similar would be present here.
Most of the upper levels of this unit were not unusual as far as cultural material was concerned. Again, *Scutalus*, *Donax*, acacia, bottle gourds and peanuts made up most of the botanicals recovered with a few fragments of Moche and Gallianzo *cantáros* mixed in, no identifiable associations, but we did note that the sediment was rather loose. At this point, as we started Level 4 of Unit 3, about 30cm below the surface. I was fairly certain that we were excavating in some kind of back fill or other
disturbed type of disturbed deposit. In Level 5 of this unit we exposed a section of what we thought was an occupational surface, located approximately in the exact center of the unit. In the center of this compact, possible floor layer was a small scattering of charcoal (CSR-83-1). I collected a bit of the charcoal and once back in the U.S. sent this too to the University of Arizona Radiocarbon Lab (AA66021). Dates came back as 1,136 ± 43 reybp. This is late for Moche occupation. In calendar years it would have been about 869 A.D., but if we consider the “end” of Moche to be 800 A.D. these dates are not that late for Moche. On either side of this compact, late Moche occupational surface was loose, darker sediment with small football sized areas of slightly more compact sediment within them. The original cloth was under one of these areas and parts of it was visible protruding from the compact sediments, it was now clear that this was not an item from antiquity.

The design on the fabric was of cane, or green bamboo-like leaves on a brown field (Figure 5.8). We observed that it was printed on the fabric, not woven in to it. Simultaneously, while we uncovered this textile two others appeared to the south of the brown and green one. One (Figure 5.9) was a cloth bag that had been twisted closed. We recovered it, brought it back to the lab in Chao that night, and opened it, finding that it held the skeletal remains of a frog.
Figure 5.8. Textile in Unit 3 with printed green floral design on a brown field.

Figure 5.9. White textile that was found to contain the skeletal remains of a frog.
The next morning, in addition two these two textiles we uncovered a third. This textile was a purplish one and stuck out of a small hole in one of the areas of compact sediment. This textile was also printed, not woven (Figure 5.10). Nearer the center of the unit, but not embedded in the Moche floor, we began to see tiny bones show up in the screen and then uncovered the top of what appeared to be a cranium. At this point something began to make sense to Francisco, my crew member native to Peru. He stopped working and told me that we should focus on the original brown and green textile. We therefore cleared off the textile and opened it a little and we then realized that this bundle contained the mummified remains of a human infant (Figure 5.11). At that point Francisco and I deduced that the other textile most probably contained another body and that the skull and bones near the center of the unit was yet another.

The frog was most likely a traditional cuandera’s, or shaman’s, burial offering. All of these internments (Figure 5.12) we located were on the east side of the Moche floor, we suspected that the other side may contain more. The reason that the Moche floor was only present in the middle of the room was perhaps because it had been dug through on the east and west side of the unit to bury the children. Francisco and I decided to immediately stop excavation, as these were modern burials. We returned the bones and bone fragments to the area near the cranium and generated several notes stating that this was a modern burial and placed them in Ziploc bags and then scattered them around the bottom of the unit, declaring this a modern burial site, and then filled in the unit. This was the end of Unit 3.
Figure 5.10. Purple textile extruding from an area of more compact soil

Figure 5.11. Burial of a human infant in Unit 3. The edge of the textile was initially visible in the wall of Unit 2W.
Unit 4

After disturbing modern burials by excavating them in Unit 3, we turned our attention to exposing the Moche floor in the very northern part of Unit 2W. I opened a new unit, Unit 4 directly to the north of Unit 2W (Figure 5.13). Unit 4, like Unit 2W was a 1.5-meter by 3-meter unit. Unit 4 was also the first unit that was placed in the open area between MC-2 and MC-3 (Figure 5.3). This area I initially had hypothesized as once having been a patio-like area as there was no trace of stone wall lines in this area. My hope was that this unit would provide data to either support to reject that hypothesis.
Figure 5.13. Plan map showing Unit 4 in relation to other units placed in Zone 3 of Cerro Santa Rita.

Unit 4 was able to be excavated in stratigraphic levels, since we had the wall profile of the northern wall of Unit 2W to work from. The first level was just aeolian, or wind blown, deposits and was sterile. The second level, about 3cm below the surface, we began to see Gallinazo and Moche ceramics such as storage vessels, cántaro fragments and jar fragments. Along with the ceramics came more botanical and faunal remains. The botanicals consisted of *Prospis chilensis* (Algorrobo), *Curcurbita* (squash) and *Acacia* seeds. There was one burnt seed of *Sapindus saponaria* (Western Soapberry). This is the only seed of this plant found in excavations.
to date on Cerro Santa Rita. I don’t know if this is important or unimportant as there is only one, it could be just a product of sampling the archaeological record, or truly unique to the site, but since there is only one, it is not representative of anything common, it was just in a fire.

Of more note in this level, were two beads (Figure 5.14) one made of stone the other of shell. The type of shell used to manufacture these was not identified, but it was not *Spondylus*, the spiny oyster common in elite and ceremonial contexts. There is no way to determine if these belonged to a man, woman, elite or commoner. Beads are uncommon on Cerro Santa Rita (VanHeukleum, 2002) and these are less elaborate and made from of less-striking material than those recovered by VanHeukleum (2002:105) in 2002 while excavating in Zone 2 (Figure 4.20), the saddle portion of Cerro Santa Rita.

![Figure 5.14 Shell beads from Level 2 of Unit 4. Scale is in millimeters. Catalog numbers left to right, CSR-81-35i and CSR-81-35ii](image)

In Level 3, we began to expose a poorly preserved floor in the center of the unit. This floor was stratigraphically higher than the Moche floor exposed in unit 2W, only about 10 centimeters below the surface. And as we continued to expose the floor, it ceased being present, as it had eroded away. Just before we encountered the Moche
floor we had seen in Unit 2W, we recovered a fragment of a Moche ceramic club (CSR-84-5). This piece came from the area between the eroded, higher floor and a hearth area, just about a centimeter from the prepared clay floor. Excavating down in Unit 4, we encountered the continuation of the Moche floor that was exposed at the end of Unit 2W and in so doing, exposed seven more postholes (Figure 5.15 and 5.16). In the south part of this unit, there was a stone, triangular in shape, which was sooted and at its base was the fire pit (Figures 5.15 and 5.17) we excavated through in Unit 2W. The stone probably had been used to support a cooking pot, or *olla*. The fire pit and its continents were excavated as a feature. Nothing aside from a burnt camelid rib was excavated from the charcoal. I again took a carbon sample for dating. This sample (CSR-87-1) was sent to the Arizona Radiocarbon Lab for dating (AA66024) once I returned to the States. Arizona reported the dates as being from 1,588 ± 38 calibrated radiocarbon years ago, or about 417 A.D., placing this sample within 3 radiocarbon years of the carbon taken from the north wall of Unit 2W. These dates indicate that this hearth was active during the height of Moche times.

Level 4 of Unit 4 was the last level excavated in this unit, about 20 centimeters below the surface. I hoped to spread out over the central part of Zone 3 by placing additional units and expose the entire floor, a clearly prepared clay surface, and trace out wall lines using the postholes. However, it was drawing to the end of the 2004 field season and I wanted to focus on excavating the ‘D’-shaped structures that I had originally come to investigate.
Figure 5.15. End of Level 4 of Unit 4 showing Moche hearth and post holes in the south end of the unit, north is towards the top of the page.
Figure 5.16. Postholes at the base of Level 4 of Unit 4. Moche hearth is crossed by the stadia rod, other, higher occupational surface is in the foreground. Arrow points north.

Figure 5.17. Moche hearth after the removal of the charcoal feature. Rock that was used to support ollas is on the east side of the hearth. Arrow points north.
Unit 5

Unit 5 (Figure 5.18) was located in a looters pit that had been filled in with sediment. We began to excavate this unit in stratigraphic levels, assuming that the looter’s fill would make up the majority of the unit and hoping that where we encountered undisturbed sediment we would begin a new level. However, this turned out not to be the case. After nearly 30 centimeters of digging through the looter’s pit we ended level one in hopes of preserving at least some depth provenience of recovered materials. We did recover a few ceramic sherds, a fragment of a Gallinazo-Moche olla, a fragment of a Moche olla and a pottery sherd with a Moche design. This level was devoid of both botanical and faunal remains. In Level 2 we only recovered two sherds of a Moche cantáro and finally in Level 3 found a fragment of another Gallinazo-Moche piece, another cantáro, and a base of a Moche vessel. However, here at approximately 90 centimeters below the surface, we recovered our first and only botanicals and fauna from the unit: a kernel of corn (Zea mays), two rat (Cricetidae) bones, a Donax obesus shell and 12 fragments of Llama (Llama sp.) bones. In the west wall, just above the base of the unit there was a small lens of charcoal, but no identifiable occupational surface associated with it (Figure 5.19). However, there were occupational surfaces both above the lens and below it. The lens looked uniform and intact, indicating that it was deposited in an original context. Perhaps a pile of ash dumped in leveling fill when the second floor was laid. I took a sample of this lens for radiocarbon dating. Like the others, this sample (CSR-94-1) was sent to the University of Arizona Radiocarbon Lab (AA66018). The dates came back as 1,616 ± 38 calibrated radiocarbon years before present, or approximately 389 A.D. This time these dates were
a little earlier than the charcoal and the hearth in the center of Zone 3, but still within Moche times.

Figure 5.18. Zone 3 of Cerro Santa Rita showing Unit 5 in relation to other units.
To date I do not have a definite answer as to what this or other ‘D’-shaped structures were, however, I do have an hypothesis. There are other structures on Cerro Santa Rita that are shaped liked ‘D’s that are back to back, similar to a figure eight. The structure that we placed Unit 5 in may have originally been one of these in shape. In the case of Zone 3, the other half of the structure may have eroded off the south slope of the Zone, leaving just a ‘D’-shaped wall line.

To the east of the architectural “center” of Santa Rita ‘B’ there is a cemetery, it is a Chimú-Inca period site, but many of the burial structures are similar size and shape to these “double ‘D’” structures. In addition, all the “double D” structures on Cerro Santa Rita have all been looted, without exception. Looters often target burial sites and burial grounds, so perhaps in this case we can learn something from the looters and
hypothesize this structure as a former burial chamber, but we may never know for certain.

After Unit 5 was excavated to bedrock, we back-filled the units and finished out the field season in the lab in Chao. The summer 2004 field season gave me a good sense about what material culture was on top of Zone 3 of Cerro Santa Rita. In 2005 I returned and excavated 3 more units Unit 6, Unit 6 Extension 1 and Unit 7 on the west side of Zone 3 (Figure 5.3).

Unit 6

This unit was placed to balance excavations across Zone 3 (Figure 5.20). Units 1 through 5 had concentrated primarily on the east side of the Zone. Unit 6, a 1.5m by 3m unit was placed abutting 3 walls on the western side of MC-2 with its long axis oriented in an east-west direction (Figure 5.16). Early on in excavating the level we noticed a contrast to the east side of the unit, there were exclusively Chimú ceramics being recovered. We were still getting concentrations of *Llama sp.* (llama) bones and bone fragments. At the closing depths of Level 1, we noticed an area of charcoal, with indefinite edges that extended out from the eastern wall towards the center of the unit. It was removed as its own feature, and we recovered several more camelid bones and some husk fragments of *Lucuma obovata* (lucuma) seeds.
After the removal of the charcoal feature, we began to excavate the rest of Level 2. Just under where we had stopped for the area of charcoal, we began to expose a prepared clay surface, which turned out to be another floor. We exposed all of the floor we could until it was no longer preserved in the northwest part of the unit. In the center of the unit, on the floor was a concentration of frijol beans and *Inga feullei* (pacay) seed pod fragments. We chose a small area about 30 centimeters from the east wall of the unit to explore below the floor, to see if it was just fill and bedrock beneath. It was at that point that we discovered a human skull. Because of this development, we made the exploratory “window” a completely new level, Level 3.
In Level 3, the human skull was approximately 38 centimeters below the surface. It was near the end of the day and I was concerned that vandals would loot the site if they saw that we had exposed a skeleton. Therefore, we piled dirt over the cranium and disguised it as if the wall had slumped in. I did take a few teeth back to Dr. Catherine Gaither to look at and verify the species of the remains. I also asked her to come help with and direct the excavating of the skeleton the following day.

I had never excavated and removed a skeleton, bone by bone before and I also did not know which bones were seminal to conducting further research and proper skeletal analysis. However, due to her own projects, it would be a few days before she was able to assist in Zone 3. Consequently, the next day we left the “slumped” area of the unit alone and continued to excavate Level 3 of Unit 6. This portion of the unit was mainly leveling fill and had many *Cavia porcellus* (guinea pig) coprolites. Fill such as this was often used to level the floors on this part of Cerro Santa Rita, there was a similar layer of fill between the two floors in Unit 2W.

When building on a hill it was necessary to have a flat living and working surface, so fill, often including trash, and other debris incorporated into it, was used to level a surface before a final layer of wet clay was laid and allowed to dry creating the occupational, or living, surface. As we neared the end of this level, a few days had passed since initially exposing the cranium. I had received communication that Dr. Gaither would be joining us later that afternoon, so we re-exposed the skull and began to dig around it, to expose it entirely. We soon realized that it was covered with four rocks that had been placed over the head at the time of burial. After carefully removing the rocks, we found a badly deteriorated skull of what was presumably a child. Dr.
Gaither never made it up that day, and in the time that the skull had been exposed it had begun to deteriorate even more. Rather than risk leaving it another night, we carefully removed it, leaving the second cervical vertebra in the unit wall (Figure 5.21). We hand-carried it back to the lab in Chao that night. Dr. Gaither came up the next day, and her observations and interpretations are found below.

CERRO SANTA RITA

UNIT 6, EAST WALL PROFILE

Figure 5.21. Profile of the east wall of Unit 6 after the removal of the human cranium, the vertebra and proximal end of the humerus are visible in the profile.

Level 5 ended about 50 centimeters below the surface. There was another fragmentary floor that could be seen in the profile of the east and south walls (Figure 5.21), and it differentially preserved around the bottom of Unit 5. In the western half of the unit there were two holes in the floor. These holes had been filled in with much looser sediment which was a noticeably a different color from the floor. The first hole
was about 20 centimeters across and 15-20 centimeters deep. This hole corresponded closely in size to the diameter of the post holes in Unit 2W, although it was stratigraphically deeper, but only by 20 centimeters. The other hole had smooth sides which sloped together at the base and was 70 centimeters across and nearly 50 centimeters deep. This hole I believe to have been left when a large storage vessel was removed. Many of the larger ceramics, or *tinajas*, were not meant to be carried. *Tinajas* were too heavy when empty to move easily, not to mention when full. Rather these vessels were set into the ground to provide a stable storage vessel, usually for water or other liquid, that would not rock or move when it was accessed.

Unit 6 Extension 1

Unit 1 Extension 1 was a 1-meter by 1-meter unit (Figure 5.20), which was placed to excavate the burial of the child. It ended up overlapping part of Unit 1, however, in 2004 excavation of Unit 1 did not reach the depth of the child.

In order to reach the skeleton quickly, as I only had Dr. Gaither for two days, we excavated in varying level thicknesses. Level 1 was at 10 centimeters, and removed the surface alluvium. We quickly discovered that the east wall of Unit 6 Extension 1 lined up exactly with another wall. In order to excavate the child, we would need to remove the wall seen in the east wall profile of Unit 6. In this Level we found two fragments of Chimú bowls, and a fragment of a Chimú *tinaja*. Remains of *Tegula atra* (top snail), *Scutalus proteus* and *Hypolobocera sp.* (freshwater crab) were also recovered.

Level 2 was a thicker level and 15 centimeters of sediment were removed taking the unit down to 25 centimeters below the surface. We stopped at this level because of a change in sediment, a charcoal smear had become noticeable in the bottom of the unit.
Moving through this unit, I had expected to come down on the floor that we could see in the profile of Unit 6 (Figure 5.21), but we never encountered it. We did, however, collect a sherd of a Chimú cantáro and lots more Hypollobocera sp. (freshwater crab) fragments Heliosoma peruvianum (sea urchin) and Semimytilus algosus (mussel) and Llama sp. (Llama) bone fragments.

In Level 3 we knew would reach the burial of the child, but first we carefully removed the contents of the charcoal area. As we began to excavate the charcoal-rich deposit, it quickly became evident that it was a small, deep pit full of burnt remains. These were the same types of remains that we recovered in Level 2. The most prevalent species in this little pit was Hypollobocera sp. (freshwater crab). The few botanic remains recovered were primarily Lagenaria siceraria (Bottle Gourd) seeds and Phaseolus sp. (beans) seeds. After we leveled off the unit from extracting the contents of the little charcoal pit, we begin to expose the rest of the buried child.

The child (Figure 5.22) was laid probably facing to the north, but since the skull was so badly preserved it was hard to tell. The rest of the body was semi-flexed with hands in the lap (Figure 5.22). The body was oriented such that the head was to the west, northwest and the feet were to the east, southeast. The child was 7 years old ± 20 months at the time of death (Gaither 2005), but the long bone standards yielded an age of 4 years old at the time of death. This age category makes it too young to determine a sex of the child. This unusual discrepancy in age estimates suggests that the child experienced physiological stress during life. Gaither (2005) suggests that it may possibly represent malnutrition. In addition to this discrepancy between the dental standards and the long bone standards, the teeth exhibit hypoplasias (Figure 5.23),
further evidence of health problems. These hypoplasias are on both permanent and deciduous teeth, meaning that the stress was ongoing and prolonged (Gaither 2005).

Finally, it was discovered that this child’s skull had coalescing porosities on the sphenoid bone, porotic hyperostosis along the parietal sutures and healed periostitus in both of the eye orbits (Figure 5.24). Together, these indicate that the ailment that the child was suffering from was most likely vitamin C deficiency, or scurvy (Gaither, 2005). This seems unlikely, since the entire North Coast of Peru is rich in plants that would naturally provide this vitamin (Gaither, 2005), such as lucuma, which is even evidenced on Cerro Santa Rita. With this information it is more likely that the child was suffering from something more than just vitamin C deficiency, perhaps a congenital condition that prevented him or her, from metabolizing the vitamin.

No grave goods were interred with the child, who was resting just above bedrock, therefore, offering no ability to date the burial. I sent samples of the ribs to Beta Analytic in Florida and the University of Arizona Radiocarbon Lab. Both labs were unable to date the bones because there was not enough collagen left to be extracted for dating. The post mortem burial environment took a toll on the already fragile body, causing it to be poorly preserved. At the end of the field season the remains were taken by the Instituto Nacional de Cultura to their archaeological warehouse storage facility in Trujillo where they are permanently housed.
Figure 5.22. Burial #1 in Zone 3 of Cerro Santa Rita. Burial of a child with severe health problems. Catalog number CSR-119-2.
Figure 5.23. Deciduous from child’s skeleton exhibiting hypoplasia, an indicator of prolonged, poor health. CSR-119-2 (From Gaither 2005)

Figure 5.24. The dark spots are healed periostitus lesions in the child’s eye orbits. This is the right eye. CSR-199-2 (From Gaither, 2005)
Unit 7

Once again, as my crew and I were cleaning the walls of Unit 6 Extension 1, we exposed bones in the south wall, this time, however, they were not human (Figure 5.25), but camelid. Since we did not find any grave goods, and remembering Kent et al. (2005) paper on the like-with-like principle, where humans were often interred with llamas of a similar developmental age, I hypothesized that we had just missed the rest of the burial area and that there may indeed be a llama associated with the child, just to the south of the child. We then laid out and opened up the 2-meter by 2-meter Unit 7 aligned with the east wall of Unit 6 Extension 1 (Figure 5.26). This unit would also expose more of the wall that we saw in the east wall profile of Unit 6 Extension 1.

Figure 5.25. South wall of Unit 6 and Unit 6 Extension 1. camelid bones protruding from the wall on the left side of the image. Light brown layers are decomposed guinea pig coprolites used as leveling fill for the floors.
Level 1 of Unit 7 was excavated to 20 centimeters below the surface. Most of this was surface alluvium. Ceramics recovered included two fragments of Chimú vessels, an olla and a cantáro and two fragments of Moche vessels, a handle and a cántaro. Botanicals were rather unremarkable with only a stem of a Lagenaria siceraria (bottle gourd) recovered. Fauna as well was a normal assemblage for Zone 3 of Cerro Santa Rita, Scutalus and Donax were quite common along with a fragment of Hypolobocera sp. (freshwater crab) claw and a shell of Semimytilus algosus (mussel) were recovered. Most notably we exposed a bamboo post protruding from the very eastern part of the unit, very close to the wall. The post had been broken vertically and
at the base of Level 1 still continued down into Level 2. We left it in place. I hoped that it would then proceed down into a preserved floor.

Level 1 had exposed some features, rocks that led me want to proceed differently in different areas of the unit. Rocks that appeared to form wall lines divided the unit up in to 3 “Areas” I designated these Areas as “Area A”, “Area B” and “Area C” (Figure 5.27). Each of these “Areas” would have their own levels and own lots.

![Sketch map of the wall lines that led me to divide Unit 7 into 3 separate “Areas” for excavation.](image)

Level 2 in Area ‘A’ contained an occupational surface that seemed to only be preserved near the rock wall in the east and around the south side of the unit. This is the floor into which the bamboo post was set into. We carefully removed the post which was sunk a few centimeters below the floor and supported by three rocks, and stabilized with a pouring of clay in a small hole. Back in the U.S., I split the post in two and sent half to Beta Analytic in Miami, Florida. They returned a date of 340 ± 40 rcybp
calibrated between 1450 to 1650 A.D. The other half I sent to The University of Arizona Radiocarbon Lab and they returned a date of 319 ± 36 rcybp calibrated to between 1595 to 1667 A.D. Counter to the dates of this post, we recovered two body sherds of a Chimú vessel, seeds from *Persea Americana* (avocado), and the following faunal remains: *Mesodesma donacium* (pink clam), *Hypolobocera sp.* (freshwater crab), *Scutalus, Bostryx* (snail) and Muridae (rat) remains.

Level 3 of Unit 7 Area ‘A’ had more of the same varieties of biologic remains and a piece of a Chimú cantáro. It was in Levels 4 and 5, between 47 and 63 centimeters below the surface, however, that I began to conceive an idea that this may have been a refuse pile. The sediments were a bright orange-brown when excavated, the color sand turns after it is affected by heat, like that from a fire. In addition, many of the rocks that made up the eastern wall were had soot on them and were burnt (Figure 5.28).

![Figure 5.28. Remnants of charcoal and sooted stones along the east wall of Unit 7 Area ‘A’.

159
From this charcoal and burn area we recovered burnt remains of *Sardinops sagax* (sardines), many burnt llama bone fragments, *Scutalus* and *Donax*, a few fragments of *Hypollobocera sp.* (freshwater crab) claws. There were also many reptile bones. We could not identify them to a specific species, but reptiles had not shown up in any of the other units. There were not many botanical remains, but considered that this area was subject to high heat, that is not surprising. What we did have included: *Capparis ovalifolia* (caper) seeds, *Arachis hypogaea* (peanut) *Curcurbita sp.* (squash), *Lucuma obovata* (lucuma), and *Lagenaria siceraria* (bottle gourd). The attribute that really stood out about these levels was the amount of Chimú ceramics, *ollas, cantáros*, bowls and jars. Nowhere else in Zone 3 had we seen this many diagnostic ceramics, or Chimú vessels.

Areas ‘B’ and ‘C’ did yield the typical botanicals and more Chimú pottery with the occasional Moche sherd. One feature of note was that more fragmentary floor surface was exposed in Area ‘B’ about 20 centimeters below the surface. This floor extended into Area ‘C’ but in the entire southwest corner it had been destroyed by a looters pit. However, the looter did miss a few camelid bones. These bones had a very unique attribute, in that they were covered in leaves (Figure 5.29). Unfortunately, these specimens were prepared by students, who cleaned off the leaves prior to analysis, so we have no idea what type of leaf they were. This may have been an offering that was disturbed by looters, or may have occurred as the result of being dumped in a trash midden, there is no way to tell.
Over 2 field seasons, approximately 12 weeks of work was done in the field and in the lab investigating the archaeological record in Zone 3 of Cerro Santa Rita. I feel that we were able to collect enough data to interpret some of the activities that had taken place on this part of Cerro Santa Rita during Gallinazo, Moche and Chimú times. However, I do not feel that this is representative of the entire hill. Zone 3 is literally just the tip of Cerro Santa Rita. For example, on the south faces of the hill exists a very different architectural style, which still needs to be investigated. In the next chapter the archaeological record in Zone 3 is compared to what we know about the rest of Cerro Santa Rita, the Chao Valley and the cultural history of the North Coast of Peru.
Chapter 6
Discussion of Excavations in Zone 3 on Cerro Santa Rita

The excavations in Zone 3 have provided the most complete data set for any one of VanHeukelem’s (2003) Zones on Cerro Santa Rita. This includes good radiocarbon dates and adequate ceramic documentation to interpret part of Cerro Santa Rita. This chapter will explain what was learned as a result of the Zone 3 excavations and how it fits into the broader context of the Chao Valley and the North Coast of Peru.

Radiocarbon Dates from Zone 3 of Cerro Santa Rita

The first data set from Zone 3 of Cerro Santa Rita that discussed is the radiocarbon dates. Table 6.1 presents all the carbon samples that were sent for Accelerated Mass Spectrometer (AMS) dating at Beta Analytic and University of Arizona. Traditional radiocarbon (14C) dating only uses a limited count of the remaining 14C atoms. Accelerated Mass Spectrometry dating uses an accelerometer in conjunction with a mass spectrometer, which can identify individual elements and then provide complete count of all the 14C atoms, making AMS more precise than traditional radiocarbon dating.
Table 6.1 Radiocarbon dates for Zone 3 of Cerro Santa Rita

<table>
<thead>
<tr>
<th>Unit</th>
<th>Level</th>
<th>Material Dated</th>
<th>Radiocarbon Date</th>
<th>Calibrated</th>
<th>Analyzing Lab</th>
</tr>
</thead>
<tbody>
<tr>
<td>2W</td>
<td>6</td>
<td>Carbon</td>
<td>1591 + - 38</td>
<td>473 A.D. + - 47</td>
<td>Arizona</td>
</tr>
<tr>
<td>2W</td>
<td>2</td>
<td>Ceramic</td>
<td>2079 + - 39</td>
<td>107 B.C. + - 51</td>
<td>Arizona</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>Carbon</td>
<td>1136 + - 43</td>
<td>893 A.D. + - 62</td>
<td>Arizona</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>Ceramic</td>
<td>2566 + - 61</td>
<td>684 B.C. + - 105</td>
<td>Arizona</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Carbon</td>
<td>1588 + - 38</td>
<td>474 A.D. + - 46</td>
<td>Arizona</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>Carbon</td>
<td>1616 + - 38</td>
<td>457 A.D. + - 53</td>
<td>Arizona</td>
</tr>
<tr>
<td>6 Ext. 1</td>
<td>2</td>
<td>Carbon</td>
<td>1612 + - 38</td>
<td>460 A.D. + - 52</td>
<td>Arizona</td>
</tr>
<tr>
<td>7A</td>
<td>3</td>
<td>Carbon</td>
<td>1698 + - 38</td>
<td>327 A.D. + - 55</td>
<td>Arizona</td>
</tr>
<tr>
<td>7A</td>
<td>3</td>
<td>Bamboo Post</td>
<td>319 + - 36</td>
<td>1562 A.D. + - 56</td>
<td>Arizona</td>
</tr>
<tr>
<td>7A</td>
<td>3</td>
<td>Bamboo Post</td>
<td>340 + - 40</td>
<td>1550 A.D. + - 61</td>
<td>Beta Analytic</td>
</tr>
</tbody>
</table>

There are two dates on here which I do not believe to be accurate due to associated dates and context. These two dates, 684 B.C. ± 105 years and 107 B.C. ± 51 years, were received from the two ceramics that were sent to the University of Arizona AMS lab. In theory, AMS can date ceramics, however, because the dates are drastically earlier than of the other samples sent to the labs for dating. I suspect these samples may have been contaminated with carbon in the temper and not just from the firing process.

The dates in Table 6.1 that are applicable to this time period show an average date of 514 A.D. indicating clearly that Zone 3 of Cerro Santa Rita was occupied during Gallinazo times as well as the height of the Moche state. These cultures occupied the coast between A.D. 1 and approximately A.D. 750 (Alva, 2000, Bawden, 1999; Moseley, 2001). The origins of the Gallinazo predate those of the Moche. However, I accept the hypothesis that the Moche and Gallinazo have significant overlap in their occupations of the North Coast based on the co-occurrence of their respective ceramics in archaeological contexts. Therefore, I suggest that both, people affiliated with the Gallinazo culture and people affiliated with the Moche culture interacted in the Chao
Valley, as well as around and on Cerro Santa Rita between A.D.1 and approximately 400 A.D.

I can also refine VanHeukelem’s hypothesis (2003:109) that the Gallinazo built the walls on the northern part of Cerro Santa Rita. Radiocarbon dates taken from a charcoal lens near bedrock in Zone 3 seem to indicate that the first occupations of the hill occurred around 327 A.D (Table 6.1). The walls are similar to those seen at the Gallinazo group in the Virú Valley (Bennett, 1950). It is possible that these walls were built by people that were part of the “folk culture” group that may have been affiliated with what archaeologists refer to as the Gallinazo. However, to do this I must accept the hypothesis that at least for the time period between 1 A.D. and 400 A.D. both the Gallinazo and Moche simultaneously lived and interacted in the region of the Virú and the Chao Valleys. If the hypothesis that the Gallinazo and Moche were contemporaries is rejected, then it must be accepted that Zone 3 of Cerro Santa Rita first had permanent structures built on it during the middle of Moche times and the walls are, in fact not of Gallinazo origin. Rather, we must then accept these faced stone walls and associated structures as having been constructed during Moche times.

I was able to use these radiocarbon dates to refine and make hypotheses about the relationship of the Gallinazo and Moche on Cerro Santa Rita because there seems to be no distinguishable contexts between the two assemblages of material remains. However, analysis of the recovered ceramic sherds allowed me to identify yet another significant culture and time during which Zone 3 and Cerro Santa Rita were occupied. This culture was the Chimú who first expanded into the Chao Valley around 1130 A.D (Mackey and Klymyshyn, 1990).
Ceramics Recovered from Zone 3 of Cerro Santa Rita

There were 1,147 ceramic sherds recovered from the 7 excavation units placed in Zone 3. A total of 97 of these sherds were diagnostic of vessel type and cultural affiliation (Appendix A), which is approximately about 6.7% of the total. From these 97 diagnostic ceramics we can see at least two occupations of Zone 3 of Cerro Santa Rita. In the Chart below, Units 1 through 5 have little to no Chimú material, while Units 6 and 7 are nearly exclusively Chimú ceramics. I interpret this as an area that was perhaps constructed and used by the Chimú and represents an example of the Chimú using and modifying already existing Moche structures when they conquered the valley in 1130 A.D. (Mackey and Klymyshyn, 1990).

![Figure 6.1 Distribution of ceramics over Zone 3 of Cerro Santa Rita, highlighting the absence and presence of Chimú ceramics.]

In Units 1 through 5 ceramics from the Moche and Gallinazo time periods make up nearly the entire ceramic chronology. The category of Moche-Gallinazo was used by our ceramic analyst to define vessel types that could have been assigned to either
Gallinazo or Moche peoples, and were most likely produced by both. Units 2W through 5 are restricted to the eastern part of Zone 3. The exceptions are Unit 1 and Unit 1 Extension 1 (Figure 5.3), which are approximately centered in Zone 3. None of these units have a significant Chimú ceramic component. This observation is perhaps most significant in Unit 1 and Unit 1 Extension 1 (Figure 5.3). Only one wall divides them from Unit 6, Unit 6 Extension 1 and Unit 7, all of which have significant, if not exclusively Chimú ceramics. The wall featured in Figure 6.2, indicates a different episode of construction, added during the later Chimú occupation of the Chao Valley. A possible reason that little to no Chimú material was recovered from the eastern part of Zone 3, assuming that the Chimú also utilized that area, may be that because that area is topographically higher and evidence of the Chimú occupation has been eroded away. The occasional Chimú ceramic sherd indicates that Chimú material culture was once there, but is no longer present due to erosion and looting over time.
Despite the fact that only 6.7% of recovered ceramics were diagnostic, there is one significant piece of information that may be integral to interpreting Zone 3 and the rest of the hill. Nearly all the ceramics on Cerro Santa Rita are poorly made out of very coarse temper and nearly all of them are incompletely fired. The picture of a Moche stirrup-spout vessel shown in Figure 1.3 is what has been traditionally called Moche. In Figure 6.3, is a fragment of a Moche vessel commonly found on Cerro Santa Rita. Note
in the cross section how it changes from dark grey to red. This is a result of incomplete firing. Incomplete firing makes the vessel more susceptible to breakage and deterioration. This susceptibility to deterioration was demonstrated when some sherds dissolved in water as they were being washed during processing at the lab, this is not the case with well fired vessels. The overall poor quality of the ceramics suggests haste in their production. In addition the crudeness of the paste and temper suggests that they were manufactured in the Chao Valley, since the pastes needed to produce the finer wares are from locations outside of the Chao and are generally seen on ceramics believed by archaeologists to have been imported to the valley.

The majority of ceramics on Cerro Santa Rita have these characteristics, including those in Zone 3. There are occasionally finer wares recovered from Cerro Santa Rita, including Zone 3, but these seem to only occur as small fragments of vessels. The majority of ceramic vessels seem to have been very crude and utilitarian.
There are enormous amounts of these types of ceramics on Cerro Santa Rita. An example of this can be seen in Figure 6.4. Over one weekend in July of 2005, looters trenched into the side of the hill close to the path that we used to access Zone 3. Looking at this trench I noticed that the walls were about two meters deep and were entirely made up of ceramic sherds. From this observation, I became curious as to if large portions of the slopes of Cerro Santa Rita may be made up of huge ceramic middens. The number of ceramics that would have had to been discarded to create these ceramic middens is too great if we are only to assume that Cerro Santa Rita was used for domestic residences. People would have had to produce and consume inordinate amounts of ceramics to account for a buildup such as this, even over 1,500 years. I suggest that this is evidence for activities other than domestic habitation. Instead it may be evidence of larger-scale public gatherings that involved food and drink preparation and consumption.

Figure 6.4 Red ceramics on the surface of Cerro Santa Rita. Most of the surface of the hill is covered in broken ceramics just as dense if not more so as seen in this picture.
George Lau (2002) has described a practice that may help interpret this phenomenon on Cerro Santa Rita. Lau connects ancestor worship, or veneration, with feasting activities, a pairing that is often ignored or unaddressed in Andean archaeology (Lau, 2002:279). Activities like this would have necessitated large quantities of ceramics to be produced to be used by the participants. In addition, VanHeukelem described Zone 8 of Cerro Santa Rita as littered with human and animal remains from looted graves (VanHeukelem, 2003:73). I also expect that there were, at one time, more isolated graves scattered around the hill based on the ubiquity looter’s pits and other architecture that may be the remnants of tombs. In other words, there is a plethora of evidence for human burials on Cerro Santa Rita, alone making it a plausible place for ancestor veneration activities. Finally, archaeologists also know that there was extensive ceremony and ritual associated with the dead in the northern valleys, such as at the site of Huaca de la Luna. These activities were depicted on ceramic vessels (Donnan, 1976) to further spread the ideology. Therefore, it is reasonable to assume that similar ceremonies may have taken place in the smaller valleys to the south, like the Chao. The quantities of ceramics on the slopes of Cerro Santa Rita may be trash discarded over the slopes of the hill after these ceremonies and feasting events.

Feasting in the Andes

Dietler (1990:366) described feasting as a “nearly universal pattern”. The provisioning of food and drink, especially intoxicating ones, provides a socially acceptable way for elite and other high status individuals to show off their wealth and compete for status with others of an equal, or greater social status (Hayden 1996).
During Inca times, the Inca would assemble work-party feasts to organize labor, a reciprocal payment for peoples’ work on a project, a practice still in place today in highland Peru (Allen, 1988:116-118).

Feasting by its definition implies and requires social interaction. This large scale, food and drink event would bring people together from around the region and perhaps beyond. Feasts were an opportunity to build social and political connections and negotiate for items like trade goods. Simultaneously, implied messages about status and wealth, as demonstrated by food and beverage consumption, were communicated at these events, or borracheras (Millones, 1989:24), as they were called by the Spanish. Messages about claims to lineages, and consequently, lands were also communicated, in these cases more overtly because the individuals making the claim wanted it to be known.

These feast and “ancestor veneration” events, as Lau (2002) describes, were “vital socio-religious” functions to maintain the legitimacy of the Inca Empire, a type of public propaganda. Because the supernatural is so closely tied to the natural in Pre-Columbian Peru, I would also suggest that these events served a sociopolitical function as well and, therefore, take on an additional level of significance and complexity.

Moche iconography depicts scenes of food offerings, feasts and the dead (Donnan and McClelland, 1999). These depictions indicate that there was significant ceremony and ritual involved in mortuary practices in valleys such as in the Moche and Lambayeque Valleys. It is also appropriate to suggest that after internment, deceased individuals were accessed, celebrated, either publicly or privately and then re-interred as demonstrated at the site of Sipán, where Dr. John Verano has identified patterns of wear
on the bones that are consistent with removal and replacement. This indicates that even after the original interment and associated rituals that bodies were still routinely brought out, perhaps for veneration and celebratory events. Such events, on a smaller scale, may have taken place in the Chao Valley at designated sites such as Cerro Santa Rita. As Lau (2002) states, these events were integral to social cohesion, a necessity that becomes even more important in areas like the Chao Valley that are geographically removed from the center of political and religions power. Such gatherings on Cerro Santa Rita would have been the public reinforcement of ideologies propagated and manipulated by the Moche elite in order to maintain their influence of the resident population of that area.

Ancestor Worship

Ancestor worship needs to be understood separately from mortuary ritual (Lau, 2002:281; Morris, 1991). Traditionally, Andean religious practice developed the method of creating mummy bundles, a key attribute of these bundles was that they were portable (Moseley, 1999). John Rowe (1946) describes Spanish accounts of these bundles being brought out for ceremonies and rituals and not only treated as revered objects, but also playing an active part in the ceremony. Steve Bourget (2003) has also discussed the possibility of human skeletons having been “animated” similar to marionettes during Moche times at Huaca de la Luna in the Moche Valley, a theme that is recurrent on Moche vessels (Donnan and McClelland, 199:48) during the time Zone 3 of Cerro Santa Rita was occupied.
Ancestors were looked to during certain times of the agricultural calendar, and in times of need (Lau, 2002:281; Maxwell, 1956:56). Their bodies were brought out in times of excessive rain and skulls from the *huacas* were used to guard fields (Maxwell, 1956:56). Like all cultures that celebrate their deceased ancestors, the people of pre-Columbian Peru relied on their ancestry to allow them to claim access to critical resources (Dillehay, 1995) like land and water, resources even more critical on the desert North Coast of Peru.

The Spanish quickly recognized the need to disband the ancestor cults, cults that had developed around a certain ancestral individual, if they were going to control the native population. The Spanish also recognized that these veneration events and other public ceremonies, the *borracheras*, often took place at certain locations. These locations were generally in open areas and needed to be large enough to hold many people. Arriaga, a Spanish priest described the natives as having “grouped together in the plaza” (Arriaga, 1968:19). Both plazas and courtyards are something that are abundant on Cerro Santa Rita, especially in Zones 1, 4 and 8 (Figure 2.9).

Evidence for Feasting and Ancestor Worship on Cerro Santa Rita

It is difficult to identify ceramics that have been discarded as a result of a feast (Dabney et al., 2004:202) especially those such as the ones on Cerro Santa Rita with no design or motif to associate them with such an activity. Dabney (2004) whose work has focused primarily on Mycenaean feasting events, in Greece suggests that large quantities of ceramics are not enough to identify a locality where feasting took place. This may be true for Mycenae, however, there are circumstances unique to Peru to be
considered. For example, on the South Coast of Peru the Nazca seem to have ritually broken fine ceramics in their ceremonies (Silverman and Proulx, 2002:269). Dabney (2004:202) admits that significant quantities of ceramics would have broken just from having lots of people on a plaza during a ceremony, especially one where intoxicating beverages were available. Dabney (2004) never rejects the idea of large ceramic deposits, but she does highlight a few traits that she would look for in a ceramic assemblage deposited after a feasting event.

The first of these traits and most applicable to Cerro Santa Rita is the “higher-than-usual percentage of unpainted pottery” (Dabney et al. 2004:203). Ceramics from Santa Rita ‘B’ have a greater frequency of decoration than those from Zone 3, and the rest of Cerro Santa Rita. Over two field seasons, only 9 out of the 1,147 ceramic sherds from Cerro Santa Rita that were recovered, were decorated. Dabney’s (2004:203) reasoning for this occurrence is if the main focus of the feast event and the plates and other dishes and cook wear were not considered “souvenirs” then they would have little retention value and extensive, if any, decoration would be unnecessary. This description may explain the presence of the quantities of undecorated, crude ceramics in Zone 3 and on Cerro Santa Rita.

Dabney et al. (2004:203) also highlight a “restricted range of vessels” as evidence for feasting. As seen demonstrated by Figure 6.5, cántaros, vessels used to decant liquid, make up 66% of the total, identifiable ceramic sherds recovered. These were followed by ollas, or cooking pots, which made up 14% of the sherds and tinajas, or large water storage vessels, made up 10% of the total identifiable vessels. Plates, saucers, and other serving wares are noticeably absent. This evidence indicates that
food consumption did not take place in Zone 3, but preparation of a food, or in this case a liquid product as evidenced by the cántaro remains.

![Figure 6.5 Vessel morphology of recovered, diagnostic ceramics from Zone 3 of Cerro Santa Rita.](image)

Foodstuffs Recovered from Zone 3 of Cerro Santa Rita

Faunal and floral remains are even harder to meaningfully quantify due to the fact that preservation of organics is very dependant on environmental conditions. Effects of water and UV radiation can contribute to the disintegration of organic material. This means that only a partial record of organics exists to be recovered. In addition assigning a value to a maize kernel over a maize cob can be difficult. As a result, in this section I only discuss organics in terms of relative amounts of recovered remains (Appendix B). The primary faunal remains were *Scutalus proteus* (land snail), *Donax obesuslus* (marine bivalve), *Sardinops sp* (sardines). *Llama sp* (llama). and *Hypollobocera sp* (freshwater crab).

Scutalus proteus is a fresh water snail and has no common name. These snails are very common at Santa Rita ‘B’ and Cerro Santa Rita and are common in the
archaeological record of the North Coast. They were most likely collected along the riverbanks of the drainages during the wet season. Today they can still be bought steamed and/or poached on the streets of the towns of Virú and Chao. *Donax obesulus* are small maritime bivalves. These bivalves are readily available in littoral environments along the North Coast, they bury quickly after being exposed by waves, but they do not bury deep making them easy to collect. *Sardinops sagax* are sardines. These fish live at depths between 0 and 200 meters in subtropical waters (Fishbase, 2009). Pilchards would have been easily caught in shore nets as tides receded. *Llama sp.* are Llamas and Alpacas both in the camelid family and make up nearly 50% of all the faunal remains from Zone 3. camelids are of note in Andean contexts as highly valued pack animals, a source of fiber for textiles and clothing and meat for food. Native to the *puna*, the high plains of the Andes (Moseley, 1999:35) the camelids are docile animals that have a strong group mentality, which allowed them to be herded by relatively few people. Finally, *Hypollobocera sp.* is a species of freshwater crab, *congrejo del rio*, or river crab, locally available in the Chao in permanent drainages.

These species not only highlight the dual nature of resources in the middle Chao valley, by representing both coastal and maritime resources, but also demonstrate a degree of correlation with Gallinazo, Moche and Chimú iconography as seen in the administrative centers to the north. VanHeukelem (2003) demonstrated that the middle Chao Valley was the site of major trade networks and this evidence supports that hypothesis. However, the remains of these species also demonstrate the similarity between the people that inhabited Cerro Santa Rita and the site of Moche. These exact species are also found archaeologically at Huaca de la Luna in the Moche Valley.
Vasquez, 1999:340-342). There is one animal, however, that we do not find remains of in Zone 3 of Cerro Santa Rita, but evidence supports its presence. Guinea pig (Cavia porcellus) coprolites are ubiquitous in Zone 3, sometimes incorporated into leveling fill under floors and sometimes found in discrete areas. In contrast to the evidence for them we have recovered almost no remains of guinea pigs, aside from one femur in Unit 7. Today, guinea pigs are raised for food in Peru, usually roasted whole, including skin and bones and the occasional organ, as they are not big enough to butcher and remove bones from during preparation. If they were being raised here, as evidenced by the coprolites, they were not being eaten here. This indicates that food consumption took place elsewhere, indicating that Zone 3 may have been a place for food and/or drink preparation.

Common floral remnants from Zone 3 included Maize (Zea mays), lucuma (Lucuma obovata), squash (Curcurbita moschata), gourd (Lagenaria siceraria) and algorrobo, or mesquite (Prosopis chilensis). There were a few beans (Inga feullei) recovered. Some of these were parts of seeds, others were fragments of leaves. Consequently, it is hard to estimate relative amounts. If we count only the cataloged amounts of botanicals, maize was the predominate plant remain recovered from Unit 1 and Unit 1 Extension 1 recovering 32 burnt cobs (Figure 6.6). In Unit 2W, the most numerous botanical remain were algorrobo seeds. Eighteen complete algorrobo seeds were recovered off a small fragment of floor in the southwest corner of the unit (Figure 6.7). Unit 3 had a wide variety of plant material, which included all of the above species but much of this could have been associated with the modern burials. Unit 4 provided the best context for botanicals and faunal remains in Zone 3. Since there is a
dated, occupational surface in Level 4 of Unit 4 (Figure 5.3), we know the cultural context of the biological material collected there (Figure 6.8). Lucuma, a fruit similar to a mango, and squash make up the majority of the floral record for this level. There was one whole maize cob recovered in the northern part of the unit. Both algorrobo and maize can be fermented into alcoholic beverages, *algorrobina* and *chicha* respectively. When combined with the ceramic evidence for a profusion of *cántaros*, an interpretation can be made that perhaps this area was actively involved in the production of intoxicating beverages.

Many of the maize cobs were burnt, or charred. In the town of Santa Rita the local people burn the cobs as fire fuel, because of the lack of large trees for logs. It is possible that when the people of Cerro Santa Rita had harvested the kernels from the cobs that they too burnt the cobs as fuel.

![Burnt maize cobs in Unit 1](image)

Figure 6.6. Burnt maize cobs in Unit 1. These are representative of some of the 32 cobs that were recovered from this unit.
Figure 6.7. Algorrobo, or mesquite seeds recovered from fragment of floor in Unit 2W showing 6 of 18 seeds. Scale is in centimeters.

Biological Remains from Moche Floor in Unit 4

Figure 6.8. Percent distribution of biological remains in Level 4 of Unit 4, on or near the Moche floor dated to approximately 474 A.D.

Tamara Bray (2003:6) describes the way in which the Inca used food for feasts. I suggest that we can use the Inca practices, which were recorded by the Spanish at the time of conquest, as a guide to understand Gallinazo, Moche and Chimú activates. This
is because the Inca, as evidenced from archaeological investigations from around Peru, seem to have incorporated, and become the culmination of, traditions from their subjugated regions. The Inca utilized local lords, practices and skill sets to advance their own empire (Moseley, 2001). Similarities between the Moche and the Inca can be seen in iconography, food and drink as well as in general concepts of architecture. Therefore, I believe it to be appropriate to use the Inca as a model to help interpret Moche ideas of foodstuffs. The first of these culinary practices Bray (2003) discusses, which is evidenced in significant quantities on Cerro Santa Rita, is maize. We can closely link Moche, Chimú and Inca perspectives on maize since all three cultures produced effigy vessels depicting maize in one form or another.

Maize was highly regarded and used in the Andes (Bray, 2003:6; Cobo, 1964). Not only could this grain be fermented, but it could also be dried and stored for later use, then boiled or toasted. From toasting it could have been ground into flour to be made into tortillas (Cobo, 1964:160). Maize that was made into chicha was an important element of public gatherings for ceremony and ritual. Often ceremony required intoxication (Rowe, 1946:292) and therefore, placed foodstuffs like maize and algorrobo in a position of high importance.

Bray (2003:8) describes meat as being consumed less often than vegetables and tubers, at least by the commoner. The Inca (Rowe, 1946:217), as well as the Moche, as evidenced in art (Figure 6.9), restricted the hunting of game to elite persons, consequently, limiting the availability of meat to commoners. When commoners did have access to meat, primarily llama, dog, duck and guinea pig, it was reserved for special occasions (Bray, 2003:8). Therefore the llama remains in Zone 3 and on the rest
of Cerro Santa Rita must be interpreted as either the remains of butchering for elite, or evidence of special events. Since the ceramics do not indicate an elite residence, we are left to interpret them as left over from a special event, like a feast. If feasting events were happening during pre-Columbian times on Cerro Santa Rita in conjunction with ancestor veneration ceremonies and rituals, this would have placed the hill in a similar function as the huacas to the north.

Figure 6.9. Moche fine-line painting of the deer hunt, an activity restricted to only the elite of society. (From Donnan and McClelland, 1999)

Burials on Cerro Santa Rita and in Zone 3

The child burial in Zone 3 was not impressive with no grave offerings indicating that they were of no notable social status. There also was no evidence of cut marks on the child’s bones and no other evidence of sacrifice, which indicates that they were not a retainer sacrifice as a part of a larger burial (see Appendix C). Understanding that this child was in poor health, suffering from vitamin ‘C’ deficiency and exhibiting apparent stunted growth (Gaither, 2005) it is reasonable to assume he, or she died of complications from their affliction. From Gaither’s (2005) excavations and skeletal
analysis at CA-3 in Santa Rita ‘B’, children seem to have been ascribed status and not had to earn it during life. If this is the case and the child in Unit 6 Extension 1 had higher social status, it would normally have been evidenced in the burial by offerings and in the skeleton in the cranial deformation, and this individual has neither. This burial may simply be one of a congenitally ill child of commoner status. It is unlikely that a child of lower social status would be buried under an area that was used as a food preparation area for feasts. However, this was not the case, this child was buried after the Moche period occupation of Cerro Santa Rita, indicating a shift in function for Zone 3.

The child’s skeletal remains lacked sufficient collagen to be dated. However, we can attempt to assign a time period based on the profile of this unit (Figure 6.10). The floors that are present in this profile are also present in the east wall profile of Unit 7 (Figure 6.11). Dates of approximately 1550 A.D. are associated with the uppermost floor and dates of approximately 327 A.D. area associated with the lower carbon feature. Because the burial pit cross-cuts the floor just above the 327 A.D. charcoal but is overlain by the floor that dates to 1550 A.D. we can interpret that child was interred between those two dates. I would hypothesize that the floor was leveled and built, then the child died, a hole was dug in the floor, the burial occurred, and then was refilled. This event probably occurred close to the 1550 A.D. since the outline of the burial pit is in close proximity to the uppermost floor.
Figure 6.10. East wall profile of Unit 6 showing location of human remains and outlines of hole dug to inter the body.

Figure 6.11. Profile of east wall Unit 7 showing the two radiocarbon dates from this unit. Note: unit datums are different between Figure 6.9 and 6.10 accounting for the discrepancy in depths.
This child burial is the first burial to be archaeologically excavated on Cerro Santa Rita. The burials occur in Zone 8 (VanHeuklem, 2003:73) seem to of individuals of higher status as evidenced by higher quality ceramics. Many of the finer ceramics come from this area of the hill (Figure 6.12). Human bones are littered about the surface and consequently finding another intact grave on Cerro Santa Rita during future projects will be a matter of luck and careful excavation. I hypothesize that a burial excavated in, or near Zone 8 will exhibit more elaborate grave goods that the one in Zone 3.

Figure 6.12. Moche shoulder sherd. Demonstrating the types of ceramics that are more common in Zone 8, but still outnumbered by the plain, utilitarian wares.

Synthesizing Cerro Santa Rita

Dates from radiocarbon samples have shown that Zone 3 of Cerro Santa Rita had a long period of occupation, between approximately 327 A.D. and 1550. Radiocarbon samples collected during future projects from other locations on Cerro Santa Rita may demonstrate that the occupations of the hill had even greater longevity.
The styles of architecture found on top of the hill exhibit two types of stone that were utilized to construct walls: round, river rock on the south side (figure 6.13) and faced stone construction seen on the north side (figure 6.14). The river rock came from the river valley, the Huarmanzaña river/arroyo is just south of the hill. The angled rock was most likely collected and cut from the slopes of Cerro Santa Rita itself. In both cases, large amounts of labor had to be expended to just move the rocks around to create structures and platforms demonstrating that some governing body and/or ideology was in place to motivate the labor (Trigger, 1990).

I do not have enough data at this time to hypothesize whether these two construction techniques represent two different cultures, or two different time periods. Radiocarbon dates are needed from the south side of Cerro Santa Rita to make that interpretation. Perhaps the variation in construction methods is neither cultural nor chronological. They may be an indicator of something more socially complex, like moieties or barrios. Moseley, (1992:82) has suggested that there were kin based moieties that gave rise to dual organization in the Andes. Perhaps the river rock and faced rock are examples of this moiety based dual organization on Cero Santa Rita. This is a topic for further investigation.

What I can demonstrate is that the architecture in Zone 3 dates to Moche through Colonial times and is constructed with angled, faced rock. This means that archaeologists need to stop interpreting faced stone architectures as representing Gallinazo occupations and constructions (Bennett, 1950; VanHeuklem, 2003). Instead, I suggest that either the interpretations of Gallinazo and Moche architecture be adjusted to accommodate this style, or the archaeological community needs to view the
relationship of Gallinazo and the Moche in the outlying valleys like the Chao
differently. Perhaps one that views the two “cultures”, the Moche as Gallinazo more as
time periods and the people that inhabited these valleys such as the Chao, were part of a
“folk culture”, as Donnan (2005) suggested for the Gallinazo, that was influenced by
the power centers to the north over time, but never outright conquered until 1130 A.D.
(Macky and Klymyshyn, 1990) during Chimú times.

Figure 6.13. Round, river rock construction on the south
slopes of Cerro Santa Rita.
Floral and faunal evidence indicates that Zone 3 and, presumably the rest of Cerro Santa Rita (VanHeukelem, 2003), was well connected to highland-Pacific trade routes. The purpose of food and identifying when it was served is difficult. Like art, the food also seems to have a dual meaning, that while common and necessary for all people, it was revered as important and thus deified. As I researched, traveled and worked in Peru, it became evident that the people and animals that were integral to Andean societies were the subjects of friezes, ceramics and other art (Figure 6.15 and 6.16). For example, camelids were used as pack animals and sheared for their fiber. Both of these are utilitarian uses, however, they were also sacrificed as mortuary offerings (Alva, 2000:63) and consumed as a source of meat by the elite and in special circumstances by commoners (Bray, 2003:8). Another dietary staple was maize, eaten by nearly everyone in the Andes, it also appears as a deity on ceramics (Figure 6.16) and is left on places like Huasaquito as offerings. Even activities like hunting were regulated and an activity primarily of the elite (Rowe 1946:217). Moche vessels depict
highly costumed and decorated individuals hunting deer (Figure 6.9) and Zone 3 depicts some limited evidence for White-tailed deer (*Odeocoileus virginianus*) remains.

Llama’s were raised in Santa Rita ‘B’ (Kent et al., 2001) and they could have easily been picked out and butchered as needed, but the deer would have had to have been hunted, which was not a commoner’s activity (Rowe, 1946:217). Its presence in Zone 3 of Cerro Santa Rita may further indicate that this was not a normal, domestic residence.

For the Moche and perhaps the rest of the Andean North Coast archaeologists can identify a trend in the merging of the natural world with the supernatural world when we see instances like deer hunting being imbued with ritualistic meaning. In this world everything has meaning, everything has a dual nature: a practical, utilitarian meaning and a deeper, religiously symbolic meaning. For this reason, we cannot dismiss Cerro Santa Rita as an Early Intermediate Period cemetery, or a series of platforms and plazas, or even just a hill. Those attributes are only the practical, tangible pieces of evidence that archaeology is capable of investigating. Rather, it is the opposing half of the dual nature of Cerro Santa Rita that was perhaps the most meaningful and spiritual to the people that utilized the hill. It may be helpful to think of Cerro Santa Rita as filling a function similar to and sharing some of its traits with a *huaca*.
Figure 6.15 Chimú effigy vessel of a llama’s head, demonstrating the importance of these animals to the Chimú people. (From Donnan, 1992)

Figure 6.16 Moche effigy vessel of a maize deity, demonstrating the importance of these animals to the Moche people. (From Donnan, 1992)
Huacas were places where the supernatural world met the natural world. They were administrative centers, home to elites who viewed themselves and were viewed by their constituents as liaisons to the gods. Public administration in the Andes was closely tied to religion and ideology, described as “politics-as-ritual” (Quilter 2002:173). *Huacas* needed massive amounts of labor to construct, which was readily available in the large northern valleys. However, in valleys such as the Chao, the labor force was diminished due to the transient nature of people as they moved along a trade route. Perhaps modifying hillsides was as elaborate as could be produced with the available labor force.

The question remains, why a hillside, why not an administrative center in the valley? There are two things to consider, (1) the practicality of avoiding El Niño flood waters and (2) the symbology of hills and mountains in Andean tradition. Santiago Uceda, site director of the Huaca de la Luna Excavations has hinted at this hypothesis (Uceda 2004:367). Uceda 2004:374) believes that there may be a correlation between huacas and mountain deities. Using scenes of human sacrifice painted on Moche vessels where “prisoners” are sacrificed to two large triangles, presumably mountains, Uceda (2004:374) speculated that the human sacrifices seen at Huaca de la Luna correlate to the sacrifices on the Moche vessel and on Cerro Blanco, the hill that is the backdrop of Huaca de la Luna.

It is possible that hills in the Chao valley were inhabited because of a similar ideology, one where sacredness that was tied to politics and religion. In fact, the site of Huasaquito, in nestled at the base of a mountain, very similar to how Huaca de la Luna rests at the base of Cerro Blanco in the Moche Valley. The hillsides that are the
backdrops to both of these sites are littered with offerings. Perhaps in the smaller
valleys natural hills like Cerro Santa Rita were viewed as a type of natural *huaca*, ready,
after slight modification, to be utilized by administrative elites for public events and
ceremony.

The ceramics, flora, fauna and burial in Zone 3 do not exhibit the traits of an
elite residence. Rather, they exhibit the traits of a work area, an area used for
preparation, perhaps of beverages such as *chicha* and *algortrobin* evidenced by the
maize and *algortrobo* seeds. Production of these beverages for ceremony and public
gatherings (Bray, 2002) may have been organized and overseen by elites, or other
community leaders. Alcoholic drinks need to be left to ferment and would have required
the use of vessels like *cántaros* and *ollas*, many of them if they were to be part of a
large feast and/or ceremony. Smaller *cántaros* would have been necessary to decant
and serve the beverage into drinking vessels.

A feature that is missing, but is often considered being a marker of a communal
food preparation area is a large oven or fire pit. Zone 3 has evidence for one smaller
fire pit, but no larger ones. I contend that this is of little consequence because the
making of *chicha* and other alcoholic drinks need little heat to prepare. Several smaller
fire pits would have been sufficient, and I exposed and dated one to 474 A.D, during the
period when the Moche influence and civilization would have been strongest.
Therefore, the model of events and ceremony that were Moche inspired is applicable to
this area of Cerro Santa Rita.

There were a few other items that can be considered elite that were recovered
from Zone 3 of Cerro Santa Rita, which deserve some discussion. The first of these is a
fragment of copper, or a surface depleted alloy of copper known as *tumbaga*. This piece of copper was recovered from level 4 of Unit 7 ‘A’ (Figure 5.11) near the Moche floor, which is the lower floor of the unit, just above the burnt layer. The copper fragment (Figure 6.17) appears to have been a decorative placard perhaps from a garment. Elite people often wore garments that had pieces of metal (Figure 6.18), like gold and silver and semi-precious metal like copper stitched to them (Alva, 2000:71). In the sun these decorations would have glimmered creating an even more impressive display during public ceremony. Of further note, this placard has a stepped nature to it (Figure 6.17). This design is often associated with and preset in iconography depicting the Moche elite in ceremonial or ritual practices (Figure 6.19). I do not believe that is evidence for large-scale ceremony like what was practiced at the site of Moche, El Brujo, or Sipán. However, because it is made of copper, or a copper alloy, and cut into the stepped shape I believe that this piece of copper indicates that there was an elite presence in the Chao Valley, if not on Cerro Santa Rita itself. This further indicates that the Moche administrative powers had inserted themselves into the port-of-trade that existed in the middle Chao Valley at sites like Santa Rita ‘B’. This perhaps allowed them to control the flow of trade goods into and out of the Moche state and, therefore, controlling access to exotic materials, preserving the iconography of power for the elite and the Moche lords.
Figure 6.17. Fragment of a copper, or *tumbaga* placard, perhaps part of clothing or jewelry once adorned by the Moche elite as in Figure 6.18. Scale is millimeters. (CSR-112-51c)

Figure 6.18. Mannequins in the Sipán museum, in Lambayeque dressed in traditional elite attire as evidenced by the Sipán excavations. Note the presence of precious metals (From Alva, 2000).
To further demonstrate that Zone 3 was involved in ceremony under the auspices of an elite, another type of recovered ceramic needs to be examined, this time a club (Figure 6.20). This is a fragment of a ceramic club, which would not have been functional in combat. Usually, *tinku* clubs, used for ritual combat were made out of a hard wood, like alogorrobo, and then covered with sheets of copper that were hammered to fit the shape of the club. Ceramic clubs, however, could not have been functional in combat, therefore, they must have served a ceremonial or decorative function. Looking at the fine-line paintings that adorn the sides of Moche vessels a design element can be defined that may be representative of this club fragment. These depictions often show “decorative” clubs on the top of small Moche structures (Figure 6.19) and in some cases larger huacas. In these depictions there is usual some kind of activity depicted, arguably ceremonial or in some other way, significant in nature. The post holes in the Moche floor exposed in Unit 4 may very well have been associated with a structure such as the one depicted in Figure 6.19, either as once housing posts to support the roof, or divide the interior space. In this case, it was not a
huaca, but rather a smaller tambo, or administrative area that was warded by a local elite, or cacique who perhaps represented the seat of power to the north.

Figure 5.20. Ceramic Moche club from Unit 4, Level 4.

Despite two archaeological projects having been carried out on Cerro Santa Rita, there is still not sufficient data to fully explain the complete relationship of the hill to the Chao Valley, and the other valleys of the North Coast. However, analogies can begin to be drawn to known administrative centers to the north. For example, I have identified that the people that inhabited Zone 3 had access to the same foodstuffs that the people at the site of Huaca de la Luna did. This indicates that the dietary staples were presumably homogenous throughout the Gallinazo, Moche and Chimú states. Despite this, there were some food items that were predominantly the domain of the elite. I have also identified these food items in Zone 3 of Cerro Santa Rita, these included white-tailed deer and llama, which further support the hypothesis that this area was once utilized by an individual of higher status.
Contextualizing Cerro Santa Rita

Cerro Santa Rita seems to have been a place of multiple activities, most of which seem to have centered on ceremony, ritual and tradition. Excavations in Zone 3 do not indicate that it was a place of residence, during Gallinazo and Moche times. Rather, evidence presented in this thesis indicates that it was a place with a specialized function, perhaps involved with the production of intoxicating beverages. There is limited evidence, in the form of post holes, that there was once a perishable structure that sat atop the highest point, near CM-3 (Figure 5.3).

It is documented that during Inca times that small structures called *tambos* were the local administrative building of *caciques*, or local elites who represented the Inca. It is possible that Zone 3 was part of such a structure during Moche times. However, this *tambo* may have been one specialized for ceremony. There is evidence in Santa Rita ‘B’ at the structure CA-3 for Moche-period elite residence and burials (Kent et al. 2006). This indicates that perhaps the elite were not necessarily living on Cerro Santa Rita, but rather its was a prominent place for ceremony and ritual. This may also suggest why there is no evidence for fortification on Cerro Santa Rita as Topic and Topic (1978) and Vogel (2003) have described for other hilltops in the Chao Valley. There would have been no need to defend a hill that was not occupied. Instead residents of the valley may have fled to other sites like Cerro la Cruz and Huasaquito in times of conflict.

Instead, Cerro Santa Rita perhaps functioned as a place were ancestors, elite and commoner, alike may have been buried. At prescribed times in the calendar cycle, families and perhaps larger lineage groups perhaps would have gathered to celebrate and venerate the dead on and around the slopes of Cerro Santa Rita. In the process,
consuming food, most atypically llama, guinea pig and deer, all of which were traditionally saved for special occasions (Bray, 200:8) as well as creating and disposing of many thousands of ceramics. These activities created the archaeological assemblage that is evidenced on Cerro Santa Rita today.

The access to Zone 3 is very small and access is limited to only one path (Figure 6.21). The north, east and west slopes are very dangerous and steep, and possibly at one time had large retaining walls to stabilize the building surfaces and structures that were once o top. This indicates that the main pedestrian traffic had to be from and return to the saddle area, Zone 2, and from there, accessing the rest of the hill. There are two large, upright stones on the western slope of Zone 2, indicating a possible, original entrance to the Cerro Santa Rita complex. Since Zone 3 is so small and a “dead end”, it is logical to assume that most of the people utilizing the hill would not have accessed Zone 3 routinely, further supporting its unique relationship to the rest of Cerro Santa Rita.
Figure 6.21. Totals Station Map of remaining walls in Zone 3 on Cero Santa Rita. Note, as indicated by the topography, the easiest access to Zone 3 is from the south and the saddle area of the hill, also called Zone 2 by VanHeukelem (2003). Access to the area is indicated by the arrow. Contours are in meters above seal level.

Because of this restricted access to and small size of Zone 3 it could not have been the location of large public gatherings. However, it could have been a location where a mit’a tax was received and temporarily stored until use. These foodstuffs were items like corn, chicha and other foodstuffs to supply for public ceremony elsewhere on Cerro Santa Rita, perhaps in and around Zone 8 where many of the looted burials are located. There is limited evidence for food processing in Zone 3, indicating that some small scale production occurred there, perhaps something that expended maize cobs,
like chicha production. However, no large scale food preparation ever occurred in Zone 3 of Cerro Santa Rita. This evidence indicates that the center of ceremonial activities was most likely elsewhere on the hill.

Cerro Santa Rita had at least four occupational periods, Gallinazo, Moche, Chimú and one shortly after the Spanish conquest. I encourage future researchers to consider the idea of culture being fluid and amorphous. The fine ceramics of the Moche are only found in the most elite of Moche graves (Donnan and McCleland, 1999). The other people, in fact the majority, of people were primary users of utilitarian wares, perhaps especially in the valleys of the North Coast that were most removed from the Moche heartland, like the Chao Valley. Therefore, archaeologists cannot rely on fine ceramics as being the marker of Moche elite, or in this case, caciques, in these hinterland valleys. While sites, like Santa Rita ‘B’ definitely have nicer ceramics which, along with other evidence should be considered markers of areas once occupied by elite individuals, the archaeological community should not rely on locating these ceramics to identify elites. Rather, archaeologists should be concerned with activates that elite individuals have been depicted on ceramics, textiles, and/or friezes as presiding over. We should be looking for evidence of elite activates, rather than the evidence of the elite themselves.

It was public ceremony that formed the backbone of social cohesion in the pre-Hispanic Andes (Lau, 2002). The caciques of the southern North Coast valleys were not of the same status as the ones that inhabited sites of Moche, El Brujo and Sipán. However, they were local elites that were able to manipulate the Moche ideology for their own constituency and met the needs of the main Moche administrative centers to
the north. Materially, this practice is evidenced in the remains of these social gatherings and ceremonies that served to create a common belief system around the dead.

As these symbols of power percolated to areas like the Chao Valley, the Casma Valley, the Santa valley and the Nepeña Valley during Moche times, it is important to realize that the basic culture most likely stayed the same. Rather, it was the depictions and the tangible manifestations of it that changed. The basic iconography of the North Coast of Peru was consistent from pre-ceramic times, through Inca times. It is just the presentation and the manipulation of it that changes along with those that wield the power to manipulate it. The primary difference in the Gallinazo, Moche and Chimú was how power was administered, moving from the small polities of the Gallinazo, sometimes a few contained in one valley, to huge, state-level societies like that of the Chimú. The themes of felines, and llamas, spiders, fish and crabs are continually present in each of these cultures, indicating that it was not the ideology that changed through time, rather the presentation of it. In the middle Chao Valley it was presented and maintained through public ceremony and gatherings because the population was smaller and the elites were not as powerful as the Moche lords to the north. I propose that Cerro Santa Rita was a place where these ceremonies took place.
Chapter 7
Cerro Santa Rita: Concluding Remarks

The middle Chao Valley was home to a large “port-of-trade” (VanHeukelem, 2003) during pre-Hispanic times. Ceramics from other valleys, floral and faunal remains, and evidence for animal husbandry of camelids (Kent et al. 2001), suggests that trade goods were being moved through the middle Chao Valley routinely during the Early Intermediate Period. The original boundaries of this port-of-trade we may never be able to define for certain. However, archaeologists do recognize the Chao Valley as being shortest route between the Pacific coast and the Andean highlands, which would have made trade routes the valley a heavily utilized during pre-Columbian times.

Rising from the middle of the Chao Valley, with a commanding view of the entire region is Cerro Santa Rita. In 1976, Mercedes Cardenas classified the hill as a cemetery, but never tested this idea with scientific excavations. Archaeological investigation of this hill first took place in the summer of 2002 (VanHeukelem, 2003). Those investigations identified “zones” of architecture, usually defined by plazas and/or platforms constructed on the slopes of Cerro Santa Rita. In addition to identifying nine zones of architecture, four exploratory excavation units were placed around the hill, providing us with the first, contextualized material culture from the hill. These artifacts were primarily ceramics that had belonged to people the Gallinazo, Moche and Chimú archaeological cultures, solidly placing the primary occupations of Cerro Santa Rita.
during the Early Intermediate Period, the Middle Horizon and the Later Intermediate Period. (Table 2.1). For this thesis I used the 2002 excavations and findings of Michelle VanHeukelem (2003) as a foundation to carry out further, more extensive excavations in one of these zones, Zone 3. VanHeukelem’s (2003) idea of Cerro Santa Rita was that it had been originally settled by Gallinazo farmers who lived on the hill and farmed in the valley below. She also suggested that during the Moche period, Moche elite occupied the hill, displacing the Gallinazo farmers (VanHeukelem, 2003:110). This project was designed to explore that hypothesis. In recent years the interaction of the Gallinazo and the Moche cultures has been of considerable interest to Andean archaeologists. I tested VanHeukelem’s model by adjusting the way in which ceramics were analyzed to better reflect their provenience. I also implemented radiometric analysis of carbon samples from Zone 3 in order to establish the first solid dates of an occupation of Cerro Santa Rita.

My excavations focused only on Zone 3 (Figure 1.5), which is on the very northern tip of Cerro Santa Rita. Bounded by steep, difficult to navigate slopes on the west, north and east sides, Zone 3 has remnants of faced stone walls that seem to outline a complex of small platforms and plazas. With in these platforms and plazas is evidence, in the form of post holes which suggest that Zone 3 also once had perishable structures made of wood and reeds on it as well. The combination of these features indicated that this area was designed to have smaller open, or public, areas that were perhaps bounded by small covered structures indicating that small intimate gatherings could have been held there, or alternatively they were open work areas.
In contrast to VanHeukelem’s (2003) hypothesis, my excavations recovered very few Gallinazo ceramic fragments. In addition radiocarbon dates from two independent labs demonstrate that the majority of the structures were Moche in age, dating, on average to 514 A.D. Furthermore, areas that were excavated and assigned ages using ceramic assemblages alone, were found to be Chimú in origin, from approximately 1100 A.D. to 1475 A.D. There was one final date that was retrieved from a remnant of a bamboo post. This post dated to the 1560’s, which places it during the Spanish colonial period, however, there are no ceramics from that time period present in Zone 3. This bamboo post may be the last remnant of a brief occupation during colonial times, the rest perhaps has eroded off the slopes of the hill. Instead of providing data to answer questions about the Gallinazo-Moche interaction, these excavations highlighted some little discussed topics in North Coast archaeology, connecting feasting activities to ancestor veneration ceremonies.

The archaeological evidence from Zone 3 indicates that Cerro Santa Rita was likely a local ceremonial center. Zone 3 has no evidence for being a permanent residence during Moche times, but rather contains a very narrow scope of ceramic vessel morphologies. Most of the vessel types, known as cantáros, recovered from Zone 3 were associated with the storage and decanting of liquid. In addition, I recovered evidence of elite influence in the form of copper adornments from clothing, decorative war clubs, llama bone fragments and white-tailed deer bone fragments, all typically recognized as being markers of elite areas. Absent from this assemblage are fine ceramics, indicating that little if any value were placed on these ceramics (Dabney
et al., 2004), which is a marker for ceramics mass produced for used for feasts by the participants.

Fine ceramics are occasionally recovered on Cerro Santa Rita and in Zone 3, however, none are of the quality of those seen to the north in the Moche, Chicama and Lambayeque Valleys. Instead, we see a hillside covered in poorly made, utilitarian ceramics. Ceramic evidence combined with the ubiquity of fermentable botanicals, including maize, I propose that perhaps chicha was being produced or stored in Zone 3 of Cerro Santa Rita during Moche times. Maize is rare in archaeological contexts in the middle Chao Valley, perhaps because it was either sacred, or it does not preserve well in the valley floor due to El Niño floods washing it away, or deteriorating it over time. Other sites like that of Huasaquito have maize offerings high on the mountains that overlook them, indicating that hills are considered special places in the Chao Valley and perhaps on the North Coast, which may assist in interpreting the importance of the activities that once occurred on Cerro Santa Rita.

In Moche iconography, representations of the dead, offerings to the dead and human sacrifice are quite common (Castillo, 2000; Donnan and McClelland, 1999). George Lau (2020), proposes that in the Santa Valley to the south of the Chao, that the Recuay were practicing “ancestor veneration” through ceremony and feasting. Spanish priests recorded ceremonies where mummy bundles were brought out and “participated” in seasonal ceremonies, often with intoxication a great deal of food consumption being a requirement of the living (Arriaga, 1968:19) at such activities. In Zone 3 I recovered many fragments of vessels known as cantáros, which were used to store and decant beverages such as chicha.
Finally, there are depictions of the dead, usually in skeletal form, depicted in Moche ceramics dancing and participating in feasts. From this evidence, I propose that it is safe to presume that the Moche ideology had “ancestor veneration” (Lau, 2002) and celebration incorporated into their ideology as well. This ideology perhaps was disseminated south from the Moche centers via word of mouth and depictions on ceramics to valleys such as the Chao. In the Chao, however, this ideology took on its own practice and manifested itself in smaller ceremonies at locations like Cerro Santa Rita.

Because of its location on Cerro Santa Rita, Zone 3 was perhaps not the main focal point of these ceremonial and/or feasting activities. However, it could have been the location of storage and preparation for these events. Mit’a, a form of labor tax, or tax in goods was common in the pre-Hispanic Andes (Moseley, 2001:55). Individuals from around the middle Chao Valley region may have been required to supply given amounts of meat, grain, fruits and ceramics as a form of mit’a for these festivities. The few pieces of elite paraphernalia that were found may have been representative of an elite person supervising this activity. This person may not have been the cacique, a local elite who represented the Moche, for the area, but rather another administrative official who was subordinate to the cacique since food and drink production would have been lesser administrative activities.

Cerro Santa Rita does not have evidence for the caliber of elite known to the Moche and other valleys to the north. Instead the evidence points to smaller, less elaborate events. The practices, especially the ceremonial ones that are evidenced on Cerro Santa Rita, are still indicative of Moche ideology, but they were not as large or as
spectacular as the ones at the large Moche centers. Perhaps the local *caciques* relied on ceremony and other social gatherings to maintain social cohesion, spread ideological propaganda and to govern as the Moche lords wished, but perhaps they did not have, or more likely, were not permitted to retain access to the fine Moche ceramics and precious metals.

Cerro Santa Rita is also a burial ground, but it was also a place of more social complexity and meaning within the Gallinazo, Moche and Chimú spheres of influence. Because of the Andean way of understanding the world in dualities, Cerro Santa Rita perhaps had another, spiritual meaning that was connected with the dead and the supernatural. These ideas of place archaeologists may never be able to explore because they were mental conceptualizations, not tangible ones.

As a place, Cerro Santa Rita transcends time. The power structures to the north of the Chao Valley changed over time, but at on Cerro Santa Rita, these power shifts to the north are not as evident as they are in the northern valleys. Perhaps the people of the middle Chao Valley were less affected and slower to change, if at all, their material culture and therefore appear more homogeneous over time. This hypothesis is supported as Gallinazo and Moche ceramics are found in the same and in overlapping contexts on Cerro Santa Rita. This shows that either Moche and Gallinazo people cohabited on Cerro Santa Rita, or more likely they were of the same “folk culture” and had access to and/or produced both Gallinazo and Moche ceramics.

Therefore, I suggest that the *cacique* residences in the Chao Valley, if ever located, will be less “rich” and “exotic” than the Moche elite in the Moche Valley. Rather, areas of local elite occupation would have probably contained more utilitarian
ceramics, with only occasional fine wares. I suggest this because of the limited numbers of fine wares recovered from the Chao Valley. The nicest ceramics found in the Chao Valley are still mediocre when compared to the Moche, Chicama and Lambayeque Valleys to the north.

As an archaeological site, Cerro Santa Rita has been extensively looted and interpretation is difficult. However, it is possible that future projects, through careful work can separate the looted contexts from ones that are still intact. I did this by paying careful attention to the profiles of excavation units and being extremely aware of what was around where I was excavating. These future projects also need to focus on the south side of the hill, around, or in Zone 8 (Figure 2.9). Those slopes are made up of an entirely different architectural style than is found in Zone 3. That style uses river rock as opposed to the faced-stone that is used in Zone 3. Specifically, well contextualized radiocarbon dates must be obtained from this area in order to reliably relate it to other zones of Cerro Santa Rita. These dates, when paired with careful excavation of this area, will not only provide solid chronological dates, but also may reveal more about the individuals that were once buried there. Further, this information would be useful in identifying more specific activities that were related to ancestor veneration and other social attributes of valleys like the Chao, which were outliers to the major power centers to the north.

Zone 2 is also of interest to me since it appears to once have been the “entrance” to Cerro Santa Rita. There are two monolithic stones, cut and stood upright near the base of what appears to be a series of terraces progressing up the western slope to Zone
2. Zone two may have been a regulation point, where pedestrian traffic entered and then was directed either into Zone 3, or to the rest of the hill.

There were at least three distinct cultural occupations of Zone 3 and, therefore, Cerro Santa Rita. The first was around the beginning of the Early Intermediate Period (Table 2.1) and is evidenced by radiocarbon dates. This occupation consisted of people who interacted with, if not actually belonging to the cultures Gallinazo and Moche. The second occupation is evidenced by a relatively large quantity of Chimú ceramics recovered in the western part of Zone 3. Presumably the Chimú occupied the rest of Cerro Santa Rita as well. Additionally in Zone 3, the Chimú ceramics seem to be concentrated in one area bounded by faced stone walls, indicating that this area may have been constructed by the Chimú. Construction events like this one may also be evidenced elsewhere on Cerro Santa Rita. Finally, radiocarbon dates have dated a bamboo post in Zone 3 to the mid 1500’s indicating that there may have been a Colonial period occupation of the hill. However, no further evidence of colonial-period occupations was recovered during my excavations. This chronology of Cerro Santa Rita demonstrates that the hill was a place whose importance and use encompasses a large period of Peruvian history. The activities that took place on it demonstrate the nature of interaction that the Chao Valley had with the larger valleys to the north where administrative and religious power was more centralized.

Cerro Santa Rita was also a place where people were buried (Cardenas, 1976; VanHeukelem, 2003). However, it may have been more than that. Platforms and plazas of varying size are scattered around the hill’s slopes. While none of these have been thoroughly excavated, they may have provided areas for ancestor veneration ceremonies.
and feast events. Plazas are public architecture, indicating that these were meant to be public spaces, not private residences. However, in Zone 3 there is no current evidence for a plaza, but only perhaps a small courtyard. In Zone 3 of Cerro Santa Rita there is extensive evidence for the presence of maize and large quantities of vessels, cantáros, which were used to store and decant liquid. This indicated that perhaps Zone 3 of Cerro Santa Rita was used as a chicha, or corn beer, preparation area for the activities that took place elsewhere on the hill.

There is still much work to be done before we fully understand Cerro Santa Rita. However, VanHeukelem’s (2003) project and my project have added a great deal of information to the known data set for the hill. As more data is added, more informed and more accurate interpretations can be made and new hypotheses formed for future testing.
WORKS CITED

Abrams, Elliot

Allen, Catherine
1988 The Hold Life Has: Coca and Cultural Identity in an Andean Community. Smithsonian Institution Press. Washington DC.

Alva, Walter
2000 *Sipán: Discovery and Research*. Quebecor. Lima, Peru

Arriaga, Pablo José de

Bech Jens-Henrik and Louise Haack Olsen

Bawden, Garth.

Bennett, Wendell

Burger, Richard L.
1998 Excavaciones en Chavin de Huantar. Pontificia Universidad Católica del Perú. Lima, Peru

Bourget, Steve and Jean François Millaire

Bourget

Brennan, Curtiss

Byrd, John and Dalford Owens Jr.

Carneiro, Robert

Cardenas, Mercedes
1976 Informe Preliminar del Trabajo de Campo en el Valle de Chao. Pontificia Universidad Católica del Peru

Castillo, Louis Jaime
2000 La Ceremonia del Sacrificio: Batallas y Muerte en el Arte Mochica. Museo Arqueologico Rafael Larco Herrera. Lima, Peru.
Collier, Donald
1955 Cultural Chronology and Change as Reflected in the Ceramics of the Virú Valley, Peru. Fieldiana Anthropology, Volume 43. Chicago Natural History Museum.

Dabney Mary K., Paul. Halstead and Patrick. Thomas

DeMarris, Elizabeth, Luis-Jaime Castillo and Timothy Earle

Dietler, Michael

Dillehay, Thomas

Donnan, Christopher

1976 Moche Art and Iconography. Latin American Studies 33, UCLA, Latin American Center, Los Angeles, Califonia.

Donnan, C and Guillermo. Cock

Donnan, Christopher and Louis Jaime Castillo

Fogel, Heidy. P.
Ford, James and Gordon Willey

Franco, Regulo, Caesar Galvez and Carlos Vasquez

Gaither, Catherine

Gaither, Catherine; Jonathan Kent; Victor Vasquez Sanchez; Teresa Rosalas Tham Submitted 2006 Mortuary Practices and Human Sacrifice in the Middle Chao Valley of Peru: Its Interpretation in the Context of Andean Mortuary Patterning.

Hastorff, Chistine.A.

Hayden, Brian

Heyerdahl, Thor, David Sandweiss and Alfredo Narvaez
1995 The Pyramids of Túcume: The Quest for Peru’s Forgotten City. Thames and Hudson. London.

Kent, Jonathan, Teresa Rosales-Tham and Victor Vásquez-Sánchez

Larco Hoyle, Rafael 1948 Chronologia Arqueologia del Norte del Peru. American Geographic Society, Buenos Aries, Argentina.

La Industria 1998 Number 37437. Page A10

Moore, Jerry D.

Moseley, Michael.

Moseley, Michael and David Keefer

Morris, I.

ONERN

Potter, James.M.

Pozorski, Shelia

Quilter, Jeffery.
Rowe, John H.
1946 Inca Culture at the Time of the Spanish Conquest. In n J. Steward (ed)
_The Handbook of South American Indians Volume 2: The Andean
Washington DC.

Sandweiss, David, Michael Moseley, Jonathan Hass, Winifred Creamer
2001 “Amplifying Importance of New Research in Peru”. _Science_. Volume
294(5547). pp 651-653.

Shimada, Izumi
1987 Horizontasl and Vertical Dimensions of Prehistoric States in North Peru.
In _The Origins and Developemnt of the Andean State_. Edited by:
Jonathan Haas, Sheilia Pozorski and Thomas Pozorski. pp 130 - 144

Shott, Michael
Assemblages”. _American Antiquity_. Volume 61(3) pp. 463-482

Silva, Jose Carcelen and Orlando Angulo. Zavaleta
1999 _Catastro de los Sitios Arqueologicos del Area de Influencia del Canal de
Irrigacion Chavimochic: Valle Viejo de Chao_. Instituto Nacional de
Cultura – La Libertad. Trujillo, Peru.

Silverman, Helaine
1993 _Cahuachi In the Ancient Nasca World_. University of Iowa Press. Iowa
City, Iowa.

Silverman, Helaine and Donald A. Proulx
2002 _The Nasca_. Blackwell. Oxford, United Kingdom

Strong, William and Clifford Evans Jr.
1952 _Cultural Stratigraphy in the Virú Valley, Northern Peru_. Columbia
Studies in Archaeology and Ethnology 4. Columbia University Press,
New York

Tello, Julio
1918 _El Uso de las Cabezas Humanas Artificialmente Momificadas y Su
Representación en el Antiguo Arte Peruano_. Casa Editora de Ernesto
Villarán. Lima.

Trigger, Bruce
1990 “Monumental Architecture: A Thermodynamic Explanation of Symbolic
Behavior”. _World Archaeology_ Volume 22 No.2: 119-132
Topic, John R., Theresa Lange Topic

Topic, Theresa Lange

Uceda, Santiago

Urton, Gary

Vásquez Sánchez, Víctor, Teresa Rosales

Verano, John
2001 “Human Skeletal Remains from Tomb I, Sipán (Lambayeque River Valley, Peru) and Their Social Implications”. Antiquity 71 670-682.

Vogel, Melissa

Vogt, Evon and Richard Levanthal
Wegner, Steven
1988 *Cultura Recuay. Exhibit Catalog. Banco Continental and Museo Aqueológico de Ancash. Lima*

Wolf, Eric.
APPENDIX A

INVENTORY AND ILLUSTRATIONS OF DIAGNOSTIC CERAMICS:

ZONE 3 OF CERRRO SANTA RITA

<table>
<thead>
<tr>
<th>UNIT 1</th>
<th>Level</th>
<th>Sherd Count</th>
<th>Number of Diagnostics</th>
<th>Mocha Color</th>
<th>Mocha Texture</th>
<th>Mocha Glaze</th>
<th>Mocha Glaze Colors</th>
<th>Mocha Glaze Surface</th>
<th>Mocha Glaze Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT 2</th>
<th>Level</th>
<th>Sherd Count</th>
<th>Number of Diagnostics</th>
<th>Mocha Color</th>
<th>Mocha Texture</th>
<th>Mocha Glaze</th>
<th>Mocha Glaze Colors</th>
<th>Mocha Glaze Surface</th>
<th>Mocha Glaze Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT 3</th>
<th>Level</th>
<th>Sherd Count</th>
<th>Number of Diagnostics</th>
<th>Mocha Color</th>
<th>Mocha Texture</th>
<th>Mocha Glaze</th>
<th>Mocha Glaze Colors</th>
<th>Mocha Glaze Surface</th>
<th>Mocha Glaze Texture</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Lot Number</td>
<td>Unit</td>
<td>Level</td>
<td>Sherd Count</td>
<td>Number of Diagnostics</td>
<td>Moche-Gallinazo Olla</td>
<td>Moche-Gallinazo Cant</td>
<td>Moche-Gallinazo Bas</td>
<td>Moche-Gallinazo Lid</td>
<td>Moche Cantaro</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>80</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>4</td>
<td>2</td>
<td>32</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>4</td>
<td>3</td>
<td>58</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>87</td>
<td>4</td>
<td>3 F1</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>4</td>
<td>3 F2</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td>103</td>
<td>17</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lot Number</th>
<th>Unit</th>
<th>Level</th>
<th>Sherd Count</th>
<th>Number of Diagnostics</th>
<th>Moche-Gallinazo Olla</th>
<th>Moche-Gallinazo Cant</th>
<th>Moche-Gallinazo Bas</th>
<th>Moche Cantaro</th>
<th>Moche Base</th>
<th>Moche Body Sherd</th>
</tr>
</thead>
<tbody>
<tr>
<td>91</td>
<td>5</td>
<td>1</td>
<td>36</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>5</td>
<td>2</td>
<td>28</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>5</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td>84</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lot Number</th>
<th>Unit</th>
<th>Level</th>
<th>Sherd Count</th>
<th>Number of Diagnostics</th>
<th>Chimu Olla</th>
<th>Chimu Cantaro</th>
<th>Chimu Bowl</th>
<th>Chimu Tinaja</th>
<th>Chimu Lid</th>
<th>Chimu Handle</th>
<th>Chimu Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>6</td>
<td>1</td>
<td>24</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>6</td>
<td>2 F1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>6</td>
<td>3</td>
<td>24</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>6</td>
<td>4</td>
<td>56</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>6</td>
<td>5</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>6</td>
<td>5 F1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>6</td>
<td>6</td>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td></td>
<td>147</td>
<td>10</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Lot Number</td>
<td>Unit</td>
<td>Level</td>
<td>Sherd Count</td>
<td>Number of Diagnostics</td>
<td>Chimú Canastaro</td>
<td>Chimú Bowl</td>
<td>Chimú Tintya</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>-------</td>
<td>-------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>6 Ext. 1</td>
<td>1</td>
<td>24</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>6 Ext. 1</td>
<td>2</td>
<td>45</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>6 Ext. 1</td>
<td>3</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>6 Ext. 1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td>74</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UNIT 7

<table>
<thead>
<tr>
<th>Lot Number</th>
<th>Unit</th>
<th>Level</th>
<th>Sherd Count</th>
<th>Number of Diagnostics</th>
<th>Moche Canastaro</th>
<th>Moche Jar</th>
<th>Moche Vandel</th>
<th>Recuay Canastaro</th>
<th>Chimú Olla</th>
<th>Chimú Canastaro</th>
<th>Chimú Bowl</th>
<th>Chimú Tintya</th>
<th>Chimú Body</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>7A</td>
<td>2</td>
<td>20</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>7A</td>
<td>3</td>
<td>20</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>7A</td>
<td>4</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>7A</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>7B</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>7B</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>7B</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>7C</td>
<td>1</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>7C</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>7C</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>7C</td>
<td>4</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
CERAMIC ILLUSTRATIONS

By Jorge Chigualta

Porra Moche

Cuerpo Decorado
Gallinazo

CSR-69-3
CSR-65-2ab
CSR-65-3

Cuerpo Decorado
Chimú

CSR-67-11
CSR 71-7
CSR-95-16
CSR-95-15

Cuerpos Decorados Moche
A. Cántaro Gallinazo

Moche cantáros

Moche ollas

Moche tinajas
Moche ollas

Moche bowls
APENDIX B
INVENTORY OF FLORAL REMAINS:
ZONE 3 OF CERRO SANTA RITA

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>UNIT 1</th>
<th>Nivel 1</th>
<th>Nivel 1 Ext</th>
<th>Nivel 2</th>
<th>Nivel 2 Ext</th>
<th>Nivel 3</th>
<th>Nivel 3 Ext</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phaseolus vulgaris</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01 cotiledón</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cucurbita sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zea mays</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>ftos.cor que</td>
<td>0</td>
<td>32 ftos.cor que</td>
</tr>
<tr>
<td>Phragmites communis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>04 ftos. Tall</td>
</tr>
<tr>
<td>Madera N/I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Semilla N/I</td>
<td>10</td>
<td>0</td>
<td>09 ftos.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>UNIT 2</th>
<th>Nivel 2</th>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachis hypogaea</td>
<td>02</td>
<td>05</td>
<td>04</td>
<td>03</td>
<td></td>
</tr>
<tr>
<td>Prosopis chilensis</td>
<td>18</td>
<td>00</td>
<td>00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia macracantha</td>
<td>0</td>
<td>0</td>
<td>01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01 espina</td>
<td></td>
</tr>
<tr>
<td>Lucuma obovata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucurbita maxima</td>
<td>0</td>
<td>0</td>
<td>01 peduncu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucurbita moschata</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucurbita sp.</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagenaria siceraria</td>
<td>0</td>
<td>05</td>
<td>0</td>
<td>02 fto. peric</td>
<td></td>
</tr>
<tr>
<td>Zea mays</td>
<td>06</td>
<td>01 fto. cor</td>
<td>0</td>
<td>01 fto. panca</td>
<td></td>
</tr>
<tr>
<td>Gynnerium sagittatum</td>
<td>0</td>
<td>02 fto. hojas</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tallos N/I</td>
<td>0</td>
<td>0</td>
<td>01 fto.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semillas N/I</td>
<td>0</td>
<td>0</td>
<td>01 fto.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbón</td>
<td>0</td>
<td>*</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>28</td>
<td>13</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
UNIT 3

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>Nivel 1</th>
<th>Nivel 3</th>
<th>Nivel 4</th>
<th>Nivel 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachis hypogaea</td>
<td>0</td>
<td>01 fto. vain</td>
<td>02 fto. vain</td>
<td>12 fto. vain</td>
</tr>
<tr>
<td>Prosopis chilensis</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>07 sem+endoc</td>
</tr>
<tr>
<td>Acacia macracantha</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acacia sp.</td>
<td>01 sem</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lucuma obovata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02 fto. sem</td>
</tr>
<tr>
<td>Cucurbita maxima</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cucurbita moschata</td>
<td>0</td>
<td>0</td>
<td>01 sem</td>
<td>01 pedunc</td>
</tr>
<tr>
<td>Cucurbita sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lagenaria siceraria</td>
<td>04 fto. peric</td>
<td>03 fto. peric</td>
<td>0</td>
<td>02 fto. sem</td>
</tr>
<tr>
<td>Zea mays</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01 fto. sem que</td>
</tr>
<tr>
<td>Gynnerium sagittatum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tallos N/I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>08 fto.</td>
</tr>
<tr>
<td>Semillas N/I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carbón</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>33</td>
</tr>
</tbody>
</table>

UNIT 4

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>Nivel 2</th>
<th>Nivel 3</th>
<th>Nivel 3 H-1</th>
<th>Nivel 3 H-2</th>
<th>Nivel 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachis hypogaea</td>
<td>0</td>
<td>39 fto. vainas</td>
<td>0</td>
<td>0</td>
<td>02 fto. vaina</td>
</tr>
<tr>
<td>Prosopis chilensis</td>
<td>05 sem+endoc</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Acacia sp.</td>
<td>07 sem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gossypium barbadense</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01 fto. caliz flor</td>
</tr>
<tr>
<td>Lucuma obovata</td>
<td>0</td>
<td>01 fto. endoc</td>
<td>0</td>
<td>0</td>
<td>04 fto. edoc</td>
</tr>
<tr>
<td>Cucurbita moschata</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03 sem</td>
</tr>
<tr>
<td>Cucurbita sp.</td>
<td>03 sem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01 pedunc</td>
</tr>
<tr>
<td>Lagenaria siceraria</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01 sem</td>
</tr>
<tr>
<td>Zea mays</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01 cor</td>
</tr>
<tr>
<td>Gynnerium sagittatum</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01 fto. tall</td>
</tr>
<tr>
<td>Sapindus saponaria</td>
<td>01 sem quem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tallos N/I</td>
<td>0</td>
<td>06 fto.</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Semillas N/I</td>
<td>36 fto. sem</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>52</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>14</td>
</tr>
</tbody>
</table>
UNIT 5

<table>
<thead>
<tr>
<th>ESPECIES</th>
<th>Nivel 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachis hypogaea</td>
<td>0</td>
</tr>
<tr>
<td>Prosopis chilensis</td>
<td>0</td>
</tr>
<tr>
<td>Acacia macracantha</td>
<td>0</td>
</tr>
<tr>
<td>Acacia sp.</td>
<td>0</td>
</tr>
<tr>
<td>Lucuma obovata</td>
<td>0</td>
</tr>
<tr>
<td>Cucurbita maxima</td>
<td>0</td>
</tr>
<tr>
<td>Cucurbita moschata</td>
<td>0</td>
</tr>
<tr>
<td>Cucurbita sp.</td>
<td>0</td>
</tr>
<tr>
<td>Lagenaria siceraria</td>
<td>0</td>
</tr>
<tr>
<td>Zea mays</td>
<td>01 coronta</td>
</tr>
<tr>
<td>Gynerium sagittatum</td>
<td>0</td>
</tr>
<tr>
<td>Tallos N/I</td>
<td>0</td>
</tr>
<tr>
<td>Semillas N/I</td>
<td>0</td>
</tr>
<tr>
<td>Carbón</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1</td>
</tr>
</tbody>
</table>

UNIT 6

<table>
<thead>
<tr>
<th>Taxa</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>H-1</th>
<th>6</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L97</td>
<td>L99</td>
<td>L100</td>
<td>L101</td>
<td>L98</td>
<td>L106</td>
<td></td>
</tr>
<tr>
<td>Prosopis sp.</td>
<td>4</td>
<td>sem+endoc</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acacia macracantha</td>
<td>2 semillas</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inga feullei</td>
<td>45 ftos. Vain</td>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arachis hypogaea</td>
<td>1 fto. Vain</td>
<td>2 ftos. Vain</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucurbita sp.</td>
<td>1 semilla</td>
<td>1 semilla</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cucurbita moschata</td>
<td>5 semilla</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucuma obovata</td>
<td>7 ftos. Endoc</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagenaria siceraria</td>
<td>3 ftos. Peric</td>
<td>31 ftos. Peric</td>
<td>17 semillas</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zea mays</td>
<td>2 ftos. Coron</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tallos N/I</td>
<td>13 ftos.</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>47</td>
<td>2</td>
<td>5</td>
<td>46</td>
<td>7</td>
<td>27</td>
<td>134</td>
</tr>
<tr>
<td>SPECIES</td>
<td>Area A</td>
<td></td>
<td></td>
<td></td>
<td>Area B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>p.f. era</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pochastera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ulus purpurea</td>
<td>7</td>
<td>25</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>aln sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>aln sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ramia purpurea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ramia alpina</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>icariae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>isodesma donacium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rea obesus</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rea obesus sp.</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>rea obesus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ramia sagax</td>
<td>26</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crassus greg</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ramia obesus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rea obesus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rama sp.</td>
<td>3</td>
<td>5</td>
<td>16</td>
<td>110</td>
<td>7</td>
<td>25</td>
<td>5</td>
</tr>
<tr>
<td>rama sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rama sp.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rea obesus</td>
<td>1</td>
<td></td>
<td>13</td>
<td>4</td>
<td></td>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>
APPENDIX C

INVENTORY OF FAUNAL REMAINS:

ZONE 3 OF CERRO SANTA RITA

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>UNIT 1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nivel 1</td>
<td>Nivel Ex1</td>
<td>Nivel 2</td>
<td>Nivel Ex2</td>
<td>Nivel 3</td>
<td>Nivel Ex3</td>
</tr>
<tr>
<td>Fissurella sp.</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scutalus proteus</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Protothaca thaca</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Donax obesusul</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hypollobocera sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pez N/I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Cricetidae</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Odocolleus virginianus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lama glama</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lama sp.</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>37</td>
<td>20</td>
</tr>
<tr>
<td>Mamífero N/I</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>27</td>
<td>13</td>
<td>3</td>
<td>14</td>
<td>39</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>UNIT 2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N1</td>
<td>N2</td>
<td>N3</td>
<td>N4</td>
<td>N5</td>
<td>N6</td>
</tr>
<tr>
<td>Fissurella sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thais haematoma</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scutalus proteus</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Semimytilus algosus</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pteriidae</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spisula adamsi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Donax obesusul</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hypollobocera sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Paralochnerus peruinus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Scomber sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Ave N/I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cricetidae</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lama sp.</td>
<td>0</td>
<td>10</td>
<td>4</td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mamífero N/I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>5</td>
<td>16</td>
<td>6</td>
<td>32</td>
<td>34</td>
<td>22</td>
</tr>
<tr>
<td>SPECIES</td>
<td>UNIT 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td>N2</td>
<td>N3</td>
<td>N4</td>
<td>N5</td>
<td></td>
</tr>
<tr>
<td>Fissurella sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Thais haemastoma</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Scutalus proteus</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Semimytilus algosus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pteridae</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Spisula adamsi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Donax obesulus</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hypolobocera sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Paralynchurus peruanus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Scomber sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ave N/I</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cricetidae</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Lama sp.</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Mamifero N/I</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>6</td>
<td>2</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>UNIT 4</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nivel 2</td>
<td>Nivel 3</td>
<td>Nivel 3 H-1</td>
<td>Nivel 3 H-2</td>
<td>Nivel 4</td>
</tr>
<tr>
<td>Fissurella sp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Polinices uber</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Thais haemastoma</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Scutalus proteus</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Hypolobocera sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sciaena deliciosa</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lama sp.</td>
<td>13</td>
<td>12</td>
<td>2</td>
<td>53</td>
<td>9</td>
</tr>
<tr>
<td>Mamifero N/I</td>
<td>2</td>
<td>31</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>18</td>
<td>45</td>
<td>3</td>
<td>58</td>
<td>11</td>
</tr>
<tr>
<td>SPECIES</td>
<td>UNIT 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N1</td>
<td>N2</td>
<td>N3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fissurella sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thais haemastoma</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scutalus proteus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semimytilus algosus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pteriidae</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spisula adamsi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Donax obesulus</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypolobocera sp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paralanchurus peruanus</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scomber sp.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ave N/I</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cricetidae</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lama sp.</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mamífero N/I</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Unidad 6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lote 96</td>
</tr>
<tr>
<td>Scurria parasitica</td>
<td>1</td>
</tr>
<tr>
<td>Scutalus proteus</td>
<td>2</td>
</tr>
<tr>
<td>Semimytilus algosus</td>
<td>1</td>
</tr>
<tr>
<td>Spondylus princeps</td>
<td>1</td>
</tr>
<tr>
<td>Mesodesma donacium</td>
<td>1</td>
</tr>
<tr>
<td>Donax obesulus</td>
<td>1</td>
</tr>
<tr>
<td>Squatina armata</td>
<td>1</td>
</tr>
<tr>
<td>Sardinops sagax</td>
<td>1</td>
</tr>
<tr>
<td>Galeichthys peruvianus</td>
<td>1</td>
</tr>
<tr>
<td>Sciaenidae</td>
<td>2</td>
</tr>
<tr>
<td>Sciaena deliciosa</td>
<td>1</td>
</tr>
<tr>
<td>Paralanchurus peruanus</td>
<td>1</td>
</tr>
<tr>
<td>Anisotremus scapularis</td>
<td>1</td>
</tr>
<tr>
<td>Lagidium peruanum</td>
<td>1</td>
</tr>
<tr>
<td>Lama sp.</td>
<td>4</td>
</tr>
<tr>
<td>Mamífero N/I</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
</tr>
<tr>
<td>Taxa</td>
<td>Area A</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>Tegula atra</td>
<td>L107 L108 L110 L112 L113</td>
</tr>
<tr>
<td>Thais haemastoma</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Scutalus proteus</td>
<td>7 23 2 8 3 21 2 18 5 2 10 2 13 15 131</td>
</tr>
<tr>
<td>Bostryx sp.</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Helisoma peruvianum</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Mytilidae</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Penunyytus purpuratus</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Seminyytus algrinos</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Mactridae</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Mesodesma dominium</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Donax obesulus</td>
<td>2 1 2 1 4 2 1 14 6 33</td>
</tr>
<tr>
<td>Hypollobocera sp.</td>
<td>1 2 1 2 1 14 15 16</td>
</tr>
<tr>
<td>Rapid N1</td>
<td>26 1 1 1 1</td>
</tr>
<tr>
<td>Sardinos sagax</td>
<td>24 1 1 1 1</td>
</tr>
<tr>
<td>Merluccius gayi</td>
<td>5 5 5 5 5</td>
</tr>
<tr>
<td>Sciaena deliciosa</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Cavia porcellus</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Muridae</td>
<td>1 6 1 1 1</td>
</tr>
<tr>
<td>Lama sp.</td>
<td>3 5 16 19 7 25 5 9 7 12 139 347</td>
</tr>
<tr>
<td>Mamífero N1</td>
<td>1 1 1 1 1</td>
</tr>
<tr>
<td>Total</td>
<td>15 28 7 55 172 7 31 31 24 52 27 1 19 15 38 162 884</td>
</tr>
</tbody>
</table>
Present is the mostly complete skeleton of a subadult (Figure 1), 7 years +/- 20 months of age at the time of death according to Gaither’s (2004) dental standards. Ubelaker’s (1999) dental standards yield an age of 9 years +/- 24 months at death. Gaither’s (2004) long bone standards yield an age of 4 years and Ubelaker’s (1999) long bone standards yield an age of 3 years. The discrepancy in the dental and long bone age estimates suggests the child was experiencing significant physical stress (possibly disease or malnutrition) during life (Acheson 1960; Tanner 1986; Goodman 1993). Missing skeletal elements include the right palate, the left and right lacrimal bones, both patellae, some of the thoracic and lumbar vertebrae, one right and one left rib, and some of the bones of the hands and feet. No soft tissue is present. Pathologies include porotic hyperostosis, adjacent to the sutures of both parietal bones with coalescing foramina and increased thickness. Both healed and active lesions are present. The left parietal demonstrates an area of endocranial periostitis with both healed and active lesions. Both orbits of the eyes demonstrate healed periostitis (Figure 2). The greater wings of the sphenoid demonstrate coalescing porosities on the ectocranial aspect (Figure 3). Dental pathologies include linear enamel hypoplasias on the right central maxillary permanent incisor, the left maxillary permanent canine, the left maxillary first premolar, the left mandibular second premolar, and pit hypoplasias on both the maxillary and mandibular lateral deciduous incisors. The presence of enamel hypoplasias are a further indication of stress in the life of this child. Additionally, the presence of hypoplasias on both deciduous and permanent dentition suggest the stress was ongoing, or at least repetitive in the life of the individual, rather than an isolated event. The skeletal pathologies are consistent with a diagnosis of vitamin C deficiency (Scurvy) as described by Ortner et al. (1998). Several hypotheses might explain these findings. It is possible this child suffered ongoing malnutrition resulting in delayed growth and development. There were abundant sources of vitamin C in this region in prehistory, however, socioeconomic factors could have prevented this child from receiving adequate nutrition. It is also possible the vitamin deficiency is the secondary result of another disease process. If the child was chronically ill, he/she may not have been eating properly and suffered a nutritional deficiency as a result. There is no direct evidence of a chronic illness, other than the vitamin deficiency; however, it is certainly possible the child suffered from a disease that does not impact the skeleton directly.
Figure 1: Entierro 1, Cerro Santa Rita. Note: the skull is present. It was found at the end of the previous day and excavated prior to exposure of the body in order to safeguard the remains from looters.

Figure 2: Healed periostitis in the orbit of the eye
Figure 3: Porosities on the greater wing of the sphenoid

SOURCES CITED

Acheson, RM.

Gaither, Catherine
2004 A growth and development study of coastal prehistoric Peruvian populations. A dissertation submitted to Tulane University, UMI.

Goodman, Alan H.
1993 "On the interpretation of health from skeletal remains." Current
Ortner, Donald J., Erin H. Kimmerle, and Melanie Diez

Tanner, Jm

Ubelaker, Douglas H.
APPENDIX E

EXCAVATION AND EXPORTATION PERMITS

Resolución Directoral Nacional N° 40 / INC

Lima, 10 SET. 2004

VISTA, la carta sin número de fecha 6 de agosto de 2004, de la Dra. Teresa Rosales Tham, y;

CONSIDERANDO:

Que, mediante la carta del visto la Dra. Teresa Rosales Tham, solicita autorización para exportar muestras arqueológicas procedentes del Proyecto Arqueológico "Manejo Ecosustentable y Desarrollo Cultural del Complejo Arqueológico Santa Rita B – Valle de Chao" Temporada 2004;

Que, el Instituto Nacional de Cultura es un Organismo Público Descentralizado dependiente del Ministerio de Educación, con personería jurídica de derecho público interno, responsable de la promoción y desarrollo de las manifestaciones culturales del país y de la conservación del Patrimonio Cultural de la Nación;

Que, mediante Acuerdo N° 427 de fecha 2 de setiembre de 2004, la Comisión Nacional Técnica de Arqueología recomienda autorizar a la Dra. Teresa Rosales Tham, para exportar 26 muestras arqueológicas (17 de cerámica y 11 de carbón) procedentes del Proyecto Arqueológico "Manejo Ecosustentable y Desarrollo Cultural del Complejo Arqueológico Santa Rita B – Valle de Chao" Temporada 2004, para ser sometidas a análisis destructivo de espectrometría de masa en el Laboratorio de Servicio Geológico y para fechados en el Laboratorio de Beta Analytic en Florida en los Estados Unidos de América;

Con las visaciones de la Dirección de Gestión, Dirección de Registro y Estudio del Patrimonio Histórico, Dirección de Arqueología y la Oficina de Asuntos Jurídicos;

De conformidad con lo dispuesto en la Ley N° 26296, Ley General del Patrimonio Cultural de la Nación; Decreto Supremo N° 017-2003-ED, que aprueba el Reglamento de Organización y Funciones del Instituto Nacional de Cultura;

SE RESUELVE:

Artículo 1°.- Autorizar a la Dra. Teresa Rosales Tham, para exportar 26 muestras arqueológicas (17 de cerámica y 11 de carbón) procedentes del Proyecto Arqueológico "Manejo Ecosustentable y Desarrollo Cultural del Complejo Arqueológico Santa Rita B – Valle de Chao" Temporada 2004, para ser sometidas a análisis destructivo de espectrometría de masa en el Laboratorio de Servicio Geológico y para fechados en el Laboratorio de Beta Analytic en Florida en los Estados Unidos de América.
Artículo 2°.- Una vez realizados los análisis la Dra. Teresa Rosales Tham, debe presentar un informe de los resultados de las 28 muestras arqueológicas al Museo Nacional de Arqueología, Antropología e Historia del Perú y a la Dirección de Arqueología del Instituto Nacional de Cultura.

Artículo 3°.- Las muestras serán trasladadas por la Dra. Teresa Rosales Tham.

Regístrese y comuníquese.

[Señalización de firmas y sello del INSTITUTO NACIONAL DE CULTURA]

Fecha: 14 SET 2004
Resolución Directoral Nacional N° 569 / INC

Lima. 04 MAYO 2005

VISTO, el Expediente N° 01401 de fecha 27 de enero de 2005 de la Lic. Teresa Rosales Tham, y;

CONSIDERANDO:

Que, mediante el expediente del visto la Lic. Teresa Rosales Tham con RNA CR 9307, remite el “Proyecto de Investigación Temporada 2005- Manejo Ecosustentable y Desarrollo Cultural del Complejo Arqueológico Santa Rita B”;

Que, mediante carta sin número de fecha 30 de marzo de 2005, la Lic. Teresa Rosales Tham adjunta el Certificado de Inscripción en el COARPE, quien le otorga el N° 040330 y su respectiva habilitación;

Que, mediante Acuerdo N° 165 de fecha 21 de abril de 2005 la Comisión Nacional Técnica de Arqueología, recomienda aprobar el “Proyecto de Investigación Temporada 2005- Manejo Ecosustentable y Desarrollo Cultural del Complejo Arqueológico Santa Rita B”, a cargo de la Lic. Teresa Rosales Tham con RNA CR 9307 y Registro del COARPE N° 040330;

Que, en el referido proyecto se realizarán trabajos de investigación arqueológica bajo la modalidad de reconocimiento sistemático, con excavaciones en área, restringidas y trincheras en el Conjunto Arquitectónico 3, Sector 1 y Mapco con excavaciones en área en el Cerro Santa Rita del Complejo Santa Rita B”, ubicado en el Valle de Chao, departamento de La Libertad, por un período de un (01) año;

Que, según lo establecido en el Art. 12° de la Resolución Suprema N° 004-2000-ID que aprueba el Reglamento de Investigaciones Arqueológicas la autorización de los proyectos arqueológicos se gestionan a través de la Dirección Nacional del Instituto Nacional de Cultura y se obtiene mediante Resolución Directoral Nacional en la que se precisarán: sitios, objetivos y duración de los trabajos;

Con la visación de la Dirección de Gestión, Dirección de Arqueología, Sub Dirección de Investigación y Catastro y la Oficina de Asuntos Jurídicos;

SE RESUELVE:

Artículo 1°.- Autorizar a la Lic. Teresa Rosales Tham con RNA CR 9307 y Registro del COARPE N° 040339, la ejecución del "Proyecto de Investigación Temporada 2005- Manejo Ecosustentable y Desarrollo Cultural del Complejo Arqueológico Santa Rita B", mediante el cual se realizarán trabajos de investigación arqueológica bajo la modalidad de reconocimiento sistemático de superficie con excavaciones en área, restringidas y trineñas en el Conjunto Arquitectónico 3, Sector 1 y Mapeo con excavaciones en área en el Cerro Santa Rita del Complejo Santa Rita B", ubicado en el Valle de Chau, departamento de La Libertad, por un periodo de un (01) año.

Artículo 2°.- El proyecto arqueológico es intransferible, la Lic. Teresa Rosales Tham, no podrán transferir la responsabilidad a terceros. El incumplimiento del mismo devendrá en la suspensión del citado proyecto.

Artículo 3°.- La Lic. Teresa Rosales Tham, debe presentar en el plazo máximo de un (01) año calendario desde la finalización de los trabajos, el informe detallado de los mismos contenido con los mínimos los puntos especificados en el Art. 59° del Reglamento de Investigaciones Arqueológicas.

Artículo 4°.- Una vez concluida la investigación, la Lic. Teresa Rosales Tham, debe entregar el material recuperado debidamente inventariado y embalado a la Dirección del Instituto Nacional de Cultura – La Libertad quien procederá a su verificación y expedirá la constancia respectiva.

Artículo 5°.- Encargar a la Dirección del Instituto Nacional de Cultura La Libertad la supervisión, seguimiento y control de los trabajos arqueológicos.

Artículo 6°.- La Lic. Teresa Rosales Tham, debe entregar al Instituto Nacional de Cultura, una vez concluida la investigación, el informe final por cuadreado con sus respectivos diskettes.

Regístrese y comuníquese.

Luis Guillermo Lumbreras Salcedo
Director Nacional
Instituto Nacional de Cultura
INSTITUTO NACIONAL DE CULTURA
LA LIBERTAD

ACTA DE ENTREGA DE BIENES ARQUEOLÓGICOS DEL PROYECTO ARQUEOLÓGICO SANTA RITA, VALLE DE CHAO, TEMPORADA 2005 PARA SER TRANSPORTADAS A LA CIUDAD DE LIMA Y LUEGO A LAS CIUDADES DE DENVER-COLORADO Y FLORIDA DEL PAÍS DE ESTADOS UNIDOS DE NORTEAMÉRICA.

Siendo las 10:00 am del día 27 de Julio del 2005, reunidos en el local del Instituto Nacional de Cultura-La Libertad se procedió a la entrega de los bienes arqueológicos inmuebles que serán enviadas a la ciudad de Lima y luego a las ciudades de Denver-Colorado y Florida del país de Estados Unidos de Norteamérica, consistentes en muestras que serán sometidas para los análisis de Radiocarbono 14 y ADN respectivamente.

Los referidos bienes arqueológicos serán sometidos a análisis de fechado de radiocarbono 14 y ADN, según la especificación que acompaña el Acta en 02 folios.

Siendo las 12:00 pm, y no habiéndose registrado ningún incidente durante el acto, en señal de conformidad, se firma la presente Acta.

LIC. VIVIAN ARAUJO CALVANAPÓN
Coarpe Nº 040148
Departamento de Monumentos Arqueológicos INC/LL

LIC. MIGUEL FIESTAS CHUNGA,
Coarpe Nº 040106,
Departamento de Monumentos Arqueológicos INC/LL

DRA. VERÓNICA GALVEZ CASTRO
Oficina de Asesoría Jurídica INC/LL.

LIC. GINO REYES ROGGERO
Administrador INC/LL.

LIC. TERESA ESPERANZA ROSALES THUM
COARPE 040330
Directora del Proyecto
RELACIÓN DESCRIPTIVA DEL MATERIAL PARA EXPORTAR

SRB 17f-14M-8, Sector 1, Conjunto Arquitectónico 3 – Temporada 2005

<table>
<thead>
<tr>
<th>MUESTRA ARQUEOLÓGICA</th>
<th>ANÁLISIS A REALIZAR</th>
<th>PESO (g)</th>
<th>CONTEXTO ARQUEOLÓGICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentos de carbón</td>
<td>RC14</td>
<td>10.3</td>
<td>Recinto 6, Unidad 15, Nivel4, Lote 587-2</td>
</tr>
<tr>
<td>Muestra de suelo</td>
<td>Análisis de suelo</td>
<td>31.7</td>
<td>Entierro Nº 9, Recinto 1, Unidad 13, Ext. 4, Nivel 1, Lote 593-1</td>
</tr>
<tr>
<td>Fragmentos óseos humanos</td>
<td>ADN</td>
<td>1.1</td>
<td>Entierro Nº 9, Recinto 1, Unidad 13, Ext. 4, Nivel 1, Lote 593-2</td>
</tr>
<tr>
<td>Fragmentos óseos humanos</td>
<td>ADN</td>
<td>5.5</td>
<td>Entierro Nº 9, Recinto 1, Unidad 13, Ext. 4, Nivel 1, Lote 593-3</td>
</tr>
<tr>
<td>Fragmentos óseos humanos</td>
<td>RC14</td>
<td>11</td>
<td>Entierro Nº 9, Recinto 1, Unidad 13, Ext. 4, Nivel 1, Lote 593-4</td>
</tr>
<tr>
<td>Fragmentos óseos humanos</td>
<td>ADN</td>
<td>4.8</td>
<td>Entierro Nº 8, Recinto 1, Unidad 13, Ext. 3, Nivel 2, Lote 603-1</td>
</tr>
<tr>
<td>Fragmentos óseos humanos</td>
<td>ADN</td>
<td>8.7</td>
<td>Entierro Nº 8, Recinto 1, Unidad 13, Ext. 7, Nivel 2, Lote 602-3</td>
</tr>
</tbody>
</table>

Cerro Santa Rita – Temporada 2005

<table>
<thead>
<tr>
<th>MUESTRA ARQUEOLÓGICA</th>
<th>ANÁLISIS A REALIZAR</th>
<th>PESO (g)</th>
<th>CONTEXTO ARQUEOLÓGICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragmentos óseos humanos</td>
<td>RC14</td>
<td>11.3</td>
<td>Entierro Nº 1, Zona 3, MC 2, Unidad 6, Extensión 1, Nivel 4, Lote 119-3</td>
</tr>
<tr>
<td>Fragmentos óseos humanos</td>
<td>RC14</td>
<td>15.1</td>
<td>Entierro Nº 1, Zona 3, MC 2, Unidad 6, Extensión 1, Nivel 4, Lote 119-4</td>
</tr>
<tr>
<td>Fragmentos de carbón</td>
<td>RC14</td>
<td>5</td>
<td>Zona 3, MC 2, Unidad 6, Nivel 3, Lote 99-1, FS 9</td>
</tr>
<tr>
<td>Fragmentos de carbón</td>
<td>RC14</td>
<td>10.8</td>
<td>Zona 3, MC 2, Unidad 6, Nivel 4, Lote 100-1, FS 12</td>
</tr>
<tr>
<td>Fragmentos de carbón</td>
<td>RC14</td>
<td>11</td>
<td>Zona 3, MC 2, Unidad 6, Nivel 3, Lote 103-1, FS 3</td>
</tr>
<tr>
<td>Fragmentos de carbón</td>
<td>RC14</td>
<td>15</td>
<td>Zona 3, Unidad 7, Area B, Nivel 2, Lote 109-16, FS 3</td>
</tr>
<tr>
<td>Fragmentos de poste</td>
<td>RC14</td>
<td>30.3</td>
<td>Zona 3, Unidad 7, Area B, Nivel 3, Lote 110-1, FS 4</td>
</tr>
<tr>
<td>Fragmentos de carbón</td>
<td>RC14</td>
<td>8</td>
<td>Zona 3, Unidad 7, Area B, Nivel 3, Lote 112-1, FS 5</td>
</tr>
<tr>
<td>MUESTRA ARQUEOLÓGICA</td>
<td>ANÁLISIS A REALIZAR</td>
<td>PESO (g)</td>
<td>CONTEXTO ARQUEOLÓGICO</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------</td>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>Fragmentos de costillas humanas</td>
<td>ADN</td>
<td>33.8</td>
<td>Entierro N° 2. Recinto 1, Unidad 2, Ext. 2 y 3 Nivel 1, Lote 562-1</td>
</tr>
<tr>
<td>Fragmentos de costillas humanas</td>
<td>RC 14</td>
<td>37</td>
<td>Entierro N° 2. Recinto 1, Unidad 2, Ext. 2 y 3 Nivel 1, Lote 562-1</td>
</tr>
<tr>
<td>Fragmentos de costillas humanas</td>
<td>ADN</td>
<td>34.6</td>
<td>Entierro N° 3. Recinto 1, Unidad 2, Ext. 3 Nivel 1, Lote 561-1</td>
</tr>
<tr>
<td>Fragmentos de costillas humanas</td>
<td>RC 14</td>
<td>35</td>
<td>Entierro N° 3. Recinto 1, Unidad 2, Ext. 3 Nivel 1, Lote 561-1</td>
</tr>
<tr>
<td>Fragmentos de costillas humanas</td>
<td>ADN</td>
<td>36.3</td>
<td>Entierro N° 4. Recinto 1, Unidad 2, Ext. 2 Nivel 1, Lote 560-1</td>
</tr>
<tr>
<td>Fragmentos de costillas humanas</td>
<td>RC 14</td>
<td>34.6</td>
<td>Entierro N° 4. Recinto 1, Unidad 2, Ext. 2 Nivel 1, Lote 560-1</td>
</tr>
</tbody>
</table>

SIGNATURAS:

[Signatures]