1-1-2015

Gene expression in the choanoderm

Jesús Federico Peña

University of Denver

Follow this and additional works at: https://digitalcommons.du.edu/etd

Recommended Citation
https://digitalcommons.du.edu/etd/513

This Thesis is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact jennifer.cox@du.edu, dig-commons@du.edu.
GENE EXPRESSION IN THE CHOANODERM

A Thesis

Presented to

The Faculty of Natural Sciences and Mathematics

University of Denver

In Partial fulfilment

of the Requirements for the Degree

Master of Science

by

Jesús Federico Peña

June 2015

Advisor: Dr. Scott A. Nichols
Abstract

The body plan of sponges (phylum Porifera) is an outlier among modern animals and is thought to have special evolutionary significance. Sponges lack muscles, nerves and a gut. Instead, they are composed of few cell types and simple tissues that function to pump water through an internal canal network where bacterial prey are filtered by a specialized tissue called the choanoderm. The choanoderm is composed of cells with striking similarity to choanoflagellates, the unicellular relatives of animals. Thus, the traditional view is that the sponge choanoderm is a useful model of the first animal epithelial tissues. Using the freshwater sponge *Ephydatia muelleri*, we have performed gene expression analysis of the choanoderm tissue and have begun to develop an experimental method to validate and characterize the function of candidate choanoderm genes. The data suggest that the choanoderm may be the only metazoan tissue not reliant on the classical cadherin/catenin complex for cell adhesion. Yet we find evidence for conserved developmental mechanisms and other structural features such as epithelial polarity and microvillar organization. Finally, we will explore the possibility that genes unique to choanoflagellates and sponges, have conserved functions in the choanoderm tissue. This prediction derives from the hypothesized homology of these putatively ancient cell types.
Acknowledgements

Firstly, I would like to thank my advisor, Dr. Scott Nichols, for his guidance and mentoring throughout my graduate school experience. Not only did he teach me about the broad field of evolutionary developmental biology, but I also learned what it means to do good science.

I would like to thank the members of my committee, Dr. Alysia Mortimer and Dr. Thomas Quinn for their support and input throughout the research process. A special thanks to Dr. Bryan Cowen for his time and effort serving on as the chair of the committee.

This project would not have been possible without the support of the Nichols lab. A special thanks to Maggie Roth for her involvement in developing some of the experiments. Thank you to my lab mates Dr. Klaske Schippers and fellow graduate student Jennyfer Mora for their support and friendship throughout my two years here.
Table of Contents

Introduction 1

Chapter 1: Differential gene expression analysis of the choanoderm 6
 Introduction 6
 Methods 8
 Results 15
 Discussion 31

Chapter 2: Optimizing whole-mount in situ hybridization for *Ephydatia muelleri* tissue 37
 Introduction 37
 Methods 39
 Results 48
 Discussion 61

Literature Cited 67

Appendix 1 79
List of Tables

Table 1.1 Hydroxyurea treatment plan 19

Table 1.2 CLC Genomics Workbench read mapping summary for control samples 21

Table 1.3 CLC Genomics Workbench read mapping summary for HU-treated samples 22

Table 1.4 Differentially expressed clusters at different false discovery rates 24

Table 1.5 Gene products restricted to sponges and choanoflagellates 28

Table 1.6 Downregulated candidate genes identified by BLAST2GO (e-value< 1.0e-10) 30

Table 2.1 List of primers and amplicon size 51

Table 2.2 Comparison of Protocols 1-3 and the Optimal Protocol 60
List of Figures

Figure i-1 Choanoflagellate, choanoderm, and phylogeny of animals 3

Figure i-2 Gemmules and the body plan of *Ephydatia muelleri* 4

Figure 1.1 Untreated and hydroxyurea treated sponge morphology 20

Figure 1.2 Read mapping summary of control samples 21

Figure 1.3 Read mapping summary of hydroxyurea samples 22

Figure 1.4 MDS Plot for count data 23

Figure 1.5 Microarray plot for differentially expressed gene clusters 24

Figure 1.6 Mean normalized counts of microvillar genes in control and hydroxyurea treated sponges 25

Figure 1.7 Mean normalized counts of ciliary genes in control and hydroxyurea treated sponges 26

Figure 1.8 Mean normalized counts of genes associated with the classical cadherin catenin adhesion complex in control and hydroxyurea treated sponges 27

Figure 1.9 Mean normalized counts of genes identified only in sponges and choanoflagellates 29

Figure 2.1 VLGR1 fragment amplified from *E. muelleri* cDNA library 51

Figure 2.2 *Usherin* fragment amplified from *E. muelleri* cDNA library. 52

Figure 2.3 *Cadherin 23* fragment amplified from *E. muelleri* cDNA library 52

Figure 2.4 *Choanogene* fragment amplified from *E. muelleri* cDNA library 53

Figure 2.5 *Annexin* fragment amplified from *E. muelleri* cDNA library 53
Figure 2.6 Products of PCR on 1% agarose gel

Figure 2.7 Schematic of inserts relative to RNA polymerase promoters in pCR®II-TOPO dual promoter vector

Figure 2.8 Colony screen PCR visualized on 1% agarose gel

Figure 2.9 Plasmid digest visualized on 1% agarose gel

Figure 2.10 Quality of DIG-labelled RNA probes

Figure 2.11 Whole-mount in situ hybridization using Protocol 2

Figure 2.12 Whole-mount in situ hybridization using Protocol 1

Figure 2.13 Whole-mount in situ hybridization using Protocol 3

Figure 2.14 Whole-mount in situ hybridization treated with varying concentrations of RNase A
Introduction

The question of how animals first evolved and diversified is a long standing and controversial topic in evolutionary biology. It is generally accepted that life started as unicellular, but how animals evolved from unicellular life-forms to the diversity we see today is still under question. One of few undisputed facts about early animal evolution is that choanoflagellates are the closest living relatives of modern animals (Ruiz-Trillo et al. 2008). Choanoflagellates are single-celled and colony-forming marine eukaryotes characterized by an apical flagellum surrounded by a microvillar collar (Fig. i-1A; Dayel et al., 2011). Cells with this sort of morphology are typically referred to as collar cells. Collar cells have been reported in diverse animal lineages including cnidarians, echinoderms, and the pilidium larvae of a nemertine (Lyons 1973; Norrevang and Wingstrand 1970; Martinez et al. 1991; Cantell, Franzén, and Sensenbaugh 1982). Other instances of collar cell-like cells in animals are sensory cells of the bilaterian olfactory bulb and the hair cells of the middle and inner ear (Ludeman et al. 2014; Jacobs et al. 2007; Mayer et al. 2009). With distribution of collar cells among metazoan and choanoflagellate lineages, to the exclusion of other eukaryotes, we can infer that their last common ancestor also had cells with microvilli and motile cilia/flagella (King 2004; Sebé-Pedrós et al. 2013).
Some of the first clues about the evolutionary link between animals and choanoflagellates came from comparisons of choanoflagellate morphology to choanocytes, the feeding cells of sponges (Fig. i-1B; James-Clark, 1867, 1871; Kent, 1878). The sponge body plan stands out as an outlier among modern animals (Fig i-1B; Fig. i-2) – so much so that it was initially thought that sponges may be colonial protists (i.e., they may actually be choanoflagellates). They lack muscles, nerves, a gut, and consistent patterns of symmetry. They are composed of few cell types and simple tissues that function to pump water through an internal canal network where bacterial prey are filtered and directly phagocytosed by choanocytes, which collectively make up the feeding tissue known as the choanoderm. Nonetheless, it is now well established that sponges are indeed animals, albeit an early evolutionary branch of animals.

Sponge choanocytes bear a striking resemblance to choanoflagellates in form and function (Fig. i-1A, i-1B). Like choanoflagellates, sponge choanocytes have an apical flagellum surrounded by a microvillar collar. Both cell types use their flagella to manipulate water currents. Choanoflagellates draw water through the microvillar collar to capture bacterial prey, whereas sponge choanocytes use the microvillar collar to slow the flow of water so that prey can be phagocytosed directly (Mah, Christensen-Dalsgaard, and Leys 2014). Only recently have phylogenetic studies confirmed the relationship between choanoflagellates and animals, placing them as sister groups (Ruiz-Trillo et al. 2008). The hypothesized homology between choanoflagellates and sponge choanocytes was predictive of their phylogenetic connection with animals.
It has been hypothesized, and widely accepted, that because of the homology between choanoflagellates and sponge choanocytes, the sponge body plan may represent an early stage in animal evolution (Fig. i-1C; Collins, 1998; King, 2004; Maldonado, 2004; Medina, Collins, Silberman, & Sogin, 2001; Nielsen, 2008). Recently, this view has been challenged, citing subtle structural and functional differences between choanoflagellates and choanocytes (Maldonado 2004; Mah, Christensen-Dalsgaard, and Leys 2014; Dunn, Leys, and Haddock 2015). Another challenge to the evolutionary significance of sponge choanocytes and the antiquity of the sponge body plan is the idea that ctenophores rather than sponges are the earliest evolutionary branch of animals (Fig. i-1D).

Figure i-1 Choanoflagellate, choanoderm, and phylogeny of animals. (A) Choanoflagellate with apical flagella surrounded by a microvillar collar (Dayel et al. 2011). (B) A sponge choanocyte organized into a simple epithelium (choanoderm) that lines the water canal system. The traditional view is that sponges are the earliest branching animals (C) given the homology between choanocytes and choanoflagellates. Recent studies suggest that ctenophores (D), not sponges, are the earliest evolutionary branch of animals.
Figure i-2 Gemmules and the body plan of *Ephydatia muelleri*. (A) The sponge *E. muelleri* forms overwintering spores that can be stored at 4°C. (B) Upon placement at room temperature the gemmules hatch and develop into a fully differentiated sponge; g=gemmule. (C) Schematic of a typical *E. muelleri* juvenile with a cross-section revealing internal canal system lined by choanocyte chambers.
This claim is supported by recent studies using genome-scale datasets (Moroz et al. 2014; Ryan et al. 2013; Dunn et al. 2008). Ctenophores have muscles, nerves and a gut, suggesting that these features are ancestral to all animals and that sponges are secondarily simplified rather than ancestrally simple.

To independently evaluate the evolutionary significance of cytological similarities between choanoflagellates and sponge choanocytes, this study explores the molecular basis of choanocyte structure and developmental induction of the sponge choanoderm. Ultimately this will inform our understanding of the sponge body plan in the context of animal evolution and how the choanoderm relates to more typical animal epithelia.
Chapter 1: Differential gene expression analysis of the choanoderm

Introduction

Despite its evolutionary significance, little is known about either the gene regulatory networks that control choanoderm development, or the adhesion and polarity genes that contribute to choanoderm organization and choanocyte structure. Previous studies have sought to identify choanocyte markers of freshwater sponges through proteomic approaches despite the difficult nature of isolating choanocyte chambers (Funayama, Nakatsukasa, Hayashi, et al. 2005; Funayama et al. 2010).

The present study focuses on the freshwater sponge *Ephydatia muelleri*. Like many sponges, *E. muelleri* produces an overwintering spore called a gemmule (Fig. i-2A). The gemmule houses thesocytes—dormant sponge stem cells—inside a spicule coat. When gemmules are placed at room temperature, thesocytes become active archeocytes which migrate out of the gemmule and differentiate into exopinacocytes (Rozenfeld & Rasmont 1977)—cells that line the external epithelia—and sclerocytes which produce spicules. The endopinacocytes begin to assemble the internal canal system (Rozenfeld & Rasmont 1977). The last cells to differentiate are the choanocytes, which line the canal system (Fig. i-2C; Funayama, Nakatsukasa, Hayashi, et al., 2005; Rozenfeld & Rasmont, 1977).
It has been previously reported that applying the drug hydroxyurea (HU) to developing sponges prevents cell differentiation and even canal development (Rozenfeld and Rasmont 1977). Hydroxyurea blocks DNA synthesis machinery and ultimately prevents cell division (Koç et al. 2004). We present here a method using HU to specifically prevent the development of choanocyte chambers. We compare choanocyte depleted sponges to normal sponges using RNA-sequencing and bioinformatics techniques to quantify and identify genes that are downregulated in the sponge choanoderm. Through analysis of the homology and domain architecture of these downregulated, putative choanoderm genes, we identify new gene candidates with possible functions in choanoderm development, structure and function. The long-term goal of this study is to provide a platform for analyzing the proposed homology of choanoflagellate and choanocyte cell structure, and for identifying elements of homology between sponge tissues and bilaterian epithelial tissues. This mechanistic approach will provide new lines of evidence, independent of phylogenetic and ultrastructural arguments, for interpreting the significance of the sponge body plan for our understanding of early animal evolution.
Methods

Living materials

Ephydatia muelleri gemmules were collected from Red Rock Lake, Colorado, USA (Em-CO); Beavertail Lake, Vancouver Island, British Columbia, Canada (Em-BTL); and Nanaimo River, Vancouver Island, British Columbia, Canada (Em-NR). The gemmules were stored in ultrapure milliQ® water, in the dark at 4°C.

Cultivation for hydroxyurea (HU) treatment

Gemmules were washed three times with ultrapure milliQ® water and placed on a coverslip in a petri dish containing 20 ml of autoclaved lake water at room temperature. Control and HU-treated gemmules were grown in 6-well culture plate format, with three biological replicates corresponding to Em-CO, Em-BTL, and Em-NR. Our preliminary studies indicated that early HU treatment prevents gemmule hatching or interferes with normal differentiation of tissues in addition to the choanoderm. In order to fine-tune the timing of HU addition until just before choanocyte differentiation, we established an “indicator” culture of gemmules 24 hours before starting our experimental cultures. When the indicator sponge developed choanocyte chambers, the experimental groups were then treated with hydroxyurea (100 μg/mL). The experimental groups were one day younger and had not yet developed choanocyte chambers. Control sponges were untreated. Hydroxyurea was refreshed every day until sponges were harvested. The experiment is outlined in Table 1.1.
Harvesting and RNAseq

RNA was isolated from HU sponges and control sponges with TRIzol reagent (Invitrogen) following the manufacturer’s protocol. Presence and quality of total RNA was confirmed by formaldehyde-agarose gel electrophoresis. The concentration of isolated RNA was measured using a nanodrop spectrophotometer. Samples were multiplexed and sequenced (single-end 100bp reads) in a single flow-cell lane by the Genomics and Microarray Core (University of Colorado Denver).

Mapping

Short single-end RNA-seq reads were trimmed using CLC Genomics Workbench 7.0.4 (Qiagen). The read files contained Phred scale quality scores which were used to trim sequence ends based on quality. The Q score is first converted to a base-calling error probability which is used to set the limit for which bases should be trimmed. Here a quality trim limit of 0.05 was used. For every base, the Workbench calculated the running sum of the value 0.05-P_{error}. If a sum dropped below 0, it is set to 0. Untrimmed regions of reads would end in the highest value of the running sum and start at the last zero value before the highest score; regions before and after this portion are trimmed. Additionally, ambiguous nucleotides were trimmed and discarded. Adapter sequences were also trimmed for each sample.
Trimmed sequences were mapped to a publicly available *de novo* assembled *Ephydatia muelleri* transcriptome (Hemmrich and Bosch 2008). The transcriptome was assembled with Trinity using default parameters except *–kmer_coc_2* as opposed to the default of 1. This helped reduce the noise of contigs. The option “One reference sequence per transcript” was selected. This option treats each sequence as a transcript and is often used with RNA-Seq data. The mapping parameters were set to default: mismatch cost=2; insertion cost=3; deletion cost=3; length fraction=0.8; similarity fraction=0.8. The maximum number of hits for a read was set to 10. Hits that match to multiple distinct places are randomly assigned to one of those places based on the number of unique matches that the gene already has. If a read matched to more than 10 distinct places, it was discarded. Strand specificity was set to Both, Forward, and Reverse; a higher proportion of reads mapped with higher unique specificity when strand specificity was set to Reverse, so these mappings were used for Corset analyses.

Corset analysis

In an attempt to improve the accuracy of read counts for differential gene expression (DGE) using a reference transcriptome, we used the program Corset (version 1.03) that is designed to cluster RNA transcripts that presumably derive from a single genomic DNA locus (Davidson and Oshlack 2014). Mapped reads were analyzed with experimental groups identified (-g option) to improve the power it has when splitting
Differentially expressed paralogues. Corset analysis was done on the University of Denver High Performance Cluster.

Differential gene expression analysis

The Corset output was processed using edgeR, a bioconductor package in R (Robinson, McCarthy, and Smyth 2010; McCarthy, Chen, and Smyth 2012; Robinson and Smyth 2008; Zhou, Lindsay, and Robinson 2014; Robinson and Smyth 2007). Statistical testing was performed for differences between control group RNAseq data and HU treated group RNAseq data. The cluster-level count data was converted to an edgeR object. First, a group variable was created to direct edgeR to separate samples by group (control vs. HU-treated). Using the function \texttt{DGEList()}, supplied with group variable and the cluster-level count data, creates the edgeR object.

Once converted, edgeR is used to calculate normalization factors based on the trimmed mean of M-values normalization method. TMM normalization can effectively estimate relative RNA production levels from RNA-seq data and can estimate scale factors between samples that can be incorporated into downstream statistical methods for differential expression. This normalization corrects for the different compositions of the samples and generates effective library sizes. A multidimensional scaling plot was generated from normalized samples to measure sample similarity in two dimensions.

Count data obtained from RNA-seq experiments is analyzed using negative binomial models due to higher variation in data. The mean of counts for each gene
corresponds to the abundance of that gene in the RNA sample. EdgeR models the mean of a gene as the library size multiplied by concentration. The dispersion parameter determines how the variance of each gene is modelled. The first dispersion to be calculated was the common dispersion. Under the common dispersion model, each gene is assigned the same value for dispersion when modelling its variance. The next dispersion that was calculated was the tagwise dispersion. Under the tagwise dispersion model, each gene gets assigned a unique dispersion estimate. Following this step, normalized counts were obtained in order to generate histograms to display differential expression of specific clusters.

The `exactTest()` function was executed on the edgeR object to perform pair-wise tests for differential expression between the two groups. The function `topTags()` takes the output from `exactTest()` and adjusts the raw p-values using the false discovery rate correction and returned the top differentially expressed genes.

BLAST2GO analysis

Sequences associated with downregulated clusters were extracted using a Python script. Downregulated cluster IDs were obtained from edgeR. Clusters and associated sequences were obtained as a Corset output. The python script compared these two files and wrote a new file containing the cluster ID and the name of the associated sequence. A biopython script was used to extract whole sequences from the *E. muelleri* transcriptome. The input for this extraction was the transcriptome as a fasta file and a
text file with the names of downregulated sequences. The output was a fasta file containing downregulated sequences of interest. These extracted sequences were analyzed by a BLAST search against the *E. muelleri* predicted proteome using CLC Genomics Workbench. The top hits from the protein BLAST were extracted with the same biopython script this time using an *E. muelleri* reference proteome as the input fasta. The top hit protein sequences were analyzed by a BLAST search against nr protein database using CLC Genomics Workbench.

The blastp result was converted to a Blast2GO project using the Blast2GO plug-in for CLC Genomics Workbench (Conesa et al. 2005; Conesa and Götz 2008; Götz et al. 2008; Götz et al. 2011). Gene ontology terms associated with blast hits were retrieved by executing mapping function through the BLAST2GO plug-in. The mapping step links all BLAST hits to functional information stored in the Gene Ontology database, where each GO term is associated with an evidence code. Gene ontology annotations are all associated with evidence codes which indicate how the annotation is supported; that is, evidence codes link GO terms to previous work and analyses done on a particular gene product which support the GO assignment.

The annotation function was used to assign GO terms from the GO pool generated by the mapping step to the query sequence. Annotation applies an annotation rule on the ontology terms in the pool. This rule searches for the most specific annotations with a certain level of reliability. An annotation score is computed for each GO term obtained from the mapping step. The annotation score takes into account two terms: direct and
abstraction. The direct term represents the highest hit similarity of a GO term weighted by a factor corresponding to its evidence code. The abstraction term provides the possibility of abstraction. This term multiplies the number of total GOs unified at the node by a GO weight factor that controls the possibility and strength. The annotation rule then selects the lowest term per branch that lies over an annotation cut-off. Annotation was limited to GO terms obtained from hits with an e-value less than 1.0E-8.

Additionally, to determine what level of abstraction allowed for more informative annotations, the annotation cut-off was varied (55, 30, and 20) while the GO-weight was set to 5. Hsp-Hit Coverage CutOff and EC-weight were left to default settings. Following annotation, InterProScan was executed to retrieve domain and motif information (Jones et al. 2014). The GO terms obtained by IPScan were transferred to the sequences and merged with already existing GO terms. Sequences were then sorted by e-value. A list of downregulated genes was manually generated with an e-value cut-off of 1.0e-10.

Identification of genes restricted to choanoflagellates and sponges

Downregulated protein sequences which were obtained from the dataset as previously described. A phmmer search was performed on all the sequences. Query sequences with less than 1000 hits were examined closely to determine if the protein was restricted to choanoflagellates and sponges.
Results

In support of a previous study by Rasmont and Rozenfeld (1977), our results confirm that hydroxyurea—an inhibitor of DNA replication (Koç et al. 2004)—can be applied during *E. muelleri* germination to inhibit differentiation of choanocytes.

Gemmulation and cell differentiation in sponges follows a predictable sequence. The first cells to exit the gemmule are the archeocytes, a putative sponge stem cell. These cells then differentiate into the other cell types of the sponge, with choanocytes being the smallest, and therefore the last to differentiate. Rasmont and Rozenfeld (1977) reported more widespread effects on development such as the lack of a canal system and osculum. Their treated sponges developed as a hollow dome with archeocytes lining the floor of it (Rozenfeld and Rasmont 1977). In our studies, we found that if hydroxyurea (HU) is applied within 12-24 hours prior to choanocyte differentiation (Table 1.1), that these HU-treated sponges develop all of the detectable features of the untreated control sponges, except that they lack choanocytes. For example, spicules are found in both HU treated and untreated sponges, as is an organized canal system and an osculum (Fig. 1.1). When ink is added to the water, it is the choanocyte chambers which first catch and concentrate the ink, clearing the water almost completely. This produces a distinct pattern in untreated sponges (Fig. 1.1A,’A’”), but in the HU treated sponges, we do not see the same pattern (Fig. 1.1B’-B”).

We reasoned that we could exploit the effects of HU on *E. muelleri* development to identify genes that are normally expressed in choanocytes. To be conservative,
performed these experiments on biological replicates from each of the three
geographically isolated populations: Red Rock Lake, Colorado (Em-CO); Beavertail
Lake, Canada (Em-BTL); and Nanaimo River, Canada (Em-NR). The relative similarity
of expression between samples based on the 500 most heterogeneous genes is greater in
terms of locality; that is, sponges clustered based on geographic origin (Fig. 1.4). There
was a less pronounced separation by treatment condition. This suggests that between
geographically isolated populations there is already a difference in relative gene
expression levels. Polymorphism between populations combined with the fact that all
reads were mapped to the Colorado *E. muelleri* transcriptome could also influence this
clustering. Essentially, not all the reads from the Nanaimo River sponges and the
Beavertail Lake sponges mapped to the transcriptome. This is supported by the fact that
Em-CO, whether control (Em-CO-C; Table 1.2; Fig. 1.2) or HU-treated (Em-CO-HU;
Table 1.3; Fig. 1.3) had the least amount of its fragments uncounted; that is, a smaller
percentage of reads were discarded during the mapping step. Potentially, a more
pronounced clustering based on treatment would be observed if sponges all came from
the same population. Nevertheless, the extent of variation exhibited between sponges
from different locations underscores that the genes that were detected as significantly
downregulated in all samples are likely to be biologically meaningful. Using a false
discovery rate of 1%, we found a total of 879 transcripts (corresponding to ~1% of the
Corset clustered transcriptome; Fig. 1.5; Table 1.4) to be significantly downregulated in
hydroxyurea treated sponges.
To classify and evaluate the biological categories of the downregulated transcripts, we used BLAST2GO (Conesa and Götz 2008; Conesa et al. 2005; Götz et al. 2008; Götz et al. 2011). This approach relies on performing a BLAST search of all the candidate sequences. Following the BLAST search, BLAST2GO will map the hits to their gene ontologies using the gene ontology database. This step generates a pool of gene ontologies that could potentially be assigned to the query sequence. It is worth noting that not all queries are mapped because hits may not be associated with gene ontologies in the GO database; so at this step some sequences will be excluded from downstream annotation. The annotation step assigns specific GO terms from the pool generated in the mapping step. It has previously been reported that the default parameters of the annotation step are the recommended settings, but more permissive parameters can be set when the sequence similarities as reported by BLAST2GO are low (Götz et al. 2008). Even under permissive parameters, not all sequences were annotated (~21%). We augmented the annotation by performing an InterProScan which compares protein sequences and identifies domains and functional sites in order to functionally characterize the new sequence (Jones et al. 2014). Once this was done we proceeded to do manual curation by looking at the BLAST hits and comparing them to the GO terms and predicted domain architectures. In some cases we also used phmmer to verify our comparisons (http://hmmer.org/). Downregulated transcript clusters were ultimately associated with gene products, summarized in Table 1.6.
Normalized counts were obtained for genes associated with microvillar and ciliary structures (Fig. 1.6; Fig. 1.7) as well as for genes implicated in the classical cadherin catenin adhesion complex (Fig. 1.8). By comparing normalized counts for these genes between control and hydroxyurea-treated sponges, we see that some of these components are significantly downregulated while others are not, consistent with edgeR differential gene expression analyses.

Additionally, 24 transcript clusters were identified as restricted to choanoflagellates and sponges through phmmer searches (Table 1.5). A number of these genes have signal peptides as well as other domains implicated in signaling. One gene (m.236078) has a cadherin domain. Of the 24 genes identified, 23 are downregulated in choanocyte depleted sponges (Fig. 1.9). There is one gene (m.6183) which is upregulated in choanocyte deficient sponges (Fig. 1.9). The upregulated gene has a signal peptide as well as a transmembrane region (Table 1.5).
<table>
<thead>
<tr>
<th>Day 0</th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 5</th>
<th>Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator</td>
<td>Plated</td>
<td>Hatched</td>
<td>Plated</td>
<td>Choanocytes detected</td>
<td>Harvested</td>
</tr>
<tr>
<td>Control</td>
<td>Plated</td>
<td>Hatched</td>
<td>Plated</td>
<td>HU added</td>
<td>Harvested</td>
</tr>
</tbody>
</table>

Table 1.1 Hydroxyurea treatment plan
Figure 1.1 Untreated and hydroxyurea treated sponge morphology. Control (A) and hydroxyurea treated (B) sponges develop water canals and an osculum. Ink shows choanocyte chambers in control sponges (A’, A”) but not in HU-treated sponges (B’, B”). Both control (A”’) and HU-treated (B”’) sponges develop spicules and archeocytes. Scale bars: 250 µm (A-B’), 100 µm (A”, B”), 25 µm (A”’, B”’).
<table>
<thead>
<tr>
<th>Sample</th>
<th>Em-BTL-C</th>
<th>Em-NR-C</th>
<th>Em-CO-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counted fragments</td>
<td>26,827,639 (85.19%)</td>
<td>21,117,814 (90.77%)</td>
<td>29,351,889 (93.03%)</td>
</tr>
<tr>
<td>Unique fragments</td>
<td>22,462,085 (71.33%)</td>
<td>17,633,865 (75.79%)</td>
<td>24,275,678 (76.94%)</td>
</tr>
<tr>
<td>Non-specifically</td>
<td>4,365,554 (13.86%)</td>
<td>3,483,949 (14.97%)</td>
<td>5,077,211 (16.09%)</td>
</tr>
<tr>
<td>Uncounted fragments</td>
<td>4,663,682 (14.81%)</td>
<td>2,147,804 (9.23%)</td>
<td>2,200,099 (6.97%)</td>
</tr>
<tr>
<td>Total fragments</td>
<td>31,491,321 (100%)</td>
<td>23,265,618 (100%)</td>
<td>31,552,988 (100%)</td>
</tr>
</tbody>
</table>

Figure 1.2 Read mapping summary of control samples.
Table 1.3 CLC Genomics Workbench read mapping summary for HU-treated samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Em-BTL-HU</th>
<th>Em-NR-HU</th>
<th>Em-CO-HU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Counted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fragments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Counted</td>
<td>26,182,932 (84.33%)</td>
<td>25,290,543 (91.87%)</td>
<td>27,162,188 (93.75%)</td>
</tr>
<tr>
<td>Unique</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fragments</td>
<td>22,438,826 (72.27%)</td>
<td>21,329,957 (77.48%)</td>
<td>22,686,820 (78.31%)</td>
</tr>
<tr>
<td>Non-specifically</td>
<td>3,744,106 (12.06%)</td>
<td>3,960,586 (14.39%)</td>
<td>4,475,368 (15.45%)</td>
</tr>
<tr>
<td>Uncounted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fragments</td>
<td>4,865,864 (15.67%)</td>
<td>2,237,935 (8.13%)</td>
<td>1,809,488 (6.25%)</td>
</tr>
<tr>
<td>Total fragments</td>
<td>31,048,796 (100%)</td>
<td>27,528,478 (100%)</td>
<td>28,971,676 (100%)</td>
</tr>
</tbody>
</table>

Figure 1.3 Read mapping summary of hydroxyurea samples.
Figure 1.4 The multi-dimensional scaling plot projects sample similarity in 2-dimensions. Em-CO: Red Rock Lake population; Em-BTL: Beavertail Lake population; Em-NR: Nanaimo River population. C: control; HU: hydroxyurea treated
FIGURE 1.5 Microarray plot for differentially expressed gene clusters. The microarray plot shows the relationship between counts per million reads and fold-change across the genes clusters. Differentially expressed gene clusters are shown in red (P<0.01). Non-differentially expressed genes are in black. The blue lines denote biological significance.

<table>
<thead>
<tr>
<th></th>
<th>FDR<1%</th>
<th>FDR<0.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upregulated</td>
<td>54</td>
<td>37</td>
</tr>
<tr>
<td>Downregulated</td>
<td>879</td>
<td>481</td>
</tr>
<tr>
<td>NS</td>
<td>77,018</td>
<td>77,433</td>
</tr>
</tbody>
</table>
Figure 1.6 Mean normalized counts of microvillar genes in control and hydroxyurea treated sponges. Except where stated, all genes are significantly differentially expressed in HU-treated sponges. Error bars represent standard deviation from the mean.
Figure 1.7 Mean normalized counts of ciliary genes in control and hydroxyurea treated sponges. Except where stated, all genes are significantly differentially expressed in HU-treated sponges. Error bars represent standard deviation from the mean.
Figure 1.8 Mean normalized counts of genes associated with the classical cadherin catenin adhesion complex in control and hydroxyurea treated sponges. Except where stated, all genes are significantly differentially expressed in HU-treated sponges. Error bars represent standard deviation from the mean.
<table>
<thead>
<tr>
<th>Accession</th>
<th>Length</th>
<th>Domain architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>m.19803</td>
<td>491</td>
<td>EF hand</td>
</tr>
<tr>
<td>m.164262</td>
<td>252</td>
<td>Transmembrane x2</td>
</tr>
<tr>
<td>m.170264</td>
<td>536</td>
<td>Concavalin A-like lectin/glucanase</td>
</tr>
<tr>
<td>m.232397</td>
<td>4940</td>
<td>None</td>
</tr>
<tr>
<td>m.232402</td>
<td>995</td>
<td>IPT/TIG x3, Calx-beta</td>
</tr>
<tr>
<td>m.232409</td>
<td>1076</td>
<td>None</td>
</tr>
<tr>
<td>m.244211</td>
<td>3379</td>
<td>Signal peptide, IPT/TIG x11, transmembrane</td>
</tr>
<tr>
<td>m.277222</td>
<td>5907</td>
<td>transmembrane</td>
</tr>
<tr>
<td>m.292216</td>
<td>842</td>
<td>None</td>
</tr>
<tr>
<td>m.9857</td>
<td>217</td>
<td>Signal peptide</td>
</tr>
<tr>
<td>m.19803</td>
<td>517</td>
<td>Signal peptide, Receptor L, transmembrane</td>
</tr>
<tr>
<td>m.29736</td>
<td>491</td>
<td>EF hand</td>
</tr>
<tr>
<td>m.156173</td>
<td>523</td>
<td>PH, coiled-coil</td>
</tr>
<tr>
<td>m.206651</td>
<td>1051</td>
<td>Coiled-coil x6, SAM, Ras association, PDZ</td>
</tr>
<tr>
<td>m.236078</td>
<td>1028</td>
<td>Cadherin</td>
</tr>
<tr>
<td>m.8558</td>
<td>856</td>
<td>PH, costar x2, LIM</td>
</tr>
<tr>
<td>m.192346</td>
<td>400</td>
<td>Beta-1 integrin binding</td>
</tr>
<tr>
<td>m.41140</td>
<td>713</td>
<td>PDZ</td>
</tr>
<tr>
<td>m.254520</td>
<td>348</td>
<td>Signal peptide, transmembrane</td>
</tr>
<tr>
<td>m.45730</td>
<td>153</td>
<td>None</td>
</tr>
<tr>
<td>m.72689</td>
<td>425</td>
<td>PH, PTB</td>
</tr>
<tr>
<td>m.175777</td>
<td>410</td>
<td>Coiled-coil</td>
</tr>
<tr>
<td>m.178438</td>
<td>854</td>
<td>Sfi1 spindle body protein</td>
</tr>
<tr>
<td>m.6183</td>
<td>559</td>
<td>Signal peptide, transmembrane</td>
</tr>
</tbody>
</table>
Figure 1.9 Mean normalized counts of genes identified only in sponges and choanoflagellates. The counts correspond to control and hydroxyurea treated sponges. Accession IDs correspond to the predicted proteome of \textit{E. muelleri}. All genes are differentially expressed in hydroxyurea treated sponges. Error bars represent standard deviation from the mean.
<table>
<thead>
<tr>
<th>Category</th>
<th>Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>cilia/flagella-specific</td>
<td>IFT-52/57/81/105/172, CCDC-39/40/113, RSPH-3/9/10B, NME5, tectorin, PITG-05447, ODF-3, axonemal dynein, Cep89, PTPRQ</td>
</tr>
<tr>
<td>other microtubule associated</td>
<td>GAS-8, Serine/Threonine-protein kinase Nek8, TTC-16/30A/28, Kif-15, protein polyglycylase TTL 10, kinesin-like, Futsch, battenin, CCDC-87, KIF25, kif3b, kif5b, alp11</td>
</tr>
<tr>
<td>microvillar specific</td>
<td>VLGR1, spectrin, usherin, espin, whirlin, calmodulin, SLC9A3R1</td>
</tr>
<tr>
<td>other actin associated</td>
<td>Myosin-VIIa, myosin IIIa, myosin-X, filamin-a/b/c, SHANK3, socius, FGD6, INF2, ankyrin, WASp, EPB-41, zeta-sarcoglycan, SWAP70, inverted-formin, talin</td>
</tr>
<tr>
<td>cadherin/catenin related</td>
<td>Protocadherin Fat-4, Lefftyrin, coherin, alpha-catenin, cadherin 23</td>
</tr>
<tr>
<td>other adhesion related</td>
<td>Kifc3, fibropellin, PTPRS, laminin-beta, attractin-like 1, fibrillin, adherin-like, hemicentin-1/2, ephrin type-b receptor 1, invadolysin, dystrophin, hedgling, ELFN3, C-type lectin, latrophilin, delphilin, HSPG2, FRMPD2, sponge aggregation factor 3, contactin, tetraspanin-5, MEGF11, zonadhesin, integrin-beta, VW Factor A, connexin 32</td>
</tr>
<tr>
<td>polarity (apical/basal & planar)</td>
<td>Prickle 2, crumbs, flamingo, RTK-like orphan receptor, alp11, DLG1</td>
</tr>
<tr>
<td>epithelial development</td>
<td>Hensin, Cfap-57, Plexin-A2, fibrocystin-L, NOTCH1, inversin, TGM1, TBATA, TBX2b, KRIT1, MIB-1, malcavernin</td>
</tr>
<tr>
<td>epithelial/mesenchyme transition</td>
<td>HUNK, EGF-like, invadolysin, krueppel-like, SCUBE2, zinc finger transcription factor</td>
</tr>
<tr>
<td>known epithelial expression</td>
<td>Anoctamin, Krit-1 trichohyalin-like</td>
</tr>
<tr>
<td>Cell proliferation/differentiation</td>
<td>NOX-5, cohesin, jagged-1/2, CCDC-135, NOTCH1, Protein polybromo, EGF-like, TOE1, NME5, EGR-1, MELK, tetraspanin-5, Delta</td>
</tr>
</tbody>
</table>
Discussion

In general, manual curation allowed us to be more confident in some of the classifications of downregulated transcripts. Something that emerged from these data was a strong enrichment of microvillar/ciliary genes (Table 1.6). All eukaryotic cilia and flagella are cored by doublet microtubules arranged in a circle and in motile cilia there are an additional two singlet microtubules in the center (Kleene and Van Houten 2014; Mayer et al. 2009). Dynein, kinesins, and radial spoke head proteins are all associated with microtubules in motile cilia/flagella (Mohri et al. 2012; Paradela et al. 2005), all of which are in our data set (Fig. 1.7; Table 1.6). Alongside this, we see proteins that are implicated in the structure of microvilli (Fig 1.6; Table 1.6). In contrast to cilia/flagella, microvilli are non-motile and restricted to the holozoan lineage. Much like cilia/flagella, these are projections from the cell body but are cored by actin microfilament bundles (Gonobobleva and Maldonado 2009; Sebé-Pedrós et al. 2013; Brown and McKnight 2010). While we do not find actin to be significantly downregulated (Fig. 1.6), we see an enrichment in actin associated genes (Fig. 1.6; Table 1.6). Genes involved with cross-linking actin filaments of microvilli, for example espin, are significantly downregulated (Fig. 1.6). This is consistent with previous studies on the nature of microvilli and filopodia in holozoans (Sebé-Pedrós et al. 2013). Nucleation promoting factors such as WASP as well as unconventional myosins are also seen in our data set and are consistent with previous analyses of filopodial and microvillar structures (Sebé-Pedrós et al. 2013). The presence of these ciliary/flagellar- and microvillar-associated genes in the dataset
supports the idea that the general approach was successful, since choanocytes are characterized by a microvillar collar and apical flagellum. Taken together, it can be inferred that downregulated genes reflect genes normally expressed in choanocytes.

In addition to structural proteins of cilia and microvilli, we have evidence for downregulation of proteins specifically associated with mechanosensory hair cells. The idea that choanocytes may serve a mechanosensory function is not new given their structural similarities to hair cells (Jacobs et al. 2007). Mechanosensory hair cells and their associated proteins have been found in conserved contexts such as cnidarian cnidocytes, fish lateral line, and mammalian cochlea (Jacobs et al. 2007; Suli et al. 2012; Michel et al. 2005; McGee et al. 2006). Cnidocytes are characterized by a cyst and tubule which inverts upon deflection of the cnidocil. These structures can be used for prey capture as well as adhesion to a substrate (Anderson and Bouchard 2009). The zebrafish lateral line has mechanosensory hair cells which help the fish align itself with water currents (Suli et al. 2012). The hair cells of the cochlea are involved in auditory signaling. Sound induces vibrations on the basilar membrane which mechanically stimulates hair cells to send an electrical signal that is processed as sound (Schwander, Kachar, and Müller 2010). The structures responsible for mechanosensation in these cells are actin-based stereocilia and tubulin based kinocilia/cnidocil (Anderson and Bouchard 2009; Schwander, Kachar, and Müller 2010; Suli et al. 2012). During hair cell development, proteins that act as lateral links between stereocilia are transiently expressed. These proteins include usherin, VLGR1, and cadherin 23 (McGee et al. 2006;
Michel et al. 2005; Schwander, Kachar, and Müller 2010). Our data set shows downregulation of VLGR1, usherin, and cadherin 23 (Fig. 1.6; Table 1.6). This is particularly interesting when considering that lateral links have been reported in the microvilli of choanoflagellates and sponge choanocytes (Mah, Christensen-Dalsgaard, and Leys 2014; Dayel and King 2014). Mice that lack VLGR1 lose organization of the stereocilia and are profoundly deaf (McGee et al. 2006). The role VLGR1 is playing is not one directly involved in signal transduction but in developing the morphology of the stereocilia. In the context of choanocytes or choanoflagellates, VLGR1 may be playing a role in maintaining microvillar structure. Unlike VLGR1, cadherin 23 is transiently expressed during hair cell development as well as in the mature hair cell (McGee et al. 2006; Michel et al. 2005). During development, cadherin 23 aids in maintaining the structure of the stereocilia and it progressively becomes restricted to the top portions, eventually becoming part of the tip link complexes where it is involved in mechanosensory transduction (Michel et al. 2005; Selvakumar, Drescher, and Drescher 2013). One possible mechanosensory role of choanocytes could be in signaling for the initial events of the sponge ‘sneeze’ reaction. It has been suggested that ciliated cells in the osculum can sense changes in water flow (Ludeman et al. 2014). Though they lack innervation, signal from the osculum could be propagated through calcium waves which would be detected by the Calx-beta domains of VLGR1, potentially regulating flagellar beating. Another role for mechanosensation in the choanoderm is to regulate the orientation of choanocyte chambers to maintain the directionality of flow.
Another category of genes we are interested in are adhesion genes. Sponge tissues generally lack features of bilaterian epithelia such as electron dense cell-cell junction (Leys, Nichols, and Adams 2009). There is evidence for the presence of classical cadherin catenin adhesion (CCA) complex proteins and that sponge cadherin 1 binds with β-catenin in a yeast two-hybrid screen (Nichols et al. 2012). Here we have also identified α-catenin and other adhesion molecules as a downregulated (Fig. 1.8; Table 1.6). However, β-catenin is not downregulated in hydroxyurea treated sponges (Fig. 1.8), suggesting that β-catenin is not significantly more expressed in the choanoderm than in other sponge tissues. This opens the possibility that the choanoderm could be the only known animal tissue that uses CCA complex-independent methods for adhesion.

Adhesion mechanisms like the CCA complex are common features of bilaterian epithelia. Another characteristic of animal epithelia is cell polarity (Tyler 2003). The gene crumbs has been implicated in regulating apical/basal polarity in metazoans (Chen et al. 2010). From an ultrastructural perspective, the choanoderm has apical/basal polarity, and consistent with this observation is the fact that crumbs and other apical/basal genes are downregulated. Unlike apical/basal polarity, planar polarity in the choanoderm is less obvious, yet the gene prickle 2, which in Drosophila is a core planar cell polarity gene (Mrmkusic, Flanagan, and Whitington 2011), is down regulated. In fact, from an ultrastructural perspective, we do not see planar polarity in any sponge tissue. A case for planar polarity in sponges can be made if we consider the orientation of cells relative to
the flow of water. Because the planar polarity proteins are downregulated in the
choanoderm, we can hypothesize that the mechanosensory role of the choanoderm in
regulating the orientation of cells relative to the flow of water is linked to expression of
genes like *prickle*. Other epithelial developmental genes that are downregulated have
roles in duct/lumen architecture of bilaterian organs. An example is fibrocystin, which is
involved in maintaining duct/lumen architecture in kidneys (Zhang et al. 2004). Another
example is hensin, which can induce epithelial polarity (Watanabe et al. 2005). Since
these genes are downregulated, we might consider the sponge aquiferous system
analogous to duct-lumen structures in bilaterians.

We conducted a phmmmer search with our downregulated genes in an attempt to
identify genes restricted to sponges and choanoflagellates and identified 24 genes and
characterized domain architecture where possible (Table 1.5). As previously mentioned,
microvillar links have been reported in sponges and choanoflagellates. The
uncharacterized genes are strong candidates for being microvillar links. Many of the
genes have signal peptides which could support the idea that signaling from the collar
regulates phagocytosis.

The choanoderm has long been considered to be an ancient animal tissue due to
the structural similarities of choanoflagellates and choanocytes. Here, we examined gene
expression in the sponge choanoderm by comparing RNA-sequencing data of sponges
that develop normally and those that develop without a choanoderm. Our results are
consistent with the idea that the sponge choanoderm ultrastructurally divergent from
other animal epithelia but is still under control of common developmental mechanisms and is evolutionarily homologous to other animal epithelia. Structurally, choanocytes are homologous to collar cells throughout metazoans from mechanosensory hair cells to enterocytes in the gut of bilaterians. The choanoderm seems to represent a transitional tissue in metazoans since it shares character traits with choanoflagellates and metazoans. Confirming that the genes reported here are actually expressed in choanocytes is a step towards elucidating their function and teasing apart their evolutionary history. In the next chapter I will discuss in situ hybridization as a technique for validating choanocyte candidate gene expression. Further studies to characterize the genes expressed in choanocytes should include detailed descriptions of domain architecture as well as functional studies such as the pharmacologic inhibition of particular genes.
Chapter 2: Optimizing whole-mount in situ hybridization for Ephydatia muelleri tissue

Introduction

Having identified candidate choanocyte genes as described in the previous chapter, the next step was to experimentally validate expression dynamics. A technique commonly used in developmental biology is whole-mount in situ hybridization (WISH), which allows visualization of gene expression dynamics in different tissues and throughout development. In the variation of WISH used in this study, digoxigenin-labelled RNA probes are used. The digoxigenin tag is targeted by an antibody conjugated with an alkaline phosphatase (Jin and Lloyd 1997). This conjugated enzyme will react with a combination of NBT (nitro-blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-3'-indolyphosphate p-toluidine salt) which results in the deposition of an insoluble black-purple precipitate (Pearson et al. 2009). A reliable WISH protocol provides sensitive and accurate detection of gene expression without compromising morphology.

The technique has been used to detect expression of transcription factors in the marine demosponge Amphimedon queenslandica as well as cell markers in the freshwater demosponge Ephydatia fluviatilis (Larroux et al. 2006; Funayama, Nakatsukasa, Hayashi, et al. 2005; Funayama, Nakatsukasa, Kuraku, et al. 2005; Funayama et al. 2010). In this study, the focus was to optimize tissue permeabilization, probe specificity, signal
detection, and post-detection treatments. To accomplish this, three protocols were tested and modified. The first probe used was annexin as this was the target of previous WISH of freshwater sponges (Funayama, Nakatsukasa, Hayashi, et al. 2005). Other probes were designed to target two genes which were identified in our differential gene expression analysis of the choanoderm. A fourth probe was designed against a gene which we determined to be restricted to sponges and choanoflagellates, and downregulated in choanocyte depleted sponges. The goal of this project was to develop a robust and sensitive \textit{in situ} hybridization protocol for \textit{E. muelleri} tissue to characterize gene expression dynamics.
Candidate sequence identification

Three genes from the candidate list generated from the Blast2GO analyses were selected. The three genes were VLGR1, usherin, and cadherin 23. A fourth, uncharacterized gene restricted to choanoflagellates and sponges was also included ("choanogene"). The protein sequences that Blast2GO associated with these genes were Blasted against the *E. muelleri* transcriptome (Hemmrich and Bosch 2008). Once identified, the nucleic acid sequences were translated using ExPASy translate to find the appropriate reading frame (Gasteiger et al., 2003). The translated sequences were then run through phmmer (http://hmmer.org/) to confirm their identities.

Candidate gene amplification, cloning, and transformation

Gene specific primers were designed to amplify a 700-1000 bp region near the 3’ end of each sequence. Primers were designed with Web Primer, and the best pair was selected (Table 2.1). A previously constructed *E. muelleri* cDNA library was used as the starting template. Quality of amplification was confirmed with agarose gel electrophoresis.

The PCR products of VLGR1, Cadherin 23, and choanogene were cloned into pCR II vector with Dual Promoter TA Cloning Kit (Life Technologies) following the manufacturer’s instructions. Dh5-alpha cells were transformed with the construct and plated on LB agar in the presence of kanamycin and ampicillin.
Several colonies from each plate were selected for colony screen PCR with M13 primers. Following the PCR, the presence of the insert was confirmed by agarose gel electrophoresis. For each gene, a successfully transformed colony was picked and grown in a liquid culture overnight. A plasmid miniprep was performed for each overnight culture with QIAPrep® Spin Miniprep Kit (Qiagen). The isolated plasmids were sent to the DNA Sequencing and Analysis Core (University of Colorado Denver) for sequencing.

The orientation and presence of the gene insert relative to the promoters in the vector was determined by analyzing the chromatogram obtained from sequencing with CLC Genomic Workbench 7.0.4 (Qiagen). The original colony was grown overnight in a larger volume to perform a plasmid midiprep with NucleoBond ® Xtra Midi (Macherey-Nagel).

In situ RNA hybridization probe synthesis

The pCR II TOPO vector has an SP6 promoter and a T7 promoter flanking the region of the insert. To synthesize anti-sense dig-labelled RNA probes, plasmids were digested with EcoRV (New England Biolabs). Synthesis of sense dig-labelled RNA probes required a restriction digest with HindIII-HF (New England Biolabs). Digesting with two different restriction enzymes allows for in vitro transcription with one of the two promoters. Here, transcription with SP6 polymerase gave rise to antisense RNA probes whereas transcription with T7 polymerase gave rise to sense RNA probes.
Restriction digests were carried out overnight at 37ºC. Quality of the digest was assessed with agarose gel electrophoresis.

Digested plasmids were phenol/chloroform extracted twice then chloroform extracted once. The digested plasmids were precipitated with ethanol and sodium acetate. In vitro transcription of dig-labelled RNA probes was done with SP6 polymerase for antisense and T7 polymerase for sense. Dig-labelled RNA probes were precipitated with 2.5 volumes of 100% absolute ethanol and 1/10th volume of 3 M sodium acetate (pH 5.2) at -20ºC overnight then resuspended in RNAse free water. The quality of RNA probes was assessed with agarose gel electrophoresis.

In some cases, probes were hydrolyzed to a length of 200 bp with 0.2 M bicarbonate buffer at pH 10 at 65ºC for 35 minutes. Hydrolysis was stopped with 0.2% glacial acetic acid, 40 mM sodium acetate, and 1 µg/µl glycogen with 440 µl of 100% ethanol. This mix was stored in -20ºC overnight. The RNA precipitate was centrifuged and the pellet was washed and resuspended in RNAse free water.

Additionally, probes were tested by setting up a dilution series for each and crosslinking samples from each dilution to polyamide membrane (GE Healthcare). Crosslinking was done using UV Stratalinker 1800 (Stratagene) on the autocrosslink setting. The membranes were washed three times in 2x saline sodium citrate (20X SSC: 3M NaCl, 0.3 M sodium citrate; pH 7.0) before being incubated in 1:2000 AP-coupled anti-DIG Fab fragments. The membranes were washed in PBS four times before being equilibrated with alkaline phosphatase buffer D (100 mM Tris pH 9.5, 50 mM MgCl₂,
150 mM NaCl, 0.1% Tween 20). Following equilibration, the AP buffer D was replaced with AP buffer D containing 160 µl of NBT/BCIP solution. They were left to develop and then rinsed with tap water.

Protocol 2: Whole-mount in situ RNA hybridization for Drosophila embryo

The protocol for Drosophila embryos from Draizen, Ewer, and Robinow (1999) was modified as described here.

Cultivation and fixation. Gemmules were grown in autoclaved lake water and 100 µg/ml ampicillin in 24-well plate format. After hatching, sponges were cultured for 3 days then fixed in 4% paraformaldehyde / 0.05% glutaraldehyde in phosphate buffered saline (1X PBS: 8.0g/L NaCl, 0.2g/L KCl, 1.44 g/L Na$_2$HPO$_4$, 0.24 g/L KH$_2$PO$_4$; pH 7.4) overnight at 4°C. The sponges were washed four times in PBS.

Hybridization. Following the final wash step, PBS was replaced by a 1:1 mixture of PBS and hybridization buffer B (50% formamide, 5x SSC); this was left for 10 minutes at room temperature. The PBS:hybridization buffer B mix was replaced with hybridization buffer B and incubated for 10 minutes at room temperature. The hybridization buffer B was replaced with hybridization buffer (Cold Spring Harbor recipe: 1x Denhardt’s solution, 5mM EDTA pH 8, 50% formamide, 5x SSC, 100 µg/ml heparin, 100 µg/ml yeast tRNA, 0.1% Tween 20) and left to incubate for 1 hour at 55°C. Probes were added to hybridization buffer (1:500) and denatured by heating for 5 minutes at 80°C. Probes were either hydrolyzed or whole. Hybridization buffer was removed
from sponges and replaced with 1:500 probe:hybridization buffer mix. Hybridization was left overnight at 55°C.

Antibody incubation. The probe:hybridization buffer mix was removed and sponges were washed 6 times in hybridization buffer B at 55°C. The hybridization buffer B was replaced with 1:1 PBS:hybridization buffer B for 20 minutes at room temperature. Following the incubation, the samples were washed 3 times in PBS. The samples were incubated in 2% (w/v) blocking reagent (Roche) in Tween-20/maleic acid buffer (100 mM maleic acid, 150 mM NaCl, 0.1% tween-20) at room temperature for 1 hour. The blocking solution was replaced with 1:2000 AP-coupled anti-DIG Fab fragments in 2% blocking reagent. This was left overnight at 4°C.

Detection. The samples were washed in PBS 4 times then equilibrated with AP buffer D. Following equilibration, the AP buffer D was replaced with development buffer D (AP buffer D, 7 µl NBT/ 13 µl BCIP / ml). Staining was done in the dark and monitored until purple precipitate was observed in antisense groups. The samples were rinsed in PBS then fixed in 4% paraformaldehyde at room temperature for 15 minutes. After fixation, samples were rinsed in PBS. The PBS was replaced with 70% glycerol.

Protocol 1: Whole-mount *in situ* RNA hybridization for *Ephydatia*

This in situ hybridization protocol from Funayama et al. (2005) was modified as described here.

Cultivation and fixation. Gemmules were grown on Hybri-Slips (Sigma-Aldrich) in a petri dish with autoclaved lake water and 100 µg/ml ampicillin. After hatching,
sponges were cultured for 3 days then transferred to 24-well plates. Once transferred they were cultured for one day after which they were fixed in 4% paraformaldehyde / 0.05% glutaraldehyde in PBS overnight at 4°C. Sponges were washed 3 times in PBS. Optimization for this step involved washing once in PBS with 0.5% triton-x 100.

Permeabilization and acetylation. After washes, sponges were treated with 7.5 µg/ml Proteinase K at 37°C for 10 minutes. The reaction was stopped with 2 mg/ml glycine. Glycine was replaced with 0.1 M triethanolamine. Triethanolamine was removed and replaced with 0.1 M triethanolamine in 1.5 µl/ml acetic anhydride. The mix was replaced with 0.1 M triethanolamine in 3 µl/ml acetic anhydride. Acetylation steps were meant to inactivate endogenous RNases. The mix was removed and sponges were fixed in 4% paraformaldehyde / 0.05% glutaraldehyde in PBS for 1 hour at room temperature. Permeabilization with Proteinase K and acetylation were omitted in optimizations of this protocol.

Hybridization. The sponges were washed in PBS 5 times. After washes, prehybridization was carried out in hybridization buffer overnight at 51°C. Hybridization buffer was replaced with new hybridization buffer containing 0.2 ng/µl denatured probe (hydrolyzed or unhydrolyzed). The hybridization step was left overnight at 51°C.

Antibody incubation. After hybridization, the probe and hybridization buffer were replaced with pre-warmed hybridization buffer. This was left for 10 minutes at 51°C. The sponges were washed twice for ten minutes at 51°C in 50% formamide/4x SSC/0.1% Tween-20. They were then washed twice at 51°C for 10 minutes in 25% formamide/2x...
SSC/0.1% Tween-20. Finally, three 15 minute washes with 2x SSC/0.1% Tween-20 were done at room temperature. Blocking was then done for 1 hour at room temperature with 2% blocking reagent (Roche) in tween-20/maleic acid buffer. After the incubation, the blocking solution was replaced with 1:5000 ap-coupled anti-digoxigenin Fab fragments in 2% blocking reagent/tween-20/maleic acid buffer and was left overnight at 4°C.

Detection. The samples were washed 6 times for 30 minutes in maleic acid buffer. The sponges were then equilibrated with alkaline phosphatase buffer E (100 mM NaCl, 50 mM MgCl₂, 100 mM Tris pH 9.5, 0.1% Tween 20, 1 mM levamisole). Following equilibration, the AP buffer E was replaced with development buffer E (AP buffer E, 7 µl NBT/ 13 µl BCIP / ml). The staining reaction proceeded in the dark until sponges became a dark purple. The reaction was stopped by washing with PBS. Sponges were mounted in 100% glycerol.

Ethanol washes. In an optimization trial, after stopping the development reaction, the PBS was replaced with 100% ethanol for 60 minutes at room temperature. The ethanol was then replaced with 50% ethanol and left for 10 minutes at room temperature. Sponges were mounted in 100% glycerol.

Protocol 3: Whole-mount *in situ* RNA hybridization for planarians

Cultivation and fixation. We modified a whole mount in situ hybridization for planarians by Pearson et al. (2009). Gemmules were grown on Hybri-Slips (Sigma-Aldrich) in a petri dish with autoclaved lake water and 100 µg/ml ampicillin. After
hatching, sponges were cultured for 3 days then transferred to 24-well plates. Once transferred they were cultured for one day after which they were fixed in 4% paraformaldehyde / 0.05% glutaraldehyde in PBS for 15 minutes at room temperature. The fixative was removed and the sponges were rinsed with PBS/0.3% triton-x 100.

Reduction and hybridization. PBS/0.3% triton-x 100 was replaced with reduction solution (50 mM DTT, 1% Tween-20, 0.5% SDS, in PBS). Reduction was carried out in a 37°C water bath for 5 minutes with intermittent agitation. In planarians, the reduction step aids in permeabilization to improve probe penetration. The samples were rinsed with PBS then incubated in a 1:1 PBS and hybridization buffer mix for 10 minutes at room temperature. The mix was replaced with hybridization buffer and left for 2 hours at 55°C. After prehybridization, the hybridization buffer was replaced with hybridization buffer containing 0.2 ng/µl unhydrolyzed denatured probe. The hybridization reaction was carried out over night at 55°C.

Antibody incubation. After hybridization, the probe/hybridization buffer mix was removed. Samples were washed with a 1:1 hybridization buffer and 2x SSC + 0.1% Tween-20 mix. This was done twice for 30 minutes at 55C. The samples were then washed twice for 30 minutes at 55C with 2x SSCC + 0.1% Tween 20. The final two 30 minute washes were done with 0.2x SSC + 0.1% Tween 20. The samples were returned to room temperature and washed twice for 10 minutes in maleic acid buffer + 0.1% tween 20. After washing, the solution was replaced with 2% blocking reagent in maleic acid buffer + tween 20 and kept at 4°C overnight. The blocking reagent was removed and
replaced with 1:5000 AP-coupled anti-digoxigenin Fab fragments in 2% blocking reagent/maleic acid buffer + tween 20 and was left overnight at 4 C.

Detection. The antibody solution was removed and the samples were rinsed with maleic acid buffer + tween 20, 7 times, 20 minutes each. The tissue was equilibrated with alkaline phosphatase buffer P (100 mM Tris pH 9.5, 100 mM NaCl, 50 mM MgCl2, 0.1% Tween 20, brought up to volume with 10% polyvinyl alcohol solution). After equilibrating for 10 minutes at room temperature AP buffer P was replaced with development buffer P (AP buffer P, 4.5 µl/ml NBT, 3.5 µl/ml BCIP). Development was carried out in the dark until samples developed the purple precipitate.

Development was stopped by replacing development buffer P with PBS. Post-fixation was done at room temperature for 10 minutes using 4% paraformaldehyde. Afterwards, samples were rinsed with PBS. The PBS was replaced with 100% ethanol for 20 minutes at room temperature. The ethanol was then replaced with 50% ethanol and left for 5 minutes at room temperature. The samples were rinsed with PBS then mounted in glycerol mounting media (80% glycerol, 10 mM Tris pH 7.4, 1 mM EDTA).
Results

Probe synthesis

Due to the nature of library construction, the templates for *in situ* probes were amplified from a region near the 3’ end of the sequence (Fig. 2.1-5). The candidate genes were identified from our Blast2GO analyses. VLGR1 has been implicated in the development of auditory hair bundles, where it acts as a transient ankle link (McGee et al. 2006). Usherin and cadherin 23 are also transiently expressed in developing hair cells (Schwander, Kachar, and Müller 2010; Michel et al. 2005). The fourth candidate, “choanogene”, has been identified as a gene restricted to choanoflagellates and sponges (Table 1.5: m.244211). Amplified regions were of similar size (Table 2.1). Of the four candidate genes, usherin was the only one to not be amplified by PCR (Fig. 2.6). The amplicons were cloned into pCR®II-TOPO vector with their 3’ ends oriented towards the SP6 promoter. (Fig. 2.7). DH5-alpha cells were successfully transformed with the plasmid carrying one of the three inserts (Fig. 2.8). Plasmids were digested prior to the *in vitro* transcription reaction (Fig. 2.9). Compared to the control, which shows three bands in the lane, the digested plasmids show only one band. Antisense and sense probe synthesis was verified by gel electrophoresis (Fig. 2.10A). For each probe, there is only a single band. Probes appeared on dot blots with intensity of dot directly related to probe concentration (Fig. 2.10B).
In situ hybridization

In following a previously described sponge protocol, the acetylation step destroyed the majority of tissue. When that step was removed, proteinase K destroyed the tissue. A protocol used on *Drosophila* embryos was used. The annexin sense probe did not produce a staining pattern (Fig. 2.11A). Ubiquitous staining was seen with the annexin antisense probe (Fig. 2.11B). Annexin expression has been previously reported in choanocyte chambers and archeocytes (Funayama, Nakatsukasa, Hayashi, et al. 2005).

Rather than optimize the *Drosophila* protocol, we returned to the sponge protocol and repeated it without the acetylation or proteinase K steps, but with hydrolyzed probes. While tissue integrity was maintained, no staining was seen (data not shown). We switched back to full length probes. Again, omitting acetylation and proteinase K treatment improved tissue integrity (Fig. 2.12). When post-treated with ethanol, background staining was significantly reduced. Regardless of the probe used, spicule staining was observed. The sense probe showed faint choanoderm staining. The antisense probes for VLGR1 and choanogene showed staining of choanocyte chambers (Fig. 2.12B, D). The cadherin 23 antisense probe showed strong staining of the pinacoderm (Fig. 2.12C).

A third protocol was also tested. This protocol was originally developed for planarians and includes a reduction step which aids in probe penetration. Another difference was that the development buffer was made with polyvinyl alcohol. Proteinase K treatment was omitted as before. Unlike the sponge protocol, the sense probe shows
little to no staining (Fig. 2.13A), although in a later trial sense probe staining was
significant (Fig. 2.14A). There is very strong signal of VLGR1 and choanogene in the
choanoderm (Fig. 2.13B, D). Like the sponge protocol, cadherin 23 signal is seen in the
pinacoderm but not the choanoderm (Fig. 2.13C). Pinacocyte cell boundaries can also be
seen.

To improve signal to noise using the planarian protocol, post-hybridization
treatment with RNase A was done. The choanogene sense and antisense probes were
used. The sense probe had faint signal in the choanoderm (Fig. 2.14A). Choanogene
signal in the choanoderm was very strong (Fig. 2.14B). Post-hybridization, tissue was
treated with different concentrations of RNase A. At the lowest concentration,
choanogene antisense signal was much fainter than the sense signal (Fig. 2.14B). The
signal appears to get fainter with increasing concentration of RNase A (Fig. 2.14).
Table 2.1 List of primers and amplicon size

<table>
<thead>
<tr>
<th>Gene</th>
<th>Amplicon size (bp)</th>
<th>Primer name</th>
<th>Orientation</th>
<th>Primer sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLGR1</td>
<td>884</td>
<td>SN288F</td>
<td>Forward</td>
<td>TCACTGACATCTATGGCCTCA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN288R</td>
<td>Reverse</td>
<td>TTCTGACACGAGAGATGCTT</td>
</tr>
<tr>
<td>Usherin</td>
<td>885</td>
<td>SN289F</td>
<td>Forward</td>
<td>TGTCGTTGTCGCCGCGTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN289R</td>
<td>Reverse</td>
<td>TGCCTGATGTCGGTG</td>
</tr>
<tr>
<td>Cadherin 23</td>
<td>894</td>
<td>SN290F</td>
<td>Forward</td>
<td>TGGCACATTCATCTCTGTG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN290R</td>
<td>Reverse</td>
<td>GAAGCACTGCGAGATTGTT</td>
</tr>
<tr>
<td>Choanogene</td>
<td>897</td>
<td>SN291F</td>
<td>Forward</td>
<td>ATTCGAGAGACAGAGCAGTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN290R</td>
<td>Reverse</td>
<td>TGCCTTACATCTCTGCG</td>
</tr>
<tr>
<td>Annexin</td>
<td>974</td>
<td>SN264F</td>
<td>Forward</td>
<td>GGTGTCACGGAAACTGTGAA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SN264R</td>
<td>Reverse</td>
<td>TTAGTTGGAACCAACATG</td>
</tr>
</tbody>
</table>

Figure 2.1 VLGR1 fragment amplified from *E. muelleri* cDNA library. Green arrows represent primer binding sites. Sequence obtained from *E. muelleri* transcriptome, Accession: comp49556_c0_seq1, data set available on Compagen.
Figure 2.2 *Usherin* fragment amplified from *E. muelleri* cDNA library. Green arrows represent primer binding sites. Sequence obtained from *E. muelleri* transcriptome, Accession: comp63844_c0_seq2, data set available on Compagen.

Figure 2.3 *Cadherin* 23 fragment amplified from *E. muelleri* cDNA library. Green arrows represent primer binding sites. Sequence obtained from *E. muelleri* transcriptome, Accession: comp46992_c0_seq3, data set available on Compagen.
Figure 2.4 *Choanogene* fragment amplified from *E. muelleri* cDNA library. Green arrows represent primer binding sites. Sequence obtained from *E. muelleri* transcriptome, Accession: comp68328_c0_seq1, data set available on Compagen.

Figure 2.5 *Annexin* fragment amplified from *E. muelleri* cDNA library. Green arrows represent primer binding sites. Sequence obtained from *E. muelleri* transcriptome, Accession: comp66863_c0_seq2, data set available on Compagen.
Figure 2.6 Products of PCR on 1% agarose gel. Lane 1 shows 100 basepair ladder (New England BioLabs)

Figure 2.7 Schematic of inserts relative to RNA polymerase promoters in pCR®II-TOPO dual promoter vector
Figure 2.8 Colony screen PCR visualized on 1% agarose gel. The first lane shows 100 bp ladder (New England BioLabs).

Figure 2.9 Plasmid digest visualized on 1% agarose gel. The first lane shows 1 kilobase ladder (New England BioLabs). Lane 2: undigested choanogene. Lane 3: choanogene sense template. Lane 4: cadherin 23 antisense template. Lane 5: VLGR1 antisense template. Lane 5: choanogene antisense template.
Figure 2.10 Quality of DIG-labelled RNA probes. Probes visualized on a 1% agarose gel (A). Lane 1: 100 bp ladder (New England BioLabs). Lane 2: choanogene antisense probe. Lane 3: VLGR1 antisense probe. Lane 4: cadherin 23 antisense probe. Lane 5: choanogene sense probe. Dot blots of DIG-labelled RNA probes (B). *DIG-labelled control RNA with concentration of 0.1 µg/µl (Roche).

Figure 2.11 Whole-mount in situ hybridization using Protocol 2. Annexin sense (A) does not show clear staining. Annexin antisense (B), previously reported to be expressed in choanocytes and archeocytes, displaying ubiquitous staining of tissue.
Figure 2.12 Whole-mount *in situ* hybridization using sponge protocol. Choanogene sense strand (A, A', A'') shows faint staining in the aquiferous system. VLGR1 (B, B', B'') shows faint staining in the aquiferous system. Cadherin 23 shows staining in the pinacoderm (C, C', C''). Choanogene shows staining in the aquiferous system (D, D', D''). Arrowheads pointing to choanocyte chamber. Scale bars = 200 µm (A, B, C, D), 100 µm (A', B', C', D'), 50 µm (A'', B'', C'', D'').
Figure 2.13 Whole-mount in situ hybridization using planarian protocol. Choanogene sense strand (A,A’,A”) shows faint staining in the aquiferous system. VLGR1 (B, B’, B”) shows strong staining in the aquiferous system. Cadherin 23 shows strong staining in the pinacoderm (C, C’, C”). Choanogene shows strong staining in the aquiferous system (D, D’, D”). Arrowheads pointing to choanocyte chambers; arrow pointing to pinacocyte. Scale bars= 200 µm (A, B, C, D), 100 µm (A’, B’, C’, D’), 50 µm (A”, B”, C”, D”).
Figure 2.14 Whole-mount *in situ* hybridization treated with varying concentrations of RNase A (Sigma-Aldrich) post-hybridization. Sense choanogene probe (A, A', A'') shows staining throughout the tissue. Choanogene antisense probe (B, B', B'') shows strong staining as before. Staining throughout tissue is reduced with 0.8 ng/mL RNase A (C, C', C''). Treatment with 8 ng/mL RNase A also reduces staining (D, D', D''). Treatment with 80 ng/mL RNase A reduces staining (E, E', E''). Treatment with 800 ng/mL RNase A also reduces staining (F, F', F''). Arrowheads pointing to choanocyte chambers. Scale bars= 250 µm (A-F), 100 µm (A'-F'), 50 µm (A''-F'').
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Post-treatment</th>
<th>Development</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol 1</td>
<td>Proteinase K, 0.5% Glut.</td>
<td>Water-based development buffer</td>
<td>Tissue destroyed</td>
</tr>
<tr>
<td>Protocol 2</td>
<td>NONE</td>
<td>Water-based development buffer</td>
<td>Ubiquitous staining</td>
</tr>
<tr>
<td>Protocol 3</td>
<td>4% PFA, 0.5% Glut.</td>
<td>Water-based development buffer</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Modified Protocol 1</td>
<td>4% PFA, 0.5% Glut.</td>
<td>Water-based development buffer</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Modified Protocol 3</td>
<td>4% PFA, 0.5% Glut.</td>
<td>PVA-based development buffer</td>
<td>Ethanol</td>
</tr>
</tbody>
</table>

Table 2. Comparison of Protocols 1-3 and the Optimal Protocol.
In an attempt to validate gene expression dynamics in *E. muelleri*, we worked towards developing a robust *in situ* hybridization protocol. Our general approach was to use whole-mount *in situ* hybridization with dig-labelled RNA probes. Detection relied on the NBT/BCIP color development substrate. For our first attempt we selected the gene annexin, which has been reported to be expressed in choanocytes (Funayama, Nakatsukasa, Hayashi, et al. 2005). This same study used whole-mount *in situ* hybridization, so we followed their protocol (Protocol 1). Two key steps in this protocol prior to hybridization were acetylation and treatment with proteinase K. Acetylation is used to inactivate RNases and decrease background signal (Pernthaler and Amann 2004; Hayashi et al. 1978). Short treatment with proteinase K aids in tissue permeabilization, so the riboprobe can access RNA inside cells (Pearson et al. 2009). Both acetylation and proteinase K treatment resulted in extensive damage to tissues of interest (data not shown). Prior to either of these steps, tissue was intact and structures such as choanocyte chambers and canals were maintained through the various post-fixation wash steps. These observations led us to believe that our fixative was effective and that it was harsh conditions of acetylation and protease treatment which destroyed the tissue. Therefore fixation was not a target of optimization.

Given the fragility of sponge tissue after fixation, we opted for what seemed to be a more gentle protocol (Protocol 2), developed for *Drosophila* embryos (Draizen, Ewer, and Robinow 1999). Unlike the sponge protocol, there was neither an acetylation step...
nor a proteinase K permeabilization step so tissue was kept intact throughout. When we
developed the tissue, the sense and antisense annexin probes had different staining
patterns (Fig. 2.11). The sense probe staining was extremely faint and nonspecific (Fig.
2.11A). In comparing the staining pattern of the antisense annexin probe, we see a strong
case for detection of annexin expression (Fig. 2.11B), however, this staining pattern is
very different from what has been previously reported (Funayama, Nakatsukasa, Hayashi,
et al. 2005). Although we would expect that if it were truly ubiquitous and non-specific
staining, the sense probe would have identical staining. The difficulties in interpreting
these results prompted us to return to the sponge protocol.

Rather than continue with annexin probes, we transitioned to using candidate
choanocyte genes identified with our hydroxyurea/RNA-seq studies (see previous
chapter). We focused on cadherin 23 and VLGR1 because they are associated with
microvillar structure, function, and development in other metazoans (McGee et al. 2006;
Michel et al. 2005; Selvakumar, Drescher, and Drescher 2013; Assad, Shepherd, and
Corey 1991; Suli et al. 2012; Anderson and Bouchard 2009). Validating expression of
these two genes in choanocytes could support novel mechanosensory roles for the
choanoderm. We included a third gene which we refer to as “choanogene.” Homologues
of sponge choanogene are found only in choanoflagellates based on our own phmmer
searches.

In the second iteration of the Protocol 1, we omitted acetylation and proteinase K
treatment steps. Since proteinase treatment enhances probe penetration, we reasoned
excluding it would reduce permeability, so we chose to hydrolyze the dig-labelled RNA probes assuming that a smaller probe would be able to penetrate tissue more effectively. Despite this, we did not see any staining (data not shown). Reasoning that reduced tissue permeability would still present a barrier, we included a single wash step with PBS and 0.5% triton X-100 after fixation and before pre-hybridization. Using full length probes, we found that this additional wash/permeabilization step resulted in tissue staining. The sense probe shown in Figure 2.12 has slightly weaker signal intensity when compared to the antisense probes (Fig. 2.12B-D). The staining patterns of VLGR1 and choanogene are comparable in that they both primarily show up in the choanoderm and the aquiferous system. What seems to lend support towards the robustness of this procedure is that cadherin 23 has a very different staining pattern than the other two probes. According to our results, cadherin 23 signal is localized to the basopinacoderm – the tissue that interfaces with the substrate. It has been reported that the cells of the basal surface of the sponge are responsible for its ability to crawl (Bond and Harris 1988). Taken together, it’s possible that cadherin 23 is playing a role in basal pinacocyte motility. Alternatively, cadherin 23 could be playing a role in adhesion to the substrate.

To evaluate whether the results of the Protocol 1 could be accepted or even improved, we tested a third protocol, Protocol 3. This protocol was originally developed as a formaldehyde-based in situ hybridization for planarians (Pearson et al. 2009). In adapting Protocol 3 for sponge tissue, we excluded steps involved in mucolysis and removal of pigment. From our previous in situ trials, we also omitted acetylation and
proteinase K treatment but included one wash step with 0.5% triton X-100 in PBS. A key step in Protocol 3 is a reduction step which calls for a solution containing DTT, a reducing agent, and two different detergents. This step has been shown to increase probe penetration in previously impermeable tissue of the planarian *Schmidtea mediterranea* (Pearson et al. 2009). DTT may be targeting the exoplasmic domains of proteins with disulphide bridges (Yang et al. 2006). One other difference in this protocol is the use of 10% polyvinyl alcohol in the development buffer instead of water. This is a crowding agent that artificially increases the concentration of the NBT/BCIP development substrate. Additionally we included post-treatment with ethanol to remove non-specific background staining. This protocol resulted in very distinct staining patterns. Importantly, there was little to no staining in the sense-strand control, suggesting that the other staining patterns were specific. The staining patterns of the antisense probes resembled those of the sponge protocol antisense probes, except they are much more intense (Fig. 2.13B-D). Both VLGR1 and choanogene show choanoderm expression as predicted by our RNA-seq studies. Cadherin 23 however shows expression in the basal pinacoderm as in the sponge protocol.

We focused on optimizing tissue integrity, probe penetrance, and detection in both Protocol 1 and Protocol 2. Next, we wanted to verify specificity as well as decrease background non-specific staining. An RNAse treated choanogene sample was included in the first attempt of the Protocol 3 which resulted in no signal (data not shown). To follow up on this result, Protocol 3 was repeated with an RNase treatment step just after...
hybridization to cleave unbound probe and increase signal specificity (Fig. 2.14; Pearson et al. 2009; H. Yang et al. 1999). We varied the concentration of RNase in PBS and saw that signal was abolished even at low concentrations (Fig 2.14B), indicating that all probe binding was actually non-specific (Fig. 2.14). No sponge specific protocols have reported the use of RNase post-hybridization. This calls into question the validity of in situ hybridizations performed on sponge tissue in other studies.

In situ hybridization in E. muelleri remains a significant challenge and requires further optimization, perhaps at other steps in the process. As of now we have determined that fixation with 4% paraformaldehyde and 0.05% glutaraldehyde in PBS maintains tissue integrity. Reducing membrane proteins aids with permeabilization without compromising tissue integrity. Post-hybridization treatment with RNase should be used as an additional control to gauge non-specific binding. The use of polyvinyl alcohol seems to help in the intensity of substrate development. Post-treatment with ethanol has also been useful to remove non-specific background staining. The next step for optimization will be to focus on the hybridization parameters. One of these parameters is the stringency of hybridization. The idea is that varying the stringency would affect the stability of bound probe and seeing if this is the reason that staining disappears when treated with RNase.

Additionally, the optimized protocol will be adapted to use fluorescent detection to enable high-resolution, cell-level discrimination of gene expression patterns. Choanocytes are very small cells, ranging from 2 to 8 µm in width and 2 to 10 µm in
width (Mah, Christensen-Dalsgaard, and Leys 2014). The sponge body is also thick enough that confocal imaging is required to get an accurate depiction of internal structures at higher magnifications.

James-Clark, Henry. 1867. “On the Spongiae Ciliatiae as Infusora Flagellata.”
 Annals and Magazine of Natural History 1: 133–42.

———. 1871. “No Note on the Infusoria Flagellata and the Spongiae

Jin, L, and R V Lloyd. 1997. “In Situ Hybridization: Methods and
 Applications.” *Journal of Clinical Laboratory Analysis* 11 (1): 2–9. doi:

Jones, Philip, David Binns, Hsin Yu Chang, Matthew Fraser, Weizhong Li,
 Craig McAnulla, Hamish McWilliam, et al. 2014. “InterProScan 5:
 Genome-Scale Protein Function Classification.” *Bioinformatics* 30 (9):

Kent, W. S. 1878. “Notes on the Embryology of Sponges.” *Annals and
 Magazine of Natural History* 5: 139–56.

Kleene, S. J., and J. L. Van Houten. 2014. “Electrical Signaling in Motile and

 2004. “Hydroxyurea Arrests DNA Replication by a Mechanism That
 Preserves Basal dNTP Pools.” *Journal of Biological Chemistry* 279 (1):

Larroux, Claire, Bryony Fahey, Danielle Liubicich, Veronica F. Hinman,
 Marie Gauthier, Milena Gongora, Kathryn Green, Gert Wörheide, Sally P.
 Leys, and Bernard M. Degnan. 2006. “Developmental Expression of

Paradela, Alberto, Susana B Bravo, Mauricio Henríquez, Gloria Riquelme, Francisco Gavilanes, José M González-Ros, and Juan P Albar. 2005. “Proteomic Analysis of Apical Microvillous Membranes of Syncytiotrophoblast Cells Reveals a High Degree of Similarity with

75

Zhou, Xiaobei, Helen Lindsay, and Mark D. Robinson. 2014. “Robustly Detecting Differential Expression in RNA Sequencing Data Using
Appendix 1

Table A.1 RNA concentration from TRIzol extraction

<table>
<thead>
<tr>
<th>Sample</th>
<th>Concentration</th>
<th>260/280 Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Em-BTL-C</td>
<td>1480 ng/µl</td>
<td>2.0</td>
</tr>
<tr>
<td>Em-BTL-HU</td>
<td>589 ng/µl</td>
<td>2.0</td>
</tr>
<tr>
<td>Em-NR-C</td>
<td>931 ng/µl</td>
<td>2.0</td>
</tr>
<tr>
<td>Em-NR-HU</td>
<td>380 ng/µl</td>
<td>1.98</td>
</tr>
<tr>
<td>Em-CO-C</td>
<td>711 ng/µl</td>
<td>2.16</td>
</tr>
<tr>
<td>Em-CO-HU</td>
<td>743 ng/µl</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Figure A.1 RNA isolated with TRIzol visualized on a 1% agarose formaldehyde gel. The first lane shows 1 kb ladder and lane 8 shows 100 bp ladder (New England Biolabs). Lane 2: Em-BTL-C, Lane 3: Em-BTL-HU, Lane 4: Em-NR-C, Lane 5: Em-NR-HU, Lane 6: Em-CO-C, Lane 7: Em-CO-HU.
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Em-BTL-C</th>
<th>Em-BTL-HU</th>
<th>Em-NR-C</th>
<th>Em-NR-HU</th>
<th>Em-CO-C</th>
<th>Em-CO-HU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (Mbases)</td>
<td>1,607</td>
<td>1,584</td>
<td>1,187</td>
<td>1,405</td>
<td>1,610</td>
<td>1,479</td>
</tr>
<tr>
<td>%PF*</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td># Reads</td>
<td>31,514,217</td>
<td>31,065,437</td>
<td>23,283,522</td>
<td>27,542,226</td>
<td>31,571,758</td>
<td>28,999,119</td>
</tr>
<tr>
<td>% raw clusters per</td>
<td>17.85</td>
<td>17.59</td>
<td>13.19</td>
<td>15.6</td>
<td>17.88</td>
<td>16.42</td>
</tr>
<tr>
<td>% Perfect index</td>
<td>99.46</td>
<td>99.28</td>
<td>99.4</td>
<td>99.19</td>
<td>99.4</td>
<td>99.45</td>
</tr>
<tr>
<td>% one mismatch</td>
<td>0.54</td>
<td>0.72</td>
<td>0.6</td>
<td>0.81</td>
<td>0.6</td>
<td>0.55</td>
</tr>
<tr>
<td>Mean quality score (PF)</td>
<td>37.7</td>
<td>37.67</td>
<td>37.68</td>
<td>37.68</td>
<td>37.69</td>
<td>37.69</td>
</tr>
</tbody>
</table>

*Percentage of clusters that passed filtering
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (Mbases)</td>
<td>1,468</td>
<td>243.4</td>
<td>1,610</td>
<td>1,187</td>
</tr>
<tr>
<td>% PF</td>
<td>100.0</td>
<td>0.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td># Reads</td>
<td>28,789,832.3</td>
<td>4,768,691.4</td>
<td>31,571,758</td>
<td>23,283,522</td>
</tr>
<tr>
<td>% raw clusters per lane</td>
<td>16.3</td>
<td>2.7</td>
<td>17.88</td>
<td>13.19</td>
</tr>
<tr>
<td>% Perfect index reads</td>
<td>99.4</td>
<td>0.0</td>
<td>99.46</td>
<td>99.40</td>
</tr>
<tr>
<td>% one mismatch reads (index)</td>
<td>0.6</td>
<td>0.0</td>
<td>0.60</td>
<td>0.54</td>
</tr>
<tr>
<td>% ≥Q30 bases (PF)</td>
<td>97.2</td>
<td>0.0</td>
<td>97.19</td>
<td>97.11</td>
</tr>
<tr>
<td>Mean quality score (PF)</td>
<td>37.7</td>
<td>0.0</td>
<td>37.70</td>
<td>37.68</td>
</tr>
</tbody>
</table>
Table A.4 Summary of RNAseq run quality statistics for HU-treated group

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Standard Deviation</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (Mbases)</td>
<td>1,489.3</td>
<td>89.9</td>
<td>1,584</td>
<td>1,405</td>
</tr>
<tr>
<td>%PF</td>
<td>100.0</td>
<td>0.0</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td># Reads</td>
<td>29,202,260.7</td>
<td>1,770,368.3</td>
<td>31,065,437</td>
<td>27,542,226</td>
</tr>
<tr>
<td>% raw clusters per lane</td>
<td>16.5</td>
<td>1.0</td>
<td>17.59</td>
<td>15.60</td>
</tr>
<tr>
<td>% Perfect index reads</td>
<td>99.3</td>
<td>0.1</td>
<td>99.45</td>
<td>99.19</td>
</tr>
<tr>
<td>% one mismatch reads (index)</td>
<td>0.7</td>
<td>0.1</td>
<td>0.81</td>
<td>0.55</td>
</tr>
<tr>
<td>% ≥Q30 bases (PF)</td>
<td>97.1</td>
<td>0.0</td>
<td>97.15</td>
<td>97.11</td>
</tr>
<tr>
<td>Mean quality score (PF)</td>
<td>37.7</td>
<td>0.0</td>
<td>36.69</td>
<td>37.67</td>
</tr>
</tbody>
</table>
Table A.5 Normalization of raw count data

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Library size</th>
<th>Normalization factor</th>
<th>Effective Library Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Em-BTL-C</td>
<td>26,821,746</td>
<td>0.9998731</td>
<td>26,818,342</td>
</tr>
<tr>
<td>Em-BTL-HU</td>
<td>26,177,350</td>
<td>0.8950515</td>
<td>23,430,076</td>
</tr>
<tr>
<td>Em-NR-C</td>
<td>21,112,184</td>
<td>1.0431572</td>
<td>22,023,327</td>
</tr>
<tr>
<td>Em-NR-HU</td>
<td>25,285,262</td>
<td>1.0123698</td>
<td>25,598,036</td>
</tr>
<tr>
<td>Em-CO-C</td>
<td>29,342,058</td>
<td>1.0147581</td>
<td>29,775,091</td>
</tr>
<tr>
<td>Em-CO-HU</td>
<td>27,152,719</td>
<td>1.0426909</td>
<td>28,311,893</td>
</tr>
</tbody>
</table>

Downregulated gene accession ID

- comp68397_c0_seq23
- comp42749_c0_seq1
- comp51379_c0_seq2
- comp66724_c0_seq1
- comp66688_c0_seq8
- comp67932_c2_seq21
- comp65681_c0_seq1
- comp67188_c0_seq1
- comp219645_c0_seq1
- comp25505_c0_seq1
- comp23605_c0_seq1
- comp66101_c0_seq14
- comp68572_c3_seq18
- comp42165_c0_seq1
- comp49514_c0_seq1
- comp69560_c0_seq1
- comp210916_c0_seq1
- comp58872_c0_seq1
- comp56961_c0_seq1
- comp62810_c1_seq4
- comp68360_c0_seq2
comp66265_c0_seq24
comp58769_c0_seq1
comp66862_c0_seq39
comp72009_c0_seq1
comp66862_c0_seq26
comp41306_c0_seq1
comp66645_c1_seq10
comp49103_c0_seq1
comp50429_c0_seq2
comp66848_c0_seq1
comp56722_c0_seq5
comp62105_c0_seq1
comp85908_c0_seq1
comp66296_c0_seq31
comp67721_c3_seq1
comp64170_c0_seq2
comp68156_c1_seq1
comp64637_c0_seq6
comp62145_c0_seq18
comp58764_c0_seq6
comp62063_c0_seq1
comp62880_c0_seq1
comp67702_c3_seq2
comp52352_c0_seq3
comp40152_c0_seq1
comp53411_c0_seq3
comp51364_c0_seq1
comp57630_c0_seq1
comp63974_c0_seq8
comp62938_c0_seq1
comp218384_c0_seq1
comp65002_c0_seq8
comp68368_c0_seq23
comp58357_c0_seq2
comp67247_c1_seq4
comp64731_c0_seq5
comp73300_c0_seq1
comp62338_c0_seq1
comp61434_c0_seq2
comp56096_c0_seq1
86
comp67635_c1_seq8
comp66602_c0_seq14
comp66498_c0_seq29
comp55702_c0_seq1
comp67586_c0_seq20
comp64699_c0_seq2
comp77221_c0_seq1
comp67093_c1_seq2
comp64531_c0_seq4
comp61588_c0_seq1
comp63198_c0_seq1
comp27422_c0_seq1
comp67141_c0_seq3
comp65935_c3_seq1
comp65834_c0_seq4
comp58758_c0_seq1
comp64492_c0_seq1
comp73634_c0_seq1
comp81818_c0_seq1
comp64983_c0_seq1
comp71372_c0_seq1
comp202345_c0_seq1
comp68660_c0_seq8
comp68766_c0_seq1
comp60420_c1_seq1
comp63283_c0_seq1
comp66101_c0_seq23
comp68813_c0_seq1
comp39932_c0_seq1
comp66862_c0_seq1
comp118640_c0_seq1
comp48074_c0_seq1
comp68453_c1_seq11
comp61344_c0_seq2
comp34150_c0_seq1
comp51753_c0_seq1
comp68004_c0_seq2
comp62113_c0_seq2
comp1385_c1_seq1
comp38126_c1_seq1
comp263528_c0_seq1
comp58164_c0_seq1
comp61344_c0_seq3
comp68572_c3_seq12
comp65935_c2_seq10
comp57910_c0_seq2
comp67566_c0_seq3
comp53338_c0_seq1
comp65148_c0_seq12
comp68453_c1_seq4
comp68214_c0_seq1
comp65669_c0_seq2
comp58578_c1_seq2
comp21960_c0_seq1
comp30882_c0_seq1
comp55311_c0_seq2
comp64071_c0_seq9
comp62539_c0_seq4
comp36222_c0_seq1
comp66893_c0_seq1
comp66136_c0_seq8
comp65432_c0_seq10
comp67682_c0_seq3
comp59564_c0_seq1
comp67967_c0_seq4
comp64195_c0_seq3
comp67171_c0_seq1
comp30785_c0_seq1
comp67253_c0_seq8
comp22366_c0_seq1
comp61425_c0_seq3
comp77617_c0_seq1
comp36268_c0_seq2
comp64731_c0_seq3
comp49690_c0_seq1
comp68770_c0_seq1
comp58065_c0_seq1
comp66992_c0_seq8
comp158713_c0_seq1
comp64576_c0_seq1
comp66290_c0_seq30
comp55377_c0_seq2
comp52058_c0_seq3
comp78420_c0_seq1
comp54635_c0_seq7
comp66979_c0_seq10
comp18936_c0_seq1
comp67932_c2_seq11
comp65511_c0_seq2
comp56103_c0_seq1
comp23480_c0_seq1
comp63357_c0_seq1
comp51598_c0_seq3
comp63283_c1_seq5
comp65918_c0_seq1
comp68693_c0_seq30
comp21984_c0_seq2
comp68006_c0_seq1
comp67566_c0_seq2
comp47748_c0_seq2
comp67274_c0_seq1
comp49042_c0_seq1
comp36456_c0_seq1
comp65763_c1_seq11
comp66984_c0_seq8
comp63252_c0_seq8
comp67553_c0_seq1
comp49997_c0_seq2
comp64470_c0_seq3
comp55324_c0_seq5
comp63502_c0_seq4
comp54902_c0_seq3
comp68571_c0_seq29
comp67636_c1_seq1
comp65214_c0_seq1
comp64464_c2_seq2
comp47748_c0_seq3
comp2189_c0_seq1
comp56538_c0_seq1
comp68411_c1_seq1
comp54292_c0_seq2
comp67548_c0_seq18
comp38668_c0_seq1
comp51838_c0.seq3
comp65767_c0.seq1
comp62751_c0.seq2
comp63062_c0.seq2
comp56916_c1.seq1
comp2066_c0.seq1
comp54471_c0.seq1
comp67378_c0.seq10
comp62219_c0.seq2
comp63672_c0.seq3
comp68474_c1.seq4
comp58448_c0.seq2
comp54878_c0.seq1
comp44083_c0.seq1
comp65275_c0.seq3
comp57499_c0.seq1
comp67721_c3.seq10
comp67315_c0.seq5
comp55698_c0.seq1
comp68571_c0.seq8
comp552193_c0.seq1
comp66862_c0.seq46
comp63474_c0.seq1
comp62394_c0.seq3
comp49597_c0.seq1
comp66862_c0.seq29
comp20959_c0.seq1
comp68453_c1.seq7
comp66924_c0.seq2
comp67718_c0.seq1
comp68474_c1.seq9
comp71905_c0.seq1
comp52054_c0.seq1
comp65515_c0.seq10
comp67461_c0.seq13
comp68573_c1.seq4
comp66862_c0.seq41
comp66101_c0.seq20
comp49591_c0.seq1
comp47614_c0.seq1
comp67664_c0.seq9
103