Date of Award

11-1-2014

Document Type

Masters Thesis

Degree Name

M.S.

Organizational Unit

Daniel Felix Ritchie School of Engineering and Computer Science

First Advisor

Corinne S. Lengsfeld, Ph.D.

Keywords

Cavitation, Monoclonal antibody (mAb1), Cavitation experimentation

Abstract

Cavitation is a phenomenon that occurs when the local pressure falls down below the critical pressure. Previous work from the Randolph lab demonstrated that protein aggregates can form when a vial of therapeutic solution is dropped onto a hard surface. The process by which this occurs is most likely shock induced cavitation. During this process, hot spots can be created with temperatures and pressures reaching thousands of Kelvin and hundreds of atmospheres, respectively, leading to degradation of protein therapeutics. This work will extend previous efforts by exploring differences generated by change in vial materials, solutions, drop methods and fill volumes. Also this phenomenon will be computationally modeled by ANSYS program to investigate the created low pressure regions in solution inside the vial after the impact, and validated with the data in experiments. To accomplish the task of the experiments, water, histidine buffer, and a limited number of runs were performed with monoclonal antibody (mAb1). Video was collected under variable conditions: vials consisting of glass and plastic materials, fill volume, drop height, drop method and impact angle. Cavitation intensity was observed using a Phantom 7 high-speed camera recording. The results indicate that reducing the potential energy transmitted from the dropped vial to the solution cause the solution to be less likely to cavitate, and the intensity of cavitation would significantly vary by changing the abovementioned parameters.

Publication Statement

Copyright is held by the author. User is responsible for all copyright compliance.

Rights Holder

Houman Babazadehrokni

Provenance

Received from ProQuest

File Format

application/pdf

Language

en

File Size

55 p.

Discipline

Mechanical engineering



Share

COinS