Title

Distributive and Trimedial Quasigroups of Order 243

Document Type

Article

Publication Date

11-16-2016

Keywords

Distributive quasigroup, Trimedial quasigroup, Medial quasigroup, Entropic quasigroup, Commutative Moufang loop, Latin square, Mendelsohn triple system, Classification, Enumeration

Organizational Units

College of Natual Science and Mathematics, Mathematics

Abstract

We enumerate three classes of non-medial quasigroups of order 243=35" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">243=35 up to isomorphism. There are 17004" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">17004 non-medial trimedial quasigroups of order 243" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">243 (extending the work of Kepka, Bénéteau and Lacaze), 92" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">92 non-medial distributive quasigroups of order 243" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">243 (extending the work of Kepka and Němec), and 6" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">6 non-medial distributive Mendelsohn quasigroups of order 243" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">243 (extending the work of Donovan, Griggs, McCourt, Opršal and Stanovský).

The enumeration technique is based on affine representations over commutative Moufang loops, on properties of automorphism groups of commutative Moufang loops, and on computer calculations with the LOOPS package in GAP.

Publication Statement

Copyright held by author or publisher. User is responsible for all copyright compliance.

This document is currently not available here.

Share

COinS