Date of Award
1-1-2016
Document Type
Dissertation
Degree Name
Ph.D.
Organizational Unit
Daniel Felix Ritchie School of Engineering and Computer Science, Electrical and Computer Engineering
First Advisor
David Wenzhong Gao, Ph.D.
Keywords
Renewable energy resources, Operating reserves, Small power systems, Batteries, Distributed Generation Technologies
Abstract
The fundamental operating paradigm of today's power systems is undergoing a significant shift. This is partially motivated by the increased desire for incorporating variable renewable energy resources into generation portfolios. While these generating technologies offer clean energy at zero marginal cost, i.e. no fuel costs, they also offer unique operating challenges for system operators. Perhaps the biggest operating challenge these resources introduce is accommodating their intermittent fuel source availability. For this reason, these generators increase the system-wide variability and uncertainty. As a result, system operators are revisiting traditional operating strategies to more efficiently incorporate these generation resources to maximize the benefit they provide while minimizing the challenges they introduce.
One way system operators have accounted for system variability and uncertainty is through the use of operating reserves. Operating reserves can be simplified as excess capacity kept online during real time operations to help accommodate unforeseen fluctuations in demand. With new generation resources, a new class of operating reserves has emerged that is generally known as flexibility, or ramping, reserves. This new reserve class is meant to better position systems to mitigate severe ramping in the net load profile. The best way to define this new requirement is still under investigation. Typical requirement definitions focus on the additional uncertainty introduced by variable generation and there is room for improvement regarding explicit consideration for the variability they introduce. An exogenous reserve modification method is introduced in this report that can improve system reliability with minimal impacts on total system wide production costs.
Another potential solution to this problem is to formulate the problem as a stochastic programming problem. The unit commitment and economic dispatch problems are typically formulated as deterministic problems due to fast solution times and the solutions being sufficient for operations. Improvements in technical computing hardware have reignited interest in stochastic modeling. The variability of wind and solar naturally lends itself to stochastic modeling. The use of explicit reserve requirements in stochastic models is an area of interest for power system researchers. This report introduces a new reserve modification implementation based on previous results to be used in a stochastic modeling framework.
With technological improvements in distributed generation technologies, microgrids are currently being researched and implemented. Microgrids are small power systems that have the ability to serve their demand with their own generation resources and may have a connection to a larger power system. As battery technologies improve, they are becoming a more viable option in these distributed power systems and research is necessary to determine the most efficient way to utilize them. This report will investigate several unique operating strategies for batteries in small power systems and analyze their benefits. These new operating strategies will help reduce operating costs and improve system reliability.
Publication Statement
Copyright is held by the author. User is responsible for all copyright compliance.
Rights Holder
Ibrahim Krad
Provenance
Received from ProQuest
File Format
application/pdf
Language
en
File Size
143 p.
Recommended Citation
Krad, Ibrahim, "A Reserve-Based Method for Mitigating the Impact of Renewable Energy" (2016). Electronic Theses and Dissertations. 1118.
https://digitalcommons.du.edu/etd/1118
Copyright date
2016
Discipline
Electrical Engineering